Skip to content

Files

Latest commit

Dec 3, 2022
efdb955 · Dec 3, 2022

History

History

faster_rcnn

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022
Dec 3, 2022

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Introduction

[ALGORITHM]

@article{Ren_2017,
   title={Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks},
   journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
   publisher={Institute of Electrical and Electronics Engineers (IEEE)},
   author={Ren, Shaoqing and He, Kaiming and Girshick, Ross and Sun, Jian},
   year={2017},
   month={Jun},
}

Results and models

Backbone Style Lr schd Mem (GB) Inf time (fps) box AP Config Download
R-50-DC5 caffe 1x - - 37.2 config model | log
R-50-FPN caffe 1x 3.8 37.8 config model | log
R-50-FPN pytorch 1x 4.0 21.4 37.4 config model | log
R-50-FPN pytorch 2x - - 38.4 config model | log
R-101-FPN caffe 1x 5.7 39.8 config model | log
R-101-FPN pytorch 1x 6.0 15.6 39.4 config model | log
R-101-FPN pytorch 2x - - 39.8 config model | log
X-101-32x4d-FPN pytorch 1x 7.2 13.8 41.2 config model | log
X-101-32x4d-FPN pytorch 2x - - 41.2 config model | log
X-101-64x4d-FPN pytorch 1x 10.3 9.4 42.1 config model | log
X-101-64x4d-FPN pytorch 2x - - 41.6 config model | log

Different regression loss

We trained with R-50-FPN pytorch style backbone for 1x schedule.

Backbone Loss type Mem (GB) Inf time (fps) box AP Config Download
R-50-FPN L1Loss 4.0 21.4 37.4 config model | log
R-50-FPN IoULoss 37.9 config model | log
R-50-FPN GIoULoss 37.6 config model | log
R-50-FPN BoundedIoULoss 37.4 config model | log

Pre-trained Models

We also train some models with longer schedules and multi-scale training. The users could finetune them for downstream tasks.

Backbone Style Lr schd Mem (GB) Inf time (fps) box AP Config Download
R-50-DC5 caffe 1x - 37.4 config model | log
R-50-DC5 caffe 3x - 38.7 config model | log
R-50-FPN caffe 2x 4.3 39.7 config model | log
R-50-FPN caffe 3x 4.3 40.2 config model | log

We further finetune some pre-trained models on the COCO subsets, which only contain only a few of the 80 categories.

Backbone Style Class name Pre-traind model Mem (GB) box AP Config Download
R-50-FPN caffe person R-50-FPN-Caffe-3x 3.7 55.8 config model | log
R-50-FPN caffe person-bicycle-car R-50-FPN-Caffe-3x 3.7 44.1 config model | log