-
authors: Onur Varol, Emilio Ferrara, Clayton A. Davis, Filippo Menczer, Alessandro Flammini
-
link: https://aaai.org/ocs/index.php/ICWSM/ICWSM17/paper/view/15587/14817
-
file structure:
├── cresci-2015
│ └── train.py # train model on cresci-2015
├── preprocess.py # convert raw dataset into standard format
├── sta.py
├── Twibot-20
│ └── train.py # train model on Twibot-20
└── Twibot-22
└── train.py # train model on Twibot-22
- implement details: “Sentiment”, “Timing” features are discarded since required information is not included in datasets.
-
specify the dataset b y running
dataset=Twibot-22
(Twibot-22 for example) ; -
convert the raw dataset into standard format by running
python preprocess.py --datasets ${dataset}
this command will create related features in corresponding directory.
-
train random forest model by running:
cd ${dataset} && python train.py > result.txt
the final result will be saved into result.txt
random seed: 100, 200, 300, 400, 500
dataset | acc | precison | recall | f1 | |
---|---|---|---|---|---|
Cresci-2015 | mean | 0.9316 | 0.9222 | 0.9740 | 0.9473 |
Cresci-2015 | std | 0.0054 | 0.0066 | 0.0090 | 0.0042 |
Twibot-20 | mean | 0.7874 | 0.7804 | 0.8437 | 0.8108 |
Twibot-20 | std | 0.0055 | 0.0061 | 0.0067 | 0.0048 |
Twibot-22 | mean | 0.7392 | 0.7574 | 0.1683 | 0.2754 |
Twibot-22 | std | 0.0002 | 0.0031 | 0.0021 | 0.0026 |
baseline | acc on Twibot-22 | f1 on Twibot-22 | type | tags |
---|---|---|---|---|
Varol et al. | 0.7392 | 0.2754 | P T | random forest |