Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Unable to parse and visualize "trace view" with tensorboard #20525

Open
Neronjust2017 opened this issue Jan 3, 2025 · 1 comment
Open

Unable to parse and visualize "trace view" with tensorboard #20525

Neronjust2017 opened this issue Jan 3, 2025 · 1 comment
Labels
bug Something isn't working repro needed The issue is missing a reproducible example ver: 2.4.x

Comments

@Neronjust2017
Copy link

Neronjust2017 commented Jan 3, 2025

Bug description

I'm using the following code to profile my PyTorch model. pytorch/pytorch#144148

    import torch
    from pytorch_lightning.profilers import PyTorchProfiler
    import lightning as L
    
    schedule = torch.profiler.schedule(
        wait=2,
        warmup=2,
        active=5,
        repeat=10
    )

    profiler = PyTorchProfiler(
        dirpath="{tbprofiler_path}",
        filename="trace",
        schedule=schedule,
        export_to_chrome=True,
        with_stack=True,
        record_shapes=True,
        record_module_names=True,
        profile_memory=True
    )
    trainer_arg_dict["profiler"] = profiler

    return L.Trainer(
        **trainer_arg_dict,
    )

The code terminated normally, however, I got this error when using tensorboard to visualize the trace results.
image

and the overview result also seems incorrect.
image

The CPU peak memory usage is only 3.0, which is also quite strange. Any suggestions about this? Thanks.
image

Versions
PyTorch version: 2.3.0a0+6ddf5cf85e.nv24.04
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: 14.0.0-1ubuntu1.1
CMake version: version 3.29.0
Libc version: glibc-2.35

Python version: 3.10.12 (main, Jul 29 2024, 16:56:48) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-3.10.0-1160.el7.x86_64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA A100-SXM4-80GB
Nvidia driver version: 470.199.02
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz
CPU family: 6
Model: 106
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 2
Stepping: 6
CPU max MHz: 3500.0000
CPU min MHz: 800.0000
BogoMIPS: 5800.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb cat_l3 invpcid_single intel_pt ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq md_clear pconfig spec_ctrl intel_stibp flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 3 MiB (64 instances)
L1i cache: 2 MiB (64 instances)
L2 cache: 80 MiB (64 instances)
L3 cache: 96 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-31,64-95
NUMA node1 CPU(s): 32-63,96-127
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; Load fences, usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

Versions of relevant libraries:
[pip3] cudnn==1.1.2
[pip3] efficientnet-pytorch==0.7.1
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.23.5
[pip3] nvtx==0.2.5
[pip3] onnx==1.16.0
[pip3] onnxruntime==1.16.0
[pip3] optree==0.11.0
[pip3] pynvjitlink==0.1.13
[pip3] pytorch-lightning==2.4.0
[pip3] pytorch-quantization==2.1.2
[pip3] pytorch-triton==3.0.0+a9bc1a364
[pip3] torch==2.3.0a0+6ddf5cf85e.nv24.4
[pip3] torch-scatter==2.1.2
[pip3] torch-tensorrt==2.3.0a0
[pip3] torchdata==0.7.1a0
[pip3] torchmetrics==1.4.2
[pip3] torchtext==0.17.0a0
[pip3] torchvision==0.18.0a0
[conda] Could not collect

What version are you seeing the problem on?

v2.4

How to reproduce the bug

No response

Error messages and logs

# Error messages and logs here please

Environment

Current environment
#- PyTorch Lightning Version (e.g., 2.5.0):
#- PyTorch Version (e.g., 2.5):
#- Python version (e.g., 3.12):
#- OS (e.g., Linux):
#- CUDA/cuDNN version:
#- GPU models and configuration:
#- How you installed Lightning(`conda`, `pip`, source):

More info

No response

@lantiga
Copy link
Collaborator

lantiga commented Jan 6, 2025

hey @Neronjust2017 it's hard to pinpoint the issue without a full reproduction or a minimal example. Can you provide one?

@lantiga lantiga added waiting on author Waiting on user action, correction, or update and removed needs triage Waiting to be triaged by maintainers labels Jan 6, 2025
@lantiga lantiga added repro needed The issue is missing a reproducible example and removed waiting on author Waiting on user action, correction, or update labels Jan 13, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working repro needed The issue is missing a reproducible example ver: 2.4.x
Projects
None yet
Development

No branches or pull requests

2 participants