forked from etmc/tmLQCD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinvert_clover_eo.c
130 lines (118 loc) · 5 KB
/
invert_clover_eo.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/***********************************************************************
* Copyright (C) 2012 Carsten Urbach
*
* This file is part of tmLQCD.
*
* tmLQCD is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* tmLQCD is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with tmLQCD. If not, see <http://www.gnu.org/licenses/>.
*
* invert_clover_eo makes an inversion with EO preconditioned
* clover tm Operator
*
* Even and Odd are the numbers of spinor_field that contain
* the even and the odd sites of the source. The result is stored
* int Even_new and Odd_new.
*
* invert_clover_eo returns the number of iterations needed or -1 if the
* solver did not converge.
*
* Author: Carsten Urbach
*
***********************************************************************/
#ifdef HAVE_CONFIG_H
# include<config.h>
#endif
#include<stdlib.h>
#include"global.h"
#include"su3.h"
#include"linalg_eo.h"
#include"operator/tm_operators.h"
#include"operator/Hopping_Matrix.h"
#include"operator/clovertm_operators.h"
#include"operator/clovertm_operators_32.h"
#include"operator/D_psi.h"
#include"gamma.h"
#include"solver/solver.h"
#include"solver/solver_params.h"
#include"invert_clover_eo.h"
#include "solver/dirac_operator_eigenvectors.h"
#ifdef QUDA
# include "quda_interface.h"
#endif
int invert_clover_eo(spinor * const Even_new, spinor * const Odd_new,
spinor * const Even, spinor * const Odd,
const double precision, const int max_iter,
const int solver_flag, const int rel_prec,solver_params_t solver_params,
su3 *** gf, matrix_mult Qsq, matrix_mult Qm,
const ExternalInverter inverter, const SloppyPrecision sloppy, const CompressionType compression) {
int iter;
#ifdef QUDA
if( inverter==QUDA_INVERTER ) {
return invert_eo_quda(Even_new, Odd_new, Even, Odd,
precision, max_iter,
solver_flag, rel_prec,
1, solver_params,
sloppy, compression);
}
#endif
if(g_proc_id == 0 && g_debug_level > 0) {
printf("# Using even/odd preconditioning!\n"); fflush(stdout);
}
assign_mul_one_sw_pm_imu_inv(EE, Even_new, Even, +g_mu);
Hopping_Matrix(OE, g_spinor_field[DUM_DERI], Even_new);
/* The sign is plus, since in Hopping_Matrix */
/* the minus is missing */
assign_mul_add_r(g_spinor_field[DUM_DERI], +1., Odd, VOLUME/2);
/* Do the inversion with the preconditioned */
/* matrix to get the odd sites */
/* Here we invert the hermitean operator squared */
gamma5(g_spinor_field[DUM_DERI], g_spinor_field[DUM_DERI], VOLUME/2);
if(g_proc_id == 0) {
//printf("# Using CG!\n");
printf("# mu = %f, kappa = %f, csw = %f\n",
g_mu/2./g_kappa, g_kappa, g_c_sw);
fflush(stdout);
}
if(solver_flag == CG){
if(g_proc_id == 0) {printf("# Using CG!\n"); fflush(stdout);}
iter = cg_her(Odd_new, g_spinor_field[DUM_DERI], max_iter,
precision, rel_prec,
VOLUME/2, Qsq);
Qm(Odd_new, Odd_new);
}else if(solver_flag == INCREIGCG){
if(g_proc_id == 0) {printf("# Using Incremental Eig-CG!\n"); fflush(stdout);}
iter = incr_eigcg(VOLUME/2,solver_params.eigcg_nrhs, solver_params.eigcg_nrhs1, Odd_new, g_spinor_field[DUM_DERI], solver_params.eigcg_ldh, Qsq,
solver_params.eigcg_tolsq1, solver_params.eigcg_tolsq, solver_params.eigcg_restolsq , solver_params.eigcg_rand_guess_opt,
rel_prec, max_iter, solver_params.eigcg_nev, solver_params.eigcg_vmax);
Qm(Odd_new, Odd_new);
}else if(solver_flag == MIXEDCG){
iter = mixed_cg_her(Odd_new, g_spinor_field[DUM_DERI], solver_params, max_iter, precision, rel_prec,
VOLUME/2, &Qsw_pm_psi, &Qsw_pm_psi_32);
Qm(Odd_new, Odd_new);
}else if(solver_flag == RGMIXEDCG){
iter = rg_mixed_cg_her(Odd_new, g_spinor_field[DUM_DERI], solver_params, max_iter, precision, rel_prec,
VOLUME/2, &Qsw_pm_psi, &Qsw_pm_psi_32);
Qm(Odd_new, Odd_new);
}else{
if(g_proc_id == 0) {printf("# This solver is not available for this operator. Exisiting!\n"); fflush(stdout);}
return 0;
}
/* Reconstruct the even sites */
Hopping_Matrix(EO, g_spinor_field[DUM_DERI], Odd_new);
clover_inv(g_spinor_field[DUM_DERI], +1, g_mu);
/* The sign is plus, since in Hopping_Matrix */
/* the minus is missing */
assign_add_mul_r(Even_new, g_spinor_field[DUM_DERI], +1., VOLUME/2);
return(iter);
}