-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_span.py
220 lines (184 loc) · 9.24 KB
/
main_span.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import time
import torch
import random
import numpy as np
from modules.optimizer import Optimizer, AdamW, WarmupLinearSchedule
# from model.span_tagger import BertSpanTagger
from model.ner_model import NERTagger
from config.conf import args_config, data_config
from utils.dataset import DataLoader
from utils.datautil_span import load_data, create_vocab, batch_variable, extract_ner_spans
import torch.nn.utils as nn_utils
from logger.logger import logger
'''
BERT + Span for NER
'''
class Trainer(object):
def __init__(self, args, data_config):
self.args = args
self.data_config = data_config
genre = args.genre
self.train_set, self.val_set, self.test_set = self.build_dataset(data_config, genre)
self.vocabs = self.build_vocabs(self.train_set + self.val_set + self.test_set,
data_config['pretrained']['bert_model'])
self.model = NERTagger(
bert_embed_dim=args.bert_embed_dim,
hidden_size=args.hidden_size,
num_rnn_layer=args.rnn_depth,
# num_tag=len(self.vocabs['cws']),
num_tag=len(self.vocabs['ner']),
num_bert_layer=args.bert_layer,
dropout=args.dropout,
bert_model_path=data_config['pretrained']['bert_model']
).to(args.device)
print(self.model)
total_params = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
print("Training %d trainable parameters..." % total_params)
def build_dataset(self, data_config, genre):
train_set = load_data(data_config[genre]['train'])
val_set = load_data(data_config[genre]['dev'])
test_set = load_data(data_config[genre]['test'])
print('train data size:', len(train_set))
print('validate data size:', len(val_set))
print('test data size:', len(test_set))
return train_set, val_set, test_set
def build_vocabs(self, datasets, bert_model_path, embed_file=None):
vocabs = create_vocab(datasets, bert_model_path, embed_file)
return vocabs
def calc_train_acc(self, pred_score, gold_tags, mask=None):
'''
:param pred_score: (b, t, nb_tag)
:param gold_tags: (b, t)
:param mask: (b, t) 1对于有效部分,0对应pad
:return:
'''
pred_tags = pred_score.data.argmax(dim=-1)
nb_right = ((pred_tags == gold_tags) * mask).sum().item()
nb_total = mask.sum().item()
return nb_right, nb_total
# ner eval
def eval_ner(self, pred_spans, gold_spans):
nb_right, nb_pred, nb_gold = 0, 0, 0
for pred_span, gold_span in zip(pred_spans, gold_spans):
pred_span = set(pred_span)
gold_span = set(gold_span)
nb_pred += len(pred_span)
nb_gold += len(gold_span)
nb_right += len(pred_span & gold_span)
return nb_right, nb_pred, nb_gold
def calc_prf(self, nb_right, nb_pred, nb_gold):
p = nb_right / (nb_pred + 1e-30)
r = nb_right / (nb_gold + 1e-30)
f = (2 * nb_right) / (nb_gold + nb_pred + 1e-30)
return p, r, f
def train_eval(self):
train_loader = DataLoader(self.train_set, batch_size=self.args.batch_size, shuffle=True)
nb_batch = len(train_loader)
self.args.max_step = self.args.epoch * (nb_batch // self.args.update_step)
# ==> bert fine-tuning settings
no_decay = ['bias', 'LayerNorm.weight', 'LayerNorm.bias']
optimizer_bert_parameters = [
{'params': [p for n, p in self.model.bert_named_params()
if not any(nd in n for nd in no_decay) and p.requires_grad],
'weight_decay': 0.01},
{'params': [p for n, p in self.model.bert_named_params()
if any(nd in n for nd in no_decay) and p.requires_grad],
'weight_decay': 0.0}
]
bert_optimizer = AdamW(optimizer_bert_parameters, lr=self.args.bert_lr, eps=1e-8)
bert_scheduler = WarmupLinearSchedule(bert_optimizer, warmup_steps=self.args.max_step//20, t_total=self.args.max_step)
# bert_params = list(map(id, self.model.bert.parameters()))
# base_params = filter(lambda p: id(p) not in bert_params and p.requires_grad, self.model.parameters())
base_params = self.model.non_bert_params()
optimizer = Optimizer(base_params, self.args)
# ==> bert fine-tuning settings
# bert_params = list(map(id, self.model.bert.parameters()))
# base_params = filter(lambda p: id(p) not in bert_params and p.requires_grad, self.model.parameters())
# model_params = [{'params': base_params},
# {'params': filter(lambda p: p.requires_grad, self.model.bert.parameters()),
# 'lr': self.args.bert_lr}]
# optimizer = Optimizer(model_params, self.args)
best_dev_metric, best_test_metric = dict(), dict()
patient = 0
for ep in range(1, 1+self.args.epoch):
self.model.train()
t1 = time.time()
train_loss = 0.
train_right, train_total = 0, 0
for i, batcher in enumerate(train_loader):
batch = batch_variable(batcher, self.vocabs)
batch.to_device(self.args.device)
loss, start_score, end_score = self.model(batch.bert_inp, batch.start_ids, batch.end_ids, batch.mask)
loss_val = loss.data.item()
train_loss += loss_val
if self.args.update_step > 1:
loss = loss / self.args.update_step
loss.backward()
start_right, start_total = self.calc_train_acc(start_score, batch.start_ids, batch.mask)
end_right, end_total = self.calc_train_acc(end_score, batch.end_ids, batch.mask)
train_right += (start_right + end_right)
train_total += (start_total + end_total)
train_acc = train_right / train_total
if (i+1) % 10 == 0:
self.evaluate(self.val_set)
if (i + 1) % self.args.update_step == 0 or (i + 1 == nb_batch):
nn_utils.clip_grad_norm_(filter(lambda p: p.requires_grad, self.model.non_bert_params()),
max_norm=self.args.grad_clip)
nn_utils.clip_grad_norm_(filter(lambda p: p.requires_grad, self.model.bert.parameters()),
max_norm=self.args.bert_grad_clip)
optimizer.step()
bert_optimizer.step()
bert_scheduler.step()
self.model.zero_grad()
logger.info('[Epoch %d] Iter%d time cost: %.2fs, lr: %.6f, train loss: %.3f, Train ACC: %.3f' % (
ep, i, (time.time() - t1), optimizer.get_lr(), loss_val, train_acc))
dev_metric = self.evaluate(self.val_set)
if dev_metric['f'] > best_dev_metric.get('f', 0):
best_dev_metric = dev_metric
test_metric = self.evaluate(self.test_set)
if test_metric['f'] > best_test_metric.get('f', 0):
# check_point = {'model': self.model.state_dict(), 'settings': args}
# torch.save(check_point, self.args.model_chkp)
best_test_metric = test_metric
patient = 0
else:
patient += 1
logger.info('[Epoch %d] train loss: %.4f, lr: %f, patient: %d, dev_metric: %s, test_metric: %s' % (
ep, train_loss, optimizer.get_lr(), patient, best_dev_metric, best_test_metric))
if patient >= self.args.patient: # early stopping
break
logger.info('Final Test Metric: %s' % (best_test_metric))
def evaluate(self, test_data):
test_loader = DataLoader(test_data, batch_size=self.args.test_batch_size)
self.model.eval()
nb_right_all, nb_pred_all, nb_gold_all = 0, 0, 0
with torch.no_grad():
for i, batcher in enumerate(test_loader):
batch = batch_variable(batcher, self.vocabs)
batch.to_device(self.args.device)
start_logit, end_logit = self.model(batch.bert_inp, mask=batch.mask)
pred_spans = extract_ner_spans(start_logit, end_logit, batch.mask)
nb_right, nb_pred, nb_gold = self.eval_ner(pred_spans, batch.batch_spans)
nb_right_all += nb_right
nb_pred_all += nb_pred
nb_gold_all += nb_gold
p, r, f = self.calc_prf(nb_right_all, nb_pred_all, nb_gold_all)
return dict(p=p, r=r, f=f)
if __name__ == '__main__':
random.seed(1347)
np.random.seed(2343)
torch.manual_seed(1453)
torch.cuda.manual_seed(1347)
torch.cuda.manual_seed_all(1453)
print('cuda available:', torch.cuda.is_available())
print('cuDNN available:', torch.backends.cudnn.enabled)
print('gpu numbers:', torch.cuda.device_count())
args = args_config()
if torch.cuda.is_available() and args.cuda >= 0:
args.device = torch.device('cuda', args.cuda)
torch.cuda.empty_cache()
else:
args.device = torch.device('cpu')
data_path = data_config('./config/data_path.json')
trainer = Trainer(args, data_path)
trainer.train_eval()