forked from RainerHeintzmann/StateModeling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcorrect_deaths_new.py
215 lines (199 loc) · 9.34 KB
/
correct_deaths_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import pandas as pd
import os
from datetime import datetime, timedelta
# does a linear interpolation between to given values over a given amount of days
def linear_interpolation(value: int, days=1, previous=0) -> list:
daily = (value-previous)/(days+1)
ret = []
for i in range(1, days+1):
ret.append(int((daily*i)+previous))
return ret
# orders a dataframe by firstly date and then district
def reorder_dataframe_by_date_and_district(df, start_date, end_date, districts):
ret = pd.DataFrame(columns=['Datum', 'Landkreis', 'Altersgruppe', 'Geschlecht', 'Tote'])
#print(df)
#print(start_date)
#print(end_date)
#print(districts)
for i in range(0, ((end_date - start_date).days + 1)):
#print('hi')
for district in districts:
the_day = datetime.strftime(start_date + timedelta(days=i), '%Y/%m/%d')
#print(the_day)
#print(type(the_day))
append_df = df[df['Datum'] == the_day][df['Landkreis'] == district]
if append_df.empty:
continue
#print('append_df: ', append_df)
ret = ret.append(append_df, ignore_index=True)
#print(ret)
#print(ret)
return ret
def PreprocessDeaths(DataDir=None):
if DataDir == None:
DataDir = '..' + os.sep + 'RKI-Daten'
files = os.listdir(DataDir) # files in the data directory
#column_order = ('IdBundesland', 'Bundesland', 'Landkreis', 'Altersgruppe', 'Geschlecht', 'AnzahlFall', 'AnzahlTodesfall', 'Meldedatum', 'IdLandkreis', 'Datenstand', 'NeuerFall', 'NeuerTodesfall')
#column_list = pd.read_csv('..' + os.sep + 'RKI-Daten' + os.sep + 'RKI_COVID19_2020-03-27.csv').columns.to_list()
#column_list.remove('ObjectId')
# removes elements in the files list which should not be loaded
try:
files.remove('.git')
except:
pass
try:
files.remove('README.md')
except:
pass
try:
files.remove('Format.txt')
except:
pass
try:
files.remove('Deaths.csv')
except:
pass
try:
files.remove('Deaths_RKI_Format.csv')
except:
pass
try:
files.remove('Deaths_RKI_Format_new.csv')
except:
pass
try:
files.remove('RKI_COVID19_2020-04-16.csv')
except:
pass
"""
try:
files.remove('RKI_COVID19_2020-04-11.csv')
except:
pass
try:
files.remove('RKI_COVID19_2020-04-13.csv')
except:
pass
try:
files.remove('RKI_COVID19_2020-04-18.csv')
except:
pass
try:
files.remove('RKI_COVID19_2020-04-27.csv')
except:
pass
try:
files.remove('RKI_COVID19_2020-05-04.csv')
except:
pass
"""
files = sorted(files) # orders files by data date rather than last modification
# DEBUG
print(files)
# reads district list out of recent data
last_data = pd.read_csv(DataDir + os.sep + files[-1])
landkreise = []
for landkreis in last_data['Landkreis']:
if not landkreis in landkreise:
landkreise.append(landkreis)
# possible age specifications in the data
ageGroups = ['A00-A04', 'A05-A14', 'A15-A34', 'A35-A59', 'A60-A79', 'A80+', 'unbekannt']
# possible gender specifications in the data
genders = ['M', 'unbekannt', 'W']
newDeaths = pd.DataFrame(columns=['Datum', 'Landkreis', 'Altersgruppe', 'Geschlecht', 'Tote']) #format: Datum, Landkreis, Altersgruppe, Geschlecht, Tote
append_today_DataFrame = pd.DataFrame(columns=['Datum', 'Landkreis', 'Altersgruppe', 'Geschlecht', 'Tote'])
append_yesterday_DataFrame = pd.DataFrame(columns=['Datum', 'Landkreis', 'Altersgruppe', 'Geschlecht', 'Tote'])
append_inter_DataFrame = pd.DataFrame(columns=['Datum', 'Landkreis', 'Altersgruppe', 'Geschlecht', 'Tote'])
prev_date = datetime.strptime('2020/03/25', '%Y/%m/%d').date()
for file in files:
print(file)
data = pd.read_csv(DataDir + os.sep + file, encoding = "ISO-8859-1")
NeuerTodesfallTag = 'NeuerTodesfall'
if NeuerTodesfallTag not in data.keys():
NeuerTodesfallTag = 'Neuer Todesfall'
AnzahlTodesfallTag = 'AnzahlTodesfall'
if AnzahlTodesfallTag not in data.keys():
AnzahlTodesfallTag = 'Anzahl Todesfall'
data = data[data[NeuerTodesfallTag] != -9]
data_date = file[-14:-4]
data_date = data_date.replace('-', '/')
print(data_date)
format = '%Y/%m/%d'
if data_date[0:4] != '2020':
format = '%d/%m/%Y'
data_date_obj = datetime.strptime(data_date[0:10], format).date()
lack_of_data = (data_date_obj - prev_date).days - 1
if lack_of_data:
yesterday = datetime.strftime(data_date_obj - timedelta(days=1), '%Y/%m/%d')
lack_of_data2 = lack_of_data - 1
print('Lack of data 2:', lack_of_data2)
else:
print('Lack of data 1:', lack_of_data)
for current_district in landkreise:
interest_district = data[data['Landkreis'] == current_district]
if interest_district.empty:
continue
for age in ageGroups:
interest_age = interest_district[interest_district['Altersgruppe'] == age]
if interest_age.empty:
continue
for gender in genders:
interest_gender = interest_age[interest_age['Geschlecht'] == gender]
if interest_gender.empty:
continue
interest = interest_gender[interest_gender[NeuerTodesfallTag] != -1]
if interest.empty:
dead = 0
else:
dead = interest[AnzahlTodesfallTag].sum()
#print(dead)
append_dict = {'Datum':data_date_obj.strftime('%Y/%m/%d'), 'Landkreis':current_district, 'Altersgruppe':age, 'Geschlecht':gender, 'Tote':dead}
#print(append_dict)
append_today_DataFrame = append_today_DataFrame.append(append_dict, ignore_index=True)
#print(newDeaths)
if lack_of_data:
interest = interest_gender[interest_gender[NeuerTodesfallTag] != 0]
diff = interest[AnzahlTodesfallTag].sum()
dead_yesterday = dead - diff
append_dict = {'Datum':yesterday, 'Landkreis':current_district, 'Altersgruppe':age, 'Geschlecht':gender, 'Tote':dead_yesterday}
append_yesterday_DataFrame = append_yesterday_DataFrame.append(append_dict, ignore_index=True)
if lack_of_data2:
#print('Lack of data 2', lack_of_data2)
gap_date = prev_date + timedelta(days=1)
if prev_date == datetime.strptime('2020/02/24', '%Y/%m/%d').date():
interpolation = linear_interpolation(dead_yesterday, days=30)
else:
prev_dead = newDeaths[newDeaths['Datum'] == prev_date.strftime('%Y/%m/%d')][newDeaths['Landkreis'] == current_district][newDeaths['Altersgruppe'] == age][newDeaths['Geschlecht'] == gender]['Tote']
if prev_dead.empty:
continue
prev_dead = int(prev_dead)
interpolation = linear_interpolation(dead_yesterday, lack_of_data2, prev_dead)
for i in range(0, len(interpolation)):
if interpolation[i] == 0:
continue
append_dict = {'Datum':datetime.strftime(gap_date, '%Y/%m/%d'), 'Landkreis':current_district, 'Altersgruppe':age, 'Geschlecht':gender, 'Tote':interpolation[i]}
append_inter_DataFrame = append_inter_DataFrame.append(append_dict, ignore_index=True)
gap_date = gap_date + timedelta(days=1)
if lack_of_data2:
print(append_inter_DataFrame)
append_inter_DataFrame = reorder_dataframe_by_date_and_district(append_inter_DataFrame, prev_date + timedelta(days=1), datetime.strptime(yesterday, '%Y/%m/%d').date() - timedelta(days=1), landkreise)
print(append_inter_DataFrame)
newDeaths = newDeaths.append(append_inter_DataFrame, ignore_index=True)
print(newDeaths)
append_inter_DataFrame = pd.DataFrame(columns=['Datum', 'Landkreis', 'Altersgruppe', 'Geschlecht', 'Tote'])
if lack_of_data:
newDeaths = newDeaths.append(append_yesterday_DataFrame, ignore_index=True)
append_yesterday_DataFrame = pd.DataFrame(columns=['Datum', 'Landkreis', 'Altersgruppe', 'Geschlecht', 'Tote'])
lack_of_data2 = 0
newDeaths = newDeaths.append(append_today_DataFrame, ignore_index=True)
append_today_DataFrame = append_yesterday_DataFrame
#print(data_date_obj)
#print(type(data_date_obj))
#print(prev_date)
#print(type(prev_date))
prev_date = data_date_obj
#newDeaths = newDeaths.sort_values(by=['Datum'])
newDeaths.to_csv(DataDir + os.sep + 'Deaths.csv', index=False)
print(newDeaths)
if __name__ == '__main__':
PreprocessDeaths(r'C:\Users\pi96doc\Documents\Programming\PythonScripts\FromWeb\CoronaData\CSV-Dateien-mit-Covid-19-Infektionen-\\')