-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
316 lines (261 loc) · 14.5 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import torch
from torch.utils.data import DataLoader
from torchvision import utils as vutils
from util.operation import ImageFolder_with_mask,ImageFolder_test
import os
import argparse
from tqdm import tqdm
from models.models import GRIG_G
from torchvision import transforms
from util.operation import get_completion
import random
import numpy as np
import shutil
from test_util import get_metrics_with_lpips
from util.extract2 import MoveTotheSingalDir
import subprocess
import util.utils_train as ut
from util.utils import print_networks
import cv2
from Xlsx_save.xlsx_saver import Xlsx_saver
def load_params(model, new_param):
for p, new_p in zip(model.parameters(), new_param):
p.data.copy_(new_p)
def set_random_seed(seed, deterministic=False):
"""Set random seed.
Args:
seed (int): Seed to be used.
deterministic (bool): Whether to set the deterministic option for
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
to True and `torch.backends.cudnn.benchmark` to False.
Default: False.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
if deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def delete_dirs(path):
if os.path.exists(path):
shutil.rmtree(path,ignore_errors=True)
return
def select_model(name,im_size):
ngf = 64
nz = 256
nc = 4
netG = GRIG_G(ngf=ngf, nc=nc, nz=nz,im_size=im_size).train()
print(netG)
print_networks(netG,name=name)
return netG
if __name__ == "__main__":
"""
GRIG test
show intermediate results for better evaluation
"""
parser = argparse.ArgumentParser(
description='GRIG test procedure'
)
parser.add_argument('--ckpt_path', type=str, help='the path of the best checkpoint')
parser.add_argument('--model_name', type=str, default='GRIG')
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--reinpaint_iter', type=int, default=3)
parser.add_argument('--test_path', type=str, default='../lmdbs/art_landscape_1k', help='for test, path of resource dataset, should be a folder that has one or many sub image folders inside')
parser.add_argument('--mask_file_root', type=str, default='/home/k/Data/mask/mask', help='number of iterations')
parser.add_argument('--mask_root', type=str, default='/home/k/Data/mask/mask/testing_mask_dataset', help='number of iterations')
parser.add_argument('--eval_dict', type=str, default='./eval', help='path for eval')
parser.add_argument('--view_dict', type=str, default='./view', help='path for eval')
parser.add_argument("--debug", type=bool, default=False,)
parser.add_argument("--view_inter", type=bool, default=False, help="show intermediate results if turn to True, else show the best results")
parser.add_argument('--view_number', type=int, default=1000, help="how many images will be copied ")
parser.add_argument('--device', type=int, default=0, help='index of gpu to use')
parser.add_argument('--im_size', type=int, default=256)
parser.add_argument('--batch', default=1, type=int, help='batch size')
parser.add_argument('--mask_type', default="Center", type=str, help='mask type for inference you can use ["Center","test_2.txt","test_3.txt","test_4.txt","test_5.txt","test_6.txt"]')
parser.add_argument('--show_final', action='store_true', help='if or not show the intermediate results')
args = parser.parse_args()
if args.mask_type == "all":
mask_types = ["Center","test_2.txt","test_3.txt","test_4.txt","test_5.txt","test_6.txt",]
else:
mask_types = [args.mask_type,]
transform_list = transforms.Compose([
transforms.Resize((int(args.im_size), int(args.im_size))),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
metrics_saver = Xlsx_saver("metrics_all")
delete_dirs(args.eval_dict)
os.makedirs(args.eval_dict,exist_ok=True)
for jjj,mask_type in enumerate(mask_types):
set_random_seed(1)
print("#####################################seed:", np.random.rand(1))
print("#######" * 10)
print("for mask :", mask_type)
# set data loader
if mask_type == "Center":
dataloader = DataLoader(
ImageFolder_test(args.test_path, transform=transform_list,
im_size=(args.im_size, args.im_size)),
batch_size=args.batch, shuffle=False,drop_last=False, num_workers=args.num_workers)
else:
args.mask_file = os.path.join(args.mask_file_root, mask_type)
data = ImageFolder_with_mask(args.test_path, args.mask_root, args.mask_file, transform=transform_list,
train_tag=False, im_size=(args.im_size, args.im_size))
dataloader = DataLoader(data, batch_size=args.batch, shuffle=False,drop_last=False, num_workers=args.num_workers)
mask_type_name = str(mask_type).strip().split(".")[0] # get mask type name
# create sub dir
sub_outdir = os.path.join(args.eval_dict, mask_type_name)
os.makedirs(sub_outdir,exist_ok=True)
print('load checkpoint from:',args.ckpt_path)
netG = select_model(args.model_name,args.im_size).to(args.device)
checkpoint = torch.load(args.ckpt_path)
netG.load_state_dict(checkpoint['g'])
load_params(netG, checkpoint['g_ema'])
netG.eval()
with torch.no_grad():
for i,datas in tqdm(enumerate(dataloader)):
# if i >10 and args.debug ==True: break
real_image,mask_01 = datas
real_image = real_image.to(args.device)
mask_01 = mask_01.to(args.device).float()
im_in = real_image * (1 - mask_01)
residual_input = im_in
completed_list = []
# create sub dir store ground_truth images
gt_folder =os.path.join(sub_outdir, "gt_folder")
os.makedirs(gt_folder, exist_ok=True)
for kk in tqdm(range(args.reinpaint_iter)):
residual_out = netG(residual_input, mask_01)
g_imgs = residual_input + residual_out
g_imgs = get_completion(pred=g_imgs, gt=real_image, mask_01=mask_01)
residual_input = g_imgs
completed_list.append(residual_input.detach())
iter_sub_folder = os.path.join(sub_outdir,f"iter_{kk+1}")
os.makedirs(iter_sub_folder,exist_ok = True)
if args.show_final == True:
abs_residual_out = torch.abs(residual_out)*mask_01
heat_residual_out = abs_residual_out[:,0,:,:] + abs_residual_out[:,1,:,:] + abs_residual_out[:,2,:,:]
Gray = abs_residual_out[:,0,:,:] * 0.299 + abs_residual_out[:,1,:,:] * 0.587 + abs_residual_out[:,2,:,:] * 0.114
Gray = Gray.repeat([1,3,1,1])
Red = Gray.clone()
Red[:,2,:,:] = 0
Red[:,1,:,:] = 0
mask_01_show = mask_01.repeat([1, 3, 1, 1])
torch.cuda.empty_cache()
for j, g_img in enumerate(g_imgs):
real_image_ = real_image[j].squeeze()
im_in_ = im_in[j].squeeze()
mask_01_ = mask_01_show[j].squeeze()
if args.show_final == True:
residual_out_ = abs_residual_out[j].squeeze()
Gray_ = Gray[j].squeeze()
Red_ = Red[j].squeeze()
heat_residual_out_ = heat_residual_out[j]
heat_residual_out_ = heat_residual_out_ / torch.max(heat_residual_out_)
heat_residual_out_ = np.uint8(255.0 * heat_residual_out_.cpu())
heat_residual_out_ = cv2.applyColorMap(heat_residual_out_, cv2.COLORMAP_JET)
heat_residual_out_ = np.clip(heat_residual_out_, 0, 255)
vutils.save_image(
residual_out_,
f"{str(iter_sub_folder)}/{str(i * args.batch + j).zfill(6)}_residual_out.png",
nrow=int(1),
normalize=True, range=(0, 1),
)
vutils.save_image(
g_img.add(1).mul(0.5),
f"{str(iter_sub_folder)}/{str(i * args.batch + j).zfill(6)}_inpaint.png",
nrow=int(1),
# normalize=True, range=(-1, 1),
)
elif j == len(g_imgs)-1:
vutils.save_image(
g_img.add(1).mul(0.5),
f"{str(iter_sub_folder)}/{str(i * args.batch + j).zfill(6)}_inpaint.png",
nrow=int(1),
# normalize=True, range=(-1, 1),
)
# vutils.save_image(
# Gray_,
# f"{str(iter_sub_folder)}/{str(i * args.batch + j).zfill(6)}_gray_residual_out.png",
# nrow=int(1), normalize=True, range=(0, 1), )
# vutils.save_image(
# heat_residual_out_,
# f"{str(iter_sub_folder)}/{str(i * args.batch + j).zfill(6)}_heat_residual_out_.png",
# nrow=int(1), normalize=True, range=(0, 1), )
# heat_residual_out_ = Image.fromarray(heat_residual_out_)
# heat_residual_out_.save(f"{str(iter_sub_folder)}/{str(i * args.batch + j).zfill(6)}_heat_residual_out_.png")
#
if args.show_final == True:
cv2.imwrite(f"{str(iter_sub_folder)}/{str(i * args.batch + j).zfill(6)}_heat_residual_out_.png", heat_residual_out_)
if kk == 0: # only store at first iter
# if jjj == 0: # only store gt images once!
vutils.save_image(
real_image_.add(1).mul(0.5),
f"{str(gt_folder)}/{str(i * args.batch + j).zfill(6)}_gt.png",
nrow=int(1),
# normalize=True, range=(-1, 1),
)
# if gt_folder = None
# gt_outdir = str(gt_folder) #save the first gt image folder
vutils.save_image(
im_in_.add(1).mul(0.5),
f"{str(gt_folder)}/{str(i * args.batch + j).zfill(6)}_masked.png",
nrow=int(1),
# normalize=True, range=(-1, 1),
)
vutils.save_image(
mask_01_,
f"{str(gt_folder)}/{str(i * args.batch + j).zfill(6)}_mask.png",
nrow=int(1),
# normalize=True, range=(0, 1),
)
torch.cuda.empty_cache()
best_dic = {}
best_metric_ = {}
for kk in range(args.reinpaint_iter):
print(f"the iter {kk+1}:============--------------============")
iter_sub_folder = os.path.join(sub_outdir, f"iter_{kk + 1}")
fid_value, U_IDS_score, P_IDS_score, mae, psnr, ssim,lpips_val = get_metrics_with_lpips(
gt_folder,iter_sub_folder, postfix1="_gt.png",
postfix2="_inpaint.png", batch_size=1)
dict_ = {"fid_value": fid_value, "U_IDS_score": U_IDS_score, "P_IDS_score": P_IDS_score,
"mae": mae, "psnr": psnr, "ssim": ssim,"lpips":lpips_val.item()}
if kk ==0:
gt_view_folder = os.path.join(args.view_dict, f"{mask_type}/gt_folder")
os.makedirs(gt_view_folder, exist_ok=True)
delete_dirs(gt_view_folder)
print(f"{3*args.view_number} start extract from " + gt_folder + " to " + gt_view_folder)
MoveTotheSingalDir(gt_folder, gt_view_folder, 3*args.view_number, shuffle=False, function_=ut.copyfile2Dir)
#
best_dic["fid"] = fid_value
best_dic["iter"] = kk
best_metric_ = dict_
if fid_value<best_dic["fid"]: #compare to show the best fid
best_dic["fid"] = fid_value
best_dic["iter"] = kk
best_metric_ = dict_
if args.view_inter == True: # save all the intermediate results
print("saving the each iter")
view_folder = os.path.join(args.view_dict, f"{mask_type}/iter_{kk + 1}")
delete_dirs(view_folder)
os.makedirs(view_folder, exist_ok=True)
print(f"{args.view_number} start extract from " + iter_sub_folder + " to " + view_folder)
MoveTotheSingalDir(iter_sub_folder, view_folder, args.view_number, shuffle=False, function_=ut.copyfile2Dir)
elif args.view_inter == False and kk == (args.reinpaint_iter - 1): #only shows the best iter
iter_ = best_dic["iter"]
print(f"only saving the best iter: {iter_}")
best_sub_folder = os.path.join(sub_outdir, f"iter_{iter_ + 1}")
view_folder = os.path.join(args.view_dict, f"{mask_type}/iter_{iter_ + 1}")
delete_dirs(view_folder)
os.makedirs(view_folder, exist_ok=True)
print(f"{args.view_number} start extract from " + best_sub_folder + " to " + view_folder)
MoveTotheSingalDir(best_sub_folder, view_folder, args.view_number, shuffle=False, function_=ut.copyfile2Dir)
metrics_saver.append(best_metric_,col_name=mask_type)
metrics_saver.save()
# _, out_print = subprocess.getstatusoutput(f'tar -zcf view.tar.gz {args.view_dict}')
p = subprocess.Popen(f'tar -zcf view.tar.gz {args.view_dict}', shell=True)
return_code = p.wait()
_, out_print = subprocess.getstatusoutput(f'rm -rf ./view')