forked from Jermmy/pytorch-quantization-demo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpost_training_quantize.py
102 lines (75 loc) · 2.97 KB
/
post_training_quantize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from torch.serialization import load
from model import *
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import os
import os.path as osp
def direct_quantize(model, test_loader):
for i, (data, target) in enumerate(test_loader, 1):
output = model.quantize_forward(data)
if i % 500 == 0:
break
print('direct quantization finish')
def full_inference(model, test_loader):
correct = 0
for i, (data, target) in enumerate(test_loader, 1):
output = model(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
print('\nTest set: Full Model Accuracy: {:.0f}%\n'.format(100. * correct / len(test_loader.dataset)))
def quantize_inference(model, test_loader):
correct = 0
for i, (data, target) in enumerate(test_loader, 1):
output = model.quantize_inference(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
print('\nTest set: Quant Model Accuracy: {:.0f}%\n'.format(100. * correct / len(test_loader.dataset)))
if __name__ == "__main__":
batch_size = 64
using_bn = True
load_quant_model_file = None
# load_model_file = None
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True, num_workers=1, pin_memory=True
)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=False, num_workers=1, pin_memory=True
)
if using_bn:
model = NetBN()
model.load_state_dict(torch.load('ckpt/mnist_cnnbn.pt', map_location='cpu'))
save_file = "ckpt/mnist_cnnbn_ptq.pt"
else:
model = Net()
model.load_state_dict(torch.load('ckpt/mnist_cnn.pt', map_location='cpu'))
save_file = "ckpt/mnist_cnn_ptq.pt"
model.eval()
full_inference(model, test_loader)
num_bits = 8
model.quantize(num_bits=num_bits)
model.eval()
print('Quantization bit: %d' % num_bits)
if load_quant_model_file is not None:
model.load_state_dict(torch.load(load_quant_model_file))
print("Successfully load quantized model %s" % load_quant_model_file)
direct_quantize(model, train_loader)
torch.save(model.state_dict(), save_file)
model.freeze()
# 测试是否设备转移是否正确
# model.cuda()
# print(model.qconv1.M.device)
# model.cpu()
# print(model.qconv1.M.device)
quantize_inference(model, test_loader)