-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredicted_set.py
88 lines (64 loc) · 2.4 KB
/
predicted_set.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
dataset_train = pd.read_csv("currency_monthly_BTC_CNY.csv")
dataset_train.head()
dataset_train.info()
training_set = dataset_train.iloc[:,1:2].values
print(training_set)
print(training_set.shape)
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range = (0,1))
scaled_training_set = scaler.fit_transform(training_set)
scaled_training_set
X_train = []
Y_train = []
for i in range(5,25):
X_train.append(scaled_training_set[i-5:i,0])
Y_train.append(scaled_training_set[i,0])
X_train = np.array(X_train)
Y_train = np.array(Y_train)
print(X_train.shape)
print(Y_train.shape)
X_train = np.reshape(X_train,(X_train.shape[0], X_train.shape[1], 1))
X_train.shape
#Building the Model
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
from keras.layers import Dropout
regressor = Sequential()
regressor.add(LSTM(units = 50, return_sequences = True, input_shape = (X_train.shape[1], 1)))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 50, return_sequences = True))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 50, return_sequences = True))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 50))
regressor.add(Dropout(0.2))
regressor.add(Dense(units = 1))
regressor.compile(optimizer = "adam", loss = "mean_squared_error")
regressor.fit(X_train, Y_train, epochs = 100, batch_size = 32)
dataset_test = pd.read_csv("currency_monthly_BTC_CNY.csv")
actual_stock_price = dataset_test.iloc[:,1:2].values
dataset_test_total = pd.concat((dataset_train['openinUSD'], dataset_test['openinUSD']), axis = 0)
inputs = dataset_test_total[len(dataset_test_total) - len(dataset_test)-33:].values
inputs = inputs.reshape(-1,1)
inputs = scaler.transform(inputs)
X_test = []
for i in range(5,33):
X_test.append(inputs[i-5:i,0])
X_test = np.array(X_test)
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
# Implementation and Predicting Values
predicted_stock_price = regressor.predict(X_test)
predicted_stock_price = scaler.inverse_transform(predicted_stock_price)
# Plotting the Map
plt.plot(actual_stock_price, color = "red", label = "Daily Adjusted BTC Price")
plt.plot(predicted_stock_price, color = "blue", label = "Predicted BTC Price")
plt.title("Bitcoin Price Prediction")
plt.xlabel("Time")
plt.ylabel("Bitcoin Price")
plt.legend()