-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
220 lines (186 loc) · 7.24 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
os.environ['DTORROOT'] = '/DATA/forLishan/randomddd'
#os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from dtor.utilities.utils_stats import stats_from_results,roc_and_auc
from sklearn.metrics import roc_curve, auc
import numpy as np
import argparse
import torch
from dtor.utilities.utils import set_plt_config
from dtor.utilities.model_retriever import load_model
from dtor.utilities.utils import safe_restore
set_plt_config()
import os
import pickle
import torch.nn as nn
from dtor.utilities.data_retriever import get_data ##add new
#from scripts.train import RTRTrainer as Trainer
from trainer import Trainer as Trainer
from dataloader_m import MRIDataset
import sys
import matplotlib.pyplot as plt
from itertools import cycle
from sklearn.preprocessing import label_binarize
import pandas as pd
from network.resnet_stage import generate_model
from torch_intermediate_layer_getter import IntermediateLayerGetter as MidGetter
import shap
parser = argparse.ArgumentParser()
parser.add_argument("--tot_folds",help="Number of folds for model training",
type=int,
default=1)
parser.add_argument("--prefix", type=str, help="Training prefix",
default="nnuent_pre_focal_buffer_wp_pcr_dwi_lre4_cluster_layer2-train")
parser.add_argument("--legname", type=str, help="Legend description",
default='Response 4-fold CNN')
args = parser.parse_args()
tot_folds = args.tot_folds
prefix = args.prefix
legname = args.legname
#%%
sys.argv.extend(["--load_json", f"/data/groups/beets-tan/l.cai/results/{prefix}/options.json"])
#%%
# Process folds
# Concatenate results of the folds
y_preds_total = []
y_labels_total = []
for ff in range(tot_folds):
# Load test data
print(f"val_fold_{ff}")
A = Trainer()
train_ds, val_ds, train_dl, val_dl = A.init_data(ff, mean=[0.43216, 0.394666, 0.37645], std=[0.22803, 0.22145, 0.216989])
# Make sample for loading
sample = []
for n, point in enumerate(val_dl):
if n == 1:
break
x = point[0]
sample.append(x)
#sample = torch.cat(sample, dim=0)
use_cuda = torch.cuda.is_available() #add new
device = torch.device("cuda" if use_cuda else "cpu")
#sample = sample.to(device) # till here
#_n = prefix.rstrip("-train")
_n = prefix.split('-')[0]
full_name=os.path.join(f"/data/groups/beets-tan/l.cai/results/{prefix}/", 'model-' + _n +'-fold' +str(ff)+ '-epochzloss'+'.pth') #str(prefix)
#full_name = 'results/nnuent_pre_focal_buffer4-train/model-nnuent_pre_focal_buffer4-fold3-epochz.pth'
#Get Model for fold
#model = A.init_model(sample)
model = generate_model(10)
#model.load_state_dict(torch.load(full_name,
# map_location=torch.device('cuda' if torch.cuda.is_available() else "cpu")))
model = safe_restore(model, full_name)
model = model.to(device)
model.eval()
# Generate vector of predictions and true labels
y_preds = dict()
pp = []
ll = []
#print(len(train_ds),train_ds[0][0]['image'])
for n in range(len(val_ds)):
f, truth, extra = val_ds[n]
#print(type(f),f.shape)
#x = f.unsqueeze(0)
#x = x.to(device)
x = f['image']
#print(x.shape)
x = x.unsqueeze(0)
x1 = f['out1']
x1 = x1.unsqueeze(0)
x2 = f['out2']
x2 = x2.unsqueeze(0)
x3 = f['out3']
x3 = x3.unsqueeze(0)
x4 = f['out4']
x4 = x4.unsqueeze(0)
x = x.to(device)
x1 = x1.to(device)
x2 = x2.to(device)
x3 = x3.to(device)
x4 = x4.to(device)
#l,p = model(x)
#l,p = model(x)
return_layers = {
'layer1': 'layer1',
'layer2': 'layer2',
}
#mid_getter = MidGetter(model, return_layers=return_layers, keep_output=True)
#mid_outputs, model_output = mid_getter([x,x1,x2,x3,x4])
#layer1 = mid_outputs['layer1'].cpu().detach().numpy()
#plt.imshow(layer1[0,0,10,:,:])
#plt.savefig('focus.png',dpi=300)
l = model([x,x1,x2,x3,x4])
p = nn.Softmax(dim=1)(l)
pred = p[0].detach().cpu().numpy().tolist()
y_preds_total.append(pred)
y_labels_total.append(truth)
pp.append(p[0][1].detach().cpu())
ll.append(truth)
#print((torch.stack((train_ds[0][0]['image'], train_ds[1][0]['image']),dim=0).shape))
#x_tr = torch.stack((train_ds[0][0]['image'], train_ds[1][0]['image']),dim=0)
#x1_tr = torch.stack((train_ds[0][0]['out1'], train_ds[1][0]['out1']),dim=0)
#x2_tr = torch.stack((train_ds[0][0]['out2'], train_ds[1][0]['out2']),dim =0)
#x3_tr = torch.stack((train_ds[0][0]['out3'], train_ds[1][0]['out3']),dim=0)
#x4_tr = torch.stack((train_ds[0][0]['out4'], train_ds[1][0]['out4']),dim=0)
#x_tr = x_tr.to(device)
#x1_tr = x1_tr.to(device)
#x2_tr = x2_tr.to(device)
#x3_tr = x3_tr.to(device)
#x4_tr = x4_tr.to(device)
#explain = shap.DeepExplainer(model,[x,x1,x2,x3,x4])
#if type([x_tr,x1_tr,x2_tr,x3_tr,x4_tr]) == list:
# print('list')
#print(shap.initjs())
#print(explain.explain_row())
#print([x].shape)
#print(val_ds[1][0]['image'].shape)
#shap_v = explain.shap_values([x,x1,x2,x3,x4])#[x_tr,x1_tr,x2_tr,x3_tr,x4_tr])
#print(shap_values.shape)
#df.loc[df[f'fold_{ff}']=='test',['dl_pred']] = pp
#print(pp)
print(np.sum(ll))
print(roc_and_auc(np.asarray(pp),np.asarray(ll)))
print(dict(zip(pp,ll)),len(pp))
#with open('dwit2_emvi_resnet10_val.pkl', 'wb') as handle:
# pickle.dump(dict(zip(pp,ll)), handle, protocol=pickle.HIGHEST_PROTOCOL)
#dict(zip(arr,ll))
#p#rint(roc_and_auc(df['dl_pred'],df['Risk[High]']))
#print(pp)
#df.to_csv('test_rf_dl.csv',sep='\t',index=False)
y_labels_total = np.array(label_binarize(y_labels_total,classes=[0,1,2]))[:,:2]
y_preds_total = np.array(y_preds_total)
#print(y_preds_total)
#y_labels_total = np.reshape(y_labels_total,(191,1))
#y_preds_total = np.reshape(y_preds_total,(191,1))
#print(y_preds_total.shape)
#print(y_labels_total)
lw = 2
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(2):
fpr[i], tpr[i], _ = roc_curve(y_labels_total[:,i], y_preds_total[:,i])
roc_auc[i] = auc(fpr[i], tpr[i])
print(roc_auc)
fpr["micro"], tpr["micro"], _ = roc_curve(y_labels_total.ravel(), y_preds_total.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
plt.figure()
plt.plot(fpr["micro"], tpr["micro"],
label='micro-average ROC curve (area = {0:0.2f})'
''.format(roc_auc["micro"]),
color='deeppink', linestyle=':', linewidth=4)
colors = cycle(['aqua', 'darkorange'])
for i, color in zip(range(2), colors):
plt.plot(fpr[i], tpr[i], color=color, lw=lw,
label='ROC curve of class {0} (area = {1:0.2f})'
''.format(i, roc_auc[i]))
plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('One center test for RTR')
plt.legend(loc="lower right")
#plt.savefig('results.png')
plt.show()
print(roc_and_auc(y_preds_total[:,1],y_labels_total[:,1]))