"LCM-LoRA: A Universal Stable-Diffusion Acceleration Module" Arxiv, 2023 Nov paper code pdf Authors: Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick von Platen, Apolinário Passos, Longbo Huang, Jian Li, Hang Zhao
- Task: Diffusion 加速
- 现有问题:Diffusion 推理太慢
- 🏷️ Label:
类似 DDIM 等 PF-ODE solver, LCM-LoRA 可以看作 plug-in neural PF-ODE solver
- 提出 universal training-free acceleration module that can be directly plugged into various Stable-Diffusion (SD) 实现加速
- ❓ classifier-free guidance ?
- DDIM?
- CM?
- LoRA?
- PF-ODE? Probability flow ODE与DDIM
问题:针对 Diffusion 推理太慢;
Efforts to accelerate LDMs generally fall into two categories: ODE-Solvers ;distillation of LDM
-
PF-ODE Solvers
例如 DDIM 等方法,目的减少推理步数。计算仍然很大,尤其当使用 classifier-free guidance 时候
-
蒸馏方法
Guided-Distill 计算量太大。仍然需要一种方法平衡速度 & 生成质量
TODO
"Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference" paper website
将反向去噪视为 augmented probability flow ODE (PF-ODE) problem; predict the solution in the latent space, bypassing the need for iterative solutions through numerical ODE-Solvers. This results in a remarkably efficient synthesis of high-resolution images, taking only 1 to 4 inference steps;推理效率高 & distillation 只要 32h A100 hour; Motivation:对 LDM 微调,实现在小数据集上能够又 few steps 生成的效果
LCF: fine-tune pre-trained LCMs without starting from the teacher diffusion model; 缺点需要针对数据集 finetune
LCM-LoRA, a universal training-free acceleration module that can be directly plugged into various Stable-Diffusion (SD) ;类比 DDIM,可以看作 neural-based PF-ODE solver
"LoRA: Low-Rank Adaptation of Large Language Models" paper code blog 苏剑林老师 LoRA 博客
调整所有参数的称为 full-finetuning
LoRA 用一个 Low Rank Matrix 表示需要 finetune 的部分模型参数,LORA是一种低资源微调大模型方法,训练参数仅为整体参数的万分之一、GPU显存使用量减少2/3且不会引入额外的推理耗时。
将需要更新的
SD-v1.5 需要微调的参数量从 980M -> 67.5M
employing LoRA for the distillation process
针对指定数据集微调,实现只合成指定风格图像下,大幅提速生成速度
效果:比直接用 LoRA 速度更快 & 效果更好
R1C5 和 R2C2 很相似,是否可以理解成去噪为 latent-space 的一条路径,只不过 LCM-LoRA 能够直接到关键节点?
从向量的角度融合,acceleration vector 和 Full-finetune 向量加权融合一下得到一个 trade-off 质量和速度的向量
ablation study 看那个模块有效,总结一下
learn what & how to apply to our task