-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompintel.py
384 lines (259 loc) · 14.1 KB
/
compintel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#!/usr/bin/env python
# coding: utf-8
# In[239]:
import numpy as np
from sklearn import datasets
import matplotlib.pyplot as plt
# In[228]:
# Percepton class
class Percepton:
# constructor
# size - number of features
# lr - learning rate
# n-epochs - number epochs
def __init__(self, size, lr = 0.01, n_epochs = 1):
self.size= size
self.lr = lr
self.n_epochs = n_epochs
#self.weights = np.zeros((size,))
# Start with the inital weights
self.weights = np.array([-1.5,1,1])
# forward()
def forward(self, x):
# Matrix multiplication: input is multiplied by weights to get the dot product
z = x @ self.weights
print("sum for",x, z)
y = np.sign(z)
#print("y:",y)
return y
# update
# update weights
#. x - input
#. y is network prediction
# d is target
def update(self, x, y, d):
delta = (d - y)
#print("delta: ", delta)
new_weights = self.weights + self.lr * delta * x
self.weights = new_weights
print("Weights: ", self.weights)
# main training loop
def train(self, X,Y):
for t in range(self.n_epochs):
print("epoch ", t)
correct = 0
n_samples = X.shape[0]
for i in range(n_samples):
x = X[i,:]
d = Y[i]
y = self.forward(x)
self.update(x,y,d)
if y == d:
correct +=1
print("Accuracy: " , correct / n_samples)
if correct == n_samples:
print("All correct, done")
break
print("Complete")
# In[229]:
X = np.array([[ -1,0, 0 ],
[ -1,0, 1 ],
[ -1,1, 0 ],
[ -1,1, 1]])
Yand = np.array([-1,-1,-1,1])
Yor = np.array([-1,1,1,1])
print(X,Yand)
# In[230]:
p =Percepton(3, lr = 0.3, n_epochs = 800)
# p.train(X,Yand)
p.train(X,Yor)
# In[231]:
a = np.array([1,1])
b = np.array([2,2])
print(a.shape)
a @ b
# # Part 2
# In[265]:
# Mutli layer percepton with 2 hidden layers, 2 neurons each
class MLP:
np.random.seed(48)
# At construction provide learning rate, number of epochs and activation function
def __init__(self, sizes, weights1= None, weights2 = None, weights3 = None,
lr = 0.01, n_epochs = 1, activation_fun = "relu", verbose = True ):
print (f"LR = {lr}, n_epochs = {n_epochs}")
self.n_epochs = n_epochs
self.lr = lr
self.n_inputs = sizes[0]
print("INPUTS", self.n_inputs)
self.n_hidden1 = sizes[1]
print("No. of hidden 1 =", self.n_hidden1)
self.n_hidden2 = sizes[2]
print("No. of hidden 2 =", self.n_hidden2)
self.n_out = sizes[3]
print("No. of output =", self.n_out)
# initialize random weights
# we do + 1 to account for b
self.weights1 = weights1
if weights1 is None:
self.weights1 = np.random.rand(self.n_inputs + 1, self.n_hidden1)
self.weights2 = weights2
if weights2 is None:
self.weights2 = np.random.rand(self.n_hidden1 + 1, self.n_hidden2)
self.weights3 = weights3
if weights3 is None:
self.weights3 = np.random.rand(self.n_hidden2 + 1, self.n_out)
if verbose:
print("weights1 ", self.weights1)
print("weights2 ", self.weights2)
print("weights3 ", self.weights3)
# set the activation function
self.activation_fun = activation_fun
self.verbose = verbose
#supported activation functions:
# relu
# sigmoid
# binary step
def activation(self, z):
if self.activation_fun == "relu":
return np.maximum(0, z)
if self.activation_fun == "sigmoid":
return 1.0/ ( 1.0 + np.exp(-z))
if self.activation_fun == "binary_step":
if np.any(z < 0):
return np.zeros(z.shape)
else:
return np.ones(z.shape)
# forward pass with sample set X
def forward(self, x):
# Hidden layer 1
z1 = np.dot(x, self.weights1)
if self.verbose:
print("z1 : ", z1)
self.hidden1 = self.activation(z1)
if self.verbose:
print("Hidden1: ",self.hidden1)
self.hidden1 = np.concatenate((self.hidden1, self.b2), axis = 1 )
if self.verbose:
print("Hidden1: ",self.hidden1)
# Hidden layer 2
z2 = np.dot(self.hidden1, self.weights2)
if self.verbose:
print("Z2: ", z2)
self.hidden2 = self.activation(z2)
self.hidden2 = np.concatenate((self.hidden2, self.b3), axis = 1 )
if self.verbose:
print("Hidden2: ",self.hidden2)
#Output layer
z3 = np.dot(self.hidden2, self.weights3)
if self.verbose:
print("z3:", z3)
y = self.activation(z3)
if self.verbose:
print("y:",y)
return y#.reshape((4,))
# Back propogation and gradient decent
def update(self, X, y, targets):
error = 0.5 * np.sum(y - targets) ** 2
if self.verbose:
print("y ", y)
print("targets ", targets)
delta3 = (y - targets) * y
if self.verbose:
print("Delta 3 shape ", delta3.shape)
print("Hidden 2 shape: ",self.hidden2.shape)
print("Weights 3 shape: ",self.weights3.shape)
h = self.hidden2 * (1.0 - self.hidden2)
dw = np.dot( delta3, np.transpose ( self.weights3 ))
delta2 = h * dw
if self.verbose:
print("Delta 2 " , delta2.shape)
print("Hidden 1 ", self.hidden1.shape)
delta1 = self.hidden1 * (1.0 - self.hidden1) * np.dot(delta2[:,:-1],np.transpose(self.weights2))
if self.verbose:
print ("Delta 1 ", delta1)
# updates to be applied to the weights
update_weights1 = self.lr * np.dot(np.transpose(delta1),X)
update_weights2 = self.lr * np.dot(np.transpose(self.hidden1) , delta2)
update_weights3 = self.lr * np.dot(np.transpose(self.hidden2), delta3)
if self.verbose:
print("Update weights1 ", update_weights1)
print("Update weights2 ", update_weights2)
print("Update weights3 ", update_weights3)
#print("New weights1 ", update_weights1.shape)
#print("New weights2 ", update_weights2.shape)
# update the weights
# Applying the update to the weights
self.weights1 -= update_weights1[:,:]
self.weights2 -= update_weights2[:,:-1]
self.weights3 -= update_weights3
if self.verbose:
print("Adjusted weights1", self.weights1)
print("Adjusted weights2", self.weights2)
print("Adjusted weights3", self.weights3)
#print("Weights 1 ", self.weights1)
# Evaluate the netowrk prediction accuracy
def evaluate(self, y, targets):
y = y.reshape(targets.shape)
error = 0.5 * np.sum(y - targets) ** 2
print("ERROR: ", error)
equal = np.sum( y == targets)
#print(y, targets)
#print("equal ", equal)
#print("Accuracy: ", equal / y.shape[0])
return error
def pre_train(self, X):
n_samples = X.shape[0]
# biases
self.b1 = -1 * np.ones((n_samples, 1))
if self.verbose:
print("bias 1:",self.b1)
self.b2 = -1 * np.ones((n_samples, 1))
self.b3 = -1 * np.ones((n_samples, 1))
#print("B shape: ", self.b1.shape)
# Add bias to the input
inputs = np.concatenate((X, self.b1), axis = 1)
if self.verbose:
print("inputs", inputs)
return inputs
# Main training loop, run forward/backward passes for N times
def train(self, X, targets):
#print("X: ",X.shape)
#print("targets: ", targets.shape)
inputs = self.pre_train(X)
for i in range(self.n_epochs):
print("Epoch ", i)
#1) forward
y = self.forward(inputs)
#2) evaluate on training set
error = self.evaluate(y, targets)
#3) backward propagation
self.update(X,y, targets)
return error
# In[266]:
mlp = MLP(sizes = (2,2,2,1), lr = 0.05, n_epochs =100 , activation_fun = "relu")
# In[267]:
X = np.array([[0,0],
[0,1],
[1,0],
[1,1]])
Yxor = np.transpose(np.array([0,1,1,0])).reshape((4,1))
mlp.train(X, Yxor)
# This network solvers the regression problem , to convert the ouput to classification solution
# we need to use softmax activation
# Regression : Fitting Error
# Classification: Accuracy
# # PArt 3
# In[83]:
from geneticalgorithm import geneticalgorithm as ga
# In[108]:
get_ipython().run_cell_magic('time', '', '\ndef fun(lr):\n mlp = MLP(sizes = (2,2,2,1), lr = lr, n_epochs =5 , activation_fun = "sigmoid", verbose= False)\n error = mlp.train(X, Yxor)\n return error\n\nga_params = {\n "max_num_iteration": 1,\n "population_size":5,\n "mutation_probability":0.1,\n "elit_ratio":0.01,\n "crossover_probability":0.5,\n "parents_portion":0.5,\n "crossover_type":"uniform", # "one_point"\n "max_iteration_without_improv": 3\n \n}\n# Minimize the fitting error\nvarbound = np.array([[0.0001, 0.1]])\nmodel = ga(function = fun, \n dimension = 1, \n variable_type = "real", \n variable_boundaries = varbound,\n algorithm_parameters = ga_params)\n\nres = model.run()\n#print("REs:",res)')
# In[294]:
get_ipython().run_cell_magic('time', '', '\n# weights 1: 3 x 2 \n# weights 2: 3 x 2\n# weights 3: 3 x 1\n# total = 6 + 6 + 3 = 15\nDIM = 15\ndef fun(all_weights):\n print(all_weights.shape)\n \n weights1 = all_weights[:6,].reshape((3,2))\n weights2 = all_weights[6:12,].reshape((3,2))\n weights3 = all_weights[12:15,].reshape((3,1))\n \n mlp = MLP(sizes = (2,2,2,1), \n weights1 = weights1, weights2 = weights2, weights3 = weights3,\n activation_fun = "sigmoid", \n verbose= False)\n \n inputs = mlp.pre_train(X)\n y = mlp.forward(inputs)\n error = mlp.evaluate(y, Yxor)\n return error\n\nga_params = {\n "max_num_iteration": 20,\n "population_size":200,\n "mutation_probability":0.1,\n "elit_ratio":0.01,\n "crossover_probability":0.5,\n "parents_portion":0.5,\n "crossover_type":"uniform", # "one_point"\n "max_iteration_without_improv": 10\n \n}\n# Minimize the fitting error\nvarbound = np.array([[-2, 2] for i in range(DIM) ])\nprint(varbound)\nmodel = ga(function = fun, \n dimension = DIM, \n variable_type = "real", \n variable_boundaries = varbound,\n algorithm_parameters = ga_params)\n\nres = model.run()\n#print("REs:",res)')
# # Partcile Swarm Optimization (PSO)
# In[273]:
get_ipython().run_cell_magic('time', '', 'import pyswarms as ps\nfrom pyswarms.utils.functions import single_obj as fx\n\n\ndef fun_for_pso(lrs):\n errors = []\n for lr in lrs:\n mlp = MLP(sizes = (2,2,2,1), lr = lr, n_epochs =2 , activation_fun = "sigmoid", verbose= False)\n error = mlp.train(X, Yxor)\n errors.append(error)\n \n return errors\n\nn_dims = 1\n# c1 and c2 are accelerate constants\noptions = {"c1":0.5, # Cognitive parameter , how much confidence the particle has in itself\n "c2":0.3, # social parameter , how much confidence the particle has in it neigbours\n "w":0.9 # inertia parameter, describes how the previous velocity influences the current velocity\n }\n\nmin_bounds = np.array([0.0001])\nmax_bounds = np.array([0.1])\nbounds = (min_bounds, max_bounds)\n\noptimizer = ps.single.GlobalBestPSO(n_particles = 3, dimensions=1, options = options , bounds = bounds )\ncost, pos = optimizer.optimize(fun_for_pso ,1)\nprint("Best Error ", cost,"achieved with LR = ", pos)')
# In[ ]:
# # Optimize the weights of MLP
# In[302]:
get_ipython().run_cell_magic('time', '', 'import pyswarms as ps\nfrom pyswarms.utils.functions import single_obj as fx\n\nDIMS = 15\ndef one_run(all_weights):\n print(all_weights.shape)\n \n weights1 = all_weights[:6,].reshape((3,2))\n weights2 = all_weights[6:12,].reshape((3,2))\n weights3 = all_weights[12:15,].reshape((3,1))\n \n mlp = MLP(sizes = (2,2,2,1), \n weights1 = weights1, weights2 = weights2, weights3 = weights3,\n activation_fun = "sigmoid", \n verbose= False)\n \n inputs = mlp.pre_train(X)\n y = mlp.forward(inputs)\n error = mlp.evaluate(y, Yxor)\n return error\n\naverage_errors = []\n#Objective function for PSO\ndef fun_for_pso(many_params):\n errors = []\n for weights in many_params:\n \n error = one_run(weights)\n \n errors.append(error)\n \n average_errors.append(np.mean(errors))\n \n return errors\n\n\n# c1 and c2 are accelerate constants\noptions = {"c1":0.5, # Cognitive parameter , how much confidence the particle has in itself\n "c2":0.1, # Social parameter , how much confidence the particle has in it neigbours\n "w":0.9 # Inertia parameter, describes how the previous velocity influences the current velocity\n }\n\nmin_bounds = np.array([-2] * DIMS)\nmax_bounds = np.array([2] * DIMS)\nbounds = (min_bounds, max_bounds)\n\noptimizer = ps.single.GlobalBestPSO(n_particles = 250, dimensions=DIMS, options = options , bounds = bounds )\ncost, pos = optimizer.optimize(fun_for_pso ,50)\nprint("Best Error ", cost,"achieved with WEIGHTS = ", pos)\n\nx_axis = np.arange(len(average_errors))\n\nplt.plot(x_axis, average_errors)')
# In[ ]: