-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathdataset.py
217 lines (191 loc) · 6.84 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# MIT License
#
# Copyright (c) 2017 Luca Angioloni
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Labels distribution
# [2.46622e+05, 1.33650e+04, 2.77949e+05, 4.99050e+04, 2.32000e+02, 4.39649e+05, 1.06033e+05, 1.44579e+05]
# [1.92924541e-01, 1.04550141e-02, 2.17430656e-01, 3.90390931e-02, 1.81486216e-04, 3.43923419e-01, 8.29462410e-02, 1.13099550e-01]
import numpy as np
from sklearn.model_selection import train_test_split
import os
filtered = True
if filtered:
dataset_path = "dataset/cullpdb+profile_6133_filtered.npy"
else:
dataset_path = "dataset/cullpdb+profile_6133.npy"
cb513_path = "dataset/cb513+profile_split1.npy"
sequence_len = 700
total_features = 57
amino_acid_residues = 21
num_classes = 8
cnn_width = 17
##
## @brief Determines if filtered dataset is used.
##
## @return True if filtered, False otherwise.
##
def is_filtered():
return filtered
##
## @brief Gets the dataset in the original form from path.
##
## @param path The path
##
## @return The dataset, numpy array.
##
def get_dataset(path="dataset/cullpdb+profile_6133.npy"):
ds = np.load(path)
ds = np.reshape(ds, (ds.shape[0], sequence_len, total_features))
ret = np.zeros((ds.shape[0], ds.shape[1], amino_acid_residues + num_classes))
ret[:, :, 0:amino_acid_residues] = ds[:, :, 35:56]
ret[:, :, amino_acid_residues:] = ds[:, :, amino_acid_residues + 1:amino_acid_residues+ 1 + num_classes]
return ret
##
## @brief Gets the labels from dataset split.
##
## @param D Dataset split
##
## @return The labels.
##
def get_data_labels(D):
X = D[:, :, 0:amino_acid_residues]
Y = D[:, :, amino_acid_residues:amino_acid_residues + num_classes]
return X, Y
##
## @brief Reshapes the lables (700,8,Len) to (8,Len*700)
##
## @param labels The labels
##
## @return The Labels reshaped
##
def resphape_labels(labels):
Y = np.reshape(labels, (labels.shape[0]*labels.shape[1], labels.shape[2]))
Y = Y[~np.all(Y == 0, axis=1)]
return Y
##
## @brief Creates new dataset from the original shifting a window of cnn_width len on the dataset sequences
##
## @param X The Dataset features, numpy array
##
## @return The dataset reshaped
##
def reshape_data(X):
padding = np.zeros((X.shape[0], X.shape[2], int(cnn_width/2)))
X = np.dstack((padding, np.swapaxes(X, 1, 2), padding))
X = np.swapaxes(X, 1, 2)
res = np.zeros((X.shape[0], X.shape[1] - cnn_width + 1, cnn_width, amino_acid_residues))
for i in range(X.shape[1] - cnn_width + 1):
res[:, i, :, :] = X[:, i:i+cnn_width, :]
res = np.reshape(res, (X.shape[0]*(X.shape[1] - cnn_width + 1), cnn_width, amino_acid_residues))
res = res[np.count_nonzero(res, axis=(1,2))>(int(cnn_width/2)*amino_acid_residues), :, :]
return res
##
## @brief Gets the dataset in the reshaped form.
##
## @param seed Random seeed for the split
##
## @return The dataset.
##
def get_dataset_reshaped(seed=None):
D = get_dataset(dataset_path)
Train, Test, Validation = split_dataset(D, seed)
X_te, Y_te = get_data_labels(Test)
X_tr, Y_tr = get_data_labels(Train)
X_v, Y_v = get_data_labels(Validation)
X_train = reshape_data(X_tr)
X_test = reshape_data(X_te)
X_validation = reshape_data(X_v)
Y_train = resphape_labels(Y_tr)
Y_test = resphape_labels(Y_te)
Y_validation = resphape_labels(Y_v)
return X_train, X_validation, X_test, Y_train, Y_validation, Y_test
##
## @brief Splits the dataset.
##
## @param Dataset The dataset
## @param seed Random seeed for the split
##
## @return Returns Train, Test, Validation tensors from the Dataset
##
def split_dataset(Dataset, seed=None):
np.random.seed(seed)
np.random.shuffle(Dataset)
train_split = int(Dataset.shape[0]*0.8)
test_val_split = int(Dataset.shape[0]*0.1)
Train = Dataset[0:train_split, :, :]
Test = Dataset[train_split:train_split+test_val_split, :, :]
Validation = Dataset[train_split+test_val_split:, :, :]
return Train, Test, Validation
##
## @brief Splits the dataset with the same subdivision as the paper: Jian Zhou and Olga G. Troyanskaya (2014) - "Deep Supervised and Convolutional Generative Stochastic Network for Protein Secondary Structure Prediction"
##
## @param Dataset The dataset
## @param seed Random seeed for the split
##
## @return Returns Train, Test, Validation tensors from the Dataset
##
def split_like_paper(Dataset, seed=None):
# Dataset subdivision following dataset readme and paper
if seed is not None:
np.random.seed(seed)
np.random.shuffle(Dataset)
Train = Dataset[0:5600, :, :]
Test = Dataset[5600:5877, :, :]
Validation = Dataset[5877:, :, :]
return Train, Test, Validation
##
## @brief Gets the dataset in the reshaped form splitted like in the paper.
##
## @return The resphaped dataset.
##
def get_resphaped_dataset_paper():
D = get_dataset()
Train, Test, Validation = split_like_paper(D)
X_te, Y_te = get_data_labels(Test)
X_tr, Y_tr = get_data_labels(Train)
X_v, Y_v = get_data_labels(Validation)
X_train = reshape_data(X_tr)
X_test = reshape_data(X_te)
X_validation = reshape_data(X_v)
Y_train = resphape_labels(Y_tr)
Y_test = resphape_labels(Y_te)
Y_validation = resphape_labels(Y_v)
return X_train, X_validation, X_test, Y_train, Y_validation, Y_test
##
## @brief Gets the CB513 dataset.
##
## @return The CB513 dataset.
##
def get_cb513():
CB = get_dataset(cb513_path)
X, Y = get_data_labels(CB)
return reshape_data(X), resphape_labels(Y)
if __name__ == '__main__':
print("Collectiong dataset...")
D = get_dataset()
X, Y = get_data_labels(D)
Y_dist = np.sum(Y, axis=0)
print("Labels distribution")
print(Y_dist)
print(Y_dist / Y.shape[0])
print("X shape")
print(X.shape)
print("Y shape")
print(Y.shape)