forked from IsabelMarleen/asd_analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasd_playground.R
715 lines (473 loc) · 25.5 KB
/
asd_playground.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
# This script crashes with 16 GB or less of RAM.
# Rsession will use 30 GB or RAM in the long-run, not sure about peaks.
# Load --------------------------------------------------------------------
library( tidyverse )
library( Matrix )
library( irlba )
library( uwot )
library( FNN )
library( igraph )
library( cowplot )
# convenience functions such as col_pwr_trans, rowVars_spm etc.:
scr_dir <- "/home/frauhammer/sc_methods_dev/src/"
source(file.path(scr_dir, "functions_universal.R"))
path <- "/home/frauhammer/sds_copy/ASD/"
cellinfo <- read.delim( file.path( path, "meta.txt" ), stringsAsFactors=FALSE )
counts <- readMM( file.path( path, "matrix.mtx" ) )
gene_info <- read.delim( file.path( path, "genes.tsv" ), header=FALSE, as.is=TRUE ) %>%
mutate(unique = case_when(
duplicated(V2) | duplicated(V2, fromLast=T) ~ paste(V2, V1, sep="_"),
TRUE ~ V2))
rownames(counts) <- gene_info$unique
colnames(counts) <- readLines( file.path( path, "barcodes.tsv" ) )
sampleTable <-
cellinfo %>% select( sample : RNA.Integrity.Number ) %>% unique
sampleTable
# extracting gene expression is much faster in column-sparse format:
Tcounts <- as(t(counts), "dgCMatrix") # fast: Tcounts[, "SYN1"]
Ccounts <- as(counts, "dgCMatrix") # fast: Ccounts[, 1337] and colSums(Ccounts)
# Preprocessing -----------------------------------------------------------
# load (or re-execute everything in this section):
sfs <- colSums(counts)
norm_counts <- t(t(Ccounts) / colSums(Ccounts))
rownames(norm_counts) <- rownames(Ccounts)
load(file.path("~", "asd_analysis", "savepoint", "umap_euc_spread10.RData"))
# informative genes, PCA, UMAP:
poisson_vmr <- mean(1/sfs)
gene_means <- rowMeans( norm_counts )
gene_vars <- rowVars_spm( norm_counts )
cells_expressing <- rowSums( counts != 0 )
is_informative <- gene_vars/gene_means > 1.5 * poisson_vmr & cells_expressing > 100
plot(gene_means, gene_vars/gene_means, pch=".", log = "xy")
points(gene_means[is_informative], (gene_vars/gene_means)[is_informative], pch=".", col = "red" )
pca <- irlba::prcomp_irlba( x = sqrt(t(norm_counts[is_informative,])),
n = 40,
scale. = TRUE)
umap_euc <- uwot::umap( pca$x, spread = 10, n_threads = 40)
umap_cos <- uwot::umap( pca$x, metric = "cosine", spread = 10, n_threads = 40)
# save(umap_euc,
# file = file.path("~", "asd_analysis", "savepoint", "umap_euc_spread10.RData"))
# Clusters ---------------------------------------------------
# load (or re-execute everything in this section):
load(file.path("~", "asd_analysis", "savepoint", "clusters.RData"))
# find NN for each cell:
library( RcppAnnoy )
featureMatrix <- pca$x; k_nn <- 50
annoy <- new( AnnoyEuclidean, ncol(featureMatrix) )
for( i in 1:nrow(featureMatrix) )
annoy$addItem( i-1, featureMatrix[i,] )
annoy$build( 50 ) # builds a forest of n_trees trees. More trees gives higher precision when querying.
nn_cells <- t( sapply( 1:annoy$getNItems(), function(i) annoy$getNNsByItem( i-1, k_nn) + 1 ) )
nndists_cells <- sapply( 1:ncol(nn_cells), function(j) sqrt( rowSums( ( featureMatrix - featureMatrix[ nn_cells[,j], ] )^2 ) ) )
rm(featureMatrix, annoy)
# cluster on nearest neighbor graph (Louvain):
adj <- Matrix(0, nrow = nrow(pca$x), ncol = nrow(pca$x)) # has to be sparse, otherwise takes 80 GB of RAM
for(i in 1:ncol(nn_cells))
adj[ cbind(1:nrow(pca$x), nn_cells[, i]) ] <- 1
for(i in 1:ncol(nn_cells))
adj[ cbind(nn_cells[, i], 1:nrow(pca$x)) ] <- 1
cl_louvain <- cluster_louvain( graph_from_adjacency_matrix(adj, mode = "undirected") )
# merge clusters that are separated by patient heterogeneity:
tmp_clusters <- cl_louvain$membership
tmp_clusters <- case_when(tmp_clusters %in% c(5, 6, 8, 1, 10, 20, 2) ~ 5, TRUE ~ tmp_clusters) # excit. Ns
tmp_clusters <- case_when(tmp_clusters %in% c(11, 15, 19) ~ 11, TRUE ~ tmp_clusters) # astrocytes
tmp_clusters <- case_when(tmp_clusters %in% c(3, 9, 18) ~ 3, TRUE ~ tmp_clusters) # OPCs
# Louvain clusters
p_louv <- ggplot()+ coord_fixed() +
geom_point(data = data.frame(umap_euc, cl=factor(tmp_clusters)),
aes(X1, X2, col = cl), size = .1) +
geom_label(data = group_by(data.frame(umap_euc, cl=factor(tmp_clusters)), cl) %>%summarise(X1=mean(X1), X2=mean(X2)),
aes(X1, X2, label = cl))
p_louv
# clusters from paper
p_paper <- ggplot()+ coord_fixed()+
geom_point(data =data.frame(cell = colnames(counts), umap_euc) %>%
left_join(select(cellinfo, cell, cluster), by="cell"),
aes(X1, X2, col = cluster), size = .1) +
geom_label(data = data.frame(cell = colnames(counts), umap_euc) %>%
left_join(select(cellinfo, cell, cluster), by = "cell") %>% group_by(cluster) %>%
summarise(X1=mean(X1), X2=mean(X2)),
aes(X1, X2, label = cluster))
p_paper
#
# save(list = c("cl_louvain", "tmp_clusters", "nn_cells", "nn_inothercluster"),
# file = file.path("~", "asd_analysis", "savepoint", "clusters.RData"))
# Doublets and ambiguous cells ----------------------------------
# load (or re-execute everything in this section):
load(file.path("~", "asd_analysis", "savepoint", "doublets.RData"))
# number of NN from different cluster:
nn_inothercluster <- colSums(
matrix(tmp_clusters[ t(nn_cells) ],
ncol = nrow(nn_cells)) !=
matrix(rep(tmp_clusters, each = ncol(nn_cells)),
ncol = nrow(nn_cells)) )
# in silico doublets: randomly draw cells from different clusters and pool their UMIs to form a "synthetic" doublet:
cellsA <- sample(1:ncol(counts), 50000)
cellsB <- rep(NA, 50000)
smpA <- cellinfo$sample[cellsA]
clA <- tmp_clusters[cellsA]
tmp <- data.frame(smpA, clA) %>% group_by(smpA, clA) %>% tally
for(i in 1:nrow(tmp)) {
is_smp <- cellinfo$sample[cellsA] == tmp$smpA[i]
is_cl <- tmp_clusters[cellsA] == tmp$clA[i]
# sample amongst cells from same sample and different cluster:
cellsB[ is_smp & is_cl ] <- base::sample(
x = which(cellinfo$sample == tmp$smpA[i] & !tmp_clusters == tmp$clA[i]),
size = tmp$n[i],
replace = T) # in case one cluster is larger than all others combined
}
doublet_raw <- Ccounts[, cellsA] + Ccounts[, cellsB]
doublet_pcs <- predict(pca,
newdata = sqrt( (t(doublet_raw) / colSums(doublet_raw))[, is_informative] ))
# Alternative 1 (clearer):
a <- FNN::get.knn(rbind(pca$x, doublet_pcs), k = 50)
nn_doublets <- a$nn.index
nndists_doublets <- a$nn.dist
# Alternative 2 (faster):
library( RcppAnnoy )
featureMatrix <- rbind(pca$x, doublet_pcs); k_nn <- 50
annoy <- new( AnnoyEuclidean, ncol(featureMatrix) )
for( i in 1:nrow(featureMatrix) )
annoy$addItem( i-1, featureMatrix[i,] )
annoy$build( 50 ) # builds a forest of n_trees trees. More trees gives higher precision when querying.
nn_doublets <- t( sapply( 1:annoy$getNItems(), function(i) annoy$getNNsByItem( i-1, k_nn) + 1 ) )
nndists_doublets <- sapply( 1:ncol(nn_doublets), function(j) sqrt( rowSums( ( featureMatrix - featureMatrix[ nn_doublets[,j], ] )^2 ) ) )
rm(featureMatrix, annoy)
# percentage of synthetic doublets in neighborhood for each cell:
dblts_perc <- rowMeans( nn_doublets > ncol(counts) )[ 1:ncol(counts) ]
# Run UMAP with Annoy's output
ump2 <- uwot::umap( NULL, nn_method = list( idx=nn_doublets, dist=nndists_doublets),
n_threads=40, spread = 15, verbose=TRUE )
is_synth <- 1:nrow(ump2) > nrow(pca$x)
# save(list = c("nn_doublets", "nndists_doublets", "cellsA", "cellsB",
# "dblts_perc", "is_synth", "ump2"),
# file = file.path("~", "asd_analysis", "savepoint", "doublets.RData"))
# Cluster contributions to doublets ---------------------------------------
gg <- ggplot_build(p_louv)
cl_cols <- unique(gg$data[[2]][c("label","colour")])
plot_grid(plotlist = c(list(p_louv),
lapply(c(21,1, 9, 6, 13), function(cl){
ggplot()+coord_fixed()+
geom_point(data=data.frame(ump2[!is_synth,]), aes(X1, X2), col="grey", size=.05)+
geom_point(data = data.frame(ump2[is_synth,],
cl_contributed = tmp_clusters[cellsA] == cl | tmp_clusters[cellsB] == cl),
aes(X1, X2, col = cl_contributed), size=.05) +
scale_color_manual(values = c(`FALSE`="grey", `TRUE`=cl_cols[cl_cols$label==cl,"colour"])) +
geom_label(data = data.frame(cell=colnames(counts), ump2[!is_synth,], cluster = tmp_clusters)%>%
filter(cluster == cl) %>% summarise(X1=mean(X1), X2=mean(X2)),
aes(X1, X2, label = cl),
fontface = "bold")+ theme(legend.position = "none") +
scale_fill_manual(values = cl_cols[cl_cols$label==cl,"colour"]) +
ggtitle(paste0("Doublets with contribution from cluster ", cl)) + theme(legend.position = "none")
})
))
# synthetic doublets have synthetic doublets in their neighborhood
a <- FNN::get.knn(rbind(pca$x, doublet_pcs), k = 50)
data.frame(perc_dbl = rowMeans( a$nn.index > nrow(pca$x) ), is_synth = 1:nrow(a$nn.index) > nrow(pca$x)) %>%
ggplot() + geom_histogram(aes(perc_dbl, fill = is_synth), alpha=.3) + coord_cartesian(ylim = c(0, 14000))+
facet_wrap(~is_synth)
plot(rowMeans( a$nn.index > nrow(pca$x) ), pch=20, cex=.4); abline(h = nrow(pca$x))
# Markers and doublets ----------------------------------------------------
# "MOC","PTPRC"
markers <- c(astro="AQP4",
astro="GFAP",
oligod="PLP1",
schwann="MPZ",
Tcell="SKAP1",
OPC="TNR",
OPC="PDGFRA",
Endothel="VWF",
pericytes ="PDGFRB",
microglia="CD68",
microglia="CD4",
neurons="SYT1",
stroma= "LAMA2",
motorNeuron ="THY1",
motorNeuron = "NEFL")
for(i in 1:length(markers)){
g <- markers[i]
png(file.path("~", "asd_analysis","marker_umap", paste0(names(markers)[i], "_",g,".png")),
width = 800, height = 800)
p <- data.frame(umap_euc, cellinfo, Gene = Tcounts[, g], sfs) %>%
ggplot(aes(X1, X2, col = Gene / sfs / mean(1/sfs))) + geom_point(size=.1)+coord_fixed()+
col_pwr_trans(1/2, g) + ggtitle(names(markers)[i])
print(p)
dev.off()
}
# DESeq -------------------------------------------------------------------
library(DESeq2)
library(BiocParallel)
# visualize dirty cells we clean away:
tmp <- data.frame(umap_euc,
diagnosis = cellinfo$diagnosis,
clean = dblts_perc < 3/50 & nn_inothercluster < 1,
Gene = Tcounts[, "TTF2"] / sfs/mean(1/sfs),
cl = factor(tmp_clusters))
ggplot() + coord_fixed()+
geom_point(data=filter(tmp, clean), aes(X1, X2, col = cl), size=.1) +
geom_point(data=filter(tmp, !clean), aes(X1, X2), col = "black", size=.1) +
geom_label(data=group_by(tmp, cl) %>% summarise(X1=mean(X1), X2=mean(X2)), aes(X1, X2, label=cl))
tmp <- as.matrix(table(sample=cellinfo$sample, clean = dblts_perc < 3/50 & nn_inothercluster < 1))
data.frame(sample = rownames(tmp), dirtyProportion = tmp[,1] / (tmp[,1] + tmp[,2])) %>% left_join(sampleTable, by="sample") %>% ggplot(aes(sample, dirtyProportion, col = diagnosis))+geom_point()
# compute for a single cluster
sel <-Tcounts[, "SYT1"] > 1 & Tcounts[, "CUX2"] > 0 & dblts_perc < 3/50 & nn_inothercluster < 1
pseudobulks <- as.matrix(t( fac2sparse(cellinfo$sample[sel]) %*% t(Ccounts[, sel]) ))
coldat <- filter(sampleTable, sample %in% colnames(pseudobulks)) %>%
mutate(individual = factor(individual),
diagnosis = factor(diagnosis, levels = c("Control", "ASD")),
region = factor(region))
rownames(coldat) <- coldat$sample
dds <- DESeqDataSetFromMatrix( pseudobulks,
coldat[colnames(pseudobulks), ],
design = ~ sex + region + age + diagnosis )
# For cluster 5, I tested that we do not need interactions between sex, region and diagnosis. I used
# DESeq's LTR for this (see mail to Simon at mid-September 2019).
dds <- DESeq(dds,
parallel=TRUE, BPPARAM=MulticoreParam(20))
res_df <- results(dds, name = "diagnosis_ASD_vs_Control") %>% as.data.frame() %>% rownames_to_column("Gene")
table(res_df$padj < .1)
res_df %>% arrange(padj) %>% head(n=20)
cors <- cor(
sqrt( Tcounts[sel, "EPB41L5"] / sfs[sel] ),
as.matrix(sqrt( Tcounts[sel, ] / sfs[sel] ))
)
# correlation-like stuff --------------------------------------------------
clean <- dblts_perc < 3/50 & nn_inothercluster < 1
s_50 <- rowSums( matrix(sfs[ nn_cells ], ncol = 50) )
syt1_50 <- rowSums( matrix(Tcounts[, "SYT1"][ nn_cells ], ncol = 50) ) / 50
cux2_50 <- rowSums( matrix(Tcounts[, "CUX2"][ nn_cells ], ncol = 50) ) / 50
ttf2_50 <- rowSums( matrix(Tcounts[, "TTF2"][ nn_cells ], ncol = 50) ) / 50
data.frame(umap_euc, s_50,
syt1_50,
cux2_50,
ttf2_50,
clean,
diagnosis = cellinfo$diagnosis,
syt1_raw = Tcounts[, "SYT1"],
ttf2_raw = Tcounts[, "TTF2"]
) %>%
gather(Gene, knn, syt1_50, cux2_50, ttf2_raw) %>%
ggplot(aes(X1, X2, col= knn / s_50 / mean(1/s_50)))+coord_fixed()+
geom_point(size=.1) + facet_wrap(~ diagnosis + Gene) +
scale_color_gradientn(
trans = power_trans(1/2),
colours = rev(rje::cubeHelix(100))[5:100],
na.value = adjustcolor("grey", alpha.f = .4),
labels = semi_scientific_formatting
)
# markers for cortical layers, from this paper (Fig. 6):
# Large-Scale Cellular-Resolution Gene Profiling in Human Neocortex Reveals
# Species-Specific Molecular Signatures
# Zeng, Shen, ..., Kleinman, Jones
# Cell 2012
l1 <- c("NDNF", # aka "C4orf31"
"CHRNA7_ENSG00000175344", "CHRNA7_ENSG00000274542", # CHRNA7 exists twice
"CNR1","CXCL14","RELN","INPP4B")
l23<-c("LAMP5", # aka: "C20orf103",
"GSG1L","IGSF11","KCNIP2","PVRL3","RASGRF2","SYT17","WFS1","C1QL2",
"CARTPT","CALB1","CUX2","ATP2B4","CBLN2","CCK","FXYD6","PENK","CACNA1E","KCNH4",
"SCN3B","COL24A1","CRYM","TPBG","BEND5","COL6A1","PRSS12","SCN4B","SYT2","LGALS1",
"MFGE8","SV2C","SNCG")
l4 <- c("RORB","CACNG5","CHRNA3","GRIK4","KCNIP1","PDYN")
l5 <- c(
"TRIB2","CPNE7","ETV1","FAM3C","TOX","VAT1L","KIAA1456","HTR2C"
)
l56 <- c("PCDH20_ENSG00000280165", "PCDH20_ENSG00000197991", # PCDH20 exists twice in our data
"B3GALT2","KCNK2","PCP4","PDE1A","RPRM","RXFP1","GABRA5","KCNA1"
)
l6 <- c(
"CDH24","CYR61","FOXP2","NTNG2","SYT10","SYT6","TH","TLE4","TMEM163","AKR1C2","AKR1C3","ANXA1","NPY2R","OPRK1","PCDH17","SEMA3C","SYNPR"
)
l6b_wm <- c( # so called "subplate neurons". Interstitial neurons are from white matter (wm)
"ADRA2A","CTGF","NR4A2"
)
the_markers <- c(l1, l23, l4, l5, l56, l6, l6b_wm)
# from Schirmer Science paper:
interneuron_markers <- c("GAD1", "GAD2")
gene_means <- rowMeans( norm_counts[, tmp_clusters == 5] )
gene_vars <- rowVars_spm( norm_counts[, tmp_clusters == 5] )
frequent <- rowSums(norm_counts[, tmp_clusters == 5] != 0) > .01 * sum(tmp_clusters == 5)
tmp <- data.frame(gene = names(gene_means), gene_means, gene_vars,
is_marker = names(gene_means) %in% the_markers,
frequent, stringsAsFactors = F) %>%
mutate(use_marker = is_marker & frequent & gene_vars/gene_means > 1.5 * mean(1/sfs[tmp_clusters==5]))
ggplot() +
geom_point(data = filter(tmp, !is_marker), aes(gene_means, gene_vars/gene_means), size=.1, col="grey")+
geom_point(data = filter(tmp, is_marker & !use_marker), aes(gene_means, gene_vars/gene_means), size=.5, col="black")+
geom_point(data = filter(tmp, use_marker), aes(gene_means, gene_vars/gene_means), size=.5, col="red")+
scale_x_log10()+scale_y_log10() +
geom_hline(yintercept = mean(1/sfs[tmp_clusters==5]))+
geom_hline(yintercept = 1.5 * mean(1/sfs[tmp_clusters==5]), linetype="dashed", col="red")
# Correlation:
markers_use <- the_markers[the_markers %in% (filter(tmp, use_marker) %>% pull(gene))]
cors <- cor(as.matrix(t(sqrt(norm_counts[markers_use,
tmp_clusters == 5 & clean] ))))
diag(cors) <- NA
library(RColorBrewer)
pheatmap::pheatmap(cors,
color = colorRampPalette(rev(brewer.pal(n = 7, name =
"RdBu")))(100),
cluster_rows = F, cluster_cols = F)
# where are the Layer4 Neurons?
data.frame(umap_euc,
clean,
sfs,
diagnosis = cellinfo$diagnosis,
louv = tmp_clusters,
as.matrix(Tcounts[, l4[l4 %in% markers_use]])
) %>%
gather(Gene, UMI, -X1, -X2, -clean, -sfs, -diagnosis, - louv) %>%
ggplot(aes(X1, X2, col = UMI/sfs/mean(1/sfs)))+geom_point(size=.1) + coord_fixed()+
col_pwr_trans(1/10)+
facet_wrap(~Gene)
# they use RORB as marker for L4, but it's correlated highly with these l5/6 markers:
l56_and_rorb <- c("RORB","TOX","KIAA1456","PDE1A","RXFP1","FOXP2")
data.frame(umap_euc,
sfs,
as.matrix(Tcounts[, l56_and_rorb])) %>%
gather(Gene, UMI, -X1, -X2, -sfs) %>%
ggplot(aes(X1, X2, col = UMI/sfs/mean(1/sfs)))+geom_point(size=.1) + coord_fixed()+
col_pwr_trans(1/10)+
facet_wrap(~Gene)
# more DESeq stuff --------------------------------------------------------
# compare ASD vs control for several clusters:
res_clean <- lapply(c(5, 16, 21, 4, 11, 13, 3, 14, 7, 23), function(cl){
print(cl)
sel <- tmp_clusters== cl & dblts_perc < 3/50 & nn_inothercluster < 1
pseudobulks <- as.matrix(t( fac2sparse(cellinfo$sample[sel]) %*% t(Ccounts[, sel]) ))
coldat <- filter(sampleTable, sample %in% colnames(pseudobulks)) %>%
mutate(individual = factor(individual),
sex = factor(sex),
diagnosis = factor(diagnosis, levels = c("Control", "ASD")),
region = factor(region))
rownames(coldat) <- coldat$sample
dds <- DESeqDataSetFromMatrix( pseudobulks, coldat[colnames(pseudobulks), ],
design = ~ sex + age + region + diagnosis )
dds <- DESeq(dds, parallel=TRUE, BPPARAM=MulticoreParam(20))
res_df <- results(dds, name = "diagnosis_ASD_vs_Control") %>% as.data.frame() %>% rownames_to_column("Gene")
list(cluster = cl, ncells = sum(sel), res = res_df )
})
names(res_clean) <- unlist(lapply(res_clean, function(x) x$cluster))
plot_grid(plotlist = lapply(names(res_clean), function(cl){
data.frame(padj_clean=res_clean[[cl]]$res$padj,
padj_dirty=res_dirty[[cl]]$res$padj) %>% ggplot(aes(-log10(padj_dirty), -log10(padj_clean)))+
geom_point(size=.1)+coord_fixed() + geom_abline() + geom_vline(xintercept = 1, lty=2, col="red")+
geom_hline(yintercept = 1, lty=2, col="red")+ ggtitle(cl)
}) )
# Compare to sfari database
sfari <- read_csv(file.path("~", "asd_analysis",
"SFARI-Gene_genes_08-29-2019release_09-24-2019export.csv")) %>%
rename_all(make.names)
in_database <- sfari$gene.symbol[ sfari$gene.symbol %in% gene_info$V2 ]
tmp <- lapply(names(res_clean), function(cl){
print(cl)
degs <- res_dirty[[cl]]$res %>% filter(padj < .1) %>% pull(Gene)
in_test <- res_dirty[[cl]]$res %>% filter(!is.na(padj)) %>% pull(Gene)
if(length(degs)==0){p_dirty <- NA}else{
p_dirty <- fisher.test(matrix(table( in_test %in% degs, in_test %in% in_database),
ncol=2,
dimnames = list(is_deg = c("no","yes"), in_database = c("no","yes"))))$p.value
}
degs <- res_clean[[cl]]$res %>% filter(padj < .1) %>% pull(Gene)
in_test <- res_clean[[cl]]$res %>% filter(!is.na(padj)) %>% pull(Gene)
if(length(degs)==0){p_clean <- NA}else{
p_clean <- fisher.test(matrix(table( in_test %in% degs, in_test %in% in_database),
ncol=2,
dimnames = list(is_deg = c("no","yes"), in_database = c("no","yes"))))$p.value
}
return(data.frame(cluster=cl, p_dirty = p_dirty, p_clean = p_clean, stringsAsFactors = F))
}) %>% bind_rows
tmp %>% ggplot(aes(-log10(p_dirty), -log10(p_clean)))+geom_point()+geom_abline() + ggtitle("DEG enrichment")
data.frame(
cluster = names(res_clean),
ncells_clean = lapply(res_clean, function(x) x$ncells) %>% unlist,
ncells_dirty = lapply(res_dirty, function(x) x$ncells) %>% unlist
) %>% left_join(tmp) %>% head
res_df %>% filter(padj < .1, baseMean > 50) %>% arrange(desc(abs(log2FoldChange))) %>% head(n=20)
Gene baseMean log2FoldChange lfcSE stat pvalue padj
1 MTND2P28 60.25608 2.7302927 0.6788128 4.022159 5.766718e-05 0.012415743
2 HSPB1 53.25841 -1.8056395 0.5872707 -3.074629 2.107647e-03 0.060330707
3 MT-ND3 870.50560 1.4187626 0.3279703 4.325887 1.519194e-05 0.006305464
4 MT-ND4L 167.39401 1.3428971 0.3245225 4.138071 3.502378e-05 0.009425774
5 MT-ND4 1653.17914 1.3137104 0.2869792 4.577720 4.700708e-06 0.003935798
6 MTATP6P1 361.22570 1.0486883 0.3376722 3.105640 1.898675e-03 0.057480286
7 MT-CO3 2461.32824 1.0356872 0.2742279 3.776739 1.588948e-04 0.020123562
8 MT-CO2 1831.71986 0.9955536 0.2746291 3.625084 2.888675e-04 0.026873597
9 MT-ND1 658.56180 0.9821369 0.2345878 4.186650 2.831022e-05 0.008585289
10 MT-ATP6 874.24854 0.9531860 0.2803692 3.399752 6.744688e-04 0.038315943
11 MT-ND2 800.02263 0.9369508 0.2443916 3.833810 1.261736e-04 0.017607065
12 TTF2 50.01172 -0.8898189 0.1978098 -4.498355 6.848117e-06 0.004549986
13 MT-CYB 718.85866 0.8116936 0.2152989 3.770077 1.631970e-04 0.020272786
14 ZMYM3 57.76922 0.8077571 0.2202002 3.668286 2.441821e-04 0.024838436
15 KIT 169.95008 0.7833860 0.1813739 4.319178 1.566115e-05 0.006305464
16 VMA21 68.14624 0.7507723 0.2401887 3.125760 1.773462e-03 0.055716836
17 CLIP3 143.12863 0.7417990 0.1567059 4.733701 2.204624e-06 0.003524178
18 PLK2 55.06825 0.7178509 0.1663288 4.315856 1.589859e-05 0.006305464
19 CXXC4 52.21341 0.7035908 0.1437565 4.894323 9.864475e-07 0.002973350
20 KLHL9 61.72171 0.6984751 0.2225714 3.138207 1.699847e-03 0.054623451
# Plot individual genes
g <- "MT-ND3"
plotCounts(dds, g, intgroup = c("sex", "region", "diagnosis"))
data.frame(umap_euc, cellinfo, Gene = Tcounts[, g], sfs, sel) %>%
# filter(sel) %>%
ggplot(aes(X1, X2, col = Gene / sfs / mean(1/sfs))) + geom_point(size=.1)+coord_fixed()+
col_pwr_trans(1/2, g) + facet_wrap(~ region + diagnosis)
# Investigate gene-gene correlations (maybe useful to see if subpopulations of cells exist or not):
deg_cors <- cor( as.matrix( t(sqrt(norm_counts[degs, sel])) ) )
hist(deg_cors, 100)
# adjacency matrix:
deg_adj <- 0 + (deg_cors > .2)
neighborless <- rowSums( deg_cors > .2 ) <= 1
deg_cl <- cluster_louvain( graph_from_adjacency_matrix(deg_adj[!neighborless, !neighborless], mode = "undirected") )
deg_umap <- uwot::umap( 1-deg_cors[!neighborless, !neighborless], spread = 10, n_threads = 10)
data.frame(deg_umap, cl = factor(deg_cl$membership)) %>% ggplot(aes(X1, X2, col=cl))+geom_point()
groups(deg_cl)$`1` # investigate further?
# NRGN neurons ------------------------------------------------------------
sel <- cellinfo$cluster == "Neu-NRGN-II" #grepl("NRGN", cellinfo$cluster)
pseudobulks <- as.matrix(t( fac2sparse(cellinfo$sample[sel]) %*% t(Ccounts[, sel]) ))
coldat <- filter(sampleTable, sample %in% colnames(pseudobulks)) %>%
mutate(individual = factor(individual),
diagnosis = factor(diagnosis, levels = c("Control", "ASD")),
sex = factor(sex),
region = factor(region))
rownames(coldat) <- coldat$sample
dds <- DESeqDataSetFromMatrix( pseudobulks,
coldat[colnames(pseudobulks), ],
design = ~ sex + region + age+ diagnosis )
dds <- DESeq(dds,
parallel=TRUE, BPPARAM=MulticoreParam(20))
res_NRGN2 <- results(dds, name = "diagnosis_ASD_vs_Control") %>% as.data.frame() %>% rownames_to_column("Gene")
data.frame(
Gene = rownames(res_NRGN1),
# p_pooled = res_pooledNRGN$padj,
p_nrgn1 = res_NRGN1$padj,
p_nrgn2 = res_NRGN2$padj
) %>%
ggplot(aes(-log10(p_nrgn1), -log10(p_nrgn2)))+geom_point()+coord_fixed() + geom_abline()
# ASD/cntrl and clusterI/II are perfectly mixed, II is just 2.5x larger than I:
filter(cellinfo, grepl("NRGN", cluster)) %>% select(cluster, diagnosis) %>% table()
# DE playground -----------------------------------------------------------
# DE testing has to follow simple assumptions to be feasible, as there are
# infinitely many possible distributions the counts could have in controls and treatments,
# respectively.
# For example, perhaps in my 20 control patients a gene is distributed according to
# a NB in some and according to a composite of two NBs in other samples, and another
# gene according to a composite of three NBs with different means.
# It is infeasible to model this with NB/composite-NB fits.
# Instead, let's think about genes we would be interested in as DEGs in scRNAseq:
# such a gene would in the treated samples follow distributions (NB / composite-NBs)
# whose parameters are sampled from a different entity - e.g. they could be
# composite-NBs composed of three instead of two NBs, or they could be
# composite-NBs around the same two means, but more cells with the higher mean, etc..
# Again, it is completely infeasible to model this or do fits with EM algorithm or whatever,
# instead we have to come up with simple assumptions that describe this well.
#
g <- "RGS4"
data.frame(
sample = aggregate(x = sfs[sel], by = list(sample=cellinfo$sample[sel]), FUN = median)[, 1],
sf = aggregate(x = sfs[sel], by = list(sample=cellinfo$sample[sel]), FUN = median)$x,
mean = aggregate(x = norm_counts[g, sel], by = list(sample=cellinfo$sample[sel]), FUN = mean)$x,
sdev = aggregate(x = norm_counts[g, sel], by = list(sample=cellinfo$sample[sel]), FUN = sd)$x,
stringsAsFactors = F
) %>% left_join( select(sampleTable, sample, diagnosis), by = "sample" ) %>%
ggplot() + geom_point(aes(mean, sdev, col = diagnosis)) + scale_x_log10() + scale_y_log10()