-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDatasetProcess.py
138 lines (125 loc) · 4.17 KB
/
DatasetProcess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#import time
#import numpy as np
#import pickle as pk
#import pandas as pd
#import threading
#import Utils as ut
#total_record_usefuldata = 12
#SID_local = 1
#timestamp_local = 0
#avg_speed_local = total_record_usefuldata - 1
#avg_occupancy_local = total_record_usefuldata - 2
#total_flow_local = total_record_usefuldata - 3
#time_str = r'2012_01_01'
#str_adj_mx = r'F:\PyFile\adj_mx.pkl'
#def SpiltData2List(line:str):
# line = line.split(',',total_record_usefuldata)
# timeArray = time.strptime(line[timestamp_local], "%m/%d/%Y %H:%M:%S")
# if line[total_flow_local] == '':
# t_0 = 0
# else:
# t_0 = int(line[total_flow_local])
# if line[avg_occupancy_local] == '':
# t_1 = 0
# else:
# t_1 = float(line[avg_occupancy_local])
# if line[avg_speed_local] == '':
# t_2 = 0
# else:
# t_2 = float(line[avg_speed_local])
# return [int(line[SID_local]),time.mktime(timeArray),[t_0,t_1,t_2]]
#def addtwodimdict(thedict:dict, key_a, key_b, val):
# if key_a in thedict:
# thedict[key_a].setdefault(key_b,val)
# else:
# thedict.setdefault(key_a,{key_b,val})
#f_path = r'E:\DCRNN-master\DCRNN-master\data\sensor_graph\adj_mx.pkl'
#with open (f_path, 'rb') as f: #打开文件
# aa = pk.load(f,encoding='latin1')
# print(aa)
#array_row = list()
#array_col = list()
#array_data = list()
#f_path_s = r'E:\PeMSD7-2012\原始数据包'
#f_name_sel = r'\d07_text_station_5min_'
#f_exname = '.txt'
#f_path = f_path_s + f_name_sel + time_str + f_exname
#f = open(f_path)
#try:
# content = f.read()
#finally:
# f.close()
#lines = content.split('\n')
#lines = [inf for inf in lines if inf != '']
#for line in lines:
# data = ut.SpiltData2List(line)
# if data[1] not in array_row:
# array_row.append(data[1])
# if data[0] not in array_col:
# array_col.append(data[0])
# array_data.append(data)
#np.save('F:\PyFile\data_row.npy', array_row)
#np.save('F:\PyFile\data_col.npy', array_col)
#np.save('F:\PyFile\data_data.npy', array_data)
#array_row = np.load('F:\PyFile\data_row.npy',allow_pickle=True)
#array_col = np.load('F:\PyFile\data_col.npy', allow_pickle=True)
#array_data = np.load('F:\PyFile\data_data.npy', allow_pickle=True)
#array_thread = list()
#df = pd.DataFrame(data=None,index=array_row,columns=array_col)
#def thread_fun(param:list):
# df.loc[param[1],param[0]] = param[2]
#for item in array_data:
# thread = threading.Thread(target=thread_fun,args=(item,))
# array_thread.append(thread)
# thread.start()
#for t in array_thread:
# t.join()
#df.to_pickle(r'E:\PeMSD7-2012\原始数据包' + f_name_sel + time_str + '.pkl')
#print(df)
#array_col = np.load('F:\PyFile\data_col.npy', allow_pickle=True)
#adj_aa_df = pd.DataFrame(data=[[0] * (len(array_col) )] * (len(array_col)
#),index=array_col,columns=array_col,dtype=float)
#adj_aa_df.to_pickle(str_adj_mx)
#adj_aa_df = pd.read_pickle(str_adj_mx)
import torch
from torch import nn
in_features = 3
out_features = 3
N = 6
with torch.no_grad():
weight = nn.Parameter(torch.ones(size=(N, N)))
alpha = 0.2
leakyrelu = nn.LeakyReLU(alpha)
elu = torch.nn.ELU()
W = nn.Parameter(torch.zeros(size=(in_features, out_features)))
nn.init.xavier_uniform_(W.data, gain=1.414)
A = nn.Parameter(torch.zeros(size=(2 * out_features, 1)))
nn.init.xavier_uniform_(A.data, gain=1.414)
inp = nn.Parameter(torch.zeros(size=(N, in_features)))
nn.init.xavier_uniform_(inp.data, gain=1.414)
def Function(inp,weight):
h = torch.mm(inp,W)
weight.requires_grad = False
a_input = torch.cat([h.repeat(1, N).view(N * N, -1), h.repeat(N, 1)],dim=1).view(N, N, 2 * out_features)
e = leakyrelu(torch.matmul(a_input, A).squeeze(2))
e_norm_2 = torch.norm(e,p=2,dim=1,keepdim=True)
attention_norm_2ed = torch.div(torch.mul(e,weight),torch.where(e_norm_2 == 0,torch.ones_like(e_norm_2),e_norm_2).repeat(1, N).view(N , N))
h_prime = elu(torch.matmul(attention_norm_2ed, h))
return h_prime,attention_norm_2ed
print(weight)
nodes_h,weight = Function(inp,weight)
print(W)
U,S,V = torch.svd(W)
S = torch.diag(S)
#print(U)
#print(S)
#print(V)
W = torch.mm(U,S)
#W.no_grad()
#print(W.numpy())
#print(nodes_h)
print(weight.requires_grad)
#print(h)
#print(e)
#print(e_norm_2)
#print(n)