forked from modal-labs/llama-recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
41 lines (34 loc) · 1.46 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
from dataclasses import dataclass
@dataclass
class train_config:
model_name: str="PATH/to/LLAMA/7B"
enable_fsdp: bool=False
low_cpu_fsdp: bool=False
run_validation: bool=True
batch_size_training: int=4
gradient_accumulation_steps: int=1
num_epochs: int=3
num_workers_dataloader: int=1
lr: float=1e-4
weight_decay: float=0.0
gamma: float= 0.85
seed: int=42
use_fp16: bool=False
mixed_precision: bool=True
val_batch_size: int=1
dataset = "samsum_dataset"
peft_method: str = "lora" # None , llama_adapter, prefix
use_peft: bool=False
output_dir: str = "PATH/to/save/PEFT/model"
freeze_layers: bool = False
num_freeze_layers: int = 1
quantization: bool = False
one_gpu: bool = False
save_model: bool = True
dist_checkpoint_root_folder: str="PATH/to/save/FSDP/model" # will be used if using FSDP
dist_checkpoint_folder: str="fine-tuned" # will be used if using FSDP
save_optimizer: bool=False # will be used if using FSDP
use_fast_kernels: bool = False # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
fsdp_peft_cpu_offload_for_save: bool = False # Offload to CPU while aggregating sharded state dict into rank0 when saving PEFT