cd experiments/poc/
-
Generate the proof-of-concept dataset (2D and 3D)
python generate_poc_data.py
-
Train the 2D UNet on 2D dataset
python train_2d.py
-
Locate where the 2D model checkpoint is saved (in
./tmp/noise0.5/shape/.../model.dat
and then copy the path toPOCVoxelEnv.shape_checkpoint
inpoc_config.py
-
Train the 3D UNet on 3D volumesset, with or without 2D pretraining
python train_3d.py
The default 3D model is ACSUNet p.. To change ACSConv to Conv3d / Conv2_5d or random initialization, modify POCVoxelConfig.conv
and POCVoxelConfig.pretrained
in poc_config.py
.