You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
# import os# import pandas as pd# import pickle# from src.simulations.utils.config import read_config_file, write_config_file# from src.simulations.utils.config import check_requiredimportpymc3aspmimportmatplotlib.pyplotaspltnum_cells=10000num_mt_positions=10clone_dist= [0.10,0.01,.89]
hets= [0.2,0.3] # len(hets) == len(clone_dist)-1avg_cov=50het_err_rate=0.1df=np.concatenate((np.random.binomial(10,0.3,(100,4)),
np.random.binomial(10,0.6,(90,4))))
clone_id=np.concatenate((np.zeros([100,]), np.ones([90,]))).astype(int)
mt_id= [0,1,2,3]
withpm.Model() asmodel:
clone_ids=pm.Mulinomial(10000, clone_dist)
beta=pm.Beta('beta', alpha=2,beta=2, shape=2)
#p = pm.Bernoulli('p', 1, beta, shape=2)#p = pm.Binomial('p', 1, beta)#q = pm.Binomial('q', 1, beta)s=pm.Binomial('s', 10, beta[clone_id], observed=df)
#s = pm.Binomial('s', 10, p, observed=df[:30,0])#t = pm.Binomial('t', 10, q, observed=df[30:, 0])#s = pm.Binomial('s', 10, beta, shape=(30,4), observed=df[:30])#t = pm.Binomial('t', 10, beta, shape=(25, 4), observed=df[30:])#vec = pm.math.concatenate((s, t), axis=0)# data = pm.Data("data", df)# u = pm.Normal('u', vec, observed=data)#u = pm.Deterministic('u', vec)trace=pm.sample(draws=8000, init='adapt_diag')
print(pm.summary(trace))
dot=pm.model_to_graphviz(model)
dot.render('simulation_pymc.gv')
pm.plot_trace(trace)
plt.savefig('simulation_trace.png')
print('here')
## with pm.Model() as model:# clone_counts = pm.Multinomial(num_cells, clone_dist)# num_clones = len(clone_counts) - 1## clone_cell = -1 * np.ones(shape=[num_cells, ])## clone_cell[:clone_counts[0]] = 0## for ind, val in enumerate(clone_counts[1:]):# start = clone_counts[:ind + 1].sum()# end = clone_counts[:ind + 1].sum() + val# # starts at sum(clone_counts[i-1]) ends at clone_counts[i].sum()# clone_cell[start:end] = ind + 1## c = pm.Poisson('cov', avg_cov, shape=[num_cells, num_mt_positions])## clone_mt_dict = dict()# for i in range(1, num_clones + 1):# clone_mt_dict[i] = i## cell_af = np.zeros([num_cells, num_mt_positions])# for ind in range(num_clones):# # Generate AF: (clone_df == ind).sum()# n_dom_cells = clone_counts[ind]# het = hets[ind]## curr_mt = clone_mt_dict[ind]## af_i = pm.Binomial('af', avg_cov, het, shape=n_dom_cells)# af_j = pm.Binomial('het af', avg_cov, het_err_rate, shape=num_cells - n_dom_cells) # / c### # Update the dom_cells and non_dom for the current MT# cell_af[np.flatnonzero(clone_df == ind), curr_mt] = af_i# cell_af[np.flatnonzero(clone_df != ind), curr_mt] = af_j## cell_af = pm.Deterministic(y)## pm.model_to_graphviz(model)### def init_cell_af(self):# """1C. Initialize the cell-by-mtPos af dataframe. Unless a clone:mt dict was# provided, the first N MT positions will be the clone AFs. Creates# self.clone_mt_dict and self.cell_af# """# clone_df = self.clone_cell# # Output# cell_af = pd.DataFrame(np.zeros(shape=[n_cells, n_mt]))## # Each clone points to a mt position# self.clone_mt_dict = dict()# for i in range(1, num_clones + 1):# self.clone_mt_dict[i] = i## # TODO Add the MT clone map so it can contain multiple mutants in lineages## # If there is a heteroplasmy table in params, it is list of mutant heteroplasmy AFs.# # If not, will randomly draw based on number of clones# if type(hets) == list:# assert (len(hets) == num_clones)## ## Loop through each clone,# ## Generate the AF for the clone and non-clones using coverage for each cell# ## Fill in cell_by_af for that position.# for ind in range(1, num_clones + 1):# # Generate AF: (clone_df == ind).sum()# n_dom_cells = (clone_df == ind).sum()# het = hets[ind - 1]## curr_mt = self.clone_mt_dict[ind]## if p['coverage']['type'] == 'constant':# c = p['coverage']['cov_constant']## af_i = random.binomial(c, het, n_dom_cells) / c# af_j = random.binomial(c, q, n_cells - n_dom_cells) / c## # Update the dom_cells and non_dom for the current MT# cell_af.loc[# np.flatnonzero(clone_df == ind), curr_mt] = af_i# cell_af.loc[# np.flatnonzero(clone_df != ind), curr_mt] = af_j## # Each cell and position has it's own coverage value, so need to update each# else:# c = self.cells_mt_coverage# # Get the cells coverage for the mt position# curr_mt_cov = c[:, curr_mt]## # Get cell indicies for the clones and nonclones# curr_clone_inds = np.flatnonzero(clone_df == ind)# curr_nonclone_inds = np.flatnonzero(clone_df != ind)# for cell in curr_clone_inds:# # Get one value for curr_mt and cell based on coverage# cell_af.loc[cell, curr_mt] = random.binomial(# curr_mt_cov[cell], het)# for cell in curr_nonclone_inds:# cell_af.loc[cell, curr_mt] = random.binomial(# curr_mt_cov[cell],# q) # Loop through each coverage # for c in n_dom_cells:### class Simulation:# """Lineage tracing simulation of one sample## Will initialize cells based on their parameters and grow as well. This# should be a flexible framework, to add different ways to initialize, grow,# and metrics to have. Additionally can cluster these results.## :ivar params# :type params: dict# """## def __init__(self, params_f):# """# :param params_f: Parameter yaml file for the specifications# :type params_f: yaml file or dict# """# if isinstance(params_f, str):# params = read_config_file(params_f)# else:# params = params_f## self.params = params# check_required(params, ['initialize', 'num_cells', 'num_mt_positions', 'prefix'])# self.prefix = params['prefix']# self.num_mt_positions = params['num_mt_positions']# self.num_cells = params['num_cells']# if not os.path.exists(params['local_outdir']):# os.mkdir(params['local_outdir'])### def initialize(self):# """ (1) Pre-growth cell population is instantiated.## Creates a clone-MT dictionary, cell coverage matrix# (or an int, depending on parameters), and cell-AF matrix.# :return:# """# self.init_clone_dict()# self.init_cell_coverage()# self.init_cell_af()# #self.init_clone_mt()## #should be external method# def grow(self):# """ (2) Growth of cells is run."""# p = self.params# type = p["growth"]["type"]# if type == "poisson":# self.grow_poisson(p['growth']['poisson'])# elif type == "binomial":# self.grow_binomial(p['growth']['binomial'])# return## # Static Method# @staticmethod# def clone_counts_to_cell_series(clone_counts):# """ Generates new cell IDs based on cluster count iterable# :param clone_counts: Each i'th element is the number of cells in# cluster i.# :type clone_counts: iterable# :return each index name is a cell ID and each value is which cluster# the cell belongs too.# :rtype pd.Series# """# clone_counts = np.array(clone_counts)# num_cells = clone_counts.sum()# clone_cell = -1 * np.ones(shape=[num_cells, ])## clone_cell[:clone_counts[0]] = 0# for ind, val in enumerate(clone_counts[1:]):# start = clone_counts[:ind + 1].sum()# end = clone_counts[:ind + 1].sum() + val# # starts at sum(clone_counts[i-1]) ends at clone_counts[i].sum()# clone_cell[start:end] = ind + 1## clone_cell = pd.Series(clone_cell, dtype=int)# return clone_cell## def init_clone_dict(self):# """1A# """## ### Add in potential to overwrite the values# # Gets the clone dictionary. Should also have clone to mt dict.# clones = self.params['initialize']['clone_sizes']# num_cells = self.num_cells## # Option 1: List of fraction of size of each clone. 0s are nonclone size, listed first# if type(clones) == list:# #clone_cell = pd.Series(index=range(num_cells))# clone_counts = np.random.multinomial(num_cells, clones)# clone_cell = self.clone_counts_to_cell_series(clone_counts)# self.clone_cell = clone_cell# # Option 2: 1 clone. ID'd as 1# elif type(clones) == int: #One number for dominant clone. the others are not.# clone_cell = np.zeros(shape=[num_cells,])# clone_cell[:num_cells] = 1# clone_cell = clone_cell[::-1]# clone_cell = pd.Series(clone_cell, dtype=int)# self.clone_cell = clone_cell## # Option 3 To ADD, beta binomial and more complex distributions## self.num_clones = len(set(clone_cell.values))-1 # Remove the non-clone# return clone_cell### def init_cell_coverage(self):# """1B## There are different modes to the coverage, either a constant or# through a distribution.# """# p = self.params['initialize']['coverage']# type = p['type']## num_cells = self.num_cells# num_pos = self.num_mt_positions# c = np.zeros([num_cells, num_pos])## if type == 'constant':# c[:, :] = p['cov_constant']# elif type == "poisson":# # Get the number of coverage per cell based on poisson (should be reads)# mu_cov_per_cell = p['mu_cov_per_cell']# num_reads_per_cell = random.poisson(lam=mu_cov_per_cell,# size=num_cells)## # Number of reads at each position, based on the average for each cell# for i in num_cells:# c[i, :] = random.poisson(num_reads_per_cell[i],# size=num_pos)# self.cells_mt_coverage = c# return c#### ###### # TODO# # Add noise to the other non-lineage positions# ###### self.cell_af = cell_af# return### def init_clone_mt(self):# p = self.params# if p["initialize"]['type'] == 'growth':# ## TODO# # Create a phylogeny and then get the averages of the mutants# self.average_clone_mt()# # If not growth, should aready be there.# return## def average_clone_mt(self):# return## def extract_clone_cells(self, clone_id):# """# Args:# clone_id:# """# ids = np.flatnonzero(self.clone_cell == clone_id)# return ids## def simulate_expand_cells_af(self, af, growth_inds, sigma):# """Given a cell-by-af vector, expand the AF.## Expanded AF occurs by duplicating cells that grew based on the# growth_inds vector. It will add standard error to each af based on sigma# :param af: :param growth: Indices of AF to copy :param sigma: Variance# to add to AF of child. :return:## Args:# af:# growth_inds:# sigma:# """## new_af = af.iloc[growth_inds].copy() + random.normal(0, sigma, size=af.iloc[growth_inds].shape)# new_af.index = np.arange(af.index[-1]+1, af.index[-1]+1+new_af.shape[0])# new_af = pd.concat((af,new_af), axis=0)# #new_af = np.append(af, np.concatenate(new_af))# return new_af## def grow_binomial(self, p):# """ (2.1)# Args:# p:# """# timesteps = p["time_steps"]# rates = p["rates"]## sigma = self.params['growth']["mutant_af_sigma_noise"]# cell_af = self.cell_af# clone_mt_dict = self.clone_mt_dict## num_clones = self.num_clones+1# new_dict = {}# for curr_clone in range(num_clones):# curr_rate = rates[curr_clone]# ids = self.extract_clone_cells(curr_clone)# new_cells = cell_af.loc[ids].copy()# for i in range(timesteps):# # Simulate growth for each clone separately.# growth_inds = np.flatnonzero(random.binomial(1, curr_rate, size=new_cells.shape[0]))# #new_ids =# new_cells = self.simulate_expand_cells_af(new_cells, growth_inds, sigma)## new_dict[curr_clone] = new_cells# # Create list of cells## ####TODO# ## new_lineage_mutants chances. This will see if a mutation will change### ####TODO# ## Add death + stimulation rate as well as growth# # Save the new cell clones df and cell af# clone_counts = [i.shape[0] for i in new_dict.values()]# self.new_clone_cell = self.clone_counts_to_cell_series(clone_counts)## self.new_cell_af = pd.DataFrame(new_dict[0])# for clone in range(1, self.num_clones+1):# self.new_cell_af = pd.concat((self.new_cell_af, new_dict[clone]),axis=0).reset_index(drop=True)# return### def grow_poisson(self):# # TODO growth of poisson refactor# return### def subsample_new(self, to_delete=False):# """(3) Subsample from new cell population## :param to_delete: To remove the cells that grew (which takes up# a lot of RAM).# :type to_delete: bool# """# new_cell_af = self.new_cell_af# p = self.params# if 'sequence_subsample' in p and p['sequence_subsample'] is not None:# self.subsample_new_cell_af = new_cell_af.sample(n=self.params['sequence_subsample'])# else:# self.subsample_new_cell_af = new_cell_af.sample(n=self.num_cells)## self.subsample_new_clone_cell = self.new_clone_cell.loc[# self.subsample_new_cell_af.index]## if to_delete:# self.new_cell_af = None# self.new_clone_cell = None### def combine_init_growth(self):# """(4) Add the pre- and post- population of cells into a group.## :return:# """# combined_cell_af = self.cell_af.append(self.subsample_new_cell_af).reset_index(drop=True)# combined_clones = pd.concat(# (self.clone_cell, self.subsample_new_clone_cell)).reset_index(# drop=True)### combined_befaft = np.concatenate((np.zeros(shape=[self.cell_af.shape[0],]), np.ones(shape=[self.subsample_new_cell_af.shape[0]])))# combined_meta = pd.DataFrame({"pre_post": combined_befaft, "clone": combined_clones})# #combined_meta = pd.Series(combined_meta, name='After Growth', dtype=int)# assert(combined_meta.shape[0] == self.cell_af.shape[0]+self.subsample_new_cell_af.shape[0])# assert (combined_cell_af.shape[0] == self.cell_af.shape[0] +# self.subsample_new_cell_af.shape[0])# assert(combined_meta.shape[0] == combined_clones.shape[0])# assert(combined_cell_af.shape[0] == combined_clones.shape[0])# self.combined_meta = combined_meta# self.combined_clones = combined_clones# self.combined_cell_af = combined_cell_af# return## def save(self, f_save=None):# """# Args:# f_save:# """# if f_save is None:# f_save = os.path.join(self.params['local_outdir'], self.params['prefix']+'.p')# f = open(f_save, 'wb')# pickle.dump(self.__dict__, f, 2)# f.close()## @staticmethod# def expand_to_mgatk(curr_mt_af,mt_ref):# ref = mt_ref[curr_mt_af.name]# pos = curr_mt_af.name# return pd.DataFrame({"Ref":ref, "Pos":pos, "Val":curr_mt_af})## def test_save_to_mgatk_format(self):# df = pd.DataFrame( [[10,0,1,3,5], [3,0,5,5,0], [6,2,1,1,0]] , columns=np.arange(0,5))# mt_ref_dict = {0: "A", 1: "G", 2: "C", 3: "C", 4: "T"}# mt_ref = pd.DataFrame({"Pos": mt_ref_dict.keys(), "Ref": mt_ref_dict})# return## def save_to_mgatk_format(self, mt_ref, out_f):# """Converts into the proper files needed for mgatk. (i.e variant and# coverage files)## :return:# """# cell_af = self.subsample_new_cell_af# chars = ["A", "G", "C", "T"]# def alt_generate(x):# curr = chars.copy()# curr.remove(x["Ref"])# return np.random.choice(curr)# alt_ref = mt_ref.apply(alt_generate, axis=1)## # First use the AF and choose an alternative allele# df_stack = cell_af.stack().reset_index().rename(# {"level_0": "Cell", "level_1": "MT_pos", 0: "Coverage"},# axis=1)# df_stack["Nucleotide"] = df_stack["MT_pos"].apply(# lambda x: alt_ref[x])## # Add on the reference allele# df_stack_ref = cell_af.stack().reset_index().rename(# {"level_0": "Cell", "level_1": "MT_pos", 0: "Coverage"},# axis=1)# df_stack_ref["Coverage"] = 1-df_stack_ref["Coverage"]# df_stack["Nucleotide"] = df_stack["MT_pos"].apply(# lambda x: mt_ref[x])## df_stack = pd.concat(df_stack, df_stack_ref)# for ind, val in df_stack.groupby("Nucleotide"):# # Drop the 0s# curr = val[val["Coverage"]>0]# # Save file# curr_out_f = out_f + "_" + ind + ".txt"# curr.to_csv(curr_out_f)## # Save the coverage.# coverage = self.cells_mt_coverage# if type(coverage) != int:# coverage_stack = pd.DataFrame(coverage).stack().reset_index().rename(# {"level_0": "Cell", "level_1": "MT Position", 0: "Coverage"},# axis=1)# else:# coverage_stack = pd.DataFrame(self.cells_mt_coverage)*np.ones(shape=cell_af.shape).stack().reset_index().rename(# {"level_0": "Cell", "level_1": "MT Position", 0: "Coverage"},# axis=1)# curr_out_f = out_f + "_" + "coverage.txt"# coverage_stack.to_csv(curr_out_f)# return## def load(self):# filename = self.params['filename']# f = open(filename, 'rb')# tmp_dict = pickle.load(f)# f.close()# self.__dict__.update(tmp_dict)## def compare_before_after(self):# """Creates a df that contains information on the number of cells from# each clone before as well as after. :return: df.at[ind, "Dominant# Before"] = (full_sim.clone_cell == 1).sum() df.at[ind, "Dominant After"]# = (full_sim.subsample_new_clone_cell == 1).sum()# """## return## def cluster_compare_before_after(self):# """Compares the performance of clustering on grouping the same clones# together. :return:# """# return### def main():# return# if "__name__" == "__main__":# main()Nonewlineatendoffileewfilemode100644ndex0000000..b48b215inaryfiles/dev/nullandb/src/simulations/simulation_trace.pngdiffereletedfilemode100644ndexfba6e66..0000000++/dev/null
8a9cd1cb609d55c77709007a307261946918fc2e
The text was updated successfully, but these errors were encountered:
growth of poisson refactor
return
Mito_Trace/src/simulations/simulation_pymc.py
Line 388 in 770eee8
8a9cd1cb609d55c77709007a307261946918fc2e
The text was updated successfully, but these errors were encountered: