Skip to content

Latest commit

 

History

History
 
 

T5

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

T5


├── cresci-2015
│   ├── concat.ipynb
│   ├── train.py
│   ├── des_embedding.py
│   ├── tweets_tensor.py
│   └── user_tweets_dict.py
├── cresci-2017
│   ├── concat.ipynb
│   ├── train.py
│   ├── des_embedding.py
│   ├── tweets_tensor.py
│   └── user_tweets_dict.py
├── Twibot-20
│   ├── id_list.py
│   ├── des_embedding.py
│   ├── label_list.py
│   ├── train.py
│   ├── tweets_tensor.py
│   └── user_tweets_dict.py
└── Twibot-22
    ├── concat.ipynb
    ├── des_embedding.py
    ├── id_list.py
    ├── label_list.py
    ├── train.py
    ├── twi0.py
    ├── twi1.py
    ├── twi10.py
    ├── twi2.py
    ├── twi3.py
    ├── twi4.py
    ├── twi5.py
    ├── twi6.py
    ├── twi7.py
    ├── twi8.py
    ├── twi9.py
    └── user_tweets_dict.py
  • implement details: For Twibot-22, users' tweet counts could be cut to 20 for time consumption issue.

How to reproduce:

  1. run id_list.py first to generate id_list.json and run twi0-10.py for Twibot-22 and tweets_tensor.py for others and run des_embedding.py to generate tweets' and des' embeddings. run label_list.py to get label.

  2. finetune T5 by running train.py(need to change the path of data in the code)

Result:

dataset acc precison recall f1
Cresci-2015 mean 0.9230 0.9104 0.8771 0.8935
Cresci-2015 std 0.0016 0.0029 0.0066 0.0026
Cresci-2017 mean 0.9637 0.9448 0.9026 0.9232
Cresci-2017 std 0.0006 0.0065 0.0054 0.0011
Twibot-20 mean 0.7357 0.7219 0.6905 0.7057
Twibot-20 std 0.0019 0.0084 0.0146 0.0039
Twibot-22 mean 0.7205 0.6327 0.1209 0.2027
Twibot-22 std 0.0018 0.0071 0.0143 0.0203
baseline acc on Twibot-22 f1 on Twibot-22 type tags
T5 0.7205 0.2027 T T5