This repository has been archived by the owner on Mar 6, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmapped_valuation.py
585 lines (449 loc) · 19.6 KB
/
mapped_valuation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
# -*- coding: utf-8 -*-
r"""
Valuations which are implemented through a map to another valuation.
EXAMPLES:
Extensions of valuations over finite field extensions `L=K[x]/(G)` are realized
through an infinite valuation on `K[x]` which maps `G` to infinity::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = FunctionFieldValuation(K, 0)
sage: w = v.extension(L); w
(x)-adic valuation
sage: w._base_valuation
[ Gauss valuation induced by (x)-adic valuation, v(y) = 1/2 , … ]
AUTHORS:
- Julian Rüth (2016-11-10): initial version
"""
#*****************************************************************************
# Copyright (C) 2016 Julian Rüth <[email protected]>
#
# Distributed under the terms of the GNU General Public License (GPL)
# as published by the Free Software Foundation; either version 2 of
# the License, or (at your option) any later version.
# http://www.gnu.org/licenses/
#*****************************************************************************
from valuation import DiscreteValuation, DiscretePseudoValuation
from sage.misc.abstract_method import abstract_method
class MappedValuation_base(DiscretePseudoValuation):
r"""
A valuation which is implemented through another proxy "base" valuation.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = FunctionFieldValuation(K, 0)
sage: w = v.extension(L); w
(x)-adic valuation
TESTS::
sage: TestSuite(w).run() # long time
"""
def __init__(self, parent, base_valuation):
r"""
TESTS::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x^2 + 1)
sage: v = FunctionFieldValuation(K, 0)
sage: w = v.extension(L); w
(x)-adic valuation
sage: isinstance(w, MappedValuation_base)
True
"""
DiscretePseudoValuation.__init__(self, parent)
self._base_valuation = base_valuation
@abstract_method
def _repr_(self):
r"""
Return a printable representation of this valuation.
Subclasses must override this method.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = pAdicValuation(QQ, 2)
sage: v.extension(L) # indirect doctest
2-adic valuation
"""
def residue_ring(self):
r"""
Return the residue field of this valuation.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = pAdicValuation(QQ, 2)
sage: v.extension(L).residue_ring()
Finite Field of size 2
"""
return self._base_valuation.residue_ring()
def uniformizer(self):
r"""
Return a uniformizing element of this valuation.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = pAdicValuation(QQ, 2)
sage: v.extension(L).uniformizer()
t + 1
"""
return self._from_base_domain(self._base_valuation.uniformizer())
def _to_base_domain(self, f):
r"""
Return ``f`` as an element in the domain of ``_base_valuation``.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = FunctionFieldValuation(K, 0)
sage: w = v.extensions(L)[0]
sage: w._to_base_domain(y).parent()
Univariate Polynomial Ring in y over Rational function field in x over Rational Field
"""
return self._base_valuation.domain().coerce(f)
def _from_base_domain(self, f):
r"""
Return ``f`` as an element in the domain of this valuation.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = FunctionFieldValuation(K, 0)
sage: w = v.extension(L)
sage: w._from_base_domain(w._base_valuation.domain().gen()).parent()
Function field in y defined by y^2 - x
"""
return self.domain().coerce(f)
def _call_(self, f):
r"""
Evaluate this valuation at ``f``.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = FunctionFieldValuation(K, 0)
sage: w = v.extension(L)
sage: w(y) # indirect doctest
1/2
"""
return self._base_valuation(self._to_base_domain(f))
def reduce(self, f):
r"""
Return the reduction of ``f`` in the :meth:`residue_field` of this valuation.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - (x - 2))
sage: v = FunctionFieldValuation(K, 0)
sage: w = v.extension(L)
sage: w.reduce(y)
u1
"""
return self._base_valuation.reduce(self._to_base_domain(f))
def lift(self, F):
r"""
Lift ``F`` from the :meth;`residue_field` of this valuation into its
domain.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = FunctionFieldValuation(K, 2)
sage: w = v.extension(L)
sage: w.lift(w.residue_field().gen())
y
"""
F = self.residue_ring().coerce(F)
F = self._to_base_residue_ring(F)
f = self._base_valuation.lift(F)
return self._from_base_domain(f)
def _to_base_residue_ring(self, F):
r"""
Return ``F``, an element of :meth:`residue_ring`, as an element of the
residue ring of the ``_base_valuation``.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = FunctionFieldValuation(K, 0)
sage: w = v.extensions(L)[0]
sage: w._to_base_residue_ring(1)
1
"""
return self._base_valuation.residue_ring().coerce(F)
def _from_base_residue_ring(self, F):
r"""
Return ``F``, an element of the residue ring of ``_base_valuation``, as
an element of this valuation's :meth:`residue_ring`.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = FunctionFieldValuation(K, 0)
sage: w = v.extensions(L)[0]
sage: w._from_base_residue_ring(1)
1
"""
return self.residue_ring().coerce(F)
def _test_to_from_base_domain(self, **options):
r"""
Check the correctness of :meth:`to_base_domain` and
:meth:`from_base_domain`.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = FunctionFieldValuation(K, 0)
sage: w = v.extensions(L)[0]
sage: w._test_to_from_base_domain()
"""
tester = self._tester(**options)
for x in tester.some_elements(self.domain().some_elements()):
tester.assertEqual(x, self._from_base_domain(self._to_base_domain(x)))
# note that the converse might not be true
class FiniteExtensionFromInfiniteValuation(MappedValuation_base, DiscreteValuation):
r"""
A valuation on a quotient of the form `L=K[x]/(G)` with an irreducible `G`
which is internally backed by a pseudo-valuations on `K[x]` which sends `G`
to infinity.
INPUT:
- ``parent`` -- the containing valuation space (usually the space of
discrete valuations on `L`)
- ``base_valuation`` -- an infinite valuation on `K[x]` which takes `G` to
infinity.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = FunctionFieldValuation(K, 0)
sage: w = v.extension(L); w
(x)-adic valuation
"""
def __init__(self, parent, base_valuation):
r"""
TESTS::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = FunctionFieldValuation(K, 0)
sage: w = v.extension(L)
sage: isinstance(w, FiniteExtensionFromInfiniteValuation)
True
sage: TestSuite(w).run() # long time
"""
MappedValuation_base.__init__(self, parent, base_valuation)
DiscreteValuation.__init__(self, parent)
def _eq_(self, other):
r"""
Return whether this valuation is indistinguishable from ``other``.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = pAdicValuation(QQ, 2)
sage: w = v.extension(L)
sage: ww = v.extension(L)
sage: w == ww # indirect doctest
True
"""
return isinstance(other, FiniteExtensionFromInfiniteValuation) and self._base_valuation == other._base_valuation
def restriction(self, ring):
r"""
Return the restriction of this valuation to ``ring``.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = pAdicValuation(QQ, 2)
sage: w = v.extension(L)
sage: w.restriction(K) is v
True
"""
if ring.is_subring(self._base_valuation.domain().base()):
return self._base_valuation.restriction(ring)
return super(FiniteExtensionFromInfiniteValuation, self).restriction(ring)
def _weakly_separating_element(self, other):
r"""
Return an element in the domain of this valuation which has
positive valuation with respect to this valuation and higher
valuation with respect to this valuation than with respect to
``other``.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = pAdicValuation(QQ, 2)
sage: w = v.extension(L)
sage: v = pAdicValuation(QQ, 5)
sage: u,uu = v.extensions(L)
sage: u.separating_element([w,uu]) # indirect doctest
1/20*t + 7/20
"""
if isinstance(other, FiniteExtensionFromInfiniteValuation):
return self.domain()(self._base_valuation._weakly_separating_element(other._base_valuation))
super(FiniteExtensionFromInfiniteValuation, self)._weakly_separating_element(other)
def _relative_size(self, x):
r"""
Return an estimate on the coefficient size of ``x``.
The number returned is an estimate on the factor between the number of
Bits used by ``x`` and the minimal number of bits used by an element
Congruent to ``x``.
This is used by :meth:`simplify` to decide whether simplification of
Coefficients is going to lead to a significant shrinking of the
Coefficients of ``x``.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = pAdicValuation(QQ, 2)
sage: w = v.extension(L)
sage: w._relative_size(1024*t + 1024)
11
"""
return self._base_valuation._relative_size(self._to_base_domain(x))
def simplify(self, x, error=None, force=False):
r"""
Return a simplified version of ``x``.
Produce an element which differs from ``x`` by an element of
valuation strictly greater than the valuation of ``x`` (or strictly
greater than ``error`` if set.)
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = pAdicValuation(QQ, 5)
sage: u,uu = v.extensions(L)
sage: f = 125*t + 1
sage: u.simplify(f, error=u(f), force=True)
1
"""
x = self.domain().coerce(x)
if error is None:
error = self.upper_bound(x)
return self._from_base_domain(self._base_valuation.simplify(self._to_base_domain(x), error, force=force))
def lower_bound(self, x):
r"""
Return an lower bound of this valuation at ``x``.
Use this method to get an approximation of the valuation of ``x``
when speed is more important than accuracy.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = pAdicValuation(QQ, 5)
sage: u,uu = v.extensions(L)
sage: u.lower_bound(t + 2)
0
sage: u(t + 2)
1
"""
x = self.domain().coerce(x)
return self._base_valuation.lower_bound(self._to_base_domain(x))
def upper_bound(self, x):
r"""
Return an upper bound of this valuation at ``x``.
Use this method to get an approximation of the valuation of ``x``
when speed is more important than accuracy.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = pAdicValuation(QQ, 5)
sage: u,uu = v.extensions(L)
sage: u.upper_bound(t + 2)
3
sage: u(t + 2)
1
"""
x = self.domain().coerce(x)
return self._base_valuation.upper_bound(self._to_base_domain(x))
class FiniteExtensionFromLimitValuation(FiniteExtensionFromInfiniteValuation):
r"""
An extension of a valuation on a finite field extensions `L=K[x]/(G)` which
is induced by an infinite limit valuation on `K[x]`.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = FunctionFieldValuation(K, 1)
sage: w = v.extensions(L); w
[[ (x - 1)-adic valuation, v(y - 1) = 1 ]-adic valuation,
[ (x - 1)-adic valuation, v(y + 1) = 1 ]-adic valuation]
TESTS::
sage: TestSuite(w[0]).run() # long time
sage: TestSuite(w[1]).run() # long time
"""
def __init__(self, parent, approximant, G, approximants):
r"""
EXAMPLES:
Note that this implementation is also used when the underlying limit is
only taken over a finite sequence of valuations::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = FunctionFieldValuation(K, 2)
sage: w = v.extension(L); w
(x - 2)-adic valuation
sage: isinstance(w, FiniteExtensionFromLimitValuation)
True
"""
# keep track of all extensions to this field extension so we can print
# this valuation nicely, dropping any unnecessary information
self._approximants = approximants
from valuation_space import DiscretePseudoValuationSpace
from limit_valuation import LimitValuation
limit = LimitValuation(approximant, G)
FiniteExtensionFromInfiniteValuation.__init__(self, parent, limit)
def _repr_(self):
"""
Return a printable representation of this valuation.
EXAMPLES::
sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
sage: pAdicValuation(GaussianIntegers().fraction_field(), 2) # indirect doctest
2-adic valuation
"""
from limit_valuation import MacLaneLimitValuation
if isinstance(self._base_valuation, MacLaneLimitValuation):
# print the minimal information that singles out this valuation from all approximants
assert(self._base_valuation._initial_approximation in self._approximants)
approximants = [v.augmentation_chain()[::-1] for v in self._approximants]
augmentations = self._base_valuation._initial_approximation.augmentation_chain()[::-1]
unique_approximant = None
for l in range(len(augmentations)):
if len([a for a in approximants if a[:l+1] == augmentations[:l+1]]) == 1:
unique_approximant = augmentations[:l+1]
break
assert(unique_approximant is not None)
if unique_approximant[0].is_gauss_valuation():
unique_approximant[0] = unique_approximant[0].restriction(unique_approximant[0].domain().base_ring())
if len(unique_approximant) == 1:
return repr(unique_approximant[0])
from augmented_valuation import AugmentedValuation_base
return "[ %s ]-adic valuation"%(", ".join("v(%r) = %r"%(v._phi, v._mu) if (isinstance(v, AugmentedValuation_base) and v.domain() == self._base_valuation.domain()) else repr(v) for v in unique_approximant))
return "%s-adic valuation"%(self._base_valuation)