forked from seoungwugoh/STM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_DAVIS.py
executable file
·153 lines (116 loc) · 4.83 KB
/
eval_DAVIS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from __future__ import division
import torch
from torch.autograd import Variable
from torch.utils import data
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import torch.utils.model_zoo as model_zoo
from torchvision import models
# general libs
import cv2
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import math
import time
import tqdm
import os
import argparse
import copy
### My libs
from dataset import DAVIS_MO_Test
from model import STM
torch.set_grad_enabled(False) # Volatile
def get_arguments():
parser = argparse.ArgumentParser(description="SST")
parser.add_argument("-g", type=str, help="0; 0,1; 0,3; etc", required=True)
parser.add_argument("-s", type=str, help="set", required=True)
parser.add_argument("-y", type=int, help="year", required=True)
parser.add_argument("-viz", help="Save visualization", action="store_true")
parser.add_argument("-D", type=str, help="path to data",default='/local/DATA')
return parser.parse_args()
args = get_arguments()
GPU = args.g
YEAR = args.y
SET = args.s
VIZ = args.viz
DATA_ROOT = args.D
# Model and version
MODEL = 'STM'
print(MODEL, ': Testing on DAVIS')
os.environ['CUDA_VISIBLE_DEVICES'] = GPU
if torch.cuda.is_available():
print('using Cuda devices, num:', torch.cuda.device_count())
if VIZ:
print('--- Produce mask overaid video outputs. Evaluation will run slow.')
print('--- Require FFMPEG for encoding, Check folder ./viz')
palette = Image.open(DATA_ROOT + '/Annotations/480p/blackswan/00000.png').getpalette()
def Run_video(Fs, Ms, num_frames, num_objects, Mem_every=None, Mem_number=None):
# initialize storage tensors
if Mem_every:
to_memorize = [int(i) for i in np.arange(0, num_frames, step=Mem_every)]
elif Mem_number:
to_memorize = [int(round(i)) for i in np.linspace(0, num_frames, num=Mem_number+2)[:-1]]
else:
raise NotImplementedError
Es = torch.zeros_like(Ms)
Es[:,:,0] = Ms[:,:,0]
for t in tqdm.tqdm(range(1, num_frames)):
# memorize
with torch.no_grad():
prev_key, prev_value = model(Fs[:,:,t-1], Es[:,:,t-1], torch.tensor([num_objects]))
if t-1 == 0: #
this_keys, this_values = prev_key, prev_value # only prev memory
else:
this_keys = torch.cat([keys, prev_key], dim=3)
this_values = torch.cat([values, prev_value], dim=3)
# segment
with torch.no_grad():
logit = model(Fs[:,:,t], this_keys, this_values, torch.tensor([num_objects]))
Es[:,:,t] = F.softmax(logit, dim=1)
# update
if t-1 in to_memorize:
keys, values = this_keys, this_values
pred = np.argmax(Es[0].cpu().numpy(), axis=0).astype(np.uint8)
return pred, Es
Testset = DAVIS_MO_Test(DATA_ROOT, resolution='480p', imset='20{}/{}.txt'.format(YEAR,SET), single_object=(YEAR==16))
Testloader = data.DataLoader(Testset, batch_size=1, shuffle=False, num_workers=2, pin_memory=True)
model = nn.DataParallel(STM())
if torch.cuda.is_available():
model.cuda()
model.eval() # turn-off BN
pth_path = 'STM_weights.pth'
print('Loading weights:', pth_path)
model.load_state_dict(torch.load(pth_path))
code_name = '{}_DAVIS_{}{}'.format(MODEL,YEAR,SET)
print('Start Testing:', code_name)
for seq, V in enumerate(Testloader):
Fs, Ms, num_objects, info = V
seq_name = info['name'][0]
num_frames = info['num_frames'][0].item()
print('[{}]: num_frames: {}, num_objects: {}'.format(seq_name, num_frames, num_objects[0][0]))
pred, Es = Run_video(Fs, Ms, num_frames, num_objects, Mem_every=5, Mem_number=None)
# Save results for quantitative eval ######################
test_path = os.path.join('./test', code_name, seq_name)
if not os.path.exists(test_path):
os.makedirs(test_path)
for f in range(num_frames):
img_E = Image.fromarray(pred[f])
img_E.putpalette(palette)
img_E.save(os.path.join(test_path, '{:05d}.png'.format(f)))
if VIZ:
from helpers import overlay_davis
# visualize results #######################
viz_path = os.path.join('./viz/', code_name, seq_name)
if not os.path.exists(viz_path):
os.makedirs(viz_path)
for f in range(num_frames):
pF = (Fs[0,:,f].permute(1,2,0).numpy() * 255.).astype(np.uint8)
pE = pred[f]
canvas = overlay_davis(pF, pE, palette)
canvas = Image.fromarray(canvas)
canvas.save(os.path.join(viz_path, 'f{}.jpg'.format(f)))
vid_path = os.path.join('./viz/', code_name, '{}.mp4'.format(seq_name))
frame_path = os.path.join('./viz/', code_name, seq_name, 'f%d.jpg')
os.system('ffmpeg -framerate 10 -i {} {} -vcodec libx264 -crf 10 -pix_fmt yuv420p -nostats -loglevel 0 -y'.format(frame_path, vid_path))