-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
84 lines (61 loc) · 2.36 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import argparse
import os
import importlib
def check_plugins(loaded_plugins):
print("Loaded plugins:")
for plugin in loaded_plugins:
print(f"- {plugin}")
def train_model(dataset_name, plugins):
dataset = {'train': []} # Placeholder for training data
model = "FlowModel"
for plugin in plugins:
if hasattr(plugin, 'modify_model'):
model = plugin.modify_model(model)
for plugin in plugins:
if hasattr(plugin, 'on_train_start'):
plugin.on_train_start()
print(f"Training started on dataset: {dataset_name}")
for plugin in plugins:
if hasattr(plugin, 'on_train_end'):
plugin.on_train_end()
print("Training finished.")
def load_plugins():
plugins_dir = './plugins'
plugins = []
if not os.path.exists(plugins_dir):
os.makedirs(plugins_dir)
print(f"Plugins directory created at {plugins_dir}. Add your plugins there!")
for filename in os.listdir(plugins_dir):
if filename.endswith('.py') and filename != '__init__.py':
plugin_name = filename[:-3]
try:
plugin_module = importlib.import_module(f'plugins.{plugin_name}')
plugin_class = getattr(plugin_module, plugin_name.title().replace('_', ''), None)
if plugin_class:
plugins.append(plugin_class())
print(f"Plugin {plugin_name} loaded.")
else:
print(f"No class found in plugin {plugin_name}.")
except Exception as e:
print(f"Failed to load plugin {plugin_name}: {e}")
return plugins
def predict_model(plugins):
print("Prediction started.")
for plugin in plugins:
if hasattr(plugin, 'on_predict'):
plugin.on_predict()
print("Prediction finished.")
def main():
parser = argparse.ArgumentParser(description="FlowModel CLI")
parser.add_argument('command', choices=['train', 'predict', 'check_plugins'], help="Command to run")
args = parser.parse_args()
plugins, loaded_plugins = load_plugins()
if args.command == 'train':
plugins = load_plugins()
train_model("mnist", plugins)
elif args.command == 'predict':
predict_model(plugins)
elif args.command == 'check_plugins':
check_plugins(loaded_plugins)
if __name__ == "__main__":
main()