-
authors: Thomas Magelinski, David Beskow, Kathleen M. Carley
-
file structure:
├── model.py # define pytorch model and histogram operator
├── preprocess.py # preprocess the raw data and build graph
└── train.py # training
- implement details: The embeddings are adapted from binchi zhang. The histogram operator are our own implementation since the official one is not provided.
-
train model by running:
python train.py with params.dataset=${dataset} >> ${dataset}/result.txt
the final result will be saved into result.txt
random seed: 100, 200, 300, 400, 500
dataset | acc | precison | recall | f1 | |
---|---|---|---|---|---|
cresci-2015 | mean | 0.7738 | 0.7312 | 1.0000 | 0.8447 |
cresci-2015 | std | 0.002 | 0.001 | 0.0 | 0.0823 |
Twibot-20 | mean | 0.5133 | 0.5127 | 0.9905 | 0.6756 |
Twibot-20 | std | 0.003 | 0.002 | 0.002 | 0.003 |
baseline | acc on Twibot-22 | f1 on Twibot-22 | type | tags |
---|---|---|---|---|
GraphHist | / | / | F T G | random forest |