-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
84 lines (73 loc) · 3.37 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import torch
from torchvision import transforms
from models.diffusion import DiffusionModel
from models.unet import Unet
from utils.networkHelper import num_to_groups
"""
Notice : 需要将创建一个名为 "{}_dimMults{}_w{}_p{}_schedule{}_timesteps{}" 的文件夹,放于 "./ckpt/" 中
用于存放 BestModel.pth , 其中dimMults参数必须与模型训练时的设置一致,其余参数可以自行调整
例如:attention_dimMults(1, 2, 2)_w4_p0.1_schedulecosine_beta_schedule_timesteps1000
"""
# 生成参数
attention = False # False : Using MLP replace attention block
transform = True
sample_batch_size = 64
var_schedule = "cosine_beta_schedule" # 四种方差生成策略,具体见"varianceSchedule.py"
timesteps = 1000
image_size = 64
channels = 1
num_labels = 16
dim_mults = (1, 2, 2,) # TODO 必须与模型训练时的设置一致
w = 4 # 条件强度
p = 0.1 # 训练时以0.1的概率使用无标签训练(与生成无关但为了标记模型)
num_images = 2048 # 生成图像数量
if __name__ == '__main__':
# 初始化模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
denoise_model = Unet(dim=image_size,
cond_dim=num_labels,
channels=channels,
dim_mults=dim_mults)
model = DiffusionModel(var_schedule=var_schedule,
timesteps=timesteps,
beta_start=0.0001,
beta_end=0.02,
num_labels=num_labels,
device=device,
denoise_model=denoise_model).to(device)
block = 'attention' if attention else 'mlp'
setting = "{}_dimMults{}_w{}_p{}_schedule{}_timesteps{}".format(block,dim_mults, w, p, var_schedule,
timesteps)
# 加载模型
model_dir = os.path.join("./ckpt", setting)
best_model_path = model_dir + '/' + 'BestModel.pth'
model.load_state_dict(torch.load(best_model_path))
# 图像保存地址
generated_images_dir = model_dir + '/' + 'generated_dataset'
os.makedirs(generated_images_dir, exist_ok=True)
model.eval()
image_count = 0
batches = num_to_groups(num_images, sample_batch_size)
with torch.no_grad():
for i, batch_size in enumerate(batches):
if image_count >= num_images:
break
labels = torch.randint(0, num_labels-1, size=(batch_size,), device=device)
samples = model(mode="infer", img_size=image_size, batch_size=batch_size,
channels=channels, c=labels, w=w)
sample = samples[-1]
for j, image in enumerate(sample):
save_path = os.path.join(generated_images_dir,
f'image_{image_count}_label_{labels[j]}.png')
if transform:
# 逆归一化
inverse_transform = transforms.Compose([
transforms.Normalize(mean=[-1], std=[2]) # 逆归一化公式
])
sample = inverse_transform(image)
image_pil = transforms.ToPILImage()(image)
image_pil.save(save_path)
image_count += 1
if image_count >= num_images:
break