-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCaltechTraining_Theano.py
212 lines (182 loc) · 8.43 KB
/
CaltechTraining_Theano.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import numpy as np
import theano
from theano import tensor as T
from theano.tensor.nnet import conv
from theano.tensor.nnet import softmax
from theano.tensor.signal import pool
from theano.tensor import shared_randomstreams
from theano.tensor.nnet import sigmoid
import cPickle, gzip
import LoadTrainingTestValidationData as l
"""
Code supports different kind of layer types( Full connected layer, convoluations layer,
max pooling layer, softmax layer) and different activation functions (sigmoid, rectified linear
units, tanh)
Code is built using Theano library so, thiis code will be able to run either on CPU or GPU
set GPU to true to run on GPU and set GPU to false to run on CPU
This program incorparates ideas and code from text book on 'Neural Networks and Deep learning'
and github https://github.com/mnielsen/neural-networks-and-deep-learning/blob/master/src/network3.py
from Michael Nielsen
"""
GPU = True
if GPU:
<<<<<<< HEAD
print "Running on GPU. To run on CPU set variable GPU to false"
try: theano.config.floatX = 'float32'
except: pass
theano.config.floatX='float32'
else :
print "Running on CPU. To run on GPU set variable GPU to true"
=======
print "Running on GPU. To run on CPU set variable GPU to False"
try: theano.config.floatX = 'float32'
else:
print "Running on CPU. To run on GPU set variable GPU to True"
>>>>>>> 6b3f2de3aa9fbf390e9d5d411d1b67ba33c68e48
def linear(z): return z
def ReLU(z): return T.maximum(0.0, z)
def load_data_shared():
training_data,validation_data,testing_data = l.load_data()
def shared_variable(data):
# Using shared variables data is loaded into GPU memory all at once.
data_images,data_labels = data
#data should be stored as floats on GPU, even though labels is integers store as floats and then cast
shared_images = theano.shared(np.asarray(data_images,dtype=theano.config.floatX))
shared_labels = theano.shared(np.asarray(data_labels,dtype=theano.config.floatX))
return shared_images, T.cast(shared_labels,'int32')
return [shared_variable(training_data),shared_variable(validation_data),shared_variable(testing_data)]
class FullyConnectedLayer(object):
def __init__(self,n_in,n_out,activation_fn=sigmoid,p_dropout=0.0):
self.n_in = n_in
self.n_out = n_out
self.p_dropout = p_dropout
self.activation_fn = activation_fn
self.w = theano.shared(np.asarray(np.random.normal(loc=0.0,scale=np.sqrt(1.0/n_out),size=(n_in,n_out)),
dtype=theano.config.floatX),name='w',borrow=True)
self.b= theano.shared(np.asarray(np.random.normal(loc=0.0,scale=1.0,size=(n_out,)),
dtype=theano.config.floatX),name='b',borrow=True)
self.params = [self.w, self.b]
def set_inpt(self,inpt,inpt_dropout,mini_batch_size):
self.inpt = inpt.reshape((mini_batch_size,self.n_in))
self.inpt_dropout = dropout_layer(inpt_dropout.reshape((mini_batch_size,self.n_in)),self.p_dropout)
self.output = self.activation_fn((1-self.p_dropout)*T.dot(self.inpt,self.w)+self.b)
self.output_dropout = self.activation_fn(T.dot(self.inpt_dropout,self.w)+self.b)
self.y_out = T.argmax(self.output,axis=1)
def accuracy(self,y):
return T.mean(T.eq(y,self.y_out))
class ConvPoolLayer(object):
def __init__(self,filter_shape,image_shape,poolsize=(2,2),activation_fn=sigmoid):
self.filter_shape=filter_shape
self.image_shape = image_shape
self.activation_fn = activation_fn
self.poolsize = poolsize
n_out = (filter_shape[0]*np.prod(filter_shape[2:])/np.prod(poolsize))
self.w = theano.shared(np.asarray(np.random.normal(loc=0.0,scale=np.sqrt(1.0/n_out),size=filter_shape),
dtype=theano.config.floatX),name='w',borrow=True)
self.b = theano.shared(np.asarray(np.random.normal(loc=0.0,scale=1.0,size=(filter_shape[0],)),
dtype=theano.config.floatX),name='b',borrow=True)
self.params = [self.w,self.b]
def set_inpt(self,inpt,inpt_dropout,mini_batch_size):
self.inpt = inpt.reshape(self.image_shape)
conv_out = conv.conv2d(
input = self.inpt,filters=self.w,filter_shape=self.filter_shape,
image_shape=self.image_shape)
pooled_out = pool.pool_2d(
input=conv_out,ds=self.poolsize,ignore_border=True)
self.output = self.activation_fn(pooled_out+self.b.dimshuffle('x',0,'x','x'))
self.output_dropout = self.output
class SoftmaxLayer(object):
def __init__(self,n_in,n_out,p_dropout=0.0):
self.n_in=n_in
self.n_out=n_out
self.w = theano.shared(np.zeros((n_in,n_out),dtype=theano.config.floatX),name='w',borrow=True)
self.b = theano.shared(np.zeros((n_out,),dtype=theano.config.floatX),name='b',borrow=True)
self.params = [self.w,self.b]
self.p_dropout=p_dropout
def set_inpt(self,inpt,inpt_dropout,mini_batch_size):
self.inpt = inpt.reshape((mini_batch_size,self.n_in))
self.inpt_dropout = dropout_layer(inpt_dropout.reshape((mini_batch_size,self.n_in)),self.p_dropout)
self.output = softmax((1-self.p_dropout)*T.dot(self.inpt,self.w)+self.b)
self.y_out = T.argmax(self.output,axis=1)
self.output_dropout = softmax(T.dot(self.inpt,self.w)+self.b)
def cost(self,net):
return -T.mean(T.log(self.output_dropout)[T.arange(net.y.shape[0]),net.y])
def accuracy(self,y):
return T.mean(T.eq(y,self.y_out))
def size(data):
return data[0].get_value(borrow=True).shape[0]
def dropout_layer(layer,p_dropout):
srng = shared_randomstreams.RandomStreams(np.random.RandomState(0).randint(999999))
mask = srng.binomial(n=1,p=1- p_dropout,size=layer.shape)
return layer*T.cast(mask,theano.config.floatX)
class Network(object):
def __init__(self,layers,mini_batch_size):
self.layers=layers
self.mini_batch_size=mini_batch_size
self.params = [param for layer in self.layers for param in layer.params]
self.x = T.matrix("x")
self.y = T.ivector("y")
init_layer = self.layers[0]
init_layer.set_inpt(self.x,self.x,self.mini_batch_size)
for j in xrange(1,len(self.layers)):
prev_layer,layer = self.layers[j-1],self.layers[j]
layer.set_inpt(prev_layer.output,prev_layer.output_dropout,self.mini_batch_size)
self.output = self.layers[-1].output
self.output_dropout = self.layers[-1].output_dropout
def SGD(self,training_data,epochs,mini_batch_size,eta,validation_data,test_data,lmbda=0.0):
training_x,training_y = training_data
validation_x,validation_y=validation_data
test_x,test_y=test_data
num_training_batches = size(training_data)/mini_batch_size
num_validation_batches = size(validation_data)/mini_batch_size
num_test_batches = size(test_data)/mini_batch_size
l2_norm_squared = sum([(layer.w**2).sum() for layer in self.layers])
cost = self.layers[-1].cost(self) +\
0.5*lmbda*l2_norm_squared/num_training_batches
grads = T.grad(cost,self.params)
updates = [(param,param-eta*grad) for param,grad in zip(self.params,grads)]
i = T.lscalar()
train_mb = theano.function(
[i],cost, updates=updates,
givens = {
self.x : training_x[i*mini_batch_size: (i+1)*mini_batch_size],
self.y: training_y[i*mini_batch_size: (i+1)*mini_batch_size]
}
)
validate_mb_accuracy = theano.function(
[i],self.layers[-1].accuracy(self.y),
givens = {
self.x : validation_x[i*mini_batch_size: (i+1)*mini_batch_size],
self.y: validation_y[i*mini_batch_size: (i+1)*mini_batch_size]
}
)
test_mb_accuracy = theano.function(
[i],self.layers[-1].accuracy(self.y),
givens = {
self.x : test_x[i*mini_batch_size: (i+1)*mini_batch_size],
self.y: test_y[i*mini_batch_size: (i+1)*mini_batch_size]
}
)
self.test_mb_predictions = theano.function(
[i],self.layers[-1].y_out,
givens = {
self.x : test_x[i*mini_batch_size: (i+1)*mini_batch_size]
}
)
best_validation_accuracy = 0.0
for epoch in xrange(epochs):
for minibatch_index in xrange(num_training_batches):
iteration = num_training_batches*epoch+minibatch_index
if iteration%1000 == 0:
print("training mini-batch number {0}".format(iteration))
cost_ij = train_mb(minibatch_index)
if (iteration+1)%num_training_batches ==0:
validation_accuracy = np.mean([validate_mb_accuracy(j) for j in xrange(num_validation_batches)])
print ("epoch: {0} , validation accuracy: {1}".format(epoch,validation_accuracy))
if validation_accuracy >= best_validation_accuracy:
print("This is the best accuracy up to date")
best_validation_accuracy= validation_accuracy
best_iteration = iteration
if test_data:
test_accuracy = np.mean([test_mb_accuracy(i) for i in xrange(num_test_batches)])
print("the corresponding test accuracy is {0}".format(test_accuracy))