-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver_fd.m
85 lines (63 loc) · 1.41 KB
/
solver_fd.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
clear; clc; close all;
% Generate a rectangular grid
xmax = 2;
ymax = 1;
ar = xmax/ymax;
nx = 50;
ny = nx/ar;
% Create grid points
X = linspace(0,xmax,nx);
Y = linspace(0,ymax,ny);
[x,y] = meshgrid(X,Y);
% Generate a parametric closed curve
t = linspace(0,2*pi,nx);
cx = xmax/2; cy = ymax/2;
radius = 0.2;
xp = radius*cos(t) + cx;
yp = radius*sin(t) + cy;
[in, on] = inpolygon(x,y,xp,yp);
% Define flags
solid = logical(in + on);
liquid = ~solid;
hold on
plot(x(liquid),y(liquid),'rx')
plot(x(solid),y(solid),'bo')
plot(xp,yp,'k-.')
axis off equal
% Solve a dirichlet heat conduction problem
% Boundary condition
Tw = 10; % West
Te = 20; % East
Tn = 30; % North
Ts = 40; % South
% Description: Solves a 2D steady state heat transfer problem with no heat
% generation, with Dirichlet boundary conditions at the boundaries.
% Constants
N = 5;
LEFT = 1;
RIGHT = 2;
TOP = 3;
BOTTOM = 4;
CENTER = 5;
% Grid Size
dx = xmax/(nx-1);
dy = ymax/(ny-1);
Nx = nx;
Ny = ny;
% Coefficient Matrix
A = ones(Nx,Ny,N);
A(:,:,CENTER) = -4;
% RHS Matrix
B = zeros(Nx,Ny);
% Solution Matrix
Ti = 300; % Initial Guess
T = Ti*ones(Nx,Ny);
% Dirichlet BC (Left and Right)
T(:,1) = Te;
T(:,end) = Tw;
% Dirichlet BC (Top and Bottom)
T(1,:) = Tn;
T(end,:) = Ts;
T = solve_poisson(A,B,T);
% Implement a function which calculates the coefficients
A = calculate_coefficients(x,y,xp,yp);