This repository has been archived by the owner on Mar 6, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrivial_valuation.py
458 lines (335 loc) · 13.4 KB
/
trivial_valuation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# -*- coding: utf-8 -*-
r"""
Trivial valuations
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialValuation(QQ); v
Trivial valuation on Rational Field
sage: v(1)
0
.. NOTE:
Note that the tests in this module do not create instances of valuations
directly since this gives the wrong inheritance structure on the resulting
objects::
sage: H = DiscretePseudoValuationSpace(QQ)
sage: v = TrivialDiscretePseudoValuation(H)
sage: v._test_category()
Traceback (most recent call last):
...
AssertionError: False is not true
Instead, the valuations need to be created through the
``__make_element_class__`` of the containing space::
sage: v = H.__make_element_class__(TrivialDiscretePseudoValuation)(H)
sage: v._test_category()
The factories ``TrivialValuation`` and ``TrivialPseudoValuation`` provide the
right inheritance structure::
sage: v = TrivialPseudoValuation(QQ)
sage: v._test_category()
AUTHORS:
- Julian Rüth (2016-10-14): initial version
"""
#*****************************************************************************
# Copyright (C) 2016 Julian Rüth <[email protected]>
#
# Distributed under the terms of the GNU General Public License (GPL)
# as published by the Free Software Foundation; either version 2 of
# the License, or (at your option) any later version.
# http://www.gnu.org/licenses/
#*****************************************************************************
from valuation import DiscretePseudoValuation, DiscreteValuation, InfiniteDiscretePseudoValuation
from valuation_space import DiscretePseudoValuationSpace
from sage.structure.factory import UniqueFactory
class TrivialValuationFactory(UniqueFactory):
r"""
Create a trivial valuation on ``domain``.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialValuation(QQ); v
Trivial valuation on Rational Field
sage: v(1)
0
"""
def __init__(self, clazz, parent, *args, **kwargs):
r"""
TESTS::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: from mac_lane.trivial_valuation import TrivialValuationFactory
sage: isinstance(TrivialValuation, TrivialValuationFactory)
True
"""
UniqueFactory.__init__(self, *args, **kwargs)
self._class = clazz
self._parent = parent
def create_key(self, domain):
r"""
Create a key that identifies this valuation.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: TrivialValuation(QQ) is TrivialValuation(QQ) # indirect doctest
True
"""
return domain,
def create_object(self, version, key, **extra_args):
r"""
Create a trivial valuation from ``key``.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: TrivialValuation(QQ) # indirect doctest
Trivial valuation on Rational Field
"""
domain, = key
parent = self._parent(domain)
return parent.__make_element_class__(self._class)(parent)
class TrivialDiscretePseudoValuation_base(DiscretePseudoValuation):
r"""
Base class for code shared by trivial valuations.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialPseudoValuation(ZZ); v
Trivial pseudo-valuation on Integer Ring
TESTS::
sage: TestSuite(v).run() # long time
"""
def uniformizer(self):
r"""
Return a uniformizing element for this valuation.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialPseudoValuation(ZZ)
sage: v.uniformizer()
Traceback (most recent call last):
...
ValueError: Trivial valuations do not define a uniformizing element
"""
raise ValueError("Trivial valuations do not define a uniformizing element")
def is_trivial(self):
r"""
Return whether this valuation is trivial.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialPseudoValuation(QQ)
sage: v.is_trivial()
True
"""
return True
def is_negative_pseudo_valuation(self):
r"""
Return whether this valuatios attains the value `-\infty`.
EXAMPLES:
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialPseudoValuation(QQ)
sage: v.is_negative_pseudo_valuation()
False
"""
return False
class TrivialDiscretePseudoValuation(TrivialDiscretePseudoValuation_base, InfiniteDiscretePseudoValuation):
r"""
The trivial pseudo-valuation that is `\infty` everywhere.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialPseudoValuation(QQ); v
Trivial pseudo-valuation on Rational Field
TESTS::
sage: TestSuite(v).run() # long time
"""
def __init__(self, parent):
r"""
TESTS::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialPseudoValuation(QQ)
sage: isinstance(v, TrivialDiscretePseudoValuation)
True
"""
TrivialDiscretePseudoValuation_base.__init__(self, parent)
InfiniteDiscretePseudoValuation.__init__(self, parent)
def _call_(self, x):
r"""
Evaluate this valuation at ``x``.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialPseudoValuation(QQ)
sage: v(0)
+Infinity
sage: v(1)
+Infinity
"""
from sage.rings.all import infinity
return infinity
def _repr_(self):
r"""
Return a printable representation of this valuation.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: TrivialPseudoValuation(QQ) # indirect doctest
Trivial pseudo-valuation on Rational Field
"""
return "Trivial pseudo-valuation on %r"%(self.domain(),)
def value_group(self):
r"""
Return the value group of this valuation.
EXAMPLES:
A trivial discrete pseudo-valuation has no value group::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialPseudoValuation(QQ)
sage: v.value_group()
Traceback (most recent call last):
...
ValueError: The trivial pseudo-valuation that is infinity everywhere does not have a value group.
"""
raise ValueError("The trivial pseudo-valuation that is infinity everywhere does not have a value group.")
def residue_ring(self):
r"""
Return the residue ring of this valuation.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: TrivialPseudoValuation(QQ).residue_ring()
Quotient of Rational Field by the ideal (1)
"""
return self.domain().quo(self.domain().one())
def reduce(self, x):
r"""
Reduce ``x`` modulo the positive elements of this valuation.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialPseudoValuation(QQ)
sage: v.reduce(1)
0
"""
self.domain().coerce(x)
return self.residue_ring().zero()
def lift(self, X):
r"""
Return a lift of ``X`` to the domain of this valuation.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialPseudoValuation(QQ)
sage: v.lift(v.residue_ring().zero())
0
"""
self.residue_ring().coerce(X) # ignore the output
return self.domain().zero()
def _ge_(self, other):
r"""
Return whether this valuation is bigger or equal than ``other``
everywhere.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialPseudoValuation(QQ)
sage: w = TrivialValuation(QQ)
sage: v >= w
True
"""
# the trivial discrete valuation is the biggest valuation
return True
class TrivialDiscreteValuation(TrivialDiscretePseudoValuation_base, DiscreteValuation):
r"""
The trivial valuation that is zero on non-zero elements.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialValuation(QQ); v
Trivial valuation on Rational Field
TESTS::
sage: TestSuite(v).run() # long time
"""
def __init__(self, parent):
r"""
TESTS::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialValuation(QQ)
sage: isinstance(v, TrivialDiscreteValuation)
True
"""
TrivialDiscretePseudoValuation_base.__init__(self, parent)
DiscreteValuation.__init__(self, parent)
def _call_(self, x):
r"""
Evaluate this valuation at ``x``.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialValuation(QQ)
sage: v(0)
+Infinity
sage: v(1)
0
"""
from sage.rings.all import infinity
return infinity if x == 0 else self.codomain().zero()
def _repr_(self):
r"""
Return a printable representation of this valuation.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: TrivialValuation(QQ) # indirect doctest
Trivial valuation on Rational Field
"""
return "Trivial valuation on %r"%(self.domain(),)
def value_group(self):
r"""
Return the value group of this valuation.
EXAMPLES:
A trivial discrete valuation has a trivial value group::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialValuation(QQ)
sage: v.value_group()
Trivial Additive Abelian Group
"""
from .value_group import DiscreteValueGroup
return DiscreteValueGroup(0)
def residue_ring(self):
r"""
Return the residue ring of this valuation.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: TrivialValuation(QQ).residue_ring()
Rational Field
"""
return self.domain()
def reduce(self, x):
r"""
Reduce ``x`` modulo the positive elements of this valuation.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialValuation(QQ)
sage: v.reduce(1)
1
"""
return self.domain().coerce(x)
def lift(self, X):
r"""
Return a lift of ``X`` to the domain of this valuation.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialValuation(QQ)
sage: v.lift(v.residue_ring().zero())
0
"""
return self.residue_ring().coerce(X)
def extensions(self, ring):
r"""
Return the unique extension of this valuation to ``ring``.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialValuation(ZZ)
sage: v.extensions(QQ)
[Trivial valuation on Rational Field]
"""
if self.domain().is_subring(ring):
return [TrivialValuation(ring)]
return super(DiscretePseudoValuation, self).extensions(ring)
def _ge_(self, other):
r"""
Return whether this valuation is bigger or equal than ``other``
everywhere.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: v = TrivialPseudoValuation(QQ)
sage: w = TrivialValuation(QQ)
sage: w >= v
False
"""
# the trivial discrete valuation is the smallest valuation
if self is other:
return True
return False
TrivialValuation = TrivialValuationFactory(TrivialDiscreteValuation, DiscretePseudoValuationSpace, "TrivialValuation")
TrivialPseudoValuation = TrivialValuationFactory(TrivialDiscretePseudoValuation, DiscretePseudoValuationSpace, "TrivialPseudoValuation")