-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathacc.py
58 lines (54 loc) · 1.73 KB
/
acc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import numpy as np
import cv2 as cv
WORK_PATH = "LCCP/"
H = 32
W = 1080
S = H*W
def judge(label,img):
mask = np.zeros((H,W,3))
mask[::] = label
judge_img = img-mask
judge_img = np.any(judge_img,axis=2)
return np.logical_not(judge_img)
UNKNOWN = np.array([0,0,0])
PEOPLE = np.array([0,0,255])
TREE = np.array([0,255,0])
CAR = np.array([255,0,0])
BUILDING = np.array([255,255,0])
SIGN = np.array([128,128,255])
LABEL_SET = [UNKNOWN,PEOPLE,CAR,TREE,SIGN,BUILDING]
LABEL_N = len(LABEL_SET)
IMAGE_PATH = WORK_PATH+"images/"
ctable = np.zeros((LABEL_N,LABEL_N),dtype=np.int32) # (GT,RG)
if(not os.path.exists(WORK_PATH+"ctable.npy")):
for i,file in enumerate(os.listdir(IMAGE_PATH)):
if(i%4 != 0): continue
table = np.zeros((LABEL_N,LABEL_N),dtype=np.int32)
s_time = file[0:8]
gt = cv.imread(IMAGE_PATH+s_time+"_merge.png")
rg = cv.imread(IMAGE_PATH+s_time+"_rg.png")
judge_gts = []
judge_rgs = []
for j,k in enumerate(LABEL_SET):
judge_gts.append(judge(k,gt))
judge_rgs.append(judge(k,rg))
for j in range(LABEL_N):
for k in range(LABEL_N):
comp = judge_gts[j] * judge_rgs[k]
table[j,k] += (np.sum(comp))
ctable += table
print(s_time)
np.save(WORK_PATH+"ctable.npy",ctable)
else:
print("load ctable file.")
ctable = np.load(WORK_PATH+"ctable.npy")
print(ctable)
for k in range(1,LABEL_N):
TP = ctable[k,k]
FP = np.sum(ctable[1:,k]) - TP # gt unknown is not count
FN = np.sum(ctable[k,1:]) - TP # rg unknown is not count
pre = TP/(TP+FP)
rec = TP/(TP+FN)
iou = TP/(TP+FP+FN)
print("label %s: precision %s, recall %s, iou %s"%(k,pre,rec,iou))