forked from adventuresinML/adventures-in-ml-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convolutional_neural_network_tutorial.py
117 lines (92 loc) · 5.47 KB
/
convolutional_neural_network_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
def run_cnn():
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Python optimisation variables
learning_rate = 0.0001
epochs = 10
batch_size = 50
# declare the training data placeholders
# input x - for 28 x 28 pixels = 784 - this is the flattened image data that is drawn from mnist.train.nextbatch()
x = tf.placeholder(tf.float32, [None, 784])
# reshape the input data so that it is a 4D tensor. The first value (-1) tells function to dynamically shape that
# dimension based on the amount of data passed to it. The two middle dimensions are set to the image size (i.e. 28
# x 28). The final dimension is 1 as there is only a single colour channel i.e. grayscale. If this was RGB, this
# dimension would be 3
x_shaped = tf.reshape(x, [-1, 28, 28, 1])
# now declare the output data placeholder - 10 digits
y = tf.placeholder(tf.float32, [None, 10])
# create some convolutional layers
layer1 = create_new_conv_layer(x_shaped, 1, 32, [5, 5], [2, 2], name='layer1')
layer2 = create_new_conv_layer(layer1, 32, 64, [5, 5], [2, 2], name='layer2')
# flatten the output ready for the fully connected output stage - after two layers of stride 2 pooling, we go
# from 28 x 28, to 14 x 14 to 7 x 7 x,y co-ordinates, but with 64 output channels. To create the fully connected,
# "dense" layer, the new shape needs to be [-1, 7 x 7 x 64]
flattened = tf.reshape(layer2, [-1, 7 * 7 * 64])
# setup some weights and bias values for this layer, then activate with ReLU
wd1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1000], stddev=0.03), name='wd1')
bd1 = tf.Variable(tf.truncated_normal([1000], stddev=0.01), name='bd1')
dense_layer1 = tf.matmul(flattened, wd1) + bd1
dense_layer1 = tf.nn.relu(dense_layer1)
# another layer with softmax activations
wd2 = tf.Variable(tf.truncated_normal([1000, 10], stddev=0.03), name='wd2')
bd2 = tf.Variable(tf.truncated_normal([10], stddev=0.01), name='bd2')
dense_layer2 = tf.matmul(dense_layer1, wd2) + bd2
y_ = tf.nn.softmax(dense_layer2)
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=dense_layer2, labels=y))
# add an optimiser
optimiser = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cross_entropy)
# define an accuracy assessment operation
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# setup the initialisation operator
init_op = tf.global_variables_initializer()
# setup recording variables
# add a summary to store the accuracy
tf.summary.scalar('accuracy', accuracy)
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter('C:\\Users\\Andy\\PycharmProjects')
with tf.Session() as sess:
# initialise the variables
sess.run(init_op)
total_batch = int(len(mnist.train.labels) / batch_size)
for epoch in range(epochs):
avg_cost = 0
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size=batch_size)
_, c = sess.run([optimiser, cross_entropy], feed_dict={x: batch_x, y: batch_y})
avg_cost += c / total_batch
test_acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
print("Epoch:", (epoch + 1), "cost =", "{:.3f}".format(avg_cost), " test accuracy: {:.3f}".format(test_acc))
summary = sess.run(merged, feed_dict={x: mnist.test.images, y: mnist.test.labels})
writer.add_summary(summary, epoch)
print("\nTraining complete!")
writer.add_graph(sess.graph)
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels}))
def create_new_conv_layer(input_data, num_input_channels, num_filters, filter_shape, pool_shape, name):
# setup the filter input shape for tf.nn.conv_2d
conv_filt_shape = [filter_shape[0], filter_shape[1], num_input_channels, num_filters]
# initialise weights and bias for the filter
weights = tf.Variable(tf.truncated_normal(conv_filt_shape, stddev=0.03), name=name+'_W')
bias = tf.Variable(tf.truncated_normal([num_filters]), name=name+'_b')
# setup the convolutional layer operation
out_layer = tf.nn.conv2d(input_data, weights, [1, 1, 1, 1], padding='SAME')
# add the bias
out_layer += bias
# apply a ReLU non-linear activation
out_layer = tf.nn.relu(out_layer)
# now perform max pooling
# ksize is the argument which defines the size of the max pooling window (i.e. the area over which the maximum is
# calculated). It must be 4D to match the convolution - in this case, for each image we want to use a 2 x 2 area
# applied to each channel
ksize = [1, pool_shape[0], pool_shape[1], 1]
# strides defines how the max pooling area moves through the image - a stride of 2 in the x direction will lead to
# max pooling areas starting at x=0, x=2, x=4 etc. through your image. If the stride is 1, we will get max pooling
# overlapping previous max pooling areas (and no reduction in the number of parameters). In this case, we want
# to do strides of 2 in the x and y directions.
strides = [1, 2, 2, 1]
out_layer = tf.nn.max_pool(out_layer, ksize=ksize, strides=strides, padding='SAME')
return out_layer
if __name__ == "__main__":
run_cnn()