Skip to content

Latest commit

 

History

History
64 lines (57 loc) · 9 KB

README.md

File metadata and controls

64 lines (57 loc) · 9 KB

Diminuindo o Churn Rate de uma empresa de telecomunicações utilizando Machine Learning

Projeto completo de Churn Prediction para a redução de cancelamentos de contrato em uma empresa de telecomunicações, utilizando técnicas de Análise de Dados, Ciência de Dados e diferentes modelos de Machine Learning

🔗 Link para o notebook via nbviewer:

Churn Prediction by Luis Guimarães - Jupyter Notebook Viewer

📑 Bibliotecas e pacotes utilizados:

  • Bibliotecas

    • pandas
    • seaborn
    • matplotlib
    • numpy
    • Dython
    • sklearn
    • imblearn
    • lightgbm
    • xgboost
    • shap
  • Pacotes

    • associations (dython.nominal)
    • mutual_info_classif (sklearn.feature_selection)
    • LabelEncoder (sklearn.preprocessing)
    • RandomUnderSampler (imblearn.under_sampling)
    • LabelEncoder (sklearn.preprocessing)
    • MinMaxScaler (sklearn.preprocessing)
    • train_test_split (sklearn.model_selection)
    • LGBMClassifier (lightgbm)
    • XGBClassifier (xgboost)
    • cross_val_score (sklearn.model_selection)
    • LogisticRegression (sklearn.linear_model)
    • RandomForestClassifier (sklearn.ensemble)
    • DecisionTreeClassifier (sklearn.tree)
    • SGDClassifier (sklearn.linear_model)
    • KNeighborsClassifier(sklearn.neighbors)
    • GradientBoostingClassifier(sklearn.ensemble)
    • LinearSVC (sklearn.svm)
    • GridSearchCV (sklearn.model_selection)
    • RandomizedSearchCV (sklearn.model_selection)
    • cross_val_predict (sklearn.model_selection)
    • confusion_matrix (sklearn.metrics)
    • classification_report (sklearn.metrics)
    • roc_auc_score (sklearn.metrics)
    • Explainer (shap)

📜 Fontes e referências: