-
Notifications
You must be signed in to change notification settings - Fork 0
/
bitmap.c
1088 lines (970 loc) · 30.6 KB
/
bitmap.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*
* Copyright (C) Martino Pilia <[email protected]> , 2015
*/
/*!
* \file bitmap.c
* \brief Operate on a bitmap file.
* @author Martino Pilia <[email protected]>
* @date 2015-07-18
*/
#include <assert.h>
#include <limits.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "bitmap.h"
/* Minimum macro. */
#define MIN(x, y) ((x) < (y) ? (x) : (y))
/* Indices for nibble mask. */
#define HI_NIBBLE 0
#define LO_NIBBLE 1
/* Read a value with a specific mask, removing trailing zeros. */
#define READ_MASK(val, mask) (((val) & (mask)) >> tr_zeros((mask)))
/* Length in bit for the string length encode in the steganographic
* functions. */
#define STEG_LEN 32
/* Update indices while reading channels of various pixels sequentially;
* i is the pixel row, j the pixel column, ch the channel no. and w the width;
* pixels are read by row, and for each pixel the first three channels are
* read sequentially. */
#define NEXT(i, j, ch, w) \
if ((ch) + 1 == 3) \
{ \
(ch) = 0; \
if ((j) + 1 == (w)) \
{ \
(j) = 0; \
++(i); \
} \
else \
++(j); \
} \
else \
++(ch);
/* binary mask for the bits and nibbles in a byte */
const uint8_t mask1[] = {128, 64, 32, 16, 8, 4, 2, 1};
const uint8_t mask4[] = {240, 15};
/*
* \brief Count trailing zeros in the binary representation of a number.
* @param val Input value.
* @return Number of trailing binary zeros.
*/
static __inline__ unsigned int tr_zeros(uint32_t val)
__attribute__((always_inline));
/*
* Count trailing binary zeros.
*/
static unsigned int tr_zeros(uint32_t val)
{
unsigned int res = 0;
if (!val)
return 0u;
while (!(val & 0x1))
{
++res;
val >>= 1;
}
return res;
}
/*!
* Allocate resources for a new image object.
*/
Image new_image(int width, int height, short bpp, int colors)
{
Image res;
Bmp_header *h = &res.bmp_header;
long max_colors = 1;
size_t pad;
int i;
memset(&res, 0, sizeof (Image));
if (width < 1 || height < 1 || colors < 0)
{
fprintf(stderr, "new_image: invalid arguments.\n");
return res;
}
if (bpp != 1 && bpp != 4 && bpp != 8 && bpp != 16 && bpp != 24 && bpp != 32)
{
fprintf(stderr, "new_image: invalid bpp value.\n");
return res;
}
/* compute the max color number allowed with the input bpp */
for (i = 0; i < bpp; ++i)
max_colors *= 2;
if (colors > max_colors)
{
fprintf(stderr, "new_image: incompatible bpp and colors number.\n");
return res;
}
/* rows have a 4 byte alignment */
pad = (4 - (bpp * width + 7) / 8 % 4) % 4;
/* fill bitmap header */
h->header_size = 40;
h->bit_per_pixel = bpp;
h->width = width;
h->height = height;
h->color_planes = 1;
h->compression_type = 0;
h->h_resolution = 2835;
h->v_resolution = 2835;
h->image_size = ((bpp * width + 7) / 8 + pad) * height;
h->color_no = colors;
h->important_color_no = colors;
/* alloc pixel data (jagged array) */
res.pixel_data = (Pixel**) malloc(height * sizeof (Pixel*));
if (!res.pixel_data)
{
return res;
}
for (i = 0; i < height; ++i)
{
res.pixel_data[i] = (Pixel*) calloc(width, sizeof (Pixel));
if (!res.pixel_data[i])
{
while (i > 0)
free(res.pixel_data[--i]);
free(res.pixel_data);
return res;
}
}
/* alloc color palette */
res.palette = (Color*) calloc(colors, sizeof (Color));
return res;
}
/*!
* Destroy an image object.
*/
void destroy_image(Image *im)
{
unsigned long i;
/* soft check against double free */
for (i = 0; i < im->bmp_header.height; ++i)
if (im->pixel_data[i])
free(im->pixel_data[i]);
if (im->pixel_data)
free(im->pixel_data);
if (im->palette)
free(im->palette);
memset(im, 0, sizeof (Image));
}
/*!
* Copy the content of an Image object into another, of possibly different
* size.
*/
int copy_image(Image to, Image from)
{
size_t i;
size_t min_w = MIN(to.bmp_header.width, from.bmp_header.width);
size_t min_h = MIN(to.bmp_header.height, from.bmp_header.height);
for (i = 0; i < min_h; ++i)
memcpy(to.pixel_data[i], from.pixel_data[i], min_w * sizeof (Pixel));
return 0;
}
/*!
* Open a bitmap file.
*/
Image open_bitmap(const char *filename)
{
FILE *f;
File_header file_header;
Bmp_header *h;
Image image;
short allocated_palette = 0;
size_t i, j;
uint8_t *buf;
uint8_t *bitmap_buffer;
uint32_t h_size;
size_t pad;
short bit;
memset(&image, 0, sizeof (Image));
/* open input file */
f = fopen(filename, "rb");
if (f == NULL)
return image;
/* read the file header */
fread(&file_header, sizeof (File_header), 1, f);
if (ferror(f))
{
fclose(f);
return image;
}
/* check the magic number to ensure this is a valid bmp file */
if (file_header.file_type != 0x4D42)
{
fprintf(stderr, "Invalid magic number.\n");
fclose(f);
return image;
}
/* check the header size (4 byte value) */
fread(&h_size, 4, 1, f);
if (ferror(f))
{
fclose(f);
return image;
}
fseek(f, -4, SEEK_CUR); /* restore pointer to the header start */
/* read the bmp header */
fread(&image.bmp_header, h_size, 1, f);
if (ferror(f))
{
fclose(f);
return image;
}
/* alias the header, to have an handy shorthand */
h = &image.bmp_header;
/* check wether the bit_per_pixel value is valid */
if (h->bit_per_pixel != 1
&& h->bit_per_pixel != 4
&& h->bit_per_pixel != 8
&& h->bit_per_pixel != 16
&& h->bit_per_pixel != 24
&& h->bit_per_pixel != 32)
{
fclose(f);
return image;
}
/* allocate memory for the palette and read it when present */
if (h->color_no)
{
/* each color is stored as a 4 byte sequence */
image.palette = (Color*) malloc(h->color_no * 4);
fread(image.palette, h->color_no * 4, 1, f);
if (ferror(f))
{
free(image.palette);
fclose(f);
image.palette = NULL;
return image;
}
else
{
allocated_palette = 1;
}
}
/* assert the bitmap data start has been reached */
assert(ftell(f) == file_header.bmp_offset);
/* allocate memory for the bitmap data (as a jagged array) */
image.pixel_data = (Pixel**) malloc(h->height * sizeof (Pixel*));
if (!image.pixel_data)
{
if (allocated_palette)
free(image.palette);
image.pixel_data = NULL;
image.palette = NULL;
fclose(f);
return image;
}
for (i = 0; i < h->height; ++i)
{
image.pixel_data[i] = (Pixel*) malloc(h->width * sizeof (Pixel));
if (!image.pixel_data[i])
{
if (allocated_palette)
free(image.palette);
while (i > 0)
free(image.pixel_data[--i]);
image.pixel_data = NULL;
image.palette = NULL;
fclose(f);
return image;
}
}
/* allocate buffer for the file content */
bitmap_buffer = (uint8_t*) calloc(1, h->image_size);
if (!bitmap_buffer)
{
for (i = 0; i < h->height; ++i)
free(image.pixel_data[i]);
free(image.pixel_data);
if (allocated_palette)
free(image.palette);
image.pixel_data = NULL;
image.palette = NULL;
fclose(f);
return image;
}
/* read bitmap data from the file and put it into the buffer */
fread(bitmap_buffer, h->image_size, 1, f);
if (ferror(f))
{
for (i = 0; i < h->height; ++i)
free(image.pixel_data[i]);
free(image.pixel_data);
if (allocated_palette)
free(image.palette);
image.pixel_data = NULL;
image.palette = NULL;
fclose(f);
return image;
}
/* convert bitmap data into high level pixel representation */
/* +7 is to round up to the ceil value in the division */
pad = (4 - ((h->width * h->bit_per_pixel + 7) / 8) % 4) % 4;
buf = bitmap_buffer;
switch (h->bit_per_pixel)
{
/* each byte of data represents 8 pixels, with the most significant
* bit mapped into the leftmost pixel */
case 1:
for (i = 0; i < h->height; ++i)
{
bit = 0;
for (j = 0; j < h->width; ++j)
{
/* get the right bit from the current byte,
* starting from the most significative one */
image.pixel_data[i][j].i = READ_MASK(*buf, mask1[bit]);
++bit;
/* when the current byte has been fully read,
* advance to the next one */
if (bit == 8)
{
bit = 0;
++buf;
}
}
/* each row has a padding to a 4 byte alignment */
buf += pad;
}
break;
/* each byte represents 2 pixel, with the most significant nibble
* mapped into the leftmost pixel */
case 4:
for (i = 0; i < h->height; ++i)
{
for (j = 0; j < h->width; j += 2)
{
/* read the two pixels in the current byte */
image.pixel_data[i][j].i =
READ_MASK(*buf, mask4[HI_NIBBLE]);
if (j + 1 < h->width)
image.pixel_data[i][j + 1].i =
READ_MASK(*buf, mask4[LO_NIBBLE]);
/* advance to the next byte */
++buf;
}
/* each row has a padding to a 4 byte alignment */
buf += pad;
}
break;
/* each byte represents 1 pixel */
case 8:
for (i = 0; i < h->height; ++i)
{
for (j = 0; j < h->width; ++j)
image.pixel_data[i][j].i = *(buf++);
/* each row has a padding to a 4 byte alignment */
buf += pad;
}
break;
/* each pixel is represented with 2 bytes */
case 16:
for (i = 0; i < h->height; ++i)
{
for (j = 0; j < h->width; ++j)
{
uint16_t *px = (uint16_t*) buf;
image.pixel_data[i][j].b = READ_MASK(*px, h->blue_mask);
image.pixel_data[i][j].g = READ_MASK(*px, h->green_mask);
image.pixel_data[i][j].r = READ_MASK(*px, h->red_mask);
/* advance to the next pixel (half-word) */
buf += 2;
}
/* each row has a padding to a 4 byte alignment */
buf += pad;
}
break;
/* each pixel is represented with 3 bytes, with 1 byte for each
* component */
case 24:
for (i = 0; i < h->height; ++i)
{
for (j = 0; j < h->width; ++j)
{
image.pixel_data[i][j].b = *(buf++);
image.pixel_data[i][j].g = *(buf++);
image.pixel_data[i][j].r = *(buf++);
}
/* each row has a padding to a 4 byte alignment */
buf += pad;
}
break;
case 32:
for (i = 0; i < h->height; ++i)
{
for (j = 0; j < h->width; ++j)
{
uint32_t *px = (uint32_t*) buf;
image.pixel_data[i][j].b = READ_MASK(*px, h->blue_mask);
image.pixel_data[i][j].g = READ_MASK(*px, h->green_mask);
image.pixel_data[i][j].r = READ_MASK(*px, h->red_mask);
image.pixel_data[i][j].i = READ_MASK(*px, h->alpha_mask);
/* advance to the next pixel (word) */
buf += 4;;
}
/* each row has a padding to a 4 byte alignment */
buf += pad;
}
break;
}
/* free buffer */
free(bitmap_buffer);
fclose(f);
return image;
}
/*!
* Save a bitmap image.
*/
int save_bitmap(Image image, const char *filename)
{
FILE *f;
size_t i, j;
Bmp_header *h = &image.bmp_header;
uint8_t *bitmap_buffer;
uint8_t *buf;
size_t pad = (4 - ((h->width * h->bit_per_pixel + 7) / 8) % 4) % 4;
File_header file_header =
{
/* bmp magic number */
0x4D42,
/* file size */
sizeof (File_header)
+ h->header_size
+ h->color_no * 4
+ h->image_size,
/* reserved */
0,
0,
/* bmp offset */
sizeof (File_header)
+ h->header_size
+ h->color_no * 4
};
/* open output file */
f = fopen(filename, "wb");
if (!f)
return 1;
/* write file header */
fwrite(&file_header, sizeof (File_header), 1, f);
if (ferror(f))
{
fclose(f);
return 1;
}
/* write bmp header */
fwrite(h, h->header_size, 1, f);
if (ferror(f))
{
fclose(f);
return 1;
}
/* write color palette if present */
if (h->color_no)
{
fwrite(image.palette, h->color_no * 4, 1, f);
if (ferror(f))
{
fclose(f);
return 1;
}
}
/* allocate buffer for bitmap pixel data */
bitmap_buffer = (uint8_t*) calloc(1, h->image_size);
buf = bitmap_buffer;
/* convert pixel data into bitmap format */
switch (h->bit_per_pixel)
{
/* each byte of data represents 8 pixels, with the most significant
* bit mapped into the leftmost pixel */
case 1:
for (i = 0; i < h->height; ++i)
{
j = 0;
while (j < h->width)
{
short bit;
uint8_t tmp = 0;
for (bit = 7; bit >= 0 && j < h->width; --bit)
{
tmp |= (image.pixel_data[i][j].i == 0 ? 0u : 1u) << bit;
++j;
}
*buf++ = tmp;
}
/* each row has a padding for 4 byte alignment */
buf += pad;
}
break;
/* each byte represents 2 pixel, with the most significant nibble
* mapped into the leftmost pixel */
case 4:
for (i = 0; i < h->height; ++i)
{
for (j = 0; j < h->width; j += 2)
{
/* write two pixels in the one byte variable tmp */
uint8_t tmp = 0;
/* most significant nibble */
tmp |= image.pixel_data[i][j].i << 4;
if (j + 1 < h->height)
/* least significant nibble */
tmp |= image.pixel_data[i][j + 1].i & mask4[LO_NIBBLE];
/* write the byte in the image buffer */
*buf++ = tmp;
}
/* each row has a padding to a 4 byte alignment */
buf += pad;
}
break;
/* each byte represents 1 pixel */
case 8:
for (i = 0; i < h->height; ++i)
{
for (j = 0; j < h->width; ++j)
*buf++ = image.pixel_data[i][j].i;
/* each row has a padding to a 4 byte alignment */
buf += pad;
}
break;
/* each pixel is represented with 2 bytes */
case 16:
for (i = 0; i < h->height; ++i)
{
for (j = 0; j < h->width; ++j)
{
uint16_t *px = (uint16_t*) buf;
*px =
(image.pixel_data[i][j].b << tr_zeros(h->blue_mask)) +
(image.pixel_data[i][j].g << tr_zeros(h->green_mask)) +
(image.pixel_data[i][j].r << tr_zeros(h->red_mask));
/* advance to the next pixel (half-word) */
buf += 2;
}
/* each row has a padding to a 4 byte alignment */
buf += pad;
}
break;
/* each pixel is represented with 3 bytes, with 1 byte for each
* color component */
case 24:
for (i = 0; i < h->height; ++i)
{
for (j = 0; j < h->width; ++j)
{
*buf++ = image.pixel_data[i][j].b;
*buf++ = image.pixel_data[i][j].g;
*buf++ = image.pixel_data[i][j].r;
}
/* each row has a padding to a 4 byte alignment */
buf += pad;
}
break;
/* each pixel is represented with 4 bytes */
case 32:
for (i = 0; i < h->height; ++i)
{
for (j = 0; j < h->width; ++j)
{
uint32_t *px = (uint32_t*) buf;
*px =
(image.pixel_data[i][j].b << tr_zeros(h->blue_mask)) +
(image.pixel_data[i][j].g << tr_zeros(h->green_mask)) +
(image.pixel_data[i][j].r << tr_zeros(h->red_mask)) +
(image.pixel_data[i][j].i << tr_zeros(h->alpha_mask));
/* advance to the next pixel (word) */
buf += 4;
}
/* each row has a padding to a 4 byte alignment */
buf += pad;
}
break;
}
/* write pixel data in the file */
assert(file_header.bmp_offset == ftell(f));
fwrite(bitmap_buffer, h->image_size, 1, f);
if (ferror(f))
{
free(bitmap_buffer);
fclose(f);
return 1;
}
free(bitmap_buffer);
fclose(f);
return 0;
}
/*!
* Return a string containing a human readable dump of the image properties.
*/
char* bmp_dump(Image image)
{
/* 22 * 26 is an extimation for the header dump,
* 21 * color_no is for the palette */
char *out = (char*) malloc(22 * 26 + 21 * image.bmp_header.color_no);
sprintf(out,
"Header size: %10d\n"
"Image width: %10d\n"
"Image height: %10d\n"
"Color planes: %10d\n"
"Bit per px: %10d\n"
"Compression: %10d\n"
"Bitmap size: %10d\n"
"X resolution: %10d\n"
"Y resolution: %10d\n"
"Colors: %10d\n"
"Important: %10d\n"
"red_mask %#010x\n"
"green_mask %#010x\n"
"blue_mask %#010x\n"
"alpha_mask %#010x\n"
"cs_type %10d\n"
"gamma_red %10d\n"
"gamma_green %10d\n"
"gamma_blue %10d\n"
"intent %10d\n"
"profile_data %10d\n"
"profile_size %10d\n",
image.bmp_header.header_size,
image.bmp_header.width,
image.bmp_header.height,
image.bmp_header.color_planes,
image.bmp_header.bit_per_pixel,
image.bmp_header.compression_type,
image.bmp_header.image_size,
image.bmp_header.h_resolution,
image.bmp_header.v_resolution,
image.bmp_header.color_no,
image.bmp_header.important_color_no,
image.bmp_header.red_mask,
image.bmp_header.green_mask,
image.bmp_header.blue_mask,
image.bmp_header.alpha_mask,
image.bmp_header.cs_type,
image.bmp_header.gamma_red,
image.bmp_header.gamma_green,
image.bmp_header.gamma_blue,
image.bmp_header.intent,
image.bmp_header.profile_size,
image.bmp_header.profile_size
);
if (image.bmp_header.color_no)
{
strcat(out, "\nPalette:\n");
for (size_t i = 0; i < image.bmp_header.color_no; ++i)
{
char buf[100];
sprintf(buf,
"%3lu: %3u %3u %3u %3u\n",
i,
image.palette[i].r,
image.palette[i].g,
image.palette[i].b,
image.palette[i].a
);
strcat(out, buf);
}
}
return out;
}
/*!
* Return a string containing an ASCII art representation for the
* two colors input image.
*/
char* ascii_print(Image image)
{
char *out;
long i, j, k;
Bmp_header *h = &image.bmp_header;
if (h->color_no != 2)
{
fprintf(stderr, "ascii_print can print two colors images only.\n");
return NULL;
}
/* memory for the output string (+1 for row and string terminators) */
out = (char*) malloc((h->width + 1) * h->height + 1);
if (!out)
{
return NULL;
}
/* pixels are stored from bottom to top, left to right */
k = 0;
for (i = h->height - 1; i >= 0; --i)
{
for (j = 0; j < (long) h->width; ++j)
out[k++] = (image.pixel_data[i][j].i ? '*' : ' ');
out[k++] = '\n';
}
out[k] = '\0';
return out;
}
/*!
* Get the histogram for a channel.
*/
unsigned long* histogram(Image image, const int channel)
{
size_t i, j;
unsigned long *hist;
if (channel < 0 || channel > 3)
{
fprintf(stderr, "histogram: invalid channel parameter.\n");
return NULL;
}
hist = (unsigned long*) calloc(256, sizeof (unsigned long));
if (!hist)
{
fprintf(stderr, "histogram: memory error.\n");
return NULL;
}
for (i = 0; i < image.bmp_header.height; ++i)
for (j = 0; j < image.bmp_header.width; ++j)
/* convert packed struct pointer into an array pointer
* to access the channel */
hist[((uint8_t*) &image.pixel_data[i][j])[channel]] += 1;
return hist;
}
/*!
* Apply an histogram equalization algorithm.
*/
int equalize(Image image, const int channel)
{
size_t i, j;
const int li = 256; /* levels in the input image */
const int lo = 256; /* levels in output image */
unsigned long area = image.bmp_header.width * image.bmp_header.height;
const float c = (float) lo / (float) area; /* coefficient */
unsigned long cdf[li]; /* cumulative distribution function */
unsigned long *h; /* histogram for the channel */
if (channel < 0 || channel > 3)
{
fprintf(stderr, "equalize: invalid channel.\n");
return 1;
}
/* get histogram */
h = histogram(image, channel);
if (!h)
{
fprintf(stderr, "equalize: unable to create histogram.\n");
return 1;
}
/* compute cdf */
cdf[0] = h[0];
for (i = 1; i < li; ++i)
cdf[i] = cdf[i - 1] + h[i];
/* equalize */
for (i = 0; i < image.bmp_header.height; ++i)
{
for (j = 0; j < image.bmp_header.width; ++j)
{
/* convert packed struct pointer into an array pointer
* to access the channel */
uint8_t *px = (uint8_t*) &image.pixel_data[i][j];
px[channel] = c * cdf[px[channel]];
}
}
free(h);
return 0;
}
/*!
* Convert the RGB color space into Y'CbCr (with Y, Cb and Cr in the range
* 0-255), applying the following transformation:
* \f[
* Y = 0.299 \cdot R + 0.587 \cdot G + 0.114 * B \\
* C_b = 128 + 0.564 \cdot (B - Y) \\
* C_r = 128 + 0.713 \cdot (R - Y)
* \f]
*/
int rgb2ycbcr(Image image)
{
size_t i, j;
for (i = 0; i < image.bmp_header.height; ++i)
{
for (j = 0; j < image.bmp_header.width; ++j)
{
Pixel p = image.pixel_data[i][j];
uint8_t y;
/* Y */
image.pixel_data[i][j].b = y =
0.299 * p.r
+ 0.587 * p.g
+ 0.114 * p.b;
/* Cb */
image.pixel_data[i][j].g = 128 + 0.713 * (p.b - y);
/* Cr */
image.pixel_data[i][j].r = 128 + 0.564 * (p.r - y);
}
}
return 0;
}
/*!
* Convert the Y'CbCr color space into RGB, applying the following
* transformation:
* \f[
* R = Y + 1.403 \cdot (C_r - 128) \\
* G = Y - 0.714 \cdot (C_r - 128) - 0.344 \cdot (C_b - 128) \\
* B = Y + 1.773 \cdot (C_b - 128)
* \f]
*/
int ycbcr2rgb(Image image)
{
size_t i, j;
for (i = 0; i < image.bmp_header.height; ++i)
{
for (j = 0; j < image.bmp_header.width; ++j)
{
Pixel p = image.pixel_data[i][j];
/* R */
image.pixel_data[i][j].r =
p.b /* Y */
+ 0 /* Cb */
+ 1.402 * (p.r - 128); /* Cr */
/* G */
image.pixel_data[i][j].g =
p.b /* Y */
- 0.34414 * (p.g - 128) /* Cb */
- 0.71414 * (p.r - 128); /* Cr */
/* B */
image.pixel_data[i][j].b =
p.b /* Y */
+ 1.772 * (p.g - 128) /* Cb */
+ 0; /* Cr */
}
}
return 0;
}
/*!
* Write an hidden text message inside a bitmap. Each color channel of each
* pixel holds a bit of the message; pixels are read from bottom left to top
* right, while channels for each pixel are read from B to R. The bits of
* the characters or numbers are written in little endian order.
*
* The value of each channel is zero if its value is even, one if it is odd.
* The evenness of the values is manipulated to encode the message while doing
* only a quasi invisible change to the image aspect.
*
* A bitmap of size \f$ width \cdot height \f$ can hold
* \f$ 3 \cdot width \cdot height \f$ bits of data. The first 32 bits are used
* to encode the length of the payload message. Then the message follows, and
* the eventual exceeding channels are filled with random data.
*/
int steganography_write(Image image, const char *string)
{
Bmp_header *h = &image.bmp_header;
size_t len = strlen(string) + 1; /* include termination character */
size_t allowed_len = (h->width * h->height * 3 - STEG_LEN) / CHAR_BIT;
unsigned long i, j, k, l, ch;
uint8_t *px;
if (len > allowed_len)
{
fprintf(stderr,
"steganography_write: the input string is too long, "
"the maximum allowed string length for this image is %ld\n",
allowed_len);
return 1;
}
if (h->bit_per_pixel < 16)
{
fprintf(stderr,
"steganography_write: only 16 bit or higher bpp images"
"allowed\n");
return 1;
}
/* write len in the first STEG_LEN pixels */
/* even = zero, odd = 1 */
i = j = ch = 0;
for (k = 0; k < STEG_LEN; ++k)
{
px = (uint8_t*) &image.pixel_data[i][j];
if (px[ch] == 255)
--px[ch]; /* prevent overflow */