diff --git a/404.html b/404.html index f00d01d..e32ea93 100644 --- a/404.html +++ b/404.html @@ -6,7 +6,7 @@
Site built with pkgdown 2.0.7.
+Site built with pkgdown 2.0.9.
diff --git a/CONTRIBUTING.html b/CONTRIBUTING.html index fda58d5..aa0072b 100644 --- a/CONTRIBUTING.html +++ b/CONTRIBUTING.html @@ -1,5 +1,5 @@ -Site built with pkgdown 2.0.7.
+Site built with pkgdown 2.0.9.
diff --git a/articles/create_report-1.png b/articles/create_report-1.png index 1422bb8..b2146be 100644 Binary files a/articles/create_report-1.png and b/articles/create_report-1.png differ diff --git a/articles/erdeanalysis1-1.png b/articles/erdeanalysis1-1.png new file mode 100644 index 0000000..483eb35 Binary files /dev/null and b/articles/erdeanalysis1-1.png differ diff --git a/articles/erdeanalysis2-1.png b/articles/erdeanalysis2-1.png new file mode 100644 index 0000000..f7cf7fd Binary files /dev/null and b/articles/erdeanalysis2-1.png differ diff --git a/articles/erdeanalysis3-1.png b/articles/erdeanalysis3-1.png new file mode 100644 index 0000000..db72a7f Binary files /dev/null and b/articles/erdeanalysis3-1.png differ diff --git a/articles/erdeanalysis4-1.png b/articles/erdeanalysis4-1.png new file mode 100644 index 0000000..7db2608 Binary files /dev/null and b/articles/erdeanalysis4-1.png differ diff --git a/articles/exondeanalysis1-1.png b/articles/exondeanalysis1-1.png index d6d2609..ff23955 100644 Binary files a/articles/exondeanalysis1-1.png and b/articles/exondeanalysis1-1.png differ diff --git a/articles/exondeanalysis2-1.png b/articles/exondeanalysis2-1.png index 214fb65..4d2b470 100644 Binary files a/articles/exondeanalysis2-1.png and b/articles/exondeanalysis2-1.png differ diff --git a/articles/geneexon-1.png b/articles/geneexon-1.png index 247e113..3159801 100644 Binary files a/articles/geneexon-1.png and b/articles/geneexon-1.png differ diff --git a/articles/geneexonmatch-1.png b/articles/geneexonmatch-1.png index fe8297c..1dda9a5 100644 Binary files a/articles/geneexonmatch-1.png and b/articles/geneexonmatch-1.png differ diff --git a/articles/goanalysis-1.png b/articles/goanalysis-1.png index def19db..71639fb 100644 Binary files a/articles/goanalysis-1.png and b/articles/goanalysis-1.png differ diff --git a/articles/index.html b/articles/index.html index e19a7bd..91ede6b 100644 --- a/articles/index.html +++ b/articles/index.html @@ -1,5 +1,5 @@ -R version: R version 4.3.0 (2023-04-21 ucrt)
-Bioconductor version: 3.17
-Package: 1.24.0
+R version: R version 4.4.0 (2024-04-24)
+Bioconductor version: 3.19
+Package: 1.29.2
## 2023-05-07 19:38:00.521397 downloading file rse_gene.Rdata to SRP045638
+## 2024-05-21 18:39:57.328014 downloading file rse_gene.Rdata to SRP045638
## Check that the file was downloaded
file.exists(file.path("SRP045638", "rse_gene.Rdata"))
## [1] TRUE
+load(file.path("SRP045638", "rse_gene.Rdata"), verbose = TRUE)
+## Loading objects:
+## rse_gene
The coverage count matrices are provided as RangedSummarizedExperiment objects (rse) (9). These objects store information at the feature level, the samples and the actual count matrix as shown in @@ -611,11 +613,11 @@
TCGAbiolinks
(15).
-+-## [1] 72 21
+## [1] "project" @@ -653,7 +655,7 @@
. -Technical variablesscale_counts()
+-## Input reads: number reported by SRA might be larger than number ## of reads Rail-RNA downloaded colData(rse_gene)[ @@ -674,17 +676,17 @@
Technical variables## SRR1554535 106244496 91185969 ## SRR1554558 200687480 170754145 ## SRR1554553 90579486 51803404
+-## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.5719 0.9165 0.9788 0.9532 1.0000 1.0000
+-## [1] 22950214241 7553726235 12018044330 7041243857 24062460144 45169026301
+## Alternatively, scale_scounts() can use the number of mapped reads ## and other information colData(rse_gene)[, c( @@ -713,11 +715,11 @@
Biological informationSHARQ beta tissue and cell type predictions, which are based on processing the abstract of papers. This information is available for some of the SRA projects. -
+-## [1] NA NA NA NA NA NA
+## [1] "blood" "blood" "blood" "blood" "blood" "blood"
For some data sets we were able to find the GEO accession IDs, which @@ -729,7 +731,7 @@
Biological information -
+## GEO information was absent for the SRP045638 data set colData(rse_gene)[, c("geo_accession", "title", "characteristics")]
-## DataFrame with 72 rows and 3 columns @@ -746,29 +748,29 @@
Biological information## SRR1554535 NA NA NA ## SRR1554558 NA NA NA ## SRR1554553 NA NA NA
+-## [1] "GSM836270" "GSM836271" "GSM836272" "GSM836273" "GSM847561" "GSM847562"
+-## [1] "K562 cells with shRNA targeting SRF gene cultured with no doxycycline (uninduced - UI), rep1." ## [2] "K562 cells with shRNA targeting SRF gene cultured with doxycycline for 48 hours (48 hr), rep1."
+-## CharacterList of length 2 ## [[1]] cells: K562 shRNA expression: no treatment: Puromycin ## [[2]] cells: K562 shRNA expression: yes, targeting SRF treatment: Puromycin, doxycycline
+## Similar but not exactly the same wording used for two different samples colData(rse_gene_SRP009615)$characteristics[[1]]
-## [1] "cells: K562" "shRNA expression: no" "treatment: Puromycin"
+colData(rse_gene_SRP009615)$characteristics[[11]]
-## [1] "cell line: K562" ## [2] "shRNA expression: no shRNA expression" ## [3] "treatment: Puromycin"
+-@@ -784,7 +786,7 @@## Extract the target information target <- sapply(colData(rse_gene_SRP009615)$characteristics, "[", 2) target
Biological information## [10] "shRNA expression: expressing shRNA targeting ATF3" ## [11] "shRNA expression: no shRNA expression" ## [12] "shRNA expression: expressing shRNA targeting ATF3"
+## Build a useful factor vector, set the reference level and append the result ## to the colData() slot target_factor <- sapply(strsplit(target, "targeting "), "[", 2) @@ -794,7 +796,7 @@
Biological informationtarget_factor
-## [1] none SRF none SRF none EGR1 none EGR1 none ATF3 none ATF3 ## Levels: none ATF3 EGR1 SRF
+colData(rse_gene_SRP009615)$target_factor <- target_factor
As shown in Figure @ref(fig:Figure2), we can expand the biological metadata information by adding predictions based on RNA-seq data (14). The predictions include information about @@ -802,21 +804,21 @@
Biological informationadd_predictions() to expand the
colData()
slot. -+-## [1] 72 21
+-## Add the predictions rse_gene <- add_predictions(rse_gene)
+## 2023-05-07 19:38:03.426619 downloading the predictions to C:\Users\fellg\AppData\Local\Temp\Rtmp2vyc2o/PredictedPhenotypes_v0.0.06.rda
## 2024-05-21 18:39:59.370333 downloading the predictions to /tmp/Rtmpv3FCef/PredictedPhenotypes_v0.0.06.rda
-## Loading objects: ## PredictedPhenotypes
+-## [1] 72 33
+## DataFrame with 72 rows and 12 columns @@ -888,13 +890,13 @@
by default, then load it into R, sort it appropriately and then append it to theAdding more informationSraRunTable.txt
colData()
slot. Below we do so for the SRP045638 project. -+## Save the information from ## https://trace.ncbi.nlm.nih.gov/Traces/study/?acc=SRP045638 ## to a table. We saved the file as SRP045638/SraRunTable.txt. file.exists(file.path("SRP045638", "SraRunTable.txt"))
-## [1] TRUE
+-## Read the table sra <- read.csv(file.path("SRP045638", "SraRunTable.txt"), header = TRUE @@ -958,7 +960,7 @@
Adding more information## 4 ## 5 ## 6
+## Set all column names in lower case colnames(sra) <- tolower(colnames(sra)) @@ -981,7 +983,7 @@
Adding more information## Final dimensions dim(colData(rse_gene))
-## [1] 72 40
+## DataFrame with 72 rows and 7 columns @@ -1013,7 +1015,7 @@
Adding more information## SRR1554553 DLPFC
Since we have the predicted sex as well as the reported sex via the SRA Run Selector, we can check whether they match.
-+table( "Predicted" = colData(rse_gene)$predicted_sex, "Observed" = colData(rse_gene)$sex @@ -1032,7 +1034,7 @@
DE setup(13) looked at differences between 6 age groups: prenatal, infant, child, teen, adult and late life. The following code creates these six age groups. -
+## Create the original 6 age groups age_bins <- cut(colData(rse_gene)$age, c(-1, 0, 1, 10, 20, 50, Inf), include.lowest = TRUE @@ -1045,7 +1047,7 @@
DE setupMost of the DE signal from the original study was between the prenatal and postnatal samples. To simplify the analysis, we will focus on this comparison. -
+## Create prenatal factor colData(rse_gene)$prenatal <- factor( ifelse(colData(rse_gene)$age_group == "prenatal", "prenatal", @@ -1058,7 +1060,7 @@
object with the output ofDE setuprse
scale_counts(rse)
. -+## Scale counts rse_gene_scaled <- scale_counts(rse_gene) @@ -1066,7 +1068,7 @@
DE setuprm(rse_gene)
Having scaled the counts, we then filter out genes that are lowly expressed and extract the count matrix.
-+@@ -1085,7 +1087,7 @@## Extract counts and filter out lowly expressed geens counts <- assays(rse_gene_scaled)$counts filter <- rowMeans(counts) > 0.5
DE analysis
+library("limma") library("edgeR") @@ -1102,14 +1104,14 @@
DE analysis
+-+-tapply( colData(rse_gene_scaled)$rin, colData(rse_gene_scaled)$prenatal, summary @@ -1121,13 +1123,13 @@
DE analysis## $postnatal ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 5.300 8.100 8.300 8.197 8.700 9.100
+-## Specify our design matrix design <- with( colData(rse_gene_scaled), model.matrix(~ sex + rin + prenatal) )
+## Run voom v <- voom(dge, design, plot = TRUE)
@@ -1135,7 +1137,7 @@DE analysis
+ @@ -1143,7 +1145,7 @@DE analysis
+## Visually explore DE results limma::plotMA(fit, coef = 4)
@@ -1152,7 +1154,7 @@DE analysis
+limma::volcanoplot(fit, coef = 4)
DE report(20), which is another package in the ReportWriting biocView category. -
+## Extract data from limma-voom results top <- topTable(fit, number = Inf, sort.by = "none", @@ -1184,7 +1186,7 @@
DE report) ## Build a DESeqDataSet with the count data and model we used -library("DESeq2") +library("DESeq2") dds <- DESeqDataSet(rse_gene_scaled[filter, ], ~ sex + rin + prenatal)
## converting counts to integer mode
-## Warning in DESeqDataSet(rse_gene_scaled[filter, ], ~sex + rin + prenatal): some @@ -1193,7 +1195,7 @@
DE report## standard deviation larger than 5 (an arbitrary threshold to trigger this message). ## Including numeric variables with large mean can induce collinearity with the intercept. ## Users should center and scale numeric variables in the design to improve GLM convergence.
+## Add gene names keeping only the Ensembl part of the Gencode IDs rownames(dds) <- gsub("\\..*", "", rownames(dds)) @@ -1223,7 +1225,7 @@
DE report
+library("regionReport") ## This takes about 20 minutes to run report <- DESeq2Report(dds, @@ -1236,7 +1238,7 @@
. A pre-computed version is available as Supplementary File 1. -DE reportbrowseURL()
@@ -1246,14 +1248,14 @@GO enrichment
+library("clusterProfiler") library("org.Hs.eg.db") ## Remember that limma_res had ENSEMBL IDs for the genes head(rownames(limma_res))
-## [1] "ENSG00000000003" "ENSG00000000005" "ENSG00000000419" "ENSG00000000457" "ENSG00000000460" "ENSG00000000938"
+## Perform enrichment analysis for Biological Process (BP) ## Note that the argument is keytype instead of keyType in Bioconductor 3.5 enrich_go <- enrichGO( @@ -1296,20 +1298,20 @@
Exon and exon-exon junctions
+-## Download the data if it is not there if (!file.exists(file.path("SRP045638", "rse_exon.Rdata"))) { download_study("SRP045638", type = "rse-exon") }
-## 2023-05-07 19:42:35.79495 downloading file rse_exon.Rdata to SRP045638
++## 2024-05-21 18:44:04.331859 downloading file rse_exon.Rdata to SRP045638
## Load the data load(file.path("SRP045638", "rse_exon.Rdata")) ## Scale and add the metadata (it is in the same order) identical(colData(rse_exon)$run, colData(rse_gene_scaled)$run)
-## [1] TRUE
+-colData(rse_exon) <- colData(rse_gene_scaled) rse_exon_scaled <- scale_counts(rse_exon) ## To highlight that we scaled the counts @@ -1321,7 +1323,7 @@
Exon and exon-exon junctions## filter_exon ## FALSE TRUE ## 32.76 67.24
+## Build DGEList object dge_exon <- DGEList( counts = assays(rse_exon_scaled)$counts[filter_exon, ] @@ -1337,7 +1339,7 @@
Exon and exon-exon junctions
+## Run remaining parts of the DE analysis fit_exon <- lmFit(v_exon, design) fit_exon <- eBayes(fit_exon) @@ -1350,7 +1352,7 @@
Exon and exon-exon junctions
+## Get p-values and other statistics top_exon <- topTable(fit_exon, number = Inf, sort.by = "none", @@ -1366,7 +1368,7 @@
Exon and exon-exon junctions
+## Get the gene IDs for genes that are DE at the gene-level or that have at ## least one exon with DE signal. genes_w_de_exon <- unique( @@ -1403,7 +1405,7 @@
Exon and exon-exon junctions
+## Keep only the DE exons that are from a gene that is also DE top_exon_de <- top_exon[top_exon$adj.P.Val < 0.001 & top_exon$ID %in% attr(vinfo, "intersections")[["genes:exons"]], ] @@ -1464,35 +1466,73 @@
. -Base-pair resolutioncoverage_matrix()
-## Define expressed regions for study SRP045638, only for chromosome 21 +
++## Normally, one can use rtracklayer::import() to access remote parts of BigWig +## files without having to download the complete files. However, as of +## 2024-05-20 this doesn't seem to be working well. So this is a workaround to +## issue https://github.com/lawremi/rtracklayer/issues/83 +download_study("SRP045638", type = "mean") + +## Define expressed regions for study SRP045638, only for chromosome 21 regions <- expressed_regions("SRP045638", "chr21", cutoff = 5L, - maxClusterGap = 3000L -) - -## Explore the resulting expressed regions -regions -summary(width(regions)) -table(width(regions) >= 100) - -## Keep only the ones that are at least 100 bp long + maxClusterGap = 3000L, + outdir = "SRP045638" +)
++## Explore the resulting expressed regions +regions
+ +## GRanges object with 3853 ranges and 6 metadata columns: +## seqnames ranges strand | value area indexStart indexEnd cluster clusterL +## <Rle> <IRanges> <Rle> | <numeric> <numeric> <integer> <integer> <Rle> <Rle> +## 1 chr21 5026549-5026630 * | 6.48181 531.509 5026549 5026630 1 1677 +## 2 chr21 5027935-5027961 * | 6.19690 167.316 5027935 5027961 1 1677 +## 3 chr21 5028108-5028225 * | 8.99329 1061.208 5028108 5028225 1 1677 +## 4 chr21 5032053-5032117 * | 7.06828 459.438 5032053 5032117 2 8283 +## 5 chr21 5032148-5032217 * | 6.48833 454.183 5032148 5032217 2 8283 +## ... ... ... ... . ... ... ... ... ... ... +## 3849 chr21 46695774 * | 5.02902 5.02902 46695774 46695774 708 5708 +## 3850 chr21 46695784-46695843 * | 5.38047 322.82838 46695784 46695843 708 5708 +## 3851 chr21 46695865-46695869 * | 5.11283 25.56414 46695865 46695869 708 5708 +## 3852 chr21 46696463-46696486 * | 5.25689 126.16540 46696463 46696486 708 5708 +## 3853 chr21 46696508-46696534 * | 5.22988 141.20686 46696508 46696534 708 5708 +## ------- +## seqinfo: 1 sequence from an unspecified genome
+ +## Min. 1st Qu. Median Mean 3rd Qu. Max. +## 1.0 6.0 68.0 186.2 151.0 11709.0
+## +## FALSE TRUE +## 2284 1569
++## Keep only the ones that are at least 100 bp long regions <- regions[width(regions) >= 100] length(regions)
## [1] 1569
Now that we have a set of regions to work with, we proceed to build a RangedSummarizedExperiment object with the coverage counts, add the expanded metadata we built for the gene-level, and scale the counts. Note that
-coverage_matrix()
scales the base-pair coverage counts by default, which we turn off in order to use usescale_counts()
.-## Compute coverage matrix for study SRP045638, only for chromosome 21 +
++## Normally, one can use rtracklayer::import() to access remote parts of BigWig +## files without having to download the complete files. However, as of +## 2024-05-20 this doesn't seem to be working well. So this is a workaround to +## issue https://github.com/lawremi/rtracklayer/issues/83 +download_study("SRP045638", type = "samples") + +## Compute coverage matrix for study SRP045638, only for chromosome 21 ## Takes about 4 minutes rse_er <- coverage_matrix("SRP045638", "chr21", regions, - chunksize = 2000, verboseLoad = FALSE, scale = FALSE -) - -## Use the expanded metadata we built for the gene model + chunksize = 2000, verboseLoad = FALSE, scale = FALSE, + outdir = "SRP045638" +)
+## Use the expanded metadata we built for the gene model colData(rse_er) <- colData(rse_gene_scaled) ## Scale the coverage matrix @@ -1505,7 +1545,7 @@
Base-pair resolution
+-## Build DGEList object dge_er <- DGEList(counts = assays(rse_er_scaled)$counts) @@ -1514,34 +1554,77 @@
Base-pair resolution## Explore the data plotMDS(dge_er, labels = substr(colData(rse_er_scaled)$prenatal, 1, 2))
+++ + -+++ ++## Run voom -v_er <- voom(dge_er, design, plot = TRUE) - -## Run remaining parts of the DE analysis +v_er <- voom(dge_er, design, plot = TRUE)
++ + -++## Visually explore the results -limma::volcanoplot(fit_er, coef = 4) - -## Number of DERs +limma::volcanoplot(fit_er, coef = 4)
++ +++## Number of DERs top_er <- topTable(fit_er, number = Inf, sort.by = "none", coef = "prenatalpostnatal" ) table(top_er$adj.P.Val < 0.001)
## +## FALSE TRUE +## 609 960
Having identified the differentially expressed regions (DERs), we can sort all regions by their adjusted p-value.
-+++regions_by_padj[1:10]## Sort regions by q-value regions_by_padj <- regions[order(top_er$adj.P.Val, decreasing = FALSE)] ## Look at the top 10 -regions_by_padj[1:10] -width(regions_by_padj[1:10])
+## GRanges object with 10 ranges and 6 metadata columns: +## seqnames ranges strand | value area indexStart indexEnd cluster clusterL +## <Rle> <IRanges> <Rle> | <numeric> <numeric> <integer> <integer> <Rle> <Rle> +## 2998 chr21 44441692-44442678 * | 34.73978 34288.160 44441692 44442678 607 14072 +## 2144 chr21 38822674-38824916 * | 85.56379 191919.577 38822674 38824916 435 14882 +## 3033 chr21 44458772-44459070 * | 8.44090 2523.830 44458772 44459070 608 4968 +## 3029 chr21 44458526-44458644 * | 5.80784 691.133 44458526 44458644 608 4968 +## 3505 chr21 46250498-46250780 * | 5.68433 1608.666 46250498 46250780 678 30649 +## 3045 chr21 44461331-44461480 * | 5.82022 873.033 44461331 44461480 608 4968 +## 1356 chr21 33070821-33072413 * | 190.20982 303004.244 33070821 33072413 292 2261 +## 1714 chr21 36225565-36225667 * | 11.56453 1191.146 36225565 36225667 375 9845 +## 3773 chr21 46598568-46599629 * | 301.85950 320574.784 46598568 46599629 704 6544 +## 2254 chr21 39928983-39929390 * | 233.01399 95069.710 39928983 39929390 464 3344 +## ------- +## seqinfo: 1 sequence from an unspecified genome
++width(regions_by_padj[1:10])
## [1] 987 2243 299 119 283 150 1593 103 1062 408
Visualize regions @@ -1558,7 +1641,7 @@
Visualize regions
++names(bws) <- colData(rse_er_scaled)$run + +## Workaround to https://github.com/lawremi/rtracklayer/issues/83: use the local +## files we already downloaded +bws <- gsub("http://duffel.rail.bio/recount/", "", bws)## Construct the list of bigWig URLs ## They have the following form: ## http://duffel.rail.bio/recount/ @@ -1578,11 +1661,15 @@
Visualize regions)] ## Use the sample run IDs as the sample names -names(bws) <- colData(rse_er_scaled)$run
We visualize the DERs using
-derfinderPlot
, similar to what was done in the original publication (13). However, we first add a little padding to the regions: 100 base-pairs on each side.diff --git a/sitemap.xml b/sitemap.xml index 85e369a..84da611 100644 --- a/sitemap.xml +++ b/sitemap.xml @@ -4,19 +4,22 @@+## Add 100 bp padding on each side regions_resized <- resize(regions_by_padj[1:10], width(regions_by_padj[1:10]) + 200, @@ -1591,7 +1678,7 @@
Visualize regions
+@@ -88,7 +88,7 @@## Get the bp coverage data for the plots library("derfinder") regionCov <- getRegionCoverage( @@ -1606,7 +1693,7 @@
Visualize regions(27) package comes into play as it has done the heavy lifting for us already. -
diff --git a/reference/recountWorkflow-package.html b/reference/recountWorkflow-package.html index b05c6bd..7290af7 100644 --- a/reference/recountWorkflow-package.html +++ b/reference/recountWorkflow-package.html @@ -1,5 +1,5 @@ -++## Import the Gencode v25 hg38 gene annotation ## using GenomicState library("GenomicState") @@ -1615,23 +1702,42 @@
Visualize regionsgencode_v25_hg38_txdb <- GenomicStateHub( version = "25", genome = "hg38", filetype = "TxDb" -)[[1]] - -## Explore the TxDb object +)[[1]]
+## loading from cache
+## Loading required package: GenomicFeatures
++## Explore the TxDb object gencode_v25_hg38_txdb
## TxDb object: +## # Db type: TxDb +## # Supporting package: GenomicFeatures +## # Data source: ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_25/gencode.v25.annotation.gtf.gz +## # Organism: Homo sapiens +## # Taxonomy ID: 9606 +## # miRBase build ID: NA +## # Genome: hg38 +## # transcript_nrow: 198093 +## # exon_nrow: 678580 +## # cds_nrow: 270623 +## # Db created by: GenomicFeatures package from Bioconductor +## # Creation time: 2019-10-07 09:59:57 -0400 (Mon, 07 Oct 2019) +## # GenomicFeatures version at creation time: 1.36.4 +## # RSQLite version at creation time: 2.1.2 +## # DBSCHEMAVERSION: 1.2
Now that we have a TxDb object for Gencode v25 on hg38 coordinates, we can use
-bumphunter
’s (28) annotation functions for annotating the original 10 regions we were working with as well as the annotated genes that we can download usingGenomicState
.++## Download annotated transcripts for gencode v25 ann_gencode_v25_hg38 <- GenomicStateHub( version = "25", genome = "hg38", filetype = "AnnotatedGenes" -)[[1]] - -## Annotate the regions of interest +)[[1]]
+## loading from cache
@@ -1641,22 +1747,25 @@+## Annotate the regions of interest ## Note that we are using the original regions, not the resized ones library("bumphunter") nearest_ann <- matchGenes(regions_by_padj[1:10], ann_gencode_v25_hg38)
Visualize regionsmakeGenomicState() that we can download with
GenomicState
. -@@ -69,7 +69,7 @@++## Download the genomic state object for Gencode v25 gs_gencode_v25_hg38 <- GenomicStateHub( version = "25", genome = "hg38", filetype = "GenomicState" -)[[1]] - -## Annotate the original regions +)[[1]]
+## loading from cache
++## Annotate the original regions regions_ann <- annotateRegions( regions_resized, gs_gencode_v25_hg38$fullGenome )
+## 2024-05-21 18:45:45.155842 annotateRegions: counting
## 2024-05-21 18:45:45.326422 annotateRegions: annotating
We can finally use
-plotRegionCoverage()
to visualize the top 10 regions coloring by whether they are prenatal or postnatal samples. Known exons are shown in dark blue, introns in light blue.diff --git a/pkgdown.yml b/pkgdown.yml index ae5904a..beeb193 100644 --- a/pkgdown.yml +++ b/pkgdown.yml @@ -1,7 +1,7 @@ -pandoc: 2.19.2 -pkgdown: 2.0.7 +pandoc: 3.1.13 +pkgdown: 2.0.9 pkgdown_sha: ~ articles: recount-workflow: recount-workflow.html -last_built: 2023-05-07T23:37Z +last_built: 2024-05-21T18:39Z diff --git a/reference/index.html b/reference/index.html index 3d76cb8..f9911f2 100644 --- a/reference/index.html +++ b/reference/index.html @@ -1,5 +1,5 @@ -++library("derfinderPlot") pdf("region_plots.pdf") plotRegionCoverage( @@ -1668,9 +1777,11 @@
Visualize regions= 1, ylab = "Coverage (RP40M, 100bp)", ask = FALSE, verbose = FALSE ) -dev.off() - -## Visualize DER #2 +dev.off()
+## agg_png +## 2
++## Visualize DER #2 plotRegionCoverage( regions = regions_resized, regionCoverage = regionCov, groupInfo = colData(rse_er_scaled)$prenatal, @@ -1680,6 +1791,11 @@
Visualize regions= 1, ylab = "Coverage (RP40M, 100bp)", ask = FALSE, verbose = FALSE, whichRegions = 2 )
++In plots like Figure @ref(fig:regionplots) we can see that some DERs match known exons (DERs 2, 8, 10), some are longer than known exons (DERs 1, 7, 9), and others are exon fragments (DERs 3, 4, 5, 6) which @@ -1706,11 +1822,11 @@
Session information(29). The session information is available in Supplementary File 2. The most recent version of this workflow is available via Bioconductor at http://bioconductor.org/help/workflows/. -
++## Final list of files created dir("SRP045638")
-## [1] "gene_report.bib" "gene_report.html" "rse_exon.Rdata" "rse_gene.Rdata" "SraRunTable.txt"
@@ -57,6 +57,11 @@+## Pandoc information library("rmarkdown")
-## @@ -1718,250 +1834,250 @@
Session information## The following objects are masked from 'package:BiocStyle': ## ## html_document, md_document, pdf_document
@@ -54,7 +54,7 @@ diff --git a/index.html b/index.html index dee2098..0247182 100644 --- a/index.html +++ b/index.html @@ -5,29 +5,15 @@ -+ --## [1] '2.19.2'
diff --git a/articles/regionplots-1.png b/articles/regionplots-1.png new file mode 100644 index 0000000..b07e735 Binary files /dev/null and b/articles/regionplots-1.png differ diff --git a/authors.html b/authors.html index cd7b669..8d9e24a 100644 --- a/authors.html +++ b/authors.html @@ -1,5 +1,5 @@ -++## [1] '3.1.13'
-## elapsed ## 6.2
@@ -2204,7 +2320,7 @@+options(width = 100) library("sessioninfo") session_info()
## ─ Session info ─────────────────────────────────────────────────────────────────────────────────── ## setting value -## version R version 4.3.0 (2023-04-21 ucrt) -## os Windows 11 x64 (build 22621) -## system x86_64, mingw32 -## ui RTerm +## version R version 4.4.0 (2024-04-24) +## os Ubuntu 22.04.4 LTS +## system x86_64, linux-gnu +## ui X11 ## language en -## collate English_United States.utf8 -## ctype English_United States.utf8 -## tz America/New_York -## date 2023-05-07 -## pandoc 2.19.2 @ C:/Program Files/RStudio/resources/app/bin/quarto/bin/tools/ (via rmarkdown) +## collate en_US.UTF-8 +## ctype en_US.UTF-8 +## tz UTC +## date 2024-05-21 +## pandoc 3.1.13 @ /usr/bin/ (via rmarkdown) ## ## ─ Packages ─────────────────────────────────────────────────────────────────────────────────────── -## package * version date (UTC) lib source -## AnnotationDbi * 1.62.1 2023-05-02 [1] Bioconductor -## AnnotationFilter 1.24.0 2023-04-25 [1] Bioconductor -## AnnotationHub * 3.8.0 2023-04-25 [1] Bioconductor -## ape 5.7-1 2023-03-13 [1] CRAN (R 4.3.0) -## aplot 0.1.10 2023-03-08 [1] CRAN (R 4.3.0) -## backports 1.4.1 2021-12-13 [1] CRAN (R 4.3.0) -## base64enc 0.1-3 2015-07-28 [1] CRAN (R 4.3.0) -## bibtex 0.5.1 2023-01-26 [1] CRAN (R 4.3.0) -## Biobase * 2.60.0 2023-04-25 [1] Bioconductor -## BiocFileCache * 2.8.0 2023-04-25 [1] Bioconductor -## BiocGenerics * 0.46.0 2023-04-25 [1] Bioconductor -## BiocIO 1.10.0 2023-04-25 [1] Bioconductor -## BiocManager 1.30.20 2023-02-24 [1] CRAN (R 4.3.0) -## BiocParallel 1.34.1 2023-05-05 [1] Bioconductor -## BiocStyle * 2.28.0 2023-04-25 [1] Bioconductor -## BiocVersion 3.17.1 2022-11-04 [1] Bioconductor -## biomaRt 2.56.0 2023-04-25 [1] Bioconductor -## Biostrings 2.68.0 2023-04-25 [1] Bioconductor -## biovizBase 1.48.0 2023-04-25 [1] Bioconductor -## bit 4.0.5 2022-11-15 [1] CRAN (R 4.3.0) -## bit64 4.0.5 2020-08-30 [1] CRAN (R 4.3.0) -## bitops 1.0-7 2021-04-24 [1] CRAN (R 4.3.0) -## blob 1.2.4 2023-03-17 [1] CRAN (R 4.3.0) -## bookdown 0.33 2023-03-06 [1] CRAN (R 4.3.0) -## BSgenome 1.68.0 2023-04-25 [1] Bioconductor -## bslib 0.4.2 2022-12-16 [1] CRAN (R 4.3.0) -## bumphunter * 1.42.0 2023-04-25 [1] Bioconductor -## cachem 1.0.8 2023-05-01 [1] CRAN (R 4.3.0) -## caTools 1.18.2 2021-03-28 [1] CRAN (R 4.3.0) -## checkmate 2.2.0 2023-04-27 [1] CRAN (R 4.3.0) -## cli 3.6.1 2023-03-23 [1] CRAN (R 4.3.0) -## cluster 2.1.4 2022-08-22 [1] CRAN (R 4.3.0) -## clusterProfiler * 4.8.1 2023-05-03 [1] Bioconductor -## codetools 0.2-19 2023-02-01 [1] CRAN (R 4.3.0) -## colorspace 2.1-0 2023-01-23 [1] CRAN (R 4.3.0) -## cowplot 1.1.1 2020-12-30 [1] CRAN (R 4.3.0) -## crayon 1.5.2 2022-09-29 [1] CRAN (R 4.3.0) -## crosstalk 1.2.0 2021-11-04 [1] CRAN (R 4.3.0) -## curl 5.0.0 2023-01-12 [1] CRAN (R 4.3.0) -## data.table 1.14.8 2023-02-17 [1] CRAN (R 4.3.0) -## DBI 1.1.3 2022-06-18 [1] CRAN (R 4.3.0) -## dbplyr * 2.3.2 2023-03-21 [1] CRAN (R 4.3.0) -## DEFormats 1.28.0 2023-04-25 [1] Bioconductor -## DelayedArray 0.26.2 2023-05-05 [1] Bioconductor -## derfinder * 1.34.0 2023-04-25 [1] Bioconductor -## derfinderHelper 1.34.0 2023-04-25 [1] Bioconductor -## derfinderPlot * 1.34.0 2023-04-25 [1] Bioconductor -## desc 1.4.2 2022-09-08 [1] CRAN (R 4.3.0) -## DESeq2 * 1.40.1 2023-05-02 [1] Bioconductor -## dichromat 2.0-0.1 2022-05-02 [1] CRAN (R 4.3.0) -## digest 0.6.31 2022-12-11 [1] CRAN (R 4.3.0) -## doRNG 1.8.6 2023-01-16 [1] CRAN (R 4.3.0) -## DOSE 3.26.1 2023-05-03 [1] Bioconductor -## downloader 0.4 2015-07-09 [1] CRAN (R 4.3.0) -## dplyr 1.1.2 2023-04-20 [1] CRAN (R 4.3.0) -## DT * 0.27 2023-01-17 [1] CRAN (R 4.3.0) -## edgeR * 3.42.2 2023-05-02 [1] Bioconductor -## ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.3.0) -## enrichplot 1.20.0 2023-04-25 [1] Bioconductor -## ensembldb 2.24.0 2023-04-25 [1] Bioconductor -## evaluate 0.21 2023-05-05 [1] CRAN (R 4.3.0) -## fansi 1.0.4 2023-01-22 [1] CRAN (R 4.3.0) -## farver 2.1.1 2022-07-06 [1] CRAN (R 4.3.0) -## fastmap 1.1.1 2023-02-24 [1] CRAN (R 4.3.0) -## fastmatch 1.1-3 2021-07-23 [1] CRAN (R 4.3.0) -## fgsea 1.26.0 2023-04-25 [1] Bioconductor -## filelock 1.0.2 2018-10-05 [1] CRAN (R 4.3.0) -## foreach * 1.5.2 2022-02-02 [1] CRAN (R 4.3.0) -## foreign 0.8-84 2022-12-06 [1] CRAN (R 4.3.0) -## Formula 1.2-5 2023-02-24 [1] CRAN (R 4.3.0) -## fs 1.6.2 2023-04-25 [1] CRAN (R 4.3.0) -## generics 0.1.3 2022-07-05 [1] CRAN (R 4.3.0) -## GenomeInfoDb * 1.36.0 2023-04-25 [1] Bioconductor -## GenomeInfoDbData 1.2.10 2023-05-07 [1] Bioconductor -## GenomicAlignments 1.36.0 2023-04-25 [1] Bioconductor -## GenomicFeatures 1.52.0 2023-04-25 [1] Bioconductor -## GenomicFiles 1.36.0 2023-04-25 [1] Bioconductor -## GenomicRanges * 1.52.0 2023-04-25 [1] Bioconductor -## GenomicState * 0.99.15 2021-10-13 [1] Bioconductor -## GEOquery 2.68.0 2023-04-25 [1] Bioconductor -## GGally 2.1.2 2021-06-21 [1] CRAN (R 4.3.0) -## ggbio 1.48.0 2023-04-25 [1] Bioconductor -## ggforce 0.4.1 2022-10-04 [1] CRAN (R 4.3.0) -## ggfun 0.0.9 2022-11-21 [1] CRAN (R 4.3.0) -## ggplot2 * 3.4.2 2023-04-03 [1] CRAN (R 4.3.0) -## ggplotify 0.1.0 2021-09-02 [1] CRAN (R 4.3.0) -## ggraph 2.1.0 2022-10-09 [1] CRAN (R 4.3.0) -## ggrepel 0.9.3 2023-02-03 [1] CRAN (R 4.3.0) -## ggtree 3.8.0 2023-04-25 [1] Bioconductor -## glue 1.6.2 2022-02-24 [1] CRAN (R 4.3.0) -## GO.db 3.17.0 2023-05-07 [1] Bioconductor -## GOSemSim 2.26.0 2023-04-25 [1] Bioconductor -## gplots * 3.1.3 2022-04-25 [1] CRAN (R 4.3.0) -## graph 1.78.0 2023-04-25 [1] Bioconductor -## graphlayouts 1.0.0 2023-05-01 [1] CRAN (R 4.3.0) -## gridExtra 2.3 2017-09-09 [1] CRAN (R 4.3.0) -## gridGraphics 0.5-1 2020-12-13 [1] CRAN (R 4.3.0) -## gson 0.1.0 2023-03-07 [1] CRAN (R 4.3.0) -## gtable 0.3.3 2023-03-21 [1] CRAN (R 4.3.0) -## gtools 3.9.4 2022-11-27 [1] CRAN (R 4.3.0) -## HDO.db 0.99.1 2023-05-07 [1] Bioconductor -## highr 0.10 2022-12-22 [1] CRAN (R 4.3.0) -## Hmisc 5.0-1 2023-03-08 [1] CRAN (R 4.3.0) -## hms 1.1.3 2023-03-21 [1] CRAN (R 4.3.0) -## htmlTable 2.4.1 2022-07-07 [1] CRAN (R 4.3.0) -## htmltools 0.5.5 2023-03-23 [1] CRAN (R 4.3.0) -## htmlwidgets 1.6.2 2023-03-17 [1] CRAN (R 4.3.0) -## httpuv 1.6.9 2023-02-14 [1] CRAN (R 4.3.0) -## httr 1.4.5 2023-02-24 [1] CRAN (R 4.3.0) -## igraph 1.4.2 2023-04-07 [1] CRAN (R 4.3.0) -## interactiveDisplayBase 1.38.0 2023-04-25 [1] Bioconductor -## IRanges * 2.34.0 2023-04-25 [1] Bioconductor -## iterators * 1.0.14 2022-02-05 [1] CRAN (R 4.3.0) -## jquerylib 0.1.4 2021-04-26 [1] CRAN (R 4.3.0) -## jsonlite 1.8.4 2022-12-06 [1] CRAN (R 4.3.0) -## KEGGREST 1.40.0 2023-04-25 [1] Bioconductor -## KernSmooth 2.23-20 2021-05-03 [1] CRAN (R 4.3.0) -## knitr * 1.42 2023-01-25 [1] CRAN (R 4.3.0) -## knitrBootstrap 1.0.2 2018-05-24 [1] CRAN (R 4.3.0) -## labeling 0.4.2 2020-10-20 [1] CRAN (R 4.3.0) -## later 1.3.1 2023-05-02 [1] CRAN (R 4.3.0) -## lattice 0.21-8 2023-04-05 [1] CRAN (R 4.3.0) -## lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.3.0) -## lifecycle 1.0.3 2022-10-07 [1] CRAN (R 4.3.0) -## limma * 3.56.0 2023-04-25 [1] Bioconductor -## locfit * 1.5-9.7 2023-01-02 [1] CRAN (R 4.3.0) -## lubridate 1.9.2 2023-02-10 [1] CRAN (R 4.3.0) -## magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.3.0) -## markdown 1.6 2023-04-07 [1] CRAN (R 4.3.0) -## MASS 7.3-58.4 2023-03-07 [1] CRAN (R 4.3.0) -## Matrix 1.5-4 2023-04-04 [1] CRAN (R 4.3.0) -## MatrixGenerics * 1.12.0 2023-04-25 [1] Bioconductor -## matrixStats * 0.63.0 2022-11-18 [1] CRAN (R 4.3.0) -## memoise 2.0.1 2021-11-26 [1] CRAN (R 4.3.0) -## mime 0.12 2021-09-28 [1] CRAN (R 4.3.0) -## munsell 0.5.0 2018-06-12 [1] CRAN (R 4.3.0) -## nlme 3.1-162 2023-01-31 [1] CRAN (R 4.3.0) -## nnet 7.3-18 2022-09-28 [1] CRAN (R 4.3.0) -## org.Hs.eg.db * 3.17.0 2023-05-07 [1] Bioconductor -## OrganismDbi 1.42.0 2023-04-25 [1] Bioconductor -## patchwork 1.1.2 2022-08-19 [1] CRAN (R 4.3.0) -## pheatmap * 1.0.12 2019-01-04 [1] CRAN (R 4.3.0) -## pillar 1.9.0 2023-03-22 [1] CRAN (R 4.3.0) -## pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.3.0) -## pkgdown 2.0.7 2022-12-14 [1] CRAN (R 4.3.0) -## plyr 1.8.8 2022-11-11 [1] CRAN (R 4.3.0) -## png 0.1-8 2022-11-29 [1] CRAN (R 4.3.0) -## polyclip 1.10-4 2022-10-20 [1] CRAN (R 4.3.0) -## prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.3.0) -## progress 1.2.2 2019-05-16 [1] CRAN (R 4.3.0) -## promises 1.2.0.1 2021-02-11 [1] CRAN (R 4.3.0) -## ProtGenerics 1.32.0 2023-04-25 [1] Bioconductor -## purrr 1.0.1 2023-01-10 [1] CRAN (R 4.3.0) -## qvalue 2.32.0 2023-04-25 [1] Bioconductor -## R6 2.5.1 2021-08-19 [1] CRAN (R 4.3.0) -## ragg 1.2.5 2023-01-12 [1] CRAN (R 4.3.0) -## rappdirs 0.3.3 2021-01-31 [1] CRAN (R 4.3.0) -## RBGL 1.76.0 2023-04-25 [1] Bioconductor -## RColorBrewer * 1.1-3 2022-04-03 [1] CRAN (R 4.3.0) -## Rcpp 1.0.10 2023-01-22 [1] CRAN (R 4.3.0) -## RCurl 1.98-1.12 2023-03-27 [1] CRAN (R 4.3.0) -## readr 2.1.4 2023-02-10 [1] CRAN (R 4.3.0) -## recount * 1.26.0 2023-04-25 [1] Bioconductor -## RefManageR 1.4.0 2022-09-30 [1] CRAN (R 4.3.0) -## regionReport * 1.34.0 2023-04-25 [1] Bioconductor -## rentrez 1.2.3 2020-11-10 [1] CRAN (R 4.3.0) -## reshape 0.8.9 2022-04-12 [1] CRAN (R 4.3.0) -## reshape2 1.4.4 2020-04-09 [1] CRAN (R 4.3.0) -## restfulr 0.0.15 2022-06-16 [1] CRAN (R 4.3.0) -## rjson 0.2.21 2022-01-09 [1] CRAN (R 4.3.0) -## rlang 1.1.1 2023-04-28 [1] CRAN (R 4.3.0) -## rmarkdown * 2.21 2023-03-26 [1] CRAN (R 4.3.0) -## rngtools 1.5.2 2021-09-20 [1] CRAN (R 4.3.0) -## rpart 4.1.19 2022-10-21 [1] CRAN (R 4.3.0) -## rprojroot 2.0.3 2022-04-02 [1] CRAN (R 4.3.0) -## Rsamtools 2.16.0 2023-04-25 [1] Bioconductor -## RSQLite 2.3.1 2023-04-03 [1] CRAN (R 4.3.0) -## rstudioapi 0.14 2022-08-22 [1] CRAN (R 4.3.0) -## rtracklayer 1.60.0 2023-04-25 [1] Bioconductor -## S4Arrays 1.0.1 2023-05-01 [1] Bioconductor -## S4Vectors * 0.38.1 2023-05-02 [1] Bioconductor -## sass 0.4.6 2023-05-03 [1] CRAN (R 4.3.0) -## scales 1.2.1 2022-08-20 [1] CRAN (R 4.3.0) -## scatterpie 0.1.9 2023-04-22 [1] CRAN (R 4.3.0) -## sessioninfo * 1.2.2 2021-12-06 [1] CRAN (R 4.3.0) -## shadowtext 0.1.2 2022-04-22 [1] CRAN (R 4.3.0) -## shiny 1.7.4 2022-12-15 [1] CRAN (R 4.3.0) -## stringi 1.7.12 2023-01-11 [1] CRAN (R 4.3.0) -## stringr 1.5.0 2022-12-02 [1] CRAN (R 4.3.0) -## SummarizedExperiment * 1.30.1 2023-05-01 [1] Bioconductor -## systemfonts 1.0.4 2022-02-11 [1] CRAN (R 4.3.0) -## textshaping 0.3.6 2021-10-13 [1] CRAN (R 4.3.0) -## tibble 3.2.1 2023-03-20 [1] CRAN (R 4.3.0) -## tidygraph 1.2.3 2023-02-01 [1] CRAN (R 4.3.0) -## tidyr 1.3.0 2023-01-24 [1] CRAN (R 4.3.0) -## tidyselect 1.2.0 2022-10-10 [1] CRAN (R 4.3.0) -## tidytree 0.4.2 2022-12-18 [1] CRAN (R 4.3.0) -## timechange 0.2.0 2023-01-11 [1] CRAN (R 4.3.0) -## treeio 1.24.0 2023-04-25 [1] Bioconductor -## tweenr 2.0.2 2022-09-06 [1] CRAN (R 4.3.0) -## tzdb 0.3.0 2022-03-28 [1] CRAN (R 4.3.0) -## utf8 1.2.3 2023-01-31 [1] CRAN (R 4.3.0) -## VariantAnnotation 1.46.0 2023-04-25 [1] Bioconductor -## vctrs 0.6.2 2023-04-19 [1] CRAN (R 4.3.0) -## viridis 0.6.3 2023-05-03 [1] CRAN (R 4.3.0) -## viridisLite 0.4.2 2023-05-02 [1] CRAN (R 4.3.0) -## withr 2.5.0 2022-03-03 [1] CRAN (R 4.3.0) -## xfun 0.39 2023-04-20 [1] CRAN (R 4.3.0) -## XML 3.99-0.14 2023-03-19 [1] CRAN (R 4.3.0) -## xml2 1.3.4 2023-04-27 [1] CRAN (R 4.3.0) -## xtable 1.8-4 2019-04-21 [1] CRAN (R 4.3.0) -## XVector 0.40.0 2023-04-25 [1] Bioconductor -## yaml 2.3.7 2023-01-23 [1] CRAN (R 4.3.0) -## yulab.utils 0.0.6 2022-12-20 [1] CRAN (R 4.3.0) -## zlibbioc 1.46.0 2023-04-25 [1] Bioconductor +## package * version date (UTC) lib source +## abind 1.4-5 2016-07-21 [1] CRAN (R 4.4.0) +## AnnotationDbi * 1.66.0 2024-05-01 [1] Bioconductor 3.19 (R 4.4.0) +## AnnotationFilter 1.28.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## AnnotationHub * 3.12.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## ape 5.8 2024-04-11 [1] RSPM (R 4.4.0) +## aplot 0.2.2 2023-10-06 [1] CRAN (R 4.4.0) +## backports 1.4.1 2021-12-13 [1] CRAN (R 4.4.0) +## base64enc 0.1-3 2015-07-28 [2] RSPM (R 4.4.0) +## bibtex 0.5.1 2023-01-26 [1] CRAN (R 4.4.0) +## Biobase * 2.64.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## BiocFileCache * 2.12.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## BiocGenerics * 0.50.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## BiocIO 1.14.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## BiocManager 1.30.23 2024-05-04 [2] CRAN (R 4.4.0) +## BiocParallel 1.38.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## BiocStyle * 2.32.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## BiocVersion 3.19.1 2024-04-17 [2] Bioconductor 3.19 (R 4.4.0) +## biomaRt 2.60.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## Biostrings 2.72.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## biovizBase 1.52.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## bit 4.0.5 2022-11-15 [1] CRAN (R 4.4.0) +## bit64 4.0.5 2020-08-30 [1] CRAN (R 4.4.0) +## bitops 1.0-7 2021-04-24 [1] CRAN (R 4.4.0) +## blob 1.2.4 2023-03-17 [1] CRAN (R 4.4.0) +## bookdown 0.39 2024-04-15 [1] RSPM (R 4.4.0) +## BSgenome 1.72.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## bslib 0.7.0 2024-03-29 [2] RSPM (R 4.4.0) +## bumphunter * 1.46.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## cachem 1.1.0 2024-05-16 [2] RSPM (R 4.4.0) +## caTools 1.18.2 2021-03-28 [1] CRAN (R 4.4.0) +## checkmate 2.3.1 2023-12-04 [1] CRAN (R 4.4.0) +## cli 3.6.2 2023-12-11 [2] RSPM (R 4.4.0) +## cluster 2.1.6 2023-12-01 [3] CRAN (R 4.4.0) +## clusterProfiler * 4.12.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## codetools 0.2-20 2024-03-31 [3] CRAN (R 4.4.0) +## colorspace 2.1-0 2023-01-23 [1] CRAN (R 4.4.0) +## cowplot 1.1.3 2024-01-22 [1] CRAN (R 4.4.0) +## crayon 1.5.2 2022-09-29 [2] RSPM (R 4.4.0) +## crosstalk 1.2.1 2023-11-23 [1] CRAN (R 4.4.0) +## curl 5.2.1 2024-03-01 [2] RSPM (R 4.4.0) +## data.table 1.15.4 2024-03-30 [1] RSPM (R 4.4.0) +## DBI 1.2.2 2024-02-16 [1] RSPM (R 4.4.0) +## dbplyr * 2.5.0 2024-03-19 [1] RSPM (R 4.4.0) +## DEFormats 1.32.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## DelayedArray 0.30.1 2024-05-07 [1] Bioconductor 3.19 (R 4.4.0) +## derfinder * 1.38.0 2024-05-01 [1] Bioconductor 3.19 (R 4.4.0) +## derfinderHelper 1.38.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## derfinderPlot * 1.39.0 2024-05-21 [1] Github (leekgroup/derfinderPlot@6406f0e) +## desc 1.4.3 2023-12-10 [2] RSPM (R 4.4.0) +## DESeq2 * 1.44.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## dichromat 2.0-0.1 2022-05-02 [1] CRAN (R 4.4.0) +## digest 0.6.35 2024-03-11 [2] RSPM (R 4.4.0) +## doRNG 1.8.6 2023-01-16 [1] CRAN (R 4.4.0) +## DOSE 3.30.1 2024-05-16 [1] Bioconductor 3.19 (R 4.4.0) +## downloader 0.4 2015-07-09 [1] CRAN (R 4.4.0) +## dplyr 1.1.4 2023-11-17 [1] CRAN (R 4.4.0) +## DT * 0.33 2024-04-04 [1] RSPM (R 4.4.0) +## edgeR * 4.2.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## enrichplot 1.24.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## ensembldb 2.28.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## evaluate 0.23 2023-11-01 [2] RSPM (R 4.4.0) +## fansi 1.0.6 2023-12-08 [2] RSPM (R 4.4.0) +## farver 2.1.2 2024-05-13 [1] RSPM (R 4.4.0) +## fastmap 1.2.0 2024-05-15 [2] RSPM (R 4.4.0) +## fastmatch 1.1-4 2023-08-18 [1] CRAN (R 4.4.0) +## fgsea 1.30.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## filelock 1.0.3 2023-12-11 [1] CRAN (R 4.4.0) +## foreach * 1.5.2 2022-02-02 [1] CRAN (R 4.4.0) +## foreign 0.8-86 2023-11-28 [3] CRAN (R 4.4.0) +## Formula 1.2-5 2023-02-24 [1] CRAN (R 4.4.0) +## fs 1.6.4 2024-04-25 [2] RSPM (R 4.4.0) +## generics 0.1.3 2022-07-05 [1] CRAN (R 4.4.0) +## GenomeInfoDb * 1.40.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## GenomeInfoDbData 1.2.12 2024-05-21 [1] Bioconductor +## GenomicAlignments 1.40.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## GenomicFeatures * 1.56.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## GenomicFiles 1.40.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## GenomicRanges * 1.56.0 2024-05-01 [1] Bioconductor 3.19 (R 4.4.0) +## GenomicState * 0.99.15 2021-10-13 [1] Bioconductor +## GEOquery 2.72.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## GGally 2.2.1 2024-02-14 [1] RSPM (R 4.4.0) +## ggbio 1.52.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## ggforce 0.4.2 2024-02-19 [1] RSPM (R 4.4.0) +## ggfun 0.1.4 2024-01-19 [1] CRAN (R 4.4.0) +## ggplot2 * 3.5.1 2024-04-23 [1] RSPM (R 4.4.0) +## ggplotify 0.1.2 2023-08-09 [1] CRAN (R 4.4.0) +## ggraph 2.2.1 2024-03-07 [1] RSPM (R 4.4.0) +## ggrepel 0.9.5 2024-01-10 [1] CRAN (R 4.4.0) +## ggstats 0.6.0 2024-04-05 [1] RSPM (R 4.4.0) +## ggtree 3.12.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## glue 1.7.0 2024-01-09 [2] RSPM (R 4.4.0) +## GO.db 3.19.1 2024-05-21 [1] Bioconductor +## GOSemSim 2.30.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## gplots * 3.1.3.1 2024-02-02 [1] CRAN (R 4.4.0) +## graph 1.82.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## graphlayouts 1.1.1 2024-03-09 [1] RSPM (R 4.4.0) +## gridExtra 2.3 2017-09-09 [1] CRAN (R 4.4.0) +## gridGraphics 0.5-1 2020-12-13 [1] CRAN (R 4.4.0) +## gson 0.1.0 2023-03-07 [1] CRAN (R 4.4.0) +## gtable 0.3.5 2024-04-22 [1] RSPM (R 4.4.0) +## gtools 3.9.5 2023-11-20 [1] CRAN (R 4.4.0) +## HDO.db 0.99.1 2024-02-04 [1] Bioconductor +## highr 0.10 2022-12-22 [2] RSPM (R 4.4.0) +## Hmisc 5.1-2 2024-03-11 [1] RSPM (R 4.4.0) +## hms 1.1.3 2023-03-21 [1] CRAN (R 4.4.0) +## htmlTable 2.4.2 2023-10-29 [1] CRAN (R 4.4.0) +## htmltools 0.5.8.1 2024-04-04 [2] RSPM (R 4.4.0) +## htmlwidgets 1.6.4 2023-12-06 [2] RSPM (R 4.4.0) +## httr 1.4.7 2023-08-15 [2] RSPM (R 4.4.0) +## httr2 1.0.1 2024-04-01 [2] RSPM (R 4.4.0) +## igraph 2.0.3 2024-03-13 [1] RSPM (R 4.4.0) +## IRanges * 2.38.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## iterators * 1.0.14 2022-02-05 [1] CRAN (R 4.4.0) +## jquerylib 0.1.4 2021-04-26 [2] RSPM (R 4.4.0) +## jsonlite 1.8.8 2023-12-04 [2] RSPM (R 4.4.0) +## KEGGREST 1.44.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## KernSmooth 2.23-24 2024-05-17 [3] RSPM (R 4.4.0) +## knitr * 1.46 2024-04-06 [2] RSPM (R 4.4.0) +## knitrBootstrap 1.0.3 2024-02-06 [1] RSPM (R 4.4.0) +## labeling 0.4.3 2023-08-29 [1] CRAN (R 4.4.0) +## lattice 0.22-6 2024-03-20 [3] CRAN (R 4.4.0) +## lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.4.0) +## lifecycle 1.0.4 2023-11-07 [2] RSPM (R 4.4.0) +## limma * 3.60.2 2024-05-19 [1] Bioconductor 3.19 (R 4.4.0) +## locfit * 1.5-9.9 2024-03-01 [1] RSPM (R 4.4.0) +## lubridate 1.9.3 2023-09-27 [1] CRAN (R 4.4.0) +## magrittr 2.0.3 2022-03-30 [2] RSPM (R 4.4.0) +## markdown 1.12 2023-12-06 [1] CRAN (R 4.4.0) +## MASS 7.3-60.2 2024-05-06 [3] local +## Matrix 1.7-0 2024-03-22 [3] CRAN (R 4.4.0) +## MatrixGenerics * 1.16.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## matrixStats * 1.3.0 2024-04-11 [1] RSPM (R 4.4.0) +## memoise 2.0.1 2021-11-26 [2] RSPM (R 4.4.0) +## mime 0.12 2021-09-28 [2] RSPM (R 4.4.0) +## munsell 0.5.1 2024-04-01 [1] RSPM (R 4.4.0) +## nlme 3.1-164 2023-11-27 [3] CRAN (R 4.4.0) +## nnet 7.3-19 2023-05-03 [3] CRAN (R 4.4.0) +## org.Hs.eg.db * 3.19.1 2024-05-21 [1] Bioconductor +## OrganismDbi 1.46.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## patchwork 1.2.0 2024-01-08 [1] CRAN (R 4.4.0) +## pheatmap * 1.0.12 2019-01-04 [1] CRAN (R 4.4.0) +## pillar 1.9.0 2023-03-22 [2] RSPM (R 4.4.0) +## pkgconfig 2.0.3 2019-09-22 [2] RSPM (R 4.4.0) +## pkgdown 2.0.9 2024-04-18 [2] RSPM (R 4.4.0) +## plyr 1.8.9 2023-10-02 [1] CRAN (R 4.4.0) +## png 0.1-8 2022-11-29 [1] CRAN (R 4.4.0) +## polyclip 1.10-6 2023-09-27 [1] CRAN (R 4.4.0) +## prettyunits 1.2.0 2023-09-24 [2] RSPM (R 4.4.0) +## progress 1.2.3 2023-12-06 [1] CRAN (R 4.4.0) +## ProtGenerics 1.36.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## purrr 1.0.2 2023-08-10 [2] RSPM (R 4.4.0) +## qvalue 2.36.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## R6 2.5.1 2021-08-19 [2] RSPM (R 4.4.0) +## ragg 1.3.2 2024-05-15 [2] RSPM (R 4.4.0) +## rappdirs 0.3.3 2021-01-31 [2] RSPM (R 4.4.0) +## RBGL 1.80.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## RColorBrewer * 1.1-3 2022-04-03 [1] CRAN (R 4.4.0) +## Rcpp 1.0.12 2024-01-09 [2] RSPM (R 4.4.0) +## RCurl 1.98-1.14 2024-01-09 [1] CRAN (R 4.4.0) +## readr 2.1.5 2024-01-10 [1] CRAN (R 4.4.0) +## recount * 1.31.2 2024-05-21 [1] Github (leekgroup/recount@f4d2db9) +## RefManageR 1.4.0 2022-09-30 [1] CRAN (R 4.4.0) +## regionReport * 1.35.0 2024-05-21 [1] Github (leekgroup/regionReport@fbd42cd) +## rentrez 1.2.3 2020-11-10 [1] CRAN (R 4.4.0) +## reshape2 1.4.4 2020-04-09 [1] CRAN (R 4.4.0) +## restfulr 0.0.15 2022-06-16 [1] CRAN (R 4.4.0) +## rjson 0.2.21 2022-01-09 [1] CRAN (R 4.4.0) +## rlang 1.1.3 2024-01-10 [2] RSPM (R 4.4.0) +## rmarkdown * 2.27 2024-05-17 [2] RSPM (R 4.4.0) +## rngtools 1.5.2 2021-09-20 [1] CRAN (R 4.4.0) +## rpart 4.1.23 2023-12-05 [3] CRAN (R 4.4.0) +## Rsamtools 2.20.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## RSQLite 2.3.6 2024-03-31 [1] RSPM (R 4.4.0) +## rstudioapi 0.16.0 2024-03-24 [2] RSPM (R 4.4.0) +## rtracklayer 1.64.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## S4Arrays 1.4.1 2024-05-20 [1] Bioconductor 3.19 (R 4.4.0) +## S4Vectors * 0.42.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## sass 0.4.9 2024-03-15 [2] RSPM (R 4.4.0) +## scales 1.3.0 2023-11-28 [1] CRAN (R 4.4.0) +## scatterpie 0.2.2 2024-04-03 [1] RSPM (R 4.4.0) +## sessioninfo * 1.2.2 2021-12-06 [2] RSPM (R 4.4.0) +## shadowtext 0.1.3 2024-01-19 [1] CRAN (R 4.4.0) +## SparseArray 1.4.5 2024-05-20 [1] Bioconductor 3.19 (R 4.4.0) +## statmod 1.5.0 2023-01-06 [1] CRAN (R 4.4.0) +## stringi 1.8.4 2024-05-06 [2] RSPM (R 4.4.0) +## stringr 1.5.1 2023-11-14 [2] RSPM (R 4.4.0) +## SummarizedExperiment * 1.34.0 2024-05-01 [1] Bioconductor 3.19 (R 4.4.0) +## systemfonts 1.1.0 2024-05-15 [2] RSPM (R 4.4.0) +## textshaping 0.3.7 2023-10-09 [2] RSPM (R 4.4.0) +## tibble 3.2.1 2023-03-20 [2] RSPM (R 4.4.0) +## tidygraph 1.3.1 2024-01-30 [1] CRAN (R 4.4.0) +## tidyr 1.3.1 2024-01-24 [1] CRAN (R 4.4.0) +## tidyselect 1.2.1 2024-03-11 [1] RSPM (R 4.4.0) +## tidytree 0.4.6 2023-12-12 [1] CRAN (R 4.4.0) +## timechange 0.3.0 2024-01-18 [1] CRAN (R 4.4.0) +## treeio 1.28.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## tweenr 2.0.3 2024-02-26 [1] RSPM (R 4.4.0) +## txdbmaker 1.0.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## tzdb 0.4.0 2023-05-12 [1] CRAN (R 4.4.0) +## UCSC.utils 1.0.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## utf8 1.2.4 2023-10-22 [2] RSPM (R 4.4.0) +## VariantAnnotation 1.50.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## vctrs 0.6.5 2023-12-01 [2] RSPM (R 4.4.0) +## viridis 0.6.5 2024-01-29 [1] CRAN (R 4.4.0) +## viridisLite 0.4.2 2023-05-02 [1] CRAN (R 4.4.0) +## withr 3.0.0 2024-01-16 [2] RSPM (R 4.4.0) +## xfun 0.44 2024-05-15 [2] RSPM (R 4.4.0) +## XML 3.99-0.16.1 2024-01-22 [1] CRAN (R 4.4.0) +## xml2 1.3.6 2023-12-04 [2] RSPM (R 4.4.0) +## XVector 0.44.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) +## yaml 2.3.8 2023-12-11 [2] RSPM (R 4.4.0) +## yulab.utils 0.1.4 2024-01-28 [1] CRAN (R 4.4.0) +## zlibbioc 1.50.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) ## -## [1] C:/R/R-4.3.0bioc3.17/library +## [1] /__w/_temp/Library +## [2] /usr/local/lib/R/site-library +## [3] /usr/local/lib/R/library ## ## ──────────────────────────────────────────────────────────────────────────────────────────────────
References -
Site built with pkgdown 2.0.7.
+Site built with pkgdown 2.0.9.
Authors and Citation • recountWorkflow Authors and Citation • recountWorkflow @@ -17,7 +17,7 @@recount workflow: accessing over 70,000 human RNA-seq samples with - Bioconductor • recountWorkflow - +recount workflow: accessing over 70,000 human RNA-seq samples with Bioconductor • recountWorkflow + - - + +Changelog • recountWorkflow Changelog • recountWorkflow @@ -17,7 +17,7 @@Changelog
Source:NEWS.md
+recountWorkflow 1.29.2
+SIGNIFICANT USER-VISIBLE CHANGES
+
- Implement a workaround to https://github.com/lawremi/rtracklayer/issues/83 which currently is limiting the ability to remotely access BigWig files using
+rtracklayer::import()
. This affects the functionsrecount::expressed_regions()
,recount::coverage_matrix()
, andderfinder::getRegionCoverage()
used inrecountWorkflow
.• recountWorkflow • recountWorkflow @@ -17,7 +17,7 @@Reference
recountWorkflow: recount workflow: accessing over 70,000 human RNA-seq samples with Bioconductor — recountWorkflow-package • recountWorkflow recountWorkflow: recount workflow: accessing over 70,000 human RNA-seq samples with Bioconductor — recountWorkflow-package • recountWorkflow @@ -17,7 +17,7 @@Author
/404.html - /articles/index.html +/CODE_OF_CONDUCT.html - /articles/recount-workflow.html +/CONTRIBUTING.html - /authors.html +/SUPPORT.html - /CODE_OF_CONDUCT.html +/articles/index.html - +/CONTRIBUTING.html +/articles/recount-workflow.html ++ /authors.html /index.html @@ -30,7 +33,4 @@- /reference/recountWorkflow-package.html - /SUPPORT.html -