-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogistic_regression_model.stan
44 lines (38 loc) · 1.04 KB
/
logistic_regression_model.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
data {
// Define variables in data
// Number of observations (an integer)
int<lower=0> N;
// Number of parameters
int<lower=0> p;
// Variables
int died[N];
int<lower=0> year[N];
int<lower=0> urban[N];
int<lower=0> season[N];
int<lower=0> sex[N];
int<lower=0> age[N];
int<lower=0> edu[N];
int<lower=0> job[N];
int<lower=0> method[N];
}
parameters {
// Define parameters to estimate
real beta[p];
}
transformed parameters {
// Probability trasformation from linear predictor
real<lower=0> odds[N];
real<lower=0, upper=1> prob[N];
for (i in 1:N) {
odds[i] = exp(beta[1] + beta[2]*year[i] + beta[3]*urban[i] +
beta[4]*season[i] + beta[5]*sex[i] +
beta[6]*age[i] + beta[7]*edu[i] +
beta[8]*job[i] + beta[9]*method[i] );
prob[i] = odds[i] / (odds[i] + 1);
}
}
model {
// Prior part of Bayesian inference (flat if unspecified)
// Likelihood part of Bayesian inference
died ~ bernoulli(prob);
}