We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
This should be in mro/common for general use
Mito_Trace/Analysis/mtscATAC/2020_11_18_Croker/PBMC_P/_mrosource
Line 582 in 770eee8
# # # Copyright (c) 2019 10x Genomics, Inc. All rights reserved. # filetype json; filetype bam; # # @include "_sort_and_mark_dups_stages.mro" # # # Copyright (c) 2019 10x Genomics, Inc. All rights reserved. # filetype bam; filetype bam.bai; filetype tsv.gz; filetype tsv.gz.tbi; filetype json; filetype csv; # # @include "_peak_caller_stages.mro" # # # Copyright (c) 2019 10x Genomics, Inc. All rights reserved. # filetype bedgraph; filetype pickle; filetype tsv.gz; filetype tsv.gz.tbi; filetype bed; filetype json; # # @include "_basic_sc_atac_counter_stages.mro" # # # Copyright (c) 2019 10x Genomics, Inc. All rights reserved. # filetype tsv.gz; filetype tsv.gz.tbi; filetype csv; filetype json; filetype bed; filetype pickle; filetype h5; # # @include "_produce_cell_barcodes_stages.mro" # # # Copyright (c) 2019 10x Genomics, Inc. All rights reserved. # filetype tsv.gz; filetype tsv.gz.tbi; filetype csv; filetype json; filetype bed; filetype pickle; filetype h5; filetype npy.gz; # # @include "_sc_atac_metric_collector_stages.mro" # # # Copyright (c) 2019 10x Genomics, Inc. All rights reserved. # filetype tsv.gz; filetype tsv.gz.tbi; filetype bed; filetype bam; filetype csv; filetype json; filetype h5; filetype txt; filetype pickle; # # @include "_peak_annotator_stages.mro" # # # Copyright (c) 2019 10x Genomics, Inc. All rights reserved. # filetype bed; filetype tsv; filetype h5; filetype gz; filetype pickle; # # @include "_sc_atac_analyzer_stages.mro" # # # Copyright (c) 2019 10x Genomics, Inc. All rights reserved. # filetype tsv; filetype h5; filetype pickle; filetype gz; filetype bed; filetype csv; # # @include "_sc_atac_reporter_stages.mro" # # # Copyright (c) 2019 10x Genomics, Inc. All rights reserved. # filetype json; filetype html; filetype csv; filetype h5; filetype bam; # # @include "_atac_cloupe_stages.mro" # # # Copyright (c) 2019 10x Genomics, Inc. All rights reserved. # filetype cloupe; filetype csv; filetype json; filetype h5; filetype bed; filetype tsv.gz.tbi; # # @include "_preflight_stages.mro" # # # Copyright (c) 2019 10x Genomics, Inc. All rights reserved. # filetype csv; filetype bed; filetype tsv.gz; filetype tsv.gz.tbi; # # @include "_aligner_stages.mro" # # SETUP_CHUNKS chunks up the input fastq data into sets of matched R1, R2, SI, and BC fastq files. # input_mode specifies how FASTQs were generated. There are two modes: # # 1. "BCL_PROCESSOR" # # FASTQs produced by the 10X BCL_PROCESSOR pipeline. This mode assumes the FASTQ files obey the internal # naming conventions and the reads have been interleaved into RA FASTQ files. # # 2. "ILMN_BCL2FASTQ" # # FASTQs produced directly by Illumina BCL2FASTQ v1.8.4. For this mode, BCL2FASTQ must be configured to emit the # index2 read, rather than using it for dual-index demultiplexing: # # configureBclToFastq.pl --no-eamss --use-bases-mask=Y100,I8,Y14,Y100 --input-dir=<basecalls_dir> \ # --output-dir=<output_dir> --sample-sheet=<sample_sheet.csv> # # The sample sheet must be formatted as per the BCL2FASTQ documentation (10 column csv), and must contain a row for # each sample index used. The sequencer must have been run in dual index mode, with the second index read (used to # read the 10X barcode) emitted as the R2 output file. The --use-bases-mask argument should be set to the read # length used. stage SETUP_CHUNKS( in string sample_id "id of the sample", in map[] sample_def "list of dictionary specifying input data", in string input_mode "configuration of the input fastqs", in map downsample "map specifies either subsample_rate (float) or gigabases (int)", out map[] chunks "map has barcode, barcode_reverse_complement, sample_index, read1, read2, gem_group, and read_group fields", out string[] read_groups "list of strings representing read groups", out json downsample_info "info about downsampling result", src py "stages/processing/setup_chunks", ) # Trims adapter sequences from reads and massages fastq output into a fixed format (interleaved R1 file, etc.) stage TRIM_READS( in map[] chunks, in string barcode_whitelist, in int max_read_num, in map trim_def, in map adapters, out map[] chunks, out json bc_counts, out json lot_info, out json read_counts, src py "stages/processing/trim_reads", ) split ( in map chunk, ) using ( volatile = strict, ) # Aligns the reads to the input reference, producing chunked bam files stage ALIGN_READS( in map[] chunks, in string aligner, in string aligner_method, in string reference_path, in string read_group_sample, in int num_threads, out bam[], src py "stages/processing/align_reads", ) split ( in map chunk, ) using ( # N.B. No index files are generated for the bam volatile = strict, ) # # @include "_aligner.mro" # # Takes input fastqs and chunks them, trims them, and aligns the trimmed reads to a reference pipeline _ALIGNER( in string sample_id, in string fastq_mode "configuration of the input fastqs", in map[] sample_def, in string reference_path "this is the reference_path", in string barcode_whitelist "name of barcode whitelist file", in map trim_def, in map adapters, in string read_group_sample "sample header for BAM file", in map downsample, out bam[] align, out map[] chunks, out json bc_counts, out json lot_info "gelbead lot detected", out json read_counts "total # of read pairs before and after adapter trimming", out json downsample_info "info on downsampling", ) { call SETUP_CHUNKS( sample_id = self.sample_id, input_mode = self.fastq_mode, sample_def = self.sample_def, downsample = self.downsample, ) using ( volatile = true, ) call TRIM_READS( chunks = SETUP_CHUNKS.chunks, max_read_num = 5000000, trim_def = self.trim_def, adapters = self.adapters, barcode_whitelist = self.barcode_whitelist, ) using ( volatile = true, ) call ALIGN_READS( chunks = TRIM_READS.chunks, aligner = "bwa", aligner_method = "MEM", reference_path = self.reference_path, read_group_sample = self.read_group_sample, num_threads = 4, ) using ( volatile = true, ) return ( align = ALIGN_READS, chunks = TRIM_READS.chunks, bc_counts = TRIM_READS.bc_counts, lot_info = TRIM_READS.lot_info, read_counts = TRIM_READS.read_counts, downsample_info = SETUP_CHUNKS.downsample_info, ) } # # @include "_sort_and_mark_dups_stages.mro" # # Attaches raw and corrected barcode sequences to the aligned reads stage ATTACH_BCS( in string barcode_whitelist, in bam[] align, in map[] chunks, in bool paired_end, in bool exclude_non_bc_reads, in float bc_confidence_threshold, in json bc_counts, out bam[] output, out int perfect_read_count, src py "stages/processing/attach_bcs", ) split ( in bam align_chunk, in map chunk, ) using ( # N.B. No index files are generated for the bam volatile = strict, ) stage SORT_READS_BY_POS( in bam[] input, out bam tagsorted_bam, src py "stages/processing/sort_reads_by_pos", ) split ( in bam chunk_input, ) using ( # N.B. No index files are generated for the bam volatile = strict, ) # Marks duplicates in the reads using barcodes and fragment alignments to detect PCR and optical/diffusion duplicates stage MARK_DUPLICATES( in bam input, in string reference_path, in json raw_barcode_counts, in string barcode_whitelist, out bam output, out bam.bai index, out csv singlecell_mapping, out tsv.gz fragments, out tsv.gz.tbi fragments_index, src py "stages/processing/mark_duplicates", ) split ( in map lane_map, in string chunk_start, in string chunk_end, in int chunk_num, ) using ( # N.B. BAM/BED index files are explicitly bound where used volatile = strict, ) # # @include "_sort_and_mark_dups.mro" # # Attaches barcodes to the aligned reads, marks duplicate reads, and produces a barcode-sorted and position-sorted # output BAM pipeline _SORT_AND_MARK_DUPS( in bam[] align, in map[] chunks, in string barcode_whitelist, in json bc_counts, in string reference_path, out bam possorted_bam "bam file sorted by position", out bam.bai possorted_bam_index "position-sorted bam index", out tsv.gz fragments, out tsv.gz.tbi fragments_index, out csv singlecell_mapping, out bam[] read_paired_bam, ) { call ATTACH_BCS( align = self.align, chunks = self.chunks, paired_end = true, barcode_whitelist = self.barcode_whitelist, exclude_non_bc_reads = false, bc_confidence_threshold = 0.975, bc_counts = self.bc_counts, ) using ( volatile = true, ) call SORT_READS_BY_POS( input = ATTACH_BCS.output, ) using ( volatile = true, ) call MARK_DUPLICATES( input = SORT_READS_BY_POS.tagsorted_bam, reference_path = self.reference_path, barcode_whitelist = self.barcode_whitelist, raw_barcode_counts = self.bc_counts, ) using ( volatile = true, ) return ( possorted_bam = MARK_DUPLICATES.output, possorted_bam_index = MARK_DUPLICATES.index, singlecell_mapping = MARK_DUPLICATES.singlecell_mapping, fragments = MARK_DUPLICATES.fragments, fragments_index = MARK_DUPLICATES.fragments_index, read_paired_bam = ATTACH_BCS.output, ) } # # @include "_peak_caller_stages.mro" # stage COUNT_CUT_SITES( in path reference_path, in tsv.gz fragments, in tsv.gz.tbi fragments_index, out bedgraph cut_sites, out pickle count_dict, src py "stages/processing/count_cut_sites", ) split ( in string contig, ) using ( # N.B. We explicitly bind the index file volatile = strict, ) stage DETECT_PEAKS( in bedgraph cut_sites, in path reference_path, in pickle count_dict, out bed peaks, out json peak_metrics, src py "stages/processing/detect_peaks", ) split ( in string contig, in float[] params, in float threshold, ) using ( mem_gb = 6, # N.B. We explicitly bind the index file volatile = strict, ) # # @include "_peak_caller.mro" # pipeline _PEAK_CALLER( in path reference_path, in tsv.gz fragments, in tsv.gz.tbi fragments_index, out bedgraph cut_sites, out bed peaks, out json peak_metrics, ) { call COUNT_CUT_SITES( reference_path = self.reference_path, fragments = self.fragments, fragments_index = self.fragments_index, ) call DETECT_PEAKS( reference_path = self.reference_path, cut_sites = COUNT_CUT_SITES.cut_sites, count_dict = COUNT_CUT_SITES.count_dict, ) return ( cut_sites = COUNT_CUT_SITES.cut_sites, peaks = DETECT_PEAKS.peaks, peak_metrics = DETECT_PEAKS.peak_metrics, ) } # # @include "_basic_sc_atac_counter_stages.mro" # stage GENERATE_PEAK_MATRIX( in string reference_path, in tsv.gz fragments, in bed peaks, out h5 raw_matrix, out path raw_matrix_mex, src py "stages/processing/generate_peak_matrix", ) split ( in file barcodes, ) using ( mem_gb = 4, # N.B. we don't explicitly need the fragment index volatile = strict, ) stage FILTER_PEAK_MATRIX( in h5 raw_matrix, in int num_analysis_bcs, in int random_seed, in csv cell_barcodes, out h5 filtered_matrix, out path filtered_matrix_mex, src py "stages/processing/filter_peak_matrix", ) split ( ) using ( volatile = strict, ) # # @include "_produce_cell_barcodes_stages.mro" # stage REMOVE_LOW_TARGETING_BARCODES( in bed peaks, in tsv.gz fragments, in tsv.gz.tbi fragments_index, in string reference_path, out json barcode_counts, out json low_targeting_barcodes, out json low_targeting_summary, out json fragment_lengths, out json covered_bases, src py "stages/processing/cell_calling/remove_low_targeting_barcodes", ) split ( in string contig, out pickle fragment_counts, out pickle targeted_counts, out int peak_coverage, ) using ( mem_gb = 4, volatile = strict, ) stage REMOVE_GEL_BEAD_DOUBLET_BARCODES( in tsv.gz fragments, in tsv.gz.tbi fragments_index, in string reference_path, in json barcode_counts, out json gel_bead_doublet_barcodes, out json gel_bead_doublet_summary, out csv connect_matrix, src py "stages/processing/cell_calling/remove_gel_bead_doublet_barcodes", ) split ( in string contig, in file valid_barcodes, ) using ( mem_gb = 4, volatile = strict, ) stage REMOVE_BARCODE_MULTIPLETS( in tsv.gz fragments, in tsv.gz.tbi fragments_index, in string reference_path, in string barcode_whitelist, in json barcode_counts, out json barcode_multiplets, out json barcode_multiplets_summary, src py "stages/processing/cell_calling/remove_barcode_multiplets", ) split ( in string contig, in string gem_group, out npy.gz part_a_linkage_matrix, out npy.gz part_b_linkage_matrix, ) using ( mem_gb = 4, volatile = strict, ) stage MERGE_EXCLUDED_BARCODES( in json[] barcode_exclusions, out json excluded_barcodes, src py "stages/processing/cell_calling/merge_excluded_barcodes", ) stage DETECT_CELL_BARCODES( in tsv.gz fragments, in tsv.gz.tbi fragments_index, in string barcode_whitelist, in json excluded_barcodes, in map force_cells, in string reference_path, in bed peaks, out csv cell_barcodes, out csv singlecell, out json cell_calling_summary, src py "stages/processing/cell_calling/detect_cell_barcodes", ) split ( in string contig, out pickle barcode_counts, out pickle targeted_counts, out int fragment_depth, ) using ( mem_gb = 4, volatile = strict, ) # TODO: This should be in mro/common for general use stage MERGE_SUMMARY_METRICS( in json[] summary_jsons, out json merged_summary, src py "stages/processing/cell_calling/merge_summary_metrics", ) # # @include "_produce_cell_barcodes.mro" # pipeline _PRODUCE_CELL_BARCODES( in bed peaks, in tsv.gz fragments, in tsv.gz.tbi fragments_index, in string reference_path, in string barcode_whitelist, in map force_cells, out csv cell_barcodes, out csv singlecell, out json cell_calling_summary, out json excluded_barcodes, out json fragment_lengths, out json covered_bases, ) { call REMOVE_LOW_TARGETING_BARCODES( fragments = self.fragments, fragments_index = self.fragments_index, peaks = self.peaks, reference_path = self.reference_path, ) call REMOVE_GEL_BEAD_DOUBLET_BARCODES( fragments = self.fragments, fragments_index = self.fragments_index, reference_path = self.reference_path, barcode_counts = REMOVE_LOW_TARGETING_BARCODES.barcode_counts, ) call REMOVE_BARCODE_MULTIPLETS( fragments = self.fragments, fragments_index = self.fragments_index, reference_path = self.reference_path, barcode_whitelist = self.barcode_whitelist, barcode_counts = REMOVE_LOW_TARGETING_BARCODES.barcode_counts, ) call MERGE_EXCLUDED_BARCODES( barcode_exclusions = [ REMOVE_BARCODE_MULTIPLETS.barcode_multiplets, REMOVE_GEL_BEAD_DOUBLET_BARCODES.gel_bead_doublet_barcodes, REMOVE_LOW_TARGETING_BARCODES.low_targeting_barcodes, ], ) call DETECT_CELL_BARCODES( fragments = self.fragments, fragments_index = self.fragments_index, barcode_whitelist = self.barcode_whitelist, force_cells = self.force_cells, excluded_barcodes = MERGE_EXCLUDED_BARCODES.excluded_barcodes, reference_path = self.reference_path, peaks = self.peaks, ) call MERGE_SUMMARY_METRICS as MERGE_CELL_METRICS( summary_jsons = [ REMOVE_LOW_TARGETING_BARCODES.low_targeting_summary, REMOVE_GEL_BEAD_DOUBLET_BARCODES.gel_bead_doublet_summary, REMOVE_BARCODE_MULTIPLETS.barcode_multiplets_summary, DETECT_CELL_BARCODES.cell_calling_summary, ], ) return ( cell_barcodes = DETECT_CELL_BARCODES.cell_barcodes, excluded_barcodes = MERGE_EXCLUDED_BARCODES.excluded_barcodes, singlecell = DETECT_CELL_BARCODES.singlecell, cell_calling_summary = MERGE_CELL_METRICS.merged_summary, fragment_lengths = REMOVE_LOW_TARGETING_BARCODES.fragment_lengths, covered_bases = REMOVE_LOW_TARGETING_BARCODES.covered_bases, ) } # # @include "_basic_sc_atac_counter.mro" # pipeline _BASIC_SC_ATAC_COUNTER( in string sample_id, in string fastq_mode "configuration of the input fastqs", in map[] sample_def, in string reference_path "this is the reference_path", in string barcode_whitelist "name of barcode whitelist file", in map trim_def, in map adapters, in map downsample, in map force_cells, out bam possorted_bam "bam file sorted by position", out bam.bai possorted_bam_index "position-sorted bam index", out tsv.gz fragments, out tsv.gz.tbi fragments_index, out json lot_info "gelbead lot detected", out json read_counts "total # of read pairs before and after adapter trimming", out json downsample_info "info on downsampling", out csv cell_barcodes, out json excluded_barcodes, out json cell_calling_summary, out bed peaks, out bedgraph cut_sites, out csv singlecell_mapping, out csv singlecell_cells, out json peak_metrics, out bam[] read_paired_bam, out h5 raw_peak_bc_matrix, out path raw_peak_bc_matrix_mex, out h5 filtered_peak_bc_matrix, out path filtered_peak_bc_matrix_mex, ) { call _ALIGNER( sample_id = self.sample_id, fastq_mode = self.fastq_mode, sample_def = self.sample_def, read_group_sample = self.sample_id, trim_def = self.trim_def, adapters = self.adapters, reference_path = self.reference_path, barcode_whitelist = self.barcode_whitelist, downsample = self.downsample, ) call _SORT_AND_MARK_DUPS( align = _ALIGNER.align, chunks = _ALIGNER.chunks, reference_path = self.reference_path, barcode_whitelist = self.barcode_whitelist, bc_counts = _ALIGNER.bc_counts, ) call _PEAK_CALLER( fragments = _SORT_AND_MARK_DUPS.fragments, fragments_index = _SORT_AND_MARK_DUPS.fragments_index, reference_path = self.reference_path, ) call _PRODUCE_CELL_BARCODES( fragments = _SORT_AND_MARK_DUPS.fragments, fragments_index = _SORT_AND_MARK_DUPS.fragments_index, peaks = _PEAK_CALLER.peaks, force_cells = self.force_cells, reference_path = self.reference_path, barcode_whitelist = self.barcode_whitelist, ) call GENERATE_PEAK_MATRIX( reference_path = self.reference_path, fragments = _SORT_AND_MARK_DUPS.fragments, peaks = _PEAK_CALLER.peaks, ) call FILTER_PEAK_MATRIX( num_analysis_bcs = null, cell_barcodes = _PRODUCE_CELL_BARCODES.cell_barcodes, raw_matrix = GENERATE_PEAK_MATRIX.raw_matrix, random_seed = null, ) return ( possorted_bam = _SORT_AND_MARK_DUPS.possorted_bam, possorted_bam_index = _SORT_AND_MARK_DUPS.possorted_bam_index, singlecell_mapping = _SORT_AND_MARK_DUPS.singlecell_mapping, singlecell_cells = _PRODUCE_CELL_BARCODES.singlecell, lot_info = _ALIGNER.lot_info, read_counts = _ALIGNER.read_counts, downsample_info = _ALIGNER.downsample_info, cell_barcodes = _PRODUCE_CELL_BARCODES.cell_barcodes, excluded_barcodes = _PRODUCE_CELL_BARCODES.excluded_barcodes, cell_calling_summary = _PRODUCE_CELL_BARCODES.cell_calling_summary, peak_metrics = _PEAK_CALLER.peak_metrics, cut_sites = _PEAK_CALLER.cut_sites, peaks = _PEAK_CALLER.peaks, fragments = _SORT_AND_MARK_DUPS.fragments, fragments_index = _SORT_AND_MARK_DUPS.fragments_index, read_paired_bam = _SORT_AND_MARK_DUPS.read_paired_bam, raw_peak_bc_matrix = GENERATE_PEAK_MATRIX.raw_matrix, raw_peak_bc_matrix_mex = GENERATE_PEAK_MATRIX.raw_matrix_mex, filtered_peak_bc_matrix = FILTER_PEAK_MATRIX.filtered_matrix, filtered_peak_bc_matrix_mex = FILTER_PEAK_MATRIX.filtered_matrix_mex, ) } # # @include "_sc_atac_metric_collector_stages.mro" # stage ESTIMATE_LIBRARY_COMPLEXITY( in json sequencing_summary, in tsv.gz fragments, in csv cell_barcodes, out json bulk_complexity, out json complexity_summary, out json singlecell_complexity, src py "stages/metrics/estimate_library_complexity", ) split ( in file barcodes, ) using ( mem_gb = 6, volatile = strict, ) stage GENERATE_SEQUENCING_METRICS( in bam[] input, out txt misc_sm, out json summary, src py "stages/metrics/generate_sequencing_metrics", ) split ( in bam chunk_bam, ) using ( volatile = strict, ) stage GENERATE_SINGLECELL_TARGETING( in tsv.gz fragments, in tsv.gz.tbi fragments_index, in bed peaks, in string reference_path, out csv singlecell, out json summary, out csv tss_relpos, out csv ctcf_relpos, src py "stages/metrics/generate_singlecell_targeting", ) split ( in string contig, out int read_count, out pickle target_counts_by_barcode, out pickle chunk_tss, out pickle chunk_ctcf, ) using ( mem_gb = 6, volatile = strict, ) stage MERGE_SINGLECELL_METRICS( in string reference_path, in csv singlecell_mapping, in csv singlecell_targets, in csv singlecell_cells, out csv singlecell, out json summary, src py "stages/metrics/merge_singlecell_metrics", ) using ( mem_gb = 8, volatile = strict, ) stage REPORT_INSERT_SIZES( in tsv.gz fragments, in bool exclude_non_nuclear, in string reference_path, out csv insert_sizes, out json insert_summary, src py "stages/metrics/report_insert_sizes", ) split ( in file barcode, out file total, ) using ( volatile = strict, ) stage REPORT_TSS_CTCF( in csv tss_relpos, in csv ctcf_relpos, out json summary_metrics, src py "stages/metrics/report_tss_ctcf", ) using ( volatile = strict, ) # # @include "_sc_atac_metric_collector.mro" # pipeline _SC_ATAC_METRIC_COLLECTOR( in bam[] read_paired_bam, in tsv.gz fragments, in tsv.gz.tbi fragments_index, in bed peaks, in string reference_path "this is the reference_path", in csv cell_barcodes, in csv singlecell_mapping, in csv singlecell_cells, out json singlecell_results, out csv singlecell, out json enrichment_results, out json basic_summary, out json insert_summary, out csv insert_sizes, out json bulk_complexity, out json singlecell_complexity, out json complexity_summary, out csv tss_relpos, out csv ctcf_relpos, ) { call GENERATE_SINGLECELL_TARGETING( fragments = self.fragments, fragments_index = self.fragments_index, peaks = self.peaks, reference_path = self.reference_path, ) call MERGE_SINGLECELL_METRICS( reference_path = self.reference_path, singlecell_mapping = self.singlecell_mapping, singlecell_cells = self.singlecell_cells, singlecell_targets = GENERATE_SINGLECELL_TARGETING.singlecell, ) call GENERATE_SEQUENCING_METRICS( input = self.read_paired_bam, ) call ESTIMATE_LIBRARY_COMPLEXITY( sequencing_summary = GENERATE_SEQUENCING_METRICS.summary, fragments = self.fragments, cell_barcodes = self.cell_barcodes, ) call REPORT_INSERT_SIZES( fragments = self.fragments, reference_path = self.reference_path, exclude_non_nuclear = true, ) call REPORT_TSS_CTCF( tss_relpos = GENERATE_SINGLECELL_TARGETING.tss_relpos, ctcf_relpos = GENERATE_SINGLECELL_TARGETING.ctcf_relpos, ) return ( ### singlecell = MERGE_SINGLECELL_METRICS.singlecell, singlecell_results = MERGE_SINGLECELL_METRICS.summary, ### enrichment_results = REPORT_TSS_CTCF.summary_metrics, basic_summary = GENERATE_SEQUENCING_METRICS.summary, insert_summary = REPORT_INSERT_SIZES.insert_summary, insert_sizes = REPORT_INSERT_SIZES.insert_sizes, bulk_complexity = ESTIMATE_LIBRARY_COMPLEXITY.bulk_complexity, singlecell_complexity = ESTIMATE_LIBRARY_COMPLEXITY.singlecell_complexity, complexity_summary = ESTIMATE_LIBRARY_COMPLEXITY.complexity_summary, tss_relpos = GENERATE_SINGLECELL_TARGETING.tss_relpos, ctcf_relpos = GENERATE_SINGLECELL_TARGETING.ctcf_relpos, ) } # # @include "_peak_annotator_stages.mro" # stage ANNOTATE_PEAKS( in bed peaks, in string reference_path, out tsv peak_annotation, src py "stages/analysis/annotate_peaks", ) split ( in int chunk_start, in int chunk_end, ) using ( mem_gb = 5, volatile = strict, ) stage COMPUTE_GC_DISTRIBUTION( in bed peaks, in string reference_path, out pickle GCdict, src py "stages/analysis/compute_gc_dist", ) split ( ) using ( volatile = strict, ) stage SCAN_MOTIFS( in pickle globalGCdict, in bed peaks, in string reference_path, in float pwm_threshold, out bed peak_motif_hits, src py "stages/analysis/scan_motifs", ) split ( in file GCdict, ) using ( volatile = strict, ) stage GENERATE_TF_MATRIX( in path reference_path, in bed peaks, in bed peak_motif_hits, in h5 filtered_matrix, out h5 filtered_tf_bc_matrix, out path filtered_tf_bc_matrix_mex, out gz tf_propZ_matrix, src py "stages/analysis/generate_tf_matrix", ) split ( ) using ( volatile = strict, ) # # @include "_peak_annotator.mro" # pipeline _PEAK_ANNOTATOR( in string reference_path, in bed peaks, in h5 filtered_peak_bc_matrix, in float pwm_threshold, out h5 filtered_tf_bc_matrix, out path filtered_tf_bc_matrix_mex, out gz tf_propZ_matrix, out tsv peak_annotation, ) { call ANNOTATE_PEAKS( peaks = self.peaks, reference_path = self.reference_path, ) call COMPUTE_GC_DISTRIBUTION( peaks = self.peaks, reference_path = self.reference_path, ) call SCAN_MOTIFS( globalGCdict = COMPUTE_GC_DISTRIBUTION.GCdict, peaks = self.peaks, reference_path = self.reference_path, pwm_threshold = self.pwm_threshold, ) call GENERATE_TF_MATRIX( reference_path = self.reference_path, peaks = self.peaks, filtered_matrix = self.filtered_peak_bc_matrix, peak_motif_hits = SCAN_MOTIFS.peak_motif_hits, ) return ( filtered_tf_bc_matrix = GENERATE_TF_MATRIX.filtered_tf_bc_matrix, filtered_tf_bc_matrix_mex = GENERATE_TF_MATRIX.filtered_tf_bc_matrix_mex, tf_propZ_matrix = GENERATE_TF_MATRIX.tf_propZ_matrix, peak_annotation = ANNOTATE_PEAKS.peak_annotation, ) } # # @include "_sc_atac_analyzer_stages.mro" # stage ANALYZER_PREFLIGHT( in bed peaks, in h5 filtered_peak_bc_matrix, in string[] factorization, in int tsne_perplexity, in int random_seed, in float tsne_theta, in int tsne_mom_switch_iter, in int tsne_stop_lying_iter, in int tsne_max_dims, in int tsne_input_pcs, in int tsne_max_iter, in int max_clusters, in int num_components, in int num_dr_bcs, in int num_dr_features, in float neighbor_a, in float neighbor_b, in int graphclust_neighbors, src py "stages/preflight/atac_analyzer", ) stage REDUCE_DIMENSIONS( in h5 filtered_matrix, in string[] factorization, in int num_dims, in int num_bcs, in int num_features, in int random_seed, out path reduced_data, out map reduction_summary, src py "stages/analysis/reduce_dimensions", ) split ( in string method, ) using ( volatile = strict, ) stage CLUSTER_CELLS( in h5 filtered_matrix, in path reduced_data, in map reduction_summary, in string[] factorization, in int minclusters, in int maxclusters, in int num_dims, in int random_seed, out path clustered_data, out map clustering_summary, src py "stages/analysis/cluster_cells", ) split ( in int n_clusters, ) using ( volatile = strict, ) stage PROJECT_TSNE( in h5 filtered_matrix, in path reduced_data, in map reduction_summary, in int tsne_perplexity, in int tsne_max_dims, in int tsne_input_pcs, in float tsne_theta, in int tsne_max_iter, in int tsne_stop_lying_iter, in int tsne_mom_switch_iter, in int random_seed, in string[] factorization, out path tsne, out map tsne_summary, src py "stages/analysis/project_tsne", ) split ( in string method, in int tsne_dims, ) using ( volatile = strict, ) stage RUN_GRAPH_CLUSTERING( in h5 matrix_h5 "Processed matrix", in string[] factorization, in path reduced_data, in map reduction_summary, in int num_neighbors "Use this many neighbors", in float neighbor_a "Use larger of (a+b*log10(n_cells) neighbors or num_neighbors", in float neighbor_b "Use larger of (a+b*log10(n_cells) neighbors or num_neighbors", in int balltree_leaf_size, in string similarity_type "Type of similarity to use (nn or snn)", out h5 chunked_neighbors, out path knn_clusters, out map graph_clustering_summary, src py "stages/analysis/run_graph_clustering", ) split ( in string method, in pickle neighbor_index, in h5 submatrix, in int row_start, in int total_rows, in int k_nearest, in h5 use_bcs, ) using ( volatile = strict, ) stage COMBINE_CLUSTERING( in h5 filtered_matrix, in map clustering_summary, in path clustered_data, in map graph_clustering_summary, in path knn_clusters, out path clustering, out map clustering_summary, src py "stages/analysis/combine_clustering", ) using ( volatile = strict, ) stage SUMMARIZE_ANALYSIS( in tsv peak_annotation, in h5 filtered_peak_bc_matrix, in h5 filtered_tf_bc_matrix, in gz tf_propZ_matrix, in path reduced_data, in map reduction_summary, in path clustering, in map clustering_summary, in path tsne, in map tsne_summary, in path enrichment_analysis, in map enrichment_analysis_summary, out h5 analysis, out path analysis_csv, out h5 feature_bc_matrix, src py "stages/analysis/summarize_analysis", ) split ( ) using ( volatile = strict, ) stage PERFORM_DIFFERENTIAL_ANALYSIS( in bed peaks, in string reference_path, in h5 filtered_peak_bc_matrix, in h5 filtered_tf_bc_matrix, in string[] factorization, in path clustering, in map clustering_summary, out path enrichment_analysis, out map enrichment_analysis_summary, src py "stages/analysis/perform_differential_analysis", ) split ( in string method, in string clustering_key, in int cluster, out csv tmp_diffexp, ) using ( volatile = strict, ) # # @include "_sc_atac_analyzer.mro" # pipeline _SC_ATAC_ANALYZER( in string reference_path, in bed peaks, in h5 filtered_peak_bc_matrix, in string[] factorization, in int tsne_perplexity, in int random_seed, in float tsne_theta, in int tsne_mom_switch_iter, in int tsne_stop_lying_iter, in int tsne_max_dims, in int tsne_input_pcs, in int tsne_max_iter, in int max_clusters, in int num_components, in int num_dr_bcs, in int num_dr_features, in float neighbor_a, in float neighbor_b, in int graphclust_neighbors, out h5 analysis, out path analysis_csv, out h5 filtered_tf_bc_matrix, out path filtered_tf_bc_matrix_mex, out h5 feature_bc_matrix, out tsv peak_annotation, ) { call ANALYZER_PREFLIGHT( peaks = self.peaks, filtered_peak_bc_matrix = self.filtered_peak_bc_matrix, factorization = self.factorization, tsne_perplexity = self.tsne_perplexity, random_seed = self.random_seed, tsne_theta = self.tsne_theta, tsne_mom_switch_iter = self.tsne_mom_switch_iter, tsne_stop_lying_iter = self.tsne_stop_lying_iter, tsne_max_dims = self.tsne_max_dims, tsne_input_pcs = self.tsne_input_pcs, tsne_max_iter = self.tsne_max_iter, max_clusters = self.max_clusters, num_components = self.num_components, num_dr_bcs = self.num_dr_bcs, num_dr_features = self.num_dr_features, neighbor_a = self.neighbor_a, neighbor_b = self.neighbor_b, graphclust_neighbors = self.graphclust_neighbors, ) using ( volatile = true, ) call _PEAK_ANNOTATOR( reference_path = self.reference_path, peaks = self.peaks, filtered_peak_bc_matrix = self.filtered_peak_bc_matrix, pwm_threshold = null, ) call REDUCE_DIMENSIONS( filtered_matrix = self.filtered_peak_bc_matrix, factorization = self.factorization, num_dims = self.num_components, num_bcs = self.num_dr_bcs, num_features = self.num_dr_features, random_seed = self.random_seed, ) call CLUSTER_CELLS( filtered_matrix = self.filtered_peak_bc_matrix, reduced_data = REDUCE_DIMENSIONS.reduced_data, reduction_summary = REDUCE_DIMENSIONS.reduction_summary, factorization = self.factorization, minclusters = 2, maxclusters = self.max_clusters, num_dims = null, random_seed = self.random_seed, ) call PROJECT_TSNE( filtered_matrix = self.filtered_peak_bc_matrix, reduced_data = REDUCE_DIMENSIONS.reduced_data, reduction_summary = REDUCE_DIMENSIONS.reduction_summary, tsne_perplexity = self.tsne_perplexity, tsne_max_dims = self.tsne_max_dims, tsne_input_pcs = self.tsne_input_pcs, tsne_theta = self.tsne_theta, tsne_max_iter = self.tsne_max_iter, tsne_stop_lying_iter = self.tsne_stop_lying_iter, tsne_mom_switch_iter = self.tsne_mom_switch_iter, random_seed = self.random_seed, factorization = self.factorization, ) call RUN_GRAPH_CLUSTERING( matrix_h5 = self.filtered_peak_bc_matrix, factorization = self.factorization, reduced_data = REDUCE_DIMENSIONS.reduced_data, reduction_summary = REDUCE_DIMENSIONS.reduction_summary, num_neighbors = self.graphclust_neighbors, neighbor_a = self.neighbor_a, neighbor_b = self.neighbor_b, balltree_leaf_size = null, similarity_type = "nn", ) call COMBINE_CLUSTERING( filtered_matrix = self.filtered_peak_bc_matrix, clustering_summary = CLUSTER_CELLS.clustering_summary, clustered_data = CLUSTER_CELLS.clustered_data, graph_clustering_summary = RUN_GRAPH_CLUSTERING.graph_clustering_summary, knn_clusters = RUN_GRAPH_CLUSTERING.knn_clusters, ) call PERFORM_DIFFERENTIAL_ANALYSIS( reference_path = self.reference_path, peaks = self.peaks, filtered_peak_bc_matrix = self.filtered_peak_bc_matrix, filtered_tf_bc_matrix = _PEAK_ANNOTATOR.filtered_tf_bc_matrix, factorization = self.factorization, clustering = COMBINE_CLUSTERING.clustering, clustering_summary = COMBINE_CLUSTERING.clustering_summary, ) call SUMMARIZE_ANALYSIS( peak_annotation = _PEAK_ANNOTATOR.peak_annotation, filtered_peak_bc_matrix = self.filtered_peak_bc_matrix, filtered_tf_bc_matrix = _PEAK_ANNOTATOR.filtered_tf_bc_matrix, tf_propZ_matrix = _PEAK_ANNOTATOR.tf_propZ_matrix, reduced_data = REDUCE_DIMENSIONS.reduced_data, reduction_summary = REDUCE_DIMENSIONS.reduction_summary, clustering = COMBINE_CLUSTERING.clustering, clustering_summary = COMBINE_CLUSTERING.clustering_summary, tsne = PROJECT_TSNE.tsne, tsne_summary = PROJECT_TSNE.tsne_summary, enrichment_analysis = PERFORM_DIFFERENTIAL_ANALYSIS.enrichment_analysis, enrichment_analysis_summary = PERFORM_DIFFERENTIAL_ANALYSIS.enrichment_analysis_summary, ) return ( analysis = SUMMARIZE_ANALYSIS.analysis, analysis_csv = SUMMARIZE_ANALYSIS.analysis_csv, filtered_tf_bc_matrix = _PEAK_ANNOTATOR.filtered_tf_bc_matrix, filtered_tf_bc_matrix_mex = _PEAK_ANNOTATOR.filtered_tf_bc_matrix_mex, feature_bc_matrix = SUMMARIZE_ANALYSIS.feature_bc_matrix, peak_annotation = _PEAK_ANNOTATOR.peak_annotation, ) } # # @include "_sc_atac_reporter_stages.mro" # stage SUMMARIZE_REPORTS_SINGLECELL( in string reference_path, in json complexity_summary, in json cell_calling_summary, in json peak_results, in json basic_results, in json error_results_summary, in json insert_summary, in json singlecell_results, in json contam_results, in json downsample_info, in json enrichment_results, out json analysis_params, out json summary, out csv summary_csv, src py "stages/reporter/summarize_reports_singlecell", ) using ( mem_gb = 4, ) stage CREATE_WEBSUMMARY( in string reference_path, in string barcode_whitelist, in json summary_results, in json bulk_complexity, in json singlecell_complexity, in string sample_id, in string sample_desc, in map[] sample_def, in bool debug, in csv singlecell, in csv insert_sizes, in csv tss_relpos, in csv ctcf_relpos, in h5 filtered_peak_bc_matrix, in h5 analysis, in json excluded_barcodes, out html web_summary, src py "stages/reporter/create_websummary", ) using ( mem_gb = 16, ) # # @include "_sc_atac_reporter.mro" # pipeline _SC_ATAC_REPORTER( in string reference_path, in string barcode_whitelist, in json bulk_complexity, in json cell_calling_summary, in json complexity_summary, in json basic_summary, in json peak_summary, in json singlecell_results, in json insert_summary, in json downsample_info, in json singlecell_complexity, in csv singlecell, in csv tss_relpos, in csv ctcf_relpos, in string sample_id, in string sample_desc, in map[] sample_def, in csv sc_insert_sizes, in json enrichment_results, in h5 filtered_peak_bc_matrix, in h5 analysis, in json excluded_barcodes, # out json summary, out html web_summary, out csv summary_csv, ) { call SUMMARIZE_REPORTS_SINGLECELL( reference_path = self.reference_path, complexity_summary = self.complexity_summary, cell_calling_summary = self.cell_calling_summary, peak_results = self.peak_summary, basic_results = self.basic_summary, error_results_summary = null, insert_summary = self.insert_summary, singlecell_results = self.singlecell_results, contam_results = null, downsample_info = self.downsample_info, enrichment_results = self.enrichment_results, ) call CREATE_WEBSUMMARY( reference_path = self.reference_path, barcode_whitelist = self.barcode_whitelist, singlecell = self.singlecell, tss_relpos = self.tss_relpos, ctcf_relpos = self.ctcf_relpos, sample_id = self.sample_id, sample_desc = self.sample_desc, sample_def = self.sample_def, insert_sizes = self.sc_insert_sizes, summary_results = SUMMARIZE_REPORTS_SINGLECELL.summary, bulk_complexity = self.bulk_complexity, singlecell_complexity = self.singlecell_complexity, analysis = self.analysis, filtered_peak_bc_matrix = self.filtered_peak_bc_matrix, excluded_barcodes = self.excluded_barcodes, debug = false, ) return ( summary = SUMMARIZE_REPORTS_SINGLECELL.summary, web_summary = CREATE_WEBSUMMARY.web_summary, summary_csv = SUMMARIZE_REPORTS_SINGLECELL.summary_csv, ) } # # @include "_atac_cloupe_stages.mro" # stage CLOUPE_PREPROCESS( in string pipestance_type, in string sample_id, in string sample_desc, in string reference_path, in h5 analysis, in h5 feature_barcode_matrix, in bed peaks, in tsv.gz.tbi fragments_index, in json metrics_json, in csv aggregation_csv, in json gem_group_index_json, in bool no_secondary_analysis, out cloupe output_for_cloupe, out json gem_group_index_json, src py "stages/cloupe/atac_cloupe_preprocess", ) split ( ) # # @include "_preflight_stages.mro" # stage ATAC_COUNTER_PREFLIGHT( in string sample_id, in string fastq_mode, in map[] sample_def, in string reference_path, in map force_cells, in string[] factorization, in map downsample, in bool check_executables, in map trim_def, src py "stages/preflight/atac_counter", ) split ( ) stage ATAC_AGGR_PREFLIGHT( in string sample_id, in string reference_path, in csv aggr_csv, in string normalization, in string[] factorization, in bool check_executables, src py "stages/preflight/atac_aggr", ) split ( ) stage ATAC_REANALYZER_PREFLIGHT( in string sample_id, in string reference_path, in string barcode_whitelist, in bed peaks, in csv parameters, in map force_cells, in csv cell_barcodes, in tsv.gz fragments, in tsv.gz.tbi fragments_index, in csv aggregation_csv, in bool check_executables, src py "stages/preflight/atac_reanalyzer", ) split ( ) # # @include "sc_atac_counter.mro" # pipeline SC_ATAC_COUNTER( in string fastq_mode, in string sample_id, in map[] sample_def, in map downsample, in string sample_desc, in string reference_path, in map trim_def, in string barcode_whitelist, in map adapters, in string[] factorization, in map force_cells, # out csv singlecell, out bam possorted_bam, out bam.bai possorted_bam_index, out json summary, out html web_summary, out bed peaks, out h5 raw_peak_bc_matrix, out path raw_peak_bc_matrix_mex, out path analysis_csv, out h5 filtered_peak_bc_matrix, out path filtered_peak_bc_matrix_mex, out tsv.gz fragments, out tsv.gz.tbi fragments_index, out h5 filtered_tf_bc_matrix, out path filtered_tf_bc_matrix_mex, out cloupe cloupe, out csv summary_csv, out tsv peak_annotation, ) { call ATAC_COUNTER_PREFLIGHT as ATAC_COUNTER_PREFLIGHT_LOCAL( sample_id = self.sample_id, fastq_mode = self.fastq_mode, sample_def = self.sample_def, reference_path = self.reference_path, force_cells = self.force_cells, factorization = self.factorization, downsample = self.downsample, trim_def = self.trim_def, check_executables = false, ) using ( local = true, preflight = true, ) call ATAC_COUNTER_PREFLIGHT( sample_id = self.sample_id, fastq_mode = self.fastq_mode, sample_def = self.sample_def, reference_path = self.reference_path, force_cells = self.force_cells, factorization = self.factorization, downsample = self.downsample, trim_def = self.trim_def, check_executables = true, ) using ( preflight = true, ) call _BASIC_SC_ATAC_COUNTER( sample_id = self.sample_id, fastq_mode = self.fastq_mode, sample_def = self.sample_def, trim_def = self.trim_def, adapters = self.adapters, reference_path = self.reference_path, barcode_whitelist = self.barcode_whitelist, downsample = self.downsample, force_cells = self.force_cells, ) call _SC_ATAC_METRIC_COLLECTOR( read_paired_bam = _BASIC_SC_ATAC_COUNTER.read_paired_bam, fragments = _BASIC_SC_ATAC_COUNTER.fragments, fragments_index = _BASIC_SC_ATAC_COUNTER.fragments_index, peaks = _BASIC_SC_ATAC_COUNTER.peaks, reference_path = self.reference_path, cell_barcodes = _BASIC_SC_ATAC_COUNTER.cell_barcodes, singlecell_cells = _BASIC_SC_ATAC_COUNTER.singlecell_cells, singlecell_mapping = _BASIC_SC_ATAC_COUNTER.singlecell_mapping, ) call _SC_ATAC_ANALYZER( peaks = _BASIC_SC_ATAC_COUNTER.peaks, filtered_peak_bc_matrix = _BASIC_SC_ATAC_COUNTER.filtered_peak_bc_matrix, reference_path = self.reference_path, factorization = self.factorization, tsne_perplexity = 30, tsne_max_dims = null, tsne_input_pcs = null, tsne_max_iter = null, tsne_stop_lying_iter = null, tsne_mom_switch_iter = null, tsne_theta = null, random_seed = null, max_clusters = 10, neighbor_a = null, neighbor_b = null, graphclust_neighbors = null, num_components = 15, num_dr_bcs = null, num_dr_features = null, ) call CLOUPE_PREPROCESS( pipestance_type = "SC_ATAC_COUNTER_CS", reference_path = self.reference_path, sample_id = self.sample_id, sample_desc = self.sample_desc, analysis = _SC_ATAC_ANALYZER.analysis, feature_barcode_matrix = _SC_ATAC_ANALYZER.feature_bc_matrix, metrics_json = _SC_ATAC_METRIC_COLLECTOR.basic_summary, peaks = _BASIC_SC_ATAC_COUNTER.peaks, fragments_index = _BASIC_SC_ATAC_COUNTER.fragments_index, aggregation_csv = null, gem_group_index_json = null, no_secondary_analysis = false, ) call _SC_ATAC_REPORTER( reference_path = self.reference_path, barcode_whitelist = self.barcode_whitelist, bulk_complexity = _SC_ATAC_METRIC_COLLECTOR.bulk_complexity, singlecell_complexity = _SC_ATAC_METRIC_COLLECTOR.singlecell_complexity, cell_calling_summary = _BASIC_SC_ATAC_COUNTER.cell_calling_summary, complexity_summary = _SC_ATAC_METRIC_COLLECTOR.complexity_summary, basic_summary = _SC_ATAC_METRIC_COLLECTOR.basic_summary, peak_summary = _BASIC_SC_ATAC_COUNTER.peak_metrics, singlecell_results = _SC_ATAC_METRIC_COLLECTOR.singlecell_results, insert_summary = _SC_ATAC_METRIC_COLLECTOR.insert_summary, downsample_info = _BASIC_SC_ATAC_COUNTER.downsample_info, singlecell = _SC_ATAC_METRIC_COLLECTOR.singlecell, tss_relpos = _SC_ATAC_METRIC_COLLECTOR.tss_relpos, ctcf_relpos = _SC_ATAC_METRIC_COLLECTOR.ctcf_relpos, sample_id = self.sample_id, sample_desc = self.sample_desc, sample_def = self.sample_def, sc_insert_sizes = _SC_ATAC_METRIC_COLLECTOR.insert_sizes, enrichment_results = _SC_ATAC_METRIC_COLLECTOR.enrichment_results, filtered_peak_bc_matrix = _BASIC_SC_ATAC_COUNTER.filtered_peak_bc_matrix, analysis = _SC_ATAC_ANALYZER.analysis, excluded_barcodes = _BASIC_SC_ATAC_COUNTER.excluded_barcodes, ) return ( singlecell = _SC_ATAC_METRIC_COLLECTOR.singlecell, possorted_bam = _BASIC_SC_ATAC_COUNTER.possorted_bam, possorted_bam_index = _BASIC_SC_ATAC_COUNTER.possorted_bam_index, summary = _SC_ATAC_REPORTER.summary, web_summary = _SC_ATAC_REPORTER.web_summary, peaks = _BASIC_SC_ATAC_COUNTER.peaks, raw_peak_bc_matrix = _BASIC_SC_ATAC_COUNTER.raw_peak_bc_matrix, raw_peak_bc_matrix_mex = _BASIC_SC_ATAC_COUNTER.raw_peak_bc_matrix_mex, analysis_csv = _SC_ATAC_ANALYZER.analysis_csv, filtered_peak_bc_matrix = _BASIC_SC_ATAC_COUNTER.filtered_peak_bc_matrix, filtered_peak_bc_matrix_mex = _BASIC_SC_ATAC_COUNTER.filtered_peak_bc_matrix_mex, fragments = _BASIC_SC_ATAC_COUNTER.fragments, fragments_index = _BASIC_SC_ATAC_COUNTER.fragments_index, filtered_tf_bc_matrix = _SC_ATAC_ANALYZER.filtered_tf_bc_matrix, filtered_tf_bc_matrix_mex = _SC_ATAC_ANALYZER.filtered_tf_bc_matrix_mex, cloupe = CLOUPE_PREPROCESS.output_for_cloupe, summary_csv = _SC_ATAC_REPORTER.summary_csv, peak_annotation = _SC_ATAC_ANALYZER.peak_annotation, ) } # # @include "sc_atac_counter_cs.mro" # # Customer-facing (CS) pipeline pipeline SC_ATAC_COUNTER_CS( in string fastq_mode "Input fastq configuration", in string sample_id, in map[] sample_def, in map downsample, in string sample_desc "Sample description", in string reference_path "Path to 10X reference package", in string[] factorization "Dimensionality reduction method (lsa, plsa, or pca)", in map force_cells "Force cell calling to a fixed number", # out csv singlecell "Per-barcode fragment counts & metrics", out bam possorted_bam "Position sorted BAM file" "possorted_bam.bam", out bam.bai possorted_bam_index "Position sorted BAM index" "possorted_bam.bam.bai", out json summary "Summary of all data metrics", out html web_summary "HTML file summarizing data & analysis", out bed peaks "Bed file of all called peak locations", out h5 raw_peak_bc_matrix "Raw peak barcode matrix in hdf5 format", out path raw_peak_bc_matrix_mex "Raw peak barcode matrix in mex format" "raw_peak_bc_matrix", out path analysis_csv "Directory of analysis files" "analysis", out h5 filtered_peak_bc_matrix "Filtered peak barcode matrix in hdf5 format", out path filtered_peak_bc_matrix_mex "Filtered peak barcode matrix in mex format" "filtered_peak_bc_matrix", out tsv.gz fragments "Barcoded and aligned fragment file" "fragments.tsv.gz", out tsv.gz.tbi fragments_index "Fragment file index" "fragments.tsv.gz.tbi", out h5 filtered_tf_bc_matrix "Filtered tf barcode matrix in hdf5 format", out path filtered_tf_bc_matrix_mex "Filtered tf barcode matrix in mex format" "filtered_tf_bc_matrix", out cloupe cloupe "Loupe Cell Browser input file", out csv summary_csv "csv summarizing important metrics and values" "summary.csv", out tsv peak_annotation "Annotation of peaks with genes", ) { call SC_ATAC_COUNTER( fastq_mode = self.fastq_mode, sample_id = self.sample_id, sample_def = self.sample_def, downsample = self.downsample, sample_desc = self.sample_desc, reference_path = self.reference_path, trim_def = { "R1": { "3prime": ["MErc"], }, "R2": { "3prime": ["MErc"], }, "discard_untrimmed": false, }, barcode_whitelist = "737K-cratac-v1", adapters = { "ME": "AGATGTGTATAAGAGACAG", "MErc": "CTGTCTCTTATACACATCT", }, factorization = self.factorization, force_cells = self.force_cells, ) return ( singlecell = SC_ATAC_COUNTER.singlecell, possorted_bam = SC_ATAC_COUNTER.possorted_bam, possorted_bam_index = SC_ATAC_COUNTER.possorted_bam_index, summary = SC_ATAC_COUNTER.summary, web_summary = SC_ATAC_COUNTER.web_summary, peaks = SC_ATAC_COUNTER.peaks, raw_peak_bc_matrix = SC_ATAC_COUNTER.raw_peak_bc_matrix, raw_peak_bc_matrix_mex = SC_ATAC_COUNTER.raw_peak_bc_matrix_mex, analysis_csv = SC_ATAC_COUNTER.analysis_csv, filtered_peak_bc_matrix = SC_ATAC_COUNTER.filtered_peak_bc_matrix, filtered_peak_bc_matrix_mex = SC_ATAC_COUNTER.filtered_peak_bc_matrix_mex, fragments = SC_ATAC_COUNTER.fragments, fragments_index = SC_ATAC_COUNTER.fragments_index, filtered_tf_bc_matrix = SC_ATAC_COUNTER.filtered_tf_bc_matrix, filtered_tf_bc_matrix_mex = SC_ATAC_COUNTER.filtered_tf_bc_matrix_mex, cloupe = SC_ATAC_COUNTER.cloupe, summary_csv = SC_ATAC_COUNTER.summary_csv, peak_annotation = SC_ATAC_COUNTER.peak_annotation, ) } # # @include "__PBMC_P.mro" # call SC_ATAC_COUNTER_CS( fastq_mode = "ILMN_BCL2FASTQ", sample_id = "PBMC_P", sample_def = [{ "bc_in_read": 1, "bc_length": 16, "gem_group": null, "lanes": null, "library": "LibraryNotSpecified", "read_path": "/data/isshamie/dropbox/ATACseq/2020_11_18_Croker/igm-storage2.ucsd.edu/201113_A00953_0185_AHN7TMDSXY", "sample_indices": ["any"], "sample_names": ["BC_10xATAC_PMBC_P"], }], reference_path = "/data/isshamie/mito_lineage/data/external/GRCh38_MT_blacklist", downsample = null, sample_desc = "", factorization = ["lsa"], force_cells = null, ) ew file mode 100644 ndex 0000000..9c51e87 ++ b/Analysis/mtscATAC/2020_11_18_Croker/PBMC_P/_sitecheck
eb68621b49dd4f77b70f5698ea51b9190ad8b14c
The text was updated successfully, but these errors were encountered:
No branches or pull requests
This should be in mro/common for general use
Mito_Trace/Analysis/mtscATAC/2020_11_18_Croker/PBMC_P/_mrosource
Line 582 in 770eee8
eb68621b49dd4f77b70f5698ea51b9190ad8b14c
The text was updated successfully, but these errors were encountered: