-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMTVAF_training.py
400 lines (365 loc) · 19.7 KB
/
MTVAF_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import os
import argparse
import logging
import sys
from models.utils import E2EASAOTProcessor
sys.path.append("..")
import torch
import numpy as np
import random
from torchvision import transforms
from torch.utils.data import DataLoader, ConcatDataset, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from models.bert_model import TVNetSAModel, TVNetSAModel2
from modules.dataset import TVSAProcessor, TVSADataset, TVSAProcessor2, TVSADataset2
from modules.train import SATrainer, SATrainer2
import itertools
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
from tensorboardX import SummaryWriter
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
# MODEL_CLASSES,TRAINER_CLASSES,DATA_PROCESS,DATA_PATH
MODEL_CLASSES = {
'twitter15': TVNetSAModel,
'twitter17': TVNetSAModel,
'twitter2015': TVNetSAModel2,
'twitter2017': TVNetSAModel2,
}
TRAINER_CLASSES = {
'twitter15': SATrainer,
'twitter17': SATrainer,
'twitter2015': SATrainer2,
'twitter2017': SATrainer2,
}
DATA_PROCESS = {
'twitter15': (TVSAProcessor, TVSADataset),
'twitter17': (TVSAProcessor, TVSADataset),
'twitter2015': (TVSAProcessor2, TVSADataset2),
'twitter2017': (TVSAProcessor2, TVSADataset2),
}
DATA_PATH = {
'twitter15': {
'train': 'data/twitter2015/train.txt',
'dev': 'data/twitter2015/valid.txt',
'test': 'data/twitter2015/test.txt',
'train_auximgs': 'data/twitter2015/twitter2015_train_dict.pth',
'dev_auximgs': 'data/twitter2015/twitter2015_val_dict.pth',
'test_auximgs': 'data/twitter2015/twitter2015_test_dict.pth',
# gcn data
'gcn_train': 'data/twitter2015/twitter15_train.json',
'gcn_dev': 'data/twitter2015/twitter15_dev.json',
'gcn_test': 'data/twitter2015/twitter15_test.json'
},
'twitter17': {
# text data
'train': 'data/twitter2017/train.txt',
'dev': 'data/twitter2017/valid.txt',
'test': 'data/twitter2017/test.txt',
'train_auximgs': 'data/twitter2017/twitter2017_train_dict.pth',
'dev_auximgs': 'data/twitter2017/twitter2017_val_dict.pth',
'test_auximgs': 'data/twitter2017/twitter2017_test_dict.pth',
# gcn data
'gcn_train': 'data/twitter2017/twitter17_train.json',
'gcn_dev': 'data/twitter2017/twitter17_dev.json',
'gcn_test': 'data/twitter2017/twitter17_test.json'
},
'twitter2015': {
'train': 'data/twitter2015/twitter2015/train.txt',
'dev': 'data/twitter2015/twitter2015/valid.txt',
'test': 'data/twitter2015/twitter2015/test.txt',
'train_auximgs': 'data/twitter2015/twitter2015_train_dict.pth',
'dev_auximgs': 'data/twitter2015/twitter2015_val_dict.pth',
'test_auximgs': 'data/twitter2015/twitter2015_test_dict.pth',
'gcn_train': 'data/twitter2015/twitter15_train.json',
'gcn_dev': 'data/twitter2015/twitter15_dev.json',
'gcn_test': 'data/twitter2015/twitter15_test.json',
# vao
'path_img': 'data/twitter2015_images',
'image_filename': 'data/ANP_data/image_output2015.json',
},
'twitter2017': {
'train': 'data/twitter2017/twitter2017/train.txt',
'dev': 'data/twitter2017/twitter2017/valid.txt',
'test': 'data/twitter2017/twitter2017/test.txt',
'train_auximgs': 'data/twitter2017/twitter2017_train_dict.pth',
'dev_auximgs': 'data/twitter2017/twitter2017_val_dict.pth',
'test_auximgs': 'data/twitter2017/twitter2017_test_dict.pth',
'gcn_train': 'data/twitter2017/twitter17_train.json',
'gcn_dev': 'data/twitter2017/twitter17_dev.json',
'gcn_test': 'data/twitter2017/twitter17_test.json',
# vao
'image_filename': 'data/ANP_data/image_output2017.json',
'path_img': 'data/twitter2017_images',
},
}
IMG_PATH = {
'twitter15': 'data/twitter2015_images',
'twitter17': 'data/twitter2017_images',
'twitter2015': 'data/twitter2015_images',
'twitter2017': 'data/twitter2017_images',
}
AUX_PATH = {
'twitter15': {
'train': 'data/twitter2015_aux_images/train/crops',
'dev': 'data/twitter2015_aux_images/val/crops',
'test': 'data/twitter2015_aux_images/test/crops',
},
'twitter17': {
'train': 'data/twitter2017_aux_images/train/crops',
'dev': 'data/twitter2017_aux_images/val/crops',
'test': 'data/twitter2017_aux_images/test/crops',
},
'twitter2015': {
'train': 'data/twitter2015_aux_images/train/crops',
'dev': 'data/twitter2015_aux_images/val/crops',
'test': 'data/twitter2015_aux_images/test/crops',
},
'twitter2017': {
'train': 'data/twitter2017_aux_images/train/crops',
'dev': 'data/twitter2017_aux_images/val/crops',
'test': 'data/twitter2017_aux_images/test/crops',
},
}
AGN_PATH = {
'twitter15': {
'sum': 'data/AGN_data/twitter2015/aux.txt',
'train': 'data/AGN_data/twitter2015/aux_train.txt',
'dev': 'data/AGN_data/twitter2015/aux_dev.txt',
'test': 'data/AGN_data/twitter2015/aux_test.txt',
},
'twitter17': {
'sum': 'data/AGN_data/twitter2017/aux.txt',
'train': 'data/AGN_data/twitter2017/aux_train.txt',
'dev': 'data/AGN_data/twitter2017/aux_dev.txt',
'test': 'data/AGN_data/twitter2017/aux_test.txt',
},
'twitter2015': {
'sum': 'data/AGN_data/twitter2015/aux.txt',
'train': 'data/AGN_data/twitter2015/aux_train.txt',
'dev': 'data/AGN_data/twitter2015/aux_dev.txt',
'test': 'data/AGN_data/twitter2015/aux_test.txt',
},
'twitter2017': {
'sum': 'data/AGN_data/twitter2017/aux.txt',
'train': 'data/AGN_data/twitter2017/aux_train.txt',
'dev': 'data/AGN_data/twitter2017/aux_dev.txt',
'test': 'data/AGN_data/twitter2017/aux_test.txt',
},
}
MERGE_PATH = {
'twitter2015': {
'train': 'data/AGN_data/twitter2015/merge_train.txt',
'dev': 'data/AGN_data/twitter2015/merge_dev.txt',
'test': 'data/AGN_data/twitter2015/merge_test.txt',
},
'twitter2017': {
'train': 'data/AGN_data/twitter2017/merge_train.txt',
'dev': 'data/AGN_data/twitter2017/merge_dev.txt',
'test': 'data/AGN_data/twitter2017/merge_test.txt',
},
}
CAPTION_PATH = {
'twitter2015': {
'train': 'data/AGN_data/twitter2015/15_train_caption.txt',
'dev': 'data/AGN_data/twitter2015/15_dev_caption.txt',
'test': 'data/AGN_data/twitter2015/15_test_caption.txt',
},
'twitter2017': {
'train': 'data/AGN_data/twitter2017/17_train_caption.txt',
'dev': 'data/AGN_data/twitter2017/17_dev_caption.txt',
'test': 'data/AGN_data/twitter2017/17_test_caption.txt',
},
}
def set_seed(seed=2024):
"""set random seed"""
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
np.random.seed(seed)
random.seed(seed)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_name', default='twitter15', type=str, help="The name of dataset.")
parser.add_argument('--bert_name', default='bert-base-uncased', type=str, help="Pretrained language model path")
parser.add_argument('--num_epochs', default=35, type=int, help="num training epochs")
parser.add_argument('--device', default='cuda', type=str, help="cuda or cpu")
parser.add_argument('--train_batch_size', default=32, type=int, help="batch size")
parser.add_argument('--eval_batch_size', default=16, type=int, help="eval batch size")
parser.add_argument('--lr', default=5e-5, type=float, help="learning rate")
parser.add_argument('--warmup_ratio', default=0.01, type=float)
parser.add_argument('--eval_begin_epoch', default=16, type=int, help="epoch to start evluate")
parser.add_argument('--seed', default=1, type=int, help="random seed, default is 1")
parser.add_argument('--prefix_len', default=10, type=int, help="prompt length")
parser.add_argument('--prefix_dim', default=800, type=int, help="mid dimension of prompt project layer")
parser.add_argument('--load_path', default=None, type=str, help="Load model from load_path")
parser.add_argument('--save_path', default=None, type=str, help="save model at save_path")
parser.add_argument('--use_pretrained', action='store_true', help="use pretrained NER model")
parser.add_argument('--write_path', default=None, type=str,
help="do_test=True, predictions will be write in write_path")
parser.add_argument('--notes', default="", type=str, help="input some remarks for making save path dir.")
parser.add_argument('--use_prefix', action='store_true')
parser.add_argument('--use_align', action='store_true')
parser.add_argument('--only_caption', action='store_true')
parser.add_argument('--use_probe', action='store_true')
parser.add_argument('--use_152', action='store_true')
parser.add_argument('--vao', action='store_true')
parser.add_argument('--noauxloss', action='store_true')
parser.add_argument('--gcn_layer_number', default=0, type=int, help="layers of gcn")
parser.add_argument('--num_layers', type=int, default=0, help='Num of GCN layers.')
parser.add_argument('--direct', default=False, help='directed graph or undirected graph')
parser.add_argument('--embed_dim', default=300, type=int)
parser.add_argument('--post_dim', type=int, default=30, help='Position embedding dimension.')
parser.add_argument('--pos_dim', type=int, default=30, help='Pos embedding dimension.')
parser.add_argument('--hidden_dim', type=int, default=50, help='GCN mem dim.')
parser.add_argument('--input_dropout', type=float, default=0.7, help='Input dropout rate.')
parser.add_argument('--gcn_dropout', type=float, default=0.1, help='GCN layer dropout rate.')
parser.add_argument('--bert_dropout', type=float, default=0.3, help='BERT dropout rate.')
parser.add_argument('--alpha', default=0.25, type=float)
parser.add_argument('--beta', default=0.5, type=float)
parser.add_argument('--resnet_root', default='./resnet', help='path the pre-trained cnn models')
parser.add_argument('--do_aug', action='store_true', help="augument or not")
parser.add_argument('--aug_type', default=None, type=str, help="span_cutoff, token_cutoff, dim_cutoff")
parser.add_argument('--aug_cutoff_ratio', default=0.1, type=float, help="cutoff ratio")
parser.add_argument('--aug_ce_loss', default=1.0, type=float, help="ce ratio")
parser.add_argument('--aug_js_loss', default=1.0, type=float, help="js ratio")
parser.add_argument('--do_train', action='store_true')
parser.add_argument('--only_test', action='store_true')
parser.add_argument('--max_seq', default=128, type=int)
parser.add_argument('--max_seq_agn', default=500, type=int)
parser.add_argument('--ignore_idx', default=-100, type=int)
parser.add_argument('--sample_ratio', default=1.0, type=float, help="only for low resource.")
parser.add_argument("--cache_dir", default="data/image_cache_dir/")
parser.add_argument("--do_lower_case", default=True, action='store_true',
help="Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
parser.add_argument("--n_best_size", default=20, type=int,
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
parser.add_argument("--max_answer_length", default=12, type=int,
help="The maximum length of an answer that can be generated. This is needed because the start and end predictions are not conditioned on one another.")
parser.add_argument("--logit_threshold", default=8., type=float,
help="Logit threshold for annotating labels.")
parser.add_argument("--filter_type", default="f1", type=str, help="Which filter type to use")
parser.add_argument("--use_heuristics", default=True, action='store_true',
help="If true, use heuristic regularization on span length")
parser.add_argument("--use_nms", default=True, action='store_true',
help="If true, use nms to prune redundant spans")
parser.add_argument("--verbose_logging", default=False, action='store_true',
help="If true, all of the warnings related to data processing will be printed. A number of warnings are expected for a normal SQuAD evaluation.")
parser.add_argument("--no_cuda", default=False, action='store_true', help="Whether not to use CUDA when available")
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
parser.add_argument('--loss_scale', type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('-g', '--gpus', type=int, default=1, help="number of gpus per node.")
parser.add_argument('--n_gpu', type=int, default=1, help="number of gpus.(sum)")
parser.add_argument('-n', '--nodes', default=1, type=int, metavar='N', help="number of nodes.")
args = parser.parse_args()
data_path = DATA_PATH[args.dataset_name]
model_class, Trainer = MODEL_CLASSES[args.dataset_name], TRAINER_CLASSES[args.dataset_name]
data_process, dataset_class = DATA_PROCESS[args.dataset_name]
aux_path = AUX_PATH[args.dataset_name]
# agn_path = AGN_PATH[args.dataset_name]
merge_path = MERGE_PATH[args.dataset_name]
if args.only_caption:
merge_path = CAPTION_PATH[args.dataset_name]
set_seed(args.seed)
if args.save_path is not None:
if not os.path.exists(args.save_path):
os.makedirs(args.save_path, exist_ok=True)
print(args)
logdir = "logs/" + args.dataset_name + "_" + str(args.train_batch_size) + "_" + str(args.lr) + args.notes
writer = SummaryWriter(logdir=logdir)
if args.local_rank == -1 or args.no_cuda:
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
args.device = torch.device("cuda", args.local_rank)
args.n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logger.info("device: {} n_gpu: {}, distributed training: {}".format(
args.device, args.n_gpu, bool(args.local_rank != -1)))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
if not args.use_prefix:
aux_path = None
if not args.use_align:
processor = data_process(data_path, args.bert_name)
train_dataset = dataset_class(processor, data_path['path_img'], aux_path, args.max_seq, args=args,
sample_ratio=args.sample_ratio, mode='train')
dev_dataset = dataset_class(processor, data_path['path_img'], aux_path, args.max_seq, args=args,
sample_ratio=args.sample_ratio, mode='dev')
test_dataset = dataset_class(processor, data_path['path_img'], aux_path, args.max_seq, args=args,
sample_ratio=args.sample_ratio, mode='test')
if args.local_rank == -1:
train_sampler = RandomSampler(train_dataset)
else:
train_sampler = DistributedSampler(train_dataset)
train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
train_dataloader = DataLoader(train_dataset, batch_size=train_batch_size, sampler=train_sampler, num_workers=4,
pin_memory=True)
dev_dataloader = DataLoader(dev_dataset, batch_size=args.eval_batch_size, shuffle=False, num_workers=4,
pin_memory=True)
test_dataloader = DataLoader(test_dataset, batch_size=args.eval_batch_size, shuffle=False, num_workers=4,
pin_memory=True)
else:
processor = data_process(data_path, args.bert_name, merge_path)
agn_train_dataset = dataset_class(processor, data_path['path_img'], aux_path, args.max_seq_agn, args=args,
sample_ratio=args.sample_ratio, mode='train')
agn_dev_dataset = dataset_class(processor, data_path['path_img'], aux_path, args.max_seq_agn, args=args,
sample_ratio=args.sample_ratio, mode='dev')
agn_test_dataset = dataset_class(processor, data_path['path_img'], aux_path, args.max_seq_agn, args=args,
sample_ratio=args.sample_ratio, mode='test')
print("agn_len", len(agn_dev_dataset), len(agn_dev_dataset[0]), len(agn_train_dataset[0][0]))
if args.local_rank == -1:
train_sampler = RandomSampler(agn_train_dataset)
else:
train_sampler = DistributedSampler(agn_train_dataset)
train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
agn_train_dataloader = DataLoader(agn_train_dataset, batch_size=train_batch_size, sampler=train_sampler,
num_workers=4, pin_memory=True)
agn_dev_dataloader = DataLoader(agn_dev_dataset, batch_size=args.eval_batch_size, shuffle=False,
num_workers=4, pin_memory=True)
agn_test_dataloader = DataLoader(agn_test_dataset, batch_size=args.eval_batch_size, shuffle=False,
num_workers=4, pin_memory=True)
if args.dataset_name == 'twitter15' or args.dataset_name == 'twitter17':
label_mapping = processor.get_label_mapping()
label_list = list(label_mapping.keys())
else:
label_list = processor.get_labels()
label_mapping = {label: idx for idx, label in enumerate(label_list, 1)}
tokenizer = processor.tokenizer
type_num = E2EASAOTProcessor().get_type_num()
model = model_class(label_list, tokenizer, args, type_num) # SAModel or SAModel2
if args.use_align:
trainer = Trainer(train_data=agn_train_dataloader, dev_data=agn_dev_dataloader,
test_data=agn_test_dataloader, model=model, label_map=label_mapping, args=args,
logger=logger, writer=writer, train_dataset=agn_train_dataset,
dev_dataset=agn_dev_dataset, test_dataset=agn_test_dataset, processor=processor)
else:
trainer = Trainer(train_data=train_dataloader, dev_data=dev_dataloader, test_data=test_dataloader,
model=model,
label_map=label_mapping, args=args, logger=logger, writer=writer,
train_dataset=train_dataset, dev_dataset=dev_dataset, test_dataset=test_dataset,
processor=processor)
if args.do_train:
trainer.train()
print("training and testing")
# test best model
f1 = trainer.test(args.num_epochs)
if args.only_test:
print("only testing")
# only do test
f1 = trainer.test(args.num_epochs)
torch.cuda.empty_cache()
writer.close()
if __name__ == "__main__":
main()