-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrobust_test.py
266 lines (234 loc) · 12.3 KB
/
robust_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
'''测试对抗训练模型的鲁棒性'''
import torch
import os
import numpy as np
from attack.attack import attack_both, attack_ir, attack_vis
from TaskFusion_dataset2 import Fusion_dataset
from torch.utils.data import DataLoader
from torch.autograd import Variable
from core.model_fusion_auto import Network_MM_SearchedFusion, Network_MM_Searched
from core import Fusionloss_grad2
import torch.nn.functional as F
from collections import namedtuple
import argparse
from PIL import Image
import cv2
from tqdm import tqdm
from util.util import compute_results, visualize
from sklearn.metrics import confusion_matrix
from core.model_fusion_auto import Network_MM_Searched as Network
from utils import eval_seg
from attack.attack import attack_both
from utils.optimizer import PolyWarmupAdamW
from omegaconf import OmegaConf
parser = argparse.ArgumentParser()
parser.add_argument("--config",
default='configs/voc.yaml',
type=str,
help="config")
parser.add_argument("--local_rank", default=0, type=int, help="local_rank")
parser.add_argument('--backend', default='nccl')
parser.add_argument('--model_name', '-M', type=str, default='SeAFusion')
parser.add_argument('--batch_size', '-B', type=int, default=1)
parser.add_argument('--gpu', '-G', type=int, default=0)
parser.add_argument('--num_workers', '-j', type=int, default=8)
### attack setting
parser.add_argument('--epsilon', default=8/255., type=float)
parser.add_argument('--alpha', default=2/255., type=float)
parser.add_argument('--attack_iters', default=5, type=int)
parser.add_argument('--attack_loss', default='l_seg', type=str)
parser.add_argument('--attack_way',default='PGD', type=str)
parser.add_argument('--with_mask',default=False, type=bool)
parser.add_argument('--attack_mode',default='both',type=str, help='attack mode, ir|vis|both')
args = parser.parse_args()
cfg = OmegaConf.load(args.config)
def YCrCb2RGB(input_im):
device = torch.device("cuda:{}".format(args.gpu) if torch.cuda.is_available() else "cpu")
im_flat = input_im.transpose(1, 3).transpose(1, 2).reshape(-1, 3)
mat = torch.tensor(
[[1.0, 1.0, 1.0], [1.403, -0.714, 0.0], [0.0, -0.344, 1.773]]
).to(device)
bias = torch.tensor([0.0 / 255, -0.5, -0.5]).to(device)
temp = (im_flat + bias).mm(mat).to(device)
out = (
temp.reshape(
list(input_im.size())[0],
list(input_im.size())[2],
list(input_im.size())[3],
3,
)
.transpose(1, 3)
.transpose(2, 3)
)
return out
def RGB2YCrCb(input_im):
device = torch.device("cuda:{}".format(args.gpu) if torch.cuda.is_available() else "cpu")
im_flat = input_im.transpose(1, 3).transpose(1, 2).reshape(-1, 3) # (nhw,c)
R = im_flat[:, 0]
G = im_flat[:, 1]
B = im_flat[:, 2]
Y = 0.299 * R + 0.587 * G + 0.114 * B
Cr = (R - Y) * 0.713 + 0.5
Cb = (B - Y) * 0.564 + 0.5
Y = torch.unsqueeze(Y, 1)
Cr = torch.unsqueeze(Cr, 1)
Cb = torch.unsqueeze(Cb, 1)
temp = torch.cat((Y, Cr, Cb), dim=1).to(device)
out = (
temp.reshape(
list(input_im.size())[0],
list(input_im.size())[2],
list(input_im.size())[3],
3,
)
.transpose(1, 3)
.transpose(2, 3)
)
return out
def val_segformer_robust(model, strategy):
conf_total = np.zeros((9, 9))
h = 480
w = 640
model.eval().cuda()
vi_path = '/user33/objectdetection/test_all/Visible/'
ir_path = '/user33/objectdetection/test_all/Infrared/'
label_path = '/user33/objectdetection/test_all/Label/'
test_dataset = Fusion_dataset('val', ir_path=ir_path, vi_path=vi_path, label_path=label_path)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=1,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
)
test_loader.n_iter = len(test_loader)
with torch.no_grad():
for attack_mode in ['both']: #'both', 'ir', 'vis'
for _ , (images_vis, images_ir, label, name) in tqdm(enumerate(test_loader)):
images_vis = Variable(images_vis)
images_ir = Variable(images_ir)
label = Variable(label)
if args.gpu >= 0:
images_vis = images_vis.cuda()
images_ir = images_ir.cuda()
label = label.cuda()
save_root = './attack/{6}_{0}_{1}{2}_{3}_{4}_{5}/'.format(args.attack_loss,args.attack_way,args.attack_iters,int(args.epsilon*255),int(args.alpha*255),attack_mode,strategy)
if attack_mode != 'both':
attacked_path = save_root + '{0}_attacked/'.format(attack_mode)
fused_path = save_root + 'fused_attacked/'
seg_path = save_root + 'seg_attacked/'
os.makedirs(attacked_path, mode=0o777, exist_ok=True)
os.makedirs(fused_path, mode=0o777, exist_ok=True)
os.makedirs(seg_path, mode=0o777, exist_ok=True)
else:
ir_attacked_path = save_root + 'ir_attacked/'
vis_attacked_path = save_root + 'vis_attacked/'
fused_path = save_root + 'fused_attacked/'
seg_path = save_root + 'seg_attacked/'
os.makedirs(ir_attacked_path, mode=0o777, exist_ok=True)
os.makedirs(vis_attacked_path, mode=0o777, exist_ok=True)
os.makedirs(fused_path, mode=0o777, exist_ok=True)
os.makedirs(seg_path, mode=0o777, exist_ok=True)
if attack_mode == 'both':
d_ir, d_vi = attack_both(model, X_vis=images_vis, X_ir=images_ir, label=label,
attack_loss=args.attack_loss, attack_iters=args.attack_iters, epsilon=args.epsilon, alpha=args.alpha)
vi_attacked = images_vis + d_vi
ir_attacked = images_ir + d_ir
## save attacked image
img_ir = ir_attacked.squeeze().cpu().detach().numpy()
img_ir = np.uint8(255.0 * img_ir)
img_ir = Image.fromarray(img_ir)
save_path = os.path.join(ir_attacked_path, name[0])
img_ir.save(save_path)
img_ = vi_attacked.squeeze().cpu().detach().numpy()
img_ = np.uint8(255.0 * img_)
img_ = img_.transpose(1, 2, 0)
img_ = Image.fromarray(img_)
save_path = os.path.join(vis_attacked_path, name[0])
img_.save(save_path)
# print("### {0} attack successfully".format(name))
vi_attacked = Variable(vi_attacked)
ir_attacked = Variable(ir_attacked)
image_fusion, seg1 = model.forward(ir_attacked, vi_attacked)
# print("----attack both image mode " + name[0])
elif attack_mode == 'vis':
d_vi = attack_vis(model, X_vis=images_vis, X_ir=images_ir, X_fusion=image_fusion, label=label,
attack_loss=args.attack_loss, attack_iters=args.attack_iters, epsilon=args.epsilon, alpha=args.alpha, attack_mode=attack_mode, attack_way='newPGD')
vi_attacked = images_vis + d_vi
_, seg1 = model.forward(images_ir, vi_attacked)
# print("----attack visible image mode " + name[0])
elif attack_mode == 'ir':
d_vi = attack_ir(model, X_vis=images_vis, X_ir=images_ir, X_fusion=image_fusion, label=label,
attack_loss=args.attack_loss, attack_iters=args.attack_iters, epsilon=args.epsilon, alpha=args.alpha, attack_mode=attack_mode, attack_way='newPGD')
ir_attacked = images_ir + d_ir
_, seg1 = model.forward(ir_attacked, images_vis)
# print("----attack infrared image mode " + name[0])
seg1 = F.interpolate(seg1, size=label.shape[1:], mode='bilinear', align_corners=False)
images_vis_ycrcb = RGB2YCrCb(images_vis)
fusion_ycrcb = torch.cat(
(image_fusion, images_vis_ycrcb[:, 1:2, :, :], images_vis_ycrcb[:, 2:, :, :]),
dim=1,
)
fusion_image = YCrCb2RGB(fusion_ycrcb)
ones = torch.ones_like(fusion_image)
zeros = torch.zeros_like(fusion_image)
fusion_image = torch.where(fusion_image > ones, ones, fusion_image)
fusion_image = torch.where(fusion_image < zeros, zeros, fusion_image)
fused_image = fusion_image.cpu().detach().numpy()
fused_image = np.uint8(255.0 * fused_image)
fused_image = fused_image.transpose((0, 2, 3, 1))
fused_image = (fused_image - np.min(fused_image)) / (
np.max(fused_image) - np.min(fused_image)
)
fused_image = np.uint8(255.0 * fused_image)
for k in range(len(name)):
image = fused_image[k, :, :, :]
image = Image.fromarray(image)
save_path = os.path.join(fused_path, name[k])
image.save(save_path)
label = label.cpu().numpy().squeeze().flatten()
prediction = seg1.argmax(
1).cpu().numpy().squeeze().flatten() # prediction and label are both 1-d array, size: minibatch*640*480
conf = confusion_matrix(y_true=label, y_pred=prediction, labels=[0, 1, 2, 3, 4, 5, 6, 7, 8]) # conf is an n_class*n_class matrix, vertical axis: groundtruth, horizontal axis: prediction
conf_total += conf
visualize(pth=seg_path,image_name=name, predictions=seg1.argmax(1), weight_name='0')
precision_per_class, _, iou_per_class = compute_results(conf_total)
# save_root = './checkpoint/robust_result/'
res_path = '{0}_PGD{1}_{2}_{3}.txt'.format(strategy, args.attack_iters, int(args.epsilon*255), int(args.alpha*255))
with open(save_root + res_path, 'w') as f:
print("\n strategy :" + strategy, file=f)
print("\n Attack Loss{0}, Attack way{1}, Attack iters{2}, epsilon={3}, alpha={4}".format(args.attack_loss, 'PGD', args.attack_iters, int(args.epsilon*255), int(args.alpha*255)), file=f)
print(
"*precision_per_class: \n %.6f \t %.6f \t %.6f \t %.6f \t %.6f \t %.6f \t %.6f \t %.6f \t %.6f \t %.6f" \
% (precision_per_class[0], precision_per_class[1], precision_per_class[2], precision_per_class[3], precision_per_class[4],
precision_per_class[5], precision_per_class[6], precision_per_class[7], precision_per_class[8], np.mean(np.nan_to_num(precision_per_class))), file=f)
print(
"* iou per class: \n %.6f\t%.6f\t%.6f\t%.6f\t%.6f\t%.6f\t%.6f\t%.6f\t%.6f\t%.6f" \
% (
iou_per_class[0], iou_per_class[1], iou_per_class[2], iou_per_class[3], iou_per_class[4], iou_per_class[5],
iou_per_class[6], iou_per_class[7], iou_per_class[8], np.mean(np.nan_to_num(iou_per_class))), file=f)
print("* average values (np.mean(np.nan_to_num(x))) remove unlabel: \n ACC: %.6f, iou: %.6f" \
% (np.mean(np.nan_to_num(precision_per_class[1:])), np.mean(np.nan_to_num(iou_per_class[1:]))), file=f)
print("\n strategy :" + strategy)
print("\n Attack Loss{0}, Attack way{1}, Attack iters{2}, epsilon={3}, alpha={4}".format(args.attack_loss, 'PGD', args.attack_iters, int(args.epsilon*255), int(255*args.alpha)))
print("\n* average values (np.mean(x)): \n ACC: %.6f, iou: %.6f" \
% (precision_per_class.mean(), iou_per_class.mean()))
print("* average values (np.mean(np.nan_to_num(x))): \n ACC: %.6f, iou: %.6f" \
% (np.mean(np.nan_to_num(precision_per_class)), np.mean(np.nan_to_num(iou_per_class))))
if __name__ == '__main__':
device = torch.device("cuda:{}".format(args.gpu) if torch.cuda.is_available() else "cpu")
print('| testing on GPU #%d with pytorch' % (args.gpu))
strategy = 'meta_final'
Genotype = namedtuple('Genotype', 'normal_1 normal_1_concat normal_2 normal_2_concat normal_3 normal_3_concat')
fusion_at = Genotype(normal_1=[('Denseblocks_3_1', 0), ('DilConv_3_2', 1)], normal_1_concat=[1, 2],
normal_2=[('Denseblocks_3_1', 0), ('Denseblocks_3_1', 1)], normal_2_concat=[1, 2],
normal_3=[('ECAattention_3', 0), ('Residualblocks_7_1', 1)], normal_3_concat=[1, 2])
fusion_model_path = './checkpoint/model_meta30000_fusion_8.pth'
# model = Network(32,fusion_at,None,None,cfg.exp.backbone,cfg.dataset.num_classes,256,True).cuda()
criterion_fusion = Fusionloss_grad2().to(device)
model = Network_MM_Searched(32, fusion_at, None,None,cfg.exp.backbone,num_classes=9)
model.load_state_dict(torch.load(fusion_model_path), strict=False)
print("---------model load done!-----------------")
print("-----start testing model-----")
val_segformer_robust(model, strategy=strategy)