-
Notifications
You must be signed in to change notification settings - Fork 101
/
train.py
65 lines (56 loc) · 2.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import click
from model.utils.data_generator import DataGenerator
from model.img2seq import Img2SeqModel
from model.utils.lr_schedule import LRSchedule
from model.utils.general import Config
from model.utils.text import Vocab
from model.utils.image import greyscale
@click.command()
@click.option('--data', default="configs/data_small.json",
help='Path to data json config')
@click.option('--vocab', default="configs/vocab_small.json",
help='Path to vocab json config')
@click.option('--training', default="configs/training_small.json",
help='Path to training json config')
@click.option('--model', default="configs/model.json",
help='Path to model json config')
@click.option('--output', default="results/small/",
help='Dir for results and model weights')
def main(data, vocab, training, model, output):
# Load configs
dir_output = output
config = Config([data, vocab, training, model])
config.save(dir_output)
vocab = Vocab(config)
# Load datasets
train_set = DataGenerator(path_formulas=config.path_formulas_train,
dir_images=config.dir_images_train,
img_prepro=greyscale,
max_iter=config.max_iter,
bucket=config.bucket_train,
path_matching=config.path_matching_train,
max_len=config.max_length_formula,
form_prepro=vocab.form_prepro)
val_set = DataGenerator(path_formulas=config.path_formulas_val,
dir_images=config.dir_images_val,
img_prepro=greyscale,
max_iter=config.max_iter,
bucket=config.bucket_val,
path_matching=config.path_matching_val,
max_len=config.max_length_formula,
form_prepro=vocab.form_prepro)
# Define learning rate schedule
n_batches_epoch = ((len(train_set) + config.batch_size - 1) //
config.batch_size)
lr_schedule = LRSchedule(lr_init=config.lr_init,
start_decay=config.start_decay*n_batches_epoch,
end_decay=config.end_decay*n_batches_epoch,
end_warm=config.end_warm*n_batches_epoch,
lr_warm=config.lr_warm,
lr_min=config.lr_min)
# Build model and train
model = Img2SeqModel(config, dir_output, vocab)
model.build_train(config)
model.train(config, train_set, val_set, lr_schedule)
if __name__ == "__main__":
main()