forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinfer.py
134 lines (122 loc) · 5.5 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import sys
import argparse
import time
import math
import unittest
import contextlib
import numpy as np
import six
import paddle.fluid as fluid
import paddle
import utils
import nets as net
def parse_args():
parser = argparse.ArgumentParser("ssr benchmark.")
parser.add_argument(
'--test_dir', type=str, default='test_data', help='test file address')
parser.add_argument(
'--vocab_path', type=str, default='vocab.txt', help='vocab path')
parser.add_argument(
'--start_index', type=int, default='1', help='start index')
parser.add_argument(
'--last_index', type=int, default='10', help='end index')
parser.add_argument(
'--model_dir', type=str, default='model_output', help='model dir')
parser.add_argument(
'--use_cuda', type=int, default='0', help='whether use cuda')
parser.add_argument(
'--batch_size', type=int, default='50', help='batch_size')
parser.add_argument(
'--hid_size', type=int, default='128', help='hidden size')
parser.add_argument(
'--emb_size', type=int, default='128', help='embedding size')
args = parser.parse_args()
return args
def model(vocab_size, emb_size, hidden_size):
user_data = fluid.layers.data(
name="user", shape=[1], dtype="int64", lod_level=1)
all_item_data = fluid.layers.data(
name="all_item", shape=[vocab_size, 1], dtype="int64")
user_emb = fluid.layers.embedding(
input=user_data, size=[vocab_size, emb_size], param_attr="emb.item")
all_item_emb = fluid.layers.embedding(
input=all_item_data, size=[vocab_size, emb_size], param_attr="emb.item")
all_item_emb_re = fluid.layers.reshape(x=all_item_emb, shape=[-1, emb_size])
user_encoder = net.GrnnEncoder(hidden_size=hidden_size)
user_enc = user_encoder.forward(user_emb)
user_hid = fluid.layers.fc(input=user_enc,
size=hidden_size,
param_attr='user.w',
bias_attr="user.b")
user_exp = fluid.layers.expand(x=user_hid, expand_times=[1, vocab_size])
user_re = fluid.layers.reshape(x=user_exp, shape=[-1, hidden_size])
all_item_hid = fluid.layers.fc(input=all_item_emb_re,
size=hidden_size,
param_attr='item.w',
bias_attr="item.b")
cos_item = fluid.layers.cos_sim(X=all_item_hid, Y=user_re)
all_pre_ = fluid.layers.reshape(x=cos_item, shape=[-1, vocab_size])
pos_label = fluid.layers.data(name="pos_label", shape=[1], dtype="int64")
acc = fluid.layers.accuracy(input=all_pre_, label=pos_label, k=20)
return acc
def infer(args, vocab_size, test_reader):
""" inference function """
place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
emb_size = args.emb_size
hid_size = args.hid_size
batch_size = args.batch_size
model_path = args.model_dir
with fluid.scope_guard(fluid.Scope()):
main_program = fluid.Program()
start_up_program = fluid.Program()
with fluid.program_guard(main_program, start_up_program):
acc = model(vocab_size, emb_size, hid_size)
for epoch in range(start_index, last_index + 1):
copy_program = main_program.clone()
model_path = model_dir + "/epoch_" + str(epoch)
fluid.io.load_params(
executor=exe, dirname=model_path, main_program=copy_program)
accum_num_recall = 0.0
accum_num_sum = 0.0
t0 = time.time()
step_id = 0
for data in test_reader():
step_id += 1
user_data, pos_label = utils.infer_data(data, place)
all_item_numpy = np.tile(
np.arange(vocab_size), len(pos_label)).reshape(
len(pos_label), vocab_size, 1)
para = exe.run(copy_program,
feed={
"user": user_data,
"all_item": all_item_numpy,
"pos_label": pos_label
},
fetch_list=[acc.name],
return_numpy=False)
acc_ = para[0]._get_float_element(0)
data_length = len(
np.concatenate(
pos_label, axis=0).astype("int64"))
accum_num_sum += (data_length)
accum_num_recall += (data_length * acc_)
if step_id % 1 == 0:
print("step:%d " % (step_id),
accum_num_recall / accum_num_sum)
t1 = time.time()
print("model:%s recall@20:%.3f time_cost(s):%.2f" %
(model_path, accum_num_recall / accum_num_sum, t1 - t0))
if __name__ == "__main__":
args = parse_args()
start_index = args.start_index
last_index = args.last_index
test_dir = args.test_dir
model_dir = args.model_dir
batch_size = args.batch_size
vocab_path = args.vocab_path
use_cuda = True if args.use_cuda else False
print("start index: ", start_index, " last_index:", last_index)
test_reader, vocab_size = utils.construct_test_data(
test_dir, vocab_path, batch_size=args.batch_size)
infer(args, vocab_size, test_reader=test_reader)