-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathb_simple_mlp_tensorflow.py
169 lines (122 loc) · 5.18 KB
/
b_simple_mlp_tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Implementation of a simple MLP network with one hidden layer. Tested on the iris data set.
# Requires: numpy, sklearn>=0.18.1, tensorflow>=1.0
# NOTE: In order to make the code simple, we rewrite x * W_1 + b_1 = x' * W_1'
# where x' = [x | 1] and W_1' is the matrix W_1 appended with a new row with elements b_1's.
# Similarly, for h * W_2 + b_2
import tensorflow as tf
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
RANDOM_SEED = 42
tf.set_random_seed(RANDOM_SEED)
def init_weights(shape):
""" Weight initialization """
weights = tf.random_normal(shape, stddev=0.1)
return tf.Variable(weights)
def forwardprop(X, w_1, w_2):
"""
Forward-propagation.
IMPORTANT: yhat is not softmax since TensorFlow's softmax_cross_entropy_with_logits() does that internally.
"""
h = tf.nn.sigmoid(tf.matmul(X, w_1)) # The \sigma function
yhat = tf.matmul(h, w_2) # The \varphi function
return yhat
def get_iris_data():
""" Read the iris data set and split them into training and test sets """
iris = datasets.load_iris()
data = iris["data"]
target = iris["target"]
# Prepend the column of 1s for bias
N, M = data.shape
all_X = np.ones((N, M + 1))
all_X[:, 1:] = data
# Convert into one-hot vectors
num_labels = len(np.unique(target))
all_Y = np.eye(num_labels)[target] # One liner trick!
return train_test_split(all_X, all_Y, test_size=0.33, random_state=RANDOM_SEED)
def main():
train_X, test_X, train_y, test_y = get_iris_data()
print('vendo os dados da base > ')
print('train x = ', len(train_X), ' <> ', train_X)
print('train y = ', len(train_y), ' <> ', train_y)
print('train x = ', len(test_X), ' <> ', test_X)
print('test y = ', len(test_y), ' <> ', test_y)
# Layer's sizes
x_size = train_X.shape[1] # Number of input nodes: 4 features and 1 bias
h_size = 256 # Number of hidden nodes # 256
y_size = train_y.shape[1] # Number of outcomes (3 iris flowers)
# Symbols
X = tf.placeholder("float", shape=[None, x_size])
y = tf.placeholder("float", shape=[None, y_size])
# Weight initializations
w_1 = init_weights((x_size, h_size))
w_2 = init_weights((h_size, y_size))
# Forward propagation
yhat = forwardprop(X, w_1, w_2)
predict = tf.argmax(yhat, axis=1)
# Backward propagation
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=yhat))
updates = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
# Run SGD
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
for epoch in range(100):
# Train with each example
for i in range(len(train_X)):
sess.run(updates, feed_dict={X: train_X[i: i + 1], y: train_y[i: i + 1]})
train_accuracy = np.mean(np.argmax(train_y, axis=1) == sess.run(predict, feed_dict={X: train_X, y: train_y}))
#test_accuracy = np.mean(np.argmax(test_y, axis=1) == sess.run(predict, feed_dict={X: test_X, y: test_y}))
#print("Epoch = %d, train accuracy = %.2f%%, test accuracy = %.2f%%" %(epoch + 1, (100. * train_accuracy), (100. * test_accuracy)))
print("Epoch = %d, train accuracy = %.2f%%" %(epoch + 1, (100. * train_accuracy)))
sess.close()
def main_char():
from data import loading_data_train
matrix = loading_data_train()
train_X = []
train_y = []
test_X = [0, 1, 3]
test_y = [0, 1, 2]
vetor_x = []
for i in matrix:
lis_tmp = []
try:
value = float((i[1]))
train_y.append(int(i[0]))
lis_tmp.append(value)
train_X.append(lis_tmp)
vetor_x.append((train_y, train_X))
except:
value = float((i[1]))
lis_tmp.append(value)
train_X.append(lis_tmp)
train_y.append(int(ord(i[0])))
print('vendo os dados da base > ')
print('train x = ', len(train_X), ' <> ', train_X)
print('train y = ', len(train_y), ' <> ', train_y)
print('test x = ', len(test_X), ' <> ', test_X)
print('test y = ', len(test_y), ' <> ', test_y)
def func_quatra():
import numpy as np
import tensorflow as tf
# Declare list of features, we only have one real-valued feature
def model(features, labels, mode):
# Build a linear model and predict values
W = tf.get_variable("W", [1], dtype=tf.float64)
b = tf.get_variable("b", [1], dtype=tf.float64)
y = W * features['x'] + b
# Loss sub-graph
loss = tf.reduce_sum(tf.square(y - labels))
# Training sub-graph
global_step = tf.train.get_global_step()
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = tf.group(optimizer.minimize(loss),
tf.assign_add(global_step, 1))
# ModelFnOps connects subgraphs we built to the
# appropriate functionality.
return tf.contrib.learn.ModelFnOps(
mode=mode, predictions=y,
loss=loss,
train_op=train)
if __name__ == '__main__':
main_char()