-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsliding_window_gradient_inference.py
626 lines (579 loc) · 26.9 KB
/
sliding_window_gradient_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
from __future__ import annotations
import itertools
from collections.abc import Callable, Mapping, Sequence
from typing import Any, Iterable, List, Literal, Optional, Union
import numpy as np
import torch
import torch.nn.functional as F
from monai.data.meta_tensor import MetaTensor
from monai.data.utils import (
compute_importance_map,
dense_patch_slices,
get_valid_patch_size,
)
from monai.utils import (
BlendMode,
PytorchPadMode,
convert_data_type,
convert_to_dst_type,
ensure_tuple,
ensure_tuple_rep,
fall_back_tuple,
look_up_option,
optional_import,
pytorch_after,
)
tqdm, _ = optional_import("tqdm", name="tqdm")
_nearest_mode = "nearest-exact" if pytorch_after(1, 11) else "nearest"
def sum_aggregation(mask: torch.Tensor, *args) -> torch.Tensor:
return mask
def mean_aggregation(
mask: torch.Tensor, seg_prob_out: torch.Tensor, *args
) -> torch.Tensor:
length = mask.sum(dim=(1, 2, 3), keepdim=True)
if length == 0:
return torch.zeros_like(seg_prob_out)
return mask / length
def prob_weighted_aggregation(
mask: torch.Tensor, seg_prob_out: torch.Tensor, class_of_interest: int, *args
) -> torch.Tensor:
prob_out = torch.softmax(seg_prob_out, dim=1)[:, class_of_interest]
summary = prob_out * mask
return summary / summary.sum(dim=(1, 2, 3), keepdim=True)
def create_gradient_samples(
cur_input: torch.Tensor,
mask: torch.Tensor,
seg_prob_out: torch.Tensor,
class_of_interest: int,
num_gradient_samples: int = 100,
aggregation_fn: Callable = sum_aggregation,
gradient_sample_aggregation_fn: Callable = torch.mean,
gradient_sample_aggregation_fn_kwargs: Optional[dict[str, Any]] = None,
retain_graph: bool = False,
sampling_mode: Literal["split_mask", "sample_mask"] = "sample_mask",
progress: bool = True,
):
if gradient_sample_aggregation_fn_kwargs is None:
gradient_sample_aggregation_fn_kwargs = {}
_mask = mask.cpu().detach().numpy().flatten()
indices = np.where(_mask == 1)[0]
if len(indices) < num_gradient_samples:
num_gradient_samples = len(indices)
if sampling_mode == "split_mask":
split_indices = np.array_split(indices, num_gradient_samples)
elif sampling_mode == "sample_mask":
split_indices = np.random.choice(indices, num_gradient_samples, replace=False)
else:
raise ValueError(f"Unknown sampling mode: {sampling_mode}.")
samples = []
for i, split_index in tqdm(
enumerate(split_indices),
leave=False,
desc="Gradient Sampling",
total=num_gradient_samples,
):
cur_mask = torch.zeros_like(mask)
cur_mask.view(-1)[split_index] = 1
cur_idx_grad = torch.autograd.grad(
seg_prob_out[:, class_of_interest],
cur_input,
grad_outputs=aggregation_fn(
seg_prob_out[:, class_of_interest],
cur_mask,
class_of_interest,
),
retain_graph=(i < num_gradient_samples - 1) or retain_graph,
)[0]
samples.append(cur_idx_grad.cpu().detach())
samples = torch.stack(samples)
grad_out = gradient_sample_aggregation_fn(
samples, dim=0, **gradient_sample_aggregation_fn_kwargs
)
grad_out = grad_out.to(cur_input.device)
return grad_out
def sliding_window_inference(
inputs: torch.Tensor | MetaTensor,
roi_size: Sequence[int] | int,
sw_batch_size: int,
predictor: Callable[
..., torch.Tensor | Sequence[torch.Tensor] | dict[Any, torch.Tensor]
],
overlap: Sequence[float] | float = 0.25,
mode: BlendMode | str = BlendMode.CONSTANT,
sigma_scale: Sequence[float] | float = 0.125,
padding_mode: PytorchPadMode | str = PytorchPadMode.CONSTANT,
cval: float = 0.0,
sw_device: torch.device | str | None = None,
device: torch.device | str | None = None,
progress: bool = False,
roi_weight_map: torch.Tensor | None = None,
process_fn: Callable | None = None,
buffer_steps: int | None = None,
buffer_dim: int = -1,
class_for_saliency: Optional[Union[int, List[int]]] = None,
preds_for_saliency: Optional[torch.Tensor] = None,
aggregation_fn: Optional[Callable] = sum_aggregation,
num_gradient_samples: int = 1,
gradient_sample_aggregation_fn: Optional[Callable] = None,
gradient_sample_aggregation_fn_kwargs: dict[str, Any] = None,
mask_for_aggregation: Optional[torch.Tensor] = None,
gradient_sampling_mode: Literal["split_mask", "sample_mask"] = "sample_mask",
*args: Any,
**kwargs: Any,
) -> torch.Tensor | tuple[torch.Tensor, ...] | dict[Any, torch.Tensor]:
"""
Sliding window inference on `inputs` with `predictor`.
The outputs of `predictor` could be a tensor, a tuple, or a dictionary of tensors.
Each output in the tuple or dict value is allowed to have different resolutions with respect to the input.
e.g., the input patch spatial size is [128,128,128], the output (a tuple of two patches) patch sizes
could be ([128,64,256], [64,32,128]).
In this case, the parameter `overlap` and `roi_size` need to be carefully chosen to ensure the output ROI is still
an integer. If the predictor's input and output spatial sizes are not equal, we recommend choosing the parameters
so that `overlap*roi_size*output_size/input_size` is an integer (for each spatial dimension).
When roi_size is larger than the inputs' spatial size, the input image are padded during inference.
To maintain the same spatial sizes, the output image will be cropped to the original input size.
Args:
inputs: input image to be processed (assuming NCHW[D])
roi_size: the spatial window size for inferences.
When its components have None or non-positives, the corresponding inputs dimension will be used.
if the components of the `roi_size` are non-positive values, the transform will use the
corresponding components of img size. For example, `roi_size=(32, -1)` will be adapted
to `(32, 64)` if the second spatial dimension size of img is `64`.
sw_batch_size: the batch size to run window slices.
predictor: given input tensor ``patch_data`` in shape NCHW[D],
The outputs of the function call ``predictor(patch_data)`` should be a tensor, a tuple, or a dictionary
with Tensor values. Each output in the tuple or dict value should have the same batch_size, i.e. NM'H'W'[D'];
where H'W'[D'] represents the output patch's spatial size, M is the number of output channels,
N is `sw_batch_size`, e.g., the input shape is (7, 1, 128,128,128),
the output could be a tuple of two tensors, with shapes: ((7, 5, 128, 64, 256), (7, 4, 64, 32, 128)).
In this case, the parameter `overlap` and `roi_size` need to be carefully chosen
to ensure the scaled output ROI sizes are still integers.
If the `predictor`'s input and output spatial sizes are different,
we recommend choosing the parameters so that ``overlap*roi_size*zoom_scale`` is an integer for each dimension.
overlap: Amount of overlap between scans along each spatial dimension, defaults to ``0.25``.
mode: {``"constant"``, ``"gaussian"``}
How to blend output of overlapping windows. Defaults to ``"constant"``.
- ``"constant``": gives equal weight to all predictions.
- ``"gaussian``": gives less weight to predictions on edges of windows.
sigma_scale: the standard deviation coefficient of the Gaussian window when `mode` is ``"gaussian"``.
Default: 0.125. Actual window sigma is ``sigma_scale`` * ``dim_size``.
When sigma_scale is a sequence of floats, the values denote sigma_scale at the corresponding
spatial dimensions.
padding_mode: {``"constant"``, ``"reflect"``, ``"replicate"``, ``"circular"``}
Padding mode for ``inputs``, when ``roi_size`` is larger than inputs. Defaults to ``"constant"``
See also: https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html
cval: fill value for 'constant' padding mode. Default: 0
sw_device: device for the window data.
By default the device (and accordingly the memory) of the `inputs` is used.
Normally `sw_device` should be consistent with the device where `predictor` is defined.
device: device for the stitched output prediction.
By default the device (and accordingly the memory) of the `inputs` is used. If for example
set to device=torch.device('cpu') the gpu memory consumption is less and independent of the
`inputs` and `roi_size`. Output is on the `device`.
progress: whether to print a `tqdm` progress bar.
roi_weight_map: pre-computed (non-negative) weight map for each ROI.
If not given, and ``mode`` is not `constant`, this map will be computed on the fly.
process_fn: process inference output and adjust the importance map per window
buffer_steps: the number of sliding window iterations along the ``buffer_dim``
to be buffered on ``sw_device`` before writing to ``device``.
(Typically, ``sw_device`` is ``cuda`` and ``device`` is ``cpu``.)
default is None, no buffering. For the buffer dim, when spatial size is divisible by buffer_steps*roi_size,
(i.e. no overlapping among the buffers) non_blocking copy may be automatically enabled for efficiency.
buffer_dim: the spatial dimension along which the buffers are created.
0 indicates the first spatial dimension. Default is -1, the last spatial dimension.
args: optional args to be passed to ``predictor``.
kwargs: optional keyword args to be passed to ``predictor``.
Note:
- input must be channel-first and have a batch dim, supports N-D sliding window.
"""
if gradient_sample_aggregation_fn_kwargs is None:
gradient_sample_aggregation_fn_kwargs = {}
if isinstance(class_for_saliency, int):
class_for_saliency = [class_for_saliency]
if class_for_saliency:
# inputs.requires_grad = True
num_classes_for_saliency = len(class_for_saliency)
buffered = buffer_steps is not None and buffer_steps > 0
num_spatial_dims = len(inputs.shape) - 2
if buffered:
if buffer_dim < -num_spatial_dims or buffer_dim > num_spatial_dims:
raise ValueError(
f"buffer_dim must be in [{-num_spatial_dims}, {num_spatial_dims}], got {buffer_dim}."
)
if buffer_dim < 0:
buffer_dim += num_spatial_dims
overlap = ensure_tuple_rep(overlap, num_spatial_dims)
for o in overlap:
if o < 0 or o >= 1:
raise ValueError(f"overlap must be >= 0 and < 1, got {overlap}.")
compute_dtype = inputs.dtype
# determine image spatial size and batch size
# Note: all input images must have the same image size and batch size
batch_size, _, *image_size_ = inputs.shape
device = device or inputs.device
sw_device = sw_device or inputs.device
temp_meta = None
if isinstance(inputs, MetaTensor):
temp_meta = MetaTensor([]).copy_meta_from(inputs, copy_attr=False)
inputs = convert_data_type(inputs, torch.Tensor, wrap_sequence=True)[0]
roi_size = fall_back_tuple(roi_size, image_size_)
# in case that image size is smaller than roi size
image_size = tuple(
max(image_size_[i], roi_size[i]) for i in range(num_spatial_dims)
)
pad_size = []
for k in range(len(inputs.shape) - 1, 1, -1):
diff = max(roi_size[k - 2] - inputs.shape[k], 0)
half = diff // 2
pad_size.extend([half, diff - half])
if any(pad_size):
inputs = F.pad(
inputs,
pad=pad_size,
mode=look_up_option(padding_mode, PytorchPadMode),
value=cval,
)
# Store all slices
scan_interval = _get_scan_interval(image_size, roi_size, num_spatial_dims, overlap)
slices = dense_patch_slices(
image_size, roi_size, scan_interval, return_slice=not buffered
)
num_win = len(slices) # number of windows per image
total_slices = num_win * batch_size # total number of windows
windows_range: Iterable
if not buffered:
non_blocking = False
windows_range = range(0, total_slices, sw_batch_size)
else:
slices, n_per_batch, b_slices, windows_range = _create_buffered_slices(
slices, batch_size, sw_batch_size, buffer_dim, buffer_steps
)
non_blocking, _ss = torch.cuda.is_available(), -1
for x in b_slices[:n_per_batch]:
if x[1] < _ss: # detect overlapping slices
non_blocking = False
break
_ss = x[2]
# Create window-level importance map
valid_patch_size = get_valid_patch_size(image_size, roi_size)
if valid_patch_size == roi_size and (roi_weight_map is not None):
importance_map_ = roi_weight_map
else:
try:
valid_p_size = ensure_tuple(valid_patch_size)
importance_map_ = compute_importance_map(
valid_p_size,
mode=mode,
sigma_scale=sigma_scale,
device=sw_device,
dtype=compute_dtype,
)
if len(importance_map_.shape) == num_spatial_dims and not process_fn:
importance_map_ = importance_map_[
None, None
] # adds batch, channel dimensions
except Exception as e:
raise RuntimeError(
f"patch size {valid_p_size}, mode={mode}, sigma_scale={sigma_scale}, device={device}\n"
"Seems to be OOM. Please try smaller patch size or mode='constant' instead of mode='gaussian'."
) from e
importance_map_ = convert_data_type(
importance_map_, torch.Tensor, device=sw_device, dtype=compute_dtype
)[0]
# stores output and count map
output_image_list, count_map_list, sw_device_buffer, b_s, b_i = [], [], [], 0, 0 # type: ignore
# for each patch
if class_for_saliency:
grad = torch.stack(
[
torch.zeros_like(inputs, device=sw_device)
for _ in range(num_classes_for_saliency)
],
)
for slice_g in tqdm(windows_range) if progress else windows_range:
slice_range = range(
slice_g,
min(
slice_g + sw_batch_size,
b_slices[b_s][0] if buffered else total_slices,
),
)
unravel_slice = [
[slice(idx // num_win, idx // num_win + 1), slice(None)]
+ list(slices[idx % num_win])
for idx in slice_range
]
if sw_batch_size > 1:
win_data = torch.cat([inputs[win_slice] for win_slice in unravel_slice]).to(
sw_device
)
if preds_for_saliency is not None:
pred_for_saliency = torch.cat(
[preds_for_saliency[win_slice] for win_slice in unravel_slice]
).to(sw_device)
elif mask_for_aggregation is not None:
cur_mask_for_aggregation = torch.cat(
[
mask_for_aggregation.unsqueeze(1)[win_slice]
for win_slice in unravel_slice
]
).to(sw_device)
else:
win_data = inputs[unravel_slice[0]].to(sw_device)
if preds_for_saliency is not None:
pred_for_saliency = preds_for_saliency[unravel_slice[0]].to(sw_device)
elif mask_for_aggregation is not None:
cur_mask_for_aggregation = mask_for_aggregation.unsqueeze(1)[
unravel_slice[0]
].to(sw_device)
if class_for_saliency:
win_data.requires_grad = True
seg_prob_out = predictor(win_data, *args, **kwargs) # batched patch
if class_for_saliency:
preds = (
torch.argmax(seg_prob_out, dim=1)
if preds_for_saliency is None
else pred_for_saliency.argmax(dim=1)
)
for i in range(num_classes_for_saliency):
if mask_for_aggregation is not None:
cur_preds_mask = cur_mask_for_aggregation
else:
cur_preds_mask = preds == class_for_saliency[i]
if cur_preds_mask.sum() == 0:
if i == num_classes_for_saliency - 1:
torch.autograd.grad(seg_prob_out.flatten()[0], win_data)
continue
if gradient_sample_aggregation_fn is not None:
tmp_grad = create_gradient_samples(
win_data,
cur_preds_mask,
seg_prob_out,
class_for_saliency[i],
num_gradient_samples=num_gradient_samples,
aggregation_fn=aggregation_fn,
gradient_sample_aggregation_fn=gradient_sample_aggregation_fn,
gradient_sample_aggregation_fn_kwargs=gradient_sample_aggregation_fn_kwargs,
retain_graph=(i < num_classes_for_saliency - 1),
sampling_mode=gradient_sampling_mode,
progress=True,
)
else:
tmp_grad = torch.autograd.grad(
seg_prob_out[: class_for_saliency[i]],
win_data,
grad_outputs=aggregation_fn(
seg_prob_out[: class_for_saliency[i]],
cur_preds_mask,
class_for_saliency[i],
),
retain_graph=(i < num_classes_for_saliency - 1),
)[0]
for j, win_slice in enumerate(unravel_slice):
# print(j, tmp_grad.shape)
grad[i][win_slice] += tmp_grad[j : j + 1].to(grad[i].device)
win_data.requires_grad = False
# convert seg_prob_out to tuple seg_tuple, this does not allocate new memory.
dict_keys, seg_tuple = _flatten_struct(seg_prob_out)
if process_fn:
seg_tuple, w_t = process_fn(seg_tuple, win_data, importance_map_)
else:
w_t = importance_map_
if len(w_t.shape) == num_spatial_dims:
w_t = w_t[None, None]
w_t = w_t.to(dtype=compute_dtype, device=sw_device)
if buffered:
c_start, c_end = b_slices[b_s][1:]
if not sw_device_buffer:
k = seg_tuple[0].shape[1] # len(seg_tuple) > 1 is currently ignored
sp_size = list(image_size)
sp_size[buffer_dim] = c_end - c_start
sw_device_buffer = [
torch.zeros(
size=[1, k, *sp_size],
dtype=compute_dtype,
device=sw_device,
)
]
for p, s in zip(seg_tuple[0], unravel_slice):
offset = s[buffer_dim + 2].start - c_start
s[buffer_dim + 2] = slice(offset, offset + roi_size[buffer_dim])
s[0] = slice(0, 1)
sw_device_buffer[0][s] += p * w_t
b_i += len(unravel_slice)
if b_i < b_slices[b_s][0]:
continue
else:
sw_device_buffer = list(seg_tuple)
for ss in range(len(sw_device_buffer)):
b_shape = sw_device_buffer[ss].shape
seg_chns, seg_shape = b_shape[1], b_shape[2:]
z_scale = None
if not buffered and seg_shape != roi_size:
z_scale = [
out_w_i / float(in_w_i)
for out_w_i, in_w_i in zip(seg_shape, roi_size)
]
w_t = F.interpolate(w_t, seg_shape, mode=_nearest_mode)
if len(output_image_list) <= ss:
output_shape = [batch_size, seg_chns]
output_shape += (
[int(_i * _z) for _i, _z in zip(image_size, z_scale)]
if z_scale
else list(image_size)
)
# allocate memory to store the full output and the count for overlapping parts
new_tensor: Callable = torch.empty if non_blocking else torch.zeros # type: ignore
output_image_list.append(
new_tensor(output_shape, dtype=compute_dtype, device=device)
)
count_map_list.append(
torch.zeros(
[1, 1] + output_shape[2:],
dtype=compute_dtype,
device=device,
)
)
w_t_ = w_t.to(device)
for __s in slices:
if z_scale is not None:
__s = tuple(
slice(int(_si.start * z_s), int(_si.stop * z_s))
for _si, z_s in zip(__s, z_scale)
)
count_map_list[-1][(slice(None), slice(None), *__s)] += w_t_
if buffered:
o_slice = [slice(None)] * len(inputs.shape)
o_slice[buffer_dim + 2] = slice(c_start, c_end)
img_b = b_s // n_per_batch # image batch index
o_slice[0] = slice(img_b, img_b + 1)
if non_blocking:
output_image_list[0][o_slice].copy_(
sw_device_buffer[0], non_blocking=non_blocking
)
else:
output_image_list[0][o_slice] += sw_device_buffer[0].to(
device=device
)
else:
sw_device_buffer[ss] *= w_t
sw_device_buffer[ss] = sw_device_buffer[ss].to(device)
_compute_coords(
unravel_slice,
z_scale,
output_image_list[ss],
sw_device_buffer[ss],
)
sw_device_buffer = []
if buffered:
b_s += 1
if non_blocking:
torch.cuda.current_stream().synchronize()
# account for any overlapping sections
for ss in range(len(output_image_list)):
output_image_list[ss] /= count_map_list.pop(0)
# remove padding if image_size smaller than roi_size
if any(pad_size):
for ss, output_i in enumerate(output_image_list):
zoom_scale = [
_shape_d / _roi_size_d
for _shape_d, _roi_size_d in zip(output_i.shape[2:], roi_size)
]
final_slicing: list[slice] = []
for sp in range(num_spatial_dims):
si = num_spatial_dims - sp - 1
slice_dim = slice(
int(round(pad_size[sp * 2] * zoom_scale[si])),
int(round((pad_size[sp * 2] + image_size_[si]) * zoom_scale[si])),
)
final_slicing.insert(0, slice_dim)
output_image_list[ss] = output_i[(slice(None), slice(None), *final_slicing)]
final_output = _pack_struct(output_image_list, dict_keys)
if temp_meta is not None:
final_output = convert_to_dst_type(final_output, temp_meta, device=device)[0]
else:
final_output = convert_to_dst_type(final_output, inputs, device=device)[0]
if class_for_saliency:
return final_output, grad
return final_output # type: ignore
def _create_buffered_slices(
slices, batch_size, sw_batch_size, buffer_dim, buffer_steps
):
"""rearrange slices for buffering"""
slices_np = np.asarray(slices)
slices_np = slices_np[np.argsort(slices_np[:, buffer_dim, 0], kind="mergesort")]
slices = [tuple(slice(c[0], c[1]) for c in i) for i in slices_np]
slices_np = slices_np[:, buffer_dim]
_, _, _b_lens = np.unique(slices_np[:, 0], return_counts=True, return_index=True)
b_ends = np.cumsum(_b_lens).tolist() # possible buffer flush boundaries
x = [0, *b_ends][:: min(len(b_ends), int(buffer_steps))]
if x[-1] < b_ends[-1]:
x.append(b_ends[-1])
n_per_batch = len(x) - 1
windows_range = [
range(b * x[-1] + x[i], b * x[-1] + x[i + 1], sw_batch_size)
for b in range(batch_size)
for i in range(n_per_batch)
]
b_slices = []
for _s, _r in enumerate(windows_range):
s_s = slices_np[windows_range[_s - 1].stop % len(slices) if _s > 0 else 0, 0]
s_e = slices_np[(_r.stop - 1) % len(slices), 1]
b_slices.append((_r.stop, s_s, s_e)) # buffer index, slice start, slice end
windows_range = itertools.chain(*windows_range) # type: ignore
return slices, n_per_batch, b_slices, windows_range
def _compute_coords(coords, z_scale, out, patch):
"""sliding window batch spatial scaling indexing for multi-resolution outputs."""
for original_idx, p in zip(coords, patch):
idx_zm = list(original_idx) # 4D for 2D image, 5D for 3D image
if z_scale:
for axis in range(2, len(idx_zm)):
idx_zm[axis] = slice(
int(original_idx[axis].start * z_scale[axis - 2]),
int(original_idx[axis].stop * z_scale[axis - 2]),
)
out[idx_zm] += p
def _get_scan_interval(
image_size: Sequence[int],
roi_size: Sequence[int],
num_spatial_dims: int,
overlap: Sequence[float],
) -> tuple[int, ...]:
"""
Compute scan interval according to the image size, roi size and overlap.
Scan interval will be `int((1 - overlap) * roi_size)`, if interval is 0,
use 1 instead to make sure sliding window works.
"""
if len(image_size) != num_spatial_dims:
raise ValueError(
f"len(image_size) {len(image_size)} different from spatial dims {num_spatial_dims}."
)
if len(roi_size) != num_spatial_dims:
raise ValueError(
f"len(roi_size) {len(roi_size)} different from spatial dims {num_spatial_dims}."
)
scan_interval = []
for i, o in zip(range(num_spatial_dims), overlap):
if roi_size[i] == image_size[i]:
scan_interval.append(int(roi_size[i]))
else:
interval = int(roi_size[i] * (1 - o))
scan_interval.append(interval if interval > 0 else 1)
return tuple(scan_interval)
def _flatten_struct(seg_out):
dict_keys = None
seg_probs: tuple[torch.Tensor, ...]
if isinstance(seg_out, torch.Tensor):
seg_probs = (seg_out,)
elif isinstance(seg_out, Mapping):
dict_keys = sorted(seg_out.keys()) # track predictor's output keys
seg_probs = tuple(seg_out[k] for k in dict_keys)
else:
seg_probs = ensure_tuple(seg_out)
return dict_keys, seg_probs
def _pack_struct(seg_out, dict_keys=None):
if dict_keys is not None:
return dict(zip(dict_keys, seg_out))
if isinstance(seg_out, (list, tuple)) and len(seg_out) == 1:
return seg_out[0]
return ensure_tuple(seg_out)