Skip to content

Latest commit

 

History

History
 
 

Kudugunta

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Deep neural networks for bot detection


└── train.py # train model on every dataset
  • implement details: “Favorite count” is discarded since required information is not included in datasets.

How to reproduce:

  1. train random forest model by and specify the dataset by running:

    python train.py --datasets ${dataset} > result.txt

    the final result will be saved into result.txt

Result:

random seed: 100, 200, 300, 400, 500

dataset acc precison recall f1
cresci-2015 mean 0.7533 1.0000 0.6095 0.7574
Cresci-2015 std 0.0013 0.0000 0.0021 0.0016
Twibot-20 mean 0.5959 0.8040 0.3347 0.4726
Twibot-20 std 0.0065 0.0060 0.0130 0.0135
Twibot-22 mean 0.6587 0.4431 0.6198 0.5167
Twibot-22 std 0.0000 0.0000 0.0000 0.0000
cresci-2017 mean 0.8832 0.9853 0.8588 0.9174
cresci-2017 std 0.0021 0.0019 0.0037 0.0017
cr-2019 mean 0.6294 0.6609 0.5067 0.4922
cr-2019 std 0.0081 0.0235 0.0121 0.0128
bf-2019 mean 0.7396 0.5667 0.4533 0.4961
bf-2019 std 0.0470 0.1077 0.0869 0.0820
cs-2018 mean 0.7753 0.5487 0.4754 0.5094
cs-2018 std 0.0014 0.0047 0.0060 0.0038
midterm-2018 mean 0.9109 0.9906 0.9024 0.9445
midterm-2018 std 0.0049 0.0016 0.0066 0.0032
gilani-2017 mean 0.7004 0.8544 0.3514 0.4975
gilani-2017 std 0.0105 0.0242 0.0170 0.0210
baseline acc on Twibot-22 f1 on Twibot-22 type tags
Kudugunta et al. 0.6587 0.5167 F SMOTENN, random forest