-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathnp_utils.py
651 lines (546 loc) · 19.6 KB
/
np_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
'''
------------------------------------------------------
np_utils.py (Jan 2019, [email protected])
------------------------------------------------------
This python module is basically a wrapper of functions to improve
the use of numpy arrays for variable-size arrays. The main functions
allow to turn variable-size arrays into constant-size arrays, or to
perform combinatorics without explicit loops (like pairing).
These util functions were designed with HEP collider physics analysis
in mind.
'''
import numpy as np
import itertools
import copy
def count_nonnan(a, axis=-1):
'''
Count the number of elements failing np.isnan() along
a given axis.
'''
if axis == -1:
ntot = a.size
else:
ntot = a.shape[axis]
return ntot-np.count_nonzero(np.isnan(a), axis=axis)
def replace_nan(a, value=0):
'''
Replace all np.nan from a by value (0 by default) and return
a copy of the initial array.
'''
output = copy.copy(a)
output[np.isnan(output)] = value
return output
def replace_val(a, value_old, value_new=0):
'''
Replace all value_old from a by value_new (0 by default) and return a copy
of the initial array.
'''
output = copy.copy(a)
output[output == value_old] = value_new
return output
def contains_collections(arrays):
'''
Return True if at least one of the dimension
of the sub-array in arrays is at least 1.
'''
dims = np.array([e.ndim for e in arrays])
return np.count_nonzero(dims >= 1) > 0
def get_indexed_value(a, index):
'''
Give the an array of indexed values, with an event-dependent index.
This function takes an array of shape (Nevts,Nobj) and returns an
array of shape (Nevts,). Each element corresponds the value of the
ith object, where i is different for each event and are regrouped
in the array 'index'. For e.g., of one wants the lepton isolation
for the lepton having the highest eta:
- lep_iso, shape=(Nevts,Nlep)
- index=np.argmax(np.abs(lep_eta),axis=1), shape=(Nevts,)
- iso_max_eta=get_indexed_value(lep_iso,index), shape=(Nevts,)
Parameters
----------
a: np.array
The shape of this array must be (Nevts,Nobj)
index: np.array
The shape of this array must be (Nevts,)
Returns
-------
out: np.ndarray
The shape of the array is (Nevts,)
Examples
--------
>>> import numpy as np
>>> a=np.arange(6).reshape(2,3)
>>> a
>>> array([[0, 1, 2],
[3, 4, 5]])
>>>
>>> get_indexed_value(a,index=[0,1])
>>> array([0, 4])
'''
# Make sure we manipulate numpy arrays
a, index = np.array(a), np.array(index)
# Sanity checks
if a.ndim != 2 or index.ndim != 1:
err = 'This function requires an array \'a\' of dimension 2 (it is currently {})\n'.format(
a.ndim)
err += 'and an array \'index\' of dimension 1 (it is currently {})'.format(index.ndim)
raise NameError(err)
if a.shape[0] != index.shape[0]:
err = 'The two array must have the same number of element along the first axis.\n'
err += 'while currently \'a\' has {} elements and \'index\' has {}.'.format(
a.shape[0], index.shape[0])
raise NameError(err)
# Actuall work
N = np.arange(a.shape[0])
return np.array([a[i, index[i]] for i in N])
def get_all_but_indexed_value(a, index):
'''
Give the an array of all values but the indexed ones, with
an event-dependent index.
This function takes an array of shape (Nevts,Nobj) and returns an
array of shape (Nevts,Nobj-1). Each element corresponds the value of the
all objects but the ith, where i is different for each event and are
regrouped in the array 'index'. For e.g., of one wants the lepton isolation
for the all leptons but the one with the highest eta:
- lep_iso, shape=(Nevts,Nlep)
- index=np.argmax(np.abs(lep_eta),axis=1), shape=(Nevts,)
- iso_other_eta=get_all_but_indexed_value(lep_iso,index), shape=(Nevts,Nlep-1)
Parameters
----------
a: np.array
The shape of this array must be (Nevts,Nobj)
index: np.array
The shape of this array must be (Nevts,)
Returns
-------
out: np.ndarray
The shape of the array is (Nevts,Nobj-1)
Examples
--------
>>> import numpy as np
>>> a=np.arange(6).reshape(2,3)
>>> a
>>> array([[0, 1, 2],
[3, 4, 5]])
>>>
>>> get_all_but_indexed_value(a,index=[0,1])
>>> array([[1, 2],
[3, 5]])
'''
# Make sure we manipulate numpy arrays
a, index = np.array(a), np.array(index)
# Sanity checks
if a.ndim != 2 or index.ndim != 1:
err = 'This function requires an array \'a\' of dimension 2 (it is currently {})\n'.format(
a.ndim)
err += 'and an array \'index\' of dimension 1 (it is currently {})'.format(index.ndim)
raise NameError(err)
if a.shape[0] != index.shape[0]:
err = 'The two array must have the same number of element along the first axis.\n'
err += 'while currently \'a\' has {} elements and \'index\' has {}.'.format(
a.shape[0], index.shape[0])
raise NameError(err)
N = np.arange(a.shape[0])
return np.array([np.concatenate([a[i, :index[i]], a[i, index[i]+1:]]) for i in N])
def square_jagged_2Darray(a, **kwargs):
'''
Give the same dimension to all raws of a jagged 2D array.
This function equalizes the the size of every raw (obj collection)
using a default value 'val' (nan if nothing specifed) using either
the maximum size of object collection among all column (events) or
using a maximum size 'size'. The goal of this function is to fully
use numpy vectorization which works only on fixed size arrays.
Parameters
----------
a: array of arrays with different sizes this is the jagged 2D
array to be squared
keyword arguments
-----------------
dtype: string
data type of the variable-size array. If not specified,
it is 'float32'. None means dt=data.dt.
nobj: int
max size of the array.shape[1]. if not specified (or None),
this size is the maximum size of all raws.
val: float32
default value used to fill empty elements in order to get
the proper size. If not specified (or None), val is np.nan.
Returns
-------
out: np.ndarray
with a dimension (ncol,nobj).
Examples
--------
>>> import numpy as np
>>> a=np.array([
[1,2,3,4,5],
[6,7],
[8],
[9,10,11,12,13]
])
>>>
>>> square_jagged_2Darray(a)
array([[ 1., 2., 3., 4., 5.],
[ 6., 7., nan, nan, nan],
[ 8., nan, nan, nan, nan],
[ 9., 10., 11., 12., 13.]], dtype=float32)
>>>
>>> square_jagged_2Darray(a,nobj=2,val=-999)
>>> array([[ 1., 2.],
[ 6., 7.],
[ 8., -999.],
[ 9., 10.]], dtype=float32)
'''
# Sanity checks
if a.ndim >= 2:
err = 'The input array a should be a 1D array of 0D/1D arrays. This means that '
err += 'a.shape=(N,) or (1,) while here '
err += 'a.shape={}'.format(a.shape)
raise NameError(err)
dims = np.array([e.ndim for e in a])
Neq0, Ngt2 = np.count_nonzero(dims == 0), np.count_nonzero(dims >= 2)
if Neq0 == len(a):
return a
if Neq0 > 0 or Ngt2 > 0:
err = 'The input array should be a 1D array of 1D arrays'
err += ' in order to be converted into a 2D array.\n Some'
err += ' of the sub-array have dim>=2 or dim=0 (ie not an array):\n'
err += ' -> Number of d==0 element: {} (if ==len(a), it\'s not a jagged array!)\n'.format(Ngt2)
err += ' -> Number of d>=2 element: {}\n'.format(Ngt2)
raise NameError(err)
# kwargs
val, size, dtype = np.nan, None, 'float32'
if 'dtype' in kwargs:
dtype = kwargs['dtype']
if 'nobj' in kwargs:
size = kwargs['nobj']
if 'val' in kwargs:
val = kwargs['val']
# Get lengths of each row of data
lens = np.array([len(i) for i in a])
# Mask valid places in each row
mask = np.arange(lens.max()) < lens[:, None]
# Setup output array and put elements from data into masked positions
if (dtype):
dt = dtype
else:
dt = a.dtype
out = np.zeros(mask.shape, dtype=dt)
out.fill(val)
out[mask] = np.concatenate(a)
# Keep the number of element to size
if size:
out = out[:, :size]
return out
def all_pairs_nd(a, b=None, Nmax=None, axis=1, timing=False):
'''
Compute all possible pairs along a given axis.
This function performs the list of all possible pairs along a given axis
of the between the two arrays a and b. The typical use case it the following:
there are Nevts events with two collections of 5 vectors {r_i} and 10 vector
{q_j} (where each vector q,r=(px,py,pz)), and the pair (q,r) with the smallest
distance is wanted. In that case, one has:
a.shape=(Nevts, 5,3)
b.shape=(Nevts,10,3)
all_pairs_nd(a,b).shape=(Nevts,50,2,3)
NB1: If only a is given, the unordered/unrepeated combinations
are performed.
NB2: all axis must have the same dimension, expect the one along which the
pairing is done.
Parameters
----------
a: np.ndarray
The array contains the objects collection for each event. If Nobja
is the number of objects a and k the number of variable of each object a
(e.g. [px,py,pz,E,btagg,iso]): a.shape=(Nevt,Nobj_a,k)
b: np.ndarray
The array contains the objects collection for each event. If Nobj
is the number of objects and l the number of variable of each object b
(e.g. [px,py,pz,E,btagg,iso]): l must be equal to k and b.shape=(Nevt,Nobj_b,k).
If not specified, combinations of a elements are returned.
Nmax: int
Maximal number of elements considered to compute all combinations
axis: int
The dimension along which the pairing is done (axis=1 if not specified since
the most common HEP array is (Nevt,Nobj,k)).
timing: boolean
Print the time of each of the four main steps and the total one (useful
to degub).
Returns
-------
pairs: nd.ndarray
For each event (element along axis=0), the output array has Npairs of 2 objects,
meaning that output.shape=(Nevt, Npairs, 2, k).
Examples
--------
>>> import numy as np
>>> a=np.array([ # Nevt=1, Nobj=3, k=2
[[0, 1],[2, 3],[4, 5]]
])
>>>
>>> b=np.array([ # Nevt=1, Nobj=2, k=2
[[6, 7],[8, 9]]
])
>>>
>>> all_pairs_nd(a,b)
>>> array([
[
[[0, 1],[6, 7]],
[[0, 1],[8, 9]],
[[2, 3],[6, 7]],
[[2, 3],[8, 9]],
[[4, 5],[6, 7]],
[[4, 5],[8, 9]]
]
])
>>>
>>> all_pairs_nd(a)
>>> array([
[
[[0, 1],[2, 3]],
[[0, 1],[4, 5]],
[[2, 3],[4, 5]]
]
])
>>>
>>> npu.all_pairs_nd(a,Nmax=2)
>>> array([
[
[[0, 1],[2, 3]]
]
])
'''
from timeit import default_timer
t0 = default_timer()
# Is it the same collection
same_arrays = b is None
# Sanity check
if not same_arrays:
good_shape = np.array_equal(np.delete(a.shape, axis), np.delete(b.shape, axis))
if not good_shape:
err = 'The shape along all dimensions but the one of axis={}'.format(axis)
err += ' should be equal, while here:\n'
err += ' -> shape of a is {} \n'.format(a.shape)
err += ' -> shape of b is {} \n'.format(b.shape)
raise NameError(err)
# Reduce the number of objects to Nmax
if Nmax:
sl = [slice(None)]*a.ndim
sl[axis] = slice(0, Nmax)
if same_arrays:
a, b = a[sl], None
else:
a, b = a[sl], b[sl]
t1 = default_timer()
if timing:
print(' * Sanity checks done in {:.3f}s'.format(t1-t0))
# Individual indices
if same_arrays:
ia, jb = np.arange(a.shape[axis]), []
else:
ia, jb = np.arange(a.shape[axis]), np.arange(b.shape[axis])
t2 = default_timer()
if timing:
print(' * Individual indices done in {:.3f}'.format(t2-t1))
# Pairs of indicies
dt = np.dtype([('', np.intp)]*2)
if same_arrays:
ij = np.fromiter(itertools.combinations(ia, 2), dtype=dt)
else:
ij = np.fromiter(itertools.product(ia, jb), dtype=dt)
ij = ij.view(np.intp).reshape(-1, 2)
t3 = default_timer()
if timing:
print(' * Pairs of indices done in {:.3f}s'.format(t3-t2))
# Array of all pairs
if same_arrays:
out = np.take(a, ij, axis=axis)
else:
out = np.stack([a.take(ij[:, 0], axis=axis), b.take(ij[:, 1], axis=axis)], axis=axis+1)
t4 = default_timer()
if timing:
print(' * Take and stack arrays done in {:.3f}s'.format(t4-t3))
if timing:
print(' ==> total time: {:.3f}'.format(t4-t0))
return out
def df2array(df, variables, **kwargs):
'''
Convert a list of Ncols pandas dataframe columns into a regular
(Nevt,Nobj,Ncol)-dim numpy array.
In practice, the exact size of the final array is Nevt (the number
of events), Nobj (number of objects) and Ncol which is the number of
float for each event and object.
It is possible to give default values in order to later form collections
with the same number of variables:
jets =df2array(df,['jet_eta', 'jet_phi', 'jet_bw', '999'])
electrons=df2array(df,[ 'el_pt' , 'el_phi , 'nan', 'trk_iso'])
pairs =all_pairs_nd(jets,electrons)
This allows to get the electron isolation and the b-tagging weight
for the electron-jet pair being the closest to each other.
Parameters
----------
df: pandas.DataFrame
variables: list of column names to extract
keyword arguments
-----------------
The same as for square_jagged_2Darray(a,**kwargs) function
Returns
-------
output: np.array
3D array given with output.shape=(df[v].shape[0],df[v].shape[1],len(variables))
Examples
--------
>>>
>>> data=pd.DataFrame(data={
'jet_eta':np.array([np.array([1,2,3]),np.array([4,5])]),
'jet_phi':np.array([np.array([6,7,8]),np.array([9,10])]),
})
>>> print(data)
>>> jet_eta jet_phi
0 [1, 2, 3] [6, 7, 8]
1 [4, 5] [9, 10]
>>>
>>> jets_direction=npu.df2array(data,['jet_eta','jet_phi'])
>>> jets_direction
>>> array([[[ 1., 6.],
[ 2., 7.],
[ 3., 8.]],
[[ 4., 9.],
[ 5., 10.],
[ nan, nan]]], dtype=float32)
'''
# Get the default array with the proper shape
if variables[0] not in df.columns:
err = 'The first variable must be a valid column and not a default value.\n'
err += 'The variable \'{}\' is not in the list of dataframe columns'.format(variables[0])
raise NameError(err)
Nevt, Nobj = len(df), np.max([len(i) for i in df[variables[0]].values])
if 'nobj' in kwargs:
Nobj = kwargs['nobj']
def default_array(str_val):
try:
val = float(str_val)
except ValueError:
if str_val in ('nan', 'NaN', 'Nan', 'NAN'):
val = np.nan
else:
err = 'The default value \'{}\' is not supported. Please only use '.format(str_val)
err += 'a number in a string (e.g. \'999\') or \'nan\'.'
raise NameError(err)
return np.full_like(np.zeros((Nevt, Nobj)), val)
# Get the list of all arrays, each of shape: (Nevts,Nobj)
list_arrays = [square_jagged_2Darray(df[v].values, **kwargs)
if v in df.columns else default_array(v) for v in variables]
# Check that there are a collection (and not only value, like MET)
isCollection = contains_collections(list_arrays)
# Adding a dimension for further concatenation in case of
# (Nevts,Nobj) shape; new shape is (Nevts,Nobj,1)
list_arrays = [a[..., None] if a.ndim == 2 else a for a in list_arrays]
# Check that the number of object is the same for all column
if isCollection:
axis = 2
if np.std([a.shape[1] for a in list_arrays]) != 0:
err = 'The shape along the dimensions of axis=1 (number of objects) '
err += 'must be the same for all variables. This function cannot merge different '
err += 'object collections (eg "jet_pT" and "ele_pT").\n'
err += 'If you need to do so, check stack_collection() functions.'
raise NameError(err)
else:
axis = 1
# Performe the concatenation and output shape is (Nevts,Nobj,Nvariables)
return np.concatenate(list_arrays, axis=axis)
def stack_collections(arrays):
'''
Stack list of arrays of shape (Nevts,Nobj_i,Nval) along axis=1.
The typical use case of the function is to build a single collection
of objects from different collections. Let's take the example where
one wants to make a 'lepton' collection out of 'electron' and 'muon'
collection: each collection has Nval variables so that each array will
be of shape el.shape=(Nevts,Nel,Nval) and mu.shape=(Nevts,Nmu,Nval).
lep=stack_collections([el,mu]) will have lep.shape(Nevt,Nel+Nmu,Nval).
Parameters:
----------
arrays: list of ndarray
arrays which needs to be stacked
Return:
-------
output: ndarray
array of shape (Nevt,Ntot,Nval) where Ntot
is the sum of all objects (e.g. Nlep+Njet)
Examples:
--------
>>> a=np.arange(30).reshape(2,5,3)
>>> a # 2 events, 5 objects, 3 variables
>>> array([
[
[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11],
[12, 13, 14]
],
[
[15, 16, 17],
[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]
]
])
>>>
>>> b=np.arange(12).reshape(2,2,3)
>>> b # 2 events, 2 objects, 3 variables
>>> array([
[
[ 0, 1, 2],
[ 3, 4, 5]
],
[
[ 6, 7, 8],
[ 9, 10, 11]
]
])
>>>
>>> npu.stack_collections([a,b])
>>> array([
[
[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11],
[12, 13, 14],
[ 0, 1, 2],
[ 3, 4, 5]
],
[
[15, 16, 17],
[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29],
[ 6, 7, 8],
[ 9, 10, 11]
]
])
'''
# Check there are collection
if not contains_collections(arrays):
err = 'One of the array is not a collection, while this function needs '
err += 'collections of objects (ie at least 2D arrays - 1D for events '
err += 'and 1D for the collection'
raise NameError(err)
# Check that the number of variables per object is the same for all column
has_one_var = np.count_nonzero([a.ndim == 1 for a in arrays]) == len(arrays)
if not has_one_var:
is_ok = True
elif len(np.unique([a.shape[2] for a in arrays])) != 0:
is_ok = False
else:
is_ok = True
if not is_ok:
err = 'The shape along the dimensions of axis=2 (number of variables per object) '
err += 'must be the same for all objects. This function cannot merge '
err += 'collections with different number of variables (eg [jet_pT,jet_eta] and [ele_pT]).\n'
raise NameError(err)
out = np.concatenate(arrays, axis=1)
return out