forked from seoungwugoh/STM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
273 lines (210 loc) · 8.97 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import torch.utils.model_zoo as model_zoo
from torchvision import models
# general libs
import cv2
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import math
import time
import tqdm
import os
import argparse
import copy
import sys
from helpers import *
print('Space-time Memory Networks: initialized.')
class ResBlock(nn.Module):
def __init__(self, indim, outdim=None, stride=1):
super(ResBlock, self).__init__()
if outdim == None:
outdim = indim
if indim == outdim and stride==1:
self.downsample = None
else:
self.downsample = nn.Conv2d(indim, outdim, kernel_size=3, padding=1, stride=stride)
self.conv1 = nn.Conv2d(indim, outdim, kernel_size=3, padding=1, stride=stride)
self.conv2 = nn.Conv2d(outdim, outdim, kernel_size=3, padding=1)
def forward(self, x):
r = self.conv1(F.relu(x))
r = self.conv2(F.relu(r))
if self.downsample is not None:
x = self.downsample(x)
return x + r
class Encoder_M(nn.Module):
def __init__(self):
super(Encoder_M, self).__init__()
self.conv1_m = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.conv1_o = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
resnet = models.resnet50(pretrained=True)
self.conv1 = resnet.conv1
self.bn1 = resnet.bn1
self.relu = resnet.relu # 1/2, 64
self.maxpool = resnet.maxpool
self.res2 = resnet.layer1 # 1/4, 256
self.res3 = resnet.layer2 # 1/8, 512
self.res4 = resnet.layer3 # 1/8, 1024
self.register_buffer('mean', torch.FloatTensor([0.485, 0.456, 0.406]).view(1,3,1,1))
self.register_buffer('std', torch.FloatTensor([0.229, 0.224, 0.225]).view(1,3,1,1))
def forward(self, in_f, in_m, in_o):
f = (in_f - self.mean) / self.std
m = torch.unsqueeze(in_m, dim=1).float() # add channel dim
o = torch.unsqueeze(in_o, dim=1).float() # add channel dim
x = self.conv1(f) + self.conv1_m(m) + self.conv1_o(o)
x = self.bn1(x)
c1 = self.relu(x) # 1/2, 64
x = self.maxpool(c1) # 1/4, 64
r2 = self.res2(x) # 1/4, 256
r3 = self.res3(r2) # 1/8, 512
r4 = self.res4(r3) # 1/8, 1024
return r4, r3, r2, c1, f
class Encoder_Q(nn.Module):
def __init__(self):
super(Encoder_Q, self).__init__()
resnet = models.resnet50(pretrained=True)
self.conv1 = resnet.conv1
self.bn1 = resnet.bn1
self.relu = resnet.relu # 1/2, 64
self.maxpool = resnet.maxpool
self.res2 = resnet.layer1 # 1/4, 256
self.res3 = resnet.layer2 # 1/8, 512
self.res4 = resnet.layer3 # 1/8, 1024
self.register_buffer('mean', torch.FloatTensor([0.485, 0.456, 0.406]).view(1,3,1,1))
self.register_buffer('std', torch.FloatTensor([0.229, 0.224, 0.225]).view(1,3,1,1))
def forward(self, in_f):
f = (in_f - self.mean) / self.std
x = self.conv1(f)
x = self.bn1(x)
c1 = self.relu(x) # 1/2, 64
x = self.maxpool(c1) # 1/4, 64
r2 = self.res2(x) # 1/4, 256
r3 = self.res3(r2) # 1/8, 512
r4 = self.res4(r3) # 1/8, 1024
return r4, r3, r2, c1, f
class Refine(nn.Module):
def __init__(self, inplanes, planes, scale_factor=2):
super(Refine, self).__init__()
self.convFS = nn.Conv2d(inplanes, planes, kernel_size=(3,3), padding=(1,1), stride=1)
self.ResFS = ResBlock(planes, planes)
self.ResMM = ResBlock(planes, planes)
self.scale_factor = scale_factor
def forward(self, f, pm):
s = self.ResFS(self.convFS(f))
m = s + F.interpolate(pm, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
m = self.ResMM(m)
return m
class Decoder(nn.Module):
def __init__(self, mdim):
super(Decoder, self).__init__()
self.convFM = nn.Conv2d(1024, mdim, kernel_size=(3,3), padding=(1,1), stride=1)
self.ResMM = ResBlock(mdim, mdim)
self.RF3 = Refine(512, mdim) # 1/8 -> 1/4
self.RF2 = Refine(256, mdim) # 1/4 -> 1
self.pred2 = nn.Conv2d(mdim, 2, kernel_size=(3,3), padding=(1,1), stride=1)
def forward(self, r4, r3, r2):
m4 = self.ResMM(self.convFM(r4))
m3 = self.RF3(r3, m4) # out: 1/8, 256
m2 = self.RF2(r2, m3) # out: 1/4, 256
p2 = self.pred2(F.relu(m2))
p = F.interpolate(p2, scale_factor=4, mode='bilinear', align_corners=False)
return p #, p2, p3, p4
class Memory(nn.Module):
def __init__(self):
super(Memory, self).__init__()
def forward(self, m_in, m_out, q_in, q_out): # m_in: o,c,t,h,w
B, D_e, T, H, W = m_in.size()
_, D_o, _, _, _ = m_out.size()
mi = m_in.view(B, D_e, T*H*W)
mi = torch.transpose(mi, 1, 2) # b, THW, emb
qi = q_in.view(B, D_e, H*W) # b, emb, HW
p = torch.bmm(mi, qi) # b, THW, HW
p = p / math.sqrt(D_e)
p = F.softmax(p, dim=1) # b, THW, HW
mo = m_out.view(B, D_o, T*H*W)
mem = torch.bmm(mo, p) # Weighted-sum B, D_o, HW
mem = mem.view(B, D_o, H, W)
mem_out = torch.cat([mem, q_out], dim=1)
return mem_out, p
class KeyValue(nn.Module):
# Not using location
def __init__(self, indim, keydim, valdim):
super(KeyValue, self).__init__()
self.Key = nn.Conv2d(indim, keydim, kernel_size=(3,3), padding=(1,1), stride=1)
self.Value = nn.Conv2d(indim, valdim, kernel_size=(3,3), padding=(1,1), stride=1)
def forward(self, x):
return self.Key(x), self.Value(x)
class STM(nn.Module):
def __init__(self):
super(STM, self).__init__()
self.Encoder_M = Encoder_M()
self.Encoder_Q = Encoder_Q()
self.KV_M_r4 = KeyValue(1024, keydim=128, valdim=512)
self.KV_Q_r4 = KeyValue(1024, keydim=128, valdim=512)
self.Memory = Memory()
self.Decoder = Decoder(256)
def Pad_memory(self, mems, num_objects, K):
pad_mems = []
for mem in mems:
pad_mem = ToCuda(torch.zeros(1, K, mem.size()[1], 1, mem.size()[2], mem.size()[3]))
pad_mem[0,1:num_objects+1,:,0] = mem
pad_mems.append(pad_mem)
return pad_mems
def memorize(self, frame, masks, num_objects):
# memorize a frame
num_objects = num_objects[0].item()
_, K, H, W = masks.shape # B = 1
(frame, masks), pad = pad_divide_by([frame, masks], 16, (frame.size()[2], frame.size()[3]))
# make batch arg list
B_list = {'f':[], 'm':[], 'o':[]}
for o in range(1, num_objects+1): # 1 - no
B_list['f'].append(frame)
B_list['m'].append(masks[:,o])
B_list['o'].append( (torch.sum(masks[:,1:o], dim=1) + \
torch.sum(masks[:,o+1:num_objects+1], dim=1)).clamp(0,1) )
# make Batch
B_ = {}
for arg in B_list.keys():
B_[arg] = torch.cat(B_list[arg], dim=0)
r4, _, _, _, _ = self.Encoder_M(B_['f'], B_['m'], B_['o'])
k4, v4 = self.KV_M_r4(r4) # num_objects, 128 and 512, H/16, W/16
k4, v4 = self.Pad_memory([k4, v4], num_objects=num_objects, K=K)
return k4, v4
def Soft_aggregation(self, ps, K):
num_objects, H, W = ps.shape
em = ToCuda(torch.zeros(1, K, H, W))
em[0,0] = torch.prod(1-ps, dim=0) # bg prob
em[0,1:num_objects+1] = ps # obj prob
em = torch.clamp(em, 1e-7, 1-1e-7)
logit = torch.log((em /(1-em)))
return logit
def segment(self, frame, keys, values, num_objects):
num_objects = num_objects[0].item()
_, K, keydim, T, H, W = keys.shape # B = 1
# pad
[frame], pad = pad_divide_by([frame], 16, (frame.size()[2], frame.size()[3]))
r4, r3, r2, _, _ = self.Encoder_Q(frame)
k4, v4 = self.KV_Q_r4(r4) # 1, dim, H/16, W/16
# expand to --- no, c, h, w
k4e, v4e = k4.expand(num_objects,-1,-1,-1), v4.expand(num_objects,-1,-1,-1)
r3e, r2e = r3.expand(num_objects,-1,-1,-1), r2.expand(num_objects,-1,-1,-1)
# memory select kv:(1, K, C, T, H, W)
m4, viz = self.Memory(keys[0,1:num_objects+1], values[0,1:num_objects+1], k4e, v4e)
logits = self.Decoder(m4, r3e, r2e)
ps = F.softmax(logits, dim=1)[:,1] # no, h, w
#ps = indipendant possibility to belong to each object
logit = self.Soft_aggregation(ps, K) # 1, K, H, W
if pad[2]+pad[3] > 0:
logit = logit[:,:,pad[2]:-pad[3],:]
if pad[0]+pad[1] > 0:
logit = logit[:,:,:,pad[0]:-pad[1]]
return logit
def forward(self, *args, **kwargs):
if args[1].dim() > 4: # keys
return self.segment(*args, **kwargs)
else:
return self.memorize(*args, **kwargs)