-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUOI_Regression.py
178 lines (144 loc) · 6.32 KB
/
UOI_Regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# %% Setup
# import libraries
import funcs_HELPER as helper
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from pathlib import Path
from scipy.stats import zscore
from sklearn.model_selection import KFold
from sklearn.metrics import r2_score
from math import sqrt
from pyuoi.linear_model import UoI_Lasso
# %% Setup settings
# get experiment settings
sets = helper.MetaData()
sets.filemetadat = sets.filemetadat.drop(17 , axis=0)
def rsquareCI (R2, n, k):
# k is the number of independent variables and n is the number of cases (observations).
SE = sqrt((4*R2*((1-R2)**2)*((n-k-1)**2))/((n**2-1)*(n + 3)))
upper = R2 + 2*SE
lower = R2 - 2*SE
print("CI upper boundary:{}, CI lower boundary:{}".format(upper, lower))
# %% Load data
# deal with windowing
window=True
opvid=''
windowstr = 'windowed'
# preallocate
topos = pd.DataFrame()
for subid in sets.filemetadat['SubID']:
filename = sets.direct_results / Path(subid) / Path('topographies' + opvid + windowstr + '.pkl')
topos = helper.stackdfs(topos, pd.read_pickle(filename))
topos = topos.drop('flickercond', axis=1)
topos = topos.groupby(['flickertype', 'freqrange', 'subid', 'Group', 'harmonic', 'ch_names']).mean()
topos = topos.reset_index()
topos = topos.loc[topos.flickertype=='interpflicker',:]
topos = topos.loc[topos.freqrange=='lowerfreqs',:]
# compute metrics - topos
for metric in ['Mean SSVEP Amp (SNR)', 'SSVEP ratio (low/high sf)', 'SSVEP normdiff (low - high sf)']:
topos[metric] = np.nan
for harmonic in [1,2]:
for flickertype in ['interpflicker']:
# regular
dat = topos.loc[(topos.harmonic == harmonic) & (topos.flickertype == flickertype), :]
dat.loc[:, 'Mean SSVEP Amp (SNR)'] = (dat['Higher SF'] + dat['Lower SF'])/ 2
dat.loc[:, 'SSVEP ratio (low/high sf)'] = dat['Lower SF'] / dat['Higher SF']
dat.loc[:, 'SSVEP normdiff (low - high sf)'] = (zscore(np.log(dat['Lower SF'])) - zscore(np.log(dat['Higher SF'])))
topos.loc[(topos.harmonic == harmonic) & (topos.flickertype == flickertype), :] = dat
# %% Set up features
# Select visual function
visfunc = 'logMAR'
# select channels
chansuse = ['P2', 'P4', 'P6', 'PO4', 'O2', 'I1', 'I2', 'P1', 'P3', 'P5', 'PO3', 'O1', 'Iz', 'Oz', 'POz', 'Pz'] # used for real
# get data
X, Y = [], []
for subid in topos.subid.unique():
# if np.any(np.isin(topos.loc[topos['Group']=='AMD', 'subid'], subid)):
x = []
lab = []
for harmonic in [1]:
for chan in chansuse:
x.append(topos.loc[(topos.subid==subid) & (topos.ch_names == chan) &
(topos.harmonic==harmonic) , 'Higher SF'].values[0])
lab.append(chan + '_Higher SF')
for chan in chansuse:
x.append(topos.loc[(topos.subid==subid) & (topos.ch_names == chan) &
(topos.harmonic==harmonic) , 'Lower SF'].values[0])
lab.append(chan + '_Lower SF')
x.append(int(topos.loc[(topos.subid==subid) & (topos.ch_names == chan) &
(topos.harmonic==harmonic) , 'Group'].values[0]=='Control'))
lab.append('group')
if visfunc =='logMAR':
Y.append(topos.loc[topos.subid==subid, 'logMAR'].values[0])
if visfunc == 'logCS':
Y.append(topos.loc[topos.subid==subid, 'logCS'].values[0])
X.append(x)
X = np.stack(X)
Y = np.array(Y)
# Log
X[:,:-1] = 10*np.log10(X[:,:-1])
# Normalise for each person
X[:,:-1] = zscore(X[:,:-1], axis=0)
storeM, storeSD = np.mean(Y), np.std(Y)
Y = zscore(Y, axis=0)
# %% Trial classification with all data (no cross validation)
uoi_lasso = UoI_Lasso(max_iter=100000, random_state=2, estimation_score='r2', stability_selection=0.5)
uoi_lasso.fit(X, Y)
print(uoi_lasso.score(X,Y))
yhat = uoi_lasso.predict(X)
fig, axes = plt.subplots(1, 2, figsize=(10, 5))
ax = axes[0]
ax.scatter(Y, yhat, marker='.')
ax.set_xlabel('True response')
ax.set_ylabel('Predicted response')
ax = axes[1]
ax.plot(lab, uoi_lasso.coef_.ravel(), marker='.')
ax.set_xlabel('variable #')
ax.set_ylabel(r'Fit $\beta_i$')
plt.xticks(rotation=90)
fig.tight_layout()
plt.savefig('Results/UIOLasso_Results.png')
# %% K-fold cross validation
kf = KFold(n_splits=5, random_state=0, shuffle=True)
coefs = []
labels = {'True':[], 'Predicted':[], 'PredictedProb':[], 'Group':[]}
scores = []
for i, (train_index, test_index) in enumerate(kf.split(X)):
# Train
uoi_lasso = UoI_Lasso(max_iter=100000, estimation_score='r2', stability_selection=0.5, random_state=2) #random_state=2,
uoi_lasso.fit(X[train_index,:], Y[train_index])
# Predict
labels['Group'].extend(X[test_index, -1].tolist())
labels['True'].extend(Y[test_index].tolist())
labels['Predicted'].extend(uoi_lasso.predict(X[test_index,:]).tolist())
scores.append(1- np.square(Y[test_index]-uoi_lasso.predict(X[test_index,:])) / np.square(Y[test_index]-Y.mean()))
print(f"Fold {i}:, score: {scores[-1]}")
coefs.append(uoi_lasso.coef_.ravel())
# Plot results
S = [r2_score(labels['True'], labels['Predicted'])]
print(S[0])
rsquareCI(R2= r2_score(labels['True'], labels['Predicted']), n=np.shape(X)[0], k=np.shape(X)[1])
fig, ax = plt.subplots(1, 2, figsize=(8, 4), layout='tight')
sns.barplot(pd.DataFrame(S, columns=['Score']), y='Score', ax = ax[0])
sns.stripplot(pd.DataFrame(S, columns=['Score']), y='Score', ax = ax[0], color='k')
ax[0].set_ylabel('R^2')
ax[0].set_title('Score = ' + str(np.nanmean(S)) )
ax[1].scatter(np.array(labels['True'])* storeSD + storeM , np.array(labels['Predicted']) * storeSD + storeM, c=labels['Group'])#,c=S, cmap='RdYlGn')
ax[1].set_xlabel('True value')
ax[1].set_ylabel('Predicted value')
plt.savefig('UOIResults_Crossval.png')
plt.savefig('UOIResults_Crossval.eps')
fig, axes = plt.subplots(1, 1, figsize=(10, 5))
ax = axes
# val = max( abs(uoi_lasso.coef_).max()) * 1.1
ax.plot(lab, np.mean(np.stack(coefs),0), marker='.')
ax.set_xlabel('variable #')
ax.set_ylabel(r'Fit $\beta_i$')
plt.xticks(rotation=90)
plt.savefig('UOIResults_CrossvalCoefs.png')
plt.savefig('UOIResults_CrossvalCoefs.eps')
datsave = np.mean(np.stack(coefs),0)
np.savetxt("Results/coefslabs.csv", np.array(lab), delimiter=",", fmt='%s')
np.savetxt("Results/coefs.csv", datsave, delimiter=",")