diff --git a/.buildinfo b/.buildinfo new file mode 100644 index 0000000..bac2961 --- /dev/null +++ b/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: 3a32a30879ec096acd91f028295f8bc4 +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/.doctrees/api.doctree b/.doctrees/api.doctree new file mode 100644 index 0000000..8638f3a Binary files /dev/null and b/.doctrees/api.doctree differ diff --git a/.doctrees/cite.doctree b/.doctrees/cite.doctree new file mode 100644 index 0000000..97ca27c Binary files /dev/null and b/.doctrees/cite.doctree differ diff --git a/.doctrees/environment.pickle b/.doctrees/environment.pickle new file mode 100644 index 0000000..b0bd604 Binary files /dev/null and b/.doctrees/environment.pickle differ diff --git a/.doctrees/examples/psychophysics/1-psychophysics_subject_level.doctree b/.doctrees/examples/psychophysics/1-psychophysics_subject_level.doctree new file mode 100644 index 0000000..2c29211 Binary files /dev/null and b/.doctrees/examples/psychophysics/1-psychophysics_subject_level.doctree differ diff --git a/.doctrees/examples/psychophysics/2-psychophysics_group_level.doctree b/.doctrees/examples/psychophysics/2-psychophysics_group_level.doctree new file mode 100644 index 0000000..171a0b2 Binary files /dev/null and b/.doctrees/examples/psychophysics/2-psychophysics_group_level.doctree differ diff --git a/.doctrees/examples/templates/HeartBeatCounting.doctree b/.doctrees/examples/templates/HeartBeatCounting.doctree new file mode 100644 index 0000000..d7f476a Binary files /dev/null and b/.doctrees/examples/templates/HeartBeatCounting.doctree differ diff --git a/.doctrees/examples/templates/HeartRateDiscrimination.doctree b/.doctrees/examples/templates/HeartRateDiscrimination.doctree new file mode 100644 index 0000000..5d3bd3e Binary files /dev/null and b/.doctrees/examples/templates/HeartRateDiscrimination.doctree differ diff --git a/.doctrees/generated/HBC.parameters/cardioception.HBC.parameters.getParameters.doctree b/.doctrees/generated/HBC.parameters/cardioception.HBC.parameters.getParameters.doctree new file mode 100644 index 0000000..6172c26 Binary files /dev/null and b/.doctrees/generated/HBC.parameters/cardioception.HBC.parameters.getParameters.doctree differ diff --git a/.doctrees/generated/HBC.task/cardioception.HBC.task.rest.doctree b/.doctrees/generated/HBC.task/cardioception.HBC.task.rest.doctree new file mode 100644 index 0000000..630b506 Binary files /dev/null and b/.doctrees/generated/HBC.task/cardioception.HBC.task.rest.doctree differ diff --git a/.doctrees/generated/HBC.task/cardioception.HBC.task.run.doctree b/.doctrees/generated/HBC.task/cardioception.HBC.task.run.doctree new file mode 100644 index 0000000..d61184e Binary files /dev/null and b/.doctrees/generated/HBC.task/cardioception.HBC.task.run.doctree differ diff --git a/.doctrees/generated/HBC.task/cardioception.HBC.task.trial.doctree b/.doctrees/generated/HBC.task/cardioception.HBC.task.trial.doctree new file mode 100644 index 0000000..816c42b Binary files /dev/null and b/.doctrees/generated/HBC.task/cardioception.HBC.task.trial.doctree differ diff --git a/.doctrees/generated/HBC.task/cardioception.HBC.task.tutorial.doctree b/.doctrees/generated/HBC.task/cardioception.HBC.task.tutorial.doctree new file mode 100644 index 0000000..3521c11 Binary files /dev/null and b/.doctrees/generated/HBC.task/cardioception.HBC.task.tutorial.doctree differ diff --git a/.doctrees/generated/HRD.languages/cardioception.HRD.languages.danish.doctree b/.doctrees/generated/HRD.languages/cardioception.HRD.languages.danish.doctree new file mode 100644 index 0000000..a721abb Binary files /dev/null and b/.doctrees/generated/HRD.languages/cardioception.HRD.languages.danish.doctree differ diff --git a/.doctrees/generated/HRD.languages/cardioception.HRD.languages.danish_children.doctree b/.doctrees/generated/HRD.languages/cardioception.HRD.languages.danish_children.doctree new file mode 100644 index 0000000..6fa8536 Binary files /dev/null and b/.doctrees/generated/HRD.languages/cardioception.HRD.languages.danish_children.doctree differ diff --git a/.doctrees/generated/HRD.languages/cardioception.HRD.languages.english.doctree b/.doctrees/generated/HRD.languages/cardioception.HRD.languages.english.doctree new file mode 100644 index 0000000..03e0913 Binary files /dev/null and b/.doctrees/generated/HRD.languages/cardioception.HRD.languages.english.doctree differ diff --git a/.doctrees/generated/HRD.languages/cardioception.HRD.languages.french.doctree b/.doctrees/generated/HRD.languages/cardioception.HRD.languages.french.doctree new file mode 100644 index 0000000..518909e Binary files /dev/null and b/.doctrees/generated/HRD.languages/cardioception.HRD.languages.french.doctree differ diff --git a/.doctrees/generated/HRD.parameters/cardioception.HRD.parameters.getParameters.doctree b/.doctrees/generated/HRD.parameters/cardioception.HRD.parameters.getParameters.doctree new file mode 100644 index 0000000..f64d179 Binary files /dev/null and b/.doctrees/generated/HRD.parameters/cardioception.HRD.parameters.getParameters.doctree differ diff --git a/.doctrees/generated/HRD.task/cardioception.HRD.task.confidenceRatingTask.doctree b/.doctrees/generated/HRD.task/cardioception.HRD.task.confidenceRatingTask.doctree new file mode 100644 index 0000000..ea974a5 Binary files /dev/null and b/.doctrees/generated/HRD.task/cardioception.HRD.task.confidenceRatingTask.doctree differ diff --git a/.doctrees/generated/HRD.task/cardioception.HRD.task.responseDecision.doctree b/.doctrees/generated/HRD.task/cardioception.HRD.task.responseDecision.doctree new file mode 100644 index 0000000..2879c87 Binary files /dev/null and b/.doctrees/generated/HRD.task/cardioception.HRD.task.responseDecision.doctree differ diff --git a/.doctrees/generated/HRD.task/cardioception.HRD.task.run.doctree b/.doctrees/generated/HRD.task/cardioception.HRD.task.run.doctree new file mode 100644 index 0000000..205bc77 Binary files /dev/null and b/.doctrees/generated/HRD.task/cardioception.HRD.task.run.doctree differ diff --git a/.doctrees/generated/HRD.task/cardioception.HRD.task.trial.doctree b/.doctrees/generated/HRD.task/cardioception.HRD.task.trial.doctree new file mode 100644 index 0000000..e4b2c73 Binary files /dev/null and b/.doctrees/generated/HRD.task/cardioception.HRD.task.trial.doctree differ diff --git a/.doctrees/generated/HRD.task/cardioception.HRD.task.tutorial.doctree b/.doctrees/generated/HRD.task/cardioception.HRD.task.tutorial.doctree new file mode 100644 index 0000000..04d5206 Binary files /dev/null and b/.doctrees/generated/HRD.task/cardioception.HRD.task.tutorial.doctree differ diff --git a/.doctrees/generated/HRD.task/cardioception.HRD.task.waitInput.doctree b/.doctrees/generated/HRD.task/cardioception.HRD.task.waitInput.doctree new file mode 100644 index 0000000..15d7886 Binary files /dev/null and b/.doctrees/generated/HRD.task/cardioception.HRD.task.waitInput.doctree differ diff --git a/.doctrees/generated/reports/cardioception.reports.group_level_preprocessing.doctree b/.doctrees/generated/reports/cardioception.reports.group_level_preprocessing.doctree new file mode 100644 index 0000000..bfddf72 Binary files /dev/null and b/.doctrees/generated/reports/cardioception.reports.group_level_preprocessing.doctree differ diff --git a/.doctrees/generated/reports/cardioception.reports.preprocessing.doctree b/.doctrees/generated/reports/cardioception.reports.preprocessing.doctree new file mode 100644 index 0000000..57c7140 Binary files /dev/null and b/.doctrees/generated/reports/cardioception.reports.preprocessing.doctree differ diff --git a/.doctrees/generated/reports/cardioception.reports.report.doctree b/.doctrees/generated/reports/cardioception.reports.report.doctree new file mode 100644 index 0000000..8bd12ff Binary files /dev/null and b/.doctrees/generated/reports/cardioception.reports.report.doctree differ diff --git a/.doctrees/generated/stats/cardioception.stats.behaviours.doctree b/.doctrees/generated/stats/cardioception.stats.behaviours.doctree new file mode 100644 index 0000000..27772fd Binary files /dev/null and b/.doctrees/generated/stats/cardioception.stats.behaviours.doctree differ diff --git a/.doctrees/generated/stats/cardioception.stats.psychophysics.doctree b/.doctrees/generated/stats/cardioception.stats.psychophysics.doctree new file mode 100644 index 0000000..796428f Binary files /dev/null and b/.doctrees/generated/stats/cardioception.stats.psychophysics.doctree differ diff --git a/.doctrees/index.doctree b/.doctrees/index.doctree new file mode 100644 index 0000000..c9ab8d4 Binary files /dev/null and b/.doctrees/index.doctree differ diff --git a/.doctrees/measuring.doctree b/.doctrees/measuring.doctree new file mode 100644 index 0000000..7e301f6 Binary files /dev/null and b/.doctrees/measuring.doctree differ diff --git a/.doctrees/references.doctree b/.doctrees/references.doctree new file mode 100644 index 0000000..d154a7c Binary files /dev/null and b/.doctrees/references.doctree differ diff --git a/.doctrees/stats.doctree b/.doctrees/stats.doctree new file mode 100644 index 0000000..642a460 Binary files /dev/null and b/.doctrees/stats.doctree differ diff --git a/.doctrees/user_guide.doctree b/.doctrees/user_guide.doctree new file mode 100644 index 0000000..39fff13 Binary files /dev/null and b/.doctrees/user_guide.doctree differ diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 0000000..e69de29 diff --git a/_images/0f7fc5e0613312de67a02a7cba94f841d82647aa8ef4fba4dd7f28121b1039d2.png b/_images/0f7fc5e0613312de67a02a7cba94f841d82647aa8ef4fba4dd7f28121b1039d2.png new file mode 100644 index 0000000..f71b11e Binary files /dev/null and b/_images/0f7fc5e0613312de67a02a7cba94f841d82647aa8ef4fba4dd7f28121b1039d2.png differ diff --git a/_images/174b23371e4bb37e0d5452c2df0934e7601c77eea70b6aafb5ebae8bf3fe766f.svg b/_images/174b23371e4bb37e0d5452c2df0934e7601c77eea70b6aafb5ebae8bf3fe766f.svg new file mode 100644 index 0000000..1b2393e --- /dev/null +++ b/_images/174b23371e4bb37e0d5452c2df0934e7601c77eea70b6aafb5ebae8bf3fe766f.svg @@ -0,0 +1,68 @@ + + + + + + +%3 + + +cluster25 + +25 + + + +alpha + +alpha +~ +Uniform + + + +thetaij + +thetaij +~ +Deterministic + + + +alpha->thetaij + + + + + +beta + +beta +~ +HalfNormal + + + +beta->thetaij + + + + + +rij + +rij +~ +Binomial + + + +thetaij->rij + + + + + \ No newline at end of file diff --git a/_images/2a5b968ed55f9f50d4a9d9dd01acbb2823a5274c7a4b526016acd2241859c79b.png b/_images/2a5b968ed55f9f50d4a9d9dd01acbb2823a5274c7a4b526016acd2241859c79b.png new file mode 100644 index 0000000..a005a8a Binary files /dev/null and b/_images/2a5b968ed55f9f50d4a9d9dd01acbb2823a5274c7a4b526016acd2241859c79b.png differ diff --git a/_images/44cc7be89ed565b3ee4d8f13540fcc6e3e2a1892269ae29d67199826f30c606a.png b/_images/44cc7be89ed565b3ee4d8f13540fcc6e3e2a1892269ae29d67199826f30c606a.png new file mode 100644 index 0000000..fc573c1 Binary files /dev/null and b/_images/44cc7be89ed565b3ee4d8f13540fcc6e3e2a1892269ae29d67199826f30c606a.png differ diff --git a/_images/56af5baab3d4f8cd33390caeac204724ef87187dd6fd6ef4e9c8ab860aae1504.svg b/_images/56af5baab3d4f8cd33390caeac204724ef87187dd6fd6ef4e9c8ab860aae1504.svg new file mode 100644 index 0000000..0061b6b --- /dev/null +++ b/_images/56af5baab3d4f8cd33390caeac204724ef87187dd6fd6ef4e9c8ab860aae1504.svg @@ -0,0 +1,129 @@ + + + + + + +%3 + + +cluster191 + +191 + + +cluster5339 + +5339 + + + +sigma_beta + +sigma_beta +~ +HalfNormal + + + +beta + +beta +~ +Normal + + + +sigma_beta->beta + + + + + +sigma_alpha + +sigma_alpha +~ +HalfNormal + + + +alpha + +alpha +~ +Normal + + + +sigma_alpha->alpha + + + + + +mu_alpha + +mu_alpha +~ +Uniform + + + +mu_alpha->alpha + + + + + +mu_beta + +mu_beta +~ +Uniform + + + +mu_beta->beta + + + + + +thetaij + +thetaij +~ +Deterministic + + + +alpha->thetaij + + + + + +beta->thetaij + + + + + +rij + +rij +~ +Binomial + + + +thetaij->rij + + + + + \ No newline at end of file diff --git a/_images/62bbcaf841d152e1c65f7ba7a0b5e77971a02d4497c0037d872b8811ac64a166.png b/_images/62bbcaf841d152e1c65f7ba7a0b5e77971a02d4497c0037d872b8811ac64a166.png new file mode 100644 index 0000000..6d2d2c2 Binary files /dev/null and b/_images/62bbcaf841d152e1c65f7ba7a0b5e77971a02d4497c0037d872b8811ac64a166.png differ diff --git a/_images/67abc252a194139e053a53525f672aad54549e4748c14e1b00f7d3e2147ec73d.png b/_images/67abc252a194139e053a53525f672aad54549e4748c14e1b00f7d3e2147ec73d.png new file mode 100644 index 0000000..38a972b Binary files /dev/null and b/_images/67abc252a194139e053a53525f672aad54549e4748c14e1b00f7d3e2147ec73d.png differ diff --git a/_images/681971437bae430d44fedafff71a9ec028bc7991ef8c17e2449a4a06225abcaa.png b/_images/681971437bae430d44fedafff71a9ec028bc7991ef8c17e2449a4a06225abcaa.png new file mode 100644 index 0000000..cfd5dbd Binary files /dev/null and b/_images/681971437bae430d44fedafff71a9ec028bc7991ef8c17e2449a4a06225abcaa.png differ diff --git a/_images/824d20f57c99a6e7d1061399db63b2e2342259372495ddf31b8f53b1ae86ba50.png b/_images/824d20f57c99a6e7d1061399db63b2e2342259372495ddf31b8f53b1ae86ba50.png new file mode 100644 index 0000000..eab8213 Binary files /dev/null and b/_images/824d20f57c99a6e7d1061399db63b2e2342259372495ddf31b8f53b1ae86ba50.png differ diff --git a/_images/8e9828216f3319324462ca30a34bd1e06087219ee6337f992166a215e852865e.png b/_images/8e9828216f3319324462ca30a34bd1e06087219ee6337f992166a215e852865e.png new file mode 100644 index 0000000..0b13272 Binary files /dev/null and b/_images/8e9828216f3319324462ca30a34bd1e06087219ee6337f992166a215e852865e.png differ diff --git a/_images/8eacefa349eacfdae22a57292e69e0fd5e424368fc1aff18ccb38b57e721b934.png b/_images/8eacefa349eacfdae22a57292e69e0fd5e424368fc1aff18ccb38b57e721b934.png new file mode 100644 index 0000000..f5d8d85 Binary files /dev/null and b/_images/8eacefa349eacfdae22a57292e69e0fd5e424368fc1aff18ccb38b57e721b934.png differ diff --git a/_images/ae157f933d77b401d2855f0bd2b6be02780c889014c029311ea29a9ac755c03b.png b/_images/ae157f933d77b401d2855f0bd2b6be02780c889014c029311ea29a9ac755c03b.png new file mode 100644 index 0000000..d4c356d Binary files /dev/null and b/_images/ae157f933d77b401d2855f0bd2b6be02780c889014c029311ea29a9ac755c03b.png differ diff --git a/_images/ba81bee369ee26cc12f911cb21f6de2d4dfbff0b8c9ca0dfe7e16495741dd694.png b/_images/ba81bee369ee26cc12f911cb21f6de2d4dfbff0b8c9ca0dfe7e16495741dd694.png new file mode 100644 index 0000000..fd8ef1b Binary files /dev/null and b/_images/ba81bee369ee26cc12f911cb21f6de2d4dfbff0b8c9ca0dfe7e16495741dd694.png differ diff --git a/_images/c8398a5d573310c2c1e7b0134a4f89c02e317d69824a54580afbe7ceaa566f27.png b/_images/c8398a5d573310c2c1e7b0134a4f89c02e317d69824a54580afbe7ceaa566f27.png new file mode 100644 index 0000000..ac92003 Binary files /dev/null and b/_images/c8398a5d573310c2c1e7b0134a4f89c02e317d69824a54580afbe7ceaa566f27.png differ diff --git a/_images/edd553d60438fb1deed195f8b2f2261bb7dce0f949e7586421bcaf28600dd1bb.png b/_images/edd553d60438fb1deed195f8b2f2261bb7dce0f949e7586421bcaf28600dd1bb.png new file mode 100644 index 0000000..9d0a948 Binary files /dev/null and b/_images/edd553d60438fb1deed195f8b2f2261bb7dce0f949e7586421bcaf28600dd1bb.png differ diff --git a/_modules/cardioception/HBC/parameters.html b/_modules/cardioception/HBC/parameters.html new file mode 100644 index 0000000..0e54ac5 --- /dev/null +++ b/_modules/cardioception/HBC/parameters.html @@ -0,0 +1,861 @@ + + + + + + + + + + + cardioception.HBC.parameters — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cardioception.HBC.parameters

+# Author: Nicolas Legrand <nicolas.legrand@cas.au.dk>
+
+import os
+from typing import Any, Dict, Optional
+
+import numpy as np
+import pandas as pd
+import pkg_resources  # type: ignore
+import serial
+from systole import serialSim
+from systole.recording import Oximeter
+
+
+
[docs]def getParameters( + participant: str = "Participant", + session: str = "001", + serialPort: str = "COM3", + taskVersion: str = "Garfinkel", + setup: str = "behavioral", + screenNb: int = 0, + fullscr: bool = True, + resultPath: Optional[str] = None, + systole_kw: dict = {}, +) -> Dict: + """Create Heartbeat Counting task parameters. + + Parameters + ---------- + participant : str + Subject ID. Default is 'exteroStairCase'. + resultPath : str or None + Where to save the results. + screenNb : int + Screen number. Used to parametrize py:func:`psychopy.visual.Window`. + Default is set to 0. + serialPort: str + The USB port where the pulse oximeter is plugged. Should be written as a string + e.g. `"COM3"` for USB ports on Windows. + session : int + Session number. Default to '001'. + setup : str + Context of oximeter recording. `"behavioral"` will record through a Nonin + pulse oximeter, `"test"` will use pre-recorded pulse time series (for testing + only). + systole_kw : dict + Additional keyword arguments for :py:class:`systole.recorder.Oxmeter`. + taskVersion : str or None + Task version to run. Can be 'Garfinkel', 'Shandry', 'test' or None. + + Attributes + ---------- + conditions : 1d array-like of str + The conditions. Can be 'Rest', 'Training' or 'Count'. + confScale : list + The range of the confidence rating scale. + heartLogo : `psychopy.visual.ImageStim` + Image presented during resting conditions. + labelsRating : list + The labels of the confidence rating scale. + noteStart : psychopy.sound.Sound instance + The sound that will be played when trial starts. + noteStop : psychopy.sound.Sound instance + The sound that will be played when trial ends. + path : str + The task working directory. + randomize : bool + If `True` (default), will randomize the order of the conditions. If + taskVersion is not None, will use the default task parameter instead. + rating : bool + If `True` (default), will add a rating scale after the evaluation. + restLength : int + The length of the resting period (seconds). Default is 300 seconds. + restLogo : `psychopy.visual.ImageStim` + Image presented during resting conditions. + restPeriod : bool + If `True`, a resting period will be proposed before the task. + resultPath : str + The subject result directory. + screenNb : int + The screen number (Psychopy parameter). Default set to 0. + serial : `serial.Serial` + The serial port used to record the PPG activity. + startKey : str + The key to press to start the task and go to next steps. + taskVersion : str or None + Task version to run. Can be 'Garfinkel', 'Shandry', 'test' or None. + texts : dict + Dictionary containing the texts to be presented. + textSize : float + Text size. + triggers : dict + Dictionary {str, callable or None}. The function will be executed + before the corresponding trial sequence. The default values are + `None` (no trigger sent). + * `"trialStart"` + * `"trialStop"` + * `"listeningStart"` + * `"listeningStop"` + * `"decisionStart"` + * `"decisionStop"` + * `"confidenceStart"` + * `"confidenceStop"` + times : 1d array-like of int + Length of trials, in seconds. + win : `psychopy.visual.window` + The window in which to draw objects. + + """ + from psychopy import sound, visual + + parameters: Dict[str, Any] = {} + parameters["restPeriod"] = True + parameters["restLength"] = 30 + parameters["randomize"] = True + parameters["startKey"] = "space" + parameters["rating"] = True + parameters["confScale"] = [1, 7] + parameters["labelsRating"] = ["Guess", "Certain"] + parameters["taskVersion"] = taskVersion + parameters["results_df"] = pd.DataFrame({}) + parameters["setup"] = setup + + # Initialize triggers dictionary with None + # Some or all can later be overwrited with callable + # sending the information needed. + parameters["triggers"] = { + "trialStart": None, + "trialStop": None, + "listeningStart": None, + "listeningStop": None, + "decisionStart": None, + "decisionStop": None, + "confidenceStart": None, + "confidenceStop": None, + } + + # Experimental design - can choose between a version based on recent + # papers from Sarah Garfinkel's group, or the classic Schandry approach. + # The primary difference ebtween the two is the order of trials and the + # use of resting periods between trials. + if parameters["taskVersion"] == "Garfinkel": + parameters["times"] = np.array([25, 30, 35, 40, 45, 50]) + np.random.shuffle(parameters["times"]) + parameters["conditions"] = [ + "Count", + "Count", + "Count", + "Count", + "Count", + "Count", + ] + + elif parameters["taskVersion"] == "Schandry": + parameters["times"] = np.array([60, 25, 30, 35, 30, 45]) + parameters["conditions"] = ["Rest", "Count", "Rest", "Count", "Rest", "Count"] + + elif parameters["taskVersion"] == "test": + parameters["times"] = np.array([5, 5]) + parameters["conditions"] = ["Rest", "Count"] + else: + raise ValueError("Invalid task condition") + + # Set default path /Results/ 'Subject ID' / + parameters["participant"] = participant + parameters["session"] = session + parameters["path"] = os.getcwd() + if resultPath is None: + parameters["resultPath"] = parameters["path"] + "/data/" + participant + session + else: + parameters["resultPath"] = resultPath + # Create Results directory of not already exists + if not os.path.exists(parameters["resultPath"]): + os.makedirs(parameters["resultPath"]) + + # Set note played at trial start + parameters["noteStart"] = sound.Sound( + pkg_resources.resource_filename("cardioception.HBC", "Sounds/start.wav") + ) + + parameters["noteStop"] = sound.Sound( + pkg_resources.resource_filename("cardioception.HBC", "Sounds/stop.wav") + ) + + # Open window + if parameters["setup"] == "test": + fullscr = False + parameters["win"] = visual.Window(screen=screenNb, fullscr=fullscr, units="height") + parameters["win"].mouseVisible = False + + parameters["restLogo"] = visual.ImageStim( + win=parameters["win"], + units="height", + image=pkg_resources.resource_filename(__name__, "Images/rest.png"), + pos=(0.0, -0.2), + ) + parameters["restLogo"].size *= 0.15 + parameters["heartLogo"] = visual.ImageStim( + win=parameters["win"], + units="height", + image=pkg_resources.resource_filename(__name__, "Images/heartbeat.png"), + pos=(0.0, -0.2), + ) + parameters["heartLogo"].size *= 0.05 + + if setup == "behavioral": + # PPG recording + port = serial.Serial(serialPort) + parameters["oxiTask"] = Oximeter( + serial=port, sfreq=75, add_channels=1, **systole_kw + ) + parameters["oxiTask"].setup().read(duration=1) + elif setup == "test": + # Use pre-recorded pulse time series for testing + port = serialSim() + parameters["oxiTask"] = Oximeter( + serial=port, sfreq=75, add_channels=1, **systole_kw + ) + parameters["oxiTask"].setup().read(duration=1) + + ####### + # Texts + ####### + + # Task instructions + parameters["texts"] = dict() + parameters["texts"]["Rest"] = "Please sit quietly until the next session" + parameters["texts"]["Count"] = ( + "After you hear START, try to count your heartbeats" + " by concentrating on your body feelings." + " Stop counting when you hear STOP" + ) + parameters["texts"]["Training"] = ( + "After you hear START, try to count your heartbeats" + " by concentrating on your body feelings" + " Stop counting when you hear STOP" + ) + parameters["texts"]["nCount"] = ( + "How many heartbeats did you count?" + " Write a number and press ENTER to validate." + ) + parameters["texts"]["confidence"] = ( + "How confident are you about your count?" + "Use the RIGHT/LEFT keys to select and the DOWN key to confirm" + ) + + # Tutorial instructions + parameters["texts"]["Tutorial1"] = ( + "During this experiment, we will ask you to silently" + " count your heartbeats for different intervals of time." + ) + parameters["texts"]["Tutorial2"] = ( + 'When you see this "heart" icon, you will silently count your' + " heartbeats by focusing on your body sensations." + ) + parameters["texts"]["Tutorial3"] = ( + 'Sometime, you will also encounter this "rest" icon.' + " In this case your task will just be to sit quietly until the next" + " session." + ) + parameters["texts"]["Tutorial4"] = ( + "The beginning and the end of the task will be signalled when you hear" + " the words 'START'' and 'STOP'. While counting your heartbeats, you" + " may close your eyes if you find that helpful. Please keep your hand" + " still during the counting period, to avoid interfering with" + " the heartbeat recording." + ) + parameters["texts"]["Tutorial5"] = ( + "After the counting part of the task, you will be asked to report the" + " exact number of heartbeats you felt during the interval between" + " 'START' and 'STOP'. Please do not try to estimate the number of" + " heartbeats, but instead only report the heartbeats you actually felt" + " during the interval. You will input your response using the number" + " pad and press return when done. You can also correct your response" + " using backspace." + ) + parameters["texts"]["Tutorial6"] = ( + "Once you have made your response, you will estimate your subjective" + " feeling of confidence in how accurate your count was" + " for that interval. A large number here means that you are totally" + " certain you counted the exact number of heartbeats that occured," + " and a small number means that you are totally uncertain or felt that" + " you were guessing about the" + " number of heartbeats. You should use the RIGHT and LEFT" + " key to select your response and the DOWN key to confirm." + ) + parameters["texts"]["Tutorial7"] = ( + "Before the main task begins there is a short resting period of" + " several minutes, during which we will calibrate the heartbeat" + " recording. During this period, please sit quietly with your" + " hands still to avoid interfering with the calibration." + " Afterwards, the counting task will begin, and will take about" + " 6 minutes in total." + ) + parameters["texts"]["Tutorial8"] = ( + "You will now complete a short practice task." + " Please ask the experimenter if you have any questions before" + " continuing to the main experiment." + ) + parameters["texts"]["Tutorial9"] = ( + "Good job! If you have any question, ask the experimenter now," + " otherwise press SPACE to continue to the experiment." + ) + parameters["textSize"] = 0.04 + + return parameters
+
+ +
+ + + + + +
+ +
+
+
+ +
+ + + +
+ + +
+ + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/cardioception/HBC/task.html b/_modules/cardioception/HBC/task.html new file mode 100644 index 0000000..942d66f --- /dev/null +++ b/_modules/cardioception/HBC/task.html @@ -0,0 +1,1101 @@ + + + + + + + + + + + cardioception.HBC.task — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cardioception.HBC.task

+# Author: Nicolas Legrand <nicolas.legrand@cas.au.dk>
+
+from typing import Optional, Tuple
+
+import numpy as np
+import pandas as pd
+
+
+
[docs]def run( + parameters: dict, + runTutorial: bool = True, +): + """Run the entire task sequence. + + Parameters + ---------- + parameters : dict + Task parameters. + tutorial : bool + If `True`, will present a tutorial with 10 training trial with feedback and 5 + trials with confidence rating. + + """ + + from psychopy import core, visual + + # Run tutorial + if runTutorial is True: + tutorial(parameters) + + # Rest + if parameters["restPeriod"] is True: + rest(parameters, duration=parameters["restLength"]) + + for condition, duration, nTrial in zip( + parameters["conditions"], + parameters["times"], + range(0, len(parameters["conditions"])), + ): + parameters["triggers"]["trialStart"] # Send trigger or None + + nCount, confidence, confidenceRT = trial( + condition, duration, nTrial, parameters + ) + + parameters["triggers"]["trialStop"] # Send trigger or None + + # Store results in a DataFrame + parameters["results_df"] = pd.concat( + [ + parameters["results_df"], + pd.DataFrame( + { + "nTrial": [nTrial], + "Reported": [nCount], + "Condition": [condition], + "Duration": [duration], + "Confidence": [confidence], + "ConfidenceRT": [confidenceRT], + } + ), + ], + ignore_index=True, + ) + + # Save the results at each iteration + parameters["results_df"].to_csv( + parameters["resultPath"] + + "/" + + parameters["participant"] + + parameters["session"] + + ".txt", + index=False, + ) + + # Save results + parameters["results_df"].to_csv( + parameters["resultPath"] + + "/" + + parameters["participant"] + + parameters["session"] + + "_final.txt", + index=False, + ) + + # End of the task + end = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, 0.0), + text="You have completed the task. Thank you for your participation.", + ) + end.draw() + parameters["win"].flip() + core.wait(3)
+ + +
[docs]def trial( + condition: str, + duration: int, + nTrial: int, + parameters: dict, +) -> Tuple[Optional[int], Optional[float], Optional[float]]: + """Run one trial. + + Parameters + ---------- + condition : str + The trial condition, can be `"Rest"` or `"Count"`. + duration : int + The lenght of the recording (in seconds). + ntrial : int + Trial number. + parameters : dict + Task parameters. + + Returns + ------- + nCount : int + The number of heartbeat estimated by the participant. + confidence : int + The confidence in the estimation of the heartbeat provided by the + participant. + confidenceRT : float + The response time to provide confidence rating. + + """ + + from psychopy import core, event, visual + + # Initialize default values + confidence, confidenceRT = None, None + nCounts: str = "" + + # Ask the participant to press 'Space' (default) to start the trial + messageStart = visual.TextStim( + parameters["win"], height=parameters["textSize"], text="Press space to continue" + ) + messageStart.draw() + parameters["win"].flip() + event.waitKeys(keyList=parameters["startKey"]) + parameters["win"].flip() + + parameters["oxiTask"].setup() + parameters["oxiTask"].read(duration=2) + + # Show instructions + if condition == "Rest": + message = visual.TextStim( + parameters["win"], + text=parameters["texts"]["Rest"], + pos=(0.0, 0.2), + height=parameters["textSize"], + ) + message.draw() + parameters["restLogo"].draw() + elif (condition == "Count") | (condition == "Training"): + message = visual.TextStim( + parameters["win"], + text=parameters["texts"]["Count"], + pos=(0.0, 0.2), + height=parameters["textSize"], + ) + message.draw() + parameters["heartLogo"].draw() + parameters["win"].flip() + + # Wait for a beat to start the task + parameters["oxiTask"].waitBeat() + core.wait(3) + + # Sound signaling trial start + if (condition == "Count") | (condition == "Training"): + parameters["oxiTask"].readInWaiting() + # Add event marker + parameters["oxiTask"].channels["Channel_0"][-1] = 1 + parameters["noteStart"].play() + parameters["triggers"]["listeningStart"] + core.wait(1) + + # Record for a desired time length + parameters["oxiTask"].read(duration=duration - 1) + + # Sound signaling trial stop + if (condition == "Count") | (condition == "Training"): + # Add event marker + parameters["oxiTask"].readInWaiting() + parameters["oxiTask"].channels["Channel_0"][-1] = 2 + parameters["noteStop"].play() + parameters["triggers"]["listeningStop"] + core.wait(3) + parameters["oxiTask"].readInWaiting() + + # Hide instructions + parameters["win"].flip() + + # Save recording + parameters["oxiTask"].save( + parameters["resultPath"] + + "/" + + parameters["participant"] + + str(nTrial) + + "_" + + str(nTrial) + ) + + ############################### + # Record participant estimation + ############################### + if (condition == "Count") | (condition == "Training"): + # Ask the participant to press 'Space' (default) to start the trial + messageCount = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0, 0.2), + text=parameters["texts"]["nCount"], + ) + messageCount.draw() + parameters["win"].flip() + + parameters["triggers"]["decisionStart"] # Send trigger or None + + nCounts = "" + while True: + # Record new key + key = event.waitKeys( + keyList=[ + "escape", + "backspace", + "return", + "1", + "2", + "3", + "4", + "5", + "6", + "7", + "8", + "9", + "0", + "num_1", + "num_2", + "num_3", + "num_4", + "num_5", + "num_6", + "num_7", + "num_8", + "num_9", + "num_0", + ] + ) + + if key[0] == "escape": + keys = event.getKeys() + if "escape" in keys: + print("User abort") + parameters["win"].close() + core.quit() + if key[0] == "backspace": + if nCounts: + nCounts = nCounts[:-1] + elif key[0] == "return": + if not all(char.isdigit() for char in nCounts): + messageError = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0, 0.2), + text="You should only provide numbers", + ) + messageError.draw() + parameters["win"].flip() + core.wait(2) + elif nCounts == "": + messageError = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0, 0.2), + text="You should provide numbers", + ) + messageError.draw() + parameters["win"].flip() + core.wait(2) + else: + break + + else: + if key: + nCounts += [s for s in key[0] if s.isdigit()][0] + + # Show the text on the screen + recordedText = visual.TextStim( + parameters["win"], height=parameters["textSize"], text=nCounts + ) + recordedText.draw() + messageCount.draw() + parameters["win"].flip() + + parameters["triggers"]["decisionStop"] # Send trigger or None + + ############## + # Rating scale + ############## + if parameters["rating"] is True: + markerStart = np.random.choice( + np.arange(parameters["confScale"][0], parameters["confScale"][1]) + ) + ratingScale = visual.RatingScale( + parameters["win"], + low=parameters["confScale"][0], + high=parameters["confScale"][1], + noMouse=True, + labels=parameters["labelsRating"], + acceptKeys="down", + markerStart=markerStart, + ) + message = visual.TextStim( + parameters["win"], + text=parameters["texts"]["confidence"], + height=parameters["textSize"], + ) + parameters["triggers"]["confidenceStart"] + while ratingScale.noResponse: + message.draw() + ratingScale.draw() + parameters["win"].flip() + confidence = ratingScale.getRating() + confidenceRT = ratingScale.getRT() + parameters["triggers"]["confidenceStop"] + + finalCount = int(nCounts) if nCounts else None + + return finalCount, confidence, confidenceRT
+ + +
[docs]def tutorial(parameters: dict): + """Run tutorial for the Heartbeat Counting Task. + + Parameters + ---------- + parameters : dict + Task parameters. + win : `psychopy.visual.window` or None + The window in which to draw objects. + """ + + from psychopy import event, visual + + # Tutorial 1 + messageStart = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text=parameters["texts"]["Tutorial1"], + ) + messageStart.draw() + press = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text="Please press SPACE to continue", + pos=(0.0, -0.4), + ) + press.draw() + parameters["win"].flip() + event.waitKeys(keyList=parameters["startKey"]) + + # Tutorial 2 + messageStart = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, 0.2), + text=parameters["texts"]["Tutorial2"], + ) + messageStart.draw() + parameters["heartLogo"].draw() + press = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text="Please press SPACE to continue", + pos=(0.0, -0.4), + ) + press.draw() + parameters["win"].flip() + event.waitKeys(keyList=parameters["startKey"]) + + # Tutorial 3 + if parameters["taskVersion"] == "Shandry": + messageStart = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, 0.2), + text=parameters["texts"]["Tutorial3"], + ) + messageStart.draw() + parameters["restLogo"].draw() + press = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text="Please press SPACE to continue", + pos=(0.0, -0.4), + ) + press.draw() + parameters["win"].flip() + event.waitKeys(keyList=parameters["startKey"]) + + # Tutorial 4 + messageStart = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text=parameters["texts"]["Tutorial4"], + ) + messageStart.draw() + press = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text="Please press SPACE to continue", + pos=(0.0, -0.4), + ) + press.draw() + parameters["win"].flip() + + event.waitKeys(keyList=parameters["startKey"]) + + # Tutorial 5 + messageStart = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text=parameters["texts"]["Tutorial5"], + ) + messageStart.draw() + press = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text="Please press SPACE to continue", + pos=(0.0, -0.4), + ) + press.draw() + parameters["win"].flip() + event.waitKeys(keyList=parameters["startKey"]) + + # Tutorial 6 + messageStart = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text=parameters["texts"]["Tutorial6"], + ) + messageStart.draw() + press = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text="Please press SPACE to continue", + pos=(0.0, -0.4), + ) + press.draw() + parameters["win"].flip() + event.waitKeys(keyList=parameters["startKey"]) + + # Tutorial 7 + messageStart = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text=parameters["texts"]["Tutorial7"], + ) + messageStart.draw() + press = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text="Please press SPACE to continue", + pos=(0.0, -0.4), + ) + press.draw() + parameters["win"].flip() + event.waitKeys(keyList=parameters["startKey"]) + + # Tutorial 8 + messageStart = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text=parameters["texts"]["Tutorial8"], + ) + messageStart.draw() + press = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text="Please press SPACE to continue", + pos=(0.0, -0.4), + ) + press.draw() + parameters["win"].flip() + event.waitKeys(keyList=parameters["startKey"]) + + # Practice trial + _ = trial("Count", 15, 0, parameters) + + # Tutorial 9 + messageStart = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text=parameters["texts"]["Tutorial9"], + ) + messageStart.draw() + press = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text="Please press SPACE to continue", + pos=(0.0, -0.4), + ) + press.draw() + parameters["win"].flip() + event.waitKeys(keyList=parameters["startKey"])
+ + +
[docs]def rest(parameters: dict, duration: float = 300.0): + """Run a resting state period for heart rate variability before running the Heart + Beat Counting Task. + + Parameters + ---------- + parameters : dict + Task parameters. + duration : float + Duration or the recording (seconds). + + """ + + from psychopy import visual + + # Show the resting state instructions + messageStart = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, 0.2), + text=("Calibrating... Please sit quietly" " until the end of the recording."), + ) + messageStart.draw() + parameters["restLogo"].draw() + parameters["win"].flip() + + # Record PPG signal + parameters["oxiTask"].setup() + parameters["oxiTask"].read(duration=duration) + + # Save recording + parameters["oxiTask"].save( + parameters["resultPath"] + "/" + parameters["participant"] + "_Rest" + )
+
+ +
+ + + + + +
+ +
+
+
+ +
+ + + +
+ + +
+ + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/cardioception/HRD/languages.html b/_modules/cardioception/HRD/languages.html new file mode 100644 index 0000000..3690fb1 --- /dev/null +++ b/_modules/cardioception/HRD/languages.html @@ -0,0 +1,1041 @@ + + + + + + + + + + + cardioception.HRD.languages — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cardioception.HRD.languages

+# Author: Nicolas Legrand <nicolas.legrand@cas.au.dk>
+from typing import Collection, Dict
+
+
+
[docs]def english(device: str, setup: str, exteroception: bool) -> Dict[str, Collection[str]]: + """Create the text dictionary with instruction in Danish + + Parameters + ---------- + device : str + Can be `"keyboard"` or `"mouse"`. + setup : str + The experimental setup. Can be `"behavioral"` or `"test"`. + exteroception : bool + If `True`, the task includes and exteroceptive control condition. + + Returns + ------- + texts : dict + + """ + btnext = "press SPACE" if device == "keyboard" else "click the mouse" + texts = { + "done": "You have completed the task. Thank you for your participation.", + "slower": "Slower", + "faster": "Faster", + "checkOximeter": "Please make sure the oximeter is correctly clipped to your finger.", + "stayStill": "Please stay still during the recording", + "tooLate": "Too late", + "correctResponse": "Correct", + "incorrectResponse": "False", + "VASlabels": ["Guess", "Certain"], + "textHeartListening": "Listen to your heart", + "textToneListening": "Listen to the tones", + "textTaskStart": "The task is now going to start, get ready.", + "textBreaks": f"Break. You can rest as long as you want. Just {btnext} when you want to resume the task.", + "textNext": f"Please {btnext} to continue", + "textWaitTrigger": "Waiting for fMRI trigger...", + "Decision": { + "Intero": """Are these beeps faster or slower than your heart?""", + "Extero": """Are these beeps faster or slower than the previous?""", + }, + "Confidence": """How confident are you in your choice?""", + } + + if device == "keyboard": + texts["responseText"] = "Use DOWN key for slower - UP key for faster." + elif device == "mouse": + texts["responseText"] = "Use LEFT button for slower - RIGHT button for faster." + + texts[ + "Tutorial1" + ] = """During this experiment, we will record your pulse and play beeps based on your heart rate. + +You will only be allowed to focus on the internal sensations of your heartbeats, but not to measure your heart rate by any other means (e.g. checking pulse at your wrist or your neck). + """ + texts[ + "pulseTutorial1" + ] = "Please place the pulse oximeter on your forefinger. Use your non-dominant hand as depicted in this schema." + + texts[ + "pulseTutorial2" + ] = "If you can feel your heartbeats when you have the pulse oximeter on your forefinger, try to place it on another finger." + + texts[ + "pulseTutorial3" + ] = "You can test different configurations until you find the finger which provides you with the least sensory input about your heart rate." + + texts[ + "pulseTutorial4" + ] = "Please enter the number of the finger corresponding to the finger where you decided to place the pulse oximeter." + + texts[ + "Tutorial2" + ] = "When you see this icon, try to focus on your heartbeat for 5 seconds. Try not to move, as we are recording your pulse in this period" + + moreResp = "UP key" if device == "keyboard" else "RIGHT mouse button" + lessResp = "DOWN key" if device == "keyboard" else "LEFT mouse button" + texts[ + "Tutorial3_icon" + ] = """After this 'heart listening' period, you will see the same icon and hear a series of beeps.""" + texts[ + "Tutorial3_responses" + ] = f"""As quickly and accurately as possible, you will listen to these beeps and decide if they are faster ({moreResp}) or slower ({lessResp}) than your own heart rate. + +The beeps will ALWAYS be slower or faster than your heart. Please guess, even if you are unsure.""" + + if exteroception is True: + texts[ + "Tutorial3bis" + ] = """For some trials, instead of seeing the heart icon, you will see a listening icon. You will then have to listen to a first set of beeps, instead of your heart.""" + + texts[ + "Tutorial3ter" + ] = f"""After these first beeps, you will see the response icons appear, and a second set of beeps will play. + +As quickly and accurately as possible, you will listen to these beeps and decide if they are faster ({moreResp}) or slower ({lessResp}) than the first set of beeps. + +The second series of beeps will ALWAYS be slower or faster than the first series. Please guess, even if you are unsure.""" + + texts[ + "Tutorial4" + ] = """Once you have provided your decision, you will also be asked to rate how confident you feel in your decision. + +Here, the maximum rating means that you are totally certain in your choice, and the smallest rating means that you felt that you were guessing. + +You should use mouse to select your rating""" + + texts[ + "Tutorial5" + ] = """This sequence will be repeated during the task. + +At times the task may be very difficult; the difference between your true heart rate and the presented beeps may be very small. + +This means that you should try to use the entire length of the confidence scale to reflect your subjective uncertainty on each trial. + +As the task difficulty will change over time, it is rare that you will be totally confident or totally uncertain.""" + + texts[ + "Tutorial6" + ] = """This concludes the tutorial. If you have any questions, please ask the experimenter now. +Otherwise, you can continue to the main task.""" + + return texts
+ + +
[docs]def danish(device: str, setup: str, exteroception: bool) -> Dict[str, Collection[str]]: + """Create the text dictionary with instruction in Danish + + Parameters + ---------- + device : str + Can be `"keyboard"` or `"mouse"`. + setup : str + The experimental setup. Can be `"behavioral"` or `"test"`. + exteroception : bool + If `True`, the task includes and exteroceptive control condition. + + Returns + ------- + texts : dict + + """ + + btnext = "tryk på mellemrumstasten" if device == "keyboard" else "klik på musen" + texts = { + "done": "Du har genemført opgaven. Tak for din deltagalse.", + "slower": "Langsommere", + "faster": "Hurtigere", + "checkOximeter": "Sørg venligst for at pulsoximeteret sidder rigtigt på din finger.", + "stayStill": "Sid venligst roligt under målingen", + "tooLate": "For langsomt", + "correctResponse": "Rigtigt", + "incorrectResponse": "Forkert", + "VASlabels": ["Gæt", "Helt sikker"], + "textHeartListening": "Mærk din hjerterytme", + "textToneListening": "Lyt til tonerne", + "textTaskStart": "Opgaven begynder nu, gør dig klar.", + "textBreaks": f"Pause. Du kan tage så lang en pause, som du har brug for. Bare {btnext} når du vil fortsætte opgaven.", + "textNext": f"Venligst, {btnext} for at fortsætte", + "textWaitTrigger": "Venter på fMRI-udløseren...", + "Decision": { + "Intero": """Er disse bib-lyde hurtigere eller langsommere end dit hjerte?""", + "Extero": """Er disse bib-lyde hurtigere eller langsommere end den de forrige? """, + }, + "Confidence": """Hvor sikker er du på dit svar?""", + } + + if device == "keyboard": + texts[ + "responseText" + ] = "Brug NED tasten for langsommere - OP tasten for hurtigere." + elif device == "mouse": + texts[ + "responseText" + ] = "Brug VENSTRE museknap for langsommere - HØJRE museknap for hurtigere." + + texts[ + "Tutorial1" + ] = """I dette forsøg vil vi registrere din puls og afspille bib-lyde baseret på din hjerterytme. + +Du må kun fokusere på din indre følelse af din hjerterytme. Du må altså ikke måle din hjerterytme på andre måder (fx ved at tjekke din puls på dit håndled eller din hals). + """ + texts[ + "pulseTutorial1" + ] = "Placer venligst puls oximeteret på din pegefinger. Brug din ikke-dominante hånd som beskrevet i dette skema." + + texts[ + "pulseTutorial2" + ] = "Hvis du kan mærke din hjerterytme, når du har puls oximeteret på din pegefinger, så prøv at placere det på en anden finger." + + texts[ + "pulseTutorial3" + ] = "Du kan teste forskellige fingre indtil du finder den finger, der giver dig mindst sensorisk indput omkring din hjerterytme." + + texts[ + "pulseTutorial4" + ] = "Indtast venligt nummeret på den finger som du besluttede at placere puls oximeteret på." + + texts[ + "Tutorial2" + ] = "Når du ser dette ikon, forsøg da at fokusere på din hjerterytme i 5 sekunder. Prøv ikke at bevæge dig, da vi registrere din puls i dette tidsrum" + + moreResp = "OP tasten" if device == "keyboard" else "HØJRE mussetast" + lessResp = "NED tasten" if device == "keyboard" else "VENSTRE mussetast" + texts[ + "Tutorial3_icon" + ] = """Efter tidsrummet hvor du har forsøgt at mærke dit hjerte, vil du se det samme ikon og høre en række bib-lyde.""" + texts[ + "Tutorial3_responses" + ] = f"""Det følgende skal du gøre så hurtigt og præcist som muligt: Du vil lytte til disse bib-lyde og beslutte om de er hurtigere ({moreResp}) eller langsommere ({lessResp}) end din egen hjerterytme. + +Bib-lydene vil ALTID være langsommere eller hurtigere end dit hjerte. Gæt venligst selvom du er usikker.""" + + if exteroception is True: + texts[ + "Tutorial3bis" + ] = """I nogle runder vil du se et lytteikon i stedet for et hjerteikon. Her vil du skulle lytte til et sæt af bib-lyde i stedet for dit hjerte.""" + + texts[ + "Tutorial3ter" + ] = f"""Efter dette sæt af bib-lyde vil du se, at svarikonet dukker op, og et andet sæt af bib-lyde vil blive afspillet. + +Det følgende skal du gøre så hurtigt og præcist som muligt: Du vil lytte til det sidste sæt af bib-lyde og beslutte om de er hurtigere ({moreResp}) eller langsommere ({lessResp}) end det første sæt af bib-lyde. + +Det andet sæt af bib-lyde vil ALTID være langsommere eller hurtigere end det første sæt. Gæt venligst selvom du er usikker.""" + + texts[ + "Tutorial4" + ] = """Når du har svaret, vil du også blive bedt om at angive hvor sikker du er på din beslutning. + +Her betyder den højeste score at du er helt sikker på dit valg, og den mindste score betyder, at du følte, at du gættede. + +Du skal bruge musen til at vælge en score.""" + + texts[ + "Tutorial5" + ] = """Denne sekvens vil blive gentaget igennem opgaven. + +Nogle gange kan opgaven være virkelig svær; forskellen mellem din faktiske hjerterytme og bib-lydene kan være meget små. + +Dette betyder, at du skal forsøge at bruge hele skalaens længde til at angive din subjektive usikkerhed i hver runde. + +Da opgavens sværhedsgrad ændrer sig over tid, er det sjældent at du vil være totalt sikker eller totalt usikker.""" + + texts[ + "Tutorial6" + ] = """Dette er slutningen på vejledningen. Hvis du har noget spørgsmål, så spørg endelig en forsker nu. +Ellers kan du fortsætte til hovedopgaven.""" + + return texts
+ + +
[docs]def danish_children( + device: str, setup: str, exteroception: bool +) -> Dict[str, Collection[str]]: + """Create the text dictionary with instruction in Danish (simplified version for + children). + + Parameters + ---------- + device : str + Can be `"keyboard"` or `"mouse"`. + setup : str + The experimental setup. Can be `"behavioral"` or `"test"`. + exteroception : bool + If `True`, the task includes and exteroceptive control condition. + + Returns + ------- + texts : dict + + """ + + btnext = "tryk på mellemrumstasten" if device == "keyboard" else "klik på musen" + texts = { + "done": "Du har genemført opgaven. Tak for din deltagalse.", + "slower": "Langsommere", + "faster": "Hurtigere", + "checkOximeter": "Spørg forskningsassistensen om, hvordan du skal placere fingerklemmen.", + "stayStill": "Sid venligst roligt under målingen", + "tooLate": "For langsomt", + "correctResponse": "Rigtigt", + "incorrectResponse": "Forkert", + "VASlabels": ["Slet ikke sikker", "Helt sikker"], + "textHeartListening": "Mærk din indre puls", + "textToneListening": "Lyt til tonerne", + "textTaskStart": "Opgaven begynder nu, gør dig klar.", + "textBreaks": f"Pause. Du kan tage så lang en pause, som du har brug for. Bare {btnext} når du vil fortsætte opgaven.", + "textNext": f"Venligst, {btnext} for at fortsætte", + "textWaitTrigger": "Venter på fMRI-udløseren...", + "Decision": { + "Intero": """Er disse bib-lyde hurtigere eller langsommere end dit hjerte?""", + "Extero": """Er disse bib-lyde hurtigere eller langsommere end den de forrige? """, + }, + "Confidence": """Hvor sikker er du på dit svar?""", + } + + if device == "keyboard": + texts[ + "responseText" + ] = "Brug NED tasten for langsommere - OP tasten for hurtigere." + elif device == "mouse": + texts[ + "responseText" + ] = "Brug VENSTRE museknap for langsommere - HØJRE museknap for hurtigere." + + texts[ + "Tutorial1" + ] = """Instruktion 1 + """ + texts["pulseTutorial1"] = "Udstyr." + + texts["pulseTutorial2"] = "" + + texts["pulseTutorial3"] = "" + + texts[ + "pulseTutorial4" + ] = "Indtast venligt nummeret på den finger som du besluttede at placere fingerklemmen på." + + texts[ + "Tutorial2" + ] = "Når du ser dette ikon, forsøg da at fokusere på din indre puls i 5 sekunder. Prøv ikke at bevæge dig, da vi måler din puls i dette tidsrum" + + moreResp = "OP tasten" if device == "keyboard" else "HØJRE mussetast" + lessResp = "NED tasten" if device == "keyboard" else "VENSTRE mussetast" + texts[ + "Tutorial3_icon" + ] = """Efter du har forsøgt at mærke din indre puls, vil du se det samme ikon og høre en række bib-lyde.""" + texts["Tutorial3_responses"] = """Instruktion 2""" + + if exteroception is True: + texts[ + "Tutorial3bis" + ] = """I nogle runder vil du se et lytteikon i stedet for et hjerteikon. Her vil du skulle lytte til et sæt af bib-lyde i stedet for dit hjerte.""" + + texts[ + "Tutorial3ter" + ] = f"""Efter dette sæt af bib-lyde vil du se, at svarikonet dukker op, og et andet sæt af bib-lyde vil blive afspillet. + +Det følgende skal du gøre så hurtigt og præcist som muligt: Du vil lytte til det sidste sæt af bib-lyde og beslutte om de er hurtigere ({moreResp}) eller langsommere ({lessResp}) end det første sæt af bib-lyde. + +Det andet sæt af bib-lyde vil ALTID være langsommere eller hurtigere end det første sæt. Gæt venligst selvom du er usikker.""" + + texts["Tutorial4"] = """Instruktion 3""" + + texts["Tutorial5"] = """Instruktion 4""" + + texts[ + "Tutorial6" + ] = """Dette er slutningen på vejledningen. Hvis du har noget spørgsmål, så spørg endelig en forsker nu. +Ellers kan du fortsætte til opgaven.""" + + return texts
+ + +
[docs]def french(device: str, setup: str, exteroception: bool) -> Dict[str, Collection[str]]: + """Create the text dictionary with instruction in french + + Parameters + ---------- + device : str + Can be `"keyboard"` or `"mouse"`. + setup : str + The experimental setup. Can be `"behavioral"` or `"test"`. + exteroception : bool + If `True`, the task includes and exteroceptive control condition. + + Returns + ------- + texts : dict + + """ + btnext = ( + "appuyez sur la barre espace" + if device == "keyboard" + else "cliquez sur la souris" + ) + texts = { + "done": "Vous avez terminé la tâche. Merci pour votre participation.", + "slower": "Plus lent", + "faster": "Plus rapide", + "checkOximeter": "Assurez-vous que l'oxymètre est bien attaché à votre doigt.", + "stayStill": "Veuillez ne pas bouger pendant l'enregistrement", + "tooLate": "Trop tard", + "correctResponse": "Correct", + "incorrectResponse": "Faux", + "VASlabels": ["Incertain", "Tout à fait sûr"], + "textHeartListening": "Ecoutez votre coeur", + "textToneListening": "Ecoutez les sons", + "textTaskStart": "La tâche va débuter, tenez-vous prêt.", + "textBreaks": f"Pause. Vous pouvez vous reposer aussi longtemps que vous le souhaitez. Simplement {btnext} quand vous désirez rependre la tâche.", + "textNext": f"S'il vous plaît {btnext} pour continuer", + "textWaitTrigger": "Attendez pour le déclencheur IRMf...", + "Decision": { + "Intero": """Est-ce que ces sons sont plus rapides ou plus lents que votre coeur?""", + "Extero": """Est-ce que ces sons sont plus rapides ou plus lents que les précédents?""", + }, + "Confidence": """Etes-vous sûr de votre choix?""", + } + + if device == "keyboard": + texts[ + "responseText" + ] = "Appuyez sur la flèche vers le BAS pour plus lent - vers le HAUT pour plus rapide." + elif device == "mouse": + texts[ + "responseText" + ] = "Appuyez sur le clic GAUCHE pour plus lent - clic DROIT pour plus rapide." + + texts[ + "Tutorial1" + ] = """Durant cette tâche, nous allons enregistrer vos pulsations et jouer des sons basés sur votre rythme cardiaque. + +Vous serez uniquement autorisés à vous concentrer sur vos sensations internes de vos battements cardiaques, mais ne mesurez pas votre rythme cardiaque par d'autres moyens (ex. vérification du pouls au poignet ou au cou). + """ + texts[ + "pulseTutorial1" + ] = "Veuillez placer l'oxymètre de pouls sur votre index. Utilisez votre main non-dominante comme illustré sur ce schéma." + + texts[ + "pulseTutorial2" + ] = "Si vous pouvez sentir vos battements de coeur quand vous portez l'oxymètre de pouls sur votre index, essayez de le placer sur un autre doigt." + + texts[ + "pulseTutorial3" + ] = "Vous pouvez essayer différentes configurations jusqu'à ce que vous trouviez le doigt qui provoque le moins de sensations de battements cardiaques." + + texts[ + "pulseTutorial4" + ] = "Veuillez entrer le numéro du doigt correspondant au doigt sur lequel vous avez décidé de placer l'oxymètre de pouls." + + texts[ + "Tutorial2" + ] = "Quand vous voyez cette icône, essayez de vous concentrer sur vos battements cardiaques durant 5 secondes. Essayez de ne pas bouger, car nous enregistrons votre pouls durant cette période." + + moreResp = "flèche vers le HAUT" if device == "keyboard" else "clic DROIT" + lessResp = "flèche vers le BAS" if device == "keyboard" else "clic GAUCHE" + texts[ + "Tutorial3_icon" + ] = """Après cette période d'écoute du coeur, vous verrez la même icône and entendrez une série de bips.""" + texts[ + "Tutorial3_responses" + ] = f"""Aussi rapidement et précisément possible, vous écouterez ces bips et déciderez s'ils sont plus rapides ({moreResp}) ou plus lents ({lessResp}) que votre propre rythme cardiaque. + +Les bips seront TOUJOURS plus lents ou plus rapides que votre coeur. Veuillez faire une estimation, même si vous n'est pas sûr.""" + + if exteroception is True: + texts[ + "Tutorial3bis" + ] = """Pour certains essais, au lieu de voir une icône de coeur, vous verrez une icône d'écoute. Vous devrez alors écouter une première série de bips, au lieu de votre coeur.""" + + texts[ + "Tutorial3ter" + ] = f"""Après ce premier bip, vous verrez l'icône de réponse apparaître, et une seconde série de bip sera joué. + +Aussi rapidement et précisément possible, vous entendrez ces bips et déciderez s'ils sont plus rapides ({moreResp}) ou plus lents ({lessResp}) que la première série de bips. + +La seconde série de bips sera TOUJOURS plus lente ou rapide que la première série. Veuillez faire une estimation, même si vous n'êtes pas sûr.""" + + texts[ + "Tutorial4" + ] = """Une fois que vous avez donné votre réponse, il vous sera également demandé d'estimer votre degré de confiance dans votre réponse. + +Ici, le score maximum signifie que vous êtes totalement certain de votre choix, et le score minimum signifie que vous devinez. + +Vous devez utiliser la souris pour sélectionner votre score""" + + texts[ + "Tutorial5" + ] = """Cette séquence sera répétée durant la tâche. + +Par moment la tâche peut être très difficile ; la différence entre votre propre rythme cardiaque et les bips présentés peut être très petite. + +Cela signifie que vous devez essayer d'utiliser toute la longueur de l'échelle de confiance pour refléter votre incertitude subjective sur chaque essai. + +Comme la difficulté de la tâche évolue avec le temps, il est rare que vous soyez totalement confiant ou totalement incertain.""" + + texts[ + "Tutorial6" + ] = """Ceci conclut le tutoriel. Si vous avez des questions, veuillez les poser maintenant à l'expérimentateur. +Sinon, vous pouvez continuer avec la tâche principale.""" + + return texts
+
+ +
+ + + + + +
+ +
+
+
+ +
+ + + +
+ + +
+ + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/cardioception/HRD/parameters.html b/_modules/cardioception/HRD/parameters.html new file mode 100644 index 0000000..ced78df --- /dev/null +++ b/_modules/cardioception/HRD/parameters.html @@ -0,0 +1,1019 @@ + + + + + + + + + + + cardioception.HRD.parameters — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cardioception.HRD.parameters

+# Author: Nicolas Legrand <nicolas.legrand@cas.au.dk>
+
+import os
+from typing import Any, Dict, Optional
+
+import numpy as np
+import pandas as pd
+import pkg_resources  # type: ignore
+import serial
+from systole import serialSim
+from systole.recording import Oximeter
+
+from cardioception.HRD.languages import danish, danish_children, english, french
+
+
+
[docs]def getParameters( + participant: str = "SubjectTest", + session: str = "001", + serialPort: str = "COM3", + setup: str = "behavioral", + stairType: str = "psi", + exteroception: bool = True, + catchTrials: float = 0.0, + nTrials: int = 120, + device: str = "mouse", + screenNb: int = 0, + fullscr: bool = True, + nBreaking: int = 20, + resultPath: Optional[str] = None, + language: str = "english", + systole_kw: dict = {}, +): + """Create Heart Rate Discrimination task parameters. + + Many task parameters, aesthetics, and options are controlled by the + parameters dictionary defined herein. These are intended to provide + flexibility and modularity to the task. In many cases, unique versions of the + task (e.g., with or without confidence ratings or choice feedback) can be + created simply by changing these parameters, with no further interaction + with the underlying task code. + + Parameters + ---------- + device : + Select how the participant provides responses. Can be `'mouse'` or `'keyboard'`. + exteroception : + If `True`, the task will include an exteroceptive (half of the trials). + fullscr : + If `True`, activate full-screen mode. + language : + The language used for the instruction. Can be `"english"`, `"danish"` or + `"danish_children"` (a slightly simplified danish version), or `"french"`. + nBreaking : + Number of trials to run before the break. + nStaircase : + Number of staircases to use per condition (exteroceptive and + interoceptive). + nTrials : + The number of trials to run (UpDown and psi staircase). + .. note:: + This number indicates the total number of trials that will be presented + during the experiment. If `nTrials=50` and `exteroception=False`, the task + contains 50 interoceptive trials. If `nTrials=50` and `exteroception=True`, + the task contains 25 interoceptive trials and 25 exteroceptive trials. + participant : + Subject ID. The default is 'Participant'. + catchTrials : + Ratio of Psi trials allocated to extreme values (+20 or -20 bpm with some + jitter) to control for a range of stimuli presented. Default to `0.0` (no catch + trials). If not `0.0`, recommended value is `0.2`. + resultPath : + Where to save the results. + screenNb : + Screen number. Used to parametrize py:func:`psychopy.visual.Window`. Defaults + to `0`. + serialPort: + The USB port where the pulse oximeter is plugged. Should be written as a string + e.g. `"COM3"` for USB ports on Windows. + session : + Session number. Default to '001'. + setup : + Context of oximeter recording. `"ehavioral"` will be recorded through a Nonin + pulse oximeter and `"test"` will use a pre-recorded pulse time series (for + testing only). + stairType : + Staircase type. Can be "psi" or "updown". The default is set to "psi". + systole_kw : + Additional keyword arguments for :py:class:`systole.recorder.Oxmeter`. + + Attributes + ---------- + confScale : + The range of the confidence rating scale. + device : + The device used for response and rating scale. Can be `"keyboard"` or + `"mouse"`. + HRcutOff : + Cut off for extreme heart rate values during recording. + ExteroCondition : + If `True`, the task includes an exteroceptive (half of the trials). + isi : + Range of the inter-stimulus interval (seconds). Should be in the form of (low, + high). At each trial, the value is generated using a uniform distribution + between these two values. The default is set to `(0.25, 0.25)` so the value is + fixed at `0.25`. + labelsRating : + The labels of the confidence rating scale. + lambdaExtero : + (3d) Posterior estimate of the psychophysics function parameters (slope and + threshold) across trials for the exteroceptive condition. + lambdaIntero : + (3d) Posterior estimate of the psychophysics function parameters (slope and + threshold) across trials for the interoceptive condition. + listenLogo, heartLogo : Psychopy visual instance + Image used for the inference and recording phases, respectively. + maxRatingTime : + The maximum time for a confidence rating (in seconds). + minRatingTime : + The minimum time before a rating can be provided during the confidence + rating (in seconds). + monitor : + The monitor used to present the task (Psychopy parameter). + nBreaking : + Number of trials to run before the break. + nConfidence : + The number of trials with feedback during the tutorial phase (no + feedback). + nFeedback : + The number of trials with feedback during the tutorial phase (no + confidence rating). + nFinger : + The finger number ("1", "2", "3", "4" or "5") where the participant + decided to place the pulse oximeter (if relevant). + nTrials : + The number of trials to run (UpDown and psi staircase). + .. note:: + This number indicates the total number of trials that will be presented + during the experiment. If `nTrials=50` and `exteroception=False`, the task + contains 50 interoceptive trials. If `nTrials=50` and `exteroception=True`, + the task contains 25 interoceptive trials and 25 exteroceptive trials. + participant : + Subject ID. The default is 'Participant'. + path : + The task working directory. + response_keys : + A dictionary listing the possible response key for Faster/More and Slower/Less + trials. The default is `"up"`/`"down"`. Only relevant if `device=="keyboard"`. + resultPath : + Where to save the results. + serial : + The serial port is used to record the PPG activity. + screenNb : + The screen number (Psychopy parameter). The default is set to 0. + signal_df : + Dataframe where the pulse signal recorded during the interoception + condition will be stored. + stairCase : + The staircase instances for 'psi' and 'UpDown'. Each entry contains + a dictionary for 'Intero' and 'Extero conditions' (if relevant). + staircaseType : + Vector indexing stairce type (`'UpDown'`, `'psi'`, `'psiCatchTrial'`). + startKey : + The key to press to start the task and go to the next steps. + respMax : + The maximum time for decision (in seconds). + results : + The result directory. + session : + Session number. Default to '001'. + setup : + The context of recording. Can be `'behavioral'` or `'test'`. + texts : + Long text elements. + textSize : + Scaling parameter for text size. + triggers : + Dictionary {str, callable or None}. The function will be executed + before the corresponding trial sequence. The default values are + `None` (no trigger sent). + * `"trialStart"` + * `"trialStop"` + * `"listeningStart"` + * `"listeningStop"` + * `"decisionStart"` + * `"decisionStop"` + * `"confidenceStart"` + * `"confidenceStop"` + win : + The window in which to draw objects. + + Notes + ----- + When using the `behavioral` setup, triggers will be sent to the PPG recording. The + trigger channel is coding for different events during the task as follows: + - Trial start: 1 + - recording trigger: 2 + - sound trigger : 3 + - rating trigger: 4 + - end trigger: 5 + All these events, except the trial start, have also their time stamps encoded in the + behavioural results data frame. + + """ + from psychopy import data, event, visual + + parameters: Dict[str, Any] = {} + parameters["ExteroCondition"] = exteroception + parameters["device"] = device + if parameters["device"] == "keyboard": + parameters["confScale"] = [1, 7] + parameters["labelsRating"] = ["Guess", "Certain"] + parameters["screenNb"] = screenNb + parameters["monitor"] = "testMonitor" + parameters["nFeedback"] = 5 + parameters["nConfidence"] = 8 + parameters["respMax"] = 5 + parameters["minRatingTime"] = 0.5 + parameters["maxRatingTime"] = 5 + parameters["isi"] = (0.25, 0.25) + parameters["startKey"] = "space" + parameters["response_keys"] = {"More": "up", "Less": "down"} + parameters["nTrials"] = nTrials + parameters["nBreaking"] = nBreaking + parameters["lambdaIntero"] = [] # Save the history of lambda values + parameters["lambdaExtero"] = [] # Save the history of lambda values + parameters["nFinger"] = None + parameters["signal_df"] = pd.DataFrame([]) # Physiological recording + parameters["results_df"] = pd.DataFrame([]) # Behavioral results + + # Set default path /Results/ 'Subject ID' / + parameters["participant"] = participant + parameters["session"] = session + parameters["path"] = os.getcwd() + if resultPath is None: + parameters["resultPath"] = parameters["path"] + "/data/" + participant + session + else: + parameters["resultPath"] = None + # Create Results directory if not already exists + if not os.path.exists(parameters["resultPath"]): + os.makedirs(parameters["resultPath"]) + + # Store posterior in a dictionary + parameters["staircaisePosteriors"] = {} + parameters["staircaisePosteriors"]["Intero"] = [] + if exteroception is True: + parameters["staircaisePosteriors"]["Extero"] = [] + + nCatch = int(parameters["nTrials"] * catchTrials) + nStaircase = parameters["nTrials"] - nCatch + + # Vector encoding the staircase type + if stairType == "psi": + sc = np.array(["psi"] * nStaircase) + elif stairType == "updown": + sc = np.array(["updown"] * nStaircase) + else: + raise ValueError("stairType should be 'psi' or 'updown'") + + # Create and randomize condition vectors separately for each staircase + if exteroception is True: + # Create a modality vector containing nTrials/2 Intero and Extero conditions + parameters["Modality"] = np.hstack( + [np.array(["Extero", "Intero"] * int(parameters["nTrials"] / 2))] + ) + elif exteroception is False: + # Create a modality vector containing nTrials/2 Intero and Extero conditions + parameters["Modality"] = np.array(["Intero"] * int(parameters["nTrials"])) + else: + raise ValueError("exteroception should be a boolean") + + # Vector encoding the type of trial (psi, up/down or catch) + parameters["staircaseType"] = np.hstack( + [ + sc, + np.array(["CatchTrial"] * int((parameters["nTrials"] * catchTrials))), + ] + ) + + # Shuffle all trials + shuffler = np.random.permutation(parameters["nTrials"]) + parameters["Modality"] = parameters["Modality"][shuffler] + parameters["staircaseType"] = parameters["staircaseType"][shuffler] + + # Default parameters for the basic staircase are set here. Please see + # PsychoPy Staircase Handler Documentation for full options. By default, + # the task implements a staircase using Psi method. + # If UpDown is selected, 1 or 2 interleaved staircases are used (see + # options in parameters dictionary), one is initialized 'high' and the other + # 'low'. + parameters["stairCase"] = {} + + if stairType == "updown": + conditions = [ + { + "label": "low", + "startVal": -40.5, + "nUp": 1, + "nDown": 1, + "stepSizes": [20, 12, 12, 7, 4, 3, 2, 1], + "stepType": "lin", + "minVal": -40.5, + "maxVal": 40.5, + }, + { + "label": "high", + "startVal": 40.5, + "nUp": 1, + "nDown": 1, + "stepSizes": [20, 12, 12, 7, 4, 3, 2, 1], + "stepType": "lin", + "minVal": -40.5, + "maxVal": 40.5, + }, + ] + parameters["stairCase"]["Intero"] = data.MultiStairHandler( + conditions=conditions, nTrials=parameters["nTrials"] + ) + + elif stairType == "psi": + parameters["stairCase"]["Intero"] = data.PsiHandler( + nTrials=nTrials, + intensRange=[-50.5, 50.5], + alphaRange=[-50.5, 50.5], + betaRange=[0.1, 25], + intensPrecision=1, + alphaPrecision=1, + betaPrecision=0.1, + delta=0.02, + stepType="lin", + expectedMin=0, + ) + + if exteroception is True: + if stairType == "updown": + conditions = [ + { + "label": "low", + "startVal": -40.5, + "nUp": 1, + "nDown": 1, + "stepSizes": [20, 12, 12, 7, 4, 3, 2, 1], + "stepType": "lin", + "minVal": -40.5, + "maxVal": 40.5, + }, + { + "label": "high", + "startVal": 40.5, + "nUp": 1, + "nDown": 1, + "stepSizes": [20, 12, 12, 7, 4, 3, 2, 1], + "stepType": "lin", + "minVal": -40.5, + "maxVal": 40.5, + }, + ] + parameters["stairCase"]["Extero"] = data.MultiStairHandler( + conditions=conditions, nTrials=parameters["nTrials"] + ) + + elif stairType == "psi": + parameters["stairCase"]["Extero"] = data.PsiHandler( + nTrials=nTrials, + intensRange=[-50.5, 50.5], + alphaRange=[-50.5, 50.5], + betaRange=[0.1, 25], + intensPrecision=1, + alphaPrecision=1, + betaPrecision=0.1, + delta=0.02, + stepType="lin", + expectedMin=0, + ) + + parameters["setup"] = setup + if setup == "behavioral": + # PPG recording + port = serial.Serial(serialPort) + parameters["oxiTask"] = Oximeter( + serial=port, sfreq=75, add_channels=1, **systole_kw + ) + parameters["oxiTask"].setup().read(duration=1) + elif setup == "test": + # Use pre-recorded pulse time series for testing + port = serialSim() + parameters["oxiTask"] = Oximeter( + serial=port, sfreq=75, add_channels=1, **systole_kw + ) + parameters["oxiTask"].setup().read(duration=1) + + ############## + # Load texts # + ############## + if language == "english": + parameters["texts"] = english( + device=device, setup=setup, exteroception=exteroception + ) + elif language == "danish": + parameters["texts"] = danish( + device=device, setup=setup, exteroception=exteroception + ) + elif language == "danish_children": + parameters["texts"] = danish_children( + device=device, setup=setup, exteroception=exteroception + ) + elif language == "french": + parameters["texts"] = french( + device=device, setup=setup, exteroception=exteroception + ) + + # Open window + if parameters["setup"] == "test": + fullscr = False + parameters["win"] = visual.Window( + monitor=parameters["monitor"], + screen=parameters["screenNb"], + fullscr=fullscr, + units="height", + ) + parameters["win"].mouseVisible = False + + ############### + # Image loading + ############### + if parameters["setup"] in ["test", "behavioral"]: + parameters["pulseSchema"] = visual.ImageStim( + win=parameters["win"], + units="height", + image=pkg_resources.resource_filename(__name__, "Images/pulseOximeter.png"), + pos=(0.0, 0.0), + ) + parameters["pulseSchema"].size *= 0.2 + parameters["handSchema"] = visual.ImageStim( + win=parameters["win"], + units="height", + image=pkg_resources.resource_filename(__name__, "Images/hand.png"), + pos=(0.0, -0.08), + ) + parameters["handSchema"].size *= 0.15 + + parameters["listenLogo"] = visual.ImageStim( + win=parameters["win"], + units="height", + image=pkg_resources.resource_filename(__name__, "Images/listen.png"), + pos=(0.0, 0.0), + ) + parameters["listenLogo"].size *= 0.08 + + parameters["heartLogo"] = visual.ImageStim( + win=parameters["win"], + units="height", + image=pkg_resources.resource_filename(__name__, "Images/heartbeat.png"), + pos=(0.0, 0.0), + ) + parameters["heartLogo"].size *= 0.04 + parameters["textSize"] = 0.04 + parameters["HRcutOff"] = [40, 120] + if parameters["device"] == "keyboard": + parameters["confScale"] = [1, 10] + elif parameters["device"] == "mouse": + parameters["myMouse"] = event.Mouse() + + return parameters
+
+ +
+ + + + + +
+ +
+
+
+ +
+ + + +
+ + +
+ + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/cardioception/HRD/task.html b/_modules/cardioception/HRD/task.html new file mode 100644 index 0000000..6cd3635 --- /dev/null +++ b/_modules/cardioception/HRD/task.html @@ -0,0 +1,1865 @@ + + + + + + + + + + + cardioception.HRD.task — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cardioception.HRD.task

+# Author: Nicolas Legrand <nicolas.legrand@cas.au.dk>
+
+import pickle
+import time
+from typing import Optional, Tuple
+
+import numpy as np
+import pandas as pd
+import pkg_resources  # type: ignore
+from systole.detection import ppg_peaks
+
+
+
[docs]def run( + parameters: dict, + confidenceRating: bool = True, + runTutorial: bool = False, +): + """Run the Heart Rate Discrimination task. + + Parameters + ---------- + parameters : dict + Task parameters. + confidenceRating : bool + Whether the trial show include a confidence rating scale. + runTutorial : bool + If `True`, will present a tutorial with 10 training trial with feedback + and 5 trials with confidence rating. + """ + from psychopy import core, visual + + # Initialization of the Pulse Oximeter + parameters["oxiTask"].setup().read(duration=1) + + # Show tutorial and training trials + if runTutorial is True: + tutorial(parameters) + + for nTrial, modality, trialType in zip( + range(parameters["nTrials"]), + parameters["Modality"], + parameters["staircaseType"], + ): + # Initialize variable + estimatedThreshold, estimatedSlope = None, None + + # Wait for key press if this is the first trial + if nTrial == 0: + # Ask the participant to press default button to start + messageStart = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text=parameters["texts"]["textTaskStart"], + ) + press = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, -0.4), + text=parameters["texts"]["textNext"], + ) + press.draw() + messageStart.draw() # Show instructions + parameters["win"].flip() + + waitInput(parameters) + + # Next intensity value + if trialType == "updown": + print("... load UpDown staircase.") + thisTrial = parameters["stairCase"][modality].next() + stairCond = thisTrial[1]["label"] + alpha = thisTrial[0] + elif trialType == "psi": + print("... load psi staircase.") + alpha = parameters["stairCase"][modality].next() + stairCond = "psi" + elif trialType == "CatchTrial": + print("... load catch trial.") + # Select pseudo-random extrem value based on number + # of previous catch trial. + catchIdx = sum( + parameters["staircaseType"][:nTrial][ + parameters["Modality"][:nTrial] == modality + ] + == "CatchTrial" + ) + alpha = np.array([-30, 10, -20, 20, -10, 30])[catchIdx % 6] + stairCond = "CatchTrial" + + # Before trial triggers + parameters["oxiTask"].readInWaiting() + parameters["oxiTask"].channels["Channel_0"][-1] = 1 # Trigger + + # Start trial + ( + condition, + listenBPM, + responseBPM, + decision, + decisionRT, + confidence, + confidenceRT, + alpha, + is_correct, + response_provided, + ratingProvided, + startTrigger, + soundTrigger, + responseMadeTrigger, + ratingStartTrigger, + ratingEndTrigger, + endTrigger, + ) = trial( + parameters, + alpha, + modality, + confidenceRating=confidenceRating, + nTrial=nTrial, + ) + + # Check if response is 'More' or 'Less' + isMore = 1 if decision == "More" else 0 + # Update the UpDown staircase if initialization trial + if trialType == "updown": + print("... update UpDown staircase.") + # Update the UpDown staircase + parameters["stairCase"][modality].addResponse(isMore) + elif trialType == "psi": + print("... update psi staircase.") + + # Update the Psi staircase with forced intensity value + # if impossible BPM was generated + if listenBPM + alpha < 15: + parameters["stairCase"][modality].addResponse(isMore, intensity=15) + elif listenBPM + alpha > 199: + parameters["stairCase"][modality].addResponse(isMore, intensity=199) + else: + parameters["stairCase"][modality].addResponse(isMore) + + # Store posteriors in list for each trials + parameters["staircaisePosteriors"][modality].append( + parameters["stairCase"][modality]._psi._probLambda[0, :, :, 0] + ) + + # Save estimated threshold and slope for each trials + estimatedThreshold, estimatedSlope = parameters["stairCase"][ + modality + ].estimateLambda() + + print( + f"... Initial BPM: {listenBPM} - Staircase value: {alpha} " + f"- Response: {decision} ({is_correct})" + ) + + # Store results + parameters["results_df"] = pd.concat( + [ + parameters["results_df"], + pd.DataFrame( + { + "TrialType": [trialType], + "Condition": [condition], + "Modality": [modality], + "StairCond": [stairCond], + "Decision": [decision], + "DecisionRT": [decisionRT], + "Confidence": [confidence], + "ConfidenceRT": [confidenceRT], + "Alpha": [alpha], + "listenBPM": [listenBPM], + "responseBPM": [responseBPM], + "ResponseCorrect": [is_correct], + "DecisionProvided": [response_provided], + "RatingProvided": [ratingProvided], + "nTrials": [nTrial], + "EstimatedThreshold": [estimatedThreshold], + "EstimatedSlope": [estimatedSlope], + "StartListening": [startTrigger], + "StartDecision": [soundTrigger], + "ResponseMade": [responseMadeTrigger], + "RatingStart": [ratingStartTrigger], + "RatingEnds": [ratingEndTrigger], + "endTrigger": [endTrigger], + } + ), + ], + ignore_index=True, + ) + + # Save the results at each iteration + parameters["results_df"].to_csv( + parameters["resultPath"] + + "/" + + parameters["participant"] + + parameters["session"] + + ".txt", + index=False, + ) + + # Breaks + if (nTrial % parameters["nBreaking"] == 0) & (nTrial != 0): + message = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text=parameters["texts"]["textBreaks"], + ) + percRemain = round((nTrial / parameters["nTrials"]) * 100, 2) + remain = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, 0.2), + text=f" ---- {percRemain} % ---- ", + ) + remain.draw() + message.draw() + parameters["win"].flip() + parameters["oxiTask"].save( + f"{parameters['resultPath']}/{parameters['participant']}_ppg_{nTrial}.txt" + ) + + # Wait for participant input before continue + waitInput(parameters) + + # Fixation cross + fixation = visual.GratingStim( + win=parameters["win"], mask="cross", size=0.1, pos=[0, 0], sf=0 + ) + fixation.draw() + parameters["win"].flip() + + # Reset recording when ready + parameters["oxiTask"].setup() + parameters["oxiTask"].read(duration=1) + + # Save the final results + print("Saving final results in .txt file...") + parameters["results_df"].to_csv( + parameters["resultPath"] + + "/" + + parameters["participant"] + + parameters["session"] + + "_final.txt", + index=False, + ) + + # Save the final signals file + print("Saving PPG signal data frame...") + parameters["signal_df"].to_csv( + parameters["resultPath"] + "/" + parameters["participant"] + "_signal.txt", + index=False, + ) + + # Save last pulse oximeter recording, if relevant + parameters["oxiTask"].save( + f"{parameters['resultPath']}/{parameters['participant']}_ppg_{nTrial}_end.txt" + ) + + # Save posterios (if relevant) + print("Saving posterior distributions...") + for k in set(parameters["Modality"]): + np.save( + parameters["resultPath"] + + "/" + + parameters["participant"] + + k + + "_posterior.npy", + np.array(parameters["staircaisePosteriors"][k]), + ) + + # Save parameters + print("Saving Parameters in pickle...") + save_parameter = parameters.copy() + for k in ["win", "heartLogo", "listenLogo", "stairCase", "oxiTask"]: + del save_parameter[k] + if parameters["device"] == "mouse": + del save_parameter["myMouse"] + del save_parameter["handSchema"] + del save_parameter["pulseSchema"] + with open( + save_parameter["resultPath"] + + "/" + + save_parameter["participant"] + + "_parameters.pickle", + "wb", + ) as handle: + pickle.dump(save_parameter, handle, protocol=pickle.HIGHEST_PROTOCOL) + + # End of the task + end = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, 0.0), + text=parameters["texts"]["done"], + ) + end.draw() + parameters["win"].flip() + core.wait(3)
+ + +
[docs]def trial( + parameters: dict, + alpha: float, + modality: str, + confidenceRating: bool = True, + feedback: bool = False, + nTrial: Optional[int] = None, +) -> Tuple[ + str, + float, + float, + Optional[str], + Optional[float], + Optional[float], + Optional[float], + float, + Optional[bool], + bool, + bool, + float, + float, + float, + Optional[float], + Optional[float], + float, +]: + """Run one trial of the Heart Rate Discrimination task. + + Parameters + ---------- + parameter : dict + Task parameters. + alpha : float + The intensity of the stimulus, from the staircase procedure. + modality : str + The modality, can be `'Intero'` or `'Extro'` if an exteroceptive + control condition has been added. + confidenceRating : boolean + If `False`, do not display confidence rating scale. + feedback : boolean + If `True`, will provide feedback. + nTrial : int + Trial number (optional). + + Returns + ------- + condition : str + The trial condition, can be `'Higher'` or `'Lower'` depending on the + alpha value. + listenBPM : float + The frequency of the tones (exteroceptive condition) or of the heart + rate (interoceptive condition), expressed in BPM. + responseBPM : float + The frequency of thefeebdack tones, expressed in BPM. + decision : str + The participant decision. Can be `'up'` (the participant indicates + the beats are faster than the recorded heart rate) or `'down'` (the + participant indicates the beats are slower than recorded heart rate). + decisionRT : float + The response time from sound start to choice (seconds). + confidence : int + If confidenceRating is *True*, the confidence of the participant. The + range of the scale is defined in `parameters['confScale']`. Default is + `[1, 7]`. + confidenceRT : float + The response time (RT) for the confidence rating scale. + alpha : int + The difference between the true heart rate and the delivered tone BPM. + Alpha is defined by the stairCase.intensities values and is updated + on each trial. + is_correct : int + `0` for incorrect response, `1` for correct responses. Note that this + value is not feeded to the staircase when using the (Yes/No) version + of the task, but instead will check if the response is `'More'` or not. + response_provided : bool + Was the decision provided (`True`) or not (`False`). + ratingProvided : bool + Was the rating provided (`True`) or not (`False`). If no decision was + provided, the ratig scale is not proposed and no ratings can be provided. + startTrigger, soundTrigger, responseMadeTrigger, ratingStartTrigger,\ + ratingEndTrigger, endTrigger : float + Time stamp of key timepoints inside the trial. + """ + from psychopy import core, event, sound, visual + + # Print infos at each trial start + print(f"Starting trial - Intensity: {alpha} - Modality: {modality}") + + parameters["win"].mouseVisible = False + + # Restart the trial until participant provide response on time + confidence, confidenceRT, is_correct, ratingProvided = None, None, None, False + + # Fixation cross + fixation = visual.GratingStim( + win=parameters["win"], mask="cross", size=0.1, pos=[0, 0], sf=0 + ) + fixation.draw() + parameters["win"].flip() + core.wait(np.random.uniform(parameters["isi"][0], parameters["isi"][1])) + + keys = event.getKeys() + if "escape" in keys: + print("User abort") + parameters["win"].close() + core.quit() + + if modality == "Intero": + ########### + # Recording + ########### + messageRecord = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, 0.2), + text=parameters["texts"]["textHeartListening"], + ) + messageRecord.draw() + + # Start recording trigger + parameters["oxiTask"].readInWaiting() + parameters["oxiTask"].channels["Channel_0"][-1] = 2 # Trigger + + parameters["heartLogo"].draw() + parameters["win"].flip() + + startTrigger = time.time() + + # Recording + while True: + # Read the raw PPG signal from the pulse oximeter + # You can adapt these line to work with a different setup provided that + # it can measure and create the new variable `bpm` (the average beats per + # minute over the 5 seconds of recording). + signal = ( + parameters["oxiTask"].read(duration=5.0).recording[-75 * 6 :] # noqa + ) + signal, peaks = ppg_peaks(signal, sfreq=75, new_sfreq=1000, clipping=True) + + # Get actual heart Rate + # Only use the last 5 seconds of the recording + bpm = 60000 / np.diff(np.where(peaks[-5000:])[0]) + + print(f"... bpm: {[round(i) for i in bpm]}") + + # Prevent crash if NaN value + if np.isnan(bpm).any() or (bpm is None) or (bpm.size == 0): + message = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text=parameters["texts"]["checkOximeter"], + color="red", + ) + message.draw() + parameters["win"].flip() + core.wait(2) + + else: + # Check for extreme heart rate values, if crosses theshold, + # hold the task until resolved. Cutoff values determined in + # parameters to correspond to biologically unlikely values. + if not ( + (np.any(bpm < parameters["HRcutOff"][0])) + or (np.any(bpm > parameters["HRcutOff"][1])) + ): + listenBPM = round(bpm.mean() * 2) / 2 # Round nearest .5 + break + else: + message = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text=parameters["texts"]["stayStill"], + color="red", + ) + message.draw() + parameters["win"].flip() + core.wait(2) + + elif modality == "Extero": + ########### + # Recording + ########### + messageRecord = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, 0.2), + text=parameters["texts"]["textToneListening"], + ) + messageRecord.draw() + + # Start recording trigger + parameters["oxiTask"].readInWaiting() + parameters["oxiTask"].channels["Channel_0"][-1] = 2 # Trigger + + parameters["listenLogo"].draw() + parameters["win"].flip() + + startTrigger = time.time() + + # Random selection of HR frequency + listenBPM = np.random.choice(np.arange(40, 100, 0.5)) + + # Play the corresponding beat file + listenFile = pkg_resources.resource_filename( + "cardioception.HRD", f"Sounds/{listenBPM}.wav" + ) + print(f"...loading file (Listen): {listenFile}") + + # Play selected BPM frequency + listenSound = sound.Sound(listenFile) + listenSound.play() + core.wait(5) + listenSound.stop() + + else: + raise ValueError("Invalid modality") + + # Fixation cross + fixation = visual.GratingStim( + win=parameters["win"], mask="cross", size=0.1, pos=[0, 0], sf=0 + ) + fixation.draw() + parameters["win"].flip() + core.wait(0.5) + + ####### + # Sound + ####### + + # Generate actual stimulus frequency + condition = "Less" if alpha < 0 else "More" + + # Check for extreme alpha values, e.g. if alpha changes massively from + # trial to trial. + if (listenBPM + alpha) < 15: + responseBPM = 15.0 + elif (listenBPM + alpha) > 199: + responseBPM = 199.0 + else: + responseBPM = listenBPM + alpha + responseFile = pkg_resources.resource_filename( + "cardioception.HRD", f"Sounds/{responseBPM}.wav" + ) + print(f"...loading file (Response): {responseFile}") + + # Play selected BPM frequency + responseSound = sound.Sound(responseFile) + if modality == "Intero": + parameters["heartLogo"].autoDraw = True + elif modality == "Extero": + parameters["listenLogo"].autoDraw = True + else: + raise ValueError("Invalid modality provided") + # Record participant response (+/-) + message = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0, 0.4), + text=parameters["texts"]["Decision"][modality], + ) + message.autoDraw = True + + press = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text=parameters["texts"]["responseText"], + pos=(0.0, -0.4), + ) + press.autoDraw = True + + # Sound trigger + parameters["oxiTask"].readInWaiting() + parameters["oxiTask"].channels["Channel_0"][-1] = 3 + soundTrigger = time.time() + parameters["win"].flip() + + ##################### + # Esimation Responses + ##################### + ( + responseMadeTrigger, + response_trigger, + response_provided, + decision, + decisionRT, + is_correct, + ) = responseDecision(responseSound, parameters, feedback, condition) + press.autoDraw = False + message.autoDraw = False + if modality == "Intero": + parameters["heartLogo"].autoDraw = False + elif modality == "Extero": + parameters["listenLogo"].autoDraw = False + else: + raise ValueError("Invalid modality provided") + ################### + # Confidence Rating + ################### + + # Record participant confidence + if (confidenceRating is True) & (response_provided is True): + # Confidence rating start trigger + parameters["oxiTask"].readInWaiting() + parameters["oxiTask"].channels["Channel_0"][-1] = 4 # Trigger + + # Confidence rating scale + ratingStartTrigger: Optional[float] = time.time() + ( + confidence, + confidenceRT, + ratingProvided, + ratingEndTrigger, + ) = confidenceRatingTask(parameters) + else: + ratingStartTrigger, ratingEndTrigger = None, None + + # Confidence rating end trigger + parameters["oxiTask"].readInWaiting() + parameters["oxiTask"].channels["Channel_0"][-1] = 5 + endTrigger = time.time() + + # Save PPG signal + if nTrial is not None: # Not during the tutorial + if modality == "Intero": + this_df = None + # Save physio signal + this_df = pd.DataFrame( + { + "signal": signal, + "nTrial": pd.Series([nTrial] * len(signal), dtype="category"), + } + ) + + parameters["signal_df"] = pd.concat( + [parameters["signal_df"], this_df], ignore_index=True + ) + + return ( + condition, + listenBPM, + responseBPM, + decision, + decisionRT, + confidence, + confidenceRT, + alpha, + is_correct, + response_provided, + ratingProvided, + startTrigger, + soundTrigger, + responseMadeTrigger, + ratingStartTrigger, + ratingEndTrigger, + endTrigger, + )
+ + +
[docs]def waitInput(parameters: dict): + """Wait for participant input before continue""" + + from psychopy import core, event + + if parameters["device"] == "keyboard": + while True: + keys = event.getKeys() + if "escape" in keys: + print("User abort") + parameters["win"].close() + core.quit() + elif parameters["startKey"] in keys: + break + elif parameters["device"] == "mouse": + parameters["myMouse"].clickReset() + while True: + buttons = parameters["myMouse"].getPressed() + if buttons != [0, 0, 0]: + break + keys = event.getKeys() + if "escape" in keys: + print("User abort") + parameters["win"].close() + core.quit()
+ + +
[docs]def tutorial(parameters: dict): + """Run tutorial before task run. + + Parameters + ---------- + parameters : dict + Task parameters. + + """ + + from psychopy import core, event, visual + + # Introduction + intro = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text=parameters["texts"]["Tutorial1"], + ) + press = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, -0.4), + text=parameters["texts"]["textNext"], + ) + intro.draw() + press.draw() + parameters["win"].flip() + core.wait(1) + + waitInput(parameters) + + # Pusle oximeter tutorial + pulse1 = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, 0.3), + text=parameters["texts"]["pulseTutorial1"], + ) + press = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, -0.4), + text=parameters["texts"]["textNext"], + ) + pulse1.draw() + parameters["pulseSchema"].draw() + press.draw() + parameters["win"].flip() + core.wait(1) + + waitInput(parameters) + + # Get finger number - Skip this part for the danish_children version (empty string) + if parameters["texts"]["pulseTutorial2"]: + pulse2 = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, 0.2), + text=parameters["texts"]["pulseTutorial2"], + ) + pulse3 = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, -0.2), + text=parameters["texts"]["pulseTutorial3"], + ) + pulse2.draw() + pulse3.draw() + press.draw() + parameters["win"].flip() + core.wait(1) + + waitInput(parameters) + + pulse4 = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, 0.3), + text=parameters["texts"]["pulseTutorial4"], + ) + pulse4.draw() + parameters["handSchema"].draw() + parameters["win"].flip() + core.wait(1) + + # Record number + nFinger = "" + while True: + # Record new key + key = event.waitKeys( + keyList=[ + "1", + "2", + "3", + "4", + "5", + "num_1", + "num_2", + "num_3", + "num_4", + "num_5", + ] + ) + if key: + nFinger += [s for s in key[0] if s.isdigit()][0] + + # Save the finger number in the task parameters dictionary + parameters["nFinger"] = nFinger + + core.wait(0.5) + break + + # Heartrate recording + recording = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, 0.3), + text=parameters["texts"]["Tutorial2"], + ) + recording.draw() + parameters["heartLogo"].draw() + press.draw() + parameters["win"].flip() + core.wait(1) + + waitInput(parameters) + + # Show reponse icon + listenIcon = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, 0.3), + text=parameters["texts"]["Tutorial3_icon"], + ) + parameters["heartLogo"].draw() + listenIcon.draw() + press.draw() + parameters["win"].flip() + core.wait(1) + + waitInput(parameters) + + # Response instructions + listenResponse = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, 0.0), + text=parameters["texts"]["Tutorial3_responses"], + ) + listenResponse.draw() + press.draw() + parameters["win"].flip() + core.wait(1) + + waitInput(parameters) + + # Run training trials with feedback + parameters["oxiTask"].setup().read(duration=2) + for i in range(parameters["nFeedback"]): + # Ramdom selection of condition + condition = np.random.choice(["More", "Less"]) + alpha = -20.0 if condition == "Less" else 20.0 + + _ = trial( + parameters, + alpha, + "Intero", + feedback=True, + confidenceRating=False, + ) + + # If extero conditions required, show tutorial. + if parameters["ExteroCondition"] is True: + exteroText = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, -0.2), + text=parameters["texts"]["Tutorial3bis"], + ) + exteroText.draw() + parameters["listenLogo"].draw() + press.draw() + parameters["win"].flip() + core.wait(1) + + waitInput(parameters) + + exteroResponse = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, 0.0), + text=parameters["texts"]["Tutorial3ter"], + ) + exteroResponse.draw() + press.draw() + parameters["win"].flip() + core.wait(1) + + waitInput(parameters) + + # Run 10 training trials with feedback + parameters["oxiTask"].setup().read(duration=2) + for i in range(parameters["nFeedback"]): + # Ramdom selection of condition + condition = np.random.choice(["More", "Less"]) + alpha = -20.0 if condition == "Less" else 20.0 + + _ = trial( + parameters, + alpha, + "Extero", + feedback=True, + confidenceRating=False, + ) + + ################### + # Confidence rating + ################### + confidenceText = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text=parameters["texts"]["Tutorial4"], + ) + confidenceText.draw() + press.draw() + parameters["win"].flip() + core.wait(1) + + waitInput(parameters) + + parameters["oxiTask"].setup().read(duration=2) + + # Run n training trials with confidence rating + for i in range(parameters["nConfidence"]): + modality = "Intero" + condition = np.random.choice(["More", "Less"]) + stim_intense = np.random.choice(np.array([1, 10, 30])) + alpha = -stim_intense if condition == "Less" else stim_intense + _ = trial(parameters, alpha, modality, confidenceRating=True) + + # If extero conditions required, show tutorial. + if parameters["ExteroCondition"] is True: + # Run n training trials with confidence rating + for i in range(parameters["nConfidence"]): + modality = "Extero" + condition = np.random.choice(["More", "Less"]) + stim_intense = np.random.choice(np.array([1, 10, 30])) + alpha = -stim_intense if condition == "Less" else stim_intense + _ = trial( + parameters, + alpha, + modality, + confidenceRating=True, + ) + + ################# + # End of tutorial + ################# + taskPresentation = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text=parameters["texts"]["Tutorial5"], + ) + taskPresentation.draw() + press.draw() + parameters["win"].flip() + core.wait(1) + waitInput(parameters) + + # Task + taskPresentation = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text=parameters["texts"]["Tutorial6"], + ) + taskPresentation.draw() + press.draw() + parameters["win"].flip() + core.wait(1) + waitInput(parameters)
+ + +
[docs]def responseDecision( + this_hr, + parameters: dict, + feedback: bool, + condition: str, +) -> Tuple[ + float, Optional[float], bool, Optional[str], Optional[float], Optional[bool] +]: + """Recording response during the decision phase. + + Parameters + ---------- + this_hr : psychopy sound instance + The sound .wav file to play. + parameters : dict + Parameters dictionary. + feedback : bool + If `True`, provide feedback after decision. + condition : str + The trial condition [`'More'` or `'Less'`] used to check is response is + correct or not. + + Returns + ------- + responseMadeTrigger : float + Time stamp of response provided. + response_trigger : float + Time stamp of response start. + response_provided : bool + `True` if the response was provided, `False` otherwise. + decision : str or None + The decision made ('Higher', 'Lower' or None) + decisionRT : float + Decision response time (seconds). + is_correct : bool or None + `True` if the response provided was correct, `False` otherwise. + + """ + + from psychopy import core, event, visual + + print("...starting decision phase.") + + decision, decisionRT, is_correct = None, None, None + response_trigger = time.time() + + if parameters["device"] == "keyboard": + + # play the tones and record key press with time stamp + this_hr.play() + clock = core.Clock() + response_key = event.waitKeys( + keyList=[ + parameters["response_keys"]["More"], + parameters["response_keys"]["Less"] + ], + maxWait=parameters["respMax"], + timeStamped=clock, + ) + this_hr.stop() + responseMadeTrigger = time.time() + + # Check if the response was provided by the participant and log responses + if not response_key: + response_provided = False + decision, decisionRT = None, None + else: + response_provided = True + decision = response_key[0][0] + decisionRT = response_key[0][1] + + # Is the answer Correct? + is_correct = decision == parameters["response_keys"][condition] + + elif parameters["device"] == "mouse": + # Initialise response feedback + slower = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + color="white", + text=parameters["texts"]["slower"], + pos=(-0.2, 0.2), + ) + faster = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + color="white", + text=parameters["texts"]["faster"], + pos=(0.2, 0.2), + ) + slower.draw() + faster.draw() + parameters["win"].flip() + + this_hr.play() + clock = core.Clock() + clock.reset() + parameters["myMouse"].clickReset() + buttons, decisionRT = parameters["myMouse"].getPressed(getTime=True) + while True: + buttons, decisionRT = parameters["myMouse"].getPressed(getTime=True) + trialdur = clock.getTime() + parameters["oxiTask"].readInWaiting() + if buttons == [1, 0, 0]: + decisionRT = decisionRT[0] + decision, response_provided = "Less", True + slower.color = "blue" + slower.draw() + parameters["win"].flip() + + # Show feedback for .5 seconds if enough time + remain = parameters["respMax"] - trialdur + pauseFeedback = 0.5 if (remain > 0.5) else remain + core.wait(pauseFeedback) + break + elif buttons == [0, 0, 1]: + decisionRT = decisionRT[-1] + decision, response_provided = "More", True + faster.color = "blue" + faster.draw() + parameters["win"].flip() + + # Show feedback for .5 seconds if enough time + remain = parameters["respMax"] - trialdur + pauseFeedback = 0.5 if (remain > 0.5) else remain + core.wait(pauseFeedback) + break + elif trialdur > parameters["respMax"]: # if too long + response_provided = False + decisionRT = None + break + else: + slower.draw() + faster.draw() + parameters["win"].flip() + responseMadeTrigger = time.time() + this_hr.stop() + + # Is the answer Correct? + is_correct = True if (decision == condition) else False + + # Check for response provided by the participant and send feedback + # This part is common to the mouse and keyboard versions + if response_provided is False: + # Record participant response (+/-) + message = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text=parameters["texts"]["tooLate"], + color="red", + pos=(0.0, -0.2), + ) + message.draw() + parameters["win"].flip() + core.wait(0.5) + + # Read oximeter + parameters["oxiTask"].readInWaiting() + else: + # Feedback + if feedback is True: + if is_correct == 0: + textFeedback = parameters["texts"]["incorrectResponse"] + else: + textFeedback = parameters["texts"]["correctResponse"] + colorFeedback = "red" if is_correct == 0 else "green" + acc = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0.0, -0.2), + color=colorFeedback, + text=textFeedback, + ) + acc.draw() + parameters["win"].flip() + core.wait(1) + + # Read oximeter + parameters["oxiTask"].readInWaiting() + + return ( + responseMadeTrigger, + response_trigger, + response_provided, + decision, + decisionRT, + is_correct, + )
+ + +
[docs]def confidenceRatingTask( + parameters: dict, +) -> Tuple[Optional[float], Optional[float], bool, Optional[float]]: + """Confidence rating scale, using keyboard or mouse inputs. + + Parameters + ---------- + parameters : dict + Parameters dictionary. + + """ + + from psychopy import core, visual + + print("...starting confidence rating.") + + # Initialise default values + confidence, confidenceRT = None, None + + if parameters["device"] == "keyboard": + markerStart = np.random.choice( + np.arange(parameters["confScale"][0], parameters["confScale"][1]) + ) + ratingScale = visual.RatingScale( + parameters["win"], + low=parameters["confScale"][0], + high=parameters["confScale"][1], + noMouse=True, + labels=parameters["labelsRating"], + acceptKeys="down", + markerStart=markerStart, + ) + + message = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text=parameters["texts"]["Confidence"], + ) + + # Wait for response + ratingProvided = False + clock = core.Clock() + while clock.getTime() < parameters["maxRatingTime"]: + if not ratingScale.noResponse: + ratingScale.markerColor = (0, 0, 1) + if clock.getTime() > parameters["minRatingTime"]: + ratingProvided = True + break + ratingScale.draw() + message.draw() + parameters["win"].flip() + + confidence = ratingScale.getRating() + confidenceRT = ratingScale.getRT() + + elif parameters["device"] == "mouse": + # Use the mouse position to update the slider position + # The mouse movement is limited to a rectangle above the Slider + # To avoid being dragged out of the screen (in case of multi screens) + # and to avoid interferences with the Slider when clicking. + parameters["win"].mouseVisible = False + parameters["myMouse"].setPos((np.random.uniform(-0.25, 0.25), 0.2)) + parameters["myMouse"].clickReset() + message = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + pos=(0, 0.2), + text=parameters["texts"]["Confidence"], + ) + slider = visual.Slider( + win=parameters["win"], + name="slider", + pos=(0, -0.2), + size=(0.7, 0.1), + labels=parameters["texts"]["VASlabels"], + granularity=1, + ticks=(0, 100), + style=("rating"), + color="LightGray", + flip=False, + labelHeight=0.1 * 0.6, + ) + slider.marker.size = (0.03, 0.03) + clock = core.Clock() + parameters["myMouse"].clickReset() + buttons, confidenceRT = parameters["myMouse"].getPressed(getTime=True) + + while True: + parameters["win"].mouseVisible = False + trialdur = clock.getTime() + buttons, confidenceRT = parameters["myMouse"].getPressed(getTime=True) + + # Mouse position (keep in in the rectangle) + newPos = parameters["myMouse"].getPos() + if newPos[0] < -0.5: + newX = -0.5 + elif newPos[0] > 0.5: + newX = 0.5 + else: + newX = newPos[0] + if newPos[1] < 0.1: + newY = 0.1 + elif newPos[1] > 0.3: + newY = 0.3 + else: + newY = newPos[1] + parameters["myMouse"].setPos((newX, newY)) + + # Update marker position in Slider + p = newX / 0.5 + slider.markerPos = 50 + (p * 50) + + # Check if response provided + if (buttons == [1, 0, 0]) & (trialdur > parameters["minRatingTime"]): + confidence, confidenceRT, ratingProvided = ( + slider.markerPos, + clock.getTime(), + True, + ) + print( + f"... Confidence level: {confidence}" + + f" with response time {round(confidenceRT, 2)} seconds" + ) + # Change marker color after response provided + slider.marker.color = "green" + slider.draw() + message.draw() + parameters["win"].flip() + core.wait(0.2) + break + elif trialdur > parameters["maxRatingTime"]: # if too long + ratingProvided = False + confidenceRT = parameters["myMouse"].clickReset() + + # Text feedback if no rating provided + message = visual.TextStim( + parameters["win"], + height=parameters["textSize"], + text="Too late", + color="red", + pos=(0.0, -0.2), + ) + message.draw() + parameters["win"].flip() + core.wait(0.5) + break + slider.draw() + message.draw() + parameters["win"].flip() + ratingEndTrigger = time.time() + parameters["win"].flip() + + return confidence, confidenceRT, ratingProvided, ratingEndTrigger
+
+ +
+ + + + + +
+ +
+
+
+ +
+ + + +
+ + +
+ + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/cardioception/reports.html b/_modules/cardioception/reports.html new file mode 100644 index 0000000..4d03c51 --- /dev/null +++ b/_modules/cardioception/reports.html @@ -0,0 +1,901 @@ + + + + + + + + + + + cardioception.reports — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cardioception.reports

+# Author: Nicolas Legrand <nicolas.legrand@cas.au.dk>
+
+import os
+import subprocess
+from os import PathLike
+from pathlib import Path
+from typing import List, Optional, Union
+
+import numpy as np
+import pandas as pd
+import pkg_resources  # type: ignore
+
+from cardioception.stats import behaviours, psychophysics
+
+
+def cumulative_normal(x, alpha, beta):
+    import pytensor.tensor as pt
+
+    # Cumulative distribution function for the standard normal distribution
+    return 0.5 + 0.5 * pt.erf((x - alpha) / (beta * pt.sqrt(2)))
+
+
+
[docs]def group_level_preprocessing( + results: Union[PathLike, pd.DataFrame], + variables: List[str] = ["participant_id", "Modality"], + additional_variables=[], + behavioural_indices: bool = True, + psychophysical_indices: bool = True, + metacognitive_indices: bool = True, +) -> pd.DataFrame: + """Extrat all relevant indices from large result data frames. + + .. note:: + This function concatenate the results from + {ref}`cardioception.stats.psychophysics`, {ref}`cardioception.stats.behaviours` + and {ref}`cardioception.stats.metacognition`, see the documentation of thoses + functions for more details on the indices. + + Parameters + ---------- + results : + The data frame merging the individual result data frames. Multiple variables / + condition can be specifyed using separate columns with the `variables` argument. + variables : + The variables coding for group / repeated measures. The default is + `participant_id` and `Modality`. + additional_variables : + Additional variables for group / repeated measures. + behavioural_indices : + Whether to extract the behavioural indices. Defaults to `True`. + psychophysical_indices : + Whether to extract the psychophysical indices. Defaults to `True`. + metacognitive_indices + Whether to extract the metacognitive indices. Defaults to `True`. + + Returns + ------- + + See Also + -------- + cardioception.stats.psychophysics, cardioception.stats.behaviours, + cardioception.stats.metacognition + + """ + # read the input file if only the path was provided + if not isinstance(results, pd.DataFrame): + results_df = pd.read_csv(results) + + # create a list of variables to use to group the dataframe + variables.extend(additional_variables) + + summary_df = pd.DataFrame([]) + + if behavioural_indices: + behaviours_df = behaviours( + summary_df=results_df, + variables=variables, + additional_variables=additional_variables, + ) + summary_df = pd.merge(left=summary_df, right=behaviours_df, on=variables) + + if psychophysical_indices: + psychophysics_df = psychophysics( + summary_df=results_df, + variables=variables, + additional_variables=additional_variables, + ) + summary_df = pd.merge(left=summary_df, right=psychophysics_df, on=variables) + + if metacognitive_indices: + pass + + return summary_df
+ + +
[docs]def preprocessing(results: Union[PathLike, pd.DataFrame]) -> pd.DataFrame: + """From the main behavioural data frame, extract summary metrics of behavioural, + metacognitive and interoceptive performances. + + The slope and thresholds of the interoceptive/exteroceptive psychometric function + are reported both using the online estimate outputted by the Psi staircase (i.e. + `slope` and `threshold`), and using a Bayesian estimation (i.e. `bayesian_slope` and + `bayesian_threshold`). The Bayesian estimation is the recommended value to use to + report the results. Removing outliers before fitting will change the estimation, + which is not the case for the Psi values. + + The d-prime and criterion are also computed using a classical SDT approach + (`dprime` and `criterion`), as well as a Bayesian estimation performed when + estimating the metacognitive sensitivity meta-d' (`bayesian_dprime`, + `bayesian_criterion`, `bayesian_meta_d`, `bayesian_m_ratio`). The dprime and + criterion can vary between the two methods. It is recommended to use the estimates + consistently. Before the estimation of SDT and metacognitive metrics, the function + ensure that at least 5 valid trials of each signal are present, otherwise returns + `None`. + + When using this function for analysing results from the Heart Rate Discrimination + task, the following packages should be credited: Systole [1]_, metadpy [2]_ and + cardioception [3]_. + + Parameters + ---------- + results : pd.DataFrame | PathLike + Either the path to the result file, or the Pandas Data Frame. + + Returns + ------- + summary_df : pd.DataFrame + The summary statistic for this participant, splitting for interoception and + exteroception if the two conditions were used. + + Notes + ----- + This function will require [PyMC](https://github.com/pymc-devs/pymc) (>= 5.0) and + [metadpy](https://github.com/LegrandNico/metadpy) (>=0.1.0). + + References + ---------- + .. [1] Legrand et al., (2022). Systole: A python package for cardiac signal + synchrony and analysis. Journal of Open Source Software, 7(69), 3832, + https://doi.org/10.21105/joss.03832 + .. [2] https://github.com/LegrandNico/metadpy + .. [3] Legrand, N., Nikolova, N., Correa, C., Brændholt, M., Stuckert, A., Kildahl, + N., Vejlø, M., Fardo, F., & Allen, M. (2021). The Heart Rate Discrimination + Task: A psychophysical method to estimate the accuracy and precision of + interoceptive beliefs. Biological Psychology, 108239. + https://doi.org/10.1016/j.biopsycho.2021.108239 + + """ + import arviz as az + import pymc as pm + from metadpy import bayesian, sdt + from metadpy.utils import discreteRatings + + # read the input file if only the path was provided + if not isinstance(results, pd.DataFrame): + results = pd.read_csv(results) + + summary_df = pd.DataFrame([]) + + for modality in ["Intero", "Extero"]: + this_modality = results[results.Modality == modality].copy() + + if len(this_modality) > 10: + # response time + # ------------- + decision_mean_rt = this_modality.DecisionRT.mean() + decision_median_rt = this_modality.DecisionRT.median() + + confidence_mean_rt = this_modality.ConfidenceRT.mean() + confidence_median_rt = this_modality.ConfidenceRT.median() + + # signal detection theory metrics + # ------------------------------- + this_modality["Stimuli"] = ( + this_modality.responseBPM > this_modality.listenBPM + ) + this_modality["Responses"] = this_modality.Decision == "More" + + # check that both signals have at least 5 valid trials each + if (this_modality["Stimuli"].sum() > 5) & ( + (~this_modality["Stimuli"]).sum() > 5 + ): + hit, miss, fa, cr = this_modality.scores() + hr, far = sdt.rates(hits=hit, misses=miss, fas=fa, crs=cr) + d, c = sdt.dprime(hit_rate=hr, fa_rate=far), sdt.criterion( + hit_rate=hr, fa_rate=far + ) + else: + ( + d, + c, + ) = ( + None, + None, + ) + + # metacognitive sensitivity + # ------------------------- + ( + bayesian_dprime, + bayesian_criterion, + bayesian_meta_d, + bayesian_m_ratio, + ) = (None, None, None, None) + + this_modality = this_modality[ + ~this_modality.Confidence.isna() + ].copy() # Drop trials with NaN in confidence rating + this_modality.loc[:, "Accuracy"] = ( + (this_modality["Stimuli"] & this_modality["Responses"]) + | (~this_modality["Stimuli"] & ~this_modality["Responses"]) + ).copy() + + # check that both signals have at least 5 valid trials each + if (this_modality["Stimuli"].sum() > 5) & ( + (~this_modality["Stimuli"]).sum() > 5 + ): + try: + new_ratings, _ = discreteRatings( + this_modality.Confidence.to_numpy(), verbose=False + ) + this_modality.loc[:, "discrete_confidence"] = new_ratings + + metad = bayesian.hmetad( + data=this_modality, + stimuli="Stimuli", + accuracy="Accuracy", + confidence="discrete_confidence", + nRatings=4, + output="dataframe", + ) + bayesian_dprime = metad["d"].values[0] + bayesian_criterion = metad["c"].values[0] + bayesian_meta_d = metad["meta_d"].values[0] + bayesian_m_ratio = metad["m_ratio"].values[0] + + except ValueError: + print( + ( + f"Cannot discretize ratings for modality: {modality}. " + "The metacognitive efficiency will not be reported." + ) + ) + + # bayesian psychophysics + # ---------------------- + x, n, r = np.zeros(203), np.zeros(203), np.zeros(203) + + for ii, intensity in enumerate(np.arange(-50.5, 51, 0.5)): + x[ii] = intensity + n[ii] = sum(this_modality.Alpha == intensity) + r[ii] = sum( + (this_modality.Alpha == intensity) + & (this_modality.Decision == "More") + ) + validmask = n != 0 # remove no responses trials + xij, nij, rij = x[validmask], n[validmask], r[validmask] + + with pm.Model(): + alpha = pm.Uniform("alpha", lower=-40.5, upper=40.5) + beta = pm.HalfNormal("beta", 10) + thetaij = pm.Deterministic( + "thetaij", cumulative_normal(xij, alpha, beta) + ) + _ = pm.Binomial("rij", p=thetaij, n=nij, observed=rij) + idata = pm.sample(chains=4, cores=4) + res = az.summary(idata) + bayesian_threshold = res["mean"].alpha + bayesian_slope = res["mean"].beta + + # Psi estimates + threshold = this_modality.EstimatedThreshold.iloc[-1] + slope = this_modality.EstimatedSlope.iloc[-1] + + # concatenate the summary statistics + summary_df = pd.concat( + [ + summary_df, + pd.DataFrame( + { + "modality": modality, + "decision_mean_rt": decision_mean_rt, + "decision_median_rt": decision_median_rt, + "confidence_mean_rt": confidence_mean_rt, + "confidence_median_rt": confidence_median_rt, + "dprime": d, + "criterion": c, + "bayesian_dprime": bayesian_dprime, + "bayesian_criterion": bayesian_criterion, + "bayesian_meta_d": bayesian_meta_d, + "bayesian_m_ratio": bayesian_m_ratio, + "threshold": threshold, + "slope": slope, + "bayesian_threshold": bayesian_threshold, + "bayesian_slope": bayesian_slope, + }, + index=[0], + ), + ], + ignore_index=True, + ) + + return summary_df
+ + +
[docs]def report( + result_path: PathLike, report_path: Optional[PathLike] = None, task: str = "HRD" +): + """From the results folders, create HTML reports of behavioural and physiological + data. + + Parameters + ---------- + resultPath : PathLike + Path variable. Where the results are stored (one participant only). + reportPath : PathLike, optional + Where the HTML report should be saved. If `None`, default will be in the + provided `resultPath`. + task : str, optional + The task ("HRD" or "HBC"), by default "HRD". + + """ + from papermill import execute_notebook + + if report_path is None: + report_path = result_path + temp_notebook = Path(report_path, "temp.ipynb") + htmlreport = Path(report_path, f"{task}_report.html") + + if task == "HRD": + template = "HeartRateDiscrimination.ipynb" + elif task == "HBC": + template = "HeartBeatCounting.ipynb" + + execute_notebook( + pkg_resources.resource_filename("cardioception.notebooks", template), + temp_notebook, + parameters=dict(resultPath=str(result_path), reportPath=str(report_path)), + ) + command = ( + "jupyter nbconvert --to html --execute " + + f"--TemplateExporter.exclude_input=True {temp_notebook} --output {htmlreport}" + ) + subprocess.call(command, shell=True) + os.remove(temp_notebook)
+
+ +
+ + + + + +
+ +
+
+
+ +
+ + + +
+ + +
+ + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/cardioception/stats.html b/_modules/cardioception/stats.html new file mode 100644 index 0000000..535b7ec --- /dev/null +++ b/_modules/cardioception/stats.html @@ -0,0 +1,979 @@ + + + + + + + + + + + cardioception.stats — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cardioception.stats

+# Author: Nicolas Legrand <nicolas.legrand@cas.au.dk>
+
+from typing import List
+
+import numpy as np
+import pandas as pd
+
+
+def cumulative_normal(x, alpha, beta):
+    import pytensor.tensor as pt
+
+    # Cumulative distribution function for the standard normal distribution
+    return 0.5 + 0.5 * pt.erf((x - alpha) / (beta * pt.sqrt(2)))
+
+
+
[docs]def psychophysics( + summary_df: pd.DataFrame, + variables: List[str] = ["participant_id", "Modality"], + additional_variables=[], +) -> pd.DataFrame: + r"""Extract psychometric parameters from a set of result files from the HRD task. + + This function will use a Bayesian model to estimate psychophysics parameters and + perform inference using MCMC sampling. The following parameters are returned: + + * Interoceptive bias + + * `bayesian_threshold` (the mean of the interoceptive bias) + + * `bayesian_slope` (the slope of the interoceptive bias) + + The interoceptive bias :math:`\alpha` represents the difference between the real + heart rate and the cardiac belief. The interoceptive slope :math:`\beta` represents + the precision of this bias (the standard deviation of the underlying cumulative + normal function). These parameters are estimated using the following model: + + .. math:: + + r_{i} & \sim \mathcal{Binomial}(\theta_{i},n_{i}) \\ + \Phi_{i}(x_{i}, \alpha, \beta) & = \frac{1}{2} + \frac{1}{2} * erf(\frac{x_{i} + - \alpha}{\beta * \sqrt{2}}) \\ + \alpha & \sim \mathcal{Uniform}(-50.5, 50.5) \\ + \beta & \sim \mathcal{Uniform}(.1, 30.0) \\ + + Here :math:`x_i` is the proportion of positive response at the intensity :math:`i`. + To compute the interoceptive bias, we use the `Alpha` value (the difference between + the real heart rate and the tone that is presented at each trial). A negative value + means that the tone needs to be slower than the heart rate for the participant to + find it the same. + + * Cardiac beliefs + + * `belief_mean` + + * `belief_std` + + The mean of the cardiac belief :math:`\psi_{alpha}` represents the cardiac frequency + that was inferred on average through the task. The precision of the cardiac belief + :math:`\psi_{beta}` is the standard deviation around this belief. Under the + hypothesis that the participant is not using any interoceptive information to + perform the task, this value is the belief used to inform the decision by comparing + it to the tones. These parameters are estimated using the following model: + + .. math:: + + r_{i} & \sim \mathcal{Binomial}(\theta_{i},n_{i}) \\ + \Phi_{i}(x_{i}, \psi_{alpha}, \psi_{beta}) & = \frac{1}{2} + \frac{1}{2} * + erf(\frac{x_{i} - \psi_{alpha}}{\psi_{beta} * \sqrt{2}}) \\ + \psi_{alpha} & \sim \mathcal{Uniform}(15.0, 200.0) \\ + \psi_{beta} & \sim \mathcal{Uniform}(.1, 50.0) \\ + + Here :math:`x_i` is the proportion of positive response at the intensity :math:`i`. + To compute the interoceptive bias, we use the frequency of the tone presented + during the decision phase only (assuming therefore that this is the only source of + information used by the participant). The units are beat per minute (bpm). + + .. note:: + In the two equations above, $erf$ denotes the + `error functions <https://en.wikipedia.org/wiki/Error_function>`_ and :math:`\phi` + is the cumulative normal function. + + * Heart rate + + * `hr_mean` the mean of the averaged heart rates + + * `hr_std` the standard deviation of the averaged heart rates + + The mean of the averaged heart rates :math:`\omega_{alpha}` and the standard + deviation of the averaged heart rates :math:`\omega_{beta}` are computed using the + following model: + + .. math:: + + r_{i} & \sim \mathcal{Normal}(\omega_{alpha},\omega_{beta}) \\ + \omega_{alpha} & \sim \mathcal{Uniform}(15.0, 200.0) \\ + \omega_{beta} & \sim \mathcal{Uniform}(.1, 50.0) \\ + + Here :math:`x_i` is the average heart rate at each trial. + + .. note:: + The heart rate that was recorded on every trial is the average of what was + recorded over the 5 seconds of interoception during the listening phase. Here + we are returning the mean and standard deviation of these values. + + .. warning:: + This function requires `PyMC <https://github.com/pymc-devs/pymc>`_. + + Parameters + ---------- + summary_df : + The data frame merges the individual result data frames. Multiple variables/ + condition can be specified using separate columns with the `variables` argument. + variables : + The variables coding for group/repeated measures. The default is + `participant_id` and `Modality`. + additional_variables : + Additional variables for group/repeated measures. + + Returns + ------- + results_df : + The data frame containing, for each participant/condition/group, the + psychometric variables. + """ + import pymc as pm + + # create a list of variables to use to group the dataframe + variables.extend(additional_variables) + + # the final data fram where results are saved + results_df = pd.DataFrame() + + print("Extracting psychometric parameters from a large data frame.") + print(f"... Independent variables provided: {variables}.") + print(f"... {len(list(summary_df.groupby(variables)))} conditions in total.") + + # extract psychophysics parameters from trials for each sub data frame + bias_x_total, bias_n_total, bias_r_total, bias_sub_total = [], [], [], [] # bias + beliefs_x_total, beliefs_n_total, beliefs_r_total, beliefs_sub_total = ( + [], + [], + [], + [], + ) # beliefs + hr_total, hr_sub_total = [], [] # heart rate + print("... Extract trial-level psychophysics variables.") + for i, grouped in enumerate(list(summary_df.groupby(variables))): + cols, sub_df = grouped + + # update the independent variables + results_df = pd.concat( + [results_df, pd.Series(cols, index=variables).to_frame().T], + ignore_index=True, + ) + + # extract trial-level psychometric parameters for bias + # ------------------------------------------------------------------------------ + + # intensity level, number of trials, number of positive responses + x, n, r = np.zeros(203), np.zeros(203), np.zeros(203) + for ii, intensity in enumerate(np.arange(-50.5, 51, 0.5)): + x[ii] = intensity + n[ii] = sum(sub_df.Alpha == intensity) + r[ii] = sum((sub_df.Alpha == intensity) & (sub_df.Decision == "More")) + + # remove no responses trials + validmask = n != 0 + xij, nij, rij = x[validmask], n[validmask], r[validmask] + sub_vec = [i] * len(xij) + + bias_x_total.extend(xij) + bias_n_total.extend(nij) + bias_r_total.extend(rij) + bias_sub_total.extend(sub_vec) + + # extract trial-level psychometric parameters for beliefs + # ------------------------------------------------------------------------------ + + # intensity level, number of trials, number of positive responses + x, n, r = np.zeros(370), np.zeros(370), np.zeros(370) + for ii, intensity in enumerate(np.arange(15, 200, 0.5)): + x[ii] = intensity + n[ii] = sum(sub_df.responseBPM == intensity) + r[ii] = sum((sub_df.responseBPM == intensity) & (sub_df.Decision == "More")) + + # remove no responses trials + validmask = n != 0 + xij, nij, rij = x[validmask], n[validmask], r[validmask] + sub_vec = [i] * len(xij) + + beliefs_x_total.extend(xij) + beliefs_n_total.extend(nij) + beliefs_r_total.extend(rij) + beliefs_sub_total.extend(sub_vec) + + # extract trial-level heart rate + # ------------------------------------------------------------------------------ + + # intensity level, number of trials, number of positive responses + hr = sub_df.responseBPM.to_numpy() + sub_vec = [i] * len(hr) + + hr_total.extend(hr) + hr_sub_total.extend(sub_vec) + + # get the number of models to fit + n = len(list(summary_df.groupby(variables))) + + # fit the model (thresholds and slopes) + print("... Create the model and sample") + with pm.Model(): + # Heart Rate ------------------------------------------------------------------- + hr_mean = pm.Uniform("hr_mean", lower=15.0, upper=200.0, shape=n) + hr_std = pm.Uniform("hr_std", lower=0.1, upper=50.0, shape=n) + _ = pm.Normal( + "heart_rate", + mu=hr_mean[hr_sub_total], + sigma=hr_std[hr_sub_total], + observed=hr_total, + ) + + # Cardiac beliefs -------------------------------------------------------------- + belief_mean = pm.Uniform("belief_mean", lower=15.0, upper=200.0, shape=n) + belief_std = pm.Uniform("belief_std", lower=0.1, upper=50.0, shape=n) + theta_beliefs = pm.Deterministic( + "theta_beliefs", + cumulative_normal( + beliefs_x_total, + belief_mean[beliefs_sub_total], + belief_std[beliefs_sub_total], + ), + ) + _ = pm.Binomial( + "p_beliefs", p=theta_beliefs, n=beliefs_n_total, observed=beliefs_r_total + ) + + # Slope and Threshold ---------------------------------------------------------- + threshold = pm.Uniform("threshold", lower=-50.5, upper=50.5, shape=n) + slope = pm.Uniform("slope", lower=0.1, upper=30.0, shape=n) + theta_bias = pm.Deterministic( + "theta_bias", + cumulative_normal( + bias_x_total, threshold[bias_sub_total], slope[bias_sub_total] + ), + ) + _ = pm.Binomial("p_bias", p=theta_bias, n=bias_n_total, observed=bias_r_total) + + # sample + idata = pm.sample(chains=4, cores=4) + + # save the mean of the parameter in the final dataframe + results_df["bayesian_threshold"] = idata.posterior.threshold.mean( + axis=(0, 1) + ).to_numpy() + results_df["bayesian_slope"] = idata.posterior.slope.mean(axis=(0, 1)).to_numpy() + results_df["belief_mean"] = idata.posterior.belief_mean.mean(axis=(0, 1)).to_numpy() + results_df["belief_std"] = idata.posterior.belief_std.mean(axis=(0, 1)).to_numpy() + results_df["hr_mean"] = idata.posterior.hr_mean.mean(axis=(0, 1)).to_numpy() + results_df["hr_std"] = idata.posterior.hr_std.mean(axis=(0, 1)).to_numpy() + + return results_df
+ + +
[docs]def behaviours( + summary_df: pd.DataFrame, + variables: List[str] = ["participant_id", "Modality"], + additional_variables=[], +) -> pd.DataFrame: + r"""Extract behavioural parameters from a set of result files from the HRD task. + + For each participant/repeated measure/group, the following parameters are + returned: + + * threshold + The threshold of the psychometric curve as estimated during the task by the Psi + staircase. + * slope + The slope of the psychometric curve as estimated during the task by the Psi + staircase. + * decision_mean_rt + The average response time to decide whether the tone is faster or slower than + the heart rate. + * decision_median_rt + The median response time to decide whether the tone is faster or slower than + the heart rate. + * confidence_mean_rt + The average response time to provide the confidence ratings. + * confidence_median_rt + The median response time to provide the confidence ratings. + * confidence_mean + The average confidence level (using the same scale as what was used during + the task). + * dprime + The sensitivity (SDT indices) in discriminating whether the tone is faster than + the heart rate or not. + * criterion + The bias (SDT indices) in discriminating whether the tone is faster than the + heart rate or not. + + .. warning:: + This function requires `metadpy <https://github.com/LegrandNico/metadpy>`_. + + Parameters + ---------- + summary_df : + The data frame merges the individual result data frames. Multiple variables / + condition can be specified using separate columns with the `variables` argument. + variables : + The variables coding for group / repeated measures. The default is + `participant_id` and `Modality`. + additional_variables : + Additional variables for group / repeated measures. + + Returns + ------- + results_df : + The data frame containing, for each participant/condition/group, the + psychometric variables. + """ + from metadpy import sdt + + # create a list of variables to use to group the dataframe + variables.extend(additional_variables) + + # the final data fram where results are saved + results_df = pd.DataFrame() + + print("Extracting behavioural indices from a large data frame.") + print(f"... Independent variables provided: {variables}.") + print(f"... {len(list(summary_df.groupby(variables)))} conditions in total.") + + for grouped in list(summary_df.groupby(variables)): + cols, sub_df = grouped + + # psychophysics (Psi estimates) + threshold = sub_df.EstimatedThreshold.dropna().iloc[-1] + slope = sub_df.EstimatedSlope.dropna().iloc[-1] + + # response time + # ------------- + decision_mean_rt = sub_df.DecisionRT.mean() + decision_median_rt = sub_df.DecisionRT.median() + + confidence_mean_rt = sub_df.ConfidenceRT.mean() + confidence_median_rt = sub_df.ConfidenceRT.median() + + # confidence + # ---------- + confidence_mean = sub_df.Confidence.mean() + + # signal detection theory metrics + # ------------------------------- + sub_df["Stimuli"] = sub_df.responseBPM > sub_df.listenBPM + sub_df["Responses"] = sub_df.Decision == "More" + + # check that both signals have at least 5 valid trials each + if (sub_df["Stimuli"].sum() > 5) & ((~sub_df["Stimuli"]).sum() > 5): + hit, miss, fa, cr = sub_df.scores() + hr, far = sdt.rates(hits=hit, misses=miss, fas=fa, crs=cr) + dprime, criterion = sdt.dprime(hit_rate=hr, fa_rate=far), sdt.criterion( + hit_rate=hr, fa_rate=far + ) + else: + ( + dprime, + criterion, + ) = ( + None, + None, + ) + + # update the independent variables + new_row = pd.Series(cols, index=variables).to_frame().T + new_row["threshold"] = threshold + new_row["slope"] = slope + new_row["decision_mean_rt"] = decision_mean_rt + new_row["decision_median_rt"] = decision_median_rt + new_row["confidence_mean_rt"] = confidence_mean_rt + new_row["confidence_median_rt"] = confidence_median_rt + new_row["confidence_mean"] = confidence_mean + new_row["dprime"] = dprime + new_row["criterion"] = criterion + + results_df = pd.concat( + [results_df, new_row], + ignore_index=True, + ) + + return results_df
+ + +def metacognition( + summary_df: pd.DataFrame, + variables: List[str] = ["participant_id", "Modality"], + additional_variables=[], + bayesian: bool = True, +) -> pd.DataFrame: + r"""Extract metacognitive parameters from a set of result files from the HRD task. + + For each participant/repeated measure/group, the following parameters are + returned: + + + .. warning:: + This function requires `metadpy <https://github.com/LegrandNico/metadpy>`_. + + Parameters + ---------- + summary_df : + The data frame merges the individual result data frames. Multiple variables/ + condition can be specified using separate columns with the `variables` argument. + variables : + The variables coding for group/repeated measures. The default is + `participant_id` and `Modality`. + additional_variables : + Additional variables for group/repeated measures. + + Returns + ------- + results_df : + The data frame containing, for each participant/condition/group, the + psychometric variables. + """ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + +
+ + +
+ + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/index.html b/_modules/index.html new file mode 100644 index 0000000..c6475c9 --- /dev/null +++ b/_modules/index.html @@ -0,0 +1,560 @@ + + + + + + + + + + + Overview: module code — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + + + + + + + +
+ +
+
+
+ +
+ + + +
+ + +
+ + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_sources/api.rst.txt b/_sources/api.rst.txt new file mode 100644 index 0000000..7057f76 --- /dev/null +++ b/_sources/api.rst.txt @@ -0,0 +1,111 @@ +.. _api_ref: + +.. currentmodule:: cardioception + + +.. contents:: Table of Contents + :depth: 2 + +API ++++ + +Tasks +----- + +Heart Beat Counting task +======================== + +Parameters +********** + +.. currentmodule:: cardioception.HBC.parameters + +.. autosummary:: + :toctree: generated/HBC.parameters + + getParameters + +Scripts +******* + +.. currentmodule:: cardioception.HBC.task + +.. autosummary:: + :toctree: generated/HBC.task + + run + trial + tutorial + rest + +Heart Rate Discrimination task +============================== + +Parameters +********** + +.. currentmodule:: cardioception.HRD.parameters + +.. _parameters: + +.. autosummary:: + :toctree: generated/HRD.parameters + + getParameters + +Scripts +******* + +.. currentmodule:: cardioception.HRD.task + +.. autosummary:: + :toctree: generated/HRD.task + + run + trial + waitInput + tutorial + responseDecision + confidenceRatingTask + +Languages +********* + +.. currentmodule:: cardioception.HRD.languages + +.. autosummary:: + :toctree: generated/HRD.languages + + english + danish + danish_children + french + +Reports +------- + +.. currentmodule:: cardioception.reports + +.. _reports: + +.. autosummary:: + :toctree: generated/reports + + report + preprocessing + group_level_preprocessing + + +Stats +----- +Extracting the relevant parameters from long result data frame across group / repeated measures. + +.. currentmodule:: cardioception.stats + +.. _stats: + +.. autosummary:: + :toctree: generated/stats + + psychophysics + behaviours diff --git a/_sources/cite.md.txt b/_sources/cite.md.txt new file mode 100644 index 0000000..05d9de0 --- /dev/null +++ b/_sources/cite.md.txt @@ -0,0 +1,44 @@ +# How to cite? + +If you are using the [cardioception toolbox](https://github.com/LegrandNico/cardioception-toolbox) for your research, we ask you to cite the following paper in the final publication: + +* Legrand, N., Nikolova, N., Correa, C., Brændholt, M., Stuckert, A., Kildahl, N., Vejlø, M., Fardo, F., & Allen, M. (2021). The Heart Rate Discrimination Task: A psychophysical method to estimate the accuracy and precision of interoceptive beliefs. Biological Psychology, 108239. + +*In BibTeX format:* + +```text +@article{LEGRAND2022108239, +title = {The heart rate discrimination task: A psychophysical method to estimate the accuracy and precision of interoceptive beliefs}, +journal = {Biological Psychology}, +volume = {168}, +pages = {108239}, +year = {2022}, +issn = {0301-0511}, +doi = {https://doi.org/10.1016/j.biopsycho.2021.108239}, +url = {https://www.sciencedirect.com/science/article/pii/S0301051121002325}, +author = {Nicolas Legrand and Niia Nikolova and Camile Correa and Malthe Brændholt and Anna Stuckert and Nanna Kildahl and Melina Vejlø and Francesca Fardo and Micah Allen}, +keywords = {Heart rate discrimination, Heartbeat tracking, Interoception, Psychophysics, Metacognition}, +abstract = {Interoception - the physiological sense of our inner bodies - has risen to the forefront of psychological and psychiatric research. Much of this research utilizes tasks that attempt to measure the ability to accurately detect cardiac signals. Unfortunately, these approaches are confounded by well-known issues limiting their validity and interpretation. At the core of this controversy is the role of subjective beliefs about the heart rate in confounding measures of interoceptive accuracy. Here, we recast these beliefs as an important part of the causal machinery of interoception, and offer a novel psychophysical “heart rate discrimination“ method to estimate their accuracy and precision. By applying this task in 223 healthy participants, we demonstrate that cardiac interoceptive beliefs are more biased, less precise, and are associated with poorer metacognitive insight relative to an exteroceptive control condition. Our task, provided as an open-source python package, offers a robust approach to quantifying cardiac beliefs.} +} +``` + +If you are also using [Systole](https://systole-docs.github.io/) to interact with your PPG recording device (this is the default setting in cardioception), and/or to analyze physiological recordings, you might also cite the following reference: + +* Legrand et al., (2022). Systole: A python package for cardiac signal synchrony and analysis. Journal of Open Source Software, 7(69), 3832, + +*In BibTeX format:* + +```text +@article{Legrand2022, +doi = {10.21105/joss.03832}, +url = {https://doi.org/10.21105/joss.03832}, +year = {2022}, +publisher = {The Open Journal}, +volume = {7}, +number = {69}, +pages = {3832}, +author = {Nicolas Legrand and Micah Allen}, +title = {Systole: A python package for cardiac signal synchrony and analysis}, +journal = {Journal of Open Source Software} +} +``` diff --git a/_sources/examples/psychophysics/1-psychophysics_subject_level.ipynb.txt b/_sources/examples/psychophysics/1-psychophysics_subject_level.ipynb.txt new file mode 100644 index 0000000..cf89bd7 --- /dev/null +++ b/_sources/examples/psychophysics/1-psychophysics_subject_level.ipynb.txt @@ -0,0 +1,1036 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "GWMGsEDSzosM", + "metadata": { + "id": "GWMGsEDSzosM" + }, + "source": [ + "(psychophysics_subject_level)=\n", + "# Fitting a psychometric function at the subject level" + ] + }, + { + "cell_type": "markdown", + "id": "d22c4768-6aa4-4899-a06a-5c175f15cce8", + "metadata": { + "id": "RS4nPf2SHuhG" + }, + "source": [ + "Author: Nicolas Legrand " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "designed-insulin", + "metadata": { + "id": "designed-insulin" + }, + "outputs": [], + "source": [ + "import pytensor.tensor as pt\n", + "import arviz as az\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "from scipy.stats import norm\n", + "\n", + "import pymc as pm\n", + "\n", + "sns.set_context('talk')" + ] + }, + { + "cell_type": "markdown", + "id": "fM0gAqRdKTcA", + "metadata": { + "id": "fM0gAqRdKTcA" + }, + "source": [ + "In this example, we are going to fit a cummulative normal function to decision responses made during the Heart Rate Discrimination task. We are going to use the data from the [HRD method paper](https://www.biorxiv.org/content/10.1101/2021.02.18.431871v1) {cite:p}`2022:legrand` and analyse the responses from one participant from the second session." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "QAxgnhh98LEo", + "metadata": { + "id": "QAxgnhh98LEo" + }, + "outputs": [], + "source": [ + "# Load data frame\n", + "psychophysics_df = pd.read_csv('https://github.com/embodied-computation-group/CardioceptionPaper/raw/main/data/Del2_merged.txt')" + ] + }, + { + "cell_type": "markdown", + "id": "-z2rrtNp9MPh", + "metadata": { + "id": "-z2rrtNp9MPh" + }, + "source": [ + "First, let's filter this data frame so we only keep subject 19 (`sub_0019` label) and the interoceptive condition (`Extero` label)." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "70iPUt9nzZUD", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 226 + }, + "id": "70iPUt9nzZUD", + "outputId": "cea129c9-cf08-4868-8752-64fbb867e86c" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TrialTypeConditionModalityStairCondDecisionDecisionRTConfidenceConfidenceRTAlphalistenBPM...EstimatedThresholdEstimatedSlopeStartListeningStartDecisionResponseMadeRatingStartRatingEndsendTriggerHeartRateOutlierSubject
1psiLessExteropsiLess2.21642959.01.632995-0.578.0...22.80555012.5494571.603353e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
3psiCatchTrialLessExteropsiCatchTrialLess1.449154100.00.511938-30.082.0...NaNNaN1.603354e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
6psiMoreExteropsiMore1.18266695.00.60678622.569.0...10.00188212.8849021.603354e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
10psiMoreExteropsiMore1.84814124.01.44896910.562.0...0.99838413.0447441.603354e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
11psiCatchTrialMoreExteropsiCatchTrialMore1.34946975.00.56182010.072.0...NaNNaN1.603354e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
\n", + "

5 rows × 25 columns

\n", + "
" + ], + "text/plain": [ + " TrialType Condition Modality StairCond Decision DecisionRT \\\n", + "1 psi Less Extero psi Less 2.216429 \n", + "3 psiCatchTrial Less Extero psiCatchTrial Less 1.449154 \n", + "6 psi More Extero psi More 1.182666 \n", + "10 psi More Extero psi More 1.848141 \n", + "11 psiCatchTrial More Extero psiCatchTrial More 1.349469 \n", + "\n", + " Confidence ConfidenceRT Alpha listenBPM ... EstimatedThreshold \\\n", + "1 59.0 1.632995 -0.5 78.0 ... 22.805550 \n", + "3 100.0 0.511938 -30.0 82.0 ... NaN \n", + "6 95.0 0.606786 22.5 69.0 ... 10.001882 \n", + "10 24.0 1.448969 10.5 62.0 ... 0.998384 \n", + "11 75.0 0.561820 10.0 72.0 ... NaN \n", + "\n", + " EstimatedSlope StartListening StartDecision ResponseMade RatingStart \\\n", + "1 12.549457 1.603353e+09 1.603354e+09 1.603354e+09 1.603354e+09 \n", + "3 NaN 1.603354e+09 1.603354e+09 1.603354e+09 1.603354e+09 \n", + "6 12.884902 1.603354e+09 1.603354e+09 1.603354e+09 1.603354e+09 \n", + "10 13.044744 1.603354e+09 1.603354e+09 1.603354e+09 1.603354e+09 \n", + "11 NaN 1.603354e+09 1.603354e+09 1.603354e+09 1.603354e+09 \n", + "\n", + " RatingEnds endTrigger HeartRateOutlier Subject \n", + "1 1.603354e+09 1.603354e+09 False sub_0019 \n", + "3 1.603354e+09 1.603354e+09 False sub_0019 \n", + "6 1.603354e+09 1.603354e+09 False sub_0019 \n", + "10 1.603354e+09 1.603354e+09 False sub_0019 \n", + "11 1.603354e+09 1.603354e+09 False sub_0019 \n", + "\n", + "[5 rows x 25 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "this_df = psychophysics_df[(psychophysics_df.Modality == 'Extero') & (psychophysics_df.Subject == 'sub_0019')]\n", + "this_df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "U0T9eifxMiDP", + "metadata": { + "id": "U0T9eifxMiDP" + }, + "source": [ + "This data frame contain a large number of columns, but here we will be interested in the `Alpha` column (the intensity value) and the `Decision` column (the response made by the participant)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "3V1boQV-MiQ0", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "3V1boQV-MiQ0", + "outputId": "22f97444-3765-497c-d42d-ecfea4bdaa24" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AlphaDecision
1-0.5Less
3-30.0Less
622.5More
1010.5More
1110.0More
\n", + "
" + ], + "text/plain": [ + " Alpha Decision\n", + "1 -0.5 Less\n", + "3 -30.0 Less\n", + "6 22.5 More\n", + "10 10.5 More\n", + "11 10.0 More" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "this_df = this_df[['Alpha', 'Decision']]\n", + "this_df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "__V5KcOWziWr", + "metadata": { + "id": "__V5KcOWziWr" + }, + "source": [ + "These two columns are enought for us to extract the 3 vectors of interest to fit a psychometric function:\n", + "* The intensity vector, listing all the tested intensities values\n", + "* The total number of trials for each tested intensity value\n", + "* The number of \"correct\" response (here, when the decision == 'More').\n", + "\n", + "Let's take a look at the data. This function will plot the proportion of \"Faster\" responses depending on the intensity value of the trial stimuli (expressed in BPM). Here, the size of the circle represent the number of trials that were presented for each intensity values." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "vrFlhsuX9K1n", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 352 + }, + "id": "vrFlhsuX9K1n", + "outputId": "f9a2e67c-76fb-462a-eea4-22de761d2a3e" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv4AAAHSCAYAAACU489pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACKzElEQVR4nOzdd3hUVfoH8O+dmUwySQjpdUISSEKihDRIgARQikgRUUEFFzvgqqvouq6KrN3fsru6urorxUJTV9qKSGxIXAhV0gwQSCe9kEL6zGTm/v5gMxqTQMrcSZnv53nyPOTec89575yQvHPnFEEURRFERERERDSsyQY6ACIiIiIikh4TfyIiIiIiC8DEn4iIiIjIAjDxJyIiIiKyAEz8iYiIiIgsABN/IiIiIiILwMSfiIiIiMgCMPEnIiIiIrIATPwHkbvuugvR0dG46667BjoUIiIiIhpmFAMdAP3s3LlzSElJGegwiIjIgrW2tmL//gQcPHQcMpU7wmOug62dvcnqb25qRPrJH2BoqcSMaZMwf/482NjYmKx+IuoeE38iIiICADQ2NuKjzVuQevYCAsdNht/oEAiCYNI2bO3sMem6+biQdw77vz+G0rIy3H/fvbCzszNpO0TUGYf6EBERERobG7Fx0wdIyyzGxOk3w39MqMmT/naCIMB/TCgmTluItMxibNj4PpqamiRpi4h+xsSfiIjIwrW2tuKjzVtwJqccMdctxEhHF7O0O9LJFTHXLcSZnHJ8+NFmtLa2mqVdIkvFxJ+IiMjC7d+fgNSzFzBh2gKMcHAya9sjHJwwYep8pJ69gP37E8zaNpGlYeJPRERkwc6fP4+Dh44jcNxksz3p/7WRTq4IvHYSDh46jqysrAGJgcgSMPEnIiKyUC0tLdi5+3PIVO7wGx0CABBFEQ0NDSgtLUV2djbOnz+P7OxslJaWoqGhAaIoShKL35hQyFTu2LHrP2hpaZGkDSJLx1V9iIiILFRiYiLyimswZdYSiKKI0tJSFBYVo6auHm16ETKFEoIggygaYGjTQiEX4OzogFG+anh5eUEmM93zQ0EQEB5zHY59vxOJiYmYN2+eyeomosuY+BMREVkgjUaDw0dPwsv/GogQcCo5BeWVNbCycYCL52iobO0hk8mN5Q0GPVqaG1FbXYWqtDPwLC3DtdeEmnQZTls7e3j6XYOkoz9i5syZsLa2NlndRDQMhvqUl5dj+/btePzxxxEXFwdbW1sIgoAJEyb0u+7ExEQsWLAAbm5uUKlUCAkJwdq1a7nkGBERDXnp6emorG6Es5sax0+cQnl1IzxHjYXaLxB29iM7JP0AIJPJYWc/Emq/QHj6BqO8uhHHT5xCXV2dSeMKCLwWFTUN+Omnn0xa73AkiiKam5tRV1eH5uZmyYZh0dUNlb4Y8k/8//3vf+OJJ54web3vvPMOHn/8cYiiCLVaDV9fX5w9exavvvoqdu/ejaSkJDg7O5u8XSIiIqmJoogjR49DYeeKs+dy0KpXwG90YKdkvzsqW3v4jQ5F8YUcJKekY1LsBJM9+be1s4e9kw+OHD2OCRMmSLaXwFDW2tqKtLQ0HD12AheKyqA3iJDLBPj5emHK5FhERERwN2QzGWp9MeQTfwcHB8yaNQsTJkzAhAkTkJWVheeee65fdSYnJ2P16tUAgA0bNmDFihUQBAGlpaVYuHAhkpOTsWLFCuzevdsEd0BERGReFRUVyM4rgkbhiVa92Kukv51MJofaLxAX8jJx5mwmJkRHmWzMv1/gNchO+x6VlZXw8PAwSZ3DRU5ODrZs+wSllfUY4eoLn7FxUFrbQKtpRWFxHs5s2QXvr77FPcuXITAwcKDDHdaGYl8M+cT//vvvx/3332/8fvPmzf2u85VXXoHBYMDdd9+NlStXGo97e3vj008/RUhICPbs2YOffvoJ48eP73d7RERE5lRaWorSimpYuXrBJyCg10l/O5lMDk9vf5QXZaGsrAw+Pj4mic/VzQunNXqUlJQw8f+FnJwcvLfxI2jlToibMx82qo6fsqj9g9Da0oTUE4l4b+NH+O3K+wZNwjncDNW+GPJj/E2tsbERX3/9NQB0SPrbBQUFYcaMGQCAnTt3mjU2IiKSRnV1NQ4cOIBdu3bhwIEDqK6uHpZttispKUF9sw42ds5Qqfo3REdlaw8rlQMKi4pNNq5ZYaWElWoEysrKTFLfcNDa2oot2z6BVu6E2GnzOiWa7WxUdoidNg9auRO2bPuk37shD+TP6WA1UH1hCkP+ib+ppaamQqPRwNraGjExMV2WmTp1Kg4cOIDjx4+bOToiIjK11NRUbP90F+qa9LC2c4SmqQ5ffZuI5cuWICIiYti0+Uunz2aiDdZwcnEzSX2OTm6oqchDY2MjRowYYZI6bUe44EJhkUnqGg7S0tJQWlmPuDnzrzqkSiaTISLmehz99lOkp6cjNja2T20O9M/pYDUQfWEqTPx/pX3HwFGjRsHKyqrLMmPGjAFwebdDIiIauqqrq7H9010Q7NSYPj0eCoUV2tp0+OnHw9j2yU6MGjXK5As5DESbv5adnQcrmxFQ2dqbpD5bO3tU6i9v/GWqxH+kkyuKS7iLL3B5MvbRYycwwtW326fLv6aytYO9iy+OHD2OmJiYXk+SHgw/p4PRQPSFKXGoz6/U1NQAwBV/mNvP1dbWXrW+DRs2IDo6ukdfmZmZprkJIiLqkdTUVNQ16RE+cSoUissPexQKK4yfOBV1TXqkpKQMizZ/SRRFXKpvgEJp0+ex/b8mk8khUyhNuty1lZUSGq120C6LaE4tLS24UFQGb/XoXl3n4zsaF4rK+rQT8kD/nA5WA9EXpsQn/r/SPv5KqVR2W6Z9Q5GedF5ZWZnF/ucgIhrs6urqYG3nCLm8459DhcIKNnZOJl+jfqDa/CWDwQC9Xg+ZtWlTAEGQw2AwmK4+mQwGgwEGgwFyuWneoAxVWq0WeoMIpXXvloW0UlpDbxCh1Wpha2vbq2sH+ud0sBqIvjAlJv6/0r7Wqlar7baMRqMBAKhUqqvW5+XlhaioqB61nZmZOeDvBImILImj4+Vxy21tOuNTTQBoa9OhtakWjo6Ow6LNX5LJZJDL5TAY2kxaryjqTbacJwCIBgNkMplJ6xyqlEol5DIBWk3vJofqtBrIZcIVH2Z2Z6B/TgergegLU+L/pl9xcnIC8POQn660n2sveyWrVq1CcnJyj75CQ0NNcxNERNQjkZGRcLST46cfD6OtTQcAxnHMjnbyHj+4Gext/pIgCBjpMAJt2lYYDHqT1Gkw6GFo05psEy8A0Om0sFYquYEXLj9o9PP1QmlxXq+uKynKg5+vV48eVP7aQP+cDlYD0RemxMT/V4KDgwEAhYWF0Ol0XZbJzc3tUJaIiIYmFxcXLF+2BGJzCf6b8DGOfL8X/034GGJzCZYvWyLJ5MWBaPPXgoJGQ9fagJbmRpPU19zUCIVcMNnEXgC4VHsRah+u4Q9cfrM2ZXIsGi4WobWlZ/MoWpqb0FhdhLgpk/r05mkw/JwORgPRF6bEoT6/EhUVBaVSCY1Gg5MnTyIuLq5TmcOHDwMAJk+ebO7wiIjIxCIiIjBq1CikpKSgrq4Ojo6OiIqKkjSxGYg2f2ncNaH4LikDtdVVsLMf2e/66mqr4OzoAHt706wSBADNDdXwi51osvqGuoiICHh/9S1STyQidtq8Kw6BMhgMSDuZCG93B4SHh/erzYH8OR2sBqIvTIWJ/6/Y29tjzpw52LdvHzZu3Ngp8c/OzsbBgwcBAIsXLx6IEImIyMScnZ0xa9asYd9mOx8fHzjYWqG1qQYtzY39WtazpbkRupZ6jBp7rcmeZrbptNC1NMDLy8sk9Q0HNjY2uGf5Mry38SOcOJSAiJjrobLtPLSqpbkJaScTodTX4t677zfOXeyrgfw5HawGqi9MwWKH+sTHx8Pf3x9vvfVWp3Nr166FIAjYtm0bNm7caFxKrKysDEuXLoXBYMCiRYsGxTs3IiKi3vL29oa3hwvsrEWUlxb0eay/waBHeWkBPN2d4e3tbbL4LlaVQWUth4+Pj8nqHA4CAwPx25X3wVHZjKPffooTh79BcUE2KkoLUVyQjROHv8HRbz+Fo7IZD6+637jvEJneUO0LQRziC+QWFRUhMjLS+L1Go0FjYyMUCgVGjvz548unn34aTz/9tPF7f39/XLhwAS+88AJefPHFTvW+9dZbePLJJyGKInx9feHq6oqzZ89Co9Fg7NixSEpKgqurq0nvJTo6GikpKYiKikJycrJJ6yYiImoniiLeevsdnCtuRpvcCa16BdR+gb1a199g0KP4Qg5s5G2YFDvBpBN7Txz6CgHuCjz+2KMDPiZ6MGptbUV6ejqOHD2OC0Vl0BtEyGUC/Hy9EDdlEsLDwwfF02VLMNT6YsgP9dHr9aiuru50vK2trcPx5ubmXtW7evVqhIWF4Y033sCJEydQWVkJPz8/LF68GM8++6xJxzESERGZkyAIiJsyCac/2oFrYibi7LkcXMjLhKe3f4+G/bQ0N6K8tAB2SgHRUeEmTfqbmxrRWFuCuEV3MOnvho2NDWJjYxETE4OWlhZotVoolUqoVCq+ZmY21PpiyCf+/v7+fdrVr6Cg4KplZs6ciZkzZ/YhKiIiosEtPDwc7i4JqKkqxqTYCThzNhPlRVmwsnGAk4sbVLb2HT4BMBj0aG5qRF1tFXQt9fB0d8a114SaNOkHgPycM/BwHoHx48ebtN7hSBAE2NraDuiGUHTZUOmLIZ/4ExERUe9ZW1tj6pQY7PryvwgIvBYToqNQVlaGwqJiVJfnoU0vQqZQQhDkEMXL6/Qr5AKcHR0wauy18PLyMvnmWs1NjSgrOIPFC66DtbW1SesmIib+REREFuv6669HSloG0k/+gEnXzYePjw+8vb3R2NiIhoYGNDU1wfC/HXTt7OwwYsQI2NvbSzKEQRRFpJ/8AaPVLrj++utNXj8RMfEnIiKyWCqVCktuW4R//OsDXMg7B/8xoRCEyxtxmXIzrp64kJsJQ0slbr//wQHf3ZRouLLY5TyJiIgIGDt2LGZMm4Sc08dwqfbigMRwqfYics4cx4xpkxAcHDwgMRBZAib+REREFm7+/HmIvMYPpw7vR0N9rVnbbqivxanD+xF5jR/mz59n1raJLA0TfyIiIgtnY2OD+++7F9cGeuLkD1+Y7cn/pdqLOPnDF7g20BP333fvoFrvnGg4YuJPREREsLOzw6qVDyIiVI0fD32BgpyzfVouuydEUURBzln8eOgLRISqsWrlgyZfFpSIOuPkXiIiIgJwOflf8eAD2L8/AQcPHUdZUR7CY66DrZ3pNq1sbmpE+skfYGipxIJZkzFv3lw+6ScyEyb+REREZGRjY4PbbrsVYWHjsGPXf3Ds+53w9LsGAYHX9usNQHNTI/JzzqD8wlkE+Djj9vsf5EReIjNj4k9ERESdBAcH4/dPPIbExEQkHf0Rxw5kwN7JB36B18DVzQsKK+VV62jTaXGxqgwXcs6isbYEHs4jcNv86bj++uu5ZCfRAGDiT0RERF1SqVSYN28eZs6ciZ9++glJR44hJ+17nNboYaUaAdsRLhjp5AorKyUEmQyiwQCdTotLtRfR3FANXUsDVNZyBI32RdyiOzB+/HjuyEs0gJj4ExER0RVZW1tj4sSJmDBhAiorK1FSUoKysjJcKCxCcUkWGrRa4w6/1kolgnw84Bc7EV5eXvDx8YG7u7sku/0SUe8w8SciIqIeEQQBHh4e8PDw6HBcFEVj4s8En2jwYuJPRERE/SIIAuRy+UCHQURXwXX8iYiIiIgsABN/IiIiIiILwMSfiIiIiMgCMPEnIiIiIrIATPyJiIiIiCwAE38iIiIiIgvAxJ+IiIiIyAIw8SciIiIisgBM/ImIiIiILAATfyIiIiIiC8DEn4iIiIjIAjDxJyIiIiKyAEz8iYiIiIgsABN/IiIiIiILwMSfiIiIiMgCMPEnIiIiIrIACqkbaGtrQ15eHqqqqiAIAlxdXTF69GgoFJI3TURERERE/yNJ9l1fX4+PP/4Yu3fvxvHjx9HS0tLhvEqlQmxsLBYvXoy77roLDg4OUoRBRERERET/I4iiKJqqsrq6Orz++uv417/+hZaWFoSGhiI2NhZjxoyBi4sLDAYDamtrkZubixMnTiAzMxM2NjZ45JFH8Nxzz8HR0dFUoQxJ0dHRSElJQVRUFJKTkwc6HCIiIiIaRkz6xH/06NFwdHTE2rVrsWzZMvj6+l6xfFFRET755BNs3LgRH3zwAaqrq00ZDhERERER/Y9JE/833ngDd999N+RyeY/K+/r64o9//COeeuopbNu2zZShEBERERHRL5g08b/vvvv6dJ1cLse9995rylCIiIiIiOgXJF3O8+DBg1JWT0REREREPSRp4j9r1izcfPPNyMrKkrIZIiIiIiK6CkkT/w8++ADJyckICwvDY489xsm7REREREQDRNLE/7777kNWVhaeeeYZfPjhhwgMDMTf/vY36HQ6KZslIiIiIqJfkTTxBwBbW1u89NJLyMrKwsKFC/HHP/4RY8eOxc6dO6VumoiIiIiI/kfyxL+dt7c3tmzZgh9//BGjRo3CnXfeibi4OJw4ccJcIRARERERWSyzJf7txo4di5dffhlTp07FsWPHMGXKFCxduhSFhYXmDoWIiIiIyGKYdB3/X9NoNEhNTcWpU6dw6tQp/Pjjj8jKyoLBYIAoinB3d8eECRPw/fffIzQ0FK+99hpWr14tZUhERERERBZJ0sR/xIgR0Ov1EEUR1tbWiIyMxO9+9zvExsZi0qRJ8PPzAwA0NTXhhRdewFNPPYWGhgasXbtWyrCIiIiIiCyOpIm/g4MDVq9ejTlz5iAiIgJWVlZdlrOzs8Pf/vY3GAwGrF+/nok/EREREZGJSTrGv6amBqNHj8bEiRO7Tfp/KSYmBmVlZVKGRERERERkkcw+ufeXvvzyS9x0003G7+fMmYN///vfAxgREREREdHwZPKhPtu3b0dycjJiYmIAAIIgdFv20qVLSEhIMH7v5OSE22+/3dQhERERERFZPJM/8a+rq8O//vUv3HXXXRAEAffddx+io6Px4IMP4p///CeOHj2KpqYmAEBGRgacnJxMHQIREREREf2KyRP/Rx99FPX19Thy5AhEUcSUKVNgZ2eHnTt34ne/+x2mTp2KkSNHwtXVFX/9618xc+ZMk7SbmJiIBQsWwM3NDSqVCiEhIVi7dq3xTUZv1dTUYM2aNYiIiIC9vT2USiV8fHxw2223ITEx0SQxExERERGZiyCKoihV5XPnzsWjjz6K+fPnAwByc3ORmpqK9PR0FBQUwN/fH0899RRGjhzZr3beeecdPP744xBFEWq1Gm5ubjh79iw0Gg1CQ0ORlJQEZ2fnHteXnZ2N6667DqWlpZDJZPD398fIkSORm5uL+vp6AMArr7yC559/vl9x/1p0dDRSUlIQFRWF5ORkk9ZNRERERJZN0sTfHNrnE4iiiPXr12PFihUQBAGlpaVYuHAhkpOTceutt2L37t09rnPmzJk4ePAggoKC8J///AfXXnstAECr1eLVV1/FK6+8AkEQkJqaivDwcJPdCxN/IiIiIpKKSYf6LF68GK+//jrM+V7ilVdegcFgwPLly7Fy5UrjZGJvb298+umnkMlk2LNnD3766ace1dfQ0GAcyvO3v/3NmPQDgFKpxMsvv4yIiAiIooivvvrK9DdERERERCQBkyb+x44dw9q1a6HT6QAA9vb2iIuLwyOPPIJNmzbhxx9/RGtrq8naa2xsxNdffw0AWLlyZafzQUFBmDFjBgBg586dPapTo9EY37iMHj26yzLtx9vvk4iIiIhosDPpcp4lJSWoqqqCUqkEANxxxx1IT0/Hhx9+CI1GA0EQIJPJEBwcjIiICOPX7Nmz+9ReamoqNBoNrK2tjcuH/trUqVNx4MABHD9+vEd1urq6wtfXF0VFRThy5AjGjRvX4XxraytOnToFAIiNje1T3ERERERE5mbydfzd3NyM//7ggw8AAHq9HpmZmUhLSzN+ffvtt/j0008hCAL0en2f2srKygIAjBo1qtudgceMGQMAOH/+fI/r/ctf/oJly5bh6aefhkwmw0033QQHBwdkZmZi7dq1KCwsxG233YYbbrihT3ETEREREZmbyRP/rsjlcowbNw7jxo3Db37zG+Px4uJipKen97nempoaALjiij3t52pra3tc75133okRI0bgpZde6jSEyNXVFe+++y5++9vf9qiuDRs2YOPGjT0qm5mZ2eMYiYiIiIh6Q9LEf9OmTcjPz8frr7/e5Xm1Wg21Wt3n+tvnC7QPLeqKtbU1AKClpaVXdefm5qKmpgaCIMDX1xdOTk7Izc3FxYsXsXHjRkRFRWHy5MlXraesrAwpKSm9apuIiIiIyNQkT/z9/Pw6HHvsscfw/vvvw8fHB+vWrcOtt97a5/ptbGwAXF5mszsajQYAoFKpelzvI488gn/9618IDw9Heno6wsLCAFyezPvGG2/g2WefxYwZM3DkyBFERUVdsS4vL6+rlmmXmZnZ6zcoREREvSGKIrRaLfR6PeRyOZRKpXFFPCIa3iRN/HNzc3HHHXcYvz9+/DjeffddTJw4EcDlyb/Hjx9HdHR0n+p3cnIC8POQn660n2svezU//fQT3nvvPSgUCuzevds4RwAArKys8Mwzz+DcuXPYsmULnn/+eSQkJFyxvlWrVmHVqlU9art9HX8iIiJTqqysREZGBgqLipBfUIxLDY0QRUAQgJEj7BHgr8YoX1+EhYXB3d19oMMlIolImvhrNJoO4+937NgBV1dX/PDDD1AqlZg2bRpee+017Nmzp0/1BwcHAwAKCwuh0+m6nOCbm5vboezVJCUlQRRFBAUFdUj6f2nevHnYsmULTp482ae4iYiIzCErKwuHDh1G+pksNGsF2I50h6PTKHh7OUIuV0Cvb0NjfR1Ssi4i6cdzsP3yW4RfG4zp06chKChooMMnIhOTNPH38/MzJt4AsHfvXixatMg47Ob222/Hm2++2ef6o6KioFQqodFocPLkScTFxXUqc/jwYQDo0Xh84PIGXgCu+LFn+zr/ptyTgIiIyFSam5uxf38CEpNOQrRyREBIPLx9R0Mml3d7jUGvR2lRHpLPZSAlYxNmTI3F/PnzejVUlogGN5Nu4PVrCxcuxIcffoiMjAy8//77KCgowIIFC4znVSoVKisr+1y/vb095syZAwBdrpyTnZ2NgwcPAri8q3BPtH8ykJWVhby8vC7LtG8aNnbs2F7HTEREJKWKigq8+dY7+Orgj/ANmYL4WbdA7R90xaQfAGRyOdT+QYifdQt8Q6Yg4eBJvPH3f6CiosJMkROR1CRN/P/whz/Azs4OERERWLVqFQIDAzFv3jzj+dzcXLi4uPSrjbVr10IQBGzbtg0bN240Po0vKyvD0qVLYTAYsGjRIoSHh3e4Lj4+Hv7+/njrrbc6HJ8zZw48PDzQ1taGxYsX48yZM8ZzOp0Of/3rX7F582YAwD333NOv2ImIiEypoqIC/1q/CUVVWsTdcDv8Rof0euKuIAjwGx2CuNm3o7BKg3+t38Tkn2iYkDTxd3Z2RlpaGjZt2oS//vWv+OGHH6BQ/Dy6aO/evRg/fny/2pg4caJxuNCqVavg5+eHqKgoBAQEIDk5GWPHjsWmTZs6XVdcXIwLFy6grq6uw3FbW1t88sknsLe3R2pqKsLCwuDv74/IyEi4uLjg6aefBgDceuuteOSRR/oVOxERkak0Nzdj0webUV4nYvKMhVDZ2vWrPpWtHabMuBlldQZs+mAzV50jGgYkTfwBwM7ODvfffz+efPJJeHl5GY9XV1cjJiYGS5cu7Xcbq1evxnfffYe5c+eiqakJZ8+ehZ+fH5577jmcOnUKrq6uvapvxowZOH36NFavXo1rrrkGVVVVOH36NFQqFW688UZ8+umn2L17N+RX+diUiIjIXPbvT0BeUQ1ips2DUmltkjqVSmvETpuPvOIa7N9/5VXsiGjwE8T2sTE04NqX84yKikJycvJAh0NERENEVlYW3vrn+/ANmQK/0SEmr/9C3jkUnTuKJx5dwdV+iIYwSVf1qaiowJNPPomTJ09CpVIhJCQEkZGRxi8PDw8pmyciIrIIhw4dhmjliFEB0iw6MSpgLApzz+LQocNM/ImGMEkT/wceeAAJCQmIj4+HtbU1jhw5gl27dhknGnl4eCAyMhL79++XMgwiIqJhq7KyEulnshAQEi/ZDryCIMA/aBzSTh9BZWUlN/kiGqIkTfwPHTqEhx9+GO+++67xWGVlJVJTU5GamoqUlBSkpaVJGQIREdGwlpGRgWatAG/f0ZK24+M7Blk/HUVGRgZmzpwpaVtEJA1JE397e/tOy2i6u7tjzpw5xvX3iYiIqO8Ki4pgO9L9quv095dMLoetgxuKi4slbYeIpCPpqj7z58/nJFUiIiKJiKKI/IJiODr1bvW6vnJ0dkNufhG4LgjR0CRp4v/SSy/h66+/xuHDh6VshoiIyCJptVpcamiEvYOjWdqzd3BEfUMTtFqtWdojItOSNPEPDQ0FAMyaNQuPPPIIDh48iMbGRimbJCIishh6vR6iCMjlko7cNZLJ5DCIIvR6vVnaIyLTkjTxv+WWW+Dk5ARBEPDee+9h9uzZcHR0RHBwMO68806sW7cO3377rZQhEBERDVtyuRyCAOj1bWZpz2DQQyYI3MCSaIiS9BHB5s2bAQBtbW04e/Ys0tLSkJ6ejrS0NBw4cAA7duyAIAh8ckBERNQHSqUSI0fYo7G+ziztNdbXwWGEHZRKpVnaIyLTMstngwqFAuPHj8f48eM7HC8uLkZ6ero5QiAiIhp2BEFAgL8aKVkXzdJeXU0VJoT4SrZfABFJyzyDAruhVquhVqsHMgQiIqIhbZSvL5J+PAeDXi/pkp4GvR7N9VVQqyMka4OIpCXpGH8A2L59O6Kjo+Hg4ABfX1+cOnVK6iaJiIgsRlhYGGyVIkqL8iRtp6QoF7ZKEWFhYZK2Q0TSkTTx37p1K+6++27Y2Nhg2bJlKC0tRX19PYDLO/guXbqU6/wTERH1g7u7O8KvDUZ+doZk6+uLooiC7NOIGDcW7u7ukrRBRNKTNPF/4403cOONN+LIkSN49dVXO/xCcnd3R3l5OdavXy9lCERERMPetGlTIejqUJh/XpL6C/PPQ9DVYdq0qZLUT0TmIWnin52djZtvvhkAupwIFB8fj6SkJClDICIiGvaCg4NxfXwMsn86hpbmJpPW3dLchOyMY5gxNRZBQUEmrZuIzEvSxN/Jyck4tKcro0aNQmlpqZQhEBERWYT58+dhtK8zThzaD61WY5I6tVoNThzaj9FqZ8yfP88kdRLRwJE08Z85cya2b9/e7fmGhgbIZJLPLyYiIhr2bG1tseKBe+HlKMPRg3v7/eS/pbkJRw/uhZejDCseuBcqlcpEkRLRQJE0637uueeQk5ODZcuWdXryL4oiPvvsMwQGBkoZAhERkcXw8PDAww+twCg3axz5bgcu5J3r9YRfURRxIe8cjny3A37u1nj4oRXw8PCQKGIiMidJ1/EPCQnB3r17sWTJEiQkJEAQBHz++edIS0vD7t27cerUKU7uJSIiMiEPDw/8/onHsH9/Ag4ePorC3LPwDxoHH98xV1zn36DXo6QoFwXZpyHo6jBvRizmz5/HJ/1Ew4ggSrX21y+UlpbipZdewq5du1BbWwvg8m6+q1atwj/+8Q/uAPg/0dHRSElJQVRUFJc5JSKifsvOzsahQ4eRdvo8mrUCbB3c4OjsBnsHR8hkchgMejTW16GupgrN9VWwVYqIGDcW06ZN5UReomFI0sR///79iI+Px8iRIwEABoMBRUVFqK+vh5+fHxwcHKRqekhi4k9ERFKorKxERkYGiouLkZtfhPqGJhhEETJBgMMIO4wJ8IVarUZYWBjX6ScaxiQd6rNw4UJs27YNy5YtAwDIZDL4+flJ2SQRERH9iru7O2bOnAng8hh+rVYLvV4PuVwOpVLJT96JLISkk3uv9mHCl19+iZtuuknKEIiIiOgXBEGAtbU1bG1tYW1tzaSfyIKY/In/9u3bkZycjJiYGABdb9zV7tKlS0hISDB1CERERERE9CsmT/zr6urwr3/9C2+//TYEQcB9992Hv/3tb4iMjDR+hYeHw87ODhkZGXBycjJ1CEREREOeKIooLy9HSUkJqqqqoNPpYGVlBTc3N/j4+MDT0xOCIPS4HBGRJJN7NRoNUlJSEBcXh+uuuw5tbW1IT09HQ0MDBEGAIAhwdHREbW0tFi9ejM8++8zUIQxJnNxLRER6vR4pKSlIOnIM2fnFaNUaYGVjD5lMAYOhDbrWRtgoZRjj5w1XFydUV9ch50JJt+WCAtSIj5uMqKgoyK+wnCcRDX+STO61trbG5MmTMWfOHDz66KOYP38+ACA3NxepqalIT09HQUEB/P398dRTT0kRAhER0ZBTWVmJHbt2I+10Luyc1AiOnA1nN08oFFbGMm1tOlzIzcSXX+1CdXUN1AEhiJ8+G2q/0Z3K1VSVIz/7DM589BkifjyF2xffxlV7iCyYWdbxp57hE38iIstVUFCAje9vQVWDiIjYGXBy6TpBryovwQ/f7UWr3go+Y6LQ2NQAO6WA6KhwODo6dnlNzcUKpJ9MhNsIASsfvAf+/v7S3QgRDVqSrupDREREV1dZWYmN72/BJZ0Nps6+tduk/1JdNX74bi/0cgeETVoANy8/+I0ORategeSUdDQ1NXV5nbOrB6bOvhWXdDbY+P4WVFZWSnk7RDRISZr4V1RU4K677kJQUBDGjx+P22+/Hf/3f/+Hr7/+GhUVFVI2TURENCTo9Xrs2LUbVQ0iYqfOhcJK2WU5g16Pk0nfoVVvhZComZD/b1iPTCaH2i8QTVoRZ85mwmAwdHm9wkqJ2KlzUdUgYufuPdDr9ZLdExENTpIm/g888AA+/fRTeHl5wcPDA0eOHMGaNWswf/58eHt7w9vb2zj+n4iIyBKlpKQg7XQuImJndJv0A0B+zlkUl5RizLipxqS/nUwmh6e3P8ora1BWVtZtHQorJcJjrkdqRg5SUlJMdg9ENDRIunPvoUOH8PDDD+Pdd981HqusrERqaipSU1Mv/7JLS5MyBCIiokFLFEUkHTkGOyd1t8N72stlZabD3kmNEY6uXZZR2drDSuWAwqJieHt7d7uEp7OrB+yc1Ug6cgwTJkzgUp9EFkTSxN/e3h7h4eEdjrm7u2POnDmYM2eOlE0TERENeuXl5cjOL0Zw5OwrlqurqUJVVRUCwmZesZyjkxtqKvLQ2NiIESNGdFvOf8w1yEk7gPLycnh5efUpdiIaeiQd6jN//nyuTkNERNSNkpLL6+87u3lesVxtdSXa9CJGOF15KU5bO3u06UU0NDRcsZyLuxdatAaUlpb2OmYiGrokTfxfeuklfP311zh8+LCUzRAREQ1JVVVVsLKx77D+flfqL9VAaeMAufzKH9TLZHLIFMpuV/dpp1BYwcrGnqv7EFkYSRP/0NBQAMCsWbPwyCOP4ODBg2hsbJSySSIioiFDp9NBJrv6qFt9WxuEqyT97QRB3u3KPr8kk1lBp9P1qE4iGh4kTfxvueUWODk5QRAEvPfee5g9ezYcHR0RHByMO++8E+vWrcO3334rZQhERESDlpWVFQyGtquWkysUEPVXLwcAoqiHTHb1P+8Ggw5WVlf+pIGIhhdJJ/du3rwZANDW1oazZ88iLS0N6enpSEtLw4EDB7Bjxw4IgsC1hImIyCK5ublB19qItjbdFYf7OIx0hra1Hnp92xWH+xgMehjatLCzs7tiu21tOuhaG+HufuU5A0Q0vEia+BsbUSgwfvx4jB8/vsPx4uJipKenmyMEIiKiQcfHxwc2Shlqqsrh7uXbbTknF3co5AIaaivh6OrdbbnmpkYo5MIVV/QBgOrKMqiUMnh7d18XEQ0/Jk/8H3nkEURGRiIyMhJhYWFQKrvfjEStVkOtVps6BCIioiHB09MTQQFq5GefuWLi7+jsBjc3N5QXnrti4l9XWwVnRwfY29tfsd2C3LMIDFDD0/PKqwkR0fBi8sT/vffeM24GolAoEBISYnwjEBkZiYiICDg4OJi6WSIioiFHEATEx03GmY8+Q83FCji7enRbLjg0HId++A4NdVUY4ejWqUxLcyN0LfUYNfbaK27KVXOxAk01xYi/+Q5u3kVkYUye+GdlZSEtLc24O29qaiq2bt2KrVu3Gn/BBAQEdHgjMG/ePFOHQURENCRERUUh4sdTSD+ZiKmzb4XCqutPygMCr0Fe9hnknk5C2KQFkP9iToDBoEd5aQE83Z2vOHynTadF+slERIYFIjo62uT3QkSDmyCKoih1I+Xl5R3eCKSmpiI/Px+iKHJy7y9ER0cjJSUFUVFR3PiMiMiCVFZW4q1/vIdLOhvETp3bbfJ/qa4a3+77DHq5A0KiZkKusILBoEfxhRzYyNswKXZCtxN723RanDj8FUZatWL1Y7/lxF4iC2SWxL8r9fX1SE1NRVpaGh5//PGBCGHQYeJPRGS5CgoKsPH9LahqEBEec323w36qykvww3d70aq3gs+YSDQ2NcJOKSA6KhyOjo5dXlNzsQLpJxPhNkLAygfvgb+/v3Q3QkSD1oAl/tQZE38iIstWWVmJnbv3IDUjB3ZOagQEXQtnN88OS322telQkJOJxG92o/piNXxHhyJu2iyo/UZ3KlddWYaC3LNoqilGZFggltx2K5/0E1kwJv6DCBN/IiLS6/VISUlB0pFjyMkvRovWACsbe8hkVjAYLq+/r1LKMNrPG64uTqiurkPuhZJuywUGqBEfNxlRUVGQy+UDfXtENIBMOrl3xowZ/a5DEAR8//33JoiGiIho6JHL5Zg4cSImTJiA8vJylJaWorKyEjrd5Z123d3d4e3tDU9PTwiCAFEUe1SOiMikib/BYOj3Lxd+AEFERHT5QZiXlxe8vLxMUo6IyKSJ/w8//GDK6oiIiIiIyERkAx2AqSQmJmLBggVwc3ODSqVCSEgI1q5di6ampn7Vm5CQgFtvvRXe3t6wtraGh4cH4uLi8Pzzz6Otrc1E0RMRERERSWtYTO5955138Pjjj0MURajVari5ueHs2bPQaDQIDQ1FUlISnJ2de1VnW1sb7rvvPmzfvh0AoFar4eXlherqahQXF0Or1aKhoeGq26L3Bif3EhEREZFUJH/iv337dkRHR8PBwQG+vr44deqUSetPTk7G6tWrAQAbNmxAYWEhUlJSkJeXh+joaGRmZmLFihW9rve3v/0ttm/fjvDwcJw8eRJFRUU4efIkcnNzUVtbi71798La2tqk90JEREREJBVJE/+tW7fi7rvvho2NDZYtW4bS0lLU19cDuLxW8dKlS/v9ZPuVV16BwWDA8uXLsXLlSuPkYm9vb3z66aeQyWTYs2cPfvrppx7XmZiYiPfffx/e3t44ePAgJk6c2OG8ra0tFi5cCCsrq25qICIiIiIaXCRN/N944w3ceOONOHLkCF599dUOK/a4u7ujvLwc69ev73P9jY2N+PrrrwEAK1eu7HQ+KCjIuMTozp07e1zvm2++CQD4wx/+0OshQkREREREg5GkiX92djZuvvlmAOhymc/4+HgkJSX1uf7U1FRoNBpYW1sjJiamyzJTp04FABw/frxHdba2tuKbb74BANx888348ccf8fDDD2P27NlYuHAhXn75ZRQXF/c5ZiIiIiKigWDS5Tx/zcnJyTi0pyujRo1CaWlpn+vPysoy1tPdsJsxY8YAAM6fP9+jOtPT06HT6WBnZ4ddu3bhmWeegcFgMJ7ft28f/vznP2PLli1YsmRJn2MnIiIiIjInSRP/mTNnYvv27fjDH/7Q5fmGhgbIZH3/0KGmpgYArjgcp/1cbW1tj+osKysDAGg0Gjz99NOIj4/H22+/jXHjxuHChQtYs2YNdu7cid/85jcIDg5GeHj4FevbsGEDNm7c2KO2MzMze1SOiIiIiKi3JE38n3vuOURHR2PZsmV47bXXOpwTRRGfffYZAgMD+1x/a2srAECpVHZbpn3lnZaWlh7V2djYCODycp6urq5ISEjAiBEjAFyeM/Dvf/8b2dnZSEtLw2uvvYYdO3Zcsb6ysjKkpKT0qG0iIiIiIqlImviHhIRg7969WLJkCRISEiAIAj7//HOkpaVh9+7dOHXqVL8m99rY2AAAtFptt2U0Gg0AQKVS9apO4PKE4fakv51MJsMTTzyBe+65B9988w0MBsMVP7Xw8vJCVFRUj9rOzMzs8RsUIiIiIqLekDTxNxgMmDVrFs6cOYOXXnoJu3btwrvvvnu5YYUCDz/8MB588ME+1+/k5ATg5yE/XWk/1162p3UCQGhoaJdl2o/X19ejpqYGrq6u3da3atUqrFq1qkdtt2/gRURERERkapKt6tPW1gZ7e3v885//hLe3NzZs2ICqqirk5+cjPT0dFy9exDvvvNPlaj89FRwcDAAoLCyETqfrskxubm6HslcTEhJi/Pcvn/7/0i+P6/X6HtVLRERERDSQJEv8FQoFbG1tO6y2I5PJ4Ofnh7CwMDg4OPS7jaioKCiVSmg0Gpw8ebLLMocPHwYATJ48uUd1+vj4wM/PD8DPbxp+rf24tbU1XFxcehs2EREREZHZSbqO/w033ICjR49KVr+9vT3mzJkDAF2unJOdnY2DBw8CABYvXtzjeu+44w4AwJYtWzos5dnuww8/BABMnz4dCoWko6WIiIiIiExC0sT/1Vdfxbfffov//Oc/krWxdu1aCIKAbdu2YePGjcbdgcvKyrB06VIYDAYsWrSo07Kb8fHx8Pf3x1tvvdWpzqeeegojR45EZmYmnnjiCePkYVEU8fbbb2Pfvn0QBAHPPvusZPdFRERERGRKkib+YWFhEEURixcvxm9+8xskJCSgoaHBpG1MnDgRb775JoDLE2n9/PwQFRWFgIAAJCcnY+zYsdi0aVOn64qLi3HhwgXU1dV1Oufm5oZdu3ZBpVLhH//4Bzw9PREbGwtvb2+sXr0agiDgL3/5C6677jqT3gsRERERkVQkTfzvvPNO+Pj4QKlU4pNPPsFNN90EJycnBAcH44477sC6devw7bff9rud1atX47vvvsPcuXPR1NSEs2fPws/PD8899xxOnTp1xVV3ujNr1iykp6fj3nvvhZ2dHVJTU9HW1oaFCxciMTERTz31VL/jJiIiIiIyF0FsHxsjIb1ej8zMTKSlpRm/0tPTUV1dDUEQuDLO/7Qv5xkVFYXk5OSBDoeIiIiIhhGzzEyVy+UYN24cxo0bh9/85jfG48XFxUhPTzdHCEREREREFm1Al6RRq9VQq9UDGQIRERERkUWQdIw/ACQmJmLOnDkICAjAuHHjsGzZMuzYsYPDe4iIiIiIzEjSxP+rr77C7NmzceLECajVajg7O+O7777DnXfeiYiICOTn50vZPBERERER/Y+kif+f/vQnhIeHo6CgAIcPH8ahQ4dQWVmJzz//HPX19Zg2bRpqamqkDIGIiIiIiCBx4n/69Gncf//9cHR0NB4TBAELFy7EsWPHoNPp8PLLL0sZAhERERERQeLE38HBodux/N7e3li1ahW++OILKUMgIiIiIiJInPhPmzYN27dvh8Fg6PK8r68vSktLpQyBiIiIiIggceL/3HPPIT09HXfeeSeqq6s7nU9MTISnp6eUIRARERERESRexz8yMhLbt2/H8uXL8eWXX2LBggUIDQ2FtbU1kpKS8M033+DFF1+UMgQiIuoDURSh1Wqh1+shl8uhVCohCMJAh0VERP0g+QZeS5YswTXXXIPXXnsN+/btw65duwAAKpUKa9euxZo1a6QOgYiIeqCyshIZGRkoLCpCfkExLjU0QhQBQQBGjrBHgL8ao3x9ERYWBnd394EOl4iIekkQRVE0V2N6vR55eXkQBAEBAQGQy+XmanpIiI6ORkpKCqKiopCcnDzQ4RCRhcjKysKhQ4eRfiYLzVoBtiPd4ejkCnsHR8jlCuj1bWisr0Nd7UU0X6qErVJE+LXBmD59GoKCggY6fCIi6iGTP/Ffs2YNIiMjERkZiTFjxnQ4J5fL+UeCiGiQaG5uxv79CUhMOgnRyhEBIfHw9h0N2RUeyhj0epQW5SH5XAZSMjZhxtRYzJ8/DyqVyoyRExFRX5j8ib9MJjOOAx0xYgTCw8ONbwQiIyNxzTXXQKGQfITRkMQn/kRkLhUVFdj0wWbkFdUgaPxkjAoY26sx/KIoojD/PLIzjmG02hkrHrgXHh4eEkZMRET9JUkGbm1tjblz56K5uRmpqak4fPgwgMubdymVSlx77bXGNwIRERGYMmWKFGEQEVEXKioq8K/1m1BeJyLuhtuhsrXrdR2CIMBvdAjcPX1x4tB+/Gv9Jjz80Aom/0REg5jJl/PcvXs3fH198eWXX2Ls2LHIzMxESUkJ9u3bh5dffhkLFixAXV0dPvzwQzz66KOYOnWqqUMgIqJuNDc3Y9MHm1FeJ2LyjIV9Svp/SWVrhykzbkZZnQGbPtiMlpYWE0VKRESmZvLE/5ZbbsGZM2fw5z//Gdu2bUNgYCB27tyJOXPmYM2aNdi5cydycnJQW1uLxMREvPnmm6YOgYiIurF/fwLyimoQM20elEprk9SpVFojdtp85BXXYP/+BJPUOdSJoojm5mbU1dWhubkZZlxHQ1LD9b6ILIWkq/rU1tbixRdfxPr16+Hv74+//vWvWLhwoVTNDXkc409EUsrKysJb/3wfviFT4Dc6xOT1X8g7h6JzR/HEoyssdiGH1tZWpKWl4eixE7hQVAa9QYRcJsDP1wtTJsciIiICNjY2Ax1mrw3X+yKyNGZZzjMrKwtPPfUUvvzyS1x33XX4+9//jvDwcKmbHXKY+BORlN5//wMkn6tA/KxbJNmMSxRFJB34DyaEeuKBB+43ef2DXU5ODrZs+wSllfUY4eoLb/VoKK1toNW0orQ4Dw0Xi+Dt7oB7li9DYGDgQIfbY8P1vogskcmH+nQlODgYX3zxBQ4ePIja2lpER0djy5Yt5miaiIhweXOu9DNZCAgKk2wHXkEQ4B80Dmmnz6OyslKSNgarnJwcvLfxI9RpbRE3Zyli4udA7R8Edy9fqP2DEBM/B3FzlqJOa4v3Nn6EnJycgQ65R4brfRFZKkkT//z8fHz55Zf485//jOXLl+PJJ5/EuXPnYDAYcOHCBSmbJiKiX8jIyECzVoC372hJ2/HxHYNmrYCMjAxJ2xlMWltbsWXbJ9DKnRA7bR5sVF1PmLZR2SF22jxo5U7Ysu0TtLa2mjnS3hmu90VkyUy+nOd9992HM2fOIDMz0zjxx97eHmFhYYiNjcXKlSsxfvx4DvUhIjKjwqIi2I50v+LmXKYgk8th6+CG4uJiSdsZTNLS0lBaWY+4OfMhk135eZpMJkNEzPU4+u2nSE9PR2xsrJmi7L3hel9Elszkif+WLVtga2uLm2++GbfddhvCw8M77eBLRETmI4oi8guK4eg0yiztOTq7ITe/EKIoSjasaLAQRRFHj53ACFffbp+I/5rK1g72Lr44cvQ4YmJiBuVrNFzvi8jSSbKBV3NzM/7973/jyy+/7LBzb3h4OMaNGwcrKyspmiUioi5otVpcamiEt5ejWdqzd3BEWXkmtFotrK1Ns2ToYNXS0oILRWXwGRvXq+t8fEfjwvkjaGlpga2trUTR9d1wvS8iS2fyxD8rKwtpaWlITU01fiUlJQG4PPFLoVDgmmuuQUREhHHn3mnTppk6DCIi+h+9Xg9RBORySZ71dCKTyWEQRej1erO0N5C0Wi30BhFK694tZWmltIbeIEKr1Q7KBHm43heRpTP5X4HAwEAEBgZi8eLFxmPl5eUd3gikpqZi69at2LJlCwRBsIg/DkREA0Uul0MQAL2+zSztGQx6yAQBconnEwwGSqUScpkAraZ3E1p1Wg3kMgFKpVKiyPpnuN4XkaUzy+MfT09PzJ07F3PnzjUeq6+vR2pqKtLS0swRAhGRxVIqlRg5wh6N9XVmaa+xvg4OI+wsIvlTqVTw8/VCYXEe1P4937SspCgPfr5eUKlUEkbXd8P1vogsnVnW8e+Kg4MDpk+fjscff3ygQiAisgiCICDAX4262otmaa+upgpjAnwtYnKnIAiYMjkWDReL0NrS1KNrWpqb0FhdhLgpkwbtazRc74vI0g1Y4k9EROYzytcXzZcqYZB4aKVBr0dzfRXUarWk7QwmERER8HZ3QOqJRBgMhiuWNRgMSDuZCG93h0G/rPVwvS8iS8bEn4jIAoSFhcFWKaK0KE/SdkqKcmGrFBEWFiZpO4OJjY0N7lm+DEp9LU4cSkBLc9dPyFuam3DiUAKU+lrce/ddsLHp3cRZcxuu90VkycyzxAMREQ0od3d3hF8bjORzGfDxC5RkKIYoiijIPo0J48bC3d3d5PUPZoGBgfjtyvuwZdsnOPrtp7B38YWP72hYKa2h02pQUpSHxuoieLs74N677x8y+9sM1/sislSCKIriQAdBl0VHRyMlJQVRUVFITk4e6HCIaJjJysrCW/98H74hU+A3OsTk9V/IO4eic0fxxKMrEBTU8wmhw0lrayvS09Nx5OhxXCgqg94gQi4T4OfrhbgpkxAeHj4kn4gP1/sisjSSP/Gvq6tDVFQUPv74Y0yePBkXL15ETEyM8XsiIjKP4OBgXB8fg68OHoO7py9Utj3bkbUnWpqbkJ1xDPNmxFps0g9cHh4TGxuLmJgYtLS0QKvVQqlUQqVSDekJr8P1vogsjeRj/PV6PQoKCtDS0tLl90REZD7z58/DaF9nnDi0H1qtxiR1arUanDi0H6PVzpg/f55J6hzqBEGAra0tHB0dYWtrO2yS4+F6X0SWgpN7iYgsiK2tLVY8cC+8HGU4enBvtxM2e6qluQlHD+6Fl6MMKx64l+u3ExENYkz8iYgsjIeHBx5+aAVGuVnjyHc7cCHvHHo73UsURVzIO4cj3+2An7s1Hn5oBTw8PCSKmIiITIGr+hARWSAPDw/8/onHsH9/Ag4ePorC3LPwDxoHH98xkMnl3V5n0OtRUpSLguzTEHR1mDcjFvPnz+OTfiKiIYCJPxGRhVKpVFi8+DaEh4/HoUOHkXb6CLJ+OgpbBzc4OrvB3sERMpkcBoMejfV1qKupQnN9FWyVIiaMG4tp05ZY9EReIqKhhok/EZGFCwoKQlBQECorK5GRkYHi4mLk5heirDwTBlGETBDgMMIOE0J8oVZHICwszOLW6SciGg6Y+BMREYDLm3zNnDkTwOUx/FqtFnq9HnK5HEqlkiu4EBENcUz8iYioE0EQYG1tPdBhEBGRCXFVHyIiIiIiC8DEn4iIiIjIAkg+1MfZ2Rn5+fnw9PQEALi5uXX4noiIiIiIpCd54i8IAvz8/Izfy2SyDt8TEREREZH0ONSHiIiIiMgCMPEnIiIiIrIATPyJiIiIiCwAE38iIiIiIgsgeeK/fft2REdHw8HBAb6+vjh16pTUTRIRERER0a9Imvhv3boVd999N2xsbLBs2TKUlpaivr4eAFBZWYmlS5ciOTnZJG0lJiZiwYIFcHNzg0qlQkhICNauXYumpiaT1J+QkABBECAIAvz9/U1SJxERERGRuUia+L/xxhu48cYbceTIEbz66qsQRdF4zt3dHeXl5Vi/fn2/23nnnXcwc+ZM7N+/HzY2NggNDUVBQQFeffVVTJw4ETU1Nf2qv6GhAQ899FC/4yQiIiIiGiiSJv7Z2dm4+eabAVxez//X4uPjkZSU1K82kpOTsXr1agDAhg0bUFhYiJSUFOTl5SE6OhqZmZlYsWJFv9r44x//iKKiIixatKhf9RARERERDRRJE38nJyfj0J6ujBo1CqWlpf1q45VXXoHBYMDy5cuxcuVK4xsMb29vfPrpp5DJZNizZw9++umnPtWflJSE9evX45ZbbjG+iSEiIiIiGmokTfxnzpyJ7du3d3u+oaEBMlnfQ2hsbMTXX38NAFi5cmWn80FBQZgxYwYAYOfOnb2uv7W1FQ8++CDs7e3xzjvv9DlOIiIiIqKBJmni/9xzzyEnJwfLli3r9ORfFEV89tlnCAwM7HP9qamp0Gg0sLa2RkxMTJdlpk6dCgA4fvx4r+t/+eWXcf78ebz++uvw8fHpc5xERERERANNIWXlISEh2Lt3L5YsWWJcFefzzz9HWloadu/ejVOnTvVrcm9WVhaAy0OGrKysuiwzZswYAMD58+d7VXdaWhr++te/IiYmBg8//HCfYyQiIiIiGgwkTfwBYNasWThz5gxeeukl7Nq1C+++++7lhhUKPPzww3jwwQf7XHf7aj3Ozs7dlmk/V1tb2+N69Xo9HnjgAQDAxo0b+zUcacOGDdi4cWOPymZmZva5HSIiIiKiK5E88QcuT7TdsGED3nvvPRQVFaG+vh5+fn5wcHDoV72tra0AAKVS2W0Za2trAEBLS0uP6/3b3/6GlJQUPP300wgPD+9XjGVlZUhJSelXHURERERE/SVp4r9p0ybk5+fj9ddfBwDIZDL4+fmZrH4bGxsAgFar7baMRqMBAKhUqh7VmZ2djRdffBEBAQF44YUX+h2jl5cXoqKielQ2MzOzV29QiIiIiIh6SvLE/9eJ/mOPPYb3338fPj4+WLduHW699dY+1+/k5AQAV9ygq/1ce9mreeihh9Da2or33nsPtra2fY6t3apVq7Bq1aoelY2OjuanA0REREQkCUkT/9zcXNxxxx3G748fP453330XEydOBADccccdOH78OKKjo/tUf3BwMACgsLAQOp2uywm+ubm5HcpeTXJyMgRBwD333NPpXPvT+KKiInh6egIA9uzZgylTpvQpfiIiIiIic5E08ddoNB0m3u7YsQOurq744YcfoFQqMW3aNLz22mvYs2dPn+qPioqCUqmERqPByZMnERcX16nM4cOHAQCTJ0/ucb2iKKKioqLb8waDwXj+SsOMiIiIiIgGC0nX8ffz8zM+cQeAvXv3YtGiRVCpVJDL5bj99tuRnJzc5/rt7e0xZ84cAOhy5Zzs7GwcPHgQALB48eIe1VlXVwdRFLv8+uijj4z31X7suuuu63P8RERERETmImniv3DhQnz44YfIyMjA+++/j4KCAixYsMB4XqVSobKysl9trF27FoIgYNu2bdi4cSNEUQRweTWdpUuXwmAwYNGiRZ1W54mPj4e/vz/eeuutfrVPRERERDQUSJr4/+EPf4CdnR0iIiKwatUqBAYGYt68ecbzubm5cHFx6VcbEydOxJtvvgng8kRaPz8/REVFISAgAMnJyRg7diw2bdrU6bri4mJcuHABdXV1/WqfiIiIiGgokHSMv7OzM9LS0vDZZ5+hrq4OS5cuhULxc5N79+7F+PHj+93O6tWrERYWhjfeeAMnTpxAZWUl/Pz8sHjxYjz77LOwt7fvdxtEREREREOZILaPjTGz6upqPPHEE5g9ezaWL18+ECEMOu3LeUZFRfVr7gMRERER0a+ZZeferri4uGDr1q0D1TwRERERkUWRNPGvqKjAk08+iZMnT0KlUiEkJASRkZHGLw8PDymbJyKiIUIURZSXl6OkpARVVVXGvVnc3Nzg4+MDT09PCIIw0GESEQ1pkib+DzzwABISEhAfHw9ra2scOXIEu3btMv7y9vDwQGRkJPbv3y9lGERENEjp9XqkpKQg6cgxZOcXo1VrgJWNPWQyBQyGNuhaG2GjlCEoQI34uMmIioqCXC4f6LCJiIYkSRP/Q4cO4eGHH8a7775rPFZZWYnU1FSkpqYiJSUFaWlpUoZARESDVGVlJXbs2o2007mwc1IjOHI2nN08oVD8vAt7W5sONVXlyM8+gzMffYaIH0/h9sW3wd3dfQAjJyIamiRN/O3t7Tutn+/u7o45c+YYN94iIiLLU1BQgI3vb0FVg4jI+IVwcuk6kVcorODu5Qt3L1/UXKxA+slElP7jPax88B74+/ubN2gioiFO0nX858+fz9VpiIiog8rKSmx8fwsu6Wwwdfat3Sb9v+bs6oGps2/FJZ0NNr6/pd8bQBIRWRpJE/+XXnoJX3/9NQ4fPixlM0RENETo9Xrs2LUbVQ0iYqfOhcJK2avrFVZKxE6di6oGETt374Fer5coUiKi4UfSxD80NBQAMGvWLDzyyCM4ePAgGhsbpWySiIgGsZSUFKSdzkVE7IxeJ/3tFFZKhMdcj9SMHKSkpJg4QiKi4UvSxP+WW26Bk5MTBEHAe++9h9mzZ8PR0RHBwcG48847sW7dOnz77bdShkBERIOEKIpIOnIMdk7qHg/v6Y6zqwfsnNVIOnIMA7QPJRHRkCPp5N7NmzcDANra2nD27FmkpaUhPT0daWlpOHDgAHbs2AFBEPhRLRGRBSgvL0d2fjGCI2ebpD7/MdcgJ+0AysvL4eXlZZI6iYiGM7Ps3KtQKDB+/HiMHz++w/Hi4mKkp6ebIwQiIhpgJSUlaNUa4OzmaZL6XNy9kKE1oLS0lIk/EVEPmCXx745arYZarR7IEIiIyEyqqqpgZWPfYZ3+/lAorGBlY8/VfYiIekjSMf4AkJiYiDlz5iAgIADjxo3DsmXLsGPHDg7vISKyMDqdDjKZaZ83yWRW0Ol0Jq2TiGi4kjTx/+qrrzB79mycOHECarUazs7O+O6773DnnXciIiIC+fn5UjZPRESDiJWVFQyGNpPWaTDoYGVlmk8QiIiGO0kT/z/96U8IDw9HQUEBDh8+jEOHDqGyshKff/456uvrMW3aNNTU1EgZAhERDRJubm7QtTairc00T+jb2nTQtTbC3b1/KwQREVkKSRP/06dP4/7774ejo6PxmCAIWLhwIY4dOwadToeXX35ZyhCIiGiQ8PHxgY1ShpqqcpPUV11ZBpVSBm9vb5PUR0Q03Ema+Ds4OHQ7lt/b2xurVq3CF198IWUIREQ0SHh6eiIoQI387DMmqa8g9ywCA9Tw9DTNKkFERMOdpIn/tGnTsH37dhgMhi7P+/r6orS0VMoQiIhokBAEAfFxk9FUW4yaixX9qqvmYgWaaooRHzcZgiCYKEIiouFN0sT/ueeeQ3p6Ou68805UV1d3Op+YmMgnNUREFiQqKgoR48Yg/WQi2nTaPtXRptMi/WQiIsMCER0dbeIIiYiGL0nX8Y+MjMT27duxfPlyfPnll1iwYAFCQ0NhbW2NpKQkfPPNN3jxxRelDIGIiAYRuVyO2xffhtJ/vIcTh79C7NS5UFgpe3x9m06LE4e/gtsIAUtuuxUymeSrUhMRDRuCKIqi1I2cOXMGr732Gvbt24empiYAgEqlwh/+8Af86U9/4i/u/4mOjkZKSgqioqKQnJw80OEQEUmmoKAAG9/fgqoGEeEx18PZ1eOq19RcrED6yUS4jRCw8sF74O/vL32gRETDiFkS/3Z6vR55eXkQBAEBAQGQy+XmanpIYOJPRJaksrISO3fvQWpGDuyc1AgIuhbObp4ddvZta9OhurIMBbln0VRTjMiwQCy57VYu4UlE1AeSDvVpl5eXhwsXLsDe3h6hoaGwt7c3R7NERDSIubu746GVK5CSkoKkI8eQnfodWrQGWNnYQyazgsFweZ1+lVKGwAA14m++A1FRUXxoRETUR5Im/mVlZbjjjjtw5MiRnxtUKHDjjTfi5ZdfRnh4uJTNExHRICeXyzFx4kRMmDAB5eXlKC0tRWVlJXS6yzvyuru7w9vbG56enly9h4ionyRN/B9++GEkJSVh+fLluP766yGKIk6ePIlPPvkEMTExePvtt/HQQw9JGQIREQ0BgiDAy8sLXl5eAx0KEdGwJekYfycnJyxZsgQbN27scLy2thbPPvssNm3ahC+++ALz58+XKoQhhWP8iYiIiEgqki6nIwgCYmNjOx13cnLC+vXrMXPmTLz66qtShkBERL8giiI0Gg2am5uh0WhgxvUdiIhogEk61Gfy5Mk4ceIEHnjggS7P33bbbXjiiSekDIGIyOJVVlYiIyMDhUVFyC8oxqWGRogiIAjAyBH2CPBXY5SvL8LCwrhaDhHRMCZp4r9mzRrMmzcPc+fOxS233NLpfHV1NZydnaUMgYjIYmVlZeHQocNIP5OFZq0A25HucHQaBW8vR8jlCuj1bWisr0NK1kUk/XgOtl9+i/BrgzF9+jQEBQUNdPhERGRikib+M2bMgLW1NRYvXowlS5bg/vvvR1RUFBQKBQ4dOoQ333wTjz/+uJQhEBFZnObmZuzfn4DEpJMQrRwREBIPb9/RkF1hGUyDXo/Sojwkn8tASsYmzJgai/nz50GlUpkxciIikpKkif+DDz6IjIwM/PTTT9ixYwd27tzZ4XxERAQmTJiA4uJiqNVqKUMhIrIIFRUV2PTBZuQV1SBo/BSMChjbo2UwZXI51P5B8PELRGH+eSQcPIZzWTlY8cC98PC4+q66REQ0+Jlt594LFy4gPT29w1deXp7xvIODA6699lqEhYXhvffeM0dIgw5X9SGi/qioqMC/1m9CeZ2ImGnzoLK163NdLc1NOHFoP7wcZXj4oRVM/omIhgGzJf5daWpqQkZGRoc3A6dPn8alS5cGKqQBxcSfiPqqubkZb771DoqqtJg8YyGUSut+16nVanD04F6McrPG7594jMN+iIiGOEmH+mzatAn5+fl4/fXXuzxvZ2eHSZMmYdKkSVKGQUQ07O3fn4C8ohrE3XC7SZJ+AFAqrRE7bT6OfLcD+/cnYPHi20xSLxERDQxJ1/HftGkTsrOzOxx77LHHYGtri6CgIOzZs0fK5omILEJWVhYSk04iaPzkfg3v6YrK1g5BYZNx8PCJTr/PiYhoaJE08c/Nze3wNP/48eN49913ERYWBmdnZ9xxxx0c0kJE1E+HDh2GaOWIUQFjJal/VMBYiFaOOHTosCT1ExGReUia+Gs0mg7r9O/YsQOurq744YcfcPToUcTExOC1116TMgQiomGtsrIS6WeyEBAU1qPVe/pCEAT4B41D2unzqKyslKQNIiKSnqSJv5+fH3Jzc43f7927F4sWLYJKpYJcLsftt9/OJ/5ERP2QkZGBZq0Ab9/Rkrbj4zsGzVoBGRkZkrZDRETSkXRy78KFC/Hhhx/ijjvuwIkTJ1BQUIAFCxYYz6tUKj49IiLqh8KiItiOdL/i5lymIJPLYevghuLiYknbISIi6Uia+P/hD3/Arl27EBERAQAIDAzEvHnzjOdzc3Ph4uIiZQhERMOWKIrILyiGo9Mos7Tn6OyG3PxCiKIo2bAiIiKSjqSJv7OzM9LS0vDZZ5+hrq4OS5cuhULxc5N79+7F+PHjpQyBiGjY0mq1uNTQCG8vR7O0Z+/giLLyTGi1Wlhbm2bJUCIiMh9JE3/g8lr9999/f6fj1dXViImJwezZs6UOgYhoWNLr9RBFQC6X/Fc5AEAmk8MgitDr9WZpj4iITMs8fy264OLigq1btw5U80REQ55cLocgAHp9m1naMxj0kAkC5BLPJyAiImlIuqoPAGzfvh3R0dFwcHCAr68vTp06JXWTREQWQalUYuQIezTW15mlvcb6OjiMsINSqTRLe0REZFqSJv5bt27F3XffDRsbGyxbtgylpaWor68HcHnt6aVLl3I5TyKiPhIEAQH+atTVXjRLe3U1VRgT4MuJvUREQ5Skif8bb7yBG2+8EUeOHMGrr74KURSN59zd3VFeXo7169dLGQIR0bA2ytcXzZcqYZB43L1Br0dzfRXUarWk7RARkXQkTfyzs7Nx8803A0CXT4ji4+ORlJQkZQhERMNaWFgYbJUiSovyJG2npCgXtkoRYWFhkrZDRETSkTTxd3JyMg7t6cqoUaNQWloqZQhERMOau7s7wq8NRn52RodPVU1JFEUUZJ9GxLixcHd3l6QNIiKSnqSJ/8yZM7F9+/Zuzzc0NEAmk3x+MRHRsDZt2lQIujoU5p+XpP7C/PMQdHWYNm2qJPUTEZF5SJp1P/fcc8jJycGyZcs6PfkXRRGfffYZAgMDpQyBiGjYCw4OxvXxMcj+6RhamptMWndLcxOyM45hxtRYBAUFmbRuIiIyL0kT/5CQEOzduxdfffUVIiMjIQgCPv/8c7z55puIj4/HqVOnsHLlSpO0lZiYiAULFsDNzQ0qlQohISFYu3Ytmpp690dQFEUcPXoUzzzzDOLj4+Hi4gIrKyu4ubnhhhtuwMcffyzZx+lERH01f/48jPZ1xolD+6HVakxSp1arwYlD+zFa7Yz58+eZpE4iIho4gmiGLLa0tBQvvfQSdu3ahdraWgCAQqHAqlWr8I9//KPfS8O98847ePzxxyGKItRqNdzc3HD27FloNBqEhoYiKSkJzs7OParr+++/x6xZs4zfjx49Gk5OTsjPz0dNTQ0AYP78+di9e7fJt6yPjo5GSkoKoqKiuMwpEfVaRUUF/rV+E8rqDIidNh8qW7s+19XS3IQTh/bDy1GGhx9aAQ8PDxNGSkREA8EsA+y9vb2xYcMGVFVVIT8/H+np6bh48SLeeeedfif9ycnJWL16NQBgw4YNKCwsREpKCvLy8hAdHY3MzEysWLGix/WJooiAgAC8/fbbqKioQG5uLk6dOoXq6mps3boV1tbW2L9/P1544YV+xU1EZGoeHh54+KEVGOVmjSPf7cCFvHO9/oRSFEVcyDuHI9/tgJ+7NZN+IqJhxCxP/KW0aNEi7N27F3fffTe2bNnS4Vx2djZCQkJgMBiQnp6O8ePHX7W++vp6qFQqWFlZdXn+9ddfx5o1a+Ds7IyqqiqTTk7mE38iMoWWlhbs35+Ag4dPQLRyhH/QOPj4joFMLu/2GoNej5KiXBRkn4agq8OMqbGYP38eVCqVGSMnIiIpSZL4V1ZW4quvvkJdXR0mTZqE2NjYLssZDAYcPnwY06dP71M7jY2NcHV1hUajQVJSEuLi4jqVmT17Ng4cOIDnn38er7zySp/a+aXU1FRERUUBAMrLy036JIyJPxGZUnZ2Ng4dOoy00+fRrBVg6+AGR2c32Ds4QiaTw2DQo7G+DnU1VWiur4KtUkTEuLGYNm0qJ/ISEQ1DClNX+NNPP2HWrFmorq6GKIoQBAHLly/H5s2bAQDNzc3Yv3+/cdJvXV0d9H3ccTI1NRUajQbW1taIiYnpsszUqVNx4MABHD9+vK+31EFra6vx33wSRkSDWVBQEIKCglBZWYmMjAwUFxcjN78QZeWZMIgiZIIAhxF2mBDiC7U6AmFhYVynn4hoGDN54r9mzRo0NDRgzZo1CAgIwP79+7Ft2zZMnjwZpaWl+Pvf/46mpiaIoojQ0FDcd999fW4rKysLwOWNwLobmjNmzBgAwPnzplnf+tNPPwUAhIeHw8HBwSR1EhFJyd3dHTNnzgRweQy/VquFXq+HXC6HUqns91wrIiIaGkye+P/444/43e9+h5dffhkAcN9992HFihV4/vnnUVNTg8jISNx3331YsGAB/Pz8+tVW+yo7V1qxp/1c+2pC/ZGSkoL169cDAJ555pkeXbNhwwZs3LixR2UzMzP7HBsRUU8IgmDyFcmIiGhoMHniX1lZibCwsA7HHnnkEXzwwQf4zW9+g61bt5qsrfZhN0qlstsy7X/gWlpa+tVWRUUFbrnlFuh0Otxyyy248847e3RdWVkZUlJS+tU2EREREVF/mTzxBwD5r1aOUKvVAIAlS5aYtB0bGxsAgFar7baMRnN5I5v+jMe/dOkS5s6di8LCQkRHRxvnK/SEl5eXcTLw1WRmZvb7DQoRERERUVckSfxPnDiBsLAwXHPNNZDL5cbxo3Z2fd9MpitOTk4Afh7y05X2c+1le6uxsRE33ngjUlNTce211+Kbb77p1dj+VatWYdWqVT0q276qDxERERGRqUmS+L/zzjt49913oVQqMW7cOIwdOxaCICA/P9+4Co8pBAcHAwAKCwuh0+m6nOCbm5vboWxvNDc3Y/78+Th+/DiCg4Nx4MABuLi49C9oIiIiIqIBYPLEPysrC2lpaUhNTTV+ta9Jv3LlSvz2t79FUFAQwsPDER4ejvHjx2Pu3Ll9aisqKgpKpRIajQYnT57sch3/w4cPAwAmT57cq7pbW1tx880349ChQ/D398f3338PT0/PPsVJRERERDTQzLJzb3l5eYc3AqmpqcjPzzeu89/XdfwBYOHChdi3b99Vd+5NS0tDeHh4j+rU6XRYtGgREhISoFarcejQIQQEBPQ5xp7iBl5EREREJBVJhvr8mqenJ+bOndvhyX59fT1SU1ORlpbWr7rXrl2LL7/8Etu2bUNcXBxWrFgBQRBQVlaGpUuXwmAwYNGiRZ2S/vj4eBQXF2P16tVYvXq18bher8ddd92FhIQEeHp64uDBg2ZJ+omIiIiIpGSWJ/5Se+utt/Dkk09CFEX4+vrC1dUVZ8+ehUajwdixY5GUlARXV9cO1/j7++PChQt44YUX8OKLLxqPf/rpp1i2bJmxjI+PT7ftvvPOO4iMjDTZffCJPxERERFJxaRP/M+dO4eQkJA+XZuZmYnQ0NA+Xbt69WqEhYXhjTfewIkTJ1BZWQk/Pz8sXrwYzz77LOzt7XtcV/vynwBQUFCAgoKCbsteunSpT/ESEREREZmbSZ/4KxQK3H777fjd737X48m0hw8fxjvvvIP//Oc/0Ol0pgplSOITfyIiIiKSikmf+B86dAhPP/004uLi4O/vjxtvvBETJ07E6NGj4eTkBFEUUVtbi5ycHJw8eRLffvstioqKMGnSJPz3v/81ZShERERERPQLkozx/+GHH7Bhwwbs27cPzc3Nxg282omiCFtbW9x0001YtWoVrrvuOlOHMCTxiT8RERERSUWSVX2uu+46XHfddWhra0NycjIyMzNRVVUFAHBzc0NoaCiio6OhUJhlUSEiIiIiIosnaeatUCgQGxuL2NhYKZshIiIiIqKr6HPibzAYcO7cOdTX18PZ2RnBwcGmjIuIiIiIiExI1tsLdDod/vjHP8LZ2RlhYWGIi4tDaGgo3Nzc8Nprr2EYbAtARERERDTs9PqJ/6JFi/D11193SvCrq6vxpz/9CdnZ2di8ebOp4iMiIiIiIhPoVeK/c+dOfPXVVwCAwMBALFmyBGq1GgUFBfj4449RWlqKbdu24b777sP06dMlCZiIiIiIiHqvV4n/9u3bAQA33HAD9u7dC2tra+O5NWvWYMaMGUhNTcXHH3/MxJ+IiIiIaBDp1Rj/lJQUCIKAv//97x2SfgBwcHDAunXrIIoiUlNTTRokERERERH1T68S/4sXL8LGxgahoaFdnp8wYYKxHBERERERDR69Svw1Gg1GjhzZ7fn2cxqNpn9RERERERGRSfV6OU8iIiIiIhp6mPgTEREREVmAXq/jX1FRAblc3u15QRCuWEYQBLS1tfW2WSIiIiIi6odeJ/7cmZeIiIiIaOjpVeL/wgsvSBUHERERERFJiIk/EREREZEF4OReIiIiIiILwMSfiIiIiMgCMPEnIiIiIrIATPyJiIiIiCwAE38iIiIiIgvAxJ+IiIiIyAIw8SciIiIisgBM/ImIiIiILAATfyIiIiIiC8DEn4iIiIjIAjDxJyIiIiKyAEz8iYiIiIgsABN/IiIiIiILwMSfiIiIiMgCMPEnIiIiIrIATPyJiIiIiCwAE38iIiIiIgvAxJ+IiIiIyAIw8SciIiIisgBM/ImIiIiILAATfyIiIiIiC8DEn4iIiIjIAjDxJyIiIiKyAEz8iYiIiIgsgGKgAyAiou6JogitVgu9Xg+5XA6lUglBEAY6LCIiGoKY+BMRDTKVlZXIyMhAYVER8guKcamhEaIICAIwcoQ9AvzVGOXri7CwMLi7uw90uERENEQw8SciGiSysrJw6NBhpJ/JQrNWgO1Idzg6jYK3lyPkcgX0+jY01tchJesikn48B9svv0X4tcGYPn0agoKCBjp8IiIa5Jj4ExENsObmZuzfn4DEpJMQrRwREBIPb9/RkMnl3V5j0OtRWpSH5HMZSMnYhBlTYzF//jyoVCozRk5EREMJE38iogFUUVGBTR9sRl5RDYLGT8GogLE9GsMvk8uh9g+C96gxOJN+HFv/vRdf7NuPWTOvg5ubG9zc3ODj4wNPT0/OCSAiIgBM/ImIBkxFRQX+tX4TyutExN1wO1S2dj2+1qDXIz/nLLIy01FVVQWN1gplNY248O9vEeDnCxl0sFHKEBSgRnzcZERFRUF+hU8QiIho+GPiT0Q0AJqbm7Hpg80orxMxecZCKJXWPb72Ul01TiZ9h+KSUtg7qREQNhMjnC5P8i0qOA8bWwUmTohEQ1018rPP4MxHnyHix1O4ffFtnAxMRGTBhs06/omJiViwYAHc3NygUqkQEhKCtWvXoqmpaVDVOZiIoojm5mbU1dWhubkZoigOdEgWjf0xeJijL/bv34+sgiqMj50BQZD1uI2q8hJ8u+8zlF9swNjoeQiJmgFHV2/I5QrI5Qr4jApCbX0L8vMvwN3LF7HTbkRE3E1IP1+Bt/7xHgoKCkx+L0RENDQI4jDILt555x08/vjjEEURarUabm5uOHv2LDQaDUJDQ5GUlARnZ+cBr/NqoqOjkZKSgqioKCQnJ5u07l9qbW1FWloajh47gQtFZdAbRMhlAvx8vTBlciwiIiJgY2MjWfvUEftj8DBHX7S2tuKLL77APzduxQivcXB0VUMQAEeHEfD1vTwmX6Ho+sPYS3XV+HbfZ9DLHRASNRNyhVWX5epqL6K+ugiTJkbBxcUFANCm0+LE4a8w0qoVqx/7LZ/8ExFZoCGf+CcnJyMmJgaiKGL9+vVYsWIFBEFAaWkpFi5ciOTkZNx6663YvXv3gNbZE+ZI/HNycrBl2ycorazHCFdfeKtHQ2ltA62mFaXFeWi4WARvdwfcs3wZAgMDJYmBfsb+GDzM0Rftbfxw6Cj0Km9ETFkIhZUV9G1taKivg6blEkbYWiMiPKzTgwWDXo/vv9qJ8osNCJu0oNukHwBEiCjMOwdvV3tERUUaj7fptDj83R5EhHjioZUrOOafiMjCDPnEf9GiRdi7dy/uvvtubNmypcO57OxshISEwGAwID09HePHjx+wOntC6sQ/JycH7238CFq5EyJjr4eNqvNEwtaWJqSeSIRSX4vfrryPyaaE2B+Dhzn6or2NulYrFBUVYdS118HNK6BDmbY2LcqKCyAXWzExOqJD8p97PgOHfvgOY6PnYYSj61Xbu1RXjfrqIkyPnww7u5/vp+ZiBdKO7MOq++7AxIkTe3UPREQ0tA3pMf6NjY34+uuvAQArV67sdD4oKAgzZswAAOzcuXPA6hwMWltbsWXbJ9DKnRA7bV6XiQ0A2KjsEDttHrRyJ2zZ9glaW1vNHKllYH8MHiUlJXjpldeRV9YMN3UIDGLXS1/qdFrYjXDC2ewivPDSKygpKemyXHV1NQ4cOIBdu3bhwIEDqK6u7tDf7l6jALkKLh6jOl2rUCih9guCXrBBWnoG2traAFyec5CVmQ57J3WPkn4AcBjpBJ3+8spBv+Ts6gE7ZzWSjhwz6zySrl4XIiIyryGd+KempkKj0cDa2hoxMTFdlpk6dSoA4Pjx4wNW52CQlpaG0sp6RMZeD5nsyt0uk8kQEXM9SivrkZ6ebqYILQv7Y3BITU3FU39cg/RzxbByGoMzWQU4fOQ4ysvLO5QryDmLL3dvQ3JKCgQ7b5zJvYg/PvcC0tLSOtX3+ro38el/DuDgyRx8+p8DeH3dm9ixY4exv2urK2Hr4AqZrOthNoIgwNPHHw3NGmMcdTVVqKqqgueokB7fmyDIYKW0Q319Q6dz/mOuQU5+caf7lEp3r8uvXz8iIpLWkF7OMysrCwAwatQoWFl1Pd51zJgxAIDz588PWJ0DTRRFHD12AiNcfbt9svxrKls72Lv44sjR44iJieEGQCbE/hgcqqurse2TnSivacXocfEYMzYCBoMeFaWFSM84i5EjR0KlUqGhvhbHDh+AtaMfQq+JhVyugJNnEOpKfsK2T3Zi1KhRcHZ2RnV1NbZ/uguCnRrTp8dDobBCW5sO6ScP4aMtnyB0wkxY29iiqqoCdk6jrxiblZUSStVIFBWVwMfHB7XVlWjTi8YlO3vKRmWL2rpLEEWxw8+Mi7sXMrQGlJaWwsvLq0+vX09197r89OPhDq8fERFJb0g/8a+pqQGAK/7RaD9XW1s7IHVu2LAB0dHRPfrKzMzsUYy91dLSggtFZfBWXznZ+DUf39G4UFSGlpYWSeKyVOyPwSE1NRXVlzSwsXWA6//G2stkcnh4j0KrzoCysjIAwIWcTLS2CRjzv6QfABydXDHSfTSq6zVISUkx1lfXpEf4xKlQ/G/irUJhhZDxE1HToIFcaY82nQ4tLS1Q2Y28anwODo6oq29AW1sb6i/VQGnjYGy/p5TWNtBoddDr9R2OKxRWsLKxR2VlZa/q64vuXpfxE6eirklvfP2IiEh6Q/qJf/t4Z6VS2W0Za+vLm+L0NFkydZ1lZWUD/odNq9VCbxChtO7dMoRWSmvoDSK0Wi1sbW0lis7ysD8Gh7q6Oihs7AE0wsrq582zZDI5FFYq4++CpqYG2Ng5QfaLpFsmV0CQyaFUjURdXZ2xPms7xy6Tc7nCGgZRhMGgB0R0O8znl2RyBUQR0Ov10Le1Qehl0g9cHjYkimKXY/llMivodLpe19lb3b0uCoUVbOycjK8fERFJb0gn/u3raWu12m7LaDQaAIBKpRqQOr28vBAVFdWjtjMzMyV5mqtUKiGXCdBqejcxVKfVQC4TrvgmiHqP/TE4ODo6oq21EYAInU5jPG4w6NGma4GNzeUhMHZ2I9DalAW9vs2YvBr0bRANemg1l+Do6GisT9NUh7Y2nfHJdjt9mwYyQbic8AuX27gag74NggDI5XLIFQqI+rZe32P7EJ+uhoYZDLpuhzOaUnevS1ubDq1NtcbXj4iIpDekh/o4OTkB+Hl4Tlfaz7WXNXedq1atQnJyco++QkNDexRjb6lUKvj5eqG0OK9X15UU5cHP16vHb5qoZ9gfg0NkZCRcRlqjtekSLpblA4BxjL+Nlcw49t0vMBQ2ChF5Z49D/7/ku672Ii5V5sHFwdr4xj4yMhKOdnL89ONhtLVdfpLe1qbDuZ9+hPMIa+i1jVBYWUGlUqGl6dJV46uvr4OjwwgoFAo4jHSGtrXe2H5PaTWtsFZadVqvv61NB11ro1k28erudfnpx8NwtJP3+MEIERH135BO/IODgwEAhYWF3X5knZub26HsQNQ50ARBwJTJsWi4WITWlqYeXdPS3ITG6iLETZnEiaQmxv4YHFxcXHD3XbfD00WFvNNJyD2fjoKcDIi6BoSHXWN8gzXCwQmTp82Gpq4QqYd2Iv3YlzhzdA8clU1YvmyJcc6Pi4sLli9bArG5BP9N+BhHvt+L/yZ8DLSU4r57lkFTXwFNazPc3DzQVH/lpSx1Oi20LZfg6+sDQRDg5OIOhVxAQ23vxuS3tjTDyXFkp5+Z6soyqJQyeHt796q+vujudRGbSzq8fkREJL0hPdQnKioKSqUSGo0GJ0+eRFxcXKcyhw8fBgBMnjx5wOocDCIiIuD91bdIPZGI2GnzrriEpMFgQNrJRHi7OyA8PNyMUVoO9sfgEBERgTf+8jr++OzzaKzNQeSkmfDx8en0qYr/mFC4unshL+sM0n/8L64d44q//N/LnRLniIgIjBo1CikpKairq4OjoyOioqJga2uL7NwCpJ5IhJOLO/IKUmAw6Lsc6y+KIspLCjDC1hqenp4AAEdnN7i5uaG88BwcXXuWrIuiATptExwcPDqdK8g9i8AAtbF+qXX3ujDpJyIyryH9xN/e3h5z5swBAGzcuLHT+ezsbBw8eBAAsHjx4gGrczCwsbHBPcuXQamvxYlDCWhp7vpJc0tzE04cSoBSX4t7777LOOeBTIv9MXh4e3vjhbXPYbSXLaqKzwGioctycrkVmhpqcU2QL15+8U/dPi13dnbGrFmzsHjxYsyaNQvOzs4d+ruyrBDQt6C6orDTtTqdFsUXsiEXWxERHgaF4vKzGUEQEBwajsbaYjTUVfXovuov1cJKDnh4dEz8ay5WoKmmGPFxk8366VFXrwsREZmXIJpz60YJ/Pjjj4iNjQUArF+/HitWrIAgCCgrK8NNN92E5ORkLFq0CP/5z386XBcfH4/i4mKsXr0aq1evNkmd/RUdHY2UlBRERUUhOTnZpHW3y8nJwZZtn6C0sh72Lr7w8R0NK6U1dFoNSory0FhdBG93B9x7913G/QpIOuyPwcMcfdHexg+HjkJv442IuIWQK6xg0Lehvr4O2pZLGGFrjYjwsE6JsUGvx/df7UT5xQaETVoAuaL7ibkiRBTmnYO3qz2ioiKNx9t0Whz+bg8iQjzx21Urr7p5HBERDS9DPvEHgLfeegtPPvkkRFGEr68vXF1dcfbsWWg0GowdOxZJSUlwde24zb2/vz8uXLiAF154AS+++KJJ6uwvcyT+wOUlS9PT03Hk6HFcKCqD3iBCLhPg5+uFuCmTEB4ezifLZsT+GDzM0Retra3Yt28f3t2wBSO8xsHRVQ1BABwdRsDX1weenp7GJ/2/dqmuGt/u+wx6uQNComZ2m/zX1V5EfXURJk2MgouLC4DLSf+Jw19hpFUrVj/2W7NM7CUiosFlWCT+APD999/jjTfewIkTJ9DU1AQ/Pz8sXrwYzz77LOzt7TuVv1ri35c6+8tciX87URTR0tICrVYLpVIJlUrFiaMDiP0xeJijL3bu3Il9351A7IxbYG/vAIVC0aM2qspL8MN3e9Gqt8KYcfEY4ejW4bxOp0VR3lkEBfjgmmsurxRWc7EC6ScT4TZCwMoH74G/v79J74WIiIaGYZP4DwfmTvyJaOA0NzfjzbfeQWGVBlNm3Ayl0vrqF/3PpbpqnEz6DsUlpbB3UsNzVAhGOF1+gl9UcB4jbRWYOCES9bUXUZB7Fk01xYgMC8SS227lk34iIgvGxH8QYeJPZFkqKirwr/WbUFZnQOy0+VDZ2vX4WoNej/ycs8jKTEdVVRU02jY0NjbC1sYKAX6+kEEHlVKGwAA14uMmIyoqqtN6/kREZFmY+A8iTPyJLE9FRQU2fbAZecU1CAqbjFEBY3s1rMhgMOBM+nGcSf4vnOzkmDnjOri5ucHd3R3e3t7w9PTkkDEiIgIwxNfxJyIa6jw8PPD7Jx7D/v0JOHj4KApzz8I/aBx8fMdAdoUn9Aa9HiVFuSjIPg1BV4e771iI+fPncWdnIiLqFhN/IqIBplKpsHjxbQgPH49Dhw4j7fQRZP10FLYObnB0doO9gyNkMjkMBj0a6+tQV1OF5voq2CpFTBg3FtOmLUFQUNBA3wYREQ1yTPyJiAaJoKAgBAUFobKyEhkZGSguLkZufiHKyjNhEEXIBAEOI+wwIcQXanUEwsLCOFmXiIh6jIk/EdEg4+7ujpkzZwK4vLSoVquFXq+HXC6HUqnkmH0iIuoTTu4dRJydnVFbWwuVSoXQ0NCBDoeIiIiIhoiQkBB8/PHHVyzDJ/6DSGtrKwCgpaUFKSkpAxwNEREREQ0nTPwHEXd3d1RWVsLGxgYBAQFmaTMzMxMtLS38lGGQYH8MHuyLwYX9MXiwLwYX9sfgMdB9ERISctUyTPwHkYKCArO32b53QGhoKPcOGATYH4MH+2JwYX8MHuyLwYX9MXgMhb6QDXQAREREREQkPSb+REREREQWgIk/EREREZEFYOJPRERERGQBmPgTEREREVkAJv5ERERERBaAiT8RERERkQVg4k9EREREZAGY+BMRERERWQAm/kREREREFkAx0AHQwFq5ciXKysrg5eU10KEQ2B+DCfticGF/DB7si8GF/TF4DIW+EERRFAc6CCIiIiIikhaH+hARERERWQAm/kREREREFoCJPxERERGRBWDib6HS0tLwzDPPYObMmQgICIC9vT1sbGwQEBCAu+66C0ePHr1qHbt378b1118PJycn2NnZISIiAn/729+g0+nMcAfDR3Z2Nv7yl79g7ty58PHxgVKpxMiRIxETE4M///nPaGxsvGod7AvTaGlpwd69e/H888/jxhtvhKurKwRBgCAIPeoHgH1haomJiViwYAHc3NygUqkQEhKCtWvXoqmpaaBDG1bKy8uxfft2PP7444iLi4OtrS0EQcCECROueq1Op8Nf//pXhIeHw87ODs7OzpgxYwb27NljhsiHH1EUcfToUTzzzDOIj4+Hi4sLrKys4ObmhhtuuAEff/wxrjQ9k/1hWvv27cMjjzyCSZMmQa1Ww8bGBvb29hg3bhxWr16NCxcudHvtoOwLkSzSCy+8IAIQZTKZ6OnpKUZFRYkhISGijY2NCEAEIL788svdXv/73//eWG7MmDHi+PHjRblcLgIQp02bJra2tprxboautrY24+sIQPT09BQnTJggqtXqDq9vQUFBt3WwL0wnNTW1Q3/88quhoeGq17MvTOsf//iHKAiCCEBUq9ViZGSkaG1tLQIQQ0NDxerq6oEOcdj4+9//3uXPfXR09BWva2lpEePj40UAolwuF8ePHy+OGTPGeP0f//hHM93B8HHgwIEOfTB69GgxOjpadHZ2Nh6bP39+l79P2B+mN336dBGAaGVlJY4aNUqcMGGC6O/vL8pkMhGAaGtrK37zzTedrhusfcHE30IdOHBA3LlzZ6c/nLW1teIjjzxi/ME8duxYp2v37NkjAhCtra3FvXv3Go9nZmaKAQEBIgDxySeflPwehgOdTic6ODiITz/9tJiZmdnh3LFjx4yvZ2xsbJfXsy9M6/Tp02JMTIz4yCOPiB999JGYkJDQ48SffWFap06dEmUymSgIgrhhwwbRYDCIoiiKJSUlYnR0tAhAvPXWWwc4yuHjgw8+EGfNmiU+88wz4q5du8TXX3+9R4n/Y489JgIQAwICxHPnzhmP79271/gm7YsvvpA6/GHlu+++EwMCAsS3335brKio6HBu69atxte1q8SR/WF6W7ZsEQ8cONDpjVZOTo44bdo0EYDo6uoqNjY2djg/WPuCiT91YjAYxGuuuUYEID799NOdzoeHh4sAxD/96U+dzn3//ffG5KeystIc4Q5pBoPhik8tjxw5Ykw8U1NTO51nX0grPz+/x4k/+8K0br75ZhGAePfdd3c6l5WVZXzalp6ePgDRDX8fffTRVRP/8vJyUalUigDEgwcPdjq/du1aEYAYFRUlZajDzqVLl0StVtvt+ddee00EIDo7O4t6vd54nP1hfuXl5ca/EQkJCR2OD9a+4Bh/6kQQBISEhAAAmpubO5zLzs5Geno6gMsbVfzajBkzEBgYCI1Ggy+++EL6YIc4QRDg7Ozc7fkpU6Zg5MiRAIDz5893OMe+GDzYF6bV2NiIr7/+GkDXr2dQUBBmzJgBANi5c6dZY6OfffHFF9BqtQgMDMT111/f6fyqVasAACkpKcjNzTV3eEOWg4MDrKysuj0/d+5cAEBNTQ2qqqqMx9kf5ufh4WH8G/7LfGkw9wUTf+qktbUVycnJANBpYtfx48cBAAEBAfDx8eny+qlTp3YoS32n1+uNk0JtbW07nGNfDB7sC9NKTU2FRqOBtbU1YmJiuizD13Pgtb/27X3xaz4+PggICOhQlvqvtbXV+G+VSmX8N/vD/DIzM1FTUwOZTIbIyEjj8cHcF0z8yejSpUs4cuQIbrrpJly4cAFTpkzBXXfd1aFMVlYWACAwMLDbesaMGQOg8xNq6r29e/eiubkZCoUCkydP7nCOfTF4sC9Mq/31HDVqVLdPPvl6Djz+3A+MTz/9FAAQHh4OBwcH43H2h3mIoojKykrs2bMHCxcuBAA89dRTGD16tLHMYO4LhVlbo0GnuLgYvr6+HY45OTnhtddew5NPPgmFouOPSE1NDQBccXhK+7na2loTR2tZ6uvr8dRTTwEAHnjgAbi6unY4z74YPNgXpsXXc2hgP5lfSkoK1q9fDwB45plnOpxjf0hr+/btWL58eYdjISEh+Pjjj7Fs2bIOxwdzX/CJv4WztrZGXFwc4uLiEBQUBKVSidraWnz22Wc4efJkp/LtHzEqlcor1glcXhOd+kav12Pp0qXIz8+Hv78/1q1b16kM+2LwYF+YFl/PoYH9ZF4VFRW45ZZboNPpcMstt+DOO+/scJ79IS13d3fExcVh8uTJ8PX1hUwmQ1ZWFj7++GMUFxd3KDuY+4KJ/xDz0EMPGTcU6s3Xdddd12V9bm5uSEpKQlJSErKyslBVVYU1a9YgIyMDs2bNwrFjxzqUt7GxAQBotdpuY9RoNAA6jj0cjkzdF+1EUcTKlSuRkJAAJycn7Nu3zzjB95fYFz+Tqi96in1hWnw9hwb2k/lcunQJc+fORWFhIaKjo7F58+ZOZdgf0rrhhhuQlJSEo0ePorCwENnZ2Vi4cCESEhIwadIkXLp0yVh2MPcFh/oMMSNHjoSHh0evr7vSx02/5ODggFdffRUXL17Ehg0b8Kc//Qnfffed8byTkxOAnz/G6kr7ufayw5VUffHYY4/hww8/xIgRI/DNN99g3LhxXZZjX/xM6v8XV8O+MC2+nkMD+8k8GhsbceONNyI1NRXXXnstvvnmmw5j+9uxP8xr9OjR2LVrF8LDw3HmzBm8++67WLNmDYDB3RdM/IeYdevWdTnsw9RuuukmbNiwAadOnepwPDg4GACQk5PT7bXtS1O1lx2upOiLp556Cu+++y5sbW2RkJCAiRMndluWffEzc/2/6A77wrTaX6PCwkLodLouJ/jy9Rx4wcHBOHLkCH/uJdTc3Iz58+fj+PHjCA4OxoEDB+Di4tJlWfaH+cnlcsydOxdnzpzpkC8N5r7gUB/qUvsSkgaDocPx9pVl8vPzUVJS0uW1hw8f7lCWeub555/HG2+8ARsbG3zxxReIj4+/Ynn2xeDBvjCtqKgoKJVKaDSaLucaAXw9B4NJkyYBAJKSkro8X1JSgvz8/A5lqedaW1tx880349ChQ/D398f3338PT0/PbsuzPwZGV/nSYO4LJv7Upd27dwNAh3Vpgcsb54SFhQEANm7c2Om6gwcPIicnB0ql0rjMFV3d66+/jtdeew1KpRK7d+/GzJkzr3oN+2LwYF+Ylr29PebMmQOg69czOzsbBw8eBAAsXrzYrLHRz26++WZYWVkhOzsbiYmJnc5v2LABwOW/I1da1pA60+l0uO2223DgwAGo1WocPHgQarX6itewP8xPq9Xiyy+/BNAxXxrUfWH2vYJpULj77rvFo0ePdtjuWxRF8eLFi+Lvf/974xbUe/fu7XTtrl27RACitbW1+MUXXxiPnzt3TgwICBABiKtXr5b8HoaLt99+WwQgKhQKcc+ePb26ln0hrfz8fOP/hYaGhiuWZV+Y1smTJ0VBEERBEMQNGzaIBoNBFEVRLC0tFaOjo0UA4qJFiwY4yuHro48+EgGI0dHRVyz36KOPigDEgIAA8dy5c8bjX3zxhWhtbS0CED///HOpwx1W2traxCVLlogARE9PTzErK6vH17I/TOvHH38Un3/++S774Pz58+INN9wgAhDt7e3F4uLiDucHa18w8bdQ7cmMnZ2dOH78eHHSpEni2LFjRblcbkxC//rXv3Z7/erVq411jBkzRgwPDzdeGx8fL7a0tJjxboaukpISURAEEYDo5OQkxsXFdfv1wQcfdFkH+8K0IiMjRRcXF9HFxUV0cnIyvrbtx1xcXMSFCxd2eS37wrT+/ve/G/9/+Pr6ipGRkcY/mGPHjhWrqqoGOsRho7CwsMPPuL29vfFvwS+Pr1u3rsN1zc3N4uTJk0UAolwuF8PDw8UxY8YY/x/8/ve/H6A7Gro++eQT4+vn7+9/xb8LKSkpHa5lf5hWYmKi8bVzc3MTo6KixNjYWHHUqFHG487OzuL333/f6drB2hdM/C3Utm3bxPvvv18MCwsTXV1dRYVCITo4OIjh4eHiY489Jp45c+aqdezYsUOcPn26OHLkSFGlUolhYWHiunXrRK1Wa4Y7GB5++UT5al8vvPBCt/WwL0zHz8/vqn0xffr0bq9nX5jWgQMHxLlz54rOzs6itbW1GBwcLD733HNX/QSGeqenv4u6+j2k0WjEdevWiWFhYaJKpRJHjhwpTp8+Xdy1a5f5b2QYaP+0pSdfiYmJna5nf5hOTU2N+I9//EO89dZbxaCgINHBwcH4Zjg+Pl589dVXr/gAYjD2hSCKotjDUUFERERERDREcXIvEREREZEFYOJPRERERGQBmPgTEREREVkAJv5ERERERBaAiT8RERERkQVg4k9EREREZAGY+BMRERERWQAm/kREREREFoCJPxERERGRBWDiT0RERERkAZj4ExERERFZACb+REREREQWgIk/ERH1yb333gtBEHDvvfcOdChX9Pzzz0MQBPzlL38Z6FCGlRtvvBGCIODgwYMDHQoR9RATfyIiAC+++CIEQYAgCCave/PmzXjxxRfxww8/mLzuwWqw3HNxcTHefPNNuLm54ZFHHrlq+draWtjY2Bh/FrKzs/sdwy9/tn79ZWtri6CgINxzzz04evRor+uwsbGBWq3GwoULsWPHDoiieNVr//3vf1815vnz53e4pqCgoMt6AeCpp56CwWDo8etBRAOHiT8RkcQ2b96Ml156acCTYFPz8vLC2LFj4eXl1encYLnnNWvWoKWlBU8//TTs7OyuWv7jjz+GRqMxfv/hhx+aNB4PDw/jl5ubG7RaLXJycrB161bExcUZk+me1iEIAkpKSrBv3z7ccccdmD9/fof4u/LRRx9d8XxpaSm++eabq8YxadIkzJkzB6mpqdi+fftVyxPRwGPiT0REffJ///d/OHfuHP7v//5voEPpUklJCT7++GMolUrcf//9Pbrmgw8+AADExcUBALZs2QK9Xm+ymMrLy41flZWV0Gg0SEpKQnR0NADgpZdeuuKT/1/X0dTUhNOnT2P27NkAgK+++grPP/98l9e5urrCzs4OBw4cQFFRUbf1b926FXq9Hv7+/le9n4ceeggAOIyKaIhg4k9ERMPSpk2boNfrMW/ePDg7O1+1fEpKCtLS0qBQKLB9+3Y4ODigrKwMX331lWQxyuVyxMXF4fPPPzce27t3b4+vl8lkuPbaa/HFF18gMDAQALBhwwa0tbV1KmtnZ4fFixfDYDBgy5Yt3dbZ/olAT+ZutL+2Z86cwZEjR3ocNxENDCb+RERXcd1110EQBLz44osQRRGbNm1CbGwsHBwcMGLECEyePLnLoQ6bN2+GIAj473//C+Dy09xfj9Huaux0eXk5nnnmGYSHh2PkyJGwsbHB6NGj8eCDD+Ls2bMmjfGXduzYgblz58LDwwNWVlZwdHREUFAQFi5ciH/+859obW3tUL6ryb09vefa2lrY2tpCEATs2LHjinGtXbsWgiBg9OjRXY5h74ooisan98uWLevRNe3lb7jhBvj7++O2227rcFxKarUaLi4uAIDGxsZeX29jY4MlS5YAABoaGnDu3Lkuy913330ALvdTV69lUlISsrKyMHr0aEybNu2q7SqVSuPrtHHjxl7HTUTmxcSfiKiH9Ho9brnlFqxcuRIpKSkQBAGNjY04fvw4li9fjhdeeKFDeZVKZUyigctPXH85PtvDwwNyubzDNV9++SWCgoKwbt06/PTTT2hpaYFCoUB+fj4++OADREZGYuvWrSaLsd0DDzyAO+64A19//TUqKythY2MDnU6HnJwc7Nu3D48++ijKy8uv+hr19J6dnJxw++23A7hywqjX641PoB988MEeT74+ffo0iouLAQBTp069avnW1lZ88sknAIDly5cDAO6++24Al/ukoqKiR+32VUlJCaqrqwEAY8eO7VMdarXa+O/6+vouy0ybNg1jxoxBbm4uDh8+3On8L5/29/S1bn+D8PXXX/c2ZCIyMyb+REQ99M9//hM//PADNm/ejPr6ely6dAlFRUW46aabAACvvvpqh1Vg7rjjDpSXl2PKlCkALq9+8svx2eXl5fD19TWWP3nyJG677TY0NjZi1apVyMzMREtLCxobG3HhwgU8/PDD0Gq1eOCBB3Dq1CmTxAhcfsr74YcfQiaTYd26daiurkZDQwOamppw8eJFfPPNN7jnnnugVCqv+hr15p5/+9vfAgAOHjyIvLy8LutLSEhASUkJFApFj8fpA8ChQ4cAAL6+vvD09Lxq+d27d6Ourg4jRozAzTffDACYPn06/r+9Ow2JqgvjAP6faWIMzbRwkkhb3jSLJDXRyvY0W8gSWlwCixb7IBYJFVQUFVRQES0wkVlkRblg2kZ7UWKL0QJBhSkjKW4thlqO4/h+kHPfGXX0zjjm8Pr/wYV0rnfOuV967rnP8xxvb28YDAakp6fL/m5rNDc3o6CgANHR0QAAjUYjPXBYy/TtkaXUJtM3NG0Ll+vr65GRkQGlUmlVi9bQ0FAAQFVVlcU3DUTkGBj4ExHJ9OPHD+Tk5CAhIQEDBgwA0LrKmpmZiWHDhsFoNHaZttKZpKQk6PV67Nq1C1qtFn5+ftIbAW9vb5w6dQrJyckwGAzYv3+/3cYoiknDw8OxdetWs6BxyJAhmDdvHs6fP49hw4bZPLeOhIaGIjAwUEpN6oh4GxAVFSUrgBdevHgBAJg4caKs80U6z7Jly6T7plAoEB8fb/Z5d3l6ekqHRqOBWq3G1KlT8enTJ8THx+Ply5dwc3Oz+rq/fv3CpUuXALQG/b6+vhbPTUhIgFKpRFZWlllaUUZGBurq6jB37lyzB9Ku+Pj4wMXFBQBQUFBg9diJ6O9h4E9EJFNYWBhmz57d7vdqtRqRkZEAgPfv39t07Xfv3uHVq1fo378/UlJSLJ4nVoPv37/fYbcZW8YoAs3q6mq7drCRQ3SFOXfuHJqamsw+KysrkwprExMTrbpueXk5AMDDw6PLc4uLi6W2oyLNRxD3++PHj11225GjsrJSOkzvd0NDA2pra61OKfr58ycePHiAOXPmSHPetGkTlErL/717eXkhPDxcWuEXRJqPNW9WBFGfIMZARI6JgT8RkUwipaEjYjX8+/fvNl372bNnAACj0YixY8earQybHvPnzwfQmpYhcsK7O8bw8HA4OTnhzZs3mD59Os6ePYuSkhKb5mGtuLg4uLq6orKyEtevXzf7LC0tDc3NzRg1apTUrlKu6upqAJZTXtp+T0tLC7y8vDBz5kyzz/z8/BAcHCyd110tLS1mx+/fv/HmzRskJCTgxo0bmDFjhlmHn46YFkq7u7sjPDwcr1+/BgCsWrUKO3bs6HIcoshXzKmoqAhPnz6Fm5sbli5davW8xH0W952IHBMDfyIimQYOHGjxM5VKBQDtVq3lEiulzc3NZqvCbY+amhrpbxoaGuwyxtGjRyM1NRUuLi4oKCjAunXrMHr0aGg0GqxcuRK5ubmyu+lYy8XFRUqnMS3yNRqNUnrN+vXrrd5RWXQgUqvVnZ5n2toyPj6+w5Vysep/9epVmzrudMbJyQkBAQFITU1FdHQ0GhsbsXr1aovFuYD5Bl7e3t4ICgrC2rVr8fDhQ6Snp7crGO9IdHQ03N3dkZ+fj8+fP0ur/XFxcXBycrJ6HiI9qm3nJyJyLAz8iYgcgEj58PPza7cqbOmQs8GSXPHx8dDpdNBqtVi5ciW8vLxQXV2NjIwMLF26FDNnzuw0GO0OUeR77949qUD17t270Ol0UKlU0uq0NUTqyY8fPzo9786dO1L3n7ZpPkJMTAxUKhXq6uq6VcPRlfXr1wMAamtrcevWLYvnmRZK63Q6vH79GqmpqR2meFmiVqsRGxsLoLV+QXSKsuVeA/+9RRL3nYgcEwN/IiIHIApXi4uLUV9f3ytjGDx4MBITE3HlyhWUlpaiqKgI27dvh0KhwNOnT7Fnz54e+V5/f39MnTrVbJVfFPsuWbLEqqJeQeT2d5V6Jb5v0qRJGD9+vMVriRQre6T7WDJixAjp338j1UoE+ceOHcPXr18xYcIEKa3JWuI+y6mpIKLew8CfiKiHifSRztJlwsLCAAB6vR45OTl/ZVxd+eeff3DgwAFpA6x79+7J/ls5czYlVv3T0tJQVlYm5ftv2LDBmiFLRBBvqU0o0JqPnpeXB8Dyar8g0n3y8/N7rGWlePMAtO5/0NOCg4Ph7+8PvV4PwLaiXqB1wzCRgjZu3Di7jY+I7I+BPxFRD3N1dQXQ2oHFkuDgYAQGBgIAduzY0WWRpK1FxB1pbGzs9HORvy0nd1yQM2dTy5cvx5AhQ1BeXo64uDg0NTXZVNQriE2l3r17Z3F+6enpaGpqgkqlQkxMTKfXW7x4MQYNGgSg51b9xQZiAGxeebfWoUOHkJKSgpSUFKxatcqmaxQWFsJoNEKlUkkPsETkmBj4ExH1sAkTJgD4bzOqjigUCmi1WqjVapSWliI0NBRZWVlmBbxlZWW4ePEiIiIisG3bNruNLykpCStWrEB2djaqqqqk39fV1UGr1Ur53wsXLpR9TTlzNqVWq6VNo8TmW7YU9QphYWFQqVTQ6/V4+/Zth+eIAH7WrFlwdnZGXV2dxcNgMEgbe124cAEGg8GmcXWkoqICO3fulIqMJ0+ejClTptjt+p1ZsGABDh8+jMOHD9ucpiP2TAgKCpL6+RORY1L19gCIiP7vEhIScOTIERQVFcHb2xseHh5S55Rnz55h+PDhAICQkBBcv34dsbGxKCkpwfLly9GvXz+4ubnh9+/fZg8B69ats9v4mpqakJmZiczMTACtnXZUKpXZav20adNktYkU5M7Z1MaNG3H06FG0tLTYXNQruLq6YtGiRcjNzUVeXl67NqfPnz/Hhw8fALTuidBZN6S2KisrcfPmTelBwBpt6xX+/PmD2tpa6Wd/f39kZ2fb/MDTG0S6lEgJIyLHxRV/IqIe5uPjg0ePHiEqKgoeHh749u0bdDoddDpdu5XjiIgIFBUV4cCBA5g2bRoGDRqEnz9/QqlUYvz48Vi7di3y8vJw4sQJu41v165dOH78OKKjo+Hn5yd1sNFoNIiIiEBaWhoeP35sVd65NXMWxowZg4CAAAC2F/WaEpt+Xb58uV2tQXd34rX179u2Z21oaICnpyciIyNx5swZFBYW2n2H5J5UUlKCgoICDBgwQKqDICLHpWjpqebMREREVqioqICXlxcMBgPu3LmDefPmdet6RqMRvr6++PLlC548eSLl/ZP97N27F7t378aaNWt6tOMREdkHV/yJiMghaLVaGAwGjBkzxuaiXlNKpRL79u0DABw8eLDb1yNz9fX1OHHiBNRqNXbv3t3bwyEiGRj4ExFRryssLMSRI0cAAFu2bLFbjntMTAxCQkJw+/ZtqQiV7OPkyZOoqalBcnKy2R4EROS4WNxLRES9ZuTIkWhsbERFRQUAIDAw0K6FywqFAqdPn8a1a9ekXvNkH87OztizZw82b97c20MhIpmY409ERL1GrOx7enpi/vz5OHjwIIYOHdrLoyIi+n/iij8REfUarj0REf09zPEnIiIiIuoDGPgTEREREfUBDPyJiIiIiPoABv5ERERERH0AA38iIiIioj6AgT8RERERUR/AwJ+IiIiIqA9g4E9ERERE1Acw8CciIiIi6gMY+BMRERER9QEM/ImIiIiI+oB/AfeYV2wsHYdoAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(figsize=(8, 5))\n", + "for ii, intensity in enumerate(np.sort(this_df.Alpha.unique())):\n", + " resp = sum((this_df.Alpha == intensity) & (this_df.Decision == 'More'))\n", + " total = sum(this_df.Alpha == intensity)\n", + " axs.plot(intensity, resp/total, 'o', alpha=0.5, color='#4c72b0', \n", + " markeredgecolor='k', markersize=total*5)\n", + "plt.ylabel('P$_{(Response = More|Intensity)}$')\n", + "plt.xlabel('Intensity ($\\Delta$ BPM)')\n", + "plt.tight_layout()\n", + "sns.despine()" + ] + }, + { + "cell_type": "markdown", + "id": "kwXfRILRryN2", + "metadata": { + "id": "kwXfRILRryN2" + }, + "source": [ + "# Model\n", + "\n", + "The model was defined as follows:\n", + "\n", + "$$ r_{i} \\sim \\mathcal{Binomial}(\\theta_{i},n_{i})$$\n", + "$$ \\Phi_{i}(x_{i}, \\alpha, \\beta) = \\frac{1}{2} + \\frac{1}{2} * erf(\\frac{x_{i} - \\alpha}{\\beta * \\sqrt{2}})$$\n", + "$$ \\alpha \\sim \\mathcal{Uniform}(-40.5, 40.5)$$\n", + "$$ \\beta \\sim |\\mathcal{Normal}(0, 10)|$$" + ] + }, + { + "cell_type": "markdown", + "id": "DsF_cKB9PjWx", + "metadata": { + "id": "DsF_cKB9PjWx" + }, + "source": [ + "Where $erf$ denotes the [error functions](https://en.wikipedia.org/wiki/Error_function) and $\\phi$ is the cumulative normal function." + ] + }, + { + "cell_type": "markdown", + "id": "K14zcyan0iCz", + "metadata": { + "id": "K14zcyan0iCz" + }, + "source": [ + "Let's create our own cumulative normal distribution function here using pytensor." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "nG910VJ3Atgt", + "metadata": { + "id": "nG910VJ3Atgt" + }, + "outputs": [], + "source": [ + "def cumulative_normal(x, alpha, beta):\n", + " # Cumulative distribution function for the standard normal distribution\n", + " return 0.5 + 0.5 * pt.erf((x - alpha) / (beta * pt.sqrt(2)))" + ] + }, + { + "cell_type": "markdown", + "id": "iSetK_Gd021N", + "metadata": { + "id": "iSetK_Gd021N" + }, + "source": [ + "We preprocess the data to extract the intensity $x$, the number or trials $n$ and number of hit responses $r$.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "FOedFUWQcWHc", + "metadata": { + "id": "FOedFUWQcWHc" + }, + "outputs": [], + "source": [ + "x, n, r = np.zeros(163), np.zeros(163), np.zeros(163)\n", + "\n", + "for ii, intensity in enumerate(np.arange(-40.5, 41, 0.5)):\n", + " x[ii] = intensity\n", + " n[ii] = sum(this_df.Alpha == intensity)\n", + " r[ii] = sum((this_df.Alpha == intensity) & (this_df.Decision == \"More\"))\n", + "\n", + "# remove no responses trials\n", + "validmask = n != 0\n", + "xij, nij, rij = x[validmask], n[validmask], r[validmask]" + ] + }, + { + "cell_type": "markdown", + "id": "Jbz8no1H09lk", + "metadata": { + "id": "Jbz8no1H09lk" + }, + "source": [ + "Create the model." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "UlywVNYd1OO7", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 129 + }, + "id": "UlywVNYd1OO7", + "outputId": "5d32c4fd-3551-4ab6-9927-142c7835148f" + }, + "outputs": [], + "source": [ + "with pm.Model() as subject_psychophysics:\n", + "\n", + " alpha = pm.Uniform(\"alpha\", lower=-40.5, upper=40.5)\n", + " beta = pm.HalfNormal(\"beta\", 10)\n", + "\n", + " thetaij = pm.Deterministic(\n", + " \"thetaij\", cumulative_normal(xij, alpha, beta)\n", + " )\n", + "\n", + " rij_ = pm.Binomial(\"rij\", p=thetaij, n=nij, observed=rij)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "657c61d4-4b44-493d-b3c0-48ab9073e3fc", + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "%3\n", + "\n", + "\n", + "cluster25\n", + "\n", + "25\n", + "\n", + "\n", + "\n", + "beta\n", + "\n", + "beta\n", + "~\n", + "HalfNormal\n", + "\n", + "\n", + "\n", + "thetaij\n", + "\n", + "thetaij\n", + "~\n", + "Deterministic\n", + "\n", + "\n", + "\n", + "beta->thetaij\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "alpha\n", + "\n", + "alpha\n", + "~\n", + "Uniform\n", + "\n", + "\n", + "\n", + "alpha->thetaij\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "rij\n", + "\n", + "rij\n", + "~\n", + "Binomial\n", + "\n", + "\n", + "\n", + "thetaij->rij\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pm.model_to_graphviz(subject_psychophysics)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "8241e619", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (4 chains in 4 jobs)\n", + "NUTS: [alpha, beta]\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " 100.00% [8000/8000 00:01<00:00 Sampling 4 chains, 0 divergences]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 2 seconds.\n" + ] + } + ], + "source": [ + "with subject_psychophysics:\n", + " idata = pm.sample(chains=4, cores=4)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "qFp4jTS6FytS", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 405 + }, + "id": "qFp4jTS6FytS", + "outputId": "f15afbab-5fbb-4de2-dcea-78523020e957" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAAF7CAYAAADmExfbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7hdV3nn/9399HN7lXRVbVluso0xhgChl1ASYJIAocykkEoIk2Qm8yNhJplk0ocQAgkhkAQyqUDAARuMccO4ylZvV7r93tPrPrvvvdbvj7X3vufoXlVLlmSvz/PokXTvKWv39a73+35fgVJKweFwOBwOh8PhcDgczlWKeLkHwOFwOBwOh8PhcDgczrOBB7YcDofD4XA4HA6Hw7mq4YEth8PhcDgcDofD4XCuanhgy+FwOBwOh8PhcDicqxoe2HI4HA6Hw+FwOBwO56qGB7YcDofD4XA4HA6Hw7mq4YEth8PhcDgcDofD4XCuanhgy+FwOBwOh8PhcDicqxoe2HI4HA6Hw+FwOBwO56qGB7YczkXggQcegCAI2Lt373m972//9m8hCAKazeYlGReHw+FwOJyLA3/WczhXNjyw5XA4HA6Hw+FwOBzOVQ0PbDkcDofD4XA4HA6Hc1XDA1sO5xx49NFH8ba3vQ0TExNIp9PYvXs3vvjFL57xPYIg4I/+6I/w0Y9+FIODg8jn8/jpn/5pWJa15rXz8/N44xvfiHQ6jR07duBLX/pSz++/8Y1v4HWvex1GRkaQy+Vwxx134J577rmo28jhcDgczgsZ/qzncK5ueGDL4ZwD8/PzeNnLXobPfe5zuOuuu/DOd74TP/mTP3nWB94nPvEJzMzM4Etf+hJ++7d/G//wD/+AD3/4w2te9+53vxtveMMb8O///u+49dZb8f73vx+HDx+Ofz87O4u3vvWt+OIXv4gvf/nLeNnLXoY3v/nNeOihhy76tnI4HA6H80KEP+s5nKscyuFwzgtCCPU8j/7Mz/wMffnLX04ppfT++++nAOgzzzwTvw4A3b59O/V9P/7ZJz7xCSrLMl1cXKSUUvqFL3yBAqCf+cxn4td0Oh2aSqXo7/zO76z7/UEQUM/z6Otf/3r6vve97xJsIYfD4XA4L2z4s57DufrgGVsO5xxoNBr48Ic/jKmpKSiKAkVR8NnPfhbHjx8/4/ve9ra3QZKk+P/veMc74Ps+nn766Z7XveENb4j/nU6nMTU1haWlpfhnS0tL+MAHPoDJyUnIsgxFUfDtb3/7rN/P4XA4HA7n3ODPeg7n6ka+3APgcK4GPvjBD+LRRx/Fb/7mb+L6669HLpfDZz7zGXz5y18+4/tGRkbW/X+hUOj5eX9/f8//VVWFbdsAAEII3va2t6HVauG3f/u3sX37dqTTafzWb/0WVlZWnu2mcTgcDofDAX/WczhXOzyw5XDOgm3b+MY3voFPfOIT+MVf/MX454SQs763XC6v+//x8fFz/v4TJ07gmWeewV133YW3vOUt8c/XM6bgcDgcDodz/vBnPYdz9cOlyBzOWXAcB0EQQNO0+Ge6ruPrX//6Wd/79a9/veeh+JWvfAWyLOOWW2455++PHmrd3z8/P49HHnnknD+Dw+FwOBzO6eHPeg7n6odnbDmcs5DP53H77bfjd3/3d9Hf3w9JkvD7v//7yOfzqNfrZ3yvaZp4xzvegQ996EM4fvw4fuM3fgPvf//7sXHjxnP+/p07d2LDhg34tV/7Nfzu7/4udF3Hxz/+cUxOTj7bTeNwOBwOhwP+rOdwng/wwJbDOQf+3//7f/iZn/kZfOADH8Dg4CA+/OEPo9Pp4BOf+MQZ3/eRj3wEi4uLeO973wvf9/Ge97wHn/zkJ8/ruzVNw1e+8hX8wi/8At71rndh48aN+NjHPobvfve72Lt374VvFIfD4XA4nBj+rOdwrm4ESim93IPgcJ6PCIKA//t//y8+8pGPXO6hcDgcDofDuQTwZz2Hc+XAa2w5HA6Hw+FwOBwOh3NVwwNbDofD4XA4HA6Hw+Fc1XApMofD4XA4HA6Hw+Fwrmp4xpbD4XA4HA6Hw+FwOFc1PLDlcDgcDofD4XA4HM5VDQ9sORwOh8PhcDgcDodzVXNOfWw3b96McrmMRCKBLVu2XOoxcTgcDodzVmZnZ2HbNkZGRjA3N3e5h3PVw5/1HA6Hw7nSOJ9n/TmZR6VSKViWdbHGx+FwOBzORSOZTMI0zcs9jKse/qzncDgczpXKuTzrzyljm0gkYFkWkskkrrvuuosyOA6Hw+Fwng1HjhyBZVlIJBKXeyjPC/iznsPhcDhXGufzrD+nwHbLli1oNBq47rrrsGfPnmc9QA6Hw+Fwni233XYbnn76aS6bvUjwZz2Hw+FwrjTO51nPzaM4HA6Hw+FwOBwOh3NVwwNbDofD4XA4HA6Hw+Fc1fDAlsN5DjAcH//y1CJ+6u+ewg/+0f09v7v3cAlN071MI+NwOBwO54WB4fj47tESii37cg+Fw+FcAs6pxpbD4VwYlFL84xOL+NN7j6HaYcFrSpXi35d1Gx/64lPQZAnvvWMTPvK6a5DR+GXJ4XA4HM7F5nChDd328fhsDW/fPXm5h8PhcC4yfAbN4VwiWqaHX/7nZ/DAsQoA4E03jOFHb9+IF031x6/xA4p33bYB/753BZ/73iy+eaCA//POm/DKa4Yv17A5HA6Hw+FwOJyrDi5F5nAuEX923zQeOFbB5sEUvvxzL8VnfuI2vOraEWQTSvyaib4k/vBdN+OhX3sV3nD9KFZaNj74hSfwlw+exDm0mOZwOBwOh8PhcDjgGVsO55Lxa2+4FqIA/PJrd/QEs+sxlk/gL3/iNnxt7wr+25f34/fvPorbNw/gtq7sLofD4XA4HA6Hw1kfHthyOBcR2wtgugEG0iqSqoSPvWXXOb9XEAT88C2T2DyUxlNzdR7UcjgcDofD4XA45wiXInM4F5GP/ftBvOsz38di3bzgz9i9sQ8/9fKt8f9PlDtclszhcDic5y2zVQMPHa+g3OZuxRwO58LhgS2Hc5H48p4l/NueJbRtDytNC/cdKT3rz/yP/St48589jE8/cPIijJDD4XA4nCuP/UtNNEwXi40LXxTmcK52ah0HxZaNgPBkxoXCA1sO5yIwU+ngN792EIIA/OmP7sbPfmkPfvLvnoLp+vFr/vy+aXzzQAHkPG5YUwNpiCLwR986hnsOFi7F0DkcDofzPOB4SceJcudyD+NZ4QV8Qs954fLYTB2Pz9Z65o6c84MHthzOs4QQil/4h6dhugF+8VXb8YprhvG+Ozfj3S/eBNcnAICG4eLPv3sCv/qv+9Aw3XP+7Bs35PGnP7obAPCRf96Lg8utS7EJHA6Hw7nKOVJo49DK1fmMuG48BwAYzmrn/B5KKe49XMJjM7VLNSwO5znFJ2zOGM0dOecPD2w5nGfJx/79AI4UdfSnFPzSq3cAAD76umvwf95xI/pSKgAgl1Tw6ffeit98yy4MZtiD2w/IOd283nzjOH719dfA9gh+6R+fgeHwlTwOh8O5VNQNFweXW+elrrkSEAUBmnzmaV3H8TFbNa443wZJFAAA5zMsn1CYro8Sr8vlPE+IFnZkiYdnFwrfcxzOs4AQij3zDQDAj75oA9TTTCokUcBrd43i3S/eFP/s0w+cxI98+hEsN62zfs/P/+B2vPKaYcxWDXz864cuzuA5HA6Hs4aHpys4Wek8L+s9Hzpewf6lJpYaZ3/uPJeIQhTYXlkBN4fzXCKAXQfgl8EFwwNbDudZIIoCvvaLP4BPvecW/Mabz721T0AovneiipOVDuqds0uTRVHAH/+nmzGU0aBIIjcW4HA4nEuMc5XJAQmlZx1zUpUAXHnbdiAssym1nXN+j3CpBsO5orC9ANWOA8cPLvdQLjllnakPIkky5/zhfWw5nAvgoeMVPDVXx6+87hokFAlvuWnivN4viQK+9JN34EihjRs35M/pPcNZDd/6yMtjKTOHw+FwLh3kKs0eUkohCOuHfRv7UzhktXClpYSiTG1wHvv8ytoCzqWi3HbwzGID20cyuH7i3OZLVzvcRO3C4RlbDuc8cX2C//Zv+/DJ757APz+5eMGfo8oibt7YF///i4/O4e4DZ3Y+7g5qiy2by7Y4HA7nEnG1Jk3O9FhIKGzaZ3tX1sZFUuSrdTHhuaCs27C953/W8lSaFlO1vZC2nfJlmwuGB7YcznmiyiJ+4s7NAIC/f3T+ogSXUe3sr/zL3liKcia+tncZr/rjB/AvT114YM3hcDic03OlB1mEULg+gR+sBqkJRYIors3W3n+sjK/tXcZMxQAAtCzvORljoWWhcw6Gh3GC+Tx2+RV+eC4q1Y6DR0/W8MCx8uUeynNO22Lnz5VWF865MuFSZA7nPDFdH198dB4A8LEfuu60kq/zYctQGn/yozcjqUgYySbO+vqJviRsP8D//o8jePmOYUz0JZ/1GDgcDoezypUeOE2XOzhabCOXUPCqnSNnfG07DGSLLQuaIsFyL332q2V5eGK2DgB4++7JM75WFAQEoFf8YsLlQgrnGQPpF14pUrROs6E/dXkHElLWbTx6krWYOtt5faHwy+DC4RlbDuccWWla+OKjc/jsgzMotm28ftcoXrp96KJ9/o/csgFvvGE8/v9C7fSOnLdvHsB/fukW6I6P3/z3g1ySzOFwOBcRQukVLwds2178d/QMsL2gJ4MbEbWeyyfZ39tGMpd8fOdj9hMFL+fzKLvSj8/FpD+t4u27J/HiLQOXeyjPOZECYfvwpT9nzwX/Oah/feGc2RcfHthyOOfIx79+CL/5tUP49IMnIYsCfuPN112y77rnYAGv/pMH8Dffmz3ta37tDddisi+J+46Wce/h0iUbC4fD4Zwrj8/UcM/B4lXdb9vxAjyz0MTJULZ7pXI6rdB6xjNR4Bv1ix3LnV0Z9GxJq0wUOHgOWcZsQgEAbB5KX9IxnYoXEBxYamG6pD+n38s5d6JAUpKuDB9s8SKo9DiXDh7YcjjnyM/94DZMDabg+gQ/evtGbLmED2BNkSBLArLa6asFkqqE//W26wEA/+uuwzDdq3ciyeFwnh94AX1O23IQQrHStOCtk6W8UNzws6yr9J66npw3Cg6i312qufm+xSa+tncZJ8odCAI7PvsWG6h2ztzGRwt7wPenlHP+roshVHJ9gplqB4cL7Wf/YZeQluXhkRNVHC1e2eO8FESmUeX22f1HngvWKWG/6HAV3oXDa2w5nHPk1k39eMWOYXxZX8KHX73jtK9brJvYu9jEweUWlpoWym0bjk9iF0pZFBAQipdsHcQvv3YHBtIq/uZ7s/jdbxzGr79xJ372ldvwqmtH8Euv3oHPPzKL7xwpYfNQGjdtyOPOrYM9zsiv3TWK1+0axb2HS7hr3wp+7PZNl3w/cDgczumoGSyAMd0A6TMszF0sjhTbOFHuYKIvids3XxyZpiyK6E8pyCau7CnS6YLT9QJbw/VR77hQZRGZhIxDKy3cNnXxZa1zNZblLrVtjOcTOFLUcbykQ7d9/PczqJyiEV8Mz4rz4Wqp6a12nPjPzrHc5R7Oc4oVBrbzdRNbrwA58sU+R2nYfzqhSPHPeFb4wrmy79oczhVAoWVhLJeAIAj4nR++Af/19dfE9UoRx4o6vnGggHsOFnC81Dmnzz1W0vF3j87hhskcxnNJ5BIKMl0TwYru4GhRx9HiqkRKFFh97TtuncQP3zIJTZbw8bfuwjtvncQbrh+7OBvM4XA4z5LnKuNQ0VkgXWhdvGxOUpWwdTiDsfyVbsq3OvkVBAEj2QTKuo3ZioG5uold4zls76qlna0ZuHY0C4A5zN666fT9bi+UXEJB2/aQUEQYjg9RYMZH+bNkYiMzq+mSjju2Dp73956pd++ZiN5zLnLpy0l/OOc4F3PJ5xvR4sOVEuxd7GF870QVdcPF63eNIaPJ6Dg+RrJX9vl4JcMDWw7nDJiuj7f++fewdSiDL/7Ui6HJUhzUEkJx39EyPvfwDB4PnR8BYDyfgCwKWG5aIOHcTpVF7BzLYutQGtmEAgEUZd3B/qUWDi63cXCZyYvuOVjEcFbDa68bxcffugs//4PbMF3W8aEv7kHHCZDRZDw+W8fjs3X86b3H8aFXbMP77py6YtwCORzO1Y/lBThW1HHtWPa835tNyNBt/znJ1l4qDMfHdLmDtuVdtCzwpeBUSWT0f8MJQCmNzaVOh08olItct7hxIIVDKy30pVTIkoi0KmOyP3lW5/4gfFhWziJZPh2UPruA4wqJmU7LQGge9UKmabo4Welg2xWQtb2Y1A3Wp7duupd5JM8Prt4nD4fzHLDStJBPKii1bfzVgzP4qZdvQUqV8fB0BX94zzEcWG4BACb7knjjDWM4sNyK2xtkEzLevnsCr9s1hju2DPTITCIopThS0HH3wQL+5alFfO9EFd87UcWOkQx+7Q3X4nW7RjGSS+BvPnA7nppv4GdfuQ2PzdTwuYdncP+xCn77Pw7jn55cwB++62bcvCGPr+1dQVqT8bpdo8/pfuJwOM8fHJ/g0HILbdvDaDaBTYPnvnAmi6xW8krJrlwIAaEICIX5HLTEOV+qHQe1jotrx7LYPJiGJksYyqqglML2WblLUmXHIDJvipg8JbhsWR6GMhc3MyTE7sYUaU1CX0pBx/ExNXhmTwpNEQEbuGEif87f1S0KuFB9QBDWHp+tBvhCoZSC0FXTrjOx3LSg294LTmp8PhwptC97YDuQUnHNaBbyRS62JYTCJ1Et/EX96CuKuuHisZkaxvMJ3LKp/6J/Pg9sOZwzsH0kiz9/9y34oU9+D194ZBZvvGEMf/StY7EL8XXjOXz41dvxul2jqJsufvCPHsBkXxIffs12vO3mSSTVtcFsN4IgYNdEDrsmcvjwa3bgviMlfPahGTy90MTPfHEPbpvqx2+9ZRfu2DoYy7Netn0IA2kVv/Cq7fiDe47iybkGfuJzj+NT77kFH/nnvRjLJfDSbYNXdcaEw+FcPiRBgBMQrDQtrDQtuAHpkbSeied6PnYpvy+hXJi/5mzVgCqLawLJMzFT6cDxCa4bP3NQ88iJKgCWwRvOauhPMwWRHxA0w4xPPqniunEZA+nekploIi6FPg91w40DWy8gkEXhWUuTdZsZbpluAAECDCdAsW2j2LKBjad/3+6NffAC2lOOcz4QSiGd1if69FzqlkEPHq+gZXl4y00TZw1un5pji+JTA2nsX2pCt3285roRCIKAluXh8Eobw1kV20fOX0lxtUIphSgIIJSiL6XildcMX+4hQRSFs16nFwKlq0ZZxZZ9XguKVxOUUlB66e7dfObL4ZyFP713GhTAbVP9+OG/eASmG2CyL4n/9qadeMmWAWQTCmRJxEg2gS/+5Itx/UR+3ezs2VAkEW+8YRxvuH4M3zlSxh/ecxR75hv44U8/gh+/fRP++xt3Ip9ScKKs48c/+xi2DKXxDz95B/7pqUWkVAk/eO0I3nD9KL51qIS/uP8Efv2NOy/+zuBwOM97sgkZt27qjx1Y52vGOQe2UXClO95ZF/YuJhczdyJLAvpSygUtDlJKsX+pCQCYPA/paKT+2TmWPafgMnJuJiRyOV59TyYhY3idGr2EIgHCquw3ckq2vQDfOlTEcEaLe7OX2zYCSjF+Sp1x3XAhiQLyyfVrZhfrrP96zXBBKIUXBMglZNjemR2mU+oF7OuuqfG5lnQ/115RLYvJwb2AQBLXvx4IoXGvVgAIKEUxdAAOCIUsCajoNsrhnzMFtkcKbQSE4obJc898XwiuT0AohSqJPWM/V46XdKw0LdwwmT+jakAQBLxu1yi+daj4bIZ7VUAoO24LdROq/PxtWpNJyNgylEZauzTPh+fvnuNwngUt08NH/2UvvrZ3Gd85UoIqifjOkTIcn+BnXrEV9370Fbh2NIsf/otH8Otf3h8bpdw2tb7k+HyIbuR3//LL8Ttvvx5ZTcY/PrGAN3ziITw8XUF/SsXmwRRu2dSHlCbhJ39gC979YuaG/LEf2gVZFPDXD81grnpl92DkcDhXJpYXYK66aoJ3QZOsq1hKl1JlbBvOYCx3/uZRF5rxfNn2Ibx029A5v59SisW6ibv2r+Bbh4qQRAGbBliGZ6ai4z/2r6x5BszWev8fBYZRjV93feujM7W4rKabh6creOBYGZRSNE13jUlYPHzKsreiKGKpYZ1Vmu74AR6bqeHAUuvsGx99RY8U+co84d6+exJv3z2JjuPj8Ep7zf6q6A7u2r+Ck5XV663bqTk6HwZCc6vhs0jH52sGZp+DZ//+pSa+daiIxgXWhZpugJblxYss50LTdOOFs8tJrePga3uX8bW9y+c1/vUotCyoEru/aoqIbcMZvOraEYzln78mYV5AMV3WsdSwLsnn84wth7MOf/foHL7y9DLuO1IGgFiK92c/vhvXhzVA/WkFhLKHkBsQaPLFXX2SJRHvu3Mz3nzjOH7r64fwjf0FvO9vnsAHX7oZX/jgi9GXUuKHnh8QyJKIPfONuEbjt//jMD7/wdsv6pg4HM7zH8cnKLTsWOaqSFfwGvgliGdM18d0qYPJ/iR+YMfQmt8/cqIK0w3w8h1Dp13IPN/nwfnWulKKOKiIsrdR8Gg4AQJC0bR6zaOielIAuGVjP3JJGeW2jSfn1gawrK9sbzDaHZQdKeiYLjODse6aUAECWJhJIQqAKonYOpzG+Cmy7Mdmaqh2HAxlNGwZSmOxbqLUtqFIIm7ccP7Zxiu9a08kIR/MqBjNrQYt02XW9eDg8mpA370tUTL0XM2jHH81k38hmdRzJaXK6EupMJwAaS047wX9XeM5XDOaiYO600EpheOt9qh+8HjljPvB9gIm4x1IXbLtD7oOkE9On4k/G5RSPDFbx0LdjBelmqYLQrGmjOD5hCaLuGVjPxLqpXmuXMFPKw7n8vH+O6dwzWgmlhH92Is24K5f/AFcP5GPH+4j2QT+/Rdehk+9+5aLHtR2M5jR8BfvuRV/9uO7kUvI+Nvvz+FHP/tovPq+UDPx2j99EA9PV/DiLQPYMpTGQFrFd4+Wcd+R0iUbF4fDef7SnWC7ogPbZ4nrk/g+HxGEJi7WOuZRXkBQ7Thw/OC0wdRz0YuV0iiIjP6/6oKcC2XC3Y7HQxkNAaVxoLRpMIW+lBpLoE/ljTeM44039LaQi5JTaVWOM6Sn7oNV8yi2H0yPOWSvNHuzM5YXYLZqYLlh4onZOjoOkyr755EB637lxWz3dDFpmi7LiIeD9QLS8/sosOvOaNNI4itceM3zpY7zO44Pw/Hx1HwddcPF8ZKOZxYa5/z+6bKOew+XznrcfELxwPHyOX/u96ar2LfUjPspX2qezYJK9N7oCAeE4nsnqnh4ugLHv/KM6y4WDcPFoZVW3KrtYvP8fVpxOBdItePgZ/5+D46XOhAE4AMvncIfvOtmJFUJX31mCT/1d0/FN52xfOI5ayj/9t2T+NavvAIv2z6IE+UO3v6pR/DtQ0V892gJczUTdx8sYqIviXt/5RX4vR+5Abmw7QaHw+GcD5IgxNJHAGfNqjzXGI4P0+29t13obfg7R0p44Fg5DqyA1RrUbGKtqE2RRLz1pgm8+YbxdWuIA0JZluk8J6aRtNFwzu2eXTMc6F3tfLyAxpLiwYyGa8eyPXW2kXHUuU7ErXWkotGiriAA10/k8fbdk2tMdGIlMmWv120fMxUDhWZvAPPKHcO4c+sgZEkEoRQvCtsqZS6w7o6ZLZ25vdF6XOxMb8v0ehZEHjxewcPTldg4KndKbXKUqb9mdLVullKWCezODLZMD0/O1c9JZiwIwjm5MD9bKGVqgf1LLRwptLFQN+H65OxvRO+izJlft9bd+0wY4X3hks59us6ZZyNFFgTgRZsH4nMgoUjx5y1fIpnuxSAyuFqPWsfBPQcKa+7P3QSULRyScztVzpsr62nF4VxmHjlRxVs++T08MVfHdeM5fPe/vhIff8v1ANjE46P/sg/3Hytjz9y5r0xeTMbzSfz9f7kDP/eD29BxfPzMF/egbnr46/ffhv/1NjZOWRLxhuvH8NCvvQoty8N3DvOsLYfDOXeyCRm3Ta22YVDkc58kR5NQ+RIGw9PlDu49XFqTBbwQogxap2sirEgi8knltIZGoiicVuZ4ag3lqRBC8ciJKvYuNgFgTSBAzvL+nWM5ZBMyDq+0WU0sBY4VdRxeYZnXXELBlqE0do7lMJI9fZ3evsVmbPS0Hs8sNvDAsXIcKLCxsb+94PRjjDO24f9Nx0fL8rDS6j1Wj82yGt5oAeB7xys4UtDPGPB0HB/zXZm4U/f1uQRVhFJUO86azOnFwAsIHjhexrcPrzU6ilQP0ikrMOvtSUIpnppr4On5BvxwnCXdxkrTio3JTockChe9Dc163LqpD6/dNYJEqFYj5xngRRLss7VZkiURL79mbTnA2XguAnugV5Z8vgiCgJPlTrxAltFk7LoEbssXkwNLLXzrUBGl9vqZ9rv2reD7MzU8erJ22s8YySawYzTDzaM4nEvNXftW8P7PP45i28Ztm/rw5Z+7E1uGMhBFAQ9PV/Cr/7oPAoA/+/FbYufIy4EkCvhvb9yJv3jPrUipEj553zS++syqiUGxZeOPv30MJyodfPzrh/Ar/7wXx0N3Uw6Hc/XyP//n/4QQyhOjP2NjY2d/43liewGOFfXT/r7QYhPs9YxcoozUpZxWSoKA4Yx2XnVoZws4u0lrMraPZE5r4LLctHAw7PO75nvO8tkeYVLmhulioWbi7oMFzHQbB50l3rp2LIuXbhtCJswmOwFBx/FXzYcE5jj7zQOFnsC1eMpEdK5moGa4PZnujWGdX8fxsdywYLlBb8Y23DrHZ3WM35uu9gSawKrJ0faRDCgAKexrfOqxEiCw7w4zu6YXwHL9NSZQuu3hRLkDSinuO1LC3sXmaSfVUQ/lM7HcsDBfM3GizPaXJJ3bmTpT6eCJ2foZzyNnncA6Mo9KhZP4U5UF0f7tzoJRrJ5HPqFoGC76wutqMH3mWmxKWYB9/9Ey9oWLJxeK65N15fgAc/G++0ABuu3B8QMcOc0cw3T9M+6zsy3kABfWE/tS9tHuHjF9FusjlFLM1wy0LQ9vumEcmizGCsDzTQTbXoCWef6KhfOh4/gotCyYrn/aRaSO40MQcNrz5nhJx8HlJo4V9UsmF+eBLecFDyEUf3jPUfzSPz6DgDDJlhtQzFTYRXdwuYWf/eIeeAHFb7/9Brz15onLPGLGD900jq/+/Msw2ZfENw8U8f7PP4GW6eFX/3Uf/uL+k3h6oYEP3DkF3fHxrr989IzyEQ6Hc3Vw/fXXo1AoxH8OHDhw0b/D8QkWzpDNq3VczFaNHvluxKkZu0vB9pEMNg6kYHtBHAidKdO3WDfx9X0rqJ0lOxRhewH2LzXXDe4dP8BTc3WcrHRgOmvvqdE8PZdYvx2OKonIaDLalodjJRYMdH/P2TJAfkB6Jm6nbnXb8lA3XHgB6XGsjXwgUl3yaUopkspqVjoKBgJCMVPpYLlp4WS50/X61e85UmyjZjj47pEy9syvBnxRXW9aldC2PVQ7DlRJxJahdM84KShUWYQiiSAUmKsaoAAOr7R7AvLvHi3j0EoLR4t6/AyL5Nqn7imha8fMVDrrZgMjh+9IXp9LKBAFITTLOj0HlltYbpiodJx15ae2F/SYc51KNGbzlAl/VN8915OJXs3wlloWHpquYK5m4u27J9c1M+smChSjfX9wuXXO8uBTuftgAd8+XFw3G5tUJWSTSnzOrHfaVnQH9x5mpVKn42xxLSEUphtgQ//anq6uT/DAsXLP+UIoZdfIOoezojunLRE4n/lR95ifTcbWDyimyx1MlzuYqXZQM9yuutPezz280sbexea6x8LxA9x9sIAHjpcv6TyvqjuoGy429KdOa3a3cSCFWzf1I59a//53pNDGTNXA7o19PaZzFxMe2HJe0Oi2h5/++6fw6QdOIqPJ+NS7b0E+qeDAcgsBYatpH/zCEzDcAB9+9Xb8xEumLveQe7h2LIuv/PxLcd14Dk/M1vGuv/w+Pvya7fjx2zfi/XduxkdeuwOyJKBt+/iVf957uYfL4XCeJbIsY2xsLP4zPDx80b+DZYxO3yM0Mvjx15nIR/Jg/yIUUJ1uEtowXTy90Dhj8N3N06GpzZHC6bPQ3fiEwgtoHITsX2rie9PVNYZR67WYiX92mjhbEIQ4GIj+7jbnOlsG676jZdx9sBhPYLcMpXHNaKZnJOt9xhtvGMNHXntNjycEBTCUWc2kZsK+vfmkgusm8tg+nOlZvIg+ti+lxmOfrRlYalioGadk7wW2fQNpBQMZNe6H27I8tG0PphPECwOUUiiyCFEAyrqDYyUdDx2v9EzSHzhWxqGVdrwPbS+Ia4pPxXB8HFhuxU7E3chh4K2cEsieS3yy0rLxncMlPLPQwH1HSjhZ6aDj+HjweAXfOlTEQ9OVNe9pmR5alhdnrE+3/NKdYSThtaNIAiodto2F1vnL7qNM/qGVc2+htB7BOtdy3XBhOQE0he3H9c65KGv3bIItN2DB61Jj7bU+WzXQsrz4+gbYItGRgt7jpAwAZd3G909W8dDxtefEdEnHtw4Vz1q/XNEd2F6AoYyK6ydYUHa0cOFquO59dqyoo264KOtMjXDq7pwu65ivGbEDeoQfENxzsBibwJ263c+GuuHCCOX/CzUTgsAWNIaz2ml7lJuuj1LbXmPI103T9HCkoJ+xDvfZwNv9cF6wrDQt/OcvPIljJR1Tgyl87v0vwjcOFFAzXPzQTePYNJDCj3z6EVQ7Ln7sRRvxK6+75nIPeV1Gcwn8y4degp/90h48cqKGX/6nvfjHn34JEoqEhCLhv77uGvzBPcdw98Ei7jtcwmt2jV7uIXM4nAtkenoaExMT0DQNd9xxB37v934PW7duPe3r/+qv/gqf/exnz+mzjxw5AoBJfYcyGjq2j4DSNZOsKEMyWzOw+ZRMXMyzTNkeXmljuqzjJVsHMZpLwA8Ijpc62DiQhCQKGM8nMZTRzlqj1zuk0w+q+3demOGKZNXRhNfxyTkZac3VDCiSiFddO7Lu71+2fQiiAMzVTBxaaWHzUDoOPs4W2NpeAEIpmqaHsbyEGybzWG5aPTWjwxkNfUkV/enerEnylJYslPbukcWGie0jGQBswuwFBKlgdZoYv5pSLDWsHultlEmKJrTHijp2juWwaSCNmUonzh4/cIw53O4YyaAvpWC5aUGEgN0b+zBXNTBXNXC8qGOyP4kT5Q5EQQChdE3d6JFCG8eKOnTHx0hokhXtujPtwehTCKF4cq6O8VwibNl39hO23LbRn1IwUzWgySKapovFuhlv83rHLnL0na0aAGXH/mixjelSB6osYq5qIJ9UcPuWgbjlT0ApkooIWRLj7LDp+tgz38BwRsOmwbXZyzNhrKMsOBvRopIfENy1v4BtwxncvLEv/j0hvQ7Wq/t+9WeZhIwtQ2n0p05fMnC6vW57AZabFsZyp68Tz4fXZ3ReE0Lh+gQZTUZa6w1v2laUMV8bTB0rsQWvuaqxRlkQv9/28P2TLCh+++5JbB/J4lBU574OkYz7dJlLgC1obR/JxDuhW65/rrdPO7wG11tkfDa4PsHDpyzUTA2mUWjaWG5YGEir6Euqa3qcG06AxbqJhCLhqbk6FEmMz5uodIUQ1iJzPQf0gFAcXG4hqUo9hmrnAw9sOS9IDq208F/+9kmU2g7u3DqIa8ey+I/9BXz2oRnIooCPvGYHfv4fnsZczcSrd47gd3/khufM/fhCyCYUfOGDL8Z//dd9uGvfCn7ss4/iH3/6JcgnFdxzsIisJkN3fHz4n57BA7/2qh63TA6Hc3Vwxx134O///u9xzTXXoFQq4X//7/+Nl770pTh06BAGBwfXfU+hUMDTTz99Xt+TTcjYvbEPn31oBgBw84a+nt9HwUbT8DBX7Q1uB9Iq6ob7rHpI2l6AQystKJKA2aqB0VwCx0o6TpQ7WKib0BQRbcvD9RPZc66d7Tg+CKUwHA+mSzCUUU97T1ckEbmE3CPbBcLgretH63216xPUOutnEgFmlnO8pGOyL4lo+to9jLMlum/d1I/DhTaSkRx3NdYEwCb7O9aZED6z0MBSw4Lh+PGkn4b9MjcOpGA4ftxLE2DZqeWmheu7zGyieWixbWO5afVkc6PfRYGYbrN6WUIpNEVak7X79qESFFnAYJplf/YuNmMZZhQg+oRiajCF2aoBTZF6gtvxfBIzVQOu0fW54RjOdOqVw+9YrJtYaVo4WmyfVjYesRyqEKLDXdEdbOhPYqVpn3MrrLrhQhEFBITG0vOjhTYSigTTDXoyuRTMnMxyA7gB276ZioFCy8ZEPolNg5vW/Y7zqSOfqxpYaVl4yZbBNddq03RjV+G27SOXkDFXM3oC2zu3DcIPCOqGiyfm6vG+6R5Cf0pBUsmecUHpdBxaaeFYUYciiWuCp4hIPt4XBs4U7JyxvGDNvjjTORGds+vdDlyfoNCyTvv+07V6fGq+joru4PW7xk6b3RRFtoAYLUrluxyzTz2Urk9wtKDjmtHsGidygC1AEEovaF9TSnFopY3hrBb3WO5eKItq7xuGi5rBjNe+8vQyxvMJvO3mifg+GhCKx2ZqIJTi1k39WG5aSCgSbg4/58HjFcxUOmjbPnZv7FtjpBZ9xv1Hy7D9AB957TXn3R8Z4IEt5wXIA8fK+IV/eBqGG+Adt0ziv77+Wrzyj+4HwG6KP/3yLfi7R+fw6EwN145m8cl333JJHT4vFqos4hM/thuyKOCrzyzjxz/7GP7wXTdhoW5iLJ+AXu7AcAP86r/uw9/+59uv6ECdw+Gs5U1velP87xtvvBF33nkntm3bhr/7u7/DRz/60XXfMz4+jltvvfWcPv/IkSOwLJaJ6677PDUTFU3yDhdaEEVmaOcFBBN9yTVZwQvh+yerOLDcwu6NffF3RxNtxw8wmtMgCQK+daiEhZqJLcNprDQtPHi8gt0b+tbNkpTaNjyfIq3JsNwAN23oO212JpOQsSORjSfME31JrDStNbWV600hzya7nK0YWG5Y6EuqyGgysgkZSldB4Nlq9jYOpJBQpDh79I39K9i/3MKNk3kATKZ7pNDGTKUTLjJ4ePGWASzUTRxYamHLcBo3TOZxcLkFGo53rmpACifZh1faSKlS7GLcLdmNggXLC9ZM9B2f1SUvNy30pxTcuqkftktwNJRYnro4AgABYRk+SmnsSr19JBNnxVmmNvp373vH8gm8dudoT4/T9XrrUkp7nnVRltkLP1AOs/+DmfWzilFNdTeRm2tGk8/a1untuycxW+1gsW4ipco97ZxesnUQ/WkVRwrtHukmIRS2R3rOpablwfHJGZ2uz4f7jpZgewRbhtKxTDziweMVtC0PuaSC0N9rDYdX2pipdnD75gGokrhuUG17BN8+XERAKEZzCbx4y8CahYDTne6SKMILs3qnBrYsiOvumcw+JJJw+2HmtptzMZNaz3zswWNlPHyiihsn8/E4yrodu/5Gxz/KMG8eTPc4MrsBQRK990TXJxAEpoypGy4oaLy4QiiTfp8aoJpuAI+wILs7sJVFAUFAUdIdnCh38Mpr1leJnImVpo3pko6TlQ7evnsSQO/+unUTc8i//2gZA2kVpbYNSikCwv5E8v7vHClBFADHp0hrEjYPZdbcMxuhwdXexSbG+5LYMZpFQCiWGxbG+xIghKIeZnZLbRtTg6dRBJ0BHthyXlD80xML+P/+/SACQvHhV2/Hr7yO1Rz9/jtvxK/+634MplUMZzX83jePYiCt4nMfeFFcd3Q1IIkC/vg/3QxREPDlp5fwq/+6H3/wzpvwAzuG8FtfO4R/27OEB49X8PV9K/ENjMPhXJ2k02nceOONmJ6ePu1rPvShD+FDH/rQOX3ebbfdhqeffhq2F2Chy/Dl1MmncIphzHzosLvYMJFLKHj5juF1e8ACrJ7tcKENWRTxQzeNr/l9uW3j0EqbyWTpaq/D7gnSdeM5LDUsLDVMWOHk3w0ImqYLJwgArA1sm6aHtCpjqW5iMKOh1LIwkFLWBD4Am3geK+oYzSXwymuG44nqerLsbqodB98O26utN40utmws1k0sNyxkEzI2DqSg235v5vMsdqiWG8Bw/HjcPQ6tlGXbCKFoWR4em6lBEAT4hECRBHiEYCijYbIvCVEQkFYlVHQH+5ea2NhlztMXBjSjuUSPjDRqf0Qp1uyzluVhNpTVvm7XGBKKhEMrrXh7pgZTmAvluBCYO3ROlZFS2UIDBYUiiqh3XGSTMpKqBEpp7IDs+UHY+7JL/noO2SkvoFC72lVN9iWxWDeRC8/PlCrjxVsGzvo5EYIA9CfZPhnMqOfUb/TgchuKJGK+ZuDhaeDlO4ZxYLkFTZGweTCNI4U2ml2OtgGhcZufiKQi4bap/rgdzGLdxFDm9LWOZ4MQFjicbhdGP14vHiSEQlNEZBMyZFE47SJ5VA86U+lAEgXM11al7mfjpsk80qqEgytra1gfnamhbrjxwlQxDLQa4eJAQCieWWzgRKUTL2CJggDXJ/FCSveY79w6iIbpYaKvd9HgviMl7IvaK3Xtp/Vkv4/O1NC2PDgewa6J3GpguM7+vftgAQDwmutGcDyUQd821Y+VpoVDK8zsa8fIquqCkNVM7KnzUVUSmbN32DN6vmagL6mwRaGuRQTD8VHWHWQT8hrjp28dKmC+ZuLWrhZv3YfU8YN4ewbSKigFCi0btkd6FpxsL8C2sC7f8QhmqwZsL8C1o9k1qoBXXDMETWbbcmilhdmqgWI7iesncsglZMiSeMY63TNx9czYOZxnAaUUf/Lt4/jU/ScgiQL+8J034Udv3xj//jU7R/GBO6dw/UQeth8goYj4zHtvjSUYVxOSKOAP33UTJBH4l6eW8PGvH8K//dxL8T/efB3mawaenGvg418/hDu3DV601V8Oh/Pc4zgOjhw5gpe//OUX9XPXc33tZvNQiskE5dVsmigIWGlaeLJRx61T/fjB02QOooyZ6fqwvaBHahYQii98fw4rTQtq6JYbZTAjaZwgCNBtH88sNFDWnVgunFIlbBlK98hKCaFwfBIHCQEl8fcfWmnj/mMVyCJwzSnunG4QoNCy4oC21TVh7ubULJXlBmsCEoDV5xmOD932YXoBjpZ05JIyBjMqDMfvycx1Z8fnqgZUWcRE32pG7f5jZZR1GwlZYsFf1/cQSiGFgawXEHiEQpVWt6FpeBAAJBQpDgq+e7SMlCqj1nExFJaovGjzAAJK0bb8ngmuJApMeknXBjzrBeQT+SQEgU3Gv75vBbdN9aNlecinFNguAeBjJEfhBQQJWYKNAKW2BYoEhjIaCEUc9HfCYD5qsfToyRpWmmb8mtmwPrIvpfbsEy8gUGURpuvDCygcL4BueXGGti+l4kRZR0CYGeOpdGfxJJEZf7EFBbbIEX2X6xNYXgBNFuNzmlKKlumhotvYt9iM928kXzVdH7WOAz8gPeeW47NAv9iy0A4z2f2hCmEgrWK5aeHphQYUScSbb1xdHBLC2vhT6843rTOPEQQmuT+132t8TtPVbe7eoU/O1VFo2chqMgwnwEzFwKaBFBy/P3z/6msroRFSPlwI+M6RIg6tJHsW1dfL9FJKWcuxko75qO5VYNdR9wJAZO4mCAIen63jSKENLyA9WeH9S01M9rHzcLrcge0F+OHdvYsdI7kERtap5e04PkRRxC2b+rBrPIejRR1Tg+k1sSqlFNuGMlhuWnGZV6QwWc9ETxCYh/upm17tuHGmufue4BOKlCpjajDVY8L28HQF2YSCt++eRK3jQFNEbOxP4r6jZZiuj7feNBEHlC3Lw/6lJrYOZXoCW0IoAro2/u5uqXXPQdaXeSSbQEKRsGkghWrHge0Ha7LphLJtX2paoJRJ1ruRRAEt08NMxcTOcXa9RdeLJovwAxqXUlxIbTjAXZE5LwBcn+Cj/7IPn7r/BNKqhM9/8PY4qH30ZA2EUPSnVfyvt9+AHw3dhB/69Vfhjq3r16xdDUiigN9/x014680TKLRsvO9vHofh+BAgIKVKaJoePvbVg+dVk8PhcC4vv/qrv4oHH3wQs7OzePzxx/Gud70L7XYbH/jABy7q9zg+wVBWxWBGjTNb3Yzn2OQqqnn0AoKAkLD2lk1sCm17XaOWsXwCluvj0HILX3l6Mf65FxAUWxZSqgTXD+IJdxToRRP/KIs3lksgn1DiAKtpsoxhd21Y0/Lw7cNFzNdMyJIA2yNxIFzRHczXTbj+2ntgseWgbftxgNAOA1vXJ+v2ro2QJSHO5ox29cC9/2gZT8zWYboBVpoWhkLjlbbl42hRx2Kju11JtD0u9i018eRcHcWwd+TexSbmawYoAWrGWtOa1ZY7Iq4dy2EsXLjcPJjGfM1Ew3TX9Fo1XJYxdgISH6+0JuP2qQGUWlZsuhMhCOtLPaPj1LF9/Me+FTw5V0d/mrkhR8HkiXIHJJxCXz+Rw80b+jBdYu1ONg+nsaE/haQixYEfITTO/C82LJTaDg6ttNEJFwMcn2D/UjM294rMl7qJzod7D5dCZ+UWqoYLSRTwxhvGcNumPhxaaePoOn1YmRkRm1zLIjO4SigSbI/tE5Y5Z6+N+u0u1EzMVo1YpvngdAWDGQ0jORZMvHbXKAbSCl60eQBzVQOPz9ZQajtrJOillgPLI/G5Z7kBZisGZqsG9PAc9NZZRFkvd7peVjdqCVVs23hqrh4vyJxqAiWGqoDIxMl0Wf2q6QawPHadd5+L3Vn0XELB1GA6/v7os6Oa5dPxyIkavvjYPBZrJuqmGy9uTOSTmOi6rtLh5944mUepbcPxVvvuZrXVBa6lhglRFGLZsH6GazjejnCwRph9dOP9Q09ZiAL2zDeQVCXcuW0wDmyja8lep9XSi6b68aLN/UipMnaOZbF9eDWLHaki5FOc0jVZxFBGiw3tovOrabp4ZqGOg8stHFhq4VChHS8oOD5b4Fqsm0gqIq4bz2E035utFUUBr7tuFDdM5jFd6sR9qfeGPZC754h9KQXLDQul8PNzWq8yhlKKhumiZrgotW24AQGl7DtIfP9mr7O81R7ZUa20pojQHQ+LdRNl3bng+SnP2HKe17RtDx/6+z14dKaG0ZyGz3/wdlw/wWqRnpqr491//Rhetn0Qn37vbdi72MQrr2GtM54PmUxRFPAn/+lmtCwPDx2v4Bf+YQ/G8kls6E9Btz0MhpISXmrL4VwdLC0t4d3vfjeq1SqGh4fxkpe8BI899himpqYu6vckVQnXjuXiIOvU+jRJEpBUpDj43DKUhiAIeGa+EbebeGqujs2D6dhwhhCKf3xiAQDLhCy3bNRNDzdM9uGmDX349qESGqaDfFLGWJiVoFiVnnphwHisqOPgcguDGRWjuWTcBmUsp2HLUBodx0c2zNpGEyNRFJBWZbQsL84w9KUUGAUfJd3GNX62y4SJoti2kVTWmtYcK+r43okqxvMJTPQl12RcCF2VXyqSuCZ7JAAwHR8V3UHLdtG0WS3ZYt2M1UHdxkkAm5x+70Q1zhaeKHew7TRyzmg8LcvDy7YP4UihDcP14/dSsEm97QU4Ue4grcnIaQoGMyqKLRtHCjoGQ2fWQtvGcsuG25VJjN670jJRbDnoTymQJRHFlg2fMOfiI8U2pgbSUJoWCKGwPB+OT1A1XGSTSpwpXWpaMB0fDdOFpkh4eq4BURR6JrMBpdjQn8KRQhu5hIxCy0KxbeHBY2X8/A9ux7/tWYIiCYhiB8cLsG+x2WMydWoimYJl992AQpMlNAwW5Kwnp73/WBk1w4EoCJiv2aCgmBpIwSeABqBquHGtcTRJny7rGMsnMVvtYHNYH1jVHZTbDvIpBRP5JB6dqYXya1bfqCkibC+IFQySKCKgFJ5PUNUdjOQENC0Px0o6lpsW3r57AksNMzQgW4UQusal99qxLIptGxXdwbVjWfiEgBKKib4kfELw+EwNI7lEbDomigJev2sMhZYVt5ChYHXVZd1GPikjozE3bscjuP9ouaeHdPc1MZJLIJdUMB3KbV+1cwQ7x3L42t7l+DXrOd/WDGZcFgWxUdLc8oI44OtuORWZEAnCapBUNx0MpFn2+nhRx40b+zCc0VDWnbh8IeLB4xU0TRc7RrLYFbbxibbDcP2wPpoF0UcK7R7H5YbhAqDhcekt79JtHyfLOtKqFNfrA+hRYLx65ygen2X1ut1Ze6nbUI5SlNsOim0bO0YyyCfzPd9z35Eyjpc76E+pmKkYqHWcOOt5YLmFxboJWRLhBwS7xnPx/NZwfDw5V4cgCLhhMgcBTGLcXdcqCAKmBtPwAgJCWOA6nk9gLJ/ATZO947D9AIUWC3qzmhy3L6KU4q79K/G2ZJMK0pqMUtuJ1QSzVQNN08FYLoXlpoW0KuO6C+xzyzO2nOctDcPFe//6cTw6U8POsSy++vMvi4NaAKFZhorHTtbw7s8+hg9+4Ql8Y3/hMo744qPKIv7yJ27FLZv6sH+5Dd328fkPvAgBIbj3SAmdS9RHjMPhXHz+6Z/+CSsrK3BdF8vLy/jyl7+MXbt2XfTv8QOCmUoHs9UO5mtr+0fWOg4m+5PxxDqpSHELB69LejdXM2Kn24BSHCvp2LvURMv0YHs+/IDE2TafEBRbDg4tt7FQM2F7ARbrVpwZjCZ9gxkF+aSCobQWG9scK+qo6A7u2reCbx4oxK8NCJO5tm0vbuETb4PhQpVFqJKIY6V2/J6W5SGlSBjLJ9e4x0eZpmjyBrCa4fuPllHRHbQtLw5sG4aLh49Xcbykx9mwXFIBoSxo3bfYwlKdfZ4silAkEZN9ybjWlRCKYsuGbnlhloNl7cqhSUw88Q6zWaos4hXhwuxSw8LX966g46xmprYPZ7B5MA1NluAFBCcrHRSaFpyAuThHAZogCHjoWAWPnawxGW/XDDs+FmFcEO2z5aaF+aqBk2V2vsxUO5BFEUtNE+W2A2DVAKhpeNi/1ILrB5AlFmxHmR4ASKhS3PaE0tVFFVEQQAkzpomMzV67axTXjK5OfluWj7magYNn6Nval1IxmmMmNd8/UY0ztVPryHU7jg8/YNmlrMbk2pP9SYzmVs+L6DhooZwyki57AY37BG8eYllL2wvwyIkaOjbrs5tSJVw/kY+lodG1Fi1uOH6A5RZzsqZgQToFxeOzdZTaTk8f35bprasmqHVcPHayiumyjqpu456DRXzivmkEhMBwAthhFrM7Y5xUpXh7SFjr3rI8PHqyhlxCwW1TAzhZNnD3wQLqoVPunvkGvICskbQ+cKwS9x9ez5xJltZfWY/Ol1s39cdZzELTjrOl20cyscw3yugKgoBMV+30NaNZOB7B92dq8WLYtuH0mhrTqA1NdwY82g7LDbDSsvBkaCB2vKT3lAvkEjKun8gjqUj42t7lnmy0bns4WTHW1Ired6SE701X4QUEZd2OZcuFloViy0JVd7Chq+Y9CJ2evYDE94zuBSBRFOEFrAxBFFfblAFAPXRor3ccaLLUIz0/Wmyj1nFwoqQDVMCO0eyaxRIA2L2xD7dvHoBHCPLhPSytyii0nZ7sNyFs8S6piMinFGzoT2I8n1zXUO/xmRruPljAV59ZxqEVZp52YJn16nV8liG/EIdngAe2nOcp1Y6Dd//1Yziw3MKtm/rwzx+6s2eVDAD6U0wKJksifuz2jbhuLIcf2DF0mUZ86UipMr7wwduxYySDR2dq+KuHZvCSrUOodlz83jeOMEMPDofDCfEDivmaiVrHRbXjIKC9QeFy08KJcicObKodB08vNNC2/TVSyMi9l1AKSRRgOj7SCRkBoUiqUk82mIICAst6lnUH1Y6DUtvB909WcbLSQd1wUdE9XDeew00b+2K5X8fxsVC3sBz2Vo1bzjg+WqaH6VIHhwptzFYNrIQTT9sLMNmXZJMon6LcVVPmU4rFuhlPCiMix+dInk0pcLjQRtv20LJYfVwU/HUcH0eKbRwptLEQ9v0VAUz2JzGQVuOM97bhNPrTCryAoNCy4wl9ocVa6pR0G4SyAF0UBWQ1GVsG01DCgGC2aoBQCtP14wm35zMjLctlNcVt20PDdKHbXo9xDsVqEJVUZVw3nsV4PoGm7eJEuQPDCXqky1HWKZeUMZxVeybJhKKn/jGtSbGMmQJx9i2tscC6YXrIJ9VQ2svGmVZlFBpWPFkmoewzq8kwXR+SJKA/qUAWBXz7MKv7c9cJRnoNtVbl2ZIoxNk9LyCodJxYenlqwtb2AqiSCE0We1yrHY/En1FoWfH+S6sSdoxmYkduShGebzYePF5BRpPRcXwcXGmiY/ssIOy46EspsXlV9/FzfYKAUojhFZUM66K3DmViaW+0/ymleOB4GQ8e7+07CrBrMzqGlkdiGXHb8mOn8FOhlMZj6a4j3jiQwnRJxz0H2eJRSpUgdEURx0t6T6AzXdIxW+1gJKdh/2IrPhaaLIFS1tM3ClpP5frxHDYPpVE33Djr7hMSB8lPzNbiBbDpso6lhoWW5cYLDdWOg4PLLSzUTRBKsVAzoUgiUqp82hYyPfei6LwRBVQ7bpyVjhaZIhRZxLbhTJwFXqr3LgSqsrhG/t9xfNQMBx3bx7/tWWIGUl3j1h2/1yWbsgUSAPH+7j5q+aTM2pNpErYOZuKWPRQ0rhu/YTKP68azceAPsPu84QaYr5v45oEVyKKwrq+MFzCfgrkqkwiP5DQUWhb2LTbiY3O8pMP2AmweSmM0l4AqS2hbHqbLOkyX9bbdM9+I7xHbR1hW+MByC3XDxUBaZQtGggDD9mG5Po6XOnh8prbOkTozPLDlPO8otmz86F89iqNFHS/ZOoAv/uQdp/QHYyuQv/m1g3ADgg+9Yis+8NLNuOuXfqDndc8n+lIqPv/B29GfUvDFx+YxNZiEKAD/9OQiXv0nD+Ceg8+vTDWHw7lwyCnuv90uoISs/s4jbMJTbjsQBLZSf7oMzD0Hi8glZKQ1GeO5BKYG00hrcpydA5jJUEVnwaQmiUgpEjRFRCUOcm2IApsYHlxuYaluQo8dhSnyKQXDGa1npV+VxR4nUd32QQhFreMy184wYxVNTIPQeTfqh9lN9NpkOBnPJuQ4OxJNJtOqDEpp7CwMIJYueoRgLJ/AliFmQGO5ATR5tT9rdyYo+u7lpoVDK23M10xosojNQ2lsGkyB0lWX0qG0hiMFHfcfK2Msl8BIToPlBXFGSxZFlHQbSVXCLZv64nFRijigV0Q26VdlEW+4fgw3bsghn5TjbBLAAql0+Jp8UoEkCnGAnVDYdHLTQArXT+Riye9wVuvZ/3WTGWktN0y0bQ8bB1IYyqrx5wWUGRSxgJ1N9FuWBzk8H1q2BwJg/1IL3z1aihUB0TnQ/Vf3PwmlEAUBczVWp9qXUlirlfAFs1UjDmaOFNr41qEi/IBAltg5HYR1josNE80w6OjOmMa9UON9S5FR5biWkEmNCSr6aj1tw3DgBiygj44HO/Zsn0eBlnZKIBbtTzE+b9jP06oc18JGbBpI4QMv3Yy3756EKosQBAHDWQ0eIWGgJ4XjZp/l+AG+vm8Ff/fIHGi4zVEwx6SorO3QbM0ApSxBEO1k2yNx1plSim8fLqHQsuGHSo4Hj1fwtb3LqIULYfceLsauwN0MZzQQSnFwuYW5moEgPI8zidX7hesT7FtuxYFuqW1jsW6hGJ7PosACYdP1YTg+BjMqjhV1HFhundZ5vHuhJnpFSpOxZSiNqaEUNg6ksH0k02u4RZnC5eYNfRjKaLGMN5dUIIsiErK4ZrFPCWXBp9b6ej5BpeOiZXl45GQldqYnhB2HqYFULN3tvj8fK+rQZBE7R7PYPsrKFJYbFo4W9fh+rNteWKPPPnOuaqDQtuPrt237+M6RUrzQ0z2mv//+HL62dxnjfQmM5hLIJ1S0bR+EshZLXkBwpNCOP9twfCw12ELChr4URHHVgK9luWiZbo8SKJ9UUNGd+BoczSeQVGWUdTs+nucDr7HlPK9Yaph4z18/joW6iVdeM4y/et9ta1bn/vWpJXz+kVkcLeoYSCv4+VdtB4A17oDPNzYOpPCZn7gNP/G5x/EX95/ESFZDsc0mBR2bS5I5HA6DTX7VuJdpNIkyXR/3Hi6haXroSymYLnXCiZEATRKwNTRBqXWYMc1oLgFBYEFtx/GwdTgDSRRh+QF02+upVUsqElRZREIRQSjBYEbFNWNZpDUZt2wK3XSTCvYvtrBnvoHrxrMo6y6qhoOhjIqOE0AMg8GFmhlnhdKqjHyY5aNghjaE0rhuT7d9DKSDeBt9QuM64VOnv92TyddeN4q0JuO2qX54PkFKlTGeT2CyPwnTDdC0PKR8gsn+ZJzha5oe5msGKroLKTRhOlxoY+doFocKbSRkCYdX2qh0HLRMF44XxO2OujPBpuvDDQIQQrF5MIWK7qBuMilgsW1DkUSM55MQBAG2x2rc/IBCkUQEXfJeQmmc8TRcH/sWm9g8lI73HWs707sXBIFlkyVRwE0b8rDcAE/ONZDVZOwYzcSBvuMFeHqhgaUGc0eNap+jtiMZTUY+KWM4q2Ekq+GOLTJGsgl88r7jUGWJZeoIy+BTsDELIjMnSykSdo1nY+lxLiFDEsU1teBN08Vc1UBSkXBkRcdgRokzRpSyfRUHghT4/skaym0bphsgk5DRdnxkNBmCIKCsO7ghrClcaVoYzSZ6anlrhotCi703l2T12U4QsB61phf3Ld0xmo3rRE9WDWTm6mvi8WiXpzUZ141lkVIlOF6AjuMjrUqrrbTC10migLfeNAEAaFguvICiZjjwfILHZmqYGkzh0EoLtbD+VgAwU2FtYaJ5z2pPWBaYuKGsODwEKLVtCAJ7Xa3jQAqvp/5TXKgjxYHu+EipEoYyaujU7MbfFZUfnCh1sGu8t04TAHZv6sNgTcVi2EqpojuQRBGS0CsZn8wnMRsGYklFQhPM9Tujybh+og9LDROSyAzd0qoULxwV23as4Kt1HBRbNsbyCXQrpaNrPaVKMN0ALYu10om2NZ9UMNGXxFLDwjcPFKDKUk/7MssJAFC88tqReCHieElHue1g00ASe+ab+N6JKvJJhS0uCCy4HMlqqOoOVhr2qnFe2LpnMKP1ZGMBxG7rlFIs1E0cXm7jRFnHsWIHgxkVG/ojoz8R145lY/+BfUtNnCh1sGM0g9um+lHRWQ3vctPC1GAars8UDY5HUDdcZA3WmqvUtuOAfDyfAIXQVePMauRdn8D2CCj1kVAkJBWZnS+UgkTXXeijoIjMr2Esl0AuwfpCV3W2UDrZv1YWfS7wwJbzvKHUtuOg9nW7RvGp99wSuytGUErxT08u4GhYo9MwPSw1TGwfWWtg8HzkJVsH8Ts/fAN+4ysH0HF8TPYlsdy0kLqKevVyOJxLS1KRUA1lyEMZLXayLYa1pcWWhb6UAkIoPACTeQ2KLKJuukgqEubCyWYuySZDc1UDR4pt9CUVuAGBJjPDoYG0iidn69g0kAKhFCsNG/mkAlUS0TBdVHUnrj2N1DSaIoJ6LOOaSUiodii8gGVr0yoLiO4+WMRITsNNk33QHQ8rTQuZsH+jLLHgaCCtARDQtj24PokngI5HIIkCErII5ZTFzuGMFjsvR0F5d3uhKLMW1TrG2eTwY1KqjBPlDuaqBoayGgQImOxPwiPMuTSryZgus2fTE7N1rLRseD5BX0pBUpEQEIqFmoGq7mDLcBpPzdfRMDykNAlBsJqnVmURG/qTsatzsW0jl1BQN108PlMD2cxqJrvLULyAgFABRws6axUUECw2mEt13XBxcLmFXILJaaPd4gcUJ8odtCwP83UTphdg63AaAaHIaSwL0zSZYZfXJj3tZUzXx3SpA1kSkVZlzFQMtCwftk+RCx9HbdvD4ZU2rh3NwnR8pBQmDW5aHt5y8yTuPlBAX1KBTygksEC8brixZPxkxWABkcja85ysdMKgkCKpSDBOabM0W+3geKkDALhpQ55lmUIpbkDY+7cNZ3CyYqDQsmNzmygbDCDeN0MZFS0rdE0Ogxap6zVxkNWysX8pagXEfhZlFAmlqJse6paHls0yj4sNKw6Mu52pRVGAFxD84+ML2L/Uwq7xHBIKUwM8fLwCCALqHRf5lIKy7iChSEipUhzACWDZN9MJVg23KDsvZEmAEcr+HZ/gidkGto2k2byJ4hSzLhqPbSClYud4FoYToG542D6cwUu3D+HAEquBZiZ1vXMvQiiWGxYeOVmN9+Vc1YCmSNjQl4yz1IMZDZLgQpPZvcInFH0pmQXiAqtxj/Z9WpMAQcCG/hRmq8xcyfICPHqyhkLLgm77SGsyDMfHtw8VMd6XhOWyY+d4AeqGi5QqoS+poKo7CMLFjsj4Sre9nrY+tY6D789UYbkBDiw14w4bpbaNuuFiLK+hL6XAdHyU2zY0RcJEXxICWCDdl1Zww2QOY6F8nxCK6ZKOhbqJqcEUbtnEyugW6iYquoNKx4Fus9ZEJ6s6jhZ02D6B45G4Hn3fUhMb+lO4ZVNfV8Z6dUlCltgKUnQ+lNo2yqEaYjCjghAa9/SNnKczCTlcJFzNCs+Fru07x7Iod1wU21bc1idCk1kJytRgCvM1ptwQBObePlNhPdGNcH4KrN8S6kzw2SzneUGt4+C9n2NB7WuvG8Wn33trjxtlhCAIePmOITy90AQAfPwtu14wQW3Eu1+8CceKOv72+3PIaOxm/G9PLeL1u0ZhuMHzVo7N4XDODTdg5h267TOjla6Mkun6MNxVwxkRAvJpFY4XYK5m9shOjxR03DbVj6TKAhIKVru41DBBCMtMOQHBdEmPDUOWGxYoAEUSsNiwkFBkLDVMtCwPWY1JY10/wHCW9TmN5jyyyPrbmq7BsmOigKPFFnQ7QFqT4+eBH9BYQjoSymQFAZgudbBlOAM3IEiqEmRJw2CamcxEtZmTfUk8EbZGeXKujobhYiSXQNN0MdmXRF9KQcvyUNEdNtmLJ4lsgWAkq7FASxLDAIIiIBpkUURWUzCcVTGWS6AYZseifV7WHaQUCaO5BALKWojotg9FFHGyaiCtStjQn8KGviTyKQXfP1nDUt2MjxMAbBxIYqlpYbZq4EWbB3Ai7OkZKZrSqozlsPfkZx44GQfFkiDgwHKTtVOqsSyfKkvMVKfJ5NGaLMbB5KMnauhPK9g8mMHB5RbM0PRGEoUe0y1QoNC2EFAmYU8oLDMmCmwBIJJQRpJsN2CLGY7PMkj7Fpu4fcsAOg4zYkprMjIJ5rRquj5umwr7qoLi2tEs6oaL5aaJlaYdO7J21xtCYMFbw3TRl1RwtMgcoh0/QC7BFluapsdk6gEBIKGk26gXHfgBjbNL3SGD4xPcvDGPwys6goDC9ALMlDu4fjIfSzF37+qDKAosGxi+OZI1+wHL6JtugGrHQT6pQOuStnYbPt19oAA3IFhpWrA8ZgoVLTRNlzt42fYhUCA2MpMEtm8js7f7j5Xx1Wc8bBpIxYFLVIO9d6EVZwrZOa9hsc4Cwkh6HhG1JzIcH3sWGlAlEeN9CUgiUDfdHoMmy2VKCT8geGK2jo0DKXQcH/ceLsJwAvSnVdw21Y898w0ATJaf1lgt6a7xHB49WYUXMDOxpYaFLUNpiAK7JyiyiM3ZNBZqBqYrHTx4vIJbNvZh6xAzj3pspsaMoAgLzHxCcLJiYLqko2G4eMm2QTQMD03LQ8vykNFk7FtqodS2kUnIaJqslGGij5V1zVZNfG3vMl6ydRCPzdTi2uADyy3cuKEPKVWOpe/3HyujZXoYyyXg+AQk2tlhr17bJWiG95GNAykElGKpYcEnFA8cK+OWTf14ZqEBUQgXG7uyy7IkIqnKGMiIuHPbAEyXXS83TObRsX2IghA7rgNAw3RBCLvfDmbUOJjsLinZ2J+ELLGSkMgvoC+lIqsx9UtkYEcIjQ39lpoWto9kkdLknlZafSmmmvAJgQABuYSMpCpBt30EhECSgICw+nICpqhpmGdvz9QNr7HlXPW0LA/v+5sncKLcwct3DOFT77ll3aAWYDfGf9vDrObf8+JN+ODLtjyXQ71i+NgPXYeX7xhCse3ghokcHD/A2z71CN74iYfOqccbh8N5/hLV0Y7nE6CUZQuKLRsPT1fwzQPFePIaEBqvpkfywpbFAgOAZQ4H0xpu3MCcXwWwjGi57UAQWX3oq68dRrFth1kTaY3813B9PD5Tw4lyB/vDmruVUArreAEghNmmsDeiKosYSqsotW10HB9lndX4RRPR42U9di5NqRJySRb0tkJjJUIpCk0L+5aaWGywbYrih0hmKYpiHEA8PV9Hy/LQcVhP2hPlDjqOj7blxbWBURZLkURMDaYwmFZh+wQt24duB0hpMm7d1IebNvTH7XCmBlIYzWqQRZb96rg+FEmELAqxFFUQBYxktXg7dMeDKLD9YnlBTx/hhuGx3pJ+gFToPOx3BRkJRcS1o1n0pxVWExkQDKZVDGW1eOJKwwlxSpUgANizwGr2JsKMuh8Q6I4fT5yjwIuC9ji1AoBLCFKKjJQqoeOwlipeQNG2PFiuH0/WRUGA6QXIJphUvS+pYLIvyTJDdLVfqBE6GAtYLSuKgm1RFNBxfEhdWlMtrAmOW0IJwKb+NDKajJrhoh66ZkfOzNHrO66PGybzuG2qH44XxNJmAcypd6IvCS8gMB0/rlUXBCAbbn/DdLGzK0s5XzdhuQGqpxiVSaIAywvifS8JAvIJBdeOZWNZp+H4eHi6gmcWGrGkXBIFaLIYZ4ctL4iP8x1bBuLrywnrOaNzs2F6KLZtBF3y9Kbp4nvTFRbohp/HjNpMBIQ5XW8eTPdIwJkEl7UxcgOCE2UdSUVCJiHD9oKe+tYbJvugySJmqgYqYd3tfM1AteNiLJfA5sEU6saqhNkLCI6VdASE4tGTzHH8ZKWDUliH2bLYwkPH8fHdI2V8fe8K6gYzdQsCAlFgdfFt24+vZUUSMJ5PYNNACqokQHd8tG3mRO4TgsHQQdkP1QCj2URXXXaHqSeGMvF5OFc10AlN9GRRAKWrrssAO607doC27cP2CIot1oqJgN1D64YX+hVIsSrEDygG0yr8YLVMgrnIs/c6foB8QoYmi9jYn0JfSoEmS8hoSk+N+cb+FKtjD49BWpMxWzEwVzNwstLBlqFMXMO7apZF0XED5BNKbII1lmeLeU8vNGB7Acyod3BSwYb+FNKRuR6AQtOKfROE8BwGWO384ZUWKFh2OK3J0GQJmsz+ViQBfkCQ1iQ8PL3WFO1M8MCWc1Xj+gQ/96U9OFxo48WbB/DZ971oXcc7Sil+9xuH8Z/+8vtYblr4oRvH8b9/+IbLMOIrA1kS8Wc/fgsm8gkcXGnj8dkGFupMXvV/7j56uYfH4XAuI4SyAEGTRfiEotpx8M0DK5ipRK15VgO1Df1J5u6aVHH9eA6SIGLbCKvbunEyj5rhoNhyMJxRMZBWkdYkDOc0jOUSkAQBK00b+5Za+NahIk6WO/EYFElEUhExkFZwODSIUbsWLE+WO/Gk1ycELdNDLpw8V3QXiiTiFTtGsHkwhXxKjU1nzHDiXWxZ2LfUQrHJJsVLDTOuK4UABAQwwtdGtaix0U1XpiyaaN44mYcmS7F7KYC4ftP1CZYaJmZrOg4sseynHxCkFAlJVYQiCcgmFQykVUSxpu0TbBxIxcFYqW3jSKENMZyYdqvzotq2pukxg6ipfuZA7QYICMETMzVUDZaBVWUJCUXCRD6BTJeMWpZEpMLM9nBGw+2b++MA2vWjAJWxoZ8ZPkmCAMtnQTRbEGVBws7RHCodO67PHUj3tleJ6/B8Ers0+5Hk1Qni9jZsXAKOFFoQBQF9KQWKJMD2gtDgqYBSe9U8qml5uHPbIDYNpFDrsDo9UMTjs7wACzUT5TaTwVNQDGc1zNcM7F1sotJhLXSMsNewF4TuwELXIaddTsyCwCSkAqtF3dCfQl9SxlLDwgPHKxjJanB8Ju/VbR+yKECVRSw3LAgCMJBSsNwwYbo+tgylkQ97vtLwXE/IEgRBwIb+JDYPpSGJAmRRQEKR0LQ8LDcsPDZTizNijk9guczJuntR49qxHMbzLGPfLRWWRQGOF2Z53QADaQU/dON47PptugEMl8AlFB3bAwkoFhsmnHB/qpIIw/V7VF5RjJvRZDRND5LEpOPTpQ6OlXR882AhHsO+pSb++uEZnOi67qMg1iesZnS2aiAgNHYcVyW22OD4JGwltdrjum64cR9fCgoCiprpsrZNhOJQoY39S63Yof36iRx2jucw0ZfEjhFW+7zcsOJ7hOOxsoktQ2mAUta/uj8ZZ6h128e+pSY8P8AtG/vRl1Ixnk/iWEkPW2WxNl5ul/O0KKxmQ6NexgGheHK2Fi+yGC5blIqUJQGhGM8nkVIl7Bxn392xfczVTCRV1rLs2rEsdo3nsCNUIDZND8dK7Xhfl9oO/uPACqZLnVg2PTWYxiuvZS3CCGUO9v/jqwdw98FCHIyrkohHT9bwjYMFJBURw9lVgywB7Bzu7r+b0iQYto+G4SEhi7hz6yBu6MroCwIbe63j4pqxLHaO5SBLIp6cq+Op+TrKuo3BjIp8UgWlq7XM5wMPbDlXLZRS/Pev7Mf3T9Zw7WgWn/vgi2Ib/FP5f08s4K8fnsVK08brrhvBJ358d1wX8EJlIK3iU++9FYokgFCKD71yGxRJwP97fAHfP1G93MPjcDiXEVEQkNJkZDQZPqWodFxcO5rFcFZDPskmvpIoYCCtwXJ81E0XiizGcjqWHWQTqL0LDexZaGIg7OkZEArPJ7C8AIdWWrFjpu2TOJOSSyrYPpKB7RGYXoD+lIJdE7meVjsJRYIXSot1x48nsASsPc5X9y6jZriYGkhhKKMhl5AxEvYgzWhsMl4zmEmT2iWVjqSYuURvtVZUc9a0PNyykUldb9qYx8u2D0GWRGQTMqYG03EATrseMaW2g/sOV9AwPOiOj9FcAhQUK00b5baNuw8W8bffn8O/PLUIgLma7ltqxpnCgAALdQOuT2A4PryAIDjF2MkL2CLEnVsHsWM0i4G0BkUSYbhBrMTZNJjCaC7R8/yjlKJj+zhaaDO5LYAXbxnEjpEspgZTSIZj6K55rBsepgZTEChwcKmFY0UdczWDmcWorB44Oq6uH/Rk9QRBwHg+ibGchrmaCcPxsWM0G7cs6XEBpuz1cmgcRSnL9hwptPHkXANHCu24j6kfShgX6iYW6ibMMHB4+HgZ3zpUwlOzddgea7aZTyrYMcpao1Q7LvyA4sHjFRRadlwzarp+fE5EvTgpWAauabpYblhYaVrxfj+43ILuBMhoMpywxvFwoY2W5cJ0WRZv98Y+VDsOMqqM2ZqJ5SZzr5VEAXsXm9i31IqdqAfTCsbz0eJIAEFE/DvTCVBoWdi/1Irroh86XsGBlTaSiogdo6tZ4YAQFFoWah2ny3k5gB9QlNoOCi07zi7P18y4HVQuIWOiL4mMJsEnFCXdgekwYzSKsMaXAo+crEIAC9ROVJjEnVCKROjkOxL2g/YD2lPXHRAWVH/l6aX4/JzsS2IgpcInqz1xGwaTMFc7Dgoti3W2AOJa49EuJ+ho+yLVCCWszVFshAe2qOX4BAmFqQWeWWjiWFGPyygEkUm1y7od16jqNlNhzFWMnp7YTdPFXfsLOLDcwu4NfRCF6N5GkFRFJn8eTqObzYMpbB5MIaVJcZDMJPQs8yoKQLHtxD2E9y01IYoCckkl7qEc3VszmgxZEsN9b+BwoQXbC9AwXRwvdrAYSofl0A1740AyDkS9gOAHtg/jtql+bOxPwXCY7PdYQcfBcDFRFAUkFRG2G6DYZu2xHjtZhe8TdBwf9x+r9kjiW6YXllhQVs9suEgn5HCRjo2bUAoKiu0jWWwcSKHQsJDRorZfTAXh+Kx8Qbd93LKxD+cDD2w5Vy1/dt80vvL0MkayGj7/n2/vMfHoptpx8JkHTgJgK0z/7Y3XnVaq/ELj1k39+P/efB0IBT5533S88vnrX97PJckczguUhCLB9lnmbOdYFpIgghCKTIIFupLI6iolkWVGJgeS2NDPDKBUScTxsObtZMUAKJOkuj7BdKmDpuWh2LJRNz20LQ8eYe8Zza5O2BKyiIbhYqlhYT7sP6nbPmarRpx5pZRlPhwv6GmnIQkCy1p5AZqGi+8cKePB4+Ww5YcWB52bh9IYCGsoLY/VrB5YbmKpacXSulPbrHRnSTWFTSZNl6BperC9VWflaEDRNkUU21b877blwgqzvbrN9rXpsvphgAVTXsBMjsbyCZbNDShEAaFZDkHH8VDWHZR11hJnrmZgsW4hoUjYMZLFYFoNjbJWs8jTpQ4OLjex0rLQND3olofpcgdl3UHDcplpV8eBFxCcqHRYDV8Y6EiiiHLbQVW34YTjk0QR3V067VCe2+2m3LT82JEXQFzXvNK0w+xigLLuYqFuIqXKcQsSgGVHRUGALDKnYU0W4QYEU4PpWILOjg2F7xN851CRtWzqyrCerLDJfcP0QEEhCwIkUcBy3Y7rfn1CoFs+HJ+g2HYgCkw1QCjFctOKs7RMWurhZMWIZZuSKKBhMkdeM/SpyGkyJAnx+e8T1qu3Zfl4ZqGBWpiNoxQ4vNJGVV/tNxtJyTuOj6ruYKlhodR20LZYb+SO7SGpiGiGfYJ3jmex1LDifbzUtHrqKJuWD9sLcKLcQcNwYHsBBsO+oV7AFkpkUUBKlfGdI0W8ZOsAbpjMwacU7bA/c7SPvIAFrJsH07h+IscWlGwfuaSCYtuG61N8be8yCCHIJZl0OhO29conZFw7losDZ8MNMBO2eJmvmRjNsXYym4fSKLZsdMI5iCiygDRa9KJgfYOjzGN0vkwNpOLAz3ADgAItO2rN5GEiDIDrBvvZUsPCdIkFf4/N1lBoWnGtviAI0GQpzmi7AUG14+LASgtPzTfjfWu6AQ4stzBdbuNLj83hbx6ZAwENJfYB6oazpuNGX0rFYEZDQpXibCQFq/VNaRL6UgquG89hajAV94KO3N9Nly2yREe3briwvQCzVQOFpoVv7i/GiweWH8Qyi6WmiaW6haOFdk+bqplqB7mEgpdtH8INkznkk0rPoher27ZRNRwYtoeZssFqXgVgoj8JnxAsNy0EAQvoi20bkiRg40CSLYa0HbRMpi7YNpxhvbgTMjb0p3CirOPJ2RqMsMzC9QmW6hbqpgvb8+P76flZR3HzKM5Vypf3LOET35lGSpXw+Q/eHhe8n0rDcPHev34cS6Ft/Edfd03c54vD+MBLN+PJ+Qa+sX+1l+1Sw8L/uusw/vg/3XwZR8bhcC4HPiE4We5Ad3xkNZZZAoBdXZKyfFIFIcDxUgd3bh1EqdXCctNEosuJnlCKgNJ4wg6wGryVlo2sxgyCgrBHY1KVkLA82KFENSGzTGPLcsO6NB8b+pMwwqC1qNvY2J+EFgZ+HduH5Qax0UjT8uI6Q0oRGuOJqJsehjMqaoYDVRKwYySDTYNpzIfZM5YtorFRDwC86YZxOH6Au/atsH6elODre5exULfgBQT9KRUv2dYPASJqHScOBPYsNDHRx4IfLyBwuiSJtt8dDrKAPIgKMsFqAWuGG0qyJXjhfiEUGMkmoEgi7KDb1Zf9PV1q454DBRwutCCGMua25UMQgcG0CgEs+8vMf9i+apjMmEuEgKQioGG4eOh4BQFhgbUXB3WsjrlhenFgL0kCFFGAIomx/HS22sFgRkNGk9AOM4xRlkgWBWQ0GRmNta3ZM9+EGNYU5hIyBtMqXrxloKcVFMCcnU9UOiB0NSMzkFaRSyoICIHtByi1WJC/YySD/mgBBBR3bBnAcsPEYsOCKAoYyDD58XLTilu8sLl8aNpEWGDC6gdZ/e72kQxOlDvIJWRM9ifheAQty4MbUPRJIjIaK/ZeqpnouD5u39wP3Q4w2c/MwHSL1dw+s9BA3XRZO6iw1rluejhe0iGLzNgnamEjhM6xM1UzPqccj6DUdiCEwXlCFjGeS2KuZmI8n4j3c5TNp5Si1GZ15tWwV6hPKCb7EqgbLoay7Dqu6A6myx0MZ1TYHoEmS2gYLmslA6Av3DtpTYIgULRMF/ceKWHzYDrOmANAzXCgSMxsLSAE9x8tYySXQKnFam6vG88hrUlomtGCxaqZ0U0b8ti/yOroKVj7qsg8qmm6qOouRBHYu9DERF8iLhWIzk9RFOL2PLLEpOsNQ4Wm+EgpEnJJBVskEWO5BJZbFkptG9UOC/QPLbfQNFwMpFW4fsCywpT1Hy53nLg9lyqLUBV2jS43LCw1TXRsHwt1A9mEAstlxnamG6DQtHB8MIXXEApFYgsgrk9wvKijbXsYySZQ1tnCSi4hY7nBjrPuBNi/1MRtU/1xFrlteegIAp5ZaKATKjYopawWVqBsgRA07rc8kU9gIp8IF73YPTSgFN89Wobtsxr6lYaFuuFiqW7ilvC7HD/oMfiilC0oqJKAhCrBCVht72i+Dx3Lw8kyqzNu2z4gsF7GCYUFqdeMZWF7Af7xiQV0HB+lto2tQ2msNC2IAnC0qKNje8iF9bsN00Nak+IEi+sTPHisjLblxWZ25wIPbDlXHXsXm/iNrxyAKAB/8Z5b495yp9KyPLz9Lx6JXdxu3pCPe9ZyVhEEAX/wzptwpNCOa+hEAfi3PUt49c4RvPnG8bN8AofDeT7hBzSWyxZDYxbD8XF4pY3ZqgFRAJ6YqzE5oChgy1AaxZaFSseBIDNTEtMNmByQAglZQkJmNbNPLzQhAnD8AEOZDG6azON4ibWnyCZk2J3VujIS9lGdD+/hBBSEMBnlSE5jpjwJGcmwrcnJSgeaLMWT5SjoMj1WdzhbZTLCXBg0umErnYzG+jMeWm7jtbtGmYzUJzhaYA6p3z1aQkCZcU6xbUEAYHsUTdNBoW1j61AG5b3MyKXHVZ6umhPJooBrxzJM9mx5cfuUlCKhP8WylElJirPP+aSC4awGVRYREBK2lAFGcxo29qfQtj3IoXlU9HqASUkPFdqQBAGbBlKQJZZZb5gulps2XrptEGM5jRmEgSKjychqLMAiYAG2bnvYM99gUs+wb2lfSsVczYAXUMiSAEFg2SpNkdCfVpHWZGwZSsf1kobjoxMGHoooxIFmf0qB5fnoSymQw6iSUKBuOLh2LIu5moGDyy1cM5qFKovMEEwSUDfdOHiP5OQAy9aV2i4CQmG5ATIaqz/tT6uQRSGUMbP64Rsmc7h9agCPnKziwHIbuu3F9b+SKGL7aAYzZQOEUnScALZH0DY9eOH+B1iLk19+zTUotmz8xlf2A2AZ1uGshrQmQZYF2EYAw/XDWl12Pmc0GQ2LSfSjNoSEsFrPtMLqnrMJhZ0vNAqwCVRFwkhWQ63joD+poC+tMvO2UE5t+wR7F5ughLUckiXWt3W5aYX9RAMEAWGLNSkVjVAe7gcUTcuDFxCMhP2m11RnUXbeGo4Px2PBXjtsPTQ1mMZSY7VmN4KEMmE3YAH4StOC7ZEuI7FVY6KUKsFNyGiYHtqWj0PLLeY0bbjYNpxGX0qN5ey5hAKfmnAcgrJuY6ZqMPWFgLjOumG42DrUj5mqgXrHhe0GCEBBCXPaFgVAAGXtscJsbxBeB6zdFUU+yYznjpV05FIKEqqEtuPHvYWzmoyKzoLs2SrzJdkxmoHiBnA8AkFAnEiRwnrolaaFrcMZjGSZ6dJK02LqAUrx/RM1EDCnbUoBvau+N6Wshmij2QTmagZI17jdMECNjqHtBaCELZqJgoCW5UEWRWiKBFUSkU8ozAmaAifKBhbrBoTwdQt1Ey/dPoR8UkErXOiKr7Hwfkqi+5lAQQKKExUD10/k4BN236CUsvuYIiGgLDNtusyMi42HtbxKazJ0y0fD8pjBW3iNZjQZmixADRU6UU340WI7lp2fCzyw5VxVVDsOfu5Le+AGBB/7oevwqp0jp31toWlhscEmRKok4E9/bPcaSQiHkdFkfPq9t+Ktn3wYHlld/f8fXz2AWzf1x/3UOBzO85/o+k8qIihEWC6bnEetV7yA4uByCyNZDdeO9qFj+9g0mIYmS9i/1MItU/0QBbbiXmjbGMsnkFBEBGE7iP60AklkbUsWGxaKbbunpUNCWXWjzSRkBIRCDlvuELCJc8P0IAkiHI+gY7NMbz6hQHd8SAIzfEkpEtoWk8VqsgjDYb0zbY/VJxLC2txMlzvYOJDC1qE0lC7nXNcnqHQc7JlvotS2meOtzxx+FUmA4xMEYaDNni003kcAq9OLJv4bB1Jomi5ML0AydAJOKiIGMipa4fiVLvmoKotIqRKWG6uy0sE0kyLWDReyJMTZlIG0CklkE1TbJxjJJFDp2JitGtgwkMJSzcRAhpl73bShD7LE2utQsACHUGZO9eItA5ivmdAUKc5WN00PaZVNFesdNzS50lDRWf9NLyCxYVDH8TGc0zA1kIJuebGUcDAMmgFWq2iGcuXup7GmSEye3LJRCtsd6baPmuFiU3+SnQsaazOUkCUs1k2ooXlZpe2AgCIbliPJ4b7oS7H/B5QFeKokY7ZqYq5mxnWAxZYFSRQwnE1AEUUoMjP88UIX3aJuIyAkdgJfaVqodhw8PlPDWJ61a2laHjqhidJgimVAq7qLx2ZqMFwvdGpmQTghLLiPahc7tg/DW21f1XGYCRfAFp0XayYGMypuneqHE8rUU6oUmyT5hODgSgtTg2kU2zZqhgdRYG7ihZYFQoGxbAID4cJERNQKygsXBFqhGZQiiXjgWBll3UE6zNC1LB+qZDM1hRdAEgSIAqtjHUxrMF0z/tyW5WM8z4QHzFlaAgW7/hyf1Rx3lVtDt5mUWeynmC53cN14DstNCy3Lg+H4KLYdFJrsGKXC0oCAhI7DYBnLqOa2Ybp4aLqKDf1JULAgut5xmQJEEXHPoRLqhgtNkZFQZOwaz8ELW4wpGlv8mKsxs6q27SMvMLOv4YzKFsGSSnz/iM9bWYRh+7hz2xCemKuH2UimSlAkEZmEHGeWX7xlAMW2hYenKxAEAYYbwAuvbccjPe2n2L3TiqXKQXi+ioK46kBv+0jKYmy+NpLREIBCt30cL+voS6kYy2sIAgotwUpE6oaLg0steIRAkVhAWQnNxvbMNZBQRKRUOS5f8AKCsu6AAhhMe+F2CeiEC3N1w8EdWwaw1LCwZ6HBFqvCA1zRbWwaSGNqIB3PxZdbNuZrJgbSKjYNMJfmqCbYCwiSqoKhtIrxPLsXaLKIsRw3j+I8T/ECgl/4h6dRaNl4680T+MkfOHOrnom+JPLhjeLX37gT24a5BPlM7BzL4eNvW3WKlkUBTdPDr/3bvh6Lfg6H8/xGFFhdGwvcaLwgODWYwm1T/VDCHq1HizoapoeTlQ5OljuQwgwKgNi5ttS2MVczcLzUwUBaxY7RLPLhBHGlZeNEWe8NamURqixh00AK145lkVAkjOY05MNWEvmkAlkUQqdZD5bHJr+67cMNCAhZlT4TUPQlFWiKiJGshqwms+8Oe8KmVAmG68PyAizWTRwutDHep8VmSVtH0uhLKcwIK5T+jeUTGMtr2BI6g/YlFUzkE+hPsXrCbofQvrDGFUA4gWPjMlwfgxn2u6WGharOzIjqhosglAEu1Fh9cRTMAKy9j+H6MFwfc1UDTcvFK68ZxpbBNEyHuaimFAkbB5IYziQgiSLSKsueBIRCVUTcOtWPwYwGKXQMblkeDDdA2/Kxf7mNuuFBDDOdLPhjrZL2LTXjWrdyy0YlzKw3TA91w8Ni3cRS3cSLNw9gNJfAyYoBPZSoWmG2D2DZJAEsAyeKAoYzGrKaxCSkDutjKwgCDiy3UWixWt4oKI56H1NQ+ITC9gPM1U04YUZSEgHL9ePWLNWOC8sN8PhsHTXDxcmqgVIo/exPKhjKaLA8VuNLKEVFd1jrFcrqBRfqzCm7Znh4YrYON/ye+4+WYbg+dJu5J7s+QcvwmJQyocDyAjRNF4dW2qjqLnJJBX7oZD2SS8S1osW2A91h574sAk/O1rBvsQXD8cNMK0U+pUAQwsm/4bJWMoIQ1hFTNA0PZd0GpTQ2lmJ9jVdNgqQw4x3J31kdOnut6xMsN020QsMegtWaxpFsIg4SokCYUHZvWGnazO240oEfkDjYE4G47UxSkZBS2cJLFMt6PqtlXm5asTt1QhXRsQPsX26ydkijWbx482D8vsg9m4RlDYoshO7CbHSVDjvWnbDFkh8EGEyxHqtJVYIosMW4ts3O9dlKh8nfVYm1TgLLLvaHZQiGy+4Hh1barK82ZT9r2x6WGhZUScSmgRS7NiwPJ6sGnpytYSSrgVJmViWALTq9ePMAKCiapouZSge/942jMBwfG/uT4cIACyDtgC2OpVWmONEdH7MV1tLK8wkW6ybSmoS27bF+uFiFLUCC9S42WP11QChKus0CUVnA5oE0JvqSyCYVeITtz5rhYSCjIp9UQMN65Pk6K8mIFh8IZTJnMex7bPsENYO1MkvIIuywBnksrI/Op2QQwp4bDx6v4tuHSrGpa0Ao6h0Hsihg+3AGP/vKrZjIJ2E4PnIJGUMZFZ5P0LJcCIIQ1rgDE32J+P5xLvDAlnPV8H++eRSPz9axcyyLP3jnjbEBQTfLTQvv/uxjWKybyCZk/OZbrsdrrhvBf3mB9qs9X957xya86YYxAKxX2UhWw8PTVXz+kdnLPDIOh/NcoSkSCAEKLTuWGyqSgMWGidGchom+RFinxaSJKU0CoRSm7WPLUAq2x/qS+oQim5DjWte5momKznoWej5Bqc3Mg5JdJk22TzCRZ9LIUtiDNqlISGnsNX0pJXbYjTJ/Uvh2SlmdnRM6Lh9cbmOhwWR/jkcwmk8wOR2Ajf0pZkTks56jPmFyxIenq3FgPJxhE+v+lIqRrBZPto4UdMxUOxDCjI4qsYlkX0rtyUKCIpY8un6Y+aAUuuWjHRoVUcoyZm5AYYXGRYbtww4D2u5SXAEUiijgSEFH3fDQMFw8cKyM46XVxQFBYMdv20gGW4fTYYBKMFsz8fR8E98+VMBTc3UgzKi3LDYRJohatLjo2B4sN8AzC03M1pjc0g9Y31RKASUM/N2uwfmEwglY5qcd1o9mw2PWsn1Uu3qmCgLr0dowXEgCkFRltExWp0goMJRRIQsC2rYfulmzICWq/asbLjYPpjCY0WKHWlkU0DJ96E4Aw/YREALXC/DYTA3HizpzwLV9HFppIRX2CI0CwWxY41cJM1MNw4XtB1hsmEipIgbTLLh0vAALNQPfPlTE4QJrpZJWWRa54/o9xlvsHApbGRGCtsXOsWtGM6yNTvjd0cKH5RI4AY1rIf2A9CwIrDQtzNctHCq0Ue04kEWR7VMAUwPMaTwyUTLdIG6RFe0bWRRQbrOFgoQqYiCjoT/F5Np1g8naU5qEKNXpBQTfOVqCGS7GCOF+T6oSxnMJvG7XKACg1LJQM9zYhCsqT1BlEX0pFUlVRj7Brtm0KuP2LQNx655qx2H3iYCiYbrYt9DCvYdLTIbaMGF7BMNZDRv6k0iqctwmRxIESKKIgZQCAYiDQ5a9BY4WO5iuGGhZHhSJ9bUWBcSGZpGhVEVnjtCuT+D5BPmkjES46NBtHGd5JMxYsu9pWx6ThqdWTdmWmhaqurMawBMKWRRxaKWF2aqBJ2brmKkaMFwfKU0OFzjYgk409pQmI63JyCXkWEa+Z76OuZqB2aqBIwUdrh9g51gWhFCM55mMXnfYwlRZZ+2qTI/V4gcBxXSpg+OlDh6dqcWLeQlFjB3eCaGxSoFSoG37aFsuGqYHw/EwX13NxlMa9jgHc+XWFOZ+vn+phbsPFrHSYA7n2YQCUWD7uuN4ocYmapvGFC+aIuKZhSaSKjOD0xRWj2+6PgotB9WOHZ/7FIDtri7wnQ0e2HKuCr55oIDPPzKLXELGX73vNqTU9VX0f/vILB6dqeFP7z0OQRDwzts24G8+cPsLvrXPuSIIAn7/HTdhPKdhqWGhorPVtT+45ygKLevsH8DhcK56CKFxqxsjlMy2LQ+VtoNjRR0+ZQtfLPPKpHFHizoOFVownQD7l1o4FNbjDme02KSI9XO1MBdO8KJ6q4QswickbrNytKhjoWaiGQZrus3kxZRSmC6T8g5kVAxlmLvozZN9yCZkuAEzIDFc5jKcC9sSiWAyxYCwCTQFa+WSTykYyyfiQDmtyaCUyZ7zCRl9KZaBuWEyh5TKnHwJISCEOckCLHA9Xu6EQbsTb6cZZoKjwCVyKu04PgjQI2ckYS0jwLIvurPqCBrV1PWnFIznU9CdAANpFSM5DQlVxnLTxpGiHrsp+wHFTKWDE2VmzOIHJA5AE4qI46UOvIDCcklXRpWAUIKjhTYkkfUWPlxoI6DMeGpjfxI3TuYhSyIomCQyIBSm6yOrSRhKKxhKs+DzgaNlHA5b8HR50KxxNk0qrIVMueNAlUQ4PttXrH6ZteRJymJsJBMENJZtRnWI+YSC0bBMxgsonNBMy/CCuPPBSstGw3SxsS8RLySM5DTUTTfOhg+mVeze2BdPwG2fsIXzMPu2ZYhl56sdF3WDyb3rYTY4oUhQQtm4HrZMckN58vaRDDYNJJFUpHgOUtFt1DoOjNDNOwqOTlY6EBEKHiiQCZUFlCKsX2cZcik02hIE9u+sJuHWTf0wHB/D2QQyGqunjFycm6aLtuWhEdYoszpIlskHgJs39GEwrYBQFjzrthe2NPLghbXmSUXEUIYFUX0pVtf75FydXVsCq6mMpNpRYH640AYFRaVt4+BKC6YXQJGYRDfKWAuCgI7jo2378fZ5PsHdBws4UtRRN10MZVnLqoQiwXJXF4km+hMQBRHZpIyJfAJjOVbjDDDDs1xShiqxvquj+QTE0Ewqp0lIqxKWGqxVUq3DHMZPVg3cta+AfFJFSpEwFAaxTNURICCs5ZkiCRjLa+hPq+GiHTuf3dCXIBfWukfy/nsPl1gLsbD376b+FDyfYK5m4ERZj/vF+oTiRLkD3fZQD1vmrLQslNsODCeIDdJYGyHWGicgq32DRaHXtV2VWF17J1xoilzMKQWahhe2RiNoOz5UkVU9R+e/KktsIbNuxTXZA+H2RrgB8ydomsxgrNS2UDM9+ITV5LcsH6NZDZmEgnLbQcNwsVhnPZAB4EihjaNFHYt1CxlNhh3es6PrpOOwfV4zHOxfbK2byDodPLDlXPGsNC389y8zk4ZP/PjuuDn0erzphnEIAO4/WuqZOHDOnXxKwZ+/51YIArtpvn33BH7vR27EeP786hw4HM7VieMTtG0f/SkVfSkF2YQCM3TDPVkxMF8z4HoEWU0GBQswJEEIpbOsv2HH9kAIwUzFgBsQpFUJhBIEoUGKbjEDod0b+kAAaJIIWWQSybLuYLlpIyAUw1kNEICm5WKhYUIAkzraboB6x2WtVZIK+lNM7imGE36EfTkFMMMfQllfRcP20TI9lNoOKIufIIUZLS8gOLDcjiep3zpUxIlKB4dX2nF9YlF3UDc9LDasOBMXcWCZBXSOH6DjBCi1bbQsL3RrdjGSVTGY1pBSpFheq8kiVFlASmHmWhAEtG2W5UgqrOYTWG1fkpBFCKAQKDMPGslqGMlqSKoyDMeHIouQJRFt28dCndWSplRmysLMZSiuG89iIK1ClVh9niYJyCcVbBpIoS+txvV8fUkF/Sk1dpnNJxVUdSb5VCQhdLOWIYoiBtIa2hYLUDYNppi5VNczeCSrQRQEEMIy15YXQAiDoigImxpIQRSYo7XhBlDCBY+25UFYVbnHhlkUFDlNxubBFDOekSRoYaShSMxpWwQAgUmYUyqToBNK46AeYIsKvk8wlGGS90gW2ZdiZk7HinqcPVIkEbdu6seLNvdjKKOhbXtohkGj57NIo+P6rKVVx4XpBqh23FjefrzcQVJlwVUuqeDWTf140/Wj6EuxwIECWGiYqHeYvL6qO7Fx0VBawWCG9ZGWRAGDGQ0j2QRWWhYKbRsrTQuaLCKdkGPDJiaNZeZpqiwioTLnatcnaJgudNuDGppZ5ZOrTtIZTY4NnxyfwCcEkiCgY7Prs9px0TJdJBWm1tg8lIr358Hlduy4G1D2fkEA+tMqxvKJ+HMTymrGEuF12HEDFNvMiE0Eq5EF0HM+dVwflbaDUttCy/QxWzPQMJl8NVJtFFt2XL9b1R0EAZMxqwoLVJ+YrYV9fUlcV+8FBJrMzPBUWcCmgWScRMlqElqWi4ymYKlp42ihjWLLRkDZYlQUTAkCW4RSJAGaIqLjBNi7yGr0iy0bAQliCXvb9uNFmoioBVhAKLYNZ5iMVwBySRWSIKARLlRIErtn5ZIKFJEtEEaKCFVmGfNN/UlM5FnbncgdudCysG+Z9Ur2fIJC00JRt9GwPIzlElBEAY4fxGoGAHHttRuwzLUqsVZIUT2+5a2+NhkaoQlhH3RNFiEJApqWhyBcmIwWTA4st1DtsHNJd3ykVBkpVYImM/fouumhP6lCEIW4n/e5wM2jOFc0AaH4lX/ei7bt44Mv3YxX7xxd85pjYXPz7SMZ3DCZw1g+gULLxr/uWcL7XjJ1GUZ99fOizQP46Gt34E/uncaXn17GUsPCO2/dwDPfHM4LAD8gsFwfosAmn8tNCwGJHH6FsO7QRVIVsdSwcNzRMZ5Pomm5KOsOspoMZTDNJremi+G0hkzYluVYsRPWfbEeocdKOk5WOhDA3JNJKLdl2TlW09oO26r0h2ZAphOgYXlIyCKyAYFue6z1StgOR5VYjehwWoHjBxAgrLadCYO2qH3EUEbDYFrFxoEUspqCx2ZqcfbDcgOU2zbm6wbaFms3ZLt+LGemJJIcRi1LKHyCUE7I6gCXGkx+vWkwjZmKiWZXX9CRjIaRXAKaxAKOBFgGrG15SCky9MCLnYNdn6BmOrB9AtenGM3JcTsfRRLh+QSGG6Ci2+hPZZmc2CNoGGzfELAArtJxcaykYzCjYkN/CtUOkxnTMGuc0mSkVQml0A27Ybg4XtYx3qeh1LZQ7bjxsZBFZlqT0mSYYQaSUgAEca/MpCLGGXGwXwFgSoDopyTsZbzQsOIgDghlkbaP4YwGWWRtj6Ks7FLDgiqLmBpIwQ1rwTMJGduH09CdAK4XxBNxz2d1wlFNcdv2mWN1+D37lpo4WtIhCkJsmpWQmcTY9gjcgEKVKXN+BYXjB7j/WAObBlIQwLJ1vsnalgAAKMvY5VIKqh0HHduP27B0HLafdoxkoMgiDMcLgxuWSW7ZPhoGM0YjCGD7AbaG/iCuT0IZrhCfQ7rjY/9SCwFh7riWJ0ASsNp+yWDZv2LLDl2P2fZFbsOiyCTWUW/bjCZH1sWx9JuEElVFEtHqCngS4QKNGC7GCOEJkFJlOD7rDe0TinSXrPfp+QZMx0dCYfWZUd35YFqBEvazrug25msG8kkmzS20LDjequTccAKQ0EAqoAQdJ2B1pl3tsiLzqOWwp68mC3B8Zl5nuSzQzyVlDKY1OAHBWE5DteNioWFh+3AaszUDfkBDQydmHqVKIm6b6sfTCw0sNyyM5bWw5p/tb8PxIUsCPJ9AFAVYHkE2wbKxkVNyzWDZc8dnKomIlCKyFkvhcREALIQLhQKArcNpHC8SuAHBE7N1eD4LVpMKy0pP9CVQajMpshewfV/QbUhdLZVOlnUU2w5SigRZEsJsuxzfC3XbgyiyhUfHt5FPKhjNaqzMwCdwfReiwEoW0hrrdZ4KXY0H0xKqRiu8B1M06yZsz8fW4Qy2jaSxZ6HBJO6EouP6yKgSHC+I+zkDzAgtKSqrCyyUueLvGs+eV8aWB7acK5q/eugkHp+t49rRLP77m3au+f3hlTbe+7nHoEgi/uOXfgD3HCqi0LIx2ZfE226euAwjfv7w86/agUdO1vDYTB2Pz9bxqe9OxyYYP/XyrZd7eBwO5xJiugF0J4AsChgNs4L5pBK24GEZ2ErHQTahoG66SKoym+AHbOIfUAqfsBrOYstCX0rBzRv7kU3I8AMC3yWQRBHTZT2WoAIsO+AHAdIK60f5+EwdCUWCJlOMZDV4AY1b5VBK0bE9HFxqww9rMIfSCgKyGhRRSjGYVuEEq7WCth8gpUroOAEs10cDYXsa24MkMrmlbvnhZJXJ/whYgDSWT4aTPJYR60sqGMkxR9um4cD12TjSKQUpVQToas/agEZ/AwNpBV7ApNl9KRkt04UUBqq1jo2qwSa4wxk1ntQVmnYolWb1yrmkAjcgyCcVWB5ryyGGpn9eQKGF5ivdpDQJR1bacaujluWiZjjIJ2QUWjamhlJIaywj2JdSw0yfhKPFDoptJzYSa5keBtIK6qaHjhPEWdekKuC+o+U4I0op4AQBy/rILMjNaqzGVVMkGDbLcKc1GSNZFZW2DcsnsdtrQEmcUWdmVuxYjeWZ0+9Cw4QdZhQtl4ZGYh7qpgsRAnMipsByk2WlRLDju7E/CdMjcS24LIoIBArd8qCEtY/d/ZcFQcB4PgFZFLDcsMJgmgVmqiTADc2Jcgk5Pu8KTRvzdRMpVUbHYQtFwxmWEc+nFJaVDI+tpshoWWGrq7C1E4CwFQ8LZC3XZwoGMFltx2Hqg6blYSLPajYjpdqmwRQkQWBu27IE27OhykwVMZzVUGxZAFiLrFoo+SeUmXLN1QysNO2evstuVyYRALYMpnG8rKMSGhT5YZ3kxsEUamGWVQmzikziz+T/NcNFzXAx0ZdEw3Dh+DJkke3fhukircrIJhQ0QoMkQmgYAAdIh7JgALA8HwNpDQpYgFs3PUhigJQqx7XSkbM1ADg+hYjVhRVKKWw3gCyK8AN2HUMQQAjFU/MNuAFFQhbRsjxkNLavKWUS2s2DKRRbFootJz7PBQDDWQ1V3cHqWQMMpVVs7E/FwaPpBsiFMnNJBFRJwlyd1ROnNRkpRYJPCBoWMyzLJWXsHMvBdH0kFAmyxNyls5oc+gKw2mo/YOeMIglIKDJqhod9Cy1sG0lDkVhN+3BWxdRgEpW2C0op1DC7Gi1miGCu3aLAFmsCSpFWZTRMFz4R4p8TyoL1tMrKP+odB9tG0sgnZAhYNZxaaTnQZBlbh31sGkiiaTKZNcCMvwSBLcJIoghBAHxFjuudVUUMne+BA0utnnr+s8EDW84Vy/6lJv7028ehyiL+7N27keha9QPYyf4Tf/M4WpaHDf1JPLPYwO/8x2HIooA/f88tvf0EOeeNJAr45Ltvwav/+AF0nAB/+p3p2B7+h2+ZjGtuOBzO8wtWS8nIJmRYXsBMfJIKpNAYJpLMAYAmS6h1nDhoZH1wPSiyGGaRCMYUCfM1A03Tiyd+IgKosggpzJBqqgiBCtBkio4boNC0IYiI7/2s1m41WHMCCmr7GEyzgFAUBBCw+i8C5pDrBmzyl0vIGO9LYtELUG2zgDytrNZriiKbvHoBjSdRsiTgcKGNpMIkrj5hBkqEsu8mNMDmoTT8gGIsxzLLFAGcUPZ461Q/pks6RAHQLQ+Wu1rvarkkrnO0HGYchIAZ+3QlcpBWWX9T1kaIwvaCeMwdm9XrgiJubQPKstVRrV8+KSMTBls+oajqDmaqBkzXx3LDQkKRWDseQtGwPVR1F5sGZQgQUGrZSIR9VAFgIKWAht8bbSPC/R3R7sroAVECTUDD8mI5clJlE+CGwSS6iVBGLYkiskkFruFADVsOKZIIWWKtfqJuNZEs2/IC5BIKSq0w4+QEcAMzDsgySWYYpXTJmEl4Hg2kNZSLepxR9MMg1aeA7wWo6A4Ml2VXU6oU9wVNKBJOVjoIwkDA9VkwJXkBXI9AUEWokgDbZ6oAN6DwLFa3qogCBtIqCi0bCzUmZS+3HTQtD5N9ibhuu5vIeM312XHXHRNyGAjUOixAySdYbbgUOpkLiOq8A9bRgFL0p1TUTRcZTcbWoXTY/5TCcn3kwiDJCQiI5SKrKfAJCesuowPJjju73lmGNjIs8wICz6fYOCBjy2AaT883IIJlBFMJKZZhty2PZWzDcTl+AFUWMJzWUOk4TM4dEPQnFVR1Bw3Dw8REEhN9CejW/8/ef0dJkl3ngfj3XviI9Ka86WrfPT09HuMBEIYwNKAFQEoAQYEUIFISaHVIafesxNXKcEX+KOm3hAhSpCRS9JJWoBcIAiS8GT/T49p3eZc+w0fsH/fFy8zq6umewQAzJPI7Z05PV1dlRka8iHr33s9EaLqhoEWnsDWii293A6kzpYExMSjChJytA1G0hplzsxjqVnMGvDCWJkpNN5TFaRAPKNgpAENj0AMOV0z+HUNB043IHV4gBU0886Y6MtXWVS5Nr7LvC6IE82UbQUxNo4u7fTDhRJ4Tjb9GP8QuAjTcAMenCtjqUkPAMRQ4nGK2NE6Ni0u7FJlWtHRBO0+FG3qC7Y4vG2tBlKLmGOj7MZpuiPmKTkwNhWO6ZKJgaWgJja+hku7WDWO0vAgckAZ+mabaHNJWZ82Mtk/xYEVxHtI0hS+YD6amoGBQMZ1dtI22j1pOx2TRAmehNBQEICLeqNEzNo8a4689en6ED/32o4iSFD/9tuM4PlUY+fdHLjfwvb/yebTcEIfrOSw3XPzIbz+GME7xv3/zSdy+UH6FjvxvFibyJn7uu2+Vfy9ZOv7j++4cF7VjjPE3GEmSSvMdL4zhh7SZ7PsRmSelKaYLBl6zVIGlkXEOUS5DbHd8iscRubJJQlMgjfNBIQYgZ5ABDhWdGg7UHBgKRy+I0A0GWrowogIqzByEw9HOfRCnmCvbcvPc7JE+MxQ0VCCLEOIiLoRiNeIkgapQvEYYp7Ig7/oxXJF7OSioGQxNwXpLZHmKjRfn5Pr55Gobf/7MJhX3wtAnTRM8udyEwsnB9dmNDmX5Zi64goYXxpSVqwvNahingyIVFGUSJxRbcmnHRUdE4gCQ09O2F6LjhVis2pgsGNjt+9jpkSlOAqKWA1QkTxTI7X6t5WG3H6InpmjZuer6IZ7f6NAkitHGnGI3UnDOoXCOoq1D4VRgFkwVqjCfGYamMDiaAlesHQCo2DoWqzZqOR2VHGlK+yGZE/WCGH1R2FVsXVKCJwt0rBttf2SC2vEjKJxhtmTCiwYT46yoLdvUhIlT+gzV3MDBturouLDdxY6Youkafa5wz3hb5QwlS4Nj0AyoH8QjxcyuMCJTOIRxEYAUUDlRaucrNmqOhnqe4pXChCKFojjBdpc28EWLispME2qqHHmDtIYFU8VSzcFm20M/iKW5VEPkIWdGUFFMtFQ3iMWEOsVyo4+1poswTrDa8sA5Qy1HRkzkVq5BV2i9zVUs6CrHVidAENEkb7ZooezQOjRUsTYTKpiKlo6V5sBMMkpSJKDopy9d3JUmRj2hg7+066LRo0JoqmjCUEne0AtiHJvME/OZMUwWTKQAzm/3ECYpAnGvJilERm8AQ0ydq3kdeVOjxoXChZGdiomCgRPTBcyVLFgGFVK6yuEYKsoOGUOlCT3X9jZhsqtvawpMlZp7nJGZmSvW3uXdPsKYmglFW5OaboD0sYrCoAmGAUCZu+5QUdbsh1htebiyS27DLdEciIUOdlNo+B2DptMKY3hqtY1LOz34UYK+oK0DGFmvQZTK/G8AmC2RPtiLEswWTcyWLByu55CCYo4MhWO97WFTrMeMLcIFdblo6XBFZjYAUXCTTCRKiCUSi2ikFEQvjuJUGsZlWty8qeKJ1RYu7fRwbqtHtH7xXPVD0u67UYLLO+RinT0X3DBGyVIBxnB5t48XwUQeT2zHeHXiZ/7gDC5s9/C6o3W8774DI//22JUm3vMfv4iuH+HvvvYgfvj1h/DWf/sprLU8vPPOObz33rGu9uXEW05N4fvvO4Bf++xFbHV9/MXTm7jvUA0AbZiyLLkxxhjjbwYSkBbN0RVoCofCyV2VMYbdddrM3zSdx3zFRpxQsRknlM9atDS5wSJJLkM9p8M2lJHNMANNzjSFNkqWxpE3Tez2B5orCOOZrGiJ0gSWRvFBjqWi44WU/WgoiFqpLKBk7ZFS0WFoijS3aonYlZJN2x8DNNl1gximqiBNU+QNch0N4xBpSm6oCiOzJjLRASxDgcq53PjR+zI50e0FMZr9CI5BrxkLTWfeoCilXhjLaBRTo+xKzokKmblBE02PYb3jIYwS9MMYBUOFqSto9gPYuiojXnKGKqJlUsQxbZT9gDJDVU4GUb0gxk7Xx/2HqtKZtuVG0BUGW1coIkdM2ys2ZVtGcYLnNzqYLJgo2zrcMCIqcMGUxUrWAOh6oYyHCeMUYTxqHtXyAmx1PTBBpVUV0s26YQKkwPktGslqKkfXD5ETsVBuGMvpKWP0WvMVotpyUXzGIq5J4Qz9rJBIaS3oGhU+ZTHF7vgRNto+dJXDE3FPRVtHzdEQxpSXWskZ6HkhOCejMl1l4JyKwnrewHrbh6FSQd7xYxii+WHpCnZ7AVpeSGZmomDIGTTBavRpqped/3qe8oavNPrwwwQ5U0HHCxGJyWM3iDBbsnBpp4+SoyFNgOmShY2Wh7zQ9GYsCDekQpmDwQ1IE5plvyZJClPnaHuUOx0nwKWdHjyhNR0uHNKUImAyXasfpcib5BTuidiqDLamYLZkYrsboB9GctKdIWvkRGmKRj/EQpUMwgxNwaRpYrnhousN3HBVhYEJynYtb1BDBQPX8F5A8oiNlg8Ghn4Yox/GkqGXM0iru9ML0PNJAxrFZF7FBbU9SYEwTEXWLIOucMmCiBI6H3GSoiTo0aM52+So7EcJGGco2jp8MdUEaChTzeno+ZHQqlImbsagyNzLu34EpePjnHBL34uuH6PiaOQWHNB0OJvQximgMQaFU+FM9HKdIqXilKacSYokSTBRMDFVshDGCbpBhKfXOoC4j7xgEEu12wtwdCqPjk/rlpphNLM3VWIhRDGDJ7J7qzkDF3b6KJoqAAZLo+g0WzAtdnpkqNYP6BzQ74hUMj4sbaDXVngKNySd9MG6g0thf2TKDVDO8Na+Z+pqjAvbMV51+JMn1vA7X76CqqPj//7u0yOi8WfXO/i+X6Oi9vvvO4CffttxMMbwoTcewf94ZAX/57edelEi8zFuDP/km07gy5d28cRKG598dhM//bbj+Dcfew5PrrTwa++7a1zcjjHG3ySkRC+tGBo451T4hVQ0ZDOCjbaPo1M0FXX9iDIgY46qQ2yOlhtSFz9KkCRk+FK0NPSCGLksVkdhUqN2brsnaZdDhzGSYRHHKRI1RZgk8N0EHBSXkqRio8gZbehSmhjauibphSvNPtwggsIpG3a744NxhqpDWZsqZ1AVhlreoKxZPxZ/ZqZTdCiZW3wYJ/DDBGFCpkAZbVHlHI5B07aNtj+y6Y6TVNANFfTCmCaXjo7dHjUNKraGnV4ATeU4OpFDww3Q8yK0vcGkcqJgwBSbdYjC11QVdH1yJK7ndJRtohT2whjbXXKX9kWFURaa3byhwhYTZM7oesVJKiJoqOgMRa4uZ0DBVNHoh3DDWNA7aUoZJXQdOOeo5Q2sNFzKuxTHa6ocJUtDP4jEdJNcnaM4wU7Ph6nSa2gq6QATAHpChVjPF87OYupvqRyTRTLburRDE68kTWXRmxUPJVtH14+oCM4ZKJqaLLb6YYwEKcqOLmmUfpwiTmhqZYhfZRVbh61xbLR9hEmCNGLo+aHIAaVCnnMmtdp+nMIxGRq9kNyHNUVOUHVVAdMUKEILGsYJjkxQxnDbI42sO2SOxHUVHT+EH6V4aqWNo1N5VMV16/ihjOSJklQ64QJ0Hf0oQU/obEuOIs2m3JBYDIamwIwTrLU82cTZ6gh3ZIXo1rahkFt1RNdWUykzt57TB00DAEs1B46uoJ6nNXl2i6KkbI3LNVcwKX82i+p5br0DT0gben6EtaaLJKXJ/IGKTbprn5xz6znSrmdRXQDRTJMkRT8hozSAGkAap2isL1zYRd5QkBNFf2bGNDCkg5y6U/QQk87oQZSAMyaabgxhnMLUVeSFIZTCOV6zVMaXLzVk3FIsmikFUxWO6KQJzq5n0w2FszK5Z6uc0XMsTUeMk2yNQ1MVkRWd0voRxXZfNAxtXRFyggC6yuV0NEmJEVMp6UjTFC0vwoXtHixdgR8mUDnHpZ0eNtsevJDiwlpuKE214pimv61+iEAwHsI4gW0o4EzFZscnLb+pIU5TotqLddDxIkwUTFQcHT0/QT+KpQ4XIBO5iohOMjWSsLhhLBsVwCCyKIiJmm9pCnKGIjJxVSxUbDyi3Pi+frwbHeNVhbWWi5/6708AAH72u05jIm/Kf7u008Pf/o9fkN3sM2st+W/vfs0CfusH74Ghjupwx3h5oCocH3nvnbB1jrNbPfzTj57Bx85s4FPPb+Of/cEZGYUwxhhj/PWHMEXFdi9Eo0cuvlmUjq0pUBhpOj/1/DZ2u6QR7AeJdPDNQFNImpBdESY6BYtiKQoiVkUXGxZTVUQ+Kv2srSlgoA1X2dKQNxTMliwqmsTjRhW0y9WmR86zSSomCEIPmA42aY6uIYhTTOZNOdFNEtIY+hEVWStZhI/UEipo9kOphW24IXSFptGWpoKLKa5jKFLneGQyD84ZTF2VU6ieH6JoqjLD0Q1jVGwNcUwU1N0+uUlf2XURClrpWsvFTjcYod8CELRBBlPjaLsRVM6RM1U5OfZCmvBkG8cUNBnPKJNFU5MmPtmGPNtshoKBoylcatsYSOdZyRmikKLjaLoh0RHjFLu9EJsdHx03wk0zxZHM2hRE2W37NNnMeqCWrsqCP4pTWJoqi+FAGOLooiieK1swVfqcCmdYb3uSXv3kChnLhAlpDrteiI4XoSlMrWIxKdxsk3mUHyWI4hRFS0POGOwXsuzhnh+Ri3SawotS0bQlOmzeVBHGNFHnjNahLZoiAE3AiraKnk8UWj9KsN0L0Q9i9ANan4bCyKQnBS5s99Ed0tVWnMEUe/A1XRiq0VrNJAF10YABqImgKxwFU4OhUpSQJkzEAJqa9YKYHGtFLnLPp1xThZNBUpwSHRiMpo7LDZccv8U0H6B/D0Xzo57TkdPpnq061KBRBQXX1BU5YDBVanZ5IeWUNnohWl4EN4wQxAksXUXZ0eCFMR650sR6y0PRUlFydEwWTFxp9EfkB1mGL0DnPm+Q0dd2L0RPFIJelGAib5ApksAwbdcx6Jo5ugKFU3Mnb2qwhCxhu0vT3p1ugJYbwhMT2aKlYrXpoWLrMFWOrh9hRxgidb1ISrTiZEC/r+cN2BrH0+sd9HzS/KucyWucPVv6YUL0fYPMsxxDBRhQcjS87aYpODqZrTkiQifLYM5ewxV64TilCWsCmm6XbQ0Xt3tYbrhQOcdMiYrQrFGgKxyVHEWQ9fxISCIYOsK9e9jUz9Q5VEb/drnRhyHep+OFWG95MFSOgqUiTQbXKxbSlYm8geqQhM0xFNw8W0RORHJp4pz0BSMkSen3T9sl1syL2WOOC9sxXjWIkxQ/9juPoeWGeO+9i3jjiUG0z1rLxd/6lS9gq+PjHbfO4Lb5Ik7OFPH/Proiv2ccRfPVxXTRwgdeewgA8Ntfvowfe9NRlGwNv/75S/ilvzr/Ch/dGGOM8XJB5Uy6tYbCsjhzss2ZKqo5A3NlC5xRpEXJ0mBonPJnG6TrS9MUnNFEVONEGXxmo4O2S27FXhhLN9oMtqEgbyjy+3WVo+bomCtbsHQVjqliyM6GqKB+hJYbSMqjpjDaLDGGlshVPb/VQ8ejQmyyaJI2lZEpUEYjTRKaymYZi1pWlItiKJvyKJzMj8h9VIEXRuJnib4ZJ2SU0hVUVAAwFEVGJVGRQ4WGJ7JFs2I+ShJJVfRFdFH2uSbyBmqOhoYb4bHlFtbbvjSzWmsNYnIUYUJz00wBlsZRNDXhLkz/3nIpi7gnCk25XxTvxUBNBU3h6HgUyZO3VJQtXehzdegKk9rDFIPprGOoWG+7I1rFrOgzBfW27UVwTKK+tt0IBVMV+a2p/F4OMgxzDBVTJXIvzhmK0EBHaHkRuj7pUd0wkVFRu/0A/ZAcklNAmvAEcTKSl6opDLfOFbEjnKcdjQqavh8jSSnDda3loevRxlrhkBrtOKEolVpOR9XWEIm1niFOaF1mNFdANFDCBC0vQpiQnnu54aLZD7DbpaZG1dHkvZAiRaZaZowaEx1BbQ0TagJsdzxsdQP0fDqHJUl1TUShnyJvqJiv2FA55ay6UYJ+SMefMxRJkx82itM4F87jtA4zx3JD5ZKCrHKGNE2x2nKx0wtwabePS7t9dHzSjcfJwAl8pmQhb6oo25qMZQKA89t9rLU8KjA1iq7yRHMFAPwwwkOXGlAYMF00caDmoOro4JwmrZbGMV+h50LmrlvNGxT1JY63ltPFPaAiZwzWYja1NHUFmx0fjX6ItZaHHRGNFSc09czWdZxNNlMyluv6EbyIZBEZEhAVv2CqIwMWRTwjFc4GxatOa1tXucxnVQRVOm9SLrO4JZGmwLMbXWx0KMonThIs1mwcrDuYyhswVKJRb3UDbHUDdP1YnnsA2O2H0FWGyYKBxZqDnEESDoDM4AxRYBtCU2wbKmZKFuZKltQ3A8KQL6GmnC6np6n8o+fTM73rRWB80EgL4hSK0HV7QYS8QWZ1ukreDAfrDmxDRdnWEccpLME+yabbmU5+mClwPYwL2zFeNfjlT53H587v4MhEDv/47Sfk13e6Pt71S5/HcsPF205N4ee++xb80Dccxn/53CX85O89LkX4Y3z18aE3HcW3nJ5GGKf44d96GN937wEYKse/+pNn8N8fXn6lD2+MMcZ4GUBU3sH2wNJoE5YZOOUNFYcm8gCIAlywNakZBIimnG1gKzkDhyZyMuMzm7akIN1uEJNmVeUMu2Kak71WlCSo5gwyj4oTMBA9ECBjkjCmgoEmILR5b4nMUFVM/BROmzFLJ/ruxe0eyrYOTeGo5wxJCc0ao5mLasFSKTtVp81/2dGxULbgBjHaLtFHWx6ZWzVdmg42eyHCBKjmdIrLsYS5DAPaPhXqhsplLqQbxrJ4tFSO2bIlHVmzP4HBVKflRjJ/NEmBnK6g7UeyQJvMG5jMm3DFRNbRFZg6UX0zKq+uMJl1CRDNE4DUtHX9CI1+gJZHU19NZeAAvnRxFyuNPhTOUbJ1aWKUF9FAZYsmXp4wWDIUBlunYkXlXE6ewzhFqx8gSYhK23YjtN1IsgIAKhKyiJ/MGKsjsosbYjIdxCksgwqWFFSsZI7TXTG5i1N6j7zYOGfgnOGxlZYs6DSVY65soZY35ISK1htpQY9M5KEpHJauYrJgiAKXih9D4yjbGurCnKrnUUarrnJMFy3UHGr6ZJRhxjL6cgTOKFKJM6LHSzDA0VUUDIqE2e56kjaqKzSxzgoOUyW68U7fJ3p8RMVvwVTBGU1tkzSVRVr2+SxdhaWrWKw48mukkyXnYFtTULE10ZBIMVOyJNPB1ommzMCwVHPIjTwdxM0kQxO7Kw0Xj15pyoguMnDicg1zzrAjGAtxSkZoy7suTdk7nogQS2RMEANpmXWV4/xWH5sdH20vQtnWMJE3kDdVVMS01zE0FC0q3mxdlTnYWUMoy5bNvgYAhkIRUcMmYRSvo6Hvx9jseMQmUBTkTBVD34a+iH6yhybFvmACFMRxMcbQ8sjhGYDUMccpySPWWx4u7vRlhrKjq7i02xd53FTockaNuCybGqBnxPCkv2iqMBQGL4xx63wZh+o5KJxyp01VwXSR2JD08yk4H3gqVGwdrz1aw3qbDAEBaiZESSKaIXQMOYMafKn47G4Yi6bM4HzahkrNwTDGdo/u47JNWbVBNKAkN/oBvCiRz6F+INgdKdAXMpMbxbiwHeNVgSeWW/g3f/YsdIXj3777tpFon088s4nLu32UbQ0//85b8Pnzu/j7v/kI4iTFv/j2mzFfsV/BI//6w8+981YcrDtIU+AXP3kWP/OtJ8EZ8I9+/3F86vkblfePMcYYr1akKY1pHI0otiVLQ9ujSdlWN8Dl3T42257cKCpCs6krZOREmkvaiGgKFTeawlBzNOQFVTiIEjnZKloaGCNtZ2a8lKHRD3B+u4dGP8Tl3Z7s3N82X0acpFA4RWTkTU24HKuoOgaKlk5OqLaGpZqDgjlqkDORM5AzVVQcA9UcFRec0dRqqebA0lW0vBCe2Hg2erTxSoUJlCo0sSVbG1CbAZzdIA3hVsenjZvCEYuiJk1TlG0NjjZKgTU1BUFMVO6Ko0uTIwAoD7ny7oWlU/FRz+mo53SYmoJa3oDKOfpBhO1eKPNxDeE++ux6F0VLxUzRBANtqHOGgqKl4XDdga6SqYvCSc9btHQ03JCmVaLYTpIEhqogSVMEcSKpqHlTRZSQ5s8fckjlHDgxlUdeUH97foztnjAgYhQRVbQ1SSMHIDWA22JKGESJdI4umipNr4UeuWBpcHQqdoqmioI5er7IdZoK0Gyy2fdj6bzcCyLJQpjIm/L7UtAm+dxmB203FBRxnyaHIlu2H8SSMsmFbbEbxFhveWi7ETinvE5TTPEOVCwcnsgjSSjr09Q4Tk4XUHMGhXejF6AXROgFCXp+IgoJostmU7RMn+kY5CBLU9KYCjvRaBq+B8uWhlqOMlWHUw1aXoClmjNSOOgq3VN+mKCS07Hbj9DsBXLq3vIitEXzYCJv4MR0HjNFixgGSSqNmABIE6GpgolQaIJzpoZb5oq4ebZwlTtxx6NpqKMP3KLdMMbeusYNYjK0G/paFhl1ZDJPbr8JGc9FyYCCrXJGMgdG94+lcumoDhC9uWjrKNkaKo4GjZO5VJyk4JzWX8eLEMYxgjCm4pwuO4qmCkVMngumKhykNfSDeBCNJOO+qJnTC2KiV2NIl65R46PqaFhukDdA0dJQyxvUeOoFAKMpq6FxzJVMnJjKk8EZqEkWpymmiiYsXcFMyZB0/OWGi62uDz+ORRMrxHY3wE4vxOm5Eq2/foAzq23SLivk8K0pDF6YoCNYDUCKnV4IhTH5fEtSwNYolziWjReqTjOjKFNkWU8UyKG7JSQkmVdBNWdIKnvmcN4PYqFTvjGMC9sxXnH0gwgf+u1HECUp/tFbj+HkzGi0z9tunsZsycS33z6LTz+/jb/zn78EP0rwT95+Au+8a/4VOuqvX+gqx2/94D00wYlT/OyfPYef+dZTiJIUH/z1h/DkSuv6LzLGGGO8apE5qVo6l5upcGiCGCYpvnhxFyUxBXMDmoiWbB0FU8NE0ZRUZoA2JjQV5VA5x4TQB04LWnCUkOHKsPsoQG6sw5O8ME6hiInXVpe0eEcncjhQzcGPYmgK5eZOFQzU8zocQ8FS1UE9b8DQFByoOjg+lYdjqGj0A1zc6aHthsibNO2ZLpo4ULVxeq4kdF2AqXMogpYMDAyKXFHkqgqnQkccc97SYKmkBy6YGo5M5GAoIt5CTJ6yICJdYSg7mtwItsV0RFM56jkdE3kDHT+iaVaSoOzQ1/KGAlvjknac/bfZ9rDedhGnpHsFSKeWJMnI9WOMYbpkoZajWJ04SWFoXOSR0vba0mhS3XSJWpoZe7mikFPEhCcW7r3ZRDYzGDNEYVV2dMyWLASisDAUBkXQRbkw4uKMwVSIPp5NyuKUaOCeiF7KVtNUwYShDcyBVM7hiWlg3tRwsO7gQNVB2dJgCCqwpStouiEURhEjfphgqmjKaVEYpzi72UXXI0fbgqWh7Og4PJGjaXwQSwZCxw3BhdHQZseXtFM/TmHr1DzxQnKunS9bSJKE9N9pioWyhWrOgC6K8ZmiCU1EXDFZhDJJSbZ00nO//tgEjk7mYQrXZU1hmClaqOd0TOYNZGRiP6JiI4jJnXauZCFKqJmiiYLi8ESOiuEgkqZwusqANJXXuGjp4j4nqrypEhXaMQaaeA7g5EwB8xUbtq7CEfRgU1XEn4PywlAZ5soWKjY1n3RB41cYk+ttsWJhIm9gsWojhbgXhDRgveXLyJzh5lTeouKzbJHJ3UbbRz+IcGWnjzhJsLzbx24vxG6PdNdb3YDOh0O06FpOx90HK1io2JgvmajndKkB7/kx2m4ESycjI86piK/kDKiCWpuCitmipeH4VF4ed9eLEMaJnNJnZnI7XV82Gzp+TLm6oOetqXEUZOOHjNa6PjmnB3GCecEWCYQG/+m1DlYaLuIkxWLVQdePcLDmYLZkIU4ptkxXOE7NFDFVtBAnKWXECmOnJCHWQ2YYxwBc3Omh0SNd8VbXR1k0rOIkHaHt27oCBrpXc4YKlTFUHU1obtMRtokXxbJALVoakjTFRsdHsx+CMYbtri+bNClSbLR9lCx6Hpdt8i84VM9BfxEGpePCdoxXHP/nH57B+e0eHjxSw9+5fwkA8LEzG/ijx1eRJCkcQ8X/+tHX4c7FCv7ef30YQZTgf//mk/jB1x58hY/86xeTBRM//bbjAKgj+/hyE//wDYfRC2K879e+NKaHjzHGX3PESYrtHunNMnqYwojuOpE35FTxUD2H7V6A6YKJmqBj8pHXSeAGEbY7PtwgQpKkYEhFYcGFEZKCubIFAFdpMrt+hKKpYiKn48EjNbz11CQsjbRxZPoU4NmNNvKmRrRmzlDPGwijFD0/RtnRcWIqjzSlWJRazkDOUHDf4SpMkU17abcn4yiCKMXl3R40znGo7uBgzUE9Z8jNfsGk6WDF1hCKYs3UFFRzOo5O5nB8Mo9eEMGLYnR80lQem6KJcSSo026YoGxriFNgp0dT4byhSHppFjE0HKuSNwZT3Ex/utMN0OqTznKz48ONEvT8WF6fvEFUyZqgaAKAoVF8zXLDRd4kqqYbUj5my6XYFY0zHJ/MwzE02JpKG9hsCioKi44f06Q5SrHT9bHcdLHccKGptNk9PEFTQD8k+mbbpc26rnLkDNJpl2xNmDipgtbJMFcZrANVYbBUBdWcAUdoQlWh750smAjjBDtdH36cwo8TuR6uNPpouCG52qocjX4ojXvciNZILafjzsUycoYi8oMTrLVcbHR8bHV9sRYGWciSas8g9YF70fUi6QALAIrC0XQj9MMYfpSMGIFVczqCKEHB0sDBZFGZ5ctmzZy7lyq452AVM0UDXY+mfI6hoioctTWVIxSFQzbVpKYBQ4IUtZyOmRKd0yRJ5P3V9UnnHUbkRCs12gxg4qNSnBSXLuZUZFH8Ti1vYKZkYqfro9EjPaSmcHAOUfgQJvIG5so2TE2FqlCDoutHWG+5FHukka6+ZOui4I5hayQBYJyKvn4YUyE0dK7nK5ZojBHNe7Pjo+MPGmOpcFrO4A8VW36UQFcpz3atRRrb1x+dwOm5IqKEnHz7In6mLSbIWZTXVsdH2SJmyVY3IGMpN8SVRp/WJydZgxuSa3oQU1Zv24skNT7TATNGzSGSJSRQVQ5b55gqZCZUqZz2Gyo1NLjwBgBowpsmZOQXxAlJQIR5FABsdHy4YYynVtq4LPZklsaRMxTZUChZGqrimdjxIhQsFSVbw24vQBTTuc+aeVGSIm+pSARrhXPyRVAUhryhwdQU6Aqdg6xBFcWkWafpN60fXzB4blso4XA9h+mCKbT9qjC/o+vd6IfCfC3CQAl+fYzjfsZ4RfGnT67jt754BRVHx8999y3gnOF3v3QF/+i/PQ4A+M7bt/Bz77wFjqHimfUO4pTox99798IrfORjfP/9S3h+o4Pf/OIV/O5Dy/j5d96Cd945h9/98jLe+6tfxH/7e/eN/JIfY4wx/nogoyUaKtHQ1tuemIrQxDKLiwCAqqNBU/IIkxRrTXKeLVs0IZoSk1tN4UhAZkVRnBIFUFex3vTERp00npamQFeYNGcpWxoUhYys5ssWTI30XV5I0w5bV1C2deQMBVcaLpKEir7HV1oIY8pm/NTz2zTR8EJMFmhCTHo7HRCb9ShKxSSFoWCpeH6jC13lKNsUxdPsUwQKYwwpUugKFeTdPukRl6oFovN1adpALq5UYFcdDTMlC1caFLsTiclTXsTnADQB51ECa5/HpczmFYY92TQ2c+UFAH8oL7bq6IiSFLahoOYYOL/dRRilmCpaiBKKzvGiBB0vREtQYYFsykjU7qKl4exWD81+AENToCkayrYOL4px50IZf/n8lpj2AIwNooSSJJGxTtkkk6Y3DAqnKVLeUGCIXFk/ovxiUyPDI9tQMJE3cWmnL2N1lqo2CraGKKacWk9EECUpmUMNCjKKqkmSRGpsNYXJtRwmqXSlTlNgs+PjstAyzldsBFGC1ZYHzgKoigI/9CRtOaPHGyoTTtAJGCNdd6ZFr9gaUdUTcjLeFtRdymkW014vgiaK1rI9iM5hwuUagHACH2iFD9QcaArH+e0emm6IhbKFqaIJxsgQyNJVLNUdbLU9hCIWyY8SeFGMJNFg6BzTJQuXd/tY7YR4ZqONthvCMaj4zIuYGkMlR96CoWGuZGEFHho9H30/gq0pgEPmPrrCkKakQX56rSNlY30/gqkp2O76mC5aCCIXVUPHUs1BFCeo2Bo4qGj0ooTMsDzSjJcsovxmUTeOoSIQcVqW0DADVLinojcwWbBgqCJHmlHBV3MM0qJKzS9d+4JwLPdEPFcK4KaZAvwoxnMbXfSDGF++3ADnbMTROHN2lpJhBhkBln0PQAVm34+RJMBsyYSicCw3XEQxUfbJfZqiyDLn6GyqaYlYqIy5kDc1nJotYqcXgHOGvmhAXNrto+1FKJia1LZudmjSeWXXRdulIrBoqmj7sXAIj/DFC7vS3MwSdF5bp2bOnJDxdbwI+bwJQ+OYLJCDtaUp0h0/Scmxm4vjLVk6NrseDOGg3g8iFCwNDHRuHH0g+/DDGIlBfgVZEa+rnDKoGRO6Y6Drh/Ai+v0ABuR0ldzsDXIib7sDuvr1MJ7YjvGKYb3l4af+OxWw//o7T2OiQGL2t908hWNTedTzBt5+85T8/h990xH8/gfvHRe1ryL8i+84jXsOVgAAP/OHZ/DWU5P4hmN1XNju4fv/05fQD278YTTGGGO8OpBt1hloyumGZOqRuY0CkDrGrW6Aet7AZMGUE6l+SI61BeHIe2QyL3WliXjljZaHza4vXF45dIUjb1KkRVas9EKK7AmGpl1dP5TGQl5EbreGpohoDzImyiJzooToxG1BrbvScMmkJIzR6gcUgyMKWD+K0fVDRDGZ4KictGMdn6avMyUTeUOFHyWYLJqS2huKQnGiYKJgalhveVKjeediGUcnC+j6MWqOjnrOQF7oZb0wgTVE17SGNGSZZi1DZh611Q0kxThJB9PtDLpC06LNDlE3VYU2yh2PJpaOoWKqYKFsU75vd0j7RxpfJjbYRAskWizpOHd6PlpuiJYX4mA9B4WRKZepqhhETA6iYThjKNvawDFYbI6jJIUfELWSKOlUJLW9UDo0Z3rZvKHC0hU8fqWJizs9bLTJXAegolZTuFxXsngU9E2AqLm9IMZS1R6Z3uVMBT0vAhhRnt0gllTHrOAIh/JJaX0yFEwNBVMjIylNwXTJwmTRxHzZwkLFBlKKPqnmdNQcDZMFE5MFA7UcUdWTNJXZuVnhc6jugAPYaHuDtaApKFm0hqYKBp5ea6PVFznNQtcMEGVYV7i8Bw7VHZRtHarCYagKtrseNjpkAJRRebfaPrwwga2rmMibODlThKYwyUgwdQUVx0DF0cE5TSzbwugqiBIEMTVDskYCAPrscq2qCLNMYJVjo+XhSsPFVpfMnyxdxUTOEMZgEWrCIZdxal4xYYwUhAmiOAHn9Gxo9EPs9EIULE1GQT212kYotPq1nIGyo4tnkYFazoAtaMRE4VZRFpIBDnomrDZcaXq13fWx2fZg6aRRLpqqNGMKYmr6hBFRd/0oRsFQULY0FG0dhsJQcmhq6ov8XV006qI4wdmtLlIReaPxjPhLunFLV6RZWhyniOIUj6+0cHw6jwNVGwWLtMabbQ9+lEDl1GThTEz1WZavLRyfhav6TMmCpnA03XCPSVYCNyBX6LxBk9kgilF1dBQtWjumpsjGG0W5UbHKOZms6RpJSqZLRI+OEqDVD+AGCbwwGWm6aSofOK+Lwr0irnmjR+aBLTcUdGghqwDp3pM0RZIkWG72gdFH3QtiXNiO8YogSVL8+O89imY/xLvumsMXL+xIt8O8qeFPP/Qg/vRDD+K/PbyMz5/fAUA37h2LlVfysMfYB//l79yNIxM5NPshfuA/P4S/+9qDuHW+hJtnC+Nc4THG+GsI6RarcOma23QprzHbIA9DV2liUnZ0aAqDoSqYKBhyCgUAB+s5zJZM2JqCII5l08tQGHRVQcHUMC/oyCVhBlQwybQqiBJsdXycWW3h0SstmJqCiQJpJFOkWG26SJEiTolyqCtcFn0Kp6LH0lQw0GQlSlI0XKIGqgpH0VYRRqQ9cwwV0yVyJx7eEO506TxsdXysNV1MF00crDk4NplHlKSYKdEU7XLDxYaI4umKCdRKw8V2z0fJIQOfYfOozHRm2FV6eA9XEuZRWd5ppj+zNAVFS0VdFFH1nI6STXq4hshw7YncU0WY3kRxgo4fimkjHUNmHmXrClSFyyllmgKcc5QdHY0eNQvihL5u6wpqOQN+GCNNybn6+FQedyyWZTYtG1pHADBR0JHTVSAlKu/FnT7abiiiPULS2WZTS8bQEgX3RtujCWy2UVY4CqaKep60joZOhlF1YYjEGaS2FqBGjBvSFNk2yAhNVzgaLr2nyhma/YAijWyaTFcdHRWhS1UExTZnqmLTzXDbQhlvOTWFW+aKKJga3IBiaharNo5NF9BySdd5cbeHIxN5cMaIAj5Ebd7s+ORCHMSYKBio50l7qykcjqFS8WQS7XO3F6DjR8gbKra7viyCNYUaEX6YYLcX4NJOH0maYjJPhWMWKdPxIqgK0a/nKw4xKUB04pPTBdx1oAJNoWIlEQZP2bmsOzp6Yu1p6mC6zzlFV00XTbz7NQs4Pk0T0F5AWbXUBFNwcbeP7Y4PxlJpHlXLGzA1BVGSYlc8XxgGhnNeFKOWNzApnHv7QYScaJjMVSzcNFMceQ7R1J9jo+3B0oim3fYiuMKROxpyaS47pJ/ueZGgVTNZbLpioq8qHJqgm2ucXJLTRDR/FI6eHyNOB+fDMWkiuVC20PUjbLQ9qAo5smfPkOHYnIxFEKfAWtaoEecmTkgSYWsqPvDaQyjb4v7Om6g41CgsWhp0lZoudy9VcHgihylxrpJE0MkZUMmREZ10ok8BP0iw2w8QxKQ1Bkhjvt7x0PXJvXiuYpEmG9Rkef2xunAWpyzwhbJFDRTOMF+xBbWaIWUkIbGFaZYjJsNZIzKIYnmO86aG89s9URinaPsxJosmipY68mxKQXFpw47P18OYijzGK4KPfOo8PnN2B4fqDgxVwS9/6gJ2eyFmSyb+/huO4Px2F3/vNx7GBREs/T9/+H7ZkRrj1QVd5fjtv3sP3vTzf4lGP8R/f2gFv/mDd4sg9fE1G2OMv25IkpTcQDN6oqVBV0g3ZqgcF7Z7UDiwUHEA0MbaC2j6kMWqXN51oe3NqDUduGGE3R5NEDt+TJuqlgtP6BAByJgeT1B6VeEEm8W5AGSw4uikk7M0BWstDwojg5KDNRtuQPrWet5Ax4sAEAX69HwJl3f6WG978MMYkwUDnDHMli0wAMem8vjyxYY0JCpa5L7b6IdwDDJa8cWUYUqY/9Ry+kg8Us5QyEQppbiYjI6pKxxHJykmqReQE/DJkgk3SLAtGrsA6ZZLViCmFoPrkhlcZedptkRU77WWN6BPApLu6+gK3CCBC6DjR7h5tojtno/ZkiW1jpWcjq22D0XjmCmaSEHTlxSkRWz0QqQAajmDonwUjocv7ICBpkyZyRgDMFW08PRaGwBtSDtehGnhzFrPm+AskK6+/SACZ/Q9SUpU8F4QYV6nyWeYkHFVFNNm39ZVeGGCuYqFZj+EppBBkRcBfT+EF/o4PplDmCSk501T2IaKdj/CetvHbJniatwwxlYnkZphjVPRudqkTNWcWO9eGMtpP0AND5XTtPe2hTI2Ox5yugpdIZOsrW6AxaoNTRhLFS0yKGolIbEJ0hQFczDRzpsqTE1Box9gpxsgZ6qYLirSjTkr+s+stfH6Y3XcsVDC+e0e/JBJt2lNodzkrY4PXaVM5o4fI2+Sg27bDRFFZNaTTcJUhSGIIDSkpFtu9MlYKwQ1sLIIGsYYfEFvpvejGKdQ/P3UTAGzZRs5Q8VkwUQsNM15U4XCqJBuewFNoIXZ13Y3QMnSZPMmSYGWGyBnFLBUc9DzQuz2yATqYN3BWtNHS2SoAhDPAnr/ybyBDfHZGYAV18Uy66MkqMvLux6aXgiN0/19cacvGhUB3CBG2SaDud1egGrOQNvj0gXdVBVsdX05DU+SBPW8gX4QC9Owwd4mM8Rr9gJ0/UiwRwBdVeS5yxuKKPAhTKooiifLnC1axASYyBuIkxQnZgqYKJhwdAU7nAsKs6C9OzrObXZGjPUa/RAVR4Ojq7jScLHZ9lGytRFKthdGCIXOOk1TtNwQE3kDW22PHI9dF6rKUMvTNPfUXAGMMSw3XEwKWUnXj5C3hFFUmqLdDzGRM1DLG7iw3UMriME5x8GaKRsy9ZwBy1Cw2faw0iRJxs2zdNy7Qv9OxxcL/bqKaY0MAhXOcXQqhyfUG5/Djie2Y3zN8fhyU0b7/LvvuQ0//uZj+O7b57Dc6OPf/cVZfPA3HsK3/T+fwYXtHl53tI7//P2vGRdIr3JUcwb+29+7D7bO8XsPL+PHf/cxESae4skVinJK99DrxhhjjFcnYqG9bPRCaCqZO82WbRyqO3BMVRjE0OZtpmTi8q6LlaY3kv0IAJcbfVRzOrpeiEs7PWx2PFRzBt595zzFAjHIKJvs6ZBNWhmI7nywZqOaM1B1dBybKqCeNyiaR1jqrrUpDoQJWul00cR81YalU+HAGRlYVRwdp2aJdrnbD6CrHEs1BypnWGm42BHxM2lK8TCK4Ndmm7/sODWVAymZ5mWmPTMlCwpjmCqaKFsa4oR+brXloh9EmCqamC4RzfJz53ew3Q0wUzIRJymuNDy0vEjqPwEqKLK4leGvTwm6N01EVGx3qQAtWho2Oz42Oz40JSsiKWZmqmjiUM0hkyZTxa3zZUwVTeRMomZWcwbcKIHGGXZ6AaKYmgkQGtYoIQOiqiOijTgVVH6ciuxKOsblRh+XdrrSaCZbR5lWMIyosO8FMUxhIKUonKKHSiZRUhUF/SAW1FcgTgBT48gbGlQxNc3WRy2n484DZYQR6XP9OIWpK+CCzggQHVrmE4vmi8I5+mEMRxRjlRyZFsUJ0UBTkDbbjxI0+wFiMaHOXpOiqMjRe6mew66InNEUjmY/RFW45moiyuriTh9dPyKjpnjgHD2ZN7HZ9tD1iOZLlFoFlRzlJWdO3ZlGXVNIqzlZMDFXtihOxlBlsTqZH1Cts9+1uspRy+syizlJBjmhXY+MkNIUaHuRZAQoHDg0QQ0rhTHUhUt09rp+nIIxYKnmYKZkotkPsN7yYKoMEwUT1ZyBIxM51PI6ipaGkqUjb2rQNEVS1nd6AXRVwUTewPGpHGaKFhr9EJ98bgstoUPOGxoWKg7ypipddem4Y9GoylyRdfhhjLWWizglKnTR0pGmKXSNY1Y0Vnp+hJyhIE6ImVHPGyg7GsVSCabGsEGbyiGLN4C0+1sdH61+IGOpGiJbd6dL9O6umCJn2mm6zoY01SMqOTUVdJUMshyNpsJRnGChYstGYpykSJMUB2o5lC0yqouHJs8pAC+iSX0QkxY5FfesIRg0QTxwQ6/ldDGFVnGo5sjr7Rgq6gUTGmdouKGIUQqx0nSRJkKWkhJNGKDztt3xsd6mjOF+ECNIUsyVLUwWTJKopCk1mDyaAIdJAoVRQytr/IAx3H+ohpPTeZpGW0TznxJMGF3jUEQhnzc1vJjt43hiO8bXFF0/wgd//SFESYqffMtR3DRTlA+gL1zYRcFU8RfPbIIx4MfffBQ//A2H5S+mMV7dOFjP4R+95Tj+6R+cwZ88uY4vXNjB4YkcVhoeVpoublso4Y0nJl/pwxxjjDGuA84ZLF2FphLtbr5CBUPbi8AALFYc7HSpEIziFBVHh6owbHY8NPsBbD2j1gqKWkqTmbZHhjGdIIIfkf41e7pnj3ld4UjSGGA0LV6sOlhrebB0BdMlE6stV2rTcgZl1gZxIjeTOVPD2c0ewoQcczsii5YzThrXoYzTsmOg1SedbyxMS7wwlnrUMCZtma1z9MMEHDT5NDUF/TDGRsdDKdLQ8yNc3O5DUxkS0FRwIm+gN5TnmcXFtL0ICqMNusopb7IvMi0NTZFU3rYboiGmhRMaUfF0lUFVFFzZJXqjG0aIYtL8liwNcZLgwaM1PHypQXmhhoZDEzk8t94BegEubvfx+mMO1tsemn2haU3JEChOiZaZOcak4nMsVGwcqNko2TpmyzYUzuDobaH3I3OmlhchbyhwwwTbYl1k1zWMEyxVqbD+X09tgIspbzZBLJg0NZstW5K26WgUr6KrHBMFQxqBVRwdQUgxOwoHTs0U4UVi8miqWGm4YIwK9JyuIIpTGd/CBD0zo2UXLRWrTQ9dP8LJ6TxWm+SIbOocRVPb42LMULJUuGECBmC16aKWNzFbpglZwSI9rRdS3uhN03ls92g6XbY0dIMIbkAmQElKVPmcqcrmEGM0He+1PTg6OYSf2+rBi2JsdTwwMJzd7KDphqjnKf+zLgpZVeUj+nYA8IJYFremMOyJhHP05Z2+dNa1dI6zW10ANNWbLpo4PpXHVMEC0ICmkglSGMUiFopef6pg4o7FMoIowRMrLRStHTyz1sJK0yUqqqFgoWqDM4atrg8GotBrCkcijrPVp+gdBnK41hQmC9aCqSFBCjeIsVSn+5+B4o+yhhMDOUZ/5uy2zGq21BRlYUaUTTJTALa4X8M4lZE6SzUHmsrxzDObcMMESzUHQIq8oaLjR9BVBYeLFpZ3+yg5ZDS3JeQIXhSDg0HXiI4dp3QN4ySRedxBTCZVtkHNmJYbIklDJGEMQ1VEzFmCSKO1rakcs2UT6y0fYZxQs45T02K15SIFEMcp8hbHkYmczElOAZzd7CKKSYJQtjWYqoJqTkPXJ0M2gIrDCeE+3A/ikazhthsOeRjEMFWFdOGc3I5PTOfR7Ac4t9XD0cmc1FZzRo2n7PnbDyL0gxj1HEPXC4myLTKvAxF/VHb0gd5YpedHzlBRyxtI0hRbbR9qieQDaUqu0F0vwlZ34BB/PYwL2zG+pvinH30Kq62BPgQAfvUzF/Ffv3AZtq6g7UWoOjr+7btvwwNHaq/koY7xEvC++5fw7EYHv/XFK9jthdjpBvj333MbPvX8Nt5wfOKVPrwxxhjjBpBNKYKIOu3bnQD3H65htelKTdikMPvb7PiYKZqo5Ax8+WIDutA06irHfNnCXQfK2O766InMzChJRH4jvYcbxqjmyATHC0l/piscqQLcsVhGz6PnyGTRAFKavDFhmJKmwFLdEfmtHCVLxWbbQ8HSoDAmNYtRTLTWTz2/hW+7dQ6nZgtwgxiLFSry1tpriEVuLef0c1VHg8453CgCQHRjLxjQpSEmqX4U49xWD9sdH/W8AS+MULYoH3Oz7cPSFARRIickhsLgxynaXkjFQkRTD1ujze7hiRxR+LwQKifn3QxXGi5l5woTIYCaxYeEltJQVVQdHd933wEAwKNXmnSoCVGnbV3FWstDxwuxvNvHesdHEJMhUOyGuG2hhCCiiA8ghSGiXqYKFs5tdoQeVwUYI6p4lKBkaTCUBJZOulBTVSiTVVS2cQKsNFysNj2xCSatpaMr8MIYKmeCHjzYuM6WLTTF5rnZD6npAEj6JAC4AU2rcqaGviiIwjiFrjLMlUyst320mi45Z1saposWun4sqaKZRnMir+PoZB5zZRtPrLQQxwnypgZDTMY7XoiSrcHUVLhhIE1uipaGqYKFI5M5dPwQRyYc7PRCMAZU8yYY5zg6kQPnDH/53CZWmp5YLykcI0WzHyBNUxyZzOPJlZbM8lxu9MmR29HQcgFdU/D8ZgcNN4SpMpRsDTMlU2ZI5w0V00UT2z0fVUfDjqCOG6qCrh/D4LT+VYVBVWnLX7J0BFEKhXN0hLFUywvBWwy1nIHNDh2rwkiTPl20cGquiE8+uwVNGGpd3u2PUD53eiEUkaecJCmSBHhitYnn1jtwIyocD9YcpCnp290gkhpKMMh9IUBrzNTJlVcTkVFulGCuUoRjcPR8aqpc2e0jSlIULA31vIJ1oT3mwgDNMVQYwlAt6QbSwZmON0DBpGZFxjTp+jHJC1SOrY6Hw5M52JqCvKXhwlYPpsrRFbTovEURRW0vQqsfwDHoeBcqDiqOjkhoacM4wWY7QM+PYWo0Ae76kaS9e0GIOE3h6CrWWz6ShLT9msLxrbfMDEU4MaiKiJoyVMRpKqOD/HDAeOkHERYrDl53rI4vXdiFG8aSiszAEMYx+n4kn/EAsFh1sNPzpRwib6qIU+DCdlc+57OJbcYCqQsDsJJNPghrLQ/9MEaKFNMl0nCHcQrOOeIkwWrLRz1HNOtb5kpEwxeO82maIm8ShTrzGmj1Ka6LM2L9RfGgcXM9jAvbMb5m+Ohjq/j9h5ZRcXS8995F/MADB/EXz2zgn//RGegKx6+97y78+dMbeP8DB6UQfoy/fviX33EaF3f6+Ny5HZzf6qHpBvjQm47g8k4ftbyONB3QD8cYY4xXLyq2Di9KpGZsmA6WYjCFtA0qqIqmijhJUHWIBnxoIoe80NbVhQPu6dkSDk3kYKoKTBGXUnUoa7Ptjbqo5wwVTyy30AsiLO9SQbvdCwamP26IMI6x2faRJkTTbPTJHKlgacIVORV5q4nQpNEE4YHDdURxSrRjRrTRxaoNQ+WYLVlouSEabgAOYN0nUxpTI6fX5aaLvKHgrgNlAMBG2wcYNQQmC+SebGoKOM9osYMTZ+sq1KFNWknQKTPpRqa64ZzLuDSND4xtANrcOoYCN6Tsyb4fiYkTbTy/dGEX5aGotcxcSRFmQwDkJj9KEhRMFRVbx+m5Eh6+1JTXerZs4R23zeAL5xsy0ifTV+oKBwNNXur5Am6ZK2G97eGLnV3UHW1oMw0kSHG46kjToyy+JQVQtFWcWeug4ug0xVE4Lm530XJDzJVt7HQDREJjmwIo2Br8KMaxyRzmKjaabkjOzTo5VhdMFQsVGx1/F36U0JpMafJVsIi+m8QJtsQmfr5C0+iSTSZNbTfEwboDP0qw2qSs3wM1G9NFC0+utMEAHJ/O46Rgm53f6uLSTh+zIis2TYGn19rouCGOT+Wx3vaw1RlE/zCQdjxKKN9zMm8inQWU1TZ2xOTx4nYPmx0fKYC+F8lmStHSxWTVkteWMQZLV7C55iNvapgr25SFq3Icm8qhZOlY73hgYiJrqgo0lWG7N5isW7oCXdA+k5T0x5mjbz1vYKFqC+22KrTwKb54YReH6w7uWCzjLTdNYUU4jnMmYmgYI7M5cexpStp0Q6GJ41pLwdmtHjgjjbzKGDKVuR8nOFTKYSJvYK3loS4iaDgDjk4WcGaVGANPiFgvXeVgDPCCCD1B7VY4ZcJudXxUnQFNG6DGEEULAcen8tA4QzWn49JOj85BkqJk6ZgqmMibGj5/fgcdj2KKGGPSCT1zp3YMFQWTmmnrLXckl/uhS1mzj9gfQZSg7HCojFFskChqmZiiZ42bE9N5KIyh0QuJUu4YxOBIiS6uccrpPTldRNePsNZycXGnLw3wekGMet7AptD1XtjuQVc5QmFgxoeeSZsdH+stl2KdkEJRuDRztTQFJ6YL+MKFHel+fbCWw9GpPjbaHmaF+7IfJWAgUzqVc5RsDett0nZnMUmqwjBTslCwKH7p3FaPWBYAGqLxNpHX5e+VNE2RgCbbqnLjytnx7nKMrzq6foR/9tGn8CdPrAEA/n/vuhWvO1rHmdUWPvDrDyFNgX/9XTfj7oNV3H2w+gof7RgvB37j/XfjzT//lzi/3cMP/Ocv4zd/8G7804+eEdbyCf79996GB4/UX+nDHGOMMfZBmkJscgiNfoC2F6Li6Fhve7i43cN8hWipjAFhJDIndRUVRgY5mX41K6QUznGo7uAdt87i3FYXfTGt0xUOzhi2uz5Wmh5snYrQvKmi6QYwNCo6wYBtkdtoqApFzWgKdroh5isW1tuunG5wBlgqF7RIFTtdH0GUIEwS3H+4hq2uj4cuNbDT8eGGEWbLlnCMtTGRN3FiOo9PPrNFr8UZTK6IyWYio3f8iOJmOGM4NVPAStNF24tQcWhDzIe8jYctIlSFAYzL/1+s2vCjGLs9MtnJ3IDzpiqpmRNFE+tNDwtV2ljeOl+CwhmeW+/i8ZXmyBs0+yEeX2mNfN9MiaaVtRzpHnt+jIKlYbpAMU1dP8LRqTwYgFpeB2MpdroUi9T1IsxXLGy0XUwXLSRpioWKhQvbPUwUdBgqmScZ2WSZDcp4zoCipeKuAxV03GikqO6JiWnmiktT9RDTBRMdn4qnKE6wWLHw/FZPfrYDVRt5U8VNMwWYOrlCP7seQOUJqo6Og/Uc+kEElRNjIGeo2OkF8MJEahCbboCqaCZonOOZtTae2+yiYmuYq9g4OpXHxe0eEuEorXKKk9EUJnM2M1Qcmlx99twORRgVhO43TjBXstBxQ6ktPVTP4UDVgSEmd8UaOV7nAhVgxJBI0lRMhTMdZYwT03nMlixEcUJuwjG5EmfNgyu7LsI4Rc7gOD1XxEabopnypgo3jAeUZwBTJRMrTcrvDcTrAQyOoKxudwNoCsPJmQLaXghd4ThQc3BmtU1Oy7oqGBcQec10Pe85WMXTa22EcYLXHqnhypCjuKlyOKaKm2eLuLzbRxDHmCyQxrgq3KwniyYiQcE9t9nDl7xdfONNk0RtFxrPthvBCwcU8YKp4fJuH2XbQiicdXNmLNfZasND2wtRdQyEcSKbWwfrOfhRDFsnHT9j9Ll0hbK3d3oUYXZhu4cpMbHs+hGKlo5a3oC/0kKcpPIeVxWOu5cqWG24aHkhOm6I8mxRujFzBvGcoxzwA1UHukINjH5I1+Sm2QJi4aRedXS87ugEdJWjYKlQOMds2UbeomfDuc0euT4HsZRgrDRcVGyNIqySBM1eII38Mmf7jIFDkVGZ9tZA2dax0XYRJwkck+K7bENB3rIBBhydzGOp5uBLF3Zh6QomiybedGISHTfEUt3BZ8/toOUGWG704Yax9BVgjBol8+UcDtdzI2uCscHvhpaXRZglIqOXA0jR7NNkv14w8PDYPGqMVxP++R+ewe89tIxuEOMHHljC647W8ex6B9/+i59FGKco2xreccvsK32YY7yMUDjDH/6DBzBVMJGkwA/914dRsjRYmoKmG+IDv/6QpMmNMcYYrz4YghoL0KYyM9YBBq6/ABXBl3b7aHkBjkzkUHF0mJoiDZ04Y5gVeYdukOC5jQ5UzlAUG7bTs0VUHE26kQKkj4uTFGVbx7vumpeTy7yp4t6DFXLtNDXkhZlQZqLEhBNrzlTR8iJ4UYIwoqlT3lSxWHFQEPmgUZzg0m4Py4IiamgKXnOggnsOVrDR8qW3w96YiV4QQxeVyqXdPk1aDBWzZQtvPjGJt940jUSYS2X1z7BLxE6XHJZniiaCKMGZtTbOb/URRJT/mGkD98LURyOCAGC11UejF+BQ3cFK08XF7R46YuJD14kKmrsOVPGapQomCiYMMU1K0xQzJQu2oWK3F2Cz5eGRK025+T42lYelq1hteChaGrwowXrLg6aQqctM0ULJ0tAPYrT6IT7xzCYu7VAx6A6Z53hRgidXWnhytSXp2MPu1h0vRs5QUHbIRXil5Y4YDVaHzHcgrrGpKjB1FVGcIE6BbkDmW6RvjnCl0ZdUS8aAgzUHpsax1vLQ8yPECRkDTRZN6KqCthui70e4uNNHz49wbrOHrheh5UXY7QU4u9lFIvKUGaPJbtePsNMLUBUNEQbST1dsKq7nyjYeudLEc5tdeGFCUT8p8G23z6KaMzBfttHzY2reqBxxkkodqqkronClfOOSpSMntJ8dN8Rjyy3Z9ABI1jVbsjBdtGQsFQChUbfl+dMUjsm8gTQhCUCzR5nQSZIgEEWYxjnSlFaYrnIcqDpiapfHbNlEyw2gcoaFigVNYWi7ITY7Hm5fLOO99y7i/Q8cxOuPTeCbbp5G1dFga1xM8WjSrCmcKLdpiqV6Tq5RYKDBz/TVSUIsiCxLlfMUK42+/H7OGTFH0hTL4uunZim+SBH/BpAu3hdTcscg5sVC2ZaT26KIjzpYz6Fsa5gtmiJ6J8Wl3b54L47JgoGbZgo4PJFDECVE3+362O0F+LOnNrDW8mTmbZZZe3quiJpjCMfqSMQqEZW9ZGsoWhpOzRbIoVlXwRnDRMHAjDCbu/9wDQsVS5h+pcJtnabUXpig0Q8QJolsctBEl+FAzUE1pyNOIU2YLE3BQtXCXNmSE9DbFkq4+2AFZVtHAnJ4brsRlhsu+n6EthvJtXPf4RpuWyjj6dU2nlptYanuoGTruHOxDEtTUHMMOJoi2A7UPGn0QqmVBei+ywnTs3sOVnFsKo+yrYMzosj3M+q0YFnMVWwUTG00O+w6GBe2Y3zVkZl1HJvK4yffegyfPbeNb/53n4IfJcgZCn73g/eODaL+BsI2VHz8x1+L77p9Frs9ckX9xb99O37kTUfQD2K89z9+Ab/1xcuv9GGOMcYYe2CoHGGcQFMpMzSrpDJTzjlBSQOEYyyAC9t9PHKliQsim7ApJo+GoM1auoLVloumG8DSFbTcCEFMzplL9Zx8vaooYr2QJqL1nImiTdRWL4xRsnUYqiKns5nzMQeDHyaYLdmkL/RC7HR9rLY8rLc8+FGCKUHhJO0Wkxu+DJpC+uDdPm3eJwsm5ioW9sIStFii0TG85aYpfM9rFvHg0TqOTOZEDE4sjaCGUXZ0FC0VJ2cKKFk6wpimNGGUjFTAaUpuxzlDxWzJQn5YviE2idvdAGFCZkQlSyNN31BhnOniiraGMKYCs+NFomBScKDm4PhkHidnCtjpBVgWGt7MHbbnRwADZooWbp0rYbJIWZoAFRVTRROTRQPrbYob6gWkYW0I3RwDuf1mzOtATPqyBknW4KjnqcAEaHJraIponnAcmcjjjccnsVSzMVmgydv57R4eutRAkpLZl6UqKNo65koWgijFestHFJP7LWeUtVnLGZSNLK5JnKZYb3lYb7uYLlnQVS6YAhoVx7t9MlwSU75EnFdVYdjpBHhiuQVd5Wh7IQJhYFW0NBydzGOmRBnLvSAiZ9wCuT6vtT1ZtE8VTbk+JgsmDEGnjWIqUubKFhLh8s05w0bbQ6sfSvqrMjSlVzhlhbbcEFtdX0oGipaGE9MFfMPxCdx3qIqpoiUn0JMFE5MFA0VLh60rmC5YWKzaODVblI2H4V3Z0ckCvuHYJN58chKzJRMK58ibGp7f7OJz53bwmbPb+MvntvDQZdJ1TpcsnJwpYrpooeToeO2ROg5UbXIQjmKsNFxsdXxc2unBD8kpuyVMjFRRlAZxgpmiRZnFnKPlRtIVO1s/ADCZNzFftnFyuoB7DtZQyxmyIWUbRP/VFGoUTBdNzJZIM3x8Oo+cqaHlUaySohAt19QUaArH/YdrqOeMQTYzo/s6Y22oCpfn2o9ipEP3bcXR8dqjEzg6mUfOJOdjlWV0b/ohQ1NQMMmROxSGeDfNUOxR1gSyNLrvO+6gyFQVjpmSJWONnlvvYrcfYFesDy+kuCnGmIzSmSqYqOepeM6iyebLtnxOTOQNEX+kwjYUmCoH5/uXiBlVmIHhyZUWPntuG24Yw49iuIIZsdsLULI1HKo7+NbbaHCVM1Scmi3KolpXKBoqZ6qYKVnkgB3E2On5CJJUXl8vHOSe3wjGhe0YXxVQoHuCv3puC7/y6QuwNAW/+Ldux397aBl/65e/gFB0Jz/5k6/HkYn8K324Y3yV4Bga/tV3nsa33DKDtbaP7/rw5/C2U1N4zz2LaHsRfvq/P4Hff+jKK32YY4wxxhBUzpA3VblByKiR2WbLCxPMlCh25MR0Af/gjUdwfCqPtksFTbaZYiJ6JW9qcjKz2fZRsnTcOl+CoxODY6ZoSbOpzDwqMxHZ6ZL7JwMVFZm+9kDNkZs7x6DN0Z0HyoM4E5/cSsOY9FmZDg8Q7rhio5tBYQzPbXTw+fM7VCjamojVubo4nStbqAiaX/ZZAWCt5eKRy03MFE3cOl+S9NzhuLqcocBQKRvTj6nQC6IEuspHNMxJCtw8U8CRiRwWyjbAhgtWwnTRRM6g6d5M0cR33jGLwxODpsN2j6bRUZygljPgC6qrKijUhspRsnWK9MkbmC9b8KMEF3d7UIXzbs6kjW7OVHHHYllOhrp+hO1uAAYGZeAVJSf5ABUmjNGxHZ3MoyJop5mHBmfkph8nZKaUfbbb50uwdZqsxQnlD5+cLsLWVRys5VC2SYencIbXLFVQckhTutxw0RVRQTlDRcEkU63XLFVw76Eq5YIaKmmgRSHt6Cq4oNgeqDo4OpGHxikqqWRryBsK8oKuyhgVFWC0hgqmhpxBU9bFmo2ZEkWe3LFYwe2LZcyXbUwVTByfzsvmvRdQ0Xh2s4M4SXD3UgX3HKwiTMjVNrvHZkoWjk3lcaiew7mtrtRfM1H0Zjm82XrmbNCQMoZom5wxHJ8q4N13LQjKvo8DNRs3zRRRzRl0nzGGOEmx0nCx2SH67t51W8vpODSRw8F6DrZofGT3GgBsdz20vUi449K65mAo2uQa/udPb+Djz2zCEJmzzX6ArY6PmZKF0/MlqAqXOuUkoWImSlKonKPrRWi4ZCJWtDUsVm3hwk6T34qj447FMr7p5mncf7gGxoDFqoWFqo0J4R5taApuni1isWpLQ6Th5sBc2UIYpaLxQ07uFUfH647VpbY0SlJ86vltfPb8LpZqDm6dL+EbT05irmzB0hTSa1saCpYGQ1PkUMcNiE2gKuQWfHG7h+c3utgVsUcXd/ro+HTOTU3B02sdfPzpDQDAp85uYa3loevTdN3SFdg66VhtXZXvkRWBqTDk0kXxeKjuwBYFs8I5woTM6iyN40qjj4cuNeh9RbFuqNQkoyih/Z2IsyfRQ5d3cW6ri65Pmc9c6I9VheFgnRgf8xUHT6+2cWa1LQviDJlh2pF6Doaq4PnNrpzCr7c8NHoB4iSRbuk3inFhO8bLjmY/wPf88ufx/v/0JXzotx9BmgL/8jtuxtNrbfzj//EkUpAJwR9/6AHUcmOTqL/pUBWOn//u06g4Gtwwxrf8+0/ju+6Yxe0LJQDAf/jL89IwYYwxxnjlkRU+jIuIH7GR/8aTUwAEjTNvYqcboOWGqOUMmb2qKXzEHC6bThysOyJHlku3YkcnOnK2AVUVKihmyxZmxHT1L5/fRtsj51A/TPDps1uYLlo4OplH1dHJdbTjo2BpqOYM3HWgQpMoW+TOKuQsnBVDAE3Ivunm6RETHj+iaWPHi/Bdd84hiBJc2e2PRPYAZLa02nSRE2600yVTFsxfvLCLJKWJ4wNH6lLbOIyyo6OeN6ArXObgVhwNmspHaM+TBQNTJQuHJnLw40ROwLOi8PBEDsenCjg6mQcDw10HqnjbqRlY2qAQv3m2SHmd9oDKm9GEM+o25/T7mDMGVWSxNvshdnvkhP0tp2fwxHILD11q4OJ2TxY7pkrmVoaqYKHq4PR8CadmisgZKsq2NlIUMc7w7tcsoJYjWrEhikpTJWfU9TZRnCfyBubKNiyxyXYMFQeEKVY25S07mphqkcb71vky3npqGscm85gqUYbq6bkiZssWCoLaW7Z1zJUHBT9AE+f5soVb5kuo5wxMFU3cvlhGxw9x02yRdJDiM2YGaCM/Lz7fatPFlV1XTnRTpFJbqXCGrqCfHqjamC1Zshi8sN3H2a0eWoJmq3KGqqMjJ95rpmjh5tkipkVWbD+g7F3OBo7k2XsEIm/YNlQcrufx2qN1nJimgQED8ORKC2fWyFn2QMVG2dbR6AfY7vqYL1s4PJET8TNX8z0tob1loOJf5RwbLQ8XtntIE3Iuf8etszhcp/fL1g5AzwlZcIGynRXOcNeBCk5MF1EwVWy0PVhC9pA1s5I0RcXWUcvpcuqdSdMXqw4O1nJwdHUwORT65O2ej5YwjzM10vRWh0zUVM5wsJ6T64sPr1FATufDmNgTF7Z72O0SFT17H1Mj92M3SHBiqoBDEzl8w7EJHJnMg4MK8ikRq5O9vsK5yM8VOcBgCJOECt40M0ran7UYxgmmCybuPljFPQcrtM4L9NwqiEnnTTMFLFYdee6mi4a8/0q2jnfeOY+/dc8i/vHbTwBpio22J58DJIdo4Zm1DtwgQpKQa/l00ZSMj72YL9s4NpWXucxMnJuZkoWqo0NhwDefnsbNs0W87dQUFEYNyZ4f4aFLDfSDCIwxPLPewbktimbbEuvg8EQOPY+cywPBrMkkLTeKsXnUGC876EEd45HLTXT8CN979wK+7bZZBFGCN5+cxLHJPN58chIzJfv6LzbG3whoqoKP/v0H8NZf+BS6foTv/PDn8Fs/eDf+7cfP4tNnt/GBX/8yfuZbT+E3vnAJP/W24/tuCMcYY4yvDbyQjGWGJ6+qwlEvGDg2mcelnR4eERr5thtiudFHR2gF63ljsAkRpilvv3ka6y0PD1+m6QBjQMsN0A9jHJ3KU56tMB2q2ho2Or40iJkWhVwWI5QEwPmtLuI0gS6K6JmihfWOh45H7sBzZRuNXoA0JX1lECe4sN3HvD/qJvvg0RpypoonVlqUnZmk4JxhrmyjF9DE6Jn1NgCaAA5rRHs+mU6ZmnLVBnC2ZI3oRLPsVD9KcMdCGatNl3RwVQe9IEQkInCGJ0gLQ3RvBip0iOpI5kKKcHK9uEPFwMOXG2i4AQ4P0boXqg7p08TnrecMqVcumBoYA6aLFp5d70hHaltXkMkYd3sBnlxtwR4qNLOPpankEF20VTi6DT9MYOpcmh5lrzVVMPHtt86iaGq4ebaItheiJIoWzhgevdJEnKToeCE4YzhY0+FFtOk+MkGmM2kKnNvq0PsqHFMFU067K46Ok9N5tEsUvZMzNHzkr86hO9SQWG640JXMCTeVx6erHBVbxzPrbagKw2TBQC1noB/EKFgq6pGBk9MF0taKnwmEVja7VLfMlbDZdoUDN2WKzpVsPLveked9o+2hZOuYr1jy/Jds0nqvNl08s95BmkLSpAHSha42XcyULBydyGO6aKItzpEXxmRGxBm+4dgEvDDG48stlCwN77l3Eaam4KJw+GWM4dxWF2EsjptT8dnxQtx/iGi7RYv06v0wQrMfIhIsh+mCCUtTMFOyYOkKCpaK+YolJ21tf9CQXqgSFbjRD+SUdK5iI0gSHJnM4faFMhWKvUDq4KfEfXJ5t4/JgoG5kok4SfHYchNtL0TPi6RW31RpSll1dKy3fXBG+tCL2z003RCmqmBls4uT0wVMFU2kaYqnVlrYFDFSKgcu7PQxVbQGjAE+XNgO/j9FKk2jGv0AbhjDMRScmiliu+vj+Y0uOn6IW+ZLeGy5CUsXngMMqOYMtNxwpBhbrNpYbxGbIHuOFiwVz6135X2S0YoB4PRsEbfMlQAA9yxVhxgsgsKrDpoFGVRObuMqpwzyYTbKYtURTIoEHY/ui+EehioK7yBKYOpEj759sYQnV9owtavnn5mJ3VrTgyfi1wCK/5orWzhYz2NRaLMfvdKk5/ZQaHkojKsWKhZMjWNdRAUlaUqF+F3zuNJw8flzO2CMmhHDHgPXw3hiO8bLjsWqgweP1NDxIxydzOFv372AjkeW5b/83jvxE285hlvmS6/0YY7xNcZc2cZf/PjryLglSfHuX/4C3v/AARyfyuPz53fxnl/9Av7L5y7h1z936ZU+1DHGeFXjF3/xF7G0tATTNHHHHXfgU5/61Mv6+lE8mIRkf+YMFQpj+KbT01CGoheiJMVDlxo4u9UD9pR4WSe/0Q/wyOUGVgSlLE1p41h1dGgKw2bbQ8uNULY0HKznUDR1VIXhzZtOTOK+g1XMFS3MCqqnG8bo+zEYY9AUjpWWi3Y/xHMbHbmZTAB8y+kZMGG2YmmKzP7MYKgDE6ypkimzUz92Zl1+DlNVUHb0ga6Oc6JJpilOzhRHztNbbprC7QtlpIDM+5XnQnzPQ5cbeFoUPZcbfVzedaGpDGVLH8nZzCJKDJVjtmxhQmy03SAGGNEoswagoXGpvbwyZK4zfC12ez62hDs0AFGQA46hoB/EuLDdw4XtnqQqA8Bqs49zm11MCWp1kqbSOCsUr+P6CfpBjCdWWtjpBlAVLnNnc4YqtdV/9tQ6tro+NtpkuENUYwVvPzWFm2cLyBkU17PR8dHoBdBVyl+1dAXHpvIwVWVQtLPBSktT0hqvtz1yDE7INTeVk7AUZ1Zb+Oy5HWx2fHghZQozkO+HqSsIkxQ9P8alnT650uZ0GJqCIxN5WLpyVZMh+w+gta0I6jJAFMriUJGCNMV2hz6zG8SyGGEALu70ZUPhYN1B0dJwQBQNLZdoyVsdD7rKZW4pZ8BTq21J9zU1BYZwAK/m9JF80mzdnRKTS10lY6C1tivPGedM3KcMnPGhiCrSYTNGE9Z63kDbi3BhuwfGqCgxFMrB3en6UDlHCorWygr0g3UHS1UHrzs6IXWdYOTi3OgHuGOxjLypYbcX4PxWD585t4PNtgeVMyqoGMCQou/Hcn2nQlddtnXMloj+7YcJLu70YKjkXl3PUbSYrnLZsOh4MQyFjzAJrnpYATJf1hCmV9n1OVTPUb6wrcm4qseWm3h+o4PnNjroeCEOT+RQy+mYKZo4MpHPzM9Jd+6G4Jxjvmwjb6gomDqmiyaOT+VxYrowUtjOVWzJVDgymafPOKTzdsR9v1gdrMsJETNWzxtIkoFZ04XtHv7w8VX8z0dX8PGnN3DbQhF3LpZxYrogf/bEdAGOocCPSeu73Q3w5EobXS+6xsx29JwNF/GmpsAxyN39+c2ubCzsd7qXao40PSvZGgqmJjKviQGR/Q6YKZpj86gxXhn85XNbSJIUf/rkOv7rFy7D1hVsdwN8/3/6Eh7815/A7315rKX8esdEwcQnfuL1qDpEC3z/f/4y3nvvIiYLBjbaPm6ZK+HvPLD0Sh/mGGO8avE7v/M7+JEf+RH8k3/yT/DII4/gwQcfxNve9jZcvvzyGbFxTgVBIJyK50UmI+dEbfuGY4OorqxYPD1XwvGp3OjGEbRhThKi+a23PcRJijgBrjRcsWlkWG5SwesYKuYrNmYrpjSqUhWObzo9g7ecmoIXxoiFA+hwEagwJie8w7o/TRRHT6604Yax1KMNQ+GU75k3aNqRpJQ9qSlkjnSTKApsQ8WE0Ig6ugKFMTxyuYHtjj8ogjUFUZJitemOaG+BQQbwapOMrKKYMlcBclqeLpkoWoPjC8RE8vaFMu5crEhKZ7bR5pzhDccncLOgdx+ZoKKv7OiYLJg4WHeuuhbAgNLLRHE4PH0EqKlhCkro2c0eIkGhzBoAhjjvipicWpqC81s9JMIwptkPZFP7yGQOx6fy6ItoGX8fU6K7lqo4PJGXObxdL8JMyUTNMVAVBUrR0vD209Mo2hrimBopj4jpP0DZyDfPFtH1InzszAbObnZlIcQYra8UgKVxGWsDUKYwZ0xO51bE952cLuDBI3XcNFMQn5XJYnrQ7Mmonpo0GwKoWL4K4mfObfUkfRMYmPAULA2TBROHJ3KYK9lYqjpoCc1xy6Up81bHR9sNB1NGRmuDKLwKbEOFpjBstHwZxwPQvXGonsOJaWrCbHd87Arn5DBOJSUdACbyBm6eLcprTVrTQUWRHS9RhzksXcFzG118+uw2OAe2OgEubPfQFg2inKHi+HQB00ULsyUbc2WL9LVugMeXW/j8uR0RVURa7JYbwosSEaND+aW6omCqaMpiMtOtlx0d33R6GvMVcjdmoGdQ5iac6aI1hbSoS3VyRF+qDYrB/QogxoC8qeH+QzXcf7gGU+NECRdT3rZHE21LU2BqCu5YrKDjEbV2vmLj5rkS3nhyEpauyGIvTlLkTTKUsnRqsJkqF8dKnjRRNDjPB+vO4PpxhocvN/DkSgumpuA1SxXcPFfErfMlfMftc5KWbqgKKo6OfhBjq+PLiW2WRwvQM3i2REXzMJ2dMcpIBui5b+sK3Rt78rOvhazJdGQihznBYrnS6GOr45E5VpzK60HfP/hJAKjlSULSdEOESYKPP72JRy435L3UC6KxedQYX3v80eNr+L5f/SL+/m89gp/8vccA0M282wuwWHXQ8SOc3eq+wkc5xqsBZUfHJ3/i9Zgv20hS4Gf+4Az+wRsOw9EVPLbcxEcfXQUAXNnt4yd/77GrNohjjPH1jJ//+Z/H+9//fvzAD/wATpw4gV/4hV/A/Pw8PvzhD79s78EZ6emyTbzUig1pxqaLZB51y1wR77h1Ft91x9xVEoKCpYkp68CllDEGhQOLFQeWxpE3VCyUbZqECBOgvKnK4mq356PrR7B0MlzSVY7XH6vL7NkwTlCyNaRIMVuy9tVicc6gcCbzHPdipmThwaM1FCwNnAGnZgpwDBWWcC2NkhSOruCW+RKmiyZMnbJRt7s++kE8Ypg0XTTxwOHaiKbzjsWyLOpMlcNQFdy2UMbdSxVM5g0slh3kRFFfFzTO5zfo92XLDcEZRtxgs2sxrEus5Q2849ZZvOZABXNlC2VbHykgM63weosmKI1+AMaoyMibKhYqFubLFvphLIu07BrpyqAYzExpvCDGasslCjVn0BQGW1MwWTAxVTCpqJkq4HvvXsQ9B6u4Za6EoqBFZ9NGgN6/2Q8QJ3T9bF1BxTGwWBOFkKzjmMzRBWiCdqhOE7KirWGj7eNz53cAkLP2gaEpa1Y0myppwE2NI2eqSNIUBVOFwommXTBVtF3SaFYcHbWcgTsPVDBTpILM1hXMlSjbM7scDx6p49hUXl6frNGT6bc5Yzg+WZC50Nm5nSlaODaZw00zBXzDsQn5c3ctVXDTbHHkWssp/NBkLGNDZP9Pn5Hh8ZUmun6E03MlzA4552Z/mrqCrLS2dUVOAd0wxnKjPxKnk73+WsuFF8ayyF0UmviFio3poombZgrgjKFgqZgsmJI2en6rh08+u4k/eXJNUHFj1PMD/WfLDZEkZGjWcgNJj43TVDjsxjA0jrYbQlcV3DRTxGzJwu0LZQDAnz21DoCaWbfMl3D3UkUeu64oKFmapNFbIuYqWwv0+TMd/kDfHsY07dzuBrJhUbYHOuvdboC2H8OLYtyzVEU9b8j3eMtNU3jHrbND157ep2DSc7Bo0XT6wnYPWx0ffpjguY0uzm/3pHkUAFwQuc0Zst7CfNkW000d33H7HHSVy9gnzqjpNFkwpfYdGDSiZksW7j1UlX+fKIgmnUHMjbKtQRPmVDmDordMlePY5LXNXdnQ/9D112TBnDUrkjRFglSeo5ww+gPoWckYw8FaDgyMnJhF82i1RU3Qm2YKIxFWN4KxkG2MlwVzZfql+PClXXQEzcePEvzIm47gQ288gqdW27L7OcYYeUvDJ37idfj5jz2HX/zkOfyzPziD99+/hE+d3ca9h6oAgH/5J0/jj59Yx2zZwo+86egrfMRjjPHKIwgCPPTQQ/ipn/qpka9/4zd+Iz772c/u+zO/9Eu/hI985CM39PpPP/00ACqiMgfWYQ5YVsB5IW1Qz2528fxGF7eJjaaqjPbKs40PYwwPHqlJx1pdVXB6voggilHJ6Tg+U8Bam6i7OUPF649O4C+xBQD40sUGFPEzlpiIHpogZ9woTvC58ztouSHqOQOnhqZNWSFRzekiM1KXRZk8vhFW4uAv737NIv7Nnz2DM2ukr13e7WOxZmOl6YKDCuSyreOmmQK+776lkcmoKSY5w9CVgfb0jsUKDJU0twrnePBoHdWcgZ2uj5yhyolLNrWZKJjgwnxlGMMGXQBpP90glsY4ez9fNinMJh+LVRsFS8OBag4PX2rC1onGeGa1DUtXcMtcCd98yzQMVUHHCwHqN6JeMKApHHNlG2GUYqqgY7JA9MfdXoAza22UhHlUdl40heNAzZHvPVzYPnq5iXNbPRyqO5gqmsibKjpehNmShTsPDBUqwt04RQovSvDG4xOYFi66aZqiZFNTYqnmyPNQdgxc3Onhm0/P4NErDeRMRR5Tx4uw1fGhKhxvuWkKDMCfikIpg6UrmNUtbHd9MMZgaAO3bmVPoyH7azJU/K21XNxzqIqcruLZjTa8MJEFUs5SEfZSbHZ8zJVt3H+oin4Yo2BqMFSOFHQvmCpHEJEjcnGPiVVW8PSCGM+ud6ArDIcmcrLQHS7iTE3BW26aAkRG9LO8g6qjy9dIkxRhnCIeonw+cLiGthfhixd2ccdiGSVbh6aQVrwX+Jgumnj3XQsoOzrSlHKnyzakrnulSa67ZVvDUtUh5+sUePPJOp5Z72KhbOPMageGShTyLHJpukQZyZN5E1vdQBpbHZvMwY+Ikt31Izx8qYGyo4Mxoug/vd5G3tRg6QpUlc5FkqaS5eBHyYgcIXNK9qMEFZtij6I4haVR8yO7xr0gQj2nY6sbyMYEA5PF92LVwV2LZay3XHz67A6CKMbrjk1Il2dTV1DPG9jtCb2urtC1VpicggdRClGLYqY08AJo9UMsVmwkGKUeA2RWJyFMlm6aLuLUbBGTBQPnt7uwxIR7qeagmjPw+JUWffahyJ1n1ttouqE07VMYPTsqjo6yMyrfGEZ2L92xUMaTq62Rf1uo2NBFhNOa8BQARhkNMyUL31wwsd728ORqEwrnuPdQFb0gQlvozs+stUdyr28E48J2jJcFp4SN+qfPUseUMeB7XjMvC5JTezqQY4yhKhz/6K3HMVkw8X989Cn8h786jzccq0ta2P/1bTdjtmThh15/+BU+0jHGeHVge3sbcRxjcnJy5OuTk5NYX1/f92fW1tbw8MMPv6j3SVLSzmaRKhsdH/PVAbX12fWONKfpeCHWWx5UhY2YH+2FqSuy6GIANtr0MxN5E10vwkbbo6LGj/DESlMa58yXLTy30UG76UnX1szQZq3lDoqsOIau8qGpsqC5OVTwrjRcGTcz+llTPHK5iSimz5rpI7t+hDAmWjEdM9EyFQXSZfibbp6WMUb74d6DVQRxIo1lkFKhnblCk1bRRtWhwtaPYrTcEFVHx7vvWkCUpLKQYkM1+cLQZDfDk6stdP0I33x6Rn5tuFjPLk1WtxRMDd98egZBlKCeN+TrcUab7TednJRTn7yp4Za5EsWYqByn5wa/z7NC9MRMAZ85u00f80Xo4aYKJm6ZK8pp3bWcWDPcvVTF3UvVka/t9gI8t9HBbIm0yNk6s3QFJ6YLqDg6kgSYKVu4ODQNcwOaQrbcEE+vtrHV8a86r3RMhHToL3sbDUGcwtSA59Y7uPNABUVLwz0HqzA1BW03hKpw5IYaKzldxeF6Dl6U4M+eWsebT07KgjA7fVNFE6amYKnm4L5DVTy50oalKdJQKYOtKegHEULlhUmYpqYgTlJJD9UULqnptqFA73M0+gEWExucM3DOUHZ0HEiIUZAzVBydzKHthlhtunjTiSl5vzBG1Hh1KPs0kwVwzjBXsfB99y7imfUuoiTB0Ql67Y22jzhNsVRzcHK6gMu7fVRsHastD70ghheSkZUXkb73jsUywjhB14swX7HR8SIojNynP/70Jg7Vc5jTbVmAHp7I4eHLTXhhDJUzXNweXH+VM9y9VEWcknlZtsa3u/5VjaNjUwWc1hQkcYqZYls2MMIoga0rmCyaePRyE89tdGDpCpr9AHNCwpGduzhJUXN05AwVizVHUrajJEXZ0SSrY36IbZAihaZyyrTeI6U4OV2QzbeOG+LYZB5vuYmuyU7Xl9dleE31RHMpjFNyty+YIhqNIrfcMAZXGE5OF65q3uzFHYtlOg+iAB1GNUcu92c3NykSbM9rSTYQZ9jq+JRZPUlyCqKMO1huEntgsWq/KEPRcWE7xleERy43cOt8CT/7Z8/g02cp/4+xFLWcid/8whW84dgk3nRy8vovNMbXLb7vvgPY6fr4d39xFn/x7Bbe+m//Cr/x/rvxb/7Xs/iRNx0dyrP08dxGV050xxjj6xV7tZNpml71tQzT09O4/fbbb+h1n376abiuC86AZKioAkYzH0fyCBnwhQvU0BzWtwKQBaumcHzx/A6WG67Y7KU4MV3ATTNFLNUcPHy5geWGi9kSUT77fiw3ebcvlHGonsOnz26j40eYKhiYFMVHklIBu931cXwqj7sOVHBltz9yjjJDm6ozoAwOIztiVWGUdZo38dClXdw8W4Slq+h6EVYafTTdECVLQ9UxcHnXxUTewGPLLTy/2cObr/E7LjN8avYDWeytNPoo2bosKFZbLjba5AK93PBlVArnDPrQZvB6Gztf6KGfXmujaGnSmXXwOcX5GKo6ad1Qc+I5QX1+553zODlNE3TanFOsTmZmM6zfPFjL4fw25XF+/twO2m4EMEgTrhfeFhNuXSjj9FwJf/D4anagLxqqQvR1Q6UCzwupyZEVn2stFz0RZeJHCTxxriYKBlLQuWu6gYxA2YvsdTpuBC/oUZwL2/s9tNYaIpZpu+uj58c4UNPQ3ieGk3My/9rs9EbeAwAu7fQGJlOM6KJTBQtxQoXao8KRPLuUDxypIYhjXNymtb9Pao9E1qjywhjLzT5uFbF7WawKAxu5BrMlS04eASq6aiL/1trDTNgbizRTJKdkUyOda8Ux8Ox6B8+tt5EzNXzToRoevUyfReUcbkBO51k+KxWnNJ3d6floCg3ukYkcFMbw5EoL9byBuZKF//nYKmx9wJaQlO3MTC6lwn53SHOagqjwu70Adx6o4PRcCWc3u9ju+lc1LuI0Rc5QoQo3cC9MSO881DCqZZm5CsdSLXfVa+z2Ahiagqpwop4qmnLNLdUcPCNM5YaRHb+hKlc9449M5pEzVfzJE2uYKlJGc9ZoyNZAdr9udXzUBKvlufUOwGjgNF8hSdgXL9DztetH0vhppmSOGKftRdbU615DLjZ8uHt/NwzjppkCvnTRRpKmeHK1BUPlmClauLTbg6Zwmri/iOfCuLAd4yXjr57bwnt/9Yu460AZX7rYQN5Q8QvvvhU/8wdncGm3j/sPV/HAkdorfZhj/DXAj33jMVRzBv6Pjz6F5za6eN3//Qm4YYK2G+E/vOcO+FGM9/zHL+LsZhe//v7X4O6D4+J2jK8/1Go1KIpy1XR2c3Pzqiluhg984AP4wAc+cEOvf8cdd+Dhhx9GnKRYbXlYKFtoC5fY4Yb7fMVC1w/hhQnmyqSzq+UMGXEiIShtfhSjH8ZouTTFSEGbUkdXsVRzsC2cMzkjapyhKbKQ5iOUVoaSrcMSRV5mvmSoitR2ZcVrps3PG5qYvib7TiAyPSUdLv37csOFqnC86855fP78DpYbfUzkDaE7U1B1yH32oUsNnJy+vsRmOFZkrkLTpIKpwdFVPLfRgaoQNVlTyJE1cwMdxjCNeqPtwY9iOVEdRuYGa6h8ZGOZTTGHJ2rZ5jdJUyw3+gjjFI2+jzNrbZwTnhjTReuakxtLV0QjoIGipQ6cbwX2Fn97N+bZxn/4/NxIXuX/fHQFAPCOW2cBkLnU7QtlxEmKj53ZwFOrbZycLsjPnOWkc0aGR003hCoKyzSFNLbpX6OwzVx+kzQFZ/tTkefLNnb7gdSyXt7tY6vjj+Qc70UK4K2npuBHyVX09bKtY7Xp4vhUXlL5s4gtQDAIRPnrGCq+5ZZZeV4GgUZXo+WGmMgb2Mob6PkxZksWLu/2kaREDb1NFLoAcHaji4cvN/HG4xNygmmoyr7rbj8wNlh3jAGbbQ/ntns4s9ZBlKQjzryqMjBWq+domsxA7IzJgilduJFCmkJlxY6uKsgZlOmaOQYPa9IZo+fCqZkCXnesjj97aoNin1Iqmnd7AT5zdgu1nCFjovbq8TOneE0hWUDeUuHoKrbEs6vRC2TUmKnSse9lsJRsDc1+iHuWqqjmiQb+2HITAHBkIo9n1jvy+IePHRhtSA1jumjhtUfreGp1dGKafX9W2K63PJyYLkht+pcu7mK16SJvauh4IcqOjqpjYKHqIG+psHXSF988xM7YD3/13NZV+cfZM9GSpmrUsDDU/RkFqsKxULHx6bPbmCtbdG+aKjqejo4foeMG8G/AxEq+3g1/5xhj7EHOVFF1NHz5YgMMwD/71pvwr//0GVza7ePeg1X8ynvvuuphPcYY18L33XcAMyUTH/z1h+CGCRQGfNcdtHExVAXvvHMOf/zkOk6LfLcxxvh6g67ruOOOO/Cxj30M3/7t3y6//rGPfQzveMc7Xrb3UUTx0+yHaAvPhOE92n2Ha3KieqDqSN2UwskpOJvYFUwNE3nKlDw1Uxg41YIoqNnvh0MTOSw3XJHnqMPRVRyaoA1Y0w1xbrNL+kyxf8oKIU3hSFNgrmzKqVI1Z+D2hbI0xbENFTfPFtHohZJWnOHqQov+rOcN+GEiXUwP1clF9MpuH4zTpENXGc5u9qC9wCRCns+h9ylZOnpBJKmbU0UTF7d7CKIEBQsjbqX7HRtAWsGuF8HI7VPYIsWt8yXESTpSgGQU2+Eoml4QwdYUxAkZuSQpUDR0WdTSORp9/eEN/+GJHDY7HjijqeeBqoOHLjUG2mpcvbFvuaGUm+xXMF+H/Tj0faPf+OiVpixgh4+7YGmyKHF0Bcen8ijbGgxVEcyDFKrCUBbZupV9NIUKZ3jTiUl0vBBxQkXXcIMgZ6joeCEZromvZYY3V3b7KFraVa8JQF6j/QrFgkXmVo6uIk1TPHKlCYUPNJmMvTjKdwbOBhpnXeFQFY4Hj9TxB4+tYqcbYKpI99J9h2q4sN1DywtxebePA1VnRL99I9h7KT93fgd+GMOPiJHxpQu7OC4muld2e/KZoimMppsqB0A5wNm1DWKij3/67BYu77o4MZ0HY6TdvPNARR7j8NqayFPqwun5Ek0+QY+SFMCdixV4YYyPP7OB3V4oKcZRvP/JTVKazGYmZBmy5sQdi2UsN/oUzbRnMR+sOVhu9PHIcgO3zpdHNLPXupTZNd7q+tf4jv1xLQZPhpPTBRysOciZKs6shjg1U4QXJqg5OiyVord6/v7NswyPXWmi0Q8Qxolsar395mn5/5rC8Y0nJxEnKX7jC5de8HjuP1zDStNF2SbDr7YXSWlKP4iv+3mGMS5sx3jJ0BWOphsiBXB0Moef+9hzWGm6uP9wFb/83jtf9ENwjDHefHIKv//37sO7P/J5+FGCH/3dx/CFn65BURi+774DeM+9B+QvrBeiX44xxt9U/NiP/Rje85734M4778S9996Lj3zkI7h8+TI++MEPvmzvoSoMReFovNH2RLExuNcKpgY/jHFhpw+NM1nYqpxhoWqjuUxGIrac1jAcnSrg3FZPbviGWReH6jkcrDmIE8pQfdPJSQRRghQpPvHMJuVcbvdwsOaMaN/SlI5qpenhwnYPR4SD53zFxnrbw2rTxbHJPHSVY/sFnDWzzWz2PLnvUA1Prbbw2fPbQs9IJdrhiRyOTOZxfCoPQ+X4o8fXrtq87geFk2YtRYrjU3kkKW36OGc4NUtmLztdH5rC8Ilnt6Sr6jCyYiSj/2XPQbYnkgUAPnN2B/0gwrecnpHHN5E3MF+24IYDI5ZsGs5AzQwFNGG7faGMh4fidIYR75nOhHGK2xbKmCyYiJMUixUHyTW26dkULZso7nfqNIUL+uq19w9vv3n6qsK2ljNgqJR52w8iYc7F8MDhmmxoOCKfdLnpwnVDbHY8pGkReVPDa4/W8eCR2jV/pziGiqKlQ+UMb7t5euTfHjhSw9NrHVza7snzk62pthtdlZ88wLUr04KpUfEhsnsPVIkKnmnb9/vpU7NFrDU91JyrdcIZcoaK1x6tQeUM2tAEbanqIE0H+cQ5Q8Vrlip4fJl0oyVbg6WTrj0zLfrm0zMvqMMcLoqy66UqHAeqDq40XHR8MvCar1jQFEVONOsFEzGI0rsmcm0zE6PJgoWLO32EcSLNyLJzvt5yZYNreH0MZx4DoukhKltdMBs4Y+gHER48Use5rS5OiYzqew9WsdJ0ZTOGgdatpY1SgxmAtaaLj51ZR8nS8fxG5yq9NhmQqWBg0BU+Mp1tioZRlIwaJV1P53ot1HI65so2mv1w3393DFU+S5/d6OCRyw3yNShaOFBz5ET7hZA1MDWF49RsETnjataGqnAoPMXp2RI0pb3fy8jj+b57D4Bzhs2Oh8+d28F81YaqcHS9/T/DtTAubMd40XhmvQ1T4fjOD38WcUKbl82Oj2Y/xNtOTeEX3n3rDVNVxhhjL25bKOOP/uED+K4Pfw5NN8Tf+pUvIElTvPHEJP7hG48AIJrhD//mw/iBBw6O6e5jfF3hXe96F3Z2dvAzP/MzWFtbw6lTp/DHf/zHWFxcfNneQ+FEz42TFAVLQ9ONripCoiRFz4/QHaJvhnE6MqW5ea440oB6zVLlmvo/xpjUYaVpij95cg2WpmC6aKHRD1C0NDiGOvL6jX4AMEhH5GFkGyxDG1Dg9isYAcjN3/BnPL/Vgx/FuCDMZjinqd4dC2V0vAhelFAxdwNjM0XEaABE99yvGK4KY6vhiccwsp/JCqbs7/cfquKJlZac/nDGUHE0OLoyUvhQoVTEZaFBft3ROnKGiiRJR6ayhsYxX7Hx3EZHuFjvnbpSgZEZaGUb8oPCdfXPn95Aliezt0Z826lpnFlr45IozvYrIhkgGxTXwt7zE0QJzm11kTdVVBxd6pErDrn4LlRsWdR8+uyWnMZ54WgJfr1GaZKmCPaZ5BmqQhNFBqwLd+8bQT23/3Q+w3zFluvmlvkSgigZKWyTPWsvo5m+EBhjKFm6jOLKMFUysdUlHesdi2X5vhnNNGMdXEuHvB8WqjZypoooSWRTg7NRI6Fjk3lYuoI3HJ/Ao1eaeGatg4m8KRs5bpBgvmLD1hUcnypAVzjiJAVnTEZqZV4Ayw0Xd4jH4DAzIW+pYMyU5lycMcRI96VsVxwdFWfgxj1RMKVWPjt/t8yV9tXrr7Zc9IMYnIXwov3P00TewFHRHMugKVzelzfNjD7HcoYqTa2uBWsf/T1jDHcslrHe8hAlyQvS0xnIdbrZD7HZ8XFkIodTs8XrygIyVozC2QuuO8YYJgsmVlvu0Neu/r7smZY1Klr9EPW8gYqjI/8CJn17MS5sx3hRePhyA9/94c+CMboRMipGsx/ie16zgH/+badecodpjDEyHJ7I43/96Gvxvl/7Eh650gQD8NhyCxVHx9++ZxEff2YTn3x2Cy03xP2Hq+PJ7RhfV/ihH/oh/NAP/dBX7fWzjcVS3cZKw8N8xbrqHsviY4apuMkeFsXHz2ziwaN1Obk4t0XU3f2cZ4eRvYYbxrhlvoSluoNPPLMJYHSC4QrdVTWnj0RkAENOtulgw3TVNGTPZ8omOw9dagg9JcNM0YIbxJJOGsQJPvkcHUum8bweht/neo+q/YpaALhpuoDVpkvRO0OvWc0ZeP2xCXzszAb6QYS5srXvhLDRD7DZ9WDpHMenCiPf44WDAj4rXK5Vrzs6xcYMf47dboA/eWodbM/P7P2oEwUTeVOTtNL9XLRvZAK+Fwqn3GVL239LyxiZX212vBEd7VTBfFF03o4X4uxmD3NlG7fNl0aO1dIUNIGrIqVSpFedh/sO1bDbCzBf2b/Rci2MmoHhKj3mjb9ONjkfIIuUsnRFFoxJkqIronJkHmqZ8lh1ld/QXm+Y2p2Ze7W8EH4YU36qo8lYp54XoeUGchILALOi4I6Twec/WHNQz+n4xLNbKNk6jk7m0fOjkefKbMlC5eQUnlptAU1q7EgHZ/E9p0zRGAABAABJREFU2ePgRnTdA6TCMZquc8HU0PZCOIaKFEDF1lHLG4hfIKEm03QDpLHmjGG95YExtm8Be2Aotmk/zBRN3DRTlNm0LxZHJnN4fLmBIKZif7cf4Jn1Diav83rxnqbHV4rdXoDzokG1VCMn7idWWlBE/NyNYlzYjvGi0Oz7SFLqqGucIYgSJCnww99wCD/xjcfGBcYYLxsmCiZ+5wP34IO/8RA+I2Kk/rf/90mYKsd33TkPL4jx5pOT4zU3xhgvM7LNvqOrkma89y5TOIOpcTkFAYgOOqIRZaMmLutt76qN/7Vw+0JZbpwLpoY3nZjEnz+9MaJtnC1ZSFNyjd2LrOhdbvSlSc3eadNkwcB8xR7oRsWhLjdoenLHYhmLVQd/fmZDxmS8lMfNcAH0Up9XRybzePRKU7q67i0q7jtUvSqncxi0aezhrgOVkSxJxkaPKUwSPHK5Mfi8e16HMTZCE37gcA1//MQ6dvs+ipaGNE3hvIAMafjj832Wwks5OwpnuPNA+bpFKmdMTu8NlYykXkwdTWsllGZiw7EsWW7tdOnqYnXvJR+OV9oPWYTSlV0XhqKgYKm4suvK1zk1W8StcyVMFV944nstZJPevW62N88VURuKxHpytSXvjcF5U/bVdu+HME7gRwk0hcFQFbz+WB0cKZ7f6Eq9/aKgWIdxggR0jUq2jk1hyjRXobzlRwQ1vh9GKNoairaOb7tt0FgazjzOYOnKvverNGQSf1c4w10HKi/JE6ZgUWGrKeTCvSTyp+Pk2pXt8P2WsRvnK/bIenoxYIzh8MT+E9MbfdzMlSw8u94BFzTpzDzqhZBN819KM2o/rDRcrAjZwBtPTCIW7IjdXoDONZyX98O4sB3jhuGFMf79X5xDCtqshEkKTWH4V99+M9555/wrfXhj/A1E3tTwa+97DX7kdx7BHz9BTrA/8fuPI4gTfO/dA+plnKToB9FVcQNjjDHGS8fwBmxvEZI3NRnXk0FXORbKo5szZWii++Dh2g1PR/Zu8qIh2lsGU1OuuaHL9MGWrkiKc29PYcsYw+0LZRkRlL30QsXGbi9AxdERxQmiOBHT6OvnrH61ILNwBfaeR9LMXfvnNzs+Wm6ITz2/haKl4dBETup1LV3BfNlCCooVemKlJX/uepermjPwnXfM4q+e24IfJrBnhsyQrvOzw5+BM4YkTV+y4eQXLuzCC2N86y0z1/weRUwkC6YKTeWwdC4LqxvByemipK3v3fRL/ab4e8nW0ewHyBsv/nfSwJ27j+miCcdQ8MiVBiwRW2XpHEenXpiu/ULInHLbQ2Zb/SDCpZ0+Fio27j9M8h4+UoDdWENqGCsNV7r+vuPWWZiagvsO1/FnZzZQzxu4Zb4kC/wvX2wgjBNpGvfcBjmsZzrP7JxwxuCFMT757BbKtnbdhIT9mx0DyUOGvYyP673e4MwMm3kNXu/W+fINvV6Glhvic+d2MFkwcNvCi/vZF8JsycLFnZ6UDuwHQ+Wo5AyiNDOgbGsjjtXXQtYgUV+mwnaiYGCl6aJka9AUJl+/0Qte1FN3XNiOcUM4u9nBv/qTZ/DI5SYWKhZ+6T134t99/Hn8nQeWcNc+nbIxxni5oKsc///vuR3/ovQ0fuVTFwAA//h/PInNjo8PvfEI3DDGh377UTT7AX7jB+4e67vHGOMrBbt+VEs/oIlSzlClwQ0AlBwNUwUT620PDIA2VBGX93GcvVFEYsLzQnmI+4GBpkVvOD4xksu77/eKz3jbQhnntrrSafexK03SO2ovbsI3jJtmildpIl8MFM5gDBnOvFjJT85QYagcvtBp1vMGcgZRIlVOU9icqV51fm9kwmzrKsq2jvW296KovcOF02uP1nFppzcyTX4xmCyYCKIEjJFR15m19lW6P85pLQRxirYXoJ4zr7smhpEd7lzZumpaGgjTpczZd6pgUmFrqi++GbLn24cniy+Hp4S6z6g8ScigzAv3nzRm62Cz7eFz54lBdT0q/n5NrJyp4u2nptESU055TGLdVR3KyF2qOVA4UXQBSCmApSu4vNuHH8VYb9+43nf0s9CfL/1uHODIZB7zFRsFU5NO2ABecJq+32po9AL4UTzi7P1yIKM2Oy+gUb2808cTyy25hm90uZZsDVsdH0evo4nfD/vdE5MFE289NSX/nh1P3nxxpeq4sB3junjk8i6+4xc/hxTAVMHA733wPkwWTHz4b9/xSh/aGF8n4Jzhf/umk5gqmPjnf/Q0AOAX/vx5dL0IP/rmo0J7Rg6Lc+WXRucZY4wxCAxXb0r36qiihDIgO3scK/OmhtmyRY6Ze4xiXiqCKMGnz24DuPHpQEazzCiPN8LmGH7ls5tdeGGMx5dbI8WsqnDcvVQdifq4EVxrsvxi8IbjE9DU7RfMlr0WKJ5EkYXX8GbxnXcu4A8fXwXwYvWGA2QT9b2Zlnsx/PLDn6FoaV9RlNut84OfPTKZx1LNgbpnqsoZrYtsYnmt3NprYVi3vReZadSaMMiZKZnImSpKloaOd+M0SmB0kjry/uzlSQPIiWs/TDu2DQUKZyOF1X7H4b6IPNFrHSbn7Crd5N4BSbYWCqaGhy83sCDM0RgGz4AbmSrutxqzZ9n1XH/3w2LVwfObHXk8BVOTcoy9juHXwn7nJXteXc/866uBoqUhTlP4wvBKYRzA9a/zzbNFRHH6ogvPG0X2LKrljBfFxhsXtmO8ILpeiPf92pflw4FzJulLY4zxtcYPPHgQFUfHj/3uYwCA//HICn70zUfxq++7Cypn0ll0jDHGeOnYr7jZW0iZKm2E99N0RnGCIIpHNqFfCYbf++ANbvwyM6SdF5H/OPy5j0+RprXiEKV0+FO8VG3jV4pMy/ZSNuTA6MbbHjIe6gcRHrpEGsbhAuPFFFDb4jx3vGiwR7jOYX417RH2FrUAXd/ekFbv2NSLKyKy89H1I8RJOrIuD0/ksNZypTt33tTkZvzFFrbDSDEURwWGjz5GDYi3npp6yeykAb13gNmSjceXWyNFynzFxlbXHykgp4om7tWqN/TeGX15eEK83fVxbqsLTbmx39fzFRtTRRONXgAvTGCoCg5UHcxX7JdsWpQdzgsZPF0LJ6bzmC1bKOxTzJWEOdX19sj7TSu/WvfCmtCs7nQDYHL/77nvcA0Xd3pIkhSH67mRGKgXwsst/Wq5Ic5udpEzVByqO/J5zMfmUWO8XOi4Id7w859Eyw3BGXD3UgVvPz2zr835GGN8rfAdt8+hmtPx/b/2Jez0Ajz4s5/AH/6DB9DxIlRzBtI0xdnN7nUjI8YYY4z9YWoc1h6t495iV1c5bp0vXaWFbXshHhM5tgwvj7FI9hKWpkhK4vVQMDXs9PyRAu56GP6Ii1UHi1UH//PRFRlp82pBZiD1YuCGMbp+JIux4cIsBbBUc9Dqh5gumjIb96VcueGie7+6dngdvVxuqjcKhQ8YBLauoGC+NGp8yw3R6AcjE8+Ko4/kBn8lqOUM2SgA9uSvCrzUyTowcAMeNo+6faGExaqN+tBnmitbKDv6SKFmqAomCje2B6znDdx/uDbyLOl4ETY7HrwwQW0o7iiIErTcEMYeQzqA2AbDkTsAwG9wde7XA8rO3Y1Ede0FY+yaz6CZkoV7DlZlgbv3PWVU136GVl8l7X42ge9dx3zpgcN1PHC4joWqjS9f3L2h115u9HFxu4+lujMSHbUfbmS5rrc8ady3ULGvcgG/UYwL2zH2xXrLxRt+7pPoBwkUzvD7H7wXt86Xxg60Y7wq8LqjE/i9D96Hd33kc9jtBXjtz34CqsLwC++6FX/0xDr+/MwGfu+D916VbTnGGGNcH6am4Ojk6DTrRqmvGufQVU76qJfp1wUTUSQvRqM6UzKx0/NRy12/eNEVjvgFjIsMlQMML6pI/mog+/0bvIRRU2EP/bTthfL/C6aGd901jzAimisDFaW1r5AB80JFBfDyuaneKBjLCloVpqYgiJIXp7Ed+v+XK6poP5yaLeKxK03pSJxN2lXOMV20oKv8uo61L4SMTjxMK+6HMZ5d72A758ssVca+MoYeY+yqNVTPG7KIG/4Ij1xuSDr39bS7LTfEF87vYKJgjlDQbxTKV8h8eCFMFvZncyicIckykPdZJhmF/anV9kt2R94Px6byeHa9g0PXkUJk1GoAODlTQC+IcWL6hYcDj15pIk5SOIZy3cL2KuxzDiqODoVT40DhbE/27o3fW+PCdoyr8NiVBr7zw5+TWpn/9L47X1aXtjHGeDlwx2IZH/3h+/EdH/4svDBBlKT44G88jPsPVVGy1K+ooz3GGF/v2NvEvNY+eu8G39IVnJjKy6nty4UkTeFHKTba3jU3j8PItkQ3+hjYu8ddabq4tNNDsx/gQM1BPW+84kaJWZHxUvJL0z3z064XjWosdRUQPQDGqEFx76EXdpx9se8JjE6rvtaR9wpjsHUVSUou0c+st/eNibkWRqOKvnoHX7Q0VBwdjX6ANE3lZJFz4DVLX/kanCwYWBAU3wxJkqLRD67rfrzd9fGZs9vgjOFbXsCB+lrIGSp+8MGD2Ox4I1PYrNi8EUbGcqMPN4xxaad33cJ2v+L1a80UAEYbOvtNZwcqgZe32D5Yz/1/7J13eBznde7fmdle0TsJNrD3ot67rOamSLESS3HiyNeSLEe249iKbdlxiZ3rxNdxokiOYzuxFclVxeqyRFESKYmdBAk2EB1YLLb3nfbdP2Z3sAssgAUIYAHy/J6HD4HdwcyZ/p3vnPOeCcs3WvvC6PbHoTAGl9WEi5ZW4vLl1ROuOzvhUmRp8YRUO824ef3wNZVbOjGZUzb1KR/irORfXz+JD/7bTt2pPW9ROS5dXlNiqwiiMKsb3Nj3lWvxmauW6Z+90+7HuqayvDYkBEGcGSMnii5YUonGMmvB6MLiKse47SXOhFSR4jXZusZiBIIYRg8nT3iiGIqm0eGLwyjwWF3vhrXEZThKgZZHxVJmNWFxpR0Vds1xGC/6zYGblLoxMCxGNWF94YgWP7OJwHNIiMPiUcW2eMmS65BMhyhasajZ885xSMuKLvIzVTiOw6aF5ah3D++/y2IEx3Ga6Ns4mA1amUL9GdSZVznNWN2Q3zN366IK3LaxEVesmHi8mb3GWmqmVm40m5kC2ej30urh8Uihy16voy6B0y0qKpKSglNebSJPViZ388/UvZDtL9xYNjmxPIrYEgCAYDyNu/7zPRwd0HqHVdpN+NKNK3HbpvFTQgii1NhMBjx03QqsbXTjvl/ug6QyvHJ0EB9+9B385O6taO2L4NrVtZRGTxBnwMgat1qXZczI6ebmciytdkwqzbNYinWG+oJaap+vCPEoKZPam1t32lxpw+G+MFbUOeGyGFFeoG5utsk6tsWqr+ZS47Sg0mnWI1jjrUJlDCpjCCelomuaL1lWjWhK0tWrJ9oGMPuOLcdxiKVkyCpDmdWIGuckU61z1bFnyTnq9id0kSWB5/BSq9bP/dYNDdP6TitWmMxpMeK6NXXjLjMegbiITn8cVQ4TmspsU3Iym8q1aHOhtkUjKaiKPIuO7bIaB5ZW2zEUHX4OFbruR/fHnT3WNLjQMRRDapITJs2VdnT542gqn3iCqMZl1mv3gcLHIJaWcXIwCpvJgJYaB3ieQ0OZFQ1lVqqxJYqHMYZf7e7B3z/TCikzS/PxC5vx9VvXkCNAzCs2LCiDychDTitgANoGovjCrw/hnXY/PnftcjxwdUupTSSIeceW5nJYjcKkFcfd0+wIZgdRxdYW1rnN6A0mUe2YOLJkNQpISkre4KmYFL7ZJpJprRQXJ6+y67YZcePaOrxweAAAxm1XlI0etfaFcfGy4vqmmgz8pK+R2XQwsjgtRgh8CmU246THONMl3jSZbQ3F0hjKTM7MdKTx1g0NM1J3mksgLuLN414EExJuXt+gp1aLsopoSoLZKEwY9ddEwIrLnnBZjBiMpPIEqWb7suM4Lu/cFZrwayq3on0oVpJ2hQaex4amMkQmqd69cUEZVtY5x9QmyMVsEHDrhgYE4iIO94WxaWHZqGWGoml0BzTxqEVVNpiLPMcjIcf2HObUYBT3PbEfxwej+meTbM1HEHOGWpcFT/31hegNJvDswQG8cHgA77T74bYaceHS0tbGEcR8hePmRhstJSPlahCKG5VuaCpDrcuSl245FuNFoLJpoLMtdFSI7IB/pGJ1sRgFHletrIE3mi5K7KV6shHNEUzkJJVi7txqEqYkOATk1zZPximfrv3MrQ2d7sBDPC1jf3cIZTbjjIouVthNKLOZEE3JqMvJ+DjQE9IFlCYSjxqKpnGwJ4TGcuuEvWxX1DlhNvJ517tQRKR3usmN8JsKTM6trneh3m2ZsRKO8RB4Douq7DgyEAEwueu1GKc2lwq7acz63Wx2iNNiOKM6aHJsz1EeefYIfr6zMy9Ng+cAo0GA3WygaC0xL1nb6MbaRjeuX1OH3+ytxpd/fxjhpIRP/3I/rllVi3/44NqSRAkIgjgzsnVfxaaAGgR+WqIf77T7EIiLuGRZVckdfLvZgKtX1cJyBineuf1Vx2JNgwuKCiw/w5ZpE8X+Si3wN9mtCzwHs0FAWlZm/D2SbbtzyhvTf3cW6J06Xcgqgz+exkz7fOU2Iz52/kIoKstTGc8ez2JUmPtCScRFGScGoxM6tgLPYemIzItSDAFyJ8aMBSbneL50E4htAxF0+uKTKj2YCSrspgknNYqBHNtzjLSs4Cdvd+AX73aBQRMCSMsqeA74lzs2YtuiiqIUJwliLsNxHEwGHpLCYBQ4eKNpPPF+N14/5sUv/vI8LKMetwQxLpsXlqMvlET9HHkfZFuBTJcCZ7Fke8YmixStmmnOpP1KsSyboijPKGb5XM0GKmOzMjla47KgxmVBtz8BhTFclEkJP9w3vWrjWbLXVSI9s9c5x2mTAyPZvLAMmwukpxaiwmZClz8+ymEtlqZyGzp8cSycxrY6EzGT0fYzJZaWkZKVSbVTm8uQY3sOkJIU/HpPDw70hLCnK4gufwI8B2xpLsO+rhB4DvjBnZtw6xSk2wlirnLNqlpcv6YWLx8ZhMBzUFQGTySF636wA//7yQtw/pIza2VBEGczCyps09pP8Uy5tKUagbiICvvsp+oBhXuynq3E0zJCSQlOiyGvNnGyVBbRQ7iUTNa/SEmKLjQ2G8TTst6zmDE2ow5R1lefaecmnJDQFYij0mHOSw+ezL41lltR4zJPeYKhwm7CDWvrCjrYM8VczhRbWeeExcDr2QGlsjUpKjgxGNX7qE/1eifH9ixHVRme3t+Hrz5zRJ88vbSlCh87byH+zy/3gee0GfBuf7ykdhLEdGM3G/DoXVvwg9dO4Ievn9I/Vxlwx+Pv4u4Lm/G1W9bMido5giDGp8JuKplTe66xtyuIYELEshqH3q6kWLJCXC6LEWsn+bdzHXkW0wUCcRHHMjWPADAYSaNsBpW5OY7DLesbZjzIPhhNocMXR4cvjsactFNRVhFLyzAbeNinUTxqLGbTqQW0WtQtzeVT6kE90zgtRqxrKsO6prKS2hFIaIrZgKYmXaScwijm3hEmzpjTQzH8fFcnmsqs+O2+PhzzaOJQS6ptePgDq3HVyhpwHIcvXL8Csqrif3Z14QKKXhFnITzP4aHrVuC8xZX4m18dwFA0DaPAQVIYfr6rCwe6Q/j+HRumL/WOIIizis0Ly9ETSEy65+l8JpjQ0q+nErm5eFkVOv1xLK91TjhpWOqMzMlGhLKiP8Uqc+vbmdTSGoORlK6GDADvdfixrtGNa1fXzkj2QFJUsL87CJd1ZsWjsnXCIx28Q70h9IWKE4+ar5RC8Xg+4chcE2YDf0Ztj8ixPUuQFBWvHR3ET97uwJ6uYN5365vcePDqFlzaUoXW/oj+ML/vymUAgE9euiSviJ8gzjYuaanCSw9eii/+9hBea/MC0ERoDvaFcf2/7MBfXroEn7m6ZVbq1wiCmD/MtZTs2cBpMSCakiftwAFapsxko7zzBZOBnzWnq8ZphjeaRigzyeCyGuGwGGZsrKYwhqFYesYjtrVOC65fUzdqUiM7CUJj0dKxq90PWVVx8dKqkmSyuW1GEo8igJODUfx6by+e3N2NSHK4BxUHLeX4U5cvxYVLKxFNy/jEz/bg/Y4A7jxvAVbWufCx8xcCoAcJcW5Q6TDjxx/fiucPD+Drzx3VG6YzAI/vOI2n3u/GNz64dtob3xMEQcwn6lxWRFPRgm1J5jtXLK/B9hPeUpsxIZUOM5ZW27G3S3NsNy8sn1HF2uy5TsszKx7F8xwsBdKINzaVYUNTWUkUiwkNb1QT6JNVBtM8PhHk0cxDvJEUfr+/D0+8340ufyLvO6fFgDu3LcDHL1ykzzIf7Y/g07/ci05/As2VNvzy3S6YDAKuXV17xn3qCGI+wXEcbl7fgMuXV+MfXzyGp3b3QMnUTYVTMh588gD+6+0OfPWW1djSTL1vCYI498g+E+ey4M1Ucc9gnep0k5tyrM5wfW92LnemRdIiKQldvgTK7ca81FzSupg7zPd5fXJs5xE9gTg+/ct9aO2L5KWLcBxw4ZJK3HPRIly5skZPH2KM4dd7e/GVp1uRllVcuaIaP7hjE3acHEK100xOLXHO4rQY8a0PrcN9Vy7D2yd9qLCb8MD/7kdSUnCwN4yPPLoLN6ypw9/esAJLpthSgCAIYj5y2heble1wZ1RJN3UuWlo151ubDEXTOJojHtUXSsJmFmZM9Mgo8LhpXf2MrDsXXzSN074YTMH8PtOirCIhyjAbBFhNsyvsRJxdkGM7hxFlFTtODkGSVbzaNog/tg0inEk35gBsWODGndsW4Po19SgfoRapqAz3/XIfXjriAc8BN6ypw7/ftRk8z+EWautDEACAhjIr/mTbAnjCKcgj2ji8dMSDV496cPOGBnx0SxMuWVZFKcoEQRDznPkwqR+Ii0jl9E5uH4qh1mVBtXNmnL6UpGBfdxBOsxHrmmauRnphhQ3hpITmSnve5+eCeNR8Yb6PcsixnYMMRlLYftyL77x4DKGEpH9u4DlsXliGj2xuwo3r6sdtfSDwHGpdZtS7LQjERfzx2CA6zqChNUGczdS5LXj87q3o9MUxFE3jqT098MdEGHgOzxzoxzMH+mE28Lh4aRUuWlaJtY1urGlwwXkGPR4JgiDmMjOVitxUbkNvMIE6t2VG1n+2MpPZuoxpUWJZmdlItkHgsWlh+ajPs9fabLfhIUYz3yfwybGdA0iygl/t6cVTe3oQjIvoCSb173gOuGBJJf5k6wJcuaJm3PqQnad8OO2L467zF0JRGb5440p8/voV+M3eXjAGLB4xQ0YQxDBXrqgBVmg/P3BVC778+8PY3x2C22rA4b4w0rKK14978fpxTXiE47R7am2jG+sa3Vjb6MbaRnJ2CYI4O7AYZ8bJ2NJcjnWNbpgMZ5841Uxi4GfueGV9GaVEKdobmsqwttENYZ47VUTpIce2BDDG0D4Uw5O7e/DHNi86ffG8mtnGMiuuWFGNq1bW4OJlVeO+XBhj2Nnux3+82Y63TvpgEnj89J0OfGhTI+6/qgUA8BcXL57hPSKIswurSUA0JaE7EMfLn70MLx/x4P++ciJvGZPA47QvjtO+OJ492K9//v3bN+AjW5oAaHVRLouBnF2CIOYNl7VUI5yUZlaF9xxyarPP/8lMFBTy72bQry05PM/hzLqXEtPFfD8L5NjOAowx9AaTeOvkEJ47OIADPSEkpXxJdYfZgAuWVOAvL1mMC5ZUTpgKkJIUvHB4AP/5VocuMNBYZsVfXLwI33q+DTtO+PDpK5aR0hxBTJEff3wr2gaiaKl1wmIUMBBO4Zfvdevfp2WtJrfGaca6RjdUBhzzRLC4ejgz4mvPtOK1Ni+evu9ibFxQBkBr0VXntpCzSxDEnKTcbhql20FMHatJwDWramE+Q2een8FoptnA48a19fNeEZeYOmdLbTM5tjNASlJwqDeMfd1B7Gr3Y3dnAAlxdG+wercFVyyvxl9cvAjL61wTrpdlGmjXOC343K8O4vnDAwC02oR//PA63LaxESYDj4uXVWFlnXPe58kTRCnhOA6rG7T7ckGFDfdethSvHPHAYhJg4Hl0+OIAAG80jT8e82r33tJKBGJpyIoKg8Cj2mlBY5kVy2qGa9v/4me70RtMYnGVlsa8vtGNNY0utNQ4UeUw0X1LEARxlmE3n/lweybbL3EcB5OB3j3E/Icc2zMg62ge90RxbCCKowNh7O0KoTeYQKGWYyaBx5oGFz60qRG3bmxAmW3sGdE3jnvRORTDFStq8X6nH68f82J/dwjeaBpHvn49bt3YAEVl6A7EYTcbcPGyKj21Z1X9xE4yQRCTY2GlDe99+RoEEiIq7Sbs6QriP986jZePDKLBbUEoKeGN40N44/gQAKDCbsLtW5rw449vAQ/glDeGKocJaxpcUFWGDl8cHb44nstJY3ZbjWipcWBZ5t/iKvuE5QgEQRDE2UXWxVxW48Apr9Z+aSYjtgRxtlASx/Y7L7Shy5+AxcjDYhRQZjOh2mlGjdOMWpcFCytsqHWZ50TkQlZUBBIi+oJJ9AST6Akk0OWP48RgDKe8McTScsG/u2x5Fc5bVIF1TW6cHIxh26IKrG10Y8eJIZz2xfMGqp/87z14vyOANz5/BSRFxXMH+/GjN04hlJDw9T+06cuVWY1YWeeEL5bG9WvqcP2aOqgqo3RjgpgleJ5DlUNrFbFtUQXWNbrR2heGQeDRXGHDnY+/ixPeKBjT2jU8tuM0HttxGjwHqAy4pKUK//OJ8/DMgX5EkiKeOzSACpsJPM/hlDeGDn8ce7qC2NMV1Ld58GvX6c+Lj/34XZgNPH5y9zbwPAfGGJ492I8KuwkVdhOqHGZU2E16L2uCIAhi/mIxCrCbDIiLMgw01iOICSmJY7uz3Y/DfeFxl7EYeSyqtKO50ob/c8UyvT4tnJRgNwkwjDFwa+0LQ1JUrG8qwzFPBIORFDyhFGSVocxuBGOArDBEU1KmRo4hIWqNocMpCdGkjGBchD+ehjcqIpyUCm4nl0tbqsBxgCQzrG10od5txe1bm/CXP9uD//vKCbz35atR67JAURm+/8pxtPZHIHAcJEVFVyCOo/0RJEUFgXgaCVHBN58fdmaXVttx4dJKXLmiBhcuqYRtRDoLObUEUTosRgFbF1Xov7/8N5dBlBW8enQQzx8ewMGeMPrDST2D4+2TPmz5h1cRSOQ/VyrsJlTaTVhe48DRgSjOW1SOy1dU49WjXvz7GyfxyhEvVtY7savdD4fFgJ++04GeYBKr6pz44u8OF7CLh8UgwGzgsazWAZfFCJfFiKMDYaxtdOMbt62FUeDxzIE+AMO1NarK8PYpHxi0jBQ98YQBDAxZwUzGAAZNAOby5dXTeEQJgiCIbFzHE04hLsrgOI7GewRRBCVxbP/ljo0IJyWkJQVJSUEwIcEbTWEomsZgJIVOXwKd/jiOeaI45oni7osW6X/7uV8dxBvHvXjmvouxtlFrIv2/73cjLSmocJjxzT8chTeaxrP3X4x/ee0k3jjmnXb7s9GXm9bV4bzFlbhyZTXuf2I/DvWG8cGNDRAEHk+8141QUkKD24KEqOCUN4obfvAW5MwI95Hnjujrq3GacfybN4DjOCREGZ+7djnWNLqwZWHFuO19CIKYe5gMAm5a34Cb1jcAANKygr2dQbzT7sPbJ3041Dt6Ui8QFxGIizAKHBZW2LCwwo6Lllbhn14+gQM9IQBAh1+r6Y2mZPzjS8cgKQy3rK/HX126GP/5Vkfe+lKSipSkiVsNRtN53x3ui+ArN6+GUeDx90+3QlLUYceWMXz8v94vel+rHCbs+ftri16eIAiCKB5fTHt+sxK14SGI+UZJHNtcIZWxyNavdvoSuoALANjNAsqsRtS6hht7P/ZmOzr9iby/v/VH74y57lX1TngjaaRkBRaDAH9cxK0b6tHaF0FclFFmM2EomobVKCAuylAUhrVNLjhMBnAcB18sjfMWV+KvL1uCcFLCZd/brq87N3pS77Zg15euBgCEE5p0fn2ZBfVuKxrcFtSXWdFUbsXy2mGhJ5vJgAeubpnw+BAEMT8wGwRctKwKFy2rwheuBxKijMO9YRzsDeFgTxiH+8LoDmjPL0lh6A4k0B1I4Df7egFoE2lWowCTQSvdMBl4GDgOjeVWLRLMgM0LyyDwHAw8B4HnwAFg4KAyFYsq7UjJKtKSgu5AAvVlVvzzKyfAcUBLjQOKCnz9uSNgDFBVFUur7XmR2szKCmIUOHz+1we1RTNR3ezf5UZ9GdOcZpb57oObGnHt6toZONoEQRBnA/nRWdcMtl4iiLOJOSsexXEcapwW1DgteZ//vzs3jVr2M1e3YF93EL94t3vUdwBgMfBYUe+CWeAhqyr2dYf07+JpTa342YMDWFptx3tfvgaqytAXSuLS772hL7erPaD/XOey4O9uXAlAU6lrLLOiymFCpcOMSrv2f5VDqxvO4rYZsfcrFNkgiHMdm8mA85dU4vwllfpnKUlBlz+B9qEY2r0xdPoT8EZTWilFOIVISkZcVAAMpzC3Z1SZJ2JnzrML0CK2IznYG5rSvgDA8cHYpP9mXZMb14IcW4IgiEK4rAY0V9rR4LZAVlneeJIgiLGZs47tZPjw5iZcv6YOH97cBFlhkFVV/19SGBwZ1WBAS/l7en8fREWFJKuQFBVpRYUkMzgs2uHgeQ5umxEPXt0Co8DBbjbAaTHCZdH+L8tJD3ZbjXjn764qyX4TBHF2YDEKWFHnxIo6Z8HvU5KCaEpGNCUhmpIRS2v/FJVBVhkUVYWiAoqq6uUOPKdFbnmOA7jh37nsz5w2gZhdJrOY9tmI5bXvMhGEnP+ymSbZ2ELuctn15W+bA88BTeW26T6EBEEQZw2FAjsEQUzMWeHYAlqPsM0LyydcrsJuwicuWTzhci6LEX9z7fLpMI0gCOKMsBgFWIwCzdoTBEEQBEGMAfWEIAiCIAiCIAiCIOY15NgSBEEQBEEQBEEQ8xpybAmCIAiCIAiCIIh5DTm2BEEQBEEQBEEQxLyGY0V0fa6oqEAwGITVasWqVatmwy6CIAiCGJe2tjYkk0mUl5cjEAhM/AfEuNC7niAIgphrTOZdX5Rja7PZkEwmp81AgiAIgpgurFYrEolEqc2Y95hMJkiSNPGCBEEQBDHLFPOuL6rdT01NDbxeLywWCxYvnrhVTpash30uzv6ey/sO0P6fy/t/Lu87QPs/m/vf0dGBVCqFmpqaGd3OuUK2L7EgCNiwYUOJrTk7ONefBzMBHdPphY7n9EPHdHqZzLu+KMe2s7NzSoZs2bIF+/btw6pVq7B3794prWO+ci7vO0D7fy7v/7m87wDt/7m+//OZtWvXYt++fdiwYQOdu2mC7ofph47p9ELHc/qhY1o6SDyKIAiCIAiCIAiCmNeQY0sQBEEQBEEQBEHMa8ixJQiCIAiCIAiCIOY15NgSBEEQBEEQBEEQ8xpybAmCIAiCIAiCIIh5DTm2BDEF7rnnHmzcuPGM1/Pkk0/iZz/72RmvhyAIgiCI6YXe9QQxvyDHliBKCL3sCIIgCOLsht71BDE7kGNLEARBEARBEARBzGvIsSWIM+C5557DqlWrYLFYcP7552Pfvn1533s8HrS0tMBsNmPZsmV47LHH9O/uuecePPPMM3jzzTfBcRw4jsMjjzwCAHj++edx7bXXoqamBi6XC+effz5eeuml2dw1giAIgiAw/rteVVV897vfpXc9QcwBDKU2gCDmK729vXjwwQfx9a9/HU6nE//wD/+A6667Du3t7foyHo8H3/zmN7Ft2za8+eabuO++++B2u3HnnXfiK1/5Cjo6OhCNRvHv//7vAICmpiYAQEdHB2655RZ8/vOfB8/zePHFF/GBD3wA27dvx2WXXVaS/SUIgiCIc43x3vVutxsPPPAAfvazn+Hv//7v6V1PECVmRh3bv/7rv8bAwADq6+tncjNzknN534FzY//9fj9+97vf6S+fiy66CAsXLsSjjz6KD37wg9i3bx/uuusufOlLXwIAXHPNNfD7/fjqV7+KO++8E0uXLkV5eTk4jsMFF1yQt+77779f/1lVVVx55ZU4cuQI/vM//3POv+zOhXM/HrT/5/b+z2fo3E0/dEynn9k+puO96z/60Y/i0UcfxY9//GP85V/+JYD5966na3T6oWNaOjjGGCu1EQQx37jnnnvw3HPPwe/3531+9dVXw+124/rrr8enP/1p+Hw+OJ1O/ftnnnkGH/3oRxEKheB2u/HBD34QoVAI27dvz1tPb28vHn74Ybz22msYGBhA9jY9//zz8e677874/hEEQRDEuQ696wlifkGpyAQxRWpqagp+1tnZCZ/PB1VVUVFRUfBve3p64Ha7C36nqipuvfVWhMNhfOMb38CyZctgt9vx1a9+Ff39/dO6DwRBEARBjA296wli/kCOLUFMkaGhoVGfeb1e1NfXo6KiAjzP45133oHBMPo2W7p06ZjrPXXqFPbv34/nnnsON998s/55MpmcHsMJgiAIgigKetcTxPyBHFuCmCJ+vx87duzQ62C8Xi/eeecdPPLII7j66qvBGEMwGMSNN9445jpMJhNSqVTeZ9mXmtls1j/r6urCO++8g9WrV8/AnhAEQRAEUQh61xPE/IEcW4KYIpWVlbjnnnvwjW98Aw6HA//wD/8Au92OT33qUygrK8N9992Hu+66C1/4whewbds2iKKItrY27N27F0888QQAYOXKlXj++efx9NNPo6mpCQ0NDVi5ciWamprwhS98Ad/61rcQjUbxta99DY2NjSXeY4IgCII4t6B3PUHMI9gsk0ql2IYNGxgAtn///tnefEno6Ohgn/jEJ9iiRYuYxWJhS5YsYV/96ldZOp0utWkzxr/927+xRYsWMbPZzDZv3sx27NhRapOmlbvvvptt2LCBPf3002zFihXMZDKxpqYmtmrVKuZwOFh1dTW79dZb2cMPP8zWrFnDTCYTq6ysZJdccgn7j//4D309g4OD7LbbbmNlZWUMAPva177GGGPs/fffZ9u2bWMWi4W1tLSwn//85/o25wvf/va3GQD24IMPltqUWaO3t5fdddddrKKiglmtVrZhwwa2Z8+eUps140iSxB5++GH9Gbd48WL29a9/nSmKUmrTiElwtj+3p4tvf/vbbOvWrfqz/rbbbmPHjh3LW0ZVVfa1r32N1dfXM4vFwi6//HLW2tqat0wqlWL3338/q6ysZDabjd1yyy2sp6dnNndlTlLo3VGq41noXb9t2za2e/fuPNt++MMfzrl3/UTvI7pGi6eYdxwdz7nBrDu2n/nMZ9iNN954Tjm2L774IrvnnnvYyy+/zNrb29kzzzzDampq2Oc+97lSmzYjPPnkk8xoNLIf//jH7OjRo+zBBx9kdruddXV1ldq0GeX6669nP/3pT1lrays7cOAAu+mmm9jChQtZLBYrtWmzzvvvv88WLVrE1q9ff844toFAgDU3N7N77rmHvffee6yjo4O99tpr7NSpU6U2bcb55je/ySorK9kf/vAH1tHRwX79618zh8PBfvCDH5TaNKJIztXn9lQo5ln/j//4j8zpdLLf/va37PDhw+yOO+5g9fX1LBKJ6Mt86lOfYo2NjezVV19l+/btY1deeSXbsGEDk2W5FLs1Jxjr3UHHc3IU8z6iY1o8xbzj6HjODWbVsX3hhRfYypUr2ZEjR84px7YQ3/ve99jixYtLbcaMcN5557FPfepTeZ+tXLmS/d3f/V2JLCoNXq+XAWBvvvlmqU2ZVaLRKGtpaWGvvvoqu/zyy88Zx/aLX/wiu+SSS0ptRkm46aab2Cc+8Ym8zz784Q+zP/uzPyuRRcRkoef21Bn5rFdVldXV1bF//Md/1JdJpVLM7XbrUbxQKMSMRiN78skn9WX6+voYz/PspZdemt0dmCOM9e6g4zl5Jnof0TGdHBO94+h4zh342Up5HhwcxCc/+Un8z//8D2w222xtds4SDofHlIefz4iiiL179+K6667L+/y6667Dzp07S2RVaQiHwwBwVp7n8bjvvvtw00034Zprrim1KbPKs88+i61bt+L2229HTU0NNm3ahB//+MelNmtWuOSSS/DHP/4RJ06cAAAcPHgQb7/9Nj7wgQ+U2DKiGOi5fWaMfNZ3dHTA4/HkHU+z2YzLL79cP5579+6FJEl5yzQ0NGDt2rXn7DEf691Bx3PyTPQ+omM6OSZ6x9HxnDvMingUYwz33HMPPvWpT2Hr1q3o7Oycjc3OWdrb2/Gv//qv+P73v19qU6Ydn88HRVFQW1ub93ltbS08Hk+JrJp9GGN46KGHcMkll2Dt2rWlNmfWePLJJ7Fv3z7s3r271KbMOqdPn8ajjz6Khx56CF/+8pfx/vvv4zOf+QzMZjM+/vGPl9q8GeWLX/wiwuEwVq5cCUEQoCgKvvWtb+FP//RPS20aUQT03J46hZ712WNW6Hh2dXXpy5hMJpSXl49a5lw85uO9O+h4Tp6J3kd0TCfHRO84Op5zhzNybB955BF8/etfH3eZ3bt3Y+fOnYhEIvjSl750JpubcxS7/1u3btV/7+/vxw033IDbb78df/VXfzXTJpYMjuPyfmeMjfrsbOb+++/HoUOH8Pbbb5falFmjp6cHDz74IF555RVYLJZSmzPrqKqKrVu34tvf/jYAYNOmTThy5AgeffTRs96xfeqpp/CLX/wCTzzxBNasWYMDBw7gs5/9LBoaGnD33XeX2jyiSM715/ZUGO9ZP5XjeS4e82LfHXQ8i6fY9xEd0+Io9h1Hx7P0nJFje//99+POO+8cd5lFixbhm9/8Jt599928Xl0AsHXrVtx11134+c9/fiZmlIxi9z9Lf38/rrzySlx44YV4/PHHZ9i60lBVVQVBEEbNPnm93lEzWWcrDzzwAJ599lns2LEDTU1NpTZn1ti7dy+8Xi+2bNmif6YoCnbs2IEf/ehHSKfTEAShhBbOLPX19aN6D65atQq//e1vS2TR7PGFL3wBf/d3f6c/D9etW4euri585zvfIcd2HkDP7akx1rO+rq4OgBahqa+v1z/PPZ51dXUQRRHBYDAvguP1enHRRRfN0h7MDSZ6dxw/fhwAHc/JMNH7iK7RyTHRO46O59zhjGpsq6qqsHLlynH/WSwW/PCHP8TBgwdx4MABHDhwAC+88AIAbQbkW9/61rTsSCkodv8BoK+vD1dccQU2b96Mn/70p+D5WStvnlVMJhO2bNmCV199Ne/zV1999ay/cRljuP/++/G73/0Or7/+OhYvXlxqk2aVq6++GocPH9bv8wMHDuiTVwcOHDirnVoAuPjii/UBWJYTJ06gubm5RBbNHolEYtQzTRAEqKpaIouIyXAuP7enwkTP+sWLF6Ouri7veIqiiDfffFM/nlu2bIHRaMxbZmBgAK2trefcMZ/o3bFkyRI6npNkovcRXaOTY6J3HB3PuQPHGGMTLbRo0SJ4vV5YLJZpGayLoojW1lasWrUKVqv1jNc315EkCSdOnIDJZMqL4AKA0WgsjVEzSDAYREdHB5qbm2G32+Hz+eDz+bB69WqYTKZSmzdjdHd3IxAIYNmyZXnZCYIgnLUTGRNx4sQJ2Gy2cyJynUgkcOzYMTQ0NKC8vBzxeBxdXV1obm4+6wXEOjs7EY1GsXDhQlitViQSCXR1daGqqgqNjY0ztt2Ojg6kUinU1NSc89oNZ8pTTz2FO++8EyaTCRaLBRaL5Zx4bk+FYp71g4ODGBgYwKJFi2A2m+HxeBCNRrF27Vp9me7uboTDYSxatAiCIKCvrw+yLGPVqlUl2a+5xMh3Bx3PyVHM+4iOafEU846j4zlzTOZdX5Rja7PZkEwmp8s+giAIgpg2sgON+cx3vvMd/O53v8OxY8dgtVpx0UUX4bvf/S5WrFihL3PPPfeMKt05//zz8e67706LDSaTCZIkTcu6CIIgCGI6KeZdX1SNrcViQTKZhNVqpVkFgiAIYk7Q1taGZDJ5VoiVvfnmm7jvvvuwbds2yLKMhx9+GNdddx2OHj0Ku92uL3fDDTfgpz/9qf77dEZTHQ4HgsEgvesJgiCIOcNk3vVFObaLFy9GMBjEqlWrsHfv3jM2kCAIgiDOlC1btmDfvn1nRT37Sy+9lPf7T3/6U9TU1GDv3r247LLL9M/NZrMuVDLd0LueIAiCmGtM5l0/K31sCYIgCIIonnA4DACj6rO3b9+OmpoalJWV4fLLL8e3vvUt1NTUjLmexx57rGgV/ra2tqkbTBAEQRAlhhxbgiAIgphDMMbw0EMP4ZJLLsHatWv1z2+88UbcfvvtaG5uRkdHB77yla/gqquuwt69e0e108syMDCAffv2zZbpBEEQBFEyyLEtEdGUhJ+904nnDw/AF0ujqdyG+65chmtXU89AgiCIc5n7778fhw4dwttvv533+R133KH/vHbtWmzduhXNzc14/vnn8eEPf7jguurr67F58+aitputYyIIgiCI+Qg5tiVgZ7sPf/PUAQxG0gAAjgN8MRGf/O89+JtrluPBa1pKbCFBEARRCh544AE8++yz2LFjx4Rtsurr69Hc3IyTJ0+Oucy9996Le++9t6htZ+uYCIIgCGI+Qo7tLCIpKv7l1RN49M12MAbcuLYOf3PtcrTUOPDyEQ8e+tVB/MtrJ7CoyobbNs5c70eCIAhibsEYwwMPPIDf//732L59e1EiGX6/Hz09Paivr58FCwmCOFvY2e6DPybiypU1cJjJFSDOHuhqniXah2J48H/3o7U/AptJwDduW4tbN9TDKPDgOA43rK2HxSjgnp/uxiPPHsEly6pQ6ShcM0UQBEGcXdx333144okn8Mwzz8DpdMLj8QAA3G43rFYrYrEYHnnkEXzkIx9BfX09Ojs78eUvfxlVVVX40Ic+VGLrCYKYTwxFtYzBeFomx5Y4q+BLbcDZjqoy/HxnJ67/lx1o7Y+gscyKPzxwCT66pQm/2tOLy/7pDbzUqg1grlhRgz/Z2oRgQsK/vn6qxJYTBEEQs8Wjjz6KcDiMK664AvX19fq/p556CgAgCAIOHz6M2267DcuXL8fdd9+N5cuXY9euXXA6nSW2niCI+YhJIDeAOLugaZoZxBtJ4XO/Poi3TvrAcwDPcfj0FUuxpNoBAOjyx9ETSMJuFvDKEQ86fHGU20wwChz+e1cn7jp/IVpqacBCEARxtsMYG/d7q9WKl19+eZasIQjibKbaYcZQLA1B4EptCkFMK+TYzhAnB6O4+7/eR384hSVVdvzzHRvRWGZFlcOEN4558Zt9vXjo2uW4fesCtNQ48PH/eh9vnfTlreMDP3wLf37BIjx4TQvcVmOJ9oQgCIIgCII4ayB/ljhLoRyEGaDTF8efPLYL/eEUtjSX4w+fuQQbF5ShN5jAB/99J/7iZ7vx/KEB7O0MYnmtExzH4Y5tC/Cpy5eA46DXO0gKw093dmB/d7DEe0QQBEEQBEGcDWRrbEVZLbElBDG9UMR2mklJCj7533sQTEgwCTz2dgXRE0jivQ4/vvHcUcgqw4paJz595VJcs2q4Z+3N6xtw8/oG3LaxESlJwWNvnsZLRzz48/ObccWKmhLuEUEQBEEQBHG2oajjl0AQxHyDHNtp5l9fP4mT3hguWFKBv7hoEQ73RfDWySF88/k2mAQeX791Nf7sgmYIfOE8kFX1LgDAxy9qxktHPHj9uBdfSElwWox45YgHaxvdaCizzuYuEQRBEARBEARBzGnIsZ1G+kJJPL7jNCxGHt/7yAYsrLThkpZqfOTRnTAZePznx7fisuXVRa3rgsWVcFoM6A0mcd8v9+HO8xbi07/chy3N5fjVvReO6RgTBEEQBEEQBEGca1CN7TTy6PZTkBSGj2xuwsJKGwDAbjbg95++GL++98KinVoA4HkOH97UCABorrLhqpU1WFXvwt6uIH7xbteM2E8QBEEQBEEQBDEfIcd2mgglRPxqTy/MBg5P7u7BZ5/cD0nRivKtJgEbFpRNep23b10AANjdEYTFKOC7H1kHjgP+78vH4Y+lp9N8giAIgiAIgiCIeQs5ttPE7/f3QZRVXLS0ClUOE7zRNG7517fR2hee8jrXNLiwpNqOY54oTnmjcJgNuHPbQkTTMh5/6/Q0Wk8QBEEQBEEQBDF/Icd2mnhqdw8A4DNXt+CZ+y7GwZ4QTgxGwc5AcI7jOFy/pg4A8Imf7cFNP3wbHzt/IYwCh//Z1UVRW4IgCIIgCGJKGAVyA4izC7qip4HTQzEc80SxpMqOjQvK8O/b2xEXFXzs/IVY1+Q+o3Vfs0pr9ZOSFTSVWyEpKu7YtgCyyrCvOzQN1hMEQRAEQRDnCm6rEQBgMwkltoQgphdSRZ4GXj4yCABYUGHD26d8eOK9bthNAh68ennB5VWVIZAQEUlKqHNbYDONfRo2LihHhd2EoUgaL33mUlQ4zFhQbsP9V7agzm2Zkf0hCIIgCIIgCIKYT5BjOw28dMQDAHjzxBDe7/BDVhkeuGwpqp3mvOV6Agk8tqMdL7UOwpeTRryyzol/uWOj3sM2F4HncNXKGvxmby/ePDmED21qGrVegiAIgiAIgiiGcFICAEiKCouRorbE2QOlIp8h/aEkDvaEUOs04+MXNCMlqXBbjfjLSxfry6gqw7+9cQpX//Ob+MW73fDH01he68DW5nLUuSzo9MfRWG4dcxvZdOTXjnpxqDeE779yHIwxDEZS+PnOTrAzKeQlCIIgCIIgzjniaaXUJhDEtEIR2zPk9WNeAMCN6+rxmatbYLcYUGY1wmHWDm1SVPDZp/bj5SODMAk87rtyKe65aLEedWWMoTeYhMui1Tt4oyk8d3AAn7h4ETiOAwBc2lINk8Bj+3EvTnqjODEYw5Ura/CVp1txpD+CtY0ubGmuKMHeEwRBEARBEPMJp8WAaEqGzUzRWuLsghzbM2Rnuw8AcNnyKlTYTfjiDSv17yRFxf/55V5sPz6EpnIrfvzxraPSjTmOw4IKm/773zx1AO+c8sPAc7j7okUAALvZgAuWVmLHiSHcsLYOf3qeCYsr7bhj2wJ89Zkj+PWeXnJsCYIgCIIgiAm5amVtqU0giBmBUpHPAFVl2NnuB88B2497MRhJ6d8xxvCl3x3G9uNDWFJlx+8/fXHBGtqR/N0Nq/CBdXW4fWtT3udXrqgGAKQkFX9x8WKU2024ZX0DjAKH5w8NIClSOglBEARBEARBEOcm5NieAUcHIgglJPAc8N+7uvFPLx/Pq3fdtLAMTeVW/PwT5xUt+LSuyY1/v2uLrpSsqNr6rlyh1dm+kUl9BoByuwlXr6xFNC3jlaOe6dotgiAIgiAI4ixlf3cQbxz3IiHKpTaFIKYVcmzPgHdOaWnIGxaUAwBUxvS6WI7jcNf5zfjj5y7PSzWeDD2BBG7517fx6tFBLKqyY3GVHSe9MRzuDeGLvzmEz//6ID66RYvs/mZv7zTsEUEQBEEQBHE20x1IIJKUEEmSY0ucXZBjewa80+4HoDmgAPCXlyyGpKh477RfX8ZsmHphfmtfGEcHIvibpw7glDeKy5dr6ch7uoJ44fAAXjg8gPMWV6DSbsI7p3x5LYQIgiCI+cN3vvMdbNu2DU6nEzU1NfjgBz+I48eP5y3DGMMjjzyChoYGWK1WXHHFFThy5EiJLCYIYr4j8FypTSCIaYUc2ymiqAx7OwMQeMAbTWPbonKsaXDj0e3tuOPxd/H4jvYz3saN6+rx6SuWIpaW8df/sxcXLa0EoEWKH//4VrzzxavgshrxlZtX478/cT7KrMYz3iZBEAQx+7z55pu477778O677+LVV1+FLMu47rrrEI/H9WW+973v4Z//+Z/xox/9CLt370ZdXR2uvfZaRKPRElpOEMR8o7FMazFJfi1xtkGqyFPkpDeKuKgg+0y45yKtb+2CCisay6y4amXNtGznc9etwOG+MN466cOrbYOwGHm8c8qPH31ss95U+4ObGqdlWwRBEERpeOmll/J+/+lPf4qamhrs3bsXl112GRhj+MEPfoCHH34YH/7whwEAP//5z1FbW4snnngC9957bynMJgiCIIg5Azm2U2RvVxAAwKD1A7tujSad/qFNTbh1Q+O0pXcIPIfv374BN/y/t/DrPb1Y1+jC4b4I3u8I4LLl1UiIMhjTWgIxxiCrDEaBAvEEQRDzmXA4DACoqNBauXV0dMDj8eC6667TlzGbzbj88suxc+fOMR3bxx57DI8//nhR22xraztDqwmCmA/0hZIAACVH8JQgzgbIsZ0iWce2pcaBG9bUQVJU3aGc7pqFGpcF3/3Ienzyv/fglFdLS3sj017oq88cwd/esAINZVb8wx+O4t7LluDPL1w0rdsnCIIgZg/GGB566CFccsklWLt2LQDA49GU72tr8/tP1tbWoqura8x1DQwMYN++fTNnLEEQ8xbya4mzDXJsp8j+7hAA4IlPXoBKuxF3PP4uHGYDvv8nG1FhN0379q5dXYs/u2AhfvFuNwCt7c8H1tVDZQzBhIRV9S70BpP4w6EBcmwJgiDmMffffz8OHTqEt99+e9R3WeX9LCxHjb8Q9fX12Lx5c1HbbWtrQzKZnJyxBEEQBDFHIMd2CvhjaXT44lhQbkW104w3jnmxuzOIpdV2uCwzd0gf/sBqvHs6gFPeGDr9CVTaTdj7lWvhMBugqAzVTjPe7wzAG0mhxmWZMTsIgiCImeGBBx7As88+ix07dqCpqUn/vK6uDoAWua2vr9c/93q9o6K4udx7771F199u2bKForsEcQ5BEVvibIOKMafAvky0ti+URE8gju+9rLVk+Nx1K2CYwfpWq0nAD+/cpKvY/e/73XCYNUda4DnctK4ejAEvHB6YMRsIgiCI6Ycxhvvvvx+/+93v8Prrr2Px4sV53y9evBh1dXV49dVX9c9EUcSbb76Jiy66aLbNJQiCIIg5Bzm2U+Cl1mHHcV9XCG0DEaxrdOPGtXUzvu3VDS7cdf5CAMD/vt8DxhgiKQkvHh7ATeu1WfznDpFjSxAEMZ+477778Itf/AJPPPEEnE4nPB4PPB6PnhrMcRw++9nP4tvf/jZ+//vfo7W1Fffccw9sNhs+9rGPldh6giCIM4Mxhp3tPpwYpPZlxNQhx3YKvHPKDwC4Y2sTHn1T61f70HXLx61zmk4e/sBqGHkOaVlBSlLxJ/+xC//nl/vgtBhQ77Zgb1cQvcHErNhCEARBnDmPPvoowuEwrrjiCtTX1+v/nnrqKX2Zv/3bv8VnP/tZfPrTn8bWrVvR19eHV155BU6ns4SWEwRBnDmRlIyhaBptA5FSm0LMY6jGdpIkRBmeSAoAsGFBGf53dy/WNrpwxfLqWbPBYhJw1aoavHxkELtO+/DhzY04NhCFgedx8/p6vNbmxUA4haZy26zZRBAEQUwdVkSxG8dxeOSRR/DII4/MvEEEQZz1mAxzKL5F9b7ENDCHruj5wc/e6QQAOM0Cfr23DwDw6SuWzVq0NsuVK2oAAC+3DiKYkPDND63FshoHPnfdCrz+ucuxbVHFrNpDEARBEARBzH3sJi2u5bYaS2wJQUwvFLGdJE/u1trtGA0C9nYFsaTKjuvXzHxt7UiuyDi2zx3qR0JUoDKGL924ChajMOu2EARBEARBEPOL2Q3JjI/ZqMXask43QUwFunomAWMMg5E0AMBhEhCIA5+6fCkEfvYfDXVuC1bVu9A2EMG1q2tw57YF+J93u8AB+JOtC/DOKR9ERS2J000QBEEQBEHMTeKiDAAQFRUWfm4ERCxGAbdtbCy1GcQ8h1KRJwHHcaiwaWkb3cEk6t0WfHBT6W7CK1dodb3nLaqEySDgK0+34kevn0LHUAx/8bPd+N5Lx4qq2yIIgiAIgiDOLUIJqdQmEMS0Qo7tJPCEUxiIpPWahL+6dElJC++vXKmlI//x2CAay6y4/6pluGPbArTUOrGyzon2oTiOkrocQRAEQRAEkcEoaGNX6xwqX0uKCl49OojdnYFSm0LMYygVuUhSkoKvPtMKALhyRRVuWFuPS1tmTwm5EJsWlKHKYcJ7HQF0B+L49Z4eBOIiblpfj1s2NOCY5zieOziANQ3uktpJEARBEARBzA0+sK6+1CaMIikpSIgyEpk0aYKYChSxLZK3T/rwytFBAMD6pnLcsLYednNp5wUMAo+b1zeAMeCVI4O4+6JFkBSGL//+MG5ap9XWPr2/D7KiltROgiAIgiAIgiCImYQc2yJ5/ZhX//nSlqoSWpLPbRsbAADPHOjHJy9dgsYyK/Z0BvHjtzpw4ZJKeCIp7Dg5VGIrCYIgCIIgiLnAMU8EuzsDSElKqU3RIU0YYjogx7YIGGN5ju2v9/aW0Jp8Ni4oQ3OlDYf7wuj0xfGx8xcAAH69pxc3rdeitk/t7imliQRBEARBEMQc4bgniv5QksSjiLMOcmyLoG0gCk8kBQBwmAXcuHbutNDhOA4f3dwEAPifd7tw72VLcc2qWoiKin3dIfz9TavwrQ+tK7GVBEEQBEEQBFEYitcS0wE5tkXwm73DEc9PXb4UmxaWl9Ca0fzp+QthEnj8dm8vkpKC/3v7eritRvx+fx8uWFKJKoe51CYSBEEQxLyB0iKJs5lFlfZSmzAKuuWI6YAc2yJ4+cig/vPWRRUltKQwVQ4zbl5fj7io4Nd7elFmM+FvrmkBY8Ajzx4BYwy9wQQUlZ4aBEEQBDEexzwRPHuwH0lx7tQfEsTZjiMjyGouYRtNYv5DV88EMMZwybJKAAAHYENTWUntGYt7Ll4EAHhsRztSkoJAXKub2NMVxGefOoDL/2k7Xj7iKaGFBEEQBDH3Oe6JAgB6g4kSW0IQM0N3QLu22RxKALaaBNy2sRE3rJ17rYjOFhSV4b3TfgyEk6U2ZcYgx3YCOI7Tb/tqpxlW09xpZp3L+qYyXLOqFoORNH7ydgduXFeHGqeWgvzOKR8UleGxHacpvYogCIIgimCyb0vGGCRFpewoYs6j0ljwnKQ/lIQnksL7HYFSmzJjkGM7AdGkhD8cGgAAXL6iusTWjM/f3rACRoHD/3vtJBgDdv3dVbi0pQq+mIhKuwkHe0LY3RkstZkEQRAEMeeZ7NjfG03jhcMDONwXnhmDCOIsJpqSsOPEEFrp/pkxqp1mrG8qw4VLK0ttyoxBju04MMZw5fe3I5Gps7l8+dx2bJfXOvHQtSsgKioefHI/YqKCr9y8Gg9e3YIHr24BADy+o73EVhIEQRDE3GeyaZocp/0fiKdnwJqzB1VliKXlUpsxL+gLJRGfwWM1lwK3sbSMYEJE+1Cs1KactViMAhZX2VHjtJTalBmDHNtx6PDF4YuJ+u/nL577Mxx/fdkSXLS0Eie9MXz8J+8hkVbQHUhA4DlUO814rc2LtoFIqc0kCIIgiDnNZAf9VXat/EdRZ8CYaUJVGY70hxGMixMvPEPsbPfjj22DCJTQhvlAIC5iT2cAr7UNTrxwCVFVhhODUURTZ9YTdy452Wcr2Umls1kYjxzbcXj6QJ/+c0uNHdXOud82R+A5/Mefb8HGBWU42BvGx/7zXfx+fx/+e1cXbtvYAAD419dPlthKgiAIgji74HkORoGHKBfv2aoqm1Xti8FoCqe8MezuLF2NnT8T0fbFKLI9HklpfjgfHf442gYieOP40Bmth/zamWcolsYf2wbxytGzV0yWHNtxePbAgP7zRUurSmjJ5HBZjHjyry/An12wEKnMg7EnGMdP3upApcOEv7p0SYktJAiCIIi5zWT9TVlRISkqZFWFWqSA1B8OD+CN494pWDc1DLw27KucA/3tbTlinOGEhHDyzCJ+ZxvcLGxjOpzJbPTvTCdoSNx05klLM5NO0htMzJkMDHJsxyCWktDlj+u/z7dCa4tRwDc/uA4vPngZblpXj6SoggEIxSU8+V53SdOQCIIgiNHs2LEDt9xyCxoaGsBxHJ5++um87++55x5wHJf374ILLiiNsecAk1WOHcqJQCpF/K2sqGCMIZqavXrTrPPAz4bXNAZ1Lq2+z2k26p9tP+HFrnZ/qUyak3CzcI6MQgkvhBGQXzvzVDvNWNfonlafJiUp2NsVxFsnzyxiP12QYzsG33nxmD6TxXHzo762ECvqnPi3uzZjx99eiTu3NUHggV/t7cVNP3wL75zyldo8giAIIkM8HseGDRvwox/9aMxlbrjhBgwMDOj/XnjhhVm0kBiP3IF5MYN0uQRtgbLbDCamf3K7bSCCnad8E0be9N3O8anqXJZ5Ue51tmASeAg8d1aLCBGjsZoELKl25J13VWUIJ6aeLTHX2psZSm3AXOX1Y8OpQavqXCi3m0pozZnTUGbFex1BSArDugYXDvdHcM9P38cfHrgUK+qcpTaPIAjinOfGG2/EjTfeOO4yZrMZdXV1s2QRMVWKUVQuiWOraNuc7igxY5qAEACkZRUWozDmst5oCoAW6XFbtajthgVl02rP2QA3g8nIc8sV0XBZtGshmy5PTD+MMSQlBTzH6ffo3u4g+kNJbGkuR1O5bdLrnI3MgslAjm0BPOEUBiMpmAQeoqLOuzTkQgg8h09eugT7ugOIpWQc7o9AUhj+9Me78NJnL6NZO4IgiHnA9u3bUVNTg7KyMlx++eX41re+hZqamjGXf+yxx/D4448Xte62trbpMnNek62PnWxqZO7iRUVsSyCfPFOD0OgUWtJk29ioKsPLRzywmQy4dnXtdJs2b5nJdHEpc+1JigqjMDccSbfNiNs2NpbajLOaQFzE25lszeyxzj7vphp5NWWun7lyHZFjW4BoSsIlLdXo8sXRFUjgkmXzRzhqPD52/kJ87PyF+OyT+/XPAnEJn//1Ifzsnm3gS1l0QxAEQYzLjTfeiNtvvx3Nzc3o6OjAV77yFVx11VXYu3cvzObCaZwDAwPYt2/fLFs6f0nLCvb3hGA1ail7U2WupiIbZqimUsooQVc7zDAbihvgOi3DNbYCP7X4pDeSwklvDFsXlcNsGDtKTBRmMJKaUpSOmJ8kCrT5OX/JmQXveE5rJzpX7j9ybAvgjaZx/5VLcfdP3oPZwOOCMzzpc40v3LASL7R69JYEO04M4RfvdeHjFy4qrWEEQRDEmNxxxx36z2vXrsXWrVvR3NyM559/Hh/+8IcL/k19fT02b95c1Prb2tqQTCbP2M6UpKDDF8eSavucGewUS9YhnUqrldza0mKEp7JpwbNJvdsKo8BPWhhrIrJrMxt5cAXCwrG0DAOvpT+W20wIJkQ4zNoQlOc5cOAgTiGCveu0Jjh1cjCGtY3uMZfr8MUhKyqW1TgK2jcnmQUz59L9GUqIOO6JosJuQkstlcjNBBV2E9Y0uOGyTp/7x/PcnOocQ45tAT7/6wMYCGvqhpcvr4LVNHdu/OkgGBdh5DnkSkf800vHcePaehJvIAiCmCfU19ejubkZJ0+O3Zv83nvvxb333lvU+rZs2TIt0d3dnQEE4iISoowtzRVnvL7ZJJ3Tg/ZMXL9i/lZWc7bF2Kw5XDzH6amo04XAcXBZjAVra1WV4Y9tgwC09MesU527u1Mde7gsRkRSEnhu/GN4qDcEAFhUZZ9TSsClYjpTfqfrsvXHRXgiKXgiKXJsZwi72YBlNfmZKEPRNAYjKdS5LaiaQhuwlKTgrZM+uK1GnLe49M/7uZEQPYd49kBf3ovtyhXVJbRmZmiutMFmFmDKSReKpmV896VjJbSKIAiCmAx+vx89PT2or68vtSl5rKh1YkmVA4sq7aU2RSeUEPV+m8Uy2b6a+arIk4vYzlarE1lRdcdyOtVMy+0m2M0G9AaTo47zyOhwtl9tLFNjyxjDhgVubJyCgJTbZkQgLmJvVxD7ukMTLi/Ks1/XPGXmosLTDELtfmYexhhSkoJUTkbKznYf2odiODYQneI6gYQoYyBcXLYPYwytfWH4c9qjTSfk2I7g8bdOIxAflr2+YsXYohzzFafFiJcevAzfuHUNAKDebYHbIuA3e3txpD9cYusIgiDOTWKxGA4cOIADBw4AADo6OnDgwAF0d3cjFovh85//PHbt2oXOzk5s374dt9xyC6qqqvChD32otIaPoMZlwbomNyqnMPtfDOGENKmIY0pS8OaJIbxy1DOp7ZzJOJsvIoylTDJ1eTroCiT0Yzfd2xRlFSlJGbXekVtZXKVNeGTtkFWGl1o9ePvU5PtgMgaEEhLAAb3BxJjLnbe4AhsXlOVN6M91ZvKK6PLHcdwTzXNweoMJvHPKN+lo/vSpN5NnO9NEUjJePuLBy0eGn4UNZVYAQH3Z7IjI+mIi2odiONw3M/7G/LnDZ4mPbm7Sf15Sbceiqrkz4zydVDrMuH3rAqysc2IgnMKVq7T2Ef/y6okSW0YQBHFusmfPHmzatAmbNm0CADz00EPYtGkTvvrVr0IQBBw+fBi33XYbli9fjrvvvhvLly/Hrl274HSeO2l7oYSI7Se82HGieCcoPcUo3VT9vpYaJ+zmiSu9ctc/WzpS2Ujy2kb3tKqYyoqKuJiJwE6wbNYRyu4/B008air4MlGf0AR9OOvdVjRX2ueMcmsxzORcx4GeEI55IhiKDkfN9nYF4Yul0RMYe4JgJqGI7cwTTY2+T7YtqsBtGxuxdIpiecW0NsvFwHMwCbze6mu6oRrbHBKijN/v79N/v2HN2d0rUOA53LqxAcdeOo63Tgyhym7Ca21e7O8OYtPC8lKbRxAEcU5xxRVXjJvC+vLLL8+iNVPnaH8EJ71RLKtxYE3D2II+UyGYyE9jnW7yA61TT0UubvmcVORZilapOc7kdOKPi3nRv1zGStHO/mQQeBh4DvH05AW7stucKM28wxeHytiUB++lYLauidHbLQ3k1848bqsRq+tdcNumz6mc7HOv3G7Cjetmrnxm/kxdzQI7T/lwsHc4NH7j2rlVtzQTZPtP+eMi/HFNTur7r1DUliAIgpgap30xAIA3Mn01VKKsTrrmNYstIwDptEw8l59NIXaYDVOOIIUSYlHpnJPtextKiIgUiLhMhux2AnFxWvvojldfnOugqWz4+shdrtJhRqXDNOntVtrNYJhYfOpQbwitfeGiJkSOe6LY3x2ctC3TzWRrtidDS83cy/KYyf0lNJwWI1pqnahxDqcdh5MSjnkiGIykZsUGSVHR7U/glDda9HmezNVAjm0GTziFL/++FULmpdbgtmBto6vEVs0891y0CN/76HoIHAcGwGEW8PYpH/Z0BkptGkEQBDEP2dBUhuZKOzY3T0/mT1JU8GLrAHa1+/UeqcXUsOYSTclo98agTpDzq6n7GmA3C5OOIC2stKGxzIqhWBqR5MQOaP5AfqJlGd48MYQ3jnknaVU+2frXvlAS8UmKaY1H1nk97oni/Y6xxw+5StD63zKGDU1lOG/RxIqqIwfCZqN2PRRbO1soFXMkxzwRdOfUImcZCCfx8hGPLn4FaJMN3ml2CJKigraBCPpDw2I8M5Wqnns4K+zaxEKVXZskCCckeKMT79t0qSKX27Uo4mTvbWJypOV88ahd7X4c90RxqHdqNa+TvTTTsopXjnrw+/19ecHEsRgIJ/PuuYkgxzbDy0c88EbT2LBAS5u6YW39/Ol1dgYYBB5/snUBPnb+QgDDD8//98ex20cQBEEQxFgsqLBh44KyaauhCiS0bKKhWBpWowCXxYgl1cXrX/AchxODUXijaXRPUD9oNQloqXWiqdw2pYhtmc2k9YotwtHKj2TOVipyrhLz9G0zu6pYWs6r28z9DgBUFaPSgdOyihdbB/D2Kd+42zjcG8azB/vzBuWMAaqqTphaffGyKqxvKoPLUvw1OdKx9UbSSElKniP75okh7Drtn3DCZDIkJQUnBqPw5Gxnuq+PXKc5ywVLKnHD2jq9x+n2E17savdPq3r2eNQ4LbhtYyNu2dBwToy/S0EsLeOl1nzxqGy2w8IK25TWaSvQ4ms8wkkJwYSIWEpGlz8+4fL+mDjhMrlQjW2GF1sHAGjpOQBw28aGUpoz6zx80yoc6AnicF8E5TYj3jrpw77uIDZTrS1BEAQxRyi3m3Dlysl1K8imn6ZltWDEcCR7u4IwChzqXJNXCR3ZI3I8ck2ZyHGZLr8mV6RpOv2V7KrKbEY9iloIhTE9wqeLR3GaXROZ8/apIdhMAgbCKV1Z+Uh/GJGUDISS4/Y+rXKYJ92jU5IZkJMdne3RayggQKUyBn6aKpc9Yc2hHYqm9SjqeNeHqjLsOu2HxcgX3Tc6K/SVy1jCWipjEKa9KpsoBaHEaCdxS3M5tpxBdg3Pa89KucgHilHgYOB5VBXZu3ptoxtlk5gkpYgtNFW9904HYOQ5dPoTWFJlx/qm6RW8mOvwHIf+kPYwNWSal/+QorYEQRDEJDnljeKZA3041BualvXlDqklRUXbQASnh2JF/32u4O5EDmK27lRSJu/1dfnjeO5gP04MFtcPMjdiO9HWpssHXVnnQlO51t5jOqOA2ejvdavr8KFNWncJRWUIJcS8Y64obNSxNRsEmAQekaQ0ZhQ5kpK0dPKhOMpzhG+ykcfEGMJVWTp8cXT6Jo4O5UZexRER2+x1VOi4TWdMU0+rHhHpHgsGbRwbjJ9Z/XVrXxgvH/HoStPFMpngqj+WRttApOB5HoqmcaAnhN5gYt7U2IYTErYf96JtIFJqU4rCZTViVb0LFy6tnNb1nr+kEhcvqxp3GW8khZSkoMZpwflLKqYcIZ4IcmwBvHJkEAyAlHmgfXBT4zmXBmEy8Pje7etRZjNiKCrCZhSw/fgQDvaESm0aQRAEMY845tEcu8mmkI1Fhd2EJVUOrG8qgyirODEYxSlv8Y6tI9N6x1REq5dcZd7JDq15joPKGHzR9JgKwbnk1dhOEEieTic0W8M4nemzBp6H3WTQa6ABYE9nAG+eGEJfTn9ZhbGC6YcVdhOqHGZ0+eMFJwZUlemOZe74LJvWPFE65KHeEA72hhCMi4imJOztChZUUuZ5DkuqtHWOTEU+mnFe4jOkyJ0lO+C35bSMGq8HM88BtS4LyqagdJs7udI+FENKUkbt33T6mG+f8uHEYBSDBYTl+kNJdPnj2NsVnNH051haRrd/eloaDUZTCCeloiezZpreYALhcVpfuSxGLB8hHpUUFZwcjBZMTy+GWFrG68cGcWAcfyGUELHrtB+vHB2EqmrPyPHszCUhyqMmmcaDHFsMpyFn+eDGxhJZUlquXlmLP7+gGRwAZ6bG4l9fp6gtQRAEUTyr67Wo4HmLi0uLnAiLUcC6JjcWV9l1ZzlZhOOYJesIzXT7lAUVNiyusmMolkawQMrfSHIdhtb+qQm3TBZFZXoK8nT6DnVuCyodJrzU6sGbxzWBq2yN6GCOAFGuw5Ldf8YYNi4owwVLKnGwN4y2gUhBxyb7yVRa3lozjm82Q683mBhzIG40aBsQx+h/XOi4TafzZ8jsYLGq1RzHYSiahi+WhqSoY9pdLCP3ZSbum9xJA8YYjvZHJiUQdCb8sW0Q+3uCRQljTUSVwwyO49BQpmVBSIqKDl98yudAUtQptzKLpWXs7Qpi+4nxBeZGXiPvdvhxdCCCvV1TUwJXVIZoSsZAKDkq0p6dPIumMj2uGYOsMpwYjKKvSEf6QHcIiUkI3Z3zNbahhIhd7X4YeA6yyrCo0oaFlTMTHp8PfO66Fbh4WRWYynDf/+7Da21etPaFsbbx3ErNJgiCOFcptlZqLJbMYK/QqSRTMaa924UiPKK89OApHAY9GlrE3+ZuyxfTIhhj9ZecLscpm+oJaLVu00lKUjEUS6Nv1AB3eDtKTk5tdv+TkoJXjw7q9aRANrWZy1kDpw+Og3EJzowIlF6vO4Ft5y+uhC+eRqXdpGcUpOTRg2VVZZAzqdIj67HXNLhxpD9cMPI/VedPlFUc90SxuNquZxYomWM3MkrFGBszm3DronLwHIcXDmuBmtvOIEAzchMzkRWcuw1/XMRJbxRDkTSqXVrdZXaTisowEE6izmUpWNt8JuRG7L3RFOJpBXUuC6ym4sWQKuwm3LphWJPncF8YPYEEhqLpKU3s7e4IYCiWxg1r62A2TE6USSrCmY6mJLyeUVbPXiNlViMiSUmvW58qoqJCUZleznhyMIqjAxFc1lKdt5wvlobNZMBgJFVU3bt5kuJU53zE9tWjg3kv8Tu2LSyhNXOHj/3kPf3hTbW2BEEQ5w6FUjRLhTeSwmtHPfjBqyfwi3e7prSOcFJCpz8BXxGp0XnpwZN0VlSV6ZHGYmoERy0yjp85XVGzrF2XLKtC5STFlAohyirCCQnRpARRzlcrzqYJ5w5elZydzjqnPKeJyahs2L7ssExSVLx90ofe0HDqaK5TdHJQS0mfKILvthmxtNqBMtv4vXIjKQntmfrtkZMT5nGUrqfq/B3pD+O0L4adOYrQ2TT7kaniY21DUlR0DMV10anJMB1OKzcFYalcB93AczAbeNjMww5M1q4j/WHs7QriUN/MZjR0+hI41BtCKDn8jOjyx/VJoGLJZpQE4lPr4Z09HcXU+Gf1BrIR3mIm/QrVYW9aWI7bNjZOGMAaM4OAFfxRT93P9q3OwnFaa7Tbty6YsC4X0MStSDxqErzYqtUtyCoDB+DPL2wurUFzgK3N5VhQboMoM5gEDq8cHUTrDD9UCIIgiLmBpKgT1ohm09kKOXBd/jieOdCHfd1TS23LJZKS0BdKIpAQJ6xj82WihSPR1XeL2B4b85eJ6fDH0ZmpHy3GYRhZNzueM3wmDkhrXxivZESBsr7SdOmIDMXS2H7Ci3c7/AglJWxpLseNa+vB81xO9Hp4QJwNgjrMBj1CazEKsJp4hBJiTpq09kN3IAF/PI2Tg1G4LAZ0+uLYftyrp1Jmo0MT7U2nL46eCVo9AdpxEXjN0a515qti83x2f6axtU9mEinXMdcnR6A5E13+BJKiMublqKhMT3+/fHk1LinCWchSKIuBAzet9deFyN1smc2EG9bWF1S1ztbiTnevYCD/noqlNYcvNx36QE8IrX3ji0IF4yLePunDycyzKdvizDmJtlK5LKywYU2Dqyg9gOOeKE4MRvH2yfHbZOXithqxos6Ji5YWf40A2nF5/vDAhIKAhW4NjuPynO56txU3r2+YsUzQc9qxjaYkvHVySP+9pdahp4KcyxgEHkuqbAgkRIiZWaPvvXy8xFYRBEEQswEDkJbGT2t74fAAXmwdKNgX9lCvNhFarDjIeFTazfogcaJU4j2dAezpDIyOdGX+D02ihq/MZjyjGGkxvs/IRSbyJXyxdMF2HYAWOR1L1Kh9KIakpMATTunOczgp5U1epCRlSoI9iqKiP5TMq4Fj+v/Z6HXO8hnPNpaWcbg3rNdauq3GvFRkfV1MUzQ+2BvGqaEYWGb9DAzeSApLMumTksLGPDYAcLA3hH3dQfhj6eFBdoHddVuNuHl9A25aXz8qLXxPZwDAGKrIU71YClzSw7XHgC8maorHCXHMiQ+zgUdDmRU2kwFlNlPRkXiLUcCCAsq0HDey33FRq5sUuVFeNZNu7M9RY55shkKXPz7u+Z+IJVUOlNtMeb23m8ptqHUVPpZZwaRjngj88bQencwuX+kYPzNgLFxWI6ocZr3OGtDUogvd29l7Lp3JlCgmcu62GbGyzqX3rgW0Z0f7UGzc6HRfUJsw7CigLJ6v7j76vPEFJtFOeqN46+QQBsJj19kqKtMnWUcKuY3HOe3Yvn7MC0lhenrJHdsWlNiiucNfXLJE/5kDsOPEEN6ZoHk6QRAEcXaQHSz1BBJ4+YhnTKepkC/UUutAvds6LS0lwkkJ0ZSEBrcVGxeU6Z8XcnIFvvCQJtchmGi4LPAcHGYDLEbhjCJzxQzMR4n0TNCrtMufQPvQ8MAyJSkIxrXB/J6uAF5rG8RggcjW0moHzAYBNS6zfr4O9YawryuInad8SIgyXj7iwduZd3xPIIFT3hiODoQnVEo9OhDFQDiF/d1BKIomCnM4k+GVTan1x4cdjtzx6WlfTD/GmxaU45JlVfp5zXWyoykJisr0gTxjDCaBx77uUJ5jmHtsRuK0aEGLgSmk62a3maWgeNQUp0Gy6rTLc6KVuenasqqCw3CfX8YY3jnlw3HPcPYCx3Hwx9LwRLTz8NbJIUiKikhKwvsdgYLXRCGyY+Hc66SYfZtK8D/39pVVhvc7AvpEmNnA605a9rgPRlJjTpSlJKWo6Op4LKqy47Ll1ah3W/XPhqIp9AYLX/9H+sKIpmTd0avN9Lwetnty209JCo72R7Cr3Y83TwxBykwAJUQZO9t9eK1tcNTfjDzuxT6vsg5jlt2dAbT2hccVj8rePwDGjdoWjNgWWO75QwPYfsyL9zsCBdfT4YvjD4f60enTVLLjJB5VHLLCUO0wYyiWxrpGNz5x8eJSmzRnuKylCkur7WgfiuuPtO+82IZn77tET8chCIIgzk7SspZq/O5pP0wGHie9sTzH8vo1dZBVpqvN5rKyzjVtdtjMAqqdFl3BVOA52E0GLCogdHL+kgowFWO+o8arkcySTdUDJj84ZZNUHB6lIDrO3xRyLl4+opVSXbu6FkNRLdrlCaf0QXaWtY1uPe3v1OBwvVtrfwS1LrP+WSgTFezwxTEUTYExwGjgceuGhjFTl7ODaYHjoUJTR+0NJMaMsIyMCmuiUJqgTW4tbu5SZoMASZHRWGZFKCFhQYUtYw/TU5tNAo/VDWNfd9sWVWAwkkKZzaSni49EVlQwaBGy/lAStS6LHtHMtXs6I7bZw5oboctNRa60m9FYZkVvMIkufwLVDjN8MU0BOXudAsCGBWVgTHNSsuvYecqPtKxgIJzEpS3VekQ8e92Jsib2k51MuGJFDRjTjmVazlUtntq+FUsgM/FhMQkFRa8CcREdvjh+vbcHf3XpklHfZ+1TJmlo7tLeaApJUUGtywKL/kzjxnTqs5/azYY8mwOJyau2A8C+riCGciLWaVmF2SBMSu+gGMc2Vzzq5vUNEGVVF2VzZlL9Cz1bTTnPzg5fHOubyvTfnRaj3uqsECMjtn2hJKxGAcG4mDeRkEvWeU6ISlGif3nbm9TSZxk3ra/H1uYyAMCfnrfwnOtdOx4cx+GTIx4grX0RPHeov0QWEQRBELNFa18YLx4ewOG+MFTGRjlhFqMAh9lQcNARSUnoCSQQTZ15KrKqagPXaEpGLCXDKPAosxmxqED3gkRaQSgp5gk4tfaFddEoe4FSo0K1hId7wzjQE5p0DC6YkLC/O4guf7w48ahRv4/3N1rNKs9xYIzpNX1AvtjXRFvNHedkbXRYDLoCa0JUsKTajpV1Lv3cRgtE6z3hFGJpGeub3NiysBxrm1ww8jyqHWbYTAIYG57gyE3vHKk0LCqqLh7F8sSjhvcka7JR4FHtNKOlxomEKCMQF3GkX4vSqWCjrsVoSsLbJ30IJUQ4LUYsq3GOqcLaF0ri+cMD2NcVxO7OAPpCybx2MLlOU6EJkqn6fnr9d4HzAjAcHYjg+GAM3mgaB3sKR9RSkoJOX0J3ELM2VjuH02F5DvpElTeaAph2jHNLCbRaZwEcx40QURuf3EmMUELMS1dtG4jgcO9ojZbc247ntHOb7R88kuz1XajsAdD29aKlVdjQNPWazXZvHAd6QohknlmKypCWFf1cRFNSXhuqsZytrI2TbV0USeXfY9kygbGOvaoyPZtCn4grYju5AnqMMbT2h5GWFVTazYimZBzsDRV8duV+NLL+V+C1dkdjCbNxnNYfPFsXr6oM9WVW3HnewjGVo+tcFthMBqyoc+L8xRWTEo86pyO2zx7ox4tHBsFzwHVrakttzpzjw5ub8P/+eDIvdeefXj42JRlygiAIYn4gcBwiKQldfm2QxtjoaKKias6uwHOjJoVb+8J4qdWDLc3lZ9R2BABCSRGDkSSGomkMRdNwWAwYjKQRiIu4bk1d3rLHPFovzFqXBQIvwBNJoX0ohrYBrWfiyBrOtKzgpVYPFlTYsLbBDU84BZ7XnC1RVtEbTMAbTcFlMeKUNwanxYBIUsbaRlfhifCc2s1iBpnZwaIr024jd/AoK2resWXQHIC4KCOWlPSaPkAbWG5bVIHdnQEk0lp6ZG7rjiP9YQxGUti4oBwXLq1El18bxGedR57jEEtLOOWN47KWahwbiMIfT4MxwGoS8npeyoqK5zMtZQBgfVMZwkkJdrMAXuBww5o6LKt15AvG5O7XiAtJURncViPsZgH+eBqyymAUOOToTekRJVlRMRBO4f0OP5ZUO9DujWEwkkKd2wJZYaN6hw6EU/DH0+j0xVFul2AQeDSWWTPpoixvIuFQTwixtIzjg1G4rUZYjYKu6gwMi17ZTIa8+sThczn2GY+nZfQEE1hW7RjVsibb7/hIfxjLarTtZQ9RdpXZMoCRW+j0xSHwHMrtJnijKajMrAtHcRyXN05788QQllbbMRhJ4VBPCL2hJFbXu/RIXCQl4bQ3Bl9MxNpGd17q6Xj7lpYVPeU8ux0AsJkE1LosuuBbc5Utr6abgUFVGSRVRY3Lgg+sq0d/KImj/RHUuS0osxrB81oUMNsP2WzgkZaVUeNPSVURToqwmgwoK9Ct0xdLo7UvjC3N5WOKOmX91J5AAjVOy6g+u++eDiAhyjAKHJbVOFFpN6E/lES924Kd7T7UuSxYUu1AvduC/lAStgKZLCcGo3BaDAWjlJNNhOwvUJuaXxdduDWU22pES40T1U4zDAKvT+zxHNAbTCIQE7FtUYXelzdLXBx2vAtdDVuay8e0VWUMu077cHooji3N5VhQYStY253L+UumXsZyzkZsn3y/G7/d1wtAe4gUKog+1zEZeNx72RIsqbJhQYV2kfcGU/jlu90ltowgCIKYKURFxUuHPfqAEhg9uP3DoX48f3gAPQGtZ2lPIKEPXN/JqHQOTrGeMZcapwVuqwmVDhNaah1QVIbeYCJvMJ0lGyXJRlNYRmkoGE8jLSl5ES0AiCS1wVpPIIG0rGB/T1CvM+sLJdHtT6A3mMTBnhDah2J4ancPTvtieSmD+evTth8YR+gnl+E03ny1XUVleP7wgO4kAJpIU0JU0B9K4dE3T+etR8hRIB6KpXGoN5S3r6e8MURTsq4KXKgOsDuQQEKU0RdKoLU/jOODw46zMad2eWTLJE84iVNDMYSSEswGAUYDr6+3zGrEshpHngjTyJYh2VR2f1xE+1Acxz1RJEVFPxa5Y/OeYBKyyiDnpM/mDuYPj+jeYMk4QEaBx4GeEPZ0BvSU7ZEc6AnhuCeq2zcyApWN2CZEGbva/aOuJZUxDEZSBVOwW/vCaBuI4J1TPr01i77eAhkDI6PaY5EVxLIZBTSV22DgOZSPIx4lytq2ekNJbGkux4o6JxozDswbx7z43f4+xEUZsqrmO0k56+j0xbGnM5AnQpbL6noXWmqcKB8RvXvjmBe72v368WUM2HFyCC+1epCSFHijKbzX4ddFhbI9fHOPj1HgR01eAJpD9pu9vTjcG8rLEpEUFduPe/HcgX6EkxIO9ITGPJaLq+1wW41wW03wxdL6ZErW1uW1DjSUWfWI/4IKG65ZVQurScBQNK1fe1mHcGR2SFJU0DYQGbOmtJDAUnbbhci9RArdz2OVNVTYTVjdMCwetbbRjW2LKuC2GbXrV1ULKss7zQatzCCY1K/9SErC0f4IAnER2497cbS/cI1zoWv89FAML7V69NZaY8GYFjmfjHjUORmxTUkKvvGHo3p6g80k5NUOEcPcdUEz/vzCRXjnlA8f/6/3AQA//OMJfGRLU156EUEQBHF2wBiDwpg+m8/Y2EmykqqiO5DQB41Wo4BIUoLbZsSS6sKphZMhIcowCByuXlmLlloHfvJWh/7dyOiNSeAzET/NETMKPLzRNPrDKX2gmjv4q7CbcOGSSq1/ZQFhGgYGxqA7I9m6ubHUg6WcQXdxNbba/3mOOIbTEHOdhrSi6oO7kanBDBg18MsdJrfUONHhi2uiQCrTncWsieGkCIfZCAPPQ5QZXBYD7CYBf7J1wah65ZHj72zvVG8kja3NFfjFe10wG3jcc9FidPji6AokkBRlyCpDlcOMkX5JtrZ0abUDBp7D3q4gjnkiuHb1cBadKKvwRFL6+T7SH8FN6+qxoMI27oA3a6vKGMptJgQTInqDiXHFjrIO1chlRp7zkQ76YCSNtoEIFlXasWHEeNJuFvBeux8KA14/7sWDV7egwq45FuU2EwYjKWzIqVnM1reaRqY8j3FN8TyHUEJELC3jSH8EkZSEjQvKRjko5XYjcrOZx6qJHJmhkV3s9FAMb5/ywZ2ZsCiUeprbsifr/FqMAlKSAsa0iL1B0HYle32HEhLe6/DjQHcImzORP0lRYTbw4HkOC8qt6AkmdUXskezvCiIhKtjXFURaVnHz+gYIPIf+UFLrYR2Io8JhGqX0njv5VOO0oGaFBSlJwctHPEhLCsyZSReVMTRX2tFcOZwFIWTaQtU6LTg9FEd1xuHVkxRGGJqdGzKMIXDnthnzoqITkbuaY54IVtQ5886nyhiEMVSSVZXpGSB2swH7uoP6fWwzCQW7w5iNAnwxLVMm+3x673QA4aSIPZ0BTdyMaWnRI9O0cydqugMJvHZ0EAd7QwgnJaQlZURmBEOnP45YJvOkqdyKhKiQeNREMAb82QXNeHyHNut5+fJq/UVI5JM9Luub3DAKnCapn5Tx72+cwpc+sKrE1hEEQRDTjUHgsbjKnjeIHFmLev2aOoiKCqtR0OscAc354wUeLbVOCMKZ61ZYjQLqXBY4LQbsavfnRZH3dAaxrsmNfV1BrGt046KlVXnppRw33F5m2Hkc/l7gOfjjIuKigl3tPn0gCwC1zmFl2Gw0Jfu3wlieUc7HxYwpsrby3Ojo40hUhhyHNH8fjDyv9wyuc1mwdVFFXmrj6gaXLqz0+rFBRFMyHGYDajJRG6tRQK3LDLfViDKrEQPhFNKyFrXjRwyOR6Zz20zaMNJsFBAXZZzwRFHrsuCYJwIDz2sRNKZFkqscZpRZDSizudCWSaXmOM0xefpAHzgOSKRlWE1CnmPlj6d1kSObUcikmvOodVkwEE7lCfXE0jIiSQmHekP6+RyMpHHh0kr0hZJwWYw4MRiFSeALRsOyDuwpbwwcOP24jYrAj7gEsqnThS6NhjIbwilZnyD51Z5efOrypQCQqRe356X+Zh2wkb2krSZhzIa9axrckFVVzziQFTbq751mLRhhNfIIJyUY+cKpvaP2l2mTSIf7wjjljWFLc/nw+RlnAofl3D92kwGRlJTj+A3/oSecQocvDpUxJNIybGYDXj/mxbWra8FzHMpsJvQEkwBjBc/ZSEcq69Tpqf6Z9OO4KI+KmGfxRlNIpBVdOCp3M/qu6lkEHNo8ETxzoA9rG9x55RbxtAy31YhatznvMyGTVs1xhQ/YgnJbvgJ5Nh19jAOcve+y9mj25R+DQuSKR12fKeWIpWQoKkOF3YT1TWV5jubwNoZra7PPq6XVdrx9KomUrKA3mITDYkBClEele8vK8HkbiqZhNyXyroWBcBKnvDEsrLDp9vliIrY0l2slDUV1IB/mnPTmrCYBJ73DwgtXrqwpoTXzgy5/Ag1uiz67+l9vd6DbP3Gzc4IgCKI4duzYgVtuuQUNDZoK7dNPP533PWMMjzzyCBoaGmC1WnHFFVfgyJEj026HxcBjSXW+MubICKTFKMBlMcIo8KMGURaj5tDs7QwUFI6ZDGlZRTQl4YXDA6Naz/hiaRzo1mb+d3cGISqawqeUk+5Y5TBjWY0D5QV6pAJa+rA3kkaVY1hJOC0p6A0l4QkltX3LjKtcmSylMTUmMsstqLDl1biOBWOAN5pGlz+eqVnWPh9ZKwdoisuFUFQGi5HXbfLHRRwbiCA1Rh/ibPDkihU1eq2fyoBATEQ0pUVW61wW1Lks6PTHcXooprd+AvLVewEtGrlpYTkWV9rAg0Ol3QQGoCITIXVajKh2modr9jKRriwJUcFxbxSRpARJVjEYTSMpKnmOTzbKZeB51LotmjpyUkQwIY5KTfXH0tjdGUBaVvXU8Lgow242YHmtE2lZwTFPFKfHKD/LrQEejKb0Nigja4NVFegYiuG4J6pN+nDZ7IbR60yIMhRF1SdZIjmR+FqXBRsWlOnpw9nUSyD/OtvSXI7LVxQeq8ZSEroyUa4sDothVJ2kQeDgshhhNvCZdk4RvZ2NJWdSp1BN/Vh+/cjdPdgTwjMH+tA2ENGv44Qow2zgwRjTWz/l+83Daedtnii8EU3candnYERdboENQnO0WmocuGx5NW7b2KhPKmUnGXLFvsZqfXRqMIaDvSGt1Y4yIhWbAXu7Anj2YL9ettg+FEdKUkeVRHgiKYSTkj6JEElJeK1tEK8c8eCdUz7s7gjqLbry9oHP37fsj/6MAvbIDIHs/dFYZsWtGxoA5D83svd5XyiJnkBCX947IhX/SH8YoqKisdyKu85vxvJaR0FhrEBMRJXTjOZKG+rcZjDGsKTagRW1TthMOdfOqL/UnhFLqx1YWm3PrJuhwmbSrk9OE+vrCWhlH8c9UfhiIgw8h7SsYmNTGS5aWjmpDNFz0rGNpiS8cWy4duWKFdUltGZ+EEyI6Aok9QeEpDJ858W2EltFEARx9hCPx7Fhwwb86Ec/Kvj99773PfzzP/8zfvSjH2H37t2oq6vDtddei2g0WnD5qRJNyRgIp/R0QIPAj4pYdfni8GdqTUcOg5Kign3dIbQPaY7RmRCIizjti2MgnMKxnN6dWWGlrGOTVQre1x3MURRlOJYRrzHkiDBlCSVEHB+MoieY0AfXjGnOdDYFWVWZvn82k0GLFo4RieaY9nmx8QXGtEF/SlIQTQ2LR+XWz2UdKpUN19Ll7oQm0sThwozYijeawlN7erDj5PAY52h/BC8eHkDHUFwfIHMAKh0mVDvMUBlDVyCOne0+9IYSSEoKegIJ7Gz343BfOK+elOO4vHrAeFpBLCWhL5zEYDSFVQ1urGt0QRA4/fpxWgz6wFRlLO/4ZFtGWXMGx2V2E5KSovU2TUq6o1LlMKEvlMS+riDaBiI47onCG8t3VApFdxgDuv0JDOQI7oxM813T4MLiKnte+6pYSsYxTxS9wQRiSTmvl7PKGA72hhFLywglJcTT2jUnFkiN7gsm4YtrTrjTbMg7frG0jD8c6sfOTA/hbBqy02JA8wjlb8YYREkd5cyLiiawFIiJuGhpld4PeOQkRDQlo77MMuxE52Y35Gwju3/6dke4K5GUhB0nhuCPpRFPy+gPJfVId7aVUigh5TnHe7uDGIqmMRBOjXLS6t1WLCi36T2OoykZcVFGd6ZtVK4GTqEIpqSqSEnqmMHj3M/HyrbIRhklRYU3kh7leGcnALKTB5bM9RNOar2Cs4Ge7HHIbibrxKYkBYORNNqHRtfoKyrDUCStR8SBYcffFxXhi6bx7ulAXo1wtuY7N1uhUMS2tS+Mfd1BPaqbTSO/eFkVLEYBsZQMXyyNY54o/ntnJ362sxOiPDrtNyUrMBt4VDnMaCiz6c/eQELMc5YLTeykJIbGTM06Y9qxvmx5Nerc2mTiicEYuvwJ+GJpMAAui0F/dsRFGTw/uZjtOZeKvOPEEB55dniGe22jS2+QTYzNFStqcNvGBjxzoB/nLSrHkf4wXmz14L3T/jNSLyMIgiA0brzxRtx4440Fv2OM4Qc/+AEefvhhfPjDHwYA/PznP0dtbS2eeOIJ3HvvvdNmBwNDLK2lp2WjlLnjlXhaxk/e0WpdP3npEn2ZlXUuHPNEMBhJodxmQhJKnnDQVKh3D7+fbSYBFXYTAnFR08ZoKsPRgYjuyGYHjHoaMNOiY4rKEE5KqHGZ8wZeCVFBSlLAQXOwYilNFdcg8EhJCmqdFiiM6Y6I22rQIhQFFE+B4chQrUur1bOMsVwWBgaH2QCDwOX1gVSZZq9J4PHWySFsXlgOlan6YDnXCWRMSznleG3wnBUIyp2IOOmN4rgnipOZdD+O0+p0w0kRQ7E0eI6DLyYinJTQG8g4f1pgJbOuYZsHwsk8p6cvnESnLw6XnkrLwHE8JJnBYhS0yQ/GEEnJcFmN6A0k82sJM6sKJiQ0lVuxoNwKh9mAE4NRJEQF3khaT6seiorgOO349AQSYEBev1UAOO2LoancqjsiWfZnikvXNboLtoVxWoxgQJ4TrzKGQ70hrGlw4fXjXnT645myLB6KynDd6lpIigqDwKHDF4dB4OCPjY7GdQXiehTUYhLQVD4cSQ0ltPZU2bppi1Hr5ToUTWFXewBVDhNqXRZEUxKGomns7w6itT+MzQtzVGiZJup03BNFS60DlZnsg5FR10hSwqmhGGLp4Z7AWZKSdi+EkxIkRYHKhh3/kc6KJ5xCr5JEdzABl8Wgd85oKLNi04JyRFISllY78pzQQFyErDIoiorW/jAa3MNO+0A4iQ5fDN6MwrUz8zxRFAZFYLozWSiSDGgTQdnJKcaAS1uqoLLhOujcdli50cjcVS2utqMvlEAEDAaBGxWxXdPggj8m6pkYJgOPMpsJoYSIgXASA+EkFlba9Lrh/lASS6od+rEbL3O7wxfHMU9EU2NPZlriZP6Q5zl0BRJQVYZTg1FdDyglqvpxjae1jIRcm7OO70h15CqHWRfASkkKjgxE0O6NYUWtE+GM8NZpXxxrGvLvEZZ5JkUzLdcA4I1jg3jnpA/BhAhH9v4fsYO+WBreSBoWI5/ZLxWH+8KwmgQMhFKodVsQyvy9wHM4f7Gm6n2oNwxVZUiI2nOUxKPG4flDA3oKyscvbCbRqEnw1ZtX462TPrzfGdQ/++bzbXjmvotHCUwQBEEQ00dHRwc8Hg+uu+46/TOz2YzLL78cO3fuHNOxfeyxx/D4448XtY22Ni0LR1EBXzSN1Q0uVDlMUFWWN2jKdSbSsqIPNrNOQblNq9VcUefMqzU95omg3RvHxoVluhoroA2a2ofiqHaaR6WcyZkU3SqHWY9g1bq0gbvFyENWVRzqDcEfE3HjunqYDbzuUKpM6w8ZT2u1dSMHlVUOMxxmA9Y0upEQZQxmIg+VdiNSFTZUOk1Q1eHoS6cvgR0nh1BpN8FsFLBtUX4PxoWVNiyqtKE3mMBxT3SUiFAusbSMwYhWd7q4yq7XGAJa6mw2cmM1lePtUz6szRlojow2ZiOJR/ojeo2igecRSWmOarnNiHhazkRnVQgcj+3HveA5DvVuK3hOq/VUVK0GMJTU0pKzg9Xc4zZSRKnSbtLbzqRlrcZzWY0DQ7EUHGYDOobiSIoKfHERLqsRoqKJCOXWCxt4HnVuC1Y3uLG/O6hFJnOuMafFAH9cRFKSYTMZYDMLsGccxJHRP4Hn4DAbASR10aJ1TW4MRlIYiqbx1kkfyjKTLbkOWyytXSe9gQT6gkksq3HoEwiiokLNFNFq4mSa42E2CmCMocufxOIqGzr9cbRUOzESu9EAFQwWgwCbUYDAA13+OBxmzSlkTBNmOuGJYHmm9+/+7hD2dAVgEDg0V9pxzBOFURBQYTPCZjLkOSz7e4I40BMCz3N466TWemZVvUtL6c1BZQyKynDaG4fbboQvKuKPbYNISwp8mWiqycDj1o2NecdfVFS098V0B3FBuQ3+WBpVTjMcJgPCSW3SwhdLg+M0pV1gdI2w02yAL5ZGKCEhmh52qrsDCUSSMgIJLd2VMYZYSsFgNJmXTj1WRNZk4MFzHIaiadS6RJwajOGNE16YBB7ldhMkRYWiMJz2xcZsM+MwG3DD2nr8ek8PTg7GsCynFIMxYFmNE8tyMsGNAo+l1XYkRM1JrLCb8u6NUFLCMwf64IumUeEoXAaRpVC/7+yaFlXaUGk34aQ3lqd2nSse9VrbIG7b2Jh3PSdFBS6LUX9WpyRNaTyWltHpi6POacHh/jA84RRCSQkd/rj+rI6N6Knb7U/grZM+DEbSkDIidtetrkUoKcEbTSEtqfo9NbIshTHoE1DdgYReK3+gOwQxMynEMn9nFHi4rEaoKoMvlsaeTu36L7OZSDxqLGRFxYutWv+1pnIrvn7rmsK96IiCVDrM+KePrsdf/nwPhMyL8HBfGL/d14vbty4otXkEQRBnLR6PBwBQW5vfc722thZdXV1j/t3AwAD27ds3qW2ZDTxqXBbE0wp8sSjWNLjyIiWKyrC+yQ1ZYVhYYdc1K7JpmGsby7B5YRmO9EdGRXu6/HEc7AnhoetaYDFqQ5DBSBpH+rVa3JF9b80GHuU2kx4JiaW0diSXtVSjxmXJON3D2z5/8XAGkVHg4LIYEE/LsJkzojA5BpkMPJor7fBG0+DAIPBArcuMpnIbkpIKDgz+eBq7OwKwmwUkJRWKytAfSuYJTWWpd1tx0dIqdAc05d1XjniwusGFpvLRg+lDPSEc7guh3GaC3ZTvQOY6BD2BBHiew7rGYcc2G7nidecQo9qI8LyW0nnSG0VzhQ2bm8vBmBYhLLeZAE77+4SoDXQtRiHTAoTDycEY0pKKAz0hbGkuzztmTeU2nByMIZIZjGcz3nhwUFTt+AyGtcGuSRBgMWnRzawD2uFLwJRJaczaH01JmmOfidDwXL7TyeekUQocB4fZAFFhqHVZMBRN5020LKl2gOc0O5OZiLyB57B5YTm6/Ans7w5i+zEvLCYBV68cvpda+8JISoqe9lpfZtEdWx6a+NHyWgcWlNvgi6X1iKAnkkIgLsIk8PDHRKhqBB9Avb7egXASvrg2gSFmUtyP9Ecg8DwEnsOmBeXo9sexs92P3R1+XL26Di01TtRkJm8qM7XhFXYTGsusMBl4VNiMeWPXUEJCPC2D5zj0BpNQVQazYXSUS1WB3mACvngakbSUqRGNotJuQlcggaZyK65ZVQO7yYC0NBx5Pj0UQ08wiTZPBIur7NjSXI6DvSEYBR4VDjNkpk18HfdopQBZ55Ex7eLMbWNlMfKocVrQWG7VJ2+GommA0yasTAKP7kACVQ4zhqKi3jZIUVV0+rTWWyN1cXheq9v2hNMwG7R6bW80DYfZALdN60k8EEkhkpLRMRQb1UsYALyRFERFRaXDjDKbESe9MWzNTFwVSn/2RlM4NqAJpf3pedozK7d2dmm1Q88qYGz4ejbwWous5Tnq0dlsgdxMg+w9F4iLONIfQUpW9NprfyyN9077kZZVWAyCbp/KtPssISl497QfN69v0Lfx8hHt/RFNSXj3dAAGnkOtS+vXK2Xr0RlwwbIKLKtxoH0oBllhWFHnRJsnAp7j9OtJVrSWW0uq7NhlMsBp4WDNPMuHoikMxdL6xKXNJGiTimxY4CqSlOC0GCHwQLXDjIFQCrGUdv12+uJ4+6QP7UNxtNQ4IPA8ZGWsKY3CnFOO7XsdAUQyMxFXrawhp3YKXL2qFvdevgSPvXkayYw4xbdfaMNN6+vzVNoIgiCI6Wfke2tkqtlI6uvrsXnz5qLW3dbWhmQyCY4DFpRbMRRLw8APp8n2BBKwmgRNiVfgYRQ05zCcyLbt0AZ2FgOPQxnRKH98uP6q0m7GUCyd6UWbxLIabXCXLlDTlaUnmERrv+YARrwiwkkZzZU27DrtRyAhYW9XELGUnIkCcoiLmhNrNgiodJhx8bIqBOMi/njMC8YYRlbiVdhN+M3eHjjMxkwkmOFIfxi7OwJoKrdiw4JyeKMp2EUDnBYjVMaQlBTYzfmRZUVlMAocjg9G4TAboKracod7wwUd2/09IfQGk0iJWu1apcOkiwvl+iPZ+jWH2YAalxmDkRSODkQQS8vYkmmNkjtwTskqbGbNIW7JHF+DwKOhzIp32/3oDyexuMqBWpcZfaEkajOK07LMEIinkRS1WrhUToTk9FAcKUnRz1duhlYkKWF1vQtlVhOSsoJ1jW54oymYjTz8cc254DjNOT3aH4HTYtSynFUGCJpybVO5FcZMxHcwkoKhzJp3nrIDaklhaKqyocFtHU5tHRFBZipDqyeCbn8CDeVWRDM1hM2Vdqyoc+K9Dj98cRGIj26RBGgT9g6zIV8gjENGkdkAp0WLOmZ7DZ8e0qLVJsPoGm4AODYQhSirmiAWGPpCSdS4zBiKprGy3oU6twUpSYXLYoBB4HHcE8WJwShuWd+gn9+BcBJpScGCcgvePuXHYCStO77Zc5CSFFhNBgAMrf1h8DyHCrs2IdTh06LmdS4LoikZHDjdWUjLDN5oGnaTgLgI+GMiQkkxL/KWreNkTLtf3FYjIkkJLqtxeHIlZ8efOdCHpdUOLK6yZ1JKteMcTkpoqXWgO5BAe47okqYWPHyu42lFU9IFg8MswBvVek4nJRXvnvaPcmwZY6hxmBFJSYiLCk4MRtFYbtUF4WRVhZzWDMx1anNtPuaJIpgQIckMfcHhmuGFFTZ4I2kc6BnUbVxa7YCsaPd3ZETfXABortR64q5vKkOHL45wQgSD5tR7Iykc7Y9oE0TeGDYvLNO3lZs+n7Xt/c4AZEWFSeCRyNyTh/vC8EbTMPI8jnmisJuGM1TaBqIQFRVrGlwFe/4ORdOIpiQ4zEa0DYQRTSlwWQ1IyyoayqyQFQAc8NzBftS5LFhe68D1a+rQkelfHElKekZMnduKxsw9VmYzwmkxYOdpP04PxbG2wQWzUdDbAHEc9LZxPK9ly9jNmso3g+Yoe8JJhJMigplJTDUzgVrvtsJtKb6k5ZzyRJ492K///PT+Pty6oUGfkSGK5/PXrYDNaMDFyyrxzeeP4kBPGP/2xil84fqVpTaNIAjirKSuTmvN4PF4UF8/HBHyer2jori53HvvvUXX327ZsgX79u0DY5rqp8BrfTZNBh6xlIwXDg+gymHCR7YswE3r6ofr1XL9agYMRjUhFIdJU8yNpCS4LEac8sZgMwmIp2W9BQeAPDEdQIue7DrtR1O5Dbs7AwjEJXT7k2DQ+kmGkxIO9oQgKQzdgQRklcFu0tJC93YFsbbBjaYKq+6c5Dob2QGjrKjwxUTs7w7CFxOREBU0lFmQlhl8MREqNCdx5A4KPI+NC8pRXzbsWAxGUnj3tB8Oi9YT0sBzWFbjwLZFFWgsK5z6WGk3od5lQULSIhX7u0MIJiS01DjzIkSKqjlFCmO6OrDudDDNtGzf4eEPNbK1rG+dHILZICAtK1hV78LqOif6wik9GmYQeHQF4pBVhrQy3EO3sdwKlTGc8mqD/mU1TjDGYMmke29aUIZfvNuFcFJCldOMhRU2XLe6Fm2eaF4vYbvJAB4cdrX7sKDchvoyKzr9ca0GEVkBrJy+pwY+76SFMgNdk8DBk6nxFWUVFqOAaErKay9y2hfHe6cD8Me11FpRUdETSKDcZoLNJOj10WVWY57wTpZwUotkpmUFFpnHYDiFlhoHGJ8vDMYyOZbZmt9kpuZRVRmO9kf0NkECzyGUkBBOSjAbeDSV2VBhN+PWjQ2od2up1P54GpGUjHKbCQaeG+Uc9waTYIzh9FAcSUnJpEYP136DA9IKg9vAg+M4JERFP3/hpKSXCLR7Y6iwm7Qa65Qm7rSyzoGV9S6kJRW7O/14/ZgXS6sd6AoMd72QFYaUKENRNeGqPZ0BdPoTqHdb0BtMIhAXsareiQqbSXd4IykJKmOQ1GFbVcbAGINJ0OzMnu9alwXGTMRbVBisJkHrp2oxwJi5h11WIyxGQc/I0KLmDDVOC1bVudCeEakrt5kwFE2hxmnBkmoHuvxxDEbSiKW0fti5te+5mQiVDk3F2xNJwh8XdWeT5zgc7A3pkeh4WtZSpTPp/xV2E/Z2BTIp/cPXSCghIpKUYDPyiPJatNMfE5GSGSSFYcfJIZzOiLktrLDnOdlyppfrggob+oMp7dyaDPDFRH0f3VYDHBZjprZYiyB7wkkYBQ6d/iRqncNpy9l7H9D61tY4LVprL5sBB3rC4DgOBp5HTyABWVFxcjCKQFxEMC4iM/+kOdcGHlWZ9apM0wdo98Z1R/rKFTX4712d2n2UklFjFDAYScFsEHJaJmmK6Rctq0SPPwGVaVHdaEpGhd0EWWXYtKAM/SEtDZ2xrFDgqFt1TM4Zx1ZWVDx/SEtDthg4RFJj97Mixsco8HjwmhYAwPJaJw70hPEfb7bjjm0LsLBi4hYHBEEQxORYvHgx6urq8Oqrr2LTpk0AAFEU8eabb+K73/3u9G6My6a5crow1ClvTItoZKISzx/W3qdbmsuxoakMSUlBKCHhUE8IB3uCSEoqmMogqyp2nvLhhrX1aCizoN5thcXIw2YeHn6M1GjYddqPaErCvq4ArEZem9mHFk0rt5vAVAaTgUcwIcJu1lKNq50WTUhJVrG3K4CDPRxMBh57O4OwmQQoGbs7/XG91gvQaiurHSbE0ppQkZIzwtTqJ+PI9bJODkbRUmPPE53MqkN3DMUQSWj1ak6zVnu4rEaz/b3TfiQkBRcvrYLJwEOUVSiMoanMhhqXBSe9MTAViItKXhQyEJcydXEJJEUFTeU23blSobW2YMhvB5TdhWzEpj+URJnNBKOBh9tqRFcgCZ7TIqDZRCtRUcFzWkphNsISjIuQFZYnuHN8MIrBaBobm8oQSoo47YvBaTGC57QovpIZiGbVnCNJCf5M6m40LeNgbxhS5jtfLK1lHEBzrk0GHo1lVlQ7zbAaBSQkBQI/LPgTTmo9btOyCnum122Z1YjcTMVDvVr7El9M1KKsJgM8kRR+trMTK+ucmb6x2mRDoZZIZoFHvVtztHpDSSQkBSe9MSwot6InkND7zSqM4ZrVNej0xxFMiOjI1MwyaBHWJdX2TB2tAG80DYtRc6otRq0zsChrTqI/noaB5zX1cR4wG3msrHOhudKG9zsDcJgN6PInkJYVLK914nBfGG6rUXfsAeDaVbV4ryMApqrwhLXa4qSo6H1HszpgcVHJESAzgIcWCT3UE0JKUtAxFIekMhzpj+j11ZFMHeWpwRjiotbL1mHWVGuzqdUAEE1KCGREgJor7VhR64CUqc2Pp2Q4rUYwBvSGUqi0m+CLpRFJSmCZY5EUZXjCKRgEDiaBx8IKG9Y3uSFlTm40JSOYEJGQtEmOPZn2XrduaIDLakCZ1YhTg5pz2xNMIJqSIcoqrBkHOZqSEUnJ2NMZxCUtmkARg3b/+6KaunOnPw5RVmESOH0io8xmBPyaiF04ISGSklCeiepfu6oGO08H0NoXxopaJ25cp004dvrjaO0PA0yrD1dUBg6cfl+vrHfi9FA8c01r68xewkur7eCQL2LGZ86hlqovoyuQgNkgYE9nEGaDFsl99cggOnxxhJIS0rKKzkBCzwDJfbw6LQZU2E0wG7Qexk6zAeVWIySVocOfAs9xum1aGjWDKDO4rUa0DURhMvBoKrfiQHcIO054oagqZEVF20AE7UOa6JQ/JqLdGwVj2iRhg9uKbEI3YwyiwtDhi6G1L4JKhwk8rymnb1xQBqvJgDqXBc8fHtBr5PtCSf06KIZzxrF993RAd2QlVTu5Fy2tKrFV8587ti3Ab/f2QlGB2370DnZ96eoJlSAJgiCI0cRiMZw6dUr/vaOjAwcOHEBFRQUWLlyIz372s/j2t7+NlpYWtLS04Nvf/jZsNhs+9rGPTasdssIwFEtjVZ0LVpOgqSNbDBAVFU6LASlJQULU1DETooKmcoPuYEbSWtsap9mApnIr3FZTXg3kicEoqhwmeMJaKrKm5Ds6cnYiM0jN1gs2llmRFFX4o2ksqLCiymFGpd2EgN2EcpsRA+EkGCsDBw5mI4+dp3zoD6cg8Fpqr1bnpbVeiadltGRq3Aw8D7fNBItRQV2ZBX3BJIw8hwq7EaGEpkSbjfyqTEuXe3J3L66MpNGYqYkLJURsXliOWNoOxji0++LwxdMIJ0VEUhKSaRlvnRxChd2EpVUOLKy0ISlpA3mB5+CKpWEUODBoyqOyzBBLSQinZJgzzkkkpfVt9cdE2MyakxSIpeG2GXWBFkCLyDBoA9Fskwy31YhwUkJzpvZRUlVwALKxwd5gEk6LISPAk0JKklHvtuDyFTW4amUNXj/m1c+L1m9Xc1gO94axvFYbpDeVW9FUbsV/7+xEfZkVK+uckGQVJ70xmAQePM8hLSl5tckGgUNSVDAU02pQW2oc6Akm0FRhQ5XTjFhaht0koG0gijLrcKqnJ5zCVStqICoqQgkRg9E0LAYeDNBTQ40Cj6SowJap/avItBrpCST11H1RktE2EMHCCi0yHUlKMBsFWI0CJFnV03U1kTKGk4MxuCwm1LrNUFXt2hkIJ2EQeCTSspZ2nTlGP9/ZiVNDMYiyAofZCJtJQIPbAo7TapF/u68XtU4LVtY7UeEwISUpCMRF8ByHlXXA7s6g5uhlvJJYSsHOU9rkiM0k5CtTh5IwCxwCaRWRlIy0pKDCbtL7Pi+tdkCFFimVZO16klUVSVGF26YilpYRSUpISAriaa3VjsNiQDrj1DMG9GdsqbCb0FhuhcXAo9plhstiRPtQDCaDVkspcBzW1rvw8tFBCDyHoUgaCUmBM9M/N5yQ4IulUW41gueHW0dFkpI2mZKQYDMJEBVNbMhqFBCIp9ETSMBlNSEpqlBVhgq7SXfYshH7pKTAF0sjKaqQlTRiaVm7rzJRwaSkQM7ppcWYNnnzzikf4qKMWqcF/aEkQklJzyg50BNCQpR1Eau2gShUBpy3qAJOqwHvdwYwEE5pE26Z9cZSMnqDCbT2R1BpN8FhMWDLwnK4rEaYJQVg2jVl5DksqrJjKJpGMK6pK3vCSSyosGF9UxlkWUWd26IryzeVW/Hq0UHIiqo9JxRVn/Q5PhhFMC4O1+ez4VZhyczxP+WNAmAIJUTUZCKvRgOP44NRfXKIMQZZYbpTqTLgxdYBKBmnOiFq2gVmA49oWsse8MdFLKiw4sRgFAsrbDAbeZgMAroDCfAch1BSy4hBznMq2x7LHxPBAVhcZUe53ZSZFFMRT0s47hERTUloKLPmK6lPwDnj2P5mbw8ALZVFVBiuWVU7SlmQmDwpaXjGLpiQcNeP38WvPnVRwQbPBEEQxNjs2bMHV155pf77Qw89BAC4++678bOf/Qx/+7d/i2QyiU9/+tMIBoM4//zz8corr8DpHK3EeiYIvKaWm5IVnByMYUWdE1VOs56G5gmnYBR4SIqKBWVWBBPa4KQvlMTpIS01rb7MCoOgRaeODUTRUhOBLVML5ouJaO2PoCeQhD+mDXzdViNiaRlvn/QhLSlwmA2IpWVYjALiooz2oTiiKQmSogkMOSxaJKvLF0e1y6w5zxywrsmNE56IXo9mEngkVRXnLa5EnduMYEJCMC6i0m7G1kXleOHQADr9DMGEBGUojnBSRG8wCYdJa58hqwxVDhOSkoouv9ZXc2EFj1haxnFPFN2BBBZW2BBNyTgxGEWXPw6zoCm0HuoNI55WsLTagUhKizZmI8IpWRNt8cVEVNnNkBRN/TkpypBUFUOZtMNsuqQkaymdoqLCrPDoT2jnoKHMCmtGnRfQUiezbVziolZf6rAY0FLrhC+WxitHPFhS7cC6JheOD8SwMBN9q3dZ4bYZMRRNoz+UQmVGyTVXdVhVmd5j92BvCAd7w7CbBCREzSGKJCV0BRIIJiUsqbbnpHJrTmmty5qXZssBkBlDNCVjd0cAHb643t7JYuBhFExa6qqBR0pWUOUwISWpWtSTg14nPBTVWgLJihYFr3ZY0FRuBccBDW4rYh4ZCytsqHNb0OGLYyCU1NS3OQ4nBqPoC2k9NP1xEWAM5TYjhmKaw69FUnlU2k0ot5tQ6TDi5vUN4DmgbSCSSVsdbvWkqJqDHIin4QmnADA0V9jBcYA3kobAy7BlotGBuIgl1XZ4wilEUzJSsoq0rAlw1Ti04XmVw5xRYuZR5dRqZg2ZusUsvcEEKuxmWIwCQkkJSUlFPC1jKJbW0lYzjpHZoNV4yioDU7PnVrufBqMpcACqM6rEAHTBtqFMnbesMrTUOrBpYTlae0MwGwWU20xorrQjJckYiqbR4Y8jmtYE3mQlv82Nlr4qIJLSJnAUBtQ4zZpKckqCpKgw8hzsJgEGnsNpXxzNmRY6KZnBoap4ryOA69bUYSCcRIXNBFFWsePEELr8Cd2RMxl4mA3apInFyGdEq7TJsfx2PwxxUUYkJWEgnILLIkHgOdiNBt1pzka/s6ysc2JVvRPeWAo/2+VBJClhcZUdq+td+nGTVRUGgQfPadHooYw6tdtiQHdC0sSxnGaU2UxYU+/G9qgXwYSoTWxAq13t9MeRkjUl41BCAgctHTuYENE+FMdAOIlgXMTCyhz1ZgyXTzAArx/z6vvbF0ygN5hElz8BbySFGtdwSnH2HGVr/evdFvRlJkUKCWdlnedqpxknPBHYTQIEnseudh/SUrl+vBSVgRc4/VlsNgr65F13IIFqhxnhlDaR4Yul0R1IgDFg+3EfWvuj/5+9/w6z7LzqfPHPznuffOpUruquzklqpZasYDnbAhmDGTMGDAZ74IKZSzJmCBeGi2d+JgwMzDPgIV5fBl9gzAA2GJtkGyc5Wzm0pJY6VleuOjns/Ptj7bO7St2SWrbkVkv78zz9WD51wnve85593vWutb5ftlUdHlho8cBC67wxPBUvisA2CCP++cFlQBa8F4Z80xWTl3hULwxeumeU9/ybw/zCh+4H4M7TDX72r+/lv7756kycKyMjI+MZ8MpXvnJL39cTURSFd7/73bz73e9+TscRRfFWQadYbht6uvpBlIhHqRxdbvPJh1cYyZmp8rC16dB4EIR0PVHnvX7HCLqmJD174h+73vXSwGyh0adgibWLbWg4pmwqH1sdpGq5w4AaRA12pe3S9QOqjknOlGyyH8bsGS+k9iXLSa+lG0S0BwFhHPPVUxtoqkLb9Znf6FFyDOmDa3v4YUy972OoClfPirpzEIrAT8c9Vyq8b6JIq+/T7Pnc2dnAD2WO3DCi3vWJkw31l06sA6L+HMUx7YFPHEFETM8NmK/38cMoKcuUYHo6ERVq9iXAnW/0cQwNQ1Npu4EoBxOTS5RfvTBCVxX8UEp87zpdZ7zYZ6klCsVTZYcTa13J6AURtx2aou+dlY83hq7rY2gKfT/A1FQKls5Gx+NTj67iBiGPLXep5sy0NL1g6SIspipcN1fhtQcnONvo0/MCojjmlt012oOAe880WOyJSFXfD2Ud5cXPtmDpSa+qCKCtJAHqfL2XiAgFDHwJ6Bcbfdwg4kBSRVDvejy81GY5CRpEGVuCNEPzqebFpkqy2SIatnu8wIMLTQZBRNz3yZk69a6HY0h/pKWrRFGMH0kPpR/G6XoLI1GI3TNeTIOFr57aoNEbiijJbYau8sCCiPuMFS3mRnLExKy0BrTdAMfQKNk6S2vyfh5f6XK2Ib2Rmqqhawr3nGkwdmiCI3NVoihmqSVBZ9kx0VSVOI5x/Yh80kb55ZMbNHvSaxwkCtQn17qpPczpjR5dN2BHLc/J9R45Q2N1EKQl4Zah4AcyVyttl1Y/YLJ8LuMXx7H0vFo6JdtgqdHniyc2uGqmzEii2qygpAdXf3XnGbwgZqpsbbF16nohfhjR6En/rdxf7qMkpfHDMm1dlZLwimMwkrfwA1kjC40+dxxbpeTo3He2SdcL8MKIkbxJ1w3TgD9n6ExVbB5f6bLadun74XmBbasfsNjsYycVGa1BADFYpppmFG/ZXcPSNR5dbvOR+xboDAI+et8CmqZKn7YXpu/7vvkmDy20GC1YSSmxkviBRzy00MKPYso5+Yz6Xkiz7/GF42uAHCJ0ktfc6Hr0/ZAzdWmZGAqT3T/foJzYcpmaulXb4IkkfeipZdVm25/kOz9WtFjrSCl8ztQoOzp+GHP/QnOLYNgbr5nh1Ho3GWNAJbkGlB2DUnK4ALJeHlpocbbRp5wToT03CLF0jcmSTSVn8Ohym9ZgQNHWeeM1M5xY6/DQYovF5oAvPr7OUmvA8TWp1gmjiJ2jeUxN5QH74sPVF0Vg+/nH19IPqeOGmLrKK/aNXeJRvXD4nhu38/hKm/d97iQAf3PXWXaNFfjRV+25tAPLyMjIyHjGuEHEQmPA9hEHTVWJiLl3vsHpjR57xwtpj+JaksnpegEKMJIvcHimzGKjz0rLZUPzqOQMNFWEY+4+VcdQVUxN4TUHxZngM4+spuXL40WLnKmz3Bqk9kLHltts9HxURYKXsYII1AwFhUBsTFRVYeCF3DffkDJbRQ6y1zrulk0aSGlyGEastAc8vtrBj2IpE9SlpDSIYnp+iJ/YkziGSt+XHtJqTqWaMyCWsuo4hsdWO+wey3Om3mPgy0bONjRGSxZ7xvPce6aejjWOYwZ+xEbPS4VRYmI6yRz4ofSsWYbGRs/DNjWCMObUupT1DfvmRvIm126vkjclAL1/vsmZuggrhWFEZyABXqMnirnHErVmIN2YnlrvUUwUnB9b6bK9JgGcZWqstl0+c2yVas6QjKwnGdMbEvGeq2YrrLRd7p9vML/R56+jeSbLNiN5k2rOpJYIwewYzbPU1LAMNc3ktPshJNY0YSTBuaUr9HzJ3h5b7nBirUez53FwqsTAC0Xt2dBYaklJbMPWqff8LeXNVtJDPFGykvcd0HVD5ut9vnh8g/2JRyzAZNlmtS0lpF84vs4tu2vcO9/k+FqXZs/nJTtGCMKWlDQngk1n631MTeWq2TKKIirJeUunM/CZGrchjrESobW1jgux9Eyutj1ObfTJGSq2rqEoCttreXKmxkp7QKPr0XZDipZGoyeqs/fPN5mpOoSJUNFSS7K/1bxFs+cx8COum6uQM3XCpHWg2Q+YKluYmioBTCS1n6ttOVD54vF1yo6BsengaabqsGu0QN+LeGylQ5j0xbYGfpqtj+KYqbKU4va8gM89tsZq2+XhpRYrbSn5PTBZZNtIjkbX49GlNuMlm0ZP3WRzo0gvrS978EbPSwPCWt5kvGix1HKJiTFUlZiYoi297xtd6X1XY2j0A754fJ3vuG4bqtLm1EaPb7lykrP1PrqmEMURcRwzVjRTVWZdUzAjWRsHJs9Vt3zm0RV0TWWpOUjKdXUaPR9/U+/1QmPA/skij692pCxcSbKiQcR4wUqz0wBeIrymJNfGKI4lC62p1Hu+HKpFIsTlh5J9/uLxDW7dM7olRm30fHaPFRjJWyw2+5QdOaS550yD2ZEch6ZKdF0p6e66Afnke/3EM9HN2dahjdFG18MNQnaN5Yli6QcWf+OI+XqfSs5gpnrOO3ipOcDURH1ZrNZiNroeY4my90KjTxRLmbQCNPseMdITLevbZaZic+98g7ylp4dZMxWHo0tNvnqyzkZXsrbHE6stOTAQ322Z1yitQrkYXhSB7f/8vHj8VXIGnUHAqw+Mp6cYGc8O/9frD3LPfJM7T8kP+G/+8yPEccyPvXrvJR5ZRkZGRsbXwkbXZyQvm4zHE0GRx1a67J/scc+ZBifWurxq/xh7xwucrfdBEeGc+XqfCNgzlscPI6bLNo8stSnYOrWCyUTJxtI1So6BpsmWzg8jKjkzKbmFjY6LqihMFC0GQUTPC9N+w9YgYNdYno0k2zvs9R1uMB9fleAkiCI0RfprH15sMV/Xma3mUBXImToLjT5rbY+xxGP02EobXVXZbHP58aMr1PIWXhBiJt6gXhhTzunM1/vM18+px5qaxsAXhVs/iPjcY+vMb4iPab3rM1OxuedMg0eX2pLJiWG8ZJE3dcqOzkp7wKPLbfq+iPxoqsJYwdpS/RTF0HUD2gOfG3fWaA583v/Fk8TE1HseZcdA11SumC5xIsmymJpKK9lU7xzNU7INPnF0maOLIt5SMKV/eqXtyedTNGn0fLwgpOerRLFkepZbgzTY6XkiujNWMPEjl0bPS0rSFVQFztYHnGn0aPQ8em5A3wNDV+gOQgZBkHhuhvzVV88wXrTRVAVNkYBTU5U0E/vYSocwjsXuKemBDaNzZkBOIiIFiboy0kcdpgGVWMcstwZ87KEl2n2fuZoIcG30fBZbAwae9Iy3BzJXY0WLkbzJWNGWktkw4uGlNn0vZNuIw/u/cIr9E0Vee2iCzz22xnIUESHWVCgKXS/EDSTA6gwCjq91KFgacSQlomEkAfB8XYSevDDC0CTw0zWF6bL0/C42+xiqSi85OEJR0s+g5Bj03BBbl0ODKIrphgFRbGHpIkalcE5BO04yeMfXuiK+ZeuJQJTCYrOPgpTdSum/tCBoqhykDJL3oihw75kma20P1w9pD86pmy81B3iB9Pbapsa2ao6BH5I3RTDLT5Schwx7ukEyfW1Xym2DRBHt5LpkK+W7JFl9N4gxNYXJss3f3nOGLx6vM1W22T9ZZKk1SBSBJdvf86PUJzeKpZR/uTVgomSlmWzH1NIqiiCMWGt7dL0AW1eJQvmwcqZUXHhBxL7JIl89WZcMM1ByJISq5kzuPFXnuu1VfujlO/nIfYtoqoKtq+lB1ETJ4rHVNn0/opo3ObEm142cpTHfOGfzM8QPI0qJvy3JmhkEEattl3AiJowky+uFMTvTwFbuXXZ0cpa+JdAdekQ3eh5F2yBn6ul6V5PvTSTTzEprkFhHwf/+6hkR6TN1+n6IlvRZr7Vdjq205dAylL5cx9SYLNvS995ypTojilnv+nSSSpkj2yuoCiy1Bjy2In7Yjq6jmFIqbmpKovLsEgEbXZdm75mJ/b4oAtuhX9a/f8UuvufGudTLNuPZQ9dU/t+338ArfuOTNPpyuv5f/+VRvCDip163LytLzsjIyLhMMDUJTvp+wOmNAEPdFOkpW+15Bn5E2ZENWKvvi02QpmCpCjfvHkVRoO+FGKqC50ccX+4wX+9zYq3DrXvG8MOI0+s93CBi+0iO2arDRtfl2GoXBRJvRVEqreTMxAtRVEa3j+Q4HnXPZUw29XQ2Bz4rrQEl22Dgh6L4m/b4SkA2krdwko23pWsUTF1EsXSVKdugM/BFTCUKqfd84lhEUCZ2VJko2Tyy1OFMXcruDk2X0DWVBxdaWLqCpolY0sm1LsutAYqiUHF0/u6eBSqOQT2xgDm90eP2K6do9DzcRCW3mpMMzVrbY6Prs3ssh6Fp9JLNXTfJfD6y3ML1I5aaA166d5SFhvRP6prK3okCK22XgqUxXrTTgGponXHnyQ0sXUqO+8mhwcALpTTXlMcstgby2SWBsaVrSeYQvnJig/bAp94TO5nuQDJH9Z6HqSv87b1nKVo6p9a7dF3JhkVhzLaqw0pHSo7dQKXvS+BUcgwcU5eydCBnaIwWLWYqDu2BzwMLLbxQAqzWIGC2KuqxqqJIbywSxHW8gCgi1VAJY8kIumHEesfl5FqPmapDztRo9nweXZH+veW2y2rbZSJRZF5o9HnwrCg4S79ojGNI7+cjyx1OrHUwdIVT6z26fsh0OZIAbeDjGGJX5AYx//rIalqJECYZVF2T740fREnAB5Mli6WmZHktQ+OxlTa2oaEoMF60CcI48dD1sAw1XdNRHKOpKoau0usHtAdyaGCbGgvNAVMVh11jeRpdn9MbfdoD6cEdyUlPe9cNID5nxzKs1G31fRxTo5eUx55c76EgNkHVnCWlxJbOzrE8yy2XgRdyeqPPwckiu0cLnNroSv940aLZl2oEQ1MxNZW261NxTIrOphAklr7qTtKiIK/Z5dBUGVWR//ZDaYV4fLlDrIh3sBeEDJLAv+3K+rUNyRQvt1yCUBSXu36A2oeeF1JL36u8UhzLHrZoy7xu9HxMXQKsu07XU0up8aJUJJxe75G3dCbKNpNtFxQwVfGwHvghrX7AIJCWCAn+dUqOKCkbWsR9Z1sUTBEoc/2IXaN57jvbpGRptFzxO+77IWEUMVNx6HkBC40B7YGPyjCgTRSPkSBYfJKHl2h5X3lLZ9dogeNrcjj0yFKbVt+nnDPxwkgEwTSVnuenvbm6prLadtk2IqKBax3Jyg78kJmq2B0tt8QCS1MVqjkRPjOSA0rH1OkkCtRO0oNtahLkr3dcPvf4OqMFK6mYkYqfsq0yUjDTvt5rtlVwDKlecIOIta57nl/1U/GCV0/qJA30hqbw3TfMUbQNZirO0z8w4xlTdgz+6kduZudoPvG+Uvidf32MX/7wg1ISk5GRkZHxvEdLrFeGukEnN7riu1q2mamI+uV02WayZDFWlIxiFElgqSrgGBqjBYvT611yhoaqwFrX48GFJo+udDix1uWBsy0+cu8i9a6f9tzdN9/g4aW2lEuqElxbmkLB0tO+XSlnjDhdTywp4piZpExy889Mzw1kXEgw5xgqChJs9r2Q9iDk1EaPlbbL6Y0+J9e75CwNIxEL0lUJnBt9nxNr3cTfVHoEz2z0+fhDy5yp9+gMAjw/5KGFNksNyVpZukYUiQ3QcivZPPohqx2PKIppJAJAIH1+rb6PoansmyhiJsHxycTipdn3eWyly2jBZBi2l5N+s9W2lP35UUzBFFVqPQl2Hlnq4AYhtaQR88j2Ku2+z3KiFB0hYjSmpnK20afoGOST513veKx3PelfTnqKR/PSQz0cd9cLObHWpesF5JPbqzkDN4jY6Ho8ttLhs8fWWGoNJIDyQqp5ET+q93zWuz62oSZq10FSphwnKtiiQqwlnq4TJZswkmDMD6U3Mwgjum64pWfSCyI2uiIAVHEMpss2BUslVmC6YgNKmgkdyVtYhoobSCaw3k3mMpTM3meOrXK2OWCl7bLR9ZMDFcku1vImUQzHVjromoKuSnAdxzFnNvqpOvCQgqWxo5ZDU+TAZb4+EJ/Qvp9u2L0gTuxxZE3nk4zZRNHmyFyVvROFtLe81ZPA4dGVdtoHO518B5p9Dy+IcP2QKJYMX9cNqfekusFKhJXiWEq3w2Q9LjX7mJqSqv92vYBGUvXgBxFRFIkauh/R9YL0ECJn6IwWTE5v9FhsDjjbGBAlNi+aqjBRtlhuDYiBSiJkVXZMqnkjVRvf6Hpoqkre1skbGiXbYLpi0+gHLDT7icWTzI1jqLhhTD2xSVJVlfvnW/hhJOXfSIDb8wI2OrL2Kklf6lLT5cGFVnoANswCdl0Rvjpb79N25TMpWEnf9CYlXz+MqOZMto3k0DWFRxbbgPjE1ooWZ+t9ji23UZBqi3pP5sDUtdTSTETnWuRsHUNXcQMpAe4MgvTAilgOoc5s9KkVTBYbA+o9OZDY6Hl8/OgSx1c7KIji8dm6eO+6fkgciyL6MHsbxtKrbpsqrYEIdm10PT57bI1Wz5PrbDK2oqVTcXQGyZjWOx6LTbEACiLZ07tJ9Uzfi2j2JLs9VbapFSzCKKIz8FMFY1VVqOTESmi5NaDrhay0Byw2+iy1XUxdTT63QXro03UDTq/30qqV4XU9eAYxxAs+Y/sP9y3S80LKjs4vfuh+fuu7rk6/TBnPPnsnivz3776Gb/8fn0vVH9//hVOsdz1+681XZ1ZAGRkZGZcBmz0+w4hUNAhIT/vdQEp9H1pooSriH2kkQiRuENHzQx5f7RBEki3QVQk0Qfp4IySIMXTptwSx32j1A8o5g4mSzWprkAgjqfhBRDPJgLT7Ac2+z2rHI0yylDlTY260hJMomQ6zi8Pf/JKjM1m20TWVgi2qy0EU0eyLUm0u8fbc6Hs4ho4bREyWzimERpGoLK+2BxwF5mo5RvJGWiKaMzUsXVScwzhCUcTOZLrisNKWsZi6KpvdTfXO9Z5Ho+ez0OjTS5Rcpyt2KhzVGohgy45aTuyHDI1cYvlRtHRqeZMHFpq4QUTRViCMeXy1k2RUPXaPFej7ISc2eqjAifUeUShB5EbXY6wovXytXoCZZLuG8WI8PBgwNb5yss6p9S55y0jLtyU7FjNdcRgt2JRsHScJPBebUhJs6+IpPPBlTYA8f98LeXipxcCPaLsBRUtnsTVIPHYjrI5KFEXsnSiy3pXDAE2FgmlwbKWDppJmruQ5zwWTjqmhaQqNfkjO0NJy7NZArIxEBdlFRTKkpqZItlBRpJ/X1ECRtW+o0qOoa9Ij2/VE7OuuU/U0+FaS55Gsu1gymYYq/cFJ8BHEIhpk62oS/MoctPu+KPlqCutdlxNrHXaNFpgo25zZ6PH4Ske+E45BvSu2PMNDiEbXY6HRp97zsRLLI1VVmCzZTFdyHF1siYCbK6JgO0cLnG1I5hZEWKqaM6QEmJj5ep+RnFhF7RrL8/hqh3rfZzRvMFt16C53aPV98pbY8Kx13FTJGWC9M+AfH1ik78uhyonVDl03kMDW0TE16a89sdZl52heeviTxxpJP3+951HNG5iaBIc7RnKJ72qUBumWppIkCTm20qHsGIwXLeJYgrkwjum6ISttl7Jj0PfPiSctNkWIrZ1Ub5r6uay/ras4poYXhPhhyOMrXXRNwfUj7jxVp++HrLQGafnusKy81fdx/QDHdJLPySMMpYR++0iO0+sd6j0fTVHww5iHzrbwg4gwijhb73Fmo5eWz+ctKU/f6HmUbYOyY7DREzE7S1cTyygpR+76QdpjHsWiOPzVU3V2jubpDAJOr/d5eKnNalvsx/KmRnNYtaooqT6CnnzHG32xRVtKql0kyyyVHTNVh35iNzVZsXlsVXxtdU3BDUS469R6j5PrXXRVYaU9YCLxFyfRPDCSgzRVVXjdwXEeWmhT73kcX+2w0hI9hKVmn9YgYKbqsHM0n6yNi6/6fEEHtsutAf/9E8cAMfb+yP2L/J+v2sOh6dLTPDLj6+Gq2QrvePlufv/Tj6Mporz20fsWOTRVygSlMjIyMp7n+IGU77lBhK2r2KbOo8ttUXR1DLZVHQ5Nllho9jnT6OMl2ZK+F7JrNM8gMFlo9Fio99EVBdvUGAQhpqZStHRsXWUkb4r9ynqXgSd+pI6hcWqjm27a/CDCNjTWex5hdE6l2dRUIsQ2CKRXsuIYnNrosZqUua51XPwgQlHFbxSkB3Oj66XlikOG2Q1LVyHWUROhkiCMGC+KKFAQw2p7IGWLSTb50ZUOBVNjod6n4hiYuspkxebUWhdd08kZKpqm0k3m0jE0FKRv2AtjipaGF8ZUHYPVjtgMDTMT26oO+ydKLCcZz0eW27h+RBBFmJrK7vECThJILTQHTGNv6teUzWM/6YPsuU1OrvfYVnHo+RJYzbf6LLdd4jim6Oi4fkTXD7FMFduUnmVLk8znUmuQeoE2emLBFMbS89dryXOUHJNqLmLbSI5KzmB+I+khNDQqOQNHV1nregRhnHpoKoqSWgX5YUyrH1DJS7ap44a0Bl3WHZ2+HyX9nrIuGqGHpWu0kzLZsiOllaauUrA01rsemgJuGNHuD71Mc4nQT5yKO4ngmcFE2UkPDPpeQKvus3eiSD7JzneCUESiOi5fPLFOwZL+6rJjpL3L9Z6U7uZMeX0viMglWVd5LwGWLkJkfhhTyZkikuOH9AM57hkpmCw23eR9xcljA9Y6Ho8stVAUUfsdS+av74WcWO/R7IuIlpN8/rqqsNHz8YIOy60+XS/CSg4WRGRNghc/koMbPamKWG27LLcH9JOM7EbXo+uGjBdNrp6tyHs0xL+07Ya0V7qcWu8xnlRtlBJV9L4fsd7xkl55D0WBVs+n2fMYK9ryGbghZzb6yWcmntdnGyJ+FsWgqSrFpAd4vetxcLKYZPc8TE2hlDPp+VKGvNZ2aSYHP7ahMvBF4dmxdKbKNl03oGRpdDyxWPrKyXoaMPW8ED+UwClI+lhtQ/q2H13pJMrcYSpW5yR/i+KYyZLNsdU2zXWfybKNF8rjY2L8MCYCNEXKtzvJ2hvihWG6Hgcb/VShGiRrWbAMxgomn31khTP1HiN5I72OjRVMagVL/MbbA2YTsadmT17HCyUzupG0NwCMFkTQbbg2bUOqUzY6bmpNtN5x0VQFXVWp5MT7OmdqdFx57xtdL2mRcHmEVnJ46JIzNVp98fqt5jVOrHXTNTLwIrbXchRMPWlTlGOgWs5kpS0WW103oJo30yxt2TEZL9mihp2o0T8TXtCB7R9/5jhnE4n8vh8yXrQ4OPXs+v1lXJifet1e/vxLp2gN5KTu+26aw9JV/vnBpcxqKSMjI+N5TN8P06BBV2P8IKLe94kcsaJxDI1mv0HXC4ijmKJjiOJnGFGwdfEjhFQgaWctx/3zJlHi6TletGgkm/Gxgsk9p+t4YYwXBpSQnk9VhaWWlH2qKMRKjKYo4iWaN1nrehiagqUpuKH0Nq62Xek382VjN2y5FZ9FCWq9IKLeFUVWx9SoOiZ5U2et40qAEETiBdv3KVga987XIZZyvY2uLwqrWlKmrcTUOx4ocPfpBlfMlNjoenTcAFVVKJgWrSQbpyC9nj0vJIzB9UN0VaVgqdQKFodNnS88tpZ+Bo+vdvGDiJ2jOdwg4thyB0NT2ej65BPBpL3jBdkwB9I/qmtKosqsUs2ZBGFE3hQxoH7bZapssXM0T97SOZv0zeUtjfmNPoamkjM04hgOTRaZb/RpDiQ76IfnsuxhJH2BYSj+sqYm2UddVVhoiu+rpiqoqmSWagUDUFjvyQbWC+NEtEiscSxdFVsSQzJyfhgTR1FaVu6Hogpcy8tGWEH6ZoeZ37YbUt7UXWZoKhCy0vGSCgFww5jlZG2AKGa3+j6KolB0zC2KtG4g/bSirC2ly7qm0h5Iaa6oJMvzdF0fS1MJopCeHzJbdaS8NQYvisGTvmMpbdUSUaMYQ4vTIFgN5NVtQ03H0eh5hLGUb250vURISwHEhgqkD360YGJoClfOlFluDmj0PXRdI4rjNEMbJkGYkYjyrLbdtOQ1Z4gqcxST9pHauhxC6UlbQS1vMlfLMV1xaA9aBKE813BNxEjiKIgisRsKIwqmRpAzJAtoaHT9UEplg5Cxoi3Z4NE8Z+s9NnoReVPH1FVcTw44yo7KqfUuuqoyXhKVZ0VRsAwNy9BoDXyOLUvLgmObtNw+jb5UJzR7Hh1Xyv43kmsEKEnGWK5TbiBZctvUWG4NCKOIsaLFQlOqKsRayaCZHHD1/YiSIxnaTtI7SmIf9fnja7jBubmYLjs8ttIhZ0qPKgocX+0SbFJyKlkafmLrBVu9oofPs9jq86UTGzy42EpbQrpJ//RU2SIMY9queB83uh6jBYtyzsANI/r+gDg658M8ZCiwVdxUfZO35dCp74c0BwFhGOOFYeotvtAcoClS9XKm3ksFqZbbbpr59YOhlZoI2i02Byw1+0n/vAipSf+5qHaPFU38RJCt60oGeJgVVlQo2Dq2Id+X1baL629tOXg6XtCB7fCEZedonocWW3z3S7ZnIkbfIExd43/90E284b13sNyS0po//9IpTF3l//n+67n7dIN3vGJ3KvCQkZGRkfH8QN+0iRhmnYC0ZDCKY7wgJIoivCCmqoq3bdcLuOtUAy+MmC47uEFI1/U5vpaU8wUxp+tdgjDCSCw/jq108MJzm75U3DGCIAoIQuk9HGYscoZG0dYZL1oEUUze0nF7fhqEBKGov1q6RpBs4IcbeU1R6CkBXS9gsTVgZy2HoasEkWS5cqZO3xukFj+KopA3NcJINoUxIjQTRTEoUuo4CCJmKzaGriU9vBG2LmI8InoCbhDiBjGLrQF+IBvSICkl7nmStdQUqORNVhNBleH+5bHVbtpz6gZbhS/P1JNsXRhRUnWumCqy0HCTUk5RNjYsyca03TAJdGSzGCMBXi1vEURymFGydXpuSL3vc+VMmVpBAvONrozFDSLqPZ/llstSa4CWzHkUiW9qztI52+hh6Rrbqg55S2ej6yciT1K2qQLNnid+q1GEY+h0vZCibVCEVNwIIG9oIsS0ieFKGS9aInyUYOkqfS9g8xZvsyd0HMdpuawoK8d0XRG6zBny2IEfYRkqXhhyZqNHhGTgCpYotnphRK1gkTM1xosWjy616SYBtq3L48qOkfgBiziOEUgm2feHGVzpvy2YOgvNPu1BwEjeoGwbaWDVc0MeWepQcoy0KkFRSAMoIP3OKIrCVNlmuSl9mDlTk15rVU3FeaZKNoamSJCwSWCt74fomkLfC9P+7b4vBy/1vvS+XzVbIYojPv3oqhwaBREqULQkY543NSm97fl4gSgf502dnhdSzZmJn6t8ZxQUlpp9SraBF8ZYhoaWlOSHUYRj6cxUc/SDED+I8UI5ZFITj+OcqXFqXbKBKlLaWrB1SrZOaxDQ6Ae03HOVHZ4fQaxiGUr6XJYhdkyrmstcLYemSrm5H0aM5g26XoihqzT7fpoJNzRF1u3Ax1RV3CDk4FSJkbxBNWey1BJxI1VVuG++wUbXYyMJihebbtLHCiVbTwXP3CASZWVbT0uJB36YJoN8P+JfH16Rg5F4WHYs763nReQt+fxLtkFz4NNJStxX2wMsXRVlbi9komSx3nFZabssNQdExGnfva4qTI/mREMgue4WLS09fBt2S8SJKnrB0iHRUNjcAjAUWDM0UZQvWHp6MJXE9oyXrDTI1VQR61vvind2NSdeyEMbqpW2m1p29ZJr9zMRj3rBBrZ+GPGpR1YAsR9QFPjO62cv8aheXFwxU+YXX3+Q93z0KHc8ts6/PTLLS/fUeM9Hj/LwUpvttRxvvGbmUg8zIyMjI2MTpq4yXbZZaA7ww4i8pVG0NPRkp7ORZAg2uj6GrrLY6KeZpL4v5XVFW0fzFFqDgPm6ZAdzps7AlezvWttFUySTMlm2qXe9NADNJxsnP4qJtRgjKY/zg4jlgY+iKmnQomviK9t1w8SPMRbxHUtPMiKipKqpCvW+z7huMZo3sUwdFIX2QDwlgyhmodFLM9V5Q2N7LcfusQKPrbaphiY9L6CTqJaaoZoqiRqqiueHnFzvst5xmSjbtHo+bhAnfYASbUVRjGOqtPoBfiRetVEsHqSLjT6KClEUbTmAD6IYA9kA933JLG10PXpeQMm2IRFW6bgBXz6xwbaRHOsdF1tXQQFdU0Tox5SeYUeXoCOMJEizDI1q3qAcGUkwJ5/veNFK/DclMBlmxvOWTt6Sw4K8qRGGMaoqvZ0ihiMBeCMpWx0k6jsx0qfqB1EqYuMHEZYmfYEgZZvDM46h1+5a108DzmE5KYhQVNkxkoA/ZKbq8NiKZOvspO9P1mOEqSrsnyjy+FoXzQ9ZT0SGQMp5H2y10VRRk+0MAyMFwiRuHooN5UydKIroDsT6ZmjJpKuSTex5EZ2B2McUk6x0GMXoqpT6KoqCrqh0/ZCVjmRKi4ldThSTBp39RKRsPaksGMlLqXSjdy5g0lURgBJfZFn7CtB1RR03VM8FHl4YEsbSv6ooYCgKdlJS3E1UpGNIFJ215Hul0Oz53H+2Sdf1We96STYcNE1hz3iRsw3x9Z2t5mi7rfQAJAil9Hmt7eKF8v5nqg6WoXK2Lv2VnSSgP77aE9Gs5HtrJlZVGz0RbYtjCKIo8VuVwKviGGmfuhdGdJKgLEi8jofZ/EEg39VaITkwMhRsTZXrUFKmv30kz+m1Lottl7wpImhlx0jXpPR+GzT6Pu2BT8HSGclbFB2D//dzJ6WP1jEYyZuoqlxnOoOAfJKpBlkjQzXyZj9IFd6HlQuuL6XuA/+ceBQKabZUU5Uth3+nN8TSqD3w01aG4Vp2gxjNhCPbK2iqQqPnU08UsYff42bPww1jyrbOQiNOs7COrlLLW6iqT88VD2hTUwiSsupuUoGgKtLbnUvK6i1DxVBFiOzEWo92UvkC8h2fr/dStWQvjFPRspwhugi1grnFrabeFdEqXVUoWiKy9UzkZ1+wge2/PLjMWsdjsmSz1Bqwf6LIbDV3qYf1ouP/eNku7nhsjU89ssoH75rnrTdt573fcy1//qXTxMDZRp+pks0/PLDIK/aNpRf5jIyMjIxLR9HWGQtNlEQR09mcuY1jFhp9YmTT3/ZDyrb4HHpBjBtGnKn3mSha9L2QjhuQMzU0VbIOfmuQbtTypsZa26WSM9FVhZ4vm9FqXk7x+16AgiKqrEEovaBJ39swCDVUhdGCheuLfUotb2Lo0usFIg4TRdLruNZxOTBZFF9GL2S0YPLggli+bN49BbFszEQVNqbZ9zATwZowEtGivCECQ2tdl54fkUuyi46hEVoxXV+scoal1zGkAko5Q6OaKIYuNPo8stxJbJYUSo7BSN6g0fXTEj5NUdCTrI/0dHrkTB1N9VKrE5CxhbG8Tt8PCBOxGTURrWn0xbJotGhTMDWafY++L9mjYShU73loimTyvCRDZxsaKCGjeZOuJ96wG0nwaukqy20XS5ceaj+UntiJok2j57PaHsj4BiKApKkKYSiWJpvX1aa9e1pSDpIR6nTPBXRBouTbTUpX80nvssqw/1lJgnJ5jG3r5C2dAxNF7jvbZBBKT+vwvgVLQ1UUum6QZohreVMCxDBmMRFKmyhZ4pPb6DPwInRdgufyE4TVOm7ASN7kmtkKrYHHQkPEhmxTZRBsCsxzBrW8SZioxhqJEJWhyYFLyTEoJ5Y4lZxBq+9h6Uri5yrZOUWx+erJOoaubJm/oqXjBZEIbAURiiIHPIemiqx3vVQsKY6GXsCxlI76EhxqmkLLlWqAOPGQzRkqClKaPjzwiJEMuAi0yXzPN/rnqiRU+Y47psZSc8BGz6c9kBJaP5SeX6I4yUpKhvyxlU5aLtvzpFze1M4dJEmJbJ+xosVKWyopLF2h6MhhVsGW9+4HEdNVh2rOYLExkJ5RQ6Ng6zIGv8v2kZg4OUfqeiGOoaaBsSZDwwtDJss2K22Xvi9Kxw8utOi70jJh6tIPrCiS3Ry6o2mJNZqT9LOGUZSW3nddCRIB2oMgqWBISppj0vLjMIaqrbOWrH+QYHFYgWAk6sthTHooMfDlOldyRA16oyd9ycNM67AiojkImLF0PEVE2UYK0rccRnKoSBRj6XIoYyZr3dLlGljOG0SbKqhj4MRal9W2S98PtnxXh6Ju1ZzJclJFoCXX7GpeypL7rogBzpSdtNKgljeIk0PBZ1Jr+4IMbOfrPd75l3cDpP52rz88dSmH9KLmD956hJf9xidZbbv88WdO8D++9zrecNU03/mHX2C8aPGf33gFP/YXd2NoCodnyhyYKrGzlqfsGMmF3aCSk38jeTNTtc7IyMh4DgkjEfJp9n0mSue8G9ubBFCGfZxeGFJypJ+u60k2rOIYeEHEAwst1MTuYth2YibZV0VJ+v6SzfhaxxUPVlWh50fMjujoqsqxZQ8/itPNZj7ZvLU3lRxqqvTezm/06PmyCR34YlOjKGChM12RHroohsXmAEMTSx8vydbqqsJI3pT+OzdMBLRC7p1vkDd1bF2TkkRFwQ+ln3AYR3QSASFVUajkDUbzJuWczkrHxUusMyKg7Oj4gZRVD8eds/TUdiSKxRoGRPBqtGjRGfj0/IhGsimfb/RRUNg7XuDq2TKmrvDYSpdGopDc7PuM5MS3te2G4IaoCti6ZEa0ZKNd7/ksJtY7O2pOmgkE8b98bKVDP5B+3bYr/XcVx6DoGFTyJuudAc1VXzKkyWfScUXJtN7zMA0ph6wVTNoDP/28oijiwGSJpdZAxMF0NS0HBZLeVslCD6sPR/OyId6s6Fqy9VQkqevL4Ympq8xUcxxdatNLeo3dIGLgyUZ/aBUURlKuXnJ0xgoWSy2XgR8yUbKTck2SwEMCy0EQUckZrLRcen5IvesTAapP2vvnh9J7PPwcGz2PQ1Ml1joqx9dESCtGMt5xHGMbGtuqOTY6Hr2kv9FIsmP5REzpTL1Ps++fUwT2Qq6YLrPWcVlsDhgE8rpRsl5czn1HDF28beM4ZjUpZ56r5XDDiJG8yWqStc5ZWvpd0NVQfGsVeT5NESVpKRc1MDQV25Ae43Z/KIgkYxiW04fxudJ/Q1UYLZrkLR0vCKWSIwm4QcqobV3F1lUmSjZrXRmTG0QMkuBGVMsjUZnWVcqOqCUXLalA8JKS3lreouQYbHS9VHHcDyWADCLxvtYUcEwpM1YVKec+ud4jis8dsumaQhSJrsBkzUHTVBpdDz0pR46SdT5Xy9Md+Kx0PHBDSraXaArEtBMbqjCG6bLF2aTE3FCl6gEkm5xP3kMEqWgWSGZ0tpoT/9ggwtA0JssqYSifZd7SmCw7dF059NN18d8tWTrNQUAcx2LJk6xHx5DPeCRvJu81ZrUl9lamruJHMWVVROJMVZWDBF36+VVFoWjrbPQ8RnLJAV0cs6OWT4TtQrxASpflN+BcNUSQBN5zIyLcVnQMicliyNtysLiw0CKIYsykBxzi1M7MMrQt6vwXywsysP3DzxzHD2NsQ+W933MdH7r7LD/88l2XelgvWmxD46/fcTNveO8dfPT+RV5z1zzfctUUbz4yy3Xbxej+266e5pMPr3DX6QZ3nW486XOpCly/Y4T//Y6bv3FvICMjI+NFxNBOQlelpHMoiLRZ1dMNIpZag3RTOZKXjX9TU2n0/eS0HUiEa7QkjbF7vEAYxUmpmmQp1jreeT6FGx2PqbLDjlqOY6uSebU0hYPTRVw/Iopiul6QZARgrT2g5QYYqoKXCAA1+olFhqZyKgkuIAlaTB3d1KjmTFw/pOeFbPQ8Bkn2UlFgo+sCSpIxVdno+ZST/sByzqDrigdtwdZxg6QXT1FZ7Uo5qqWpuJt60UbzFovNARtdH0tTqDome8by3Hm6IT22OYPuIMALfSxdMtxDj0mQjbqp6wRRxFLLZa7vU3ZMto/E1LwAPwhp9INEQfjc60aJ2JLtBly7vZLaoMSxZMoWW2J7MywtDJJs6krHY6xgps/T6Ps8utym4hjYhspowWR4MlFxDEq2TtHSUJCy7brrUe9KxjhnqPR8CbZtQ2WQeF2KL6wE8AVbp9UP8DbZxzhJgFbJGZJF9kO8UALDkq2jqSoDP2Cj69L3pFe64kjpqBtEWJpCP4g4sdajYOuiAqy6rHU8tlVz1LseQSJ+4yVBBsiG39IlSxiGESfXZf0M7WC6SV/qZNLrXctbtAY+3STwdoOI+842OTRdSstjVUVJSmtjFEVhodHf4r1sqAqGqhKEYWq35CSq0ovNAVoi0NUZiECVrUv/d9HSKNoGu8byLLfOBRZAeujg6CqrbTlomanYVBzxHBa1Zvk+jhXMNPs/8EPKOYOCLXYv/qZ1bGkKsSKiXJoiGULXD1FVhVwShHtJb3zB0llqDhj48rpRFGM7OhDT8wLcIKaUBFI7anmWmgMJ9Hs+4yULYikHFm9p+Q6cSazBNno+02WLgR+xlBxWtfsi8JazdLZVbTZ6AYEbAEpSLaDiBn7a13wi+Vx1VUHXpMrgbL1PPwjZreaJ4lgekwjQuslB2Im1Lo6ZzK2hcmJdlIttXXQA/DBC0xS6fpgKkSUVxuQMEehaa7vkLfH5djcFcI6h0UoCSF1VMHWFek8CVkNV2DlWwEu+60EUc922CgM/pO+HqZL90B6oVrCYqdgM/IgzGz1KjsGByYKoVasq189VeHChLWXLXR+PiKJqoCvnKhHCSLL5LdcnTITVhloAyqb2gSiK09L8KBLf59mqwxUzZb7w+DoKsGe8iGNoHFtppwcuw2vU0LbtXM9xRLPviXggF88LLrAd+CF//dV5AN549TQ37apx067aJR5Vxtxonvd+z3W8/U++zM//zX3cearOz3zTfmoFaWL/nbdcy2cfXaVWMDmx1uNso5c27zeTzEGjJyU9O2rnSsofWWrz/i+c5MdevYepzdKIGRkZGRlfE5auoqqkNg6KwhY7imGJGUgJWt7UOLneYy3xlAVEQMYVK5O+fy6rN/DDNBgdyVs0el6qCjpetKh3PdnoBaJkO7Tl0VSFcs4kCCFn6eweL9BzA1Hn7HmSOUHGHMVxKr5kGypLLTftDwTJ1AR9P1XlNXSVPAqmodH3paR2+0iOnClCKsttl5mKja7mOL3RI29qjOZNztal5LKaM7l6W4V616PkGLQGPkEQS0niucQyPT9IM89hLJmfYdldGItS77BEe3i/IcP+UhGcMdA1hQfONul6IljkGNJ7mDMD2dRqahqk24YqvY6aQt7U0zJIP4ioxCT9uBI09nwffxAwO1UkiqXfc9hfCyLuFccx02WHZl9slvwwJowiVjseamLTUnIclpqDtJy4YBu4oYetJaJGivRfm4aUAU+WbcaKNvecrks2FCgnwjpxLH67xcRTM4xDdo7mMTQVQ3NZ70pmL4wi2sn4hpRzJnEcUytYnNnocdoP0yzVybUubhChaxL0GLqKkwh1eUHMmu+KX+mmnufRokXB1nl8pYMbxjR6PqMFk9ceGucLj6/TsQLm66IKfnK9RxTFjBUt1oZ9vYr08gZRhKHK+puuOGmWLUyCwVNJT2QlZ2wKTjWWmpK5NnWVPeMFFhp9HFPE1DRVnncoqhUkCtTDMt31jo+iSFAyXXF4LDkwGmZQhzZLw/XoehEk5xqbM78AZVVhvGjR8+T77EdiXzVZtqn3fJo9Hz+Kafalh9ePYhxTZ7qaY6ExoOsGGIpKzlSSEl65JlQcQyy7VBEV6ntSPTFIPjfL0NLMqaUpjOYtFBQWWwPONsQuK6+IunfXS3rgNRGN0rVhObC0Jkifp1hXzVZs/DBmEIQEcUQcw4n1LutJCfC12ys8ttomiBSqBVNsm5L3PFxtcQRBBGNFM/38Nrp+Knznh6IAPVowOV3vicq6qjJa0DESr9x636NWkOuirqnsHy8w8EK6nhwiKsj19szGOWuwta6bZjYVSKtVyrZOo+fRTzLAHVdsx0xdEcEnP+DxValy6XkiJGaoKo6hESRl0+2Bn36f4ihmtupwaqPHWsdley2PoihoSYY/imM0TYFYDh1G8nJ4omkKlZzBjtE8Ky25Jribrm9D1XprU288wCA5+NDVF7l41P/68un0Qrp3oriljj3j0vKKfWP8h9v285v//Ah//qXTfP7xdf7ih25kquzw1ZMb/Lv/+RWu3lbhf7/j5qeU9t68wP/8S6f48y+dplaweNfr9n0j3kZGRkbGCxpVVdgxmufR5bYIRKkKByaLrLQHqZciiJKprooy6dpZNz251xQpIys6onS7mVZfspHFvMHZRp8wEuuTKJKMlR/FlCwdx0wEiZIMwDAuPVPvsm0kJ/Y0ls4EYn0y35Byv9GCRaMvG/C8qbF9JMfRxbbYXNhSilfv+aiqwljBIm/p0r/nBeQ1ODxdouMGKEgQY2gicDJRstnoedSScr4oHgpDkW7uGz0pG91Zy3F8rZeWAgJJb925367JksXME3Q/hkHtRNGSctkwOic4o6vkkUDHMTXqXZ+65+EYeip04xgalq6k1j8iaCObTi+IuGZbmZJj8PBSC0tXGckZhE3p11STDLWmQhSBpqjsGM1xar2HbWgUYlhPRKV2jebJmRqPrHSI45jttRyNnsd6WzL7jb7PbNXZkm0G8d+UQFEyid3Ew1ZVFHqeZJrF0kU+UzVZayIMBigKJUdHHcBjK22qOYuRvJmosMbcebrByY0e02UJUozkA5oo2RyeLaWb6uHmeWhHRQDVnEqr79NP+lLdRM3Y0FRizn2OIk4mpZT7yiKI1B6EnN7o0RkE9Dzx+R0GHYoCL9s7yqceWaU18KjmTE4lJfPjRSvtJY8R0aWiLb3AbTdgsTlgrGixb6KIrirMN/rQ9ZIsokKz72MaKnEsfb8lR6oI4lh8YMNYeqFNTd5HxdGTUu5EJRgJEEu23N7zQqbKNs2+L5ZBfpj22EaxqIo7pnwfpspOIvYkfeZ9L+TBxRb9tR5FW6fs6Kx3JYNdzhnongi+iZWOjqnZHJou87nH1iRgjuGGHSNoqk/RMTi53kVRZHxDz+R+EFFVlTRjnjN1TF1LS5+DxFYpCGM6A5+ZySJxLKJm02U5aHl4qUXZMbENleWWS9kxGHjSfuAFERMlm/GizUbXSwPWWt7kVJLZnShLIL3cGtDuB9SKJh03oGBp6Xrr+5I1dRN/4iiKqRXlOXaMWFiGStkxt1xLh57UUQQFW2OxGYpX8yBIFcWH3HW6kSrXayqUbYOBLwcnuqbQGoSM5g3GijaPLLWTwzeJhfpJZr3vhYDYmo0XLU6u95gqOzT6Prqq0PfjdL3rqvy3bWrUe+JLPDxc8UOVomWTs3SIRajrC8fXZSxJxc8D801R/FZgqTlg+0iO2ZEczX5Lrv+GipoE1I6hbVFGl7lRX7x2P34Y8bv/+hggPRnv+ehR3v+Fk3zmZ199iUeWMeT/fOVu7jlT52MPrXBircu3/u4d/P5bjzBbdbhypsy3XzP9tAt489/f+dp9lB1jS6n5SmvAeMl+zt5DRkZGxgudOIa5kTwqPSZKFgVb+tfETVPQVPHefGyls0W4Joyh3nXTwGQzmqbihiGqkohDJdkCxxAfQ0NTKOWkR1c2T1JyOgyS1rs+mjpI/Vk1RWGqYqXqxqpKKtgE0PMjpiq2lPcNAoJkw2QbKpNlm44bUO+KSI7tS9bhxHpP+vhyBi/ZMYKCBHWWrtIaiEpvOWdQK9iE0YCuF7CQKD+jKMyO5Ol4IYvNAcQx20ZytAaB9PglPYpTpXMVRnvGC6kFj2Oo7BjNU8mZnFjtJOXUUmJo6SpjRUs8gpNy1M30/RBD0wljCIOYkq3jmBqNpH+2kjMZL1pMlh28IOLUelfKDKOQgqXhJUJMo1WTkUTURYkl22YbKmVHx9JVjuyoktNVPvXoKl1PSiqDKE77qIcBv7Yp09keBHiBZLdFDTYkimL6iQVQBAx8KYEOk1Ljgi3PN3ybzb6P50sVAG4IsRx41Hs+YwWL0bxBBBycKtF1A44n4mF+GNEdyBwO/IgdtRxu4rFJLMJDeUtnJKey1Bqk8yxKxlImGUQxQfL4ric2VIvNAY6pUrYNto/k0RWFr56qY2gq0xWLKI6xdTUJIsAxRFXZ0uUxO2t5wkhsn8JwWPqv0nJFOTdnSmDzyFKbg1OltN/WMTQKlk4tb7LU6icHIInglG2gqgq1vImfeDIvNvustFzpN9eln3bgR4wWrfT7nAulLH1o2ZMzNbwgwjY0Oq702U6WbExdJUjEweJYYXstl2RKI8pJgFzvSQ+rrimUcwbjRYuFZowbir+upkhv9PHVbtoP2xoEnFjrsme8wEhiVdUeBCiKgqEpjBVM3FDUk3VVRVPDpP856d1OFJMdU0/mzWel7TFbdbh1zygdN+C+s01pK1AVKmWb0xt9aR+wxBdaVxX8MEwP24qWwVTJZhBErHfEA9sLYiZKVprhnChZ+PWtX8ROIo5VsDT6fsS2kRwg72O6YtNKDs420/PkOpgzNHKmngoudd2AN1w1Jd7ifelVd4MIzdSwdJW8OQyIo7THGBAfaUizpsODGtcPWW97OIaWeo2PFS10VaomhoHvkIIt+gJDL+59EwWOrcj3aqxgEUURQSRZ4jiOWWm7TJYkq5u3dCaKVqqQrCCHbV4QUSuYqXCUH8YYisxrHJ8ry9ZUODB5bt1fLC+owPZv7z6bfqjDH9lXH5i4hCPKeCKKovDfvuta3vjeO3h8tctax+Mtf/RF/sM37ed//dCNackNwNHFFgcmi0/pPTySN/np2/an///hpRZvfO/n+MFbd/Ku1+1L7SkyMjIyMi6eZt+n6wbUCqaUkQYBa203zV05hkbB1Jgby7PW8RjJxWhbype3XreLlk7bDRgriJLpRtfD0JR0g9f3IxaafeJE2AdIy4ejGAZuwFTFoWjpdL0gzdKoKsxUcigonNno0exLGWbe0kQ5ue+xbSSPqUvQsNjsM5I3ePX+CWoFk7W2S7PvcWq9x2RJBFmsRMhkqHI8XrLpegHTiWDLQmMgCqNGRN7WWWm7BKGfWnZEUQyx9KgVbZ32QISMikmgWe/57BzPS3Dlh1y9rUKr77PcGqTzppBkZw2Nja5H2w2JY4WT6z10VZGMqCKB+0jOZKPn0RkEuJsUqou2wUKjnyoo66rCVdsquGHEHcdWafZ9VjseZVtnoiQHAbap8vI9Yzy+1kVVFMp5k3rXTTOrI3kTUNgzUZTgN4jS7ORM1aHvid2Mo2tMJJkgPen5DcKIjZ7HWNFiRy2XCvvoipJkUeO0N28zeUuj2VfSPkgSZ5CcpVHJSRBU73mMF20URWHbiMNa2+PYSptt1RwFS+fhpTaOKWtiz3gBy9A4vdGjnZTKOoaIoZ2p93BMDds4Z2+lAboaczYRoAKwdC3x8I0JYmj2PbYngjrH17rJWGU/0+h76edvaCqlnMlLd9fQNQmk7zi2Rt8XwaFhgHVgskx74LPUGjDwQ+4/28QNQq7ZVkleX2XXaJ6WG9D3RMW27Bisd1xWOx7tvs+h6RJRDJ2VEEMXn+airadlqzlTY6xocbbep5oz6HkB610P25AMb61g4RjS3zyaN7l2e4Xjq13uPtPASHohF5p95us98cLdVAIexVA0dSqOga6pTJVsohimKk4q8CRiXw6OKYdOeyeKvGr/GHc8tkY+yQ7mk6zs3IjDWMHi1EafiZKFpkKjF7DWcRkrWHiB+M+OFyWjmrd01jsuPTfgKyc3eO3BCbaP5FhtDZgo2cSJ4q+qKGiagpsoNDumTs9zU9GkYb9vxw0oJlY3PS+kbBtcs63MWvdcefaQMJmHjhsyXrBYbrlUcgazIzmmKg5xvY9tqHRcuX5FkfSvR4kqdGcQsGe8QNk2qOYNKjmTsYJFEMbSXqBImX7J1tk5lmel7eEGIWNFm7yps951CSJY60prwK6xHJMlm7vPNKQdwZbsqqGL9RhIZcHZugT68n2Tw7CcoVMrmCw2B1RzBqfWe6x3XGoFC9cP6bphaku0fSSHoihJKXaPrhuwfa5KGIt4V9HWMQMRCxvqHHfcQGzQYo31rlTE7J0s4HoRHVcy/lPlZ5aoesHs+gd+yG/+8yOAqArWex437hzh3d92xSUeWcYTKVg6f/z911NIGu9j4Nf/8WF++q/uTX/U7znT4I3v/Rw/+YF7tvTLPB1nNvroqsLvfepx3vYnX97iV5eRkZGR8fQMexp7nmRB1ztyCj9U8wXpyxwvWyiKQscN2DtR4PbDU1iGbIqCJADYPuJQcWSDBuKBaeoq20ZyTJRsRvNmqnQ8U81xYKqcvkbe0tk1lmckb1CwDUYLFm+6bpYrpsu85sA402VHNqmJV61j6pKR6Ig40FrHoz0I0g13ydbZPVZgWzUnPruqwuHZCtdtr1K0ZWO/1BqQt3QqOTMVvDowWeTgZIlq3mS8ZOOY0sM3VDMuWRq37hllJG8mmZcg9WXUFMkCiRourHc86j2fU2tdxksWN+6q4Rgau8YK6e/fStvlxFqXvhdSzhsULF1KFUPJUgVRnIgZyf0LSbtVTJxuqg1NRVHEysULY6bKFhMlm5Jt8Kp94yw1XbpJP2VzIBnIa2bLaKpK3tJFGTYSD2PpuZNgpT0IOLPRY/tIjjccnmKmKiWpEyWb/ZNFRosWMxUHFCg5BlNlUdUWz1w1mQ/ZvI+XLPaM5anmTQqWkdqmDC2ESN+hHGIbmoJt6OnGtewYHJgsJr2lMWtdD8dUuWXXaHpIULANul7IasclDGWc05Uclq4xW81Jr3EUE0VwcKpI2THYN15kmCe+arZM3w85td7DD6UEuJY3KTs6O2o5JstOIjwlfcavPTTBztG8lM76IduqDoMgwgslY+aYkm3VNcm8TibVZVEcp1ZDqqJwMlkfIOX7Jdug4pi0+n7qyzxVtnEM8X2dKEpZ9kw1h6kpRMhhURDGjORNDk6W2DNeYLJ4LkhYbg54fLXDStsVG5bE+igIY9p96VW+ZluVmYrDDTtGcEyd2ZEcYwWL3LC6Iun3lkywStnWKVgaeVOj4/pYhsrV2ypMVWwmyxbVnMG2ao4rZ8rUex4n13vEMeyo5Zmr5VhsDlKhrJt2jbB3Is83XzlJOWey2vVwkv7Sja4E/XFMWlHiJcrRy60BS40+rh+x3Hbp++LXe3CqxE27a9QKlrhu2AZBGOGYGtNlh7kROQSZqtjsqOVQVWj1PbwwYqpkizKyIiXVqqpQyZtpVlL8fB22VR3KjoGlK8yUbWoFaQdw/TCxzRG182GmOnEVo5ozGSmYjOZNNFVK9XeN58lbBoNEgAqg6OiMF22mKg5LLZe7Tjfpe6GILukqfT+k4pistF3qXY9q0qM9U7VTReoojJgsO2yv5hnNm+xMKkS8MGIkZ/ETr97L9pEcjiGlxMMzSi2xo7JNDdtQCeNzFkVhDDtH8+ys5dBUlZIthxqOKb3/lq6xayzPNbMVvuO6GTquz0rbJYqGPuMq+yeK7Jso8rI9Y+wez6OqKutdl54bpoJSF8MLJrD9sy+eSkUYhnYwP/mavZdySBlPwa6xAv/9LdcCclK0eyzPW2+cS/++2nKp5Q2umi0/Zcb2ibzu0AQf/vFb2Tte4HOPrfOG372Du0/Xn/XxZ2RkZLxQyZk6e8YKSZmiKIzWez5Xb6tSsnVG8gbbRnLsrBW4bq7KrrECV0yXKFiiijtbdc4p2aoq1bz0VpqaSsHU0hJVyQqZYn1hahycLHLjrmq6MWn1fVw/4rUHJ3jNgXFqBbHj2T9ZpJo32TEqvbZHF9uc2ujR9wLcMCKMpQfMD6U7clgKqigK12yrcOV0maIlG8SRvFjKXTFdYsdojh2jeXaN5Tk8U2a0YLF7rEBxUyl00TIYLZiUcwZRDKamUnRMbtg5wo5anu0jOWLOtczYhoqqSFnp1dsqaJpYnKx3fR5caPGJo8scXWzRTHxBNVV6+gApZ673MXVVPG/DmLlaPn3unCWB0bDiu2DpbB/JYRka40ULx9AoOyIsZGgaVpJBVFWFqYpNydYTdWYJQC1Dww/EWmiybHN4pkwtb5G3DSqOwfaRHLYhPpatQcDusUJqIRJFMQ+cbdLoeZt8PMWWqGCJdZNjSBAwVXZY63p03ZCCZVArmLz+8CT7J4uMF236San3ZMlmomQTRnEispQjZ6pcu73KvvEC+ydLEgCM5qnmTMnKq2p60DFWsLhiuoSpK2mQP1N10FSFPeMFVCRTVrA0Ssnm+/WHp7h5zwjtQch8vcfe8QJzIznpcTY1rtlW5lUHxrntikl0TaoAdFXsZ16xb5yZqsP+ySLNvs9GUr4exzBdcbhuexWQg6M4loOCkqOngcXQb1hTFVAk2DVUlcOzFW7aVePIjiolx6Dj+nQGAXefadDqB1TyJrMj0q+92OzjhzFxHDPwQmoFi2u3V7hlzyjXz41sqYrrJ16volouwmJtVw5hun6Iroo11Mv3yqFNyTHE+7locd32Cv/Hrbt47cEJFMTaZq4mmUFbVyH5bnihlF5rqsJE2ea2Q5OMFy1mqpKBna06qQfsSM5k11gBkEORuVqe/RMlFKQkt51kES1j6M0Mu8fzsm4KFrmhMFpiCzW0s9kxmkdF7n/NtgpXzpRYbbtJmbMcMOydKHBkxwhH5qpUHRM3kEoIkH5rVZXrh6oqXLO9wkv3jpK3dKYrDnayrq7dXmG8ZFMwdVRFpeclPtYFmzA+d0gzXrI4MFmSQHhElN9vv3KSHbUclqESxcOqDYWX7hnljdfMpPOiqyrlnEHPC7e23MXiGlJOxjyaNxkvWdy6Z5SDU0WOzI2I73MUgyIl0ZahUnTERnPol/yyfaPMVHNcva3CztECmqJwer3HetfFC2MmyzZXTpdTD9ohO2o5pqtOOqZhr72unhNf01SV6+aqdLyQnbUCTuLlXc2bjBVMttdylBKbz8mSgx/KgVBzICJ1F8sLohS50fPS3lpdlV6YnbU8N+0aucQjy3gqXnNwgl96wyH+fx95iIVGPz2RieOYX/3Ho/T8iIcWWvzvr57hJTtGkp6op1c+3j1W4G9/9KX83N/cx0fuW+Q7//AL/N9vOMRbb5p7RkFyRkZGxosRM/GrBPCDCMfQ+KYrJtlezXFspcPADzk0XRK7lSSDcWq9x/7JIvsny1y7XeNsvX9OCRaYKImOwoMLLXaOFtLeuJ1jBTqJONDQH/LauSrz9T7rHZezjT77kkC24wZ4YZxaoYwVLSZLNo8sdzi62ETTVMqKThB65C2d3aNijbN9JMdE2eaxlU6SxdNxklLlh5cG+GFMyTHw/AhT9ynbJlNlmzdeO0PR0mn0fHbU8pxc75K3JLujqgr7Jgu0B2Ix1HED8rb0vRGfC2yrORNT08hZGiN5k8mSCBtVc2YqCNNKevKGIlXjRYuxQswDC01UfVgObTFaMKnlTUbzFsvtAWEYM1Y0zimiKuKD6gYR40WLq2bLHF/tEiMByo7Rc2JVh2fK2LqWZp1nKjkeXWnT8aTX8YrpEoYmljQbXS+d654XcPW2CovNAQtN8dSdLNvkDI31bpiUkct7L+cky7p7vMBY0eLYSkfW16Z+OUNTODRd4b6zTWxdpZqXjfZIXj6DR5fb9Fwpby7ZBmNFi1reJCZmvi5CUY6lU4liKjmDa7dXRFSsbDNXy6GpCrdfOcXsfJPTGz2cZJ9RdgzylkbO0DCSjO9KW9Szz2z0uWGuiqoqzFTkoKCaM1EUuHGnBHkPL7WYKEmZaZz0IFfzJs2+T848Z5ETxjE/eOtODE38m798ciMNqg5NlZjYFJx0BgE7RvPp+M7W+6BID/ZL94zS7IlTxNFFeW1T18TzN4yYqTgsNvv03IBa3qTt+rTdgJ2jOQxVJYohZ6rp9w6kJzVv6dx2aJJ75huM5c2kDFslXDtXYr7Ucpmv9+h5YVJGKkHXXE1K/PcmPeLVvEkQSRmsbYoqt58IpkWxlKcvNgfcsHMEL4hYbAzY6LrDynKafZ+X7RvjyJwcALxs7xhFS2e5NeBLxzdY7XhYhsZcLc9sVcSgAI6vdVlJrjWzVYcgjIk2ehiawraqw8v3jHF0qQVIZvihxVYqMpuzdLaNOCL6pWsUbJ0jc1U+fnSFricZ94LlY+saOVPKjMeLNsstl5NrXQqWnh7UWbrGnvECG4nAlxuGOKbGQqOPpsCeCQlO610R5xq2WowXreQ7ochhXBQB0l/dGkgwP5I32VHL44cRrb58tpOJ0Jef9Dx33ABDVTnT9dg1lqdg6em+ekctz21XTPLg2SZ5S3rlbV3j8ZUOCmBqWtJnLgHk3vEClq4yU7H5hweWRD06ipkpOyy3XfZOFHh0uYOpqTiG9KTbuqgbFyyd2YpD3tITL2XYVnU4Mldhx2ieIIoZKZhsr+boegHVvEnO1CCGa7ZXuP9sky+dWMdL1o+unMsaXwwviMD2N//5kbQeXNdUgiiSU9ILCFdkPL/4wVt30hkE/LePP8r3ve9L/I/vuY7rd1SZrTqc3ujxwbvP8sG7z6b3n606fOKnX5Fm5Z+MvKXzu2+5luu2V/nVfzjKL/3dg9x5qs6vvukwOfMFsewzMjJeZLz73e/mP/2n/7TltomJCZaWlp711+r5IdtreQZ+yMGpIjfvqqGqigi2+CFO0oNo6qJePLQYGS9JltNMsjSryYZz73ie0xt9VEVUP3OxlopRVfMmq22XtUSJdM+YbA7jvMl612WpOWCybKMopEEtSMb3tkOThNECbhCQM3Xag4Ado5JBuHq2QtExeGihmR5qhlGEqqjkTZ2llmyM75tvSPZGVcibGo2Bxz67SMmWTV41L0Inmqrw+cfXWG67zFadVNhkfkMUU4uWztSEw0ryvCBZN9vQ2Dde5JX7x/F86TM9MFnkEw+vAFICe7bR53TyPIemJaN0cr2bPo+CWGbYupa0W6lsr+XYM15gKdlkx5DadJRtHUVRaA78VG10czlfFMW0B346L6Wc/C7OlGVDunM0n6g9R8m8xQRRxLXbq9QKVmqD821XT6NrCsfXunzi6LL0kNo6u8fyvPbgOJ9/fJ3tIzm+dGI9fe3N2hctN6DvRxyeKSfZVY27Tm+w0Bikv/OqCmEiUKMosNwe0BmESQY/4uBEkXrf50y9x87RQlJmfO4QvGAZjBYt5ht9dtTy7BotsNjsM1PJcWylSzVnoilSAnx6o8dkyeY1B8eZq0mQWUsC7Wu3V7h+RzUV2vnkw8ssNQcEUZyWu9cKEgDvnyhi6Aq3XTFJI7FfmhvJ0fPOBZZDkad23ycII6YrDq8/PJlUCRj8P3ecYPdYPj1kKucMvv+mHSw0+9x9uk6j59NzQx5f6eDMSgXCQqIOXnFMyo7BoakSn3h4hb4n3+NrtlWYr4tVjGPq0p8ayuFVztIlM2vLYU7O1Llx1wjbqjn+5u55NFWh6wY8tNDi/rMNbtldw07UfL0gkvcy8KnkjESUK6KYZAI1RSx5Hlho8o5X7CYGHl0WtXLH0ECD+882ecPV0+fWvCJzNFKQ97LacQmjOC3jreTOiSWB7PvmRiTrp6sKZ+qi6D0cg1wzZL2P5KUvvWTr7BwtcO98k9V2m6myzaGpEnlLgrRY19BVLSnxjyk7Un2iKQpdL0zLksMo5rZDkzimxt2n6vT8MPUlHpb2KyhMlR0WG31CS9b2aMHkiukyrYGfiDHF7KjlOLHeozXwObPR49ptFSo5A0WRig7H1FBVmVNDE29kRVXYM1ZkreOyf7LIrsQOC+SQRNdU3nxkGyM5g+NrXa7dVuXLJ+tMlW28MGa8KOXZ+ydLAFw1W+H0Ro+CLZUaUvJtM111mKlKafrJteNpj7SqKOmBlRxwbtLDV0SnYKYiB2sTJYsHF+A7rp/l6pkyv/3xR+UaE8fkTJ0dtTzbqjnWOx75pI/4S1w8l/0Ov9nz+ft7FwDxtPqZ2/bzmWNr/PRtmfXL5cJPvGYPAP/t44/yg3/6FX7o5bv44++/nr4X8oXj63z5xAaffHiFUxs92oMg/bEb+CE/9P6v8qr943zHdbOUc1tLFRRF4Qdu3clVs2V+9C/u4m/vWeChxRa//9Yj7E7KOjIyMjIuJ6644go+/vGPp/9f0y6+9+hiCeOYoqVTD73Ez/VcKe4v3H6IzxxbTU/QD06VOL7WoZaXfkBVUZir5Ti62KKSM9LA9vBMhW5Sxqgqstmar/fpexIQT1UscobOS3ePcveZOmXHoN33CSPpHX0yZLOnYOki+OMHEV4Ys31Egj7H1Dm6KNmaA5NFbtxZwwsjiraRBrZhLEJRO2t5cpY8TxzL/mLz78rusQKn1rpcPVvhwYUW959toilKmnmt5Ew6ffGKHJY/d9yQSs7ENFQ+9cgKYRzz2oPjzFQcwjjmwGSJ0xs93CBituKwd6LAeFHK/QxdZbHep3mqznpXVG0fWW5zar3L7EiOvROyebxhR5XHl9vouspa4jXqRkORI8mcGUl/4JBHltpJn67YC00lPbIlW2fvRDERDwsp2FKqvdKWfmViOVDYUZNey5IjAXTXC7liuszpjR6qorB9RMprb79yEkVRGC2YvO9zJ4jCmLkRh4Klce+ZBrUki112DA5OlVAUhbONPpaucc+ZBqAk5ew6o3mLtY5HxRARJIBBICWzRVvn2m0Vrpot03YDNhMjHrFjBZMjO6ocmCxxcKrIl05scHy1g6qq9L0gDUilnFg2+HEcJ0FtlVfuH9sSLCiKiD3FSNACULQNbr9yCpUlUCRT9uF7F5I+6jzXzlZoDTx2jhUwNOmPVVWpIthey3HjztF0zf34q/fQHgSMFqz0vaiqwmw1x3jR5i+/epqImObAp+8FNHp+2te43pF+1GpelLDXOpLF+/KJeqp0DFLyW8mZXDmj006yg61BwM27a6x3POIYio5BNSlx7Xsh7UGAY2r80WdOJH2oPmXHoGDrFC2DlbbLVFJdN160uGZbhbypc9/ZJjlT+jyHB2L1no+aF5snL4xYbPZZbPapOGZaumvpGvsmCjT6Ijhn6vKXpVaf46s9SrbObNVBV5VUJM00RNyq3vV44GyTsmPQ7PvUChaHZ8p89WQdx5C1e/32Kqttl+NrXRabA/aOF/HDOLWMMg2VXqIePMxi7xzNU+95SUZVwdAVTq53OThV4qV7R2kl6s+1gvTOLjb6Yi2mq0xXHRYafa6eLaNrKm1X1KwfHrTJmRq2qXHddikFPrne5RNHV9I6Zj+MOTBZpNHzmavleGChRc+TTK1tquxLAso94wUeSyokXrFvDJBKiQNTZcZLNuMlW6oIEquv5bYrqu4Jw4qT9a7HRFEqNao5M72G1AqyHnpuSHcg2e6nIorj9Dq52eao3vc5sdalmOgIjBZMxooW1ZzJQ4v3UUpKkMPwyX8DnshlH9iWcwa37K7xTw8u8+9u3cUPvkz+ZVw+KIrCT752L9tGHP7j3z7AH376OH939wI/cOsOvvXqaV5/eIp3f9sVnFzvEJ2ztuLD9yzw2WNrfPbYGr/xzw/z7dfM8KOv2pNIq5/j+h0jfOTHX8ZP/K+7+cLxdd743s/xG//2Kl5/eOob/E4zMjIyvj50XWdycvI5fY04jgljKDsmli5lxSfWusxUHEYKJt9+7QyfemSF0xs9vnRiHT+It5SXqopCLS/qpDlTk14zXdli1TaSlG0emavy5RPrVHImMxUn3dQrChQcgytnyowUzPPGWLR1RvKSOVRVJQ1cavk833TFJCfXu3zq0VXmankOTpU4uthKxKjOHWo+YkuG9/B0meX2AFOXftiipbPe9fA3/+AgmZJvSTJKY0WLD941T8cN0iqg6YrDmY2elPkZGkEYJRmieMtzLDZddo8XU9eGIIxZbg2o5Iw0SzxesnnTtbP8ry+fYrxksdb2CKMIRZf+wp4bcOepOodnypQdg9cemmCj53HP6SaKArMVCSy2j+Toe1GqyJyyKfOtayI6U7B0OomglBtEYp+E9Mb1vYBmT2EQhKJmrShbgn5TU9OnFHXfoY+r3DpZdjg0VeLu0w06boAfROSTnuBb9oxS3tRDN/To3DteYC3RThkrWFy7vcrpJItt6ueUW+cbfWarDkqSRX5i1WK95/HochtVgW2Jd7Cuqbx0zygPnG0mdjVxWqa+Z7xAvSt+nZWcySv3jz9x+QHimewY0te7+UVtQ6PR92glhxxDH1kFmKzYTGLzqgPjRFGMpql88xWTPLjQYq6WwzbPfY+KtkHRvnBvoamr+EGErWvUCib7Jktcs63KR+9fpO+FdD2fcVVEivKWzp7xIj0vYrk1wA9lXY8VLQ5Nl+i4PuttLz2skgDDYrRgpdn1yZLNStvl0HSJr57cwNI0gkjEhtY7LqaucuPOGoaqcnqjh6mrnFjt8k2HJpmr5ZkqO0xVbHKJt7SSZD0VSNdlLW8yX++z0Bikli9DBoEcRk2WbV59YIK7TtexdU2mXVHQVTi53sPUNEqOTsHSGcmZtAYBx1e77B6X730Ui8bL9Tuq3HumzlWzVWpFix2jeVbaLnvHC9ywYwTXD1nruqy0XWYqDpauSrtBItQ2U3XouD53nW4wXpR+1eG8vnzvGPsmimx0Pc5s9Lg1KYVebg2wjXNtHjlTxwsjJks2HdfHCyNcX7yHXSViomRxYq0r38VoqBSv8K1Xz/DA2SatZP1fPVtmouRw/VyV42tdaa3YtG42t+AN/JCBH1Gydf7NtTOstl3yls6jy21gq18uQL3rYeoqN+wcYbaa4/FVCZaHwekgCKnmDXKWlCpfyK4zimPun28SR3BLIrIHUjXS6vtMlmzqPY8rZ85p6sxUHV6+b4zTGz1KtoGmnf+8T8ZlHdjGccx9803+6cFlcqbKgcknWsFnXE686bpZbtgxwrs//CCfeHiFX/2Hh/nVf3iYuZoo6B2eKXPd9iqz1YiT611+6e/u5zUHxhktWPzdvWf5wFfO8Dd3zfO9N87xU6/dt+VHd6xo8f/94Ev47Y89yu996nHe/4WTfPMVk+cZyGdkZGQ8nzl27BjT09NYlsWNN97Ir/7qr7Jr15Mf5v7hH/4hf/RHf3RRz3306FFAskL7JgocW2pvKdcdLZjnvEpVCVqnKw437qzx4EIz9Ss0NJVb945yfLXDgwtNQLIuV86UeeBsE0tXOTxTZt9EEVNTeXS5jampXL/jnC5G2Ta4f77J/vECByZL6cZryLmg8NwGuJq32D9ZpFaw6LgB8/U+Y0XrST0Qb941ymKzL32R1rmg74rpEoaupf2YF2K64nDT7hoFU3xjd4/lOZb08CqKwg07qjy81GYk6Q22DS3NiKx3t6r1b08CmqEBwHDzDHDL7lFOrUsWVAG2jeQYJGq3gGRrNBVDV8mZOodnyhI81HKstF2u2VZl91gBP4q2bHb3jBdYaYli7Hji2XrPmQbDKuH9E0W2j+R4ZKnNetclZ+qMFk1cP0pLQTdj6iq95P3pmrKlv3rzfJcdg/GizT89sMjAD1EV5bzPZxjYDnv0DE1lJskAbhvJpxYpi80+URTT7Itf6XB+z7eaMsiZks1/4sb7dYcm+PLJDdqJ7Ukh6T/8zLFVAN54zcx572PIkTkJtAf++c87X+/jBhFnG31ec3ACRdk6rs2fxeHZCj0/ZK6Wf9o2q82M5i0afZ+RvMmrkuD7SyfWWWwO2D6S54YdI2iJAJRjaBxfk6Ck7IjX7d6xgpQSJ+XxkyWLvRMFcpvW/fBt3birRhjFdNwg1Tq5YYcEO2ttCWzFv9dhtGglnqTnFJNMXeWK6XOK50BSRt/H0FSumi3zsj2jjBZt7jy1seWgY+CHLDT6tPo+u8fyjCUe1ZNlR2yFbIMgiqj3fBRFDr3KjsFMRey59iXZd5DrhZeIZh2eqXD7lSICdvVshWbfZ6osh2uvv2qKD9+7QL3rJwGtzb89sk3st3oeIzmTU0mGdrxkpWrVIIcmtqGx1nHZPV6gnDM4MldNPF7t9Fq2N7HMsg2Vjz20zFRZAn/bkL7cLzy+zkt2jjBVdji20uGuU3U0VcSuBsE5v1nb0LlqtsJIwWIkye4vNPoXXDPtgVgkBVFMJWdSSTLxtiG+xcETAlsRGxN17GG/7/A9HpmrMkh8yIfK2E98vKwhqago5wwqOSP9frcGvii+mxqO6WypTADpsT662OTa7VXe9wyabC/bwPaTj6zwPz93ksWmfHg9L+Kdf3kPJUfPvGsvY7aN5Hjf22/ggbNN/vrOeT7x8DKn1nucWu/x0fsWAVGZ3DteQNdUDkyW+Jlv3s8vvP4gf/zZ47zvjhP8z8+fZLpi88Mv373luXVN5We/+QDX76hy5Uw5vSh0N53CZWRkZDxfufHGG3n/+9/Pvn37WF5e5j3veQ+33HILDz74ILVa7YKPWVxc5K677npGr6Mgm5G2e86PtpIzt2Rlh4qfbhCxbSTHQ0m572bUTWW6lq6ye6zAaN7CNiXrONxMAXibAlRNVRgtWuybLLJrrCA9e5wfsAxf49x/n/O+FYEZEQ/auIDXJEimaNdYga+c3Nhy+1Ch9qmwDY1b94yl/7/R81ho9FNFZ9vQODJXlSyGovDqA+PcN99gvt7fsmkfMl60ee2hCZaafeY2VR3N1fL84K27+OTDyzyw0MIxNK6cKQEKjy630VTJhA8zKHlbxmUbWw8KHLYGTNfPjbDR8Vlo9tk9XkBBYbrisH1EVGZ3jxVQVQU3EGGvn3zNXh5Zam8RvdmMqZ+z6NFVhZt3n78eJ8s2k2WbE2tdRgsWlbzB/ski8/Ue8/U+20dy7Er6sy1dZbaa445ja6k4jaYqTJZspisOD5xtUrCk/HVodzQUHdKfEGTuGS9QsGdR4bygfNdYgfvPNnEMjSumy+wZL6QluU+HbWiUHOm9ff2VWyvAvvOGbRxf6TBbddLvzdC6UH3C2hJdGLHIeSa89ooJIiVm3/i5KgQjydBePVPhlj01ohj6fph+v9wkUw7gRzE5U+PGnSM4psbByRKPrmw9QNr8PRgGyXvGCpza6PHqAxO4oVjNDOf1lj2jrLTFhidv6szVtlbQbeZle2p8+tgqh6bLvGr/eKrYPCxjHs6bH0a0BwFdLyAItx6s2IZG0dYZL1mM5Exu3DmCbehs9Dx21OQQyDE1/u4e0WppDQLunW/Q90Nu2TOa9p07psbhmXI6N4qicGCyxEbHQ9cVKjkz/dswALvtkFTOnG30uesJ7htBGNMeBGnm2dBUscFCDqNArlfD7CVIz+ywX3Wl7bKtmkNVpSJl/2SRveMFNFUR4bgoFj9bR2yyKue14l14zq+cKXFounTeod3OpJ/8ickeTYUoEouuJ67b4fzvGJWeWMtQWagP0gOUzewaK/DK/ePnHQDp2tb1tZn9k3K45jzD78VluZuP45jf/cQx7jrdSG8r2joHJou8Yt+FS0YyLi+unClz5UyZd3/bFWwkPRL3zTf48sk6Xzmxwf1nZRP1x599nOX2gLffsoOpis17vv0Kjq10ePstO9Pn6nvhli/G5oOPRs/j9v/+Wb792hl+9pv2Z6rJGRkZz1tuv/329L8PHz7MzTffzO7du/nTP/1T3vWud13wMVNTU1x33XUX9fxHjx6l3+8zTLMcnimnvqi37hndsvE4MFnk6GKbPU+hV6CpSrqhTnsTc09v23D1tgp3narzQ7fuZLRopwfYtbz0X01vUsffvBFTFGVLUDMc79MV5nQ29WRuLod7Jgz7VVHgSCKw9OUTG0BMztIwNJXrtlcZK9hpf9oTKSQlo09krGhRzpkcnBI/3StmysQxfPCueRxTQ1dVrtle4c6TdQ7Pls/LfFyIvKUzWbZZSOZ2Wy2HoirsqOXSLA7InA77JzVNQUPBuEAG3NRUxosWOVPjm66YSrNqF2LnaJ5qboaFxoDRosmx5Q7Nvp+ukWsTW5zT673EMkqy2tdur6afzXTF4SU7R7jnTANH13HDMO3zNjUVS9dwEwVgy1DZN/H0FX3DtZMzdW7eVcO+iA31rXtG8cLovDnZO15k7xM+S0URheYnbuBnqzlOrfe2BDkXQ87U+fZrZrfcNl1xmK44fPPhSQxNJYxiXndoAk1VUvui+Xo/KT0X5d2xos2brpulNfDPC2zz1tY5MHWxm7kqV0bTFB5blCBm8/tXEhXbb7piktqTrMVGz+NsYyCe1AcnthyWvPbgBG4Qpdnrom0kitwhu8eLaZ+x64eQWCddu626xcpoeJ0Z7v1u3lXjdOK/fN98g5JjbAnu7MRLejP7J4vsHM2z1nEv+NkMrz33n5WqlGH5PYhA0usPT51XFg9wxXSZsmOm4mQg18eio2+9v0KqKg1w064aDy22mChKZvfYcoebdo2kh4QXw5OJp9qmVJSU7K1/j2P5PNuDIL1uDa8Pc7U8p9a7WJrKWsdl30SRw7PlCwa2T8TQVKI45orpMidWu1Tz5gXfwzMNauEyDWzDKOYV+0bTwLZg6fzZD974jD1PMy4PRvImL983xsuTBngviLjzVJ0P3jXPR+5b5K/vnOev75xHTVQNv/gLr0lP+u48ucEP/3938ktvOMQbr5k+b308uNCi2fdZbg62/C0II05v9GgNAsIoSvu/LvbikZGRkfFck8/nOXz4MMeOHXvS+7zjHe/gHe94x0U935EjR7jrrrvSDf50xWG9O/RX3XrtnKvlt2zMLsRY0aLiGOQt/UnbPkxdeh03Z4NLtrGlrzFnyFbFNjRu2T36lK9ZsM/f1lyo72vLOAtW2q+242ne05Ox+RUmy3ZS5mew1nHTPklFUdj+FBmsp+J1BycIn5AtHW76bEOlZBu86sDFH+wbmrolq2MbGtdsq5x3v6tmyomn6ubHnj+fVtL7W7SNi9qMNvs+x1baqGqRm3bV0h7fzXTcgCuny8xUHa6bO9++cdj/+qlHVnD7YRpYqKrCN185yeceW2Oj62E8jUPG0Mpp+PuuqcpWj9Cn4GIOajZjPklZ/I07R7aoRX+9DC1otERQCSS4W2wOuHFXja+e3DivUq2+qbKhmPSf6xeYu5t31yCG5daA1aQH+kLl6SGTdHsAABuUSURBVE+1X1JQQJFezSdWAOQtnfwT4uHbD09xer3LrXvk+39krsp8vZf0R4fnZemfyFAwCaQy8MxG74KVB0/E1KW8+qnQVQU/3PrZKoli8YWwDbEF2sw3XTFJFMcowGePraW2SpuD5b0T5yopyjmD2erXdi25EK8+ME7fD8/r6e554mt8bKXNoekZbjs0mb7Pa7ZVODhV5K5TDVbaA+ZG8tiGxsv3jrHUGrBrLM8/PSCK/TMVZ8t1WFMV/ETU7k1Hth7OfL1cVoGteH/Bb/3LI/yvL58BJKj93++4mUPTpad5dMYLBVNXuXl3jZt31/iPbzjEX331DH/6+ZOcqfeJ4pg3/M4dfN/Nc9x+5STf+74vMfClTP0j9y3y87fv55MPr7JjNM/rDk3w0j2j/N2PvpSzjT7/+MAiDy20+PA9C5xt9Aii8197z3iB6+eq3LSrxqv2jz/jH7WMjIyMZwvXdTl69Cgve9nLntXnVRT4lsOSWfrcsTWaAz+13Hkm2IbGu27b/7T3e7oMYzlncOPOGiXnwluWm3fVuHq2jKqojBfPH2PRNti9qaT5iRycKlEriDrv13o4fqEyvSNzVU6ud9k5+rUFy1ueX1VQn5D/uWX3KI2etyXDerGM5E12jubTMm3tSd73jbtq1HseM4kwVs7ULtgHWnIMLF18fHMXcQBcK1hct70qwjCJ9+UTOVPvgbK1TP1CDPf+TzzAeOmeUeI4ftrPNA2IL2Fe5NkMauHCpajD4G6lNUiD2qlN1Q+b52+sYBOE/QsGrMPvmNnzMDT1ST+/pwpsyzmDa7dVqeQvbg91noUMcjhj6iom6jOav+u2V7lmtvKMvFGfipt211hru19XoKmpUg0B8Mr9Y+yfLHBqvc9MdWtQ/Vzpwhja+QcMAFMVm1Y/4OrZCnB+BtXStVQzYKHZp5wzUns0gG+9avqCYx5eb8Io3lKO/Gxw2QS2x1c7/MD//Aq2oVHvyYW4mjP4ve+9LgtqX8SUHYP/42W7+Hcv3cknH17hf37+JHc8tsZv/vMj/LePPUoYx+wZz9N1Qz5+dJkvHl+n4wa8bE+NnaN57jpV56P3L/DpR9fOe+6cqXFgssh40Waj63Fqo8tjKx0eW+nwga+cQVMVXrJjhNcdmuB1hybOU2POyMjIeDb5D//hP/Ct3/qtbN++nZWVFd7znvfQarV429ve9qy/1nCjeHC6xB2PrfGlE+tPKaTzXPNUQfXFZNeunCk/6d80Vdmywf9aMPRzm7Ph3NmGxoHJ525/Mla0nrLk9+m4arbCiTVRGX6yTf62kVz62zasmroQtqHxzVdevFp3wdIvGAxt5qZdNR5ebHF49sk/OxA7Ez+KLhhwX8xBxUqSdbyQ8M3lRi1v0ffDp3zfT+ybHTJTcfCCiPGSTcHSn3beKzmT1x+eStWAhwcMV0yX8cPzBbWeyNdavTBkomTz2oMTW2xqLpZnM0As2cYWMbCvF0VRmK7kmK587fNzvjb410bJNrhue5UdT3E4N9RRGMZmm3myee4mfcaDIKLwLB/qPO8D2ziO+dt7zvIfP/QAXS9MyyNesmOEP/2Bl3xN9dcZLzw0VeG1hyZ47aEJji23+dMvnORv7jxL4Ic8tiI/3Kpyrpfqs4+t89rf/vSW55gu23zPjdtZ7Xj81VfP0PNC7jrd4N9cO8PPvmw/V0yXOLXe49GVDp9+ZJV/fXiZLxxf5wvH1/nPH3mIa7dX+DfXzvAth6eetK8kIyMj42tlfn6et7zlLaytrTE2NsZNN93EF7/4Rebm5p6z16zmzFSwJ+PJ2Tmal95OQ3vagO35hKIoxE8iCHWpKTsGN+66sCjaZlRVwVK/9r3gMDDynyYzfDlw697RVKTqYtickVUU5bw+02fCsGr5iWW2zyVStnz5fN++UTyZEvwzew7pU68+TUWIrqoEUfSMgumX7Byh3vWfk2vl83o13H26zm/+8yN8/vF1QJrY24OAI3NV3vf267OgNuOC7J0o8p5vP8zPfNMB/vnBJb58YoP758WrbhjYDu0mDk6VuHXvKLfsrm3pLXjzkRn+098/xANnm3zo7rN86O6zTJZslloDvuPaGX71Ow6jKYe581Sdjz20zD8+sMTdpxvcfbrBf/77h3jFvjHeeO0Mrzs4ka3TjIyMZ4UPfOAD3/DXVFXlooKLFzuWfr74zOXA7VdOEoQX9p98sXDjzhrz9V7qcXu583RZ6qEqL/C0WdmL4YYdI5xt9LeIumVcWqp5k8Mz5WcsSLaZV+4fY73rPe2h5kv31Hho4ekrKzYzVXa+7iqZJ+N5Fdh6QcSxlTZfOr7BR+5bSMWhhlnarhvyrVdP85v/9qpMxCfjaSk7Bt95/Ta+8/ptgGT//TDGDUJ0VU0Dzl/+uwf46H2LvOm6GW7cWcMxNa6cqfBXP3ILrYHP392zwF986TRHEzuLv7n7LH9/3yIHp0R+/Z75Jv/X7QcI45gP37vAF4+v84mHV/jEwyuJQuQk33bNNLfuGX1enopnZGRkZLw4kd66Sz2KS8vQhujFwrN9iDFUYs54fvH1HrTZhpZaFD0VlZzJLXueWtTvG8nzIrB9ZKnNW/74i+d5zeVMMY5uDwIKls7//a2HePOR2Uz5OONrQlEUTF3ZolwXhBH/+MASK22XD9+7gJkYhe+dKDBXy/PvXrqD77tpju+7aY7//ZUzfOXkBg8sNDm51uPe+SbNvs/J9R6qonB0qcUnjq4wW3Houn3Kjk6zH6QZX4Ba3mD3WJGZqsOjy210VWG0YDGSNyjaYiLvmBr7J4oYiRBHxdEZyVtUcwZG0kPUc4PUJDyXlHJ8/rE1VjtucggUoCaqfKau8frDk6nAyHy9h6mJimbXC1jvesSx+JUNA37b0MiZWhaIZ2RkZGRkvIAYthdUv45sXkbG85VveGD7zg/czVdP1YljyaDFiJHxRtdDFfVvwqQ9oOeFOIbG9988xw+/fFfWt5jxrKNrKp/8D6/ko/ct8rFEXOqrp+p89ZSYbf+7l+5I7/vLH36Q/hNECobehTfsrOJHEW+4aoqPPbQMQLMf8ETWuz7r3Q04+bWNd3ikM+yguWZbmVfuH2e8aPGejx6l511YROETR5ewDI3jq10eW+0QhBffg6MpokRtGRqGquBHMRXHQFcVul5IjPjIXTld5vffegRF4ZIExAM/pNX3afR9psp2Wlr+9/cu8NBii0bPZ66W40desfsbPrYXOnEc4wYRHTegPQhoD3w6g4DWIOC1B8dTMZ3f+pdHuG6uyqv2Z37jL1SeQXtfRkbGJSBv6Vl7QcYLlm94YLvacZmv9y/4tyiWRva9Y3kOTZV41YFxXrl/7DxfpYyMZ5O8pfOdN2zjO2/YRhjFHF/t8Phql/l6b4vK4nccmcEPYlRVQVeVNLPpGBoFy+CN18zwxmtm+MyjqygKOIZkXN0g4q7TdR4422Sy7LDQ6LPYGPDIcoueF6ZG1UEU4yT3PzJXpdH3eXS5g6acO+x54p7xnjNN7jnTfNr3+ImHV8+7TbnA812IMIa+H9H3zwlrNHr+efcb+HVe/98/y2OrHRSkN69ki7CDY2g0+j5+EJHY16EoCrW8ye6xAj992z5aA5/f/9RxwkheJ4phveOy2BzIQRgx+ydLVBy5Hjy42GSt7RFEEUEYb3kvf/L2G5ipOvy3jz3KybUuR5fEdP7gZJG7T8uhxeYN+ObHbr59rpbjl95wCIAzGz3+098/yBXTZX7qdfsAeHipxW/80yObHrt1Rp84v6MFi//65quTOfT4iQ/cw85ajv/0xivT1/iFD91/wbHI8229wdY13vf2GwARPvn+932ZsaLF77zlWkB8CX/kz+580vFcaAH8+Q/dmB5MfN/7vgTA//eDN6av8V1/+AW8MKLnhnS9gJ4X0vPCVBnxidz1S69L+3z+6qvzAFlgm5GRkZGRkfGs8w0PbP/k7S8BRFp+uLlVlYuTZM/IeK7RVIW9E0X2ThTP+9t7vv3wRT3HhSwRrt9xvrn8hYiiOJVHP77a4cRal0PTJabKDnEc85H7FvnKyQ3qXY9G36fZ82m5kh3zgghFEV06XVNwDI3ZqsPO0TzbR/JEcczZRp99EwVKjsE126r03ICjSy0eWmhxdLHFK/ePsW+yhB9EvP8Lpzix1kVXwQ9j2m5AzwsII/i977kORYUP37PAvfMNFhoDmn2fZl8C3hiRgG/2feoXCIKHbHQ9jq10ePtLd7DR9fj40WWmKzYLjcEF7//F4+tPOX8FS+OabVXyls56x+MfH1ji5t01/uubr6biGDy+2uHX/vHhi/osAA5vsgjpegEfP7qCtynbXe/6/OvDKxf9fLObPOm8IOIzj65Sf8JrfPbY+dZTT0Z+kzBZHMMXjq9veQ0/jPjSiY2Lfr7h8wy5+3RjS7Aex6TaB0McQ6OaM3BMOeAp2jpFS5f/tY0t3pC/8m+ufFZN5TOeP+weK/DgQpPdY1+/Z2tGRkZGRsbXghJfhC74kSNHuOuuu7juuuu48847n+7uGRkZL1DiOKbvh1i6lgpQnNno0fPC87zsAHaN5dA1lYEf8dBCk2Y/IIojohiiOMYxNGoFiz3jBeIITm106bkhRUdHVRSaPZ/l9gA1OQAbyZtYxrk+Y11TMTUlNWEs2Tp7xuVQojXwObbcYSRvsjPxYGv0vNS3EbYeqG0+Whve7Bhaesgx8EOOLXco2Hr6fB034OSW59v0HJuecXi7oSnp+Pww4vHVDraupR5xAz/k9EZvy5w/8chvy2soCrsTgYg4jjm+1kVXFeZq8nxBGHHmCRUyT/V8ANtHcum8nEnGMvSxjOOY+XofS1fJJZn4S6mmmv02Pbt8vfPZ8wJy5vNCuiMjIyMj4wXCM/ltyn6BMjIyLhpFUc7buA6DnqfC0jVu3v30qnlX5Spf69DOo2QbHJmrbrmtkjO5dvvXJphhG9p5cvYFS+fKmfKTPOKpMTSVA5Ol815j3wWqBS6GzUHuEF1T0yD8a+GJn62iKBf1eWe8OMmC2oyMjIyMS0kmeZqRkZGRkZGRkZGRkZFxWZMFthkZGRkZGRkZGRkZGRmXNVlgm5GRkZGRkZGRkZGRkXFZc1HiUSMjI9TrdRzH4eDBg9+IcWVkZGRkZDwlR48epd/vU61W2dh4ZurPGeeT/dZnZGRkZDzfeCa/9RcV2OZyOfr9C3vPZmRkZGRkXEocx6HX6z39HTOeEtM08f0nt+fKyMjIyMi4VFzMb/1FSRiOj4+zsrKCbdvs3LnzWRnc84HhCUB2Ov3cks3zc082x8892Rw/9zzTOT5x4gSDwYDx8fFvwOhe+AxtnjRN4+qrr77Eo3lhkF03nn2yOX12yebz2Seb02eXZ/Jbf1GB7cmTJ7/eMT0vGfoiHTx4MPNAfA7J5vm5J5vj555sjp97sjm+tFx55ZXcddddXH311dn8P0tka/rZJ5vTZ5dsPp99sjm9dGTiURkZGRkZGRkZGRkZGRmXNVlgm5GRkZGRkZGRkZGRkXFZkwW2GRkZGRkZGRkZGRkZGZc1WWCbkZGRkZGRkZGRkZGRcVmTBbYZGRkZGRkZGRkZGRkZlzVZYJuRkZGRkZGRkZGRkZFxWZMFthkZGRkZGRkZGRkZGRmXNVlgm5GRkZGRkZGRkZGRkXFZkwW2GRkZGRkZGRkZGRkZGZc1WWCbkZGRkZGRkZGRkZGRcVmjX+oBXEp++Id/mMXFRaampi71UF7QZPP83JPN8XNPNsfPPdkcX1qy+X/2yeb02Seb02eXbD6ffbI5vXQocRzHl3oQGRkZGRkZGRkZGRkZGRlfK1kpckZGRkZGRkZGRkZGRsZlTRbYZmRkZGRkZGRkZGRkZFzWZIFtRkZGRkZGRkZGRkZGxmVNFthmZGRkZGRkZGRkZGRkXNa8KAPbd7/73SiKsuXf5OTkpR7WZc1nPvMZvvVbv5Xp6WkUReFv//Zvt/w9jmPe/e53Mz09jeM4vPKVr+TBBx+8NIO9THm6OX77299+3rq+6aabLs1gL1N+7dd+jRtuuIFiscj4+Djf/u3fziOPPLLlPtla/vq4mDnO1vKl4fd+7/fYuXMntm1z5MgRPvvZz17qIT0vebauE67r8uM//uOMjo6Sz+f5tm/7Nubn57+Rb+V5ya/92q+hKArvfOc709uy+XzmnD17lre+9a3UajVyuRzXXHMNd955Z/r3bE4vniAI+I//8T+yc+dOHMdh165d/Of//J+Joii9Tzafzw9elIEtwBVXXMHi4mL67/7777/UQ7qs6Xa7XH311bz3ve+94N9/4zd+g9/+7d/mve99L1/5yleYnJzkda97He12+xs80suXp5tjgG/+5m/esq7/4R/+4Rs4wsufT3/60/zoj/4oX/ziF/nYxz5GEATcdtttdLvd9D7ZWv76uJg5hmwtf6P5y7/8S975znfyi7/4i9x999287GUv4/bbb+f06dOXemjPO56t68Q73/lOPvShD/GBD3yAO+64g06nwxve8AbCMLwUb+t5wVe+8hX+6I/+iKuuumrL7dl8PjPq9TovfelLMQyDf/zHf+Shhx7it37rt6hUKul9sjm9eP7Lf/kv/MEf/AHvfe97OXr0KL/xG7/Bb/7mb/K7v/u76X2y+XyeEL8I+eVf/uX46quvvtTDeMECxB/60IfS/x9FUTw5ORn/+q//enrbYDCIy+Vy/Ad/8AeXYISXP0+c4ziO47e97W3xG9/4xksynhcqKysrMRB/+tOfjuM4W8vPBU+c4zjO1vKl4CUveUn8Iz/yI1tuO3DgQPzzP//zl2hElw9fy3Wi0WjEhmHEH/jAB9L7nD17NlZVNf6nf/qnb+wbeJ7QbrfjvXv3xh/72MfiV7ziFfFP/uRPxnGczefXws/93M/Ft95665P+PZvTZ8a3fMu3xD/wAz+w5bY3velN8Vvf+tY4jrP5fD7xos3YHjt2jOnpaXbu3Ml3f/d3c/z48Us9pBcsJ06cYGlpidtuuy29zbIsXvGKV/D5z3/+Eo7shcenPvUpxsfH2bdvHz/0Qz/EysrKpR7SZU2z2QRgZGQEyNbyc8ET53hItpa/cXiex5133rllXQPcdttt2bq+CL6W68Sdd96J7/tb7jM9Pc2VV175op3zH/3RH+VbvuVbeO1rX7vl9mw+nzkf/vCHuf7663nzm9/M+Pg41157LX/8x3+c/j2b02fGrbfeyic+8QkeffRRAO69917uuOMOXv/61wPZfD6f0C/1AC4FN954I+9///vZt28fy8vLvOc97+GWW27hwQcfpFarXerhveBYWloCYGJiYsvtExMTnDp16lIM6QXJ7bffzpvf/Gbm5uY4ceIEv/RLv8SrX/1q7rzzTizLutTDu+yI45h3vetd3HrrrVx55ZVAtpafbS40x5Ct5W80a2trhGF4wXU9XPMZF+ZrvU4sLS1hmibVavW8+7wY5/wDH/gAd911F1/5ylfO+1s2n8+c48eP8/u///u8613v4hd+4Rf48pe/zE/8xE9gWRbf//3fn83pM+Tnfu7naDabHDhwAE3TCMOQX/mVX+Etb3kLkK3R5xMvysD29ttvT//78OHD3HzzzezevZs//dM/5V3vetclHNkLG0VRtvz/OI7Puy3ja+e7vuu70v++8soruf7665mbm+OjH/0ob3rTmy7hyC5PfuzHfoz77ruPO+6447y/ZWv52eHJ5jhby5eGbF0/c57t68SLcc7PnDnDT/7kT/Iv//Iv2Lb9pPfL5vPiiaKI66+/nl/91V8F4Nprr+XBBx/k93//9/n+7//+9H7ZnF4cf/mXf8mf/dmf8Rd/8RdcccUV3HPPPbzzne9kenqat73tben9svm89LxoS5E3k8/nOXz4MMeOHbvUQ3lBMlScfuKJ1MrKynmnWxnPHlNTU8zNzWXr+mvgx3/8x/nwhz/MJz/5SWZnZ9Pbs7X87PFkc3whsrX83DI6Ooqmadm6foZ8PdeJyclJPM+jXq8/6X1eLNx5552srKxw5MgRdF1H13U+/elP8zu/8zvoup7ORzafF8/U1BSHDh3actvBgwdTMbhsjT4zfuZnfoaf//mf57u/+7s5fPgw3/d938dP/dRP8Wu/9mtANp/PJ7LAFpHfPnr0KFNTU5d6KC9Idu7cyeTkJB/72MfS2zzP49Of/jS33HLLJRzZC5v19XXOnDmTretnQBzH/NiP/Rgf/OAH+dd//Vd27ty55e/ZWv76ebo5vhDZWn5uMU2TI0eObFnXAB/72MeydX0Bno3rxJEjRzAMY8t9FhcXeeCBB150c/6a17yG+++/n3vuuSf9d/311/O93/u93HPPPezatSubz2fIS1/60vMsqB599FHm5uaAbI0+U3q9Hqq6NWTSNC21+8nm83nEN1yu6nnAT//0T8ef+tSn4uPHj8df/OIX4ze84Q1xsViMT548eamHdtnSbrfju+++O7777rtjIP7t3/7t+O67745PnToVx3Ec//qv/3pcLpfjD37wg/H9998fv+Utb4mnpqbiVqt1iUd++fBUc9xut+Of/umfjj//+c/HJ06ciD/5yU/GN998czwzM5PN8TPg3//7fx+Xy+X4U5/6VLy4uJj+6/V66X2ytfz18XRznK3lS8MHPvCB2DCM+H3ve1/80EMPxe985zvjfD6f/S5egGfrOvEjP/Ij8ezsbPzxj388vuuuu+JXv/rV8dVXXx0HQXAp3tbzis2qyHGczecz5ctf/nKs63r8K7/yK/GxY8fiP//zP49zuVz8Z3/2Z+l9sjm9eN72trfFMzMz8Uc+8pH4xIkT8Qc/+MF4dHQ0/tmf/dn0Ptl8Pj94UQa23/Vd3xVPTU3FhmHE09PT8Zve9Kb4wQcfvNTDuqz55Cc/GQPn/Xvb294Wx7FIof/yL/9yPDk5GVuWFb/85S+P77///ks76MuMp5rjXq8X33bbbfHY2FhsGEa8ffv2+G1ve1t8+vTpSz3sy4oLzS8Q/8mf/El6n2wtf3083Rxna/nS8T/+x/+I5+bmYtM04+uuu26LBVPGOZ6t60S/349/7Md+LB4ZGYkdx4nf8IY3ZOs84YmBbTafz5y///u/j6+88srYsqz4wIED8R/90R9t+Xs2pxdPq9WKf/InfzLevn17bNt2vGvXrvgXf/EXY9d10/tk8/n8QInjOP5GZIYzMjIyMjIyMjIyMjIyMp4Lsh7bjIyMjIyMjIyMjIyMjMuaLLDNyMjIyMjIyMjIyMjIuKzJAtuMjIyMjIyMjIyMjIyMy5ossM3IyMjIyMjIyMjIyMi4rMkC24yMjIyMjIyMjIyMjIzLmiywzcjIyMjIyMjIyMjIyLisyQLbjIyMjIyMjIyMjIyMjMuaLLDNyMjIyMjIyMjIyMjIuKzJAtuMjP9/+3VAAgAAACDo/+t2BPpCAABgTWwBAABYE1sAAADWAinQeQAga26/AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "az.plot_trace(idata, var_names=['alpha', 'beta']);" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "5cL_9iEkFy1U", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 112 + }, + "id": "5cL_9iEkFy1U", + "outputId": "5f4e1480-ebce-4b6b-bc3e-8d20c329efde" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
alpha2.1971.576-0.6645.1430.0290.0213149.02042.01.0
beta7.4381.8434.42410.8660.0370.0262712.02349.01.0
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail \\\n", + "alpha 2.197 1.576 -0.664 5.143 0.029 0.021 3149.0 2042.0 \n", + "beta 7.438 1.843 4.424 10.866 0.037 0.026 2712.0 2349.0 \n", + "\n", + " r_hat \n", + "alpha 1.0 \n", + "beta 1.0 " + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "stats = az.summary(idata, [\"alpha\", \"beta\"])\n", + "stats" + ] + }, + { + "cell_type": "markdown", + "id": "YkJy6W8rBb6i", + "metadata": { + "id": "YkJy6W8rBb6i" + }, + "source": [ + "```{hint} Here, $\\alpha$ refers to the threshold value (also the point of subjective equality for this design). This participant had a threshold at estimated at 2.25, which is just slightly positively biased. The $\\beta$ value refers to the slope. A higher value means lower precision. Here, the slope is estimated to be around 7.46 for this participant.\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "wwL7l3YzkoXq", + "metadata": { + "id": "wwL7l3YzkoXq" + }, + "source": [ + "# Plotting\n", + "Extrace the last 10 sample of each chain (here we have 4)." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "f98u15bxkObF", + "metadata": { + "id": "f98u15bxkObF" + }, + "outputs": [], + "source": [ + "alpha_samples = idata[\"posterior\"][\"alpha\"].values[:, -10:].flatten()\n", + "beta_samples = idata[\"posterior\"][\"beta\"].values[:, -10:].flatten()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "1j8c193ZBJJO", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 352 + }, + "id": "1j8c193ZBJJO", + "outputId": "e7a4e3d3-5290-4488-86a5-77e6de361e00" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv4AAAHSCAYAAACU489pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5hkdZno8e+JlVOn6e7JeQYYJgEjkhTQUUBMGMCw6grcVXeX3cf17upy75o26j7r1dUFI8KqK2BYARURXHKaRJiBybFzd+WqU+mc+0dxfnRP98Aw0z0B3s/z9DPTVdXn/LoGut/zO2/QPM/zEEIIIYQQQryq6cd7AUIIIYQQQoipJ4G/EEIIIYQQrwES+AshhBBCCPEaIIG/EEIIIYQQrwES+AshhBBCCPEaIIG/EEIIIYQQrwES+AshhBBCCPEaIIG/EEIIIYQQrwES+J9APvCBD7B69Wo+8IEPHO+lCCGEEEKIVxnzeC9AvOi5555j/fr1x3sZQgghTkCO43DnnXdx7/2Pooc6WH7WGwhHopN2/FKxwKbH/4BbHuDC81/HpZdeQjAYnLTjCyGOPwn8hRBCiBNcoVDg+z+4iQ2b97DgtLOZPW8JmqZN6jnCkSive8Ol7Nn5HHf+/hF6env52Ec/QiQSmdTzCCGOH0n1EUIIIU5ghUKBG7/9XTZu2c+ZF7ydOfOXTnrQ79M0jTnzl3Lm+Zezcct+brjxOxSLxSk5lxDi2JPAXwghhDhBOY7D939wE89u7+OsN1xOItl6TM6bSLVx1hsu59ntfXzv+z/AcZxjcl4hxNSSwF8IIYQ4Qd15511s2LyHM86/jFg8dUzPHYunOOO8S9mweQ933nnXMT23EGJqSOAvhBBCnICef/557r3/URacdvYx2+k/WCLVxoJTX8e99z/K1q1bj8sahBCTRwJ/IYQQ4gRTLpe59fZfoIc6mD1vybjnPc8jn8/T09PDtm3beP7559m2bRs9PT3k83k8z5u0tcyevxQ91MFPb/s55XJ50o4rhDj2pKuPEEIIcYK577772Ll/hNdf/J4xhbyu69Lb28veffsZyeSoNzx000bTdDzPxa1XMQ2NlmScWTNn0NXVha4f3R6fpmksP+sNPPL7W7nvvvu45JJLjvbbE0IcJxL4CyGEECeQSqXCAw8/TtecU8b06S8Wizy7eQt9AyNYwTitnfMIhaPouqFe47oNyqUC6eFBBjc+S2dPL6eesvSoW3KGI1E6Z5/Cgw8/wUUXXUQgEDiq4wkhjo+TPtWnr6+PW265hT//8z/nnHPOIRwOo2kaZ5xxxlEf+7777uOyyy6jvb2dUCjEkiVLuP7666W1mRBCiCmzadMmBoYLzF1wqnosk8nw6GNP0jdcoHPWYmbMXkAkmhgT9APoukEkmmDG7AV0zlxE33CBRx97kkwmc9TrmrvgVPpH8jz11FNHfazjzfM8SqUSmUyGUqk0qalRrzbyXr26nPQ7/j/5yU/4i7/4i0k/7te//nX+/M//HM/zmDFjBjNnzmTz5s186Utf4vbbb+fBBx+kpaVl0s8rhBDitcvzPB56+FGiLTPUbn+xWGTd+k04DZPZ8xaMC/YPJRSOMnveUvbv2c669Zt43ZozjmrnPxyJEk1N56GHH+WMM86YslkCU8lxHDZu3MjDjzzGnn29NFwPQ9eYPbOL15+9hhUrVsi04hfIe/XqdNIH/vF4nIsvvpgzzjiDM844g61bt/LZz372qI65bt06rrvuOgBuuOEGrr76ajRNo6enh8svv5x169Zx9dVXc/vtt0/CdyCEEEI09ff3s33XfhasuBho5vQ/u3kLxar3ioJ+n64bzJi9gD07t/Ds5i2csXrVUeX8z15wCts2/p6BgQGmTZt2xMc5HrZv385NN/+InoEcsbaZTF98DnYgSLXisHf/Tp696Ta6f303f/Shq1iwYMHxXu5xJe/Vq9dJH/h/7GMf42Mf+5j6/Ac/+MFRH/OLX/wiruvy4Q9/mGuuuUY93t3dzY9//GOWLFnCz372M5566ilOP/30oz6fEEIIAdDT00O50qC1vROA3t5e+gZG6Jy1+BUH/T5dN+jsnkPfvq309vYyffr0I15fW3sXz1QaHDhw4KQK/Ldv3863bvw+VSPFOWsvJRgae+djxpyFOOUiGx67j2/d+H3+5JqPvmYDWnmvXt1O+hz/yVYoFPjNb34DMCbo9y1cuJALL7wQgFtvvfWYrk0IIcSRGx4e5p577uG2227jnnvuYXh4+IQ7dk9PD1YojmnZeJ7H3n37sYJxQqGjK84NhaNYoTh79+0/qhxt07KxQjF6e3uPaj3HkuM43HTzj6gaKdacf8m4QNYXDEVYc/4lVI0UN938o8OeVjyV/10da1P9Xonj76Tf8Z9sGzZsoFKpEAgEOOussyZ8zXnnncc999zDo48+eoxXJ4QQ4khs2LCBW358G5lig0AkSaWY4dd338eHrnoPK1asOGGOvXfffsKxZv1YoVBgJJOjtXPeUa3Pl0y1M9K/k0KhQCwWO+LjhGOt7Nm7b1LWdCxs3LiRnoEc56y99GXTnHRdZ8VZb+Thu3/Mpk2bWLNmzUu+/lD/9h+88gpOPe10Sk6dcqVOpdagVm9QrbnU6g1qdZdq3aVWG/X3uqte03BdGg0P1/NouB6u2/yz0XDHPeYe9PeG6+Jf23keeHjNPz1v1OMeHsDo54GeXc+y7ZntLDrrnfz20T2oS8QXnvc/8Y9Ta8zhgft/yTOD32barKUv+V690uvNV3x5+oqP/8q+4JWuPxQw+fqn3/jKvugYkMD/IP5kwlmzZmFZ1oSvmT9/PtCcqiiEEOLENjw8zC0/vg0tMoMLLjgX07So12s89cQD3PyjW5k1a9YRN2uY7GPvP9BPonURAPl8nnrDIxSOvsxXHZ5wJMpAozn462gC/0Sqjf0HJneKr38Xohmceupz13XHPX7wa/3XHfwa/+N399yLHW2n/sL3PvprG40Gruuqr/c/d7wgN9/yI7K5ItlilaJTp1TxKFddShUXpwbpdI7HH/g1odZ5TJu7Gg+Tul3nma3rueOT/8ycFZdih478fT7WPM9j99MbCUS6KFZ1qFYP46ssjGgX2557mlpw5klZ8D1VIsETM8Q+MVd1HI2MjAC85A9q/7l0Ov2yx7vhhhu48cYbD+vcW7ZsOazXCSGEOHwbNmwgU2zwhjech2E0f+2ZpsXpZ57H/9z1n6xfv56LL774uB/b8zycikPEsoFmNx/dtI84t/9gum6gm/ZRt6S2LJt8tYrneeMCPT+IHv3RaDSo1+sqqG40GurDD8D9wHv086MfO/hYlUqFUqlEuVymWq1SLpfV30ulErVajXK5jOM4PPL4RjoXvI70vfeOObbrgaeZoNt4moWnWaBbYNjk83Ee3/4cO7UhDOvgmQXNuwaDe/ZQrAeYNvMMKu4L/0a6TducM8gN95Ad2En77OVH9V4fS269SrWco23mslf0dbGWmeSH9uLWqxO8V+JEI4H/Qfw8Ndu2D/kaf3DJ4Ywu7+3tZf369ZOzOCGEEK9YJpMhEEmqwNxnmhbBSOqoetxP5rHdF1I0tBfSUVzXRdMmtxRP0wy1i34k/B32Wq1GoVAAoF6vU6vVqNVqY3bQ/UD9YKMDfz/497+uWq1Sr9cplUoUCgUKhQKlUol8Pk+xWBwT4LuuS71ep16vq3P5x6rVariuS6VSIZ3JES671IMGmhlFM4PoZhDNCqn3V3vhw2cGy2i6iduoHTKYrVWKBCLJ8bMUDJNAJEmtcnLN/HEbNQB089Dxz0R001JfL4H/iU8C/4P4PWmrL3GLq1KpABAKhV72eF1dXaxateqwzr1ly5bDupgQQghx+JLJZu51vV7DNF9M4azXazjFNMlk8oQ4tq7raBp4LwTmuq7jeUcepE/E8xqvqJ3nRLv3xWIRx3EYHBxUAfuh+IH56B1/PzivVqs4jkM2myWbzZLL5SiXyxSLRUqlEtVqVQX4o1N3/EDfP+aYDwwITkOLtmKEO7CtBGblDxjxudipWYf/fddfCIKNiVN+AaxAhFKmD7dRRx914ec26lSKGRLT5h/2+U4E/vfq1g8nxedFh/NeiROHBP4HSaVSwIspPxPxn/Nf+1KuvfZarr322sM69+rVq+XugBBCTLKVK1fy67vv46knHuD0M88bk4efjBiHvTkz1cfWNI1gIEit1gy8IpEIbr2K6zYmJd3HdRu49epLDvHyg/uDd9BHB//lUhFdb+76+3RdR9f1Mak6nueh6zqWZWEYhkrPGRwcJJ1OUygUyOfzVKtVarUalUqFWq2m7iqYpolhGNTrdXUnoF6vq3NZlgVmlLrdjhtop2620DDiMCr9yPM87FCC/Mh+Ym2HH/jnR/Zhh+Ivufud6JhLuuc5Bnavp2POKnTDxG3UGdi9HrdRI9ExOUXZALrW/LZG/6nrGroGxgsXjIauqcc0TXvh44W/A2gv3tXw3yLN/8TzcF2bfFsKt3iA+Mw5jK2W9f/+4rH8P7LF/XS2J1kwPTzhHarR6WD+39WaXlzEC2sa9bxae/ObHvv5wcfSRq1p1N/91/hfM/pNYPRfX7o24UhKFwLW5KToTTYJ/A+yaFGzqGrv3r3UarUJC3x37Ngx5rVCCCFOXK2trXzoqvdw849u5X/u+k+CkVRzNz5i8KGr3nNUU9gn+9gzpk9jW+8QALFYDNPQKJcKRKKJI16jr1QsYBrauMLe0bvnE+XZj6brOsVCltnTu5vrM000TVOv94/n7+hns1kGBgYYGBggk8lQLBZVCk6lUlE7+rquY5ompmmOWZemaZimSTAYxLZtPM0kWwuTq8fJVCOUGy+dlqJpGslpCxjcs5F6tYxpv/yd+nq1TGF4P+1zVr5ksWogFGX6gpX07XiSPSO7CUWSVEppdLfC6ctW0t0FoUCZgKUTsA0ClkkwaBG0TYIBm1DQwjJ1LEPHsozm40GbgGVi2yamrqMbGvoLQbx/weO/56P5F2ij/93G1DO88G/s3zEZ/e/daDTU8Za3rOCu3z/C4k6PYCg87r30//T/XnHKlLYP8653vpHly+eoCzL/os0wDLXm0ev3/z7648WLFSkQnkoS+B9k1apV2LZNpVLh8ccf55xzzhn3mgceeACAs88++1gvTwghxBFYsWIFs2bNYv369WQyGZLJJKtWrTqqoH8qjj1r5gw2bV0HQDQapSUZJz08OCmBfyY9SEsyTjQaHRMAjk6hGR3s+0H36MDMMAwa1SJLFq8gEomofHr/o1KpkMlk6O/vp7+/X+3oQ7OGznEctWtvWRaJRIJwOIyu69RqNXUOy7JUrZ1T09ifNdldDJGphPBeZnf2YPGOuQzvf5r+HY/TveS8l6yb8LwGgzsfI2i5zJ/VRjSQJWA1CBgetuESsjUCJgQtCActAoGZVCod7N+/n1qtRjK5kKVLl5JKpVTQq+s6hmFgmiaBQIBAIKCCY/95GHu35dDr81SBs5/ydHDnI79W4uB/44P5/6a2bau/r1ixgvUbn2b75idZseZC9T0YhjHm4qOZhuax7tnHWDSvm7e//e1EIhEJ2k8CEvgfJBqNsnbtWn71q19x4403jgv8t23bxr333gvAFVdccTyWKIQQ4gi0tLQccfeeY3Xs7u5uauX7qNeqmJbNrJkzGNz4LOVS4ajaepZLBWrlHDMWLqVarard+dF58oAKug8OWv2/VxyHajlLLBYjk8mogL9QKDA4OMiBAwcoFotjimsrlQr1eh3Lsmhra6O1tZVgMKi68/gXAq2trSolKFuosmfQYqAUJl0J8nKpGC/FMG26Fp7Dgefup+e5B+iafwbBYABLb2DqDSzdxTY8tIbDvu0b6NB7eeNlZ9PdbWPbNsFgUL0nftDuB7j+Dvby5cvVHQvLslSAb9u2uojRNG1MzYP/3h/KwcXLMLaFqR/Y+6lSo1/n8y+kJtph9/9tLctSFyKWZfG/rvljfnDzT9ix+XFWrrmQcGT8f3flUpFNj99HWMvz8Y99jGh0clrOiqn3mg38zz33XPbv3891113HddddN+a566+/njvuuIObb76Zc845h6uvvhpN0+jt7eXKK6/EdV3e8Y53sHz5ydOmSwghxImvu7ubUMBgeLCPad2z6OrqorOnl76e3cyet/SIcv1dt0HvgV20t8RpaWkZV2xrGAa2bY/Z1fVTNTRNU7vM5XKZA/t2QqNGJBIhnU6TyWQYHBxkZGREpfGM7s5jGAYzZsxg2rRpBAIBqtUq6XSaYrGIaZpEo1F0XX+hi0+R3rxBbyHOQKnlFe/sH0zXPOJBl5hVJdIa4pSWJTz3zBPkNm+H9tnEu2ZhB4K41TojQz0U0j20JQJc9q73MWfOHPW9+4H26HQk/yLA38UPBoMq0Pfft9F3Q3K53Mvu5I9Ov5no+UqlguM46oJg9J0Z/47CwRds/uf+BYh/EeJ/PlGhd0tLC7FYjJtu/hGP/O4nRFtnMn3mPCw7QK1a4cC+nRSG99HdEecjH/6Ymm0kTg6adzSzu08A+/btY+XKlerzSqVCoVDANE0SiRdvjX7mM5/hM5/5jPp8zpw57Nmzh//7f/8vf/d3fzfuuP/2b//GX/7lX+J5HjNnzqStrY3NmzdTqVRYvHgxDz74IG1tbZP6vfjFvatWrWLdunWTemwhhBAnPs/z+LevfZ3dgy5rzn8L0Ozn/+hjT+I0TGbMXvCKgv9Go86+3duwtAqrVy7Htm3q9TqAChb9NA8/qB2drlGv13EcR7XqXP/oPbTYRS5561qy2SxDQ0OUy+Vx7TsTiQRdXV0kEgkcxyGdTlMqlVSgDM3iYMdxyJVdeoox9mVDlGtH3r40GoBpcWiLNogaRUw3T73WrCEIBoOEw2FM06S3t5dt23cyki2i6waWZTK9s43Tl53K3LlzMYzm++u/H6ZpjgmcQ6EQoVBoTJAPqAseP9h/qUB/9Hs1+uLCv/viFzr77/voOzKjP/x/P/9zP6i3bVtdmPjfzyvlOA6bNm3ioYcfZc++Xhquh6FrzJ7ZxTmvfx3Lly9XnRDFyeOk3/FvNBoMDw+Pe7xer495vFQqvaLjXnfddSxbtoyvfvWrPPbYYwwMDDB79myuuOIK/uZv/kZuawkhhJh0mqZxzutfxzPf/ymlYoFwJEokEmH1quWsW7+JPTu30Nk952XTfjw8ioUcfQd2E7I8Tl26GF3XaTQaKq0DGLNTPFqj0VCDsPygPpsZYbhnJ6e+bhm7d++mUqmMuWsQDAZVKo9t26TTafbt24fneWp33w9qq9Uq+VqAXZlW9gzrR7S7Hw5ozGrV6U56tIVrUC9SKBRwHAfDMwmGQkRbW4jH49i2jWmaRCIRVqxYwdvt5iAzfxbB6CD/4F3xcDis0n1GFx9D8+LFbzv6Umk7B6fo+O+bf/dldNciv7OR/+8SDAbHBPoH1wv439vBaztawWCQNWvWcNZZZ6nZCbZtEwqFJJf/JHbS7/i/msiOvxBCiEqlwt998R/Q43M5dfka9XixWOTZzVvoGxjBCsZJtbYTCkfH3AFw3QaFQo700AA1J0d7S5y5c+cQCoXGBId+bvfBqR6u66qJt36A6gf427dsYGTvBi6+8HzVfcUPQNva2lS3IL9Vp5+CommauoBoNFyytQjP9lr05V558DijLcCCTpOueIOYXaVYLJLNZqlUKui6TjQaJRaLEY/HVQpOJBIhEAhgGIYK0kfXHfgfwWBQdRAKh8MqoB4d5Hqep47hF9BO5OCv8QN6/0+/QNd/bHRRsx/Yj+6MMzqV6Gh28YU46Xf8hRBCiFeTQCDAea8/i9vu+B/mLjhVFVdGIhHOWL2K3t5e9u7bz3DfTuoND9200TQDz21Qq5YxdI1kPMq0WfNobW1RO9dw6IDfzyEvlUpqJ9rfxdZ1nWxmhD3bNnLKvGnqeIFAgFQqRSQSwfM8crkcuVxOXRBA885BMwUlwEDBYMNenYH8Kwv4Z3cEWTY3xuwWF+oFHKdALpfjwGBJpfG0tbURj8eJRCKEQiHC4fC4lCI/DccP8v3vwd/V93fQDw6qDzfYH/11foej0Tv4oycc+++RbduEw2EV8PsXIf66/LsMssMuJosE/kIIIcQJ5o1vfCPrNz7Npsf/wOvecOmYLjLTp0+nu7tbDcBqdtFpFnuGw6FxgaRfsOs/drB6vU6hUFDFpX5w6gecIyNpNm94iGS42bo0EomQSqVUu81SqcTIyMiYHX7XdVXazHABntit05c7/Pz9RMTk7FNaWDEvArU82WyGYrZMLpejWq2iaRrxeJxkMkk8HiccDhONRgkGg+i6rqYC+0G/X+Dq7/6PLsidKNgH1J2BQwX7B1/g+Okwo/P7/VSg0cPM/PqAiWoI/MeFmCryX5cQQghxggmFQrzn3e/g/33zu+zZ+Rxz5i8d87ymNQdxxWIxlR8OqNQRv/AUUDvHB3NdF8dxKJfLYwJ+TdMIhUJkMlnK5TIDPbuoF/u54Pw1TJs2TeV4u65LJpNRaTaWZalhUKFQiHzZZd1u2DGkczjtOHUNTp0T45zT2pg3zWZ4eIjs0H7K5TKFQoFqtYphGLS3t9PS0kIkElGpPaZpqq43fnqSn8oTjUZVsO235/TTeg7WaDRwHIdKpTJhce7oAVp+tx7/ffONbq05+m6CfyF0cC2B7OiLY0kCfyGEEOIEtHjxYi48/3Xc+ftHSLW0k0iN7STnp+e4rqvSUTRNIxgMql1+fzjTwV/n74T73WP8YtNAIIDrugwNDdFouDilPD27nmL5knmsWrUKaKa0+HcadF0nHA6rjjbBYBDX01i3q87TPSYN9+UD2qClc85prbxx5TQCRo2hoSH27ClQKpUoFotUq1Usy6Kzs1OlFiWTSTVArFKpqFai5XIZANu2iUajamd/9E77RFNvq9Uq5XJZXUCN5l/UaJqm2pH675nP/9zzPDWYzN/J9y/ARhcMS46+OF4k8BdCCCFOUJdeegk9vb08+cCdnPWGy4nFUwBqOJZfgOun5vi72Ifa5W80GiqFxZ+i67oumqYRDocplUpkszkAKuUiz234H+bPSHHxxRdhGAb1ev2Fi4IGoVAIaBYd+91e9g/XeHSXSbY8/twHi4YMLl7VwQUrOmnUymQyQwwVmgF/LpejUqkQCATo7u4mkUg0Jxm3tBAKhahWqxQKBRVwVyoVAFWY6+fIjw78J3ovXmp33w/aK5UKIyMjVKvVMa/zC3T918ZiMfW++8XPflvN0UO/hDieJPAXQgghTlDBYJCPffQj3HDjd3j8D//NGeddSizRguM4AKpgNBAIqH78/t9H83f5/Z1+v2uPv0NtWRa5XI5SqYSmQSGX4bkN/8PCWUnedtmlBAIBCoUC5XJZBdT5fB7P84hEIpQrDR7Z2WDbgP2y31MkaPCm1dN446ppNGoVsulBHMchn8+TzWYplUoEg0E6OztJJBIkEgna29sJBoMvXJhkVR694zgqtchvu+l3wQmFQhMOqKrX65TLZXWxMJq/S++n8fgzCka/j/V6Hc/zCAQCxGKxMbv6EuyLE50E/kIIIcQJLBKJcO01H+d73/8Bj/3hl8xauJKZcxerYtzRqT2BQGBcsOnfHXBdV+2S+6/xc8xHRkaoVJpFqD17t9O7+xmWLexi7do3YRgGmUwGaHYcchyHUqlENBrFNE0OjDR4aIdJofLSQa5laFy8uoO3vm4GuDWymRHq9TqlUonBwUEKhQKWZdHe3k4ikSCVStHR0UEwGKRcLjM8PKw65FQqFTRNU/n7/sVOKBRSBb4H89N5Rufj+/wOQKVSSd3RGM1P4/FTiA5OofKD/YlSiYQ4kUjgL4QQQpzgIpEIH/mjDxP72c944JHH2L9nG6esOIdEMjWmNeTB/LacruuSz+dVe00/n980TQYHB6nV6pRLebY+8zhaZYQLX7+CVatWqdQgXddVu08/4EYzeGIXPH3g5dN6zlqS4t0XzCZsexQLWTWsqre3l2w2C6Dy99va2ujo6CAej1Mul1+4KGnuzvsdcsLhsErp8Xf8DzVYqlKpTJi/718oVatVRkZG1F2U0fw7In43oNHHHz1Ea6ILDSFORBL4CyGEECc4vy3kZZdeyqyZM7nrN3ez8eE76Jy1lAVLTiccDo95vV+w6uf/F4tFPM/DMAwajQaRSASAgYEBCvkc+3dvZXD/88zqSnDpFe+mtbVVdejxO/9Uq1VVIFuqm/zP8waD+ZeeAdrdGuTDb5nHzLYA5XKZcrmZNpNOp+nv76derxOJRAiHwySTSbq6umhtbVW1BH4dw+i7G35KD7yY03+oHf5SqTQu4PcHZPkXFQfv7vvBvt8BaHSw76dSHaorkBAnOvmvVgghhDiB1et1crkcnudRKBSYO3cuf/6nn+TBBx9k41ObeeIP24impjN7wSm0tXdhmJaatuunt/jFpp7nvbCTXmLX9ufZu3ML2cG9RAIaF527ivPOO08Fwo7jqKm4nuepXfWBUpDfP1PHqR066LdMjcte182bzuyi4jQvGqC5+75v3z4KhQKmaaqi3e7ubrq7u9F1nXQ6rQaJ+UG//1o/4Pd78h+q//6hAn5N0ygWi+pCaMyaXwj2J+qEZBiGSimSVB5xMpPAXwghhDhBNRqNMUG/53lEo1E0TePd734373rXu3jqqad48KFH2L7x9zzt1MEMEYqmCIZjeB5ql79eq1KvOeRG+hkeOIDbqNASD3H6mtM499xzaWlpUbUAIyMjpNNpdREQiUSIJxI8td/i0W3jU2JGm98d4Y8vXUAsCLVqBdM0cRyHwcFB+vv7aTQaate+vb2d2bNnE41GKRQKqnAXUEW0sViMcDisBoRFo9EJu/TU6/UXhpmNzeH3A/V8Pq+Kmkc/5/f1n+iuwUt1BRLiZCSBvxBCCHECcl2XXC6H67qqT30sFlNTa/2c/jPPPJMzzjiDffv2sX37dnp6etixYxf7ena9kOrzwo55PM60ZJRWO8iC6YuIx+O0tLQwd+5cUqkU5XKZYrHIyMgImUxGpQalUiliiVZ++1SV7b2HDvoNHd5+7kwuWtlOtVrBNIPUajUKhQI9PT3kcs02odFolEgkwpw5c+js7KTRaNDf36968PstSv08fn+nPhwOqxaiB79PxWJxXJcev2tRqVQa99zovv4H7/z7FwOH6gokxMlMAn8hhBDiBON5nirG9TvRJBIJNbH34ELeSqVCOBxmyZIlzJgxg5UrV6LrOqVSCdu2aW1tpVAosGXLFoaGhnBdF9u2mT9/PqlUinw+z9DQENlslpGREVX4Om3aNOxIC7c+lKM/Uz3kejtTAa65fBGtUfA8l3A4TLFYJJfL0d/fT7FYxLIsgsEgra2tLFiwgGg0SiaTIZvNqjsLjUZDpfX4u+yHSuvxPO+FuoHymODdv1NQqVTGBPx+fn40GlUzCUZ/na7rKuCXdB7xaiWBvxBCCHGC8VNW/EFbftDvT6Mdzd+pdxyHYrEIoAZPhcNh4vE4hUKB5557juHhYRX0L1q0iJaWFoaHh+nr6yOfz5PJZNA0jUgkQmdnJ1U9yQ/uHaJQbky0TADOWtrCBy6ejeY1d+n9Hvh+0O84jgqoZ8+ezcyZM9E0jd7e3jG7/K7bvGCIRCKqJmGi7xeaefzFYlFdMPjFzNAM/P26BEC1+fSP63cU8kn+vngtkcBfCCGEOIH4A7b8HvexWAxd18d0s/EVi8Uxgb9pmqqo1+94UywWef7551V/+kAgwJIlS4jH4wwMDDA4OEg2myWdTqPrOtOmTaO9vZ1sI8nN9xyg3pi4iNfQNd5/0WzWLI5jmTrBYJjCC5N3s9ksvb29asBXLBZjwYIFtLe3UywWGRoaUsG353mYpkksFlO7+n6//INTbQ5O6/F3/f2A3XEcNXDLNE1CoRCxWGzMhYHvUO+pEK9mEvgLIYQQJ4h6vU6hUFB998PhMKZpqiB+ND/oLxQKVCoVQqEQ1WqVWq2mutOUy2V27tzJ8PCwypufO3cukUiEgYEBhoaGGBkZYWRkBNu2mTlzJq2trQzXUvzw7t24h2jcEw+bfOKdi5jeYqlc+Fwuh+M4DA8P09/fj2EYhMNh2traWLRoEeFwmMHBQTXx1xeJRFTuvn+3YaJgvFwuUyqVVO5+uVxWqUF+FyNAteGMRqMA4/L7JeAXr2US+AshhBAnAD+v3//TnwZrWZYKYn0HB/2RSIRarYbrupimiaZpVKtV9u3bx9DQELVajXA4zJw5cwiFQgwPDzM4OMjQ0BDpdJpoNEpXVxfTpk1jbz7Oj+/Zdch1zmgP8ydvn08q2gz6/c5DlUqF/v5+BgcH1YVKZ2cnCxcuBGD//v1jgnDTNIlEIqof/sG7/r5Go6EmDnueh+M4VCoVVedQKpWAFzvwRCIRNXDM3/0Hxkz2lZQe8Volgb8QQghxAigUCjQaDZWn7wewsVhszOtKpdK4oN/fBfc8j1qthmmaDA0NMTw8jOM4RCIR1Se/VCoxMDDA8PAwmUxGBf0zZszg2b4AP7//0EH/6fOT/NGbZ5GIhVWBbLlcxnEcDhw4QCaTIRwOE41GmTVrFrNmzaJcLtPX1zcmCD940q4fsB8ckPu7/K7rqhQoy7LUAC5oBvx+jr5t22N2/4GXnewrxGuJBP5CCCHEcebvYlcqFarVqirmjcfjY/Lc/UB4dNDv98mv1Wo4jqPSbvxuOtFolJaWFhX0DgwMqPaZ4XCYrq4u5s6dy9M9Fj+/f+ch1/iGFR1ccf50wuFmAO0XH+fzeXp6esjn80SjUZLJJLNnz6a7u5vh4WGGh4fVMXRdH9OH/1AFvKN3+SuVCqVSCU3TsG2bWq2mahVCoZBqzVmr1dTuvy8QCKgLKCGEBP5CCCHEceUXrPq7/X7rytFpMNDMVS8WiyroD4fDBAIBqtWq6nLjD7nq7e2lVCqpbjbQDIL7+vro7e2lUmkO1urq6mLhwoU8fcDgtvu2H3KNl53dzWVnd6sAvVqtUq/XSafTYy4wWltbmTNnDm1tbRw4cEDdvQBUypIfhBuGQTweH5faU6lUKBQKYybw+mk9juMQCARUSpC/i+/n/vtM0yQajY55/4QQEvgLIYQQx5Wf118oFFRev5+v7qvVauTzedXRxk9dAdTFQKPRIJFIsGvXLsrlMrZtYxiGShcaGhqip6dHdbfp6upi6dKlPLVP4yf3bDvk+t77xlm8+cxuFaA3Gg0ajQYDAwMMDAzgOA7RaJSOjg5mzZpFPB5n7969Kp9/dKqNz7ZtNYzM53kexWKRYrFIqVSiWq2qeQLVahXLskgkEpimqWYClMvlMa05dV0nEolM2AJUCCGBvxBCCHHc+Ck6fh67vwM+upi3Xq+Ty+VULn0gEFBdafr7+8nlctTrdVpbW+np6VFpMfV6nUAgQCKRIJvNsn//ftUvv7Ozk2XLlvHsAY0f/W7rhGvTgA+tncMbVnarAN1vi9nT06PqB+LxONOmTWP69OmEw2H27t2rgvGDU3uAMXchDv4e/SJhaN4h8Kf4xmIxLMtSXX/q9Tr5fH7MMQ5VJyCEeJEE/kIIIcRx4Kf4+AWy/g746J1w13VV0O9P4Y1Go0QiEQYHBxkZGaHRaBCJRNQdAf9CIhqNkkgkKJfLHDhwAGim0bS0tLBy5Up2Dxv88DdbJlybBvzRW+Zywcpu9Ziu6xQKBQ4cOEA6naZSqZBIJOjq6qK7uxvLsti3b58q4vVTeUbn10ej0XFtNB3HYWhoSKXraJqGaZq4rquKdgFVvFssFscUCktajxCHT/4vEUIIIY4Dv19/oVBQQa3ftx+au+v+DnixWFQBbiQSoVgsqk45pmli27aakpvNZtXgqnq9Tl9fH7VaTV1crF69moGizQ2/fPaQa/vwW+ZxwcouoJmqY1kWmUyG/fv3k81mqVarJJNJurq66OzsRNM09u/fr77eT+Xx+YXKo3f+Pc8jm80yPDw85g6Brutq+JamaSp9x093Gn3McDg8JoVICPHSJPAXQgghjjG/INff5fYLeUcP6fKLePP5PIZhEIvF1PO7du1Su95tbW0qxWdkZARN01RXoOHhYcrlsioGXrVqFSU3wtdve5bGIaZzfWjtPN7wQtDv59gPDg7S09NDLpdTQX93dzft7e24rsvg4KD6+lAoNOb70HWdRCIxpojXvyAZXfxrGIZ6D/y7BH69g3+R5PMLhQ8uDBZCvDQJ/IUQQohjyC/krdfrqjD24H79juNQLpfVDrefIhMMBnn22WdVn/rW1lZKpRKZTEbtnHd1daHrOuVyWQX9wWCQpUuXYoZb+Mp/bqZScydc2/svmsOFq5pBv981p6+vjwMHDqhOO37Q39raSr1eZ2RkRH19NBolFAqNS/cZHaAXCgX6+vrG9Nr3W3L6dwT8XX4/99/3UpN9hRAvTwJ/IYQQ4hgql8sqv9+yLFWs6wfHfkpLPp+n0WiooD8SibBr1y7Vqz4YDBKPx9mwYQPDw8OUSiVaWlqAF9OE/O4+s2fPpmv6bP75J89RKNcnXNclr5vO2rOmA6hUm4GBAXp6esYF/alUimq1SjabVV8fj8exbVsF/aZpjsnx9+8MZDIZ9TWH6vgTCoVU/YNPdvmFOHoS+AshhBDHSKPRUDvx9XqdZDKpgmxoBsd+kW69XicYDBIKhYhGowwMDDA0NAQ0d9LnzJnDxo0bSafTFItFlRbjF+E6joNpmnR0dDB33ny+c+dO+kacCdd1zrJ2rnjDbKAZYEciEfr6+ti/fz/5fF6ttauri3g8rlKQoBm8J5NJDMNQvfRN01TpRtC8g+HXIPhM0yQWi6kLA383HyCXy43pyx+JRCSXX4hJIIG/EEIIcYyUSiUV/AeDwXGtO/P5PKVSiUqlona4Y7EY2WyW/v5+oJkGM2vWLPbu3Ut/f786ZmtrK4ZhqCnAfm79vHnz+NWjA2zek5twTafPT/LRSxaqybh+0L9v3z7y+Tyu6xKNRuns7CQWi6lJutAM1v2pwH6gblkW8XgcTdNoNBrk83lGRkao1Wrqa/x2pD7/fSiXy2rOgP94LBaTjj1CTBL5P0kIIYQ4Bmq1mgqaRwe/flBbKpVU204/59/v4JNOp3EcB03TaGtrA2Dr1q3UajUKhQKtra3ouk69XqdaraoUoRkzZrBhZ5n/2TQ04ZpmdYT5xDuWYOiaSicaHBxUOf1+S83u7m7i8TiO46hde13Xx6QWwdig33Ec1Zvfz+e3LGtM5yJopiz5Bbyj8/6lL78Qk2/KA/96vc7OnTsZHBxUP7DmzZsnV+9CCCFeU4rFItVqlUqlQiQSwTAMldriB/D+FN9YLEYwGFStPLPZrOrWk0qlePTRR2k0GmSz2TEtLf3d8mAwSHt7O0NFnZ8/1D/hehIRk+veewoB2yAYDBKNRhkeHmbPnj3kcjlc1yUQCNDV1UUsFlPTdOGlg/7R9QX+HQPDMLBtG9u21e9/TdOIRqPq9f5x/FkGtm1P0b+EEK9dUxJ953I5/vM//5Pbb7+dRx99lHK5POb5UCjEmjVruOKKK/jABz5APB6fimUIIYQQJ4RKpUK9XqdUKmGaJsFgkHA4rFJk/Lx+f4fdD+QrlQqZTIZarUY8HicSibB9+3a1k16r1ejo6KBWq6lUnWq12syvN0P89N7hCdt2WobGn7/nFFKxgAr6s9msCvr9+oLOzk7i8TjFYlHtxr9U0F+tVlUhsH8REwgEME0Ty7JUYa6f2uOnJfkOLggWQkyuSQ38M5kMf//3f883v/lNyuUyS5cu5X3vex/z58+ntbUV13VJp9Ps2LGDxx57jE996lN8+tOf5pOf/CSf/exnSSaTk7kcIYQQ4oRQKpVwHIdGo0EsFsOyLJXj7gf91Wp1TOcaPy3IH7xl2zaO47B37151hyCVSo0J+l3XJRwOEw5H+OWTRTKF2oTr+eNLFzC3K0YgEFC59bt37yabzVKr1QgGg3R0dBwy6Nc0bUz3nlgspuYOVCoVCoUCuq4TjUbVnQM/ZccfVOa3NPWFQiF1B0QIMTUmNfCfN28eyWSS66+/nquuuoqZM2e+5Ov37dvHj370I2688Ua++93vMjw8PJnLEUIIIY47x3Go1+uUy2Usy1IFtIAK7v28/2g0immaKoDO5XIEg0F0XUfTNHbv3k21WiWXy6lWoPDioKtKpUI0GuWxHQ2295QmXM+lr+tmzakdBAIBYrEYtVqN7du3k8lkVM//trY2ksmk6i7kT9SdKOgPh8NkMhlc18VxHNVhKBQKUalU1AReQA0qy2azY1J7otGo+l6EEFNnUgP/r371q3z4wx8+7B67M2fO5H//7//Npz/9aW6++ebJXIoQQghx3Hmep3btXdclFoup1Be/dWehUABQQX+1WsXzPIrFIpqmYRgGjUaDQqGgJvGWy2U6OztxXZdgMEgikSCTyRAMBtmX1nhwc37C9SydFeNdF8xRQX+j0WD37t1kMhnV87+1tZVEIqGGf1mWha7rJJNJdF1Xu/+GYWBZlhqw5d/V8AeS+dOC4cW8fdd1x/T+n2jAlxBi6kxqEt1HP/rRI/qf1zAMPvKRj0zmUoQQQojjzt/tdxxHFbb6wXChUFCdbAKBALZtq13wYrEINHPn/V3zffv2qRQf/xi2bZNMJimXy5imSUMLcte64oRrSUUtPvHOpQQCNrFYDM/zOHDggGoJapom7e3txONx6vW6GjDm9+m3LGtM1x3P81QNX6lUUr3+oVlk7K/RMAySyaTK//f5a5egX4hjZ0qrZ+69996pPLwQQghxwvID41KphOd5qmjX77Wfz+dVv/1wOIzneXieR71eH3MBEAgEGBgYUD3+HcdRu+T+n9VqFcu2+e0mh3LVHbcWQ4dPvmsJyXhINdQYGhpi//796s5CR0eHuiDIZrMq6E8kEliWpfLx6/U6ruuqdB//IsUf7OW6rkpl8ot+/YFivlAopNp+CiGOnSkN/C+++GLe/va3s3Xr1qk8jRBCCHHCqVQqqn2nbduqh/3o6byACvr9ILhSqWAYBoVCQbW+7OnpoVqtkk6nVUedSCRCJBIhn8+j6zpP79fYO1SfcC3vu3A2i2al1DTdfD7P7t271UVJe3u7GiSWy+UwDEPNEggGgyro91/vd93x04P8Yl1N01RHIr9bkN99CF5M+ZEiXiGOjykN/L/73e+ybt06li1bxp/92Z9J8a4QQojXDD+3H5o73H77Tj/Fx2916efxA6qjTjqdVi01e3t7cRyHTCaDZVmEQiFisRjRaFQNBcvXQjz0fGXCdaxckODNZ81UQX+tVmPHjh2qq04q1bwg8C82Go0Gtm2rAL1Wq6mWo35ePzQvUPx6hXw+r9qUQvOiJBAIkMlkxnQESiQSUsQrxHE0pYH/Rz/6UbZu3cpf//Vf873vfY8FCxbwla98RV35CyGEEK9GjuNQrVapVqtqcJU/kCufz1OtVtF1HdM0xwy0NAxDDb8Kh8M4jsPIyAiZTIZSqUQymSQcDquagEwmg24G+PVGB298u36SUZOPv22JKsz1PI8dO3aQy+VU8W1HRwe6rlMsFnEcR7XV9IP+er1ONpvFNE0VtPsXLYDqMOQH/bFYDF3Xx3TuMU2TZDIpwzuFOM6mfEJGOBzm85//PFu3buXyyy/nf//v/83ixYu59dZbp/rUQgghxHHhd96BF3f7gTEpPn63HD9tRtd1arUaIyMjKjVoeHiY4eFhFZBHo1EikQjBYFB1Cnp0h0feGb8GTYNr3raQrmmt6o7C/v37GRoaUsXAM2fORNM01VbUX2s0GqXRaOA4DrlcDtM0VVtO0zRVS0+/3WgwGFT1AH4qk8+2bRKJhAzlEuIEcMz+L+zu7uamm27iiSeeYNasWbz//e/nnHPO4bHHHjtWSxBCCCGmnN+D3x/IZds2gUCAYrGoptn6wbNt20CzD3+tVmN4eFgVAtdqNVV8W6/XaWtro7W1FXjxzkBPVmdLzwRb/cDaMzo4a9lslZqTzWbZt28fxWIRz/OYNWuWSv3xO/hEIhGi0ahK7fHrDPz++7ZtU6/XaTQaZLNZQqEQgUBAtfusVCrqwgaaef5SxCvEieOYX34vXryYL3zhC5x33nk88sgjvP71r+fKK69k7969x3opQgghxKSbKLffD5Sr1SqapuF5nroLYFmW2iUvl8tqB3337t2MjIzgeZ6apFuv1wmFQs07B+UaD26bOKCe3RHgw5cuU+k41WqV7du3Uy6X8TyPadOmEQ6HVdDvTxSOxWJomkY6ncZxHDV9NxQKqdaifuqPH/QbhkEikVCpQj7/zoEQ4sQxpcl2lUqFDRs28OSTT/Lkk0/yxBNPsHXrVlzXxfM8Ojo6OOOMM/j973/P0qVL+fKXv8x11103lUsSQgghpozfxcff7fcn6vo5+gCu6xKNRtE0DV3XCQaDHDhwQF0sRKNRCoUCu3fvxnVd6vU6CxYswLZtHMehVquRz+d5cq9FqTo+8LdMjU+86zRisReD7q1bt5LP56nVasRiMbq7u1U7UcdxSKVSKugfHh6m0WioDjzxeFwNFPPPHQ6HCQaDmKZJLBajUCiMqd/zB5UJIU4sUxr4+1MB/SKglStX8qd/+qesWbOG173udcyePRto9gD+v//3//LpT3+afD7P9ddfP5XLEkIIIabE6Nz+YDBIOBymUqmQzWZxXZdGo0EoFFIpPvF4nL6+Pmq1Go7jqKLaBx98UE3wTSaTtLa2ksvliEQiZLNZdg957ByaePDV21/fydIF09Xn+/btI5PJ4DgOlmUxZ84cFcQXi0UikQjJZBJN0xgaGlIFufF4nLa2NjXMyw/6Q6EQwWAQy7KIxWLkcjnV7lPTNOLxuEovEkKcWKY08I/H41x33XWsXbuWFStWHPIHQSQS4Stf+Qqu6/If//EfEvgLIYQ46TQaDcrlMtVqFcMwCAaD2LbNwMAAlUpFtbX0e9j7O/t+UK1pGm1tbTz77LOMjIwAze45S5cuVc9Xq1WG03me3DtxH/z5XUGuumSlyqnP5XKqTgBg7ty5eJ6ngn5d12lvb8fzPNLptAr6Y7GYSi0qFApq6m4wGFQXLv5FiP99+cW90rlHiBPXlOb4j4yMMG/ePM4888zDuvo/66yz6O3tncolCSGEEFOiXC6rHPdAIEA4HKZYLFIoFIBmj/54PI6u6yo3fmhoCGi2/2xra6NUKrF582agmRI0d+5cDMMgn89j2zbpdJqNB2zKtfEpPgFT40/fs1z9vm00GuzYsUMN3ers7CQajVIsFimXy9Trddrb21VQ70/iDYfDdHV10Wg0VOvRfD6vvic/6M/lcuN69EvQL8SJ7bj21rrjjjt429vepj5fu3YtP/nJT47jioQQQohXznVdyuUylUpFTa81DIN0Oq3uBPh58YZhEIlEGBgYoNFoqEFdwWCQdevWqVz5SCTC9OnTVepQoVDgwEiDncP2hGt457ldzJ/dqT7fuXOnmpobDofp7u5WufiO4xCLxdTuvx/Ah8Nhpk+fTqPRUL3+/aDfH8p18E6/BP1CnDwm/f/SW265hXXr1nHWWWcBvGQLr2w2y1133aU+T6VSvPe9753sJQkhhBBTynEcVbzr74wXCgVVjAvN9Bn/z9H9/Ov1OtOmTePAgQP09PQAzRSf+fPnq1Qb27ZJZ3I8sXfigtkFXUGuePPp6vOhoSH6+/spl8vous7cuXNVm9FCoaAKjxuNxpgUpM7OTjzPGxP027ZNNBpV35dfrwCojj7So1+Ik8Ok/5+ayWT45je/yQc+8AE0TeOjH/0oq1ev5uMf/zj//u//zsMPP6x+2D399NOkUqnJXoIQQghxzHiep3b7odnC059c6w/B8qfWRiIRqtXqmKm2/oXAli1bVBDe3t5OPB4nn8/jui7FYpGNeyFfGV/QaxkaH7tsseqiU6lU2Llzp7pTMGvWLCzLwnEc1cPff63ruqogt62tbczk4Hw+j2mahwz6TdOUoF+Ik8yk/9/6qU99ilwux0MPPYTnebz+9a8nEolw66238qd/+qecd955JBIJ2tra+Jd/+RcuuuiiSTnvfffdx2WXXUZ7ezuhUIglS5Zw/fXXjxkk8kqMjIzwuc99jhUrVhCNRrFtm+nTp/Pud7+b++67b1LWLIQQ4uRXrVbHBNThcFjtmPvTcCORCLZtYxjGmH73pmliGAa9vb0q3z8YDNLV1aVy6zVNYzBbY+tQcMLzv+XMdk5ZOFN9vn37dtWbP5lMkkqlKJfLlEolHMfBNE0V+PsFudFolGAwqIL+QqGAYRjEYjE1i0CCfiFOflOSkBcIBDj77LNZu3Ytn/rUp7j00ksB2LFjBxs2bGDTpk3s3r2bOXPm8OlPf/qoz/f1r3+dP//zP8fzPGbMmMHMmTPZvHkzX/rSl7j99tt58MEHaWlpOezjbdu2jTe84Q309PSg6zpz5swhkUiwY8cOfvazn/Gzn/2ML37xi/zt3/7tUa9dCCHEya1UKqndfj+gzuVyOI6D53kkEgkMw1DBs19s6w/2GhoaYs+ePTQaDYLBIK2trcRiMQYHB3FdF8ep8OS+AK43PnW2u9XmXRcuxjCadwJ6e3tJp9NUKhUsy2LmzJnU63VKpRLZbFYN5PIDdr/1ZjQaJZ/PUyqVyOfz6LpOLBYjHA4TCoUmDPplGq8QJ58prcT59a9/Pebz+fPnM3/+fK644opJO8e6devU0K8bbriBq6++Gk3T6Onp4fLLL2fdunVcffXV3H777Yd9zP/1v/4XPT09LFy4kJ///OeceuqpQHNX50tf+hJf/OIX+T//5//wtre9jeXLl0/a9yKEEOLk4ve4d11XpfL4E3rL5TKpVIpgMKi66TQaDSqVCrZto+s6+XyeTCbD4OAgpmkSDAZpb29XgbplWewYcBksjP91rWvwgYtm0drSTJktl8vs3btX1RrMnj0bTdMolUqk02lqtRptbW2YpqmGc/l/+rv8/h0GP+gPBoMS9AvxKjKp9+iuuOIK/v7v/17lLR4LX/ziF3Fdlw996ENcc8016odRd3c3P/7xj9F1nZ/97Gc89dRTh3W8fD6vUnm+8pWvqKAfwLZtvvCFL7BixQo8zxt3YSOEEOK1xXGcMS08/Xz8YrGIbdskEgmCwSD1ep1arUa5XEbTNKLRKI7jkMlkOHDgAJ7nEYlE1Ov9bkAlp8amnolTfM49LcWqU5vBveu67Ny5U12EtLa2EgwG8TyPgYEByuUy0WhUteOMx+NomkYkElEdfPL5vFqHv9Ofy+Uk6BfiVWRSA/9HHnmE66+/XnUwiEajnHPOOXzyk5/k29/+Nk888YT6ATkZCoUCv/nNbwC45pprxj2/cOFCLrzwQgBuvfXWwzpmpVJRFy7z5s2b8DX+46PHkwshhHht8TyPQqFAo9FA0zSV218ul1V+fSAQwLZtSqUSrutSqVSIRqPU63VGRkYoFosMDQ0RiUQwTZO2tjYymQyFQgHTNHm2z6ZcG/+rOh42ePu5M9UwsP7+fkZGRqhWq9i2zbRp0zBNk97eXnK5HOFwmGg0quoNoLmZZZom6XSaXC6n0o/83X4J+oV49ZnUVJ8DBw4wODioRpG/733vY9OmTXzve99TvY11XWfRokWsWLFCfbzpTW86ovNt2LCBSqVCIBBQ7UMPdt5553HPPffw6KOPHtYx29ramDlzJvv27eOhhx7itNNOG/O84zg8+eSTAKxZs+aI1i2EEOLkV6lUVOcc27ZV681yuazSeyKRiBrg5T9uWRa9vb2Uy2UGBgbQNA3btonFYioQBxjI1tg6GJ3w3JefPY0Z3dPQNI1yucy+fftUik93dzeGYTA8PMzw8LBK2UmlUur3s67rhMNh0um02ukPBALE43GVriRBvxCvPpOe49/e3q7+/t3vfhdoTg/csmULGzduVB933303P/7xj9E0TbUve6W2bt0KvNiqbCLz588H4Pnnnz/s4/7zP/8zV111FZ/5zGfQdZ23ve1txONxtmzZwvXXX8/evXt597vfzZvf/OYjWrcQQoiTX6lUolqtAs00Hz/FByCZTBKJRHAcB9d18TwP13WJxWJqmm+pVGJ4eJhEIoFlWSSTSQYGBqjVariux7MDCSbKnJ3fHebc5d2Ew2Fc12X37t0UCgU8z6OlpYVgMIjjOPT19WGaproDEAgE1B3taDRKLpcjk8nguq46v/+4BP1CvDodkzF7hmFw2mmncdppp/HBD35QPb5//342bdp0xMcdGRkBeMmOPf5z/g7K4Xj/+99PLBbj85///LgUora2Nr7xjW/wJ3/yJ4d1rBtuuIEbb7zxsF67ZcuWw16jEEKI46der5PP54FmcNxoNFTf/kgkQjweR9d1dUfAcRyVTz8wMEClUlHFu5qmEQwG0TRN5ejvTxv058f37Nc1uOK8LlpbWwEYGBhgeHiYarVKIBCgpaWFer2uOgJFo1Ha29vVRQI05ww4jsPIyAiu62IYBqlUing8PmYir2EYqhZACPHqMKWB/7e//W127drF3//930/4/IwZM5gxY8YRH9+vF/BvXU7Eb63m//A9XDt27GBkZARN05g5cyapVIodO3YwNDTEjTfeyKpVqzj77LNf9ji9vb2sX7/+FZ1bCCHEiW30wC7DMMjn8ziOg6ZparffT/HxPA/TNNF1nb6+Pur1Oo7jkMvlsG1bpfkMDg42u/5Ua2xNt0543vOWtbBgVpva1T9w4IBK8Wlvb6dWq1Gr1cjn80SjUeLxOKlUasykXWhO9vVrE5LJJPF4nFwup4J+XdelT78Qr0JTHvjPnj17zGN/9md/xne+8x2mT5/OP/3TP/Gud73riI8fDDY7Hfi3WicyepLi4frkJz/JN7/5TZYvX86mTZtYtmwZ0Czm/epXv8rf/M3fcOGFF/LQQw+xatWqlzxWV1fXy77Gt2XLlld8gSKEEOLY8jxPFcP66ap+kB+JRGhtbaVcLo/pcGdZFqVSSQ3R8nf2LcvCsiyq1Sr1ep1qtcq+XJRs+cVzuY06eC6xsMVbzuwgmUwCsG/fPpWWk0wmaTQaWJZFOp0mGAyOC/qhuRnW39+vmlPE43GSySSFQoF6vQ5I0C/Eq9mUBv47duzgfe97n/r80Ucf5Rvf+AZnnnkm0Cz+ffTRR1m9evURHT+VavYu9lN+JuI/57/25Tz11FN861vfwjRNbr/9dlUjAM0f3H/913/Nc889x0033cTf/u3fctddd73k8a699lquvfbawzr36tWr5e6AEEKc4CqVirrj7O/2+7vnfp3b6CDa8zyV4gPNu9V+4O131vEfK1ddntpbZ7h/E05hBKeQplFvbmDN7w7z/e8/zmmnLiaZSKhJwH6Nm2VZFItF6vU6nZ2dBIPBMXn9gUCAwcFBtVkWDodpa2ujVCqp9fiTfP07A0KIV5cpDfwrlcqY/Puf/vSntLW18Yc//AHbtjn//PP58pe/zM9+9rMjOv6iRYsA2Lt3L7VabcIC3x07dox57ct58MEH8TyPhQsXjgn6R7vkkku46aabePzxx49o3UIIIU5eo3fHR18ExGIx4vG4KvCFZv5/tVpleHhYfa3neeTzeRWU+4W/u3fv5uFnBth9YATDChCKtZPqWoQVihENWSyfFwO3xrrnhug78BhuJc+s7nZWrVrJ8uXL0TSNTCajWnlGIhEV9BuGoaYJQ/MiYNq0aTiOoy4EJOgX4tVvSgP/2bNnq8Ab4Je//CXveMc7VNrNe9/7Xv71X//1iI+/atUqbNumUqnw+OOPc84554x7zQMPPABwWPn4gCrWeqliJv8H6WTOJBBCCHHiG53W47ouuVwOaP7O6OzsHPN7IRQKUa1WcRyHbDaLYRhUq1UajQbVapVoNEqtVqPRaHD//Q/w7PYDZLWZdC86h2jLdDT9xQB89cI40zvihMNhstksnbOX0rt/N3v2PM/+X99LJpPh9NNPp62tTaUPmaap1lapVNS6TdOks7NT1Rr44vG4+hohxKvTlCbwXX755Xzve9/j6aef5jvf+Q67d+/msssuU8+HQiF16/NIRKNR1q5dCzBh55xt27Zx7733As2pwofDvzOwdetWdu7cOeFr/KFhixcvfsVrFkIIcfIavUOezWbVRlAymcS2bVUca5ompmmqDjt+Gk44HGZgYIBIJEKlUqFarfKzX/yKzTsHiMw6nxmnXkSsbdaYoL89YdGRChEIBKhUKhSLRRoNl9aO6aw+5y3MPe187n98C7fe9nO1eeUP6QJUxyFoXgRMmzYNQBUFQ/NuxaHaYgshXj2mNPD/q7/6KyKRCCtWrODaa69lwYIFXHLJJer5HTt2qJZkR+r6669H0zRuvvlmbrzxRvVDuLe3lyuvvBLXdXnHO97B8uXLx3zdueeey5w5c/i3f/u3MY+vXbuWadOmUa/XueKKK3j22WfVc7VajX/5l3/hBz/4AQB/9Ed/dFRrF0IIcXLxg/1qtUqpVFKDKbu6usbsnkejUcrlMul0Wk2EbzQauK5LuVzGsiz6+/u5738eJO1YLDrzbRiJ+RPebV44PYJt2+i6rroHVas1DMMgGAwya+5iVp37NkYcmx//9HYKhYJK12k0GmQyGXWs9vZ2LMtSu//QvEjwO+AJIV7dpjTwb2lpYePGjXz729/mX/7lX/jDH/4w5jbiL3/5S04//fSjOseZZ56p0oWuvfZaZs+ezapVq5g7dy7r1q1j8eLFfPvb3x73dfv372fPnj1jfiBCs9jpRz/6EdFolA0bNrBs2TLmzJnDypUraW1t5TOf+QwA73rXu/jkJz95VGsXQghx8qjVaqrz2vDwsGol3draOmYQpZ9bXyqVGBkZwTAMSqUSiUSC/fv3EwqFGB4eZsOmZ8hWAiw+/TzS1diE55zZHiQRDaiuQH4bUcPQsW2bQCCApmlEojHOOOctjJRMbvvZLymXy9TrddV9CJqpPNFoVN0VgOad91fS9U4IcXKb8l5dkUiEj33sY/zlX/4lXV1d6vHh4WHOOussrrzyyqM+x3XXXcfvfvc73vrWt1IsFtm8eTOzZ8/ms5/9LE8++SRtbW2v6HgXXnghzzzzDNdddx2nnHIKg4ODPPPMM4RCId7ylrfw4x//mNtvv10KoIQQ4jXEL+r123L6vflHB/6maRIKhSiXywwNDQHN9Bq/yDedTqPrOhs3biRfMZh3ylnUjThOffyvY0NvdvLxU3AKhQKFQhHP87Asi1AohGVZuK6LpmnYgSBnnLOWff05fnfPPWoqLzTbX7e3t6uaBGgW+I5OCRJCvPppnjfRQHBxPPjtPFetWsW6deuO93KEEEK8wPM89u7di+M47Nq1i2AwSDAYZNq0acRiL+7W+62j9+3bR19fH5qmoWka4XCYZ555hmw2y/79+3l8w2ZmLTmHZFs3O0cCVBvjA/9F08PMnx4jHA5TLBZfaMVZwzRNYrEoiURCFQcDagLw/t3b2PHUfXzoyncxZ84cTNNk5syZFAoFdSFg2zbxePwYvHNCiBPJlJbv9/f385d/+Zc8/vjjhEIhlixZwsqVK9WHX2AkhBBCnMgcx6FSqZDP5ymXyyQSCSzLIh6Pq1SacDis2mb6u/26rhMIBMjn86TTaTzPY/v2HYST00m2dZOrWhMG/QFLY1ZHc0e/Xq+TzWapVmtomkYg0AzaXdcdMyTMMAw0TaOtcybbn0vx5JPrmDt3Ll1dXZRKJRX0Ny8cJk4tEkK8uk1p4P/Hf/zH3HXXXZx77rkEAgEeeughbrvtNlW8NG3aNFauXMmdd945lcsQQgghjkoul6PRaNDf3080GkXTNFKplAq8TdMkHA7jui49PT2qz79t29i2zY4dO6jVamSzWUZyZeaetgBdNxjITZxxO78rjGU1U4nS6TSlUhnwME1TTdWt1WoqmNc0DcuyqNVq1Go1Zs47heeefxhd16nX62MGisXj8ZdsWS2EePWa0sD//vvv5xOf+ATf+MY31GMDAwNs2LCBDRs2sH79ejZu3DiVSxBCCCGOiuu6FAqFcbv9o/Pjo9Eo0LxA8JtG6LpOLBZjaGiI4eFh6vU6fX19GIE4ybZOhoo6dW984B8O6ExvC6ruO8ViEdd10XWDeDxOIBBQgbzPNE1VUGxZFp3TZ7Nv+waee+45kskk8OKALl2f8vI+IcQJakoD/2g0Oq6NZkdHB2vXrlX994UQQogTmd9NZ2BggEAggGmaRKNR1eAhFAqpjnX79u1TX+fn0A8PD6s++uWyQzjRgacZDBYmbhAxv6t5PMdxKJVKVKs1wCMcDhGJRFQxb61WA5oBvWEYFItFtaZAIEi8pZPde/bwute9Dmj26pemFEK8tk3pZf+ll14qRapCCCFOatlslkKhQKlUIhwOY5qm2kU3DINwOAzA4OAgxWJRPZ5IJBgZGaGvr496vY5t2xTLFSKxJP1ZD9cbn24TC+l0tgTxPE/VFXieRzAYJBKJqJ390e1D/YuERqOBrutqTdF4C7v3HsDzPKLRqGo/KoR47ZrSwP/zn/88v/nNb3jggQem8jRCCCHElGg0GoyMjDAyMoKu60QiESKRiNo59/P9XdflwIED6utaW1upVquMjIwwPDysBn3V6h6GHWGkNPEN9/mdLwb9fr6+ZZkEg0FCoZAK7kd38nFdl0qlgmVZaJpGKBSiVqsRjSbIF0pq0JcQQkxp4L906VIALr74Yj75yU9y7733jpkWKIQQQpzIcrncC/3zC4RCIQzDUC07g8Gg6rHf39+vJvf63X4ymYx63O+Zr2kaw3kNj/G7/cmIQTLa3NGv1Wo4joNhGAQCAcLhsGoNenB+v/86XdcJBoOq4Fg3DHRNl6BfCKFMaeD/zne+k1QqhaZpfOtb3+JNb3oTyWSSRYsW8f73v59/+qd/4u67757KJQghhBBHrK+vj2w2i+d5xGIxlerj9+aH5kTf3t5e9TVtbW3UajX6+/vVwK5wOEwikaBcqZFxJj7X7PbmXYBKpfJCcK+pwD8QCKiA3g/8Pc+jXq/jui6maWLbNrquq9d5nocdsCWvXwihTGlx7w9+8AOg+UNq8+bNbNy4kU2bNrFx40buuecefvrTn6Jp2phcRSGEEOJE4DgOmUyGfD6vAuuWlhagOZXe747T19dHtVpVj4fDYQYGBkin0+RyOcLhsAr8M2UDAuPvfLfGDCKBF3f06/U6mtZsBxoKhfA8b0xBrx/0NxoNbNvGsiyV/w/NFKCqUyIRk9x+IcSLpjTwVycxTU4//XROP/30MY/v37+fTZs2HYslCCGEEK9IT0+PmnYbi8WIRqNYloVlWSp9plQqMTw8DDTbdyYSCaD5+80f2JVIJAgGg/QP5ykb7WjF9LhzdSWaQX6lUgFQNQGBQADbtvE8TwX7fiqQ53kYhqHWNHqYl23bZNODnLFkpvTsF0IoxyTwP5QZM2YwY8aM47kEIYQQYpxqtap27D3PIxwOq04+fs9+aHby8YP1aDRKMBhkZGSEXC5HNpslHA5j2zbRaJS7N2QJRlvJ9O/AcxtoejMFpzWqEwm+mKLTaDRoNFwikeadgoN3+/30HkDt9vuv8R/TgFJukBkzVhyDd0sIcbKY8iket9xyC6tXryYejzNz5kyefPLJqT6lEEIIcVSGh4dJp9PU63Usy1K79uFwWOXMZzIZdWEQCATUBcH+/fvJ5XJUq1VisRi6rpMr1dg+ZBNrm02jVqEw8mIHoK7ki1N3/fRXyzLVzABoDhHzU4D83X5/KrBf9AvNO+ymaXJg3w7CtseyZcuO8TsnhDiRTWng/8Mf/pAPf/jDBINBrrrqKnp6esjlckBzgu+VV14pff6FEEKcUMrlMplMRqX5xONxkskkhmEQCoWA5q788PCwyu2Px+OYpkk6nSabzZLP5wkGg6r//hPbHVxPIxBOEo53kO7biud5tEZ1QjaqK0+1WsXzXsztB1Tef6PRUEG/38HHfx6aqUZ+WtDubc+w4rTFdHR0HId3UAhxoprSwP+rX/0qb3nLW3jooYf40pe+NCb/sKOjg76+Pv7jP/5jKpcghBBCHDbXdSmVSgwNDeE4DpqmkUwmVf9+P8geGRmhWq1Sq9VUX39d1xkYGKBUKlEqlYjFYs0UHddga/+LmbWp6Uso5wbJD+2mO/VisN7c0W8QCNgEg0F1Z8F1XdXTv16vo+u6Kvj1X6NpGoFAAIC9u55Hq2U4//zzjvG7J4Q40U1p4L9t2zbe/va3A0xYXHTuuefy4IMPTuUShBBCiMPmB+0jIyM0Gg1CoRCtra0qrQZezP/3c/vj8Ti6rjMyMqK6ANl2M3g3TZP1uxs0Rk3pjaamE2+bTal3A1qjiG3bNBoN1cnHsixCoZD6vVmv16lWq6oDnm3bmKY5pk1nIBBA0zTKpSLbnn6EC89bw8KFC4/V2yaEOElMaeCfSqVUas9EZs2aRU9Pz1QuQQghhDgsjUYDx3EYGhqiXC6rLj3xeJxIJKJeNzQ0hOd5VCoVksmkCsiz2SzFYpFSqaQGbrlagC2948/VMXc1C7qDPP/UQ5TLJbWbHwgECIVCqjWn53mUy2WV4z+6o5DfTtTv31+tVnjs/juZN6OFSy+9ZOrfMCHESWdKA/+LLrqIW2655ZDP5/N59YNLCCGEOJ5KpRLQ7Mvvui66rtPZ2TmmoLdcLpPP56lWq+i6rtJ5/ELfSqWCrusYhkGj0WBLn0HDHX/H+9Q5ca5896WkgjXWPfQbioW8as3pp/HAi8O8arWaGgTmeZ4q+vWLeculIg/f+0u6kjpX//FHVH2AEEKMNqVR92c/+1m2b9/OVVddNW7n3/M8/uu//osFCxZM5RKEEEKIl1Wv16lUKuRyOTKZDLquE4lEaG1tHRNEDw4OAs2APJVKqRQcf6e/XC4TCATQdR3dDLK5x5vwfG84PUFbWxtvf9slxMwiGx++g/TgAYLBoJq+67ouxWIR13VxXVfdRbAsC2ju+FuWxZ6dz/HQ737K7I4An/hfVzNt2rSpf8OEECelKe3jv2TJEn75y1/ynve8h7vuugtN0/jFL37Bxo0buf3223nyySeluFcIIcRxVywWAThw4ACu62KaJtOmTSMej6tc+0KhQLlcVqk90WiUbDaL4zjqY3RKzu5MmFpj/G7/0pkhOhImxWKRSCTC2jddxObNm9m64wmK2QFmzTuFzulzKJXLaljX6Lx+TdPwXJeB/v3s2f4MWi3DJReu4dJLL5GdfiHES5ryAV4XX3wxzz77LJ///Oe57bbb+MY3vtE8sWnyiU98go9//ONTvQQhhBDikPzuPPV6nZ6eHhVgz5o1S3XK8TyPoaEhoLnb39raiuM4NBoNSqUSxWKRRqOB67rYto2LzrM9E0/MvWhlK8ViHmjWBdi2zSWXXMIby2W2PPc8m555kC0bH0CzooQiCUKRKLFojELWoOKUyKYHqZezRAJwxmmLOf/890ghrxDisExp4H/nnXdy7rnn0t3dzQ033MC3vvUt9u3bRy6XY/bs2cTj8ak8vRBCCPGy/N3+gYEB6vU6pmmSSqVoa2tTr/Hz9/0JueFwmKGhISqViroL4HffsSyL3mIcpzb+XItmRGiPaQwOVjAMA8dxSKVShEIhli1bxooVKzj/wAEeeeQRdu/ezb4Dz1Mc9MjbAYLBALFYhLOWzmPu3DUsW7ZM+vQLIV6RKQ38L7/8cm6++WauuuoqoJmPOHv27Kk8pRBCCHHYKpUKjUYDz/PYu3cvpmmiaRpz584d00d/eHgYgFqtRktLC5VKhWq1iuM41Go1lY9vGAauB88P2BOe743LW0in0+i6TjqdxjRN4vE4LS0tQLOzUDAYZNmyZcyePZtAIEAwGKS9vZ1QKEQsFpNNMyHEEZvS4t7RA7smcscdd/C2t71tKpcghBBCTMjzPLXbn81mKRQKAASDwTGbVOl0mlqtuX1vmiahUIhMJkOj0aBcLgPNC4JKpYJt2/SXohQq4883pzPM9JSG4zjU63W12x8MBmlra6NSqZDP59UsAcuyVGchf4hYLBab4ndFCPFqNuk7/rfccgvr1q3jrLPOAiYe3OXLZrPcddddk70EIYQQ4mX5xbgAPT096vfVrFmz1G5/vV4nnU4DzZ3/WCxGuVxWwTs072Zns1kAGg2XbcORg08FwIUrWkmn06r9ZzgcJhwO09HRoToD1et1crkcrutiWRbRaFRNDPZbhwohxJGa9MA/k8nwzW9+k6997WtomsZHP/pRvvKVr7By5Ur1sXz5ciKRCE8//TSpVGqylyCEEEK8JM/zVN/+XC6nAvdAIMCcOXPU6/wJvv5zwWCQAwcOqMFawWCQdDpNPp/Hsiz6CgFyjqbOUSmmcQojRC2HPZt3kx4ZIRaLYZomp512GoVCgV27drF7927y+bwqEJ4xYwaxWIzOzk41L2D0pF4hhDgSkx74f+pTn+Lqq69m/fr1nHPOObz+9a+nXq9z66238r3vfQ9N09A0jWQySTqd5oorrpjsJQghhBAvqVQqqcm46XSaSqWZm9PR0aFy6KvVqrog8Pv6F4vFMS09oXlxAM3d/j35JJ7bIDuwk0zfNiqlLJqmE5/dwYPrBqlWyhSyz+CUsvziv+8gkZpGLNGCpwfQDJNiIU/dyWNoj7Fo/iwA1qxZg21PXDMghBCvxJQU9wYCAc4++2zWrl3Lpz71KS699FIAduzYwYYNG9i0aRO7d+9mzpw5fPrTn56KJQghhBATcl0Xx3GAZm9+vxVnMBikq6tLTZQfHh5WqUCRSATDMBgZGcHzPBzHIRqNUiqVyGQyAPTlNPpHivRtf4xKMU20ZQbtc1bR2jaNc05rZWRkhFxmmKfWPUC17OEFWqlFOgm2d7Nw4QLV5afRqJNLD5HNDnDLT+/g+W3bee8V75YOPkKIozalXX1+/etfj/l8/vz5zJ8/X3b5hRBCHDf+br/ruhQKBVXUm0wmVXedSqWiHjcMg1AoRDabpVKpqLsDtm2zd+9e1cZz+4DF3qd/hxWIMGvZmwlGm8daODNBuVwiM9zPEw//Hj0Q57TXv5O2aTMoFfP09exm41PPMGfWDKLRKJqmM3veIsLhFZSLOTY98Qd6/t+3uObjfzQmDUkIIV6pKe3qI4QQQpxIDt7t9/vwBwIBUqkU0WgUGLvbn0wmaTQajIyMUKvVqNVqpFIpSqWS6u/fP+LwzMbHCMXamLXsTSroty2dzpTF0EAf6x/7A2a4jVPOeivxVAearmHZQabPWkilYbFtxy6KxSKWZREKhQgEArS2d3Lem95Fthbkxu/cxMDAwPF544QQrwpTGvj39/fzgQ98gIULF3L66afz3ve+l3/4h3/gN7/5Df39/VN5aiGEEGIcv6C3Xq9TqVQolUrU63WSySTJZFKl2/i7/X77zkKhQLVapVqtYhgGtm2Ty+VIp9O4rsvjT+/BCkToXnwuumGp883rilIs5tm86RHqWpB5p5+PbQexA7ZqEYqm0dE1i0rDYO++fUQiESzLUsW8pmWz5ry3Mpj3uPX2n42pLxBCiFdiSgP/P/7jP+bHP/4xXV1dTJs2jYceeojPfe5zXHrppXR3d9Pd3a3y/4UQQoip1Gg01G5/qVSiVqtRKpUIBoNEo1FV1Ds8PKzm0KRSKSqVCplMRqX0JBIJyuUyQ0NDlMtldu3rZSjr0LngdWOCfl2Dme0hdjz/NEPDaaYvPJNQMIxpmniuh+c2z+E2XNA0WttnkCs2C4oPLuY1LZvlZ72RDU9vZ/369cfi7RJCvApNaY7//fffzyc+8Qm+8Y1vqMcGBgbYsGEDGzZsYP369WzcuHEqlyCEEEIAL+72V6tVNUDLcRzi8TiRSIRIJEK5XFZDvSzLIhKJ0NPTg+M4qn1nKBRi7969qtD3+T1Zoi0zVHqPb9a0CBWnyN6dWwkluoinOjAMA9M0qTeaMwD8qcGe6xEIhQjHUgwMDDFv3rxxPftb2qYRaZnBgw89whlnnCE9/YUQr9iUBv7RaJTly5ePeayjo4O1a9eydu3aqTy1EEIIoTQaDVWUWy6XcV2XcrmsCncjkQimadLX16d2+1taWnAch1wuR6PRoFqt0tLSQj6fJ5PJUCwWKZWrDGardC9dMO6c87qiHNjzPJlMhu4ly7AtC9M0m7UDHng024k23GbqjmVZtLZ1MjK4h0KhMOGU3jnzT2H7xnvo6+ujq6trCt8xIcSr0ZSm+lx66aWsW7duKk8hhBBCvCx/F99xHDRNU7n9wWCQSCRCLBZTPfqh2ZY6FosxMjKiOvyEw2GCwSD9/f1qyu6BrIGHQSjWNuZ801IBcCuMDPVRd2nu9psGuqHjes2iYX+3H685J8C2bKKxBPWGRz6fn/D7aO3oolx16enpmcJ3SwjxajWlgf/nP/95fvOb3/DAAw9M5WmEEEKIQ/Jz8z3PU7v+/uf+NN5wOKxSd6C52++n/fiFwLFYjOHhYRqNBtlslkAgyN4hFzsUQzfG3kCf19Uc9pVNj2AFowQCIQzDUIG+PzzMdV3Qmrv9lmWh6wa6aasLlYOZpoUVjEp3HyHEEZnSwH/p0qUAXHzxxXzyk5/k3nvvVZ0ShBBCiGPBz+0vl8tYlqV+D7muSzQaJRAIUKlUVOGvX+w7PDysOvxEIhE15bder1Mul6kGplOqumj62KA/ETGJBKBcdqjVqpimjWkaGHoz8Pd4Ib3nhQsAwzCwbAtNb+bsa5qhWolORNetFzsCCSHEKzClgf873/lOUqkUmqbxrW99ize96U0kk0kWLVrE+9//fv7pn/6Ju+++eyqXIIQQ4jWsVqtRrVZxXXfMrr/nedi2TSAQIBwOk8lkxuX2F4tFarUajuMQDAbJ5XLouq52+7cPh9B1A8+tjznn3M4w5XK5eSGhaYDbbM2pAV7zw3VdXM9F0zRs28YwDDSagb/nNdT04Im4bg3Lsg75vBBCHMqUFvf+4Ac/AJq3WTdv3szGjRvZtGkTGzdu5J577uGnP/0pmqZJT2IhhBBTYvRufyAQoFAooOs6juMQDoexbRtN09RufygUIhwO09fXp4J/27ZV60/DMCgWi2jhTkZ6DexQgkzfdtxGHd0wCdk6qYhGOl2i0WgQjacY6OtD02m28MSj3qijoeF6LrZlYxqmCvRdt4FbrxKJRCb8fur1GjWnQEdHx7F5A4UQrypTGvirk5gmp59+OqeffvqYx/fv38+mTZuOxRKEEEK8xvhTdhuNBrVajVAohOM4arc8FAphmibFYhHP89A0jVQqheM4lEolqtUq5XK52X6zXkfXdWq15m77luEQAMFoC57nUs4PEUl2Mqsj+EIqUAnXdUmm2rGs5ymkB4m3dOK6rurfr+s6lm2h67ra7S8VC5iGNmFHH4DhgV5Ctk53d/cxeAeFEK82kx74f/KTn2TlypWsXLmSZcuWjRtCMtqMGTOYMWPGZC9BCCGEGLPbHwwGKZfL6LpOtVrFsixs28Z1XZUvHwwGCQaDjIyMUCqVVGFvKBSiUqlg2zaFQgHXiHEg05yqG4ikCIQTZPu3k2ztpD2uUy43OwaZpkk02sa0jg769j9PLDWNRr2Bpmu4rkvACqBr+pi0nkx6kJZknGg0OuH3tHvHZhbMnUFnZ+cUv3tCiFejSQ/8v/Wtb6mhIqZpsmTJEnUhsHLlSlasWKGmIwohhBBToV6vU6vVqNfrqm2n4zgEAgHy+TzhcBho3hXQNG3Mbr9f6JvP59F1nUajgWmahEIhyuUyu7Mv/g7TNI1k50IGdq0jYRVwG0FKpRKe56HrGtFolDkLTuGJRx8kO9JPONYCXvP3o2ma6twA5VKBWjnHrMWnTjica2Son+LIfs59+/tkeJcQ4ohMeuC/detWNm7cqKbzbtiwgR/+8If88Ic/VD+o5s6dO+ZC4JJLLpnsZQghhHgN83f7S6WSCvo1TaNer6NpGoFAQO38a5pGMBgkEAiQy+XI5/Nks1kcxyGZTFKtVmlvb6dQKNDwDHYMji28TXTMIz+wk/SuRyl3XKguJgzDbE4EnruIndueZffmR1hy5lpM08Yym+cdndvf17Obzo6WCdN46rUqmx6/j5XLFrB69eqpfwOFEK9Kmue3MZhCfX19Yy4ENmzYwK5du1ROpRT3Nq1evZr169ezatUqGXwmhBBHqF6vk8lkqNVqFItF4vE4IyMjYwZ3RaNRisUisVgMTdPo7u6m0WhQKpXYu3cve/fuRdd1wuEwsVgM0zQZGBhg3c4q6/eN76izuKNKz9N3UnBjzJy/gkAwSDKZIJVK4bouQwO9PHTfXeihVhavfCPBYBhN17BMC9dtsH/PdoJGndetOWNcYW+9VuWxB35NwnK47s/+RAp7hRBH7JgU93Z2dvLWt76Vt771reqxXC7Hhg0b2Lhx47FYghBCiNeIiXb7dV3H8zyV9lMsFtVuezAYxLIs1cVnaGiIRqOhatRisRiO4+BUqjw/MPGvzXNPn8Zw23n84r9/zZYNaZauOJdQVyeaplGpVAhF4px5zkVsfOJ/eG7d3Sw47VwSrdMolwr09ewmYmusXrV8XNA/MtTPpsfvoz2mcc3H/0iCfiHEUTkmgf9E4vE4F1xwARdccMHxWoIQQohXGX9Kb6VSwXVd1X/ff85PrymXy2rOTCqVolwu43kefX19qgjYMAxaWlrUHIC9w1CsjM+tn9MRwHLzxONxzjpjOVuee56dT/8PpewA3bMWEImlQNPomj6bROIdPL3+QZ5++OeYoSTxZDtz583j9GXLVNBfr9cYHuhl947NFEf2s3LZAt7z7ndJ0C+EOGrHLfAXQgghJtvoTj6hUIhqtap2+6FZVOs4Dp7nYZomwWAQ0zSpVCpks1ny+Tyu2xysFQqFVEpQvV7nuT5jwnOummtTLjc7AYXDYd6y9s0Ui0X27D3A1g2/w6k2CEZShCNR3HoNrVZkWhxwh7DqFQq9RZ7M7EbXLVy32ac/ZOssmDuDc9/+PlatWtUcACaEEEdpUgP/Cy+88KiPoWkav//97ydhNUIIIV5L/N1+P7D3W3i6rgtAo9HAMAzS6TTRaBRd10kmkziOQ61Wo7+/X033jUQiRKNRarUa4XCYLTsH6M+Pn6abjBi0R8rkslWy2SzRaJREIsGpp57KqlV1+vv76evrw7ZtqtUqsViMjo4OFi1axPTp0+nv76enp4eBgQE1I6Cjo4Pu7m46Ozule48QYlJNauDv75IcjWNQayyEEOJVyG+j6e/2u66rhm75zSSq1SqNRoNAIEAwGMQwDBzHIZfLUSwWqVarGIZBKBQiFotRLpexbZsNu6vA+F335bNNCvmMusCIxWIEg0E0TcPzPGKxGHPnzqWtrY1qtTmR1zRNkskkAF1dXXR1dR3bN0oI8Zo1qYH/H/7wh8k8nBBCCHFYRu/2AwQCARqNBvV6HUCl++RyOUzTxLZttdtfKBTI5/NUKhV0XScQCBAOh5tDtgIB+gYz7Boav9tvmxpzW6pk0yUqlQrhcJhIJKJahbqui2matLe34ziOmh0QCoWO3RsjhBCjjP9JdpK67777uOyyy2hvbycUCrFkyRKuv/56isXiUR33rrvu4l3vehfd3d0EAgGmTZvGOeecw9/+7d+qXyhCCCGOr4N3+5t99A2q1SrQvJtcqVSoVCoEg0FVSFsoFKjVapRKJarVKqZpYlkW0WhU7eA/9MwIrjf+bvYp000q5QKlUgnXdYlGowQCAfV8tVqlu7sbXddVUbGu6y850V4IIabSqyLw//rXv85FF13EnXfeSTAYZOnSpezevZsvfelLnHnmmYyMjLziY9brdT70oQ9x6aWX8vOf/xzDMFi+fDnRaJQnn3ySL3/5y2pnSQghxPHj7/aXy2U1nAuaU3ld18WyLOr1OsVicUwaT6FQUPn9pVKJQCCgAnjTNJsXDrU6T++beJNnQXtVTff1d/vr9TqmadJoNIhEIsTjcXU3AFBpQEIIcTxMeeB/yy23sHr1auLxODNnzuTJJ5+c1OOvW7eO6667DoAbbriBvXv3sn79enbu3Mnq1avZsmULV1999Ss+7p/8yZ9wyy23sHz5ch5//HH27dvH448/zo4dO0in0/zyl78cs7MjhBDi+PB3+x3HUYG1rutUKhWg2TSiXC5TqVSwLItEIoHruhQKBQBVDOyn5kSjUQAikQgPbuqhXJughWe7gdEoUC6XMU2TUCiEZVmqW5DneXR1daFpmvqAZuAvhBDHy5QG/j/84Q/58Ic/TDAY5KqrrqKnp0f1Ux4YGODKK6886gm1X/ziF3Fdlw996ENcc8016odrd3c3P/7xj9F1nZ/97Gc89dRTh33M++67j+985zt0d3dz7733cuaZZ455PhwOc/nll2NZ46c3CiGEOHYajQbVapVSqYSmaWoYl38XwDAMNZHX8zxs2yYWizEyMqKaSfgXCI7jEIvFCAQCqtXng8+kJzzvwrYKuVwOTdOIRCJEIhHVztN1XZLJJMFgkGq1qjaJbNtWQ8OEEOJ4mNKfQF/96ld5y1vewkMPPcSXvvSlMR17Ojo66Ovr4z/+4z+O+PiFQoHf/OY3AFxzzTXjnl+4cKFqMXrrrbce9nH/9V//FYC/+qu/oqWl5YjXJ4QQYmr5+fV+7r6fR+8H87ZtUyqVcBxHDesqFos0Gg0A1enHv0hIJBLYto1pmjy/J81AbnynudaoTpiMOqdfrOt5nrpoaGtrA1D5/SBFvUKI429KA/9t27bx9re/HWDCnMZzzz2XBx988IiPv2HDBiqVCoFAgLPOOmvC15x33nkAPProo4d1TMdx+O1vfwvA29/+dp544gk+8YlP8KY3vYnLL7+cL3zhC+zfv/+I1yyEEGJy+AG/P7QrGAyqjjqVSkW11CwUCriui23bBAIByuUy0AzK6/W6KvqNRCJqoFcwGOR3T0z8s35+a5lKxcF1XVpaWjBNk2KxSDgcxrZtEomESvfxB28ZhiF3iYUQx92UTu5NpVIqtWcis2bNoqen54iPv3XrVnWcQ/1AnT9/PgDPP//8YR1z06ZN1Go1IpEIt912G3/913+thr8A/OpXv+If//Efuemmm3jPe95zxGsXQghxdMrlMo1Gg0qlQigUQtd11cnH79VfqVRUoB8MBsd0Y0smkzz//PM4jkO9Xqe1tVV1BCpVPZ7eXRp3zqClkTJGVAqP3zbUdV3C4TCWZZFKpYCxG16S2y+EOBFMaeB/0UUXccstt/BXf/VXEz7vd0M4Un63npdKx/GfS6cnztM8WG9vL9DM+fzMZz7Dueeey9e+9jVOO+009uzZw+c+9zluvfVWPvjBD7Jo0SKWL1/+kse74YYbuPHGGw/r3Fu2bDms1wkhxGud67o4jqM6+fgpN/5uP4BlWQwNDVGr1YBm2o+fchoOh6lUKhQKBarVKuFwmHA4rAL03z68D3eCeZKzkhXw6riuSyqVwjAMcrkc0WiUSCRCLBZT6T2j01ulGYQQ4kQwpYH/Zz/7WVavXs1VV13Fl7/85THPeZ7Hf/3Xf7FgwYIjPr7fTvOleiL7P2z9HZ+X43d5qNfrtLW1cddddxGLxYBmzcBPfvITtm3bxsaNG/nyl7/MT3/605c8Xm9vL+vXrz+scwshhDg8/i69n2fvp9KMnr47ercfUGk3lmXR0tLCli1bVDvPzs5OIpHICx14dO7fNDDheTsCw9RqNXRdJ5VKqY5A0WhUpfkAmKapLjgCgYAU9QohTghTGvgvWbKEX/7yl7znPe/hrrvuQtM0fvGLX7Bx40Zuv/12nnzyyaMq7vV3ZvwBLRPxd34Ot6hq9O3Ya665RgX9Pl3X+Yu/+Av+6I/+iN/+9rdqJPyhdHV1sWrVqsM695YtWw77AkUIIV6r/EFd/s/LUChEKBRSufp+kW06nVZ3ABKJBJZloes68Xgcx3HIZJoFuqZpkkqlCIfD6LrOxm0jpAvje/d3xuoE9QqNhkdrayumaVIoFIhGo0SjUeLxuGolOnq3X9J8hBAniikN/F3X5eKLL+bZZ5/l85//PLfddhvf+MY3mic2TT7xiU/w8Y9//IiP7+dRvtSALv85/7WHe0yApUuXTvga//FcLsfIyIjq3jCRa6+9lmuvvfawzr169Wq5OyCEEC/D36X3mzv4xbjpdFoV9fqFv34dgP86PyVn165d5PN5ldsfj8cxTRPXdbnnyQMTnrcrlMZ1XQzDoKWlRV1kJJNJLMtSG0W2bas70lLUK4Q4kUzZvcd6vU40GuXf//3f6e7u5oYbbmBwcJBdu3axadMmhoaG+PrXv35UEwwXLVoEwN69e9Ut1YPt2LFjzGtfzpIlS9TfD7VLM/pxvyWcEEKIqXeo3f5arUa9Xqder2NZFqVSSX2EQiECgQChUEgV+A4NDam7xa2trYTDYQzDYCBdZvPu8U0pwpZLe7iZ1uPfPchms8RiMSzLIplMqt3+0WS3XwhxIpmywN80TdXhQJ1M15k9ezbLli0jHo8f9TlWrVqFbdtUKhUef/zxCV/zwAMPAHD22Wcf1jGnT5/O7NmzgRcvGg7mPx4IBGhtbX2lyxZCCHGEKpWK6rtv2zaWZREMBnEcR+2y+1N8s9msuhvgF++Gw2FGRkZIp9Nqg6q9vR3TbN4A/8OGfiao6WVGrECtVkXTNOLxOPV6Hc/ziMfjY3b7g8HgmInBEvgLIU4kU1pt9OY3v5mHH354yo4fjUZZu3YtwISdc7Zt28a9994LwBVXXHHYx33f+94HwE033TSmlafve9/7HgAXXHCB+mUhhBBi6pXLZdW3PxQKqUm5tVqNarWqhndls1lV5BsIBEgmkxiGgeu69Pf3q6Lc1tZWIpEIgUCAYsnh/k19486paR5d4SyA2u0vl8sqPSgej6vBYaPz+23bPqq72kIIMdmmNPD/0pe+xN13383Pf/7zKTvH9ddfj6Zp3Hzzzdx4443qB25vby9XXnklruvyjne8Y1zbzXPPPZc5c+bwb//2b+OO+elPf5pEIsGWLVv4i7/4C3U72PM8vva1r/GrX/0KTdP4m7/5myn7voQQQoxVqVRUfr9lWQQCAbXbX61W1UZNsVikVCqh6zq2batC3HA4TCaTYWhoSOX9t7e3YxgGmqbx+JZhis749M3OcAnbaDZySCaTahZAMBgkGAyqTj6hUEjddfCfF0KIE8mUBv7Lli3D8zyuuOIKPvjBD3LXXXeRz+cn9Rxnnnkm//qv/wo0C2lnz57NqlWrmDt3LuvWrWPx4sV8+9vfHvd1+/fvZ8+ePWQymXHPtbe3c9tttxEKhfh//+//0dnZyZo1a+ju7ua6665D0zT++Z//mTe84Q2T+r0IIYQ4tIly++HF9B//75lMhlqthmEYJJNJQqEQpmmiaRrDw8Pk83kajQaJRIJUKkUwGKRarXLf+t4Jzzsj2nx9NBrF8zw0TSMQCKiLj0AggKZpmKapLgqkqFcIcSKa0sD//e9/P9OnT8e2bX70ox/xtre9jVQqxaJFi3jf+97HP/3TP3H33Xcf9Xmuu+46fve73/HWt76VYrHI5s2bmT17Np/97Gd58sknX7LrzqFcfPHFbNq0iY985CNEIhE2bNhAvV7n8ssv57777uPTn/70Ua9bCCHE4alWq5TLZWq1msrb9wP2RqNBtVrF8zzS6bRKrwkEAsRiMWzbJhwOk8/n6evrw3VdLMuio6NDpQJt3TvCzt7CuPNG7Soxq4yu68RiMVzXxTRNVVvg16v57UR9h9tCWgghjqUpTVD/7ne/CzQ732zZsoWNGzeqj3vvvZdbb70VTdMmpTPORRddxEUXXXTYr9+9e/fLvmbhwoV8//vfP4pVCSGEmAyjd/v9Kb3QbO3pt9XM5/Oqu4+maSQSCWzbJhgMomkaIyMj5HI5Go0GyWSS9vZ2dfFw7/rxuf0AM6I5dF0jFAqpnX5d18ekGvlFvP6EeP91QghxojkmlamGYXDaaadx2mmn8cEPflA9vn//fjZt2nQsliCEEOIkVavVKJVKKn0nHA4TDAZxXVcN6CqXyxQKBTRNw/M8IpEItm1j2zaRSIRSqUR/fz/VarMzT1tbm2rx2dM/zGObh8ad19Rc2gM5DMMiFAphWRamaaLrugr6bdsmFAqpOw6ASv0RQogTzXFtSTNjxgxmzJhxPJcghBDiBHfwbn84HAaau/2NRoNKpaLy9v2C3tFBua7rpNNpMpkM9XqdSCRCe3u72pX/nw091OrjO7hNC+WwjOY5/Zx9/0/LstSxQ6EQ2WxWfZ0U9QohTlRTmuMPcN9997F27Vrmzp3LaaedxlVXXcVPf/pTGXwlhBDiZTUaDYrFIrVaDV3XVetNeDHNxy/mNU1TffjpOMlkknK5zODgoNrt9wd2hUIhymWHe9dNnOYzLTiiUnsSiQT1el216PQHd4VCIRqNhirq9c8vhBAnoikN/H/961/zpje9iccee4wZM2bQ0tLC7373O97//vezYsUKdu3aNZWnF0IIcZIrlUoT7vbXajVc1yWdTlOtVlXgb9s2hmGMGSKZzWZJp9OUy2U1eDESiWCaJuue62Mg44w7b8IuEgs0CIfDqoOPnzrkB/d+qpC08BRCnCymNPD/P//n/7B8+XJ2797NAw88wP3338/AwAC/+MUvyOVynH/++YyMjEzlEoQQQpykGo0GhUKBWq2GpmnjdvuLxaIq1vUDfWjWldm2TSKRULv95XIZz/NIpVJEo1G1U/+7Jw5MeO7OYJpwOIymabS0tFAoFEgmk1QqFeLxOIZhEI1GAcZM6pWiXiHEiWxKA/9nnnmGj33sYySTSfWYpmlcfvnlPPLII9RqNb7whS9M5RKEEEKcpA7O7Y9EIgC4rkupVGJ4eFi18/SHaPlFtZFIhFAoRD6fZ3h4GMdx1DCvSCSCZVns78+wafv4zSdLq5E0s8RiMXURoes6wWAQz/NU/UAwGFQdhUCKeoUQJ74pDfzj8fghc/m7u7u59tpr+e///u+pXIIQQoiTkOu6Y3b7o9Go2k33i3nL5TKNRmPM7jugPm80GgwPD1OpVKjVasRiMSKRCLFYDIDfPrqHF2L2MToCI0TCzcLdVCpFqVQimUxSKpVU3/5EIoGu65LmI4Q4qUxp4H/++edzyy23qDHqB5s5cyY9PT1TuQQhhBAnoXK5TKlUApo76f5uP8Dw8DClUgnHcdA0jWQySb1eR9d1PM8jGo0SDAbJ5/Ok02kcx8E0TVpbWwmFQgQCAZxKlT9smKio16XVHCSVSqkhXdVqlVQqheM4RKNRDMMgFotRr9elqFcIcVKZ0sD/s5/9LJs2beL9738/w8PD456/77776OzsnMolCCGEOMmMHsYFjNntLxaLFItFyuUy1WqVUChEKBRSr4Xm3WbP88hmsxSLRarVKrFYjGg0qlJP71+/j3ypNu7cSTNLImKpegL/TkGlUiEcDqsJvrLbL4Q4GU3p9sTKlSu55ZZb+NCHPsQdd9zBZZddxtKlSwkEAjz44IP89re/5e/+7u+mcglCCCGmiOd5Ksfez4WfjBx3v3AXmrv9fhqP67oMDg6qol8/197vre84DsFgsLmj7zgMDw9Tq9XwPI9kMjnmzsFvHt074blb9X4SiaSaAVCpVOjo6KBcLpNKpdREYM/zpKhXCHHSmfL7ku95z3s45ZRT+PKXv8yvfvUrbrvtNgBCoRDXX389n/vc56Z6CUIIISbJwMAATz/9NHv37WPX7v1k8wU8DzQNErEoc+fMYNbMmSxbtoyOjo5XfHx/p95PoRm925/NZqlWqziOg+u6hMNhbNumXq9jmib1ep2WlhYajQalUolisYjjOEQiEeLxOIlEAk3T2LZ3mG37c+POHaBEMuDQ2tqKrusYhqF28kcPBgsEAlLUK4Q4KR2ThMRTTz2VH/3oRzQaDXbu3ImmacydOxfDMI7F6YUQQhylrVu3cv/9D7Dp2a2UqhrhRAfJ1Cy6u5IYhkmjUaeQy7B+6xAPPvEc4TvuZvmpi7jggvNZuHDhYZ+nUqmM2e33C3H9FB/P89Ruv6ZpquNOrVZTgbnjOOoiodFoEIvFCAQCqvPPHQ/unPDcKb2P1tYWNam3Xq+rtp9+mk88HkfTNEnzEUKclCY98P/c5z7HypUrWblyJfPnzx/znGEYr+gXgBBCiOOrVCpx5513cd+Dj+NZSeYuOZfumfPQX2Ljxm006Nm3k3XPPc36p7/Nheet4dJLLyEUCr3s+Sba7a9Wq5TLZSqVCtVqFWim1/iDugAVpEMzVSiXy1GpVAiFQsTjcTXMq1iu8eCm8UW9mlen1RohlVqsjmtZltr594d3BYNBKeoVQpy0Jv2n1T/8wz+oW56xWIzly5erC4GVK1dyyimnyA9JIYQ4CfT39/Pt7/6AnftGWHj665k1d/FhpbTohsGMOQuZPnsBe3c9z133PsJzW7dz9R9/hGnTph3y6yqVCoVCAQDLsojFYriuSz6fV8G2X8TrT+k1TZNarab67JdKJWq1GqVSCdd1iUQiRCIRVdT7m4d3UK2P7zQX1wZpTcVV734/6Idmmo9lWSq1yO82BLLbL4Q4uUxJBB4IBHjrW99KqVRiw4YNPPDAAwDqtuypp56qLgRWrFjB61//+qlYhhBCiCPU39/PN//j2/RlPM5583sJhSMv/0UH0TSN2fOW0NE5k8fuv5Nv/se3+cT/uvqQwf/o3X4/PSebzeJ5Ho7jYBgG1WoVz/PwPE+l+biuqwqLi8WiCv5t2yYWixEMBgmHw7iuy68f2T3hudvMAVpbZxAIBNSOf61WIxKJoGmaKiTWNE2KeoUQJ61Jb+d5++23M3PmTO644w4WL17Mli1bOHDgAL/61a/4whe+wGWXXUYmk+F73/sen/rUpzjvvPMmewlCCCGOQqlU4tvf/QF9GY+zL7z8iIL+0ULhCK+/8O30Zly+/d0fqGm8o1WrVfL5PNDczU8kEhSLRdWVp16v47qumsBrmqbKvzcMA13XVcFtoVBA0zRM0yQWi6n2m48/s5/+dGXcuQNumlTYIxaLYVkWlmWpc/p3FvzdfsdxVFGvX2cghBAni0kP/N/5znfy7LPP8o//+I/cfPPNLFiwgFtvvZW1a9fyuc99jltvvZXt27eTTqe57777+Nd//dfJXoIQQoijcOedd7Fz3whnnX8Jtj05O9q2HWDN+Zeyc/8Id95517jnD97tB9QFQrVaJRKJkM/n8TwP13VVd53RgX8+n1ddfyzLUj3+w+EwtVqNXz+8e8K1tRoDJBIJtatv2za1Wk1N/41Go2iaRr1ep7+/n1KphOd5J1yaj+d5lEolMpmMWqMQQow2Jak+pmnyF3/xF3zkIx/h7/7u7/irv/or/v3f/51/+Zd/4fLLLweaA1YuuOACLrjggqlYghBCiCOwdetW7nvwcRae/vqj3uk/WCgcYeGys7n3gYdZvvx01eyhVquRyzXbaxqGQTweV7n+/mOO41AoFLAsC03TiMViNBoN1bO/Wq3iui7FYlFdCIwO5nfvH2Tj9vS4NemuQ8JOk0otUbv6rutSq9Vob2+nVCqxefNm1m/YRP9gmrJTwdA1Zs3s4qI3XsCKFSuO+wWA4zhs3LiRhx95jD37emm4HoauMXtmF68/e80JsUYhxIlhSif3plIpvva1r/H000+zePFi3vGOd3DhhReyadOmqTytEEKII3T//Q/gWUlmzV08JcefNXcxnpXk/vsfUI8dvNtfqVRw3WYBrmEYGIZBLpejVqupvHq/u45pmmqn2w/8/dz/WCxGJBLBcRzuXdeDO8EGeMzrIRGPEo1GiUQiajCXbdvs27ePm3/0X/zotl/TV7CZtmAN85dfRPfic+jP23z7ptv48j/8M9u3b5+S9+pwbN++nS//wz/z7ZtuY+8ITF98DgtWXMz0xeewd4QTYo1CiBPHlAb+vkWLFvHf//3f3HvvvaTTaVavXs1NN910LE4thBDiMA0MDLDp2a3MXbhsynLXNU1jzsLT2PjM8wwMDFCv18lms0Cze04gEFCde/xuOn57TtM0cV2XRCIxpgDX7+/vOA66rqug3+/Hny8U+cPG8S088TxajUESiQTRaFTdTahUKmQyGf7rtl9S1Vt53cXv46xz19I5fS7tnTOYPms+a85/C+esvZJMNcy3bvz+cQmst2/fzrdu/D6Zaphz1l7JWeeuZcachXR0zWTGnIWcde7a475GIcSJZUoD/127dnHHHXfwj//4j3zoQx/iL//yL3nuuedwXZc9e/ZM5amFEEK8Qk8//TSlqkb3zHlTep7pM+dTqmo8/fTTY3b7A4GA+ju8uPtfKBQol8tqem4kElFpPqNbd5ZKJUKhEPV6nUQigW3bVKtV1m8dIVesjVtHoN5PPGwQi8XUVF8/Zei3v7sXLdTJGeeuJRgKj8mXN02z2eknFGHN+ZdQNVLcdPOPxgz1mmqO43DTzT+iaqRYc/4lBEMTp2UdzzUKIU48k57j/9GPfpRnn32WLVu2qOKiaDTKsmXLWLNmDddccw2nn346y5cvn+xTCyGEOAp79+0jnOh4yeFck0E3DMLxdvbu3cucOXPU45Zlqb9HIhFc16VcLpPL5dB1Xf0+8bvuuK5LLpdTu/3w4kAt/+JA0zTuXd874ToS3gGi0Sjt7e2qUNhxHPbu3ctQxuG8t16oBniNviAZPYtG13VWnPVGHr77x2zatIk1a9ZM8rs1sY0bN9IzkOOctZeqeQOHcrzWKIQ48Ux64H/TTf+fvTcPk7Ms077PZ19qr+o9S2cnAUIWIBAI6AAKKCIquDCjI46Io9+MvvN9s8nrLL7qcczxjs6C3yeLM68i6iiMyjiACwKyyZYFgoSQPd3pvbr2Z1++P4r7TlW6E7J1Frh+x/SRdFX189xVjOnzvu7zOq/vwDRNvPe978UHPvABrFixYsoEX4IgCOLUIo5j7No9iGxu7gm5XzbfiVde3Yq1a9dCEATEccyFv6qqMAwD1WoVlmWhXq9za08mk+GbANd1UalUYBgGarUaDMOA53no7OyELMsIwxCjJQ9b91an3F8MaigYLhKJLmSzWciyDNu2IQgCXt26DZmueUgkU22fDwBuJWrFMBNIFubgqaefwZo1a2Y84jOOYzz922eR6phz0Er/gZzoNRIEcWoyI6k+lmXhP/7jP/Df//3fbZN7V6xYgbPPPrutqkMQBEGcfDzPQ6VWR19v9oTcL5HKYnBrCb7vI4oidHR0AGgKaxajWavVYFkWwjDkVXyW0uM4DiYnJ/kGIIoimKYJx3GQzWZh2zZSqRQe2bBj2vub/h4kCwl0dnZCVVV+HUEQMFasYOGK8/hrD7T5TMesOQuwZ+tTsG0bpmkex09qKrZtY8/AMGadcfER/dyJXCNBEKcmx134v/baa9i0aRM2btzIv5588kkA4ANVzjzzTKxcuZJP7r300kuP9zIIgiCIIyAMQ8QxIEkzUg+aAhP8juPwTH4AfNiWZVltNh9RFJHNZnlUZxzHKBaLkGUZtVoNiUSCZ+/HcQxRFOF4IZ7ePD715nGAnDQBXe9FT08PFEXhE4GjKIIoStB1A0Dz9xZLGBIEAdJBbFCKqiGMYnieN+Oi2vM8hFEMVTuyiM4TuUaCIE5Njvu/8IsWLcKiRYtw/fXX88dGRkbaNgIbN27E3Xffje985zsQBAFhGB7vZRAEQRBHgCRJEAQgDIM3fvExEscxH87lui56e3sBNH397ES4UqnAcRxYlgVVVaHrOhKJBEzThG3bqFQqcF2XC372eDab5Y//5sVhOH405f6aO4BCPolCoQBFUSDLMur1OlRVfb1pWIXve3ytjOZnNL1Fxvea+f6qqh7Xz2o6VFWFJArw3CNr1D2RayQI4tTkhJR2enp6cPXVV+Pqq6/mj1WrVWzcuBGbNm06EUsgCIIgDoGqqsikkqhXyzN+L8dxUK+WoKoSj91kvn6gWdG2LAu1Wg1As+k3nU5DlmUoioJarYaxsTFIkoRGowHDMBDHMTRN40JdkiT8ZtPYtPdPBgPQtBwKhQI0TUMURYiiiN9n7qxuDO/bhVlzFyKOYy72D2bzAYB9AzvRP6eXv4eZxDAM9M/pxd7BnZg9b/Fh/9yJXCNBEKcmJyTHfzrY5N7Pfe5zJ2sJBEEQxOsIgoD582ajXJqY0fuwBJ5ScQy9XQUUCgXu62dUq1V4nod6vQ5BEKAoCjKZDEzT5JuCer3OK/WZTAa+7/MkIFVV8budRQwVp1bE5WASHSkB2WyWR34ybz8AZDIZnH/eatQmBmA16vzx6Zp6GbbVQL04gIsvuvCENM0KgoCL1l6A2sQAHLtxWD9zotdIEMSpyUkT/gRBEMSpxdw5c2BVxhDNoP3SdV24roN6eRRz5syBruvc1w8AURShUqmgXq9zLzpr6tU0DZ7nYXJyElEU8Sx/QRD4BoFd48mXJ6e9v+ntQSKRQCKRgGEYkCSJNw8rigLTNLF8+XJ0F5LYvP5x7u8/WLU/iiJseu5R9HWlT2hM9cqVK9HXlcbGZx/lazwYJ2uNBEGcepDwJwiCIAAAy5cvh6nGGBrYOWP3sCwLg3u2QxV9nHfeeTBNsy3prV6vw/d91Ot1br9h1f44jlGtVlGpVCAIAmzbRiKRQBzHkCQJkiQhjmM0nAgbt5Wm3FuMPWTEItLpNHK5HHRdRxAE3B6USqUgSRJ0XccHr78OkjeBF576JVzHmlb421YDzz7+INSwhI9/7Peh60fWbHss6LqOP/zojVDDEp59/EHY1vSV/5O5RoIgTj1OTHwDQRAEccrT1dWFFWctwfpXN2NW/6LjbglxXRe2bWPf7q1Ytng+FixYMCVdplQq8Wm9yWQSqqoilUrxKbyTk5MIgoAHQzCrTqFQANBMJ3p+m4Uwiqfc3/D2Ip1qnh4kk8k2+46iKEgk9mfiz5o1Czd97CP40X0/xXOP3Ids93zMmrMAiqrB91zsG9iJenEAfV1pfPxjnzgp82oWLVqEP/7UTfjOd7+Pp3/5AyQLc065NRIEcWpBwp8gCILgXHrpJdiw+VvYu2sr+hcsPa7Xrlar2Ld3OyKniMsvfy9SqVTb87Ztw7Zt1Go1RFEEwzCQyWS4/79SqcCyLPi+jyAIoOs6j/ZkG4BkKo3HNu2d5u4xEsEAMplumKaJTCbTliqn6zp0Xee2mTAMsXDhQvyPz30We/fuxTPPPo89W59CGMWQRAH9c3px8XtuwIoVK05qFX3RokW49a//Ai+++CKeevqZU3KNBEGcOsy48C+Xy1i9ejW+973vYe3atZiYmMCaNWv49wRBEMSpw5IlS/B769bgoUd+i66eOTDMw5sM+0bYto1qpYTdr76AdeedhQsvvHBKs+zk5CQ8z0O1WoVpmlBVFel0mluBRkdH4fs+4jjmk34ty0I+n+fJPNuGXJRq3pT7G9EEckkZqqoim81CFEVomoZqtQpFUaBpGmRZhu/78H2fW3tSqRQuuugirF27FrZtw/M8nkB0qjTJ6rqOCy64AGvWrDll10gQxKnBjHv8wzDE7t27eWbzgd8TBEEQpxbvfve7sGBOHs8+/gA8zz3m68VxjInxcbz03CPoyev44Ac/OGWCu+/7aDQasG0blmUhmUzCMAxks1kATe8/8/+HYcg3DYIgwDRNWJaFTCaDRzYMT7uGdLQPhmHwUwRZliFJEoIggKZpbdV+x3H4+lj0JbtPNpuFaZqnpKA+HdZIEMTJhZp7CYIgiDZM08TNf/Rx9GZFPP3I/QdtHD1cJsZH8cKTDyKjufjwBz+AuXPnTnkN8/ZXq1U+yCubzbZV+4Fm8ag5XVeE53lIp9O8wl2xgVd2V6ZcW4GDjFzjwp8Jfc/zeJqPYRj82mzyryiKNOyKIIg3FST8CYIgiCl0d3fjM5++GXM7NTz1qx9hz85X26bYHg5xHGPHay/jNw/9AIVEiPdf9x6sXr16yuvCMEStVoNt26jX63yoVy6XA9BsCi6Xy4iiCJ7nQRAELtoNw+B+/8dfHJ92HTlxBJLUtPak02k+BdiyLOi6DkHYP822tdpPvniCIN5sUHMvQRAEMS3d3d34v//Hn+KBBx7EI088jb07XsG8xWdj1pyFECXpoD8XhSH2DezArtc2wy7vw/nL52Ht2rWYNWsW0un0lNcz0V+r1bjfngl0ACgWi9x7H0URBEFAHMdIp9NwXbcZ9SlIeOrlqcJfQIS8NAFZlKFpGs/vB8D7BFptPq7r8jWS8CcI4s0GCX+CIAjioBiGgeuv/wBWrDgHjz/+BDa9/BRee+lpmOlOZPOdSKazEEUJURSiXi2jPDkOqzoOU4mxbMFszLv0bHR3d0PTNPT09Ey5fhRFKJfLvNqfyWSmVPtLpRJ/bRiG8H0fpmnyar0oinhpVwOWE0y5fl4pQ4hcqLqJZDIJ0zSRSqVQr9e5sE8mk/B9n58mSJIEVVUPOqmXIAjidIWEP0EQBPGGLF68GIsXL8bY2Bg2b96MwcFB7Ni1F8MjWxDFMURBQDqVwHlL52D27JWYN28eZFnG8PAwZFlGLpfjsZytNBoNWJaFRqMBQRBgGAZSqRTP1C+Xy3AcB0Bz+Bfz4WezWQRBwPP4D2bz6VInAAe80p/NZqHrOiYnJ7nw1zQNtm3DdV2y+RAE8aaGhD9BEARx2HR1deHyyy8H0LTKeJ6HMAx5lZxN1G00Gti3bx+ApujO5/NTUmaiKEK1WuWvZ+I8k8lAFEU4jsOTfOI4Rr1eB9ActsUacgFgvCZi13BtylqTigM1qsJ/fUORTCaRzWbheR6k161KhmHwKFDWLExNvQRBvFkh4U8QBEEcFYIgQNO0tseCIOBVfNu2kUg0J+UeOKwLABf81WoVcRzz17FqP9sUAIDneTy9R9M0GIYBSZIgSRKefLk47fpmmRV49WYPgGmayOfzMAyD9xIAzZx+z/PgOA4EQeCef4IgiDcjZGAkCIIgjgtxHKNWa1bey+UyNE2DqqrI5XJTqv2sgl+tVuG6LlRVRSKR4FGejuPAsix4ngdFUTAxMQFRFBGGIXK53P6KvGzg6ZdHpqxFESOkhXFuBzJNE93d3QDAp/WyjUscx3wNANl8CIJ480LCnyAIgjgu1Go1hGHIBXvr9N0DYYO62EZB0zRkMhmYpsmv5boufN9HEAQol8vcnsMEvK7r+O0rJYTh1JjR2akGPNeGJElQFAW5XA6pVIrn9LN7MrtSFEVQFIWaegmCeFMz41affD6PXbt28TSHzs7Otu8JgiCI0x/HceB5HgCgUqlwu04ul5sipOM4hmVZfGiXJElIp9PcFuS6LhqNBnzf5w3CoijC933MmjULACBJEjTdwMPPb5lmNTG6tCLKVYcP7ert7YUgCG3Cv9XmAwCqqlK1nyCINzUzXtYQBAH9/f3cByqKYtv3BEEQxOlNEAS88da2bR6xeahqv+M4vIoviiKf0itJEur1OjzPa6v2M5vP3LlzuX3npR1lTFbdKdfvSfkInTLiOIZpmujo6EA+n4ckSXxzIorNgV7sPoqiQJZlauolCOJNDZ1nEgRBEEdNq68/juO2ybcHq/bbto3JyUl4ngdRFJFKpZBMJqHrOvf2x3GMKIpQr9fhOA5830dXVxdP85FlGb96YWjaNc3L2rBtmycN9fb2QtM0SJIE3/cBoG1SLwBq6iUI4i0BCX+CIAjiqGG+fqBZ+Weoqjptkg8T8RMTE1AUBVEUobOzE4IgQFVVWJYFx3EQhiEcx0GlUkEYhtA0DbNmzeJV/MGxOl7dU5ly/aQWQQvGuU0ol8vxDUMQBHytyWSSJwWx9dJJNEEQb3ZI+BMEQRBHhW3bXDgDTeEfRREAIJvN8mZcBqv2l0oleJ4HWZaRSCSQTCahqio8z+PVftd14XkearUa4jhGJpPhpwIA8PBBqv1LukKUSpMAms27zFqq6zoajQaAZn+AruuwLAtRFEGWZZimSU29BEG86aF/5QiCIIgjhuX1M1RVheu6/O/TVftd10UURRgdHeUV+O7ubl7tZ97/MAzhui4sy0K1WkUikUBHRweSySRkWUbdcvHMK1Oz+yUR6DYq3L6TTCbR3d0NwzAQx/EUmw9bL9l8CIJ4qzDjwv+ee+7Bueeei3Q6jTlz5uCFF16Y6VsSBEEQMwibuMtg1XRmo0mn05DlqaFxLMnHcRxurUmn0zxtx7ZtRFEE3/fhui5v/k2n0ygUCrx34PFNw3D9aMr1F3cLKI4NQRRFCIKAefPm8aFgtm1z4W+aJm/qBZrTe9m1CYIg3szMqPC/++678bGPfQy6ruPGG2/E0NAQ/2UxNjaGj3zkI1i/fv1xudejjz6Ka665Bp2dnTAMA0uXLsUXv/jFtorUsfDggw9CEAT+y4QgCOKtSr1e55YelsTD/q09WJKP4ziIoggjIyNQFAVxHLd5+2272ZDLTgXq9TpqtRoSiQQymQw6OjoQRRGCIMBvXhyfdl2LO32+AUkkEpg3bx4Mw4AoinwCMKvus4ZkURSRTCZn4mMiCII45ZhR4f+1r30NV111FZ566il8+ctf5tnJANDV1YWRkRHcfvvtx3yf2267DZdffjkeeOAB6LqOZcuWYffu3fjyl7+M888/H5OTk8d0/Vqthk9/+tPHvE6CIIjTHTacC9gvmlkDLtCs9k9XPbdtG7VaDY1GA5qmQRRFFAoFAM0TBObpD4IAruuiVCpx731PTw/337/42hjGyt6U6/dkBASNUd7A293djWQyiWw2yweBAVPTfCi7nyCItxIzKvy3bduG9773vQAwZVw7AKxbtw5PPvnkMd1j/fr1+PznPw8AuOOOO7B3715s2LABO3fuxLnnnostW7bg5ptvPqZ7/OVf/iUGBgZw3XXXHdN1CIIgTmd834dlWfx7NgCLVfs1TTuotz8MQ4yOjkKWZQiCgGw2C6C5eQiCgE/y1XUdExMTiOMYgiCgUCggl8shDEMEQYBHNo5Mu7YV/SqGh4cBALIs44wzzoCiKEgkEm3CX9d12LbdNsRrut9PBEEQb0ZmVPjncrk2H+iBzJ07F0ND0yczHC7/63/9L0RRhI9+9KP41Kc+xf8B7+vrww9+8AOIoogf//jHeOmll47q+k8++SRuv/12vO997+ObGIIgiLcaURRxewzQ9MnLsoxKpcJjPFOp1LQDsCzLgmVZqFQq0DQNcRyjq6uLX5dtHpglh/1d13X09fXxdKCB4UlsGbCnXN9QBRS0Kk8ZyuVy6O3tRTqdhu/78DwPURRBVVWoqsqHjQmCMO1GhSAI4s3KjAr/yy+/HPfcc89Bn6/VascUn1av1/Hzn/8cAPCpT31qyvOLFy/GZZddBgC49957j/j6juPgk5/8JJLJJG677bajXidBEMTpTq1W475+VVVhmiav0gPNav90XnnP8xCGIcbGxiBJEhRFQTqdhiiKiKIIcRyjXq/Dsixomobx8XEIgsDtOul0mifyPLpxBC2OUc6KfhVD+wYQRREEQcD8+fOhqiqSySQcx2nL6mcbDaBZ/aemXoIg3krMqPD/whe+gO3bt+PGG2+cUvmP4xg//OEPsWjRoqO+/saNG+G6LjRNw5o1a6Z9zSWXXAIAeOaZZ474+l/60pewdetWfPWrX8WsWbOOep0EQRCnM41Gg1tlmK+fnQCwx5PJ5LQDsA6s9gPg3v4wDBGGISqVCh/e5Xke4jiGJEno6enhjcATxRI27Jga1iAAWNoLFItFPuhr4cKFPKmHpfe0NhEzpmtCJgiCeDMzo8J/6dKluP/++/HQQw9h1apVEAQBP/3pT/H1r38d69atwwsvvDBtpf5wee211wA0LUMHq9osXLgQALB169YjuvamTZvwv//3/8aaNWvwmc985qjXSBAEcTrjeV6bWE6lUtySczjV/iAIUCwWEUUR99xrmsar/aVSCUEQQJZlnsgTxzHy+TzS6TTCMITv+3huyxgaztQIz0W9CurlUdi2jTAMMWvWLOTzeSQSCd7oGwQBVFWFLMt8zWTzIQjircjUoOXjzBVXXIHf/e53+Pu//3vcd999+MY3vtG8sSzjM5/5DD75yU8e9bVZWk8+nz/oa9hzpVLpsK8bhiH+6I/+CABw5513HpMd6Y477sCdd955WK/dsmXLUd+HIAjieBOGYZuvP5FIQFEURFGERqMBz/MgCMJhVfuZrSaTyQBoWilZj4CiKNx37/s+NE1DPp+HrusIwxCTk5N4YZs15foAsGq+huEdo7zaP3/+fD4JmCUFAc3NSRAEvB8hkUhMmSxMEATxZmfGhT/QbLS944478M1vfhMDAwOoVqvo7+8/5mPW1ji2g8F+GbVWrN6If/zHf8SGDRvwF3/xF1ixYsUxrXF4eBgbNmw4pmsQBEGcDGq1Gk+/UVUVhmEA2C/ogea/sYlEYkoyju/7CIIApVIJvu9D13UYhsHFfBzHmJiYANC0frJNAIvwZEUby7KwY7CMwaI/ZX35pIiM0sDm11OAMpkM5s6d21bd930foihCURSy+RAE8ZZnRoX/XXfdhV27duGrX/0qgKY3tL+//7hdn2Uvs4rOdLCR7OwX1huxbds2/N3f/R3mz5+Pv/3bvz3mNfb29mL16tWH9dotW7Yc0QaFIAhipqjX67w6LkkSt8Wwar/ruhAEAYlEYtoc/AO9/czmI4oiHwBmWRYEQYDv+9x/b5omEokEEokEfN9HpVLB8wep9q9eoGNsbA8sy4IkSejr60NnZydEUeSbC3aCwCxDAPjmgiAI4q3GjAv/A4X+n/7pn+Jb3/oWZs2ahX/4h3/A+9///qO+fi6XA4BDDuhiz7HXvhGf/vSn4TgOvvnNbx6XXwy33HILbrnllsN67bnnnkunAwRBnHRc1+UnqswLzyr6lmXxAsWhqv2e53H/vmmaSKfTUFWVC3Am/gVBgGmafGCXoijcqjM6OorJqo3fDThT1qjKwOJuAc/+dgBA07ozf/58vslg2f1xHPNTBib8yeZDEMRblRkV/jt27MCHPvQh/v0zzzyDb3zjGzj//PMBAB/60IfwzDPP4Nxzzz2q6y9ZsgQAsHfvXvi+P22D744dO9pe+0asX78egiDgD//wD6c8x37ZDQwMoKenBwDw4x//GBdddNFRrZ8gCOJUIwgC7rcHmiJZlpu/KsIwPOxqf6PRQL1ehyzLUFWVC/JarQbXdflQL9M0IQgCPM+DpmlQVRWZTIbbhDbudBBO7enF8n4ddqOCcrkMWZZRKBR4oUkURe7vZwPD2OkvSyUiCIJ4KzKjwt913bbG2x/96Efo6OjAY489BlVVcemll+IrX/kKfvzjHx/V9VevXs0buJ577jlcfPHFU17zxBNPAADWrl172NeN4xijo6MHfT6KIv78oWxGBEEQpxNxHLf5+nVdbxP2rdV+Xde5aG/F9324rssHe2mahmw2yyf01ut1/hpN06DrOhzHQRRF0HWd5+8PDQ0hhoD1O6a3P54zR8LeHQMIggDJZBKzZs3i04DZ+n3fh2EYcF23rVdhukZkgiCItwIzGufZ39/PK+4AcP/99+O6666DYRiQJAkf/OAHsX79+qO+fjKZxJVXXgkA0ybnbNu2DY888ggA4Prrrz+sa5bLZcRxPO3X//k//4e/L/bY29/+9qNeP0EQxKlErVZDGIYAmj74RCLBnwvDELZt82q/aZrT9k4xb79lWRBFEaqqQlEUqKqKWq3WFg+aSCQQRRG34LBYUJbks3WfN22E54JuBQk1xNDQEBRFQSqVwuLFiwGAZ/cHQYAoiri/vzXNh4Z2EQTxVmVGhf+1116Lf//3f8fmzZvxrW99C7t378Y111zDnzcMA2NjY8d0jy9+8YsQBAHf/e53ceedd/KqzvDwMD7ykY8giiJcd911U9J51q1bh3nz5uGf//mfj+n+BEEQbwbY8Cxgqq8faA7xYkk+hmEctNrvOA7K5TLCMISiKMjlcrzZtlKpIIoi2LbN5wHIsgzHcbgVKJ1OY2RkBHEc4/nt0zf1ruyXMT4+zn+uUChw+yUAPp1X0zR4nsdnBqiqOq01iSAI4q3CjAr/P//zP0cikcDKlStxyy23YNGiRXjXu97Fn9+xYwef4Hi0nH/++fj6178OoNlI29/fj9WrV2P+/PlYv349zjjjDNx1111Tfm5wcBB79uxBuVw+pvsTBEGc7vi+z0U90BzS1dr8GgQBHMeB67oQRRGGYRyy2s9ex6xCoiiiWCxyqw97XJZlhGEI13V5zj/QnLsyXhMwNBlMuUdHSsLcDgl79+4F0NyELFiwgNt3Wm0+zArKYFYigiCItyoz6vHP5/PYtGkTfvjDH6JcLuMjH/kIbxIDmtafc84555jv8/nPfx7Lly/H1772NTz77LMYGxtDf38/rr/+evz1X/81NXIRBEEchDAMUa1W+femaU4Rx41Go83bbxjGtNV+27ZRrVYRRRFEUUQmk0EURQjDEPV6nSfrdHZ2Amj67UulEhRF4ZuBYrEIz/OwYVc87XpXzlNQLpdRLBah6zrS6TTmzp0LALyPIAxDRFEESZIQxzHCMIQkSdx2RBAE8VZlxgd4JRIJfOITn5jyeLFYxJo1a/COd7zjuNzn8ssvx+WXX37Yr9+9e/cR3+PjH/84Pv7xjx/xzxEEQZyKHNjMq6rqlBhj1ojrui4kSXrDar/jOLzab5omwjBEsVhEFEWo1+vI5XL8Oo7jwLIsXv1nr3ECEa8OTrX56IqAJT0idu8aQxiGSCaT6OrqmtLU63kenwsgCALiOOaJQQduWAiCIN5KnJDJvdNRKBRw9913n6zbEwRBvOVpNBrTDuk68DW2bSOOYy76RbHdJcqsQrVaDUCzRyCdTiOOY9Trdbiuy6M90+k0JEmCLMu8UVjTNAiCwKNCfzcYIZqm4H/2XAVh4GJkZASKokDTNMybN49X8dlcAJbmU6vVIEkSBEEgmw9BEARmWPiPjo7iz/7sz/Dcc8/BMAwsXboUq1at4l/d3d0zeXuCIAjiIDiOc9AhXQyWhe+6LmRZ5jafA2G5/Y7jQJIkaJoGwzD4EC/HceB5HmbPng1BEJBMJnnOf2ukp+d5GBoexaPPjKBaKSOKQoiiBNXIwEjlcfbsPlQqk/yUIJ/P898jcRzz6n4cxwiCAKIoIooiXukn4U8QxFudGRX+f/RHf4QHH3wQ69atg6ZpeOqpp3DffffxXy7d3d1YtWoVHnjggZlcBkEQBNFCEARoNBr8+2Qy2dZ/xWC5/azazxp1W2FTeC3LgiAIkCQJyWQSgiBgcnISQRCgVqshl8vxa8RxzDcdqqoiCAJs2rQJm17cjM07xjFciqEaKQiijDgKUB7ZjrQBPPhfKWTSCV7B7+np4acUzNPPbD6swZhV/8nmQxAEMcPC//HHH8dnPvMZfOMb3+CPjY2NYePGjdi4cSM2bNiATZs2zeQSCIIgiBaiKEK1Wm0b0jXdQCvHcRAEAVzX5Tn8h/L227bNm2eZzcZxHL7ByOVyvLrfejpQq9XwwIMPYfveceipHiT7345Fi/MQpf2/nqIwwKxEGRMDr+Dl519GPinhoovWYvbs2XzD0prmoygKn0egKApv7CUIgnirM6PCP5lMTsnP7+rqwpVXXskHbxEEQRAnjlqthihqDsWSZXna1LM4jtuq/aZpHrTaX6vVeBOtJElIJBKI4xilUolfo6enh4t+Vu2PoggjIyP47wd/haIl4Kzzr4QvJLFlKMSBdfmUqaCnqwPp5HlQE3kM7dqMFzZu5gMUfd9vO7HwPI9X99mmhoQ/QRDEDOf4v/vd7z6mybwEQRDE8aPRaPApuaIoIp1OT/s627YRhiEcx4GqqpBleUraDwBu8bFtG5qmQZIk6Lre5utnQ7kSiQREUeS9BZVKBT974BeoR0msWnslEqksRqrTLAZAT1bkswSS6TzOOu9yyKnZ+M+f/Azj4+NtTb2iKMLzPB7lyQaDHbhpIQiCeCsyo/8S/v3f/z1+/vOf44knnpjJ2xAEQRBvgOu6PIsfAJ+ceyBxHMO2bViWdchqv+d5qFarcByHN86apgnXdfmU3zAMUSgUkEwm+c87joMwDPGrh3+NiqPgrNWXQNN0OD5QqodT1qNIQFJt5vIHgc+bjNe+/d0o2RL+62f/zW09bEov0LQ0UbWfIAiinRkV/suWLQMAXHHFFfjsZz+LRx55BPV6fSZvSRAEQRwAm5jLSCaTBx1kxQS767q8in+waj/bTJimCUEQIIoi6vU6yuUy4jiGqqro6OiArusQBIFP/92+fTte2z2KJeeshSTJEAQBw+Wpoh8AenIyotCH7/uIogiy3JwBkEgkcfa5b8NLW3Zjy5YtAJrpRJ7nAQCfJQCQ8CcIgmDMqPB/3/veh1wuB0EQ8M1vfhPveMc7kM1msWTJEnz4wx/GP/zDP+CXv/zlTC6BIAjiLc10zbxMEE/3Wtu2+cnAwar9ruvyar8oiryp13VdlEolhGEIRVGQSqWQSqW4FYc1DK/fsBGJbB8yuQ4AQBACo6VgynpEAcjpAaIoRhD4kCQJkiTzFKJcoQtmtg/Pv7CBbwziOIYsy5AkCaIo8r8TBEEQM9zc++1vfxtAs9r0yiuvYNOmTXjxxRexadMmPPzww/jRj34EQRD4MS1BEARx/IjjGNVqldtfFEWZtpmXYVkWoih6w2p/tVqF67pwHAeJRAKSJCEMQ9i2jXq9DlVVEUUR+vr6eLY+m/5bq9Wwe2AM85e/nWfs7x7zMM28LnRlZMRRM/az6duXoSgyjwuNoghz5i/Frlcex/DwMO9ZiKIIiUQCAFX7CYIgWjkhk3tlWcY555yDc845p+3xwcFBvPjiiydiCQRBEG85WifziqI47WReBmvmfaNqv+M4qNVqPCffNE1YlgVJkjA+Ps6r7IlEAqZpIgxDHtsZRRH27dsHN4iQyXdCEAQIooR9RXfaNRUSAaIw4sO42P2Ydz8IAnR2z8JrmyIMDQ1xsS/LMk/5mS6qlCAI4q3KCRH+B2P27NmYPXv2yVwCQRDEm5IDJ/Om0+lDJts0Gg1e7TcMA6IoTpvbXy6X4XkebNtGOp3m9ppqtQrf95FMJhEEAXp6eri9iFX7JUnC8PAwZC0FVW2eKAxPegimOfQtpCSIsYtYABf+kiTyRuE4jhFFEXRdh6wlMTY2hsWLF/PJwQDI5kMQBHEAM55v9uijj+LKK6/E/PnzcfbZZ+PGG2/Ej370I7L3EARBzBBsmi7jYJN5W1/veR6fvsv6AKar9tfrdXieB1mWkUqlUKvVAAClUgmqqiKOYz6si1X7WW6/53lNy46sQBAEyLKMvWP2dEtCZzLiG4f9w7hUJBIJbhHl6xMluG7z1ID1HABk8yEIgjiQGRX+Dz30EN7xjnfg2WefxezZs5HP5/GrX/0KH/7wh7Fy5Urs2rVrJm9PEATxliOKIi7GAcAwjDe0u7RW+03TnLbaH8cxJicnEQQBbNtGKpVCvV6HLMsoFosQBAGJRKLZdJvLAWiKcLapiKIIvu8jjmMIiCDLMiaqPmxvqrs/ZYhQhOa8AbZ5aA4HM7mYZ48DQOh7fGPT2rhMNh+CIIh2ZlT4/83f/A1WrFiB3bt344knnsDjjz+OsbEx/PSnP0W1WsWll16KycnJmVwCQRDEW4bpmnmZ7/1gsKQdy7IgyzI0TeNWn1Zs20aj0YDrujxLn/UEsCbfOI6RyWSg6zqiKIIoirBtm28qfN9HPp9H5FtAHGPXsDXtmrpenysmSSKiKEIYBpCk5gkDa+qNogiSJMH3fThWBfl8HpIk8ZhSsvkQBEFMZUaF/8svv4xPfOITyGaz/DFBEHDttdfit7/9LXzfx5e+9KWZXAJBEMRbhlqtxpt5JUk66GReRhzHbbn9LI9/ump/sVjkDcDpdJrfq16vQ9O0KZsGQRAQBAE8z4PruojjGI7joL+/H7oiYd/wKCrWVMunrghIyM1qfxTFiKIYoihBVVW+iWmt9k+M7oMmA11dXdA0DYIgACCbD0EQxHTMqPBPp9MH9fL39fXhlltuwX/913/N5BIIgiDeEliWxYdXsWZeJoIPBqvG27bNs/gNw5jyc/V6HZZlwXEcLqjZMC7WYMt+VtM0Xu1nU3o9z0MYhhAEAf39/Zg3pwsbNm6adk1dmWb8pygKEAQm8kUkEiYX+0EQQJIkxHGM3TtewZxZnejs7CSbD0EQxBswo8L/0ksvxT333MOPnQ9kzpw5GBoamsklEARBvOlxXReWtd82k0ql3tDmwgT/G1X7oyhCsVjkFXtm8WGVfBb7ySI0Wz34bF3M6pPNZqEoCpadvRr7BnbDrhXb7iWJQFYLIYrNKcBBECCOm/0A7PSCFZNEUcTkxCjqxQGcu2pl24aF9QQQBEEQ7cyo8P/CF76AF198ER/+8IdRLBanPP/oo4+ip6dnJpdAEATxpiYIgrZm3kQicVg2F8uyuNVH13U+rOvAan+5XObDumRZhiAI3B6kKApUVYUkNa04mqYhjmNIkgTbtuG6LsIw5H78ZDIJTdOwq5qGlshhdMeziEKf36s7IwEIAQgQBAG+H7wez6nzDQmr9odBgM0vPIalC/tw1llnUbWfIAjiMJjRHP9Vq1bhnnvuwUc/+lH893//N6655hosW7YMmqbhySefxC9+8Qv83d/93UwugSAI4k1LFEWoVqv8e13Xp83eP5AgCOA4Dnzfh+/7yGazEEWxTTwDzer65OQkoijiDbyWZb1eiY+57973fQiCwAV3FEXcGuT7Ph8eJooi6k6E9dvq6Fl0AfZu/hWGtj6JvjPWQZIU5M3w9f4A8fX7B5Blhdt8wjB8PcZTwPpnfo2M5uPKd74DqqpClmUe/0nCnyAIYnpmfIDXDTfcgDPPPBNf+cpX8LOf/Qz33XcfgGbE3Be/+EXceuutM70EgiCINx3TJfgkk8nD+tlGowGg6fFnzbjTVftbG3oFoVmFt20bgiBAURSkUin4vs+r/UDTgtNoNLi/n/UAmKYJ0zTxs0d2IYwAzcxi1tJLse/Vx7F3869w1qqLIAlpAAJUVUGtVocgiFCUps0njmMEQYBKaQLbf/cssnqAa6+9BoVCAYZhcNFPNh+CIIiDc0Im95511ln4/ve/jzAMsXPnTgiCgPnz59M/zgRBEEfJkSb4MDzPa8vWZzafA6v9nuehXC4jiiI0Gg2k02k0Gg0e82kYBhRF4YJbVVUIQrMxt1Kp8IFdLOlHURS4foynXt4f4WxmujF3+Tswsv1ZFLf+EkGxD72zF6HQ1QPf9/gphCSJGB3eix2vvgSrPIQVy+bjne+8AolEgtuMGFTtJwiCODgnRPjv3LkTe/bsQTKZxLJlyw67KkUQBEFMpdFoHHGCT+vPAvur/YIgwDTNKa8bHx9HHMeo1WpQFAWe5yGOY8iyDFEUkUgk4DgOFEXhVXZRFFGv1/nGIgxDPtTLNE385De74AXtA7s0M4t3XvVudEevYOu27Rjc+iS2vugjggJF1ZFKmtipABJC9HRlcfE73o1zzjmHpwXpus43HAAJf4IgiEMxo8J/eHgYH/rQh/DUU0/tv6Es46qrrsKXvvQlrFixYiZvTxAE8aaDDc1ipNPpwz49bU3xYZ58lr/fimVZqNfrvHE4m81yS08QBDBNkzfxAu3V/lKpxO+VTqe5DchxA/zmxYlp17WqX0ZKPQNLly6F53nYvHkzJiYmkEgksHz5csyaNQumaSKTySCbzSIMQ245Yg3FANl8CIIg3ogZFf6f+cxn8OSTT+KjH/0ofu/3fg9xHOO5557D97//faxZswb/8i//gk9/+tMzuQSCIIg3DZ7noV6v8++TySSfVPtGsIZboCnK2cnrdJN9x8fHAQClUgmapnHRH8cxEokEFEXhTbuCIEBVVYiiiFKpxGM/BUHgsaKmaeLBp3ej4U6Ndl7QoyGj+xCE5utc10VPTw9mzZqFRYsW4bzzzoNlWSiXy1AUhdubAPBqP4Oq/QRBEIdmRoX/Y489hk9+8pO48847+WM33XQTvvrVr+Kv//qv8dnPfhZz5szBu9/97plcBkEQxGnPgbGdhmFM8eUfikajwUU5y9xXFGXKxqFSqcBxHFiWBcuyeBqPrusIggCy3Py10Tohl2XuM3FuWRa6urp43KfjuPj1hvFp13XufBmC0JzEqygKj342DAOdnZ2QJAmO4wAAX6vneRAEYcr7J+FPEARxaGY0x18QBFxwwQVTHs/lcrj99ttx+eWX48tf/vJMLoEgCOK0h8V2tvrYp6vUH4wgCOC6Lhf+zNN/4DWiKMLExATCMESxWISqqvB9H5qmodFocJEfRdEU4V8sFqEoCmq1GnRdb5vm+/TLoyg3ginrmlVQ0ZUM+OAv9j5Zs3JfXx9c1+X9DGEYQpZlfgLBGo2Bpo2UbD4EQRCHZkYr/mvXrsWzzz6LP/qjP5r2+Q984AP4H//jf8zkEgiCIE5rWlNygKbAPdKABGYPsm0bmqZBFEXu72+lWCxiZGQE69evx+7de1CpWXC9AJIsA3GMZMJA/5xZ6OrqwJIlS3hVn50OKIoCx3HQ29sLVVWh6zos28av1o9Nu641C1UIQsBPFEqlEt9odHR0wDAMPkeADQ9jVh8W4ck2IFTtJwiCeGNmVPjfeuuteNe73oWrr74a73vf+6Y8XywWkc/nZ3IJBEEQpzXVahVhGALYH9t5uAk+QLMZOAgCRFEE3/eRyWQAYEqSz8svv4z77/8vvPzqDlStEOl8LzL5Wejt7EYUxc0egUYVWwYnsf53L+DXv3kGy89chEvWXYxkMglVVVEul5FKpaAoChKJBARBwLO/G8NY2Z+yrs60jHmdAqJI4laharUKQRBgGAa6uroQRRFc1wUAPjCMbV4kSeInIAAJf4IgiMNhRoX/ZZddBk3TcP311+OGG27AJz7xCaxevRqyLOPxxx/H17/+dXzuc5+bySUQBEGctrBoTGB/bGerveWNiOOYN/RalsXFPsvuZ48/8MCDeOAXj8ETEuiYdx4Wd/QgmUzBMAxurQGapw3NTUSIseG9eHVgOzbfeTeWL5uPSy65BGEYcuFvGAYmikX84vnRadd2wRKDvy9d1/mpgSAIyOVy6O7uhm3bbe9fkiS+eWmt9iuKckSfC0EQxFuVGRX+n/zkJ7F582a89NJL+NGPfoR777237fmVK1fivPPOw+DgIGbPnj2TSyEIgjitsCyLN7Uy0X+kHnbLshBFEYIgQBzHUBSlLbd/dHQUd/3bt/Ha7jF0z1+NQtdsvkFQFAW6rretgVXYRVHC7P7FmN2/GDu3/Q7PvfQ8tm3fhes/cB1kWUahUIDneVj/6gRGp6n255ISzp6rw/eb3n2WOBRFEUzTRGdnJzRN442+URRBVVV4ngdFUSDLMlX7CYIgjoIZFf7f+MY3+N/37NmDF198se1r06ZNuOaaawA0s6jPOussLF++HN/85jdnclkEQRCnNCxVh3EksZ0MlnUPNL39TOybpglRFDE6Oor/7/a7MFKOsGLt1Qij5kZBVVUu+qMo4gK7tfLPMvxd10Xv7AXI5rux8Zlf4f6fPYSb/vD3sXDhQuwdGMAvXpje23/x0gSYW0nTtLaY0mQyiZ6eHniex5t64ziGruuo1WowDIM/JggCz/InCIIg3pgTMrkXAPr7+9Hf349rr72WP9ZoNLB58+a2zcD3v/99Ev4EQbxlOTCrP5FIHJWwZdfwPK9tsi6z1dz1b9/GSDnGqrXvRL1hwfMcRFEMTdP40C025be12g/s3wSEYQhRFCHJCs5bdzU2P/dr/OyBn2P27NlY/+oERkpTq/3ZhITVi9Pw3GbWP5vA63keVFVFLpdDLpfD5OQk4jiG7/t8YBg7tYiiiFt72CkGQRAE8cbMqPC/6667sGvXLnz1q1+d9vlEIoELL7wQF1544UwugyAI4rTA9/0pWf2swn0kuK7Lq/OO4yCVSgEAb7h94IEHsXNgEmuvuP510e/BdT2YpgFN02CaJnzfb6v2szQd9hg7DYjjmKcEnX/J1dj8zC/w45/8BC9Ozpt2bevOTEISm4JfVVW4rgvLsuD7PgqFAvL5PCRJ4iceQRAgkUjAdd22aj+Dqv0EQRCHz4x2Q911113Ytm1b22N/+qd/CtM0sXjxYvz4xz+eydsTBEGcNoRheExZ/Yw4jnml3nEcPt1WlmVomobXXnsNjz75HBafsxZ+EMJxnNdPBUQYhsHjPtnGgaXnsC9WpQ/DEIIgIIoifqKQL3Ri3rLz8MCvX8C2nXumrC1jSrhgWYFvIqIoQhRFqNVqkCQJiUQCs2bNQr1eRxiGPNpTkiTu829t6mVTgwmCIIjDY0aF/44dO9qq+c888wy+8Y1vYPny5cjn8/jQhz6E9evXz+QSCIIgTnmiKEKlUuGiX1EUXqU/UliTbBzHCIKAC2O2iXj88ScQK1l0983jqUFRFPFITkVR4LouH9LFBnYB4OKfrZl9zwZwybKMQtdsFN0kSkNbpqztkrPTUJVmbwC7D7P6JBIJZDIZpFIpVCoVAM2NSzqdRhAEvMeh1eajaRrZfAiCII6AGRX+ruu25fT/6Ec/QkdHBx577DE8/fTTWLNmDb7yla/M5BIIgiBOaaYb0JVOp4/qWkEQtDX0MmuMpmlQFAVjY2N48XevoX/R2SiXy1x4a5rGq/1swwDsr/Yzkc+q/GEY8udEUYQsy9B1HUEQYHiiAb2wCFZlDK5V5mtLmxIuOaeL5/IDgCiKfE5BIpFAb28vnzLs+z4kSYKmaW0bmFZ0XT+qz4kgCOKtyowK//7+fuzYsYN/f//99+O6666DYRiQJAkf/OAHqeJPEMRbFib6j2VAVyusoZcJdBb/yRJ9Nm/eDMsTkMwUYFkWt82kUimoqson47ZW1VmFnzXyHvgYsxBJkgTLtrF9yEIqPxuSoqE2sd/u87azM9BUhU/4dV0Xoiii0WjANE2kUil0dXWhXC4DaO9NYO+DnUKwxw6cPEwQBEEcmhkV/tdeey3+/d//HZs3b8a3vvUt7N69m8d3As3GtbGx6ePeCIIg3uzUajVeXRdF8YgHdLXCJvSyv7Nqv2maXDjvHRiAYmRRq9W5vz6VSvE+ADbdF2gK61Y/P6vyt/7JmnpVVUUQBBgYqaLhxhBECUaqA059EgCQMkS8fXUvHMdp29Q0Gg24rotkMol8Pg9VVflnEoYh0uk0oig6qM2HIAiCODJmtFzy53/+57jvvvuwcuVKAMCiRYvwrne9iz+/Y8cOFAqFmVwCQRDEKUmtVuM59Uc7oIsRRRFv6GWxmEBzM9GahLN9xx6IcoYn9qiqimQyycV0GIaIoogPyGKVfd/3p8wRCMMQuq7zqbkNy8L2of2zB/REHqXh1xDHMX5vRR6moWOwOAFRFOG6LmRZRqlUgqqqMAwDfX19qNVqiKIIjuO0rWs6yOZDEARx5Myo8M/n89i0aRN++MMfolwu4yMf+Ujb0ez999+Pc845ZyaXQBAEccpRr9e5152J/mOxrTQaDS7UgyDg1h4W3wk0Pf9Dw6MwuzsANDcFmUymbbMRBAEfisW+Z5sTlqwjSRJ83+fVfkVR4Ps+dg1VYHv7YzYVI4UwcJHSIlx+3iy+MWm9l+u6yGQyyGQySKfT2LdvH4IggO/76O7u5utg/QVsrWyzQRAEQRwZM26QTCQS+MQnPjHl8WKxiDVr1uAd73jHTC+BIAjilKHRaMBxHP59KpU64qm8rTQz+JubCNd1eSVcURRuh4njGCMjI6jV60j2ihAEAclksu35KIoQhiEUReE2njAM2xpr2SCvMAzbLESu52P7vnZhLwhNYf57K7JIJkwMTBYB7D89YDZPwzDQ09ODMAzhui5s24amafw0gW082KYDIJsPQRDE0XLSOqMKhQLuvvvuk3V7giCIE45lWTx1BwBvqj1a4jjmDb3M/84q4a0zACqVCoaGhhCFIeI4gqZpSCaT/BqsqZcl9UiSxKfpstQeoCn8fd/nDb2KoiAIAuwYrMALDlxbBE0RcNl5/Tw2FGgKf1VVUa1WkUgkYJomOjs7US6X4fs+giBALpdrO4loHdglCAIJf4IgiKNkxs9K77nnHpx77rlIp9OYM2cOXnjhhZm+JUEQxCmHbdt8Gi2Ator70dJoNHgMKBPUQNP/zsR6o9HAvn37YFkWTEOD59hIpVK8eg+0e/tZdCertMuyPMVyYxgGRFFEHMdwXA87hxsHLg2+XcMZc7PIZNJ8GjE7UahWq3wib+ukXsdx+CAvXdf5Glpz/Fn6EEEQBHHkzKjwv/vuu/Gxj30Muq7jxhtvxNDQEKrVKgBgbGwMH/nIRyjOkyCINz2O47R53JmwPRZ83+eWoSAI2qryrNrvOA6Gh4cxMTGBKIowd3YvPLcORVHaJvEyYc2q+Y7j8EjQVuEfBAGv9DOv//bBCvxw6vpit4SLzjsDjuPwddp2c9MxNjYGwzCgKArmzJnDN0WsP+HADVFrxZ+aegmCII6eGRX+X/va13DVVVfhqaeewpe//OW2f7y7urowMjKC22+/fSaXQBAEcVJxXZfbcYBmvCZL2jlaWi0+QLv/nTX0+r6PsbExTExM8GFeCxcugG+VEb1e4Wc+/lbCMOTNu5Ik8aZe9mUYBo/+tB0Pu0ZsHEgchcgoNcybOxe1Wo33ELBqP4vwzOVy0HUd1WoVtm3zmQKmafLNQmtTryRJx9QPQRAE8VZnRoX/tm3b8N73vhcApj2aXbduHZ588smZXAJBEMRJw3VdbnMBmo2sLHHnWLBtmwv2VosPm6AbhiHGx8dRLBbRaDSgqipyuRxWrFgBU42xb2BHWxWfVfslSWo7mdB1nVuJgiDgFh92SvDaQBVhNHV9UWMferIyFi9ezK9n2zZyuRzGxsb4qUFfXx+CIEC9XufxoIlEgs8JANqFP1X7CYIgjo0ZFf65XI5be6Zj7ty5GBoamsklEARBnBQOFP1M1B4rQRDwXoHWabpAs28gjmMUi0WUSiV+KlAoFJBIJNDf348zl8zH7u2/48O5RFHkMZ6u6/LpuKyyzqr1oihy4R1FEap1B3vHHBxIHMfQ3AGcc9ZivgkBmtV627ZRr9eRSqWQSCSQy+VQq9X45iCZTCKVSrWlHrVCTb0EQRDHxowK/8svvxz33HPPQZ+v1WqUxUwQxJuO6UQ/S9E5FuI4brsuS+ABmqcJkiShVCpx0e95HrLZLO8pEAQBq1evghRUMLh7G6+mB0GAOI7hui4/CdA0bUq1n90zCAJs2VNFjGloDCAp1bDu4otQLpcBNNOMcrkcJiYmIEkSVFVFT09PcwNRrSIMQ540pCgKjydtHRymaRr9viAIgjhGZvRf0S984QvYvn07brzxximV/ziO8cMf/hCLFi2aySUQBEGcUGZK9ANNAd1qgWENvaIowjRNVKtVFItFHhuaTqeRyWR4/Kbv+1i8eDHWXbASr738NALfhed5iOOYT/MVBIFbfFq9+awhGADGSxbGKv6U9QWeDbH8O6y7cBU6Ozv5WkVRRBRFmJyc5OK+p6cHjuPw3w2GYSCXy/H1AOCnDwBV+wmCII4HMyr8ly5divvvvx8PPfQQVq1aBUEQ8NOf/hRf//rXsW7dOrzwwgv41Kc+dVzu9eijj+Kaa65BZ2cnDMPA0qVL8cUvfnHKtMg3Io5jPP300/irv/orrFu3DoVCAYqioLOzE+985zvxve99r61JmSAIgjGToj8IAj4DgAl0RjKZRKPRwMTEBFzXhWVZ0HUd6XQaoijCMAwe0amqKq644gr0d6fx/JMPwbEtRFHEG3plWeZ5/kBTfDOLD7vGqwO1KesLAw+NvU9i4ewU3nvttSgWmwO7bNtGNpvl3xuGgc7OTgBAuVxGGIZQVZXPNGA2H2YvApobh2OZd0AQBEE0EeIToGKHhobw93//97jvvvtQKpUANJvQbrnlFvzrv/7rMWcy33bbbfjc5z6HOI4xe/ZsdHZ24pVXXoHruli2bBmefPJJ5PP5w7rWr3/9a1xxxRX8+wULFiCXy2HXrl2YnJwEALz73e/Gf/7nfx73CtS5556LDRs2YPXq1RRzShCnGTMp+uM45iKZfc/+3VRVFbIsY2RkBJ7noVKpII5jZDIZaJoGWZZhmiYajQZvzo2iCGNjY7j9rn/HWBVYecEVECWZV/bZa1i2P/PqC4KAXftKeHmP1ba+wLMx9OpvsGaRik994g/Q09ODffv2AWgK/+7ubrz44ovQNA2JRAKrV6+GIAjYs2cPfN9HOp3GggULoCgK/x3hui7/N9Y0zePSFE0QBPFW54QYJvv6+nDHHXdgfHwcu3btwosvvoiJiQncdtttxyz6169fj89//vMAgDvuuAN79+7Fhg0bsHPnTpx77rnYsmULbr755sO+XhzHmD9/Pv7lX/4Fo6Oj2LFjB1544QUUi0Xcfffd0DQNDzzwAP72b//2mNZNEMSbh5kU/UC7xadV9LMm3LGxMfi+z0840+k0NE2DIAgwTZNP4GWJPKIoIpFI4L3XXI2eDPDcoz/G6NBu/jyrBwmCAFVVudffcVxsH9of3xnHMarju7B704OYk4vx8T/4IBYtWoTR0VG+7mw2i4mJCZ7RXygUoKoqarUaTyRKpVLQdb2tqZey+wmCII4/J6TiP5Ncd911uP/++/Gxj30M3/nOd9qe27ZtG5YuXYooivDiiy/inHPOecPrVatVPlhmOr761a/i1ltvRT6fx/j4+HFtNqOKP0Gcfsy06Pd9H5VKZdrnVFVFqVSC4zjwPA+e50HTNKiqClVVoes6JEniSTpA87SV2YJ834fneXjsscfw8tbdgJbDvEXL0dU7B5Ik80Zc32/6+bfuLWHHsIs4ClGbHER5ZBvs6ji6+ubja391PToLOWiahoGBAQDNan9fXx9eeuklSJIE0zRx9tlnQ9d1DA4OwnEcpNNpzJ07F8lkEpOTk4iiCK7r8pMHVVWRTqeP2+dJEATxVkaeiYuOjY3hoYceQrlcxoUXXogLLrhg2tdFUYQnnngCb3vb247qPvV6HT//+c8BYNpegcWLF+Oyyy7Dww8/jHvvvfewhP8b/YK5+uqrceutt2JychLj4+Po7u4+qrUTBHH64zhO2yCt4y36D0zxaUUQBJTLZT5ll1XUWz39siyjXq/zRB5FURAEASqVCmzbRjKZhOd5eM973oOzztqJ373yCrZseRI7fqfATHeg0NULw0xBFEXUGxZeeHkIVm0Sdm0Coe/CzHRh1rK34aPvOhvZdBLZbBY7d+4EsD+3f3JyEp7noVAo8OFcbIiXqqpIJBIwTZNHibL3zYoqxzrsjCAIgtjPcRf+L730Eq644goUi0V+JP3Rj34U3/72twE0j34feOAB3vTb6ls9UjZu3Mh9oGvWrJn2NZdccgkefvhhPPPMM0f7ltpoPYqmX0gE8dbFtu228ADDMI5LTn8r9Xqdi+FWC04URbBtm/975Ps+UqkUj8WMooiLaUEQIMsyBEGAJEkoFouoVqs8NpNN4p03bx7OOussjI2NYceOHSgWJzGwbxeGBqqIohivDVQxaUnQkzlkuxci1dEPzcyiJytjzbI8NE1DrVZDEAR8vYZhYPfu3dyr39PTA9/3+TRfXdeRzWYhiiJ/L0EQ0KRegiCIGeK4C/9bb70VtVoNt956K+bPn48HHngA3/3ud7F27VoMDQ3hn/7pn9BoNBDHMZYtW4abbrrpqO/12muvAWgOAjvYL4eFCxcCALZu3XrU92nlBz/4AQBgxYoVdPxMEG9RLMviQ7SAmRH9ruvyPHtBELjwj6KoTWD7vo9MJgPXdSFJErfHRFHErTRAs0G2XC5jYmICQNPy4/s+DMNApVJBoVBAGIbo6+tDd3c3MpkMKpUKwjDEy9tH8G+/GENOkqf0ZV15bhaqoiCRSGDPnj0AmgWSbDaLSqUCy7KQz+dhmiZ/jFl52AlAGIbcTsTWxD5XgiAI4vhx3IX/888/jz/5kz/Bl770JQDATTfdhJtvvhn/83/+T0xOTmLVqlW46aabcM0116C/v/+Y7sVSdg6V2MOeY0kRx8KGDRtw++23AwD+6q/+6rB+5o477sCdd955WK/dsmXLUa+NIIgTQ6PR4LGawMwkzoRh2GYhEkURYRjydJ/Wyn8qleKbAJa/L8syKpUKTNOEIAjQNA1BEGB4eBhRFPFTARYDmkwmeV4/ACQSCTiO06zEuy5+takOUZ5aXFk628CZ83LcvsPWATRF+759+3i1v6OjA67rwnEcBEHAB4spisJPTg5sXKbsfoIgiOPLcRf+Y2NjWL58edtjn/3sZ/Fv//Zv+IM/+APcfffdx+1e7Gj4UPnO7BdH6y/qo2F0dBTve9/74Ps+3ve+9+HDH/7wYf3c8PAwNmzYcEz3Jgji1KBer7fZ/RKJxIxUpZkVBmjaXZjon5iY4MKe3R/YP1k3DEMe3clsMpIkQdd1bNu2DZ7nAdifi8989exn2ZAvZr0RBAG/fXkcg8Wpw7pkScBV52ahaRqfGAzs9/bX63XUajVks83XFAoF1Go1OI4DRVGQTqd5LwL7TFsjPNmkYYIgCOL4MSPNvcyfyZg9ezYA4IYbbjiu92ERb+yX2XSwo/Jj+eVcqVRw9dVXY+/evTj33HN5v8Lh0Nvbi9WrVx/Wa7ds2XLMGxSCII4/rMm29d+aZDI5IzGTlmXxynlralixWOSefFEUoes6FEVBpVKBoig8ejMIAm7/AYBUKoWxsTE+IVfTNOi6zgeC5XI53iPgOA4/BQCA8WIFD79YxXRcenYGPYUEEokESqVS25oNw8CuXbvaqv2s0u95HvL5PF+H67rTTuqlCE+CIIjjz4wI/2effRbLly/HmWeeCUmS+D/kx9sDm8vlAOy3/EwHe4699kip1+u46qqrsHHjRpx11ln4xS9+cUTe/ltuuQW33HLLYb2WxXkSBHHqEMcxqtUq96ADTTE9EzYU3/fbegckSYLv+7whN51OQxAEbpGpVCpcaAdBAFEUUalUkEwm+escx8Hg4CCApn0mmUwiDEM0Gg3out7WE6AoCjzP45uHX24oouFEU9aZTcq4eFmSpwKxTYXrushms3AcB+VyGdlsFpIkIZPJ8MhRFs/J5gywaj97DgA/qSAIgiCOLzMywOu2227DypUrkUwmcf755+Nzn/tcc+Ljrl28An88WLJkCQBg7969bb+UW9mxY0fba48Ey7Lw7ne/G8888wyWLFmChx9+GIVC4egXTBDEaUUURahUKvzfF0EQ+ETcmbhXa3SnoijwfR+lUgmlUgmJRAKiKCKbzUJVVTQaDYRhyMW3YRhoNBpQVRWKovA/d+7cyZOBUqkUz/EHmiehLF+fDdOyLAtRFGHbQAkvbLemXes1awpIJU0YhsET3ABwW9HY2Biv2Hd2dvKqPtsYsGnAvu+3NSkzCxM19RIEQcwMx73i/9prr2HTpk3YuHEj/2LDqD71qU/hj//4j7F48WKsWLECK1aswDnnnIOrr776qO61evVq7lN97rnncPHFF095zRNPPAEAWLt27RFd23EcvPe978Xjjz+OefPm4de//jV6enqOap0EQZx+hGGIarXK44ZFUUQ6nebi9HhTq9W4QJdlGWEYolQqoVgswjAMyLKMfD7P/ffM9hOGIXRd59N9k8kkRFGEaZoYHBzkJwis0l4sFuH7PhKJBD8BaDQaMAwD9XodcRyj3rDw389XMN14x0V9OpbNMZHJZFCv12HbNkRRhOu6yOVycF0X5XIZqVQKkiTxE4YgCCDLMpLJJGRZhizL/KSAPQeADw0jCIIgjj/H/TfYokWLsGjRIlx//fX8sZGRkbaNwMaNG/HDH/4Q//Ef/wFBEI46xz+ZTOLKK6/Ez372M9x5551ThP+2bdvwyCOPAEDbet4I3/fxgQ98AA8//DBmz56NRx55hPcpEATx5icIAlSrVS7EJUlCOp2eMfuJZVn8VEEURQiCgGKxiGKxyKvjhUKBZ+/X63Ve1Q+CgOf6MytQMplEuVzG2NgYv2ZHRwcX6pqmcRHOfPWu63Kbz5MvlzBSmnqKKonAe9d2wTRNPhOAWTkVRYGmadi7dy8X7vl8vq1ZuKOjg1uTwjDkPROstwCgaj9BEMRMMiNWnwPp6enB1VdfjS984Qu49957sX37dpRKJTz66KP4+te/fkzX/uIXvwhBEPDd734Xd955Jz9yHh4exkc+8hFEUYTrrrsOK1asaPu5devWYd68efjnf/7ntsfDMMTv//7v48EHH0RPTw8eeeQRzJ8//5jWSBDE6YPruqhUKm3V90wmM2Oi3/O8Nl+/qqoYHR1FsVgE0OyNKhQKMAwDvu+jXq9z/z7zxbPpvIqiwDRNOI7DozsFQUA2m4UgCKhUKryibpomVFWFbdtQFAW2bSMIAgyN1/Cbl+vTrvXSs9Lozuk849+2bV68SSaTcF0X1WqVJ/2wRmTWP8DsSqqqcm9/GIb8sxVFkSI8CYIgZpCZObM+DNLpNN72trfhbW972zFd5/zzz8fXv/51/Nmf/RluueUWfPnLX0ZHRwdeeeUVuK6LM844A3fdddeUnxscHMSePXtQLpfbHv/Rj36Ee++9F0AzVeJQA8Zuu+02rFq16pjWTxDEqcOB03hZ7ORMxUoe6Os3DANDQ0M8lCCRSKCzsxOpVAq1Wo2fDLCBXYZhoFqtcmuPqqqI4xjFYpG/j0QigVQqhaGhIcRxDMMwoKoqb/xlOfqe58HzPPxyUw1+ONXj05GScNmqDiSTSQRBgPHxcW7PYZn7g4ODXLin02lEUQRJkuC6Lrq6ugDsT+thwt9xHD4HgU0RJgiCIGaG4yr8X331VSxduvSofnbLli1YtmzZUf3s5z//eSxfvhxf+9rX8Oyzz2JsbAz9/f24/vrr8dd//df8CPlwaG0+3r17N3bv3n3Q11YqlaNaL0EQpx4HZvRrmoZUKjWj96xWq/yU8sBKv6qq6Ovr49V13/dh2zYSiQTCMOSCPQxDfiIhSRLq9TqfzmuaJrf9sIm47AQgiiLeWOu6Lnzfx+bdFl7b50y71mvW5JBJJ3nzbhAEfDBYJpOB53mo1Wo8f581F8dxDF3XoaoqBEGArutwHIdPIQb2TyamCE+CIIiZ5bgK/7PPPhsf/OAH8Sd/8ieH3Uz7xBNP4LbbbsNPfvKTgybzHA6XX345Lr/88sN+/cEE/cc//nF8/OMfP+p1EARxejFdXOdMTOM9kHq9zoU388szT74gCOjv70c+n0e5XOaTfDVN44EGQFOws2ZZRVFgWRYmJib4IC9VVXnEJ4vIZLafRqMBURTRaDSaDbk1Fw+tL0+71pXzDSztb07atSwLpVKJ23NYr0FrtT+RSPDnwzBEZ2cngOZmShRFPq/EcRwu9mlgF0EQxMxzXIX/448/jr/4i7/AxRdfjHnz5uGqq67C+eefjwULFiCXyyGOY5RKJWzfvh3PPfccfvnLX2JgYAAXXnghfvOb3xzPpRAEQbwhByb3ADOX0d+K4zj8dIF570dHR/nzCxYsQKFQQKVS4aJfFEUkEgnYtg1VVbmXnjXqOo6DWq2GWq3GvfWmaWJ8fBxA00bDXu95HgRBgG3b3D700IYabG+qxSehibhiZRqdnZ2I4xiTk5NwXReJRAJRFCGdTsN1XR4lCjT7Ilo3AWwQmWEYfFowq/izDQI19RIEQcw8x1X4X3TRRXjyySfx2GOP4Y477sDdd9+N22+/fUoVJ45jmKaJ97znPfj2t7+Nt7/97cdzGQRBEG+I7/ttVhtBEJBOp6Eoyozft17f3zxbq9UwMjLCv+/v70dnZyfq9Tof6MXsPI7jQFVV1Go13uDLhnx5nodSqQRN03jCDjvJYAO90uk04jjm6T2O48D3fWzZ52PrQSw+V65KobcrD1VVMTExgWq1ym077KShNclH13V+WiKKIrdaqqoKSZJ4hCdLFwL2nwQQBEEQM8uMNPe+/e1vx9vf/nYEQYD169djy5YtvOrU2dmJZcuW4dxzz52xPGyCIIhD4ThOm/ie6bhOBjthAPYPB2sNGJg9ezZ6e3th2zafdMtiOoMggCRJaDQavNIuiiLCMEQYhpicnIQgCDwqMwxDWJbFBTdrUmYbCcdx0Gg04PgCHny+NO16l83WcM6CFHp7e1GpVFCpVOB5HjKZDPf2sxMDURS5n59N5W2dcs6q/WEYIo5jbkcCMOO2KoIgCKLJjCpvWZZxwQUX4IILLpjJ2xAEQRwWcRw3xW5LE6+qqkilUjPuL4/jGLVajVtcxsfH4Xketxn19vZi1qxZ8DyPN+3W63U+kItNuQ2CgOfos+bYWq3Gh3KxCbiWZfFTAXYCEAQBPM+D7/s8Tehnz5Xg+FMtPqYm4MrVTYtPGIZc+CuKgiiKuMVoaGiIDxyTZRmJRAJAu8+fnQywTY7jOG3V/pnecBEEQRBNjlr4R1GEV199FdVqFfl8HkuWLDme6yIIgjiuRFGEarXKG2qBZhWaCdWZplarceE+OjrKh2YJgoCenh7MmjULYRjyzQFLyGFZ+0CzmVdVVR7bKYoi6vU6LMviOf9RFCGKIriui0wmw3sD4jiGbdt8QxEEAV7c42H7yPShClevTqMrn0JHRwfGxsa4bahQKMDzPJimyacNx3EM3/eRzWb5+gzD4BsTwzC4vYi9lnn6qdpPEARx4jhiU6Xv+/jLv/xL5PN5LF++HBdffDGWLVuGzs5OfOUrX+F+WYIgiFMF3/dRLpe56BcEAalU6oSJ/tac/H379kEURViWBVEUMWvWLHR3d0MURd5zUK/XIcsyH8bFknAkSYKu6235+Mz3H0URPM/j6T4s1YdZfZglh80qKNsCHn5x+kFdZ87RcPa8JLq6umDbNiqVCizLgqZpCMOQx4JWKhUIggDf96GqKu8lyGQybVOPNU3jQ8pak3yo2k8QBHFiOWLhf9111+Ef//Ef+S8o9lUsFvE3f/M3hxx4RRAEcaJhwpUJUVEUkclkTtiEWNu2+dfg4CCv4MuyjNmzZ/O1VKtVRFEEy7IQRRESiQQ/EWC2HVZFVxQFQRDAdV3urWcTeFkvABugZZom7xVwXRflchmCKOPHT08ijKauN6GJuHJVGul082t8fLytSZgJf2bbCcMQnuchl8vxwWCtjbqmaXKbEqv2s0ZgqvYTBEGcWI7I6nPvvffioYceAgAsWrQIN9xwA2bPno3du3fje9/7HoaGhvDd734XN9100zFP5CUIgjgWmF3G8zz+mKIoSKVSJyxBhvn1q9UqxsbGYJomXNeFoijo7e2FrutIJBLcguS6LrfoMKFsWRafuBsEAY/RtG0bgiBw0Q+Ae/s7Ojrg+z4X1mxTwYYO/vrFCiZq05/OvmdNGl2FNHK5HMrlMhqNBmzb5hN7U6kU36AEQcCfY70E2WyWr4dV+9l9D0zyoWo/QRDEieWIhP8999wDAHjnO9+J+++/v61iduutt+Kyyy7Dxo0b8b3vfY+EP0EQJ40gCFCr1dry+U+kn791DcViEaVSCbqu84m7vb29kGUZ6XSax3YGQQDLsngSDovbjOOYN9SyaEyW5c/8/b7vI51Ow3Ec5PN5xHEMWZahqipKpRLiOEalUoHrutg9HmLj7mDaNZ+/2MSZ/Wn+We3cuZM3AbMITxbrCYCn9OTzzbjPfD7f1kPBThtY70HrZoSq/QRBECeeIyp7bdiwAYIg4J/+6Z+mHJOn02n8wz/8A+I4xsaNG4/rIgmCIA4Xx3H44Ctgfz7/iRT9YRiiXC5jZGQEpVKJT9BVFAV9fX0QRRGpVAqWZcHzPERRhHq9zk8jWJQnsycB4OtnHnmWTuS6LkzTRBiGSCaTUBSFC2y2qajX66jVaqi7wM832dOuuTur4B0rMzBNE/l8HhMTE6jVanAcB4lEgjf0sux/NrQrn88jkUggmUzyBmNgqrfftu22Kb1U7ScIgjjxHFHFf2JiArquY9myZdM+f9555/HXEQRBnEhYU6zruvwxWZaRSqVOqMiMogilUgmDg4NwHIdX3llFHACSySR83+cV/Wq1ikQiAVmW0Wg0ePoP8/OzptkgCKBpGrcwsZx+NnQslUrxa/m+j0ajAdd1m1afGPjZ8w0404T4yJKA916QRjaT4hn8ExMTsCwLiqLw/gJJklAqldpmBOTzeZimiVwu1xaTynL7gyBAGIbcpiQIAlX7CYIgThJHVPFn3tODwZ5r/cVLEAQx0/i+j1Kp1PZvj67ryGQyJ1z0j42NYc+ePTyNxzAMJJNJLvoNw+DefaAZ82kYBhRFgeM4XPT7vs/Th1gDryRJcBwHlmWhUqnwqE4AyOfzqNfrUBQFiqKgVCohCAKUy2V4nofHt3gYrU7v679iRQrz+7J80u74+DiP/GSnu6ZpwrZtRFHETwK6urqQSCSQyWQgy3JbtV/X9bZqPxP7hmHQlF6CIIiTBI3OJQjitMayLC4wgaa1J5lMnrDUHkYcxxgcHMTw8DDP2M9kMkilUjzFRtM0iKKIRqMBAFyoa5rGG3vZkC1RFJHNZiFJEkRRRBRFCIIA1WoV1WoVkiTxCnoul+MTfVOpFCYmJvjJg2VZ2DUBbB4Ip133OfOTuPisHBRF4X0Ik5OTbWKdNfTats37ClKpFH9/qVSqbRIyswSxSj87uWAbIYIgCOLkQMKfIIjTEjbsqrWZ9ESn9jCiKMKOHTtQLBYBNDcfHR0dbROBZVmGJElc9DcaDS6EWb5+GIY8rz+fz/OJt2EYcktQqVSCLMvQdR26riOVSvGegFQqhUqlwiv9tVoNkw3g0Vemye0E0JXTcM35WZ7Lr+s6r/arqspTfFRVRbVaheM4qNfriOMYXV1dyOVySKfTXOCz98maigHwmQJAc0Mw0xOSCYIgiINzxMJ/dHT0kEfngiAc8jXMp0oQBHG0OI6DRqPRNjAwkUiclGqy7/t47bXXePqNIAjo6+tDKpXi/9ZJkgRVVfnJBMvlZxn3jUYDYRjyzUChUICiKFBVFWEY8ubf0dFRvoFIpVJIp9N806BpGp8XUKvVUKlUULdD/GKzCH+aYr8qi/jIpZ3IZZpWIVVV4bouTwFij7EIUs/zuG2oq6sL+XweyWQSpmnyTH+g3RLE5hCwNbPmXoIgCOLkcMTCnybzEgRxsgjDkCfVMJgIluUTf4DZaDSwY8cOLugFQcCCBQugaRqfHyCKYpvoZw2wpmkiCALU63Uu+gVBQFdXFxfcnufxRtrBwUHIssxTivL5PDzPQ71ehyRJiOMYjUYD9Xq9OWnXdvHYaxpqzvTV/usv7cWszmYFPooi6LqOoaEhOI4DTdP4wC5BEOA4Drf/GIbBq/3stIElKCmKAlmWUavVeB8Diyc9kalKBEEQxPQc0W/Kv/3bv52pdRAEQRyS6ar8bADWibaPsGnle/bs4ZsQRVGwePFiCILAm4wFQYCiKHygFcu9TyQSCMMQ1WqVb2ZEUUR3dzdUVUUymeR+f9d1sXfvXoiiyJt9+/r6eGWfNf3W63U0Go3Xh25Z2DBoYKg0va//0nM6sXpRCkBzXkAymUSlUkG5XIau67BtG9lsljfo1mo1firR1dWF7u5uPqG3tb8ikUjw/0Ys9YeddrA+B4IgCOLkQcKfIIhTmumq/CwHn8VYnkiCIMDw8DBGR0e5lcc0TSxatAhRFLVFWsqyzDcBTMizybvlcplX/EVRRFdXF3Rd54O42FCv3bt3QxAESJIE0zTR398P13X5gDJBELjon5ycRL1ex85SAq/sm170L5mTwnUXdyMKmzGbbEMxOTnJNy2apiGZTPLThmKxCM/z0NHRgb6+PpimyecEsI2YruuI47htw5LL5SAIAlX7CYIgThGouZcgiFMW27ZhWdYpUeUHmik8bCgXs7fkcjksWLAAruu2iX5JkvhmpbXSH0URisViW6W/t7cXpmkinU7Dtm0unnfu3Nk2hXfBggX8pIDl40dRxEV/pVLBqJ3E09umF/0dGQ23vGcR4rA5P8D3feRyOZTLZd5U7LouOjs7+brHx8fheR40TcOsWbOQzWaRTCb5ZGEAvF+hWq0C2N/Q25r/TxAEQZx8SPgTBHHKwSrhrUEAJ7PKH0URJiYmMDk5ySvtkiShu7sbfX19U0S/IAh8Y+C6LqIo4tN1WfWc5fz39fUhmUwinU7zgVtBEGDPnj0IggCqqkKWZSxcuBCCIPAGW7apqNVqKJVKKJVKqPpJPLZl+j4sXRXxp9cvgypFcIOmFSeTycBxHJRKJWiahnK5jEKhAF3X4fs+RkdHYVkWwjDE/Pnz0dPTg0QiAUmSpjT0snWzoWRsOi/FdxIEQZw6kPAnCOKUgTWotopo4ORW+R3HwcjICCzLQr1e5yK+u7sbhUIBrutyD/+B4Qeu6yKOYxiGgTAMefXc8zxIkoTe3l5kMhkkk0ku+n3fx+DgIFzX5R75hQsXQtd1jI2NwXEcnpbTaDRQLBZRLpfhxAn8eouAaJoABgHAp69bhu6sglqtBsuyoGka4jjG5OQkZFlGtVrlQ89Yln+lUoHruujp6cGcOXNgmiZ0XeeDxoD9iUXlchlRFE1p6KX4ToIgiFMHEv4EQZwSuK7Lh1AxZFlGMpk8KYk9zIfPKvRsQFWhUEA+n0c2m4Vt23yTEkURoijia7VtG6IoQtd1BEGA0dFRXv1nlf58Pg/DMFCv17mgHxkZgW3bbaI/lUrx6rvjOLyXYGJiApVKBT4MPPyqDDeYPsHno1ctwqrFeRSLxbaITcuy4Ps+r9Izi0+1WsXExARs20YikcDChQuRTqeRTCa5tYjBNi1s08ZOKDRNo4ZegiCIUwwS/gRBnFSCIECj0Whr3mWe8ZNlE3EcB2NjY7BtG77vo16vQ9M0dHZ2IpFIIJPJ8Ao9AO61ZzYk5pdn2fijo6M83lOSJMyaNQsdHR1QVRW1Wg2u68KyLIyPj/M0HEVRMGfOHGSzWYyOjqJer/MhX0z0V6tVBIKBX72qonGQ2M5rLpqDd66ZjVKpxKcDJ5NJLtTDMORef5ZANDY2xmcKLFy4kEd3skZidrKhaRqiKILnedzqk81mIYoiksnkCfgvRRAEQRwJJPwJgjgpMFvIgbYeFmd5oqfvsjUxv3wYhlyQZzIZFAoFaJqGVCqFer3Ohbzv+4jjmFe3bdvmefaWZWFoaIhfn4n5QqEAURRRrVb5SUexWIRlWXxwV19fHzo7OzE+Po5qtcqr88x732g0EEDDr7dqqNnTi/6LlnfhxncuQa1WRaPRaJui22g0eC+FYRjI5XLwPA9jY2N8IvKiRYvQ09ODTCYDSZK4wAfAG3crlQo/BWC5/+xPgiAI4tSChD9BECeUOI7hOM6UtB5JkpBIJE6aPYRV3NlGhK2vt7cXiUQCmqYhkUigVqu1pfUIggBVVRHHMWzbhq7rEEUR5XIZw8PD/BRA0zTMnz8fmUwGALjor9frPFVHURQYhoHOzk709PTwhmLLsnhD8NjYWNMyJOp4dKuOijW96D9rfhZ/csNKWI0aqtUqarUaDMNAHMd8U1OtViHLMjo7O+H7PorFIiqVCmzbRl9fHz9xUFWVTw9mJJNJ/hnV63We1U8WH4IgiFMXEv4EQZwwWAWdJd4AJ9/WEwQBb2SNoogPnzIMA/l8nifT6LqOSqWCMAzbBlQpisI99+w9DA0NoVwucwFsmiYWL14MwzAQRRGq1Socx0GtVuN/Z/0M+Xwevb29KBaLmJiYQL1e56lBY2NjCIIAPjQ8ulVHuTG96F88O41bb7oArtNArVZDpVLhOfuKoqBaraJUKkGSJORyOQDgj9XrdeTzeSxYsAC5XI5n8Lf2X7CNjud53H6USqXI4kMQBHGKQ8KfIIgZx/M8WJbVFs8JNNN6TNM8abaeer3Om3eBplc/CAJ0dHRwSwxrLmYbAzbUyjAMyLLMPfKmafIYTs/zuOjPZDJYvHgxZFlGEATctlOv17lliIn+XC6H3t5elEolbrlhE4uLxSIAwI11PPKaflB7z/y+FP7u5rXwXYu/P1mWEUURDMOA67qYnJyEKIp8w9XaKJxIJLBgwQJ0dnbydB7WGwDst/iwWQKWZXH/P/uTIAiCODUh4U8QxIzh+z73preiKAoSicRJSesBwIVuq92IJfIUCgVIksTnBkRRhEql0lbhTiaTfEAXy6yv1+sYGBiAIAjc3tPb24u5c+dCEAR4nodqtcqbdFlDM+tpyGaz6Orq4hYhlvRTKpVQqVSaPQOhjodfVWC504v+ud0J/K9bLkIUOHAcB6Ojo1yIM7vOyMgIoiji1iXXdTExMYFSqQRFUTB//nx0d3fzqbts0BgjkUjwpuBarcatPYZhnJQZCwRBEMThQ8KfIIjjDqsEs0o6Q5ZlJBKJkyYQPc9DuVxGtVptsxsxi4qmaXydbIouy+hnJxbpdBqCIMB1XUiSBEmSMDY2htHRUWiaBlEUIcsy5s+fj0KhAKDZ8MtEP+tvCMOQzyfIZDLo6OhAuVzG4OAgLMtCo9HgkZqqqmLS0fHYazJcf/oBXbM6E/jKH18CIXLhuC6GhoYQxzFfj6qq2Lt3Lx8Kxk40SqUSJiYmIEkS5s6di56eHnR2dkIURcRxjFqtxjdHLJqUNQULgsD/ezJLEEEQBHHqQsKfIIjjhu/7sG17iuCXJAmmaXJhfaJhFptKpdK2NiaIdV3nlXFWCWc2HFbxliQJqVQKQPPEQNM02LaN4eFh3tTL+hUWLVoE0zR54ytr3mVe/TiOkUgkYBgGMpkM8vk8SqUS9u7dC8dxUC6XMT4+jjiOoWkaBio6ntouTjucCwDm96bwvz59MST4sGwHQ0NDCIKAb0ySySQGBwfhOA5vwlVVFdVqFaOjowCA7u5u9Pb2ore3l5/EsOQfoPnfUJZl1Ot1vgliaT/scyEIgiBObUj4EwRxzBzM0sN85Lqun5R1MdHOMuwZiqJA0zTIsgxJkgCAV6+Zn5/l5TM/v2EYCIKAW4KKxSLGx8cRRREX/Z2dnZgzZw5v+C2Xy3yzYVkWoiji92FTcjOZDMbGxrBv3z4+JXhiYuL1hmIDW8Z0bNhz8Pd4Rn8Wf3/zRUDkoVarY2RkBK7rQhRF7rsfHR1FrVbj79c0TTQaDX4q0NXVhdmzZ2POnDm8N4FtUhiGYfDZBWywFxP9J6NHgyAIgjhySPgTBHHUMM/7gYKfJeFomnZSmj1ZrnypVOIVdrau6axGTMAGQYByucxnDHieh1QqBUVR4Hket/iwFCC2gdB1HX19fejo6IAoivA8D8ViEfV6nQ8oE0URkiRB13Uu+pPJJPbt24fh4WFYloXBwUHUajWk02mIsobnBgxsG5nezw8AKxYV8D8/cSHCwOXTdh3H4Z95KpVCsVjkDb7sRMLzPAwODiIMQ+TzefT19WHevHl8g8asPAzTNPnGrtFo8Pd8Mm1bBEEQxJFDwp8giCMijmNe9W31yQNoi748GTDBz6w1TPAzwcvEfev8AJYsxKrZbKCWJEnIZrMAwC0/LBqTWXtkWUY2m0VPTw+3u9RqNRSLRbiuy61PqqpCkiTuhU8mk9B1HTt27OADwwYGBvjkWyfS8ORWHRO1cMp7ZKxb0Yc/u3E1fM9FuVzG5OQkGo0G4jjm9p5KpYLx8XFu3TFNE4IgYO/evQjDENlslot+5vlncaOt03k9z4Pv+/zUgK3/ZEWwEgRBEEcHCX+CIA6LKIpg23ZbBZ1xsj38rYLfcRyeNy8IAq+uA2g7mWidMFsul3k12/d9Xs32PA9BEPBEnlqthiiKYJomTNNEoVBAoVCArusIw5BP2WUnBszLz5J+kskkF8tbt25FpVLB8PAwRkZGoKoqCoUCRhs6ntgmwvUPLvqvv2wRPnr1mbBtC8VikTcOs54AXdf5CYAgCIiiCMlkEoqiYPfu3YiiCOl0Gr29vVi4cCGP7YzjmK8faFqiWJpRrVYDAH4dyusnCII4/SDhTxDEITlYwy4APmn2ZE1qZelB5XK5Oc32AMGfzWYhy3LbZgBoRlsmEgm+kWlN70mlUs3ozNetLSxznw3sSqVSSKfTyGazyOVykCQJ9XodY2Nj8H2fr0nXdf65sIZhTdNgWRYGBgZQLBYxMDDArT1GIoWXRkxsHogATN/EK4oCPnv9Crzzgn7UajUeScoq9Lqu8wFdrE8B2D+LYNeuXXwT0NPTgyVLlvBNEdA8rWht5mXWJrbhyWQyUFWVbxQIgiCI0wsS/gRBTCGOYzhOMwv+QDsP0BSybIDVycD3fdTrdVSrVbiu22bp0TQN2WwWuq7z5lxGa5W/Uqm0RWuyzYDrutybb9s26vU6n0zLojez2SwSiQTCMMTQ0BCPvGT9DplMhsdhsuZmURQxNjaGkZERDA4OYmxsDGEYolAowBdTePg1FRPVg1f5k4aCv/joeVi5pBOlUokPHmODxVicZq1W47MCWE+DqqoYGBhoXud10X/GGWdMEf1scycIAiRJguu6fFBXOp3mop+GdBEEQZyekPAnCILj+z4cx4HneVPsPKIo8sbUk5HiwnoLGo0GarVaW0pPq6XHNE1epW6FZdfbtg3LsnjzLkvZEUUR5XK5Lc2HxV/m83kkk0le7VcUBaVSCZOTk3xyr2VZ0DQNHR0dCIKAzwZgArpYLGLv3r0YHBxEvV5vvrazCwO1DJ7fFSGYZoPFWNCXxhduugCdWR3j4+Mol8sIggCTk5MAgHQ6Ddd1YVkWf+/slEEQBD5YzDRN9Pb2YunSpW1V+3q93jaZV5blNtHPZhyk02lK8CEIgjiNIeFPEG9xwjDk0Y2tdhiGoijQdf2k+feZEK9Wq1MShFhKTiaTgWEY8H2/rTGVvYZV50ulEhf0wP5Yz1qthjAMEYYhLMuCbduIogj5fB6JRAKJRALpdBrJZBKWZWFoaIhbi1iTcz6fhyRJ8DwPhmHANE04joN6vY7h4WHs2rULxWIRURQ1JwKrefxmp4HRysEFPwBcfv4c/PEHVkBEhIGBATiOgyAIMDExwb32rFrvOA5qtRoMw+CnF5VKBaIowjAMdHd348wzz2zz57OhYgxRFPnmIQiCtnkDLPqUIAiCOD0h4U8Qb0GiKILneTx55kBYBV3X9ZMm9jzPQ6PR4MK0dVMiyzIXo4Zh8Obb1tewCrcoiqjX6/yUII5jCIIAVVV5ZZ/ZdBzH4VadVCoFwzCQTCaRTCYRRRH27duHRqMBALw3IJ1OI5PJ8BShbDaLKIpQKpVQq9WwY8cOjI6OwnXdZiJOOodBqxMvbgsRxQcX/Zoi4ebrzsY7L+iHZVkYGRlBEARwXRcTExNIJpNQVZXPEmADwphQr9VqPNrTMAzMmTMHS5cubUvime7khDXyhmHIm5hJ9BMEQbw5IOFPEG8RmFXmYGIfaNphNE2DqqonxcfNhC0TrQeKUubDZ3GSzON+YB+Cpmm8kbZarbYlEQmCAN/3+SaA3cfzPCQSCXR2dvKIz1QqBUmSMDExwa1DzNajKAr6+voQxzEajQZM04SqqiiXy7AsC/v27cOePXt4NV3XDVTRhWd2aag7h67yL5yVwf/zB+eiryOBsbExlMtlAOBTgAuFAoIgwPDwMARB4CcUzFrELEisp6G/vx+LFi3ipzZxHLd5+tlmyPM81Ot13jNAop8gCOLNBQl/gngTwyr77Gs6mF1G07ST4t+Oooj70+v1OjzPa6vcS5IETdN4c62iKHAch/vxW1FVFaqqwnVdDA8Pc3EfRRG38giCwCMqmeDXdR29vb1c8JumySf4ssZdlm4kCAI6Ojr4JFtZlpFOp3lVvlQqYffu3fznFEWBK+awsZjFaCUCcPCBXIIAvP/ti/D7Vy2D7znYvXs3fN9HHMcoFosIggCdnZ0oFouoVCpQVZWvifn8K5UK9+knk0ksXrwYc+fO5Y3YLKefpffEcdzWPwE0G4CZvYk8/QRBEG8eSPgTxJsMljvPMuinQ5IkXt0/Gck8bEPCUnOmWyvLo0+lUryhmHnYD+xFYF59x3EwMjLCTwp834fv+wjDELIsc8HPHtc0Dd3d3Vzws8+jXq/zXHzW8BzHMXK5HJLJJI//ZI3Ee/fuxcTEBEZHR1EqlRDHMURRRKDksa2Sw74ScCjBDwBzupP4kxtWYcncDCYmxnmV33EcTE5OcgvP7t27+WbFsiw+NI2JeTYzoFAo4IwzzkBXVxcX70EQtFmiwjBsO/VgJwRM9FN6D0EQxJsLEv4EcZoTx3Gb2J8ufhNoNm0yC8ypKvZlWebVfTYfgDX3Tjc4TFEUnrlfLBa5yG+1MzGbCvPvR1EEVVWRzWZhGAYMw4CiKADA035aBT8bdpXL5XhVXFVVBEGAgYEBDA0NoVwuo1qt8s/eEbIYbOQxWHrjarksCbjh8iW4/rJFsK0Gdu/ejSAIeGXetm1ks1lMTk5idHSUN1s7jgNd1/lpAIvgNAwDfX19OOOMM5BKpdqq+WyKMLM7sd4GlkKUSqX4yQpBEATx5oOEP0GchgRBAN/3uXg+UBAzmE1GVdWTIvbZhoQl5Uwn9tnpA/OUM8sR8+9P14+gqir31jcajWk3PpIk8Qo/+4xYxGUikYCu69z202g0uMWIpeOIooh0Oo10Os3nBrBs/p07d2Lfvn3cJ98U0UAlzGCgkcdE/fDsMSsWd+Dm956NjrSM4aF9fHNj2zYqlQpvsN62bRts2+a5+67rwjAM3g/BTjxSqRTmzZsHwzDw3HPPYe/AAHbuHkCxWEYQhhAEIGka6OvpQm9vN+bPn498Pg9FUbjo13X9GP+rEwRBEKcqJPwJ4jSAZcUzsX8woQ80q+DM636imzKZ0GaJPK1V9laY2Gd+ek3TIEkSH5rVOoWXIQgC3xBMTk7yybpM2DPbiizLvFGVfU6GYUDXdT7BltlboijiP8san1tz+5ngB8BjPIeGhtpPBQIRE14HhhppNLzDs8b0FEx84j1n4ZwFGZTLZQwNNYeIsebaMAyhaRqGh4dRLpeh6zry+TzfkCiKgnK5DN/3oes6DMNAZ2cnJEnCY4/9Bpu3bIflCdBTBSSSveheeAbE16NG69USXt4zgede2gFVfBxnLV2AKy6/DP39/dTESxAE8SaHhD9BnGIw6w6r6jNLxsGQJAmKonDBfyJ92Uz8ssZXlrM/3SmELMtQFIVnzDOxz5p7XdedtieB2VJYRn+rb599TqyZlV0vjmN+2sHuBezfQLX+3XVdhGEIXdfR3d3NK+mVSoUPyRoaGuJWIgDw/AAl18SY24WxhoYYh/eZp0wF7/+9Rbji3F5YjRqGh4f5aQVL0wmCgA8Hk2UZuVyOnwIoisLXxpqKU6kUurq68PLLv8NTz21CrGQxb+nF6OiaDfZfIIoivgHr7Jnz+n+7CJPjQ9ixZxv23v0jXLZ7D9797ne1xX0SBEEQby5I+BPESaZVwDKxfyhYrCUT+yeySsuEKfO/W5bFvz9Q6LMmU0VRuLWGnUKw6vbBxD57nkVntqYSsVMBYL+ViVl2WIqOqqowDAOiKCKKIp5nD4CfEvi+D0VR2mI7G40GRkdHUa/XMTY2homJCd7kCwiYdDRMOCmMO0l44eGn3Zi6jGvXzcfl5/UgcC1MjI/yTYfjOAjDEI1GA+VyGbVajfvtZVnmyUFxHPPoUsMwkE6n0dvbi0QigXv/86fYNVjCouVr0TdnYXPjhfaNWeuGsHniYkDs7IEsSdjx2ku4/d++h//62QP4/Rs/hHPOOQc9PT3U3EsQBPEmg4Q/QZxADhT5h/LnM0RR5NVy1sx6omBrZE25TKQebN2yLPMGXVZpZ42zQRDAcZyDNiCzezAxzBpcW58LgoD72dl1gf2fEUsqYhVu9lxrrClbXy6XgyzL8DwPExMTKJfLKBaLKJVKvPoexiJKjoGia6LoJOFFR7bJSpkK3rlmNn5vVReEyEOtXOQbHtd1Yds2yuUyb3aWJIlHibKoUVEU+UmKpmnI5/Po6OhAf38/4jjGXf/2bYyUI1xw2fshKyr/b8M2OOwzYH9KooiRfbuwc9vvMD4+jiCMoeppyNkF2DIwgL/56r/grDMWYvmZi7Hu4rVYvXo1WYAIgiDeJJDwJ4gZoNU7zv5kHvQ3gll3mNg/EaIrjmO+1lZhyoT/wZKCJEnigrtV6DO/PjsZmO5EIAxDHpt5oKefDfJiX8wixFJqBEHg1WhW4WdZ/cwH33o6wT7LQqEAWZZh2zaGh4cxMTGBarWKer0O27YRRjFqnoKSm8KkY6Lqm4dt42mlM6vjqgtm4/wz0kAUwKqV+OfKZhBUq1U0Gg3u2TcMA0EQwLIsvpFhDceyLKNQKKC7uxuzZs1CT08PoijC1//5X7FvMsB5F18FSVb4hocNDWvdJCqKAs+x8MJzj2Hf0DCSudmYv/xypHJdkCT59f8mAfbseAVOUMWOEQ+/+z8/xMrnX8AHr/8Aurq6jvhzIAiCIE4t3jTC/9FHH8XXvvY1PPvss6jX6+jv78cNN9yAv/qrvzrqaLqZuCZxesI81p7ncRsJAC7oWwdEHU4Vn8EEHhOmrDF1Jmk9dWAikVXhW6vsB9Lqo9c0DYZh8GjQVqFfq9V42g0TtEAziaZer/Om3zAMIUkS/1mWJc82AWwzwZJsAHBbELtnazY/q2qzn2cnJKZpIggC1Ot1DAwMYHJykp9eOH6Mmqei7GgouynUQwNhfHQbLUEAVizK46KzClgyy4DnOqiWJ/lwsmq1imKxyGcMsA0d8/ezhmxFUXifhCiKKBQK6OnpQV9fH3p6eqBpGsIwxA9+8B94decoLrzs/RBEiU8oFkWRzz1gn5Wu66iUxvH4wz+DEyo449x3IZXtmPIeJEnGnPlLMbDzFWS7Z6Fn+fl48blHMfSv38SnPvmHmDdv3lF9NgRBEMSpgRAfrkI5hbntttvwuc99DnEcY/bs2ejs7MQrr7wC13WxbNkyPPnkk8jn8yf9mm/Eueeeiw0bNmD16tVYv379cb02cXRYloUNGzbg6d8+iz2DwwjDCAKAWb2dOO/cVTj77LMPO/6QCVX2pyzLMzYVtXUjwkRkq6hmzx3uelkqDtucsGp664mA4zh4+eWX8exzL2DP4DB8P0AYBujIpbBk8SIsWrQIpmnyZl3ms2ebACZQTdOEKIoQBIGfkrT2C7DHWdWf+fslSeJ/Z6cJpVIJ5XIZjuOi4Uaoeirqnoqar6HmqXAj9Zg/61xKxUVnFXD+GRnoUsBnDjQaDVQqFVQqFd5jIMsygiDA3r178dq2HZgs1yGIEmRJRD6XwsL5/ZgzZw6SySSy2Syv7nd0dPATANd1sXXrVtz+b/egs381BCWB4ZERNCwHEASIgoBU0sSsvj7MmTMbpmmiVi3hlz/7IUIpjaWrL4ckK4d8T+XSBKrFAVx4/mpk0ik8+8RDyCgOPv+nf0yVf4IgiNOY0174r1+/HmvWrEEcx7j99ttx8803QxAEDA0N4dprr8X69evx/ve/H//5n/95Uq95OJDwP7FEUTTtF6vgb9u2DT+89ycYLdaR6piDnlnzoaoaPM/FyL5dqE0MoLuQxIdueB8WLFjAr8uq+K3CmYnS4732VnHfGvfZ+j4O53/iretl2fGsms6EdusXs5Qw3/xrr72Gn/7sQYxPWkjkZqGjezZkVYPvOZgYGURlYi/Shoh1F63hG+bWNCJd13nln1W6mWWIbY6YyGebAvbeWJpQrVZHsWKhaoWo2IATqrACFXaowA6Uo67kT0fSkLFiQRrL5ujoScfw/WbVvlwu8yFg7MQDaP7/BBv49cL6F+HGCrJd89DZMxeKqiPwPZTG98GujqCnkMAf3PghnH/++TBNk/cnsGZgy7Jwzz3fx6Zt49Dz8+B6MfRkFolkFpIsAXEMu1GD79SQSmg4Z/mZ2PjMrzEyUcPyC695Q9EPADFi7N35Kvo6kli9ehUC38MTv/oxVi7twac/dTN5/gmCIE5TTnvhf9111+H+++/Hxz72MXznO99pe27btm1YunQpoijCiy++iHPOOeekXfNwIOF/bLBUFyYImThu/Xvr16HYuXMnvv3dHyJQCjjnvEuhG+aU13iug80vPA41KuGWT/4hlixZckwCv3X97IvZZ5gNh/299TVH8j/h1o1Ia7Nwq2e+NVGHnRYwgd/6xbLv9+7di1898gRg9GDJ2WugqDqiKEQUsf8WETzXwa6tGxBbI7jyirdh7ty5/D2HYQhRFLnYZ+vhjb1+CMuNUK67qNZd1CwfDTeC5QG2L8INZXiRAi9SjsqPf7ikDAmL+jQs7pbQYXqo15uWJmZROtDixTZGbChXpVLB1u17YHYswMKl50HVdAgCIMsKDKM5Y0AQYmzd/CzUYBK//+EPoLe3l58gsNOayclJ/H93fgeePgfZ7kXo7JkD5fW0JFmWIQrNjVIQeBge3I3S8FbUS6NYftF109p7DkalXES1OIC3rVuLRCKByYlRbHrqZ7jlpuamhCAIgjj9OK09/vV6HT//+c8BAJ/61KemPL948WJcdtllePjhh3HvvfcelkifiWsShw8Tsgd+Tfd4q6hnjx0PHMfBj+77CUKtAxesu4qL+dZqsyAIME0TF19+LZ59/EH84If34da//gteJZ9OxDMh31qtZ9+zP1t/5mhotb8wawlbN8u4Z1+1Wq2tobd1GjAT/MwixH6GDcVilX/P8/CLXz2KUO/GokUrYbkB4DYACBAECYIoAoKCWFEwZ+kleG3zU/jJQ0/i4suugSBp8APACwEvCOAHMdzAQhACfijAi0QEkYwIzA4lAZi6AZspRAHoSgNdCRcdhg0NFhzHxsBWBztfb1ZmYr91iBjQ3DwpioJMJoPOzk5omoaXXt6CUO1ErnsBLNtGKp1GNpvlpx31ahl7dr4K23axffc+/Ov/eztu+eRN0DQNlUoF27dvh23bGBwcxOBoBYvXvB2z5y2GIisQRAHCAZseWVYxa+4ibN3wCBQzh0T6yKyJ6UwOxbEBjI6OYsGCBch3dCORn40nn/otzjvvvGM+wSoWi9i4cSPK5TKy2SxWrVqFQqFwTNckCIIgDs1pLfw3btwI13WhaRrWrFkz7WsuueQSPPzww3jmmWdO2jVPRV7eMYFHXhg45GviuHnkv//71//O/4jx+v+BPxIf8NqWvzf/iA/4c/9r2mT7ASJ+WkkfH/Lb/Ws84LICBDT/r0W4vP5XQRAwsP1lvPTSCJZduBbPbZk4xPtp/unJC/Dsb3+KgS/+O/r6l/GVxDEOuRlpf6rlZ/jn+vpnFMf7/46p12SfZ/NNxG2fdxS/vimKYkRxBPDH2CYLiGI0q/Nx/Pqam4+x6nkcC4ghIo5FxFBeX6mAOAaKQ9swNq5iwbmXYlf1jQc/yT1rsXP9f+GR9cPI9S55w9efSERESMoWDKEGJShCjcoIx2yUoggTLQ3crZvM1tMTXdeRSqXarFLsNc888wx2DExg/orVqHsKqnYDldpOLJzfj0KhgH17t+Ol9U/Dj2XoZhZ2qGDDi1vwm9/8BmeccQZ+8fBvYPkijFQBLzz1LAK1Gx1ds6Gp2iHfk1WbBAQByY65qNfrSKfTh/15CIIIRU2gWq3xx+YtPBPbNz2MkZER9Pb2HsWn3GTjxo245wf3odwIoSWycBtlPPTLR/HRG2/AypUrj/q6BEEQxKE5rYX/a6+9BgCYO3duW6Z3KwsXLgQAbN269aRd81RkcKyOXz2392Qv45QjjmPs3vQ8tEQXxmsxULMO46ckhFoPXli/CfPCvlN46JF4wJ/HRhzHKI3uRLIwF7J6eNNeZdVAsjAb5ZFtyPYsPnmfVRQAXgmxM4HYnkDkjCOyxuDEzZMWdrLD/mQWKVEUeWQpa3ZmvQgs4YhV/tlgGaNxbAAAKwxJREFUsDAM8bst29E5ZzkWLjufR40Wx/dh+849EOIQL61/GmZhPuaecR5kWUEcRXjp6Qfw4C8ewcDQOLJ9Z+Ft518CSZKx8bmnoOVnYWKyjEQyCeUQnv1aeQIQJCSzfahUa0ilU1NOBg6FbpgolSu816PQ1YvNXoShoaGjFv7FYhH3/OA+CInZeNvb1kGWFQSBj5eefwLf/f69mDt37nEPTiAIgiCanNbCf3JyEgAO+UuCPVcqlU7KNe+44w7ceeedh3XvLVu2HNbriJkjCjx4dhUdc5Yf0c+l8nNQm9iLKPAgKYeuwr5ZOB0+qzj0ETolRE4JkVtC5EwisicQOyUIQjzVDiXvn5/A4jWZqGfftwp/TdNgmiYMw+BfpmlCVVW+qXnyySdhecDixSv4RkKSJHT1zMG+PQ3s3vEKBNnAGSsugSwr/DVnnncZHrl3PfaNVfGRa98GSZJRr1XQsCwsPHMegihGvVZHLpc76Pu36mWoRgqGmYRjVxBFESTx8BtzVU1HvTHBU5dkWYGiJzE2NnbU/002btyIciPE299+CZ8fIMsKzjn/Evzmwe9hw4YNuOKKK476+gRBEMTBOa2FPxtSo6oHj+TTtKawsG37pFxzeHgYGzZsOKx7EyefKHx92qt8ZDGP4utV1yj03zrC/xT4rOLAQeTXEft1xF4dCOpA0IAYWhCDGsTYgYTm8CpRFCEbMpR0Eqqa59V6JugPFPWtf7J8fTaXgFX5WS8Fs/zwBtuWVCJZlqEZKaTTOSQSibYeDDORgTMxjESmE5rWHgurqDoEUYWgmFwge56LOAZkRYMoKnyuwcGIwgCCKEMQX7dtRfERHfiweNRWe5koKnwq8tFQLpehJbL8PTFkWYGeyKFcLh/1tQmCIIhDc1oLf5afzsbSTwcblsOGCJ3oa/b29mL16tWHde8tW7Yc9gaFmBlE6XVRGhz8v/90RIHf9vNvBY7nZyUghixGkMWYf6lSBE2OX/8CdBUwFAEJXYKpS0ibMjQlAUFItiUUsax/Jr5bq/pMiDMbX2vUKqu0s8cZBwp8lkDUagc6FIsWLQJiH1HotV03ikIEvo10JovBfUMIw6BNDPuegzjyEPsWgsCHLCtQVQ2CAAS+CyXyIcvJQ95blGTEUdAU/ADfABwuB05Jbq7bP6gN8nDIZpuefvaeGEHgw2mUkM1mj/raBEEQxKE5rYU/O+Jm9pzpYM8d6jh8Jq95yy234JZbbjmse7M4zxOBLAkwtKn/+Q+0XE8rEw540XSvmd66Lbzha6bef7oXvfFDR3t/xBqKuTy82hCMWfOnvdl0PzdZG0K+UEBPZ6YpkqZ50eGs8XDe7+F93m+8bkEQIIkCxNe/JKHl7y2Piwe+7vU/BQB6dS48TGLJ3HMgiQIkUWx7jcT+LonNPwUBL7+wFeuuWoX/6/96N0xdgaHJUOSZGWR2KnDhhRcin9KwY8t6dPTOhyhKiKIQo0N7oSsiVp5zESZG78XOV57BgjMvhCTJCMMAWzc9ju5CGvNnd+Cl55/AOedfAjORQsI0MTG6G/PzPUimDi38zWQWnv0ybKsOU9eOeGCc5zrQVIVvWILAh+/Uj2mI16pVq/DQLx/l76nV459NSIddKCEIgiCOnNNa+C9Z0kwF2bt3L3x/+irUjh072l57Mq55KnLFmn5csab/ZC/jlOSZZ7K46zv34eI1vdCNxBu+3rYaeHrSx6c+/jFccMEFJ2CFpw4XLfBx13fuw1n9ycP+rERnDO+56gb0FN749W8GOjo6cNMf3oh/veN72PbKCzASWQS+DV0RsWL5mejs7sHaS9+B3z7+K2x8fAB6IgerOo7Svlfxf//JJ7F8+XJ89/v34jcPfg96IgchtGFN7kNHPnvIxl4Azdz+OES9PITeJWcdUWMvADi2hb6ODK/4F8eGYagi+vr6jvrzKBQK+OiNN7S9J6dRQjYh4aM33kCNvQRBEDPIaS38V69eDVVV4bounnvuOVx88cVTXvPEE08AANauXXvSrkmcXqxcuRJ9D/0SG599FBdc+q5DVkmjKMKm5x5FX1caK1asOIGrPDWgz+rw+OAHP4iXXn4VAxOjmLeoH4bZi97eXm4XnLdwGTq6erF72yuo1yvYu3MMq96+FjfccAN0XcfcuXOxYcMGlMtlzMq+Gz/9+W9RmRxFJpM9ZDKSmcoDcYz6xF4kVx/ZpjSOI/heA+l0N39s945XsGj+bPT09BzdB/E6K1eubHtP2WwWq1evJtFPEAQxw5zW5+vJZBJXXnklAEybnLNt2zY88sgjAIDrr7/+pF2TOL3QdR1/+NEboYYlPPv4g7CtxrSvs60Gnn38QahhCR//2O/z/pC3EvRZHR66ruPTn/oEZncoqE7sRm9P95QeoWQqi4VLVyCOQiyc04k/vuVm/jnl83lcccUVuP766/HJT34SSxfNRqO4G4N7tsH3p++x8H0P+/ZuR1fvLChRDY1q8YjWXK2UoEhAd3dT+E9OjKIxOYh1F689LjGsre/piiuuINFPEARxAhDi4zXu9CTx/PPPc3vF7bffjptvvhmCIGB4eBjvec97sH79elx33XX4yU9+0vZz69atw+DgID7/+c/j85///HG55rHCPP6rV6/G+vXrj+u1iSNn+/bt+M53v4+hsSqShTmYNWcBFFWD77nYN7AT9eIA+rrS+PjHfp/PdnirQp/V4XG8Pqdvfevf8JsXdkLNzEHd9qAaGaTTWYiSjCgMUK2W4dkVpEwN5yw/Exuf+TVGJmpYfuE1kN7AHgQ0h8ft3fkq+jqS/397dx4WVdnHDfw7w8guCAhSArKIYEkImqKQtqhpPi5Upmlppamll/mql/mkpvVYRmmL6ftorrn0lFuBhZlbJYqZa+WGKKJgLCKiIOvM/f7he06MDMwBgRk53891zXXZOfc53OfboL85c9/3QWRkBCrKy7Bv51Z0DPXGa+PG1nquABERWYd7vvAHgE8//RRTpkyBEAK+vr5o2bIlTp06hdLSUoSEhCApKQktW7Y0Osbf3x/p6emYM2cO5s6dWy/nvFss/K1PSUkJTpw4gf0HDiL98t/QGwRstBq08b0P0d2jEB4errq719VhVsrUR04pKSn4dMkK3N+2K2wdXXH5ciau37h5+8nUGqCFS3P4+raGt7c3dDodCq7n4adt30Bv44LQyCfMFv/X86/iRt5lRD0cCVeX5vht33a4NivB5Emv3dXEXiIisqwmUfgDwO7du7Fw4UL89ttvKCoqQps2bfDss8/i3//+N5ydq658Ya7wr8s57xYLf+slhEBxcTHKyspga2sLBwcHK35Cr2UxK2XuNqdNmzZj+57fEd3nOdg7OMpPDJaWLL3zXLlZmfh5ZzxK9M0Q1CEGzVt4mjxveXkZLl84heCA1vD2cseJQ3vh2VyDsWNGwd/f/24umYiILKzJFP5NAQt/IlLq1q1b+PjTz3EptxTdHx8EW1vzD0MruJ6HQ0k7kZF5Bc5uPvD2C0VzNy/5+QF6fQXSz5+CtqIAHi7NUFKQhYiwthjyzNO8009E1ASw8LciLPyJqDays7Pxf5cux9/XDejaoz8cHM0vkWrQ65GWegopp08gNzcXFXoBW3sXGADkZV+GVn8TD4a0RdgDbRET3Q2RkZFGDx4jIqJ7Fwt/K8LCn4hqKzs7G8tXrsGFjGsIDusGv4AQRUOGhBC4fi0X+Xk5SD17AhnnT6J1qxYYMXwYwsLC4O3tzSFaRERNzD29jj8Rkdq1atUKU//PJPzwQyL27DuAS+dPwT+4A1r7BkFbw516YTCg8OZ1ZKanwNGmFONHj0D//k9VWWaUiIiaDhb+RET3OAcHBzz77DMID38Iv/66D8f/2o+UPw7A0cUTLdw94ezSAlqtDQwGPQpvXMf1a7m4dSMXjrYCnTuEoEePIQgODrb0ZRARUQNj4U9E1EQEBwcjODgYOTk5+PPPP5GRkYHzaZfwd9ZpGISAVqOBS3MndA71hY9PR4SFhXHSLhGRirDwJyJqYry8vPDEE08AuD2Wv6ysTF7q09bWlmP3iYhUipN7rYi7uzvy8/Ph4OCA9u3bW7o7RERERHSPCA0NxYYNG2pswzv+VqSkpAQAUFxcjKNHj1q4N0RERETUlLDwtyJeXl7IycmBvb09AgICGuVnnj59GsXFxfyWQQFmpRyzUoY5KceslGFOyjEr5ZiVMpbOKTQ01GwbFv5W5OLFi43+M6VnB7Rv357PDjCDWSnHrJRhTsoxK2WYk3LMSjlmpcy9kJPW0h0gIiIiIqKGx8KfiIiIiEgFWPgTEREREakAC38iIiIiIhVg4U9EREREpAIs/ImIiIiIVICFPxERERGRCrDwJyIiIiJSARb+REREREQqwMKfiIiIiEgFdJbuAFnW2LFj8ffff+O+++6zdFesHrNSjlkpw5yUY1bKMCflmJVyzEqZeyEnjRBCWLoTRERERETUsDjUh4iIiIhIBVj4ExERERGpAAt/IiIiIiIVYOFPsitXrqBFixbQaDTQaDS4ePFije23bNmCxx57DG5ubnByckLHjh2xYMEClJeXN06HG8Hx48cxY8YMPPHEEwgICICzszPs7e0REBCAESNG4MCBA2bPoYacAODcuXP48MMP0a9fP7Ru3Rq2trZwdXVFly5d8MEHH6CwsNDsOdSQVXFxMeLj4zFr1iz07dsXLVu2lH/nlGQEqCMnyd69e/Gvf/0Lnp6ecHBwQGhoKGbPno2ioiJLd63RZGVlYf369XjjjTcQHR0NR0dHaDQadO7c2eyx5eXl+OijjxAeHg4nJye4u7vj8ccfx9atWxuh541LCIEDBw5gxowZiImJgYeHB5o1awZPT0/06dMHGzZsQE3TGtWUFQBs27YNEyZMQFRUFHx8fGBvbw9nZ2d06NABkydPRnp6erXHqi2rOyUmJsp/b/v7+1fbzipzEkT/36BBgwQA+ZWWllZt26lTp8rtgoKCxEMPPSRsbGwEANGjRw9RUlLSeB1vQHPmzBEAhFarFd7e3iIyMlKEhoYKe3t7+frffffdao9XS04VFRVG7x1vb2/RuXNn4ePjY3T9Fy9erPYcasnq2LFjRllVft28edPs8WrJSQghFi1aJDQajQAgfHx8REREhLCzsxMARPv27UVeXp6lu9goPvnkE5Pvl06dOtV4XHFxsYiJiREAhI2NjXjooYdEUFCQfPybb77ZSFfQOHbt2mWUT2BgoOjUqZNwd3eXt/Xv39/k74jashJCiJ49ewoAolmzZsLPz0907txZ+Pv7C61WKwAIR0dHsWPHjirHqTGrym7cuCF8fX3l623Tpo3JdtaaEwt/EkII8c033wgAYvDgwWYL/61btwoAws7OTsTHx8vbT58+LQICAgQAMWXKlEbqecPatWuX2LRpU5UCIz8/X0yYMEHOKjk5ucqxasqpvLxcuLi4iOnTp4vTp08b7UtOTpavt2vXriaPV1NWf/31l+jSpYuYMGGCWL16tUhMTFRc+Kspp8OHDwutVis0Go1YtmyZMBgMQgghMjMzRadOnQQA8fTTT1u4l41j5cqVolevXmLGjBli8+bN4v3331dU+E+aNEkAEAEBAeLMmTPy9vj4ePkDVEJCQkN3v9Hs3LlTBAQEiM8++0xkZ2cb7Vu7dq18zaYKLrVlJYQQX375pdi1a1eVD0KpqamiR48eAoBo2bKlKCwsNNqvxqwqe+2114zqpeoKf2vNiYU/iby8PNGqVSvh6+sr/vzzT7OFf3h4uAAg3n777Sr7du/eLRcmOTk5DdxzyzIYDOKBBx4QAMT06dOr7FdTTgaDoca7r/v375ffV8eOHauyX01Z3SktLU1x4a+mnKRvIEeOHFllX0pKinxX8sSJExbonWWtXr3abOGflZUlbG1tBQCxZ8+eKvtnz54tAIjIyMiG7GqjKigoEGVlZdXuf++99wQA4e7uLvR6vbxdjVmZk5WVJf+9lJiYaLRdzVnt27dPaDQaERsbK/8emir8rTknFv4kRo4cKX/yrFyEmCr8U1JS5P0ZGRkmz9e2bVsBQKxYsaKBe255Tz/9tAAgJk6caLSdOVXl6uoqAIivv/7aaLvas1Ja+Kspp5s3b8p3xJKSkky26dWrlwAgZs2a1ci9szwlhf8XX3whAIi2bdua3J+RkSG/n1JTUxuqq1bl6NGj8jVnZWXJ25mVadIQqc2bN8vb1JxVcXGxCAkJEc2bNxcZGRk1Fv7WnBMn96rcTz/9hLVr1+KZZ57BgAEDzLY/ePAgACAgIACtW7c22eaRRx4xattUlZSU4MiRIwBQZZIdczKm1+vliaeOjo5G+5iVMmrK6dixYygtLYWdnR26dOlisk1TudaGIuUi5XSn1q1bIyAgwKhtU1dSUiL/2cHBQf4zs6rq9OnTuHbtGrRaLSIiIuTtas7q3XffxdmzZ/H+++9X+3ewxJpzYuGvYkVFRRg3bhxcXFywaNEiRcekpKQAANq2bVttm6CgIADA2bNn776TVqigoAD79+/HgAEDkJ6eju7du2PEiBFGbZiTsfj4eNy6dQs6nQ7dunUz2seslFFTTtK1+vn5oVmzZibbNJVrbShqer8o9b///Q8AEB4eDhcXF3k7s7pNCIGcnBxs3boVAwcOBABMmzYNgYGBchu1ZnX8+HF89NFH6NKlC15//XWz7a05J12j/jSyKm+99RYuXryIJUuW4P7771d0zLVr1wAA7u7u1baR9uXn5999J61ERkYGfH19jba5ubnhvffew5QpU6DTGf8qqTUnU27cuIFp06YBAEaPHo2WLVsa7WdWyqgpJzVda0NhhsaOHj2KpUuXAgBmzJhhtE/tWa1fvx4vvvii0bbQ0FBs2LABw4cPN9quxqz0ej1Gjx4NAPjiiy+g1Zq/Z27NOfGOv0olJydj8eLFiIqKwvjx4xUfJ31VamtrW20bOzs7ALfXK28q7OzsEB0djejoaAQHB8PW1hb5+fn45ptvcOjQoSrt1ZrTnfR6PZ5//nmkpaXB398fcXFxVdowK2XUlJOarrWhMMN/ZGdnIzY2FuXl5YiNjcWwYcOM9qs9Ky8vL0RHR6Nbt27w9fWFVqtFSkoKNmzYgIyMDKO2asxqwYIFOHr0KKZMmYLw8HBFx1hzTiz87zHjx4+XHxpRm9ejjz4qn6OsrAxjxoyBVqtV/OlVYm9vL5+jOqWlpQCMx1A2tvrIqTJPT08kJSUhKSkJKSkpyM3NxcyZM/Hnn3+iV69eSE5ONmp/r+QE1H9WEiEExo4di8TERLi5uWHbtm1wdXWt0u5eyaqhclLqXsmpPqjpWhsKM7ytoKAA/fr1w6VLl9CpUyesWbOmShu1Z9WnTx8kJSXhwIEDuHTpEs6dO4eBAwciMTERUVFRKCgokNuqLatz585h7ty5CAgIwJw5cxQfZ805cajPPcbV1RWtWrWq9XGVv26Ki4vDqVOnMGPGDISFhdXqPG5ubgD++RrLFGmf1NYS6iOnmri4uGDevHm4evUqli1bhrfffhs7d+6U998rOQENl9WkSZOwatUqNG/eHDt27ECHDh1MtrtXsmro95Q590pO9UFN19pQmCFQWFiIvn374tixY3jwwQexY8cOo7H9EmZlLDAwEJs3b0Z4eDhOnjyJxYsXY+bMmQDUl9X48eNRUlKC//73v1UWpqiJNefEwv8eExcXZ3K4RG1IK9EsX74cq1evNtqn1+vlPz/88MOwsbHBtGnT5DHa7dq1AwCkpqZWe/7z588btbWE+shJiQEDBmDZsmU4fPiw0fZ7JSegYbKaNm0aFi9eDEdHRyQmJuLhhx+utu29klVjvaeqc6/kVB+k/l+6dAnl5eUmJ/g2lWttKO3atcP+/ftV8X4x5datW+jfvz8OHjyIdu3aYdeuXfDw8DDZVu1ZmWJjY4N+/frh5MmTRv++qS2rI0eOQKPRYNSoUVX2SUN0Ll++DG9vbwDA1q1b0b17d6vOiUN9VCwvLw/Z2dlGr6tXr8r7r169iuzsbBQWFsrbpBVZ0tLSkJmZafK8+/btM2rblElLVBoMBqPtas5p1qxZWLhwIezt7ZGQkICYmJga26s5q9pQU06RkZGwtbVFaWmpyTk0QNO51oYSFRUFAEhKSjK5PzMzE2lpaUZtm4qSkhIMGjQIv/76K/z9/bF79265MDNFzVnVxNS/b2rMSghRpVbKzs7GjRs3ANzOR9omDe2x6pwa9akBZPXMPcBLCCHCwsLMPj3U1ta2STw91JwXXnhBABA9e/assk+NOUlPxrS1tRU//PCD4uPUmJWkNk/uVVNOAwYMUPTk3uPHj1ugd5al9Mm9zZo1M/vk0IiIiIbsaqMrKysTTz31lAAgfHx8xIULF8weo9asalJaWiqCgoIEADFnzhx5O7P6h7kn91prTiz8yYiSwn/z5s0CgLCzsxMJCQny9jNnzoiAgAABQEyePLmRetywRo4cKQ4cOGD0eHchhLh69aqYOnWqnFV8fHyVY9WUkxBCfPbZZwKA0Ol0YuvWrbU6Vm1ZVVabwl9NOR06dEhoNBqh0WjEsmXLhMFgEEIIceXKFdGpUycBQAwePNjCvbQMJYW/EEJMnDhRABABAQHizJkz8vaEhAT5ycjfffddQ3e30VRUVIghQ4YIAMLb21ukpKQoPlZtWf3+++9i1qxZJjM6e/as6NOnjwAgnJ2dqzwpXG1ZVaemwl8I682JhT8ZUVL4CyHE5MmT5XZBQUEiPDxc2NjYCAAiJiZGFBcXN16nG5B0jU5OTuKhhx4SUVFRIiQkRL5WnU4nPvroo2qPV0tOmZmZQqPRCADCzc1NREdHV/tauXKlyXOoJSshhIiIiBAeHh7Cw8NDuLm5ydctbfPw8BADBw40eayacvrkk0/k95Wvr6+IiIiQ/8EMCQkRubm5lu5io7h06ZLRe8PZ2Vn++6fy9ri4OKPjbt26Jbp16yYACBsbGxEeHi7fxQUgpk6daqErahhfffWVfG3+/v41/j109OhRo2PVltXevXvla/P09BSRkZGia9euws/PT97u7u4udu/eXeVYtWVVHXOFv7XmxMKfjCgt/IUQYuPGjaJnz57C1dVVODg4iLCwMBEXFyfKysoap7ONYN26deKVV14RYWFhomXLlkKn0wkXFxcRHh4uJk2aJE6ePGn2HGrIqfL7xtyr8tfGd1JDVkII0aZNG7M5mRo+JlFLTkIIsWvXLtGvXz/h7u4u7OzsRLt27cRbb71l9tuRpkTp75ep363S0lIRFxcnwsLChIODg3B1dRU9e/YUmzdvbvwLaWBSIabktXfv3irHqymra9euiUWLFomnn35aBAcHCxcXF/mDZExMjJg3b16NH6zVlFV1zBX+QlhnThohhAARERERETVpXNWHiIiIiEgFWPgTEREREakAC38iIiIiIhVg4U9EREREpAIs/ImIiIiIVICFPxERERGRCrDwJyIiIiJSARb+REREREQqwMKfiIiIiEgFWPgTEREREakAC38iIiIiIhVg4U9EREREpAIs/ImIqE5eeuklaDQavPTSS5buSo1mzZoFjUaDDz/80NJdaVL69u0LjUaDPXv2WLorRKQQC38iIgBz586FRqOBRqOp93OvWbMGc+fOxc8//1zv57ZW1nLNGRkZ+Pjjj+Hp6YkJEyaYbZ+fnw97e3v5vXDu3Lm77kPl99adL0dHRwQHB2PUqFE4cOBArc9hb28PHx8fDBw4EBs3boQQwuyxX3/9tdk+9+/f3+iYixcvmjwvAEybNg0Gg0FxHkRkOSz8iYga2Jo1a/DOO+9YvAiub/fddx9CQkJw3333VdlnLdc8c+ZMFBcXY/r06XBycjLbfsOGDSgtLZX/e9WqVfXan1atWskvT09PlJWVITU1FWvXrkV0dLRcTCs9h0ajQWZmJrZt24ahQ4eif//+Rv03ZfXq1TXuv3LlCnbs2GG2H1FRUXjyySdx7NgxrF+/3mx7IrI8Fv5ERFQn8+fPx5kzZzB//nxLd8WkzMxMbNiwAba2tnjllVcUHbNy5UoAQHR0NADgyy+/hF6vr7c+ZWVlya+cnByUlpYiKSkJnTp1AgC88847Nd75v/McRUVF+Ouvv9C7d28AwPbt2zFr1iyTx7Vs2RJOTk7YtWsXLl++XO35165dC71eD39/f7PXM378eADgMCqiewQLfyIiapKWL18OvV6Pp556Cu7u7mbbHz16FMePH4dOp8P69evh4uKCv//+G9u3b2+wPtrY2CA6OhrfffedvC0+Pl7x8VqtFg8++CASEhLQtm1bAMCyZctQUVFRpa2TkxOeffZZGAwGfPnll9WeU/pGQMncDSnbkydPYv/+/Yr7TUSWwcKfiMiMRx99FBqNBnPnzoUQAsuXL0fXrl3h4uKC5s2bo1u3biaHOqxZswYajQa//PILgNt3c+8co21q7HRWVhZmzJiB8PBwuLq6wt7eHoGBgRgzZgxOnTpVr32sbOPGjejXrx9atWqFZs2aoUWLFggODsbAgQOxZMkSlJSUGLU3NblX6TXn5+fD0dERGo0GGzdurLFfs2fPhkajQWBgoMkx7KYIIeS798OHD1d0jNS+T58+8Pf3xzPPPGO0vSH5+PjAw8MDAFBYWFjr4+3t7TFkyBAAwM2bN3HmzBmT7V5++WUAt/8/mcoyKSkJKSkpCAwMRI8ePcz+XFtbWzmnL774otb9JqLGxcKfiEghvV6P2NhYjB07FkePHoVGo0FhYSEOHjyIF198EXPmzDFq7+DgIBfRwO07rpXHZ7dq1Qo2NjZGx3z//fcIDg5GXFwc/vjjDxQXF0On0yEtLQ0rV65EREQE1q5dW299lIwePRpDhw7Fjz/+iJycHNjb26O8vBypqanYtm0bJk6ciKysLLMZKb1mNzc3PPfccwBqLhj1er18B3rMmDGKJ1//9ddfyMjIAAA88sgjZtuXlJTgq6++AgC8+OKLAICRI0cCuP3/JDs7W9HPravMzEzk5eUBAEJCQup0Dh8fH/nPN27cMNmmR48eCAoKwvnz57Fv374q+yvf7VeatfQB4ccff6xtl4mokbHwJyJSaMmSJfj555+xZs0a3LhxAwUFBbh8+TIGDBgAAJg3b57RKjBDhw5FVlYWunfvDuD26ieVx2dnZWXB19dXbn/o0CE888wzKCwsxLhx43D69GkUFxejsLAQ6enpeP3111FWVobRo0fj8OHD9dJH4PZd3lWrVkGr1SIuLg55eXm4efMmioqKcPXqVezYsQOjRo2Cra2t2Yxqc82vvfYaAGDPnj24cOGCyfMlJiYiMzMTOp1O8Th9APj1118BAL6+vvD29jbbfsuWLbh+/TqaN2+OQYMGAQB69uwJPz8/VFRUYN26dYp/dm3o9XokJycjNjYWAODl5SV/4Kityt8eVTe0qfI3NHdOXC4qKsLGjRuh1WprtURr165dAQA5OTnVftNARNaBhT8RkUL5+fn49ttvMWrUKDg4OAC4fZd106ZNuP/++2EwGMwOW6nJxIkTUVZWhtmzZ2Pp0qUIDQ2VvxHw8/PDkiVLMGnSJFRUVGDevHn11kdpMmmvXr0wffp0o6LRw8MDffr0wZo1a3D//ffX+dpM6dq1KyIiIuShSaZI3wYMHDhQUQEv+e233wAA4eHhitpLw3meffZZOTeNRoMRI0YY7b9b3t7e8svLywt2dnbo3r07zp49ixEjRuDQoUNo0aJFrc9748YNbNiwAcDtor9du3bVth01ahS0Wi02b95sNKxo48aNKCwsxBNPPGH0gdSc4OBgODs7AwCSk5Nr3Xciajws/ImIFIqOjsZjjz1WZbudnR2efPJJAMAff/xRp3OfOHECv//+O5o1a4apU6dW2066G7xr1y6Tq83UpY9SoZmbm1uvK9goIa0Ks3r1apSXlxvty8zMlCfWjhs3rlbnvXLlCgDA09PTbNsLFy7Iy45Kw3wkUt5nzpwxu9qOEtnZ2fKrct63bt1CQUFBrYcUXb9+Hbt378bjjz8uX/Mbb7wBrbb6f959fX3Rq1cv+Q6/RBrmU5tvViTS/ASpD0RknVj4ExEpJA1pMEW6G37t2rU6nTspKQkAYDAYEBISYnRnuPKrb9++AG4Py5DGhN9tH3v16gV7e3scO3YMjzzyCFauXIm0tLQ6XUdtDR8+HC4uLsjOzsa2bduM9q1atQp6vR4BAQHycpVK5ebmAqh+yMudP0cIAV9fX/Ts2dNoX2hoKDp37iy3u1tCCKNXcXExjh07hlGjRuH7779Hjx49jFb4MaXyRGk3Nzf06tULR44cAQC88MILmDlzptl+SJN8pWtKTU3Fvn370KJFCwwePLjW1yXlLOVORNaJhT8RkULNmzevdp9OpwOAKnetlZLulOr1eqO7wne+rl69Kh9z69ateuljYGAgVqxYAWdnZyQnJ2PMmDEIDAyEl5cXhg4divj4eMWr6dSWs7OzPJym8iRfg8EgD6959dVXa/1EZWkFIjs7uxrbVV7acsSIESbvlEt3/b/55ps6rbhTE3t7e3Ts2BErVqxAbGwsSktL8dJLL1U7ORcwfoCXn58fIiMjMXr0aOzZswfr1q2rMmHclNjYWLi5uWH//v1ISUmR7/YPHz4c9vb2tb4OaXjUnSs/EZF1YeFPRGQFpCEfoaGhVe4KV/dS8oAlpUaMGIH09HQsXboUQ4cOha+vL3Jzc7Fx40YMHjwYPXv2rLEYvRvSJN+dO3fKE1R/+uknpKenQ6fTyXena0MaepKfn19jux07dsir/9w5zEcybNgw6HQ6FBYW3tUcDnNeffVVAEBBQQESExOrbVd5onR6ejqOHDmCFStWmBziVR07Ozs8//zzAG7PX5BWiqpL1sA/3yJJuRORdWLhT0RkBaSJqxcuXEBRUZFF+uDu7o5x48bh66+/xqVLl5CamooZM2ZAo9Fg3759mDt3boP83LCwMHTv3t3oLr802XfQoEG1mtQrkcb2mxt6Jf28Tp064YEHHqj2XNIQq/oY7lOdNm3ayH9ujKFWUpH/6aefIiMjAx06dJCHNdWWlLOSORVEZDks/ImIGpg0fKSm4TLR0dEAgLKyMnz77beN0i9zgoKCMH/+fPkBWDt37lR8rJJrrky6679q1SpkZmbK4/3Hjh1bmy7LpCK+umVCgdvj0RMSEgBUf7dfIg332b9/f4MtWSl98wDcfv5BQ+vcuTPCwsJQVlYGoG6TeoHbDwyThqC1b9++3vpHRPWPhT8RUQNzcXEBcHsFlup07twZERERAICZM2eanSRZ10nEppSWlta4Xxq/rWTsuETJNVc2ZMgQeHh44MqVKxg+fDjKy8vrNKlXIj1U6sSJE9Ve37p161BeXg6dTodhw4bVeL4BAwbA1dUVQMPd9ZceIAagznfeaysuLg5Tp07F1KlT8cILL9TpHIcPH4bBYIBOp5M/wBKRdWLhT0TUwDp06ADgn4dRmaLRaLB06VLY2dnh0qVL6Nq1KzZv3mw0gTczMxPr169H79698eabb9Zb/yZOnIjnnnsOW7ZsQU5Ojry9sLAQS5culcd/P/XUU4rPqeSaK7Ozs5MfGiU9fKsuk3ol0dHR0Ol0KCsrw/Hjx022kQr4Rx99FE5OTigsLKz2VVFRIT/Ya+3ataioqKhTv0zJysrCrFmz5EnGUVFR6NatW72dvyb9+vXDggULsGDBgjoP05GemRAZGSmv509E1kln6Q4QETV1o0aNwsKFC5Gamgo/Pz94enrKK6ckJSXBx8cHANClSxds27YNzz//PNLS0jBkyBDY2NigRYsWKC4uNvoQMGbMmHrrX3l5OTZt2oRNmzYBuL3Sjk6nM7pbHxMTo2iZSInSa65s/Pjx+PjjjyGEqPOkXomLiwv69++P+Ph4JCQkVFnm9ODBgzh58iSA289EqGk1pDtlZ2fjhx9+kD8I1Mad8xVKSkpQUFAg/3dYWBi2bNlS5w88liANl5KGhBGR9eIdfyKiBhYcHIy9e/di4MCB8PT0RF5eHtLT05Genl7lznHv3r2RmpqK+fPnIyYmBq6urrh+/Tq0Wi0eeOABjB49GgkJCfj888/rrX+zZ8/GokWLEBsbi9DQUHkFGy8vL/Tu3RurVq3Czz//XKtx57W5Zknbtm3RsWNHAHWf1FuZ9NCvr776qspcg7t9Em9dj79zedZbt27B29sbTz75JJYvX47Dhw/X+xOSG1JaWhqSk5Ph4OAgz4MgIuulEQ21ODMREVEtZGVlwdfXFxUVFdixYwf69OlzV+czGAxo164dzp8/j19++UUe90/1591338WcOXPw8ssvN+iKR0RUP3jHn4iIrMLSpUtRUVGBtm3b1nlSb2VarRb/+c9/AAAffPDBXZ+PjBUVFeHzzz+HnZ0d5syZY+nuEJECLPyJiMjiDh8+jIULFwIApkyZUm9j3IcNG4YuXbpg+/bt8iRUqh+LFy/G1atXMWnSJKNnEBCR9eLkXiIishh/f3+UlpYiKysLABAREVGvE5c1Gg2WLVuG7777Tl5rnuqHk5MT5s6di8mTJ1u6K0SkEMf4ExGRxUh39r29vdG3b1988MEHaNWqlYV7RUTUNPGOPxERWQzvPRERNR6O8SciIiIiUgEW/kREREREKsDCn4iIiIhIBVj4ExERERGpAAt/IiIiIiIVYOFPRERERKQCLPyJiIiIiFSAhT8RERERkQqw8CciIiIiUgEW/kREREREKsDCn4iIiIhIBf4ft/XyJGsESRgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(figsize=(8, 5))\n", + "\n", + "# Draw some sample from the traces\n", + "for a, b in zip(alpha_samples, beta_samples):\n", + " axs.plot(\n", + " np.linspace(-40, 40, 500), \n", + " (norm.cdf(np.linspace(-40, 40, 500), loc=a, scale=b)),\n", + " color='k', alpha=.08, linewidth=2\n", + " )\n", + "\n", + "# Plot psychometric function with average parameters\n", + "slope = stats['mean']['beta']\n", + "threshold = stats['mean']['alpha']\n", + "axs.plot(np.linspace(-40, 40, 500), \n", + " (norm.cdf(np.linspace(-40, 40, 500), loc=threshold, scale=slope)),\n", + " color='#4c72b0', linewidth=4)\n", + "\n", + "# Draw circles showing response proportions\n", + "for ii, intensity in enumerate(np.sort(this_df.Alpha.unique())):\n", + " resp = sum((this_df.Alpha == intensity) & (this_df.Decision == 'More'))\n", + " total = sum(this_df.Alpha == intensity)\n", + " axs.plot(intensity, resp/total, 'o', alpha=0.5, color='#4c72b0', \n", + " markeredgecolor='k', markersize=total*5)\n", + "\n", + "plt.ylabel('P$_{(Response = More|Intensity)}$')\n", + "plt.xlabel('Intensity ($\\Delta$ BPM)')\n", + "plt.tight_layout()\n", + "sns.despine()" + ] + }, + { + "cell_type": "markdown", + "id": "05756add-7cdd-4ac2-a56c-548d5266ae72", + "metadata": {}, + "source": [ + "## System configuration" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "4847252c-aa78-45ed-bf0f-334b7fc759df", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Last updated: Fri Nov 10 2023\n", + "\n", + "Python implementation: CPython\n", + "Python version : 3.9.18\n", + "IPython version : 8.16.1\n", + "\n", + "pymc : 5.9.0\n", + "arviz : 0.16.1\n", + "pytensor: 2.17.2\n", + "\n", + "pytensor : 2.17.2\n", + "pymc : 5.9.0\n", + "seaborn : 0.13.0\n", + "matplotlib: 3.8.0\n", + "pandas : 2.0.3\n", + "numpy : 1.22.0\n", + "arviz : 0.16.1\n", + "\n", + "Watermark: 2.4.3\n", + "\n" + ] + } + ], + "source": [ + "%load_ext watermark\n", + "%watermark -n -u -v -iv -w -p pymc,arviz,pytensor" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e2887feb-97bf-4782-ae18-856dabaeaa47", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "psychophysiscs-subjectLevel.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + }, + "vscode": { + "interpreter": { + "hash": "40d3a090f54c6569ab1632332b64b2c03c39dcf918b08424e98f38b5ae0af88f" + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/examples/psychophysics/2-psychophysics_group_level.ipynb.txt b/_sources/examples/psychophysics/2-psychophysics_group_level.ipynb.txt new file mode 100644 index 0000000..3434177 --- /dev/null +++ b/_sources/examples/psychophysics/2-psychophysics_group_level.ipynb.txt @@ -0,0 +1,1123 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "GWMGsEDSzosM", + "metadata": { + "id": "GWMGsEDSzosM" + }, + "source": [ + "(psychophysics_group_level)=\n", + "# Fitting a psychometric function at the group level" + ] + }, + { + "cell_type": "markdown", + "id": "89af87cd-42ef-44da-adcb-2eb02fd271e0", + "metadata": { + "id": "RS4nPf2SHuhG" + }, + "source": [ + "Author: Nicolas Legrand " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "designed-insulin", + "metadata": { + "id": "designed-insulin" + }, + "outputs": [], + "source": [ + "import pytensor.tensor as pt\n", + "import arviz as az\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "from scipy.stats import norm\n", + "import pymc as pm\n", + "\n", + "sns.set_context('talk')" + ] + }, + { + "cell_type": "markdown", + "id": "fM0gAqRdKTcA", + "metadata": { + "id": "fM0gAqRdKTcA" + }, + "source": [ + "In this example, we are going to fit a cummulative normal function to decision responses made during the Heart Rate Discrimination task. We will use the data from the [HRD method paper](https://www.biorxiv.org/content/10.1101/2021.02.18.431871v1) {cite:p}`2022:legrand` and analyse the responses from all participants and infer group-level hyperpriors." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "QAxgnhh98LEo", + "metadata": { + "id": "QAxgnhh98LEo" + }, + "outputs": [], + "source": [ + "# Load data frame\n", + "psychophysics_df = pd.read_csv('https://github.com/embodied-computation-group/CardioceptionPaper/raw/main/data/Del2_merged.txt')" + ] + }, + { + "cell_type": "markdown", + "id": "-z2rrtNp9MPh", + "metadata": { + "id": "-z2rrtNp9MPh" + }, + "source": [ + "First, let's filter this data frame so we only keep the interoceptive condition (`Extero` label)." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "70iPUt9nzZUD", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 226 + }, + "id": "70iPUt9nzZUD", + "outputId": "17be06e7-29e8-42d8-a8e9-6a2a5fc2cfd2" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TrialTypeConditionModalityStairCondDecisionDecisionRTConfidenceConfidenceRTAlphalistenBPM...EstimatedThresholdEstimatedSlopeStartListeningStartDecisionResponseMadeRatingStartRatingEndsendTriggerHeartRateOutlierSubject
1psiLessExteropsiLess2.21642959.01.632995-0.578.0...22.80555012.5494571.603353e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
3psiCatchTrialLessExteropsiCatchTrialLess1.449154100.00.511938-30.082.0...NaNNaN1.603354e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
6psiMoreExteropsiMore1.18266695.00.60678622.569.0...10.00188212.8849021.603354e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
10psiMoreExteropsiMore1.84814124.01.44896910.562.0...0.99838413.0447441.603354e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
11psiCatchTrialMoreExteropsiCatchTrialMore1.34946975.00.56182010.072.0...NaNNaN1.603354e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
\n", + "

5 rows × 25 columns

\n", + "
" + ], + "text/plain": [ + " TrialType Condition Modality StairCond Decision DecisionRT \\\n", + "1 psi Less Extero psi Less 2.216429 \n", + "3 psiCatchTrial Less Extero psiCatchTrial Less 1.449154 \n", + "6 psi More Extero psi More 1.182666 \n", + "10 psi More Extero psi More 1.848141 \n", + "11 psiCatchTrial More Extero psiCatchTrial More 1.349469 \n", + "\n", + " Confidence ConfidenceRT Alpha listenBPM ... EstimatedThreshold \\\n", + "1 59.0 1.632995 -0.5 78.0 ... 22.805550 \n", + "3 100.0 0.511938 -30.0 82.0 ... NaN \n", + "6 95.0 0.606786 22.5 69.0 ... 10.001882 \n", + "10 24.0 1.448969 10.5 62.0 ... 0.998384 \n", + "11 75.0 0.561820 10.0 72.0 ... NaN \n", + "\n", + " EstimatedSlope StartListening StartDecision ResponseMade RatingStart \\\n", + "1 12.549457 1.603353e+09 1.603354e+09 1.603354e+09 1.603354e+09 \n", + "3 NaN 1.603354e+09 1.603354e+09 1.603354e+09 1.603354e+09 \n", + "6 12.884902 1.603354e+09 1.603354e+09 1.603354e+09 1.603354e+09 \n", + "10 13.044744 1.603354e+09 1.603354e+09 1.603354e+09 1.603354e+09 \n", + "11 NaN 1.603354e+09 1.603354e+09 1.603354e+09 1.603354e+09 \n", + "\n", + " RatingEnds endTrigger HeartRateOutlier Subject \n", + "1 1.603354e+09 1.603354e+09 False sub_0019 \n", + "3 1.603354e+09 1.603354e+09 False sub_0019 \n", + "6 1.603354e+09 1.603354e+09 False sub_0019 \n", + "10 1.603354e+09 1.603354e+09 False sub_0019 \n", + "11 1.603354e+09 1.603354e+09 False sub_0019 \n", + "\n", + "[5 rows x 25 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "this_df = psychophysics_df[psychophysics_df.Modality == 'Extero']\n", + "this_df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "U0T9eifxMiDP", + "metadata": { + "id": "U0T9eifxMiDP" + }, + "source": [ + "This data frame contain a large number of columns, but here we will be interested in the `Alpha` column (the intensity value) and the `Decision` column (the response made by the participant)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "3V1boQV-MiQ0", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "3V1boQV-MiQ0", + "outputId": "1ebc2cc2-307b-4c18-aecd-f9c19ffa58fe" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AlphaDecisionSubject
1-0.5Lesssub_0019
3-30.0Lesssub_0019
622.5Moresub_0019
1010.5Moresub_0019
1110.0Moresub_0019
\n", + "
" + ], + "text/plain": [ + " Alpha Decision Subject\n", + "1 -0.5 Less sub_0019\n", + "3 -30.0 Less sub_0019\n", + "6 22.5 More sub_0019\n", + "10 10.5 More sub_0019\n", + "11 10.0 More sub_0019" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "this_df = this_df[['Alpha', 'Decision', 'Subject']]\n", + "this_df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "__V5KcOWziWr", + "metadata": { + "id": "__V5KcOWziWr" + }, + "source": [ + "These two columns are enought for us to extract the 3 vectors of interest to fit a psychometric function:\n", + "* The intensity vector, listing all the tested intensities values\n", + "* The total number of trials for each tested intensity value\n", + "* The number of \"correct\" response (here, when the decision == 'More').\n", + "\n", + "Let's take a look at the data. This function will plot the proportion of \"Faster\" responses depending on the intensity value of the trial stimuli (expressed in BPM). Here, the size of the circle represent the number of trials that were presented for each intensity values." + ] + }, + { + "cell_type": "markdown", + "id": "kwXfRILRryN2", + "metadata": { + "id": "kwXfRILRryN2" + }, + "source": [ + "# Model\n", + "\n", + "The model is defined as follows:\n", + "\n", + "$$ r_{i} \\sim \\mathcal{Binomial}(\\theta_{i},n_{i})$$\n", + "$$ \\Phi_{i, j}(x_{i, j}, \\alpha, \\beta) = \\frac{1}{2} + \\frac{1}{2} * erf(\\frac{x_{i, j} - \\alpha}{\\beta * \\sqrt{2}})$$\n", + "$$ \\alpha_{i} \\sim \\mathcal{Normal}(\\mu_{\\alpha}, \\sigma_{\\alpha})$$\n", + "$$ \\beta_{i} \\sim \\mathcal{Normal}(\\mu_{\\beta}, \\sigma_{\\beta})$$\n", + "\n", + "$$ \\mu_{\\alpha} \\sim \\mathcal{Uniform}(-50, 50)$$\n", + "$$ \\sigma_{\\alpha} \\sim |\\mathcal{Normal}(0, 100)|$$\n", + "\n", + "$$ \\mu_{\\beta} \\sim \\mathcal{Uniform}(0, 100)$$\n", + "$$ \\sigma_{\\beta} \\sim |\\mathcal{Normal}(0, 100)|$$\n", + "\n", + "\n", + "Where $erf$ is the [error functions](https://en.wikipedia.org/wiki/Error_function), and $\\Phi$ is the cumulative normal function with threshold $\\alpha$ and slope $\\beta$." + ] + }, + { + "cell_type": "markdown", + "id": "K14zcyan0iCz", + "metadata": { + "id": "K14zcyan0iCz" + }, + "source": [ + "We create our own cumulative normal distribution function here using pytensor." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "nG910VJ3Atgt", + "metadata": { + "id": "nG910VJ3Atgt" + }, + "outputs": [], + "source": [ + "def cumulative_normal(x, alpha, beta):\n", + " # Cumulative distribution function for the standard normal distribution\n", + " return 0.5 + 0.5 * pt.erf((x - alpha) / (beta * pt.sqrt(2)))" + ] + }, + { + "cell_type": "markdown", + "id": "iSetK_Gd021N", + "metadata": { + "id": "iSetK_Gd021N" + }, + "source": [ + "We preprocess the data to extract the intensity $x$, the number or trials $n$ and number of hit responses $r$. We also create a vector `sub_total` containing the participants index (from 0 to $n_{participants}$).\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "FOedFUWQcWHc", + "metadata": { + "id": "FOedFUWQcWHc" + }, + "outputs": [], + "source": [ + "nsubj = this_df.Subject.nunique()\n", + "x_total, n_total, r_total, sub_total = [], [], [], []\n", + "\n", + "for i, sub in enumerate(this_df.Subject.unique()):\n", + "\n", + " sub_df = this_df[this_df.Subject==sub]\n", + "\n", + " x, n, r = np.zeros(163), np.zeros(163), np.zeros(163)\n", + "\n", + " for ii, intensity in enumerate(np.arange(-40.5, 41, 0.5)):\n", + " x[ii] = intensity\n", + " n[ii] = sum(sub_df.Alpha == intensity)\n", + " r[ii] = sum((sub_df.Alpha == intensity) & (sub_df.Decision == \"More\"))\n", + "\n", + " # remove no responses trials\n", + " validmask = n != 0\n", + " xij, nij, rij = x[validmask], n[validmask], r[validmask]\n", + " sub_vec = [i] * len(xij)\n", + "\n", + " x_total.extend(xij)\n", + " n_total.extend(nij)\n", + " r_total.extend(rij)\n", + " sub_total.extend(sub_vec)" + ] + }, + { + "cell_type": "markdown", + "id": "Jbz8no1H09lk", + "metadata": { + "id": "Jbz8no1H09lk" + }, + "source": [ + "Create the model." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "UlywVNYd1OO7", + "metadata": { + "id": "UlywVNYd1OO7" + }, + "outputs": [], + "source": [ + "with pm.Model() as group_psychophysics:\n", + "\n", + " mu_alpha = pm.Uniform(\"mu_alpha\", lower=-50, upper=50)\n", + " sigma_alpha = pm.HalfNormal(\"sigma_alpha\", sigma=100)\n", + "\n", + " mu_beta = pm.Uniform(\"mu_beta\", lower=0, upper=100)\n", + " sigma_beta = pm.HalfNormal(\"sigma_beta\", sigma=100)\n", + "\n", + " alpha = pm.Normal(\"alpha\", mu=mu_alpha, sigma=sigma_alpha, shape=nsubj)\n", + " beta = pm.Normal(\"beta\", mu=mu_beta, sigma=sigma_beta, shape=nsubj)\n", + "\n", + " thetaij = pm.Deterministic(\n", + " \"thetaij\", cumulative_normal(x_total, alpha[sub_total], beta[sub_total])\n", + " )\n", + "\n", + " rij_ = pm.Binomial(\"rij\", p=thetaij, n=n_total, observed=r_total)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "cb327ff0-ccf0-4f5c-8115-1b002f2218b5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "%3\n", + "\n", + "\n", + "cluster191\n", + "\n", + "191\n", + "\n", + "\n", + "cluster5339\n", + "\n", + "5339\n", + "\n", + "\n", + "\n", + "mu_beta\n", + "\n", + "mu_beta\n", + "~\n", + "Uniform\n", + "\n", + "\n", + "\n", + "beta\n", + "\n", + "beta\n", + "~\n", + "Normal\n", + "\n", + "\n", + "\n", + "mu_beta->beta\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "sigma_beta\n", + "\n", + "sigma_beta\n", + "~\n", + "HalfNormal\n", + "\n", + "\n", + "\n", + "sigma_beta->beta\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "mu_alpha\n", + "\n", + "mu_alpha\n", + "~\n", + "Uniform\n", + "\n", + "\n", + "\n", + "alpha\n", + "\n", + "alpha\n", + "~\n", + "Normal\n", + "\n", + "\n", + "\n", + "mu_alpha->alpha\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "sigma_alpha\n", + "\n", + "sigma_alpha\n", + "~\n", + "HalfNormal\n", + "\n", + "\n", + "\n", + "sigma_alpha->alpha\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "thetaij\n", + "\n", + "thetaij\n", + "~\n", + "Deterministic\n", + "\n", + "\n", + "\n", + "beta->thetaij\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "alpha->thetaij\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "rij\n", + "\n", + "rij\n", + "~\n", + "Binomial\n", + "\n", + "\n", + "\n", + "thetaij->rij\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pm.model_to_graphviz(group_psychophysics)" + ] + }, + { + "cell_type": "markdown", + "id": "IL5XRmYEKnJr", + "metadata": { + "id": "IL5XRmYEKnJr" + }, + "source": [ + "Sampling." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "XvCe2rAgw8_t", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 129 + }, + "id": "XvCe2rAgw8_t", + "outputId": "10c11b10-fedd-4254-8051-6771cd35e15d" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (4 chains in 4 jobs)\n", + "NUTS: [mu_alpha, sigma_alpha, mu_beta, sigma_beta, alpha, beta]\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " 100.00% [8000/8000 01:34<00:00 Sampling 4 chains, 0 divergences]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 95 seconds.\n" + ] + } + ], + "source": [ + "with group_psychophysics:\n", + " idata = pm.sample(chains=4, cores=4)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "qFp4jTS6FytS", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 405 + }, + "id": "qFp4jTS6FytS", + "outputId": "f2ba731a-010e-42f6-f87b-803bd93f9f99" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8gAAAF7CAYAAAAOk6LwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5wkZ3Xv/a3QuXt6cti82tXuSquEVgIkIUAGkwz4XsA4YMDYJIMvxlyba5xf/OLre7GNzGuTbGyZ4CySACMJFJGE0kranCen7ukcKle9fzzVNTO7s0HSalfh+X4+sOqeDtVV1V3POed3fkcJgiBAIpFIJBKJRCKRSCSSFzjq+d4AiUQikUgkEolEIpFIng3IAFkikUgkEolEIpFIJBJkgCyRSCQSiUQikUgkEgkgA2SJRCKRSCQSiUQikUgAGSBLJBKJRCKRSCQSiUQCyABZIpFIJBKJRCKRSCQSQAbIEolEIpFIJBKJRCKRADJAlkgkEolEIpFIJBKJBJABskQikUgkEolEIpFIJIAMkCWS5x133XUXiqLw+OOPP6nn3XTTTSiKQrVafUa2SyKRSCQSydlBXuslkmcOGSBLJBKJRCKRSCQSiUSCDJAlEolEIpFIJBKJRCIBZIAskTxpfuVXfoUrrriCW2+9lUsuuYR0Os2rXvUqZmdnmZmZ4Y1vfCPZbJaLL76YO++8M3qeoijceOONy17rxhtvRFGUM37vBx54gDe/+c2sWrWKTCbDFVdcwVe/+tXTPk9RFD796U/zsY99jL6+PvL5PO973/swDOOEx46Pj/O6172OTCbDhRdeyNe+9rVlf//e977HT//0TzM4OEhXVxcveclL+MEPfnDGn0EikUgkkmc78lovr/WSFy4yQJZIngLT09N84hOf4E/+5E+46aab2LNnD+95z3t4+9vfzqte9Sq+8Y1vsGrVKt72trfRarXO2vuOj49z3XXX8fd///fccsstvPWtb+XXfu3XzujCeeONN3Ls2DG+9rWv8clPfpKvf/3rfOQjHznhcb/4i7/Ia1/7Wr71rW9x5ZVX8q53vYt9+/ZFfx8dHeVNb3oTX/3qV7n55pu57rrreMMb3sA999xz1j6nRCKRSCTnG3mtl9d6yQuUQCKRPCne/e53B6qqBgcPHozu+9SnPhUAwac//enovr179wZAcMsttwRBEARA8JnPfGbZa33mM58JnurX0Pf9wHGc4P3vf39w/fXXR/ffeeedARA89thj0X1AsHnz5sB13ei+G2+8MdB1PZicnAyCIAj+8R//MQCCz3/+89Fjms1mkE6ngz/90z9dcRs8zwscxwle85rXBO985zuf0ueQSCQSieTZhrzWLyKv9ZIXGrKCLJE8BdauXcuWLVui25s3bwbg1a9+9Qn3TU1NnbX3rVQqfOQjH2H9+vXEYjFisRhf+tKXOHTo0Gmf++Y3vxlN06Lbb3nLW3Bdl507dy573Gtf+9rovzOZDOvXr1/2Gaampnj3u9/N6tWr0XWdWCzGbbfddkbbIJFIJBLJcwV5rZfXeskLE/18b4BE8lyku7t72e14PH7C/Z37TNM8a+/7K7/yKzzwwAP84R/+Idu3b6erq4vPf/7z3Hzzzad97uDg4Iq3Z2dnl93f09Oz7HY8Ho8+g+/7vPnNb6ZWq/HJT36SzZs3k8lk+KM/+iNmZmaezkeTSCQSieRZhbzWy2u95IWJDJAlknNEIpHAtu1l95XL5TN+vmmafO973+PGG2/kN37jN6L7fd8/o+cXCoUVb4+MjJzxNhw5coTHHnuMW265hTe+8Y3R/SsZgEgkEolE8kJDXuslkuc+UmItkZwj1qxZw/79+5fd98Mf/vCMn29ZFp7nkUgkovsajQbf+c53zuj53/nOd5ZdYL/xjW+g6zovetGLzngbOhfHpdswPj7Offfdd8avIZFIJBLJ8xV5rZdInvvICrJEco5429vexl//9V+zY8eOaKTCk+lZyufzXH311XzqU5+ip6cHTdP48z//c/L5/Bllp9vtNm95y1v4wAc+wKFDh/jEJz7Bu971LtauXXvG27Bt2zbWrFnD7/zO7/CpT32KRqPBH//xH7N69eozfg2JRCKRSJ6vyGu9RPLcRwbIEsk54g//8A8pFAr8yZ/8CYqi8N73vpff/M3f5Ld/+7fP+DX++Z//mfe///28+93vpq+vj4985CM0m80TZi6uxEc/+lEmJyd5xzvegeu6/NIv/RKf/exnn9RnSCQSfOMb3+DDH/4wb3vb21i7di1/8Ad/wB133MHjjz/+pF5LIpFIJJLnG/JaL5E891GCIAjO90ZIJJJnFkVR+MxnPsNHP/rR870pEolEIpFIngHktV4iOTvIHmSJRCKRSCQSiUQikUiQEmuJ5FmD53mcStCh6/LrKpFIJBLJcxl5rZdInv1IibVE8izhla98JXffffdJ/z46OsqGDRvO3QZJJBKJRCI5q8hrvUTy7EcGyBLJs4SDBw/SaDRO+vfLLruMeDx+DrdIIpFIJBLJ2URe6yWSZz8yQJZIJBKJRCKRSCQSiQRp0iWRSCQSiUQikUgkEglwHky6NmzYQKFQIJlMsnHjxnP99hKJRCKRnMDo6CimaTI4OMjY2Nj53pznPPJaL5FIJJJnG2d6rT/nEut0Oo1hGOfyLSUSiUQiOSNSqRTtdvt8b8ZzHnmtl0gkEsmzldNd6895BTmZTGIYBqlUiosuuuhcv71EIpFIJCewf/9+DMMgmUye7015XiCv9RKJRCJ5tnGm1/pzHiBv3LiRSqXCRRddxKOPPnqu314ikUgkkhPYsWMHO3fulHLgs4S81kskEonk2caZXuulSZdEIpFIJBKJRCKRSCTIAFkikUgkEolEIpFIJBJABsgSybOSnRMV3vtPj3DTfaPRfbunarz+r+/lr394OLrP8wNczz8fmyiRSCQSiUQieY5gOh53HigwXZUGiqdDBsgSyXmmbbv8+yOT3PzoVHSf5fj8cP88D49Vovtmawb7Z+sUGmZ038NjZa745O385W0Hz+k2SyQSiUQikUieOxyeb1I3HR4ZK5/vTXnWc85NuiQSyXL2ztT5+H/u4qKRLt66Yw0Al67Jc/OvX8OmgWz0uFddNMTDv/9qFGXxuVMVA9vzySUXv8pHCk3maibXbupDVZc8WCKRSCQSiUQikZwSGSBLJOcYzw+480CBV188BMDVG3r5rVdv4cr13dFjsgmdHet7lz1PUxUGcoll971txxreeNkIrr84zvzv7z3Gvz48yZ/+7Hbeec2GZ+xzSCQSiUQikUieGwQEp3+QBJABskRyzvnw13fyg71zfOmdO3jN9mEAfvPVFz7l10vGtGW3r93cz3ipzc++aHV0X7FhnRBcSyQSiUQikZyOY8UmABcsUbVJJM9nZIAskZxj3rpjDVPVNqu6U8/I67/58lW8+fJV0e1iw+JVf3kXP7VtkL96+xVSdi2RSCQSieSM2TdbR1UUGSBLXjBIky6J5Bmm3LL55wcnots/ffEQ3/7wy7hkdf6cvP94qUVc10gndBkcSyTPQ+655x7e9KY3sWrVKhRF4Vvf+tZpn3P33XezY8cOkskkF1xwAV/4whee+Q2VSCTPSTYNZJd5okgkz3dkgCyRPIP4fsAv//2D/N43d/Oj/fPR/dpJAtW66fDoeJm7DxWXvcadBwocKTRwnsJIp6s29PKj//kKfvf126L7Ds835HgoieR5QqvV4vLLL+dv/uZvzujxo6OjvOENb+D666/nscce4/d+7/f4yEc+ws033/wMb6lEInkucrjQZHSheb43QyI5Z0iJtUTyDKKqCr/z2q38+yOTvHhj7wl/t12few8XufNggXsOLTBRbgOwvi/N3b9zAwCFhsV7bnoYgExc4yUX9PHGy0Z4/SUjpOLaCa+5EvlULPrvQsPkF//uJ1y6Os/nf3nHCT3MEonkucXrX/96Xv/615/x47/whS+wbt06brzxRgAuuugiHnnkEf7iL/6Ct771rc/QVkokkuc2UoEmeeEgA2SJ5Bng8HyDC4dyANywbZAbtg2e8Jj5usnrbryHStuJ7lvbm2LrUI6LR7qi+wIC3rZjDeOlFrumatxxoMAdBwr88bf38o6Xrud/vW4rinLmFy7L8cklY/RnEyR0KSKRSF5oPPDAA7zmNa9Zdt9rX/tavvzlL+M4DrFYbMXnffGLX+RLX/rSGb3H/v37n/Z2SiSS84/nBwRBgOV653tTJJJzhgyQJZKzzBfuPsr/+cEBPvP2K/hvS5ykQQTOFwxk0VSFwVyCVd0prljbzesuGeYVWwYZzidPeL2RfIq/+LnLATAdjweOlfiPRya5fd88ddN5UsExwNreNN/80LVkEvqTfq5EInnuMzc3x9DQ0LL7hoaGcF2XhYUFRkZGVnze7OwsO3fuPBebKJFIngU0LZcf7Z9nvNRmfV/6fG+ORHLOkAGyRHKWWdebJhPX6cnEo/uqbZu/vO0QX39wnM/+4ot442XCTOebH7qO+JOo4iZjGjdsHeSGrYPM1Uxi2mKAe8sTM2wZyrF1OHfa1+lOL27bXM3kD761mz97y6UM5k4M0CUSyfOP45NjQRCseP9SRkZGuPLKK8/o9ffv349hGE99AyUSyXmnbgiFW63tQN953hiJ5BwiA2SJ5CzzhktHeOkFffRm4gRBwM07p/nU9/ZRaTvkEjq2u2iO9WSCY4AHjpa4fd88b92xmu2r8vh+wIf/eSd3HijQtoX8aX1fmpds6OXFG/vYPJRl23DulH3Gn73jMD/cX2Dwh4f5s/9+6VP70BKJ5DnD8PAwc3Nzy+4rFArouk5f38lXwR/4wAf4wAc+cEbvsWPHDlltPkdMVw1mqgY71vXISQWSs8pQV5JXbh3AcaWp5/kiCAKp9jsPyABZIjkLfOmeo1w4mIt6jXszcWpth9/75m6+t3sWgLftWMPHX7f1SVVpm5ZLy3IZ6hLPue/IAv9w3yhjpRZBEPDoeIW66S57znipzXipzb8/OgWApsKLN/bys5ev5mevWH2CsdcfvfFi1vWm+dXrNj7lzy+RSJ47XHPNNdxyyy3L7rvtttu46qqrTtp//EJH9GD659XUsGE67Jmu05uJL1MKPTJWBmB1d4pV3anztXmSs4zt+jw8VmZjf+acHNcgCDg432CuZrJjfQ+5ZAxNVehKxohJv5LzguV6/GDPHBv6Mly+tvt8b84LChkgSyRPkz3TNf7s+wfIJXV+/L9+inwqhuv5vOXz93G02GIkn+Sv3n4F12w6c31SoW7yubuO8h+PTHLZmm4uXZPnodEyu6eqANxxoABATFO4fG03F/SnGepKMlZq8aP9BRwvQFEgCMDz4YGjZR44WuZ//9d+3vnSDbz3+o2RzDoZ0/jgKzZF7206HgldlRlLieQ5QrPZ5MiRI9Ht0dFRHn/8cXp7e1m3bh2f+MQnmJ6e5itf+QoAH/zgB/mbv/kbPvaxj/G+972PBx54gC9/+cv8y7/8y/n6CM96Hh6rMFszeMWWgWUtKucS1wsoNMyTjgn0Q5n82cbzA5qmSz4tkyfnkvm6yULTIpPQz0mAPFZq853HZ/CCgFRMTMwwHY/RhRbllk1v5vyc9y9kaqGJ61ipJQPkc4wMkCWSp8klq/N86r9fwrredDROSddU3nv9Bdx7uMif/fdLz2hBZbke+2fqfP7uo/xwfwHPF4udB46VeOBYCRDjmnas72HH+h6u3tDLZWvyJ1Q0Jstt3vtPj3BwvsHq7iSru1M8NFYBoGa4/M2dR/j6g+P87uu38far1i4LhAsNk1+76RF+atsgv/XTW87K/pFIJM8sjzzyCDfccEN0+2Mf+xgA7373u7npppuYnZ1lYmIi+vvGjRv5/ve/z2/91m/xt3/7t6xatYrPfvazcsTTKZitiX7q+bp13gLkTELnZZv7SZzjKvZDo2UKDZMXb+xlJC8r1OcKTVXIp2L0nKPERKVt05XSmamaDIaqtULd4sBcndGFlgyQzwO6Jir3ZytB8gzl0J6XyABZInmKLO0LecdL1hMEAQ8eK/GSC0Sl+BeuXssvXL08AA2CgIWmzdFik2PFFseKTY4ttDhSaDBZNjj+t2sgm+DazX1cvaGXF2/sZfNA9rQ9Zmt70/znr1/D+7/yKBv60/zZf7+Uh8cq3PjDQyw0LbavyvPNx6b5Xzfv5kf7C/yft14WGYqVwm3TVIUP37D5SfdISySSc88rX/nKyGRrJW666aYT7nvFK14he4SfAudzNN5C04okt5et6T5n71tomOLfuiUD5HPIqnMsmQ+CxQCqs8rQNAUCiMne9vNCRxUid/+5RwbIEslToNyyec8/PsTvvv4irtnURxAE/PF39vKVB8b5y5+7nLfuWIOiKEyW2zwxVWXXVI1dU1X2zdRP6Bk+ng19aX7pJet4/SUjrOlJPSWpcy4Z46ZfvRpdFVLpF2/s5ab3vBjT9ehKxvjFF6/jw1/fyW375nli6h7+/l1Xc+maPBeNdPHP73sp24ZzMjiWSCSSkDU9aaYqbTKJ87dsWlwsn/6aYLs+VcOWkwmew7Qsl0PzDfKpGBcMZJ/x90voKrbno6kKZjjzeDCX4BVbBnH950bpcaLUJp3Q6M8mzvemnBWM0Hx1qmKwY/153pgXGDJAlkieAt98bJonpmp87SfjvPSCXv7o23v56k/G6UnHcDyf//39/fxw/zxHi61lz4trKhcOZtk0kGVjf5pCw+J7u2YxXZ+N/Rn+z1sv48Ube8/KNib0RRne3pka7//Ko/z1L1zBVaE0OxETAfB83eLnv/QAf/tLV3LDtkGuWNLn4ng+nh+cV2MaiUQiebYQnKDzOXfUDZFcPVpscsnq/Al/X5pMvfdwkabl8pKNfXSnY0yU26RiGmt7n7lZtpbrLbvuPB8xHY9q2yEV16KWqmeKpuUyUW4z1JU8JwHyBQMZHh2PM5hLMFs12TbcRUxT6Urpz4mEuel4PDYp2sl+9orV53lrzg6WdA8/b8gAWSJ5CvzayzYykk/y8gv7+cNv7+FrP5kgHdfIJXV+9xu7o8dtGsjwkgv6uGx1nkvX5NkylCOmqdTaDr/9n09w+755VAU+8IoL+K1Xb3nGAtE7DxSYrhq888sP8cV37uDlWwb4vTdcxG17hTvijT86zHu/8giffttlvOXKNYCQ1X346zvZ2J/h/77t8mdkuyQSieS5QMMUZjneeaykOd6ZL5ablgimq4aN6Xjsn60DPGMBcqlp8eMjC6zrTfOidT1P+XWCIKBuus948PlUOTjXYKwkEt/PdBB2eL4JwKpzJGtPx3XW9aWpGw65pAgPLNdjotSmYTrkks/OY+L7wpRUVxXW9KRJPY8S+qdqnZE8s8gAWSJ5irzh0hH+7Pv7+dpPJlAVaNseE2WD7au6eMuVa3j1RYOs78us+FxdUzhSaLKmJ8Vf/8KL2LH+qS8ozoTf+KkLURSFT996kPf+0yN89hev4A2XjvCGS0cAWN2T4uP/uYv/+e9PoKlKdOE/VmzRtDxalntepYUSieSFw48PL1BqWQx3JSNPh/OJ5wdU2jbVlnNOKqRt22W6YnDBQHaZY/VTdak+FyN6ZqqiT3mi3H5aAfKuqRpjpRaXrelmY//K18+ny6PjZXRVfUquwJ1K6rnoRe9Ox/CCgN7sM2+OdaTQYKLcpm44GI7HcF5I84sNi32zwqTrXPa9nylBEPCDvXN0JWO87ML+J7WW8v3gWT83vGOMFtee/RX85xtyxSuRnCEN0+HX/ukRPvbTW3jpBX18Y+cUX7rnGAB+ADdsHeBDN2zmqvU9K/YNB0FAw3LpSsbIJHS+/O6r6M8l6DpHWdkP37CZbELnj7+zlw99fSeffpvolQYxJzkd12jZHh/918fRVIU3XraKr7/vJWzoy0iJtUQiOWfUDFGtbdkr+zUsNUg8F3h+wGixheX6nIt3vffwAqbj4QUB24a7ovufcoAcBgHrnmL1eNNAlqPFJn2nCNTO1uHoVGdnqsaTCpCPFJroqsKGM3jOVEU4kj+VAPmikS62LZlB/Uyykoz+mWLvTJ2ZqsFszURXFV6+ZXDZ34dySTacJOF/PrFcH8fzKbWsJ/U83w+4ZdcMvZk411848JTf3/ODk45dOxt01l7P1ur98xkZIEskZ8g3H5vmodEyX/7xKIfmG3zqe/sAYar1v99y2SnnHLdtl4//5y4my23+/YPXkNC1c9JTdDzvvnYD2YTO7/znE/zP/3iCXFLnNduHGepK8vItA/zXnjkC4KP/+jhDXUmu3rDYD+37ovvumbwYSCQSSafPV1khHG2YDnccKLBlKMdFI10n/P3J4PkBLds9bZIyIMALAvzwf880piOMeVrW8gTBU1F3n43NHc4nT9tze7bzFWe63ZPlNscWWpSaFtpJAuSFpkXNcNj0JK65bmhWtVIi5lwlZwzb4+B8g1xSf1Lb/lRY25vmWOiZ4vpBdO4NdSW5dlMf9x5eiBJXzyaW9uiajsete+dI6Cqvu2TklM9rh9+xcst+yu9tuz7/tWf2rCtdgiDgsckqg7kEmqJguf4J3geeH9C2XRk4P4PImr1Ecoa886Xr+au3X05MVfijb+/F9eE3X3Uht3/sFacMjkEElZMVg0LDYjrMXp8v3rpjDZ97xw6u29wXZU6TMY2/+aUredc1wibR9QN+9R8fYmxhMZv/y19+kC/cffS8bbdEInlhcKrg6KHRMofmGxwIe2qfDvcdWeDOAwUWmqeuPgUBNEwXTVVYaD71BfXTxX+K/c+dZ01Xn9q1pz+bYNNA9pSL8fOVON05UaHaFsdk9UlGIj0yVmHPdC1yBNZVldgpJKuu5/O93bPcdbB4wt9s16dQN6m1n/lgsWm5jJdazNfNZ/y9jpfwztXEe8Y0lXwqTkLXzqM93cmxlwTIVhj0nsrYqhNE339k4Wm/d+e8mzvLx6fcspkst3lkrMJ3d82wZ7p2QiB/7+EidxwoRNvwXMXxfHZP1Z6VyRdZQZZIzpBq2+Gm+8fYNVWjKxnjH99z9Wn7XTq9uwld44u/vIOYptD3LBg/8LpLhnnt9qEoE15rO3SldP6fN2+nKxnjb+48QsPy+MW/+wm3/dbLaVouj4xXKLds3v/yC065uJBIJJKzwgox14G5Bg3TpXyKheGZSrA7C37XW1z6H55vENPUZZXIuKae0Qz6s8/y9zvT+LhmOByeb5wgqfb8YJkktNiweGKyyuqe1Cmr8Y+Ol5mumly3qe+k169OFf6C/nOvjAK4bE03mwdXfu9UXMNyvajKrSinTsJ0qot188RF+6H5BkeLwjzrmTbp2jNdAzipl8nZZqVd4nh+6KSdYDCXPOftDafDCsdRAWiqyqruFMlT+ATENRXL9dGfxUq4fCrGSzb2oakK//HoJABdx6k3OkoW+0kY9z0bOTjX4NhCk7FSizddvup8b84yZIAskZyGv7/3GBv6MvzfWw9wKHSVfNVFg6cMjl3P5//eepDb983z7d+4jq5kLDK9eLbQuciVmhY/98UHuOaCPj75s5fw26/diqbCX//oCLM1k/d95RH+5X0v5ab3XM2V63pkcCyRSJ5ROgv1Uy5hTxLgGLbHbfvm2DSQPW0P5/Wb+zEcb5kB4b6wMn28VNf2fDT/yS2qv/PEDKoCb7zs7Cz8ztTR9oGjJeqmy1ipzaVrupcFg0sD5Lbt0rJdSqepildaDkEQUDOcZzzBm9BFANMZQ3g6sgmdpuXi+j6Vlk1P5sQ+6eP32+ncwE91lHVN/PVsXQdNx8Px/BWr8/l0DBToW+EznW2OFpvLsgapuAgyiw2LvTM1Hp+scsXabgKCcxawnwlLK8heECxrC3M8n0fGKmwayDDYJdZffhDw8gv7MV2fB4+Vzug9vv34NHBiQiTxDHmz6JrKcD6J5wcoiBaBclO40Xd6kn9q29Az8t7nmk6C4/jWFd8PWGhZ9GUS502dIgNkieQUHCk0+LPv7ycIFtdjl6/J8+dvvfSkzyk0TP7HPz/Gg6Nlcgmdw/MNdqw/O7ONnwmKTYta2+HrD06w0LT46194Eb/101txvIDP3XWUnxwr82ffP8Dv/8xF53tTJRLJC4BOQHPKStVJ/jRdbQMnnxW8lJ8cK1FsWlx/4QC9mfhJA9AA4c6c0NUoQDoTgiDAexq61OM//plWkDsB4OlGUqnhG3SnT93HuKY3xcG5xikXqlE13n96Fa01PWmOFpuMnGFCOZeM0bRcdo5XyCT0Fau6Hfmm6wdnlGQ4lVP51qEcWwbPnknXrXvnAJFEOX7/Xvk03MCfLh1FQOcc6gkrmI9PVp8VAfJszUBX1WXnuH2ctPpYsUWhYVJomNF5UTdd7j1cfErmqLumqmwayEYJtY4svSf9zCUwAkR7R81wsD3/WWOY+nSUBL4f4IaJupN9HQ8XmhyYq7OmJ/2MT3k5GbIUJJGcgr5MKCsKb/dnE3zpXVed9AL6yFiZN372xzw4WmbbcI7v/I+XPauDY4Btw138+wevYU1Pilv3zvNLf/cTyi2bj79uG7949VoA/u7eY9zyxAwA83WTX7vpYR4ZK5/PzZZIJM9TXrFlgCvWdp9yYXQ2agoH5xtMVQzGSy1mqgZ1Y2XXbNf3GciJymk6/swsUIMg4N7DRQ7ONU76GNfzI9feU9FZt3auW0sNfo43+1n6+JMxkk9x5bqeU1aPO/3RE+X2qV/sNHQlY/RnE1G/8OlIh+Zh6hks1h3Xjxbkx8/KrZsOD42WaVkusTAJstI8XUVRuOdwke/vmT1lAsLx/Cc1M3ulxILpeOyaqkaS7pMxXzeZrT19b5NOC0FcU6PzpGPWOXyS/u7zxUOjZe4/urAsaWQ4Lt9+fJrb980DKyeIdE1hMJeM5jyfCZ3fodGFVjRfHMTIrxdv7OXiVU/PLPB4Sk2Lbz8+zXcen8b1AmKawmzNYPdULTLwmyi1OTBXj26fKWejj/zR8Qrf3z33lGfCF5sW/7Vnlt3TtUjx0TkeB+ca7J+tR699PufOywqyRHISTMfj/V99hLm6iYL4Yf3CL1/JUNeJme0gCPjyj0f58/86gOsH/LcrVvFnb7mUdPy58RXbNJDlGx+6ll+76RF2TlR56+fv56b3XM2fveVSji60eGi0zG/+62NsGsiwe7rGjw4UcPyAr/zqi8/3pkskkucZ3ek43SepyuRTOvN1Ia19uoyGJoQT5VYU2CmKQvy4KnEndtFU9ay4Qq9E3XApt+xlZjzHh3x92Th3HCycdCb9MyVEzMQ1UjEtChyPJwgCxkst2pbHluGn14M82JXgsckKC02Lnkyc/tNIupMxjYSuMdiVXDGgPRnHV78eOlamZbvYrs/LLuwHVq7Yu57PVMVAVxUqbXvF7fP8gO/vno3GJT5VTMdjdKGF5wccLTTZOpxbsXr7k1Aq/Nrtw0+rwjjclSSX0MkkdSxHnPRxXaU3E4/mPh8fWC40LeK6es7GVR5PR5pruR6FukWhbjJbN7n+wv4VEz+5hM5UpU3DdMkmtDOSSa/pSTNft5iqtCk17WgNaLs+83WLrqR+2vP0eO46WKBmOLzqoqETfss6QWEAeL6Proq2g8lyG11VeMkFfTw2WRGfJxk7qTndM8VURfxW1gwnmtP8ZOhU+pumy6Wr86zKpyL1xIE50eJy2ZpuPC94ygnJQt2k0LCe1qg0WUGWSFbAsFze848P8fBYhe5UjAD44zdt56oNJ1aDa22H93/1Uf7f7+1HUeD/efN2PvPzVzxnguMOg7kk//r+l3LD1gFGF1p84hu7URSFf3nvSxjuSuIH8IW7j/H2q9byyZ/dzuffceX53mSJRPI8w3Z9Hh0vn3b8ytkwCkqGfa7dqcUqRioMuJYS11XW9aZZ05M6aUUjCAL2TNcoNhYdsT0/oFA3z8g9uiul86qLhnjNxcMnf5Cy7J9TPKzziBO3dWmA35EeHymcukL56HiF/9oze1Kn2YWmTallk05ouF7A7qnaabbw5EwtmfJQPQOn6LrpUGiYXLK664RpEqbjcXCugbuk4h4s+dtSOh4hw/lk9LelBlAdjhSbHJpvsG9WVO9Mx+NosRm9R81w+O4uobZ6MtWvlUaaPTQqVFpre9MYjofpnFo5cOveuSflrv3IWJlHxyvR7VRcoz+XIBXTojFPnh9wrNikHPapLy10e34QOcGfS5bK5DsB8p7pOvtm6hQaFt2pGLO1lZ2l5+sW46UW4+XWk6qmrulJ0Z9NLEsQ2K7PeKlFofHkZjDD4nevvsJ3qi+b4MUbe7l2U9+y72tAQFxXMR2PasvG9wMyTzKAfKa7eR8dr7Bv5tQTBjqfvdQSo9lScY14mIDp/PbO1Qwen6oy+RQVKQ8cK3G02KTQeOoO48+tFbxEco5471ce4YFjZXrSMX7w0Zezb6bOK7eeOEz+8ckqH/76TqarBmt6UvztL13J5Wu7z/0GnyUyCZ2/e9dV/MVth/jll64DQNNUvvGha3ntjffwnSdm+Pmr1/Kuazac3w2VSCTPS8ZLLX60v4DlzvLGy1bxoiV9mI7nU2s7Z2xWdTq2rxLVhZ5MnKrhoKCwaSAdLdY6aKqC7wc4ri+Mk1Zgrm5ytNjkaLEZ9Tt6fsBkxeBIoXnaKo+iKCdUko5PAiR1jY39mZP2Qc/VTY4UmlHlrCM77sxSPX6Uj3uGAVwnACg2rBUr+0EQ4Hg+luMz7rZI6BqXrnlqlZulZj1nkgMxbQ8CKDdtEpq27Pg8Mlah1LIoNCxWdaeW7bfjTYEWzbeUM9ovqiICpIfHRDKnZblctqY7UiWcDfKpGDFtUbVQbFhsHT51/3OhYZ70HG1ZLg+Nltm+qovBrmSUuLloJIdhe8R1lZbtElPVqLK60LTYO1NntNSiNxunZS9KjJ9uvzmIXuInJmtcu7nvjKvQSw+dEzb5dyV1NE3h+gv7qbQdulMx5laQH7dtl7W9aTRVOWOjtY5J15suW7XMyd4JP//TGcO10lx1TVUYyaewXZ/+XAJjsgqI72s+FePhsTLdmTibBrInVdp0KDYs9szUuHpDL9mEflZHdWnHfUGDIIiqy2cqO19oWszVTIbzSfqzCTq7t/ObM/80AlzgjFovTvrcp/XOEsnzkFuemOG+o0Ky9OdvvYyhriQ3bBtctljpSKp/7gv3M101eO32Ib73keuf08FxB11T+d3Xb2NNjxgR0rJcfrh/nv/nzdsB+J3/eII//6/9NEyHhabF731z97Nyhp1EInnu0TFdyqfitKzlC9xHxirsn2tQN92owvVkeXS8EvX5rukRQWtnYT5fN/nR/gJ7phcrII+Mlfn249M8Nlll6hSVYNcLsF1/2WigzuL3VLNKO3LDIAhoWe4pe28PzjWYrLRPOqJmstym0rbF1ISuJKt7UgSBWHAfKzY5UljsbzZsj/HSmQVznc/ROMU+rxtO1NN9OkzHO2l19WQ9laMLok/8eIpNCx+4+1CRuw4tr2RWjbDqubQKtyQgWVaJDGM9VVFOKdXeMpjjRWu7uWKtSNx0JM2df0/VHx4EwUkTPCv1hr/kgj5u2DYYBaWnGm12JpSaNnXTOWFu7+375tk3W2e2ZnJkvsnh+SapmMae6VqkBnimnIQfGi1juR7f2zXL/Uef/Gzizv6+cCjHT20bJKaJ43CykWy1tsPemfpTmgm+e7q27PiuFNw+WU73EssqxOFjO+qalarPx3P/0QXqhsOuMMheytLfmiAImK0Z3HFg/rS/C30ZISc/PlGnKAoDuUS0djwTxhZaHC02ue/IApbrYSzpsQZhtLYSp0uSDocy+KczzktWkCWSJRyab/A7//kEAD3p2En7H2qGwxfuPgrAH73xYt5z3YZn1WzAs8nvf3M333p8hp+5dIRXXzTID/cX+MLdx5itmSR1jX97ZJJ0TOMP3njx+d5UiUTyPOL4n9RcUiepa/gEaNrimLp8KoZ+BtUg0T/aJqFrbB3OUW07zFQNBkMDrpmqQdVw6MksVrKmqwae13HVPvWC9vB8A9P1MWyPZExU/k61QDtSaLJ3psaV63roSsZOCPBO2H7fx/WCE7bB9fxln78rpbO6Z7Fi3anG1M3FALf5FBIMwSkqq52q++lk0abjceveOdJxnZ+++MRRNT3pOKMsXxT7fsCuqSqw8uzhJ3PlPVmgNxlWvkYXWqztTZPQVewVLMhVVYmCrwDIhK1UnaDacU8eIO+aqjFWanHp6jwXDJy+V9t2fQ7ONVhoiD7fp6uc6PQKn6z9qxGeH53K6GS5jel6vPSCvhUrjyvJwp8q0xWDdFzDsMW86tGFFhv7Myv2VC/dlqX727Q9fnRgHk1RuG5zf/h9DRgvt9k7U2P7qjwxTY1+R86UK9Z28/hklbFSiw39GfIp9cQNCXl0vIzl+ly7qf+MXnulQ1psWNx/dGFZa0CHhumybbiL+44skE/FsFwvkiU/MlZmumrw4o29jOSXK1ZWOn637ZuLvk/3Hy1Fjuq+f/LZ22KbFnukj+dMP3eHk7mQ92biFMPf9uPZP1vn0HyDn9o2uOJ4NFhMkDwdjy9ZQZZIQgzb4zf+eSem45NPxai0HQ7PL+/N6lygutNxPveOK/mPD17Lr75s4/M2OAb4wCs2sbo7xfd2zzJbM+kKe3Cu29zHx1+3lV+9biO/+eoLz/NWSiSSZyP2aRyXT3h8uEiyXA8FaJhOVJW9ZHWeX33ZRl6xZYCuZIzHJyv8+MgCD49VTvGKiwRAOq5Hv2GdqllHIplLxuhNx0+Q2Lrh735cU0/pFtwJUgPECJQ3Xr5KqIoCsej1j3vdw/Oiojteaq9YjTr+qnLRSJ7eTHyZYmdsocUTU7VlVR/b9bFdf5kTbOczdd5mIJdgy9CiXDcIAqpt+4Rt7Dynabrce2SB3VNVmpZ7QgU4l4wJM8vTVGw6gXnbXjlAX2p21NnW061xFUV8nv5sYsUgcr5uUm7ZaKqCoihRgLj0oW4YDHdkw9tX5bl8BZm47wc0TFHpF+Mfl7/fqc73sfAYrVS9XClQMl2PYwtNKk+zctxhOJ/kFVsG6M/GaZjLExnC+C2ITjrb87E9H1VR6E7HIpOuZdt8miMTBCeO1ZqpGic99h0eHa9waL7BEytUPTuv26Gzv8dKLX58ZAHb9TEcj0pYZQ0QlfNOn31XKFufb5hn7AC9vi/D9lAyvLS/9oEV5ihPVYxlPgSnIgiEQWBHlgzi/LKX9L4vHDejvGo4qIr4vIfnG8t+CzrnVaF+4vufboW60Fx8zsmM3nw/4Hu7Z7n7UBE4scfe8XyemKxGv2tnwtJXWJq46STcVpLBHwpf/1S93x21yUo+AmeKDJAlkpBPfncfh+abpGKqcBfcNsh7rtsAiB/kf/jxKO/7yiPRAuLqDb1c8TyQVJ+Oi0a6+OaHr+WKtd3snalHGfi/uu0wcV3lE2/Y9pwzJJNIJOeGtu2ddizRUkotsejpVLPuOFA4wQSoZblU2zZ3HRQLtTM1YolpKj998RBretI8NlGJDI06vb+qKmSsleMMwmKqwgUDGVYt6SM2HW+ZnFpTFdb1ptk6lIsqOp2e35mawV0HC+yfW25es6FfVGnW9abJp2L81LbBFauqHYIgoNyyl0krO3LZpQvpg3MNdk/XmKoYBEFAqWVRaliMLrQ4OL+4DUv788ZKbe4+VGT39KLB1pFCk//aPcsTU1UOhovS2/fP86P988sW5p1AQVFOH8x2VFknc7+N5L+BcPD1/GBZ8qBhOjw8Vj4hyLp0dT6sGp4YCqgK/PjIQnROrWRhtrZXHNutw120LJfJcvsEiT+I+do1w2bfrLgWzlTF9nYW687TGXy9BNv1o/N+Y//Jq81PpqpcalrcebDAvz08ucyca6YqXLmDQAT/nu8v7qMADsw1IpOuJ8PRYovvPDETjakqNS1u3jnFp289uEJ1dFGl0VEhtE4TSMPi/i41bbwgQEGoEJqWi+sFJwSGAQGu5+N54ryyXf+M9uFwPkVfJrFiRXMpW4dzXHiGc7Idz2f/bJ1HxyscLTb54b55/uPRKR4eq/CidT28eGPf8lYSBTYPLp4LActndl+6Ok9/NrFMPXKm/OwVq9mxvocd63siF/fjsaLk5cpz1j0/YKzU4tCSwtJKrRSd39FV3aIFxHC8qBXkxJ7qE5//s1es5mevWM2mU6gwGqZQBx0/G/vJIANkiQT47q4Z/uWhCQAMR8y8/PTPXR5dbA3H42s/GefuQ0V2LVlAvFDoOFz/zGUjVNoOmqowVzf5P/91gA989VH+6Nt7KDct/vnBifO9qRKJ5FmG54vq5N2Hiqf1K+gk25To/xYZW2jx7cen2TlR5WixtaIE8XT8aP88D4+V+O6uGTYPZtmxvidaUF7Qn6U3Eyd1XGtNte2w0LCWBfq37p3jzgOFaBuSMQ1dU6K+5iAI+OH+eXZN1Ti20OL+owvMVpcH8p11uaIISWDuOPnrWKm1rKK7oT/De67bwLuv3RD18XYSlkt7FTtVtYbp0LRc9s3UxXsoixVew/aioBeIKtDjS1xj987UmKwY1JZUMJvm8gqw74uAo227+IE41gunqOycTpbbqZZqmsKBuQaHC41lAfJPjpaYqRo8NlEFwgAhXFzXzZXPrWLDwnZ97jlUwPH8KPA6PjAqNUVyxPUDik3rhHP14bEyB+carOlJc/WGXjb2Z6L90OnnPFXFqpOQONU+aFku9x9d4Kb7R6P7OjO4V0rIPxnVte353Ht4AdP1lrlddwLSatuh1BSmZpvCQKxhOdzyxAyjK/SlBoGQRp/seKuK+F7EVBFqeEFAsWHh+cEJ/dRLR5d1jvfJlHlL2wM638lMQkcBrtnUTyqmcSw0zFMUhW3DOV6xRZisur7P2t40l63JoyoKu6drPLIkWbAS3358mh/tn+clF5x+5vG24a7TPsZ0PC4czBHT1KhC2jkvm5aDosBgLsFALhG1maTDqq6CUL7sWN/DtuGuZQH7BQNZrljbjWF7ke9Bpxp8vPHgSjiez+hCK6rQHo+iCNf4+bopfnuOOz6dz+L6Ppbr8chYme/umjnhe6RrCn2ZBNmETrFpsW+mzkRZnF+d1+xsf/Up+ttMlg1ma+aSRE/wpH0rZNlH8oJnstzmEzfvBkIHSy/gs7/wInozcYIgiCRZf/uOK7Fc/wVRNV6JZEzj//uFF7GpP8M/3DeG7wd87cEJupI6ddPlB3vmKLVshroSvOqik1dBJBLJCws/CJirm1TbNnM185RVmE7/b28mfkIg8cRUlemqgeP6pOMa3eHrPJkZpE3LZbpqMl0xcL2AV100xLGFNpNlg80DKum4Rk9qsYpRNxxGSy1GF1psGcyibV5eXXG8AF0TC7CJUpvJcpvtq/I4vk/DdHA8n7lw5Mzxc4SXSqCDIMB0/BMqo7N1M3LA3jlRYaFp87LN/dy6d45UTIuCp5El1e2tQzkapsNkxWBPmNDNJmNklwTgxYa1LEDc0JfhialqFOAvbuPyJER36JAcLex9nyeOG+s0fpLRLE3LjYKflaqzIK7H46UWszWTK9Z2oypKFATmU7HoeZ1AtCupM2e7PDxWJpPQ+ZlLR6LAavuqPLumqlEQdbjQPKmxku36jJVaaCqsDU2GCg0zSkL4fsBM1cAPAn7m0lVRYqIvk6DUssiGsv1TjXZ6+ZYBau3lPe4dOpvVCSKblssQsLo7RTtc2K8kfX0yRlGG7eGHVVbD8aJEUMcZe3yhjR+A6YgKsqYu7vulwVDbdpmpGvRnEycYfi0ll4zRl4lHfgGdamdXUj+hMNh5+SBY/Ezi2AvVhKIokerglidmSMc1dE2Nju224Rw71vdwcK5Bw3IY7Fr8Tcgk9KgyWW7a7J2pM5hLRK93sl1ouz637ZtjqiKmlOybqa9oxJpZktTaPVWjZbtctb4HXVN58FiJ+YbFKy4cIJ+OMVczeXC0xIs39nLVhh5cL2BDfwbT8VjTk+bBY6VlCYDOpi0mDSChi7nIK/XTV8MxYyP5FP/tRau5oD/Dvtn6CYoN1/PxgiA6vxumQ91wKLdsig1rWfvFUg7PNwnClhFlhZh7IJtAUxV+sGcuuq9QX/6bn0voXLupD0VZnHtsuz6FhhkpiLrTcSYrxorO5pYrkoMJXUNTFWZrYlLA+t4M6/rEd7eTjOq0luydqXO02HxS63dZQZa8oPH8gI/862M0LJeLhnM4XsD/+KnNXLOpj28+NsUv/t1PogvxRSNdL9jguIOqKnzsNVu587dfySd+5iJAmJllEzqlls32EXGRkkgkkg5+sBhQnYkb7oWDWTb0Z7jsuB7QDX0Z0nGNbFJn82A2GkVzfMX3ZCxdeA52JWjbHvtn6xyeb1BomExU2kKWvOQ5hwvNKEhUFOWk/XkBYnFqOsLJ+qHR8gnS8qVVnGPFJnccKGDYLncfKlI3HG7bN8eXfzy6/HWXuS5Dw3C4de+c6INd4ga9tJiTTujkkjFSMY2ZMDivGw5xTUVXFSZKwnwJwPOCSDIJnDAK6vh4b7hL9LH2pOOYYa/nSkHaidVZix/tn49kw6eqtC40bRREkqQjwxSf8cRzZ65mYnsioPP8YFmAurE/w6WrF8+hpVXTruOM3Tp96LM1c1lv7fGjjFRF4b4jC9x7uIjnBwyFgVhXcuV609L9kE/FWNeXXtFY6LZ9c6LSH97esb6Hn9o2yAPHSuyZqbNlKHfCGDA4vaQdREC7a6rKQtOiZXnM1kz2zYrApNS0+O6uWQ7NNyJzrmRMi86JfCrGe67byJreVFSBu+NAgW/snOa2vfOnfd/pqhH1Oy89fMefVx1lwtJzqdoW47N+HO5vEHLww4XmMhlv9H6Wx92HikyU2pG01vMDxkvtqCoa01SyCX3Zd/H4c7Vzu1MpjWsKUxWDsVJrWd9ysWExX7e4JDzHfD/g2EJTPC98DV1TiWtKFEy2bBfHE+ZrD4+WeSI0nztSaIrWhdBz4ZYnZvjurpno3DfCGdjHii22DuUoN8W+Wfo9emi0zCNjZWZrJvvD43sye5zpqsGe6XrUe3zHgQJjoXP0yWbQd74j3ekY127uO8Ht/Y4DBYpNi6s39C67v+e44HyqYnDLrhn2zda5Yq2QdV+2phsr/IyFukXLdolr6orXix/smRPO62E/uOn4lFt29JsGi9+LmZqB6/mRzH+yfObu5bKCLHlB8+UfH+OxiSob+9P8y/teyg/2zvHmy1fxx9/ewz89MI6iwP1HStywbfB8b+qzioFcgne8eB3f3DnFzokqQ10JHM9n72yD7++e45desu58b6JEInmW4PnBMqnbqTBtn65UjHwqRiah05WMYToeQRBw+VoxZ3bnhJBEdqViK7oan4pkTCOT0DAdndGFOqm4tmShpzCYS0SBAsDanhQT5TaaqpCIqSetNmUTOqm4huP60eL0+IcuDd52T9fwfJ/HJqp0p+M8MFpi53iFAFFNOVxokIyJucdDXUlimspMzeDuQwVAYTifZCiX5GixSRAE1A0nqrZYjicqRH5AX0aP9pXt+TwyXgkrRi65pM58w2ShabG+98TRLKu7U0yWjWVGOYqihNJQhUfHqxwpNLFdn4Su4gcBWiinve9IaVkvY6dH2vH86PV2TVXZvip/wiK4Pxun2LCJayoJfbFK6Hp+FLwGgZCQl9sWpabD1Rt6iK1oJHXc7U6wfcIjhV7heNmornaM1zrPD5gst2lYLoO5JHF90dHa8XyqbZu4rmK7Pg3TpdZ26A4DBH9JMmOlYP9woUEuDLSrYStTsWGRimscmm+w0LS4/sKBFT/PqXh4rEK1bbN/tk4msRjU7J+tk4qJ/TvUlWQgm2DXdI2BXIKjxWZ0vv74cJHxMHi6eCSHF4hk03i5JfbZSeZyd/qDO18nM5Sh1033JEkVeHi0vOy+I8XFQHjfTD3aJuM4g62JcjtKgFiux+H5Bpet7SYIAhaaFvtnRZKhJxMnGVOZr5soeTEKyFuyLY7n84M9c6zrTUdV18GuZKQC2Tle4drN/QRBwHTFAGVR5u0dl8wCyCd1giDBVLnN4UKTdb1p9s3UKTYs5moGN2wbZKZqkIpr9Gbi7JmuYTk+3elYaAQXnu8EkZrC9QMOzNej38HXbB8GiAwENVUhm9QJAlFlHe5KRkkZzxd915qikEnoi9/tJYcje5Jkz8Nj5WgfdV5jKbqqsNCwTjsmynTE8UnFNF590RD92Ti6qrLQtLBcn8lKG8vxGMgleN32k6sRO0mOkXySTLyP5JJEaUeJc3i+STaxmJB6Mn66soIsecFytNjkL287hKbAXM3ijX/zY67f0s87/+Eh/umBcbrTMW56z4tlcHwSVFXh994gqsjzdYuuZAxNVfj9b+3m3x+ZPKkDpUQieWHh+wEToez2dPNHO72Jnb61G7YN8volstkORwpNCjWT+48snLFJVzah88qtA1iOx9hCOwqSrt7Qw9qeNOm4MGhcatI12JXkRet6WNeTYjifPKmkVVUUrr2gjwsHsyc1apqvm3w/rNYNZDs9hgrphIZheWwbyXHJqi48P6DSEtvx6FiFe0LXWMvxCFisvrZslyDs+51f4ly7e7rK7qk6e6drUU9v2/YYXWjx6LhY5HYqYQldI5uIRbOhlwYeV23o5ZpNvVGlHkTl+4f75zEdHz9crAfhZ5soG1Gw0JFKdlAU0eO7a6omgo0A7jpYjEbLLEVTVVqWy96ZOofnm1G1sWm5yyp4dVM8Zs9MjdU9KXas72HvTI0fH15gstxm/2ydXZPVFY16bNdntNiMXm9jfwZVVcJxSuIxI/nUCcF7sWFxcL7OfN1krNSi2BD7t2W5lJs2R4st9s82OFpscaTQ5I4D81FgfPehIrfsmjlBkr5vph7t/85p7vsBt+8TFdo1oXx+pR7K0zlJw2J/dLXtMFs1ovO7bXtMVU1imorlLCam4uEopA5PTFajCu94qR1VGIPg1KPP9s6Iz1kMq5RmWCGsGQ6jCytUgG2X+eO+ywoKL94oKpLHFprLgtClzFSNJYoNhWLTwnK8E8aZBYFwLHe8IAqol7pON8Lgfey4IK83Exdu9E2L8YUWrh+wqjvF6u5UZNC2NAHmBwGO5/Pd3bPcvm+enWHP/ES5TdNyqRoOdcvjsYkqD4+ViWsiqXJorkGpZVE3HeK6Stt2RSAaLCbhPD+gbXnYns+Dx0rR8bxibTd9mQQXjXSxrjdNEAh36rm6SRAEGLbHfUcW2D1d40ixyWzV4LHxCrfuneNlF/ZHJl03bD1xzTteajG20Ard7h0OzjWWnXmmI6YOFJvWsqQGcIIz/v5ZMcv+nsNF7j5UZO9MDT8Q4+s6j52pmTwxVaPQOLGa3THp2jqc48BcnVv3znHXoSJ3HSys6EtRqJvUTTH/ut52TnoOHY+sIEtekHh+wMf/cxeW69ObibOxL81gV4K3f+EnTFcNLlndxeffsYO1K2TVJYtctaGX916/gb+/d4xi06I3E6PScvj4f+6iK6lz1+/ccFK3UolE8sLAC91iYXGRfCoOzDZo2S4b+zMcnGswkk/ysgsHmCy3eXC0hOMFpOMaLccVi29FLHpdL+DR8QqG7Z0g67NdH11V+PStB5mpiF7Stb2p0LV1gJY9h2F7XLamOwpIOmiqgg+4brCstxEWA5SYprBjQw+9xThHCs1lAf26npRwagUeHCuhqqKi23lMEIiEY6c/ePdkhdmawUDYW91Z5Ad0Kp/i/1+2uR9NVfje7tmoHxvg/qNlGqaD5fmMLbQZ6kqiIEyTXE9IKDuL+XRYUezOxAiCxX7UDu5xwX4ngD4wV2fvTA0VMYu2I8n1/YBk8sTaSzahR8HPTNVgsCvJQtMil9RpWu4y+bCmKFGw2rLdZdXepe7K9x4qcqzYoisVo9K2eWKqtkxKPt8wOVpsUTWcZW6/TdPl4FyDr/5knKvW9/Cbr97CQtOk1LTpScejhf/SnEzTdKgZDm3bww9AA+KaEiVnGqZLJrE8GCu1bA7MN7nzYIF0XOeew0UuHumiZjiYjofrB/h+gOl4USDeOSd2TdW4Yl03IM4VYJkUvsOZrPW3Dud4bLxCfzaO4XhRJRcgHVOZ83xmagaVto0bVgc39InvXtN0mQ8DwGxSZ7ZusjF0X68bDoWGRVfq1KFEtW0zttCK9me1bTNWanPd5sXH5NOxZf3mHbTQvG5tT4pkTIsUCkt9B0zHo1C3CAJ4zfYh7j1UJK6r6JrKeJh46EnHcD0f1/dZ05NifV+a2Zq5bDY4CEn5K8MAsW44BEEQBbcb+tIcKjR5ZKzC+66/gMlKm4SuMlVps2N9z7Jt9wOR0BjuSuL4fmSyBYszeiEs3AYi6dW0XLxAnAP5lPALaNlxYLGnP5fU2TNd4/K13Tw6XsHxAx4eK/Oa7cOs78vQn00wtastqs8IR2/PD0jENBrWYouB7frUTZfv7ZnlFVsG2DdTx3I8ZmomRwoNejMJNEUhn45Rbtncsb/AQ6NlEjENw3ZpmC5t2yWXjLFnusbRYhPL8WnbHnXDWda+sNC0GexKLtk3wnNhvNTmll0z2K7Pmy8X853FsY1jOR6KokS/U5brCVdyZfk4qE5i6dBcA9vzGcwleekFfSLh4AmH8g39GUoti4FsgprpRG72p0NWkCUvSG66f4xHxyuk4xrllk13Os69h0tMVw1ef8kw//GBa2VwfIb89mu2sT4ckVFuOdHFsmm5PHD0xDmBEonkhYNhexTqZjSe5HgTqOPRVSVyGf7JsRJ3HChw35EFQJhUNU036mlsmi6+H3Dr3jkeHiszWWlTMxxatkuhbjK6IKpAR4tNbt07R6VtY7s+PqLiq6kqBCIYma4YzNUM9s7Uadse+2bq1E2H6YrBo+MVJkrtFaWDneJIsWnxDz8e5VuPT9M8zmir3HYotRyOFZu0LI9K26ZYFxUuEAHr6EILwxH9iZNVk2rbiQKKjknX0gV43XB4bLIa9d2NdCeZLLeZr5skdBXPD9BVhdU9YmHacZm2XFFJ7vTW1g2XhuVQN8Q2L+0r/N6uGX60v8BQaAQW19TIFOzxySqjC61oAbuqO8Vg+Lel23lkvkHDdMgl9Ugy3cF0xLb8aL+olHpR9chAU8Q292biZBJ6VDVaujieq5nkkjqr8kken6xytNDAcn0M1+PxUME02JVY9p5BAAfnG5FkuLPA3j9bF9X2IIiqUDNVI6q+TodGQEld5aLhHFes7WZVdyoK1IbzSZwVAtjJcpupSptC2M/aqV7duneOH+2bZ7zcZqQ7GR1j0xZVci8IuH3fHJWWzc6JykmVC8ffvdLjdk1VeXyqGrUq6Esk0emEzrreVCQdn6wYTFcN5usmUxUjCso7zyg17SjYm6+bGI63TDExWW6zZ7p2QivFE1NVWpbLxSNdvP6SEa65oG/Z37vTcdb0pJdV7DtO7TvHy+yfbdCfSxDTlNAde/GYGrbH6p4UW4Zy4TkJ+XQcTVUiCXGxYXG40KRYt9gzU2e+YZ3QBw3iu/j4ZJW7DhY4MNdYtn+nKgbVtk13KsajExXiurqsl3lpZbJzHCbKbY4WmvhL6q0xVSGX0MnENTYPZnnROjFCcySfitZPCV0jQPS2e0FAgEimCKWGqOJ3p3T6MvEoqXL/kQV+fLjIvpk65ZZNEARRq4rj+cu+O93pGEM5MTe83LQxHI+5mpgXXmra3Hu4yF2HhF/AobkGB+brtGxxPGxP9PrfcaDAvYeLUX/3/rk6juefYJp4uNBYVtldOl5OUxVqhsPBufqSZKPKdNWgbjj8MPxt2DcjKsX/eN8Yc3UD0/HwfeGfMLrQinqpd4fqjB3re+hKLnoxpOM6g12JM/arAFlBlrwAGV1o8elbD6AqQmI03JXgzoMF/AA+9MpN/PZrti7L8ElOTTKm8WdvuYx3/P2DxDWVmuGST8aomQ4f+/fHySV1Xr5l4PQvJJFInhaf+9zn+PSnP83s7Czbt2/nxhtv5Prrr1/xsXfddRc33HDDCffv37+fbdu2nbVtCoKAxyarvDzsneysjY4Vm2STOoO55LLHJ0KJ60g+yeH5Jk3LpdSycTw/CiJyYbXRD8Riqy+TYNNAlqPFJq4XUGratG0Pa/cMH37l5shIajKUebuez2Augel4zDdM9sxUsdyA8VJLVAdVEXyv68tQbFp4vljedqpXSzlSaHLpajEy5mixBUGwbG6tAnSnYnQldRK6xlzN4La9Fmt6UiihSy+I/sFC3URVRfWobXtkk8tduoNQhggBpZZNV91cVjnuSD1X96SIaUIu3lk8K4qCqi5WKDsV/aSusrY3F0loO2Og6qbDg6NlpqsGL1rbzXA+SS6hk9BVrr9wgDsPhEFtsLionaoI+XwnaJiutvnKT8bJJnT+52u2cuX6HibDgIFQgrrU9KzTuw2iypaJ6VEypNoWx7QT2C9WeZUo4EvFdVQFsnGd3kycC4ey5FMxHjpWptK26E7HTwhqGpbL1x8cpxj2SBuOtyy4sz2fFBrjC+LcKYT92pqqoIR9nJ3F+VLDpLrhYNoesTBI60iWY+G84cVjHzBTNUnGNHqzcX50oMi9h4vsWN+D7fk0TZdq26FlupTbNuWWvUyVdbzE+u5DRUYXWrzukpHovlK4faqqYDp+NIsaxHk+VTVYlU9FiSnP97nvyALzdZO4rjLclVwWVAfH/asqIrnheD4/2DtHMqYykl/+vQZxjqTiGgldixyqQagObMcnrivRsTFsj32zdSoth9maMM5b35fmus39vGjdciPQTtBjuR5HC02mqwZDefGduWAgw0zVoNSyqbRtYrpKJiGSNUEgjlc2DCBvC0e3DXYlGAornooijOnm6iYBcMmqLjRV5UihwXAuiU8QBdpLkxOBv7hvVEVh61COubpF23ZRFIX+XIKG1fnOiZaCew4VIoXNzokKszWTn754KEoaNCyXpuWG1ddQ7my4BMCrtg3yk2MlKm3h+F1t2/iBMA48NN8IZwzHonO10haVVMf1ySVbPDxWpmG5rO1JMV8X52NnNvbOiUp4jqoYtifuR/yOlls2P9w3z6bBLJ4fENNUdmzo4Z5DC8tMCuumSyvc/rq5KJseyCZIxTQqHQM9RfzOGY6HrqmoikKpabHQtEJTNJPP3XmUHet7WNebjrbBcHy6Uov94JsHs9G4uyfTd7wUGSBLXlAEQcDvfWN39COkAHN1C11V+PO3Xsrbr1p7fjfwOcp1m/t565VruHnnFBv7M3zi9dsYL7X51Pf38/6vPsK3P3wdW4dPPRtQIpE8df7t3/6Nj370o3zuc5/juuuu44tf/CKvf/3r2bdvH+vWndw07+DBg3R1LX43BwbOfjLL9QIKDbHA2TSQjVx15+sWv/iSdZG5lGF73HO4yHRFVNU61R8FUSm7akMvD4curRAafiliMXTJ6jxHi03qpsNM1aBhCgfdi4cLXL2xl/V9GSzXI6aqNExXBAOBSPC1bZdS0yaXjOF6AYfnmwznkxQaJk3LjXoVEzGViXI7kgKC6M1LxTRyCY264VBtO7zkAkVUhwPYNJDlJ6Ml+rOJaFax7fkYYaDSWVL7AWgn6eccXRAyYj8QFa624zGYE5XRqiFksaVmZ+6pSDCkYioLTY94OApHQYwkSupqGKAJt1jL9cmnY8I1Vo9zYK7BRSNdaKEZVyY0MesPq8O265OKaZGE0vMD+nOJKMDu4AcBhbAvumm5lFsW01VjmVz8+M9aD/vOM3Ehu25YDseKLS5d3c1jExWOFlpo2uK4n7rpYLselZbDxatiJDSfrpTO9RcOkNA1HF8E4JbnoaoqQ10JFGCkK7lsJvXBuUYkHc+mdDRtacVZbKQXdEZxBeyeqZOKafSF1e2W5XLfkYVlvc6llo3leaR8cYw3DWY5WmyhhsHQBf0ZjhSaZOJ6JB32Q8l1rW2jKgq6IqprMU3MeF5o2oyXWssD5OP2YULXiGkq//DjY6zpTfOai4eX9QwPh4GrqohzznZ9fF8EaYuvpVBoWCid4x1fnKW7sT8TVfr7swlR6TNdbt45xWA2zmS5TW8mfoKMdaLcpmbY+D4cLTSZqxu886UbxPldalFtO8IcLxBS7mgEWrCYAjgw12DbSBf7Z+tkE3qk8lMVhXLLomk6FJs2luuzb6bOcFeScsvmWLElEi7heSXWfWZUCd88mGV0ocX+2TpTFYP5hkXT8tixXlRnR7qTaKrCdNVgsmyIJJMCY6U2fZn44rioJQKCzlb3ZRPETZd1vRm2DOf4wZ45MfPY9LAcIUeeqRnUTYeJshGpLTqfv227dCV1MnEdTVVoWy6251NoWKiKQjah43o+qqqQjGusiqeYrZlkkjoxTUFXFYa7kvSk49x7uBA58quKSEZkEiJZkYyrNCxxTiRjWmT81RlBByKZlkvFaFsuqrI4BqxhuaGSQIy2m66IEWAd0zAQv5MT5Tau5/PQsQqG25lFLv7u+kH037M1k5gq+q4Hc3G+u2uGliUk46qi4Aeikj6cTxLXVFZ3p1ABHyJJ+L8/MonrB1yxtpujxRaFusVkpR0lWc8EGSBLXlB854kZHjhWQlNFb4P4wsHfvesqacb1NPn9n7mIOw8WGF1okY7rvO/lF1BoWPz7IxPc+MPDfO4dV67o3CmRSJ4+f/VXf8Wv/dqv8d73vheAG2+8kVtvvZXPf/7z/O///b9P+rzBwUG6u7vP6D2++MUv8qUvfemMHrt///7F98gl+OG+OVq2x9qeFGt70lTaDo+OV1hoWvzOa7fRtFzuPVzE9wMcP8ByvMhxV9TZTowcO/17nh9E8tZOZc8PAmKqiun65JIxcklCJ+w8U5U2Y+U23akYvh9QalrUTSHnrRkW6VCSN5JPcGC2juv55FOxSEJ8PMWGha4J0y1VUTgwK9yxL1ndRallR+ZKQ7kEfdkEbculaYr+Ri2s0uiqwtbhHArCAbratrHcJDXT4cdHitTDx3eqVau6UwTAmp4083Urqh4rKHiBGDVVaTkcmm/Sm4lTDYPP1d0pdqztptSymay0WdOTZrLcjuaUdgLFTELnsjV5dk+JAH26anDRSBcH5urHyUphVT7JroaQNuZT+pLe6sVjVm07TJbbYuEbHrdOZWwkn4qOp+MJB2/XDyi3RCBebds8PFZh93SNy9fk6c3E8X3RQ9kwXeK6xgX9GQoNi6bp8uPDC0xV2gx3p0TVqWaSiuvsnKiyqntO9HIfdynq9EAndQ3T8TBskVzo7O8gEMZOc3WTbcM52rZHoWGRsT0apghallbDM3GNSlskLPxAGDoN5ZO0LIeDc+3I3EwNg2DXD+hNx6gaNpYXcHi+Tqllo6kqvel4FHwHCOOlbOhAfP/RBUpNi75QZXDtpj5c3+fuQ0XGSm1evW2IVFyjbrrRzNiErtKbEZMnZmommqqQWZKsUcL/re5JMVUxouTHhUPZcGyTG33XOhwpNKgbIvhumi6FhslczWS4KwmKMEo6PO9QatnEVAXD9SPZdrXtRP+WWzYb+tL0ZRPsWN/Dhj6RSHhiqoqiiF7wdljF7BAEATXDpTec0R0EYj+5oSS5c+4fmKszUzOjVoFEmAhZaFjsnKiKqjYnoioK/dk401WDQsMil4hRMWx83+fSVV2Rm/NSifVCw6Jli77ihaZF2xEJKIB0XGOqYlAzXebrVvT9s1yPuukwkIsTUzWSMY2jhRaqonDhUI64rtKXEfOBNUWhYbl0p2PRaLY3XbaKg/PC/X5DfwZFUZivm8yFLS4N02WiLI5/VyqG4/nkEjFetK6bZEzjviMLXLK6i1ddtNw5eumYtZiqoKoq+2cbxHWV/myC/mycwVyCQ22HmuGGSQTYN1vn4hGRTOyYNFquD4rwokjqKnXTpmF65JKL3x3RewyO57F/rkFPOs5QTlT1O+qH3kycuZqJ4XpMVw3ScY3BXJJXXDjAsWKTA2HrxAX9mdAMUbx22z75eLnjkQGy5AVDzXD40++KRZvnB1y1vpv9cw0++bPbZXB8FujNxPnjN13Mb/7r4/zuN3Zx22+9nO50jLop3D0t16dpuSf0p0gkkqeHbds8+uij/O7v/u6y+1/zmtdw//33n/K5L3rRizBNk4svvpg/+IM/WFF23WF2dpadO3c+6e3LJPRo8Wi5og8zHddQFBjICWfox8KRJdNVA8f1qbSdqOIaBOJ/05U2k+U2thegqWLhans+uydqPDxWZse6HjRVZV1vikxCo9S06UqKheA9h4qUWhb7puvRCJDVYWVoqCuF5xtsGsjStDwGc3EuGs6Fcj9Qw+raUpfaaJ/UDPZM19gylKVuispKQMBUxQhnKgu5YLFhiRnOCQ3H8/GDQMhdE5r4zF7Apau7SOgaNcPB9gLMsOev87aDuSSbBjO0LBHsXLo6z89esZrdU7VITtjpJWyYTjgyyiO+RB5rOB41w4kWvd3pGC1TQVMVDMfjnkNFJsvtyCAsCGCy0mZ9X4aG6UT9pnXTCXudfWaqdlSl3DbctejfoSx/X/E8UcFrmA4LTUuYesVUHjhaYmyhJYyKwiqqrorAUA9n14KQCQdhVdEPArxABEj92QQH5hrM10XAN7rQYqFlR4GU6/vUDIfDhWbk7N1hbU8qOifGS20++6PD4tzMJrjeH4j2gxuOKxvOi4rcRWE1E4T6YVU+yWQ4pWiwK0nb9kjFhZz3kbEKuyYrDC+tYAUBfigndTzxmfKpGN2pGOPlNpYb0JXQSSd0YprGu65ZRX82zt2HFuhOx7lwMEupJQyvOgHyg6NlmuF56AdiNE8nAA3Cc64TBXrhvldQmFriLm97PqbrYbu+6PUMhKQ/mxTV8jXdKfqycaoth4lyG88PhLlZeFLZoTncdNUgn4qRCoPvTuBdatmM5FNRr35XUhdmWeF2NSw3+jyaqrBlKEe5ZbNlKMfecPbtUndqMzTgA/iFq9fywNEFHC9YNqpKV5WoYp6KqVy+Ji+UJhbcc7hIdzoemcb1ZeJsXyUCO98XLSIgKuiuH7DQsmhaDp4ffpbwmC6VWN++fx7bFeOaulMxpsoGD9XEbPTBXJKjhRZJXYxLm6mZXL5klrKiKKQSKj4BszVDKHDqJmt608I7QYF1fWlKTZtV3SkuWdON7foUGiaZmPhd7bizt22PsVKLl2zsE0lDTZiXOa4w1OpdMoLM8XzGS21GF5pMVgwSmsq1m/sjJU/dFEqbrlSMdEzj8HyT/mwCxxW/d53fmYWmyVhpsX9/KZmEzvZVXRwrNmmYLnN1C9v1CYJYdI0YySepG074uxe2cOgqXhAwutBiILtYtR/KJinWLXLJGH3ZOKm4xlhJPAYUTFeMu1MU0R9fqJsnuGqfDBkgS14w/NVtB1loWrzx0hG2jeR497UbAKL5cJKnz5svX8W3H5/hjgMF/vK2Q4BYWBwrtfi3hyf58/86wI2/cAWvDeU7Eonk6bOwsIDneQwNLc/8Dw0NMTd34hgdgJGREb70pS+xY8cOLMviq1/9Kq961au46667ePnLX37S51x55ZVntE379+/HMMQMXbF47cyLDcKFucYFA1kGcwnuOlhkrmYQ01UWmjYVQxhUdSo/nYXnQ6Nl0TfnB2Kh3pNa5nA8VRUmOv3ZOHXTxQ0fN1UR0t479hfQNSGxHu5KoGti0bXQtDAdD9N2ScVUetInOu8vhIHIyy5cXnqcCaW6PzlWpmUJA7FUXKdpORiOh+34uL4I5KbKbVb3pIS5WBCQT4nRMZ2gs9p2GOrS6MvGqRhCaql09lsQcLgo3LF7QgnrdMXg3kPFKDjuENdVLNdHVUQAnE7oZGyPVhh8CudnnbrhsBBWntf3Z5ivLwZJszWDA3MNZmtCLun5YkE9kk9CsDjT1rA8Sk2L/mycqiFk7cNdCWK6tkz+G4SBbNtyScV15uomfiD266NjFXxE73gqpuH6IpxqWR75tBg9dO2mPqYqbUoNi7blsWN9DzFVoT8TY6Q7GZmGgajadhb16biOHxDdNmzvBGfuZFyjZYnPY7kepZYwcxvIJnB9n7bthvObhSx1IJvg1RcPEddUCnUr6tXVVIX+bCLq84xpiz2be6arxHWNrYPZSNobICpqA7lE2BNLFDTVDbGNShj4GY7LZMWIKskdCTwByydFhG0HA7kENcNhrm4yVzPoySSi1gRdU6MAKqaqJOMqL93Yx3/tEdV1zw8YW2hjuR7JmEZ/RvTLOp5PsWHRk4ozlE9ESYVMQmfgOJn98aN0rljbLczoik3yqRibB7PceaAgjMPCx3TO4oSu4no+c3WTY4UWbiDe97rNfdF7uF7Arskq/blEJLde15vm6o29HC40OTjXIBFbPAfX9KTJhYoUw/ZZaNqk4zpHC2X6snF2rBcBflxXScS0SA2wNOhdDKwCLDcQbuvKYiV96WNNx0dTFXrSCXRNidoLDs03SMc1Ng9l8X0x273atvmXhycIgoB0QqdteaRjGrM1g9maxUA2zkLLFvL4uIaiKMzWTEbyydCMT7z36EKLuw4WhbR4TTem43H3oSKO5/PQqDBMHepKoKkKjidml5dbNo+OVxjqSmDYHqXAZqFpR+0OAB3rBdcTBoeW69GwXDLJzox1naGuBHM1k0xcixQmJ7PyURSFgVyCZEx87+YbJl4QsGdaqFA6fcS269OyXbrTcabKbeqpeGQMuLo7haaqxHThQVA1bJqWy8a+DDFNVLZ1TaUnHWOi1Oa+Iwu4fkAiVBedCTJAlrwg2D1V4ysPjBNTFbaO5PipbUMyMH4GUBSF//e/XcJrPnMP/3DfKDd/8BrqhsN/PDrFZ24/JEYZnKHFvkQieXIc38LQMQNaia1bt7J169bo9jXXXMPk5CR/8Rd/cdIA+QMf+AAf+MAHzmhbduzYEVWb5+tWFMj6QRBVdTRFLLYMRxgFbR3K0ZuOs6Y7xYs39HK02BJV2LCCPBAaemXjWiRbjukqvZk4aigndD2fWNh3C3Dr3llathua1MSZqRpkEnro6OxjOkKO3LY9pmsmpZbN2p40OycqDGQTolLp+9FCNKYt35/ZhE6hbi4a0gRQaduhFFMjk9BIxnVmKgbZZIy5msVCy6Y3EyOd0AjCqk7bdrnvaIlNA9lIEjiUT2K7Yn/tnKiiawrjCy3imoaiij7KsVJrmbTXdn1ySREwVNo2A7kEfujMvETdzELTotSyCYB1vWlWhVWbrcNxdqzv4fa985HqJ5+Osao7JWbk6irXbOrj/7vjMKqisGEwy67pGr2ZOIoinH6zCZ2LR7oip+FcUicIAuqGGBnUnfIZyi+Ok2raLv3ZOFs29fFYOFInGVPpyyYiQzbTFeOHHN9H04RsGUVU93VVCce/aLRtj0rbiSqKa3pS9GbiUcA2VWkT09RIlmraLo+NV8VxCg3iVuVTpOOiN7Nputy+b56Dc3XqhsOGvgyG7fHEZI2r1vewpifF3pkalZZFXyYWnR9N06HStukKg4iZqggChrpSlDuGRIEIumYaQjKdS8Zw/cUZ4L2ZGEF4e21PioWGxa6pqpCcdiWihb7riUqvqii0bI90XCOfStKbEcFFJzmgKqIn1fcDZmvC7Xwgm2DvbJ1sIhYZhyV0MZPX8QIcz+Hq9b04vh+ZsBWaFsWmSeeUrxsOu6ZqyxzqL+jPAMGyGdri+6qREsW9yIU4SliEnyeXFHO5Cw0L1w+i/fHEZC1yeT620MT3YdNghotCGW8+pXPXwWKUiLp4pIvZqsFEuYXj+QzlMxwuNKPWukPzDRZaNsm4RsN0oyp303KFW3Va/K64nk/VcFiVT7F1KMtszaTUEr3h6YTOliFxLvtL8lSbBjIEQEwX9yvKYstB03JRFaHYsJYoK8SxDGjbLkeKTjiyTJxPZjjTuWaKJFfnuzlbM/nBnnn2Tte542ABXVXQNZWFpoUbjjmqtGzuOFBgQ1+GqYpBdyqG7fpYnk+nW+KxiSqW67Mqn2SmaixzvL5sTV647NsulutHSTuR3BPKjOG8MB3szcQxHB/DdlFVhZblYjo+fVmRxPH8gHLTCs0PAy5ZnSed0BZbL1hU6hiOG8nX47oane8HQ9fsgWyC12wf4s6DRaYrBr3ZOHccKLAtPB9G8qIHfSZU6IBIGB4/2/xkyABZ8rzH8wM+8Y1dIjMaBPzdPcf4y9sO8aFXbuLjrzt7bq0SwaruFP/r9dv4w2/t4RPf2MM3P3QtTcvlv/bMoatEY0kkEsnZob+/H03TTqgWFwqFE6rKp+KlL30pX/va187qtjmez3xdjONp2y6XjORxPJ9q2+ZwoYmqKLRtMdYmrqus60uHxls5HM9n95QKSsCuqSqe77NlOEexYUHDQlcU3njZKibLbZ6YqrLQtIjrKpPlNtMVA11Tsb2AcsvmirXd9GfjoXGMCDrnaqLy53ii73m2ZtKfifP4VJV1vSkOF5sAYeBAOEvU5dHxSvT5giAQ0tsliYhMXAcsdFVlXV8G1xNzoLtTsajqpgIpXaPtuMCiQY3piKqd7frM16xl1cGtQzkeHi3TDCWo+WSMUtOKxtkEQUCpZeH5ogfW9QL6M3GemK7RMF1G8kkGsnFsLyCha2I2cVj93DacQ1GE8dJgLhlV/jNhr6vp+KzpEQvrbFL0GVfaNgfnGwznE6zrzaAAxxZajJda9GWEBFjIJ5fOcA4TOYFIljhewFS5TbFhsaEvg6KInubpqkEmIQynLNdj30yN+YaQwE5XDB5VK2TiunBAdgOqbQffD7h4pCvsYxbHTrgmi170uK6ST8UZK7UYyYt+xoVwsV5pKyRiKrM1k8FcAj/wOThnkkvGRN9jIALVNT0Bdx8q4vkFbFcEo4W6xe6pOnM1i6HQBKvYtGmF1eNmqHZw/YDmklm0AQGapjASmg2JXlo7dExX6EvHGSu1SRnCcbjYtEnF1Gie9US5zcG5OuPlNlXDQVMUckk96r3tTsVI6Grkht6VitGVitEwHNqOF/WD2q6P5fh0p8Rzu1Ixpiqd2bsKxxZaUZANQj1Qbtui/zUKpv1lo3zatke17dCTUUjFNGarJjNVAz/wmauZ6KrCjvXCjbojv+/U9eywxaLUsqPeeBDtF8l4Rrgc2x5tx49GD1VaNvcdKYWOxh7zDYtNAxl2T9eYb9g0LSEVT4Tf95nq4ggrAmEMlUnolFo2ddNl91SN67cMoKpiJnfnPCw17agHWxx7M/I/WFqZTIcqkoFcEsP2mSy3ScU1+tJxxsvt6Bg54b4DkRRyXJ90QmdVKs5osUnLFvOAAxZVGGbYJqEqQqWgqmB5i+ZbMU1hqtLmh/sLGI5H1XDCwNUjHo6Aa4f7/PhKeallE9MUXnfJcPR79MDRMnPh+LhV3anIFV08Txw3Mwz2q4ZNvS3UL3XTZf9sPdz+gKYpEjZzdTM6tgNZoQBQQrfvTFwcg2RMKDIGswlWd6cYL7co1O3wjBTJlU6gu7o7xehCi7maKYwRB7Psn2tQNRySMY1yyyIXtvm4rr/ieK+VkHOQJc97vv7gOHvCvpUr1nbzP151IcNdSV5y3Bw+ydnjHS9ex4s39HJwvsHn7z7Kjb9wBZeuzuP68H9/cBDT8fiPRyb5/F1Hz/emSiTPeeLxODt27OD2229fdv/tt9/Otddee8av89hjjzEyMnL6Bz5Jym0xZmms1Ob+YyVcX/Rdtm2PubqJ0em19Rery5WWTTYZY6Q7xUUjeebqJgtNC2+JPNbxAx4aLZFJaAxmE4zkk2wMzWk6JHWNgTDoS8V1RrpTYe+gExl/bR7IRO/Z6YvMp2IMdYk+yPV9aUbyCQZzCXaOVRhdaLJnukapKYx4XN+P5JfD3Sn6sjF6MzF0TcH1xEIYRP9sdypOJq6hqiqllo2uigW7rgkjoDU9qXCsic18w1xcxCPmEGuqgheI/ukjxSZ1042qoY4XoKCQ0BVMx6PcsjlabNE0XZqW6E1uOx6Xrs4zkEsS0xSSMZX5mskDx8Ss6SCsaiZiKpev6WZjf4bpisHjk1Uc12P3dI27DhbZvqqLzYNZHF/IQqttGy8IqLTFyJXO8Z2uivFVQSCqQMP5JLmkkL76gagOdgx8TMdn+6ouVFXB9gImSm0mK21KTSvqcTZtD9sTVaym5VIzHAoNC11TGMmnWGjaHC02qbZEUFCoW8zWzWimcn8uHn1O0QsuVABxTY0qY7M1g5rh4gUBU5X24vijIKBhulQNh4bl8v3ds9xxoMBUpY1PEMmhgUhGnQj7Vjf0ZxjOJ3lsospkWVRiAwgDL59iU1RLrbBnMhXX6M0myKdj9GbitG2PYkPMwD0032Sy0mLnRIW2HfYvh4FKLhljVT5Jw3SZqZk8NlFhvNRidKHFfF3M+m7ZbmhEp4V98mJfxHQ1qpqqymJ40BnPAyK5MVs3adneCQ7aS0dBlds2czUz+r7O1Q3KLZuJivjX9nxetLY7Gn/VOSYgTOFScY2N/ZnIAArAcjwsx48SCHFNYbZq8sDRElXDwQ3HsXXk8Y4XUAvHhLVsj4lSm0LDipIDnUDddD183yeuaQyHKpX5hhWpVNQw8RCEx8wPArIJjZ5MnFXd6SjA9/yAoVySK9Z2c9/RBR44VuKO/UVu3zeP6QhlS6ltgyJUJlXDYbZmUjddLMfDdIRKIhPX6c/GQCFyna60nOhzd4Lbjgza8wKGupL0ZcWc6JGuJAO5hFDn2MJdum275JIarudH46VgcXTdFWt72NifYSSf5JVbFz15lhp05VPi3KibbqQETIQu0j3pGJYrjPMem6gI48KlJm7zTXZN16i27ShRVjOcsJ/bJaYJ47DV3SnqhstYqcV0VYy9Gw6VNJmkcI5f35vm0jV5rruwH0UR8vUOfdk4B+bEen+2ZtKVjDGQTUZtBS17sWp/OmQFWfK8ptiw+NPv7gOgLxPn7999Nb2ZOO+6Zn20qJCcfdRwbNbPfPbH/O2dR3jFlgH+7QMv5b/97X38tytW07Y9/uQ7e2nZHg3T4Xdeu1U6XEskT4OPfexjvPOd7+Sqq67immuu4Utf+hITExN88IMfBOATn/gE09PTfOUrXwGEy/WGDRvYvn07tm3zta99jZtvvpmbb775rG+b6XhR/5/lerieT18mQTqmMZBLUKhbpDSNcttmz3SNyUob3w+4YCDLXM0QlYRcgqrhcKTYJK6roYGVz7Fii8lKm3xKjNyZqxn0ZmKMLYj5mb2ZOKWWxWOTFebrJg3DRddUcgmNdT1pUa3pTtJ2PMpNIa/uVGgGc0kSmkI6ruEFMTwfejM68+F4pLGSCOwUlLBvtiP/9gh8MH2fg/MN+rPx6DGeH5AJZcP5lAiig0CYP2lhpbpqOLRsD7tqRqOoYrqKonQ8M4Tb7/ZV+bDio2J7fmQI5niLValCww4XwaFpj+VRbdv0ZWJUswnWdKdo2z4ECrbrM1ZqMlVpo6kKPkIO2nmtSrggN20RYCw0bQxbBN4xXWVVXixEbVfMmbZCiWehYeF4Pqbj4nmg6ioQoAIb+tJoijDVyiXKrOtLoyrguB6qruF4AZ6P6NcGNE1U9Bzfp26IfvRa22aybOD5IuBt2y5e4LOxX1QQdUURI3gCMYqn3LJZaFikYho9qRgXjXTx8FgZO6wyNy0XTVXpTsXYOpyj0hbBiect91J3/YBHJyqUWw6DOTFCyvWEqdhQXpxT+VQMAlFZn6uarOpOhrOdF+XIZphMaIUjiGKqguX6FOom6bgm5vbqKkldjBnLxHVmqibbV3UxWzHoycTIJcUIowOzdQ7OiWp40/KjObHd6XgUSAOs7U1h2N6iTNsPiAVKNMs5m9BI6HEmym0myi1SSyS3XUk96nu3l1RPUzE9qijX2jYty2Oi3CIX7oNW2LfuBWI9tnkox94ls6/huIgbMX4qk9AZCB3c47pC4Af4vtjmuK7Ssj1UBYoNm82DGSotnWxS50ihSW86TrnlRK+uaQr5lHBon62ZUeVbC93SRYVZSI07Lsyd3vZNAxkcT4y98oMgrCY7TFcNtpoOOycqdCWFysLzRbLKcFz6MnEappD9T1cN4ppKMiZGqHWqoK4fkNWUqBVgsCvJ+r40h+ebonffFs73fdkkuiJ+DzVVYSCbYKQ7JSq3hk0+FScWehAEgei5b9vCC8FwfOJhQqbjU2DaHmREIG65Hg3DZXShRc1wSOjCib+TdKi0bEzHwwvA9jyRYFRgumIIZ/GwJ75hu/iI6nIiporRat1JejIxTNdfttbbPVXDD4RqZMeGGEoCTEfIsnMJ0Uqz0LBI6MJkrVN59sPfzFpbGDEmdZWYrobztcXrWa5Py3JJxzWOFG3aodz7DFuQZYAseX7z7n94MOo9+Nw7rozkagldO9XTJGeBCway/MEbL+L3v7mHj/7b43z/N6/nu//j+sjA4R9+5Wre+0+P8Lm7jtK0XP7kTdtRz7A3RCKRLOfnf/7nKZVKfPKTn2R2dpZLLrmE73//+6xfvx4QDtQTExPR423b5rd/+7eZnp4mlUqxfft2vve97/GGN7zhGdm+TgVqdKHFy7eIhe1QPkl3Kh5VWM2wf7JTgXx0vIzhiEWO7frsn60zUzHE2BrLpdIWZl6H55tcsjrPXM2kaXn0pjuBJ6RiGsP5VBQ0ekFAdzpGJp4kEdPwfJ/ZqknLdMM5nmKm50g+Gc6yDThabOEHARoKvZkeFpoW4+UWa0KjmJ5MnEpLGNtYjkctrK7ENAVVEdVcTVUZD6Wqwk1WBCOaqol5qJaQ45bbwiCqNxMjpoqqSmeE06H5JqmwMrnQEBJ1IZ108YPFHsiBnAgKmpaHrokqUVwTTtWOG3DP4QXW9iaxHGGMk4hpjOSTvOqiIUzHC3sXFfZO15irGWH/pDARG8wlMF2PQ/MNCnWTbDKGrivkU2L+qO8HDOeTqKqox1bD4LLUsjlWbFO3XLYNZ+nPJkJ5ZkDDEgFO3XQ4PN9ktmZFlbq+TJwgEJWhNT0pYqoSBWfxmEp/RiQuDs7VGcgmop7XmKZSbFjEVOHaG9cV5urC3buTzHADn+5EjLrh0Apnu6qKWGSDSExMVw0xhxuR+K22bFTECKT1vWnKLSuq/DVxycQXZ0QD0azrY8Umuqqyf66O6wVcvKoLAhFQ5xI6QSActL0gYCCXoNi0mQh7aUE4Q1fbjgh8CKgbTmiiZuL6PnOYpOIacw2T/kyCXErHDQPijky540qtqSqW40UVX1URRkvFuhXt20xCo+2I41K1vChA9n0hx1aPry+EQUcuKd7X94UqYudElYSuct3mftqOGI2VTWjRebzCS4j/DkRbQs1wSMeF1L43G4/Gc+ZSOj1anHRMw3A8VnWnqBkOmqpGc5s754EaPl60eXjUDJdyW/QQG66PZwtlgEKYKNBUik2bVbrKsWJr2fZ1TOTKbdEfbLs+e6drkZP1WKnJvtla1Cpx4WCOYwutyI3dcX08L2DzYFbM+e1K4PoBj0/WGO5Kkk1oFBsWD49VODgnxp1lExptywvHnKksaXUmFdewXA9dEfu90rJomA69mQQBQkrt+wFaXBifDeQ6Jl0BjudFvy2FhsXuqRqKovC9XTP0Z5MMdiXoycTIRuZmHj5C4ixk/kK2ENNDI0ZdiZy+JysGXUvk8ULBo6EqMB3OezYcn2RMJalrFJpC5XGgadIT9jH7gdjP4+U2szUz6osWY6iFQVrL9kjoKqqqsmUoy2BXEhWFVd3CG6DUsig2xedL6KJn3F9xmNeJyABZ8rzlr390iH2zopn/dduHcf2AP/zWHj74yk1Pali45KnzSy9ex50Hivxw/zx/8u29/NXPXwHAvpk6v/uNXVx3YT8PHivxlQfGaVou//etly1bXEgkkjPnQx/6EB/60IdW/NtNN9207PbHP/5xPv7xj5+DrRJE/q8ByzL4fkcbilhcZ5M6qZhwmu6Y2rRtj/FSi1pobpRJiBmzrheQjouF72hRjAhqWg61ti2ci3UxY3a+bmKGo5ZMR1QyNw5kcTwRfM9UTSzXw/YCimF/XdNyyadijOSTBIEwxNLCPtEgEBUsVVFI6Cp1w6Ftu5iuj7lEEu15AXpMyKxLLYuUrtK0w88Q1zhWbDEUummDRzOcqTuYS7CxX8i+NYVwERvQDF2ya4aDF0ClJWSMVcPG86E7XJB2p+Ks783wxFRnNnEMwxaV87m6SDCMLRjRYrYnpkWf9+KRLoIA7j5UwHBcjNCNV1UCjhSaoZQzzkLDYrxssLZbVKXzSZH0ME1XbFPbwXIa5MPZtC3LZSCXoG65tG0/6qmst118RPVxY3+GpiWOe1LXWNubIpPQcX1R6XK8AFVZdAhWECZdEFBs2hSbNoO5BEO5BLoqetE3DQrTs0YotbVcn56UGCkj3IVNHC8Iq3wurueTTehsHsxiOuJ4iKBS9KGarnDy1TUVVVXYNtzFrqlaVElVVCg0ROU/IIjGJKmqwnS1jeMFkZFXEG7PkYKQynfGV6mhO3I+HYtk5LqqMN+woj5fUXkMsDxPVMLTMRqWSDBlkzqXrupioWmjKAo106HadvACMcrHdsX843RMY7gryUzVpFgX0uNYmFhSED3mrh+weSAT9iUb+EDL8YipCqEaGU0lrBx75BI6yZjG6u4U8w0xX7w/E4uMtoRRmMru6SrffnyaSmtx5NbS34VO4FNu2ZTDGDWfivO6S4YAYcpmu8vlwo4ren1Nx+clG3vJJDTqKZ3xUovAF4mH+ZoZzVkHCPyAuKbg+T62K0zJOn/rmIelYyJZoKsKV6zrZqzYYqZmoKtiFrGuKvz7QxOk4jqqAvN1sW9T6bhoDQhguCtJKq4SQFRlN10/rHgGJHWVhuXi+eGotjlTzMbOxKLAtNCwmam1WdOdjOThnep2x7zMC0Rg1zAXR7npqkIypjFTMaiGvy8dmXsqJqrhe6dreAGoQUCl7WA6QgVy/2Hh/tyTjmE6XmQm5gUwUzMYK7VoWS59mRigMpRLMBO6pYsETQCKUHwslC0GcnHiuoLh+NFv5OUb8kyHzwkCUcDqTsWYb1io4cVBW+I+XWnZPDpeptK2edPlq7j7UJG27bJ7us5WN2DrcI62LY5LOq7T6EjRfZGw0s5QrShXopLnJQ8eK/GZ2w8DMJCN87fvuJIv3nOMr/5knEfGyud56144KIrC/3nrpQzkEnzjsWm+9dg0AN96fIrRhTY/2DPH269ay2AuwTd2TvMb//xYJPGSSCTPfTqLtGSo2tnQl2bvTI0fHy4yutCKeiB1VSGbjLGmO00uGcNyF8e/dCpgI90pLhjI8KqLhujLJvDCgGJ9X4aNYR/xaLHFRNnA9cW8V9PxqLRt2qEs2HI9fB9mKm1GF1qUW3YUHIPocyw2LCbLbfZM16m0bSbLbcotm7rpUGzaZJI6SV0lHReVPy8g6hVWIXKezadjbB3K4QUB+VSM7JJ+SyWclyyqyArpmCrGxoR/L4bBUCYhAsdOVdOwhcSx8yKllgiOOyNRQEgb86kYru+jINx91/amGcolhNwVsUjPJXUh7w0DwUNzDSptm8GuRCiDVMgldFSEs3M7lMjqqkoypiE+ppCMp2Ia11zQx5ahLAtNi0fHyzw0VqE7FWOkK4nr+1F1UlfFeaFpCq4vXIwHcgk2D+Yi0yBdU7igPyP6uH2f+44uiESH7Qv37QAapnDVbYXjuWKqMLzqOOM2LDcKBDqyTtcXxyIZ06KEAuFrVQyHcstBUUSlWARbHj3pOLW26HF1/UCcW4iKd8dtudNYeXi+yUzVYLTUpm15lFtO1Ju6VLl2tNgKF/EqiqLQn4mzujsl5i17Pum4hq6qNE2XWlv0aXeCZ4C6IYykZmsWUxWDuuWiKaCG47GOLbTpTsfZPtIVSWPjmkpXKk5/OGO47Yje/47RHBD1Yfdk4miKSO6YjrfMCTsRnt+2K4LYuCY+Q8vyGCu1qbRtYQQVblNPRvQDl5s2ni8cjittJ5TCi/etth3qpk2paVFtOzRMJ0qCRL8lBLQMj0NzDcZLbXZN1yk2RLvDVMUQzs1+gGG7PDxW5lixyf7ZBm3Hp255tC2RJMokdPbN1jEdMeooE9dDwz4FwxYKkFqYsLA9j/5cnL5MHMP22D9TZ6pqoCki6Ky1bSxHjD2qtO1Q+QCphE7LdnFcHyWs0G8byjOQTZCKa1QNB8cVipVq2xYBrogl0RSiud+O6xPvnDdBgKoolMNzsdNfnUloGJYfPiRs9UjqJEK1XibssR8rtzFsN3IHVyDq7+78pnTSe5eszlMzHKZrBrM1k+50nK6kTk9a+CuA+K2brAizs0JDmNJVDYeR7iSDuUTkYg/C3f7B0TJPTNYjqT1AXzYhjNY8MaaqUyCxQ3fsTgKkI9MHkRzSNJV0XBPy7XwSXVUihUTLcrn38AJTFQMjTFymQtOvTDgm60yQAbLkecdEqc2v/OPDgOijueV/vAxNVfjM2y/nf71uGz9z6dk3oZGcnL5sgr/4uctRFPjdb+xi30yd33ntNn79lZuI6ypfvOcYH3zlJtb0pPjB3jne95VHVxwwL5FInpsoChwJHaH9QIx96lQQKuEYDi90JS21LNq2y1zdomW7GLbLfN2MzLuyiRj7w77FIAgo1ExRvVtSLRF/hHw6Tl8mAQFRVWhDbwY3CFhoOUJKDNGCD6BmuiiKMFfqz4pFsaJCKqZG8s5V+RQj3SlRCQoNcDoBRi6p05XU6c3ESMU0lLCK0VmspmMa2YQWBqgx8inhLtt2fAI/oC8bp2m6zNYMRkutyGBSU4Xzs6aJILo/s7hgzCb00MBIfMb5usmj46I3ttp2aIcuurN1E8N2Wd2ToispAt+li0VFITLfySV1Ll/bDYgKtu8HDHclMRyPY8UmqbiGF/aVdvqMpyptCnVRpV8I3X7roWR9/2wDw3ZZ050il9KjhXzD8qLJBrmkHo7HEe7Wo6U2j09WeWyiGlXzSi2rc3ipGzY1Q0g1Y2Ffp2n7jJdE4qPatpmuGEJ6by53jwZohrOPy2FgI3aCePGFljBRmqy0ScY0KoZNuSV6vxVE5e7ofAvTFeeQ5SwqByw3IKYqkeuw5wcM5OK8bHN/FJQXGybjpTZtWwRinUCgM1IomxDVyK6kMOnq9KkrisL6vgyKEkTtY7YXkNI1EjFhbBXXVXZP1xgrtdg/V6dmOMLMTVeptW0URZzPCV1ltNQCRYnGUS2dqd1J6hQbVnReqKGjsuMHQm67JNYIEO7SRwstDhUaPDFVI6mL8VmF0NjL80UwpipK1B/rh+Zuk2WDStsWRm+2R91wGOpKMNQlAqD5mkXdcqgYtuij1ZSoGjhdNaLvoKaJCvPoQpu5sH0DhPFWzXBoh/PAa4aDESa2dE1lqCsZ+QOAMNJ6fLKG4wWRSVctHAnXsj36MnFhjBWOIGqaLtmEjq4KF+kjhSaHCk0OzDWYr1uYrksmoWPYLnN1k4rhMFM1MByfbCJGMqZiOB6JmBZ55Lh+gKaGPeExLep1F7Oig9DcEHwCRvIpdE2NlC+dY+kTMFs3UBWFhrW4tlIUhVwyxvq+DEM5YUI4kI2zZSiL6/vM1gwmy2K2/ESphe0FaIpIJqlAdyZBKiaqxnFNJR0LjbAsLzpfO4wvCIM0L/CJhfr8ZPibOFFu07Ac9s/UOVZsMlFuRcqCpVXwTEInm9B50bpu3n3Net597UYen6xyrNiKxra2HZefHC0xE54P/bkkqkr4Wxuj2LSj357TISXWkucVddPhXf/wIIbjoQA3//q1DOeFnLovm+DXX7np/G7gC5RXbBngt169hb+6/RAf+Noj3PIbL+N/vW4bl6/J8+tf38mff/8An/n5K/ir2w9yz6Ei7/6Hh/j7X7mKLjmrWiJ5TtMxeLEcX8gYPR9dFUY5tuvhE2CHY3kalsts1YgCFy80aLJcX5g4pWLCidlyaYZJtKlqm+mamL0bBAHJuKjutiyXhabF2p4UVcMhCGWutu8T0xQ8X2EwJ9xeDUf0AnenYhwuNIipKqt7UjRMj2LTJpfUWdeXQQn14TvHhTPwhUO5yJgmm9CptB00TZhb+b6oAhebVhTI9KRirO5JUmk7+EFAfzYuJH+qSkIPIpMZ2xOu2Kbj05sR1bWq4ZBPiTm8NUP0oq7pSUWVPSVcuGYSOrNVI5LxekFAoW7QsDzyipAJJzSVri6dQ/NNulI6g7lE9Do/PrLAwfk6E2WDkXwyCty8QPRUO+H8VcP2SOhK5NRdbNsEoVRaAXrScVFt9XyOFFuiWhcTY62GlIRwfQYSuoLnw0Spxd0HC+i6Gp0zo8UW/bkEBHW8QPS1LvWp6ARECU1sR7nlMlVt07bFTOZ8KobRqZJqS0bClFpU2w6Z0KTL9YWZWC6hsaEvw6H5BpYnTMTiqiqSGQmdlil6vbuSOoNdSRYaFoWGhaZCKi72XydB0zHW6g5HK81UTKqGg+WJ/vqpikFfJk5XKobj+VEVtG17aIpCqSX663vTIkhNxDS6kjr1MHgWSReHVExU89MJMct3dKEVOUPvnalH46U6c2YtTwTWq3vSNC2XyYpBTFWiBBSI4LVhOOiacBBu2+4yo65kTCOXVOjLCOM8EImutu3SMFzajkeuKgJKn4C66RDXNQKCyKwuFgSMLrSj8T+d9w0QgZMfQKFuEdNVNvZn8NMx8uk43909w3TFoG6K2eadnvPOWbG2J0VXMsYT09XIVK5zXJxQUtyVEjLwYth/m0mKwMv1hOlUUldJJzRcXzxvtiZGZvVk4tiuTzomfANmayZre9JkkzqeLxIEmwYy7JutRYHdUu+FQt1gumrRNBcDcxDnU0wTPcKGI6qgPalYFOBqikJXMha5/2dDVYmmGtHc87imYLo+iZhKQhfnwr6ZepSI8HxhxNVRt2iqkBxPVw0GckKN47g+pis+l66qzNfN0FVdJPnGSq1F9Ur43VXC2dstyyURS4VKnSCUrPssNF3cwEcNH08AqiqSkpqiUGiY+IGolCdi4j2LDXtJcB3K3OMaru+jqTEmygZfvneUl20Z4CdHS1TaNqmYxqaBDHN1CyucCd6TirPQtKJK8ELTwg9Ydq6fCllBljxvcD2fD3710chZ9L3XX8DW4S6mq0b0IyU5f/zGDZv56YuHmCwbfOjrO7Fcj9ddMsKvv2ITtufzu9/Yxf9922VcPNLFQ2Nl3vF3Dy7rT5JIJM89VAVKTTHKw3R8pqsGlZYw0xnOpyLjnIbpMFs1ooVlTypGOqGhqWIcSC6pE/gBLXMxOIbF3ubOb3wqpoWzQcUiO6GrpGJaNCdztmqQjuv0ZoTba0xXxOxU28VyhbFOJqmHDrDhaBtEAFBoiqrisVKLuuVRD6uS/bkEuqqQS2hhldERs2H9YFlfpZhdqrDQFNXIuZpF2/ZQEUmAhikC31xCJxFTiWkKbUtIxG3Hp9S0cbyATFwEa515rEFoZiVGFUFPOobtBZG8WlVVLh7J0ZuJk03oxHQh3zUdD8f1KTQsUnE1WjiWmkIWvG9J9bratoWbeDj6yrBd0nGd4VyCdEIX1SNbGKEN5sTs0g19acptB00Rlcmm6VJuObQtL5QSB1huEFbJFI4UW4yX2tGM5LolqvljC63QiCnJ6h7R+OoHQtrdl4mRTehUW4vjfKqGgxGOuZqvmeEMZiWq5lbDXnY/EMkZxwuEa7gXkIypWGEU4ANNW1Tzu1KxaH5qLqmzJjTPiqkKuqJEEvuOK7Guij7idFwEYvMNk7ppi7FCtjjWnfNrqUN0Z2xWO0xCROd5OGLKcoVz+3ipFY3UqrYdZqpiXJrokSdSLADkEjrd6RilRjhHVhFu8p3HJGMqL1rfveRbG1Bq2eI8bdrE1NAlPRCBj+cH9KZFcqdD1XAgIApYZ6pGmKAQagLXD1jTk0ZTRf99TFOptG2mykbU16qqCumYSAbomujn7oxayiZjDOWSxFQ1+s4vmSrFQC5BPhVDUcQ+TB5nxNqd0oWztKJQMxb3raYSjWibrLSptUUyTVdVUSEOjV0zCT0yNYvpKobr0w5HvIEYkxXXhKlXpeVgOuIc78xIrhkOvg9BIJKEuYRIznRGu02Es5EVYKFpUzVdWpYYKdY0XYpNC9MWZoW7p2s8NlEFRKtEQlcpt0VlvGkKxU3DdBkrtdFU8T3TFHGu9mbibOhLM5JPMZCN07bc6L0roRpjtmpQalrYoTx8MJdgy1AuOrc7zFZNgiAgFRNqmC2DOTYPZtFUUakut+0w2QeVtkjudRJndcNFUZToO6Vp4r8Xmja50ANgXU+KvmyCIAg4ONdgvGQwUW5hu2Kec6FuUmyaaIoY+VY3XVK6ykAuQS6pk4wLo77JiiFUMEHn7D4zZIAsed7wye/u4/6jJUBkAH/rpy8E4Pe/uZuX/Z872DNdO5+b94JHVRX+6u2Xs2Uoy/1HS3zs35/A94Moi9swXW55YpZ/ef9L2bG+h93TNf7y9oPneaslEsnTwQ6doTVVQddUAp/IsAeEeU1/NoHnB3hBQCquMpxLMBhKK1VFVH7qhhMFhLElQUhnMkHHbMb1fRxfBGrpmMZ4uU2xbqIoop+xZrqLi1rXZ7pihv3FLuW2TTNcmB6Ya1BsWsQ14YjaqYbOVg1ynf7AMJDqjEHSllj7dmaVLg1UYprCwflmdNuwXVqWF83mtTwxB9d0fYbzSbrTcbRwUe74AeWWTaFuMlNt03I8Dhea1EMTsgNzDaqGWJCu7klz0UiOgSWV4UrbIZvU6c0Ks53xcnuZ3LJpeaiqwuruFEcXmmKucbifhrvEyJTxUpuZqsmq7pQwA1IVerIJ6qFpmOWJaq2qKtGomUwYRPlBEAVCLdulNx2nJzx2IKqHPWkhGy80LFRFIaWr6IpCKqHjeR2n4dDgKpTpaqowy+q463aIaypdoelb53jUTSFtzYe9lOv607TCObGb+jMkYyoPj1cXtyn8d7zUpli3cPwAxw+Yq4vgYetwji1D2bCCKCrccV0YVOWSOjVDBDaPT1ZpWm407iqb1MklY1TaDlOVdjTjuSP9rhmiD7orpUcmXXFdjA+zQiOquulG/ciqslh1He4S/Z8j+SR9mTjretOk47qQ0iviM1XaDpNlg1rbicy97jxQjD63popKrmm7zFQNhvNCeqwoCr4vkhBTVYNSy0ZViIzrAkSv7ZqeFMP55GJAFQiH+piqoKpqJB8utyxyKR3fFxL92aoReQ/kkqLC2LI9FpqLM4mF5Fz8L5vQo3M0pqlhr7bBgbk6mgp9GSGrTehirnYmrtPxANUUha5UjN50nICAIKzO2uFsbCs0LNNUsW/LLYty02ZVd4re9KKyTVMU7LBFwHR9ZsOWj3xaJKM6wVi5ZWO4QimgKAqpuE5/Lk4ipjFTNUMndC9yTC80xPkWU5XQXC3A8nzajkdXKoYXJvCKDYsjRZH8q7Sd6Leo2DDxwypugJBTBwg3+fV9aWZqBnN1YU7YttxoprL4rvgUWxZTVSPq6z043xDtKkuwPT8c1ekS02DvbI227S2T3XewXH/xvHK8qFc8GSYwB7IJOqdLTBeqDS88DsLkLpzRHkDNcDm20OLh0TKeL77bxabFsWITxwsiH4OW5QkDwyURcSxMXJ0JUmIteV7w1QfG+MoD49Htv3z75aTjOo7nk0/FyMR1LhzKnsctlIC46P3Tr76Yt37ufr63a5a+TJw/fONFbB3OkUvqvG3HWjRV4au/9mL++oeH+c1XX3i+N1kikTwNgrBPNRXKEjtONHXDodSyiQ/lWN+XFomyANb0pKNRS8KdN042GQNFYagrKSR8bTvs8dW5oD/Dzokqhu0xUTYI/CDs+xUjnIRk0WQkn6LSsnHCMoIfBtFNW1TlXD+g2hLGQB0TmZSuEgQwXxPy2EBsPRcOZCmFlbX+bJzpqiHMdpYsMkEs0DuVLFUR1R4rrHSKYEGhZtis602TT4mAKhlTqRsuDcNBVYUR2Mb+DIYtpKst240Mxf5/9v473JL8rO9FP5WrVq281o6du6e7pycnSYwiSAYRHcAyYBswycgCY8x5bGPjc8+9Ttc+Bi7GCcskyzYYY5KNZS4yGaWRRmk0eaZz2HGtvWLlqvPH+6vae0+PpDEGJNnrfZ4JvXuFyvv3vt/kWTq7qrlKFHU9TnMxxEpzwjjFNiUGxjJ1ZpEc/715UjX3ExXhY+oaV3fn1B2Tum1WzsuNYj8+CmSh23BNfMdkFqVc2p6R5YXQnE2D9bbEYwlKqHF+tcGLW1NxtFWfMY1SPNugX7fZmgh9dbXlomka8zilp+J8DE3jRK9GnBVcH8yxTK1qeEs0KE5zTL2kNhf4jugv71iuk6RiVuVbBrNEcrNL46D1lisMAkMiby4PZvtolnR9ZIUMDmr2fu6vY4pp2NYk4vnNiWhZwxRTF91yWb6KHxrOxDBJmjkxKJOMV0F1TV0YBX3fJisKdtX14dpy7m+NQkbBVOKuEKQ9zYWCb6lGoECQ7i841WNvHvPc1pQky1ltujjKHVlXZmq+YzKPU3Znwggom9gky3n1qS6Xdua0axaXdoQlAbA5EcotCD3WMXVypZc3NY0PX92rtNW6pqEbGjoyMHBMaYpspa9Nc2m4glTWZqWkAKiOt64neJbDLJImdRKK2dXHr++Jdl4T/e04TKlZOr6jVWg8iKv67jSmXbMIk5QoLYjSVGU7W+wFMbuzCNsQ46ZonjOPMrJCHK0nac4oTLk1Cmm6Fp26yaZiAcTJvmlWmhfsBQlNxGMgSnM2x4Kc99T5rDkGgRoOSMyRhm3ozGOJlevXbTbHkWh2lfFXnOWVfMC1dExdJ1bPliLfR7zLAdcoSCrq9FJdtMcGgpQ3VCpA2Uj6tsGzG9PqntY0jZsj0SfriK6couBox2N3InrdT94c4zsGvbpDR2UQj8KUXA2FwlSc328MZcBxbqWh2Cu2MHhsgzyX4YFp6JURV57LUKFbszjd99mZWexOxfl8HEiz3/GFOTCcJdwahdX9XxRUz3LP0tnJCzzLYBQmeI7B1jhiWxcDQxCH/yBJqVnmIgd5Uf/71EeuDvm//vOT1Z/feLbPV9y3DshU8Z983YPM43SRffw5Umstj3d962t424++j3e9/wpJVvD3/uQ9h+g7syjj+77szspAZnsSYRxAixa1qEV9flRJ891S9M6h0lCWyM/zWxMMTa9yZoUCKVm1hopRypKM0Txhpekyi8QQK8sK5nnKi9tT+nWbcZjS9W3STDSyaS5IQpzmyrm5qBDLcSAU4iDOqTkGrz3T5bFLQ8lKLo1+NKHYJnlByzPRNEE+6opqudx01GJNYxyIA7LOvgusIBXSHPiOaAyjNKNm6aw2JSd4MBO33xe2ZuRI1EvPt6WBiHMcWxCqLC/wbBPPNivZSc+3Klqva+pMDtBbt8aCuI2jjAZqIa0clQ1dGvydWYwi70iM1Sik6VlMQkE1HcvgwlqD070a//3pLTQNjnRqgmJPIlqexeYoZKwQ+TgHUxkfZXnB+y4O8G2DhtLP2obGXpBQsww0DZWvLBTyeZSx3HQxEK+QXt3h8s6MzUnE1cEc1zbQdVR0lGiZpXFKKrM335LXUBSM5gkbCsnbHIfMkgxDg1N9v2o6S0dozzRIs1TlOEsT0vZMojRXWbGi2yzDFaTZSri0M5NcbXXCD0hK5c9FmSdsstp0ObdS55mNaZX5vTON6DecKh5qGqWHfr/VLJOWZzGax0JXncWYKld7HOy7PzuqwS+UO/eFNcndnYTCRPjNZyUCJy/AtU0GM6E7Oyq79uZILoLSgK5dsyoTI8/SJZM8yrBNifEydB1dywjSglmUVs1GoT5jMJOmahyk7MxiapYhcWphhq4LayPOC0xdw9AEISwQ/bccx6LK3DYNjZWmJ/r+QAzStichsyjjaMer4rcAyTXWNUx1PRSgtN0Fvm0wizOmkfyjazJgCQ5MfkZhWg1LWp6JoWtsT5X7fWarYyxDrlEQU3ckLsgydHVvy7WzM5NIrmc3JtimTlNdS4HKdC41++KzIIyLULFNLEMnKxKanomhyfdnOdim0NJNXRO0+2VIwnFWYBkFay23GkTMI5GMFAWEiQwQgiRjYxwqvbNQlXu+g6GXDvgFx7o1wlSGSalqUgFG8wTb1KtnkGeb1B0DU3fIEW36NJLhpuyPeAMkWc40ygjTnIYT4zsm/boNRcGpvk9RFNWzS8zHci7tinb43qMtVloOH7oyxLHkmnWUlKQ8CkGSK0mDDEq21D2W5QWeosODNOxhklUo+2eqRYO8qM/7aqspZK6y5P7x2+6/7TU1e3Gpfy7VHct1/t23vYZv+onH+JnHrjIJE37wz9zPzb2Qv/IfPsK1QcA3vfYk3/PHzrE1Cfn6d34AxzT4mW//gipXc1GLWtTnRxWFNHS7M9HJ2YYgr1GidHyaoiNbOs9tTJjGKUkmlOasEH8JU9cql2aQBS0IdfH6UDJ9+77NpjJSmoQpcZrh2YbEuxzg/a02XXxHFu4rTY/j3RoXt+eCJGcSBVV3pTnxTJ15InnJrm2y0nR4+taESSQaulujQCGPgr50a2KmQ1EoFEQalyQTPZ/vSMMYZxkoVLkgryjDw7kMB5IsZ6bMep68MSLNC+qOIFU2YBsGSw2XlkJ0TEOvMoQ3x1FFK5xEGZ4liFupiX5xW7JTO56FpsNyQ/TYDdfi5jAQszE9ZbXpcn0g+6ch2wqwO40l+zmRmKIolS8TirzJUsNkcxxJlq2lM5glLDccGmq44NsmSV5wcXtKjqDrF7dn1efrOhXteHsa4VkGNctkogYfvqJJ2oZOlOTKLVz21TV1NC1jOIt54FiHW6MAQ5doqrZnE2e5arQifNvgRK/G9aEyO3JMLNUAlPRWx1DI+6egjcYq17hmGdU1CWBqGq2GjWcZeLbB9iTmxt6cLJdBS5TmQiVVaFqosonLaKPhPMY2hapOlJEonXaZpVt3RYZwfShN5ihIeOrWiJ/90DV5DzL0KKtEGEtksm4bhxqFoii4uRdKU6OazoZr4Zjiqh2kOU1Xzp9jChI6DVM5x4bOiY5HzZW4pHGQVJ4AJT12L4hpumaFetYdA9PQVd6xUSHUaaYcyU0d07dpeOIGv9722BiFvLA9xTL16lr27H1H9CQvMAxYbXo8uzWtzP5AGAYVKmsaOKZemXiJ67wtUVNq22uWQcs1SfOCm3tyD5zp+0RZzigQLXCcFXRq9iG9s6Vr2IruDhAfcDe3dDFf8w7EH5Uu3rapH2jo4WjXk6ZcuUGX7toyFNOqeKY4zcmLotLhTsIUyxQH9Zpj0K5ZjOZJNfhba7o0PItJkDCYJ8oZnf3PymUdfXMU4pgGYZoxDV7ew0fXZdCQF+LuHSai47+1F5IXBUlasD2RhIJymOfZJitNl8EsJkxzticRO9OQaZiqQZhIJsrbLS8KdqexZCAXEKZC6RajR6uSsljqd8qtkZh+9eo20yhFQ373tD2bSzszcl65BnnRNSzq875+6D3PVQ++7//Ku1hpionH/+e/PMk96y3+xAPrFaVjUZ87dfd6i//4HY/y53/sg/zKJ25xYy/g7HKdT1wfY+oaP/zfn+dkz+dL7l6h5zu4toFjLc7johb1+VTlQlFDFqm2sW+y0/ZtwjRkFCTSiKp4kJL+u6dcoXUN0gxujsJDMTQgjXCaFTQ9g2GQVMh0lktzbWiaimPKyPMcXddZbbk0PJOLW5JF+/zWlCBJqyihunLPN3SdeZKRB7Hog4OEK7vzamG9PQlpebY0dmqnBvPDNGtd7XyWi4a27hhcG84FwU5yur6FZWjszlS8kkKb8zxTsSwpjqGT5NK4+8qtexwmzKKEhtskzwuW6rbkOafSSGUHhHe6ptHxBRkcBcl+5nMqjt4XFa12pelim3q1OL06mKmMWyrddk9FDs2iFN8W7a1jahiaLhRVXWJmikJQyhKVBVmwF4UgTcOZZEqX10h+gPe4PYkqZLYAhrOEmmPwBae7VXSUrok2fHMSUuTCTPAsA982iNKcYRDzyZsjyb21Jac5SDI2x2G1XkgyGdBYhsbOTNDtvCiqZkIoupmiNO+fU8fU0YqiOo6mrlUZ0SUKGWYFPoLY3dwLxHBJ6cDL4xtEGcdXxfm3zLbN8oKWK5TurUmEf2C4XyCNdKnHdkydnek+rft3n9+V5tkRZE9D9KvLDZcszyu36PKzDlJNbVNnby7xSVVUGhxqoseh5Bq7yggvK0pHa5N+w8GzTUbBvg52b54QpiU1XadXd6rngWtJxnMBfPVDR7g2DLi0PSNU3zlIMkKVz316yefmXgBI1M84TFhrOViGxvZEIuOWG47QltP8kLa93NeebzNWjIO50heD3J+uZRAqrWsOuLpO3bVouWbVcNUdszIq0zSqcx/n2aGGy7Ol+S4HBEGSVc1tqprPOMtpOgbzRFDasrk90vbYVvFomkJD80IGTxoysAgTGfBIPrdVDZXGgTTBz2xOAOjXbXZn0uyX166lC4W7qa7BqcqF3hyH1TDBtw3CNK9y1Uvt8Ms5Pw9mCRpzmp6FbehkloFnyvGYRBk3R4d9Do53PTxLrjPb0NicpEwjuZc3xmG1TncMnZZnYpsGm+OIW3shO7MYSw05NBV/tjEW1osc21wkIa6wfeqOjWXo7M4iBrOE4SwRr4K84GV25WVr0SAv6vOysrzg//zlT/KNj56otMUPHGvx5159HIAXt6f85Hsvs9Rw+Ir71liwqz836/RSnZ9/x2v5i+96nI9e3ePaYM43PnqC157p8Zf+/Uf46//pExztvIaf/OZXYaiH+6IWtajPnxJdZYxj6Bxpe/i2QZDk7M5kIWhosNZyuTEMsBSKWur5QBbxkULpdOVQa2iiV/Qtg91ZLLrGOKPfcEgzyU8um7SymdJVD6sjBji7KpYmy3Ou7QXoaCS5RPtkRcE8EvqmY2iYmk7E7WjUSsMVRNM2PqWuzTqQpxwm2aEFI0Ca5timjm1o1aK7dKLWdWkiSrruPMkJ0xgFpgBCe9yaSNOX5QXtms2KMtWKkkxFWO03PJ5loJERZQXzJKNlijYvGGV0axb9usNVey7HOiu1m6LBLBHJI50mVwZzBvOEhmMQpQWOIYholGU0XZN+3anMhkAaB42CSSju32XU1ygoI37gRK9WuVi31fkzdI2aY5BkBZ2aRZYVvLg9ZW8Ws9RwMHWdFHEFdiyjOteuKVTutaar9OFCDS+ApqLzmobOxjhCV5FQKCQMpNG1DJ1Y6VHL0pHXFlCheIW6xkHo7g1XJ89FWlAUohEdzBN0la/tWgZNxEH5I9fEPHS54VQndRQKgtlwDKIkr9yaTV0TLb+Wk6n4KoCmYyqNdYGuMo6PdjxcUzSZjmlwdTBHUyZdmiaDnKNtl/WWy81RyChI0UsUNy8k1ioWuqyjrs3ymhNPgaJqzopCEP/5MMA0NO5aa/Lx63uHGscky3FNnfOrDeI058XtaeVGf2l7ytY0ZqkhMUob4wgQZ/Eozbm8O5fYLF3Hs3SarodtGJxfkc+K0oilhsOTN+Vau7w7o+9b5EhUXKpozDXbIEz2Tav6fqmbFt25PHuExnxrFDIJTVxzX6ed5jknez5xmlfDnSQtDjFbUG7jddfAswyG84SJuqZSpdfVNaG7u6qP33fClvOX5kUVNWYZWtXgRornn6rhXxDnBEmCY+nVIKKseZRV101Jx8+LgsuDOb5r8uzGhBxYqtuHkPY0z6uYtVK+QCGU+JptVEZ7+7urnpl5wdY4pOVZ1QCqQDT7UVqw2nDo1x0Gs/jQoCZTaG/Pt6t7qABs06gYRCUsUnpAFAWV30M2F6O4KC3UYE2kNY6ps9r0ARmsVtnRcfZyZJCXrUWDvKjPy/qlj97gpz94lccuDbiyM8MyNP7h19xXZSSe7vv89Le/hnGQLJqqz/Faa3n83Nsf5W/94hP8wkdu8K73X8HQNf7GW+/kH/7qM/zFf/s4v/iO13KiJw+7W6OAf/6bL/B/fuVdC135ohb1eVCGphFlOVcGc7q+RdO1GM6kaTi/UlcNnxjatFyL68OACKFctzxLHK7zgqZriXMu0HHNakFvm6J9KymDnqWDJuhZnBW4RUHDsSqUL88LDF0Q1DDJodhfRIIYBbmmTqrQhtmBBXCJOILE/dRd6xD6ebD6dVvRVA1qtlkhhSBoTpIXBGmOqfJyt6YxkygVaq+lo0NlShOlOdNQNIwlpRlgdxYRJqKXddTnlPtZs02FYIkWW9ckN9axDIZziYyaHDAW257GGLqO75hielQImrPWdpXrbIZlamyOY5JMGrcCMTMzDU1pEk0euzRgHCQ0PItlpbNN04KtSVgNIUxdZ73lkedCwVxteWhI0yguvzqeZRIkgrwGSc4LWzMMXWMaZTQcaTwT5Qzcr9vougwMPMvg9Wf7jOcJz21NZVGu6Nml43PdtcgVKp8X4JiCEpeGXp5lKLTq8HK6pXKTTV2MlsrmomxGSr23qai2IAh517dUbI680Db0ikaua9L8ljRj1HEwdK0acLiW0HY1NUAahyk39gJAGl5Tgy+9d7U69i9uzXj16S6+Y/L85oQgTqkfMFcrY61KDfTB619DostGW0mFti01HDSg5phcH84luzbLK4rvJExouBbTKGVvHleeAyANjq5JTq+hSwxX6Uqta/DJG2OiLMc1jQPo72FK+CxKyEzJDB+HKTPlAO9Z8sy4uL3vDr87i8mUtCFMsiq2q+4Y1B1D2BxRiq3o5KstjyuDOamKaiqHWCJZMCpNehDnPLsxqbLBy++SeDi5T2exMD8ajqVcyDPmcUrLFbfu8r4fzmIangmixsA2deaxmGgphYbQvBWLYTgXbX+a5bQ8m2mYSjRSwn4je6AKxGQuSwtqll7lFVNI83/wHS3XqgZDSVpwfSBmWwdp6QXQVHLGKM0IkhzPElq4axtsjkIyNQy6c7UhsVaFOF23lBfD5Z3ZoUGRY8ozrnyORElGkhXUXVNkA2HJqjEkMiy+neqdZEXlTK6pfUkLOU5XB3OGc8VSQZr4jtqHV1KLBnlRn5e10nRYaTikylTlr731PHeuNqu/1zSN157pfxa3cFH/I+VaBj/4tvt59HSPv/NfnuIn33uZlaaN7xgMZjHf/FMf4hf/0uto1Sy+7+ef4Lef22Y4T/iRr3vwtmy+RS1qUZ87ZegarZolC5VCkInRPKnQpYvbM2qOUDYdU0fTtaohtQ1B28ps+6KgMtFJsgLngOJiFKYHaIAGviNGNy3XxLUNRvMExzJwTaECX96aV3msvm1U6E75ETXb4EjH4/LOjCSSrGJLuVrnRUHXtytjmZ1pTM4+WgLSAGtAkUuETZWLa+ksN1xcW+fqruhjbaUf9pQJTVI2LqZyBVZNkVN3GAWy4OvWLAZzyVZtehbjIMF3jOp5WLMNiZzJxDip3C7HFJqqY+okWYZ20FkMaQoGsxjH1DnR9diexcyjTJpjQ2dvlrBUF4fkF0LReS7VbaFOK2ppXkjjn89jaraJbarM5bxguSGGR926haWLi3SoHKbzouBYp0aWQ5bDxZ2ZLKbVCvjF7ak0uepcDOdxhbqPQ2EDmCr/em+W8Mmbe9wcRXimznLDYWsSkeYSl1OHasACHKJddmoWDdckTHI09mnTIFRuXds3TysP38EoGUANV4rqHmi4FrMorb5nqMysSiOsmyOJnyqr4QoS5yutbp4LmthwTDRdhhlFISZdaHKPrbZcXMtgexoTBQkvbk3RNY3tmRh9LTdc9oIYQ5PrAPZRyYZ7u7dH3TUpEDO7KMmouyaXdmboQMK+rtQ1paksHZtnL2lkcqgiHa8qV2kd0cBbSnur5xqavp89XqKunqkrA7Wo0qJGac5d601MXfLES9f56vtyoUqHqTTHNctgrgyp9mYJmqIMB3lRNXmx8h8IDpxHSznaG7pGzTaJ0oxZLPnGTddUJnOpGk6VOnwZNoj7uFHpivNcXLJLFovEtu0Ppzo1C8eUa6HhmmRZTpQXjOcJni3PKEMXqcStUUTdNavhRllH2x4706gyXCv3wTEN5uq4GhpoB7D9JMt57Zk+j18dyrErCpJchhVBklTPi725mKT5tsEsUlpuRbWfhkkVnZSpIc5q05VIPSV72Z0dlp4cvN50XejkZUN80CwRSrfujLWWwyxMWWqIU36FIqvD0Kvb3L3W4uLOjOc2J8Rpju/sgyhN1yQtikPDoE9XiwZ5UZ9XlecF14cB3/UzH2VPTeLvP9bmO954GhC6x8eu7fHAsfZtk99FfW6Xpmm87ZFjvO6OPt//i0/wm89KLqOpaypPUB5q//Br7uVP/8v3818/cYuWZ/H3/+Q9i3O9qEV9rpZajDRV7mu5NrFV/mWQCOLSdC1FvZ5XTUec5VXGKAgl1tBEd5yLIJNuSZOEigTt2SbjIBVkxzQYBfK9jmWApgyUXInZCZKcrUnChdUGSSZZv6bKbPYsg0m0j6SUdMcoLRgFMUmaV/Tfni+025pdItQa4zBleyraOYnpkWa27gp11jF1lpsON/cCQWIsE0PpfacKiWw40rw7ho5uaLQ90VKahs5SXejU5XKvZhkURcGNvUCGDdWR0zB1KqOvcZhWdN4sF92hbUgTeXl3JpnPccY4ShnMIro1G9fS6dRsJmHCjaEwAWxDV81vziRKaWWm2j8LjZAoKzDSTOX4SjPa8izGQUqRw1ObY2q2oJovbs0qymdJX5Xjvb+gzRQFf73tYhj7+uaGI5FekyjDt2G15bI7jwliWTmneVGhx+U+b02kcS7N4sI0o1WTWJqNkbj8erZJ27do1+TaPRjjdbzrsTtL0HVBrvJchgslUtX2TCZBQloU9HyHJBVZQc0SR+USmSsbVZAhjy5xxUzChBxB2kuDtCQT7flK06XrWyojvGC54bA5Dnn8yvDQrffC9kxJGjJWGkJ5T7OCcZTRVkh4nAoSWOQ5aSYmWa4tUVBH2x6bY41baSgDqKKg5Zh4tqFM6qjciUVmoB1qbEA18IhM4uDxy6EyEyudoIFKk+pZBo4ppm9d3yZKMtIsYRQKhX9rEuFZeuVQXVbft3EsnRt7YYWs6roMlHRNw3cMshwsR+QLpcN8zxdTp1mUVsOO8hyNQ4lkqtkGeV5G16VVY5bkBd2aGIeVzXih3lee3SQvSBQyXQ5Fymp5Jkt1l3mcVg7jtZrNOEiE5h7neE55j7oVWn1Rme011IBxEgrK3PBM5uq7xJUcXNsgClJqaijY9iz2goQkLQ4MS3KSNKNXd7g1D9XPxLXdMTWSNGf7wLEuM7D31MCzW7MwDZ1xmLCpov32DgyxQIYiIO8rG/nhPMXSZTho6Fo1eDF0DR15VOW5yF4sU2cYxEKZNrSKHWAZGudXGlwfSr6zhujc5VqSz96exq/YoAsWDfKiPo9qcxzyjT/xWGV2Uf7S+MG33V+J+3/vhR2+4ccf42sfOcY/+tP3fXY3eFG/r1pve/zkN7+a33hmk+/7+SfYmkR84vqIv/9fn+Z7v+Sciol6NW/70ffz0x+8ynrL5bvevMhLXtSiPherNGAqCpVVW8jCZ6XhsNyweXZjyjzOaDTMqpHNkYY3SHLaJaJrGXRrFuNQaLVlFQVMw/S2hXmucmx912R3FqsmJqfhOGSFUKd3p3GFuEouqkHNNipkGKDvW2TKBKqMiAFZOBpaVi3ylxsuG+OQoRrclmZRIIvj7WmkTMMkxi7NcyJlLuTZJvNphGbJoFDMzMSJtqR7FgUc8V0ipXmeReLkWih9YJ7nFAhNsygKpRMtTW80XM8iy3M05PMPLtBncYblCTpeHAClBgqlHM5jsqLANEo2QEKUCdLV9x12ZxG1XAyugigjKjODDY25+p4STX1+a0bNEo15mT5RKHMkOOwwWxQKkcsK2p6FoYtZ0kpTjnXTMTBNnSKXHOByX64P52hojBUVNitkuOE7JvEBE7UklxzXmmMyClMmYUJkSKPjlscmynAtoZmXDZ5lSLarfWB4Mo/FJKlTs6rrOFGGQjXbYFche3mxj+41XYkTsoy8omrnhTQRaS5mXBQ50ySrUGRHmVvtzUR7GiiUexymfOzaqIpLKmseZ1xYbdLwTF7YmlQoXbndWSG69KW6w9XBnDQvMM2c64OADSNkueHQrllVNFHDMYSq7ZokaY5rZcRpXknZys+tqditeZRJM6xrdHxbRYSZ5FnBPE6VaZvERxma0PQBNZxKGM5iWp4pRlppjp8XVdOpKSy0U7MkMirNSfKcvuMA+w7eWQ51X1gnSZozSVI6pk5RFOxMY1zLEOO4eSzPDNVE6rp4BIyjDNuQPGJN5Qvlh8FbQNajddcUVkS6n2X80iY+ySSOKUrSymBsEsb7+cCFDElGwb779EwNOcZhyhPX94iygm5N6OiOegZNFEtjMEtEww+q4S/keaVrCrEvMHVouSa6rvHs5pRpmEizWRRVbnOaF1UjXd4vB2t3lojruaaRA/22h67BxjikKMSg7GBz3FKod5hmnOjVmEUZO9OIhisU9qZnYiqdeVaIN8XePGEUJFWU3829AEMT0KTcHJEnaGxPI+qOwYryBgiTjGmU4lqGmA8q9P+gCd2nq4Ul7KI+LypMMr79XR/m2Y0J14cBnm1QAH/9S+/kjuV69bqiEKOP197R++xt7KL+QOrNd67we3/jzfztr7hA0zX5ucev86b/+zf4lp96jKWGw0/+hVfhWjo/8GvP8V8+fvOzvbmLWtSiPkUNZgmebdD1bfoNm1mccml3xtYkouGZdGo2m5NQXJANiWsqSSHlYiYvCsI0w9S0qimtK0qxZWiyAPcs2qoRrLsmHZUjmykEsUCclAdKN9g+EBmX54IKj8JUZS2Lhq1Xdzm9VK8WS7omelCAbt3m7HKdB4+3D20rSKNWohxLdVu51UrDN4lkYdzyxInV0DVlTKNXDXvdNen4Nq65HwN0ZRiwOQrZUbTSUZhyZTDnhvrZxjik49ustTyWGw4tz5I8ZkUl1hA648vJUrI8F0MnS6fhiBt0od5jq6ijK4M5YZLRcqXZGMwSbFNjohC2LIftmSB7Sw2HhmeJS7Cippc1T/Jq0b03Txgps7aOt5/BC4LgGbogZLouTYmha8SpOPmOFfUdjUO6wjyHQDEPHFOn4cj2BrFse83S6XgWJ7s10qJgHqWc7MoxKxtIjX0NcZjklUGZpWs0XZM8h5O9WuWiW9GpNY12zWKt7akFvEbXt8lyFKpl0PNtlhsOQSza0oMmSXLtpAqJN6shAQiSnmQFw0Ao/Rq3n8eVpstS3abvW9Qdg6ZncWrJr5ooDUH+9oKEft3h7LLP3jxhdxZV+5CkOeNQGpONccTeLDlkArU9jUQLW7PwbaEaz9Q5NBQCXneFWl++q4oZarmcWZI12zQSyvLuLGFrEjGNUww17BGqvzSIo0Acu9daLrahy/ArFwaGpmn4tgGaxiTKGAUpe0FCz5drX0rOcXKAjYImuvC+b1XHRkzQJHorSDImQYpl6uiaoPvyuTadmsVLSWtZsa/ndiyjcmyuO0b1+ZaSWaR5QZJmND3xKJgE+w76hi6Sg4GKGjtYm5OI5zYmJFmhfBnk+8rIuYPO9SDPNPmvnJOikHtWTOXKgY7Njb2AeZLT8sRDAMBUyH9JUc5yWG+6vLRK6YGuwdXBHNvUFc0+w9L1amDjmDqGoRGmGVkhvxMyFW/VrzsV5TrNc3zHpKe06HlRULdFm1661Cd5wfDA8KAoJBFgZxrz7OaE4TxR+eUSGTWLM8aBxAt6ln7oGfPpaoEgL+pzvoqi4Pt+/hN84rq4PdYdg2mU8ZpTXb75tScPvfaN55b479/7JowF5fZ/ibJNnW97w2nefOcyb/vR97E7S/iNZ7Z59B/8On/tref5gbfdz1/+mY/yf/zcx1lvezx8ovPZ3uRFLWpRB6pAoaZhylgZUBUUpLlWNQYNJ8ezTOquyUrDYThPCFOl/XMsluq5yrk3sc0Um7JpkoVnzTbYmSUMg0RFDmno+v7n65rkvi43XHRNqxbwZWOqIa6+5XpUjHaoEKNygQuyuO35NmESsTOJ+OP3HyFOcz5+ba+iBpe11HCwlclVlGRcGwRVRJSvEDfDkIWtZxlESVY1IqZugC6U7CaofOb8EBLVdE3CJKuaT10r9x3IoFWzBF0MUkxlfiXHyyRK9nV+jsrbvT4MaHtWpWPVgNWWU8VUZXmBbWg4roGndJvbkxhNkyGFY+k0XYsrgzmGpnHXepOOZ5EVBVcHwW3XRumM61pCI7YUGtz3LTkXGqohosomTvOCa0OhkJ/q1ciLgp1JrDTVOcc6njgvZ7psszo4oyAmTgvFELCoOybdugxitiYRjmmwO4v2N07jkMazXFEIclWwM4vZUSZbpVM3UP2spLhqwPWh7Pta2zv0mbnCkkuTs7xQgxVNw9J1ei2HJ2+OsAyNumMpQyihM4NoNcsGxNCgV3e4Y6nObzy7haFpNFRG9pXdGce7NU72fAw9YKbo0uMwYVVR9NMcjnVrQtWNUiZRgIFC9DXJ3U1SGaJQSNYwaASJIO+eKVrpOCuqQZGOuEKnueT0zqKUhmOyN4/hZYY0EzWc8m2jGniU5mfzJFMDHvBMkyzP2ZxEItWwTcJk/97bnUWKmi9/TrPSlEun7ki28TgUky7PNmm6Jhd3Zmhq5DCN9hkpUZrTronB2jTK2JxEaIjL+t482R8AZGLyNgwSarbBsY5Hy8uIs4wgEidwzzaZhAk6sKPkATnC2sjyAt8xK0p8p2Zzoltjby4I96a6xubJAbbMATZL+expK2MyULTuXBykZ3FasVFKanPdkWfucB7TrVm4psFuJPnEjqHTdOU5AWIad6JXY65QWXE6l2vvaLfG07ckXuraYE7Xt/eN3oJEnZ/skOY6TDJWag5NVyQMnmXwxM0xIECXb5vVPeg7hgwpggSjfLiparimUK1TocDPwpQ4k0gz+8Bgrq4y2I+0Pd6rvzJseIEgL+pzvv7V71zklz52E0PRzqaRaFB+4G33V67VBydClpoaLep/nVpuuqw0PU50a4AsIv7f/+Upfug9z/FnX32cOM35i+/6MFeVmc+iFrWoz42ydI1e3alQyySXZtA7QGMuEA2Za+qqsd03+RnOxYF4HmdsTkL2AmmEo/Qwx9HQwDY0fNvkaNuj5zvV3zmGIE3l74V5LOiUYxoc79Z4/R09Go5ZLcZhXx9ZIChKy7MqNLer0I0sh6u7c/77U5tsT6JDzUqJXsVK1+xaBpou+sOGY3BqyedYt8aF1SYT5SqcqgbU1jXRIYcJO9OIKMno1h3uXt83ojza8VSsjzSZyw2H1ZbL9iQkTKSZ3h4LrXuWZDJAmMvnCSVWrxqZmmVQs0y6Kit5cCBupeXZzCPJq11ru/jKSKrhiqZzL5CYlTwvCONcLVDFpOvj10dc2p0zizJsdXAdQ/Tffd/CsYQBsDsTDaNnmXzpvaucWW7gOyaDWcLuNFZ5sPI7fqJMkTxlvDaYJcySDEPTaDomNdvEVc2aqdYLszijZpmVzrVQubKapokrtGVgHDj5Xd9itbl//Zzq+0KfdSRruyjEVbk0kiqrfoDe/NK87pptcHa5XqF+QSwN29G2R8Oz8JQWG6Qp6/o2vi2U/57vVNnCvm3QbziC1iqnbNvc1/AWiHN7mOaSJzyNeXFryrObk8pgzjS06n7bVAyGcrs826DumNTUualZOq4yWSuAft2pmqrNcchU+QHMFOqpKUfuSZgo3bdGlktu8CzOmChkOE1zjrY9zi3X6XgWDcegZhliZqfr1VCqV7dZajhkudChd2dyDRu6znpbEM1RIBm35fHXtcMsiSQXivEkEsQ+TvMqh3wWpYSJDHvGUcpq06nOAwjKnaQ5tTKPWi01G67o7UvUWYNq+NVyTa4pLWySCpslyiQOyjZ0McZDmuTBLGEcJjRck1ZNHOi9A3T1TEWdVVpuZbb3Uiq9oYu+XwOanlk1yU1HmCgl3dsoRe5IU395Z0qc5hQFVdO73HDo1R3mynBN9O46aVFU0WYgz0jPNuWZpXTMaYlWIxTrLC/I8/xQPJShyeAviHOWGg6pYkWUNQoSru8FjJQcQtc0nrg+rra5Zul0fTn2cZpXwwbb0On6DmtNV+QeSVadmyUVMxWm+SvuDxYI8qI+p+s3ntnkH/3qMzimzj/4k/fwt//zk5Bl/OCfeYBjqlkCaaKfuDHi+7/8Autt77O4xYv6w6i6Y/Kub301nmXwSx+7wff/4ifRNTGpuLg943Tf5+LOjG/+qcf4xe98Hc2XceRc1KIW9UdfpiGL75ZnMY1Tskxoor26RJXkyCLUNnRujUIxyTJEI2sZWuVk3XIF9QsSWbBOIskU7itzrIZroetC3VttuXTqVvVaQZb3Tat0XZqDnm/jWgZb04jlhotlxkRKN1dG7mgFDOcJmoZyxs6Uy7M4Vr/nqQ1MXTRzjqlXRmJxmjMJJZ6o79uV47FvG3R8B9MQ05vNcSjHxzVVhIrgioGKfEFRsttpRpqb1B2h6K40XUxdULm+Mut6/8UBUSqaVA0x6JmEKZbSM4NQgNNc9L/lornhyes0RSU9WFvjUFGYJUIlTDImYYKlqO1CzTQYBaKJ1hJZlE8UygRU6FfNMqjZMqwoCtGgls1AmORYesonb4yI0qJyQk7yAlMhkFkhGdhH255kGEchbU+QoaKAvTClf6AxXW95lRbSMnWyMCGIRZd+ZTDnxt6c+4626fg2QZxy11qLF7anBHHGnspn9h1TXb+SZV1eP6ahMwpS6k5B17fIczCVI3mQZBXyVpaua1zbncv2xKlqYAsaSiOfFwVj1WDpwM40ou4IfTlOs6rB8CydvXlC17cxdI1TfR/T0Hlxa8I8FjdsQJkfHTDFyqmigkZhSt+3uTkKq3MUJnItlpFD/YbNPUdahEnGBy7ukqSCxndr1qHmc57kWMoV+kjH49ogqNJFDPXzMtoIUAyIjKNtlyMK7bdMHesAXueYunJRzir36yTNqybeUFFDRzsepq6p3GRppDqehaVym+NA0FrPMsiRhjhM5X6suwaXdwM09o1AgyTGMmVw1HAM4kwcsydRxqz0AlCftxckVYZ3rqjKkODbBq853eO9L+xU+1vqqoNUsqBPdGtKpyvPxjgTo6ulplPptx843ibJCnJEN91SeuOpQv9PLdW5tSfnuuFIjFyBmJRZps4okIay7gpiXnoOnOzWmEQpHc+qro+6YxCq86DruvI3kCHFLC4jnQzSrFC58+phUlDRteNU7s2DOfJpXlQu32WVJl15npPkcGM4V8hvpujPIkPYCxKiNKOh4rHyoiCIZZDomjq+bTIJU6I0x9D3JRbbUxn4rLc9ZlEq7u5NDd81ubg1ZRSmt7l/f6paNMiL+pytF7YmfNdPf5SigL//p+7hp953hSDO+LbXn+KL71qpXpflBf/xQ9e4MpjzPW9ZmDX9r1r9ukwu/9xrTnB1d86/+p2LNBWacVFlYb+4PeN7f/bjvPMbHl6wCBa1qM+BEr2cNGGNSBCTLC+IkrQyfJLXCYpT0gLLuCMQE562Z4nJzzRi+wClNUfo2+JOLYvs0njHMXXyXPJ6p0oTDEIxnkcRE6WrFU1grtAanVXfrBaUmiaIjGno+46slea1IMoK0kIo2SWScTA/FASZmUYpO7OElmtiGzo390JspW80dTFb0jXRGjcck2MdiWxpKk31KEhxTYMjbY+6Y3Jld14hoElWMJwn2IZeNchHOx7jMCU4kOHcqVmEseh2DyI6u1PJNS5Nfw5WmOR063aFtGnI8CLVNRrquKQqSgcEofQdg6wwaNcsNsdRdSx6dZtrwwDfMirjrPIcB3FGlGYVlfZgo96vO/TrNrf2QixTZ73tUVNRVZsTaepK47bhPGF3Fkvetmeh6RrjeSLmRGmutLuls7XQeh1LcpGDJKPn21wMZhWDoMzr7fkWt0TlhaVp7PsTy/kbBkIB7/kWni1Zu0kmSLVrSlPrWSWyrTOJIlquiaaupRLpEk2tTpqjXIZzxgcW9GGao2tCEa5ZOuNABiBDlRXdjezbTKF8x2CpYfPC9pRplLKk8rlLOjhQGX5dHczxHdGijuaCkheFhmuJxncwS3jgWJtZvB9ZNQ1Tslyo/p6tMwn3G1kNiHNpnrq+LbRk5WAcJBmzUAYrPd9mMI9Zb3kc73o8tzXFtcSBXtM00dMjLs5lDnGqrvuaZdCr2+zOIoazBMswSAvZf8uU5igvCmwjryjCYgwmDa9rG5XJ2CRMaHgmeqTh5Dm2IfudU7o2i0v6JeUgDTL80DRhRzQ9Sw349k3Xzi77FQ1fVxp2x6wRqVi5oTKiCqIMxxSmy3CecGMvEGp3mFZ56K6tM5onXB/Oq6bQMfXK+O3y7oy6axGlBUt1GYKULtWGfkArr0y6QBrag3reOJPtCg5eQ7aBplgLpQv3YJ4oQ8FUDTXEvC4voCA7NKABaeTzohCtuSZDjEmQcGbZp6CoYqN8x8TUoe5YOJbOcJ6ISVsZ/2eKx8HNkUgXXFOMFcvrxFE559eHAW3X4tpwTpTlwjpRA4ZXUosGeVGfk7U3j/kLP/kh5nHGatPl957f4YkbIx483uZvfNmdh15r6Br/+S+/nve/uMvZlcZnaYsX9UdZW2OZnI7DlNee6dGrO5VR1+88t80LW1POrS6uhUUt6rNdRSHxLp1IFkU932IaSrN4drlOu2azNQrJlOMvcAhxEn2rzvW9kF21oDfV3zccA0PTMHTRnzqeXlGAs7wgzSR+KCuQlW35BWpBOI+lgRzOk0ORIa4lRkCSQVy+tVQrF5zo1bi5F5DmBWeX68RpznCWsDs/rEEGWTQ3XBPbNCS+qhBHa5ChgGvq1GydnVlSaUtBmsmma7I5iRQ9NGEWpYreKpmkhibRV2GScdwy8GyDds0kSguOdWtcHcwZB/s6ScvQsTwZGpQRUnGWo2lCgZ2rBbFvGZiGxjwWt21LF7T8+t6cnm9XzraDmZghjUMxV3JNnSyX83OqV8NQ+c6jQOKLFAu4yrm2DGmAQLTYniUL6NkB0yrXlKxkTdPo1SV7OkxzZnGEocu5z/Mcx9YJ0oy6Y7A3L+moeSV1lQY/w3NkId3xLIZB2Uzb3LVWY3sc8fHBXDTMpjAX0rxgFqUUeUGWFbimTqLMhU72ajLsKXmlSLPcrzvs6lF13PsNh91ZXDVNqy2XPBfTsFt7IUe7HhsjcUBvuCbTSJoF25DGq8w/jrP8kK5eQ9gANdvCMQ00hFp8brXO9UEgaHaa0fJsQe1zlc+tiYyhRPNGYSIIvqGRZoLUxano/sMko+tbFbptGhqrLYcCl8EsJs1zUmWYNYsSWp4wQzSg7dsMphFRllV64I5vk+c521NBIktdfMkymMUp1/fCitIsLshiSGUoVNMyJY5rteXyzMaEQoe711v8+w9eEdfzvGCp6VAUcpwsQ54P/YbD9iRiHAqC3/ZE+6ohlGnP0pkohDFMRaZQDn7kXtZpeBZ3rTW5tDMD5TbdqVkkWYHvmpi6xuXdOXXHJFNyks0S4VZPkL0gIc2FZbLSdCpJSZoX1GyTjXF4aMAGck4mB+6LklmzM43ZC9JK9nEQ3Td0jY4aQuoa9HynGpzszARd7zccTF3DNfcHTOJerSu0XJrhpabDUt3h+jCgKCTPfZ4IVR1DvA/mcSbMoAP6e0+9zrcM1loeN0cBpn4gL97UOdnz5bhnOXku/+gqPy1KMiiEDbOn9ksDbo1CPMuoJBS+Y1IUEgNrGRpHOzW6NYuGZ7F3U2Qfx7o15nH2ij2KFg3yoj7nKk5z3v5vH6+MLXzH4Jc+dpOlhsM//7MPVVqbg1V3zEOo8qL+167v+eJz7M5j1loe3/vF51huOLzp3BJ/+xefIExz/uGvPsM/+boHDoXRL2pRi/qjr0wtUg1Nmt3SQIusYDiL6PkOlqmrqb8pmtMkwyiKKp+0NK4qUdZTSzUG07gy6bJMnXmSEcQZDXdfZzqYJyqOSTSg5a8Ozzbp+Tm9ui2GQXBoQbo5jlhruRQU3He0xQtbMzbH8jrP0jnRq7EziZkWWfWMyQuhBdddkz2FnCw3HGmwke9vKAMdD0HTBrOYOM0xDf0QCmTqGoNZQs3WWao7NByLSVSiefKaAkEe4yynYQpq6TumdPNmwfFuTSJe8pxJmAESpyRa7BLtMdHTDA2NXk2vUFvH1vEscX6u2QZLDYcrgzlZJs1i13cIEqFQe7aJE6YYuo5r6TQ9i5vDgLwQ9Hmu4qZyFTWzqox7AtWAtFVEj67rRAo9NhW13lI5y7qus7EXEmUZDcfk8iBgrenQLLN8s5zTHZ9jnRrHOh6GMmgLk6xC7rI8F4qrbVR/LqvMFN6ZxzRcU0yslCFYWYaukEgVhFtANVAAoX1fGwYUCCK3ra5tEJMu19KrprvMe50lGW3fFnMohSKD3CfnVurM45Rrw4CsEE2zaxpV89GvO9Rsg3vWWzx5a4yhw7mVOqausTMT47SmZxFPZT/HQaJynkW3KY1SgWUa1fXfqQnq/uL2DD0TSn+S5TQNk2OdGjfVIKs0XZqGouOP04g0K7BMnVQNcQazpMrUjdIAQ9eqzPMSwfcsYRnsTGNGSgYxj/fvKU3Tqkz0NBdqesuz6CppxKZqJG1N4/Grw6oJnycZW+NIbatBnIrxWZk9LkOUROXjyrUZp4KAi/Z9P7s31nO6NYtIxTbNopRPXBspUziJCcvygoF6jsh9K/eMbRosN2w2RuJPoCvGB2hsjQNansWNvaCKHtoYh7iWXjXuQZKx0nTxLJ0ryuTOUQOjhivXfnnutiaR6HIPrI9zpbUvDdyqn6v3NdXzqOlarLc9NsZhxYzREBNA0RKX+cgytEvSHMvUce2chivsnqdvjcVdepZwdqXO9iRiqty1fUfYFHtBwiwSLbttyODz3iMt2Rflil9q0OM0lyFSkkn+tiftqqFplV9AzTaZRULDdlUCQJaL/v7y7oxOTTwVUjUMdUydk30f3zGqZvvT1cKka1GfU1UUBd/3C5/gA5cGABzreLy4PcO1dH7sGx85pC/O8oL/33ueY3cafaqPW9T/onWi5/Oub3kN/+hr7mOl6ZIX8JX3rvIL73gdJ3s1fuOZLf7UP38vT5ecuEUtalGflTJ1jQurzQrhaLomLc/iVN8XtCmWBVPTsyQ+Rb0vK1AGTjFb47AyYuzVHV7cmh/K8RXXW3gpLlAucITKrKFrGvcdaeGYgmwWeUHdNWk4Bq5pVBE1hdru412fds2WeCldzKUarri9poVQt9Ms59LOjHEoi/cyBspSi7i82I9b8VRUzVLdqRb6d603GSnTMUODC6sNmp7F3jxmZxpzfTinV7fo+Q5LDZdy8bpUt8XMSJlRLTccluq2ojibfPLmmGvDgFRxiidRRpoVrLfE2MhTjWIZFXSy79P2xNF3MJOYFDR5XZQKunh2pY7vmCw3bVqejVUuZBW1tqvQ5TL3eS9ISLKCVGm69+Yxdx9pcWG9SdeX/RcbcdmGU32fN5xdolOzqdmCLg9mscTzaAVhklcsghIFzTJZAK82XU50a7i2WQ1ODkY/NRyThmtU+sOub7PeciWOypHYnm5Ntmel5aomTK+2q6UW2zuzhB1lHjYJ9imkszij69uYuiZrkuKweWjDsXjN6R4tz6yMROuOgW1qFXW033AqAOCO5Qa+Y1GzJdqmzFBeaTgs1+Veci2Dtm/TciUqbbXlSmxVnJHlgpC2azaTKGU4j0HFqC03XWzVrCeZ6NHrjkGSFWyNQwxNmtI8l/PWUNr/oijo+LJNm+OIWZyxPYmqpmRrEpHmOXWF/iZZgWMaSt8r6HeQZOi6hmfqgt5qWhXJ41o6qypKKFY52U1l4JWkQo/encp3nF+pV14jcZZXg67yvNcdE0PTyPOCft0Ram+USrawanbFtCsmiDPmsaC5S3X7UHZvkOTUHHlmybDKZGMScHrJFwdlS6/iwEAaWNvQGExjNseBulZLSn/B6X6NlmdRFDCYxwyUeV7dMVhtupiGztFujSVlhpVmOY5lVEyIpbrNuZUGbzrXxzUPG3VpB+5rgK1JXFGXwyQjiPdlC10VcVdKLUxDwzF11tsOPd/i7EqdWN27bc8iTgtu7oVVljIIW8I15FlXejZUR07bd80vWUQgg0JT12jXbHzlVXB5d1ZJGUrjwJnyMNA0yUHfVue933BYb3k8erpb7bOGSHh6dQfXMvDU8GJzHFXb0PQsjnVrh8whP1MtGuRFfU7VcBbznic3AXGd25oIlfaH/swD3H+sfei1P/3BK/yTX3+e7/nZj/0Rb+WiPpcqyXK+86cf580/9Nv84Hue5efe/ihfcKrLC9szvuqfvpdP3lg0yYta1GerXMvAsfZddjXVdBWFoJNJlqsGMeOZjQl5UbDe8mg6ZpXr6VoGy8pVeG8mi75ZLOhgnotm19LFMKpEDDVN40inxum+T5DkCr2S4dqdq00eOdHlZN/HNnQmkaAjx7o1QfoM0RCvtdyqEWu6ZrXdVwdzOp7QfQcHnFZXWi7rLZe+7wj9L0zZmkTsTCVjdqXlcrpfp+6YlYnXYJbQrtks+TamooKOQ3HaDWKJfdJUtq6la6y1XBquSd2xONpxue9Yi1P9Gp7KozUNncFMHIZBkMN5lFbutSstl07NYh6lpFleIUVZIchguWBOs7wy9xKqpDQJx7s1slwWsE3PklxY38ZQ1GIQlkDZJIEYbc2UO2+/7mDpgtzFykBtEkrjkhXyPO/U7CqKJs0LBPDSlAuyZBnbpjR0hqHR923ectcKG+OQ3WlULWzLBhfAMHQ8U2J0VpoOczVgcVU81CzKWG+5vPaOPuMgZjCPyfJ9uv1ay2UcJpXW0rWMQ43RweFM1xd0d3saV83vasvluY0JVwcBV3dnjFT+sWQMS/O5W5qZ2QZP3RwxViZQZc5rkIhRVUk/Xmu5OKbOnWtNjnZq7EwjbENyfClgreVVw5nVpseRjlc1N6tNB0Oh9DIwythTMToFok9d78h70rxgdyoZ4a5pVC7RvrqOD5owBVGGYeh0aha9uo2pi765uhaygtE8oaFynkvdtWXq4kBembZlohsunZLLY6002x+/PiLJ8qrhKbeh7VmsNByanlDSdV10v0t1RzlOG5i6fkjOoKn9MXSNumtxvOPR9a0K0Y8TeUY5ls72VCQPNeVx0HAlkqyh8o5bnkW/4ZLm4gw9nCVoKBQ2y5lFIqsQ8zf5/r5vSwSdLgSQTs3iniNNVpourmWw2hQH5rWWwz1HWqw0Xd72yPFqnxuOoczTdE52atV1IcfDZrXpokFF0dZ1XZm7yVXbq9tV5N08loFXnOUc7bhkRc5YDfDmccpgHqtoOUF1h0HCxl7IPMloeSaurXN5d84kSEhzOW6lFrlds+g3ZMiQq9zoQg0OglTQ/TJXXDKMqQYnBcJ8aClTvnEoiHDNEc2zoaLIgiQlSHNhBxgaHZU5XrMMLm3PuLQzu81h/lPVokFe1OdU/cR7LzOJUrGpjzOitOCvvfU8X37v2m2v/ar71/m6Vx3jb3zpnS/zSYv636WuDeb83vM7bI4jfv3pLf7OrzzNv/6mR+ipaIM/92MfXDTJi1rUZ6nSLK8WuzXbEEdUtche7+wzgnanMUUOR9ouszil13AI1UKm59tKayzN1kF5XsuzGQYJhrEfWwRU+mFDF4qheGtpbI5DPFuauaKgQjbiLMfQNHHMrsmzY2cijW1PNa+jICFMMrWQNpTuUuJ6kjTn2u68cgYuioK5ao7iTGiYrjITmkRiwJNkBaMgoV0TY5/hPFHutgUd365ohVdUfJ2ua5xdrtP0LMlT1TQMdOqOVSEw5RFYaghqFqZ5pZe1DJ2iKPBtiZ0pZdnjMGV3GvPwiU51zAbzRBA6DRzTIMuFLl0gpkyepXO043GsU8OzZBG7p0yd6q40NHcs1XAMycLVECT/d5/fJivkvJZNT6To1ld3Z7y4PWN3Gh4yFzMMjTNLPqd7oit0D6BApi45089tTrg1Cnny5pgbw0DRSA9eD9Bv2HTqNsNZQhCnVabyYB6zO4t5cXvGPE4pPbGSLCdMcoazmJZrVZ/nKZq0o5pkU9eqzGvHMmiojG2gosvGWY5l6JxZ8isqcNM1cS1x5AUqDXy/7kgzaonpWtnMl42WZxusNF11vFO2xhGXd2dcHQTM4owjHYmOirOMeZLiOyYN1TAGcaaynPdznpcbDisKsUxUzrJlaKRpTpRmZDn01N9vTQRFXGk6rDYdao5xKC6s69vUlNmSqetc2plzaxTJ8fctDB00HdJcGrH8AMouZALt0LVRVtkonuzWKmaApmm88Vyf412PYx2PprruNI0KITd1ZRSW5TQUw2OWiGa1jGIrv2trEjEJUnRdwzFFsqCrAy/a8LRil/TqDvest0THr5znDWXU5Zg6u7MEy9DFjV2TCKbyJHbqNk3PpO8LZXm15bIXJOxMYqFn1x1c02Awi7mxF1QZ4g3H4nhHUNB/+N+eYRrtZzmX1Oqrw4Bbo7A6rq5lMIlSRqHENYEMYB463uFIy6WtoqEcxaApCvFuKAoZ9Kw2XfoNh6WGg6Zp1CyDcZhSFAUbo5A8F6M0x9Q4u9ygoa5lTROZSJTmZIVIU86tNEhTGQCOgwTb1NmdxVjKNfyg3rtbt7ljqc5y0xUZhzqf8yjjaEcQ9kQNi2xDWDvPb03lWnf2ZQNlHnleQJiqHOgDA51PV4sGeVGfE/X0rTFBnPFl965yvFtDR2MSpXzr60/xji8887Lvadds/uHX3Mc9R1p/xFu7qM+lOr1U56e//Qv4D9/+Bay3XP7Lx2/y937laX7lL7+er37wCKMg4evf+QEevzL8bG/qohb1h1r/4l/8C06dOoXrujz88MP87u/+7qd9/W//9m/z8MMP47oup0+f5kd/9Ef/wLepKMRVehwklWZT02AapQxnCUc7HhdWJfe25pgkuegAI9UgLSkTmY1xVCEuZWRtSzUYs0jQhH7dPpTTGWc5VwdBZdyjaRq3RgGXdmYM5jGXdmZVC+VaBuMwIUn3F0/jMGUaprQ8mwJpzCeRaJ2vDwMmCm0V19eiWpTqGpWLvm1IhqmuCZp7ZXdWGVO1lYZWcmZl56aRaCF1wDYO0wG3xiEfuDTk+jBgL4hJswLXlv0ezGLSLOdkz+d41+OutQZriq4aJDlb45C+omCXzVvZSBwsXS2C+3Wbft3mRLdGmkvUzdZEMpT7DQdd17m5J1TTIMm5PgxUXJHEQa21vcqVtqStl59faouPHhiQdDwL29QVMmVXjAPJjTZVtJIg5Lcvb4VKe7Lns9p06VUUZIWmInroSZiCQsc6Bxy7J0HK0Y5H2zf53ed3qmZesUYZhylP3Bxh6nJsdB2aNYuTPUWXRZraIx1PIqh0rdLRurY4SAdxxrXhnMEsxrdNunWbaZSS5EWF9kljUjAJU050a5xbaVB3TSyFkmuaULkv7swYzmMurDU43q1RsP8ZhdLETqMU2zTo+w59X1zIT/Z8mp4lFG8NVhpO1ejIdhmgibbTNnVMUydQ1OMTPYnVlPiomOWGC2h0a4I+2obGsa7H0W6tmkvUbIMjHY+6aqJzxCiqUxM361ujgFjp3IezmKu7c0YqD/fgEATElb1Ts6vs8rPLdY6pZtnQdfJCztNgJqZV8zhjuWmz1pJrbBKmmDqHIn6ansnpJZ+TvRrnVhu86kSXQkNR1ItDlOUwyQnjjH7doevb1B0T2xJH8r1A2AAammRCxxkX1pqsNl26NVs1oDp1x+REr1ZRw8smPkgy0izHdwzansWTN8d85OqQJMsxVIMfxikvbE+5okzk5nFKS2Uxl+f+YMaxbxscabv79zoyTLIMYaE8cWNEmApCXw5vfMdkexoziTJujWRI1anJ89TUBaFtOCa+ZYAmbvZDRW03NZ2PX9+rGvV+3cG3jSq/eaUhJl97iikSZ5IcUCBGg4auk5UGXWo3NEWRj1K5L0rmwuWdGU/fGquhFUSZfE7DEalB2VA3HYu0KNibxWKkp+qgTvvT1aJBXtRnvS5uT/n6d36Ar3vn+8X6P07ZCxK+9pFj/O2vuFBNFMv6wMXdKkB8UYsCuO9om1ed6vLvvu019Os2P/vha/zIbzzPP/7T9/GXvvAMkyjlG3/8g3zi+t5ne1MXtag/lPrZn/1Zvud7vofv//7v56Mf/ShveMMb+LIv+zKuXr36sq+/dOkSX/7lX84b3vAGPvrRj/K3/tbf4ru/+7v5+Z//+T/wbSvpmHqJpKhn+q2RNFW+Y7DedunXRcN552qDmi1asjN9/1BkTV4UtGoWfd/CsQwKpKHu1x1MXa9QV4DdaUSU5lWuqYY066ahc8dSnXbNqn6/5Lk49qIdbr80DYoiZ3cSK1dbnVNLdTS0QxpTQ9doexa+Qi8o4HRfNMytmlCQZdHu0vZsOjWbU0s+ay2PpmtRc/a3u2abTMIE3zHoeBZrSjesa7pEWiGU56YnNM3LCmHenkZcHc6ZRRl5AQ8cb7OszHl0TaNmm4yDlN1ZVKFnaS665OWGZLCe7NU41vFZqovJ0IW15iEzqnbN4r4jLTxLxzENklycnZ0DjfY4Eu2wqevcfaTFWrvGSsOu3ILzQhbwdcei79v0fTEJEiM1jTeeX+JUz5cFuWthmTrXBgHDecJwFivda66Og87VwZynNyZcWGvw0Ik2b7mwzJnlhqK/FuXpIE5F6ypOyNKgtxXVN88LLm/Pq33oeDYHfLywDLmGm57QgqMk4/LuvNLgjoKk0sduTyKuDQMsXWO14XJNIYAtz6JTs+nULPq+Q9O1KpRe0zQ8WzS5w3nMfUfbPHCszZFWjUQNQspmP8uFnrrcdFhve6y2XFxLWAJ11yRVuuJVpaWeRCn9usNX3LvGF9+1gu+YXBsEXBsGogHOJeN4reUqczppIrJcIn9cS3TQLVecmR3TUPTZmHbNqnTo5UCnXLE5ps4jJzqstTzOLNWxdZ15nCo9NarhkbimMt4tSnPWWi4Pn+hUyLShw2rTFZR/Z8bxnldRccvKFK0kVe7gW+OIK7tB5QUAMI8yHEun4Qg6O4/lPunXHe4/0kbXX3JPa2IWd6TtcaJXY6XlMg7kGtydxcyiFNeSe1RH3NlvjEJuKiflfsOh4VmVzt9ULJcnb4y5pZgmWS4MhdKHYBZnOKbBA0pSuNp06dYdxlGGaxoM58ofANidRUyChGvDgK1JRMszaajnSJ7LMbl7vckdy3WOdz2OtD1WmiLRKIAkk0ZbXLT3HcU15Jl6TA03yvunV7c5v9bEV5ntDeXJ0K3bzJJMdL+TkJO9GvcebXGqL8+35YZD3bV48uaoio4qnz81y5BBlqnLPtomSw2nGoIZusYkEMnJSsOhpbTTGhLpZOoaq00ZghzpeJVPka7rtGsWeZ4Tq8QDS9dZb7tVZNZnqkWDvKjPev3qkxvousbRjsc3/sRjbE9jvuaho/yDr773tub4+nDOt/2bD/Nl/+R3Kmv8RS2qrNNLdV53Rx+An3nsGn/v3U/zji88w9GOxyzO+PM/9kGeujn+LG/lohb1B18/9EM/xLd+67fybd/2bVy4cIEf/uEf5tixY/zLf/kvX/b1P/qjP8rx48f54R/+YS5cuMC3fdu38S3f8i38wA/8wB/odnm2wR+7c1lRfuGOJZ8zfZ9+3SZK8iq/1jENmp64MQ9mMWGaYxoaN0chUbrfoMWJZLHOY3lfieKOgmS/AUc5uJZ0TRUThCaLvNE84ePX95gruumpXo3lpqMyPl9ifKNJY9TyLFquSd21pKFsuoeaWl2DC+vNqokJkuwQ5Xup4bCqNMqvOd3lTef6HO3UuEsZVh3reJzp+9QdA98VhEbXdVoHKMVlE6tr8McuLKvnWlp9/lrLq+inz21M+OjVPYJEOVNbBlcHc6ZRKsZDCi3UNY26a/K6M32OtD3uPdJiqWGL7jWWzNhplNL2LFZbLqf7ProOqy0P3zb45I2R0FcVmlNQEMY58yjlkzfHXNqZYekaHc8mLGNhoFrol411x7cIkrzSQLuWzs4kYjCLK0Rb07Qqw7TU4Rq6oKFrLRfXMrmw1uLsijQFrqlXTtRLdYezy3U6NbuKf7IMnY4vZkH6AfOhrm/j2QYnuoKanur7NF1LDJpGYWXSNQ4OD+rHYSr67DhVEVwaQSq0dE81mGGSoekwiRLqjrhEl01D7YBue6jip8pro+s7aBrUHYOmGgLtzROW6g5126LuWFUutiBvOTuTSEUHidb/kzfHHOvIPtnmfsNdV9e3pXK0gSq/eaXhcMdyQ7TKikLdVc7bVwcB1wZzMuUUfHU4Z35gXWYaEps0j1Nu7YVsTCJBWjX57F5dEOE4y2kpM65TfZ/1tkegIoMsQ2ep4Va5v46p8/TNCS+tg7pSGWqhUEfJzC1UvNpgntD15T4KktJgL2F7GjKYxzimQU8ZCsrxNivGim3oVSNfHreiAF2Hg6pWQ9e4tDPjxe0JaZZX/glHO17lbK6pc7w7SxjMxfm6U7OZhgmnl/wK5QwTiS6TJlOGM+UzD0R77Vk6lq5Rs42KuZLkOTPlIv3AsTarLY8wyViqO6y1XO5cbaAhjJWJQtzTrGC1KXT7Mq4qSnP6dZt2zcJWmedlWYZeXcPV9ijPhHGQsDWJ8GyRHJzp+xInZRvyPPBtLFOn17BFx57m6BxunJuumAb6jkGq/AYsQ+e+Yy0ePN6uvmcUxCRq+HWoNHjkZJeGI7KZB463eeREl+YrbJAXMU+L+qzWv/vAFf7vX30WQ4Nff3qLMM35C689yf/rK++qbvSDVXdM3nR+ibWmS91ZXL6Lur2+7J5Vfve5bWq2yZ984Ai+bXKy53N9GDAOU/78j32A//j213LHcv2zvamLWtQfSMVxzOOPP873fd/3Hfr5l3zJl/C+973vZd/z/ve/ny/5ki859LO3vvWt/PiP/zhJkmBZt0ek/at/9a945zvf+Yq26emnnwakUW14VmXUAqLfjZKco10xALJNcek93fc52ff5xLU9MVNJc5YbDlmec2NPTKd0XcfQMuaJ/LNct0HTiNKMPC/48JW9imZ9olvjxihgMEtYdi0MZdZz11qTnWnM5iisDMCmYco0yhgHSWUQVSjH6O1pzDBIBCnSJEbmNae6/OqTG1XDZ5o6w3nCsU5NNaEZhqFV8StrTZftSaTohNIAjkPJhr7nSJvVZsT7L+5yc0+iZJIsV0ZZuhJnShPu2DoN16TfcFhtevTrNp+8OWJzHLI1iWg6BlFWsDmJVA50VmnyADUUMBhMI3xD4lEurDV56GSHjVHIC1tTruzOmccZHV+rsl5t5TpsGTobI2lcHz7e5tLunKZrVVruhmOxhcp9Vb/Cp5HoYC+sNUhzoc+WHhGzOGMSJqqZyyV2Jy/IKSonZYnjks/v+TYN11LaT6Hudmo2aVbwlgvLuJbBR64OaXkWWZ5zvOsxnIveseFZFXX/YPm2uCQvNx0sQ7STt0bhId12gcYoTCpkKwfCNKep/nx4uSIaVVsZgOka1CyT57aksTvZq5FmOYN5LEi8GoBMwoSGa1VmRZ5tsNrySPKC3WnEsjJbKp28AVo1izeeX+Lyrpy3khI8iVKevDmi7krjq5WZ3up9Sw2Ha4M50zClV3eYhgmb45CGah6O93xpXHJxxdbRSNK8Mj4r6fllti/AkZboVXcmkTTXTYdrg4CGK9rfvVDO4d48YbkhxlPlkME1dY736tWA6sbenDgtqNk6G6NQkH7HoFd3mMUpj18Zstpyq2bWMXU6nkUO3LXW4NnNCWkuGd/tmlU52YM4cY8Ck70gpaGa3FxFWYdJJnniuUXHF/T3sjJVW+94FfW6pPvOY4k48y2DWZKx3BBU/+LODFPX2Jsn9Bv7cV9BnHF2uc7NvYDhgQGLrWLudF3j7vUWDxxv83vP71Tu0qf6PiDDm9Js8MWtKTlwpO1Rd0wsw+BY1+FUr8aHrwxviyobzhOOdsF35Nk+TyQiqURdRaoix982dFquCYhcYG+e8PHro0o7LDFMOYalM4v3G2TPlqi+4Swhy3M2xyFN1+LWOOSh4x2mkfhRbI5DkqwgSQvOL/tcG85JMhncnVup06nJ/TMKYrYmMaMgxtC0KuauHH726o4g26sNdF1jpeGQZDm705hOTdIS7lxrCmshL9Rz9ZVpkBcdxqI+K5VkOd/yUx/id5/f2ddYpDnf/eY7+KtffO425Lisds3mn339g4dMWha1qIP1pfes8cZzS2I6oVYtP/Rn7ucrfuT3qgnyN/3EY/zCO17LitLoLWpRn8+1s7NDlmWsrBzOgl9ZWWFjY+Nl37OxsfGyr0/TlJ2dHdbWbjdGvHXrFh/5yEd+f9uo4vg2JyHdTDS9lqGz3LA4vSTDqqW6w7ObYzYnIQ1HjBp3phFtz6oaZFOHg+ubHKHCLdUFAd6ZxZWTb1hI5EwQZ7im5Bd/8V0rFMBHrw7ZnoQsN53KyCWIUoI449SSDNRAGoHSPGYYJLQweW5zwrmVRtUcw36TcG1vjmMY1e8wU9fEFObAr7QbewGDWbTvvFuzeWF7xvXhXOKtNDEJSlQTlTcEGTd0jV5NGsSdSUTNNnn0TI+sKHh+c8osSunULBytwNQ1orSQLNOiqLJLzy7XGc5jfEfQKMvQyYqCZzYmfNH5ZX71kxu0axbzRBbyZ1dkYb4xDtE0jTNLdX79mYtMwpR+w6HrOzx+dVg1yJpC6adxqsyqIIizaqHe823uXm8Sp2J2FqUZWQGDA03fMxsT2jUbHUFM4yzn4RMdhvMEXRetYc02cZQBkalrbE8jPnJlyPY04uPX9rj3aJskKzjaqRElUzQN9uZxpf9O0oKbewFRmvPQsTbDeczONJKsbbUdewrlHgUpXd+ukF7P1Kk5Jmstl62JGFCZKu5GV4OM0ll3teEyjzIsUxPabd2pKMmmolY7pq7YAdJorLVczq80KAo5ljf3xHxrveXy0PEO73lqk0mUsj2JGM5irgzmXNyZsTON6dclI7iMzzJ1jS86v0yQCBvg5z58TVyBlUlXlkt0VN02GcwF4W04Jo4hTdA8Srk6mOPbBsMgIcqyyv38SNujKApujUP0Qr7ygeNttkYRVwdzLEMQfA1puLq+NFqmLvndZQb4Iyc7NF2LqwMZzIyChOvDQOU178cQ3bHcYL3t8fQtYYHlyvhureVycy/AdwxmUUbbK+OfBCV+3Zk+L2xOqdkmm+MQxzRoeQfOpy3HyzZ0El206po6/+Vgz7XFjEuHQ+BNqmSBOQWWobHSdHnznct89NoecZIxS1L6SINs65IBf+/RNh+/vicGeIZOWhQM5zHmMODsijwL61Uec840THnDuSXyQrKjtycRz9ySYYtvCfPmVL/O9eGcD744IEckAI5lVAwdkIGfdWDb+75D14e71xrc2Avp+jZZnuOYBqMwQQ+Fag0ijUiyonqMlZFnIKZ1eBKlVLNle27tScTcNEwwDfFY0HWh/T9xfU/dszHWOOCrHzrCMxtjpqEMJzxr37U8SQtMQ+K+TEMc5cM4x9J1Hjre5rFLA1ZbbqXrPr/a5OYoZKnh0FVu+LvTWKjaUUowySrzxM9UiwZ5UX/klec5X/VPf49nNuQGLxcZf+vL7+QvvvHlDbmevDniaLtGS2nGjJfvnxe1KOAwVe3Hf/ciT9wYccdKnd2ZLNJv7AV80088xs9+x6P77pKLWtTneb10sFgcoBm/0te/3M/LWltb46GHHnpF2/L0008TBEH15zPLdTbHEZ5lsDOVhfhqS+PCepNIGVQNZzGTMMOzTW4MA7p1MVzJDugCD85GT3Vr2JZOVsCZJZ8wzsRV2pSc2WMdT5yvs4J5LBE18yTD1BXa2/V534s7XBvMObfaYGcWE6f5ocgeDYl80pFmfBKk4vBaO/zcKHWGo3mCY2YMZzFrLZcjbZfj3Rp/4oEjWMoJ+8OXB7Q8yTZ2LJ3BLGISlmhSwWrLZWca0/SsKl/ZtXRe3IqYRAkz1XAe7dbIlSFTKTkydcmVPdatMY9TruzOmUQZnlVwYb2BbRoYuk7TtZjFKTXbVCZAsmg8vVRnbx7TqgmlOk4hQ1BtXde4sNbkaMfjxa2ZMke6PTLFd0x6dZvtSSRoVRHT9AT5qvKXNY3lpovvmCRZTJQW2Ob+kb+jX8e+V+eZWxNans3dR1q8qFC5lmdxQw0wPNUg3RqFND2LWBn26KCMzwp0ZTC0MQor9Mg0NOah7PNgnnB+tU7NNnn/xV10TQYuc9WcDecx3ljckV3L4I7lOmeW6nzFvWv8o199huFc3IeBfYQLiXY60vGUM3fM0U4N1zJIM3HtXmo4bI7DSvNpqYilOMtZbblsqKgugPWWV+1L2Sjdvd5iaxLxzMa4Qv7KI+i7JiuKdv/A8Ta/8cwWIGi+Y9qi62257E4jJlFKy7WwLZ1pKGj/XiCGa6Gi419Yq/NfnxDkdHcWVyZnmor0ckyd+4+2ee2ZPpMg4b0v7lQRU0GSo2kFhiYDgoZjcHFnzu4sVhFHDpd2ZkzDFF3TKn35S0tTWeavP9Pn2a1phR6vtz3qrmR/z+NMGnZNo1uzWG7YfOTqHjXHpOZQuaObhkgL1lpiJrdUdzANnSdujEhzaYxP9/1qfyWaTLKqTV2ovpvjiDjJq/iklidRbNcGAaf6Na4N5vRqch8AxHnB177qWPWcLc3q8jQny5WBWAG/8/wWu7Oo0s8Lip9ycXuGZxuc7Ppcjed0fZupmVY51rJfYro1jVJhJhx4mB1tezx8olMxEF51qss8znh+a4Kp6xi6xpXdoBr29OqiBb60M6Ppmrzx3BJXd2eMN6fV7whdF7bDyV6NjXHEXWtNru8FFAiqn6rr8nhXWBNd38Y29crXQEdcuNs1m6KY7d88B6rr7xvqBXHGs5sTPEuvhmZJXrDSdDF0oaLvTCPqjsm9R1vVcfUdMbsLeOXa4kWDvKg/8vrj/+y9VXMMQjX7oT/zwMtGOYE4d/6Fn/wQrqXzy9/5+kM3y6IW9enqvz+1yd/9r09j6rLIPbtc5/mtKZ5l8MzGhL/4rg/zb77l1bc5Zi5qUZ9P1e/3MQzjNrR4a2vrNpS4rNXV1Zd9vWma9Hq9l33Pd3zHd/Ad3/Edr2ibHn74YT7ykY9UC6mWZ/HqU12G8xhN0+jULHQ08hxu7gVCf8sL5lFK3TaxDJ07ln3uWG5UaAkg9FrXou1ZRGlOuybOzL2aTV6j0hECXN8LJOfXM6GQ5U4Y5xztOHzxXSsMZjHve3GH1abL3ixG16T5uKaaL0MXRDBKskpjWD4ryqid0Vz00mX16jbTMK0a+bW2x3LTrbTBeV7Qqdn0Gw5f+6qjNF2Lj17do6YWuHEmBkb3H21xaxTS9yXuZBZLg1rq7I62Pfq+w3ue3uTyjiwsLUMjSnPV1KBcdcWgRte06s+modH2LXQd5nGK71i84dwSAI+e7vHRa8Oq0RvMIzZHIVlRoKsxwKtPdfEdk+vD+W0snGmUMpzHNB0xbzrSsTjRq3FrFBLGKUfaooHVkMVuwzFxTdEb7hxAkedJxomez+40xjQ0fNvE0DQ+cHHAmqLWTpVJ0npbzHnuOdKiULFcF3dmND2Li9tTRkHC5jiiKM9fIHnG622XWSQ00zjN2RiH1GyDeZxJgzoKKoM429Ard2dD1zi77LPW9njj2SUevzpQ9M2iaqIdS+feIy3+2J0rfPLGWHSxyLVUAMsNyVUuo7bKe2QvSJhHGQPlDpxkOe2axTRMOdoVKmyaF6y3PWUyJ+9teibnVpa5tDMlywtMXWel5dKqWTx1c0zLs7hztQkFbE4irg8DwkQic7YmwmZYqjss9R2mkeRSO6YgdkLDFb38VGVBA1WWrTAJRFPqWQbvf2GHT94Y01OxQp2axR3LPo9dHLA7j1ltOXRqFst1h4dPdujVbT54cVBFoTn129d4tqFzfTBnYxTyf3zxOe4/3uGpm2M2RgFBIoOxEi0dqPzpMle5UHdjtyZu3tMo5eae3OPDWUxRwK1RyPVhUDXneVGwO4vwLJO715tYus6NvTk3RzM09h3rLWu/mwvilE7NJs5kCNf1bequhWkIer/adDnd87kymPPS6niWREnF+zTnI22X00syWLy4PVPfIdfmzVFAmKSAeAukuWhwB/OYumPiOyZ1x6jiu+S6FnM/2HcKH8xioiTHdPbd4eM0Y6lR49xynet7altVBJ5WXsjAsbZLzbFwTZ2daSzxVvOYB493sA2dKBXn+9IY7OPXRwBcH4boOpzoeli6uPBHmQyMPhP92VG55JaymPcdo2IPgQxwJiojOc8Lrgwk99jNc+qOyd3rLX72FYIiC5OuRf2R1o//3iU+ecAkaaXp8B+/49FP2RyDmIs8cKzNq0526dQWaN+iXnm9+c5lvvaRY/zw1z3AkbbH81tTocqpUPsPXhrwvf/xY4eokota1Odb2bbNww8/zHve855DP3/Pe97Da1/72pd9z6OPPnrb63/t136NRx555GX1x7/fOggG9Op2da9JU+Py0atDbo2EvptkOaMwZWem4oR8aSybnknXtznSFjfckoaZF0JrbLomz2xOuLQzE1TngNFQGWtkGnpFqbw2nPPrT2+xOY72I1tUnu1ppfXzLEHEHMtA0zUsXVMmXdJob09ixmFy28C2jGvq122KQvKdX9yaMo2ksWh5Ft/w6Am+64vu4MxSg07N5mPX9sRwqeFWDt4120TTNBqexblVcWQ+v9IAxBToK+5bo12zCBOJhVpuOBztCKKsIXrCwTzCMXWyHCxTJ0wE2dZVHE25rb6jV54eN/bmPL85FaQ6StlTNErHlBxToWk3ONnzD+37mnJMPtnzSdOCaZSwPZUorWNdj5ZnkhZw11qzOjclonSiJ0OEg9dLv+7wiWsjDF3j4eMdbFPQzSTLGcyil4l6UtebJhTWL793rTLjWWo4nOr73K8iITs1m7wQY7jy94Gm6MggNHBLxfcAfMldy9VgZHMUygLcks8uKBgFKbM4U9pU6PkWu9OYrXFIp27zxXevcP/R9iF66yTa15+WQ6SOv4/KDpRJ1zGV+eraBg3X4t4jLc4oSYLvmPR8m5oyQtpTw6fSpCtSpmi//vQm1wZzPnxlUB1g29A53vXJVD65jjTqJdrZci2OdWu87kyPt969QqwM1ZabLu2auM1vjkMu78yq97z+jj5ZXvDEzZHKDFeDIw0+fHnI1WHANMoYTBPuWK5z13oTxzT4t++/yjhM0BU74KAjOkhE0NFOrTKu+sSNES3lBxBnOc9sTLiyO6+aJMvQMbT9/5dIKrg5CpjHGVGSYRsSDTUMEmZxymiesDMNqyg5EHajY+kq/7vgjpUGvmPgWmJMdX6lQbdm85YLyxIx13RZasg5LCUUaZZX57cAbNOgXbNU1JVyww5TPHs/U/v0kq+2XVz671xrsHrAd2d7GvK1rzrGa8/06db3Y+2A6ti5lsF3ftEd1TErB176S7q+vbk8w4SWX3Ck7VGz968rDXHnr1lqyHaAXbTeqbFUd7BMvaLCh3FWyQzKa1HX5LyW76zZOp2azR3LDb7+NceFHVHIuZpG6aHfGS+9z0/0fB4+0eHL71tD0zSiJBdTxyRnpelyetlnreWSF8I8jdU1WBT7LJ9XWgsEeVF/JDUKEn7rmS3+7q88Vf3s3iMt/vU3PsJq69PrQFuexTu/4WHiAw+aRS3qlZSua/yjP30fAPcfbfP1//oDXB8G2IbGKBC93ruf2OBI+2m+/yvu+ixv7aIW9fuv7/3e7+UbvuEbeOSRR3j00Ud55zvfydWrV3n7298OwN/8m3+TGzdu8K53vQuAt7/97fyzf/bP+N7v/V6+/du/nfe///38+I//OD/zMz/zB7thL3lkFwp1ClScSZTm3L3epOvbXNwWY66ma3Fld85eENOt29UCCyTyxTI0tsYR8ySjXbPp+HaVx+keyK+972ibV5/q8G/ed5mtScQoTDANTRpGQ6PlmZzq+4RJxv1H27zr/ZcxlVNtqgxdQGjT7ZpFry70vXKxF8RZFd1T9j5rLZc0kyxbQ4fnt6a0PIswyXngWIdZnEr+LGIIlGSCbBg6so1BSpjkBEnGWsslSnO+4HSPumNycy/AMQ0ajoXvmCzVHY51a7y4PeW3nt2iV7e570iLT9wYcWlnRpLleGphC0LVtAxpKmxl/gNwqrdvWPjhKwPJg1bOwlle8NBxQfmWGm61KN2dRpxbaVR0TdcycC2DlaajEDuNAjFK0zSNnu/wLa87xVrL4+YoAE2j5piMw5RRkBKlsVBP1bautT2SCs2DcZhUOubkJSjTYBpzaslnpszAgCpHuTx/l3ZmfNH5Ze450uLF7Skbo6CKCmooPbY4rQuCf+dqg6u7M6UJF83uaB6DBg8db/PQ8TYAbzi7xIevDNGAY90a/bpLzdYZzBOuDuZiPrdUZzCLhXZqGYRJRhhnuLYh+k21O5uKUn28W6Pn29iGjq8yhMtms1d3eOvdqzy7Mabt2fTqDl94fplf+ugNXtiaVvs8jTKe3RiTZHVWmi4706hqwIHKTMuxhAlRasDLWfEbzy3xpvNLDGYxkzDl+Y0Jl3dmFYqt65qg+GGKplG5LF8bzNkci4nbSsNhve2S5gUbinYLQlk/0hHH9SjNsAwxX+r7YsxU0dXV6x1L554jTX77uW1ypVf/5Y/dqFBuEGbGaktMzF5zustvPrutss9FfjGYiW7Xd8RoLs0KmjWLjZFQ3Fueqej+eSV30DSNMJFMYMvQeMv5ZUxdB33f/f14z2et6RKUEVKeRZLlREnBXrDPlgFhaxiGRt2x6PoyQBOkV6KN9uYxhqaz2nR57R19pqHIRVqexZ968CgfuzrkN57dpu+7irkhxmld3+aOpQbXhnPOLtWJczE3XGo4vKiQ5+Mqz9zQDz+Qj3U9PMuQ12kapinxSKXmF8RxutQEm4YGyjX+dWd65IUY7JaeL/26w+NXhmxNInq+RRClbIwC6o7B/cfaTKOUvCi4vDPDsyRGTtc1TvV95nF2yBH74DUA0jM8dKLNJ6+P94dZyt3e0OFEr8aNYcCtkdxHGvDwCYeaGj4kWc6NYXDb8+NT1aJBXtQfen3i+h7f9BOPVdNYgK+4d40feNv9lR7p5erdT9zidWf6le64pJ0salG/nzrWrfFnX32cd/7OxepaDOKMmm3wr3/3Esd7Pt/wBSc+y1u5qEX9/uprv/Zr2d3d5e/8nb/DrVu3uOeee3j3u9/NiRNyTd+6detQJvKpU6d497vfzV/9q3+Vf/7P/znr6+v8yI/8CF/zNV/zB7pdt400NQ1NE2Q3y3OOtD1ano2pi8bz1igkSDJ826yanRK9qykDl7WWLPh1TaNXt6GQjGDH1Ok3HIazmOWmvMcxDRxTclxBNLqeZahYIo1Hz/T40KUBT9wYMQpSFaMj6NTTtyY8eqZH0zPZncVsjEKyPJdsVbVjYZzx0PEOl3ZlIZpkBU3XwrF0xkFKVznhHqQiv/+FXS4PpvR9h3mSYZs6a606SVZQFCI7KjNGQZCsMuv2eE8oytvjiJpl0qoph+C55Kge79RwLV1pkcU4Z29+WFt9dqVOmGRcHQQql3h/wTiaCxJUKERnFiVMVa5x6XD89MaYy7tzVg4Mt9da0gi1PIvVlsfePObMko9l6myOxGH7157a5PRSnabKdi6/1zZ1xkFyaADu2wbHOrX9HONCaMTrLbdiITQ9oXFf3p3Rrdt86PKALzy/XH2GZWiYhiBYpiEMhfW2bNtwHrM1iZhFKXevNRmFCfM4I4iF6tmqmeJ6nWZM4pS8yIkyMTlaa3nYaj1Sc0wePN7h8s6M86sNYSvoGsXlQWXwVPYkd601qbsm73txt7p+dF01HYjD+HrL5ZGTHXp1h3GY8L4XB4yDmLLfv7wz46ETHR460ZHzFSRc3p0xPEBPL+8vxzJYbbqcW22wN0+YhClJKghqnheEaV4NTy6sNTA0QQKjVDTug1nMi9tTticRmxMxuEzznEdP9zF0jdNLdTzbYHeaVM33/oBCWBtrLY/BNKZmm3S8nJFyQZYNlfPqK0nFhfUGN/fCysm6U7MwNBlCOKbBg8c75Crb98mbY1quVUXAmYa4LXuWaGLbnoWuy7m3TZ0vv2eNIM7QdY0ru3NOLUnWt6+eBV3fxnNMLu/M2BoLIl4gAM2tUUjdUXnViPSivGXSLGc4F0S8zNNOANsUl+swSSkKuY8noRjK9XyLe4+02VVDk6ZjkuTCdEE5VDddi45vk2R59V33HGlx51oTy9B5/MqAa4M5rmVgGnp1b+4FCXtBQt93MA7AxSXzxXwJhNxwLVabLtMoFQYCYshVFFTGV+W5ADAVxXq54fDijlx3nq1TIBFdvm2yPRUX86uDgDTPyWOIUmnOJc5LnLN1DX7vhR3+xANHaHpWdV0cRHoP5lJvjEM+cHFAlhXE6rzfvd5C0+RZ1XCt21Di15zu8ezGBE0T1sbWJKrQ7s9UiwZ5UX+o9fOPX+dv/MInDukK/spbzvJX3nL2ZWOcyvqd57b5zp/+CHetNfnP3/X626Zei1rU/2htjkP+2W++QJxmnOjVOL/S4Nee2uRI2yVKMv6vX/4kR9seX3Tn8mf+sEUt6nOw3vGOd/COd7zjZf/up37qp2772Zve9Kbftyv1Ky39Jawf7cB/x2HKWy6s8MCxNv/lE7cAaWBrlsEsTtkci36tRAvKhbOh6/R8G9PQaXsW25MITRMjo0u7s2qhVTYPqdKHgqBCcZazM43wHZM7luvcvd7ixa0pkzAhzjLWmi5JLs1qqpBUDWnkNDSOdmoURSE6ak3jzLJfNcjyHUJxNnSJ92kf0LyNgoT3PL1Bmhd80XmPtmUwCUVfPA1FU3uk7VXNMcATN0Zc2Z1hajo39gJWmi5P3Bhhq0Z6EqaiEVbDB5CBoO/IZ4ujbFE5MTddoUxahkbDNQ8hi+ttjyTLuWPZZzBL8B2TZzYmRGmGrsOFtRbXlIbyqZsTzinX3SwvOK5Mw071fYZziwePtbmw1uQ/PX6drm+L3llpfJcaDudW6jy3OWUapjy/OeHFnf1jqGsaX/+a41zdnXN2pU5RyOLesYzKdCfPhY1QDh9eSnd/zekepq6zNYnYm8fMopQ/dtcKtqnTrzt89OqQPC+YRAnHejV82+QjV4eMw4Qolevl5l6IhsYsSqq4rCMqFqcs5wDqWV7dcVZQqEa+XLRbpn7ATEuj6VosN5yqkW444sx9TOUvlxFI4zDlwePSEF/enfHC1pSOb/G6O/rsTiOevjVmepCyjTRE6y2PB090aHsWl0qduqmz1nLZGAe86mSb5zdnXBvMOdX3K1Tz1ijgxnDONEzYCxNO9XwurDV59xO3sAyd4Vzo38N5gqnreJZeQX3rbY8HjrZ5dnNSrdumUcpEmchdWG9ypO0xChIarikGfZp4zVzdnXN6uY6GNLy2qfPIyS5H2rUK1dV1cbM+0q7x1K0RL24Lah6nEh1k6EIJ3plG4tCeF/zWM9uc6Nc40fMJkoybwxDb0LkymFexVfcdaeM7Bv/2A1eqe2i16dCu2fR8m0mUcnU456SSYJTPmGmYsjON8WyDuxQaWh4HNK3KGy/L1IU+/9StMa66lmdxxtmVOkkqcXa/+cwWz21OGM5jWuo5ECYZP/3BK6Bp/PnXnODmXsiRtoumCfOk/I5yoHRzL6ho5gfr5UiYL25PaddEVrA5CavIu7vWm5Qntmy2D/q1rDZdkWxoInMZh2nVqAvybdJwxBE/SnPOr9TZCxIeuySDgjS73YztRM+n7pnV9XQwSz5Oc568MSYrcq4MZtx3tC2ShrrDOEyZhimrLfeQaV/dMbEtYQx0ajZtT+6zV1KLBnlRfyiVZjn/4N3P8BPvvVT9zNDhR77uIb7ivk+tNy7r4RMdXnumx9e+6viiOV7UH0itNF3+6dc/iGsZvOpkF0PX+Maf+CCPXRrwza8/xY/97iW+66c/wn98+6Pcvd76bG/uohb1v0S99Pl9tOMxj8SZuXQy1TRpITQEJW54Fn/ygXVO9mpc3wvRlKatQExZQMxmLFNnRWkiH78yBCTztFx4Xdmdsd5y8WyhVZq6TprnLNUd3nJhpVp8nexLpqimacTK+KtAqJyCamoV1a/p2Xz1Q0f5hcev01ZOvhvjiEmQ0PCsKk4qSDI6NRtDF7OmsjRNmtdQZSm7lsGTN0c8uznh9JIY+BxsjmE/6eGeo01ujgMZOmgQJTn//yc3uLQzwzUlP7Q06QI4s1SnU7N5bnOCoVG5CgPUXavSB37yxog33ylNZk8ZJK21atx71Ob9L+7iKP3yzTKLWq2ywyStUN8SOZxGKbdGYaWjvmu9xf1bU9VISDTVDWWQVA4t6q7JStNlGAhSvdxwFGJuqEW6upYMjcs7M+quyQPH2tzaCwjTjK+6/0ilzzxYyw2XL7t3jZ963yV2ZzF3rzdpuBZvOrfEL3/sBnetNXFMnUmUMo8zthVyCELVB0FCASzTwLMl/qh5YOBRXt3jMOF3ntumruKf4jTHUhGWB5uScZhU7zGVqVpZ/YbNl92zVungLUNHQ/TsTdesnMq3JiGmoiXH6loPkn00WPTUOmttl6KA5zYnNFyT86tNVpsuF7enPLUx5vowrAws53FG15cGq6So3rXWZGcScc96i6WGw/mVBtMorejrs0gclB3LqJBcXrK/f+KBI7z7iVtc2Z1zfTgnUfm5Z1ca3HdUYnrKA9mr27Q9i1GQcGG1SU/pa491PZ68mXBzL2B7EvHqU13WWh4yZijNmeRjsrxgOE8IkuwQzX4SpoSqUZslKVsTaaZbrsdK06XpCWpaGsJpaIrFIoySpmdhajpb4zl5UVQu3g3XxExyVg8wRGzD4M61JksNB982eXpj33fH0MXs6qa6djXEWftIx+Nox0PXdXamEUc6Hld3ZXDRcC2KQhBUQ9ME7Q1iLm7PyPKcJCu4roZW5TN1ZxYTvUwD+tIGeVcNEsrS2afzR8robB5n1fvSA7KHN51bEhfuvODKYM72JOLGXsCDxztkWU7dNdkaR7ywPeV4t8azmzLMuLg9xTR07lprcLQjw6BzKw0evzKk69t88YUV3vPUJkB1X9cdk0mYqPz4vGJwjMOUo50ao0AkDastt9rWfZR/fzh6old7xT3FwqRrUX/gNZjFfNNPPnaoOfZtg196x+teUXMM8sv2337La/jj96//YW3mov43rLdcWOF1d/QrJ9If+jMP8B1vPMMnro14+xtPM4szvuWnPsStUfCZP2xRi1rUZyxD1ypUAaianhJJu6oWdprqJGZxxrZy1e34skD2LIPzqw1Wmk5FEcwRN99yMQ8oo6KkajraNVuiiVYF2fEdgywv2JxE/NazWxWqBpJzqmti4LTcdDmzVMfQBZFtehYrTZfjXY8Hj7XlDSXFOsm4uD0lyQtcS+fuIy0sQ0xoer6NoWv7lFKkuez6Nuttj5pjMolSLu7MWG97fOOjJ3lIGVIdrAePtXnr3avcf7RTUUbfeHaJumtWsUa+Iw6z5aJwFqVcU+62eV5g6DqjYJ9aeLrvc2G1gXXAvAwkr/rFrSnjIK7QIlPXOLfSqJqActHq22ZFgSyROIA8E/r8L3/8Jr/8sRviKIvouoMk42jHq45FWY5l0PIsTvV9vvD8Mi+XLJCmsq8l7VTXNWq2+bLN8cEqr5mV5mHkFw3SoiAriioT2tA11lpuRUk92qnx4PE2d642BCl2zUNNRrUYh6pJLN24NbUQL19+XCHDnm0KXVc7jHqfXW7w6JleNXQo31cgGc4gXhrlewazmG7NxlNO3t6BYyaa6YRPXN/jvS9IlNmHLw/UNovMwDH1qsEue4Zy/0/2fGxT5w1nlzi7XMfUYbnp8qqT3UOGS+U+l817EGdc2Z2xO40OjJWkqR8GCYN5zCzOaLom/QMGU8sNl9P9ejVoKe+BtZZXDaJmUUqaF8xUrNLBPufOVYkfK99fxrMdPFfP3JrwwtaUOMkxDRXfZOh8wemeMpTaZ6kc6QgC/NJmKkgygiSvnjGGoXN+tUHrgIHsyZ7PmaW6oupbVRxVeexHQcJ62+PaYM6tvZB5lHG8W+OutRYrDedQs13q7jVNPncWZzx2aRddE+PAOFXO31YZM7Z/zF8uDtU2Dj9bojSvLrQCuGO5zsm+ULx926zoyINpjKZxgIkjyO1X3rfOl9+7xpl+mWXvomvCVLhztUmrZvHA0XbFgABZ3/frNv2Gy8NKKqCrYZ2p7ulqH3SNI22Pft1GQ67N+460+OoHjwBiKlfGoZWMi2Xl3D0Jk5dFzF9pLRDkRf2B14cuD3jvC5IlmBcy/fyv3/362385vaR+69kt/u37r/AjX/8gvmN+Wgr2ohb1P1s///h1fuK9FwGNJ2+OQYMvvWuZX31qi2/5qQ/zc29/9DMuvBa1qEV9+nJMndffscRvP7fNPE5ZajgMZjH3HmlxbTivmqSub3NrFHJupYGpazx1ayyLVCTbs+XZzOKUSSju1Tf35iSZRLctNyRr2FKL6lJm942PnmCt5fEvf+sFpXEVTXKS5bdRv9dabkVtLY1zvvK+NbIcnrk1ZnMc8iV3rQh1kn3n4SjNmYYpaZYrPZx2aJF68P8BDE2ohVkhjV6a5TQ9i5ZnESQSB+OaeuU+K/uj4erS3DddS1At16LmGKy3PJ7dGFfRMeVubU0itiYhN/cCjnZqbE9CTEMorvcdbXO049Gp2YzD/eglgI1RSJTmBEm+33BpMuQom4WOb8M2dA/E8VTGNxq4to6u6ZWLdJm7/CfvP4LvCI0ZBDHs+F1uDANWmxJ71HItBvN9JPdgdX2bTs2qmqCyNschu1Mxfnq5XPtIZd+WGbhlxVmOqxuiG/d0lhsO3brFuZUG7ks8T0xdTM3E7Xn/2ikRzPLftmVwvONydXdG07XV4EdeWyBGYCAJHqMgOUSDLRf2ZWVFgWVqRHNBCU2DClmv3tN0+aI7l/nNZ7ZI0rzaxyjN+OTNEaf6dXq+RDeVkWggTI7n44xpuD80WW1K9vJ626Phmrz5zhW2JxGjIOHZjQnjMKFdMw/lq2d5QV5k+y7f45CGa5MVQeVMPo/FyKs8FGGS8YazEitW3h5Nz+SeI63qOh4Hopk+SP8/2fcZzhNOKYTdd0x0TaGyts7RTo1zywaerbMXxIyC9NDxLf+vU7MU+s1Lhh0yYCpx155vH3KJ0jTJx96cvPz1CUK/d22dF7amTIJU3SMSF1e85LNKzbGr6PkrTYdnNuDu9SZ3rjWZRymWuR+/ZJsiKSnPZ5JL3NSRtse5lTq/+ew2p/p15klKzTJeQvuXeumaxjR0Dup294IEzzLQNOg3nWr/9wcPUkVRnvuCvXlCkud8yd2r7E5vPzaGIcOHL7tnjd1ZxHtf2MG1DGbR/rXnWRL1Zhm347Z1lWGsaTJIW29J7vWjZw7HEZbNfMuz8G2DuitMgLIXcc3/MUx4sfpb1B94ibmHRpIVvOXOZf7p1z9I7TM0GkVR8CO//jwfubrHrz21wZ968Ogf0dYu6n/HyvOCX/jodZ6+NeEH33Y/7/ydizx2aYBj6jxwtMXHro/4zn//EX78mx45tFBd1KIW9T9WcZrz3z55q/rzF5zqouuC1F0bzCtKr2MKnXRnEpEVBU3XpFOzK3ddw9hfkJe172ytsdRwKnRkGqZ4lqlQCXndWsvFMXUsQ2Op4VWNblnTKCVIJKLkzeeXK0TosUuDykzy+a1p9fNyodh0TY52a1WO0G7q2wABAABJREFUcc+32ZlGPHS8zXAm5j0HS9fh0s6McZhydrnO1cGcrm9z93qLJ66PeHZjwsleraKXHizfkUXhteGcjVHAWsej6VqHnlHlgt9TOu4oLTi3Wudkz2e15eLb4tw9CZOqGTmI/lbfpWjpIMjtteEc3z78ezxK9imc5fHQFW7oWDp/4oF14iyvYoAa6nyVTZyhaTx2aRffNun6FoNZzGAWc2Uw441nb/eCaNUs2goxBUErn7o15hPX9rjvWJsbewFffNftud9lTvX2JDz0891pzHpLNNcSISWL/bpjcf58k5ptMgpipspBW7y5D9sAmcoN3FKZ2aYmLsWrLa/Kai3fIRFcJQ1a3l9ezWstl7WXXJOTUHJ1r+wK7f7cSp3rw312k2cZTKOUK7szoT4faADEwVljGiasNB312QW/+/y25M3mBbMorZpBXdN49akuaV7w7iduMY8zrg3mXFIGYMN5zK1RwN4sZrnhVsZiZ5fr7EyjqvEXhoRoq8tmbB5nnFmqV3Tu5aZboeAFBQ+f6FSmVOU1eXUQsNx0mB1o4CWyaT/z9sySaNOPdGpcH85peia2oWMbuuQfF5JXHis9+RvPL/H81pQHjrW5vDPjiRuj22KE7l5v8cLWlHksUZCrLYmHLMvQdXSNKs7ppU1XwX4jfKxXYxalnF+tsz2JbotYOr/aqO71MoqqrJYnx+MgBd8ydM4s19UgYSZyFGUSt6Wu7a1JgKEb3LnSPGTSVV0zL2marZcAUYYGY+UGX7cNHjnZ4dpgTr8u2+dYBncs1zm/2uBXPnETgEdOdllqOCzVnUMNcnyA4h3EpRmhVw1TDh77zUnIJEpZN8Q5vKxplPLi9oylhsNX3b9OzTI43vPRdRl2epZx2+DL0CWOTByu5bhFqaTgNN1XHmG4aJAX9T9dSZbz937lKe5ca7I9ifih9zwHwF9763ne8YVnXlE0k6ZpvPMbH+G9ytFuUYv6wyxd1/gXf/Zhnrgx4vVn+xJp8Y9/q5rKnuzV+O3ntvnbv/RJ/r9ffe8iXmxRi/p91ksjxsvmGKgQW5CFdWnOY6ExDlMubU8P/T1Q6WYvrDarGKOS5jkKS6Miee3GSDSLTc9iqeFKtvCnyMIM4oyNUUjNMtBesq48uA8lUvonHlgnyXKeuDFitSmU1Nee6WEZOteHASfU4vi3n9s+vP+a7Fv5uS1vHxF98cD+vlxtjkM+eHGXvSBBR+jBd642mUUpcZpjm3p1nE4v+UzClHGQcG13zrnVBp5tVAMJSYbQ8R3zEBK81vKI0gxPNfx3LEtTtjkO2UWGFfO43P79AzMJU9HmalTo1SwW6uj2JOJ0f39QUA499jXoHKLbnnnJUKGscyuN6j2l+7ZnG9Wid6lx+1AB9hHkg0kaIHR/y9R51cku51YaDGcxP/vha3zo8oBHz/S4sNbgPz1+XT5D6UUtQztkHGQZOmdXGoyDhHGYcWbZP8R+K03hAG7sBRVduHzFzjTiVM9nGqecUznXt5VKv3rqlmhZT/V9Oire7NpgzpM3x+zNY6HtWwY70wjH0llvSRxQkGSMghkrTYkN69dtfNvk3GodXYNZnPEFp7vq95yc0ywveOzSLqMw5VinphzSfUxDKMLlAMe1DeVILHvkWAeHNfKzlabD9WHA8W6NrICHDtBtP11NwpSxuqeLl3ayyGDs/Kocs+tDj3f+zkUA2p7JhbUGYZxjGXrlePyF55d5zakenm3womp6g+SwTrfjW6y1XS5uz7hjWa63B461KYqCSzsz7jvawtnUKz3/SxkLZSwU7GtfN0bhoeMCcv4d02C9XeOtd6/imHoVmfbbz22zMQ6ZRalq9OVzrg7mBHHGm+9cxtJ1zq82ufdIkzuWG/zWM1uAuFLbpsHNUXAbvbjumLcNuSxjH6E+2qnxiWtDhvOE5YbDZZUt3as7mIYmzuhqINBWOc6ynzmn+v5tdPTSawDkOi8R55erNCtk+FlwqEGOlfv1qb7Pg8c77M1jfu2pDYBP2SsM5zG704imax7yADjerR3yNPhMtWiQF/U/VVuTkO/89x/hQ5eHuKZeTWq/8dETfOcX3fFp3xulGT/xe5f55tedxLUM+nVn0Rwv6o+sWjWL15/tA6Kl+elvew3f9TMf5cmbYx493WMSJvyHD11jve3x3W85+1ne2kUt6vOzXppr+anKd0SX2anZHOl4XNqZcaznc+WAOzTIIu+utSbtmsX7X9zlVN+vEIRSS1t+55M3RzQ9m4ZrVnTDKMuA21GE3aks9oIk4789cYs3nF2qUObgQCzIPcrAT1P6xBJlbbpWZa5VosYvN1izDHHmLYqC86uNClXL8kLp7G6nQZala1rV5JVI1a984ibXBgFJlnF6qc6Jns8nro/IC9Fonur7bE+javFa0njrjsnZ5TpPb0x4bmNaIVhlA20bcrzuXm+xVHf46ceuVu+N1e/5SXh7XMp6y2NzHLI3T9ibx7zp3FJFiX1pDdQCexqlHO/5vP1Np7EN47ZmoqyDw407VxvVUMAy9E+7dijRzoPn4813LrNUd9ieRqy2XNbbwiqoP3FL9LSlK3PLpeVZRKnBhdNNNKiow2XluUQqHe/WsAy9On/lflgHxKBlU1E5Wxs63brNuXrj5XXXWU5WFFVE1c29gCwvquGSeeCzdU0yawfzGNvQWW+LJnd3GtPyLB481mGt7XJ5Z8ozGxNG8xjT0GjXbOruYWYEQFZIrNT5lQbzWOdYt8YkSg5p5DX2BwaOqZO/zO3+6Jk+9x1t8673XWZjFFZaUZBreBrKgCdKsyqOTaKUiqoxLo/hS2OKiqIQh+wDfddQRVplhRjAFeovB7OYNM/50OVdPnBxF+A2uv5BjW753XLvHL6Xd2exXAcvuccHB+K2MnUwMvVBxzovLzMsz3sZL1XquV/cmnGyX6PumMoZP2Mei9kYGnz0yhBDgydvjplHKStNQXDrrpidHbxf7j3S4lTfR9M03nr3Ko9dGjCcx9imXt3P51bqFEXB+y/uUsChXPGyykGIbxtcWOsxmMU0XYvfeX779ub7JeeqRJwNTa6t1gE0N1RDjDQvDt0HcZbTcK2KOfRKDLZmUVq5WqNRmY6tt72XpXB/qlo0yIv6fddHrg75S//ucTbHEXVHHBZ9x+DccoO/+WUXPuP7/+6vPMW/+8BVdqYR/+dX3vVHsMWLWtTL17ufuMVf+7mP8/f/1D38k19/gXuPNvmzrznGX/9PT/BD73mOtZbL2x459tnezEUt6vO+PtXypqYovWEiplK2yva0DJ0kyysqoKFreLbB6SVxbPYdE9vUGQVJhdyd6PncsexXTd79R9vcsdTgxl5A3395lNGzdXQdWq6Npmnc2AuqBjlXmcCnl/wKsQL4qvvXedO5JX7vhR1ebt3W8izOLNVvix86aD751M0xz29NePBYh9efXapQpJerTk30h66l84Xnl3FMnRe3pxQUFXXywWNtLu3M+MDFXbo1k0dOdg/Row8COI71/7D33mF2XeW9/2fvffqZM2d6lTSqVrctybbccAVsY2NaANMMgWvMTWg/bgpcLgnkhpKbm4QEEnqAC5g4YONgihvutmw1q1h9pJnR9HJ63XX9/jhFc6ZIMyqj4vV5nnlmZp999l5r1/Wu932/byGvOTtuAsCwHPpiOdbPP+blqwl4WFQU7oFCaGgkbdAyrg5yMm/Sjp8qbyE0Pp41y2Jc02FaldZU27hc6KnIGhYjyTwBjwtX8Xz0xrLH/Q4URNbG0gaL6o8Z6iGfm7YaP6NpvcKQWFAXIJIx8LpUblxROMY5syAc53Wpk7y8lu1wYDgFHMt9v3hemP1DKZqrC9daU8hXNuCfOzRaYUQtrA9wUXNoykkEBSqE1S6ZV8OSxqoKA7U17OfmFU2F2spFckbB0PR7NBxHkNYL+fev9MZoqm5BURQ8WuE+smxRMMCK33VpKhsX1bOjN4btCBbVB1nWXAijbqr2ssAdqPDwQSF0WSke04mfQeE8v3I0Tm8sRyJXUKMez4HhFH63xkhSZ3FjVVHwzMHrUlnSWJhsWjsvjNNbqNdcsW1b8NT+Eap9bla1VtMdyZDRLRbUB7Bsgb84cdHREOS5Q4VojpGkXr7PFtRVHveg10VjyEvWsDEdp6yaDwVROmdCUHbetCsmtNpr/Awm8jhCMJLUqavyEE0fm9Qaz3Aiz7aeGAvrg1xSEv8DLp137G+7GNrvVlVawl6OjFp0jWXZsKAWIUQ5UsPtKuRgxzImtX43N6+sTDUoiJAVzrLPrRHyucoG8qKGYHmC6IpFdaR0i0TWZEVLiKPRwrkq3yHjUgOaQj6aQj5Mu1A73O/WyESPXa/T2bLhgIeO+mBZWAwKOeel6ISpJopKhHzuacV764vPdremFmpc+yojhibqQZwIaSBLTor/3NLL5x/ajWkLwj4XibxFR32AH37o8vIs1Yn40xuX0h/L8cfXLDzzDZZIjkNGt8iaNpGMyUN/ejVf/u0+/sd/7uLPbrmIv3vkAJ97cDdN1T6uv6jxbDdVIjmv8E7I0Zvu1SCK4ca1fg+GbTOUzHM0muXqJfXsHUxyybwantg3XFxX8NieIUZSOhs6allYHySRM6nylNSVCyWGbljeVA6BrK+CBfXTG2Br2mvoKA6WJzYxmbMKwl4oZA2rrLLq1gohystbQtN6fdeMK/E0FX6PRn3QS9CrkTUsMrqFd5xI13iPlktTeeu6NnTLoT7oQVUUbl7ZzEAsy76hFF6XVvbwjKZ0gh6NkVS+om2VHi5RPDbHDPjBRJ5Y1iA7ztDRVIXVbeFyW9YtqCXkc+PWVPYMJJhX62donJp4XbCQJ7xunJE9nlK5rYBndkPQg8MpemOTKwyk8xb7h5I0hXyTJiNK7c0ZdoWaOhzz1GXGTRA0hrz4PVpR9dzF0qYQewYSxwzICaN+Rxw7jiVvm8+tTTs5cPWShoInTSl8z6WprGydOuyzvdZPtc9VNrQ9LpU61+T+VXkrIyJ0y8HlKuQnezWVcLEebKG9hba21vgZjOcI+900VVcKf7WEfdREPOhWHrdLJaPb5ckMBcoiXaX+1gc95XM58X4/dpyOheeO9wKWTBalKGKlFRXT9w0mK74f8EwWZSp9DwoTNH6PNuWxbAn7i2WhCpSug4n5t1A8dzUF47o3mi2HgyuKwoaOOg6NpmgK+cp1pws564XtrWipZnlLiIxuMZzM0xfLEsua+D0qeeuYINqxaJbCMU0UPeolLQBNU7huWSMBt0YiXwh3VhTwuQqRlrUBN+FAsUxbMczcram82p9geUuIS+aFaa/1V4QzT+zp+DH6ksaqshhawOOiNuAmlTPxuLSK8zM+/HkgnkMIgSMKkSSjKZ3WsJ+GKi9jxTxka0J+zS2rW4hkjLJA2kSmejXUB70MJPIVE5Pj294S9pWrEbTVFCbsOuqDZA2b+bWBojBjIQd5oof7REgDWTJrtvXE+IsHdqEqBYGSRN6ipdrLg//96imFRUok8ybffeYIn7h5KV6XRmvYzw//+Io5bLlEMjXvvGw+l8yvKXsHLmoOYdgO33iyk1WtIXb3J/mTn27j/nuvOuGAVyKRHKM0mGkK+WgN+6Zdr5S3VxN0M5YWNFZ5aQ4VahxfvaRh0jYDHo2agJv1C2rL3qB1C2qKnt+ioMwsVEttxyFv2oXSTlQO1koD4M7RNDt64xXtyZs2dQHPtPmvJ2JRQ7DsPdzVF2f/UIoljcFyrup1EyblOoqTAUPJfCE0tmjEuV0aLdW+she91Pe0XhB6WtMe5tX+REU5mpxhUxf0lEtuAZQOmcd17AgcjWaJZY3y89FdNOoODBU8p83VvvL5K4X8lozMqagNuhlN6bhdJ55IH489jQOoJ1qojXxkNMOb1k4uJVld9BaPr9ULx665kWKZGMcR9MdymI6D5TgMJfKMJAvewJqAh2uWNkwaZJfyvl0T8o6nY3xY/okIeFy8Y8M8eqM5NE3haCSL6TgsnuCE8Hs06oLHBO3WtFUzktKp9rlZ3RamIehhNK1zeDTNy11RWqq9WLZDMm+V68lOd29GMjq7+uLkLJueSBYFWNZchdelYTtOQTdArcw7XtMWnuRJXlgf5NL5NbhUhdXj3qEbF9VxaDhFXdAzbX7q8Rh/pN2aiiNEhZDfeNa0hxGikHpRuucCnsnnoi7ooTuSoSbgKRvgixuCrGkPs6Dez8tHovQnCsvHi16NnyhZ3FhFe3HiaDSlE8ua5fSI2oCHjYvry2Jply+sA449ZxbUBagNerhxRRNDyTwt1T4UReGt69pxhCDgcbGlK0pvNMuGjlpWtFQXVMv7E/RGs2QMi8bQsVJlMHli0hgXvTHxM00pCO1ZjkPQU5i4C3pdhUlIr4sRdBqqvPx6ZyFkev2CWhqqvAWv9LgJuImVAnxujfYa/6Sw7RIlfYfx147fo3H1knpWtBQmPoQQRcGtQg73vNpA2UAu1aZe2x4m4NbKVRBKEzITy+edCCnPKpk1GzpqufOSNjzaMbGRuqB32ou+xN88vJdvPtXJvz11eC6aKZHMivGhc9cta+Cuy+eTylvs7k+ytLFQf/CPf7SF3uiJQ/okEkklrWEfC48TXZTMmVi2w1A8jwKMpvXjhs/euKKJT960jPl1gXKesuUI3nXZfOqDXq5e0sBwMs/uvkRFCPF05EyHSNogmjYmuTJqgm5q/G466gKTciC3H42x6UhkkrfkZCgN9MYP8Kd6r246PMa2nhiHR9KYtkPWtGmr8ZUH66pSEEDb0FFbHjRGMwUDd7xa7pKmKhY1BCuefT63i9awr6IN8azBQDw3ycAU44JGS7ZNfdDDsqYQ1yytnNQYz3RCaSfCEVPns4f9hT42V09t5KWKQk/RjDnl5yVUVaFzNE1PJEvesHm5K8L+oRSWLfC4VBqqvJNUgKEw8DZsh466wCTV8qlY2x5GYWr18IkoisKC+gDtNX5e6Y0VjaDJXvT2cQrYXnfBk3rrmhaWNlURz5nsHUyiW06h3BmFUNWlTUFGknlGkvqk+1KhcB1mdRuvS8Pr0jCKhknJE6opBWPfPaHg7oIJKuzJvMXh0TQZwyLgdVUYTs3VPtZ31BZKeI3z/peiFaYqVTQdh4ZTbO2OTnpHl67SJY1VLG2qqpigmOqunVfr56ol9Vy9pL6cv1oSC6vyFYToStd7aNz9OTF03OvS6KgPlqNYSkJ0anGSpNrvLkRblPo47jBG0jojKZ3mal85muTIaIbtPXHSusVAIsf82kB5YqN0T/k8GrUBDy6t8i6beM+Nj5qY+FmpjNXBoTTrO2pZ1BDkso6CEe9za2xYUMvV47z5liNY0lhFU8iLOe65saAuUJ7oW9YUwnEqJy+mm0fSrULpuxLjr4Fk3uLRPUM88mpBqMulFUrQ+d3HvN0XNYe4YnEd6xfUVvRstqVjpQdZMiPiWYMDQyk2Lq7nF1t7+e2ugfJs7qrWau67Z+OUeQO2I8qzN5+4aSm65XD3VR1z2XSJZFa8eHiM//bjrdy8oonXLWvguUNjdI5mWFDr52gsx3u//xK/uPfqivw7iUQyNSUF34kKwhNZ2BDk+UNZcqZNa9hPXcBDS/X0Xlm3diwMuSnkYySVpybgpinkK9+b/7VjDICGkOeE4byW7XDpghp29sYnicuYloNhOyxuDHL5wsqw4ZInpj+WY+E0YlQzpbE4gD5RW12qik5Bofd3uwsltBY3VLF2XsEzpxbruY43egbiOW5c0VRR5mRRQ5BoWqdzJF1Wd71kfpi+2DG1ZTjm2emJZCsM7I66YNmLXPKghgMeFtQfv5RKqf5pabJhXu3xc49LlHIM64uGVMjn5qol9bhVtcK4msjK1mrcmsqCusr9LG8O8UpvrOydArh+eSPdYxkaQj7Wtoc5OJyqKLUzFSWP17y6AA1V3or6rlMxr9bP61c281JX5LjrTaQ+6CWS0cvG2ngmel9LHjYoeNDCfjcL64O01vjojWbpHsswlCxMRuWtyXnDzdU+emNZvG4Vv6egFN8W9hdqRxfHegsbgly2sHaScV0T8LCwPlgO3W8MeblsYR3PHxqdtB+A65Y1kpuQy3vbFJEAU+HSVObVFrySQ4k8jpjeqI5lDGxRKD86ltLpnEY1XlGU8nU+r9bPSCpfnkQqHefCOZiZ6FN9lYflLaEKY3oqSmXTImmDo0Uj/6ol9eW2jKV1YlmDnGGTzJkcGkmjWzY7+xLlbaTyFlndPuEzZG17mBc6x4odrvxsXo2fgUQOVS0YxBePy4kGcLtUFEVh46KCSFfI5+KFzjGq/e4KATaPS6WjLkA8a6CpCg8XRbqiaaNCOR+KdbmHU1R5CzWYr13aQF8xZ338/TkxxaHaV6hbvq0nxkA8R13QUy4nBYUUiJLyfdawj5vfPBFpIEtOyFha5/3ff5meSJa3rmvn55uPlj9b2VrNz/7bxoqXKRRURL/5ZCdP7h/hwT+5Grem0lEf5BvvWTfXzZdIZsWSxiqqfW6WNYe453WLeOd3NvFqf5KjsULoZm80x/u+/xL333tVRWkSiUQyPScSSFnaVIVHU3ilN174v7mKS6bJYS1s79jfGxfVkTGssop0idcta2QoUQhRPBEhn5uljVVoigJKpXejNuBhfm2AxY1Vk4yBkvHUNZY5ZQP5qiX1jKTyJ9TwuHppPaYlCHg1Do0UDNTxYkKKUijJ4tHUilqkWd2uMJANy8F0RIWBFPZ7EKIyPL00CTDRQ+b3aFx/USNbu2N8+NpFBDzapLI3U3HF4joiaWNcTvDMvO81AQ9r2qrLoZKaqkyqHzsV7mnyfBfUB2it8VUYOTevaC7n2C5urMLn1tjSHZ1R+1J5i4Yqb/namSofGgoTDlnTwnYEqjZzr9ZlC2vLpX8m0lbjZ8/Asbzd8ddQxrBI5Ex29sWpqyrUl3ZpBfXv2oC7wvtcoqM+QNDrKtQU92i83BWhtcZHjd9dnuzyubVyhMJExotO5Qyb3X1xRlN6RWk3gK3dUfrjOda0h6lqPLH3fSo2FL2b8Wyh7nhpwsxXLHnVUDTGni0a6Hdc3IavaEQnTjBx53NrFSkVdnGyqGSojb9Vp7uKL5lXQ0aPcNm4yTVFgcMjaeI5k0UNQS6eV1O+H6r97rKHd7wqeF3QQyxbqEmtFMP6PcVroXSv246D6Tg4QlR46ieWRK4fd21OfNy8dV07O/virG49fjpZS7gwGWlYBZGuoMdVYSCbtjOu3vexo5PIm5MMZLUY1l0q9+fW1CmF64JeF2++uK3iWMezZsXv8Zi2Q3uNn0TOpDYw8xrIIA1kyQkYSeV53/de5tBImoYqDz/ffBRVKczKlIzjqWZuXarCi4fHODCUYmdvnMuKORYSyblOc7WPRz79uvKkz88+ciVv+dfn6Y5kGYjnaQ37ODya4f3ff5n/+OiVkyaHJBLJMUoDyZlMJi2oDzKS0umP57hy8WRBnulQVWWScQyFAeV0RspEWsI+blvbyt6BJN2RTFnBGgqTxAeGU+zqS9BRXzloK9UDncqrN1typk3OLIS0Hq+cScDjgmK3Xr+yGUWp9DpvXFTH2vZqFjVUlUurQGVJICh49ppCPjrGGS3dYxkyhsX8ukD5mAa9GpHM5BI7UOj/61c1T1p+PKp9bqp9bgzLYUNHLf4ZenUaqjz0uLVpQ6lPhqk8gOONy4keq6lYN7+Ww2PpsqGpKgqNIS8h79QD8qPRLJuORMgZ9qz64nNr03rAAp6C4VDy0o03jgqe98JEinAKk0t1QTeJrEFt0DPltaYU+wAF9fBS6bS8aVcYXzPQY0UIgWlPXQO3VCt3IJ4rK1afLJXPjDBCCAzbqcixh4LDdEFdgFf7E+WojZlS7XejKgpXLq7Ho6lU+Vx0jhy/fnl9lZc3T6G8XJpoiBUNu5qAp1wTOZoplK+rDR67hmoCbhqLub6aWhTBEvD6Vc24VIVH9gxxUXOI9QtqCxN945iYD3y8Sbig1zVJ92E6hChMsI2mdAgVxk/DxZz+oWS+PKl2YCjFG1e1EMnoLGuq4tBIumIyLeBxlSNOTzRdNjFUuqRBEcnok9Z1a2rZkJ+JePB4pIEsmZbhZJ73fO8ljoxmqPa5GEsb5ZqNl8wL8+MPX1FhHHSOpDEsh1Vt1SiKwtfecTGqokxbA1EiOVcZf10PJnO8bV07D77ST08kS9awWb+ghu1H43zwh1v46UeumHJwLpFIjg22GqpmN5F0clmqJ49pO6TyhfIwpXDjEkGvi6DXNWUJm0vn1/Bi5xir205dvG//UIp9gymWNVVV5OAdj6lylNum8AhOhc+tTVIGXt4SoieSrfAwrWkP44jphZxOFkcItvXEqA14JomRTcW82gBBj6t8bFJ5kyf3jwActw7yqVB6tk80ssazoD5QoZDuc2t4NHXK0OXxGCcI3Z5IPGswktJpDfumfOeMNxzG2xCNIS93XtLGMwdH2TOQoDHkxSimDWiKMql01XiORjP0xXLkTYe+WBaXotBe5y9PyMwkn9zr1ljcGAQKqsdN4wTtrlnawFAif1onPUooilJx3ta2h7EcgaoqU3qAZ4KmKtxxcWvZ2No/dMxrPzH94nh01AVY0VLQBLis49j3ShMgUwnezqsNlNMRFBR8LhWPq6Am7hRze7vHCmWu6qu8VI8T6TrehJs1nfrdCXh45wCOEKxfUEt90Eu1z12RXjBxcsnv0ZjnCZCvsqktKt2XWN4SKkd5OMfRcyhNeigoMxLdagx5uXR+zYwnSscjDWTJlAzEc7z3ey/RHcnic6sk81ZZKn1DRy0//OPLK0K1tvVEeee3N3HxvBp+9SdXoyjKKc8GSiRnG92y+ciPttIfz/Ht963n7x49QNdYBlVVWNseZmdvnA//aAs/+FDl/SCRSAooMGOF57xZKO90NkjkTF7oHGNerb8cslnC51ap8mhTejbCfveM8yVPRElcaDaCX6btYFgOHpc6pTd0ZWt1uWTOVAb+RObXBSaFwbo1lQ0dMx/8z5STEC2uiFhzZmdfnhR+j8bNK5tnpYgOMJyc7M0qsaQxiO0I9g4mpl1nKvYOJBlN6+RNe1Je6ESm8hiWasw2hryE/W5WtVXzlkvbj5uvGvQWapEvbwlxcDjF/Fo/OWNcjusMDMyMbtE5kmZhfZBFjcGKd2VDlXfOUpUWjx+TnsIM3HhPpGkdu4hnE03WVO3jHRvmTTvxEssYhXJuVZ7yfX1wOMVYSmd1exi/R2N1e5jlxfzc0uSI36NRX+WdZJxOvB7GMzGyZDpawz76Yrny87wUEaBbDhc1F8TPdvUfu6YbqrzlXOpyDrdTKPc1vuzWRI7n6c0YNn8olvsrTYqtbQ/z4uGxaZ9RE6N+Zoo0kCVT8t1nj9AdyeJSFfJmQeo9Y9hsXFTHDz50OVXF2fTSbNel82vZ0FHLDcubsBwxSdVQIjkf8bo0/v6PLuYP+0e4ZU0Lly+q433ff5mt3TE+cdNSBuI5tnTHeN/3XubHH77ipGYpJRJJgWTOLKuczjYc7lQp5SL2xXJsmKAjmTMchlN6QeH6DFLyos1E3bhESaRrSWPVlCXoxteUna3H8kxTUpeOZc/scT1VpqtxPR2OI1jZGpoyJB0K13ZdsY71bFgzL8zuvkS5XvfxmGrTt61pxRGCRM4kkjEYSuQZTOSP68xY1BAslzHzuVVGkzrDqdlNYtUGPKxfUEvI5zpnJpJjRUXzVP7ECvfHo5Q3PJNc+IkcLyqhlC9dIdKV0hlN6+imje0IdvTGCXpc5fN365oWHtszhFtVCuXqxl0EU3mQb1zRRCJrzvicXDKvhtawv/ycumxhHbGMQbXfxabDEeqCHhqrvMSL9/P4iAaPS+UP+4ZJ64Vw/YDHxbXLGir2XRKhO15aw8TQcSik0txx8eQQ9lNFGsiSKbmouQpVKcxkXzq/hh29cV63rIHvfuAy/B6Nn73cwz88dpCf33Mly1tCaKrCf9571ZwPaiSSM83VSxu4uliypL7Ky7++dz1P7R/m0T3DRDIGNQE3u/sTvOs7m/jpRzZKdWuJ5GSZxevjZLyPxyPkK3jK5tVO9mx4i95Z/xQ1U08nVyysYzCROynn1kxr655LjBcQOxlm6vmaa0zHYXd/gmq/uyL0+lSp9rmPWz4LCsa3EGKSx/vV/gSDiTwbOmpprvaxbkENwwn9hEa616XRVK1hO4KLmkOsaqnmN8VJmcL+Ttxuv0ebFJVQ4oXOMcbSOstbQhVqxWea9mKt9KbjKOXPBHfxOId8szenSgJl4xXoS6xqraYnkq0QQZtfFyBv2VT73WxcVIeqKBXed69Lo9rvKRuo45nKsCxpAcwUl6ZWpG+01/hpL9YXX1BXEHWrKFFXFEJrDHlZ0ljFwaLifUnx354Q2i1mINbn92jcfpoidk6ENJAlZbrHMjhC8J9b+/j2M4fRVIW/fctq3nPFAn74Qhfvv7Kj7DFO5y1iWYMXD4+xvKUQOiGNY8mFTl8sywd+8DLrO2r56tvX8sEfbqE/niPg0egcSfNH336Rn35k4ymr2Uokr0VOtj7u6aAp5ONN0wy80oZFc7WXW9ec2YGZbjnopoPXpc44N/INq5oLpW1mUb7kQiHodbG2PXzOaUCoisK8Wj9+9/RD7OPlhJ4Kr1vawMHh1KSceMN2yBoWVjEu/fKFMxfBA9g3mOTwaJoNHbVlp4mqKLMOPZ/IWLoQih45w9EZE1naFGL9gppT9mifylkcSBQ88VOJSy1rDrFsQm74+PSH9toA7VOUR9u4qG6SCj2Acgbnz7wujXULCuHNpWiVdfNry+Jjo8W6ytdd1Eg0Y7Bufg2G7UwS+I0WxbbsE8x+uuZoMlAayBIADo+mueu7L5HMmeiWg9+l8j9vX8n7r+zAtB1qAh5+/GI3916/BIAPXr2Q65c3zumMn0RytskadrkUwZKmKn784ct54z89S9awCXg0+mI53v6tF/n2+zdwxSKp3C6RzIbxRuG5NN1aCrGdrr7q6eLVgQR7B5MsbwnNOKz3RPVOxzNdyO/5zOJzUOvErankDAfDml7ZvDbgZl5toEKw6nRQG/SwcQoF+OXNIRJZk8F4/qTCgUu1ZA3LYXFjFfNqA1jOZIXok2Wu73e3pnDzyuZZh7lPpJSacXg0PWWKw/G4dmkDiZw5awHD47GtJ8ZYWuemFU0VE0dTeZBPlUf3DJE3ba5cXF8Ouz44XPASR7PGpJJvJbHDE3E80TAhRFmj4UxHzVx4T0vJrOkcSfHOb21iNKWjWw6tYR+67fAvT3aSypvEsgaf/9Vu/vHxg8SKMzw+tyaNY8lrjouaQ/zXn17D37/zYhRFYWlTiH+5ax3tNf5iEXqVaMbgfd9/if/c2nu2myuRnLdMNZ4bXxFhJuF4p4vagIeGKu8pD6ZPREkBdjZ7MW2HfDEncTquWlLP/LrAlOHjZ5MzfTzPJtGsQSI3vVdUURQ2dNROG3p8unGEIJk3K1SGZ8P6BTVctbi+fA9qqnLajOOzgaIUSsPNxGA7HuYppAnUBT0sagie1giIKq+LmoBn0mTYmYhYKE3i+aa4DqbbmxBiWpXq+XUBXKp63FrqedPhd7sHy9oLZxLpQX6Ns38oyR99axPp4kPzpuWNfPlta/j4z3fwjvXthHxuQj43X7hjFUubqqaseSyRvJZoGleOIpLW+caTnfzPN63g6QOjbD8aY1FDkCf2jfAXv9xF50iav7x1xRkLp5NILiROdJesbQ/TNZaZk7aUqK/ysLM3RjxnMhDPTQp7PJ1ctaSe3lh2VoP2R14dwhFiyjzGEk0h30l5Dc80waL3+0yU+DmbCCEQQqBbczeJcyKqvC5uWd1y0t93aWrFu++0I1+Rp4VL5tdMufxMzEVdtbi+EHE6LrJmSWMVh0fT1E/hFX/laIyj0SxNId+k8nIA6xfUIuaL46ZrzuWcmjSQX8Ps6I3z7u9sQi8qW75zwzz+7h0X87kHd7OtJ8Zta449TN9/Zcd0m5FIXrM8sW+YA8MpHtkzzL/cdSlDiTy3/ctzQOFB/t1nj7CrL87X371OindJJCfgRDoWZ0PnYnFDkNiCWmJZo2IgeCbwurRZ50Q6p1utbC4pns7zuQtTcTxv/tlCUZSyhozk9LGsKVQUGZt9ROW2nih9sdy0CvSnkzMRYq2qyrTPREVRaAv7iGfNcv30pmofR6NZmo8jjHaiZ7zPrXHbGdaCKCEN5NcoPWMZ3vf9l9EtB1UpzC4+smeIj92whPdf2UHWtGUOpURyAt59+QKaQj4uX1SHoii01vj55ceu4rMP7GZrTwyAl45EecM/PcM/vPMS3ngKM/gSyYWOUvH38QdKc2VUKYqCqipkDRvPKQoSnQneuKoF03HOS5GugEfjqsX15+RxPRWkYOnMmVfrpy+Wo+04dXHPZfwejZtWNJ/Ud/vjBZGuklDZmWSuotjGT9gpilJh+LfX+Gla23rKucNz9byQBvJrkN/uGuSzD+wio1vl+sbJvMXrVzbRGPJS3ejmG+9Zd7abKZGcF9y4oqn8dyJr8rGfbud9GxeQN21eHSgoOqbyFh/9yTbeemkbX37b2lPOe5JILkRKdkVjyEu1//j3yFyW+An73VhhP17t3DNC/R4NP+deu2aC+0yH7Z4lpHk8c9bNr2VJY9Vx804vVK5ZUk8sa9J4moXapmKuJm1KKTCjKZ32msmTHqdDWKsUoXGmjf4La9pOclziGYO3fPN5/vS+7aR0i4X1ATKGjQLctqaFb71v/TlTxF0iOR955tAoh0fTbOuJ8fAnruUf3nkxfvexx+xDOwa47G8f52cv9ZzFVkouNGKxGB/4wAcIh8OEw2E+8IEPEI/Hj/udD33oQyiKUvFz5ZVXzk2Dp6HkNVaL7ZmKq5c0sKghOOXg60zRFvazqCF4wXk6JZKzjaoq1AQ8r0mve32Vl6VNF+bkwJk6m3nT5je7BvjNroEztIdjSDfGa4SnD4zwiZ9vJ5UvSPX7PRrdkSztNX6+8d51rC/WMJNIJCfPnZe00VLt46LmKhRF4R0b5nNRczXfe+4wv95ZUF3MmQ6ff+hV/uXJQ3zrfRtY3yHvPcmp8d73vpe+vj4eeeQRAD760Y/ygQ98gIcffvi437v11lv54Q9/WP7f4znLIowzyEltDHnnxOMynv54jj0DCVa3hVnadO6VFZKcW7wGbT3JOcrNK08u/Ptk2biongPDKZa3nDkxw7lCGsgXMPuHknz32SMksyZP7B+p+Cxn2Nx1+Xw+96aVF+TslURythifu5/RLT76k600hbw88N+v5tvPdKIqCo/tHWY4qXPXdzdx7/VL+Nj1S3Bp53fZDMnZYd++fTzyyCO89NJLbNy4EYDvfe97XHXVVRw4cIDly5dP+12v10tLy7mTF18KmRtJ5UnmzXMmosmtKVT73Pjc0oMsOTGKonD1kgY8Z7hOq+T8ZvvRGL3RLEubqljddmZEumZaT/100RL2nVFBUp9b45bVLXMyCSUN5AsUxxH825OH+fUUYQjtNX6+9o61vG5Z41lomUTy2iGSNqiv8tAS9rGho5bv3X05UBDl+PNf7OSpA6N848lOvvfcEYSAD1+ziL+8bcVZbrXkfGLTpk2Ew+GycQxw5ZVXEg6HefHFF49rID/99NM0NTVRU1PD9ddfz5e//GWampqmXf873/kO3/3ud2fUrn379s28E0WqvC5aw35GU2detGY2xLMmybw5qbbomaDK6yqXXZScv8x1lIPk/KNUP9h/HgrsnU3mSo1dGsgXCCPJPP/8h0P43RpvW9/OFx56le1H4xXruFSFe65bzJ/euHTOZ5UkktciC+oD/NefXlsx4H1i7zBPHRjhI69bTDJvsa0nRt4slFr77nOH0S2bP79lOdGsiVtTzsn6pZJzh6GhoSmN2qamJoaGhqb93m233cY73/lOOjo66Orq4gtf+AI33XQT27Ztw+udenA/ODjI9u3bT1vbp+JcrJ5Q7XfTXO2bkxzkm1Y0MZjIs6U7esb3JZFIzh6r2qpZUB+Q4/FzFHlWzmNsR5RD0tyayi+29gHw/ee7AFjaGGQ4pbO8KUR7nZ8/e+Ny5tcFzlp7JZLXIpqqVKQx/OvTnbxyNM4bV7fwwH+/mkPDKf7xiYM8+uoQtgP//kI3P9/cy9KmKvYOJLnuogbuuLiNN6xuPmdCTiVnni9+8Yt86UtfOu46W7ZsAaZWKBVCHFf45t3vfnf57zVr1nDZZZfR0dHBb3/7W97+9rdP+Z3W1lbWr18/k+azb98+crncjNY912mp9lHtcxE4w3WQoXAuXXNUkkUikZxdpHF87iLPzHnK3/5mL7/ZNcgT/+N6dNPmu88ewRECyxEogAD+8V2X4nGrLG6okuqbEsk5wvfvvowHtvdx3bIGAJY1h3CpKv/9+qUYts39W3pJ5i129ycAeOrAKE8dGMX9oMINy5u44+JWblrRREgayxc0H//4x7nrrruOu87ChQvZtWsXw8PDkz4bHR2luXnmAi2tra10dHRw6NChade59957uffee2e0vQ0bNpxxb/Nc0RfLsncwyZr2MEsaz7xI1xyVeJZIJBLJNEgD+TwhlTdxa2o59n40rTOayvO+77/E7r4Ejih4qlyqwsL6INcua6CuysO8WukxlkjOJeqrvHz0uiXl/3ujWR7eOcCCugDP/PkNfP72VewbTPLV3+3jxc4xrOJo2bQFj+8d5vG9w7hUhY2L63jDymZuXtksI0MuQBoaGmhoaDjheldddRWJRILNmzdzxRVXAPDyyy+TSCS4+uqrZ7y/SCRCb28vra2tJ93mCxW3plLtc+OVE80SiUTymkA+7c8Dfr75KFd8+Q/8fPNRnjs0yv93/ys8fWAUW8DO3qJxrCjl4tk3r2ziC3esksaxRHIeML8uwKOfvo4vv21NOSRWCHj20Bir28N88OoOQhPCsCxH8EJnhC8+vJfX/Z+nuOWfniVn2Gej+ZKzzMqVK7n11lu55557eOmll3jppZe45557uOOOOyoEulasWMGvfvUrANLpNH/2Z3/Gpk2b6O7u5umnn+bNb34zDQ0NvO1tbztbXTlnSesWybx5tpshkUgkkjlCepDPMYQQ7O5PMBjPgaLQPZbhhc4xcqbNlx7eO2l9RSkMpm0huGV1M//jjcu5qPn8rz8mkbyWWN4SqqgbqChwx8WtXDwvzEevW8Jf37Ga7z13hK/+fn/5ngdQlULkyHAqzy1ff5aL54VZ2RriN7sGufOSNv77DUvPUo8kc8nPfvYzPvnJT/LGN74RgDvvvJNvfvObFescOHCARKIQtq9pGrt37+b//b//Rzwep7W1lRtvvJH777+fUEi+PyZS5XXRGPLKMmwSiUTyGkEayKcJUcz/tYs/Vvm3g+0I8qZDOm+R0k3SeYuAx8W1xRzEg0NJ/v6xg6xtD3P9RY285V9fYH6dn97o1AInC+sDvOXSNg4Op3li3zC3rG7hY9cvYU37mamjJpFI5paVrdV8873HxJBUVWFDRy1vWNXMNUvqqQ16+O3OQZ46OIJpC+JZk3jW5Gg0y292DQKwb/AAP36xh42L63jvFQv4wfNdrG0Po6qwui3MvFo/IZ+bgEcj4HGVBf8k5x91dXX89Kc/Pe46QhzLbPX7/Tz66KNnulkXDC1hH9V+95yIdEkkEonk7CMN5NPEb3cP8vH7Xpnx+pfOr+GKRXXc8/+2MhjPcXAkzUA8R0a3CHjUaY3je163iM/fvgoo5C5+6S2rZRkYieQ1wGUL67hs4bESOG+5tJ1dfXF+8HwX8azBzr4E8WxlGOhQMs8rR+OMJPNsOhLlsb2TxZxKLGkM8o33rKMx5GU0pfOe772MpircvraV//3WNWesXxLJuc7RaJZ9g0kunlfDoobg2W6ORCKRSM4w0kA+TQS9Ltpr/GWhLK34U/rb69IYSubJ6BaXL6rD61L5h8cOsLkrSs4s5A7uGUiyZyA5adtel8qihiCXzKvhuosay8ulMI9E8trm4nk1/PNd64BC2bddfXGeOzTGswdH2TOQIGc6HI1mORrNAuDRVDRVwXYcDLtSK/fwaIY3/cvzACxuCJI3bWxHsKc/wU3/92nedfl8PnZ9QVxsW0+Mh17p54bljdy8cuZKyRLJ+YinKNIlq0FIJBLJawNpIJ8GDg2nQMCjn76OeM5gOJnnf/9mH/sGk7z78vlE0gZHo1n64zlsR/DIq0MV31eARY1BVrVWc8WiOhbWB/C6NGoCHmoCbhqrvKgy/FEikRwHTVVYt6CWdQtq+eTNy7Bsh1cHkmzuirCrL8Gr/Qm6I1mYoOWlKlAT8OBzq2R0m1TexOfWuP/eq2gN+/jSw3vY3hvnmQMjZQP5Ry928fDOQZ7cP8KDr/RT43dTE3BT4/cQDriL/3uo8rrwuVVqAh7qgh7gxPV5JZJzjZxpk8yb2LYswCSRSCSvBc5rA/nrTxzk8GgGV9FT+0pvnKxuccPyRqp8bjRVYVt3lJRuc/OKJkI+Fy5NZVtPlFTeKi5z49IUdhyNk8yb3LC8kWq/B0cIHt8zzEAixw3LG9EUBd1y+K8d/fRGc1y5pB7dtIllTfYPJslbzpRt/H+besp/u1SFeTV+FjcGWdxYxcrWECtaqrmoOYRf5jZJJJLTiEtTuXR+DZfOrykvS+RM9vQn2N2f4NBImiOjaQ6PZohmjIrv7h1M8tZ/faH8v1tTODSS5i3/+gI1fjfdkQwA/fEc/fGp00HGc+PyRj587SIAnj04yvef7+Itl7Tx5kvaMG2Hx/YO87vdg6hFw7kp5OWuKxZgWg6mXfB2W/axv83i36bt8Ecb5nHTCunFlpw5gh4XjVVevG7pQZZIJJLXAue1gfxiZ4TN3dFJy+/b3Dtp2b7ByaHLzx0am7Tsge39k5Y9fWB00rKpvMANVR7aawM0V3upD3por/XTUu2nvdbPgroAzdU+KYQjkUjOGmG/m6uXNnD10mP1dYUQRDIGh0fS9MZyDCfzDCZyDCXyDCXzDCd14lmDsXTh52R46sAoT014jj60Y4CHdgxMuX53JMvXfr9/Rttev6CWm1acVLMkkhmxoD7AgnqZ0iSRSCSvFc5rA/lv3rqaeNbEdgoehaFEnoxu0xAqhPKZtqB7LE1at5lf60dQqB/aOZImnTdZ2BAECvl4B4fTpHWLhfWBshcjljWwHcHSxiqq/W68bhUhoC7ooSXso7YYAl0T8BD0aDJsUCKRnHcoikJDlZeGKi8bp1lHCEHOtMtq2fGsQTxnksqb6JaDbjrkTZu8ZRf+tmzypoM4TkSqooBbU/FoCm5Nxe1SK//XVNzj/3ZN/EzF41KYL+u9Sy4wwn43ACHfeT1Ek0gkkvOW8/rpu6Kl+mw3QSKRSC54FEUh4HER8Lhoq/Gf7eZIJBc0PrfGLatb8GgypFsikUjOBue1gSyRSCQSiURyoeFzS10SiUQiOVvI6UmJRCKRSCQSiUQikUiQBrJEIpFIJBKJRCKRSCSANJAlEolEIpFIJBKJRCIBQBHieDqjp5+6ujpisRh+v5+VK1fO5a4lEolEIpmSffv2kcvlqK2tJRqdXD5QMjvku14ikUgk5xozfdfPuYEcCATI5XJzuUuJRCKRSGaE3+8nm82e7Wac93g8HkzTPNvNkEgkEolkEid618+5inVTUxMjIyMYhoFt2xfc7HJpZuJC6teF2Ce4MPt1IfYJLsx+XYh9gvO3X11dXeTzeZqams52Uy4IFEUBQNM0LrnkkrPcmguD8/XeOpeRx/T0Io/n6Uce09PLTN/1c24gd3d3A7Bhwwa2b9/OypUr2bZt21w344xxIfbrQuwTXJj9uhD7BBdmvy7EPsGF2y/J7FizZg3bt2/nkksukdfBaULeW6cfeUxPL/J4nn7kMT07SJEuiUQikUgkEolEIpFIkAayRCKRSCQSiUQikUgkgDSQJRKJRCKRSCQSiUQiAaSBLJFIJBKJRCKRSCQSCSANZIlEIpFIJBKJRCKRSABpIEsk5xxPP/00iqKwY8eOWX3vRz/6Edu3bz8zjZJIJBKJRHLaOJV3vaIoxOPxM9IuiUQiDWSJRCKRSCQSiUQikUgAaSBLJBKJRCKRSCQSiUQCSANZIplzNm3axJ133klbWxvBYJBLL72Un/zkJ8f9jqIo/P3f/z2f+cxnqK+vJxwOc88995DL5aZcv7Ozk2AwyLJly/jpT39a8dlvf/tb3vCGN9DU1ER1dTUbN27kkUceOW39k0gkEonktc6Zftf39PRw6623yne9RHIGkAayRDLH9PT0cM011/D973+fhx9+mHe84x185CMfOeGL8+tf/zpHjhzhpz/9KX/zN3/Dz372Mz75yU9OuW4oFOKhhx5i/fr13H333ezdu7f8WVdXF29+85v5yU9+wgMPPMA111zDm970Jp599tnT2k+JRCKRSF6rnOl3/Xve8x5uueUW+a6XSM4ArrO1449+9KMMDg7S2tp6tppwRrgQ+3Uh9gnOXr/uuuuu8t9CCK677jr6+vr43ve+xwc+8IFpvxcIBHjggQfQNI3bbrsNgD/7sz/jr//6r5k3b155vdtvv503v/nNvOENb+Dqq6/mN7/5DQ8++CCrVq0C4OMf/3h5XcdxuPHGG9mzZw/f//73ue666053d08LF+I1eCH2CS7cfklmh7wOTj/ymJ5+zuQxPdPv+k9+8pN87GMfAzhn3vXyGj39yGN6lhASiWROiUaj4hOf+IRYsGCB0DRNAAIQzc3NQgghnnrqKQGIV155pfwdQHzmM5+p2M7Ro0cFIP7rv/5LCCHED3/4QwGII0eOVKy3cuVKce+995b/7+3tFXfffbdoa2sTiqKU979x48Yz1GOJRCKRSF5byHe9RHL+ctY8yBLJa5UPfehDbNq0iS984QusXr2a6upqvvWtb/HAAw8c93tNTU1T/j84OFixvLa2tuJ/j8dDPp8HCrPId955J4lEgr/5m79h6dKlBINB/uqv/oqBgYFT7ZpEIpFIJBLku14iOZ+RBrJEMofk83l++9vf8vWvf31S+NOJGBkZmfL/2YTddHZ28sorr/Dwww9zxx13lJdPJ/YlkUgkEolkdsh3vURyfiNFuiSSOUTXdWzbxuv1lpelUil+/etfn/C7v/71ryterg8++CAul4t169bNeP+ll+P4/ff09PDCCy/MeBsSiUQikUimR77rJZLzG+lBlkjmkHA4zOWXX86Xv/xlamtr0TSNr33ta4TDYaLR6HG/m81mefvb3869997LwYMH+dznPsfdd9/N/PnzZ7z/FStWMG/ePP78z/+cL3/5y6RSKf76r/+a9vb2U+2aRCKRSCQS5LteIjnfOaMe5Fgsxgc+8AHC4TDhcJgPfOADxOPx435HUZQpf/7+7/++vM4NN9ww6fPxaoFnkpPp04c+9KFJ7b3yyisr1tF1nU984hM0NDQQDAa588476evrO4M9OcZs+2SaJn/5l3/J2rVrCQaDtLW1cffdd0/Ka5nr8/Rv//ZvLFq0CJ/Px4YNG3juueeOu/4zzzzDhg0b8Pl8LF68mG9/+9uT1nnggQdYtWoVXq+XVatW8atf/eqU23nfffexePFiPvjBD/KpT32Kd77zndx9993H7RfA8PAwL774Iu9+97v5whe+wHvf+16+8Y1vTFr/rW99K42NjVRXV3PVVVeRSqXKn3m9Xv74j/+YnTt3cscdd/Ce97yHgwcP0t3djRDilPs2U2Zzrp5++ukpnwn79++vWO9MnKvZMJs+TfVMUBSF1atXl9f50Y9+NOU6pRyzueDZZ5/lzW9+M21tbSiKwkMPPXTC75yt+0pybjHb5/Frla9+9atcfvnlhEIhmpqaeOtb38qBAwcq1hFC8MUvfpG2tjb8fj833HADe/bsqVjnbI4hzmW++tWvoigKn/70p8vL5up4zvZdX+LTn/40CxYs4H3ve99x3/XHw+v18uCDD+LxePijP/oj/uqv/orPf/7zXH/99bPaTon+/n7e//73U19fTyAQ4NJLL2Xbtm3lz+U1OnMsy+J//a//xaJFi/D7/SxevJi/+Zu/qYgakMfzHOBMKoDdeuutYs2aNeLFF18UL774olizZo244447jvudwcHBip9///d/F4qiiMOHD5fXuf7668U999xTsV48Hj+TXSlzMn364Ac/KG699daK9kYikYp1Pvaxj4n29nbx+OOPi+3bt4sbb7xRXHLJJcKyrDPZHSHE7PsUj8fF61//enH//feL/fv3i02bNomNGzeKDRs2VKw3l+fpP/7jP4Tb7Rbf+973xN69e8WnPvUpEQwGRU9Pz5TrHzlyRAQCAfGpT31K7N27V3zve98Tbrdb/PKXvyyv8+KLLwpN08RXvvIVsW/fPvGVr3xFuFwu8dJLL52RPkxFqV+A+OxnP3vCfn3qU58Sf/d3fyc2b94sDh48KD73uc8Jt9sttm/fXl7nhz/8oaiurp50r80Vsz1XJaXPAwcOVLR3/L1xts/VbPsUj8cr+tLb2yvq6urEX//1X5fXOdvnSQghfve734nPf/7z4oEHHhCA+NWvfnXc9c+X+0pyZpnt/fBa5pZbbhE//OEPxauvvip27Nghbr/9drFgwQKRTqfL63zta18ToVBIPPDAA2L37t3i3e9+t2htbRXJZLK8ztkcQ5yrbN68WSxcuFBcfPHF4lOf+lR5+bl8PAHxT//0T2d0H7MlGo2Kjo4O8aEPfUi8/PLLoqurSzzxxBOis7OzvM65fEzPNf72b/9W1NfXi9/85jeiq6tL/OIXvxBVVVXi61//enkdeTzPPmfMQN67d68AKgY9mzZtEoDYv3//jLfzlre8Rdx0000Vy66//vqKh91ccbJ9+uAHPyje8pa3TPt5PB4Xbrdb/Md//Ed5WX9/v1BVVTzyyCOnpe3TcbrO0+bNmwVQMQCay/N0xRVXiI997GMVy1asWCE++9nPTrn+X/zFX4gVK1ZULLv33nvFlVdeWf7/Xe96l7j11lsr1rnlllvEXXfddZpafWJK/Rr/0jxev6Zi1apV4ktf+lL5/x/+8IciHA6f5pbOnNmeq5KBHIvFpt3m2T5Xs+3TRH71q18JRVFEd3d3ednZPk8TmYmBfL7cV5Izy6neD69lRkZGBCCeeeYZIYQQjuOIlpYW8bWvfa28Tj6fF+FwWHz7298WQpzdMcS5SiqVEsuWLROPP/54xVjkXD+e56KB/Jd/+Zfi2muvnfbzc/2Ynmvcfvvt4sMf/nDFsre//e3i/e9/vxBCHs9zhTMWYr1p0ybC4TAbN24sL7vyyisJh8O8+OKLM9rG8PAwv/3tb/nIRz4y6bOf/exnNDQ0sHr1av7sz/6sIoz0THEqfXr66adpamrioosu4p577qlQKdy2bRumafLGN76xvKytrY01a9bM+FidLKfjPAEkEgkURaGmpqZi+VycJ8Mw2LZtW8XxA3jjG984bR82bdo0af1bbrmFrVu3Yprmcdc50+ekxMn0ayKO45BKpairq6tYnk6n6ejoYN68edxxxx288sorp63dx+NU+rRu3TpaW1u5+eabeeqppyo+O5vn6nScpx/84Ae8/vWvp6Ojo2L52TpPJ8v5cF9Jziyn4354LZNIJADKz+yuri6GhoYqjqfX6+X6668vH8+zOYY4V/nTP/1Tbr/9dl7/+tdXLJfHc/b8+te/5rLLLuOd73wnTU1NrFu3ju9973vlz+UxnR3XXnstf/jDHzh48CAAO3fu5Pnnn+dNb3oTII/nucIZE+kaGhqaVMsNCvXchoaGZrSNH//4x4RCId7+9rdXLH/f+97HokWLaGlp4dVXX+Vzn/scO3fu5PHHHz8tbZ+Ok+3Tbbfdxjvf+U46Ojro6uriC1/4AjfddBPbtm3D6/UyNDSEx+OZVNOuubl5xsfqZDkd5ymfz/PZz36W9773vVRXV5eXz9V5Ghsbw7ZtmpubK5Yf7/gNDQ1Nub5lWYyNjdHa2jrtOmf6nJQY3y8xLj94Nm34h3/4BzKZDO9617vKy1asWMGPfvQj1q5dSzKZ5J//+Z+55ppr2LlzJ8uWLTvt/RjPyZyr1tZWvvvd77JhwwZ0XecnP/kJN998M08//TTXXXcdMP35nItzdTJ9Gs/g4CC///3vue+++yqWn83zdLKcD/eV5MxyqvfDaxkhBJ/5zGe49tprWbNmDUD5mE11PHt6esrrnK0xxLnIf/zHf7B9+3a2bNky6bNz/XiKOdQCmSlHjhzhW9/6Fp/5zGf4n//zf7J582Y++clP4vV6ufvuu8/5Y3qu8Zd/+ZckEglWrFiBpmnYts2Xv/xl3vOe9wDn/jX6WmHWBvIXv/hFvvSlLx13ndJDSVGUSZ8JIaZcPhX//u//zvve9z58Pl/F8nvuuaf895o1a1i2bBmXXXYZ27dvZ/369TPa9njOdJ/e/e53V7T3sssuo6Ojg9/+9reTjP/ZbPd4zNV5Mk2Tu+66C8dxymJSJU73eToRE9t7oj5Mtf7E5bPd5pngZNvw85//nC9+8Yv813/9V8UkyJVXXlkhEnfNNdewfv16vvGNb/Av//Ivp6/hx2E2fVq+fDnLly8v/3/VVVfR29vL//2//7dsIM92m2eCk93/j370I2pqanjrW99asfxcOE8nw/lyX0nOLPIcz56Pf/zj7Nq1i+eff37SZydzPF+Lx7y3t5dPfepTPPbYY5PGjuORx3PmOI7DZZddxle+8hWgEM21Z88evvWtb1WIjsljOjPuv/9+fvrTn3LfffexevVqduzYwac//Wna2tr44Ac/WF5PHs+zy6wN5I9//OMnVCJeuHAhu3btYnh4eNJno6Ojk2ZFpuK5557jwIED3H///Sdcd/369bjdbg4dOnRShtdc9alEa2srHR0dHDp0CICWlhYMwyAWi1XMBo2MjHD11VfPeLvjmYs+mabJu971Lrq6unjyyScrvMdTcarnaToaGhrQNG3SrNnIyMi0fWhpaZlyfZfLRX19/XHXmc25PhVOpl8l7r//fj7ykY/wi1/8YlKI2URUVeXyyy8vX49nklPp03iuvPJKfvrTn5b/P5vn6lT6JITg3//93/nABz6Ax+M57rpzeZ5OlvPhvpKcWU7XPf5a4xOf+AS//vWvefbZZ5k3b155eUtLC1DwGLW2tpaXjz+eZ2IMcb6ybds2RkZG2LBhQ3mZbds8++yzfPOb3ywrhMvjOXNaW1tZtWpVxbKVK1fywAMPAPIanS1//ud/zmc/+9nyGH3t2rX09PTw1a9+lQ9+8IPyeJ4jzDoHuaGhgRUrVhz3x+fzcdVVV5FIJNi8eXP5uy+//DKJRGJGJ+8HP/gBGzZs4JJLLjnhunv27ME0zYoL6VzsU4lIJEJvb2+5vRs2bMDtdleEHg8ODvLqq6+e9IV+pvtUMo4PHTrEE088UR78Ho9TPU/T4fF42LBhw6TQ7ccff3zaPlx11VWT1n/ssce47LLLcLvdx11nrh4+J9MvKHiOP/ShD3Hfffdx++23n3A/Qgh27Nhx2s/LVJxsnybyyiuvVLT3bJ6rU+nTM888Q2dn55Q6CxOZy/N0spwP95XkzHK67vHXCkIIPv7xj/Pggw/y5JNPsmjRoorPS2lK44+nYRg888wz5eN5JsYQ5ys333wzu3fvZseOHeWfyy67jPe9733s2LGDxYsXy+M5S6655ppJpccOHjxY1syQ1+jsyGazqGql+aVpWrnMkzye5waKOIMJD7fddhsDAwN85zvfAeCjH/0onZ2dAPh8PhYtWsSePXtob2+vEHeybZtdu3Yxb948GhsbK7ap6zrRaJRwOIzL5SKXy9HX14eqqqxcufJMdaVMZ2cnpmmyYMECAHp6evB6vSxZsqS8zvg+OY7DwMAAtbW1uN1udF1nYGAAwzBYvXp1+SY5evQoiUSChQsXomka/f39WJZ1TvZJCMGRI0fIZrMsXboUl+tYIILL5UJRlDk/T7FYjK6uLjo6OggGg4yNjTE2NsaqVavweDz09/djmiYLFy4ECg+bPXv20NjYSENDA5lMhp6eHhYvXly+FjOZDAcOHKC9vZ1wOEwikaC/v5/ly5cTDAZPex9OR7+i0Sjd3d3Mnz+/4p5SVRVN04DCQzQYDOL1enEch5GRESKRyJz1a7Z9GhkZwePx4Pf7EUIQiUQYHh4+p87VbPtUoru7m3w+z4oVKyZt82yfJyiE1um6DsC+ffuYN28eoVAITdPO6/tqKrq6usjn8zQ1NdHd3X3W2nEhcP/993PXXXfh8Xjw+Xz4fL6K+0FyjKNHjxKNRlm6dCler7e8XNO08vhgeHiYwcFBFi5cWNYtSaVSrFmz5pwYQ5zrHDx4kEAgUPbMy+M5O7LZLPv376etrY3a2tryc72jo6MsJieP6czp7u4mlUqxYMEC/H4/2WyWnp4eGhoaaG9vB+TxPJPM9F1/Rg3kaDTKJz/5SX79618DcOedd/Lggw+Sy+XO1C4lEolEIjlpSgMWyanh8XjKyuUSiUQikZxLnOhdf0YN5Kmoq6sjFovh9/vlLIdEIpFIzgn27dtHLpejtraWaDR6tptz3iPf9RKJRCI515jpu/6MlXmajkWLFhGLxVi5ciXbtm2b691LJBKJRDKJDRs2sH379kk5oJKTQ77rJRKJRHKuMdN3/axFuiQSiUQikUgkEolEIrkQkQayRCKRSCQSiUQikUgkSANZIjk7PPP38E9r4Mkvw9zKAEgkEolEIjnL7EvnGNGlkJ1Eci4iDWSJZK7pfh6e+ltI9MKz/wd2//Jst0gikUgkEskcETMt9mfyvBBPn+2mSKYhY9nkbWdG66Ytm6hpYTrS4XGhIA1kiWSu2frvhd+r3174/czfTfIiW5ZV/jufz3PkyJG5ap1EIpFIJOc0edthczxN3LROvPI5QNZ2eD6WImIU2mvJyLFzGkcIHosk+f1YYkbrH8jkeSaaInaeXI+SEyMNZIlkLnEcOPQEqG648xvQeglEDsHAKxWrPfLII9x3331EIhG+/e1vc9999xGPx89OmyUSiUQiOYc4lM3Tr5tsTZ4fNct3p7KMGhbPxlIA+NXK4ffhbJ6nI0mGdYMxQxpZZxtzlhMYR/MGAKPSQL5gkAayRDKXjOwFPQHt68FbBaveWli+79cVq3V3d3Pw4EE8Hg+rV69m5cqVzHHJcolEIpFIzklq3YUqpc2eOa9WelI0FNvZ6nUDoCkKADUuDYBdqRwR0+K3owm2JzNnp5GvMWwh2BxPMzRFHvjJDrd0Z2Yh2VDwUvfmjSn3Lzn7SANZIplLel8u/F5wZeH3ijsKv/f/rmK1j33sY3z4wx8mFArx+te/nne84x3U1tbOYUMlEonk1Jn5cPH0k5th/qDkzNOd0/lDJIkxCwPieCjF3+fKGc7ZDmOGRXbcNedks6SeegpzcBCvqiKE4EAmz750rtz+8XaYABQUMvK6nROOZHX6dZNNU+SBjz8vg7pxwm01FCds2r2eGe/fFrA1kWF36vyIgnitIQ1kiWQuGd1f+N1yceF3zXxQVBg7APqxh7TL5WLBggUAKIoycSsSiURyXnC2Il92p7I8MpagP3/iwa2kkpRl80w0RfQ0hou+ksyStOxyKOqpYhTFkM7UJIjuOIwaxzx7plPw9lnTiDAN6ibPxVIczevlZfn9+3EyWbLbtqMAeUeUxbnyxYkCr3rs/W4LgXzbzx3p41w7zjgT+aX4iT367uJ5dKszP4OaAi0eF5YQOOdYhKCMWJQGskQyt5QM5Mblhd+KBoH6wt/9W6f9mm3bbN68mYcffvgMN1AikUjOfzqzBUOlO6efYM2543QMOjO2fcYH09uSGaKmxYux06+w7CpO+JqOoCurn7Tq70DRqzd4hsJTn4qkeD6WLhvJLyfS7EvnGJtm0iBXNHjjpl1eJsatO1BsZ2nSoZTj6h43Aa6O+9sRgqhpTXvN2HqawUQE+wIyZGKmxbZEZsoog0OZPC/F06fVcBNFI7hxijD92e6mtPpsJjgsIdicyNCdM+jOVU4cmYODZLdvR5ymiIvZsCme5uHRxDlntM+UqGmxJZYknzk1z7w0kCWSuWT0YOH3S9+GH90BmRG48k8Ky/q3A/CLX/yCb3/724yNjZW/pqoqL7zwAtu2bSOVSs11qyUSieSkONtDrLhpszWRYeAseZItRzBqmLySzPDQSPyUVJfjpsVjY0leOAOG63js4kk7nUrL83yF0NOgVhh27kxl2ZHKsj2ZoTdvlHM3e/MGR2cwqVFVzN11nWyEVTYKZn7aj2vdWsX/acshYzs0TZPzHCr2K+TSsBxBd07HMI8Z71nbQVHAmnBIxxvFLkVBVQpe5Z2pHM9EU+WJnon0H3iavt0Pczg6fNxunoiurM6TkeQ5UZ7o6WiKo3mD/ZnJ52VPOsegbpI/ne0sbmppwDfpo9mapaU84t5ZPGeGdZM+3SBqWuWIghLZbdsxBwaxhoZm1Q5bCPalc2Qs+8QrT8OQbmILUZEuMFsihnXWanw/E01xaMcuXnnmeZzsyRvJ0kCWSOaKfALSQ+ALw46fQvdzcOSZY+HWI/sAGB4eZmhoiGAwWP6qEIKmpia8Xi9btmyZcvMyJEYikZyvjOgmPTP09hYMzuyMcgNztkNv3iBxCgPGiRzO5stKwyfKqe3O6zw+luQXQzEADk1j8MyE4eI+p/JiWo6YlUDQ6aYvb/ByPD2t16mcc1v8uHT8Xk3n2JrIlI3+rYkM25JZOrP5477T2opiVyXRq1lhZODwk7D/N9OusrGmirc119LoKWzfKoY/q9MY5M1eN9fXVrHI72VXKssrySy7ipecoiplw3pBcaKgZJBONKgUCnabV1XQHYeunD6loeE2kgB4cvEZdnpq9mdyJCybuGUhrMnX1ZhhkZ7m3jFPwzVnOYJh3aw418YURvACn4d6t+vkJ0SmwK0qVGlqRZh7iZP1nk7V9un4Vu8oR3OFc7s3laNvCuN6th7kA5k8+zN5nomduiNlqp4YjsMTkSRHTvAcezaWKtf43pnKnpr3X08XJrQo1Jvelsgc13hfGvAi8gZh4WAnkye3T+D8kP+TSC4Eol2F3y0XF0KtM6Ow8NpCmDUUXtjAn/zJn5DJZPD5fAwMDNDV1UVXVxednZ0APPvssyxevJiFCxeWN33w4EEeffRRNE1j7dq1vO51r5vLnkkkEskpURpMtXrdeNTjz92nLYfunI5PVWj1Tr1OtUsjadm0+z0s8XvLnstTJWXZ7ErlgMJArDOrc21tVdmQmohfVTk8bjA51fA+azvkHYc6twshBLYA1xSDdtdxbIPfjMYRwFubak5Kt0IIMavvlQbzJc/wlkQhT3NAN8vLjuZ0hnSTJQFfeYKiFFqsKIXw9968wetqQyQsm/2ZXHn7u1M5/KpKu89DznawhSh7jaEgZgUnGaFgzF4lutTujG0T1ArtGNFNql0aPk3lhViKgbzJ25pryxMYo6VBvKs41BaFckABTWUqk9N0CufecAQ+VSVvCw4ZeerdLprGTQQII0ON10fY7cLVdtGs+zKeZUEfCdPGb5okn3oKd3sbgXXrgEIe9nNFQ+ttzZNFQn8zGgemuOb0FHiqCif5BOxKZ+nJGayq8peXTXWnrg8Hp1g6OxwhOJjN41VUFgW8XBT04VIUkpZdVkUvr3vKe5s5actm0DCJmVb53ikzS6OyNJmhH8dQ35rIEDMtbqqvLqupl3dnWeVnQUllu9Htwld8fh7K6qQsm52pLIsD0zx8x+EIUTamLQHuCZdE1nbwqQqqonAkqzNqmFwRDlZeTwcfKfxe/TZeSmRImBZjhsktjTVT7rPUp1M9h9KDLJHMFaliqEyotWAch9ogPB/6tgAKZMcgdhRVVfF6vfzsZz/ju9/9Lo8//njZOPZ4Cg/PrVuP5SsfOXKEn//850QiEWzb5vnnn2d0dJRoNDrXPZRIJJJZMWqYPBtNlUMM1Rlk8aXswiAwadl0TePJaPcVDApFCHpjQ+QiXSdlGE1kfH3UY3nOU3uyM7bNoG6iKrC+OsCQbk6ZE/3oWIJnoikMx+HxSJKHR+NT5pZajmBIN1nsn6yUW1r7ZAaF+9I5HhqJlwfXMzGTtyQyZaN4POM9b0nLpl83ydh2WUyrZOS7FdicyDA8zju6L10ZWlvK630skuDxCWHAcdMiZztk7JOIDHD7T7jKq6ksz8dSZG2nwvPVUzzXacvmhXiavUWjfn8mz95MviIkWliF9isuNw7HzlHKsklbNt05HUscO2OGcDiYLRwDTQGvprA44KV9vNFkZNi/7UF2xZMgjoWYC3F8b266KLy2Y0Ld6MV+L2tCfl48OsAW1YPZP1D+TEXBFoKenD4pRWH8Mam4UqNH4OCjMLiTtGUTOUFN54F84fwfyeYJFSdA/FNMZh3K5HklmT0lj7UtCtfYjlRBMM50BPszeY5Ocf+ebCT3bL52rTvLSjtCrVvj6poqFvqPGZxqoHCNKt4TG6HjcZ9gchEKUQtp25nksRamSfKRR9H3F7Ryfjkc46HhWIU3eqYpIqUJyfHHceIzLWPZPDqW4DejCXTHYWcqy4BuEpsiYqE/b9CVyZG1C/fIy4nMtCHcFQr3ikJPTmdrIjNrD7b0IEskc0Wq+OIRxZu/4yoYOwi//ONj63Q+Dpd/pGwU19TUcOmll1JTU8OOHTvo7u4urNbZieM4pNNpHnjgAYQQ3H777cybNw+3283Pf/5zfD4f99xzz9z2USKRSGaKEAxGB4kQJGc7+FQVl6owrJsYQjB/nGGgOw6GIwi5NDzF8NMtiQztPg+HikZFk8fNJSE/Y6ZVNrYSloN7rBsn3wfea8FzzBM1Zlj4VKXCM3kiSqJKDW5X2VM4nUHZnTPK+bUDeZMhwyRrO6Qsu2wMjB+0WYJyiR/dEQS0wpatSAQ7meTJlEGvL8ioMXnQ7FMVUrbNkG4ScmlUz6JPpZzPo/lKT16JzfE0QZfG6ik+A0hMM2gu9SWgaYRdGs/EknRldT46v5FlQT8uoM7I42SzqIHAsS86NpqdB0sFfOVBdsy0yp7UX43EiJk22gys+bRlk7WdY15YtfjbF572O6VQ+CHdrLgOS2er5KErGe2lvO3IuGMhnOL14dIqJgJQFF6KpxmdYDyWLoWS180Rgq2JLPVuFy2ltjs2adsmZtlsTqRZlMvTEfCzK53jSFbnDfXVU17Pj0cKoaZR02KB30Nd0WP66FiC/Zk8dbk8lqJRpbqZlzeY5/OgKYVjHrdsXk5keNu48PDfjcXpzuks9HsrjcJYNwDZrr38x2A9zXU6tymjuOZtQGiFiYKenEGr141fUwm7NMZMi7wjWOB3k7JsAhMM5Oy2bez3BLGamrko4MWrUgi7TfRBwzJQZ3atj79WcrZT9jSOz7W3hUBTlLKA12wRQsw4GiO87xGWprLsX/42dnrchFxa+blQdeONwOyrmLSg0OU4LJwir3o8edshadow7pYe2DtCNqriaAWV9ZJQXPXhTnLDPvyrV5dzwBUK3l+PokwZ7aKWj+2xCY2JmgbRoiFsF8uflSitFjEsDMdhJJkhYlokMjqqquJSFEwgZtooCpOid0rPsyFFYyWwvTgptCTgnRQpcDykB1kimSsiRwq/e4s5xKqrYCzf9L+gbhEA23ft4R/+4R/YunUrHo+H2267jWuuuYZLL72Ud7zjHeVN5fN5hoaGeOqpp8hkMlx66aVcfvnltLa2Ul9fj6Io9Pf309/ff8rNFueAeIdEIpkdzz77LG9+85tpa2tDURQeeuihis+FEHzxi1+kra0Nv9/PDTfcwJ49e+a2kWMHae57nou6fkvr6A48xbzKF+Ppihn/o8Oj/Gz7qzw+FsdwHFYE/XhVlQHdxBKFHOOMXcjXHDUsDo4bbGkKNCS7CmVb0iPl5aXw0ZLhAIWB2ok8VGW12hmMW6tdGo4Q5ByHlG2X+zPekzK+1IwtBJZpY+SPeVDseJzMppfI79lLZmAIw3E4nJ0sYiSAvF1QxT04hciRnc6QeeklzHgc0xFTelOmetJbjqBfNzmQnOwtTpgWj48leKJ4DA9m8jw/Fmewr5/OTL5sNLqUwraPZHV2pbI8OppAARYogtbIGPn9Byq2681FaO1+At/Iq5X7G+dZKkUaTHe2uhPdJPQEUDAOX4inj3mblUJN4qG8UVm3WAheSWYZ0c1yjnOVpjKoG3Tn9LLxAxDQVNaG/CzwV4qP+cYbC+WLRcWhcC26FQXDccp5r6PGMaXq0uqFnOBiqKxwKs9LWQW80O7EYEG7pFz2agYe1vHX39ZEllHDIm9YGCgcVlyMFJW7VUWh2qXR4fNwdU0VAPl9+xjYvAVHUDbwpxoiJEazuA2H2kNPkxvYgdH7Mr8ZTfDzgQg7U1leLKZUeMYdr6lqQzu6jjk4RGq0IFrqLXlIu56F4VdhtPLaAch3xsjtjZQ9+CVUReHOphre0lRDs9fNK8VrOmXZbIql2BRL8euROF1Z/bge5LztTOu9HO5O0rM7QkJPEMlFOJLNTSmCZkWjJBIpMpZD2rRQqJxoUxQFRVFO7PUcPQCRw9iOwMlb9B+M0NWbOK55L4RgdzrHsxPylFNxg0yu0IrdqRxdOYOFXjct3UeI7d7OaHa0vF1bCB4dS/DIWGLKfaSK1+94UbqJHmQxrrxVKZIACiW29hXb97uxBDmhEHW0QklUCvnorV4Xr6QyPB9LT5sjP6JodBsWr6+v5oa6EOFZTBqCNJAlkrljZG/hd64g1sKu++E71xXykOddBkAqHiWVSiGEYOXKlfzyl7/k+9//PpZlEQqFWLJkCQA33ngjXq+XnTt34vF42L9/P08+WchhVhSF1atXA7B3796Tbq6dMYnef4D4rw+f9DYkEsnZIZPJcMkll/DNb35zys//z//5P/zjP/4j3/zmN9myZQstLS284Q1vOO0q+ccd3iV6afZ6WF0VoCHTj6anKgaSDoXB6HPbd7MnksSOxjAdQdQw2ZvOMaQb6I6oyKNL207ZMHOEYFc6R8K0CgbE+HDWKUbAv9pylF9tPUp+KI0tBIcy+YowxLRl82w0SdKyUSjk2B6vzrJPVdiTznEorXM4q5eNufF7Hp8r+EQkyejRFJH+FNmi8WGnjylW+3HozZsczOqTRGp0R+BSFBb4PFOWrTGP9mCNRXh+z0F+MxqfUrTMN4UnSABGbx+5nbuwYrGKzw5mdZ6Kpo4Zc45DrPMwj+8+wCtH+1ns9/DG+mqqXRpjhknEsImbNjvSWSzHwVIUcigovkqPuGYXDHxXulKheXyPr6sL0e7zkJ4ixDqSi7A3spcX+l+oWJ63C8q82yNj9OUNehOjPDqWYHvRUNqTzrElkea+gQiDusm66gBNXjdbExkCqkrMssttcCkKKkrZkKrSNFYGfbRrCplMBievkwcOKy6GhMLSgBePqqIqBaVr2zBIJhO4EOVSVaUr4UAxbFtBYZ7Xw7KgD1sIdiSz5fDTkpe19LvJ42JJwIt/BiG249HLqQ2QUFQCOOXJgbRl41FVatwumovL9MNHUMfGEJZVNjgqva2Fa8jjd2ELgS1yDPbvYffux7GEwHIcGtwuFvknR0GU7rWc7WCNjaEfOVKOLmj2e/GpCq+ksuRtB8wsZMYgNYSTyZDdtg29mIomTAdh2DDF9awpStm7WWp1X3aM3/dt5bcjowDsSGUnGXM9OZ0nx5I8Nhbn8bEEL8TTFXWyLy/lSOdtDN3ihf4XeHnwZTbHEyQse1I4c+bFTQRiEYK2SZ2lU+1yVWgM5PfvJ7NlC8nfP0LmpZcm9aPM0G4yXVv4za4BXu2OsdUyGLIsho3JBrwwHaz+AQKRQ+X+W5bFqGESM0xewCQ2IUl4fzpH7sgRnu5/li1DW8iaBW9sKdXEnMaAt6JRrLGxiuN4MKOzM5Ut1xI/lMmzLZklY9vUj3tm9Y5TMverKo1ulZDbRd3QNqKj3YXUmtyxdUqRPBnL5qHhGMl4joxh84rq4fFUIXS/1u2aVmBvOqSBLJHMFcXZL8ziTLynGhwLfvdn0HIpANfbz9HR0QHA0NAQpmmybNkyXEWRj/Xr1wMwNjbGrl27cByHpUuXks/nSRcHUolEgmeffRaAffv2zbqZ+c44uT1jYDtkd4+R3TaMo598aRKJRDL33Hbbbfzt3/4tb3/72yd9JoTg61//Op///Od5+9vfzpo1a/jxj39MNpvlvvvuO70NOa4ro5CDfCSbR3ccVMesGHCVjA83giochG2jKAppu1ByxxKFwXRgnFGQ7u1lQa7wLBw2LOpdGmPeNvK9vbxq+sgVDYyKZmUicOQZhJ3FEmBaAsMRvJrOcSCdY0Q3sRzBjlSWlOVwIJNnSDcZNqxyfduKbhX70JkteLQTtk3MtIiaFrYQFd6pqUI5O22Trx4ZZNOEck6KUEAIvFaO6IQBsOE4jBgm9jQH3N3ejnfZUlItrZP6XwrfrZsQfigoqBxbowXDYXx+KsBCvwevqpS9RfN9HtZm02iAk9dJ2Tb7MnmO5g0sAbUejRq3xhK/l32ZPAOmzUHNjeKuDJHM59OYQqBYlZ5wRwhipsUzozHMZJLhTApHz3E4m6+YWDEdky7dzd6ch94JOd9HsnkGczl68seWl/KKj+YMurI6XXkdAXRndeL5OAKBSy3k45b2YhRzJksCbAKBwKH7yGHG9u8n8+pudAH7VDcDKFQVhb3WVvm5pqaKsZERDNMknU5jFK8XTz5Gc89TeI2CVy5t2wgEryQy7M/k6crpbO0tGIFBTWV5wMd8r5uMZVPr0lhb5Z8yvHqiF7IkcEZykCV2jDq3Bgps0zzsUj14x3nnLSHIjsshD2xYj3f1KtC0Y7meU1xyCjAobPa7W7BVD0PeRsJDO0jveolIdw/NPUcw+/vLgnxXhIPlkHxDCMyBAfJ79yEMg9BNN3LzVZdji4IRvTudA0uH6GHofRmRjmAODmEf2QFDu/GvrMd/cSNK0UA2BwdJ/v73pPbtY386x8PDsYqJrd5kHwBx/dgE0EQ//PZklpcSaZ6OpskUJxXS4zzUiijkqjctq6F5zbHQfac4KTeoG/x6JF6+V4z58zno8pMSkM5k2VYsA1dC7zxcKPM0PIw1Fpl8gMcRyRSuwcNjGWLF/Q1N8VzSj8SxX/k91X27CGcGqR4ZYtNjT/LEUJS/PTJIl2OzO1Cpb3Akp/Pv85aS1PyYArKWzo5kdsrtlzAdwcDAEPGjfRi2g+E49Gby7OmKcGg0XX7G7y0auBHDqtAuyNkOlpkjcXQ7mpGmw++lyYwTSPQQ6N/MrlSOrpxOzLTYnszwk/4IuuNwOFdISxiI5hjKF7bXYxTy/Q9kcnSWIm9mmIssc5AlkrkiNVj4XfJi3PMH+MUHYWg3rP8QAFY2Sl9fHy6Xi+HhYZqbm7nhhhvKm1i8eDGKonD48GGuvfZaLMti3bp13HnnnZjFmovhcJiOjg6GhoaIRqPE43Fqampm3swnj6IfSdDw4TX4V9eT2zlK/kCMwMWNp+EgSCSSs01XVxdDQ0O88Y1vLC/zer1cf/31vPjii9x7771Tfu873/kO3/3ud2e0j9LknDAKocWmEHhUlYxt82JfD47bzy3CIVkU8klbAmyznONbwqep3F4XwoymUdxuhKj0uCmKgkdVEIBjGGQOH8EtHLhsI80eF1HTYmxgmLGszuiBw+zuzTB/6SIW1xdUeQ9kcjy891E2hLxU+02e9i9nbbXKqmI7XkllSdoOK4I+TEfg01Q0pTKfUeGYCrRwHFKPPIJW30Bq8XJMIXArCm5FwXQEEdOiL68zoBsVXrTD2TwKCgGPyqGMyUV4eSGeYrUmSKEQQmAqUJsbYdXILoa9l9G+dANQGMTuSeewBBzK6CQth47kYZLJYV4KLOOShmYaq6s5onmwi4NSl6LwfCyFBqyrDkKoMtwVxwZV42AmTxaFEVVlk+ngj6e5qhhu2+hx050z6M4ZhDSN7rxOTnMTFgLh0rCcYhmjopGFKHg8gy6NKk1j7cgm3JF+guH5HEm10FosbTgwEiGVS9HicZcNsxIvxzNE9hzgYN5gpbUTn9fLD+w3sTTg5b2t9XTldHbEdbZnfTS7LZ4uqkt7HJNbx56nUfPTWX0xXlVlUDfZmcqypphbvSedoztvsKKYv3kwOUg0dpitejtBbyN+TeXVVI6VQR+pYrsixUmPEcOiL5sj6IASi0HAR0t6Fx5PIy3BlUDBcPCohfDTklRWcNwhb+5/iawewzeyk1dsL0vrwpiRPEcGMyQ6CkrRiigJqSmEXBpuFX4XSXIgk2N50I+WSqL19XHrZZeiVQWxhZgUgipyWfLdQ7iGn2Wt6qJ36VuIlz40bJJ7xggtrMWq0khYNkeyOlWuBG9pqsXd2oorl8YzOkZKdyDom3JKRhTvC8MdINq4FoEbf+/L2OYCcskkyYE4AQRcV8i1VRWod7uImBZeIVCHnmdI81Lr8VG1ZQvdmpvOuhZavW7ytoPjFPJTXUKgZwdxX3UV3kO/g9EDGOZC7KyJd1EY1aNhdHUhbIdcz1GeDzVwJKszbFjl8PjSFeZTCj3p8HkYM0y2JzPUu110FO/T0qOpNCFQul2EECSefJp8oIpNoXm8kHuVFe0qYW+YjFrYx8FMnrDbRVc2x8p0gsddQbyOja7nmS8sOm0bSx8X7u9ANK7it5TpDbVSyoZ6LN84aKbwp7sJ1i4CKsdsatCNLSANBI0EWlSlT3ERGRsj6QkwhoMblTox/npRyDY0crj6Eg6mAtTYJiZa2WsbMy2uqw2VPcB9eYPfjsSIVIcZcAQ2hdJTmbRBb85kjWHjdNTTmc2Xn+MuVSFrO4zqOl2pIW6oaSbetxN3vJtMcoBDdTUkLAVbVJFvmo+mFCI3LKeQ+58TDt05o3wdFqaqjvGVI4P0RuO8IeBmyZplMy79JA1kiWQucGxIDlCucrj8dmi8CG77OzDz0LQKfvc/GKYR27bLHuObbrqJHTt20NDQwMKFC/H7/QQCATKZDD/5yU/4zGc+g6qqjIyM0N/fz/LlywkEAnzoQx/i4YcfZtu2bfT29s7KQA6sb0ar8+FdWoOdMsjtHEU/kiBwcSNGzsLt006qjMiJ6E318suDv+TT6z99RrYvkUgKDA0VFPWbm5srljc3N9PT0zPt9wYHB9m+ffus9uXYgudjafoPHMSlG3TX+7k8uh2f20e2thYhIOsUFFVd2SxuVeFtzbUVQjdWwI8dLXhTBYVcwlLO3lAqw8aaAAmfn8FcHotjuXy1Lo2enIEfaMCmPhvnZaoZ2b2ZxLw67IYVJC2Ho74WWvLDRFw6DeldbPVezCXVQWKmRdKycXIWr0ZjHMBmaU2AEd1iazKL4Tj4NZUxw+ShkThX1gRpMnSEI7BGR0l3LGVl0MdALIfPgKZ6D9WaxpBuknUEzUVxGdMRRM3CoLTkAHSK+a73x8bwKG6WxFOM1QZxCRPDERxMpxkaS7A/naMzk8enaTR7XYCgw+cmNpLmsc5htI5mtriruFYY7Elk0aqrafC4eXwswabRJE05sBoMlraHqFZVgo7OriO7qOrdjNpxBd7WlQQQ5FDZZUOHbpIqDo4Lpak0RnSTg/EkjX4fTW6N5FiE+JgH0+2mqraW/dE4W2IpRmxYHgogBOjRMeanR2hI7eEQgkQmQk510drThdXXR9aV4lGhcPXgMEJxobhc5ByHtGVzUDfYr7lZbjh4NZXenE6D21X0eOcxnILRM2S6EOkccdNmiUfBa+fRLcFYMkWL7ZBV3KQNq2zwpGwb2xEYouD1iuZj7M156TYTLNNqyToqfk3lQCZfobT8fCzNmGExYlhEHPBoGj7FxhAWfitDLYLObJ6j6SwR0yLgcWOjAg4Bt+uYQ0sBW3OzOXgxNcMjpNNJopaNamY4HFuKpcDiVIarFYVBw2RPOsdC3QQvmEWLIHLoCD4E+oH9BDZs4DcjcfryBnUeF76it9ZOJEkdPIQ/cZTsvIX05HRcAmqEg2o67LdNRiIpnktYRWE5UfbQm/39ZPf/nqRuYoWWQt1lOBQ8+ynLptF28APJeA7dZ9Js2rRUucke3YljpknWr6TTE2SkMUiVx82yYu1la2iIS3q6UTsW4vOFGR0aIOINsEe3uHloiIg9TFrdgNk4n568QV3ewXQ30Z8yEHk3mUgfYe8ablnSgTNgY2RN3LZDT9ZiWLdYScHg8YzL4dbjeWxFIe1oeNWC4JsQAl/XYfqDIWzhZsSwaFNdpKJ54l4HTVOPKcYLwa+GYniFTZ/qxZfVMbw2XtsDWLRUL+NQAjzCKYtvhXtfoH/rH0g1XI9bVci6AgypHoZ1iwa3xv5MjhUum2TSJJ7x0hPzsbbxmLknhCCVGEJ4qwn7CsJ2Hndh26qqYOZGUTM9tKRgc3wp8/0eWo0oGBkMu5ptiofRdBw1aACFyQ0rpxPHTc6xqHepOMImYxcmLgOagltVyaseUraGZTgE3QKvqhEfGiKTzqKHfdDUAMDjI/1sH+2ldzDJPNFA93KDapdGpnjQzGIZu1LOsZPLQSpB3NvG1tgQqVSCLSMDeMw0XsshKNKMmFXEUjny3hB1XUfwLqkDoWFnUohQFYrmQiDoSyZwjR1GGMHCbIZl0+bWGBIO2VSaXCyHvXzhcd5WlUgDWSKZC/q2Qi5aqHksbLiiqC696LrCbyEQuPgxfwQU8kIWLFjA7373OxKJQrjVm970Jq644oryoDGdThOPx6mtrWX37t0891whPPuP/7igit3R0cHAwADqLHOSgpc1E7ysMHD2Li6ECmU64zz/jR0c3RNl/spabvvvF+P2zE7w4HgIIfjsc59l1+guVtav5NaFt/KHnj/Qleziv639b6dtPxKJ5BgTJ6JOpL7a2tpaTvM4Efv27SOXy2GaNqOGiR1PMKSoOGkT23JQNYMdyTRuywIh0FQwrXH1govtOJTJ8WsdDmheFukmecfhsqCLlgaDH4wJtK4eurtMGq7aSL9hkldcZIpVZrclsxzM5rkm18shxYXm5EkpCs3xXcTUBiJaLS5XNY5jkzRtRH4ILTbEdncjH57fhtsyWKtlyedVBuI5MgGNozmdAd0s5qAWPMojhkWVS6M3Z9CkFAazz6geXoynqVJVkrlCvdwmrxsFhUGjkL/Zmc1TJ2yGoxGEy4fjCLJZC+EIjL4BBrwZjogMXtPmkPDQZYHqBEhVL6U61MyRrM7uVI4Rw2KRX0HJ5sj29+O5ZAVPHOnFiiSx9IMsn78Q9aUtzDcFnuUXcUSE+EPnGEJAnebicE5nLK6y1mOzdNPfsWYszb7gEqoPP8V+XzMX5bIEVWgdO4y33stYqOBx3Z/OYzgOQRysgUEMbGKRMcKDfWwNhskZJquAaDKJMAwMW2HI8PByIk3r4YOsTI4RyKdJu/KkxyKEgk24slmWJKJ01wI5nZ/vOcRFDXUE21p5LpqiSlMZoPDuUbxeevM6CtCvG7yaKoSqLvZCjWqRdhTMfJ6oDTdVV2E2bORf9/XRF4vQnIgTzQuSVh9d3oU8GUngOGAhGNEtxrwW1Z5qno5l8LhDDOkmCywdJWmT8GqIA/vRPQG8ixYW8quzOSLZHDnFxquqDKtuPO4aFioeHAGPjyXp6jmKz3IYC1czPxVHdSno8R5eVVw4Lhs1coio5WEklCcsBJrPQ23PUwSEwsGaRnLuAE2iYGRYQhT6PTyK09xClabiOA5ZRcGdT5Ia6GH7wqX851AU0xFcXxeizefByud5LKNjaT6W42LIMBkxLLy2oFoIFvsg3RpgR95gOF+YIGr0FFS0dceh/5VdJCK9jPhqyDkFvRQEHM3k2DYa46qczjLbZihl4GUvblcP+WQfNfEuzGATRnWIEX+Q6qCXYRTsTJ5Gj5udsRjrup/AtwOUy+7GDtWguDScbA4n3sOgK0F9z1MMV99FzoFgVkfNmVieEEl8eEaHiAUD/CHt8EL/LpqDDbyDMC/v3s+rGRMUjdUum5uz+wj5F5JWFDb3J1jt8+JRHRwBIZfgolyaXN8AUcWF3TYfRVUZjVqkbJto3qaxLlAOB07bDoeyeSKJJEJ1sdTIMTCaZZHRyOK1NTw4kmbA0Khzu1gTClAz/ArVe35Kt55hONdCWHMxGgjRjVY2uvel86yIPo8r9SrPeK/mpXaDN6Q7ucd8A1nVw9M9h1C7n6NBc7js4lvBzOHTCh7kqF/FPzpIQ6aHIWsh7rzB3niSd2y+H7crT2Lte4hXXwSjmxFCEPH6qM+l0BvqMUcGwHCoNU1yfujNGdSbcS5KHsROCbZ5/dQqhUQCQwiqFDhoCqoch+C4GIJb63yoA0c4lOhntOp6hnQT3RaYWROnmFAykDcwHFEQJRwcJKMI9np9NLlsVDOPgsWIZx7zjVEsVwB3PoYtLFzxzSgorOzPkwpfTnUqiZXJ4G5vJzu4h8yu35HGxXwnxB5lJbmYg+XLE28qvEv2q25+N5YkP6NCdtJAlkjmhpJAV+lB0j5hkKko5AMtmNljt6SqqiQSCVpaWhgdHeWRRx6ho6ODa665hkcffRSAQ4cO8Yc//IHly5dz+eWXc9VVV5W/39HRQTabpbW19aSb7ar1odV62XI0Ra9RaHvvvhjbH+lh452LT3q7E1EUhb+68q/46b6f8voFryeaj/K55z+H6Zi8delbafA3nLZ9SSSvdVpaWoCCJ3n882FkZGSSV3k8995777Th1xPZsGFD2dssHEEGBQdoOtDJRbUOLh+8cjRKi+jlEm+GFA0wGCW+swarppVUYxPzfR62xFIMRBKkVY2ky4PlCLJ7fsXT/QfZ03gDNzkOT2s+rsnpDJsWdYBVHADpouD5yqDiUqAWSCkKURSEYTB2pJOlyy7mqK7zajaPk7fBMAlHexh+MkEgupfGlhD9lost4SsRloOStEjoOnE9S0sggB6LsmT5QlbVhBiKJYlERvAC97uDWBmdXMogLTIczhs0pHzMr/KXQyNfiKXZfrSXhdgYtfXkkoIqVBRDR9g2wrGJGKC4fYxWhwii4Fhetqht9CRh2I6SUFWylo0rZzHQP8AKTJSeHlAUBAoxw00ka2DVNbJisJ+du19ly6Ll5IRgjeOiuTmI5iuobWdMEyOfw9R1dK9FbaaH1shudqcd3EqKAHG0sV5yte1AwVATgGFYVCHQBex3eZkfqsHOZhm2BPfWVPFgV47WeIoun5+hvIeedIpqkrgxuQSFDHA4a/A6TQXLIur2489FSakKuzQv0f5h1hkGorWNAIW3aL1LJZ6zyVgO1fkIDYbJFr+XvO2QsiAjNJRcgryRpcnjIa+nefLgM3iSgnq8xNPD6FoNI4pGLJ5mx9AYwUyaQFWIYa+PTfE0q30CBxXLtBnIJPAODZD1uEjagjek0sQCKlbOQB1MkTraS8iv4PU54DhELZVU+BLm2Tq7hQuvqjBggmUJjGSWOsNk1djL5HSD5wZirFq4hqpUhoyqMGKZrKxqYsTlpUNR8QI1mkNc1xnI6YR9Gi5FIZPNMTLSy9Ehjb6lS6lzq7iFwInkGfQojMaHGNCL7+28QWM2TeTgQV7WvHiBBaqCY1o0R/fRn/cSczT6FBeLNQVUBTudAkdQF6xjzLD42UAEr+YBtRoDEEpBiOv3Ywn6h0cYyOWpycTwuW3iIQ2fnUIjg6oUBOqGffMYjpo4tRl8PjdZITAcN7YQREPVjGQO4cokCWxbxkiThu1ScTIZzN4ejEabtkyMFzuXsKjaTxCBHusm6K8mGO8kqoZQvF4OJIY46lgcyIzie1Wld88+uoIhHqzy05TaS3A0RE36CLsX3cxRN7T5NQbTLsKaw2IPfH0wju6pptGxGB2N0OxWOequJyUcojg0ciwkO+zSWB70MXRgP0I4DKFwRLMZ8WvE+w9zKOciXDWfoOYlmtPxdL1MPh0lH6hFcQQJrx+PnWMYhSaO6QLYyTjYFnnVxlIsgtnD8PTX6Ln444ihXpKWzcJsPzz/j+Cpwlu/imVNbnZlHOr1YdB8+KvqOGxYdKdy7HI3c7GVxOneRcjMkhaFIORQfAftfftJOjaNIT9Vus0VyRy/r6klZtk0W3lCeoyk5SOnBKhN5bFqoZSlrIWrUevqcNfXVzz7GyKHGbFMDDWDbduMxbIM6ia1nkKUx38Nx8g5DvloFGVsjMFwGC2TpTHkYGORxIXqr6Y+r4HQqXP7yHsdPJl+trsWkdMDBC2ToLCJxmII28YUu/ALC1cuQt4XxFAUvKrCbsMkbXjQ6+oY1lSeiGeIKTNzGkkDWSKZC5pWFX4rKqy4o7L+4sHH4NHP4Xc5tDLMAK3ccO3VPPviS3i9Xu6++262bdvGH/7wB5566ile//rXlw3kSCSCUxSMuP322yt2uXXrVp577jkMw+C6666bUTNjD3WihTyErp+H3pMk8/IgCUvQawi8Po03f2odD/79NnY/3ceGWztwnUYv8vK65fzva/43AHW+Ot6+7O38bN/PeKjzIelFlkhOI4sWLaKlpYXHH3+cdevWAWAYBs888wx/93d/d1r3JUQhZy+Zz9Lj9dHp9+NLDXF9vI/R4DraYpsZrfHTltlDLNBOZufDPFizjq7aZpY1tRPSNJRMGiVcSywRId0fxysc4pZK0qLsDTBsh0uDPlY4Bn2OQmcmz4hhssjvpRYHBziiuBhFYwFgZ9KMBV0Eu48yzxnB0VQWjz6No6j0+sKM4iKRGsET9jCSTxG0++kPNGGZAp/IsT6+l2hoHjnbzc6BIRq7DrO5Zwwnm+dyv8DwKJg5E1U4tGYH0RU/3UPDVLth/ooVCCEYMUxSQmFYUQlbForqYiAex7JMElaKxR4TxTKJOGEsG4RmsmHkCbyAbixmJLAQt9dP0DIYGRmhOj3AsOFiZEEbji9Mn2PQ5atl96FhVjbX85tD+5hvQf/2nSQbFpL1hYiPZUg5fSzMHMRYuJHDKT8JS0e1dYa9jai2SVb1oigucrabRFTHHD6KCDdzkUdwIGdx1LIZUNysVS1SlsOvmudzQ/Iga6NJ9r24g+xwjHYjxcpAGweVlXjzCVwo1BqjRDx+0Fy0WFHaYwfIYbCjeiHLszFMfCgCSGdAWAzX1FHlWFTls7S7qzBsQZs+ykWdP2Eo2MIztobib6TNGyRqaliWlyZNYJgWj8dtWkU9PVaOq8a2UGMNs7dpSSE8OJFgwVg/2aoqonkPuuamxeui33BoNZN09L+AagoOh67Anc2BAjtXrWVvOs9YIs3CWIp6c5hh04/tDZOKRAioDmvtAyTr5nFQW08gHkc3LRQhMG2HUctmoWkyhkLaSnN4ZJCFiUHWqhZCc3Ow7W0sSOTJGFl0SxCJxMjaYKb7STe7MBDUub10qW0cNiCQNsgHfaSEgg8F2/SAEDi2Q14I+nUDO5HA1C1QHHp8QX4VvIyN1gEWZ7qpGo6xJ3QdQdWhNZrDtixG4knqHZuXPF5ipk21W6PJ1ok4Go5joQMvjqboy+oIK09QhUg0x6uKjgvQrAiH/c0s1YeIqNW448OEGhLEnGbso90YaLBiGXfWV/OkaZBSXeQ9bh4OmazN5qlOWyjzbPxLlxCI78dt5DEzKXzOAF35NA2OjZUZJdDzCvguQdX7ME2NYKiZ3ozKfl3DbWW5NL2frF7Nf7ReyrLRMcYUP2OHdtIYmI9PKORRUR3QMyajsSwmDs0ujXwgQI+iELIdWhWVFJBMpeiLj9FeW0PGW6jHvlt10xQdQegGrtYQUTWHnkqycXg3XtVPyqzhGbuVN5BnUHipDrSg+uZjxg4jDBOfnsFOVZEJ+zAcB9OpxQq2ErOyiKBg9chu6B3Acq/HiqXoqBKsUHOQGIaGGrYfPMyT/c24q1UWan6ES0VP5RE1cNQWHNZs1ok4ub5XaNH85NQAh8NvwDd6iDHVha/3EPNx4dg+Dmt1ZBMJqK1HdSzS2QQjihuhaSRsWJ4+ilW7hIyt0hEZoT2XxL8wBME6AH7W8yqBeAyRd2GNjNLTE2ckb5DWLfy2IO5RGTYsUjmTdDxFvaJCKkXOpTLqePHhxkbBm0iTj4wxryrA/JCHFJCxLDyqTbd/AclMnl1GCq/q4c1jm7Fr3ZhCAT2DrtnkFA1TM4k6Ovm4ihbykFMUMnoOVThTvKkmIw1kiWQuSBXVPx0L5l9R+ZmqQaQTQu3ECaNi40p04zgOl1xyCYFAgCuvvJKXXnqJ/fv3s3bt2vJXR0ZGuO6661izZk15WS6XY9++faxevZpkMommaaTTaaqqqo7bRGE6ZDYPofo0XE1+ovftBwEHM4UcoTXLa2heVE3H2nq6do7RsyfCknVNp3xoYvkYIU8Il1r5OLpzyZ38bN/PeKz7MWkgSySzJJ1O01ksewIFYa4dO3ZQV1fHggUL+PSnP81XvvIVli1bxrJly/jKV75CIBDgve9972lth2ZEMbu2c1Hfr6j1NbDbv4xuYeGKJLEyUXZUL2JRrgvHsMDv4M4eYZVIE9KbyGiXoeZ8rBoeIGUrWF6dV7fuZ/6yEHmhguqlLrsHS/HgiKUcieZ4zvLTMDbIiKcfo6mWjrAHtxDoioIFuONRqlIjDIfbGPTWoVkWHsumzk5RYydRELhSe7DdTai2RSyRwrIchJ3CTGugemh1BmnO9TI/8hJbfZeSSedJRndTq63En4nxUGAtjlJQ8rpiaBP+9AF2Vq/Bp3sI949ih6vR2trIJJIo2QyqpuLL2Yw4Cv0CFFXBbydojB4mSxUjWj02KlVmDByBEJDLpSAAjW6NXM7k4sgLKLZDvenh5ZEV6BE32711uCwbJZJipx4h4dNIJ8dwpYNkvUnS9JP0tXDR6HbUXIbO9Mu4c+DOpdHcGdDsQg3kYJCg08AO3yKG8kM0jhyhse8oV9ONKty86lmJYefoE4Jm8yjN2TBt6U7EUA1xTw3hbC+W8GBnU/ijUZxclqymU21lsYsiRosjh/CKXg5YGvHQSg76lpITbtalDrMitxOXexmdR4Mc8HkYG41wxBakG6/hfYnnCacHaMvv5QrhcHTlB7GEQ5W/mayZKtRhVUB3+anODtOaS6E4Dm7DIqeDYdlYCFanXwHTy6Ptt+KkDXI5gRPOkjcddGGjojHoDeAxbXyjneiduxmr6sCoDuK3UzToneTd9SR391KVShCrDzOqOrhMg8ZkHFJdrMmm6NXmYTc0YYeqGI2AqgjctsDKR4lpXjTHIGTlqY4Ms2L4cdqtbnq8S7CjMTbm9jDfHOGQ08ZFYgy/GmAhTfTbsFvYdEeStKouQoqK5RakTJt83iaFIOqxUAVEfVW4TJ2k5sKTTlNlZ6jNZTnkzEfLZci5FdKxLKrQqTLGCBpJomYDezN53t1Sx9J8hGeFwLBs8obOaCRDoz7EsuxenFAbWUXDBRgIHEXgdfK8FFyBL3eIeXqEsB4hm8+zVfVyqZnDvWcX//xyjvqqAEsFZNwKPX4/q/IOlsuL6fXy3GiCrGKhWDZ6Lkcsn6BOMxFYKJZOy8jL2GGNsD/Dk/ql7LT8BHIpBqqgwW3hRyVkJhh1BXm+tZmR7v1khI4nl6U3106mRsWNwwFL46qRZwk6JqG2a4iaOoal41bzVLmr8SkahqGTVyHTt49X9+5na2gZ/Uo9pttHY3WYRuHQ46RpMSOoikIo1cugaWG4G8koFmlHIzE2TEfNHo4KL72+dlTVQ5Oi4VVVnh6JUd05yoponFxDA6oiyKleHAol0fKOQURPY9hVaPjR/GEcLc9hU3DFyHY0x6Qq2kU4308uWINlhHC3NBFBQckdxZseJuwKYiT7GXZg2BMggY+McJHzVjGguAnmdRoci2ojRkd0P7Z3Pjur2lk6vI0FqkHMyBNrW4cblVBsC7EDMeoueQdJ2+L5CCx0aqnT8qRtN9bQGEdCfmKaIOpYqCmHa9jHNt3PmOkjWRUilMsw6g2QEgpZy0vYytOW6iabTlA/9AKHh1rINK/GFH46vQvoRGPUMhHCh6ZYJICjuoULjaBl0m17acofYaGxi+58E0+33IKRFTR7NTYceYgn7ez0L6xxSANZIjnTCAHxo8f+77im8vN5l4OioucyZAlQqyQ5MBAH4OKLLwbA7XazceNGhoeH6e/vL391YGCA7u5uli5dWtyV4Mc//jFDQ0MEg0EymUJJqerq6grDeiL/9PhBHtjSy10OvLulkdgvDoEApy1I/944GjAvVzCUl6xrpGvnGEf3RE+LgfzVl7/Ky0Mv8283/xurG1aXl6+sW0l7VTv7ovsYTA/SWnXyoeISyWuNrVu3cuONN5b//8xnPgPABz/4QX70ox/xF3/xF+RyOf7kT/6EWCzGxo0beeyxxwiFQqe1HbYiWPHqd1Hyo1hqjrCnCsPlI+7zE3OZLMkfJWYk8JhZhDPKYM4gZwzj99XhxDqJOItxKwpZ02BZahdJM4E5nMEIuHDFIzjJPvyaYCx7KbsSgK3SF2zAbQkGh1KMZQ3epGgEcPAJuCi9i4AxhmKFqLJtMjmFHk8LrSPbiCnVuOwco7rgoNvN/OgYvY4Ht8eH4xG05QeoUnKM+qqI+KtYEE9SJQYRjouUkyPrxEG3cCUPYFXNZ9XQVpri3YT1AXYEV5DxqJi2RbrnWeZlaxFRH835NEmnkazqIRYMoNk2muZCVIVJOrWYGXCEgYabXk89YStNkz5KIDFIcz6PaN1A/dhuFN3Apzi0GDH0/ix/qFbpcldRpcKisShNgz3EawN48gq1mTjJmhDh2EHIdLPX38pGOlHtLIszO7CdLP8/e38eZll633WCn/d9z3LP3W+sGZGZkWtlZu2qUqm0WF5kWUbCS7M3DUyzNAzQDwMM9MD0MrTbD+6nobthgGkeoBHwYOxuzGKwbDCysWVZKleVVPuSlZV7ZOxx4+5nfbf544bKCNkgmxHgZ+LzT9w498Q595574tzz277fZJYjpGe/1sbGj7Ne3OeR0RgRnmYvBR/A27aP7HT5pvHzuGzGhJilckRNH3C6vE/IHpu1RxiXkoaY0nYTZlHJgbPkat4CHjqL0BUVgnuDPi5uUYRDbjY28NbzncOfYj19lxsiZth5mMk0owhDHgQ1np3eQhQTSm2pG7isI+ISSmlpKTjUlm0HnUbAooBlX+LSEftygdN2yFRKLg1eRsQ1bBgRO0da5CSFYLvZYNl4xqWm8gIhA1I799BdPXqLwCoe0w/I0iaFO8OicXTCnF9YOc81KWhVmlkjZhy1OVtVVPkdFj0cqgXEbMIRitN2LjYXmYCN/A736utMheGl3gfZmJW0jw4wLYN0FT7wVFKwH3Qx6YC9fJ9R1OT2QkCcHbCx/YD73Q1y6tytJQgVsJ85tHEgQbgKnR1StyUHqkHlHYvpgNAOeaN9kZeDRTqmYiZCaqOXScwhFwbv0KtG7LQXGXcv0i8rJkVEyx0wUgnKaWRpoLIEEqhmBGYCKmCz1GgBxllmVtIyBu8kWenRRUnZbDCb3mY4eoCny/LgJqmtaNicx9PrYCQyVtwWirv1Nqd0QGwEylaUCna0ZKG2RGd2ROoqqqOUaVty1Itw0iGcRFaWVFgS6YlMwLCwxN2AdjnDe4kyilnkEbokn014ECzzOGAMvLk3obUWsTq7zjPFu1RpxuvX/jC9CPbLgnhwlyCb8a37/xBX/zDvcoYj5ahJh4zqPKDDChPe6FziaCjYKG+y7rYYhl2+2LxCpxozUy2ut6/im20OI8dy/4CD8QSXv8Ph7Ija4mmMUwjnua8F/5SQe+0uj4x3EaLHx8wYOz2kXl9BN5Yw24Y03+F8cRsfn6b59s9xNllnryX5h91zPNIdE1Q3wKSEmSESERWeflNyv7ZIlEf8toMX2E2WePmwwwV/yDBYQDnDUaVYndylY0f0SehuPMPrLqZVQXowZMFqJjpHmZKVakhiDD4IeatyYCxKSErgqOqT3LvJI0pwuPRRgrKi7xTTQmOEohiPeTi7wRPlLtfyd7De0HeGwzRnGrZoZPfpebhfv0jNOSyOjkkZmjpd65kEXYwZczrfp2f30apAlyVJOeaieUBlzNd4XP9ynATIJ5zwjWa2Dz/1Z+aPhYLOxlc/X2vD6mP89N58jmPsW4wGOY1Gg/X19fdW+0qb9I/+6I++t6yqKmq12nszhc45kmQuoPKV4Bjg1Vdf/WUD5EJb3tgeszUp+IvAt0XQreYiN5t3pzhgIxKI4dwe5Owji3zoN1zk/OP/bnPBznsqW/K5rc9hfYCPTn/V80IIvmn9m/iRd3+EL+9/me9pfs+/0/5OOOH/n/i2b/u2r/E//VcRQvB93/d9fN/3fd839oV4sIUBr+bt1kKigGEUs1G9yCm7x66oE3hB6Sz7YYzFUVU554ZvceT3GJBzVP8UV3LHblKjtnvISjvlQ1nOXb/GZq1Of2eXcbVAFUc0AsVD4+uoIOYwvAxmRKVavGJjxvVLfErvMvURZZYhq5hxUEM6sMZQsyk+qHhjYZW1LUWqYRzMZ6jfl7+LBzajq0xGA4aujrOCnwqfpecs4TRHVyXKRJSFoTvaYiBi+vE6m9EyzWrA/VrEM5O3iEaap8JTDIzkp5rrhEGIN3AhP0AqTeoiWsUmXZ3zened2NSoZMDN+BymKFk2fVbLWzTTO3THuxypJRbFlLY5YBqkHMgmEmgVnnOlYeVohJ2WPD17iwc6ZnN5HSdBGc3S7AHLakgj0tTMiBKJ845FPWF99gClHmKlOmC/1iBUERfdKi9FKc2xpRynPHP0GoVwvNu4hJEQO0saBNS84EAaYq05CmMadkTfOnaabXJV53qyQbPyGBmglcIHiv2wy39+//8kkgHPtd7PtBySG0unOqSvLYdBhG91IAw4nW/hizF91aWnZ2R2hdvbhyQuRZx2nOrf4pSXvCKfZn33C2w6xZvJY0SuYjWvWDQHPD15Ex3E7NRWOZM9YC26xswvMG5KNvOc2HvwAQ2T8cGjF3kQn+WBWOaC3uOs3mIoOiyU15kFTUSoOOg0EX6VjcmMOPZ0gzpbpWbNlwgfchA1ySw4Y9mrLbJohnSLbSI/AN9koGLOVjus5Du81VviWTvkXHmXh9MGMwSZ9FyoxqRSklQjxuV9ekdDYnfApg+4EV1hnTpFaHg9NZQClJSY6YDLRy+T+iZbzfNIK/D2DuN8zOuNmAMJ6xpiPaMyd8kbTdrlhL4XnEq3GHcv8nM7ByyKlMfKIdTqaKkZmgKk5Hp0ig/tP8dDw9vcTD5EGUhMFNKwFSvZJivFJs63cVGdqBaTxzW6ekDdZHxg8hylFIzCNl1X8PTsdW7H18hknXfu3+EZdmnYESjJerVHmTRASLz1WOfIHIzzI2ZRgJwcUjZ6EDY4TDPaCnrO81Z8mjNHb/K+6RHre88zI+JvNH8bC+Uml4dvkSZN7sTncM5TIPhSo0fDGH6T2KVTTuiXGWk65ez2l/jI6EvstS5gNZhCsyT2+FLnIeq65Hz685ylYnD+WVbzCVeqQ8SsxAuwWJb0Hhe9ZKbqLBT3eRB1OYjO8+Gtl3igF1mRhuZsGx9NuDh4AxvUsVoyKiqKwQH3xCqrJuKOG7Mw3SK3dYZqxoF/mNJaVstNPBrSI4Tb5+Fsm+RwRtm9TBFEdF1O6hxi8BZ90SJWAR3X59nZHi9HT2F8jlZTxsJzYf9llvWEQbSB8dApRyA1G4NXefnuQ4zLJTby69za7rD18k+w1G7wxPRdNso9RFXws3VPFSpkBSIE5RzCjOmMX2TYvsx6EqBTR2k0Os0QKiK0FR07o2YznBcUQtL3EXo65Er2NmnjGl4EXI/OYr2nVebE2rOjNbumzqx2mfp0jPMjljwYF9D0go+OXqbrU1aLHdzXKdL1K5O3PeGEE37lTLZBzu088A6Szteus/FhjugCIPD8pt/0m/jYxz72SypQ/6sVZJgrXvtjS5Cf+Imf4O7du+8pwH5lvvDOnTtYa79mWwC1UPG3fs8H+I1LbSzwT273AVCLNbpLNdZDwdlGgDcOV1rq7Yj3f/I8i6f/zS3b/yas93znl9/lf3jndVKnmK7/Wf7Yjb2vMosHeP/q3Ofzpf2XftX7OuGEE/4D4h131Vn6qgt4EmsJ0pyJUCzqPrHJqesZsTv2sYwiXBQihMEUmtbhO6wUDygqRVBKQjFi2kp5LL/Js+NXOZ1+maViD5M6qkpDpXmkfJePD36Wa/kmC+O3oDjCFvvciE5xLnuA94YDB5eHP0NrcB9XWpytKAQcRIvsJ0ucatV5d2EFmKJFhTGahh1zJb/JxfQ+zhkadggioznJmZQlqdfs1APIcs6Mb9EwBR03wcgA5zIeBHXejhvMTIizDi0jZJJAEFBZMNpzYfYW56c3aVUzTmd71Cl4pLzNLFaEtuJiepeZTNiMlnHO0Mp2wXqklmChQjC1FZma2wg9NPXkLuZHL1xl0lT0o4hqKcT6iCTVOG1p2hHFZJfWzotUKAwSPEivaJQzhDDMFOxIMOUuUzPiiaMXKZ0gNxU5lprNEb5ioiQ1UyCNxVQa7y15PeDR8nUuFtf5UPYcq2YPq0K+0H6M+/E612uX8Ugi43BVQd0ZeuWQR9Ib1G1G7AvCYkS7mlFWmjSMCEzJUzs/y9XDF1msDjhf3GSQ3ef1ylI5S1TlPJTf5Vy6BbOM79r+MT65+aP0GHG62ifxYwSOnWiJe8EK57N74DSPD94ir8VoJNoKJI7QOy5nD2jYlCdm15nZkFo5YdEMeCS/wVq1TdMfEZmCxWzM0/nbDOsBn+s9wy3aPHXwz2iXE240Njjr9vmeoy+yNthFHM/GI2YsFztspHdxDlppnzwM6LeX6VUjvHXEZYFwJR7PY8V9EhxjZ1jeexVV3kFPPd0qRXmYhpJRVjEdT8EabFFSFIa7bgFfDnl8cp26yciYByzffvBT/Ibhv0CHnqoG0lU448i94EyxS2O8Sy9QyPEdFsvbLOo+pRd4U4Kw9IohTw+/zOODl2mYKc4OKZwjNyVnj15hebpJ5RUjH9Oa3CcZ71OVBa8mlzhfbhL4gtgWDHyDw3CB/aCJcBPSouLi/gtEesaCnqC8QHpoWIMCnjh6jfP5fRKzz92FFrE74OHxDbwpEWWO9Q7h52J3ooL65IDhQZ/YDJmEghW5y8PFO1xJb3O2OOBctU8lYBYFCAVhOeO1/SnTwZDQa4QveGTwBrbSPLL3Msv5AaqqkKYitpqm1tTsjNjMWNh+gVIXLOkj6naGESGnsy3icspj6bus5TsEZsil0du8f+vnuDi6w8PjV7hc3COTlkkQs1/3SJ9RmoQ4nXK6/zayrEBrLh18mcXxOywMblFOdqiKKaVOcXhSGTN0C/TGdzk/vUOnGLKZRaxN96nPjgit5eLkBkPnsMf3isI6WrMJd+sr3Kqvk1CxUh1ybXaDheoIIaBuDKE1OCFoHbyOcod09RHh+Cb3bj3Hc1/+HM/e/zyxgbqTEPTJejFVICmFI3CwkW/S0wespHd4PSt4rdIMq4qFKuMP7P5DfvPgZ2mYGZ1qTOYTZjSwpiDJtqnZlLXygAfiFIUKKIMIcGgPZVmRO825/A0+MHuBh4q3WK0OiF3JpfQOCzYlVRLvNOKXdO7+Wk4qyCec8I3m9PuhfRpG9+Dqp0CFX7vO2WfpvPh/ALAshjzOu/Dkr/+a1fr9Pv1+nyiKqKoKgCAIUErxhS98gZdffplGo8G3f/u385nPfIZ79+4B89brt956672W7a9gbc7Nmz/AePwyH29/kh/tX+IFXfF7k4TOJ8+z0Inp/tXXQAqwHr2fEm+0/50Pyc8Nprw5yxnlGcLNaIYJb80Kvvenvh8z/QX+5DN/kk+c+wTPnHoGOAmQTzjh1yxCs6s9OvR46ciFIqwqfCQ5Ul0SU1DJAIdgTy2ReUvihuh0Rji7x0yEhA4+ePQCeEvLDQmpAEfDTDnjDTt6g6bWTJ3mXLrNxfImR6rFRDU5n97He0dSDTFkdKsJvWKAqa+iVcRp8yqnd2acrbZo2JRx1GMYLPCT45JvpuScvc3ZmeSV1uO0/IhF2+fbpl/ienQJKyUXqgcgXuGafZOJbHDYPIfXAdfy11kxfUIhWPYp3uV8pvttNL1FVSmVKzmTv8FB8wx5ZBFIell13BIr6VZHDMIlDsOAyJcEfsi3jl6iVJZrdsRhuMRYNNnwe+RBwlglaOmIkVwYfY7vcG1+6NSnsF4jPBRKcdBWbIk6oTZ4OcbhMMYiMTSzAc6kDIIO0hmE84xEA4tgrTzEeehmQwJv6dsKJR1GBljhaNspHTPj8em7eAujcAEvYOK7VCjOV3usV0MGqs3Ds1sIbzkM2wxUh5/trVD4hMuDO+TpDJMEXI/PsWrGCGCk2nREynZtBY0i1BrlPV7CcnmEEwGr+T6b0SLPN8/yoKbYGHn2bwwY2xaJj3hy8iW0VIxlxHm7yQdm14lEwV27yLX8DkPVYa7rCzu1OgOlaVaGmarQqoY6ftYi6FYDnjYjnslfpR91qURApnpMgwQJfHT6Ek+kb/OQeJMz9mGu2H1qPsUahXIVl4pdTpVHvJO0WCjHSKlYkkM0gk454VSwx0zVuF2/wLcPfgGcJgvhdLXFLDjLermH95ZKWJp6xHq5xZFYZOQf58psi9UiY0ueYkstQ1mSaMuV6i6BkFyb3eSM3aKZ5izbDCsU58w+u7XTLJk+pRrz3eN/yeXY8fmqxb3wLJ1qQjcdMHz7Hgs8wONRzBXMlYMxgjsiZrXsccXHlFEH5xUOqLsxgS2o6SmDaJXYTXh6+mUehAvcCuqUbr4d6S01b3kqv85e2KMA1s2I+3FCJZp4BMo5wBN4jdOCyBq8d8ehTognxDGvKke+oplPsY2Ya8Vdrub38O4WP915ivtyg567T4nnvL3JRC2xkPVJlKWmM26K84Cjqav5NSmOcPkR9cpwevA2fdFmpezT1lMS/w77con1fJfhao16Zagbz1nzAKUFfdUm8jNiB90yx+OR3uMtHCR1dsIVIuvZyO/Sy8esuSnX1QW2VQcbRBRhyFIxxQpB4WoslX2aZsa5dJvVcgcHlNaghaRhRyQ+o2Vm1ExOv2iyKLZQTuOF4BS7TPXrPJLfpR6tsdO+wqlsD4tHOYuwnmemb2AiuNF4FiUySlmjlBEtm9LSGakMOa/3sFJwafg2uyamZnImKuFGGbCcpzSdRLmKI9oYAkZljvcx0nqapSUy83PDIBmXGqEkptbgfP8mTdVn3VoOfBdhDMI76tWUCMNUNfAGhIc74Tm81wigCGo4M2SpkhyGLTr6EKMKjAwIdEXkCjbS21iXYoipmYzYFV/XV9dJBfmEE/59kA/nP5/87b/082eeYY9lANb8Lvyj3wf7b33Nal9pmazX6+8t+12/63dxcHDAz/zMz6CU4nf8jt/B008/zfnz5xkOh/jjdpLnXr3+Ndv7xz//v/CDzz9ge7BDfOkv0xKWt7Gob12n/vgy8Uab+FIXrKfzPRfwlZ37523P+Mm//gZf/uf3flWH458ejObvI/08Avi23jzofsU9wdZsj//m5/8bdmY7rNRXWGuscW9yj2k1/VXt64QTTvgPh/KGC/4Wq3oA3uK8oawFRE4zdk0qAAFvNR5iJ14G6wirglo1IqKk66d03IwOEzpiwNnqEIljJFtI7xhGbW7JJ9hxPYQtuDZ7k/Vimyv5DZ4ZP8dSNQ/qACJXcb7aZNUc0jJHVAqyIGDF3MNIEMLSrY5YyA+5cvBl+hJkAG035enJa0jnCbxhL1rGSHBSEmP4ruKnWbQjjJJUKqSIQpzwGGGJTMaCHrNaDTFW8PToNU6lt+lmmzw8u8HDRy/TrY4I/RQtC0pZUZJzTt/k2uRVVtMHYAuemLzBqWqXtWqPU9Uhj6Xv8lB5m9iWGAKsKJkQsicT1syrfOfgs1yZvkMuHSYI+ND4y3zL+CWqQGCpOFveZ4V71N2UTj7AG8EURcOlCGkolKISEicEqYvxznI+3+JMuU8WxGAt0locEHiDRxA5Td3nNO2MM9U+C76PBrrpiCO9iLcB3ktk6WmUMz4x/AX+r3t/n+8Yf46nJ2+wlB1irEI5xyyI8M5ycXoX5x070TKV8PhAYglZrg6om5ymSWnrCd1yxLX87lyIqizBLfGOfIyXk4d5dvo60hkCZ7iQb7HgJnRMRugrtBSkQQ2PxCGok/GhwZc4U97FAtY4rqXvELuSU3qXUJasmV0mss5GsUXoLA2TktLEygCrPEvuiCV/hA492+ECOTFWZ1xJ7/BwdpOWn2LqCavmiMvFPWIqyjDCCEB6WnbCI9ObSDcPAKW3CO9pmorIaUqd0cr71E1K7Esmqs4gdkylp2EP2cjv8eHJi7TLGY/lNzlf3OeT/Z/kmcl1jA+puwKDI8QinSYwFd45Hs5ep1McsJXnyOKQBdunEgqrHENpWRgf0tZThPcI51ksD3ho8hJn8zss53fJZcxMRFSigbSOkhAn4CDoMVRNVnWfdX3IR4YvEJmMpfw+jWqCRzIOO0gMNV8wVjXafsqy38cKsHi0FHTMAU9OX+VMdpd6mSOcQ1qH9ILAKR74VQ5Vm7hM2Zht0jh6QIkikzFOORaZMgtDShnihGTd7GGkxCLQRcXqbBucY6E84v2D52mXfdarQ5b1gLqdofSEQ9WmLmbYQGKEZNEfMQg6VN5xJw5xMmQYdohdyeOzmyxkR5zReyy7Q/phB+dAmYoPTK/zzePXOFM8IPAZGkPdzejlfQZhD+cEG3qfUkY8iFfJVB1bej4weJW1cgsvQAtJqSI0io6dUTc5iS2InOaSu0lumngg8hWn/CYzpRiokFx46qbg8fQGsasIrJ2POYSSNXvAE8M3UM6gnKFucxp+AoEhVI7YaTp6xljVWagmHAQdCgIeyW8jpOOd+jle7DzFvdZ5hlEXUwkenr7Bo+kbPIgzQjdEOUfLpJzL7uMp8Fh2F7pMhcSogBUz5Iw5oE5BQxbUyFit9jkUSwxlj2HiCJzBCcWKn1LXR6xVO6yUB4Q6IxCaJlOslATCMBOelWqbx8dvI53m6xxBPqkgn3DCN5xiMlevDhJ46Dt/6XW65xjVzkFRcp91nu98Lx8SXzsnsby8zCc/+UmUUvzET/wEAFtbW7z11ls45/j4xz/O6dPzWd6Pfft38Lf/1t9ECMDD/Xt3v2pbk8kb/OPXDL+w+9s451forf8kj8ZTni+63Fqusf2T9zCFZfnemAiYfHYTX1pW/m9PgYDbrxySjiue+dT5X9Hh8N7zucEEARz1/zly6Xfzw4caABtfoHn+zzG79//gB9/+Qf70s3+aqwtX2U13eXf47nst1yeccMKvDYTwLOoJoDljd3ktucKCy0hMBV7TNCmZlDjnsd6jfcB6scc4bMz/HkXq2jydvcEoqFPJCOPnN7jKW9o2I2IXIRos2Skoz0q6x6o/RDL3EU1MToLhkfQWIRmDqI6RId4byjDirluj5yfkImJFD1k2hyhmtF3J/fgUuZzQswfkUqJRpDLCyeO7LC/omAnToEnkKtbyQw6jFZyEuslYqPpUKqCpp/zu/o/TNRWhmVERvncT+onB5wmd58vJB7hRO8tD5SZpAFMTYpAomxEIyV60hKCiq2c44Xm4mAeEi3LIkulyLzrLit2lY2YoUdHVfSxneCb/LF37FqO4xaFfYj9Z4uOzL7Fqx2xUW5QioeZnBFgCbziSCxQyoG4KDIqmm/LU9BaogLrNqVGggwCvFMpbXq9f5nRxyJo+xMoQJxTeCWKTgzUcyh5LckShIiI81kMuY86UByS+5IzeR+CY9NqkcYPlYZ+aLMlkwpI5IMDyij7HjskYJjEhERv5Llu1Vc4W+9RMSYOYh8Z3eVq8wj7n0YHljN3mbH6fhs04VR7SMxM6Jif2lnHYYNXss17ucyvZwLqIleqQtp1RsxUr/ZTZShuvJ3jvWKsOWNQj9oJTOARWCpwQrBd7bKk1cilIw4BTNmMaNCgRtFyGI8QLQ5spknnAmwZ1zuW7rOgBG8UBd+qncAKGqsX9cI3Hsnc5Uz6g1AFCwrIZcTs5z1B1eTJ9g6bN6OoJg7BDIWOEAictHT1Ayw4PlTfYl6usmDFdxpwtHsyrnqS4wpHIkkoIFvUIhWFfdhAKLueb9PSYLdVgPXvA6XKPmi0py4iPTz/Pk7OXsUFMzWuUDxCu4Iy5z5KZcbbaJbEZo6CH9IYGBQ9Uk6mMQEhaZobw88CsG0z5PYf/mPPFDl4KtPPUbIEEYldR9yVjlbAXtKmkxFkB3hLYilGYgCs5UnUMkrbLGIo6a9Um7ytvEYWP0MAQmgmr9MnCCKuhW0753qPPMQrbpLJBV48YhU208sxIaJqUpi24Kt8lsBahPA23wJX8HrkKEcDbyQU+bN8iEBYtxXHxwRNQ4MSMSoRMQkm9SlDOIr1AOIEVCisCOnbKMGxTs0PatkAyZRzUGasOQ6XZjK5yGPc4Uz3gtD5gmx4HvkepYh4Eq7wePUwVOgrdYBC0SawB77BIPjx5k2em10koqPmSNEiYhB2ECAlcRSoi7iQX6ekBbZcT65KZbLCox6Qq4mp2h9Q3aDJhtdrntr7IfrBKLu6RyRrPTN+mFCEgSFzJQjViMzrDfrDAcnVEKkI2awt09YSOH5BLxbPF6/xkvMZ3D/4lYDmdXORK8S5NlxEVJY/N3qQX9ng5uYrXjsiURN6ipQIPC2ZMJUOs8DTImagGbcY8NbvOennAfrRE3eTUdEolIwZBhyezd2g4jRPQcCkhhqabsl7tkPoagQApfulxw3+dkwD5hBO+0fyNbwWdgormgl2981+zSqU1eVECMGCBg9Un563Z/xreez70oQ/xpS996b1lb775JltbW6yurvKRj3zkveV/7DP3Oa0WWbZHc185V/DF6w/4pofPArD54Id57fApFIbfNLtL9vn/ld9hQ747kjxyrsuP/d2bpJOK3/KJs5jXDvHl/KJS3BzS+5Yz/Cd//H0snfmVK95eTwv2K8PFWNOPH2FS/w4aEgKzz1iucs+t0m59gruTeUB/beEan3vwOd4ZvHMSIJ9wwq81PPTsDK0900iBd5wpdpEIrFSkqoYCOi7jVHYb5QR48FiscyzYKYHwCAuVFCybAa80r7A8HlIRcr12iTvJKZarIz48uUHHHTGJaqznllV9wL3aIjWX07UFRgjux8t07RSPBzxGSoxUpNRxXnK23Afg28a/QCpCMhkipGLZjNE+oOlyHiru82Z8HukcwkE/6FGKiAUzJhQFs6DJULUIncYLSSkUZ6pDLhV7lDJCI5kECVJatAho2BzhBYWCWRQTlQ5TeBbSIZGveLt5jljDVIYM1QKr5YAaOQJH4ityIpbsGFlJKikwXjIKujTNmHq1z9nyHv0wZOQXea7xJN919NP0zAjwhL6gUBHgcTicECyaEYGyxM7ifZsns5uc1/tMXZ3zxT41UzGMOmxHazhreDy9Sc1k9MMOWdhmIJdZzIdkus7F2SYbfovz7OAryU60yiv1h7hQbSOdYS9sYYWnTsZj2W22wmVaPqNpcy4XWxihCL3lqewGX2g8zgW9w0Z5QOg1iS0wQqGVwwnYdkusTXfZ6p5iHAo+mD2gKWaEXrNgRpTHdjlZUEN6y4Ie03QFa+UR3SpnwfaZFhLnAxb1lIfL69xK1pFIjsIeD6X3SbTjdnKGhkjxCLSCVjBm1eyxkIdczLdY0CNeqp9nterTsAVd36cQCZGr8B7Gqk6NiiqIGUZtak5TtxWrZsTDeUzHznAIum5Gw1dkvkFH5zTNfVaqQ5TXWKEQOKyUNMuMWjhjQUw4DGvUXc5Fe49xXmMcN5moOs57tFQ45TFITlV9zlR9BrJNP14kDyMin7Ge7dDRE/ajRUI/1wVwQvBU+jan3JDbboPc1TAYnspu4oTls91neah4QMeOWUonHMoJ/bhF4iKmMuHR7D6ZqBMaR4AhUwkLZkrDZQig48ZIFMOwQU+PuVzCRCasVoe0zJRZ0COxJYkt8aHHSoF2gtjlWCHYry3S8mMSck7rQ7puyma8TC/fxyrHRrlP02kW9JhlM2Is2jgBTZPxSs0wpMFDxSZjWiyLPghJX/VY0n1aekbdZ6Sqxgenb7BQTtE+IHYaE3jwjnPuHk8Vb7MlVzlf3qf0Cd4pxrJGSUAZtGm6KYtVTug0TTudj5U4KGTCSnWElYKdsMWCmRdUCiRCeNp6SsNk9PwYlCerNXlTXSW2KRv2AO8VqUjIZJMFM8YqiUdQRtBmjEdghCQxOUL0kEJQ8zkb1SZHYZclK2i4CUZ4zpht1nSfnWiRXzf4GR7JbgOe0+UB50Z79EWH7WiBVTtjTR+xVx1wttqjV46wYoGV4JBnZtfZjJaZhgnDqEUkhjgpkNZhpSKTCVNZJ/MJ75vd4H3C8UrtYTyKleoI5TQHUQ8nwBLgpEV5ixOetpsx9R3el77DzeQ8Z8t9Pjx6FSsVRRCzHZ9i0YxInKUfNXknOUMuYk6XOxyqDoFOyVsJXpzMIJ9wwn94vJ8rVwPYCupfq/w8m93gnRt/jfPnbzOd9viW5hc4de7/9Utu7od+6IcYj8dcunTpvWVbW1sIIfje7/1elJrvS1vH27sTUrXMsjgiDAKc0fyjz/4833Thu6DW4Z2jU2SmwUfWHEHvDyC3E54GalcW6TUifv1/+QT9rRmr37TOqBky+5kHAOR3RthrC6xd7qKCX/mUxi+MZgAsuB3u9X4nAH/t0Qtk7hx/8K37AATLv5u/8JG5t/O1hWsAvDN451e8rxNOOOE/LE7AJGzipEEJy/tGb6PDOl46lsyQQGgg4NHiNmPRJsDRYkZfNAi85Mj2iFRJx+XHTbCWTw6/SOANRiiqQPF0/g5Ppu/StJrTepe2nV9jhHcsVSMSV6CR3Khd4GyxizJTPj58hev1M+zLVSKnAc9mcIokLlm2A2JX0fQTNoNFvJR4oGlSFs2QwFdIa1gxI1KZIJxgHLcIKKi7nAVzyFScIvElRiqkF8RYYl+hUTjhmKkakdBYD4EzbJR7fJt7ic1mnY/OXuVWtYomQDiPdCBFyEK5S02mTIMYnMOhkN6R0qBjMqQweCUZhQ28gkeyuzSrkpCKq9UmNWd5KnuTVTGm4TUWiUeCgFHQoqeH8yMsJHWb0TMFUx0TB3VyU6dlc7wQKAzCGZp2RseMSXxF7DVWBRgkZ8otEpcxFG0SU9Dw+TwdIQSRr1i1e3TTIVfLB2z6RZRwLNshmohfN30BcLT1/DMMsHgh6JqUTw6fZ0HNGKkWiStZ0UMCb7AiIvQlTZdRmRmXs3u801hG2hKEY606BBSxq6hkiLIGIyHwmn7YxkpB144JsCzpES1b4JHkNmK1GCC9QzlJzRmGIiB3no6d0HAZMxXjJKybQ1JXo2XHWOGZBg2QisvFIafsgM1gnaFo45OIi8U2MU2mQcJQdVirDqj7Aiskl4sHWCEwRCSipKFTmq5iInfZT+ZzzniP8pquniA8rNgR76hVVosh58p9pIOZaHPObHJLXmC56nNW7zOTTWo+J8Txoemb3I+WcUpwubzFvlziXrxOpSJ6esJWbY3QWyqhMMKzaIYchD1muo6VCmEt8yYKSUbCcjWk5goEAaftXfbFo3TcmPVyB4TCCYmVkr1gkcPaEo9k15nPFM81haX39MwUJ6BjUghgEEpC71iujujaGQ1f0LYZhUhInKN97Gcbe8OiGSOwc89rGfLk9A6LdoYVntAbaq5CeAce6rJkRg0jFQ07Y1Ufse1O4ZHUTIaOIlqkjEwHTUgpIxySh2abPBBnGfgubbuDUAorQeJ4OLvNqjiiq2ec0XeYEeO8YKYWkC6gbXPqLkcj5xVlJIOwReir+ciC97xQv8b/pf8zdPyQFT0kV5K6a9KyGTVX8M35F3gtvspj5U1WzBE9O8ESsGQneKfohz0iSo6CHg1f0DFDhkEX7SLadsq5bJeZbBBLjxMhU1VHOEfXjOm6EbHVNFzJohmyG0WEPidVCaUPOZv32WOBU3LCop/hcTya3eFUdcQkaHBKD1k2MxCAcDT0hIOgTaZi8IBQTIImEQKHZBoknDJ9tJB8c/Yadatpm7lVXOQNCMFANRlGER7P1WyXFXNESUxoZ7yRXGK92qPjJvRVB4elp0cUMsYhiU3JY/omuUoYyQ6HQYtZ1KUnpl+nhvVJgHzCCd9YhIC1J+HoJqgY4q9Wfp5M3+Tll/8zrM04uwG6jOjH8FL/f+Lln/iX/KEP/mkeW3rsvfV3d3fJsows+2qj8w996EPvtVYD3D6cURlH78xZkvF98jwHYNrf5U/8ub/Mn3h4zJvxfw484BPPPEbxpQGQUbZfY3bxBgv+L7Byrs3KuflscOPJZWY/84CZ9bzwUp/Zi4c0ezHf/UeeZGG98Z5q9tfD9dlcIGE7n+GCc3yoJfjEUoexNjzRSqis552s4Id3j/j9Z5Z5euVp/sK3/QUeXXz037LlE0444T82Am9RWIQCiyKQhrY9Yig6JHbeNSOBqUyIq5I79dOEviJxBcJIciIGvs0Ctwl9TkRF5RU1PxcpbFQTImtZ1iMW9YSeG+G+olPqoWWz+cyliLmc3+dsvsO6nWtCJK7kA9lbnNEDSgJaNqMSEeOoSeQrChHihed0ucdBuEiDfK7g6lIuVBUzWaejp4TAlfIuFZJCRFxii8vFFtOgTsfM6JiUpp/hkNRdgfaC1eqAKkhQwrCq5y3FkS/44OQWZ6o9mnrMUDSZyRrfPHoF5yMSX5KKBB0EjFQHPGgR0KkmGBHgREVGk71ogY5NOVItVv0RMRmhN6zbXd6fBjgVYVAEOMa+xoHqsl7uIT2kqkbgDYE3hBSc1gekfgNvAjJaLKsRB0GX0Bl6eoiRiqbJaLiMbnqbN+oXWTYTOow5inpICYWLmfomdZcTSo01cNr1AUnXFbT0hLor5p6sNLjeuER7mhIAFSGxL5nJOi1f0q4mdO0IK0Pmcj9z+5hAOmayztlqj8tmi0U2qIuMK9kmPT3F48hkghWSjp3inaMU89lNjychpeZyFq1Ai4BU1shUTGgN5/UWyimMjOi4Iw7FFUJb4oHDoEspI/ajDqVUJK7GBTPmWvGAus9ZMWNAUomQJT+hHy4iMSyZEa9El3go26ZlMqaizpIfExiN8patcI2ZqhHbklgYQlKadh5raBEQ+QorJAqHUYK6z5HO4AXH5+iE3EZ8x+SLZCiUdQTe0PQCLQPAUUlJy2e0qoIijDntxvSMpSLCm4BUNAHNenGAAyoZchB2WXBTLhTzhDnOU0nFOKjTdDk1Z3F4YjcjdgWO4DgN46iUpGNHXCzuMwpaNJxkRQ+wIgAxF+HCe+Tx40K2qeuc83qbftCjZ6YktiRWmivFLUBgkExFDRNC6DSagDeTDXr5BOFAyvnYQOxKnAInQoayhfSa3doiHT+lLVIOxQo1KhSemQjoRy3qDAlURWwMpYpZLwZUQR1hwEqJcB7lHVI6Lmd7HMgxiStIRY013QfriCLHgk0J3TyhIIQnJWamakgsdZeSqjqJK/j9w3/GadMn8BWhNyzbMX1WAChJWBJHfOvseRbthMgbPKCwOARXy3vEvqThCzIyDBInJA1TULcFUsGS9SzqETkxu+FZzuhtRrJFpkDYEsk8UeYRBL4kQBM7g/GCus1ZDQ5RosL7+f9dz0youZK9cJG6TVkyI7ajRR7KH9APmnxk/DrnijGJzVFGcyHdpLSO2FXUVMZR0GbJDPjE+Hn6qkfd5UyCOsKDdNBhTGY7nKqOaB4nQ87qHbRc4z89+inqLgcPNVuRkPNb08/Sc9Pj88IjMSQuR3mLFhCrGu5Yof/r4USk64QTvtHsvDL/WV/8qsXWZrz55h/D2oxO5zcyGq0SxhXbpeB/nwT8XP9Vft+/+H3cGt4CIMsy0jSl1+t9lccxwMc//vGv+v3O4fz5K6faXLx48b3lEs8/zp/m97z5Pn7ky3O7qB/50gP+2d4YJXYYX/nz/L9fD/iN/9vPYqx77+/UUoKrSV5IDTPrqTUCZsOSH/kfv8Tz//T2r+hw/PmrZ/jp919in7l38wuTkv/ixc/QDhR/emWL/v0fAOB/uXWLn3/wBXq1Hp849wnWm+v/ps2ecMIJ/5HSribUByk33ercTsTlrJojAgwOz0zFHIUtcqmwwIwaEndcL56L6IAlkxHSG2JfkcmETNY4qw9o6xlTVccKju2kAOHRMiRyhrbN6OgZj+a3eay6y2m9R8NmbBRHIBWRr2j5FCEg8SVdO4JGShFKEu+Yqjo7cQ9zbLsnmFdCnQSkQMkS4S2x10xUnZqtkDhSkTBRDSQlzsNENTgKO9xpbNCyOaeKPpE1GOXn7z+ydN2ETEasuiGX3Q7nzT4rdkyDlMQXKOVBSJarQxbsiMSVHLBMnx6lV2gZcKY4oGenPJrep2ZTUlHDY6n5gporaVUzpHDUXInAcLnYpGtnJL7glBmwaEfUbMFU1DEouno+P4qfN6bHTs/lZP1cj/a4Jx6AU3pI4rP5PKZImKqEgelx5BfZluuUImTdDGmaFIWnG/WJO1O0mPtk4+aBzlC1yESM8gaDYqSaNMi4VmxytdpiVffnFUEkgXc0bM6FbIulasia2WcSJWzoQ9bMgArFXrTAQdCiexws4z0Kiwd65ZhhfpHKNqnbeaCJs5wvdlh2ExbNmJ4dokRJTeQ8Zu5TUkc5R05M2+Y8lG+yVuwQeEGIp+4L5v1ckpmIaNoJnxj/At81/Fkeyd/lUrHFs+l1zpd7iEIR5/O0Ti5jhHeMZZ3AWGrOkBPNA+xqyihok8uYQkbgLOJYyfnx/B5SQGA1ymisgJrLkcLSs1OmqoGRikoo2nZG5DIiN1dW9hLaesYHpvdJnKPuSpbNAdpDZHIadn7MAqdRvkQ6Q8MWdKoh58sd/rP+T9J02bFIV0wuAhbNmCUzwQuYHbeXKzShtyyXR7TKgmaVExrNnlzgSDZxHqR3SGfx3rCWHbJhtnFCoFXAWDWogpDEZ5zVewg8R2GTjp2xVg2JnJm3/NqUYdhES3Uc5DicdxyGLXbDBaYqRriKsUi4XGzSdikJJbmskbiSq+U9Lua32Sjvz6vZx//1ic9p6CngqIIAJwVWeJom47HsDo+VWyxXQyxwpFoYqQiEIXEFic/JZXyceJpXvFt2StukNEzKmfKQjpkReEuuaoAn0SWh1YxVEyNBC4UQDnkcoHoBlVS03ISunRy/TseSHnIU1PkHCx8jC2JCURGKeSdH3ZfUKblX6xH4eXfJ31v9JDPZIPCOlpmxrI8oAeHmAXzN5Ug8PT+lktFXLq/EVjMKWuDMvF3eu/def9sZrmX3eGx2A+8t58odPjZ9hTOujxGehssYBXU6dsppvc+5YgsAqwTDsI1XgoCKh/N7LNjp8fcBZDIkISNxKRyPGAhpKcOQhp8Xgjwgj/+3U1UnVQnn9D4Xqx3iKEd8nS3WJwHyCSd8I8lHcx9kgMXLX/XUg60fJM/vEUUrTCdb3L71ASorOBV5PpWm/C65QG5yfuCFH8B7z8HBAQDt9tfaLP3rfskPBvNs28ZCnQsXLgDzbu9FmfE9V3YQTUWm5xfZ63tTvp+cz/klOuNl3h1e4rF3JP/0f3sN5+YXEqkk90rPzEFNwOOPLrB6sY2znsPN2a/okEgh+OLhXVywSM3s4b3niwc3eGdwgz/w2psMer8XVd5m5BP+wBf/IqNi9Cva/gknnPAfD94LwqHGH8CZrSMO4wWmqsF6eUho53OBPT2iZ45Y1wdcye6QBjH34jVGqkkqo7mtjxB4AcJJsI4SQd0VrJkRC3pIx4xp+BQh5vYgDon3EQtmOreJEY6OmZC4AnBzNWXvOAo6vJOcZayaDMMWTgBxBUFFJ+mjCbkTrbFRHtCwGQfRwvxG9Viip2sn1EyB8A7hHZEzwFzZOXQVC3qA8RJlLT094V5ymu36Gm+3HyJVNRJXsGjGLJZDNoodjIfMJqRyXs9yQiCw1G1G6Mz8BrYc0Xvvxt1RygiJp+5Knshv0nFj6jbltO5zrrpHw2cI5q9vFjYwUtIP2nB806tlQMelaBHghMMLQeqa3PUbTH2Dmq8oxHxOGSFZsSPWqwFL1ZDL+dwfuJTzIM4zD3CNlQQaatqTUJLJGkYJFJaeHXGx2qJjJkRhjhOeLAzQQlFDc6aaz4FPXIewDOlWE1Z0/71zwCLZC7sMVZNChFjpsBLqujr2q3Uoq7lUbOEEpEHCQjWk6eZCZKUIMCLAmIgH5jRmugg6YZBfIfKaJTPiUrGF9/OZd+cdxs+TNEdBk8vVXUJR4pBcSTcJnUZhWNYjNsp9tqMlhkETCfRVh1QkLJsRIRULZkwhYkJvOVsd0rI5kZtXDDMRk8oaR0EHMTaE9wwml1SqhpYB2isOZIumK4iwODHvWKhQaKHmgbyZ0rVThDcoVxKakmY5pavH1F3Oij4ikxHToMGp4gjlDTOZcEr36dlDEpfSdDNW7CGnzD6n9BEBDi/gSvGA0/qQjeqAD07f5Hy1S9NmxK4kshWRKXBAQYjHkcvwuJthxprep2MmCHOWoVnHV4rMJiA8+3EDnEc7iXSwHa1iiVi2e5QoJJaZDEhVdJyHEShToR3HIk4BPT2faV4wEy6WW3T8FIGh4XKE9xQqZEFPKGWAZi769ezsHc6Vu9jjfUgcpYjIibhU7PB4dhcBZLJG91i9u0GJk5KAkobLiZ1BeIvwlpVqzJI5bo8mpuYsp6ohCoORgtAbxqpJX3UwMiLwnropuVzssmim7IULjIMaPTPmSPa4508TGIcyiqFqMqNOXzRBeDI5P1cCpzmlj1gyE1o2Q4t5AHumPOJiuccwaIOAxOXz942g4Qu+JX31uNXYs1RNuFPf4CjoEDjDWtnnmdltunaGQZGJOjNZQ+DwOA7DDodhl3GQUMmApi9ASJCCAEvbpiya+RhH0+c07RSJZlkPOV/u0nZTEltwWh+SqQTlLXUKBmETzfy6HLuctpkimHcTzNNAjpCSpk3fqww7OT8fDIL9oIl1bm7KJgUcJxB6x8kDEWpaZkbgzdf13XXSYn3CCd9Ifvr7wRx7rq1ce2+xMSmbm/87AN5rtH6Fgf0UP58qPt42/OZGyeUP/3e8+MZf5Mv7X+ZLe19CHM4vZ9Z+rQLfZDKh2+2+9/vmcYB8tlfnyYfP8w9//LPUREWE453dmJvTNkmQ8Vuu/CTXTv9R/tuf2uKvUPIPLv2vnB1+kXUrGexlSPmLrdODRgjDisLDl1484PTV+f6Gu19dzQb4sR/7MYqi4IknnmBvb4+lpSUeffRRtPcEQvBTQw0ozlZfYLv0VL3v5hOvHuHihyBo81CjwTslFI2P8rmtzwHwD979B/zhJ/8wHz390V/tp3HCCSf8e0bgkaGjFeS4muCqDrneeohx2OWp/A2Eh4bLaZopHZ/T1TPO2gNGqsGWXyF2hhgDQuK9QuonyKTF+7tMXAuspStS2m5+o25QGBnQNBbpcoyEaRASu4rz2TZ926MmcwIsK9WQvWiZcdhk0UxQbl61Bqi7Aunh0fwONb/KLKzTlJLb8RqP2hJIwDkCZ/Fu3q4aYGm7GXU3bwluywmLdgwechWTOE2uEpQ1DMIOD+JVLlQ7LJoxh7LHWNUY+hahn1fdLrj7JE7NBYGcJBUNWm7ArBYTVvPvAS8gdBWJL0nIcUGAtRWFC6lRIn1My0wYh3W0kLSqlI2qTykUGoXCzmdHnaPps3mVXHimtIhdBV7QJmdKm0zWEN6xXh6S+oiedMR+7rMaOcNOtECuYmpFhrAQSk3XjOmICWUQsGjmN6qx10jvUd4QOI1AEviShqlou3nArpxhN32W1HUwQZt63OdMecggaOGdnFtbOcH92hqX800ip5HCzdujo4Bvn34ZhaWUMW0zI3EFsbZkxEjvMEKR2iaBtxQ+YhbEHIQ9QvUusauQx97HmQwo7Qrax5yW2yz6ESCIfI4XFqvCefIBQegLQm8YyRpWBDRMzkgkLNkJIR4v5onscVhnwUxo2pKcGpmq4RE0mL5nSXZhd4epatAvFuk2p1wqtjAIGiZACIuVii2xxsy16DIi03UalIRi7hMtgFY5JtIlFqi8opARBQEVkobJqNsCowKMyDFCErkSi0CKuVhbgMcdh46R1Ugcq3qecPJCHAf1EVbERN7SdAVOajJRw2GQznKmOHzvcxd+AemW8XSR6gYaSaFCrhU7DG2PoV/gvNik7ktGkUI1C0J3xEvpNR6vdqibHC1DUBCYeaKraQukBCMEys9HK1bKETVXsGRGICQ1q8lEjD/uhpj5mFwl1HyB8B4nBJmICZwho0bq65xX9+lHXRaqEQ2bMZANxtSxCGqupGPn9z1axNR8xUQ0aPsMLyRNO2MqEpSwx5VMgfcBxwO6tH1O06ZUImQmYxJbchAuUAmJdJqceJ7EISA3i8RWsRBsI+qGadBg6DsE3h4ngwzyK9ctAaE3gMSoiGvFHcaqhfMKSUXLFUi+0h49t80MneZD49cpw4Car4itJhEVDbeDExKYd+w0fcGeWoIo47QeIY7PgYbJiY/HXYwICJ2hZnMQAQqHxBGiqfkK4SyRr/ASAjShn9tICTyxKSmCmJ6ZsWRnx/oKngqJFAJ5HCBLL0lchbAdjG9zJKdMVROEZT9o09IZPhAYKcDlBK6g8BHGhQhZMQyafL091icB8gknfCP5V717V39xlnhr+++h9ZDVle/m7Nn/lk9/+vu4nWyzMw35WNNwcCqm/+D/zn9x9iP86bce8IPXf5BPFZ8CYGdnByEE3nuklDjnviZoPprNL1hnF+o8f3fAwMasq/myMKt4dPFd/tAHXmN/knG1/j/yZPTbeK2q8ao4x4aYK2Sbzi8Gx6ayjKdzK6aLsWTQidm+MaLWCJkNS/bvjnn3xX2iuqJ9wTAYDLh//z7X375+rBYLg8GAmxcf5gdu76J9QE3CkQ3Jev/JfCcSkA0CAfd1BN5SJk/xQ9f/Kt914dfz+uHrvDN45yRAPuGEX0N4YJYkVGdDYqkZBi2EtwxqDYrQIrxEz0KaTuPkvNJqhSDxJXWrEV4iBMdtsQFOCBpOcqC7jEWbGY4PV28jRYhnfnMKEmHl8f4DIq8pZUxmW1QuoE7KRb9NLmNWqj4D1aEyEbHUWBTWgcChqrntzJKe0DZTjAp5NL1D3ZXsB0vUXUkmFaET5MS0mLcZDnybus054w4wMmCgWuwHXR4qd6m5Cm8tgfAsmjHquPIsrOG+XGZFzYipyG2dER1iX81vqwUIb8makqA2oWyE+EOHESF4h/QW6T3SOTIzb1GvZMSCTwGBs46xilirDmm4gsiHKG+wwVy8ahrUaZkU4WGkmgjniERF5A0GgfIGEUQYIYm9RnlDraogkCAE0lsW9YRD0SVyhrGft9UmNqXtZ1g/Dw4Q84SIch5pDaoS+Agic1x5txUWUM7Q8iMq6pRWkcwccaOkVBLwrBYH3Fo4TyZaIOCR6W2E9ExlTNeOSHxOQYB2klY1xSkFUlLz5VdGXQm9phQhNV9hRUIpQ3JCFuyUmawTuIrIGKZ+Eek9OTGx9QSHhlYrhbqgUAFOwFjGLLkQi8E6Qx7UmQQtorIk9hbhoQoipiphLBp03AgrI5Q3JK6kEDEtM6NUEbGviHxFP1zCeEVqAzqBo+YNFWJ+bjpPy+dIJ4msZRIqttUyV22G8/Nj6+f/OITCEnvDBEngDTWX07E5IxLUsaJ1LmOcaNA2Q6ZKoZ0kNhXSO1pmipU1AmMJnMNKwWa0QqEilqoBvXL0np4AQNPlNKoCjit1TgqEFwgvGYo6pZdIH5D4nJYtQXjGvo3Ek8sai3pCLRDMiIm95ny2z7IbEgnLlIRKQNvNEFjCytJGUYkILATSs1jNiHzJ3eQ0iatYS/eoixLlHEYESOnBG/pBmzV7RM1XLPoxlYuZBnUC7ygIiW2J8pZKhEgc2kV4JwmlBhyHQZeWmVERoFwFwgKSYdCkRsFQxdSP/XoLEdMzI2IPMxFTEpDJmMjpeYBoM5omp25yZiSkro4TULmYjktpVAYZzNDCM1UNlvSQhi8AT8vNizBT1UQIS+gdiStJXE5HT7EIrAhRzpLLCH38fpo2p+ZLPpK+hRaK2JZI75no00ThGBkUcyMrJxDeEduMlXLAspnghUd4Cd4zkwktM7dUMlhCV2FCSaIrrphN4DhRasEx7wZKgwThPKlMaLoMLUO8sRgBdZfNrxV4chFRqRqLZoz08+uHdA6lNyhFyNDVmcmQpWLMutjlMOgxDpqcLndZsEOQCbfcZQoZkYeaDbP13j3pv42TAPmEE/4tOO/49Buf5u+89Xeoh3X+q2f+K37d+V/39f3xuY/AGz8yf7z+1Hx7TvPgwd8B4PyFP8LB/ozJZIXt068ydYL6wFAsBTiXc04FbLQ2WK2vMtobAfMK8urqKvv7+/hjx/OjoyMWF+czzp/97Ge5uPsqf/aJDa6uNvkT/+B1pj4G5sH65WSH73jfZ/kTn/2TJEHBD3zkz/Kha5bXXv+9fOb+EY/bZQAO1fi9t/HGz20zG1eshoLHE0V+tctnD3LKfB40/6P/+SWOx2IwQcqkfUhn9gRZfYv3fcslXn75ZT73uc9x1F0nc/MVF5Rlv/ndCG9oH/zPdKOEB70/jveQe8dG7NisurwxK/hL576Tj218jNPNXxQiO+GEE/7jR+KI0BQiYiZrzERCqmocJl3en0YoybzqiyJGkquQUdgksiWB59hDXuI91Jig/CmMT9FETG2THIvxnki5eZXBOypC9t0aCMFZ5iMuc9GtmMgWKGcIfEEUGuIqQTmFdSGxTAnQSOOoPEg7V8Jum3yuEG3nNZHnuk+Dn4shvf/oJZqupCNmOKEQ2jChxUR0uOzuUCroqIzKBxQywgqJxBJaTWA0Y9VAeUtiNOvVgMvlHod+GecFO2KV0+zgZExiK5wTGGnxMuBQr5Ak+7TyeXVGeocmYCpCLooDaq4kozaf55QKk1hsbOgdFUgUW34F6TyDoE4jnLGuhwgEQ9FiT69gCOn4CdtugXc5TYDgaXsLgWesEszMsFOusNgoqMcFoZjflDf1gMSm1CmI6gVFqNib9Wj6ktgVKOlRzuO9Z0qNIxfQ8SnSebwH4yLuqTOcEvuYaBcnIzpbExQOf07SNBWDJEaeyhipGkE6V4wuvUQdV7uW7JRUhIxUg66ZMfFNctekKVNq3iKEQHiL8g7f0ORCUktLOu4IkYT0w+6xWrQgkAZvBU7M52PDzOAzUNZQBRGbzTX2ozZVIKlEwLIdsDIrMFFJj7lAkZMBaaQY+SZ5XdKIjyhGIcYnhFYft+s7YipiW2GRaBFgvcSiUM7M69lC0rEZNxtLLOqUSgcYLwldQeQqMlGjECFCOHQQM5YJZ9w+X+g+zdXZXWIq6l4jnJ3PWSvJVDVomIyEiqlcpQoijpSk4TLA45wjUBbM3D5orrAtiXTO+WybAMM74WV2xBKnxJDAW5xzqOMKozs+1sJ6ICe1mhkJQjSYyYR1t48VgooI4RyzoEbbZ9Qzy0A26RRDnsjXEb5NFd/AKol0/lgZ3hHbgl3VIfcJda8xHvZEj56dcC85Q1dPWct2kd7jhSdxFd4r6mbKoa0zUC2cCRi7NrHQNGwGSHIXsGDHeBUgvWMrOs22PkPPj4gp2AkXmckGdT0D4QiFJTQVOlDUbUno56r9M1Unspqm1kRoTKiofIL1gobNGaomLVewVI4QTjENWlijCKyj51MmeBBQeIXULVb1EF2v06syXDBX5cZ5HArhDQ133O58HANGXqPcPLmWhw1atiAQhgBL5UMUFhs4vPJI4zi0Z5jqDUobcqr5MtYFKO8oXIT2CZHaR4ce09SEeUCQCexxI3TgLd4HKF0yYoFt1umJCV05Rqu5innDlwgh5ueyS1HHHROht4TekoqEhpsnW2YyxgOtKkUyXy+wAi0UAWAIcUg0ATVXkMiSujZ4H6ECgS8VSlU0Rcat+lnKRPNQdQf/dWrKnswgn3DCv4W/+upf5S+/8peZVBP20j3+1Of/FM9tP/f1/bHOf/Hx0hUADg8/S1Ud0Ok8Qxi02dvbw+N56ugp3p8/xZm9+cVhq4K1vTo//ht/nN/9yO/mt//2387Zs3MP4+XlZTY2Nt4LkPv9PjD3STbGkGUZt959hx/+W59m/Ll/xKIZvvcyLnfv0lC7vH99h059kf/PF/97nlx8m0Bqfv7WAcnRPG92uxoA8Oq/3OTlf3GfuoBHl2sAvPYLe/P9HQfF3kEZHVKFIwLToDd4irDqcKZzjU996lNsbGzgrOPVw8F7r2PfKBCK1ujvE5fX+Ssf/i/5neuLfKUWvnKs+F0l7+Mzdz7DufY5AnmS0zvhhF9bCMLUEN+t4NBzKLtsBuuMVYMb0WWMh9IJpiIilTX2VJddtYARIRWCEQ1eqK7wUnWVwM2vDn2a5MR4JNbWOBA99lSX/aDHoVjgi52nuFM/Dd5hvUT4+Wyh8o7YG0Jv0crTlwmb5jQD2yPz8bENzDwAOAi6bEanmKomEQZnJHt+mbtqfd5yagoioxmFTepyrmg8UzX6sk1BROEDJqKGKRsoI8h9wIz57KmTCiclK9WQRT2mH/QwwnOhvE3hArQV7NoedVfSVy3eaFziTrTGG8UG96ZrjLNlAmvoqw5lw+E9RN4w8R3qOidC45UiQTMRHTISbOyoiQolLN57KiuYyRhrJcLMBXlyEZJ4g3SCnAgtAu64UzyQy8x8jdzHFE4xqZocuSWmssUeyxgZAvMAckkPqVFikIyChMNqiVvuInt2lW21Pq8kOcsLycNUpaS3k1HqmKFq4YRiV6xhXEyfFYYskOsEYe08KHMlCk9Ym3dDVVkNU0bEpiIW5licZy5G6aXifLXPmh5w6Je5o9Z5NzxDKZbw4ZN4tUYrGRCHEzpqxqFokhGiKseqHs7by+F40pyv6KIjxFwYC+nYFascVT18GbOqh9xmnT13Bi3q5LaLxKNlwCgI2U4WuSvOkhYtFkyfRGTUXEUpA6ayPrecCjooY5ATzU65Rl8twXya/jgBohj7Bm81H+V66yLaR+DggBUy16Dy4bwV2MbslitMqzYHYgWPZKhaRKZCe3iu+z7eqF3hleajvNV8iM14GZwnMRNGNmJZj1k2Y8Cjj+e1SyEpfYjxEucFkXdsiXW2xBqRdeS2yVTVGauEqU8wVuAdGAQHcok31SNMaDAmIkXhrWJJj5i4Fje4REoN6TyVDeZJHSNI0y5jltGJxwRNhp2Io25t3rGAJaFCu4BKRPPzn5ChD+mZI3p2ytXJHc6l2wTHFfWhbDKTMR03I3COi/qQvl3hwK2SRRFly6FjMB7qPkd5R3ms+H1PnCWTCZqQQdDmsNag5gpmMqHm9LwzBElFyEhE5MKS9zR0cmKvETictdRsQc9OaNuMuslRGsayyUG8jD8WFdu2Z5jaNsJ7aq4C7xmIFlOV8FryKO1KU/MQmYrSRwyCNu/G6xwGXb7SHpHKGkPVRrn5WewFtI/bmT0S4wJ23Rrbdo3DVoRuOpzyxNZSodiXDQ5dj7HtMHZtvJcIL8h8QlXzWCSzRKERxKrAe0FgKgLp2YnX2eI0eNhzp9i3K9RVSrHg2A97TFUdvEQeTxaXx3PTyjusUGyGq4xkA4+hayckvkQ6jwOsV4xki8NwgXvJWUZRj9gYpHdYIdH5Gtq1mJl1lJfktCAs+PK5hxg0eihn0C7+ur65TgLkE074N/DKwSv89df/OkmQ8Pe/++/z/R/5fpx3fP/z30/xldniXw5rYP3988dCQTgPLre2/x4AzlV84YsfZTz58wjglO7yn54/RJ15hrL0nIkhXFji7779d/mef/I9vHn4Jru7uwAEQfBVtk4vvvgib7/9Ntvb27z88ssopQiCgLs7Ozxi73Nm82WEPr6pKJpEwSL//VXPIDWshDtEQcnV3i3SylPmqzg8d1yXYqZ54Z/coZhpPtAK6Bz7Hj+WKNZXal/1dovaAdPe26hQIJDoYMaofp07d+6w9faI7tEzbMuQf3X+Q1WbRNN/wR968g/x7Nqz/KGzy+9dlN7N54mCqvYkz+3MExLe+/eSAieccMJ//HjA5HMBl37aIXcBQe6QDsZBi1hXrOdDOmVKRUDgHW/GF3khvsx2uMzNxjmGYZuG1QQuppIBhgS8pkFGx+fs+Ed4Ifoo2+k1HgTLFMTkeUR5FOAzP69OImjaDCVKwFF5gSEgpXZs69NkKppzkSkNq9mERetwhAxlE+0ibOnZ9suUIiAXMaOgQdOUTF0PZWtEriRX8/ZmZTXewqS6xE71KPV8SqOaIpwjCxLebDzEi8HjHKh5++6K6WOrDljPTbfGll+i75poITmMVni7fhYtDRMfE5kKVTmqQGIaBi1DtJhXUU7pQ7zyePy8GuNTQjQc1ykLmTAOWnAsftPwBU4G1GxBRsK+WyLzdTQ1ctNm7DoEGKxQNF2OdIpSNKlkAh4K5gHNgBYguFvf4LmF97MnFsiKDrOqQ+kiprJGKebt5qmICQrB0XAVNXYEwwopNXdZ5lCsE7mYwHmEUyir5nOmHgJjGYsGahzCJCC3NfRxhUt4jsWISvBzEaPYa6yQVIEhqxTXeYgXkw8y8wn34oeY1ALyss3QdIh8iVKaRjKkIGQ7WcVLhXOOQoTcTU4zVC2ORAfrJSkNhJXUK0NdZyzpCYt7BW4kKIgIMYxpsiMWOQhbVKaGxJNWLV6QT9NXXZouRx23xUfG0Coy7nGGB9kqRgRQwQ6L3LHrjH0N4wPyIKbhDJH3TH2TQ79ERp2haXPfLfBA9XiRR7hl1hjrLke+R+oSpPE0dYYAJqrFLXmRse6RVjVuq1VyETPxMZVVDHQbjCUnwDqLNAasJ3E5DZvTcHPrIO8cpYvnwREOZStmJETCUXcFWM9YNEldk6Yr2RSnqFTt2AnXIaynIkAiKE2NqW1QuZC+73EQLrAbLpOKBBd4jJSUkYBQI6moM1eKt0icCmm7DOMTRnaNurW0zRRpDTcaF5jKBGkMdV0inGNHdLnhznHgetRJmakalYiwLiCL5y3IwnumPiITMAlCVsoDlLRMwiZbtSXajRFBPWWkF+jbZYa+QSVCQizGKoSRCG+wXjJzCTuiy0C2yLyaJ6U88zEDkxJ5O59Pd5ZWPqZhU94yZ3jglufpGQ8Owf3aKWZhnTuNNZy3lD4gcSmhNaxWR6yUu/NpeO+pl5pqtsbArgMe4Tw366fYCpep2wrjA7QTDEwbUSpKH1BIiUkyxqqGRpC7hJqYEImcjJAKSVCVFFZRiIhBUGe6JNiMTnE/uko/fIJYB4QK0qCOU1/REBfsd1oE0tBSE1RVoZzhRnKOoW+BdUx8jQPRnDsJuIoFM6VjpvBeyURgXEDmYl7uPMbbzasIASPfxeuI1LWx5iph+DBSCZRTHNgeL5mH+AX/NPW0ZCgW3vPd/no4KceccMIvg/OOP//inwfgjz71R3lk8REeWXyEz97/LF/Y/gKfufMZfuuV3/rLb2BwG/72d84fH1dDZ7N3GY1eJI7XieNVptPXkfImYXiVdueAKHqXrajL1TsZ9y42+Dn/Ki8/eBHhBZ9+7tP0TI+1tTXe//73MxqN3tvVeDzmR37kR2g2m3zo49/Ff/2Zd/no+TadnRdIV8/RvvM6ZnBEsLpKNl3g2q2M5c3/jr+p3sdFcYvbWYNrjVvcOXwYVykaieKH3AI///3PY7RDAa1GiJtUDIzj9dwySw0qFFg9D1jr2Qa15Sn2wM/FS07fZzQcUBQFi+oSo6DO7PjSJLE4L2kN/ibPnnqGP/jEHwTgUr3GFz94jY+88A659SRY8ug8b+7e5k/93J/i89uf58d+w4+xUl/5/+2HfcIJJ3zDkA2P0A7RcBgpqdTcvmkrWmOqOrSYEljHRHQJveZj6ctE6YQXOx/AErBWm/BItcnPdj7GWtmhMdomVDnChRjXYC84S3S4wDiLuDS8z/VH25yqJihnsJWERJDZOpUPkFSMZY0GikiXGCFxTqIRbIddaq5gEtU5I++j7ACrYyJRUS9TbKx5qbbB3cYlYl1hEskz5V3CagVvLLl6m0U35sA2yGmx5wV1BCMRs6/exwabZITcrZ0hqCx3G+dA57jAYVyNtk2ZqYQmBfeiHhMvWKlKVqZ9Wm6bXbeIwxOIAk2MEwGmBkiLkhV52eRI9aBX8bZ5mHRc51G7zSX2yV0NZzyDow6y4ShEhPMRW+1VgsjgpOBsvgcIMllDGc/YrBDagI5MiXAMgjapqBFaTW5j7rPCWd9HW0mNksOww+uta7jK0bBTDALrI2oipy2mXNDbCCVQwpKbBN8LqasmRb3GejVkUK2zQBN8G+0dvVIx8HV+onGJK/IGo6TJvWSDxXzA1fIVAuMxJmA3XOEJ//axkjjciTY4Ve6w53rUxYQlvYNwMUOzxqhSPC/OYpjRcJc57ffJnQAHUmruqzX64TrTpE4SZZwfv8a+aDGQbe6Ga5ypjkijGktZn6BjKEiITM7UN0jtIrVyRNWZIWSOtCWkEhEEmOa8Sj+zLfrpGqk6xbr/OawNmPomoa94M7pIYBQi9vQmQ+p6xubCKYSvcU3cp2OnhJRcmGwRiZwHwQbjqonCMfI1ZsC2XiZQntxGWFHxhjuPK8LjOfkWa2qLghgFdPSUUdCglRekPib0mgU/xKJx3jGTngUklgDlPH26yONgzQpF6TuM7QqdoI+UBQOzAD7Cy4xShJRa0ZeLczEsGbJXW8FXbZwtqREwYIGGGCKtJfQCJ0OGbpkAxVG9zrDe4FQpYRzgtEBZyE0bTEZOiHKGUM1t3CyKfZZQwjNzTXo25674Jkox4cvdJzlX7JCZhCvcYSaa3PFn6Mkp3WSMsDmYEOMDvLOERlPogM3GGo3uhBopz9uncCamV42pM2E4WSLcdyipcIHi0J9nWwo64ZiJibAkLHGf3WKdrjbc6J4nyQo+OniZTjLGhxHeC/LQ446V+mtlSq8c8Ur3KkUVcN8scU54hHPkJqDSklA5+qpJ5sH7EiFCBrMnidQBveANjA0p/SqVkmjbQmCx0tGoxmxGH0DFio3iEIFn0y4zcG1cNeVCdJ+0BYd5jXtFm3McUsgAJWfoqktYpYiwBkGIlyEeTyUFWU1SmgDp11FWEtuI57s94nyFnG3iMmfoO+yHp+mUJWtZyo1uj1hpTJgwlS3SqkEhIy6X73DZ3KftJWPbRtNk0R6gg4BIWApT45a4RJq2WAgKPJLE5khvcU4QqA7COpyvo/2UQ91khyWsiWgeWYoFgf0V1FdOAuQTTvhl+Od3/zlvHr3JSn2Fv/TyX6IRNlitr7JYm8/6/vD1H+a3PPRbEOKXyUdlRxB3oBy/54G8f/DjAKyv/Wb29n9svmz/Y3x26XliG7HuF0Ec8bc7XX6z19TSL/GJAK6nF3j/ras0fI16b5lPf/rT79k3Ae9VVWezGV/8qc/woSAmMpfIfUgSQrF8hm5/i6J3lvboGUb6Z1muH7JUHfA3yj/Cs1+8ysHyhIW5Zj4d49Azze2JQQBP1yXd336Vrb/zFs/N7Hs5PdwvXm0CU6e4ByEw6dygKo4Iqy7P/ZN3eeTpq/zT1/rvrfupruPnb/4VVsSI/+mb/yZKqveeu1Cv8cFOg+fHKR/otnlulDJTp7k5ukmqU+6N750EyCec8GsEJyRZUuOw0SYTNbyuEWkPeA6WFngteZQ4uM5AdGnaDClgwUypIoePJIOyy2jawDmB9AppHaG3xNZySBukRwQphiYCcKVir77G9GyXxXhMy8+1Z4euixGGoYzpiCmFirBaAR4fOsqa5abf4FbjLB1y7tOjChs0y4QrDw6oT1+nvlIRLSccd2JjAqC6zB6GLhX3k9PUnGZkOgRYIiwVIUPRIFWCB/IUzsFEJuT1Jov5mECXFEWHPbfKSAZIIk7LEaWcq0tvmwU+P3yCU6JLKFKWRIaOPIaAML9IKNoMGwHNYsZ+tMR+vcVZeY/P8xT7oseu2KKmXiTye9gjjxgYylwy7S0QBZJc1KmLlImsz+cvpcDaBoH9io2KIo8cQQUHbhmpDC1SbpoeM9FgKJuopuB90xvMSNhzbQ4bS5hGRM3lJNISGSh0zDDo0Y4GlHXNZFTjjcUNKl0SCcMr5eMY1+T9omLsujhRkgeet90qZQBLrs1edY1KCKzsM5KLCCNxWlHoDg+WukyzkHIWU5Jws9wgJSLyY57119mVNaZhA+ETZGXQJqBkiY4aEmOoRDy/6Q88o1odLySHskFbtJjSoann7akv2wuM620er26z7Mdk1AhdhvQgfMhRbRkpY4Rf5EB0uBcssRiMOScGpL7NUPbACJLKsOVOYQgYiTbXO+fpxkOiFJbFPqNGh3FYJ+02mUrJft6lnErG8SKWiNIrGiKlqAVMbRNVVDhqZCRIIzEi4MA3+TJXEJmn4SNqheB0sEngLEmYo01AKBzrDGnbnLJcR4Uz3ums0SsOabs+lZTcC+ejXdIr2q4kdyGFaHMo2mjlaXnPWLQJyKg7S2ZqhKJAAk07oxQRqarPZ1mZzyVnRMigpO1nDLykTo4RAYecpeYL0qpFbD01SogdysOwWMISkJZ1wrKkUA1mqs1bdoN39XkyEq4G9yixTKtrOF1HZQFr6i59tcieX6YqHW2mzIIGhaxzxALeCBJrqIsRR/kC0u5wXyyRxRH4hH7QwVUBgXHEtiTQFj8LmOkYLyVH8RINrWm4gspH5LFhwQzJbYw1CZWzeAud/ZRgovFLHq0CjujStxG5fYYltmm6V9AEPKgWGbkEIyQlOUlYoAKNtAKBIFUBqTAEHoSrMyNEmRWK8DS5WULaZRqmYhDEKNdmUaRUCKRV2CBiJ+wyqxoc+AVyFfFK9CRNlbGo93m+egLjG3SYMayd40g0eKK4xdQvYsqAN1ttuow4X9xluSjw3RKkwyWHIFaR5QrdrIH0EU6vEvl3mYp5gWiSPcSDcJlMDqmSEaumoAgijIlR3vJacpH2ZJdV8nlnD5KJbNMjJPYakMdJDIn0Fl85gtRwXa5Rlx2umBke8EaAcBy5DjK3bAeLREKQq/mIgOTE5umEE37VWGf5a6/9tfkvHgpb8Gee+zOca53j/vQ+59vnuTW6xUv7L/HMqWd+mY1U8+AY4NT7jr2M/9n8dxGQ5/fp9T5CFn4nozufA+Af9i2/fxk+0DDszOBsC6LwNH9y8Dt5VM99lN3rMF46z+L6Ovv7+2TZ3NKp1WoxnU7xzrEoczh4E8IYrQUz1aRuHWo6RbqInxz+15wJ/gA/77+bT/vHGRLyx3/jt/CDf+XL820FmpuVxSJZDwW9WsCsNDw31lhgJYADc9zTdoxAEdoWRmVU0RGt8VVqxSrVEF5/sMfs/LxtyQvBC7vPEecv8f/85j/3Swa7v3m1x9kk4mwc8twoRcdXuTX6UQDuTe7x7Nqzv/oP94QTTvj3hhQOGRkmjZgFPaCUCVYIFkyfKltEuYqt/mlGqkO7OeKS38MFETZcRJdnOCi6jEh4SpQIW7Fvu9zgNKd8ivYhKreEtSOiOMJkIUdRD2E8aVDj+eUneLc6w28b/jgzIXiHC0xcSC+c4RuSxaMZyismYYO69TQl7LPEblvSHS/TKgsql5BmObmMMGM1F7+SNRKdk4/rvPL/Ze+/o21b07NO7Pd+Yc650k4nn3PzrXDrVq6SSiqpSllCJTDBBCPcCBsPwLRtetCA3QapB900hgFukBmNQOAmGCHTDRihhBKFVJJKJVUO9966+Zx78s57rzDDF17/8a17qwokKHuIHqLZ7197rzDXXGuuOdf3vM/zPk++yuP2kA095V+dfz9V7nlDe4dWPJoyrdkkR8+WOSRWPffTRVbtGHGJ2xvbvO50g/v6dnYbR3S7vG31NC4NXMwnZFVWjGlNzUvyOI/zNBZhq8ncX44xImjcZDdvke2IOROWfsYFdxczwNRnkCss5f1Mjz9MPLnJTFd0xiJuIHvPtF0x2Iqt/hiVxMJOSaHmbtqg1p5shZUzdMOE83rANC5pxXHJHtHYSF/VvMw1bp67wpX2Hho8M4WXLz7OhfYeV1b7DE6Y5xFzN+Ed4/vs2h0+d+EJxn3H01tvYKNd8uz0YR452eND6SoPuoHD+hoptux1hlR7XkkPEO2MlY4Y1U8xGR8jS0VWYwaFF+IT1H7F7ckDbLUd7bBV5lO143PmCm0ViWIYuwodEiI1CwMvNI/wyNxhwogjCdxs3w65ZjZqMXbg7vR15OMJnRV2JyMiFZ14FuJZVde4W1/gvtvmvfNfZKgc0YFNY0wSdutt7tTbJHOX7d6zNzxANkpXJ4aVZUgV2VgORpsQLBvzDjtX9t1F0qbBSOJlLnN/MUO3x/zOw5/kvnuMvfEI1yWm/YLjjTExOGzuiVYJrsEEg81CW21ih8xpHnG932asHXuLc1y3l3nY3eHu+Cp133NiRiQucTO8lWQSTp/nVv0IMV5mPt1ia5hzOR2zFy+g9ogD3aSOA0kLs/zi5GEORhOavOTh1V3yYLntLnJh5wZpqWhWbo6ukHVE6hxGhd46zoWW2/4yo7RgP8xo/Yg5DVtYTrurZOsY7AbWZmzOXK8epJeKJ/g8t+sr7HXvZL7c4plmg7nLOAKv+Gs0YZMnrGNpfMlO15bnxm9nlaacThyvc5/iZO4I9SYjG8mVoRoyd9MFHuhvMzaBw7xFTg05eA6bEtnkstLLCPWwYMyVdJ89c4VBPFYsqGWkh2zqkoaej8/eSs8OD6yOmLPJputZ2QnGLEj4ombJb+KizjGxohtZnslv4X46x17cwpo5SydM6IEy3ysIS7fB85tv59BVvOv+Czh3j948gJGv5J7PjDEkEtH2WA/91BC6DfbsY2wPp3Ra41KmU8eiqhjlxGm3zU59j56aAeGumWF6ofOBj43fgW8zl0/vcLAx4Wi6wWOHFuMSKQsWheaAKDXt6ZRBK1zK9L1BdEJsPKvVmCqD9iNEHVuje4zqlqO0QycNFxb7pDjmM/I63q/PsMMehzTsjzbZ6VbsLt+GNXP6qaN2K1JqOH+gHNUj2uyoBfZaz4nCqViqUeRQz7PvzpXxkyGRBFbaEHQEtP+un64zgHxWZ/Wr1V/66F/i+ul1jBh2293Xbr+1uMUff9cfZ+zG/Plf+fP82Ms/9msD5N1nvvD3+cdZLD7PavUyVXWFV1757wF4/LE/zg/+1A/y5lHiO7cDv9zNOIgDjzbKE6/M+fxsxtX772Vr8ToWdNw1R7w+XuHrFk/QvPlxPvaxj732EvP5/EtfXxViz6i9yHiYAk9De4duep+mu8Qvr/4A73ZfDcDPS+J7ri94b7bsAyf+lIPTHQTlfoCNRzb5/Pd9DoAtC1e9YTcGVBKi1Wsv2btX6CdLtrs34brzKAnBkkzPm2/AP/9KQGAROy67CR949AO/6kf3Y3sn/OzRnN91aRuAUL8BK5akieun1//dB/CszuqsfkNUL57gApdu7jHfbjiajbGD0KcRdRfZDxuYasqxnXFsp1yN+7R5QsiXkFBheoVkuWOvsqWH7McJIg37XKSKAyaBOXLcGc3YkAhug9n+nIEGFwcOmo0yx5hDmSNmxLPuApx43jLcokkZmgxqaOME22uRpJ5OccFyf/AcNw8xc8JCttiPl4qLTw/7YYvPxRmPyREvVueJWnMaKx6oLYPWvCivp0rKmEiWmlNtOQ5bHC7G1DPlkeUNRiFwUG0wTgODln19WTdZpYa6HjiuLjFqK3bDhAO5xlY64fhgB48iIhw0O5z2M6oQ6GxNkkRva06mU47kHI/nyEeaEd949zKhvsuG6TnWEfOZYb65ydDWmGyhy9zZ2KIfPEmUG3oOkUide57Jb+LR4ZhelqwqJaqQm8yxv8hk0RLbxOJCxUn9CL2d0cSBVe05dZtY48i2xkwDUeCKeYWfqL+FIdWYoYLOcO5wzsgM3LHnSGHMtkQ0KANTTmyDtcqxNNy/UDOIZRYuY6anHM8vsyEtInCLxxj5XYahYtePOJd6JqanjcJxnnBsGkxvEG/x6xnepVHu1Zd4xExIuqCNDTJM2cszluNjmvmCtj7HA7RohsPuPCMTeFyPsY3j9vQymkDDhJu8npPxDFSZJltut5EQa14IT+BGd0ENNg+oCEkMWWGRLlL3I/brmuNhxsR0qBH2ZYvDMKY/cejI8RKXaSdPsrKXGMVAZI4h0wZLbzwXosGmCUu/xMWKzsBIMufdCVE9USwR+FnzDlq1vBwusZBNhl4Y109yrROWHjpqqmGLhV8z7la4kDM5BlZTy+3xlIODHXZyS0gNrZmypMb2HbGr2eUciQWHUvNymLHT7BMHy8rUpOTxyRY3bHWYVaRvxig1ceUJTc3haMYD+T4mKyscz8obeNzco5YlczdlEMe+b9iVa+weXeY+F0lJWDYlkut+9yCP22OOzAEHvsbVyov+jfSLikEsd3ceQVdwLR3SxTFhmHFCBNMSndLVFct2zCrt49t30FWneFNmn1NfszvZxLYVG3rATI84oZjgQWK32ub5zQuoWfHO/EucVlNyY3nx3GWOwjnOmVPu1hd5lBNEOlx8K49UV+jtTQ7NFre33kkeAkd2h04bViay8sq9fI4mChnlxvga2Xl6O+FiusOu2SQTeXn6EGljynb/K9w7eYRGT2G84jDPGOwTdJMtmvmExJjb6QHO6xHgON8fYWzmYLLN0dbbYH9Eyp7japOx6dkUpXcNrTecM56bk4u8kq/y4miT86uWd/MxTpji79Ykd5k7O2N2GbNtIsYMEEekHFiaIutPLpJMZGm3iHbGvr3M0hnOnx5ik6cPV3meSCXCkdkgmoHPcYkH8zGwzf16g0mOSDujNRuoWZFlYFDDjbDJYISIZUdadqvLDNmxHZb0fsS0G9jzF1Huflm/XWcA+azO6l+rk/6Ef/TsPwLKHPKDswf529/2t/ldP/y7WIQFP33jp/m+b/k+/uKv/EV+9MUf5bc//tt5+8W3lyd/9p/A6R148++A2x//wkZnl9k/+CAAMR6Tc4sxDbdOPT+z/Bm+bgaNgW+cnJLNBuRTfvTcjIvB8OgzBYD/nH+au+YIRsrrj6+y98PP0fc9/3rVekzP5qsxcsTRLtNxjfoNgr9IP3qRUb/DM6uv551v/xe86eb7eSbWfPanXsKkIjncipucCvSuJ4WGyaXxa9t7x6URm6vIUB+yuJi5/twGBkccXiBOb0E6h1ucx9fK+E1z7n9+YDl9mYP6q1BTDCRG83/Juy+/+9eUp/+uy9t8cr7kn9w/wpKJ9ePEtbnCjdMbv05H+qzO6qz+fdeQR3ysfw9bfp9b/QOMlhk/CL3fgW5Gzp7D6oTBWGKe8jPT30lsDpm2SzqbsDnjkiKmoUoTgniOZMQt8ySVO+aSW5Flk8+ly8xcxzv0Li5kfN9S9S2599yWN/GZ6mFOhgk5wSKfp0qKJEdMCWkNkYbsK3IyRIFbGxcZ5RV6dAzTETfzm+hrh+krxseJw3oHDZDCiPuTB7hfz1ierjBh4PnhETaaJT4oxoJLPaemYmEfo2VKkJqI4AfBqlCZoTjnxpbnmkd4Ol6j6Q6JoxHGTelbixrY95cY9DLn8sucSx2ta7hl3sCBWzHtl2vX5DLzPGoDqTvl+taYK9byozuv51qwrLZeYs4mT20+yWI6oc6ZJkU+fe5NTLoelz09DlWPSmZuJmiuWDGmM1N6V7PJCckYRMeogYUYPhcfwkngMe4zWXRIJxznhufCNlf8CZiGVVXzD6e/j8EIuTP4FFjIiOv5CkRYOs9YhbtxylV3So8hmik+njJuO+ZhTO1aZBBeOn2U03ZEowOnoxmrquLBvM+Qhdt5h6q6x6zbJpkTlFxid3KGvkVSJhiDiNDPx/zSAFedITAlh03GybAXdhh1Hj0U5i5ha+VmvsgVd8hyWEFTszATfIRx6rntHsWFhNWBpR+xk+bgEqkzuNUIm6f01cCQHAOGuZ/wcf8E9fEGSx3jU6JLNYMfMZU5J3mMKKRUo7UlVPDC7BHSIgGW3jrUT3mlv8ygNZJOyBZCaOhdxcKMGOeBozQjR49gaW3NsR/RGc+QxixCw0RbjtoRlwioKMuq4sBdwAZlPlxA2xmfGK5yzt7l/MYrxFxTT1bE1tGnCQd2xlE2PNyfQHAMUnPcJ56zV2lC4Gi6ycRGVDOrPGKHjNVA1Ip7cpXONVzKt0hV4gV7lYO8zdg8yAwlWM9CHD8hT/Joc8oQjzlxY56evI2r7Zwoc3DK3fEOo+xwWdAqc985Kh4idzVzznFkt6lkn27kGVxFPJ5wL005t7hIdpFRcmAiQ6z5hHmCUXqU83KLR8wx0nQ4lAAc2E36esRqMPiUedjc4NhvkXvLgdvk1E94avY6Htq/wzNuIFcRPTW0WrG0I9o84na+RrXV8tFzb+XizSfIacrd6QwviXlTEWZKXoxwKgRTsyCjmvHAiYzIyWBSpFuN8PkSezKwxNHFCVN/m+vL8/Qy4qK2bNDxidkbiHqBh5o7pCFDGgh5xKfTo1g75o3NMzzr3s4z1cMMmhFnqQxUORRzLX8BVZiaFWISu8cXWYynLJpHuOsjr4tPczBc4mq9ovNHLHSCC5HT3NBoR8gjFuMxy+EqrZliN3pWNnLkH+Cxbpcr3RRHx9xUdNJQ+ZYX3Ru54O9y21yjdY6NledwPGVkldnGbcY54RYJZUQWw1Kn7KUtGi9sG0stU17ONZIsKTcYWXKxF9xuzZ3mcbJ+9sv67ToDyGd1Vv9affz+x8ma2Wl2ON+c57nj5/jM3mf4vm/+Pv7AT/wBnj58mvkw5/Htx3nu6Dn+wq/8Bf7RbymAmjufhF/67yAH+PyPf2Gjs6scHhb36qtXfx+3b/8DquoCf+sjf40kidu3nuQ4fwOPPPqznJ5+ClQ575RfWFZcfuIHkNtfxd2THhD+5vQf81e6/5zJjcR3fOO38uMf/unXXmZra4J85pfQ0UMMF64h2aE2sqCluniVNIyp6hPi1nXs0eu5MWTe/OhP8Mzzv40lLfNUnKlf72sWLvLK3FE5mO00oHBxYtlsI5+y1/mUfZm38BWY9WXE+kcYzx9H3DoeI/4coX6UvpmT7ED7tSWy4qHdQN/v8Sff/f2/5jH4XZd3+Bf7J3zqdIXTwI1hRHKXcPEe10+u/3od6rM6q7P691xBKo7qcxzGbe6Nr2BjzWZIpDjQmZa52eA8R6wYcU8uMnFjFtMxbzu+x3aEV1LFjrRsSmScztMzK/m1EujEcd1eZGKEZXb0NMyrDZq2ZB6/Es5zMRqOrXDsL3HbTDh1FZNO2OznJDZBjghSYTWVLOZe2TiK3Jk0DGpZmg22NaK5I9qMrxom+ZTxac985TnpLXfbMacXIAYYh4ohKSZEbFhgI4Qqs1/tcGxGzJuGSRjYmA9U7TXujWYs6wk2Rha6w61qi3S351SucNEfo72hN0IrwsxkMo7TPAO1vJguE7uKJD2HeUIXK3bTmMWxUHcDxwvhUCpGWzVbVuhNxfPunbQy4R6XqPrEvK6ZxSUhPsrF+SnilD6OGBxARaeWpCUDNdAQfEPT9jzHQ/Q6ZpxrpuYUSULrKp7trvGGvMekX7AbL9AAC7OJTgLzZgMfB3JToqZ245jNZY/qiMEKM79kUwJ9mnGUGhbiME6xvUVSw1tu3uHWQzNeqN9APl4QQs2mddyb7GCD8lJ+mMGByfBCuIbVERMaNnLPiXp25ARrElksLeBs4DDWjLOhNp5KHZ0asgiT1sJyTE/gIMyIUmFngc7XpA5OuUrC4whELEkEx4JsQNOEE2ashpqlmVEDoooPNR0VQSP75jwnqWEmFSHD9uou28f7zHe2QYQH0h4jJtxxD0ML4jMH9QV2Du9wEBoOznlmElnqGBuFpRkzZCWuRqgps/+nw0VimDCogrEcpk1uVNtMworzQ8tlc0TnLcPQcC9MmXjhxvYFQj1hdq/lNNXkOGKswi29TOP2MTFz6C+y3Xa0OubOcI7BRIbhgKkGXBvxXaQJkYPtTfqF566OeKO+QBhVRUGmljTUjAaHVErrKzo2WMYJLgb6WpiYSDIw15rVasLL1Tl2uyNM5Xmk3Wc3j2j9DsY4mqBYE8AMxLHSNT3daUOIEQbHSbPFVh+ocqIxiZAqTnUHYwznEgwpk9TSVxUnYcbSbTETy6HcZcveYhWmLE/HDIOBmKiWwm25xLPNO4lWMBmSVIy05R27T3Osmyx1E3fc0/YbtDLGayDiaHWTV/p3kbJnzylJ59xnh/Mcc7jcoY0PkHLHRAN1n7hZbbKVznFFBg5joGoHjuOI01Bj84hNV7NvZ2z2mcXBBqerjGstt5tNRss9jusNWjtl25xSZWVlPLv1QxwME+ahZosnYXwFtObADExNwpue6XJFvTzlpUcexueehp7TuMWVlRJsRQpjTtzA89ffgowa5pXjgvZsrxwvj6bc3tjg/MIiK+H+YsbVNCZ0Y8K2oRsrQYUjc4FzGZJWRF+zkDGxEraGJc/zBAGhN55KM0tTgfds+QPsMDDCMpgAajFpgidyQxqkVmobOIkXaE2Ny4bp5i6DD9w4egTbv4XMD39Zv11nAPmszuqLSlX5u5/7uwD86a/607zz4jv5Z8//M779kW9HRPjDb/vDfP9nvp/v/8z3811Pfhff/YvfTYOBv/k+2Hkc3v2/gWoK7/0/wgf//GvbTZMtTu5+EudmvOH1/xde9/ifpA1H/GfP/2ZQ2Gv2ePwtX8stf5UH7ZTDo1/gUlb+D6uLvHz1KWZhytcefSu7ucPsCZ+urvO27kFGn/tSBvktb3iST//Sz9HmFdX5imQHSpyHYRimvPGNP890dshnfmWDLV5P+8J7+Or3fS//lN/GNUa8fmZZZcWJ8DM58KR63rid+OV/+gIAb/uKS3TPHfBCe8pOeIDbr/RAAdUijkxAUs3mRfgdf+I/52d/7iMsjx/idDLww1JCk7/+qY6nd97I5fryv/VYXKw8t/vA+7Ym3BiWxOoR6rTHrcUtQgp4639djvlZndVZ/furlIW78hiT6S4LHTPTlq3JLu38IuTIyo3pbM1BmlFVpyQ9IsYL2KUhWkfOwp5M0OR4/bJipTUNSqNLVhkQ5T4jTI4oghqDGkNvKlI9Zp4rXl5lAjXJZUQydVZGotjs6EabzGee8bDPyK4Y2oZZZ/AVZAuqBotBfcYg+IXQWIfIkrobMMlxRwx6HDmoJ2QX2cgtogpiGMRyUM04rQx3hh3sKnFhsuL8IuNSzXjYZotDjnTKi5tXkTYxcpGxBvYWlzkIU0RhmRwT0+ElsZIRe0y4LecIXcU5d8Re2oYIt8NF9rsNdkIgqSUkz5AyEmZIXxGHCZ+fXSYeQ+UT/aAszYyLVea8WlpTY1XJWiK6Wq3YDoGEI4iBYFma8yyYILki60BG8ClyFLfxDLySdmi6LQIN0SrT1JGyZ9J1HG1MWUTHRhhohoCNwqFssqcjHqhusz2aw/GM67pJUEEMkAxZRqAjrt5Tuipwv95gaiNVTAhKDiNO5udoN5VzqSfkzMo6FjpjJQ2SlX4Y6KVhj4ptf8p044Ct+ZSecxzlhkHHLEzFWFZILnm/AYdiqBTOm332/CafbR5lIplFZ7lo91kOZQbVYbDqUDH0xrPwnkE8Zsj0YUqXDIPLrKRiZWr6hcNhaGJL9Iar7X1ObKTfgVfaB7h0MuNCPKHG0LUGcYFdGXOnmnKSHTkfs582uDocs68jjmXCeT2hF8vRUOHDCGuKSsshnDDlJI4RzRypYFiW3O/B0VIz0oCgBDHshg2qPmHcIXd9xSg6qhhxObLQCbEaM+8mnOLJGLCWw6FmqKZcibcI6ohac5gcHRWn9XkG8dyb1pwcF9fwmetx7cBnz72NS90xKRgG70ENobaYoCUmzmQOU03qG0KnrMyI+3kLKxarBpMClsCAwdoesuLdLt1wkZMcWB0nMDXjYeDkZExFj5EKZxIqQhaISTic15xowyQn7pgtHHNGqSGLJajFamaVDJoMHZbFOlvdAM4kxqzooydUG9hecEOGWOFDJlhhlxnTKtGGbQ72HCd2g2ssMDFzu77E8all3FuUAauKJeFDZNCa5B/lZg50y0SrjrFNHBqQymOSw+DIS8/QjqAfiMOSe815YjAcrRpejg/yWGoxYiBkuuw5kRGfdI8xCxV5gA1n2M0jahJEwRjPxpFQU1FFz6I+j8qUIBVOlZ2V48g8xLku0dueO/Yi95tznDQTjMKL9jzeOOqopC5ymDPDYsoFbXmlctSnkcYIlkwKE0zI7J3foR4iy76hcpFJnpJS4GVtqBQu5ohGOLdwzC3kPGIwJV/e4XDa8sowQ8XRJ6WRyH02IBiMi7wad/fl1BlAPquz+qL62P2P8am9T7FT7/CeS+9he7TNH3n7H3nt/u9683fxg5//QX70pR/lt26/jUbhqb3PsDo+ZXzvs/DMD8PkIsQONIGpIA8cs4vqwObm+1gcHrE4OuAZe5OeHgS88/ynn/xPWYYl/81X/mns/kfhfE84uMmDn/i/Mj54gqvAm4DH9SI/eeGTvD0+yvYeTHzF0hTW9vbLL6Ji+Kr3fQsvffISR+c+gZri2KcKR5+pibOazYsv8siJY8Mqj3zqD/E19TFb/YzV+A63jy9xSxP3kvIVwPGxpQ0JZ4Wr3/4wP/jhO2ymJ1hlwbh5SdPUMg8nr7LJdpdP/cSP8FXv/80cf/YpPuHX89GqXD2ImOF9/PzP/zzf9m3f9msei4ebMtt8ry/7H6tHSauPAHBzcZPHNh/79TvwZ3VWZ/XvpQKChBWtjDgOExofyCZSJ+EUIefAjZ0HOWg9D5nr3HXXGBYjWl9jc0ZUMSK06nllqLkgiWgMQe06IzThUo+IwxslisOnjkkOTGTJK1rxGXuRXRw+rbjg5jRSo5KIVlAstjcc6jmaRUaSYFNisAbEMYkRLxlJFWY4wqhyLzZcqU4B6CWxyp6NrifnmqpqmeSe0+QxSTlgE1lVLH2k6zwGx2FQdoYWY2vummNe6aYsqdhZnXKcG5ZVQ5aG+/U5glpmQ4vg2ErKthbH//txTMiOo+A534wRHTAh4w8jx3aTJi8Z2Yw3gWmIdMFS64xOFhyNG5aV51QntNExrVvuLTZ4dNhjw3XsyphdnQGKQXFDxFHyhoMaOnFc44RTJvgJ5MEyW0TmBnpTsyQggGAYUMgZp4mUDdN2wf5wntRbdlSxBV4hGHKqeTk1nDeRQ52QRXC2Z+QtSz/GZs+ot7R9z6MnC3wttEHoW8H5zEgdWwcrTIJoCnBTyVxiDih1CtyVcxzqjEN1vKt7kVEbUCyCYbce0WXDXjdi2644tDPqGAiauJSWjPJAFkNGCBFMMNTuhNVoRDvfRibbNDHgswGF2SKwkZaoOFa2YTcJpMxyZanqhE0Zny0bktnrdzho3sLIZm5GCOI4wdBiWEZPUMuQB26Mz7E72WCZ4KSraZNjTsNYlWgqlnbCiXhSFkTApYTHklxmaYSUDL0UY6ZOPFVWVBtS7nnZbtLcX2JNz+24Rc4QLKyyI9mMDErIDecWDc9LTciWKZFRaBlLxZFc4Udt5CsAAQAASURBVJabMB8ZEGiSox4Scxe4HS5yv7rA+Tqh85Zxq9zaucSsXVAt4Z45x4GdMVCzkzKjrqU1NSvxaKxxBjZ1zNwlTjWwmU455BJH1IRK2LINdV5wPhxRDQmrEasti1wBiRWOPoHNkUM74XwQjnHUQ48lcphrCLCgJpiMt5nb/WUeTLdR56hIaDR44wiSyAjP5StM0oot07OTAycyRRPcaycsoudau09oZ8SouLxkISOOxg1XvbLXjTnFEsyMh/QYkzKLPMblBZcJzEVBWLt7e24SaNVyN03JArZWliHwUN9x1wrGWrbklGvjFQfdGBcCy8mIXhySlRAc2VjG4yPkJJE5RzSGO9owPY14u6IOLfurLcY6cLVa4de54nUS+nrGKxceJq4SUWFvssHkZInL53hIl8wm93jhkrA8SrSDY2/pWA7CrK64mk55xZ6H7HHZs31yl52Vpa1HPNU3XLCBR1LPgprpQc+z9kFMVDaGDiuGW+EiSOAiS2yKmOyYm54Bx30dk7EM6oCIxiULRtynAYFr2r32W2QEDMKXm/R0BpDP6qy+qP7cL/05AA77Q3705R/l9z/5+7/k/o1qg9/9ht/N3/nc3+FP/fJ/zde3LT85nfCvLjzIb745B82wuAe/+L3QbEN3DBiO+mcBONj/INc/+w0Yq/yDW+dhbeC8MCesQk9lKr758d/Cp37qRxCzR/PKn8DGCf3kNi9ufIatvffwQLzAe3ffyGfNdZ5w1xhpzZICkG/u7tNohlBjU8PlScvdtjCtInB8fIW4G7n6Hc/z5rtXcOkDaM681V3ntw5H/I7tz3Hu3gVWAh9oDA83hme6wvy+9aEpn/mBzzPNwlvHlheHyGW7yYtpzgmT8hoImnvuPP0D3Hkanvjar+fJbzL8l8eXAPBBIQ9cPXkDn/r4Z/nWb/3WX3MO+Wpd9vt6V1jyWD3y2n3XT66fAeSzOqv/ACob5VZVHIzbdkJt5zxuA0cCnwjncCaxEQcGDKduvGZzLLfSDnVumUrHoW5wJ0+pGDiWRK2K5kyUCqOGVa5RA1YCpMz9MKU3UzZRDinyvwWOhkyVA0sMK2ou2QQoN8I5qhx5xB4xV4/WGxyNp3SV4cLRPtM2kYzioyA2URPpe8+BmeFzZiLCLdmioecBPaRWw3Nhh6N4gZnpERH2TrdwLrBKngv9nKiJkDoaC606DJkwWA4WDVmE5XhEWhiszWznnlFuqYNHvPKCbrE7mnHQ1Qzi2eosb8pzkJr9FOlz4FQrnECdIneXmSbWPOO2uGJ7+tJZII8U6QM5R1zM3O7OM0s9e2GKgXVIgayZ1ETOYLLiNHHTbvPyzmUus+TaScB2ICLYnNBsOKwqdFBmacmYlunJCrWCvddy6GvieERb11TZMBmWXCZjJXIap9QkJJfEg95OaL0S+sAdJtSp44Rt7ktkKwzcyzscrsY8MI40OYBmRA2mhH4RjONm2sLmxIPmCGMskmCwjhcnr+NoUZOTp7FCaw0rdUzpsUMiG8FpopZATMqd9hxODecZmMqSuZ0xNolj9bTqmQ4Jh5AlciOe44IuGSVhKUIrBkNJfqha8CmRgiGivJinBE28NLnGG9pTBoFn+weYoPgUoDL4IfBsHDM3FTkJcTCYXI5Prw5F8Kqc5BqMkNXiiFylZZ8GVGm1IgMewVCzUJilRFDL0vVEP2JvvEHbJmwOzKvMmI5GBqJanl1cowbs4DlMU+bJMyHiUsMl19FKBgbG01Pa+QZNFKrs2RuEdqjpvCFrUVes6jHDqGZ/Y4eHd+/wcj7PPjNGkmi9EtWwDJ6WinkuUtlH6yXdUOJ/rBpqMzBTy4FtOPQO3484XDRs2R4vJ/SjCX3niDEzloCQmUhi6S0PWuVWqnle4RorZilzpJbaDDjjSBiOQsNHTx5nNlpRJ1i6ikVdM7KZZpgzTyMSisPSLxNu7rjq53iT6a3nKG1x3I4I6qiNQRzssUUzHGM1EmlQzbhsYHD4nIkKB3giykwiPQ5HoouRVkYE9XiTmHvLYD1Hp8JSGiKejZ2WEA2j0RQNOzxna06kItmMsYlB4Vaq6byw340ZxOFDIiSofaBLHkumj4Zb7IAs6KPnVDNu4klGuO+mTIcBN2SO1NNgGXSK7cd0/QiqOfaeJTfbkCBnWM7GHHZjVJSrWjwBNvLA7eWIjbwEBz2Wu2ySgwGjhGA4SRPmTOjVMFIFTeRuhHeGg3rgY4x4vp7iu4jRmgfTgj7VRM2sgIwl5YiLhtopIQREDaLmy/rtOgPIZ3VW67qzuMPLpy+/9v+Hb3/43wDIAH/w3Ffy9/S/58gaZjuvh+EOf1GOeKyyvOmt3wVP/VABxt1ReUI15eTk0+VvgdnVlqxwfXnM+veSlek5L8rvyd/Bh//+3+PglZp35q/GxgnZ9Nz8ir9E0Mi/uGD5jmfeyZPDw/y8e4aPv/U++898wb36W7/t2zh50w7P3v8QR5cvElrLdHRI2+4AMJy7QntzzqS+wV3/JFfsKTff/Zf5ytktLnzqf8XJs1+PIBz6xO+tGm4PBRyPBB48bDndK4yCOMPbnQHNPN9PeLUlp6qIcbjRN7JzpeIHv+dPotceYflN3wnAY/cCRYhmSEcjbt++zQMPPPCrHo8PXNgCbhDX247VI69+XGdO1md1Vv+hlIHjZovFqSNkz92wQa46ng7nCAlImZMj4cSMmFLjTOHzOlWOtMHjKPZTSmbgVD2bZiCrRYjM84hOPYNaapTP5QewpqdjzE0qOjwJZULAkXkx75SFjwpXtOeBsE8lESOZEx3x+Y0rVNaAZIKrWdaeYcMxW63Y6oWchGTgpXgOMCxcxSwvOfRjGhuJqeJu3qBNY7YZGLsVQyVMNdOlMQlDSIYFDSFnHjYOkwXBsL9qiNly0ozBWWyMGFFqCRxrzf1k2VBlNVFiFjo11GQOcsNn0gVMFg7qiqgZjY6YhegrpnmgdTULW9F2FauFLcqlGgIehsxEOg6puRU31jn3jkYjNYlTqfCaIIMOHlKkrR19MuzHmstiSGpZ5QxiEVexyBXZsWafc4mqCcorusXVkDnwSgrKaeWxfc2YgZgdURyvVJukDqwoPhn26w1yr8yzZWTHWCL3mNLSoyYjWVkNMNJIr3BKwyaJmIVXqk1UlMfCIbfyOSwBTCZVhU29peeprGVHA10WhgQTSVxlwV6csqKmHU3xGjmn+xiEuW4w1wq3yhy4LeZ5yignjmPFhWqPu/WIbDqO202ETJvGnAzQ+RJFFBNshTkHzYQ5gSHW7PYzBme5pNCvylgUpBJRI4Ht7pRX0kVacdRVxnSGmC0NmVYa+gSK4FSRLPTZkdXQyoq2soTJFtViQR0SFsWTQeEojQhWyFSMFVZ1RTdkGjK1Gei0Ytt3LLqavWGHh6sjVlk4oTSl+mRZYklUXDOnzP2UO/kc50Xpk6NNjuSVLniWQ8V+J0gemJnI4+4lFicXyMkw5ML4LzEcmIo8VNQKjUuMpKVNA3ej5VYaIRjSqEacYXvVMXWJ6HsWXZH+HiF0UjGuaxZS4U86ehIZR6+evCF8xjvMUcuKBnSbR3VJpWBVaY0nJ1hhWPTweHULEz1ZHCbDgVY0WjO2gf28Q9aWQyqS9VyfnMOnDjsMnCxqjlNDFkNMI1oqThlxMxuupgN0fZ3RDMFEQoBjnYCm4maulkOdlqaEZJajESFUNLHFa8JkxUYtEVSuYz+OsRlcNbBKI2w09L3FJZChQptTjmNNY1uaZsE8buNVmZCQfsKWaTkgUpE4pOG8DhzmopjYUtbcq2JjRqqA1Ywk5Rg4j2LqjjZsQgZje+oqkBaGvdWYU3V4SXSaSLmly8Vga6WWJvXc1IuozVjNxM6BCoM6DImoFin9Lu7353jE7HMjWZ5rpiwj9L5mQsW1tkOzZSy+zP0TuC8b6GrKw5N7qMmMgsXomcT6rM7q/6f6gad/4LW/H549zHe9+bt+1cdt/uSf4QNhyY/NpvxYPsIrHFvLT0wmvOldfwDe98fh+78OupKBrFsPcXzyyS/aQs3W4/8V3a3/GpMNWTJV9HzV3Yo7rztm+swpu7f3eHf1dQDsve6fsEiRiVd+99HX8rHmaa6EC7wrPsb/+MyHv2Tf2qrml1+4T4qXQRUrsgbHa2jpHN21x2j3nsVd+CSvbL9CmN1CtKYaxtS5sLa/yXuMCJ8fImB43dSh50ZsHna8ZyLcGCJbleUgJeZZv7B9ACw53ubg9g6b5y/ysSfeVehr4I13BmT9uLq7yFNPPfVrAmRvhIuVY3eIbDvDURyT7TlsOjhzsj6rs/oPpHI2WI2YKNic8ShPHz/G/qRmvmyw0VLngEuBobeYsWFRVbQjw2TZMSGjQEUmOyXnUAAgYJNhMA5VQcSACCsq1FkGqWmDL/OjOaKmuMn2OCLKCDhMM3akzPsZBI0NLgsxK8M845YrTleeTRM5HY1p+8Qow5wxWROdb8gCqQo4u2I+jLkzbHHoJ1QmM44RL8qF0X3uLx9iEasy6kLNfTxjMg9pj+JZZccgjloUGocBPJkuOw5iQ0BYYVlmw2zZl5xTI3gDNsNhHhHFssRjbGYUEktXcbp0xLFjGjuOx9vs9MpOtWReTcgZqBSnmZBr7owqYnZs9wsCjh7HmEhvPMfGcpLG3EhbVET2hind3GLEcCCWpTb0yWCtoU6Zyif8kBgRkQQ2RT7PFTyZ7MAki5jIqToMDUeMeLN/mVO2ydGQjBSjKTwxCkLAGFjYyHbdYrqGmIuQO6khKGzmnutpgiDMs4dssUkYonKXDc7rgk3tOMg19WA5j2Plx4QK6gydcwQVUi+E1KBJUHHEZBGnTGVFpmdvtsWynmCGzMUtYbXw5HlkGWtm1aQwWGrYItHiyKLs1iVLd5IC81yhdoYjIwh7uWbAcF/G/ApaVAkmkjC0ahlFZdCGwVZEMaRBUIWUHavK02NocqBSQ50zK2Op1+fNLZ3RquM8mbYeY0JmmR0DghUh5YrOOqxRnO0JGSKCIEQ1rOyE03rGhixBlXkcs7AVq1whKCZTcnCTYWKK4zIqrBhxl4beWRp6tuJAHxKLZJmokKvInfkmp/2YlGcc2jFDskiGo26bOZkrk116LMNqwlIdvSasWzLkIuGOajgxFZNmjpXMqRrQACir1ODTq6DO0IrnKI7IKjwQj4nJ4sYLmm6Cz47bjDkRT8Bz4kbUvsYft3TZQxYO44jdNGIpDnFgRpnz9oRqyVphMKJ3nqMkbJkC6pZRMaIMCBWGRa4ZTNER3JFN7ldjjm2Dy5m0VXPzZEobHeOhZ5Edg1ZsSWSuNRhHSAKaGOmKNDRlVhhD1MxtO+GSWsYEdtWho5rVTAmD0A+eg+mY6XnLheE+L/aPMI9jJCWqbNhEmSZ4JU2QbNhlgwfoCNqgIXGPCas2s+0ilWZ6BdEimDSqfE4mnPQX2T/2TGop8WVLxWBwBtrWoU6Z41mp53aa4XPAeiVjeVk3aVU4lxdUEljmmk49KXvGJpYAFVWcwCLVLKLnkMw8QVIBK+QAJ9REKW7utSZUhbmpyclyb3kZp8pk7YXz5dSXxzOf1Vn9z7xSTvyzF/7Za/9/z3u/h/defe+XPObG6Q304/8A7n6K7z44KpKl2PLOtgSOX4kBfuiPwuwKvPt/+9rz2skI1hJoFN71zr/LU4slAHl9sn7N8Xv46Bsn/FD/s6Tf9iRXNx9nzOvom/scP/wzNMby4Ef/CzZuTniifZwbZo8JNe8IjwAw1hpy5sb9FSHWr74UKfdkhS+AV1DrWd5vGC59nHD5k4RuyuP/6q/w4Jt+AsyAkHjcGV7qI8skGCLXTOSzWbneJ4yAZmE/KLeHV7dbMqBelUt/Zuur+euX38JfNe/ngxffsH5h5erundcAsh82efbzz6L6a0+EfMP2rHxO64dI/SgAH7v3sV/rKWd1Vmf1G6hUhZVM6HTExEac7bk7bNOpwzYDYpRWPK3z9JVDbUbJ9BgWeF5ikzkVu27CjXqLuXr2tSJkwyo7lEwrnkbKiMeAY6hrjuuGZCEjDJgyg4jHUObQEoauSlx3DcEX5+JsHCFDFw3tKZzuG4bB0SfLqne02XCXGYvsQBUXB0jg19f3IRr2dMyxGXHgx+zqiBtpg9PkWaa6XOteZS+0LPCfjw2jnFhmzzI6drSndopWlqXUDMlyV2YMuSKhtN7wymiLlXhEoc+yzrg1BGyxoFHFa8CIkpOy6mBIhjZ59vwWC7OFZqE/AbfssRIZhw5Riqdjtq+m+rHCsTIOMOzKJsdUHFOXuD7tMKblUGsecHvUqSNJ4nA0AWTNUgq3zQbPmgc4kg3us8k9aTjqDKddzXxwnFCTs3B/2ERjYmrmBGfoKyXlTEpwTIMnMalWbNuWieuoKey0UyVmMDFRAaihTxY0M+tWVDEQgPs6IWUHCoeMWWWDsZEBZUXFeCKMJmUuWlKRRPcUFjRn4Ths8Hx3hbttw37b0AXDodtgyJYjRgxieZEr3Bm2iVlYZMsdHXMwnbE/aViNGlLtGZtErw1DtiTNeAKvyrBOxXI6jmjToibhiYRkOMwjeu8YrCUpOCksc1aDlYS6jFDWEw2RpNBSpMLLVHEQKg50zKAVg7OYpuWkHjGvarqqYu4aTkzDsFZJZIRTM2MpDUOwzPOIozjhle48uzIjGkvyQh4p0RhOUs1zuoUHpiazMOX8VYE5DUut6KPBSsmHntie0zRiL0xZmprWVmAtziSMZFTXgvQMvVqMX+FHpwwYpq6nHlryoBxrxf3lmC541AuVRGK2BWAGIUVhlS0dHkwmGuXWcotDtdzRc2yMT3lYe+5XE+6ONumNB5vxvmVkWwRYhIZMJmWlHwTNGTFKEIiqrLLHEykcvpKqhkoFyZYhO+qsxGSpiDREMpljMyJlQ4iwR4XYSFJlyDAXD0iJOVNDo4kD17DIHmMDrQiL5GiTxWjkoJqwZyY8pQ9zYibspQl3qTlMnpW3LILjYNGwWFXsdhfYi9vssk00FnJGc4RqzsPjO1gUA1gSY5T74jnxnl1X8Xw7Y9GPmMuEVfAcMuE2MwaEF4cdhqHiudUDPLVxlV4qHD2N7VBRTMqIVeK4Yikj5qY0sg5HDYe2IVhXlBBxTJ8cvToChpwp12oqsghGlFj1PO9Ks0MVTM4YyTBakl2gV+jV0anDU45l9oEet55B/vKmkM8A8lmdFSXaaREWAEz9lHdfeveX3L+72uV3/PPfwe1/+d3lMbOrvO/8OwBYmnIa/dS5q7D3efjZvwCf+6evPXdx8hLbRwOocuXq72U8eZwffmYdcSTgk+cXt34JT2EN/sH1v827Xv9bALihHwLg2uf+MM3iIRab1/kfpz/Hp9z1L9m/SOLS3gk3P/RjGIrz6lvf8RNsvuF5lvtvwLRf5HZtLbsvPon6AuwXN76KVTT4p/4XPOw+y87O8wB8pitsr4z3uf/Ov8wrNxZ8us38XHvK57vMM32Ply++iHwBhM9kG8Vw0sw4cuvbc+Kjlz/02mMMltP7gf39/V/zuPzRh8qQ9qs9v62N8pk7ORO/nNVZ/YdSp21NLxX7ecL9YZuTNMHaSFc3xKYiGE9WSNlSpfV1aShzlZaMipSGZDAs8QxqWKSKmkgGrG/JMpCAedXQuhrEgBcMgqXMzooqIyIKDJXhaOI4auBgusXSTTgVy0HfsN/VLJaOkAzGwklfcZRGnDabBPEoQodnwOJjZB5GDMkTcjEPK/OTjiNq5lrz6e5RkhiMSQzWkSvPmFgMsMgoSq2JDstcHV0HXQspg0ihayKwwtLWDpXIwnrQYubUViM8IKYwViFbenE412NtQopnFKrKwcRxqhVHqzEpCEPwDKmYOvlcDLPmpiaKBYSFqQpjB7ziNwnWEzFkAa0gG0PIFlxHZSLqzBqUeNrsC0DLDa1rcMbgJDOXimW0HA4WbMRJwJrMbtjkpG9Y9Y6oCpJwLgOKAxZUdNmTAC+JE0bsM6NLliEL9xnj1NDjOKDmHiMWeATocCBwp95kmFTghFsn28TBsNKaE/X0A6QIx1Kz4AssrCoEFe7IDisZ4VKCIdNGw8mRZx4rBiwLP+IuW1yXq9zjHDcZMcdgckKAg2A5kDG26pi6nlWuCCpkDBO/YkzimIqlVuzmTcauRTGcuoY5IzrjCI1naWvmviHUDlC8SYwk4CVTYalzWvOmsMBjJNGq0hshWot6BSt4M7CsGpIUq7RF9jRpic2pZGEDRhN1CoRkWOWGDs++jPBO8S4yrueITxwiHGjNcR6TJDOvDD0GS5HwWjKKUBHYsSe0MuK+O1de31h6XxMqj1QQjaIoba44DDPabAkCyzgiYpjnCad2TJICdJIa2lgRsy2u4QiahdO+Ks7hum73uFSAWLbsD5vM04in81WOHzhgtaEksbRSzqtBHb1YulxxGDZL3Bml4QcG1LDX7XBoao50zKmM6HMBtGi53iy1olVPq5Yknt57khXuTTdKjnXKEDInpuZOa0ii5LW9nQILdez5hoPZhBujDVLjaHNDrxNWsWahNc/IRRbSkEkc9BNeTJc41jF38wZ7/SarRUXEEoKhWfWErmbZTxGg1ZpjrblHxU3jeD7usKprlpVjaYRnTaatIqlKHIvjwDiWopyoZ7eriFlIWKJA64STvmaxtLSdMK2XNLZHXE/bKAtXEY0rjQFridbR4elMhRhBndD5itY6QDBr4kRQOiz7bsqz1QWe4wFe7h+iTXW5PqMMxrGwjpPUcFQbDvOYlVYcUXNMzbE2VM2cjckRWQ3Dlwl9z1aZZ3VWwE/d+KnX/n5w9uBrLOerdWdxhyea81xZvQSugd/z9/lvf/6v8Ftj5KmmZmRHfCx13GxmPPiL/w/QTLBgE1w4POTiIXzqzTNWWy/z87/wPu53r556wtawxcFoj4PFHf7shZ48rxgdVKgqt/fHPPHyb2J2+Bb68T3ufeVfQ375m3mRnttyzLEpTPQgEY2JOBoBkE8bqqZl9vPfiOz/E/JBYPnGL0id23FD1SzQ5Nh78Tfx8/Xn+K7ub9DsHPHj538Ln3j5KqIbKJk7s+e4aOcUIaDwiR3ljffg/vITvG7jDWS2sMBgFJuFhHJZhT966RKfmn+On5arAJhnFzx19JvYaAa+pis/Yn7Y4rnnnuPChQu/6nF503TEmyYNzyyLE+GplFnqd19+96/6+LM6q7P6jVVZDe3KktQiHpxxhKx00hAGA0SyOkQiKViWXcMqGlQhAjWZBRZjE04ySU25PruBRV2xiBabA9GARId1gWwMml2R3jlBoiFTWngWoSbRYsjZkULDaapYZMNUIyhkDNmsI6OcRUIiiED2ZGu5Fufs2zEdlrEfmElmNRTWZ8CyMhUxQ7LCSDvUKkkFKwmysEwVCaHznlsjw7XFMYZABu4zoUsOcpmHtC6zzZyUHCsqfBwIrsioq5QJRdLD5rpZEMWCCIOUWWdTFTlkysoqO2YMtNGiogwyxrlITL6AXDzGllza4jSeaVJi6SuW3jGSnmQdk66jVUd2BokCAqe+zBPGaMiuAM1THD0jaiIL3xAc1CuhS5YsBmvKnLA3EUMi4MkidMajKsRc3kuWwiY635HUcRQ3GdSzpJhOhWzwKXNPJjQS0Fwk8xloXYVFcTHSOZA6sewswVpymqFBMVWZpRxiURZsGCVVS6pqwLbnAM8yVxhi2Z/1DK83SugtqRImsixsa7Zo8Uanp4DrLhoymRwNnYVj07Dt5zQRuuyJ6taMsJDVcMSULMItzmGtkI2FOiIeYhRikrXDu8WQydl+UXSNcFjP6GMBheMUiC7TG09UxQIxG8TDoEVtFhMkMSU2KXnUKMnDVJYsZEJKpsRBJc9QVQzJoips+SUnwwYeGMTTKRzGmnZtglQCi4qyIavFklDT06aK435Cb0vTYmnW+4Gwig2e8r7isMmQHQmLjw0b9QkrMoOpWaaK7Mr3o0JZDuWa0WZPEw0jMkN2DFGoJNG6mmQyNbHMt3oLvbCKlg8vHmdux3RSU5lATtBrhTqlSh0HeZOci5GeMYo14GwkBLtWqDiC9aDKiTaoVzZ1KAw6BoNl33pqk1laj2aDqTKjtidj6LLhdDkr4FshWEOIhorMaXJoMAzW0OGwERYW7AhcGjhgRLdmliUpXesIxpKwJaBMStNrEM8n+jcy8StyLM3CrEK3boQMMZMtBTxqaWJJtiQZOGdPuMcOKsJp56jNeqxOMrUJmMmKXsZsuzmkTDaJQQxRp2y4OeIVbQ05lQxssMypmEtFMCVCr9JUxlXEktSUaDcMe9UEzaVhcKQjlivHaW4wJq1FF4KUcXqO05TrDlZrPn/AQGWxVhmy5/6wAXn8ZTPIZwD5rP6jr5QTP3X9CwB5Psyxxn7JY95x7i38w6/9S+TlnyGeez0vXv8gb3z2x/n9W9v8t1tT2jXr8b978CF+6vmnADAJFrWji8pf297kw8sRPPNZvnHxZk6b5xhHy8ol3rX/Lt7z5IfYew6acwMXhrdhMKgoh5OGCy99SwGqb/kH3H3pK/jJ+VdziucUy58Nb+H1usOH7IscXr1Y9EhAlW7w3C/8rzF3fwkYMKpsTm5ysnoIgLh9gfliE7N4gMvnH0LvN3xU/pc8NPkYXLnBnc+XS8Nq8gpG4JlnvoENIs96Q3dcco8J93mqf7hs78GP8vHdt/GevsaQ+Wf+gKO9niuvf/K1z9DtFZD7S03J7/vNK4/vt3jxxRf52q/92l/z+Hzl5uQ1gHykG2wDdxd3yZpLpt9ZndVZ/YYtQVEV1Ai1RkSUztcMwReGKipWA9mXWJPVUNH2FivKgCVgSM6QUXoVMhZwOO8wVZHeXchLsq24Z6Y4+rKoFkMynpEPeIlARUCYB8riGxhChY+JEzw2W+q6hyYR2nVE0Fpu3YSAdYnBVVQxMscTsOCh9RVtrtA1KGidI1VlsW4VNvJAomWpI/I6oqlXhyfRecd+5TE6YMYGXQlRimwwK2AdpsmMcksXayQXljpGWbslQxboktC6wNzWa6BbVESaC2gaesjJYSVz3NdYk8rsNkKfK7xGkvHE7BhLQJ2htRb6QBUzziaiGvpsMTYzNyOMCkNnGVtYppqbepGodm06VHhxkSL/Nqooga6q6aIjOocRQx4gkRFTAJxmCNaxlkEhoixDjTiwLqx5H+FW2sJr+SZkiox+lRzaWEgDfog0OE58tX6MMCEzt57QewKmMJH9FGcCiDCxS0IYExGOq5ppU4zUWmMZ1KJiGOUIAoOrCsBMkb6vaEQ5cUVga0TXEUtFuTCIFLl32XU6aiQJualpZMU09DjpyNaQgmOFQ6MlGkNvDIZMnTMLW0GbcQIZh6AEW8YFnEqZGxallTKXGWtlqzql62uyEYLxhORAIh7opGKeRgjgUkYNqC3GSAh4E2jMQO9H9HgYoLcVahyDGpwqbWyoUiBrMWnblVGJThNhZjqSMTTZktYasAE4zSMWsaY3Di+ZcRroaND1capiwNjiIN5qResqwCIaORw2SSYTomFwRRmANwQcVhIJwUpmMIbsPSEZnCi9WHot0mnJWmTrwVFLhzPKaZiwHBrIUNmIuophcKgoY7OkMxW91kyroTjRryy92WTHH9PmiiwWTGkGqgppETioHTYNxFiXKEwoM9YiqCnqkGVV4zSRc4WT8jlmZ9bvoy8wL4zI2dAbi6kN1oJUivUR6Qc6aSDm0jwj0UqNk4QxGSOCpoxmgyURs6XPHqKSMVireGvossMjHOUpAw6fE3MqrO0ZA/thG2sSYoWEW3+/labuCFUirWPFjsKMbCzROFozxpnA3XyBpRkXvwOBqMINN4OQGYxf+xaAyQFxQuwqajOQUyrXC+MKyM+Kzz1RhHkc4bwSs8EoQGH/B+85NFNsHcjBUecybx/EcxA3mOuYXHvil+fRdQaQz+qsPnfwOY764jj9DQ98A9/5xHf+mw96+ofgx/8Uf+3SVX768EP8wCeL2/VHalfkf+u6H5esLj7BePfzCPA3xuf4xxuefi3DHg0V8d5bePBCy53xHS50F5jGKS98/uv4iq/4IfRfjDmXvhnGcCIrHgk7OFNzY+NTXD9s+IaXvpMfIPN/Yo8PU3HEiNOcWbkyA+ezIZiMvTDFPPMcmo5otjwPfP0L7Peek1ceWu+p4caNd3DheMbX9y3P5Qmf6X8Ly+nbOHrxZTSOeXz8k9ye7LPUBwnZsZre5Bc3H+E77pXumzZvY6kXEcn8iG6jr60BLJ3f4FIS9i6WLGPf7mPCCTBllCLPVtAofGs745UbzxBjxLlf/XL0ah6yANlfQzH8wp1f4Ede/BF+2+t+2/9/B/2szuqs/qcrAUdCfCaplAxjVTQVh1QjygZLrCQO4+baExccWqb66jJrRyhM176b4NRDV9ibaASNniU1PglilBhLiq/FkHwBBn2sqMWAi0Sr9KpkU6G5iGtObU0fXMm6lRJbRFCyCDXgNZCNsDAFZIkYNGb2wzbROoyLtK6iypHBOUxWjnMDySCiBF+RssFEpUdISehWcLeaMcqR7NfsCWWeWowSW7ilF6lMxObCRJtcpL+9GowrkUgLaiIWkQyvbUOJwazZRsEaSApiy4wpYpC1C3QyFnKRq6b171UvHmMC3gXa4MpCPxSJYnCWpI6+rzEmYLNHRHAmMEiFsZkBBwFctHSpOCsbUVBDUINRxUj5zRgYMWlaWu+IEewQCyu6Joo6sWybxImf0ElDnxQSuFzAV8wGK4ZzpmOfLVzOBewAffK0lIZM0jJvXkrJ3mAMnA5jCtw29FjutJcKqBC/TmqGLIaRjWRj6I3gSFQ2YMTR15aQLV4zplKG3qN+weArrERCrhBnMFmJwXMYPLWxxOw4dDMqGRh8zbB27K1dYMCxIQOOnpQngCUriJSmQjJCUmHkVhAyYhJtKk0KX0UCjqUW4CfraK/gDKoOl8v33KaMVIJag5OIIxGjRUU4lC0CFVkM4hOqhqRF1poT9MkhElAV7sqEzjmiLY0pR5FzH4vBJ8WZjEuRoL40tkXKfqniZM1/ZyWrgURpmrzqDYCFVDKKkYw1pdFWTlJAC/OfjCFpMfOLFICbFZxagloqEgmwxpCDkMQQxBJdhaRynUpajmMunReyCNGVydylVqRQmn0Jw6Fu0DgleUedQ2kqqZIllzx222JivZ5MFgZrsFkL+SoQjVl3woSUHMlZBmOxKNEJ6EDrJpAdKVviOtLXqRIHYVBBbTk3shdMBETpbTFbDWGtPnAGUIZs6IcRYiljJybjABthJAOJorRBBWsClQ8lK11HGAlMc09Pg6JUrjRV9oYNqjyQagcJutSQgzJkR0xFQRGTKXPNWUlGiFLMu7KUrG4jmY6KPtcYYGIg1/JFUmhDsuXYKJCzpVdHFIOk9TSNicVscN0UGbuWVRoRHWSx3DUXaNywZqrPXKzP6qy+rPrInY+89ve3PPwtfM21r/mS+3/h9i/w4Of/OQ+1h3zH7TlfZ4SdnPlX5x/AvOEb4NYX5mozmZ++/DoeOXmJ7z5/jutVuVB9+2LJ9xwc8rc238unms/xyvSE5dbvIR39v+ml47HJh2n3NxjuvgX/SGFlF3S8pXqSX3Sf55W0i9x8F6+Yfe7KCd/ob9Cp5SeGN6L++muv/03hLfxL82lS9Lz+zrM8uH9CHSP504bLG6fc/upEtgXJtqsp72o/zXZ9kzeaJddqy9C9ixd3v46ro4/x7Rt/k5vpEn/HfCeqQju+w6o9x/m8QQZqV/bzRhV5dnGN937RNefNg+FNG/v8jekVAMLoPM2DP0S4/gGcRJrs+HSdeDhaLnYNN2/e5NFHH/1Vj89XbJaMZQVUHMldwsW7/MNn/uEZQD6rs/oNXgpUVQCEmCtUitTUVRk1lmQ8IZWFvk2JwXicy+TB0loPYuijUKlglLLgM5bW1BjNKIYgjqieZAB1EMvcrlDmcQe1GMlEUyTHdj1zOVSK8QmzSGSb0VwAtwpgi4onpTIbZwSyyRhRJEmZEowZobAYAngfSbYYZZEcmUTCgHpGtmVIxVSsPCGXBbgmVtbSZoezkSoNRFfMjWyKaC4zqsXhOhFNhQJeI8EZxAjRZTSV50TxKJZKh9eEhNYGKquIKe6+CcW5TBKDBAApJjemuC7HNZh2khm8IWhFtkXKaMgkp4XlIiBSgOzSjTEmk63HhQz2VbOfjMmZteKXiKPuYzk+65zl0zwmqsVTsH0Wg9jyGUvW4qjsHA0dJ3ZKCAZvMiqG7CloI0HIlnmc0EnFJoFFSIhVKmOwlRBMWWRnXm3MZHIu4IGkxdLKl/focmKVG5KWSCxLXDdOhJAhR8MgNc4m1Az0sTRye3XQA6IsbU2rvgBKBSPgLUTJRYpuKgZf1A5Dqks+sYlQldlfwVK7gZWW2wVhMDUhF9f2igFxkHCIybA29Epk0mBptYTdGE2kBGgmi2WQCpfza9/bJIr4AtJcHjC6fq9GyMaQghSMZb5ImurLnO+gNc4X/tfkAgRzElbqiOsmUu9hoGbCgqymfO6UGKqFH5FwBFNGELLPNDkRTPm8jM2IzcT4anNAGNuWjopBGnIuc/jORowpDZACmAFjyAoqBiNCiKYoS9YNpoCHnIvk2CY0a2lgScaajI8Z4wwhWYi6dlYv87Jr6QLOB1K2WDPgrCMGR5crHF1haWHdjBJ8FahcoOvH5XuLYDpQUaoqEIxh0AIqT9OMnoqBGp8TvS3f2SRgkiEnYSmTInE2EXGFuU9pPQctlO8d5e+UDa/6xIgTYjTEaLAxM4uZ1lVoZZCcwRYH6E5qWm1QEXK2tLkq35dsCJVFc5m3zs4VSfpQ1sBYgyOgTuhjeY5VRRRcFUkhk6zDmQgGKh3os0PXUukuOdTLesxk3QATS/QOmxJZlbQOTslGsE5YT4iXa0YlLPqGrKW5GcVispLUUOUv8uP5d9QZQD6r/+jrl+/98mt/bzfb/8b9f/PTf5NH7/0C3w28LgQs8LJ3/Pjr38df/+a/ziduf5A/+sE/xioDCN89/wxcvcSrF6O3hp7//dEJ963jycPP8/cfnRL9o9Srj5HdY+juj/DWH8o0LfhHRq+9bpSEEccqnvCz+ghP2Ht84sqPcnBQWOBGEsv6qdde5/F8jmtssbOEd334p9k8PS3dNg/mJLNxcpeHL13n5dc9DsBG7Hhy/BFEYPbaleCDTM1X8zPLP8Tnh6/i43lrTUYISObC1RHu4Iu67xL5qS2FAR4f1+iyLGbe31X81Jsuf+FDzB1V8yG2w5Ps+od5W6fcc4ZZFvywwcsvv/xrAuR3bIyxsM7mhOQfwMW7vHj8Iimnf0MOf1ZndVa/cSpj6AdPrl1ZsIaI1YytMrlXEsWV15piGuNyhGzKvK+UOV4VyCpFeWsEMRTWKxt8CuRsym3ekiMYSjTIxnjFfDktM6FrCWPtB1QTQd16PtQTG0dSh+gSGwvoLo7TYB2QDVEpBlQoOGESOmIWrEScU0Yu0g6OWJVXTzGTELwJQGYlY6CYbmUrZGuwJhOMIUfB2/IenUtoUlS+EKOSBVTK+0YK65bXLJYFsJaVr3Em4mwiDGXGdvCmLObV0GewuYDgspC2iBbxZxSDGMNGXnJoHapKEkNBrAWgqzOYlAoAiqaAWKEoh9aqgOQbaMti2KiAh2gdvkpUJhNScfco7uIG6xKGAYmG4DwHaRPpCzM8yIjaDlijpKSoEV5yl7GupCiM3Yo2jIjqyaYshFvn6PMMFWFwlg77GnByQ1lRZxHM+jslGYSyb3jFkujFEoPQq0eNRaRMLBpvICitVoW91LIcT86S+4z6ArRlMIXU1ISrExIcZt2q6IOgkqnsgKGwgmQQqzS2Y+aUVbLMU0XCogLHZoraWI4B5fHGy7oBVFQSGcNARSsjXK0YF5FskPV8qQqYlMha5OtitGTMruPSECEHRVLGJNYfTEKNI68bGzkW8KtSzsHyZQbnEs04E48NCVMaRjbiiEQsWRx2rTFuYmGo1SrROpa5pjIRo0pMAtYUE7iUSGJwNtKlpmzHj5CQMUSCLe7EAVM+P3JxO87FVK+wtMUxPltDzplJJXSR9XegSKJfJaFRRWN5S0nKNhXB2YEoYDxglTiYtZGBLcyvGtqhIokQ1k7s+io4rYW+r/BSrgeVBkZuyWA8wWlRb8RUNDJGC3COjsLtFuCnWV5rAqqUawFSWPzaBUK05XOSSCNDUSvYTFSLpvU1gyLpNrmY9RmTSVTktZt+yIalCqI1guJcQrS4oIdUPAHUCqpFOl0J2CiEbNaG/MWsrTeeHE1RBqG0qcbacl7E6DE2UuEJKEYiwUFcu0wnsa+9PxVLtAZPLtcnnwmxEE05rk0XXYaYCTiaaS77Ghwx+2IGlyyDFoNHoTTiXE5s5QXHzAj65UHfM4B8Vv9RVxtbPnHvE6/9f7A6+JL7T7oTPr33af7S8Qn1+ra5CJ/8pv8z/9U7/hM+/ek/xNHBB3nQ1zzbW76QB/wFOvWzrua3P3iVr2w7/vTBEV6nEIpEe6s/B2rxPfzy297GWx/8ZhqKK/V1s8/hs/+cn3vy3TwVLnNoPFe7G69tt1ZHT2R75zYPP/xZprM9ngfecvsC40+dkJJgl6wZAoje8MRzz3Lj0UdQa/h2fg4R6G3Nv9z/4zgZ+OrpD/B48xFA+VB1mZvDo2ttlrI/3aQZT4D1BhHuPPAcx/PHGAE/EFr+gKm5mIuN/spMX9tXN7yMEaU5/xNw8kd43gf+4P4rjOu3MswtL730Et/0Td/0qx6j2hgeHde8sCqdv1g9SN1+lPdcfs+vOoPcr1YYY0gp0kym/8b9Z3VWZ/U/bUVxkF69JnpUErErQMt4IYsS6hrpIoNUhYXMQrIZ5yOSLBglWYOzmT5ZJCvGZCa+Y9XXaHoVtIAU0o/O1mQHJEjqcCYzG89Z5QYzKD5Gci4zsTmxnssti2bNinFCrgxmQWERfTESquoMRxl1BlRJlTCkmmTA2Uw0HlVDtlLYJzEkKeM4di0pXKUKtY66CdBlbDYE8axSmV8uDUGD8RmMwRIxbWREpLM1xibUNIUsRxGxeBvJ6+0Pzr7GXA1qERK1DYzdiqM0JagtM8qiiCtscJktLfm7mg3ZW7wW6agx4IxiXUJOE7mxiEIYPDkYnAYIQhJHQkhqsUNGXKaXsths7EBvHClKmQUdxbUEPJVFuJRYl7UAnCE6jDF4GRhLVxzEfcZEyL3D5USLJxnBGAgY1BqaGBFTlAVh5PAp4HJg8DUaIGcwvkDLmCyDMTgiOXmyLY2QLAajEVGDbRTJUlzjEogvbHo0QhoEPypxTEYgaSaqL8x/ZdBQ5N/GZySup6alMPBKAUKoIGTqZknqRyyC/cIMPI7aJ4SSLysGSAW0B+uwZDJKchUxOozvMbHMoL/qAB6TILpWVehaueAMYr9g7aWxMOcIVCmTvGHw9rWIxSxr1r0uzC4CuYMUDcNpLjFKlPPPairgKEHMMBTYzN5kk4scsEwNAYs1CTUQyxg4xinal3lhVUjRkqwFB2EoplWIoaOmi57KdnRagcnUGhlsVRzbh9Jjq3KmV4OKoVPAG2pCkdrj0SDgzVrmn8sc8SCIEcRmjAoh1ERjqUwqjSFnqMZC7BwpgukHInbN2KbSbHBCEFf6fE6AjCUSe8PSjSCV4y6UZlltI6kRmhjIsS7GcWSC8yTjcCliUsa7WMCdMejEYNrilh2qCslCHyowFCY9lWOGGpBMcoJzSgplnWoFJGdGdGCLwiGaotxQEXQozCtOsFZITtBWi9rHGayWmNLoLOosGots3pjCxGddNy0FrC+ajRDLd3FEoqsdxkO7AixUbsBLRq2QWkNcN5zAsB68X58xSp/82nxMMZoY2qIqylr2tR0cjkQWh5eIeIM3kbA0BYx/0fr831ZnAPms/qOuT+5+cj2VUqp29Zfc/72f+Kv89vmCq+kL4eIf/Zo/xHe88/fz8U/8XrruNnV1iW+4MOXZW3e/5Ll18jy2uMZzs5skSTzra477mtcfXeKZnV1UlEdOrvGBT3b8yrvfwO3HXs839iXWKJL5hvgkP/2myLac8Aa9zVfe+TDhVgcPX0XouDBcwL7hQzz08OcAimuriYQH9tj7L0BOYPzBCr0Wmf2TCW7omeQl3/DBDzL/1ou8nhscsMXPPvw67t3+KgBuD2/id174kzze/DLzjYvMn38PevEFTmTGRx95I9/59PPAI0QiiuUjRSdEC0yAOy5zcSig9XT2BWbXDTfo7n8AMU/x2PJFXpo8zmdmr+OrB7Bpm/uf+kmG4buoquq15+xef4n7J3f4THWDc3GDF3iwbGv0BJzAs0fPricUy8WuWyz44N/7fm498znq8YRLj76O3/RH/zN+9v/1/2Tr0hVO93f5+v/kD37JMeqWC376b/13HO/e42t/9+/jsXe9h5wSxp6x0md1Vr8eJa/1C4sMrgTemPVsqUBWjCTEGKQCHQp72/uy6JRoMFLmxqQpcTs5lrE600Dfe+za0dT4AnBKNmxhFcWCsYJgkAZW3ZguV6RsmZoedZlFaNZRPh7x68VyMuRUWKPGZHwFjQv0YtgcLZkvPSF6ghEmviO6BtMOJZdzoyzm7UIxQ6a1I4wDUyuxtUzckqGaIJUlWaiHDs0WYw1qBF33INUZgjWIZmKU4i7sLIOt8S5gUOKKArrHisSMzVCZjgUjglhqE8kBvCuS2t7VOJOIyaMoWUvmscwCq3mNCQnnEiEZ2t4XCbrJZf7YCV2q8VUA50g9rOmptYRd0AR4g4QSX6VSWLUBi7dKso5ki8f0QhvcOuvXmoxxkEoiIliQVIi64Cu2Nk446oRFPyrMuYGVLbPl6i0qmRgszuUCEHxF6gWTlCF51Ba5ra3XHJ3NhMGsF90Ul+ZcmhNZBONhyL4A/ZgwKjirkCFKhbjiaJyjgrGMxpGsiorHdpmcM6tUr8GHoaLg6zEdxmeSKSA555KPKyPh3mqDgZoSa1XmULNAm2s0FdM3ckZ8cRpWhJgM+HotDVaqWpGUEFWikRLxg8NXkdpF4uAwOdPnMntvHHgC3uSSf2wdc1uBanm/WEyVyQnIZUbVeMV0maxamghk1AhGhKrK5N7QU5VZVhKKxRBJ2TA3UxapJmOofCyzuL7MqHoyNirZGkQS0XhevVwYDxKhl4ouVYXJthlbs5a0l8ZDFoNMoZLMMHeFPrcwZIXssD7iJJa5Zm+RscXZgG8SOYIV5eRojEZYOqV2oTjIqytArVISWsCfESofadMYcQmTIWppHPXB4X1xZnapNJ0CNTaX0QZiXsufM9YV4DhQk+o1ujUOdQapBGkLI29dIudioiZiYZTwMeFdyRnuBlkrPoqDu5PiOQBrWTWGKA6TMqYCNYbOOjZYEbAYr+RsCFLWYcbkEpVnIae8jqoz5FqwWTHrxpR1EU2CryJOlOwg9gWwG7u+dlhD9oW2T72lcoEYymy3MeW8TH2Zv29GieigN4UJF8Dkks1sbWZQR8aXnxFn8OOERsEMiq5NBc9XLUd9zeBqqMtrHIeN4sj+xaMC/5Y6A8hn9R91fezex177+zvf+J183QNf99r/B+0BTz/1j/kf9g9fu+1nLr+Ob/ym/xuf/OR30nW3uXDh23nzk/933hJ6/tb/8P6y4Fufe289eDsPLx/m4dMn+JULv8Jhc8gfu7LNH/rpBYv3b/DKzglPnXuGX/7Kr2S1c4UH8w52La9p8BzKgn+aG56KD1Pnjvd2PS3Crc2BJ/wLzMYf5PzDB8TouPL0HywRB5d+haq9wtGj/wKdwfTjSmeE+n1/jOHn/yo2RO48cpXfmn8WFfj/yAc4fekaa19qumnLT57+CX7n5n/J2053eevF7yHieco+zt605WdOvpEbGx1zUyZ4WD4AwIPTW1y2E742X2M5FNB6bpG4cakAaDmsCIdfz219Hw/rdVDl4w1czJGfmzW8+2DGx//lT/HeD5T855Pde/zAn/2TnMqKH3r/HVbjt8KlPwWAy1epTMVeu8fTB0/zlvNvAcA4y9Gd2ywOD5jv72Gd48WP/wqf+PF/jhiD5sz2lau87Zu/HYDVyTH/+M/9GfZvFlY+p8wH/+7388JHP8If/r6/+9oxPwPMZ/U/5/q+7/s+/vJf/svcvXuXN7/5zXzv934v73//+3/dtq9IAYemsHppWFu4IogvU3IqjkYHUmPxTulag5jiZJMxaO2wGknOYfpUgJSxpM4QhrL4s5JQUXxTmJGwFBSL5iKbTAKSDYHpWmoYSVmKeRJgbFnEmRHUOtC3Dglro6sNy8PbK1gE7m5tI5uKrDK5K+ZBr87oJu+oXMINA2aWieIJp540GLJTvEI9U2JXYpzcBsgA/doIyUnG50ig7JP4wuzlVJggQ6aVMZYyk4kDI2WhmnHEcgNVFUltWfAmsdhRRMXSG4PXgWYU6I5rcGVeWrxiagODIVkDlSCrjCYhZAehzPvKWNFFZhgsuV2zfqnM90apimxe13OfFtS4Er9lC+PfNBFjTJlp7A2mUpLzYHvEOsRnJOfCuBIRAykZNMH91QyXE6TC1A2VIebC4OMK0LdOyVGIxjLTJXOZlGaDQMzyWrSUvqo0cAbW4uVcKMByuxFwJebLVrm0droCSuwGpMHgLAWIvuo3NUC2Ftmo8KMAvaI5k72Q1dNn4f/L3n+HWZKf9d3w5xcqnTqpc5g8s2k2r1a7Wq3SKiIhgRAi2BbxJdtgDH6NwThiwMZgIWMQyYDJlgwIAQoooZxWm7Rhdmd2wk7o3H3yqfQLzx/VWuzH9mM97wWvbZjvdc119XSfrqpT51fVdd/3N6h8v8YKXM0U2KdoVwIK0cU6V0dSBYbE5wwI6uZEVetoa1avhBBUZfdp2PsTPwtSWUykUblB6wpDREWtWfeRpkKimmDG9RRZSI83AhPUVHS3P63Vos4er7xGVK6O2ZKArY9PFo5AWfJK44RC6topyUmBiDxBJchdiNegjUPsX8cYj9M1ywA8UVDUzQwsJQF2DEI7DAFSQBRUWG+oiPAorKup/nWktcNJSaAdVQFGaqyoCyyhwVtRN+MCse9JUK+Dymm8BqckibRUyuNaASbQLNgtxvm+zE3UzBchPL6qZRUqrl2yA1tSGI2VgqzZQEmBzRReekROvc9KYkT9ekl9Xp2tp9l1trlCahAFEAoqE9X66cojQiCUdSiJ8FRJiCvAmPpzC3UJQiOUIJzTjAcBShjkjKYag63qc2AM+74AksrV612oeg2JhkNMPZVWlFFcO917CQ0BRc1AWEjHjHSXytQub9LVU345r3BDjzc1y0FmBikcYWKpXITPHZS1Hhgh6pg5IYmaBlc6VChRgcNMaidyb4AYnPOE3taNAKUJYoUpxb4PQT1Vb0U5ttSU1HR6vK0bgLJu0nhXG7hNAl2vSa9wVuJ8jFQWK+vP4IvB1YyUq/hrjSf2nnj266++/qtphn9Oyf2ZB38G7w1fkPRnQnDN176dS5f+A4PhQ7SaN3HzTT+NUgm/8PlfeNYQBQGxjZk1LQC6UvKStRdydHiEUUPwli+fcmC8wontGSpV8cEbLnBuLmK1819odoHfZMpjbhmNYzWc8OkD9/BHB7+MFx36FCszPeaO7OI9PPmBY+xtHmJu8146ay9h4czX0Fp7PsSw/a2OyYss63c8Qv/rDOWM5OT8BRqyZOpidvI2IyyVHgGewFuu0Q98oWmLEB5Nxapb40uLD3JeW0bS09zXxn2BSn5pfID7BzNcnH0SgMcOhTx65M+nwVHwQW4OIPCKQTTLkekzTKXgfODYUZ5TrZv4zO/8GsOdbQBacwss3XwjW0uGv3Xzm/jh296A8A5hDXthi1S0Afihj/7Qs/sIwggVaPy+q+nmuaf507f+NMvXXMdLv+nbEELykd/8FTbPn6W/uc7v/fg/ZefSMzRnZ4nSlHf+1I/y8PvexWh3m9/4h3+XvbUrjHt7/Me//11snnv6//dFdhVX8b8p3va2t/H3/t7f44d/+Id56KGHeNGLXsRrXvMaLl68+Be2Dy9AhLXZjo8kMql1aTKBcFEiUonzksIGFKXGaIXugIo9Unqk8mBd7YT6BUMm4ZBBfcd11BEzVqv9IhdEtzZ5EVA/lFf79zMJxBIrBZUMyRoJRRQgvUUqV2eLNvbNgWKJSkBFlnAOppFg0zUwY08RxOgDIZK6UIiURQUe0RB4K3CFr4uuoC5aRVhTF0urKSqJ0QECR+gLZFXV7rEODBIShW5RTwkrv99MABBMVYqJAnwsUDEgwPu6KFEpVCrG6IBJmiISVU/NhaMzn6FCj5xRTHzM2KfIVBDEhkBVJKEhkJp0RaM7+xRiWTc3jNQ4oRGq1gBi6vOuvEV6g245bChQXYFoKZK0ohVMCGU9+hHUk3AfCqIjIfMNw0zqUQmIsCY7Dl2zpoO6/el7x6FC0FFN6ZYBOFmbJSlnCVxJFShcW+MTDUqj0vqc48EJTxgU6GBfU6ncs1nKXguMBBp1sYAAGft6yiU9cWpopAVxVCJEfZwqgSCxiETURkFNh63ASoFIBDKFXMdkJgYNQcNQUxrqdQxgpx5jPQOZ0E87WFStFTUeoT2qU685UoXWFhNLZCwIZj2offuhQBIkJWFq8FohvUMHdp/+72ptsZUMXJO+6VCWfx4v5amvH1fUxS8CcAIR1FNYi0aGgsIrjN13N1dyX1tdXztBXE/nfBJAVMesVVpTyhDtXX0NSFDKwn7TxlM7ZDstEaGi1CGEkmAGbDPApQGiqQnjilCVWFnP9E2oqXSISCQikag2COGQ3pA2SkJdu2obqRGBxEUalThUXHuOCyNQkScI/T6NBaA24TIqwGtF0Qhq7XPuIJK4Vj2ZDsISGfmaaq0VEoumRAcVWlh06JGxqLO6vQZjCZThCwQ4gUAlAkR9fioVYNR+0d+oaK1URAugGw7dBBdKREMRNkztUB7UNHEhHb4EpQzO1JRpFVoIa9O+kgA3p2vGg7c4DTqBKLLo1CEbELYcqlF/xmLfHFDoWoZiRX38UxlQRBGyVa9llTiStCRUBUFRIRwo7dGBI+wItJLoZl1oR7KipGbe+EDXkXypJlY5jTAjCGo2A86hgopgVVLpEGNq40SpQGuz37T0SCxVqTFFff+Nw6q+hwQal0QkbU8ryevz164bAc4JIllhlSYXDSo0eVU7XvuwXv+NToWOXU2n/yIr36sF8lX8tYX3nse368ziTthhPj1KuV9crY3X+MOn/5ASzxfKvPDub2el0eLChbciUFzbP87PXurxxs98gt8+9TtECLTVNEyDl669klYxyyhKeN/R5+NkxHN27+S23dvwwKcOP4mJ2kgnWUvXmNqHOLK38OyxbVHwvrLgeb3PcED0eIF9kvv2Psc3H/wAYtpgZmYLIWBt/TA/Lb+Hj7h5AILJDAJB9/J9tTHntZbR+AAXFx+gPFlSXWe4MTmD93BZrTLTGwCQpZeZEWd5Q/hm7kjfiUVQCfhV82r+cOEGvpp/xO+eex0/K3+Wh8Jv42Cwy37EJi/onOK6oMdXHHsX99zxM4DnoWMhlZZExqDKy8TVZb46mPJ9K0t8czDkzuHDADyjLQ0HF+MFBlbzwV95a20QYw233/VSXnf0tdz95Cwv5wb+7O7ranGNlMhR/X4vjC7wqXf/HqYsef8v/yxXnqwbHnOHjnDw5M0U0ykbT5/myU98jFte8WrKLOP3/uUP81s/+PfYvnCORrvDeG+PYjKh0ek+W1xvXzjHb/3Q9/Lge/6I3voan/y93/nLWYRXcRX/C/HmN7+Zb/mWb+Fbv/VbOXnyJG95y1s4dOgQP//zP/8Xtg8BuFJifAC4euooPToWRDMS3aqnt2hfT368QDiL0vXEwFFPf6TwJKpgvjVFz0pUo6YsS72vc0v2tW7CgvEETQgbBqnra9pRR01pb2qtpQSjNWpOEbUtJIKw64ltgUw1Qcsh6lQZGqpEyNqJ2XsHwuFjSeBNrSOMFXFYoo2llnhKCpGgNOjYoWII0pr4KKWDVBO0Pc3UoJc1QZO6CPIQNiyRrBAasPU50LJCBGBjjQrrKY5q1V5BQkAQGhQOlTjCpKaDi9AjYwgPSrTyxEFBJeuC3StJc6WgNZOhEiAQWCFohhav6ixXX+1rgXU9yQ5noNXKUar+DL0AtES068LLCkW6ZEBI4lCg5f70TNVFSzTnqWJFFkqqqiSWJaEt61gqwBmHdRJrJcIJfKwxOiDpWlSj3l9uApyWOKXxoUInIGNB3K6YXZkSpLVcyhhBVu1PnoRD4erCNa6bIEHLoxqgE0eSGMKwQjYlIhJ4rTGFYjhNAYEK6+mw9QpTSXzlCLogG/VUl0RCVyOS/QYO0G1NaIZTVCLwjYCkWSJDj4osBkk5lZiqbjZI5RCxRKcQLToiVZCZmEHexHiFi4J6H1ogwn2b30DSaJboFIg0Iq4nq15KbLXfCJB1jBECZOBQgUVGDpEKZOjRHU90wCHjuni2TuLK2s1bitqtXQYOGdS6YwCrNWIhJOjsO0NrSzpbUqoIqaBZq4PJZUCQOOJlEC2NaoKO68l/s5OhIodKPL4TUyUNpj7CpSG2GeIaAVWkoSWxWuGlwuceJSyVCHFeoiNLOlOh4pp2K5Svp4SmXruBNyAqElnQjqfIqP7cv2CWplJJ0HD4at8Ir6woNh2TqpZNBElNO/fOU1hFlHrS+Yog8bWcIKnvO957KAyUrtZjT2tfBO/qpka0VN/b0hlDsmAJUwMNQa4iwKG8JWkUqDao+bpwF7qmk+vEEVBTq52UqBSCyNQTXF1vV8dglcRLT6nCet8KSAS6Cclc7RYtJKiWJwpLEJJoRoKstbjeS/IspColga/QWAJvcB623CzDOKIMdE36DwK0hsQb3BSEqbdfBeE+9aJu0gRtTxQZKlk3HJxQiEiQFxGmqFmWplQIB4G2RCsCIzSJzkminCpW9f04MQQNVxf7YZ0vvlbNkKmYoCqRxqLaAhFJsjCGuGYXOC8oqc3TQm0IF+ttBIlDRvsSji8CVynWV/HXFpvTTfplH4BBOeTmP3sPMjrCS2db6PFH2V3+F7z5iZ9AsAnAZ4+9keGZX8M5w7FNx8xTv8Yv8BWY3n8gwtM2ludsvgBl20gagCEyBS89/TAATy4f4anlF9ALN5nffAvPtJ8hLmPyICcMLO1nTWzgV73hSzffy3y1xxUzYHlwjr1j17C8+DmyvE0cT9nbXOAPH/hSZqIpX0c9UY2zo5hwQDhdQdgIdIE8sIv/2DUsfGiHmZmM4Jinv5lw/soCC2ywsbRKEW/zSv925oIrAHxG3MKvBy/kfdkLkZctDsWl7CCfVXfy9fa9LPpLnGYGlyomxyWnH5plevk+vuzEBygbu1RBfTwHhzsMxz+ElfBzKz/ON3zux7Fcx8V4h5myz27Y5dpSciZ0PNm5keaD9/NzP/19NC5m9NavPHs+HnjXOzn54pcR3vRyCu+5PH8HyfRJ2qR88tf/I9unTtPbqDXgz/3yN/KSN30zAHtrV3jXv/s3rD31BNZUtcHHZAyAkJLpcEDYSHntd/99jj3nLvoba7ztX/wjJr1dqjznsQ+9j1d959/lphe//C9nEV7FVfwvQlmWPPDAA/zgD/7gf/X9V73qVXzyk5/87/7OL/7iL/JLv/RLX9T2T506VX8hqKcNvn7g8ZWnKmvHWxlboqh+SHW5QlhPhCFWBSPbxDqBlLWjM7J2U81FSFhV+KTWQgbeUjqFrRQi8CjlsaVHpzUtOaGimn6BtunryZgEWwlC7YkUBIc9o2nt9Fp5hQ/23aulwCuN8BYZVkgdoMIKIRUiELTnJox9m8IpfFXr/ZyHJLD7mkjQXQgWPDKvTX5kWFOLQeMCCNP6wS+IIduBURYSyQwVBXU0j5LIxGMLCao+h1VeNwqDrkBJS9wypDMTJrsaEWiEq/WNLhDEs1COGwzHIaG3xLFFxJAXEd5EWAG6IaiEoG9r6uu+0xIIiOKK0gWgBFYoQmXJpEZqgYz3z6eoNcUzfsK67zBxIdNKg6wnZEKDSCRmUlNbpRD4WKJE/bBqpwAO72otqqWOZTGFp9SKdnfMqBcjUlkXHwak9VjpEJEgCC02jetJeuhrl+s4Z+g7lFlNU+4u5LiGYrIV4B0kcUnQdhQ+xKqAVlUw6WtAIGfB92oGVaQKXBDjPDhbH3A6X2GcJ99VdRyVFkRzrtbTaxi7DiSGpsoZ+hQiQZRaqmmd+e2pm0HCOMLA0uqWJC1LKep86DwL6qGncQgXkHY9eQF2KnFW0XC2ppVbjaizj+qCzQoU9XSZQOINxHGJyQVBVeEaEWYKzkKQeKKlfaOtSV0Ye/WFzketv5eqdpMWqp6yy4YnaEnsGCpq4zdTqn238jo+yQQxtARKlFQ5+KDuazsPIhZUPiSUFTxrllRLBPx+HI81+/vTHleJOrbMO4phfX0HSW02VmWSWOdI66hmQnxmKQuBK6CKBelsiQjqpoW+ZEE5RAwq8MSxQ3cV1dBSGAGlQFhPVjQIGyWGEOc8ZDW1N5x1CKkIvMHEX5A1G4TXdTwa9RpAWVAKpR1KOBCKeBlWm3tcGC9jogBX1lpqGQtEqqh0UGtrGx41gMAXaByiCaUJEChU7DFDT+Dd/uC/lh3YvG7e1P4OFYH0mE6AQ6ExVPseMUKCijyiEaD7ol57o30DrH2DMoEn9jklDSyCrKivt3CeOuJqKrBTTzYFGedEWpAJhQ8ERoXYUU2VDlsevSjxkwBloBIBURd8Vt9WbOYRcU27FkhEG/QsGAtlEFOWId4IAr3fHIgFYWSZbEtsXh8yAXjrUd5jZQARGFcXv6F0tY9FS1O6OmIu7Nb0cl3UXgdfLK4WyFfx1xaP7tTTRr9PpDjQPEjfCU5PMsabj/B8dxMvHtQPedvBDG9YC0F8CfeIDteHPQYnA57bCXho/ZH6NUoxVp4WXXpZSFNNaVuLERJlR3z0uttrGhmLLLtvZlu8izy8DMBdkxuBesoxwvKnwtJafAW3jh/jq17zXs5+4gTJxTPYIxnL123hnWDjox1e0Pswf/Nll3myfx1L/haWey+linZJRsc5+sl/yfkX/iBRnHO8+zjCatrXZQAMnkzQ0vLoi24H73i1+DALjSt4DxeyE/zb7ut5cHhy/0wJjgYbbOh58kzzq3wpHw2/l3fb5/EjC9/BA5duRVHwTKPLL33sX/D5KNqPD4F2+WcMv3DCpSUK38lj8av4nLoT5epchcm+YcLZ9DjP3buf/DNnKLTm8M23csvLX002GvKZP3gbpz76IW5YuZtHZprY6AhMYcSUgzfdwjV338v7fvHfkbQ7bJ0/yx+/+V9x4IYbuem+V/A1/+zH+c//8h+zefbMs5+9kArvLHGzRT4e8cTHP8zxO+9mZuUAf+tf/iS/+n3fia1KstGQ05/6ODff98q/4NV3FVfxvxY7OztYa1laWvqvvr+0tMTGxsZ/93fW19d58MEH/7s/+x9BCEgOOcq+IBpXDLMGXu4bRu1A7EuSSDK1dXEiYk82jZEptRvvBMKwxIQhMnBkNkbEnsDXpj9C+dpx2UmUFvjAoZVHaEe8rAjWM4Z5TeMuhUQXtUt1IC2hhFKE2DQgSD3lpiKIcpK2wYWaySjCK5gpdthtzUBT0vIjEgd91WYaNzEjhdgvqG1RT7K9EvvmgfW9LZQVMvGQFsRUFGGEiAQ6thgR0GwbitxRdWrjJKOC2nCrWVMmhaiph07pWgvq941m9iUwAodKBHo5QIyhKjw+EDgvscbjJhLlDMJ5rNDIEIQXdWEV1FR28PgCojlHNRLIsJ6WWgSRqrAyqKd3YUkgNKKhagfyEsK2pyFzLDXVM/P1JMw7iWr6etrlHFHDMy0ENlUIBBZF4HN8XP8NdkaiYokPqB+g8zqqplIxScNRTS3CCzITolwFZU3bt0IhpcKnAjusqc3ThVkaxlGtS2QqEcsRWOrJcVHR7hYMpikhFTYISLqesvJUWte05/1s4GwaoyLweAJncVJhCInUiNzG2FwSSGiHYxyCTCRURqPwDHyrNpMCRGBoxCVOafQcDK+EtVZ1RhM3c7yUlN0E15KEXhJkBQhBPOeoejVl2FUKYQXdlZL+Zp01a5ysM3AlRFGFjxVmXLMhpHekpqBUUIUxulM3mUzfE8WG0HtMohC5oNp305ZxraX2WW345byrWQOhw0e6NmEDIopatyoEQtdrsdARUWgg0IR4zNDVsWa+zierConydYyPpG6QRHMeZwVhVqCVIEfjZZ3DTSTq/DfjcZVHNwRIRWaT/XgkiGKDbEicBjmtteQ6dITKMPJt0lYBiUB4iQgEQdNT6JBGIycJHSOdEO5NyQYBEY4KBcLh8to5WWuLaQS4AmJyqjhG2qKm3weuXqe6ppHv85ZB1IwMjSfwFc14AjsOM5W1CaCEqGEwJiBoWnQK1tW098oHWOFBKaTyNOIKHwoYfuF+UufBh5SIwBOL+nZgvcQKX5uPQe2k/oVJqZOEkacyChl6AlFRaQWlIBAGIyVIQaYaOIJau92AdKZAdgPKoSA2BXmm6pm2FCStiiqtp9POgC/qzGLpJQJBKcLaZM16vNtnB9V9EaTyyBa4iUNGAqFlzQSyEMaWbjhhoDpkaGwGuiyxhaup2shahtOoz3VCQZUqXKBxuUOrOn9ZH3T4HUcpJEFoEQKmMkE1/gvG/f8EVwvkq/hri18482kA9MI38C03vIG3Xpnwzjuu4c8ufZSf3GjyAxd+mWD/Aecdiy8HIYh8RiY7/ObMnfyN1SUmj/0TALxNaDrHfDbPRw9fz5WzEltp2uQcOTjgBxZ/jMEzbc4Xi2y25nno2AuAFxBO76ez84u8ZHgnAJ9s9nnvxjneMHyEhWIbpGD90zM0F4cMNhKaB3K0NuztrdA6mrO71+LShw/gbUaWfITl5ZeiB4t1+Hq+SGP7BqZLT5Df7ekdL7jx8YIqF0w3Io51L3DSXeKSXOUeHmbqIzY/3OKnF1/Fgyfq4nhR9PnN4MfphgULZod3d1/Mz+18E60o45v0+/i1C6/mCgt4DdVz5/nsqQC/NkWsjWEuJBw36vB5HNcEguHWZQ6KX2d16fWsJUso71hTkqaDLT3LSKW07ITnvvrLefGbvhkh6wena+66hz9862d4tJ0CkNjaVszjeebyMxRvewe2qsiqARcffRiA05/5BJ/+g7fx8m/5Ll7z3d/Hr//9v4P3ft+wy9JZXOZLvut7+djv/jp3vvb1z66L9sIir/t7P8A7f/JHAbjwyIOce/CztOcX+dwf/wGv/I6/iw6Cv8SVeRVX8f8/iP/b04L3/r/53hewsrLCc57znC9qu6dOnSLLMoTyNJKKoLSYAnToMGOBTgTNpMQYRdgCWVWMioCyUsgGCO3RbY82BeGCR6q6ueepsIHGljUtzwqNlLXdsVaGsAmhK3GdEFHVjrjW1Q+9GgtxbdZkHThVIaQhFhUltTmPEg4tHA1GEComZchQN0hERuigEBFtPyFwdbSN0LUDqxAC3XT4SqApCSNPUdXc1MgVjGmiyFHe024VaOVqDaH0FEKjmNJMPHYxpNjUhDFUUwiqKcKr2uypKAiURce1aQ5thc9AK4umwocNTCgQRZ0366gfVpMFS1SWoDRZIpHeElJRxhHa1lriTCRE83X8z0wzY+98hLAOI0OajRFZEKCs5+bVM5zJj5HFLUwlULo26vFOIqWjnYzJRt1aUxiBlIKgBYtujyqIqWZTqt4+zdELhJCEyuBc7Y4bNAyV08Q+Bx3Umu6y1oIKv6/tFa52c3YCHVosAQFg83rCK6NarxpSkjQjfCtEhIJgUqKUpxQKQ7C//3qTUjvCyNRaTqkJEkNu4nryqEF7X0/TdX1OizwkSi14S9D3BPM5/WAOjyB2JRNCwBN2JGYEdDUqM6StijQuKbWgFPXfkb1JiyCu56mxLFFLCcEYomSC15LIOzqx43I+R3hAMEoahHpK4USdXYyojZ+UwKigvm4iS5LllIWkQqMWA2Tk0B6o6uJUekEDQ64FPg0IZIlrB6jYYzc8ogEqt7XjcVg3NUJf0pATKjxl0ibsGLQoKWRCMCsI+gYnFF4ohAJlLaLlyXsS7T22lIhOnRUdBIa2yolkxXy4Q89FrGVzFDIkiB3OhISB4WB7g3PDg+i4NvES1qK1I6sChAMdK6rSIgJPWFSoUFDuW4+WRLgSvKnZBWWpUYEntJZ536dbTCmaEh3Vc1QxMXXOcKPOIG42J0wbXfy+cRVA240oiSjjFs22Q83AcEMi9687+4XSSoAPBX3VJXAVxiuC0NBaNmS+BdZTTQSqtX+/FftaeCHRom7SlKVClxahayMvBDVFvrA0WhVR4MlWW/geWA3KuNpwLgJVOKR3GDTFRCHjmlJvkKjE40pBnFhKBCKzCLsfWI1Atz2LcwN6fhYhNMpbZv2AvXS+bh4SIGWdHR4EFX5G4FBUQhF4SWHCL/xBqRMLTO1o3kwM7bmCvFL09L4hmvRoLJWUJLrEiz83RVV53ZEJfYVTApUKdLP2ekAL0iinkw7ZLucRrsQITdwVmFBQBgLp6+PyQhMu1s1GIa66WF/FVfwP8d7tAY/uPEEEfNux2/m5tQk9Y/mzvRE/tR6Rdb6S1fJ3n3395zs3csBf4oo4xCPuegLheM7u23nL5GFssUj2zLdhFz/LR+ObuHgmetbJekjCqSsBH/jwq+netsEjk/rhsvPYBbJru5QH7ySc/fcsGktOztnzv8ot4zrjIxcBgTMML7TgArSvnRCldYzIlcsnueH2j0Nm2D01Q1gZWltjzh7c44SZxVJhhOb05n18YvF2zokTjLqz8DzFfNnnhsUz/JPxL9N1Yw6wSeEDfkt8JTtLmj86/iLwHiU8S2LKLH0eL4/zq/pVPDY8wSkd8sriJ5F41pnZN8KB6M/WqVYb9RRnI0dcY3jw6Jdx3VMPstU6x2qzIFn4EvLJgC/bfCe/cejryWQMAlpWYH3OXtCl7TMe+cB7uO75LwQC0uUZHj13ieHlhOW+ZW1OM04P0B7Whfc7bn+Cr/rIQZrxLM/72q9l9caTZKMhj3/4A5z6+If5k7f8BKvXnaz1QoB3ju7yCl/zT/8Vrbl5/uaP/OR/UxBc89x7OH7Hczn3UO1y/sFf+XnmDh3hwsMPcOjm27j5vlf8Ja7Oq7iKv3zMz8+jlPpvpsVbW1v/zVT5C/iO7/gOvuM7vuOL2v6dd95ZT5u1oBABQRemWUBKTtkIUS2Nj+qMYOEM8+kQaxLQGrmsajpyz9DqjslVUju8IpDWYAONk5Iv5OVGskLHgkA6opakERp2dyPiqiBKDD3dQAtHK8nQ2pKriKKsC5iFxh57Yp4506doKiYjxXDYhKamY3KsB4lBKUGFpgxjpnhKqwh9iQzrPNMcjW4DuxYVulo7CWhv6dopzgZMvaKnuqTKcsSsMdQJTTdhQy5ghaKSAUHgac0bZranjEJPXgaUtg6006GjjGOCjgAcUeKYNAJK75l36yQ+45JcJcQxG2bs0KGrx0g8tukxuaWVjLHGM/UNEjNFWiisphGWOBkDnowEHRoCbZhkIVYHBDMQC0fDGG7WT/HY6Aac0GRhUlNhqc13pCzRssJqkE1BMA9aO9p2yq4Mkd7TcCUZCV54tHdMporKByQzlqW5PoPdBGdrJ3MdQEdM6AUdZGro2iE2hJFt7RcTtVkSeBo6ZxjGBKkjNSM6fki/0WE8N4tHoZwj9wGlV0ih66lo5UnllEJGFEIhhKPVymr3YlPrGFvhBK0riiogUlMgIJ8PSMYZthJMaVCpiJSMnJhAFEgkzgd0whwzq+htKYqRxkUBZdKgkRaIqUd7EFIQe0doPVoYvC6ZdlImokXkp4xlwmG1zuxCAzsb4IUkbpbkI4XRAvZzeA0aRD1ZbbkhWRZhrKrdfW1NxzVDcBV1rrjTaEpEGCKcJC0LpoSksyUmt5j9NSkxhL4iZUorMmw25zC9Ch8qfEcTmDE28KhEEOcV5FDqBl75WlMuJIGoiGRBIWN8UmuuRUsxpEnHjPFAs5Wj56EkxCWGJLV05YSRnCUMPDN5j1Y3Y8aN6dHlfG8ZF9XPKghB3HU0XcHsXM7FaglFPa2VQZ2cZEsJyuMrx8BEdGYFJ90pHlI3MWm2SOyEJDS4QYlPJELDfGPMAMXEB+QiRnmP1yG6Uc9q7XyIEhkqqp26RVXfk6R3hDgaXUvlQ5YWMi66Jq4RIrXDVfU1LLxDOUHD5zATYPKgdpb3jkAYKmq6vUwlDADqAi9dtdi0QYEliBx6WaLykrJfuzSHMyArSzl1xN5i5f64R8Kc76GUo99MiX3JMblHr5VSac0oDRHSEYqKGQY4F2LjJmasaDbquLia+VHR8iMqFzFSjdr9vC3RziODijg1yKlBBw6XKJganFWYKKB0ATowNBct4JhlgG4U9KoWamoZTwPEfL1O42aFUg7VVUx3A9qNjCj0DLKYpFMxabRQHpoio+xoiriB1FO6rscVNVdnqwnAC0JREHnzrBb9f4arBfJV/PWC90ys44fOXEYXpwH4mYffymD5n9BSkn99bo1SdLlr5084UGxjEUxUgwcXnsNP+G/lI+K1/DLfRIXmJ/ox4HDlHN6lTHv3cTFXqGCbQ+ljhA3Dk+FzMBdm+PVrXotzCt+VyEFF4UPk6SnJ2Ql3uBGlX+XP9n6PeFzh8TzUupXrs7OcO3KSay88gbYGrUqUtuxsr9LvH2A6bZPOj+nHc5Roqq+ecKy/R6/zANHGATa7Mf/wtv9COxvU/55JDrB3fYf0M/+uNqpB8Z/867nMMu88clP9WiEIqHjUrfKi8mfJCaH8801tMru/yYrK191o50BcnuICicSjLow5PJtycusutlrnWAgc7SObZBeexzte8EeE258mG7wUgLH0fMvGo1TRhCRZZdq7zO/+s7cSpq8hH7+dK92L+O6LuGtyH++c61AGMUXjHuLpJxk3LEvz1/PC9LUkZ2eYf9lh5FHNkVtu5/p7X8Qf//S/Zu30qWePvdHu8NzXvYGn7/80N73kZYRJ47+7VF7x7d/NL3/3t+CtZbS7w22vfA3Hn3MX19/zwr+w5XgVV/G/CmEYcuedd/L+97+fN7zhDc9+//3vfz+vf/3r/x9+8//lfqgIfU4pYqRzmCEsx1t0u541FjBC02TMbpwS5IagkRELmEYxJIYySqDwxDanExUQwE7VZehjFAbdlCQmZ5wlKO+JKZBAMy1p7Brm1YDewQ6yhBk/QlOxySJEkoPtXRb8LoVr0PJjjoU9ziZL7OQBmUxoyD5zrkfKiD23iEOivaknmNLRdgNEmdJpD7kQLBB0wBiLUwE0A2aqATeEzxD3K7QKuEST0jkCCg64TY6XOU/oE4Ak6tZxQwtum0IltLoVShmmvYqGGTHIGhRJGxVWtJKSKQmJn2LnE9o+I6ZAAU0xIbE5aEtLaK4trpBrz3xjh4mIydMGgzykGgUQhTR1TjUIEKGnbTL6QVIb6yiNkxDJ+sYv8ES+YCzaTAJN6QIKlRAHFUWlMXFIKoZshx1A1WZoUUAYWDq+R+AmONdFBY7E5SSRZVrUDdLObM7ABohQUPXgW/Tv86v+K3GtBqnOmVETxiZFBnUEzGw7Q+4E9MsGWlgaLkM7STBXYZox4bhE4YgpackJqJiRT+n6AXk4RxD6/QLNc705T0XIBXcEqKeEWV8jCAhSkIHA5oKgJQhCx2rYo29bRGGAnrWMt2tNsxACbS0tP6bNgBExAsuC6WFcwFR2yIWkGnqqXNAIPIG2tN2U4/oy/WqObumYU1s8FRyhkiElMdpD4B2X1SppyyPVlBFN5uIR405CMQrR2mJ93ZDptjPiyYRSxKjQMbIxjWaJyKqaFp94vK21tcpbrBLYVCOtJx2XzGRDKuMRLicXEVUYgqw11EnDMfIhCVOyRoB0AhUJmmnFAbbpuy6pH7LJAomdEh8NGK/XUT5Cemb1kJF2gKSKGghRa8pzGdK3baZBSDxvsXI/4ikXTHYDXKpIOyVVmpILxUh5BrQI5qApC7JSU/kQpGQqGyzpKUECXjgYG6RUNNoFWRmBVChbR8J12CMMRoR+TLkzSyA9RzobbDbmYVQxNilboyat2SlTWgSUiGZN711kG2SCFdBwE9y8JrviCYIK4wAn6CxUVEqD93SjAdMVSVaG6NDTDiaUpedAY5OBn6+bPa61r2n2NEQOQCMtmYRNfF8Q+LLOC/e1Ud4ce3TdLpt+idJqAmlQywmRK8h9zCx7bCct5ujRaU642DhC7gLUFGaHfRp2RJFpRmVAvFRSWY0bOYKiIkwdlUkpA4kTikoF7KiacZK6CQpD7AzIulEoANGoG2AWgdaORrtAe0N7IWO6GTGRKUVhyKaCuOU5Gm6wFbTJRMRcc8rcZMBwGlLYJlQQNw2t0Qg/GxGEAt/2pCankRc07IjKBQxdANSmaDL2SCUIXcH15gyiyFiTq2gg9hMOug0uy9Vav/FF4GqBfBV/tZH1IJn58/+/5wd4Zu0s7YWvYI+asheUZ8F7Rl+I07AFXzV4GACF53ev+xZeENwPJdzn34cNXsavlkcohx8mBGY6TzBfPMxje9fSOPAOZPsJdvd31+GDmMPHyXe/AjlZRGSGk7NXMDMRT00O4jcKPkCbW0afwwyvUCpPv1lw2/AxlPcc6G3TU13m/B7zN/UA2PtUwPzq46TJHvo6R/fEKR5/+3HeM/kSfvz2o/xj/e+JTg7Y6S1xt/86iklMKx1wy/hJvvmJD1CIhIvBEh+du4tMRqztLXJZHEQCtwVX+Ki7lhk3pty35MwJeIF8jFu5wFG5we/Y+9grr+XOYsofNhOOG/juMuJwQ/PtzZK9SVV7vFyZslIEzE5XAbhUCNYHLa61KdftPI+HFj4Bg/vAC0YSrqQnOTRcZ2pqUzRvLgCWhfYhZtxLOZ4forcZ8M7D9bkdd7+WePpJukPNsl0lmmlSXRmz+3unmX/TSYQQHLv9uTS6XUbb288ugcXj1/KB//DWeht7u9z7tV+PKSxRo36/1jic87Rm57n79V/NZ/7gPwHw9Oc+w5t+7M1/AYvyKq7ifw98//d/P1//9V/Pc5/7XJ7//OfzS7/0S1y8eJHv/M7v/Avbh/ewWG6AUGxVXUoUlVH0VKOONAFuNKd40N2I8gWVS3AWGiLHtQHrKQpIVEYYOHq0cZUgETmqadACDs1scbmYJwkcHT+m8gkzcsqJtMdFP89CZ8h4W6OcZcH1mMgOOoZ5OSUcKdIopyc7RGKCTUOIFTb2UDiCQcmLynP8kVogbDqktGhvadqMnIjUZEzbLSIN2pbECxKjoBKOYF5wYLzDJblKrKYI12BW7rFoJ7TFLsokpDhU6NCRpzPaYbwX0BMt+rMxhCWtlRGzxRr5Xoh0UxqFYKXapkIxkCkj3WRsOzTdaSbAHD0y12DO73CPfYDbsg2eaBwG6enEOZWZMm4cYBx38ZXA5XBwaYM0KDBli4CY7WCWwJekTMF7Kh9SivBZ+1clFY05DxEIoZhVYxbDHVbzHXbV7VRe40rJHFNCJwi9wdlax9iILe25MVtqEbMDoYUmJUmnR1FoRGk53zpEs2UQJuPA4BLXJxcp+hKnDFUakYYVJBVVmdE0U2blAGFCpkHCotqjHAmwitwnbKtFGuS8YPA5+rrNtp/BxRotKxKXsSdncCbcXzcpUMcuVbFmdnZCke/H/AQOHQiE8Sy4Aco5nikX8FagRYUQisRNEd7SF21CU7Dgx4S+pB+ktNIpNguJyKmSGXwuUKlHzCmkV1zrz9ISEpknLLNHR444FxxAeEXsDD3ZpCsM3he03ZAFv82uSCnaIUIoQhxYiy4rkrKgjGPS2FJlFpGXNFRFpASuLdmjSVtOUF4woLb1lQ2okjpqa9Vs0gx7PMVRooU6x7jrxgxFi6mPaNkRuqVpFAUNHB0zpFQh3nmSwOB9SNUSrJpt8vYyvoSuKsE0SP2UyFakbpt1u4rxmlJqDJLGeEqWtohVwSFzhfPuIA2TM/QthtuayJQsdqcMoibCVVxTXcZqwXmxhKKibYdkssESV7gkFvE2IPA5aZWRqpyk4yhsxEy5RavtWBL1k1rqxihj6sxwSuajOqVjPGkQSEtGjPEhCoNtRVgLJYquG9D1fY7bc+y4RZ5uLJGphGxsIYTYCVI7ImVI243JI8ko6VASEfiSmc6QK/IwCk/DTTjIgLVGTKORI6cFuQrRWFpiytBHxD7DRAENTK2w8CNWyw2mZcR42qShc+ScYLkcshekGC1xQOIqYukoVYBUgqhpCSYluWuQ+pzMhMy4IVMZE1aGlJKx6zIqOxg1RkpJPBvincPumTpuzUvwBhMowqpkTvbIXYexTAnwxH5C6Cs6C2MsARNqeVzDTCllXDv14xmKNgElExJMIyA0Uw4lG6x1DtNUBUf0DkPR4rxdwReC1njCqIw5lG4yUw3pT7tM4oghs1gX0HQlHT/FC8+s3yM0FaVrMpItov1QdC+/OBHy1QL5Kv7q4vLn4Le/Cl7303BTPSGZXPwcxzcfI+7+uY7OBAeQQlBnslu8injZ9uef/fnX330vnzr/3QCcn9zCj3/uG2kc/0Z+uxziAxg7wXIxIj3+Mwg9IjYxHXMNF+ZXCKcPo9NzpOnPMrHfSHj6EE/sHeTI3gavM7/Ne294E0dPbeP3Pg5AqS2LgxiPY+GuHgeu3+Qff/KH+afP+wka7YJ8EDBdT2Bjys5klZXnXmYSNPijL/2bPDF/OwC/v/1dJDMX+MzMXVwSR2E/2vnjrZfyy3d9K7EtGQfps+9vobfHXU88zPOeOcUTS0tI6xjJBIMimavonzzAv3ro/8thW7tEv0Z9in/vv5kPzb+SeC7g9FzIDwUlR3csxy7ATlMjxwY8lDsZs9MVhBd8ZKJZWPko1+7cxfWbz+dc96Nkehdn6simJ5IUlbcJxZS5ag+wjO2fIORXcCKKuDZWjHslwic1rU7EeGCcWpZWT9L66mvZ+rXH4bFdxvdv0Lp7hUc/+Kf/VXEMcMerX8f66ScppmPWzlziN37ok1z/vGXufeM1AKyd7vNHP/MwN734APd+5Rt59IPvJRspdq4c4JO//0nufeO9WFOh9FUd8lX8n42v/dqvZXd3lx/5kR9hfX2dm2++mXe/+90cOXLkL2wfTghCWXDQbDLkJBO6jJMWy35MRkjHjUhdQdwf47ykKj00BJXXxCKnvxPT8GNabsyszjAuZEpEmzEuVcRBReoqblm8yMg1UYElsBMSV3FCPM1T4lVI6unaQKbcVJylUhuk0nIkH3N24ygTvYSLCrbDeaY6qZ2QPYRWcrA95WDvEkLcQ9jwzNtNoqriilrGowmU5drqNAPXYkvMYAJNLtpEvuDO8lECq5CTmBcF7yds300mOrW5WBmhy5RrbM40nTKKKmKVkdkmOlbUczbIRcS0iPcdvi2aAOMjnMxp+BFt2yS0MGsmTHWTm6rzPOPmucadIRIZwtWO2h7wVnEuXABf62oTCpK4YrncQviEvjB07YhKKkrrOWC32bMtLHWGa0VARsjx/AJ7ugte0WDKcXWZu4rP0M8XCRu1I68fekylOWw2WKrWoSqIqLjirmVHJIxUghOWthtza36KrfYC20GXFbXO/jiNFdY40txkVy/SYUBhFDuqnjjNRAOSOYMdGayISfC0/RDhm3ihmTE9esEMVkh0Vedsb8l5pHPMVH3apuCKW0DmFT4QdWGHRPsK3fU0Gjl+CulkRNFIaAQFTZOx5Q6gMSzJKwTGUBAQeEvDliQupxASvCOdEdw1PMvl6gg+8CjhCJUmKBxST1G+ZCSbGJXQLT5PICQT7YjFmGB8lNXgLEbAYrXHo/5aAmeQQKvMWNQXkUBMSSxy8FDImNW0h594OmWfWTHAVY5JdS3lvmlS7Awrdo+b4jM0bMZpjtL3ERJPkOU4UTGvhuRlyGq0x0xjlqno7L+/jD1VM8eslCRpRhwa5so9VtnkmfAgITmpymm3CnIdIQvHbDjGJppmVjKYBrRbFQfam8xVO8y4Hlt6iZ7s4o1mtj9CaCiDAW0/4rBcxy2ExIHhsllgthoSuSm35k/TY5ZngqMIBKmbUCAJMIyFpOUnrJh11jjArJxQNRyzYpfLMmFRDzmWPM0oXiWpKlwR0/TQjCpUWLJSrrMhV7i8PU8spvimomX6DFyHUoUE1iNMSIsMJ0ukEEx8iyt6lalPcEKicWQiwiI54s/TdAOOcZ5Pmuej1YCMlKkM2NYLtTzAg7WKTCfEyxJLAz/xBNbRtRPuzR/kg9VdTHSI0wGLack41nTciMomuCImcRXtbEpBirQglEJTsWS3SJwhlobAWyoCvPQwF3CQIZO+JlEZwdSSzBl8p0LtQCevWGztsOXqbGElLAljpnOaYicizXOUrDBVQlRmJHFBTm3UZRCIeVWzTLAUJJQ+JHYlr1If5wOd+5CRp7Ka0FWUIsRZhdeSmXaOySq0golI6asZZOmxfUcgDfPJNiZcpm9SluQWS67HYNpkkMzSZMSBvMdAx1hZMxfwnnnb57BZQ3pBVwyQV3OQr+KvPfrPQNaHR38PPvSj+D/8O9yvFnnX/It5Xv8Bri9KPNCf/wG+YPzuheJAvsmhop5iOuD8Iz/47Ne/H3wtUxXQSD5Bdva7KDZfhTYBl5Y+hNAjDowP8KL1FxGm15ONX8fkwndSbL8MQUkqfwW1cIqbxTmeYZl36a8ieTrj1u0PYX2FR9AsNB7PA9f1OHukYmyazKshK+kOAEY2WL57B7xg97EG77n/q/k7wa/wxPztLPhNfsj/cz7SPsnv6a+ui+P/G4wMGAcps4Mer/jMx3nFpz/ONIp474nnMxyJOrheWAyK+zYfpnfnETpe8tHRqwHY803aIuPbot/mTFURH8r41tE76aghj2nNA2WFGJs6KQJoZY7ARSzmC3zp6W+ihSOff5TZbJmGOUy08o79Ew9PB/B7Sy/hwc5tzx5vMF5nQUluiiXGOR4cOOZGdXYzMgYRYLTnLfGHCY6knIl1/SD8x+fItgZ85Ld+tX5pGD67zSc+8kFMVdMGdy8/STGtMNWfW/+bytKajUlaAWGc8IKv+TqEmkXHd/Dge+7nT3/h3/EL3/ENz8ZFXcVV/J+Mv/23/zYXLlygKAoeeOABXvziF/+Fbl96x7ZcpPAKKR2deMJc2KPt+rTMmKaZoIzk3upxlqa73MjTpC5noRwiHaywiYsCwgVNU1dcX25xOFlnqbPHXNAnCErUcMKYlGWdcyJbp5Xl9EWXTbvCDVsGhyOdq5DGEI9LupMBJ4p1vBdcqy+SVHt09raYnwxrIx4PcTVlaThhceB4OjoGCMIStvwKlQ2YzYc0KoNwisVyzIv6H+fO8vNIPDNuyA32aW6dXGZ+N2R1r4/bKTm29zhz5Razkx5UEuMdWGibnOu3+7zgmYvcMurTUqKmEtqCoCjo9VNMKbkle5yjxRVW8j0iWyG9457sYY5O91AWrs0voyvB0WoNZcI6qsXuG954T+lKwmqMdHWebixKunZEmHuKskVgHQLBfLldR81YhW1FzM5OkQ5adgIOEp8h9qfo10y3OJZvM9vfxdmIlp4SNw2duYwb44uc3OqRjg1pOWW22KNbDklcWWuzw4wF02dctnj53mmeqy9xJBwSi4qu2UL6kmnVZOg6PCd+nPvMx7ghOMNxdxaV5BwP13FhzCCeR3jJstmhbcfMdqYcLkuuaV6h0fUUxNhSURWeTjUmMQUjF1MNPcVIEw1zPJ7WTEkQG8LYEvqCYOrAgC1hxgyRQNsOWR1fxFaem9Q5un5Cq+XRFrqu4Gi1xUKxy7LfY1aOmWed2BW4MCSKI5SCwOYkTFnlCrcWT6IreKa8mUviIMW+uZTOU5pZRur6vCL6DMeSbZyHrOqwZo9TESKsJnSGmXRC1LZMiRBWEOWOa6vzdP2I0Gt04HHzCR7BUDQ5r46xppYYhCnNVsnh9jqBKYllzowc0nIFwju0zwmdJXCGsPIs5D0inyFwOAdjG5E7xd2DR7gv+zBt38dowbFyi0NZj5YB7SzKV7R9n9vys0QTyUDPYWRAxw24MX+SG8dnWcg3WLAjqqzDib0et+ycplVNmbfbzFcDDjb7dDoFsc7pMGbO9AicAxuy4Aa0yykGzWpzh0Exy3yxy6HsIvPbG5i+pzdKCSwEUhFkmrSwCKuQCAJZErYchLBWzTK3vcVKucZyvs6ByTOkNuPw3jahLZkrtlkyPRb9NierJ7hzeIZuNcU6yKOIwFbo0uIKTScznBhvcLt5iE4+rDW1pSCuPIGraLsRC3aXhWKCqiQtuYVR1FN1oYl8wYrb5KbxJi8MnkIsx9iFBj2VsmK2qf0CArzThLZC4bh+soXwktRNWSg3ORBsMRMPaKohKWMW/RZNN0FqT0dN0KXD5hF5f452NSRIPPNuwg16zM3jdVqTnKDSYGGm6tOQFtkJMFZh85CF6Q4z0x6RsJQ+oSRCO0/sIZK1Xtk4hVT1/eOWapNumNNwOcYKPALpQHuHxLFQDEiyPmk+ITVTWlnOoWyjTg/QBYvNIY3EsKq3MftmXokrOWgvcrx8mpm9KaKK6dlF7o0f4yvEh3j97idZmWTMDyw3ji+RuuyL+tt1dYJ8FX91cfMboX8RPvDP4ck/QQD37f/ojcATgeZtnVn64Sd5/8HXck2U8dlJxMt3P/XsJhyCjWZdCK1xgJefe4SGrfi9019GOP9nhHMfAesoNBweHebg5CDvP/R+yFu0Jucw8kaqwR041SWZ/QPk3Ns5Nf42bs7PccEt85xsg4NFPZkV1G6m7zhxG9mJP+DhrWtxl7+O777ht561FGi2BoS3howebzOqIv7gRa/DSs0hf4G//cS/5UP2lYxvrUfGJ6d7LCUPUBFyfHyFVnOLPl3e5t9Er9Xh+Y9+npc89Gn+9Dn38DOHv4KfO/56nNNIDJEtyVZbIARHz474Zfdivty/jRYTrJd0xJQbFjb5vgfezmvMx2js9nnzHd+GujBGTi2uqREjw5OB5Z5cc93uc3nRHX/CK2cuU524zLk/fAuv2Xs+v3voP2NVn9J2qb0KPeeah6l2FbvhPEW0wgebhv8sLK/urzEYfYLDF+5k59Z7QUiq4ARh+SRn2g/xY5/6MV7zNV+G/mON3cm4+HOfoCpy9tP2cEISpw2e+tTHuO6eF7J2+hTjvV2+4ge6nLjzumc/82O3LXDstoVn/3/Tfa/gk3/wTrLhu/Buj83zLUxZcuGR01x3zx3IL5KucxVX8dcRCkvLDdnRiyRJhS4ktyVnKK1mIiM6fsyJ4TadMue68AxnmseZdbts22M0xYi23uH46AwdU3GDHXHG38Yt4RVODM/w+80XMw0bSGEYrysOMGHSTdhM51FGUg1Cnps/zFl7gj3ZpG22ccKzOJyi5mOsC4mY8srJx9i0ISJosKu7VFSUhPhqCFWJtB0atmRCF1sEGBdzyD+DsctUvoPFMK0ijpenebJxgoqQtCpYHVpO73UoOxV5GWMGFS13kSBJ8H6RKsrwwR4NGzNT5BxZa6D7p3i0u4IIQtr9AZlR5EVAe9wniiw9LejHXazIKbymmCp6GhZlScONuG58ljiRPDE6igKkSaFsgCjxIqdT9RmKLg0xIfIVCQVu2sC7JnPRHpdkg1xHNN2QGbbYUvMYLWgzZGkyptQOY0M6eR/aGagMI8fIeMLN1adYnVzmT2ZexlikLGW7HDlreGReEjQkSMOxyRZjFmiHBqfq6ac3mlm5yd3Dks1gjla0wXo8yx4pYjiAsMWCK1jUe+yaXbSy9JRj6GcpkhVyJMY6VspNen4Z52J0e4MuJUv5AO8UcVaQxLCjE0of0BQ57c6I63bOY9OEPbPMih/R0ynOenIZ00lHiLLCNxWFFMxnfayVtLMNrkSrFMJzMl1nR8zhJpZltc1suc0gXMAIODTdY7fRpZsVKDRjk5JHmjyKkZOC1WqPlV5OFFiOl5uUheUuHqVvx1yOmxzulUxb0BhZVFNQhRWDsIsSTdp2jMeRuAkzOsfFAflYkFca6TMElqN+g2la0Ds4IVOGuLQIJLnWWKHw3jOn+5woT3M+OkRqB8SFZWY35Uhrh3PRtUTW4KUgrkqOVRc5U82yER3ClAGFTtjwq5wbdZhZ2+aWk5+nbw9wW3+DD7deyFA1WBkPudRp41OY10MqlbLnQtbFEl5HBN7SHFcIVxGnIyoBeiKxrgGJYqhiKq2Z8bvcmF/gJp4kEBW7/TkenXseUsOczZENz6DZ4NrqSTbNAbIiZiXb4LZLT/J+dzu7rQWEFdjScnFziWwyy/zyNlqVNERG6Eu8mdY5xbpkNu6hQ4MKKk6OP8/ndr+MsuVpmRGrWZ9GZ8Ad5YPIfIZdLxihCTjCgISxayIcNFzGsfEOKrAMixjX1jip8ErgPCzaPndWj/GQeTEds8uM3qWrJlziKN4WIB1Nl7Or59mQx5G+CQ68EyzvDZkxGyxuT3m6A4Uv8dpx7/gCxkgenl8mm5SkEUSBpvQl11dPMu97nJXX4oHZYYYvNFOZcZvZYsaeYX1wA0XV5sSGIuxYXAzeVwQGDvQndNoBl32DtqvoFQkt02e5uUkcCp7x1wLQdhOOF1sMwpC80lROcVyOWWitIyclrxp/lFPhEUYuZdvPs1xss5pfpqsnTHcFduCojkZERjBXVIRhjkgVC26MKxvcYi4j4j5D30QWjlbUp10ETPauQY9SliYRottntfSUeUioGjgdIKOCg2yi3FWK9VX8FUP+1FOU5y/QfvWXAOCtxfb76Lm5//qFk21IF2BwGZ581/9wey3v+Sc7W5R7P838wnE+u1siWif4ks3fefY1H1u6HeQlAJ7o384/2/gFPs5xet1HiZqn8V5gNMTuAM/ZeQ6nkz62WERFWwTdh+p/znOLVyxuOt67BI0Dv8njF76Xw6bHHVsfenZ6PVIpv33wDVS2RbS3QTD7KZ63+HFOHnzk2dy2ra2jPLLxAlaT8zz9hiNMdJNFu86Pv+1H+PW73sAHrv0ydFXyYw/u8bJ+wr9/nuQ3ui9hNf1tXt3/GHSh8/SUn7/ub/NvvuE7GSx+LRfHGwjn8aFEjg2NKqNSmgeeezs4h+IKz+gub7cv4Vv1ezglruOkf4rv3/oNzrobQHyMvzH8GI98+F4+fNc1iPt7yJEhCAS7eB4JLbaYQ7bW6feX2dtboT/zBMMi5mvOfBMfmXuQx7dfBoDGUooGv3T4/4OTX7g91WfojuIJIrvJC+//IA/eei8ADd6I4ccYhz0+8tC7eejwg/zmi3+e8TvOkxYtFuMj6MONZ026WvOL5OMxl554muUTL2a89w7+6M0/xeyR76Qzn7J0rM1tLz9Mo/3nE2elNS/+G1/Ne36u1h/310e87vv/DR/5nTUGu+d53pcd/3+xiq/iKv56IfAVy5N1pHSUHCbRGYGJiNyYJM45ynk2wxnORwG3+zUEmsjCzOaErJOy6NapTIgcO6amjWokGCcIxik2CFiUayjtWNzdJrEjdAsaMsBaxdHhReaDiDuLx1lDUVqLF4rKhxwqh5xRDeaHa7SrLVp5i2f0NYQach2gcQS5garFitijPdYUImZhPOLV9oPszkRU3TFb02NgJLLydLINVMcykDHGO3bKDq2NETeoy4xln5VJgfQ5yjY4I55DGdV63ru2n2I8XmDam7Jje1CMKZtNKlcRizGrfotZsYOndpnGgxCa1ewKiJCj04vYDoz1LKHv1Tm4akTXSRQCR4UzknKcMA1DrJR0/R4RivlqSpgZDmeP0Z+NaZclQ7lMavtUBEyVIvEC7TzRxGKbnmnehtISJwVNCkToEc5SFJZYDdA4FouM24eXmchdjLyFPE9wzYAFWZB5jXSKjq9oKs9SsY5yPUInOWbHiKDHgtulW2xSjhVHzC5zokAgMJMGsj3EC8Gu6hCVhu5ki6TaYnVa0V/dZaF4mgZjVDXmvL8bRZ8DV7YJjpSMWzcTNyxCGCSGG+NznBI3o4wgziKaIkOJKWtRTFxVrOSXuJTMI2xJ5UqsLVkaX8HMCFImBHaGo6MeO2IJEUraWcFCdYVQg/QTFqp1zocrhNWYYOJo2Q3KKMIDRamZBg3yWPDSyWnUyBLPlgxNnyqQLPsBR3dOcSp5FZea8xRlRiiqmu4qM2QSg7dslx3mmGIKy8AounKdw+pRLhc3MkpDVvNnGMgmFBGTSLOYTRCmYDbcRmnHOXmMUkecyJ5iIuYZBS1E/zirZkJoztGfmSEMJmyqGbbNIp46FksEFmccZ4Oj3CAyDo0vsUBJe3uZpXCDMp1japqoPCQJJLeoHVaLPR6bLnNBrdAQgoXeiDnG9OMWTycnmK0mlD4gDKYsiG3W7TIzxS4hlm65SxhMGDDDUDS59uKIbNkhVIUMNQ2ZEduSY4MBm4EgCsc0OyMO23Xmg01Om+fiGYOjNjbVikBVBGLKghswmFhwjp1onlynHFTPoJUjklOCwqMNjMoGuy6EPYG1KSqdMqszXjD9FJmoGPrrEcoTJZYFv4n2RZ2hPZxHu1WsD/CtPqWWOOcIpiVeKZJgDCPDwazHCpZpMaQnDDf702ykx2m5IY1yQlE5IgTWOpaHD9Muj3DP7gX63YCZxmXGfpZp4LiuOM2TagEZRHg00joWVY8bigv01DztasTRwTYzvkcn2KNhLcleSj4Tg4MN5ZkfpZSxoNKeQoQgY27sZ3iv8M5QKsWCGNJ0EyIN83advuzS9X1SVzHIu+hoQpxDL4go41U+ynO5Z/Bh5pLTPKRfykUhmWTzZNMpcWDYzASbnRXy0pLagLIKapO1YIqqBOMiRbkht6szTF2DM+oGXJkwMUuo4Sy4irYpMNajDGg9xUc5IlpC+gBvw6smXVfxVwvTBx7g4rd+G6rbpfXylyGCgN5v/Ra7//HXOfLr/5Hw8L5z0xPvhLd/I9zx9UzWLpFu3v/f3Z4FDhmLAd6//Are8OBP8EPT8/zg8vXckw/2k+BgsDyhBQjneU36x+ytCL7PHEQ3T+OqNjIYgo95wcadrNlZPte7C9t7NbEccfuRdxLMPMxjmeJBHC+7xnKXddw/nTC/+Mvcff8RnN+PdAoX+KPVV+CSDchTzNYreMWhT/EVh975bHF88eLNTPpzvP/AvfzUOz5A674NnlbXcu97P8ivH66LY4Abzj3BPR/8MNzxzdz49J3cdev9HA/OQrvezuXjqwjnKULJH9zTwj4wAUCUdSH6k594K91sxOX1BZ78G8s0jgx43lzI070Obk8w79bZYIZXcz+/xQrbfpbD4iKv2RxyvrfNxvVt3KNjqCwg+WBScXz1GE8+cR/DQW3YRbRLAkyBW0dt+mLAFd/B+DquQs0+gBvcRtPHdJ2lQHAxeQ7XZE8SVQXRdELRSFlfuo75S5oD/et42VMv4VfbP8fbT7ybl916C/EjhruWXsfkeSW9jStEScpNL/kKPnr5P5EN17h4qqatOzOgv/4k470TrD094Nq7lp4tkG3lUIHkhhe+hM+84+3srV2mKnIe//D7qIqTDDanOOevTpGv4ir+R/CeZj7CWE2c6Jryx4CB8hyrnuEm9zCfF/diqJh4RT7WFMOA5nqDO09t0LjtMg/6owiv2RnM4aMQ25+nml7iQHAZpywWwShJWCfixv5Fbo0uMD+6QFAdoVTL3DBYQ0cF5/NlvKg1temu4Q5OM744zzROieMdrlUXeCK9DutDAptRTbr0XYAML2BsSTuvSLMBy8k6Wdmi5SOWNi5wOzuUcsS0qVnurxM0cjpFj6JM6M0k7DUSZsoJaJC5pCHHnDAP8tDMrTRUyVzWp3eh4IMH59lpXM80qt12Sx0R+JzZYESIZS9fxssQ6STGBrRYQwYpG9kRDokxC24PUUSMy4zV9DKxUlg3hyzbIEtKN2UiWhgn2InnSfYftm+xp5nnswyDu5gznn6ZoKzDSs2M7THwbRYnGzSLjNBANuowmVF4V7sQO6HAOPJK8ZS9jSxvMAoUnwmXuT7r4V2Fl5JArDFrGhyYTrnS6TIcHyHuadK1dfaMZ+nIlCJy3K+ex5OjWQ7bpyCB3A14XLW4kSv4cIhzAlWCtIKFos90usFoAO7SAW4Sj2M6I4Z5gK1u4ogr0f2MucsBZTPgaPciBQ3CfITPJ7RKgSDGyIyxqUgKjYksXbMB2nB0/TQrpx6je/OQz6UvpDvdQ0pDVEwhtuyJCm9hogV6u8VmV9AZXiFqeYbkrOZr+OhOhAjJmXJy7VGECdiR87QySzjTQVMSpH30cAa8JhQS6XNcMgEjGZDh7YTKOFZ3d/jy4n3kK+vo+CbW/UHMuqUzu0lWKOQ0oDKaUgWcNk3KfTdkrMA6zaHpJbJK0nAb5O4ApIpD+QWmZYvV6UWeaC2wESW0bAtdCGb8hNnJNp1IcYFjxCZnKgJSPyY1Y0zfUckSg8AUjsSWDHWDUlmW/RU2zCpzmeTo6DJyOEMyNsiWIA17dCuBdJJjk4t8In4JDeOZKccI9mCYImzKc/xTNPOc3gFYyXbIy4SttMkGB7lmfYNxSzFNdgkryFFYYLXa49j5TS7emPGh5TthZJHjCWmvh04ruqWhDMBZxU3lWcZK84w8QSBCwNJT80DAcDzDXGcL6T1h8TFmwrtZl0cZhyFR1cVXEm8FSkYwDSh1rVd2YchBu8XR/i5UIePJPKFx3JZ/hnF+DZdGY8x8yO2bZ1ifO84BfxmrBxS5J8/nSQPBdcHTnM0FzVJxcXwA1bYcEGsUSRs9TsFaMl8QyQqkYUb1CMuQpzttssEsq+WT+NhTVhJtG3ivsXHGZZbYCTskro8HpkVEFEzZ7jW5EvWZtBpEWcrDs5JjU1EXxqKOusulBBzWGZCChnI0skmd1Z63URqEsnTyEZEvWMgzJqZkJtvjaXOEoApASUwlcP2DPH3wJsoywJoChg3Ozp4g6lwgKTPseIeGmicrYyKl0bqgPXWkhWEa5JTjCXawTJWsoBoFG81Z2kEB012caJH3LHujLUQ8YHZmiVW7gTUzTENJKb640vdqgXwV/9vDbG9z+bu/B59ldL7xG/iCwj5/8ins3h7V2lpdIA8uwzu/B/Dw2O+TVhMy2+SjB7+Rf7V6JwrHSwdn+JoL7+SEeRIABbx+7V2cSQ4jcPzURj1pHAjJL9g38NzWnwGSIxcnXDjS5J827iL3F3BVC1x9+dyxezOn/AHOtS4Qph9jWVoOzj5NqhyDrMmb9m7lovw0X9qocDOwVkmC8YTlchsPPNq5m/u7NzMVEeRdOuo0rzrxBK+em+B8bRzqPWxsHGPYaLHT7vKdf/9f8ytv+fv8xO6/4Vde9Wo+8ILXIo2hPRlx9OJTvL+1wWvXPseXSsMLfuyXuPQD4PfTjJwXhMbTKnKuxIpIKhS21oocbPDJVzyXN/7Je5m7MOUrf+yT9L/ZUJ7wcAD2HtMs7A35qLiRZd/jy/kAD4mbeSGfY3v2Ic4v34OSjpueOMtTts5S9QLOjLvsTZYJdMbRQ4+z6y2f31tEWsXKdIXIm/rg9rsBNl+hfc1PMn7m2xmXS8wXO4STTyEAi6TKJTQAPE422Ekvc2tyPd/49Lfzm/LX4IGv4a7gOSwETRaLJe74hd9k+9KQ9/7SE+jkRZSjt4F7hCBuUOVTXv5Nd/OR393FO8/bf+x+Fo+2sZVl58qEZjfi+nuWufN1b+L9v/QTIARnPv0uXv8P7mVmpXO1OL6Kq/h/QOAKLJ7UDlgXhkwKbsgfZs+laFNRqRxZXmbsFxhbKLSjsp7l/hBvK3qjJicXz9EfHMaNEobRCrSmVMIhlKOsNGIMneEe1/qU5uyAKt9lQy7S24W7VyTOhVy2B5hGIY3SoPBcyRrM06c33WIn6xMnkkOdBOFylHMkZo9QdMgDz3iS44xEOcfB3gaDokuUbjJ3eYaV3QUKfYi+SChnC44nj5AGB1gkp50HnGusspvM0i4VyIqxluxKgY0caneTSRqzvd1kWG5hXJMrrR0CcQPxxFAEIXIUcCk6QODHNKTGOUk3yyl1xry5SOYSJjSYasmWmyG1PbaDHmbS5mgYUExiTLPC6RyvYOA6uMpgnKByhpGv6KttGnmBqQKCoGRhdIW8F0AnYtXsIM2EhewKF1o3szjdJvSG1E1pDwYo3yJK6xzacRaQD6ewNEVHlqwImF5ss9C6zEZnmXyzj93qoOeuECZLLFZjbltzjPOceOMm/PwWeTDFO0G3WOda+Rkm5QLnxU3YcUbPOVY5x8gdYmY8okNFO8s5pWOyMMcISyAqMAWlMVyKm0RjhVUKLz1FOaU9GVOKWYp+xHagEbt7HG6sQ0uwxzLN0tAab7GjCkohMVM4IFdpmw0W7CaTUZedrTmKZkBZKnq9lG40YRoqElXTYY9Vn2MwbHAmTLmu7AEeZyVWespCccPlKxxLzxM0Y87yArzVFJnE+Qw9apEOmyTjs8h0i0wLmuWIo/0LDAaKl12pmJtx9CcKgoym22aqpqTjHZbyPv1xm95ui1N+HlprDFuXyHcFbrFBJaGxJ5BiSNMOUNITlZab8kfY6TUZhRXdYotiL6SIJqSug1INpLZgoLWhGS8MUTlUo4gbL92P6PeJF0akukdVaSai5GLSwhpHVqbMVVeosor48lmKZsR2dJjFyQbt0Vmm4SLxxjG2TUakegQq4KB4Gh9McELhEVRFi3Y2ZH5vB19FVHmKCxQyNDRli+s2N3j4qKekYupjEALpLMneEuc2EqrVKe2ZjMAMmL/wWfLiBDJuobTA24jWMGZalDTmxoxli1IYntf/OE9Gd+CkQYuCLI8oEk/gc473T7GiFrnen0KlJc4EZMOYoetTegmZ4FZ/nsNyzKFJzkQpjJIU0TbpeJOyXGNxI+bwqQxjPYdugSuNJdQ4Z1DME9oGorPHqs2g7CPMMcJGxtgLpj7j2GAdhgq9e5btuZiLyRbDtZwbRYOl+SGh2eRyHjBTjinCDoIQOU7QZo5Jvsti0aN7aBchK6wPyYqEyXAGEzTY3XPIuEEeh2xHI1bGnsOjK+zNdRDCsThZY5wfZX3Ws1w4rFIU45REbnH80SG7d+yi1RTnBMuTTcRUYcsxTw0kat4RCU+UFPjIsTEYU1Gi9IQjG5c5NNlFNrvkcpfbR/dT7IXkrVcx7TpU5bmmeoprt3OutI/ihIekIHRTdDzFuxhrJKq8grcjSt2iuw2tcJWiGOL3Zjga9umXhmHjOHV2wv8cVwvkq/jfHltv/mlsr0fnjV/Jwvd+L2K/iFr5lz/C7Dd8PfHJk1Bl8NtfA8UAdAzVBH/wbjbu/UW+b2fM3n6E08nhtfyj5Gn63SFfORF8/aBHy065NrtI4RaQYhshoOMdb1r6ME9JSVhYfi78bj7GSabmLQgpsNkRgvZjpNkMT+uM4dwvEO/TNnaAnVyy70HKU7Of5UcP5ERPSX60F6ETz5HNulqtVMjnm8ewQnDz3pNcSef4rut/jRNHJ0yqhJ41HIwr+v0ljh17hHd3voQijHnRQ5+jzGN+/Dv+Lo9edy0IyWs+/Hvc9/DH2ErbFIHmdO+zPJeHMVshs//Bsvs9Fg/8Lf0bvP7sR9gqlvnn6tsBsChatmDW5ZSHAt70U29heWOHt/7oP2PmzSHvuftONl6cEMx/lBfvrXN7/CQ+g7aYskeHn+MbeF7wObwWWBTp0jka612mPgJAbRfYKGDQzGnFghN+zO92r5BLT2hD4v4Vlta/hi3tQFS4/CAWaBz79yw+8SpevXYKtU+1frJ1Cz7Yv3UJhdNzjOPzrDRyZvNbGDzwGorpIo/op3l59zqm928yaoW8/70XKaaGo7fdwvkH7qfKzkEQIoTg4MkV3vgPj/LZPz7PpSf22Dw/fHb9jXsFD7znGXQgiTv3kg8+CcA7f+ofc+D6k/yNf/Fv/vIW/1Vcxf/h8F4glePpxnUweIZ8boxH0VxvEcytM8IzU26gdwxhp8QEYKRFugrrAs4NQ5akZMVIzgQROQXD0iO84djugzy9fBu4iixqMuvOk0cFV0SXLX8c1/Cc2YmZ90OKZkS5GeIb4PEk0mB3W8yHs6BabKin2HQDnNkjJUaJjDycRTvLGX+YRk8zSC1jlTK4fA2Py5STdg6pqM1m4hUuFVOO7F7kNvt5kiBholbY628wbXl2hm3mox7KwVAHnN9oEjd32XARFCO6SrKwcxa32CMuR5hwiXA4QBhPnoRMdINGVnCwWueG3ZynZiUXxgukeQ+nxuw5zbHpRS6FfZqNgsHlBqaMkCrEe41wEqUNIPBlQKMoUSpCD0oyscFmE6aTkFhoFqZPU27H7MZHCDsVM3aNUsNIlKxiWDbrDMoYXxQcvyw4dMNpChFgTQNfPIXQq1jXYWlvA3wD+eRZluZ2OasFpVZcnsxwuYqZzZrYYIqWFl8p3KhDEnmOF9t0RiPKGckk0LhcISqHMYpwWnCivMInwxXkVDLRmm21QtmesucfZrXUTNMJRjQJp0+yZmc4OZ1yhW2mewWue4TuSPNQY4Uy3EV3d5AqZqJXEVYw1QnNXgcdPcNCY4M4HiImC1hCWuwxlglue8Bud4GpKpjb2mOazlF1AgItiFyBKj3n85y9YIUjyRrL+TbnpzfiZEHhQ9YGcxRjwbWNPgAmT8hGkkvVRZb9YQabEU8cnuV5IsXGGywMzmPjiL7vMjAjss2DPMWIURTSUkMOF5folntMwpQJHWzU43JzxMwopD1ap79saeYZM6N5Fi9bzuiSdVHh5+a5uTjDdE+SmSmTZoXwGVk/42hrnUN2wHoyx6CKMN5zzd7nKZsJXkzZm8xyOenQ8hqT7zATKPyeZhLGqMaESRUzFZdJyjWaT10hy0cM5AEud1aomprFweO0yiuYK7uMrCBJt5Aodv0stlOw3rlIYJZIpzOMNjR+6zBBdxMTlvjOAC8OIKVgdnyI2Y0zbC1A6UMqPLlrYKUmcy32xgFhM2cmHLMTe0aNHEGCReDxDHzOp6suo40nqGZvYD4/g6z2mBmfo9deIHeb7MYlfWUQ0qMry5HLa8wcWcdhMHnMzpUSNwNqNifyfW4ebDJT5ZRByCjO2cgnjPaGtHXITiFYHg+IqoKqtUDqRxzILWt0cVWTDb2DpiJ3OUEjp7IbHNm7DqTgdDOln85x7fhhpCrxMkBqifEznPIBXZfT2N7g8Lkx5oCm6GpE6JHBGJdOGUuYF1dYNgED02aye4gy2IWqgVMpNshYExdpl10ObZRMzIilqaDRyLFSs5LtsVPcQCeb4CV4ISjRmG1N3vJUOsSj2aoCkp0JIrjMaLqOFodRxtDxBTQ8RZCx1oBQrHNiFHPkmYdpL0cMpcTkO0izRypPMAgqhvmYqjmg2G1z3YYjaJZM8ohebwZFl8osIZt95vMtVnqbXOx2yBkyHyhcI6DhZ7CmYro+w2WdkhaXcf4qxfoq/gog+/znGbzjHahul6V/8A+eLY4BhNZ1cQzwp/8Ith7He4EwOXSPIt70dv7zRs6erYudQ1rzE688yGvffYpdofm3q/fxb0/+Tf7507/LV2++nVhu819eNnL9+0mW3sOu7/Evzr+VHyy+h3ef/06C2U8Qzn4C7xTTcIJPHgcb48o5Grrgby5dIZGwZ+F9gyZCWq4MJM0zN7J12wWuuZBybCPF49GuoFJQiJBT3Wu4eekUJ66bkFvFv/3c3+GrTv4WxBvE8QSTTPgI94H3PHzdSd78t76VB0/eAsBrP/oubnz682ylbTrjnDIVBMuX2b2/fkctf4KNh7cI7ugDkB67yLFql/QTU4r996uTBs+sWb6OFyMPJpw6cB1vv/PlvPGBD/G6z3yOz108yXff9c94X+sfspwNOHso4cSljDEpe8yghOL29dNcd+Uys1PNvL7A+6rra8mcEDxg7uLMSUHjwTv5V3f9U27euJXO5CBmtMex8zv4Ljy++DQjH/JMY5cp0MrhSy4/ito33JdC8YMzL+aDw4qiVccsVdG1BOV5vvf4L/INp76H5fKFoCHWnl6xSyOY5c/eeZ7Sem584QrPPLaL0PcA5xBS4r3nqU9+lMnoJJee2AOgsxAz2K6pafd+1QnGewWPfvgKyHuIOrfj3YMk6SadxVVOf3adzQsjXvQ1f270dRVXcRX7EKBjQ+AqemHOitrAiQrrPN4KUBHSQmzHqMByh/4sA91hNJ5FNlbpFTFqGJO4LkWkKKUnqhbp6Bl6+TPMZxe4EiwjiktkDoZFi1JtYAJPUmyzEbeYlQVHdp9gdy1l8VCCaEXsXXa0ph1CBD6Zw0WGQuY0/aNs6LtpVSMuqG2WdtboaQgmik7RAiHJyx1SII9ixonAMWWjXbJe9pkXKblKWKw01XoXry290RwqjOlqRyUFyluKoORwZ4JpDug3OigfY0SFNJJRY0rDGZJ8gCxHTGQHOdG43DN28zy9IhkUEzZMQbrTYLS4iphsEIwzplWA8ZI1Mct1TPACyt3DTEWP3O5ywKyxaeYo1IQZPSKa5ggCjJb0++comwdZCTQtXXC8c4WduEtPWCI81+48xEp2hcV4m2bfIxYdcecWCGpNb7OTc30rRU9P48KII/oUZ1tHUaVh28RkiWaNbfaiioXtCyyPZhgGkkcWtpDDAccmlhPBYbqdi4RxwU7kKMu4drotLMJJJgNFY9Exa9e5OExYdx3yhQDtA0bTDc67MbaC3ZFj3NulDN5Hr99FYRCTjPjsGgvBPOJGmFE9CiWRytKa7rElY6Jsl2xjh+7KBqvRBWwUcS4/z6wZMTcZ0BztMM7myC9ews7tcnQ24KLqkO6NCRow2x9xJp/j1NyYqb7I5R1PJUtKv46Xgu10zPocBO7/Yu+/oy3LzvJe+DfnXHHnfXKqXNVVHdRJ3epWRigBskTGYMBgPgO24WIbc6/hGgy2sQ3GmCDMxdfIgEnGJAESEoqt2K2O6ly5TtXJYee9V5zh/rGblhnDnz/Gdx0Z9YxRo2qvU2ftFeZca77v+7zP47PqSY5N1ilVBas0uSu44K2Tnl2nKlo8l57GRhOK5T65yejkEzaDlEM94clKTiMLiJ1j/qBLVvNYN0dYly3C+kWyhqWSaayDJHTcsf150msN9lVAa3JIf8FjUhi2tyokWYiuWSbLmiP9Ic1hh9Wsgd8e4OXrHEb3UgtSkvolVkdVbsw+QD2zXFpu0R61YXSNK4eChcMV1lpLrLgDbkx86mywmZXMZhqrDarnE4SO1t4uRHA9PklxbIa1rWtIN21l20p2scUQ1egT53vYPUchAkofLtsCqzuEYpcTOwlLkxYjEbO1a0kij36zSpj06Ic1WkISFzna+YzHPof9JkGR4JcFu3GfWHeoDvfo5iGP+j3WDkvmN3eYOzqkKObpDKvklYDDUZ2BPGQQQSQLPAXjUtEdh7QqAmehFCVMfBbcNYSro4t9jJpDKUFS+mwVq6hJxmHksE5j2ilLowa50jw6u8niZBWnm2hr2Yr7HO/1GVQBJbFqRJY6FrZ9JisamobxSFJxHqARTjCME/ywxajwKESIDSRhqLG5JPQLsoaicIoyjxgMZjmjLlOMFijkCsIL2JzN6TdqDOWAerpNfTxk5XBAJro0guPcHlxiPhnQKBNmt7cIBpprCzPEdkBruE+Q98j8FYIMRGxZqvYJKiNy7TEIS+ThDnNmgTy0TGJ4YdAm71pEaxttHZtBj7WhY8a/yJMSXKeCac9SVAV61GUzreJRJXGas8NrjPMULTyudmocHknxmRDICk5pHm09iyduRbuQZa9CWWoaWUCHFvHaDq2wS6CLP9er62aAfBP/08JZy+4//acAzP/t70G1Wv/5//jc78Hj/w6rBSiHw6f7Rf+OJz/T56fl1BLo2MTwzz6zS/f9W3TOTVWpnaySqhhr13nDsTm+p9fnG4dfsO5p8mHWnvxexrf/EqF9kcMhOFPDq72AEA6EwWEw3Qd4m4x4qPsA9y09yZ2VGwgBG5f+EmcObmO3+hB/5CTnonfwLR/7PK54EXCsLyY8f2qIqvwi4vL3EgQF33LbfwDgP67fzSi6xrnmLs5BHI/5tfzbyKOpBUQ1S6mmCQCndi/z6kc/xqA6pRcN6jEAahtMoSCIsZMFzlz7CkbxJTpn/mh6TT73g3yD9vhlSpwneDDyGReCtxCzvyF491m4/vovoSpOMth8lPt2nuYHPvvr/PRrv5ofi/8djZ7joFrlr0z+kF/jy/mD4K08eGlKUT+MU67WP8Ptl8/xfDAN0i9ZzcI+LB8ZcbB7K2fzZbKyiU3uprmQUlKwIkf4wjAzOcbTzvBFT83h2S+40Z1tvJLfWXaI5hcSJXnlQSqjD7EZj/nhL2nxphcm3PtiyT2xT1XNUjrDnIRtA1eePCBPNGdedSeTw/OsP/0kAJ/5rV/DiWO0V7+GL/0bd7J8qsn5R3a49Nged73pCFJJTt0zz3t/6vNAhJCvoSihvniEz/7eFSb9gltfs8zcWv3/n6F+EzfxFxbWCZwQ1Mou4eiAtWiXchxgE8W4YrAq5rI4gzgaMqueIrIpfmI58DRPzHVZiHM81aQYtZEqYDvMSL0xeiwxvqQ92SSuJezEmk5+G37X0RLXaY0e5YqMeGR+G5FrIufRq0q66Zg8FlSsoer2qVJlaGaoKk3pGer6Kt6oivYiEl0QmDFhOcCF80y8gl60R3HkeTLvOJVejblEYYUjznJsIXi+3sYPGpg0YSH3mRvuIIohGysjjnqWQeiRRwXbaoQfCUonqGEIM0fVWla6ARveFUylTpwOmEQWL59QUxPq1mfBFpSuTrMcYXs7DIuAZvd5Rrbk8nCVRUZcHNUYmgYmLEEJ0viAXlpSDtvMdjpUaz2GvkDJjE49R2+FxK5B0Ouy7I85aB5jMNfkTfpZjB7TKNZZmhhGwyo7TjPwQqLYUhEJhW9omoCJ8ihlhs1P0PAkZf1REr/OziBh5ARGGLCKh+cPsMrRGM8y9ifYDDaiDiYW1F2fpWIOPYooPUdZSq6KNWp4aOmTDGE0a2iKgKNFQXNcoZMJMnGDWv8a40BS96DrqlyOIIpgNmvh2xAtJIfNAYHzWVKS2VEPqQ7oqAG9PMQVliV7mbSoIeyYuLfHJFB0eh5JbYgnHQtYgjzBygW22wVqdkJuZ5HWEuoUuyu56B/HO/oUt8QJLwxrDIcBRkhsI6NeDDGmxkb7Ep4GbERNJ/hFifY8unVL6pX0agbFDheDEcf8Ek9pxirDFk26M0vMHT7PJEgZSMvKxYLxbp3x3QFJ2GQShQx0j0bhGFTd9PMw5kZ/jaYbYE1B3RlwCaXbobS7TKzkUCgUms64RREssyNqzI2uky7sYCojrLR4UuCXE1aTx9mZzCOKWcaepFJWqecTalYiBFjPcZUXGXTWSCtDal6JFQ7tOdZ61+lX+qR1GIZtpC+x0pL6klCDFiXWKA7GIYv9A0wxYDG4hXBmk6V4wJM9izcMMYcJVj/NTHWWpdY2h+ok4TDDlBEHA41XbnHaEwR+zGDfkGQVcBleOaGshdT2Pk5glnm8sYAOOuzMDCiFYEF6CMAzBUUJ43iBbLCFcj7+pAN+DLpCN2nhlUNs6Lg+CFic03hixMxkTCf2iAU0+qcx7KPbE8bNHIvE6D5+oMiigDzQjIIU3/QoDo+hpcYJj2uiS2h9jnmCzsE8VuY4UZKT0NwxmGzCDdsj2I0ZRpbSy1gTHuCouJihZ8nHHn0bMl8tqdNnPFliWW8xDD2SZI6qbWNEhFYxl+f3GUb7WBtx4K2zOIDcn0PqmLRuiEkYRFW2MZxyhtlkyFUxQ0/0kPYyCyJGWoU0XZRtI8qCgeyypzRPT45x0myAqpIVmsPuPEv725Smx+L4Et2GoRc4kixkOGwyWkh47ohjURW06KGKMRMvxnoeH13a4m6VsJaPGSch2iQkeUaQBeTOwxdDrBsxCXtMRMSnu0MqY81cs4V0debjG1jhcDdFum7if3UM/uAPyZ5+huDsWWpvfvPL25PHHmP7+3+Axpd9KQt/7+/Bs78NgFAOIeDh8Tfw5C8M+JU3GV6P4BvXE+7tSaDK49VneLn9QEicEDzUOk2q1/nFVpNv+k8CZOk/hpcOOXL9S/mR2y7w4vMLBHMfRoXTKqMzATjJl9c6vPnkM7yx+BT1YIyzis0n/iqT9ddwDwBT6fu98GkoXph+vRB88p7DqV+w6LJ06t3sXftuPnDtzSxV93l68+389Tt+lT9tb728fxsfm3nLtBlZCO64+Dzvf+PbqSYj3v4nv82gNg2K//TnC9FRZme/mnDN4LdPI+TULy68cRt5c4Px8uNs3vPjfOST/wf4VZwvefgew6/+1G/yo1/3TTx0tIZvHB8/tcr3bzSZW7ufor/OvU/9e+LPnWf/9S1mxkM+VbmDN/IsxnkEhWG/3uKxY+dIJj+MdAlv925w1a2QvtRPNDmfcVe4yYa4+wvXuX2N3DV4PPwQs9kxfJUy423xpufnmBsojLAoJ9HK8eEzM/zmXYu8fGGcQwencCKgVLeSKsH776xzfj6l9mjGa4QiloqToeWwNOSJZuFYnbd8661sX/yalwJkibMaxCZf+Z3LtAd/AL/9Mc7d/+2c/e7XTFkLj/wCi5/6Gf7auWV+88rfJc2rOGt5+iMbxHWPN3z9Lcys1P4rjfybuIm/OLAODnpNsjzggU6NZrOGlI7COqxU9PAYVQ2x9JjkETtDi9Pw8K0ld7pbuE1ussc+z6lrRCLgQEEnOCTJ9/GzNt7igJo5xLkqSEviOeZ0i8LuM4gscyNJf79CLfchEozw2Tcpp6yHEZrEm9CJx8iRQgQRL9ZC2i6hZ6sMaz1MtsdavySNKoBg4l0mndd4ZoP9fJW6XMQvBRbJONT4paMlHNabsNuM0XtTz81uZNnKY+JKTub72FLhOWgLmMSGwtfIUpJ6CqMOGblr9CJLc9zBqRZCCJx/lWrawiU9rEwZ6oRCe8hyQCEmaDPP3qBF4QH1kvHhGlHkYeIqZTFiYX+LKBnQiysUc2t0pSKLQuKxpuw5vCqsyBGeExhpcShW8xvsezlWGLSM6KQeQ+c4HlpMqqi2JrhQ40vNhetV1isnKKKcNW8Roj2eX/A4sekTlhFJbIlKSeKllD7UMp/mKENEgtKD4UjigpJs0GannGG9nJBKg8oVrms5zB35kuVxulRGC6wUAXPOwy+2uLq4AabC8XEVX/kkMsdWqtStIvdTJrJgpwFHxhYrHJlylE5iRE6ag3MhhbJMFHhmj71CsZx5ECsSpQilwJaStBCUdp/NtmEhUAzNIUX/tmlfpINaZvFdTqo0QqSstwKOJ4cE1TbGKJSJUeN5dKXLC6XlNUogkJQoSjFHf7RANVwn8/o4CkAQGEXFJvjGULoe2vUQLiQafR5bKjI1hzk0hNWEMNzCSIFxPp7xcV6B9QRJ1MCr5KhSMQlShEupjK5hhcD4lomv2O03KDhKOXuCCMnswZjUj1mS18mTNv20oF71cTikzTm5cY0gr3NxVk2FTYVCSE3pKXbjOnsipAw1x3clnlVoZelUHfromLEVTHzN4XwIaYJKn2CvVpI1QGIpnM+1huSozjg2KYjDqRiVdY6ODpizsKtvYIMhAsOJwTNYdRuFikhHGieg5hfM5yO6jZSeWSYMBIHzsUIibEA88aipbNqqJWfYmh2zWDPEpUKVmkkUIn1BSoOKD+VOjyg5IIvOYV2NvDtHFpR0XEEl7pEGJVnos6qWSL2SVIywBHTdNZSUYD2kMxihwClwJb0sZl4rVJIjPINvAxqZJfFmuLy+wgjHQuhhhE+QXScJWsyYlGuLlnZR4ucVPOcwpCSxZSLH3NCrVHuObqBo4vBsyenRDcZWQt7AX7hOWnhIP2a7eoNeI0WVPjJvorQjos+1YwsEWcCiuErq5tDaspE1qYcJWMmunzJkRENoSltQKEfEHnNlnzKPKVSAcyHz6Rq2UkFInzSoUy0DPCMIiwCdDTCh4KBZZVYp+jPnMMEhc+mTtPWQOSuYS2d4ypOIZIgRbT5c2+St3XmKVKGEnbJ3RIORt49qXQPrCLKnMYWmMRRYKdkoL7Jcv5PEKOKaRYjxf+GN9QXcDJBv4n862Dxn8N4/YPdHfxSA4sIFrrz1bdTe8Hpmv+M7sWlKubWFKzW6t424/hi5WiEutskGPuPnMuIHFT97vmAtdUx7gRM8ccgg+vcAOAS3pEdYub7PxegFiOHuLH/5GDQQuwlB/Nf52O3L/FFfYFd/hcDv46yi7N8PThDMPoxovoAQ0AjHmELy89l38cir3sDcOcOR/YxbbnyW49072K1doPGSPvadzdfzuvEMn2pMK5jjcA9/8X18+MZX0gz7vO3ox7h19jIAz9+4m9/gQXJ/2s/ra8NDr3wQgLd88g+pphNqssYtly8RlJpnzq7wxqWvQ75kou7+k34L6xx71++luvw4L5YtNv0qAAtH+2xG5/ixb34FV5sjJv4cp5IeVyptPrbo8Y71IUHrOP4b/0/ueP73+PBBg8PFJb7CvA+J43bxPL9565t5fvYWTo6u86bxGrZ3gmplhwdNxifKU9iXFgGZUhjPR9qEfrDLXDrPgRtyrFzAyZTCSSKh2Q1ehw6vsJzvA/DMyT5PHPk4iNfwcpZDCILRQzg8PHsNJwTKWK4sx/zEGz2+9aExb/ElCiiYPvDe/u134AWKpdO3EVZXyCfbLEUjHli8TPvXXwVu6shMPIM4/loAzKWPoybbxJNt/urc3+Sx/l/i85Ov4kzwh1wZfSkP//5lFo41WDzR+K8yB27iJv7CwIFDUQQemZ/jD+cx0mCUYVAdY0mRnTnalT7BQBHnc2zMHjI2jnGW0evHdJ1iT+yjvRpjsUYBGCyxVQijcMIhjeRqfchcWSd3BukUTki0V+LbgFhX0VlAJicYQobVlFoekCmLZ3x06LjsmmQFyMEmLT+kSofUm3q0Ht25Qa8xz57YZydSTAqfI9EGCQZdURR5ja6b5a7eBmcXLuG5hM+yQLuxwuGMh3SCflBBBxbpDOGoTb8+QZsCIxy9RkKU+khVEhYFZVhQuD7CHiBFjcLzeHzuBuOdQ6LoHLHVgEU6gVEZTmgyeQ2PFVKZI0TESGi8ZAE9aZCZnCgdY6WlNbrOoTxGqUK0tEyqBWFe4g895ECxxA774yVcU6KISPySh8V9NOsZ8dYGSdNxwUqO1zwqTlBYhXGS/dKnp3fIyxp+usBwsk/FTIj0DHEq0LZNEI/RfsJB8wgXheS4WKdbtwwiCCuK27MUaJPKPrNhSTR8kuDGHJMiJVmoEPopeVBSTRS50uShTxGFjCugPYdQOTrQaAvOa2KVx6hSMDaaVNQZqTGXg+vIkSBLErY6Pv1ahcaspV+zBL0nOGwYTAQTH9qpoGkNYKctWA6sAIzPoS4oco87rz8JVmFqd2Ncj9FWnfXlqWjYQVuzwpCwLBkRoITi1s6t7JpdHm1c5Uj3DAsTCJYukPoBnpJc2ZtlWM0ppYQAEHBqcJXORNLqj0AY2qOQRqbYa5Xk1Vm80pAVJWHQo3SaVFbJvXwqeicD+tUYZ2Jk1sC2Q643u8wPBEEKNpB0Ww5hJUXsI9SQahrijI/Do11uMRgN2B41sVQ5TOv4zhIbH6MiMlGw1WhSKwUzAoSTWB1jVYmQjvXVCkf2MoZVB8rRLaoUtT5pMqRUXTbnSxoTxbgCKm9TKQdUTEhfVRlVBoy1pNxZ5TAQaG8PIxyeUwhnUaFhFEom/oil0XVuuDXqo4JhtMKkEyH9i3hSk7iQpBJTqdaRVmC8KspZZssIyR7VssbYlzyV+lxJayxVGlSzA0R8icJJJvEE4UtyX3HcOAZmHmGHDCcZeQACSx5aBkrQGTSpdCO0K3jKXqNnBDKSNEZ1AjKSsOCyv8fujGHOaRJvyEzSoVN3NEcaP0pBNDFeiTEAllyWdCNFVUgOGxqhpmKDUkz1GqztI4xkCIzrMYkVJLElHc2Sq4zrWcY49zg3qVBdLhh6KQJHKYqpsJ0LsbLA+JZrtSqxUOSxpbfXo7b+JCUx2+2cE/49KFOlYj3G0lAtDX3PY7N1DSk01eIEeR5RWolvfRIvIVMKrRyaEa29G+A0Umd0DgTXxDTAV2gUFiF8wgKUl+Osgpfa65y0tEcDKDy6+QKhN+SIXiIJlsj8DntBSmMcEpQW4eVUmOO0WmBseoyG27hqlySvMvT6mD+nrurNAPkm/qfC+JOfZPdH/ynljRvTDUKAc7g8Z/Thj9D+5m/GW1pi5Wd+GpIRg5/+GmbFAYPPt9k7mMNVF7jlljdxq5WQOp5qCZ6Y2+FvXT6kcHfwe7O3Ak9gvaP822duQ+B4f+sN/Hv/j/j6we7Lx7G9FLCyX+BZzWd2MohjkBlCQLb7TrzhWZytMOPavGH1vQwPmsh1w9WDNT73pa9HYlnJPs+xo4/wePhZPu4UX/fRI4iXJvuLg0f4tu1v5lOVC+BNaCrLoP056qbN4cEXMSimgdY4j/lX5/8a5sEv+PLWtKNXa3LLlee4df0Cd9sjrB700YWPVJY7h0Oujp5htXKa2Ku/3Lc9No6HJ5q8OE5tPM9PPvFdL+3RUR6AN5/xsdU34cT0GJN4ArR534rPX9quYEZ7yOos2Z3v4Ir/CBZHmtfZCQ3PeGd44MYF3vjic2h84BUv7dlxnAnLdoeH3CLbyuc/rryB9MS02jqz+y/xyke45/Aejo2PIYWkNB5Iw1Jccrl5nIX9PbrNgudOaPz8IrP7/5pavsaNpbfjggpRFiJdgig3YDzE1KbX7rDl85PvarH30A2+Jgt5RRwRCMHBH18l/NqzvP/nniaUp3nT8se5vTUNwq2qIe/+y7D+aXj8PZizX4U68zrkV/8C67/606j1j7EaPMer67/JmeizzPnXeUX+EX6n927+6N2f5yu/715mb1aSb+ImXoZyEEhDYDXn1UVmvTYn7Sy555N2PMpJk2ScoppdZBYzax29NKBpPWo6omMtnSJCNy2+1ShnCTPDSi9mJyrpCE2rSBkEHtvhOku2RX8Q0jQVRCA5rEG/OtUzEEJReIZpntICFr+s0psVbM5IumFGJYmpF4JgdJ2dWUNoYwJToMpNbLlFLa+xcENzbbakYEjNLnGgPK54W8wdzOOJXWSiMUIihWFQaeGJjFbhmBFDmsUETETVQDf36FvJah7gZEFkBKEt8JykvvcijTzHl5ZqZulVDZGD2YHBXr+EWijRDiqloLQSiaOaFwzlEBwoo3AorBAIJ5BmSh21CASOY4OnuTJzJ7Wyj5/3EEYyUzh64yVkz1JWR+xqH1lL2MxiruBTE4r7SGlnmm5Ncm1/jnEk2R6t0h3OkNs+hd2ktTWDJmOim3hNAUYhZYkncqKkhqf6eJGkU5O0JmBCBV5JL/LYoIvIDJvZDMPS0k5zYjsiDyW7YY0VBYEu2AtHBF7IRtTl0mwI4m4i7/MktQLpgSgUqTdCuSYlCZ6VGAWZn3EpuEYaaV6Rl7zy9JC9ieHF8G6qegOZleRSkDnB/rCBGMdYV9AapWQ4WkYgHAQuJ3NQCo/DuiVBUqNL000orGbkLFWX4AlBIHYJzTGGskruBaxkKZOiyUHR4KnoEq9LFtk50EzOdEkqKdoMCUuJ9kMkBQKYTR0jUeJVLXmc4xtHrAVJJaPRHyOBotYj9zqAR2ALtF0mCywITZRcoTUMycIMoQOCSROr9hBuam3kF3WcFIz8a1SIaU1myXHc6DqG/QoOj8K0GXSbjOegzQTPgec0Ppbr1SNU0z7LcgbtRiiRILEobUnikFE9IzASIQzDwSzrqUXZPk05wdoqpaepjmYJZEbNaVKVMmcKLAHb+YRbC8mh2kf4lgILVqER4ARWKPpK0t0WZP4V8JdpmohJKRgfHqcXbeK5Ei8cEZgCo5bw3IgsiBnGmsDrIKwiygTGn0FEOXvVz1MJNHO6pBnWuGzAOIuPQosAoTQPZ006XsqiB6XfpQwMvlYoXaU+8Bh5MKl7hHmM8Eo8HeAZh5AJB60a+BM2SsN+qggWzhMXHtb5POPqHBkssjjOEdH03jogDSt41jKp5lTcmCRytApIY01VhEQ6RFiHZy3a89BKMHAZC70Kw/EVYuuYZQaXCCbaIv0BuZdRLabtDIUTOAcHTcH9OxcIdMaBpygLSRHnQIpAkocBBkmmBJeWS+LEMm4WrOYevbSOzWNMUSGtHVKKGeIypFoOmU+GZO46h9Uh1WiMqWcE0hLkNQI7Zrn7PNWii3CQypTZQnHB38Yb5Sg1Q6r28awkqUDhQrbLTWYnmg25y8nDK2T4KD8nKATHJjk78xHLh1UmuWOn2KQsWlSjEaWR/99eV38GNwPkm/ifAq4o2PuxH6f3G78x3SAEeB6n3vdHiCDAZhl7P/4v2Pw7fxfb7RLP59RXM9pnJhSZJNtX5MOQ8I6/hWodAeCXj3u8dy3kx581FNwGwLq3CQ7O5aeZViEl7+i/gXsm57hLfOefJqvIsq/j/Mp1xP4jfDqe0pell6HTVWSyxFvC85w9/gK3rD7LaDjP4ZUm+WXD+E1tfkj8ECe5TDof873pD1Pjc7zh87PExXTn5xqvwlchT0tDuvdOlmae4B+eeZrHJ4qHvD+mO7iVZjAC4PHNB7BVj7K5AM4Rak0v8gnzlC/77Ec503wVs9VzBIuKUCmSj/8Tmje6dNZSYq+OdQYpFGPj+NRYox24dIbPXHsz2k2D7kAWDPq1KeNHSDxTEJmCnWCNSpHz+GzIVgSrLNIdXuSP53awEmZTwbPqLBc4jc59PKZq2AAWy7aEp9vP8dev/hV0OsPrPMN/rBWwkSAChTtSg8Vv450PXSQN1xEIZBlR9TMyN93PalvQLSPe/+obL48VmT9KwqME5QJ58FrK6jJOvIooeZTm1V8kyb4J74hPutTCScH771shffFJvr1zhlnlkz7X4fcvP0ZnP+WOY1VuN/sk2ufhw6NMqvfzJW/5p/hPvgfz0Z+m/0PfSPXNX0J8z4Mc/+LXceXg6/mt33qMN9d+igX/Ktr5vJC+mXJpzDXb5jf/5RP8jR9/HZ6v/ltNlZu4if+loEuH5zvmsh7VIXi1nMLkhInBepYyzZmdxJi2xzBOWe4mnD0c83wzIBUjhAWppktE3+S0hl0K/zrdwMM3kuvDjH4eYCOB0B591WPJ1HDjCqrh8EzA9sKYudQjkQ4T5FRsQWwMkYaJ9MB4+FbTSDwqOmVGTxiIGrkn8YwjsFCyx1jFBLbGAh5imBCzyY7X5IXqBFtk3K0zqGSEoWGiDEJESBciTEFYxBS1hErpoJRUbUpmLaBJKo5qLwChqeYxIz+gkXjMZBl1PSEqt2kMEtYXoVIO8SdgNIxlhbEMqeA4nacI46OcI/MkobM4KbF2jLJNIi3xrEe3FpHgWEm3Odd7H7U05IUCtALb7FHhOElySCWrcyMNiLwmR1xCsX+ZYDQhNFPa/Kwc8RbR43kxyyTeZcFKunsNUuWwch/PCQ6bOVZJuvWAQ+cTZDXaB6vIPKFoOqS0OFXSKAMQBXNeQb+mqdgJV81RXLZMq7yBlTlCKIw3YvUwZHPJ8my0TVKO2Y4bVNLTVEuPWhIw2x4w1BAYj5G3z9A7ZNkpTLFAILrUihzjKTIKjjRzKDyadsxK+hjOL/CTOiqSVKzCJHW0kGir6XoVIlMQBBajNIUnqHma28MeXquO7sYkUYeFYoJxYyp5QNWNcMoiRl3O9R4lqN3CflCwV++wF4Q0JgHdyiEviEMqKsc3kuX6IUuB5rCQrOc+wmkEhoEfIUtNp5UTOkNYjskqmtaoifUEOEup1pnvLdCvTlAZ1I1P3jlgVHE0xx1K5hj7IOhyZNBju12jX9U0MklkHfGkQlG/wcxozHa+Ql3XMTpnlNTx8gYkJ+jX2iCukcYeQZpRy0IWkh1i16Nbj7lur9KwCW2GTDJLUclZzipEZsK+3GOhXKTrTwiLkKP5DTp+ndWtKvfujtiY03zytE/hORZSRRYW2MLgikPi7W3EaYVfhlTGkpGIqWUlB4NZGsGISb9Jkc7hRJet1i6b3iHLkxPYfAHl6ymjTkvayVXmyx1K4bgSwp6fo6wiGvsENqKoJcRFgPEVMjIEFqK0QWUyYZYcf7RITQk8kdGQmo7nCHRAkVSYqRj2M01NG/LQcGAOqGWCyiTAVkKESsBoHIJTvWW69S6bXpfQ5ARaUkt8isAxxDCwXareIXVdwZc+NROx0E8ZLIyZTQd4ZUnqO5KoYBQb5nKJpyUtEvp5SVEKPAOyOuZQ7JEMu9xeS2kViovX54jsMmVQMqvr9GzG2FWx1hFmIScTzWKygcpDOu0qo4pmfUHiKo6OzWhmS2iryVSAqdRomRkGbJD3fdoEBGUEaZVevMlBfIm5UrA8uZUoy0hDi/EUJhyjfEGtEGTehMCUBEWPQWuEn0l8LQi0xJoGiRsyql3C+GOiLET7eywPZjjw1jHiRbwio2IMQlQwRUDsJLneIfGgWylYymL6foNWPKJdVJD2z/fuuhkg38T/EJSFYdLLSYYF5cE+2b/4Iez5ZxBhiMtzcI657/xO/OVlDv/tv6XzC/8GV5YgBJV7zlGxT7H/+SZZ12f5wT5Hv7jLbu8fYWtH+a0VWM0lb9rT/NV1jWQVlOB3lj9DoPtkCp6cu42Hux6vOZzSaS+qG9zvSgCMi4kO3oUrrvFTcxdePmZbVlDBIZUjv8o9TcmxuT2cg73t4ywtvkD1VQmevALAhArXxQnqquDE1RVO7viA49jaae7y38T1YIefO/pTBMUsf83NkZchqTP8zYWMzcZPsqSmwesHt9+AeanaOru9TVmPyf0ZXv+5D+NPDjjPAcPikNctfhVCCMz938ZBZjgzexelLfBlQGkNn5tYipeY1mF1l0f273r5vP7a7b9BkDUo/uSv8Ltv8dmsBvjDBAKoZROSIOSPVwO+8eqAj8wdkklNw0R0ooyOuBXpNIvRLm/OH6HGmKfkaf71kQ7fFi/wNhPTOvFjXP3wD9IuqggJLrcELwwopKC7Os/12xO+9/FzXKxf4AknqGRVoqiDdoJYGnaO3Y0y1zEqf6nyA8ezFar7Ex46AWnlBMp7F1HyKMxNKJfalNIH5/C1o9vw+d37X0X2+ITv3NM8m1rSoWZhKeTB7/tOrv7eLn/yvkc41zzgpPk49h8dQYQlHjB3Dtj6D9M/wClg7eQdPLn5eg7KU1xJbmHdvJmffnWLLFD8zB99kkf/YIHXfM2t/MZ2h6XQ5xX1GF8INrKCO2rxn1Fiv4mb+IuOUlryzadoxgcEpU/lRkGRXWYuDMkbkKhgygIxKU7mSCeplQXaWp4PLnL7YJnFwJIHHrXSIyoOGVR7WLEIwtJkyNKkjp9bemqRfGaDoLLP2eEMWemhswFaWLZbHfxcIa0liSyjEhqho5o4Fg6XcfYG6/UKqlBYEkIjmBkptuZyqhomrkGUB+hAkQlL7KU8cKngicUxk9qQprPce7jB4/Mxg8xnz3OsDQ+mVZiGwsYRpQGk4DAsGUiJMgG1XJKHBYOahxKC5XJE6TzmkpCgEIRByuxgC6d8nG/wREIoPEaFTzyAc/spV9oB7bxETpbw7DylXyB9prYrts+ZfUe/u4H2BHlcYUTKTNZmTQ+5vJ9w0qYoT/FAOmHPJUwGAbt1H0oJRZWa2mQ29XC5wrMKIaFpHccODBsLfSptS6gr6CwGZZERpGGGUVAxOXUsB/4chY3An2NpNEPHTZMekYZjtmSnqDHfHTGc8zgYVfCcYnYQIEyNdprRrQhaY0dQ0QRaIq1HXgyI/QZWr+Hnloa+hog2cSIk0pJ66lhNSmq5xJQVhNybNuc4QSX3qTtFWZYoN2CeBE9DozbGM3U2VUTBHEI4DtsjKlGGGy+y3e5wISoJrWVBOMLSIWoFPROzNvaBEVFhqZoU4RST0GenaTm2O+SW3iHJah0nSyIzTxxdIygsaatDICpASCQtMvWpOCAxEElCI/CMYHHgsR9ZAiNZHBs8I/HGIboZUykzFnoFRqTkcYpXVghTn1O5ou9bYu1hZIoTh1TKhJlxxKhecNjU3Drsw8GruNgIqeUDqnIW51UIhrtUah4msmR4jHRILDMkjn5sGAQ5J0aWOQOtymWeb1QIshV61ZSWsui+ZCuoUboZ6qbPgTpgW+wAPoudKlUvJXMh1RKWRxOSypCFfIbSE8wNQjrzBYOqxu9Llseakx3L+Zk6c6NF/FRxbeGAyItJNiLq3gVK1WC3lhG7IWQzNDNHMW7R8WdxcYJCI5kqT/tO8exsF6EKAiOQVhBrjwd2Kzh5lfPVFg5J1HTI7SbLZcnd2ZB1MaDiL1KEHh4BkSiZ1ZpOr4JvIbCORiExpcGmKbKtGc3s0MglJkyJRh7VcUxQGZPlJaEuCYsqlULSNBP6tkp9UuPIZIZmllIRCUrF5OkMs3yMrDrEigFGWXwrCYyjUniEwwOSGQ8pB/jCgNX41iCNwjcGYXxSb8QVNtgabHD/XsBgaYGJ36OVW0SmqLmMVgmvnuxytW7QoQAcNiiJhSW3sO0PMGmX5f0RRf0F/BLaE4O2K1TcIUeTJ5gbzeFsiCpeRT0qGQV72No6t04M1dwQhGNqI6gPHC/MKjqRYVwpcUWMzGJWRwmiUuJZj1iX9D2LtIJcgbM+pbYceIecyjOsKimxBAYqucXXikldszPrIOqj4ll0EKDMIu28x4K8iuf+fBHyzQD5Jv6bQxeGrUt9ti70ONwY0VnvkKTTaqqfD3ntI/8A6SwOQaElnvQgqtD7wIcYfeIh8mefQwQB3soKenuL9u0dov6QZEfSOpsgJYzsO7DxrXwkfZifeMWX8H/91gc54p9BVhemB2EcX7P5Gr6CB/iZ5V/ng3MRx18X8W3Pfh8jNeb79vcR2TT+6sfLfPrO/42DzZN8JpyqRjsTkG58O8HMp/C8CUdnn5pud4LTZx5H+YaMkI/xVj7Fm7jGSRwQqJwHLlWBgt6M4FzzNkggNDGFqbAYFBw78QmMhVVP0FBwJMqoq4yLvVPs6XnMWhWco+zCcHWGpYMd3vrMU2wcO83RXs6r59+JEILdZJfH5VFcPSZKOywEU6/lzx2+HxfdyZK3xiEZ3WSZnpeDgNhLuKN+g3ixS2fzQf7Js7fxbQ9UGdanaszjaNqj/L4jmtUb5xnKFOFgqDJ8pyidwbPwbfnvcBi0CFzOO8qHiWbbUOuSaYXSFby4jy5q/KfPJTkuMGXMRxaP8qbmgLIj0DNN5nbmubTwJDMyJXOKF0SHb770IL989hMgpv2M69E2SjwEvA2cw3jLOASBvkjt8JeZRN+CCxRl9FIftoD3varG5pWEn7jwM1h3lOb4bfD0Rzge7fMdZx5DyS/0aht/EXXrm7DVFYYf/wzl5ecJGpbKfEnIc7y6+hyFjciMYG90kvsv3c6rvQ/zdfV/xYVnPsAP3PoL/PJ+78/YhgG8dbbO1yzN8NaZBt/y7DVmfY9vXZ3lgVbtZuB8E38xISxdM6S5bzjl34VKQedbDGa26DUFY6+N3auwvLlOuKJZTjIqQnOyq7jU8KnYEik1WmlcCWEZ4hnHub2CzXiGEB/pLJ4xVI1lrueolHA0M2w1ciaZJLOQhn2Coso48ljpV6gOFfVUs5hoztrnWLearpmlngr88BrdpsXIBtUiZxRr6sMII5oUUYoTBfEE1gaS63nEQm3EuSylL0/TTguuXlfklT73TjJy+RyuWMA3E9KiSq9i2FeGChGNzOKrEqEd+zKikhtm9IjtisFJSyuzrCUl2JRRmBMqTbWESrOksDV2yyZ1zyLF9F0UeXW2ghpK5GxXLzGbGeazKo3xCD0xlH5IUPgoTxIZizIBrkw5NbBUqpaTPUFWvY6lQq/aRGYzxGHBYerI/IxZJ5lJPPqLjkbmqOI4VuQQWApf0BGGw8UzCM/Ryq5xNOkhSkuclOhoQlaWtPMJS2NHfP0icaVCqce8crRDZjxuLGrWdYVIh7TZREQ9JipjO4+ZhB6v39xjvHScsq0IdEBFW5a3PfZqKbnzuK9/nq2+JrVNVjszRIGmnbeo5wm9As5dOoGuXaVSGITXoT1oES1N2Mo9Gr7Bq1nsxKFWDmj2apTeCqnnsZwXhAM4MRCIrGC3MiElIEIRFwqjY6qTFtUSkrpmACgtKUNBNVe0M83pPUteblHNlhjWa3zqiMNFJbHO8LyS+WbJnos4GMcsuAIJeNbQ7TaZFQJ7VTFf6zN7OEAIi1RTIS6nHEIPaU4S7tg2fOxEyFxPktoGc4Mqtn2J7YqPnye0JxPmjWM5GzKxEVVdUpkYFscar8zZih21ospg9jTEVVb7Hkv5JfZEjYnwmLO7pHbIyE/phx1kEeF7BQs9wLPcoUfsN64hwxgGNSqloa7rKCtpEiFth33fY24Q0Jh4NAOHZMRdachKuc/n6zXmMmiOJcfH15n4R/lYo00+WUTIfU4eCHZYQlAlEgMSQEhJFiniIud1u1f5UCMmjS0eI8IiQGlQk2PcZq+yNvbpSp8td5bx0iUCM+0nP9Hv0TdHmC8sb9u/QtgZsnV2nkqmOaoVzdE+5BuMw4xeLcDkhrmRZNeThL4lNIp+RVO3JTUdcnRQxe/tsGtq7FczAuuoZ4Jhq0t7q03VjdDBIb0gxtMxC8mQE/uGupU8sVDHxBlRmbM8mVB6I5K4hylD5rIR47yLUZaahjiHQkhSB7cMUqJqxmzu2NOQBhYnDVlPY4aCk6MRg4mg5yxt7fC7O3x27Qa9oGBFOxZHXdYmY+qVCa8fClqJ5fyswxY+vQBmJgG7fspWsE2/moEZEesUqQPO7FrsgmDh6A5BnqCSfcJyhlqxTBhpCgFVrYlNyZmdnJbX48VZhQ0FM4MqhUswgUMpxdx+G18kzOsqoog4Yuv09C5+v02jSOhXcmqTiJObddpNw0h6TCoFM6mgOZLEccilZoFTkmoO2hPgJIv5BHFYY6wmN32Qb+J/PA43xzz9sQ0uPbqL0Y4oPeT49Q9wpHueR173o1grWLh9FfmwxQmJReLZHOksJEP0lSEGcMfPcvRf/Cg3vu5rAcHub+9SX6sxf/eEuF1gXZVh/tWkj/4s+f1fzLvf+2nOPfQrpPVlitd+N0flL+EqK3yg8U7uHCgO44zPvPmr+Fsf+i5Wi3nWQ807sx4AWimeOhbwCx1NL9wCpsLQ6dY3YfNlyoM381favza1mHcCKR1Iw41rq/xi9W+yPncSIwM8V/JW88cUjyhCU+BwtHsevutDC95tPCbX/wb3L/8+S9vPcmW+ypnYoB3UX2LnPrx7J3ZmKswlc83w1CIA33ct5PVn/jaXB09xZOYMngzYPrjGY/4aSMt850nE2r2Eyufa6Fm2Ji/i24T7bruNiR7y4YM7X9a4unfhGSq1Dr0rr0Wtfobdp05x61zBC6dnENZRqIBTI8OVepWnWo7F0TTYPKOXuXdjwqW1WZqZIxtXWF0+YMebAeBIv2C9GhN5Bq8IMVmdmhNUHCRi+vWuGaJujDGnGvzwbTFt/z7ueuYTHAk9Zl4W6zKcymZ539GPUdUxEz8FFGDQdhNlDEZK4sEfMH2clUSTR7AvvgKbHaE2+wKVxSE31t6FdJLvzH+CV1Q/hnUx2n2Q4INT6raVoK1gK21QWT7D/PIC5ENkmVC75zTj+go7v/M0Lk1xKx7rX3Mbbzv4KK+sf4jbKx/lrZt3sBBcZTda4t0n38Tv7vf+s3Piw50RH+6M/sy29x70aXiS71hb4O8eX0TdDJRv4i8UBIX0IJVc8V7kzt48XbdLD0dJhJdnLCX7tMWIfEvgCQtOMDsJ2KyA8QqwY4yd2pgoJzjR09yx26fdKtmOBZ5zHN2vUzFDTuUlR0tBJDIqixnHBhkjUSe0CdebHi0Dr73QpOeqtMsOxpdk3gx3dq8Tiius7NY5OTZ86D5LMiMYJZaTfcso99mayWhlHVyU4UqQCbxucJli0WNWSnCC+X7I6b0hO4sJyhkitU8/3Kc2OoXCUUklb9se0K14XJqr4IcFvklJwojVvVnmheDCrMKq6bPWNyBJiVOL7Up8aWkaxUQ5rPPotCcMamOO5Y66d55lvYpIJnRqIVtqj7vKBcx+SSDHlEGLWFxi3pTURwVGWs7tVKhUJmhSnp6XiKKk6Q0og5A480m3jiCWrpHUDCd2DcsjQ3BD0G1bdCkY+4I4d8ylKbemm1w3klAc4eyNhCT0CCYaTxfMRHscH8Cx3kU+Xz3OjazPIBBgxtzlNF6pOaRB38xQL04w7zaoyRG1iUPrBZoaXnnD8j7Tpu9Bu5YwO1HURkMWD1/kgcPPUZEFmzd86kXGStlhc2H6Pko9R2OcEuceIxPRreegHHOXJxx0FVkTrLSoxGOl1NyYSGwhQEOtNLSTOrtphDc0RMMRxW3+VBCSAkUAVqK0YEEnMAkZVHoY50ALEIKzHUPFKKQtWMk7TCpLnO51ibIxNSW4PgMUFukLNgdNVi5YiijnnOrTrSdEB0cpNARihCxzfKBUHmECEwn74QbBYMBcDlZ6HFYli4eaICkwdWiXGa/oT/AmjvkBNLXm06sOYSGwiuWRYxikeFoxh4NkRKfSQCiPdiIxIw9klaSSgFMUZYKtFHieZKE8ZG6cUy9gvmd56IQiGwWw2YZKj6bOWM5HnE5bDP0RZaIJCo8aghMjyzg3nN3ewcsFRzqOir9Da6S55UBRFBHPlUfJdEimFDNFSi1X5MqbrgIkeE5RyRq88rogq+YoGaLs1DJqpXOey35AKGZZc7u8q/88n6XBYS2iSBfwyAn8fe6+brlh6/jaJ06fIcaigMBa2oUjBJp9xcUlEKLkorvIbWOHH55h1cSMo4R+rcTZkkbpE1nN8jhlUF0hV/uEQKQNb3sERL5DGcLyzgRd3MGVRcktBxPu3dBcm2kQFwFRNKSVfwopYbdZRXGNxeKAapYjI0e3DicPHbmnuF6rEJY52tY5cTVjtyrIa+sM44B6GVIpHO3E8JpLBVstxdV5QWvkaJYDrIqISgc1xyQp2JM5T1XmULuLzJjLrCUFoxgqhU9LWgZCMW9SEv8SiAilLTN7pymd5EjSZzkbkMZgY4OX7LE60Fxo1KaaCDYjGreINFRLQZBDgcTzS4yDtQMfpyvkAppasGAMgyAhp86xgxadyNJtFrRyH6ENkXfI/buCTx/LaQ3h+L4jjRRZaGlnPm88b3h2LcEEh3T9Oeq54uhwwsWmRP754uObAfJN/NdHOir47O9f4fxndwAQ1nB082OcWH8/ypYYL+KL7ivIj95O48n3kwM7C/ejbMH28utQJueO59+DxJAFLR5b/lae/flnuOvUcaLBBdJOQP9Klf6VKrWVjOi2t1D0L2P2L/PG919GRG2or7J315ewcONz7O0ccO3/+n5++NoneMXuZ7l9/jVESnL94Dy/tPmPiZzP2P9DWvI3UCbn3+iCngVhBU46sBEmPYKqXuDM0i/yQ1tbXNipsrUSU+Qh1z60TLoZcfstz3DlLbcC0Fjf5eBizBdd+xQAVkqENRhn6WH5NBZsSFctkQxq1BY0AL9y6PNXZ0sccN5toA5ztHYIraEWExz2uKj+gAd5F8drdxCqiM5gn8f8Nc56mvqLv8Xps4ek4QMkNuWp7kcBKLNDTNCn6K7ygv+Fe7UzmQbd9WOP4XkF/UtfzFc+tcSkXnJ90ccvDfftlVypKy4sHmFx1KNVeLzB3ApLjjt3LqC3HmNzo0rlnUPS6rRfe2Zfs7E2TS7oyiHH3vgzXPv4/85X5PAb0ZQ94F0eYk7XEBONng15xcM97jj/CH7tFoyOCbyUwgmOC8ORvdfx8MLDTLwUIQoC41OoksCWpCrCMxMEJRiFUAWVo79IuvEtuNb7SF2Xc9dW+K78o3zlwccwSJRICcQNjAnAlijfIaXjWHUAw8dh+IVr5AHVW76RUx/+MPv//Md4/upT/ML8O/i1+l/iJ6+/hyX3eY5HTwPQJ+QzM695+Xdvr0XUleLFScbfO7bIP7yyzXLgs1NM6fxTAhMMteVfru/ybzb2+fnbjvHWueZ/rel4EzfxPxRx6XjNNc3CpMAEBf5Bgmg7Eivp7FU4eqNJNQdRccTGEUmJlRLjBMpA5ltOZSOu6znG6hL1vMdCnnJqYrhybIXU92jmsDr0WBrnnNBjaoVmNNPClQ7PaG7pdTlsCiq5Rz31QEuaRrM4yTlsVFGh5bZtxy2HfYzqkSrBK7cdj0c9fF/Tdo5E+uQBzOXTQDHOLCoXxCZjxgjiPERkDoTkUCxT6DFVOSEC7tl3HNnY4EJ7hVPpEMaWR06XTKKcY6lgs9Zk7Mc0lURqRc3lWBNSCgUahBO8+qrgiSOOtCqwocQXjjXbI4kKWnoCFmq6y6su99gLQ55bmqNpDDtcYNYu4tAcHz1HZ6FOa5JRqQgyz+f0jqacEfiJQceaVHnUR/C1L2zw6dYyxwaHLAvH40oQGsdM4hhXHSt9R3hBstAVjJSjcHD/nmW/skfs9hj5TTbiGdbyHqExzJSC1xx0mGgfWXGAoUgMM9onySSBEQzLGioPaY8VD3b7bK0oWhPLnpr2PUvheGVvnWUrECohmTEcFHVmDoesHKboWPHG3tSlgqpky7vGY/MVGsMW2rTxxfRaJqGlIQQNLDdCjywuUKnEJY5jqeNiLJnrarp1iLSlPm4j+23CwQENaWlMFAdVgZZTyrlBsDo5ZBlFbgNm/RQbOELjE5WWWzYsM3lBIgUjFdPUjqQQ3NZxzBuPt7zo8ckjLQ5XF6jmOac6BXG0w+acYybTtNN1bFFjxU24tCSQBkLrWMxyHltI0f6EbsNRMRYPi8IyW4w5Nd6m1A2OH0hOFAOKUiHLkCODhGMy5sb8CAuYAiJb0CgSZtwApKAyvopmgl+kvOtCzidWl9gKRlQTwcz+bWQrj2NCyewEmiOf+7qWSgU+uViiGfKuq0M6bfi8nuN4sszaeMhiPo90A4LMh6plzsLqoMAFkihV3LmVg1ZU9jRCK8TwCqfzRfYDw2I+YaFIeS5PSD2Pfb/FfuOAub6ikvk0rcNYR2Xi0S48lroN3nrpMpXFBkXFp9mFrF8yWUpwfsLMuMkbdj5HESUUfsCRTpfYQUtPsNJjXk+QEQSlwm+V1DYU8wXs6ZTmOMfohJPFPOagJJZddDPEKYHQPfy9z+F6XWzjGDiBdA7cVKFalTm1IURO8lqxzwNbHjMjj0uLkustjyCHlf0Kd24O2FiC0Bm8UtHzavRiB1hqGaz0HNYUTOYCBnWDw2L3QsqmpRp0iTVIfYK5zHLLAdyyD2t9w9xYsd+QbLUn+C5ndmRZORQ8PzMV/PO0QpeA9JiXfZ71Zin8HE/41POA1fGIvOzTd8u0BlXu3jhgt92mMRIcuRxysa4pZY4NJZV8m1tuvILri5pX7Iw5283wnGYOx/GuY3fBIdND8tjRKAP6amo5Vkskqb1BdXgb1x1I3eRInuI1Y1KvIDIjakJxdDwm9AX+RFBxDlsKJlE5nR8lzA6gqI55/UbGSurx5MyEoCb/VGro/yduBsg38V8VO1cGfODfPEs6LADwixF3vPAe2v1LWCHhy76B1dfdwd4P/33cl38nn+2vcu/SURbOLeM99F5mehfwdIIAjPAIyyGvf/gHAHDC4dqC5okJCMlkO2S8HZGOXyT6oq/Ef+3fIbv0AdT+Bch6zH7m3+GcI1Xwk88+y/fseHxF9+9zY6bklx/6JMIJrkVb3JGeJim/mozX81unfpLzdoS0U/N6kc9hbISQGSvNj/KTB1O147OXJ/TKNg9ffjXR9i4ubvPoA68HoFoMyc9b7tt68mXL5StHz/HXuIdFt8AH0BigEYz4y2ffy9haUIL9UtBSAl/CYxNFWn8BMfcC+CsYFU2jzfMp/7Gactv+7/O6hb+Mc47nRZsFUs7VGtg7v5w0nE7/z9l9ShcAObgJveszhPf9Psmz3w4IQpPxztUPAqC8giKpM3fHeynGC3zlI1/P//32BkmkuCrWeeV6yS17GygNd+5bxJwABKp9nPyZ30RauPyhZc6+YxvnQTy2ZMYRqakqot/c4uSX/BAnigqf/cw/YF2BnBji9QMmXg193zxP36K49+kMTEK7dxuduacIhMU6UELx2v3X8sG1D5L4CYWaBpiluQ7+WSatL8dJSTz+MGZyHFVdJz76S2Q7X4GUE35x/z2cblyaniuWHW+WZd1BqQInIev7HCzfxYWrPWbveC3l+z/B/GCCUA6/Ysje/2Hcr1yh9dVfw5tu2+Rtz38P155a4Pr2DP/sm76fv2L+mFcPn2GlOOQDj3w7X/TAL/NDyTrfcOo43z1a5OlRyu31mF++4wQrkU9FSX7m+h6/vTutNNeVJLWWkbF867PX+LnbjvGVi+3/pnP1Jm7ivweMFGzNCL503dIcSa5UBVYKPGuod0Js2WS9usyX9bqsyX0mS1BYiVdIlANchMbndds9Xpjz8UQGwtHxZ2nYBDFOaUyqtIzHuXITvxBTQafUIXLDMBK0FQwjgVOOTi2H5SHHdhucLsd03CwnxnsIAYETTDwP4RyruwU7dUdnVhEEJbWOxMsCChfgmSmPBQdOSY6OYH5QEHSv80zzBFjwnITcxzmNLBytzHB/p4sTin3PUEsTlosJrVQwUvP0iFBOUc1DTh9OuBH4lHIqti2cwBOCc9vw6ClBBYsQBQ3f0J4MOXsosL7iyKFgfujIKpK1w4Ay9GjpA85NNH6eE/gJk14frOSMFkykx1Keo/YFqiqhArIywKYxbnKZ050txkGFZZkzk1oOSsXqyBIAnufwb4dqKDg/UliluK8ruJec/UVL2lihWigGfpNWmbHTWOaRVo3Xbz1LgEbJEYezhjJTnD7vWF+QrPQ147omtAmFJyiKU3j5gKPeIbPdmNh3LE8KFhJJpASbTiBNhAEQEt9CXI1xo5jQjMjTkhP9IZ1Yssn9LJaHNF2fdd/RmoA6BcdrJfGuZTfyscZiBpI3ZpoysezahINKRC2FleyABw8vsN+y1IqCSl7D8w2ByanqIZN0hsXOFfrVkEosOLvnuLyoOd53tMaWau6o+lAZDbker3LXTp9zHZBkeL5iKaqgmj6nBzmx8WimJTe0pJI5Amt41faIZM7SqcKoIgHB3NhxNx2eWQPfSZqJ5pue6vCBYzPU0hA8gW8VwgjObBm6gSJXGaKEuJQoJxlWc64tCGr7E27dVRyJO9zzwiZPrEJXhSwMFPN5wlrWpW8sYeBxZG+Tlckez7aPoMaKirZEWpBqIBdUrKNsGO7ZEAxNi0olI3QlreE6tWhp2nqUwx2Hgq4nsRF4ytFAcCPIubGoOLsLSggWsj7NfMTsKAUpaRUlTTvgUB7hyNVbWM1StMyJrGVtX3BvMU/hSeLCx7cS6Xzu2trkLfoC274AC0fSHiuZ5PSBI/cshS/ZDBxWSrQJkMCXXt9ho9nCrVVAMPUFLyX37U0IhuBbySnzIqbrEMKnWW/z7GKXeNin0dlE4Dg53KQ3X9B0KVIoJFMdFYHACp/ZNCXzFZHRNEtBO8sZVhwnexNmh5pBWwMlVlji/g1WRcnunKNWwm0blqgEpXa4KqrMT0asDByLY4+7dzNKp/iTOy1ZDLHxUIGkjuB437EwhG5VcqRvWJ9zOCU4twm+c5yxfc50S+bzlIoUfPQeSxYYMjwanRrtfsjdGx0u10e4tM1tg2ucMHtcaq+ysCs4PCrQnqaUikAK3rj7IleMJMJSQYOECMexHpyYWPYjePC8xniGzy3XCIIOLWnwOimH+QZhdYnXHz7LAgM+I+sEJMTpLHd1dmkIuHUCxQikUJy9FvHcrKAMHYGxrAwFIwEn9zSPzkX0pWQkS8TNCvJN/PfGxUd3+eivvIg1DukJarrL7U/8K+K8S95Y4sbcg5xttxl//OM4Y/A+9T5OZQoRO7yH3guAr5OX96ecpvQqlGEdYQxB0SfrCrLuVMBKRYZwqcHKXS/y+8f+iB/54m+H8lZ+7V//cya5ZOFgC3ROYOAn3v1rRK/+3yCGo0/5HMXnHfwYE5nyp8pPm77gV7106nMoLXO9O7i2/1XgHMLLWIi6rAymlV4B3Hp9wN+77R2M7wrYn18FptYPK5fPszrYoK4nL52JY+vOt7D27PRBG1IAjvsWn0IK91IZ0bGg4J2NaZPuR4rb6M1/IzpYnu5CCoKdDWSicVXFE+F5Fneeg/atDPMRjeEGzwd3cET6NKhxQW6xrS1R/Fp08iHA8szgg1wcH+VP+dXvPPtB7lx78eXz8Soj/PgZhICNvdv5y5++i195U53HTp7k3hsXmB0KVjaO0njmZ5nEn0WtvYro9FsJHvwusod+FFk7SX9vTHt1SIDjQy/cydtuuUIUTu+pF42wXs67whE/q6c9zvkgYC7cY2/UojPb4NqRM5w+WCf0XsXF/Ci3R+uUKMLpEoiZdIZUJbiXUoB+cQUdncV6bdLaFxGPP4wfbVOmy6h4h2j5vfz8dcHpxtRT+mKwxPee+su8bXzA92z8Bol5HRujrydozRC99jhPP/n34dPXkDMn+P/82I8gun2y55+n+PjH2bu+gfjd32X2H381zuzRDd/Ed5+4n83FZfRmyGV3J984+jWW7TaPPPJ1NO0Ae2mJH/kbn+Unzx2lov5s3vLdtx5jJy/5dG/MyEzv+0LgcVBo/uYL1xkbwzvnW7T8m4/pm/hfF84pXF6hsAOEFCgL0jrqiUPnisRUMVpSJD5OgTWA08TaMTMIWek2UA1H5DS3dAUHVcHsWLBeO8KWN6LJdWqm5D7WUQKMkRhXwwWO1sByGDEVM9KSmV5IEk1NEk7n14nyCW/sPk0QOrQnsIWgxCKZLoBfd9nyRG4BxW3dG9yYb1NGUx0E4YEJHSJ3HLsmmHWWTeEDgvmyR99Mk8RGC/wJiDhGeSVmXGAjhQsA5fA9x50HB8wGFtwaK5MRw1HBYc3QzEcoD2SpEEKCcVijEJmhLQvam5JaItFCcL1tKfCw2rDRMtzeOWCnGXLfixnz48nU7imMuGs7JcpDQhvQlnqqsizB5aBLDwagyLGZJLIFNQq8Es46y7HNKY38SM+BD9miw3iSRAPaYY3A4bCFZGlU4I+XqXkX0bUYWRowkrAquG/4HBelRHtVMl+zeuhY7Rnui/p8er7OdvsCaa1g/rDOscmIeyZjnBujRYQDSjxCY1jtGDbmvGkLly8JPYubi7A2xhQT5DhA+w6URAiHSx2NuMerbwju24qxt2oOY4cVFvdSMsIMFStKYo3jpIg44iQ2lLSKnJpOGZaOqimZSTUiNNTynDuuCOpbWzSGjqfWSqR2LAygOZmuhS6uSFrXBYG1VHXKGw6foSz/dJXuEFbx+q3rJF5MYH2szggLWOo7+pGgPYYoL4n2QCwprIUjY8F91y0PH4NAC7wcPCsJnOXEbh2EwHgCac1UbK20tMuSUVDgUKxmB0hZISInMo5eOMNAHKOVtKgVj3LHzjwbQZOZyRZe5Li/t85zq6vkqqCM6hzpwvLBAQeR4HS6iYwEnQYs9iCVDr+EqpRERYIRWxTDLVy6jYvXyKTDWYnNBbGWiBJQIHDsex5jT3IqFEgiUhnjPHBxhDU+VlZwgcAElsHMIRvJIQ9udZgf52gNPhm5jGmYdDrRpSR0AnKFDn1wghO9PQJbYz6bIJFoUXBxJabwfUZ5nVo/YVEblgcdrpewV84hTIHVguU+LB44vCp4cYn2HFZUqXcPEY0BldSijcQXlsjmzOghRkWE2lA3jsKTKOdwpaU1SSkqijCHuZFga7ZgrdzgxMRR1Y5KKsh9S5A8xt2bEr90DHcV2tdEDmQhqWjNnZ0hr3lR4DwPL5NIJCKQLPUdOhVYT6Ei+PSMovQd0oPXXoF+wzKqCBYmkre/aDisQxilHElznLMID2qJYhiBK2s0sox2p82JAzhyMEG4F5ACauOChayLLkEqgW8UMgWD42ptlaSMOTK+xkvLODwZUNESpTVnyDGppV8RfPHVF/CcpWYcoPjwvOPkaJtbe9NWuJOVPv0K3L8/IU5ARnD7uuOZOkTjaeJhJoswiUUAgZQsaIFfCmbGY5KwwsIkxzM3e5Bv4r8jLj66y4f/3QsAHL19hhvPdyknOR4lhCHhcJczw/dir8L4pd/x9tZpAQz+kx295Hv8p//efd23cYlzALy98c85op9kuLPEZCMjPQwxu0OuT07hr93Cie6Qf/avfpD62itZuvMrwDmKaw9RPPfbBMMO9mP/gt3XfgN24R4mdJg3NVqm/vJX//zSf6CU+uXPe5NzYCughriyxXkR8PTsAl+0v0eBR4sR9xXP8Vn/Tpqux0C0eQd/wOPXT/PKwdN/KriMCgN+9PIYR4xA8O8pAMHbVz4BwNxhzv78VAws8DTjzOdC9E50fGZ6IM6BcQS7nyM68yGc9Qm91/NCfBY1Tjhy6T2I6DTp4q004hqpSXlxGFKzC7jA4tUysv2HyCeGj66/AYDl6g6vmnuSzvkGzEpm5/sIB8YIPM9x9P5fIf3M13PX5lGeOnaWJ4+eZb4Db/vAz1H4Jf7a/XjLd5N1zhPNnkO+7cdQQZXu1T+mvfzz+FLz5b2Mhx/+eu65948JG1OPaekVHAvXQb/i5et89+w+nz/vsXv/OT573xdz8g9/D+JXMZsss+4POK56GOtQUnB39y4265svq1n76TOkjS8DwPhrAFhVoOIdPOf4gc4ub2DClNAn+DttxY3sj/jxIz/KR2ce5Is3z/DVpYEM9OMZ88dPcrB+FaUU+dVrqCxDNZuMvvlb+KbGKn+1HPFDr3wdT9/6jXzLUxc5tHC2d5Wfu/JPyGTI++a+iHccPkTb9dHOJ7/1m1mst6fj+j+D37rrFJ/sjugUJT9yZYf9Qr9klwX/+4VNfuTyFl+3NMsPnlym6t20jrqJ//XQTjTf+MiItpMQCqQAlMCWIDXMJQN8nXMq2aErPPI9SXUgCVZLIquYLSR+abFaEduQY12DA/JSMteNeUNPMjMqkdLgkMjAwxYWgUU5wckDWBgJ7rwxVd19fG2Wtckex8dDkBJpHaZQ6MJDehapLdaT2CDAVAyOnFLD8fyQeQPheARSYXNDRbmp2v/YYZVj3vYZJSHz4x5dSvYbjgUdcbSs4LwQYXvIEHwNTgsWU8ErOhadKV5x0Ee5jEgnyAU4M9gCYXEKhPBxvkMV4AlDtiPIAoVQgtALWCtDZrb6CCNxZmqjEuiSWw8ds2OJoMQ5Dyw0tQKbg6dwZYq1CqyHCjPAnwZULxmvCgS2cOQHIDw5fewKiVAghSG+XsPOWU4WJYHRaF+w0ZYoBGvJkDv2nmevnbIjY+om5eS4QDhHLXNT4abJS+rbU5ciqhXBO9INLhcFcR7jlc/TzseYQmLjGBQ8sXCGiQuYyfq8OjnPLeNtoiwltFMeth6HMEkwLkCICOyYtQPNmfEFqvkB11YFnlP4LiC54GEXSuJUMGccDoHUDjyLNAoZClzuY50CocCXSDFNKIQlZIdVZL9k+XyCUtPxJ5xDvSRGuZCBlI4kcPjW4sppT7LQDutLHBIPi4wEtgA/nyZenI1Z7gcsC49dv6QyKacClwW8al1yaV4ynyoCC0Ja5sawMhAIrVBVjfYcSsupdxcOPLB+ddo3r6fsq4VkyLHhhGFuWBnClovYCwOKoYcxgtQ7ykxpmU0LkB5+aZlNuxyGTYRzyEIRSMMtoxuE0gCCRq6YHYDEMd8Bl5S4ikUEEt+bKhBjYOJ7nBxvglOExiCNm45zD5p9n7QuUXmJFYbX7m9ggwkydSA093QPGLU8LkRtFAKFIPBy/BJ8IGxewnkxi5mHCwIQEmclCoswFoSgbcaspl2EFVgToKWimpVEGLRVWKcQzmBKOLrZ4QgDEiXxrGKpYxASMD7FsAQkUo44kR1hY+wQ5SGF54jz6XNOuOm8ue9gH/AJ8gIRSYQDiaHqLM4XRKWjVliMLxk2FLU9j7M7ls28ZGWg8JzDeZIKPgZDKRWhUFMWiwHhh5gSwIAQWK0QTmCdRFuBsVD4CgE0U4mUJffuCBojh/QktVzSBLT0pxZekwwPRyg95kYBjozIFryiewXnJEIIZKAQOCinY8zXAt9Cqh1WC6RnMZ6jNamy1leMfENgLRQWQQA4jLZMHeklnnXEziGYzo2mS1CFxeHjkJzeT9HetG/eCbCFpbHhuCuaquGvV/2poIxwWCFwGsp0KtZ1X7nOcQsXnCP4wjL/v4ibAfJN/L/GlSf3Xw6OhYCt812ObHyEUxsfRBYpALLVIjh6hMr999P7jd/EaQ1lCb4PSkGWTXfmHN7iIq2v/VpaX/1VnK763P0TX8pnB9/IevEujjb2mbtli7lbYOvgB0kuPIXZfpzb3/N/89PxDK4Yo89/iGT3IvED30H9rV/JH8xfZu7ai5xbTwg++R60UDx5l6G+UnLrg23Ovng7T3KGJ2ovvnxO1aLF7vhuJIbo5E/gsuPcVuvymQtfyf38MlWmx/uPL/0cD/k/yfe9sQ3O8mD2adwknQqNMY3jTF6yu32RufYCB1iuY5kJD5lrHhLkhsv9WfK9gNbxEUFdc3DjVo6pD3L51CtABCAE3rUBpnead6Ut7u/fw04BDsct67/LalHA5NPE4duBgKdSH2GbaJXA/DPc/vr38MKvn+IpcSepq6Aw/LPTf4xt9Lny6SNkT4TMfMMAIR2ZjfCNZibuc+y2j1FcfoBn1k5jlOJP7j7LJ2//KX79B/822cxJGtV59GAHA6igii0T3OEN9s/XaK2lvL7xKJ+S93P+U9/BLa/+FaL2dYSAxgO/zDd87Mf4TabN0J/cO0v79oKZ7j47i0e4vNTgtsRysvR4T3GMxWhELPXUB5qIuw7v4un5p8FBkF/7wkAUEq1aeKaP5xz/cu+AN6cZXSn5dByybAyzomTLBtT6H+Hx1tu4eCbiS3bHhNpy4Zl/z6nJNgdAWRRc+sf/iHY2rQJ97q770N/6XfQ+8Ql+71//DN/33d9PGoQIaxnHVf7D0pfwdbt/wrsOH0JbHydLPFlin/wFzN1vRx257z87d5QQvGm2AcAXzzX5nhev85H/RMQrNY5f2jrkI50hP3frUR5o1f7fTNWbuIn/7lDOMaMdSkxFi8JI4ZmSoSeJ0hKnNMvjzvTZX4DbUyhPUNGGY5MOD+wMearhYa3BiSkV8/5rliB7BrcnkHWBsxqrPbAGGQmc1igzXd74VnHHnsQZw3xxwNqVhNClWOOBteAJnIwwIkSIjIotyDWoeIZ8cYwKNGZkcNaxbPZBKY4etsm8AXMpOOMwSuJciWcNt4y2ya2k0hEc61lUZBn6EcqViEICiraBk/sw14Oalpgx2FJgVQk2RsgCrMUJgbOC+Z5FJxojBSf2HRsrPoWFvGJYjwQ205wYKkopQApm+o79mqQ1AisDhNU4GaOUmmbfbImbjHFuStWVoQYEQjBd2AYOEYLLwDoPSYmzcrrglwKsxVoPM3GckR7OFpzYd0grML7EKwXtQc5CArstCEzJapZxPLNY6VGzOXO5IBgdMptMe4ZlKLFjS47Hal7FOVAvJTcBnBE4LN0gmq7HXYTIJMvjPVzpMFrhPB+9X+CVGluxxBN47aUQqRyl3AGbUvYko8gRl5YgcZzNBY0yZbdSYxraacxEIDXYzKMQPrE2DPw60gPfeggJM0nB6qFHIKYpTauniYNRJFgeOAIHt48hDaEcgpQCIwRTgnqAMHrqAy09RMUDY8FJnHEIofD8gEAqVrM6btLDCo1AcqwfUJsYohKMVlRLC8IRGYm0hudWUq77PU5uzQMCi0AaASLESgWkQAlO8IqNkk5dsjqU3JZfZCUasTDp4zJBM7qOFnUiHDaXTFPML/V3O4cqLGXsIZzEGouyjvpE8IaBBG1e4qlJ7u9eZJ9llgY5Vkc4O81uR7bESoGwU3FNGQEWTnZ8ju8b8GsYp/CFRJQVBBnOCWKTUh0mnPHqzNmcfm2qW0AosEJw90HGdt2wMojQLuDew2sUKkaVJYNZQDj6oeHWTj693gIkivsO1hl7AQ2dgjCYKMTXKe6l6nZU+Cx1SxAgY4kz4JybMg6NJVANfJljnZi2RoTghODIdg1bN5yZGArnEE4gCw/jpndHBQ4ROOZzeNW1kOdWYW0QQBjiZwmn9t00gBQOI32kAR9J5SVCmnOSoASkj3AGiQYhwfdQnkfpBQjt0Drg5FBwrQ1MpkyTyHrcvluiGkBF8uiy4dm5NU5uNrkjXWcx72IFgMCXJbe4G8xNXhoDno+TwVRcThoUBS50lMV0njoUM324Ne8wMJam1lRsjqctFh/nYhAayTSB0MgkGovnBNZrI2XKa8YXsAVoQiwBgdZEpQYpcc4hpMAZqCQK68U0TInvFlDs0y7h6KajwOGERCAIU8F8UeL/OX2Q/7y9yjdxE/9Z7F8f8if/9rmXP9f613jwk9/PmSu/jzQFza/7Wupvfxu236fc2JwO7DyfBscw/ful4LjywAOsvvtnOf3Rj9C576soKjMMf+lvsaAu8pbGr/Oa+vtx+AihGZmvhcZ9VO7/dipv/EHU7Blc2gVTUMYNbH+d9LP/nKfnnuFnH3yWH/oGw6+8+aUeJTy+7Pws995ZUmOHWfP7/MLir/6Z8yr33wnOwwkN5SJe7RKvLBZ4G599OTgelz476at47tgBY9HgFJfYvjbHmcNLlGq6OFMKTG2G4407APijl+jVX7X2e9OfG8ekU2H/yTm8WGNKye7hOWbEX5oGx4DUHea6v8NM+2G+Y3Qf96uAWyJJfXCFuRNvpPLG/5P4Vd+D9CvspC9y1dMMG+fpzT3GqXt/DyFg8b59XqhNK/GxEyxtvwFvsoAQjnLsc/B8C4CqnzLOq2jtsbx8iXq1y13rG9OLIgVp4PG7b//7fEYsUVhHbeVOPjAjMViECtH5kMNnGtz4+ByytHwt72dYXefqp/4WW5/5m1jtI72SN73pBzhXmYq4WQO7oxmO3JjSoJ+887Uk3pCqE7SNz2PlEQDMSwH1qfEpFiYLL1U4ErDZy/fNBCdolB4fXt/mzWnGhufxDStLfLJS4f6s4B92ejg0QfoRZnb+PuX4PfzCiQRPKM6aM8w8/TzqJbrzwYOvZP5vfw/z3/u9fPkD9/J7j36EN2dD/o+/8X2kwVRd3EnJSMcEfzDhhQ+tcnHwaqSYLg4KFxO4IfaXvgL31K/B3vP/xbk043v82p2n+Acnl5kPptXiuhLcVY/ZyAq+6vOXeff1vT+3RcFN3MT/DBCAJ6dWG+DTmAS0xpLWBKo6A9+yUPSxVhA7SSxDcApkQKUoiQVYM/2MsZRlgJ/5oDyktJixgQKcBpzAFQ6sQBmLw1HNJE47TORRSkFkNNLFOBNgXQUn4mlF2K9hRYhCUZUekUuwgxHStzRKkNYDI0B5zCaaWw49rPGmasZqSs/FTbUZAmkJlMET0+qO1Dl2MsGUAis9ZCBZ61uiAzCZhxQehBEuqiO8mGYucFIipQRPcqwzXfhGzrI28XBelcCWSGcQpSHLDEYHUERoHXFLz+f2fY+jHQ/pO0SksNLDZRqrLbZ04KaLRqk0tpxSt13kQeBNkw0yfJn5IpVEyGmFz9jp9bRlAFYRJZY7NqCWS3wpOTlQVMuIaulBGLMwVFigPY6ZpD56PLWkOt6Z0pDnO44chXEBNnOY3ABTBoBzCuckVlSgNIjcEGuNxFEpNbawUDicBicMeREjdInzWpiwivZCjIgwxgcN4Dg2gjt2HHghnh/QzCWSYDp2nEQ4ibQRQkpe073Aaw8uTb+vyLGZACewThGJKY22YiXTCMW+VMnzCaXk3FjSrscsTCTLmY+TEcJzgEQoRyAsaAg8+H/Y++94XdOyvhv+nuWqd1+97bV7nz2daQy9KKCiBKJBCXYxxpKEWBI1xl6IMZpojGLsBRUVFQQFFRhmYICpTN0ze/bes+vq625XOcv7x7lmoxGF5H2evHmfZx+fz/4wrLXu677uq93ncfyaHwnczjDWeo0VLSxtqnEC4wKhCI0oAouiWU6TVRrvNdc83eKVD0Xsv6QQCcxuePZvFQHxFhLiGJHkmMYsVXuaKgmosvKCE+cE15wX9DYgto7r+88ybyuEbpGO+3T6Z6EGhwYJU65Py4w5PDgdjkMkECRIJXClwJYeXwu8ikMTpSRtWXFw6xlUUYSBFNCsDF0HwklAglR4oTGFAAw+SvDGgTU4ocKwCEALVN0HZ5kdb9ErFCdWLLNDhUPhjaS1rjhy1hDXlljUtCiZGm3gnGYsPM2yJhVjUgfeqbCfzRaJN0xWQ3huJKMlMgKVgowULprAOwVaYaxGCIUQARHHgtl4lL2nL9Mbenojj/AOpCA1kom1CN+vEA5crLA6B5XgUVT9iHooqIsMbXtcf0oxOVJYXSISj5ESoWKyHIRwCF8jSossLFKCR+KVxpIjswQfOAmo2BBZg3cak+e4QtFZg9bQkY09dZ1gy7Cm8gUgBQXQKPr4CvK6AiS+lDvDKYkrBN6GIZyrU1w9i7MRUieIrIM1SZB5WIVXOSs9zVQ5YP/oWYQr0bVCqgTnUsAjdBqa+ihGRQ2SuIXXKc6EQaIzMc7JsO7H4VQGaKK0BqH+Rmxo+Ps5M+KayxdZ3r5EawiJkTR2rjGPoF0Kjp5WROZzSwq52iBfrf/lGm6V/OnPPniFEd3efIqb7v9JkrqPmphgz+++A8qS/nvfh2w2SU+cYP0XfjH88XNfvN0uC//hbex797vZ/Su/TPsVr+DUQxu8/5cf5eNv+ykmN96L9TlaJOTqHhJ5ksrtZat+PQAOuHffHv7tN383d//zb2c7bxCNt1HdLq7fZ+G7f4xv/asFhHf86S2Sdx+9CTV1mPx5X83cYERRwZfPz/JU8mlr57n+fta2jwEe7yUyWqcjPeXpW3mMfQDUKJpRzdHOB/naiz9DakteXd7F6OFAld5qdQEYzCxzYvYVNFUXh+d36JPM/DHHF0OzNIw1q493mbpmA6nhkfPXsi1a7F27jDYBfW9s/i5p+26+dnADGsXQei6fe4isNc3E5F4sIDu7McUqf9a5yCN7z1Lml9mz+0GyZjCB2vJTXErnANgzPE1z5Ub2fuRHeKa6CYCLH5/GVBIhoBq1OX36OoTw7N/3UY6tPIZwHuE8CMGHr11gjORj9SoAL16xPLx9FiEV8W3fgEra1L6JrQRHeIq23GazdZLt89dy+gPfgXcCFVW86vAfXDnm+tSAk8l+0tGA08sHuX8q6JYP1pqn3SQXXQslTHCpRnDnhdt4xSfmA3usOn1lO6la5t3nTzGFxXs4v/nNPPXMd/Hu4k7+S7fDP5+Z5s5HXskdT0yQVJ5s+EHeF30P/33u4+j56zj5qrcwMR+OyVNbq6xed5ypr/86Zv7lv6D51rfyba97M8M8ZEPjPS9bOc8f/OC3c82pJ4nXDdt/XfLbl36S0+PriUU4f5Hrwx99E/z2l0P96Wb+76tv3j3LPbce400Lk2xZzwP9MQuxRnr4oacv8JUPnWJo7WfdztW6Wv9HlBT4KMenTYxMiQs4cU4x1VdMVANu2XqSXWYDEUlUBiLWSJUipEJQI4oROALtTiaAxPo4NAA7jamXcUBHVRtr4mDC4kXQCouANCQINBrnMpzLkDpCxlFYtJaGsYWyVtgkQ2iBLQx21eGtp2WeE8x4XOFQZQm1wdcWsUNJ9obwhRSIyYGGiUBYyMZjsBorMrwJqItzKuAsxuFKgysllU5Aeha2YryIAtpoJBECKSVVpKkc3Hwm4tiFCIdGOcG+iwrjduiFSERh6fZzlNcoLfBxB6zH2ghnwPk0/B0OIX1YaDpLgKckQgu8lXgRBr1WRzgBwsVILwJdW2pAYF2G1AKhBK6O2H9Jc92llKhWeOOYKT0nLne4LI5y9/RR8GB8gvSKieHO8ARPXUmsiMNiWIKMJI4Y7zU+cIkBWBiv0qocU8UYbwXOhEZG9mLIM3wUYQX4kcTEMTbJsMRAIyzkBfgoxT7XsMUJXkc0nEUgiYzG2i7ex8Q4WlXN7Zef4Ja1x8GFoYKuPKVoosYH2XOhSTwvEFLiSZjdFqSlpyOgHGl8KbBbCl9onGrgkBijELUl9hYGBjs2oATeC4QTCDHCU1GWCmPDtS4VyFiBtwg1xmOR1GhfsXujYrGIMO0W+y9JbjgbvFQiF4GNsF7h6hWG1jDuptQNiY8ciYGlLRHM8HAgPV5orIyAQFkXSuEJgxrlYXe5TqcagQRVEK45pfFKMlaKJ6YkK70KFXukkgGl9QqiPAyBdIJG0xnVuKSJyAVoRznwWJeEY+ArhHdIb9Fe453AC42PM7Q36LHjwPpFjl1a5daz2/QGHlGDrwUChXcRkjqgm0SIOAUncERhGEKKI8OJcA9JW6LzFOkDek9LQRIo9R4ZIj3t9hVpiC8dvnY76yIgibARzPY9x85pVORxRuGsxKHCM4oGyijSSGKjlDJZDp/JSpzLcb4F1iKMx49KRG1RvkJpcI1WuD3L+sozBgRCwokLEUfOhf0UkUboFJII8Mi6Rlsb2B8oVJUzs9GiPRJ4BFXUCveDFVSjnMUNxW1nVnnR5QfIrMXXgsVLWUDJjcRVCq8VzkYIr8I+xCkiEnghsVIgHQgXgfFgwZUCX7vgaigTnJagJJIwwHS1wFUWyhrrMqxrI3wZnom1x4oUdARJhLA1YPBup4XwIX1EaYeyHjPy7Frps7wmSAsdmnofaOgkGQ4dBiKfY5Lm1Qb5av0vla0df/pfHmC0Faaezf5Zbnrgp5DeoWdm2Penf8L6L76drT96FyJNcYMBww9+MLzYOfAee+x5NP7zb9J5zWtI9u1l3K84f3KT+YMddh9JuVX8HBCWG0qs4j04n7BuvgMrEp6oHX/02gX++fNy7u1I/mjyGn7mm36E4oYbsZubiDRDIrnt0SpkSRrP8fNPYy89yDD7KGdmGvxWnfGpNKCBeJBOMTr/2p27TwBBz9Abz+BdzJN+DxeYIdpxG9hSTb5/71s43n+GE/0P0F3fZigzJjbXGKc55w++hIMuGHidwTE7/1fcaj9BOw1ThXqomL5mnekTa3gLv937Sn7tts/nL44+D6MzouIZktFH2CUW+cLRcSrnuWt9i42JoxzthIxHBXhn+IvkIax07N04Qz3tWNr9IAAXn3wxd5cvvzKUsL7gbPkM0ivEoS/h/vYxTKU4f9cMAHOTZ1hfX2R9bZ5zT+6lWRbsWz2Hl4LG2HJ6JuKPbu+yOpQ8oWuaStCMl3jcXSSJOjRe+SM07vh2Vh9tI4Ev4M9xumDYeoZyczfbZwPd+PjUYzT1aOccQ70pWDRnQAg+uXsvAPvr8BC+u17GeYGXjpgGQkX0kmMcPdUkLh+7cl124xvpuHBsje8w6xRf9PQZRiv/mJ/2r+R8rLn74Ad5/V9dZmnlORJYwTt6v8SPLf4mx5IT3Jm9KFwOzvGvP3WKHz91gSeGY77gE08y2EGXUyn4xWv28hv/+NUc+8hdTH3bt4JSNEYXmXz03Zz9qyb3PfFijNNFbOE7AADpsklEQVRXPp/dXoHx5ud0fzW04icO7+JHDoZr53xliKVgKYkYWkd0NSv5av3/S3kFtcQbg5TP6egdrUKAjsk3Y+oiw40lXgp8FCOEBhxCCqJOckVqggumX3iNE01M1cTpHOdTvJf4skD6MiyGd6iBg1ShMoUXOwt17/He4mOLEz4gT6UhMRZdOUQNttJIJwIyVim8TgiIhsahMTJFxA1kGuGtxIzA64D6gg/IUxZ0u86FRs8R4UQMKsHVMTJKUcLh6xrnNZXLdpr1is6GCWi0sUHnJ8FZjXESaxT55jq9UnFgVXP0vEL4MOAtmy1Io4DW2xrnc+q6gdVtEOCEoo4aBOgyhriNJ0WkOhCWEgGjCl/UYBzewYhpRjbDB6tohJLIKPzzcYo1IESKTpsInwT6bTGAsgZb4euaRhVMdxJbIyIFcczuYQSRZs+a3zHvCesCsRPn5GoCS0hatKxBtSDSHNy+wJHN0+wdngcpEBMxUVshhUAUVegfnAcbrhlva4TwELeRTuEqjXtOg2gt1GNk7eg6mDCWjtV4mSG1RyuPj3LS2iG9wwnNZh6x/5JkYlMQFwo9rqkvSrxKwEv2nc258UnQWwRDNqdx8TRe6p3mxiKiQO0XO4t1bxwQrjehFCKKwRQYobBOUJcpbke/i4sI34oNQCGEQupwvEoXYaOYphDccfkkB9bOgLFQG2Q1RNUlk4VEeUWugnGTiEBIibEJhWwjUo00ZWgUtUREEvIGTkYcvwDT24LJUmCTnUZDSnwt0IlikAku9gRPTO7cq4CrJJ4UX1kwcMelR7l+9Vl0HWHKCGc8vvZIBBKFczvXmlCUrgVxA6kbiO4URqX4PAYVkZaClHU+sqfkZNvgpcSgwvAGiY/aeJUDip3pQnjySE0tIlzlcFGEi2IYV7jRcMfUK4JSw7al3pIY16B2Gc6DUzKkseAR2qFzi8rBMYkcStxI4kwT71K8j4K+36ZhSOFiIKdUbVx7DyLO8ToMh7y1eAdeKrz3YWBRO3wJymm2pg/iVIZMU4hSRJ5R510sMe2BpVOF69NXJuDfkcJWkj3nziGc55rTpzA+ZVsq7pt3PL3LohNLHG5XvHXgHLs2Jbs2dvBWGdYuqZHMrTWvIOXeSCQW4esdxkwWdNZeoFR4PuAdu9c0x09lYGOEDhID5x3WekyWQiTwyoBWOBzWJwgMItKgNBBhXQ4mwpoIV0jwYZ+cCcdKxYHV4nc0z86mtIcJe9egXXpsklNnESChVOA74GOQn1vre7VBvlr/0+W9531vf5iVM8Fua2lJcPOD/xHhHWpykn1/9h4u/9iPs/3ud6NmZhl1Fv/W62WzCd/4vfz1zFdy9uynkbCzj67zB2/7JPe88yR3VL9CKjcY2xsxfholVhACNuu3MHHHKtPfdh3VTIPfuLAJQF7Df3qw4N+cSjn+9rfT+4qvwBdjnLfce7RJrQROCX7xdU0uf33N+v6/oP1jKXue+fR+Ka+5/tnP47ybuvIz3XoIocbsGi/TdClSCO6yocHbVg06dsD3P/1f+N0H38r63csATDYP8sCx5xET85aTjgSNx/PTFFyXnuGO5dAU2kqQdCxTRzdRsac8NYcce7wQrDVDDu7L7nkHqY34d2e+CYBHxpZx1GB3qulqifcWIQSu+C0+MhNigbKkz4sO/F5AgweTvPuRN/CXlwPFOzFjbtr8JB9dfS8AX3h2wPXbj3AuWWD9iR7jQYYQcOzYX7G6tsRacQTwnDj3FADjJOiPPrU74QPXzfJI3zKSsDeRXBxM4nAIFaHai4zM5zFeVxx0p9nvn6FonMdjWXnoH2GKMLl87YE/uXKsxXbNabsbrGNrKWMYw5QTtJ1gy+c8bGfDQufSSURVYVtdeuIAujxzZRtP58t4YECHSG7RtP+VN33qD7jj/MOUl15LvXEzJin57n/apG1uAaBMrsXJFn/V/jD/bvlnqbSlm8wxyFvct/sov3jmMq+77yTb1jIZKX71xF4evfMEXzDTDfutFNNveQt7fvu3sYcO8Nj0gE8uOXTc5ZkPzuB2LLeVHVD99Evxxac1xp+tvmppmrcf200kYOg8lXO8dc8s8ef4gL9aV+v/1+WdC/TYWiJEjBcCpOeaS5rrn5G0yiQ0vC7D+hmSyhHZPgJD7D2uNPjS4EywuJ5fD022rx3ep/g6x9cJptyh7eFBPpeDKdlzsUM5llSFYFiBC6JBnLV4mYfFOwmxLRE6Dg2FtTivg7O1c1yaTkBK8jpCGEHk23gbh9f7GI/G6hSda1QadI1CCHQ7xjfbmKgNUmOlRMQxaI0xOdZFeKHwLsELCVWFixOwKTMbOmDRxqJyhVCKlotJbRPnNPHAMTNs0k3n8MkUyA7aNKDaSVcXKSAQrkSWmwGviWLIcoruJJ4mxC18NoFXirrdQmciNJcevFA4EpypQ7NrZPgdQVrivMW7BjpKUfkOTZ0W7FDbwz44lIJ4POKOlZPcunUasi6kPeZGPe54OmF6EOERKO9QSYZOFKQNnIrxsoUVE5gyAZOAnUBawcxwhPJgiPGVwtkMRg7lQDvQxmJriygrIOiesUWgCnsVGAlWB2q2czgXEaWavCoRNsigVKaIWhGaKKDDMkJFilIEyudUOeRw/zzdog+1x5LgfQIE5L/YaaqM0ZSyy46zXNCg6gSiFLLQxAstsTI0YEhwpiaanMakTbCBDWWrmLps4nyLMttDFbWwUQenm5hxjKwsam2McB4rNLjQPTivQxfkUpqjbaKhoTlOEGOFLRSu8KhOhs9T6qLGFUVAb40Jn9t7sJLKJbQ2Eg6c04hSoMY7WlRr8UQQZ8yUCbvXBdc/LXBWQpwgktC0CiHB1ER1RWbqcIV4h6003oPwDiElkIFp4kyK8D4wFZSmpEOdJtiGxkqFi1JMoIpQxwR9PB6vEkSSQT4FUYqrBXZcgpTELujEhfB4CdIUIaPYBI8B7wyi9FCE60NKBVEDpQwIHwYIcRh02JEPrDud4mwDkEjv8SrF1+CNwBiJCxMIHFATQT9CjoOTv3A79wmwowFASA9CIkWKsym2TugWfdTkBMnMPFlzmpI2RkZ4LRBJhIw9KnHIqIGMIryKcVLS6zte+qnHWFjZxpng1N4cS7ojjXaCWIor0gmXKVwwqQ+DRCxChGFfgJkV3iuED7RuoTReRXjycA7HJcIGtDnyjl0bjm5pA1osFY4cj8KoDOsFzmiGNBmJFGNjnI9QUYzE4K0FmaC0RbgRxtZUKsYQ4aTEawlZHjSMO76+nmDIJp3EqShkEZQG4Q0Yi7UqPNplHJ61n0NdXWVdrf/p+uR7T/P0/YFee+SWSY6+7/uQdYnIMkZv/Vk+9g0/wNYf/iF6epr4+HGyS09dea0+di3qP7+Tj5xdYmq5SdKI2Lg45On7LnPvu08xNZex+NTD9Ia/h/MJ1s8gGCKFYWBeQxbfTXTxj9l6+yMc2xhzsSVoIZgo4d3zmoc1PPDn55j77n/Lz7/xtXgBt919ks/7pGOfM/zzk89gD3t8IlB9iC+GprI3nOPLPvmdeDUT6ESAbDxCtvTbeNHE6NsYyECPbbsvYNPN0LZDHNA2fbaLZdbOSySaYvtBbn/ySWSxhZeBEryO52NYxo8tsW+yBKB/LufUny+gM4urJQuXmmw2O+FhJARHTz7Mv/j9+/jRU99C1+eMned07YkEHEvDPgqhyNWf8TO9mMXBOgjLkWMfREUlzgYk4XxW8Byn5Nh4g57ZxlZbbFdrzPsGY93jI71bWY86PPHAzXgPjcY2Bw/ey9LSQyTpFrvLs7zqobu58fSjYUve85FjGe892uBHDsW8txpwUQx5h343tQ+sguT463nmL3ez8WSDV4oPIvCUyTpmNMnZD30rzmheuHQ32d9AkcWZ8OWMlnxkf4JAsK8O+/6gWeDjwy7p9ii4U3qYYQ/fcS7kGwvvMFLzWDrLD3RuYb36WrbOv5HW3I289tzDvNgqiouvo968kVFa8MTcYzz/5D8myb+Rjbnvw0SLPNB4nO/Y/VMcmryNWkdMr11kXFWs1pbDecr9tx/nlVMdMvV3H53ZiWs49Du/g1GKWisuLh3gnuXv5KP+X12RIcTmHMUP3Iz7G/fEZ6vXzPb4wPOO8IXTHS7Xli974Gn+YnWLS2XNGx94imd3tGtX62r9H1k+oLQA3hhELEGAxtGodXB3FgJsBsMIOwKM4rZTEbc+A8SSvaugSTjxDOxZz3G6hXUxxkus8QEhAgQW2dCIncXq0ZWcmc0I47s4F5ydMWM8DrZDTvIOjgdCX3n2C8DHbYyNMUWCqWKcSLnhvOS2Zxso3aMSHYzo4pMM6RQMJY4Gzim8lZQjTV1kmCpBmgJMRdRfx28Ngu7ZCZzLMHIaozrggzs3UuCilFhplPRILK6ywRTI5YGqGsX4qIGWKnw/UqC8RDmJVDHkvR30DHzUwI0tTueoRCOjYKjkjMSWAuETnOyCa8I42kHgdFh84kMkjSEgoT7+9Gm1AsohPp7CjGLKzTisVKXAaYmMElAKpzVoTWIrhA/NSlUX+LJEVuBshI0akDQQKoUkx45rvNUBca89rtB4byHuIGUPLVJqkYLxiGIcfE2MwCdNZDwH04fxUpMMttF1hRQRRmhcsxGGrDtNiZF5iBESSZABuB29rSkwZYzV3fAzm4KOcY1JukUMUjNfxcxXQ6JOjFIitDeqBRgqdhp8BMJFCF/jVI33O1rascX7QJImjkGnEIu/xfwU2SSx7obziQCdgwhxX86OcTqikhnWRhifhPxe4SGNEZVBiQghU6QTYGOk0Sid4m2OMzHW71CnhcL6JnWtsRiskzivw3kpBN4mONeAqsYQKPyOBENEv5NivcM5MDXgNUtbKVmhcCYMqohyRJyAq3DW4AjZ6FWUMpYSJxt4GyGlCeitkKBi0GHoIos+0jqMi/F5OxxXL5ByyHTpWRwIltdAGIMWHp1JRBzhVAvnFNYH/wPnUo6s5EwVlms3DHX0HHNwh0buUxA5IgGRCuJuB5VphDfIrBHYYJXD5A1oBm2HsxnWtACB8ynOxXhrsCbG+gZW6uCmjApoOgFgEuM+lbc4nYGOkFGEi3tYMkQsEToK/gMAOscPNDLOkCqhrnp478A6nOzglQrbj6YwcibEOvUVTk9DYwkRz+B0hovARxFVSnhvcoSMEFGMkxoxqAJ1XMSBVuAsQjicl2jXCD4EIsSfOQ+FbFG7Ais8otHE+hTrYupK401EYAA5nBGYSgcmTToLtUAPK2wNYzqMXQdDFoYtVRFYHbITGmrVwBOhTIkzJRUwVg2qSOLSCq92XOGjCB81QUZ4FeHiDCvzIMEb1WBB+hQlFGpqCqk/N3/qqw3y1fqfqvv+/DT3/OHTAMSJ5NCDv4y9fBkvJB+//l/yzC/9Pt17/xCnIsYTexj95QcAqFTGQ0e/kvdNfz3v/eUnKQY1q2cG3P3Op/jN7/so7/n5hxlcHHN4UNEou6zVb2Bsr6Gp/4xIrjC2tzBY/teMXvcTuC/5RYpdTT45penU8Jp2i6cmFD9+OOHCmuFj7znNBx9b4V0nFD/5JZJaCb7mfY5v+U3P7IcUE/9V88lZQf2CPu88FrKK7zz1OvYd/3M+Othz5bMmUyGGKeUGskFA/SIvOWQXKc2bAViNesTe8sjmc67V4X+fP/s61g9eRxYFJPiR8gJz5UX+2ZF3scNA4cwHFpm7aRUhYeapE7wrPsF6o70z7bV8+2/+EpBjN5s47/nEKDToN8rhFQRRy3s4J9/NH9QvDA6Q+z5Bq7VOf2saWbZQaR9rP/0wWGgvUCUNBPD+C7+OFILtpa9gM5vkmanjbNs9nHn6GBAWiXv33M8NN7yX665/L3s2znPz6SfYd/nZHbqj5779GRdrx88d+xHedfjf0vj4Jyk/9vbw+igjOf4GLj/QZrLY4Br/OFW6BkC5sZvh5aNoafn8Pe+/sn/qYgHrwcDtvoMpVsLeHTqcA7bLjInzm6g6LLIVCr99BG3rK1PBb9v1PP6s+wQXeTnxvi8kvv4r2H3jl/GDqsXn+5jiwuupt65nFA1o1l3e+NcGYWscKR7F0+mzvO3I7/Pwza/hwtwytY5Q3vOd++aIPkNj/DcrznLmDx0Nn//RC2zlu/jkpdu4e/tN4TN4QRZdxP2nO7Ab6//gtv5mHWyk/Lfje3j5RIvSe9700Cm+4/GzfGC9zz+67yQXy/pz3tbVulr/W0sIUAki2jGEcWBtROXbiEZOlFfIOMZHCXXHY4XBiibaheGiLxyLZoJbLszQqjOUiMA8J4+oENTQmIGkg2h2QDYID1mPLUtKBCMncKUFK/DWBSr0ztBKpglCR4Hm53xAJERAQ9NhA0sLo/ciGvNQWYQtsWZIQcHQj0MDKCX4BOM0zki8kBgXUxcRzhEaP5XggdpqXKKRdgNPxLjSO4NUDVmCAlwU45PQWHqCvg8lMHVJUY2xLkcUFb4oiUSNFDXeQ1WXuLrESsFAxtioiYsT6kZOpTVl4ShdY8dEKRhz1VVGsemwm5LqcgS+ESx4kRgZmuxxNEXtW1d0wMJ7TBXQNVQEokbIYqex2aGR79BMCxOaRaFk0G2XBYxKnKnAGoSrEXicaeCq6tMNsd35ogScSnccgytoz+PTjNLrHWa2DakYKISfQYgEVIIUHi9CpJXzNbYxhfIO2UpwcUydheNgCaiZcxGeJFBdRYyLGpT9HSSyMYvMmrB1mdntghv7EQeLFi7ROGXCUGQcYqiIGsgoRouINO+iGg2EKwPFOgumUA4QlQYL1k5ifILzEbk1GHLSWlMOEywC/5wsQWqsSqilRqkeKpsmNhZf9kPYkffIlgVfYDVBox+lmChlFKV4nWPqEhdFmDQFEb5YvcqoBxmqFCAkhW5QxDPUuoXTMbYWSKGJIoVMknDfSEVMRIxCSYXVMa7ZwBQGYxqhYfMSXzpUa3Ln/g5MAUkgIjg8RmlsMoXLFjFWBYM2W+NVDFiEd9iqD/WQuL/GZj3FRnM+NJtGIX3MoWKKplV4J5GixpYm5CXnDZxSGLlzTcqEvC85dkqhBj2saiKcRhPMr1AtZLONSwUy0fhWhGqkeCupfYaNE1RkkFUVnh+JwktxpYuyuoNTcTDRlBnGKsRO7JeTGpv1sGmbwY4L+zYFZbwj0TARwlmciKnGOdaIMADrdCCL8ZFn1N/LuJhDypKkGCCrku2p2R22R4zr7cY3ejuMD4+2NarRR0ZjZMPimhHSS3oDRzq2eOlw5Qhnd3jKKg3XptTQ6mDjHGLJrvEqqUm4dsVw/dmgXfZaYYRESIURHtfO8a0cF2kMMYUUoDNEkuGtCr4HLke6GEqNMIFh05IDtNjGOiBqUtk2tUkDy0dIXOmwTiGDPB6NwMYRUhmU3w7Agw/kfN9aCK/zHkoPRgXmhYPKKaxMEN29CLWwI3X47HW1Qb5an3M9+Jdn+cjvB+RrcqnBKxYfYvBnf0YVN3no2NciijEHT/5e0GhYi378XgSw1drNx1724wwO3EGch2YtaWi6s3mIjCBciLc0FFNasmFSVk1Frh4AoLQHWK+/ne1eg9/+2XXe/gOn+PpmxVtuyljJJN90ZJ4vTZvc+UiBrsOq5zsfPk1cPMy9hyU/+npJqWHhWYFtecbnJb+ymvDm23ustCXtccSRXQ/wZHOLcsddT8cXUVkwf7rz2ZjuODTS++wcEknhXsBW/WYeFj/AmIhHNtsQlhwIJM+4MyyKCXLClHLj0h/xxZf+hM3psEjsP5uz/JLzZBMV0do+fqlxE//9utdfQY9f+PAnmBjEfPj2H+Zk3eNPtgxrRnNs+zFmd+jX8ADT+if48fiFvCw6yczUaRYXH6euY049cx0+W+fZwQxnVDjGLQcXF7r88cu/FIDKFVweneU6aXhD8iAHOgGJvPDAPJvPNAnsKYHWFUkyYn7+CZyrmd0Oxl/KeYwWnJ2OedGpL+XWU9fx8uxGTh76PJ7YcSaPdt8JzSVWHmzxUnEXRm9cuZ7O3fUlDC5O8JJdHyaSgdYGkDy6gbSWMlN8alfMnjpGYXF4zuRL/P6h1xL75xAjx7Ms8IJn7r+y3Scbh3DS84MLPx+y+oRkVmSsu4pDfUXmoDj/Bvypr2fP5jGaQ8PyuXcR10/hRYTRC9y3+EXcczDkUEdVwZvf8TPcIT638LyXfdU3hOM42ScxfRCSB/qv4tHxS8KizYOOC9a//VXY/udOtxZC8AMHF4MzLvC+tW2ua2WcLire9ODTDM1V466r9X9gBU4jYaIV462nki2s7KLyFirOIQrNoZcFtuGxMsPSxLomlhwfZTjdwMVtdnyAkVKivEFEUKgYM3UY1+4Et+CkgXMptbFY56izCWqZY1yMS3aiZqIE0t6OAU0dtMlS4XWMkwJjCqRMMUmHhpzBWYtF4WqJswENpBxioklcNEmdTlKXEpu2sFkTG6XgHVrEqGwS2Zik0ilGxRS1A28w3lGqCLsTQ5LWCTJJKJJJrE5C4xbnAQlDUaHBVlRGYFyEcw67XSL8TvapgEJOUtsO0pogEY33YOQ0so6oZYcBLWrfAR+BiqidxzlLv4oxyQ79MA7oL17jkjZN5zHVTs6vVshM4rzHuhAPpRsNZBKQTj9KKWyDyuW4MmJL74JoBhG18TIN+6kVNBoIrfFK4J0MWmw1R+0mcTLC6xThzA7CFwU9cZTjzAq2Wiex4HwL4xQ+zaE9A40pfNLGeM+wMY9NUmzkQFtUo4dqtfCxxMcJotrCeBsoymkT5zXeC5yPMGhW+jmFz8EW+P5F3PZmyNH1EI8VMgpUdjuKqEsNTlPSwhiHdIBoYeoEnEebMdJJSCYwKsdVKcLLEPslmog4wVjF0a2zLFnJof4K1COGsqbyO7E9OqaePUExcYTC1thigAu0Apy3OG9A7wwwSoM3ganmlaZMW4zjJkZniO4CttkO9GXvcDzntyLCYChKIc4ZxTMYl+N0FwcUpoXxbUyrgY8UWdRgbtVipMbYBCcTEDYMApTE65S6buCiWUSrA+09iCQJzwMdI2W45kXUxJVjfCWCHCPg7tR1gTUFViY4GYF3tMeGVl3h8gxqgyki6rKJcZNYkeJ8EpggGsRwBeIc8GE4VY0JPgIJQkyDXAjDkCocJ1OPsGaA0BHEAlMW4ZhGSTgHeUIiQ2IHQ4P3Hh95ZJLiVAJRgosbGAFVOaB2DmkrnovGGiVNxjqilAkbbkyRZlcMwAC8GQeGga2xdZ+q8NTjFF/XCFthhcZZhxCDMJSKIjwdyFNcSzIylynKVbxKA8tEabyscWII9QhBh87Ycd2zGQc2kvCM0xG4CDfugp7BlTm2HzPwexDtNuiEhc1Vblg5x3Vn+uiihY0SyiRC1RXSWpyzlJsr6G4H0ZwI94X0OCJMtoAlxbhsR07icEmQkzgREOmkrlG2wg3Ogd3A+wInY3w9wtsKq2JKD7FMiOMcHcUgGyFBvIqDtEM2Mc4EhoIpkIVH2AghS5QIdH6yDkwewgwM7qqL9dX6v7I+8GuP8KHfCVTWhYMdbpt6ivEv/SxWRjxwzT9jq7OP4596ezAKEAq5M6JxQvLM8udTVZJxv6YaW5Jcs3xski//97fxNf/hBdz22r08r62ZjiSFWyWTD3I4eydCGMb2MKv1j3L/SPPRB1ZJmxEXtefhbrjAdwnJgTzl3yzNcudTocGrFJxpjdHVKQAe3Cv4kS+TuMSj+gIfhxB3s9M4RsCJ3/8r3vXkq3c+rYDkUuhVvaBZN6/Qin/ipqN82w0pX3Vbk6fUGzi0vYf7V19N6Z5zwfYooWkn07ygPopAMPaeD7SO8ILJk9z3jiNc+Pgk7eUR3X0D5KhL42nF7yy/hiIJDthZMeKf/MUnuHTrvw4PQkDVQ2469U4OLB1FCMFQnmYx+XdsiQgTzbGUbHDw0N1AiEOyNuJPPvRWfu0T33jlHN5Qak4uxDy9tJco3wPA/RsfoCOGaFxYw1pBPbXAySdvxVYSFXmKjdDk71p+mDqPuWff8YDOaImwntWO4pldN3GoeDPqwMu4vrcPtRPJJIQgv/1b2Xy6SaM/5Eb9cawI58nZHiffNYO8uJ9XpX0yVQIOCo/cCA32h46kKAR7qh3an/e02xYThTiGYO1hOfTsOSYGWwCU2Y0APNR6ij/rfBjnHZGMSWyfST/gi4cpoOhXu/l4VPGJ2LL/Ysag+xWsLf0cGzPfRdW4HYQkH27zDb/+NiY3LvPL3/M9lFujz3qvzO47wNz+Q1ze2qAs303Pr+B0xl9vvYUL5SHOV0fwHqYWHmPlW74EOxh+1m0+V3uyhFdPd8PxAx7oj9mTxjw0GPOWR05jr0ZAXa3/w8rjwVtEniHShFpM4OMZhEzpl0uYocUXJaIcwpqBIgHr8ekManoW32hiZY6bP4GdOYJpzlN7j4takHVxssWwt49+3MEUO9pG5wLiuINERHiEinE6YeS7FESUO07SRrRCEy51QIddA+daAXGLc4yOwVT4ahT0qr5GWIsQDcpGxqiRUHV7OPdc06spVQeTt7HZQlikxw0QMOwsM8omKF3OQE8ziqfwSof2REhGA0M5bpCpFsssEauE/f0uVjfBOZQdo22BcBXBdcsGtM5F4Thn02iZgpM4nVJ2djHoHSIdDEmMxWcTaBWTj8+jui3E9FHc9FHqNAweBuMG1BWuMHg5gTQGbUY4V2FUTO2aWJFhfAOXtSBpUeoE8hyZpCAlwjqiApJihFeSXG0iqxWsb1MuPh/XzMM/5/A6Qqkk0IcxoD3kk1ip8GYUhhd4RNIFBK6qoexjq3BulUwo3AxWTGLyJWxzFpN28PWIzbhLLSpcpPGNBq6xhPGT1KKFwwa9ZZRRJ02qRhc6PaJujuxN4BoTGBlRzR2krkucLbAVwfyIiFGdsTmColS4SuBqTR03UaYIGuaiwo0MtqhwZYETMaVawNQ9fJ3hhMK5OCCdQsCoj6wlkfEse0GkYsq4w5aSO02wxSKx2QS2t5dq6iibk0eoqzHOFBjnsV5CIUDLwECIUpyKMVJTC4GP2/Q7e6lMRjSy+DiDVo5sZjgEtRfYKEVaSRI1yepRMG/yHo+gtqCqGo+nSmJQGc6FjFnnHGKwDlJQ1mNcXYXBRpJSi3m2Bm1sUSCcC/r/KEHVBUk1hqrAuzrQvVWg+5pyG4OiilvYxgRu4gCmvYhvzrGyKCiyKqC1KsbVFudjat+giGbx6QxWt3EiRBxZW+NMgVNJyP12QdesXB3M0JIwtBEygihF5R38psNdHGALgYg0virZjrqMmrvxOgnNsdtxZtYaohSftKlNFaj8UmN1wnQ5AFczW27TGG7TGPbJqzHjxhSjuIWsqqDNdhbwWG+pPYzkFLYGik2wHjWhcL6krobUdYSTMVW2i06xQ3r3Aq3aRCR4W4Qm20YUfY8pKtxIYv0Efoeij9bEnS7V/H58noahERahUwywFnXxjUBnr3VKXGxT1hpnHMrXZL5A1AX1jkN3PWpSbEtKucCJcZfrL0bBo0AnkE7gVIIVgjL1uHaJjxzYmqKQVD4HEVgpXtcIsTPoFypATqbAK0WVdnBCUSiB8THVqIe3Ci81rjuN9sGozeqY0nmss6AcPhNhwFIOsJtPYdOdocnnUFcb5Kv1D5Zzjj/4D5/g0bsuXvlZ9OwjjH7qBwB49NAb6bd3I7KMYW83TkiUq0EImq98JSBoLExy7AULvORNR/iy772Fr3nbC3jl1xzHe89jd51ncaNgTgok97M/+yr2Zd8T8nndHGv1D1P4Putig+3VgmJQc9fxjOccmY99bJvf+cGP8f5ffYzbv3gfSa55aE+CkzVWh/xcIeDUMqx/k8Elnt6G4MaTOx/Gwz//1JCzxRKXyuDi/BLeQTITTKwykwFBdzWxusob3vO7fGQm5tGW4F2LAu89D28+hywKYmkxvmK6TOgR4oD+WtRsd6Z4YnMXxgtUvEPHdpCfmubu+z35+NNN0hff8wiT+7+MG5sxL29pEjvgzpO/weKJ1yGkpi+H/NzCDyCE4Qft6/i46POJqIvWFU9s7CXWI1Ltec94mVM27IP2cNRoLvU00dkhjy3dDsBGdZGTw489dzgphgfYtAn92lzZz7hZ0r/YJI4L9kw8zque/eiV4++VQFrDPYdSTvUiPlzWOO/Yk0g2TFikyqxLcsObuPiJDneKezE65B8L2cCLWU7f/a283mh+deIpvubYbwEw/+RTCGdZ72oeXo44VAfmgQTO+jle7f+aN/AnCFyIZgBe+OQDgV5jt66c2/8y99s8k57HeUcjmuSO5iYdD1/rYtoI/jp3XM4v8uFrjzBufx7B8TLQCkW9wmvf8xNkVYEHzPpZ/vsP/weKC58d9b3ulWHYUlTn6J24RFtuY4n5w40f5EOrX0Xtgxna1Py9XP5Xb8LXnxtFWgjBfzyyi2ua2ZWfPVNU9LTiz9e2+d4nz31O27laV+t/V3kRtI6WDqZ3lH5zFpl2ETplM5tmS0ziAFMYfAUUKdDAx5OM4mUqkWFVB6MThjLGpl18bx++MRdQZiK0FMFcRiXh/awHnWGSDiZrEaVNtA/Pa2cVIybxHopim5Gew4kdIyOh8M7gbI3QEf32BEU2zVbuECpDyAhtIoQTaBEjrWDsVilGpzCuxscpptNiEMG630XZXKDq7KZSGdXgMiJJ6C9eQ5VNBtQpjhFKY73D4qEaYOoaISNa2SS3bzaZHhpco0FFhBWBpiq8C5ElUcZ2vo++6DFKOrg4h6qPr/rUjS7nG9OcTCaovcebknhcEvuEcWcSGtPIPS9ARAnC1mhbYHyMtRJvwZgEpyIKJJW1oRGK2hTJQWo1DfkSddoLul+xY1msn6NTpxBliDQmVdtINwBV4Vq7qBopozhmEIVY6dp3qGUXmXiSriCbq7C2xIhgxlRnU/hiA2MN/aTDhpuhFC1KFAMURsQUdoZhfiPrs9dQIqg8+CQNdM5CUCRHcFtnqbaKsN2sgZnsIaKMxniMNTlOp9juMq7doZjcy/b8UUyahQW6tXgRU+suhggjMwauR+kjaq8Yp5OAQ1QDAucVcJJyrKldEyMiinyBykl0NcQ4T1kaqsrg6jEeiZOCrVaP1aUbMTPXYvJpBDE2auCExsUt8qxL0pjELlxP3Zqn1FlwZxcCo/OQRWwjnGkgvCfXGc6M0dWIkSmopcL64PqLinFJjnUGk/aokg7GtsCG8F/pLegGBOsrcAYzXqesC6pmhJE96mSWWnepRRb0pzLHRBlOSLz1+DTHePC6AXi8FCFCDU8Z5Yx1MJMKt54I2ds6xdkKj6NO2kgESghE1uHyzEGq1gRmOsf0FqjyaYqkHdy+VUqZ9NicuBWrd+PVMugMqwLCK6aO4rMeNusikyboFLnjmCyyBIGlsB3KWmBGFc5C3Z7H5TlMTtDvTGCiScpMBe2rj5GVprYppdAYEQyo6qgVGj4JBzef5fr1Z1gcb2GzDj4OeuWkGtKPEqzwOOEC/VwE1N3FGbY1hVMhRk04T+k3KBvTeOeoaskw20WVTiGtQTuPsOCjFiKewkUNjErYkJMMTc6wbFAYjZcai8R7g6kSBvIo43iSuh1RdQwmE1gdA5JhNoVNMuh1cHlGLTUOcF5Ri5S+mKGKWgyjYLxF1OLZ/AYqJ8n6E6RlG59EVM1WeG2cY2SMd4662aBK2wzjDrVq4q1A+GAs59VOZrEziMYUtjlHpZs4FVOaime7x7mgbmezP8dglFPbHFPGiLrERAqnI3wUY5XG1aMQLyXAJE2quEltSsZR88r69bPV1Qb5av29VY5qfv177uH8kzsNh4BkvM6e9/4EAhgnE6zMhMzY5uXH6V16ELmjGZr61m9h+af/E/ve/ad84c+8iZd8+RGOPX+ByYXmFVr1Mw+ucvmPn8Y8uIrzY6biXwiZlcLhPVwofgDvExZev8hX/PCLee23Xc/ErdM8uBwa1t6W4X03NXh/blk/N6AqLV/0r5a493CEUz3g0+ZFd7YM1QHP2jcZqsxzV5DZ8vzHHRMvMPze4RcBEFFzavECMl4HD3dcvAO185lOPPQQv/uy0Ph4KRGTH+fS+CTb9TY7MercNPEsB1pbFAnPWb/wTl/xxvbvIQ9t0Du8zsy1G3gniFcXefLjIx7edYJRFhrZg2dWOXBpH/HOMTLlNi948ldp3/J1CB1Qgu9f/Fne34r5w7zJe/d8nHTuj/lU7Xnbx7+RH7v3X/DU5h7mZs+xvKPTBVg2ko1ehB5VzOqId734GLONI7g4YbMb3lsVXU66Kf7ELPPb0cs5+0QXH75HeS4XY2nXp7ju9BZTf8OJ+db7PoKXgj+6WbNhMh4eW5QQpNLyZBmmgdHy8ync84jXCg7rd+1cTgLdeTE6W6d64fcxOP7r3DHxOLtaz7KyPckdF/8cgI8cTtlnFMI7PIIzWrM93sNxTnItjwa3wrpibnudYxeeodF/35Xr1QjH0/FZpJBYb8nUfvY2DV8pU/61T3GZ4sHbjlI0b0PVm+jyUZAxwqzSXfmPPLLn4nObAmD7/AP89s/+CqNHV//Be+fw7Xde+e/H7v4AX/h9LyURJY6IvpnlV1Z+gUvVIXQMM5Mf4OL3fPsO4vXZq6EUv3xiL5PRp7XlG8aSS8l717ZYqz43KvjVulr/u8orTSkmGCWHEN19gXaYNNiOUs5P3EzlWiB2XGN1gosaDGzN2UHEaj2JEYpapYziFj5KkTpGOBMc/PF4HVOoBgM9h43ToJ+MUmzcwk4t4lyBI1COhSToYaVC4tnedTvF9HFsEmjRlfNY73HNGWIRTBObJtCqcSkum6Hs7qbUDSrZJCo8ckhw0S3B15LKzKGUwNVjzPY53GiFUd5DpAnZ9iVAIG2N8I6yPc3m9EEqL/BKU+Nx4zUKO0MpIrbHLS6NZ9iMd+NUHBqZqIFTKeN0P7aZUTc0W41ZiGLqfBobNdBOkEhFR0nqiYPUc12G+x0baYON9rUMTYtROaAab2J1jokbjNuLO/nLGqOHVMoHKiQepRKUihDGM2ocpu7sxbqaevsSZnMdO9gKSGDaxSYtXHMBk01hao31gqgh0dvPUtGgShs44xFSIXVMiQzOxD6g8EpIhlIzkDrQLM2I2hlWO3tYmb2JOp/ERs1wcTlDLTTDuuKiaDJq7WLcO8AwnkI4h60UW+19jOvghmujg9STk3i/SGwsWiiczBiLaxlGR9lKjrDpNE1RIN0WQsrwTyfUrkM/XaCkAV4T+4QimsZFWaAnx80wZBFyJxdW47zCJ01EvY1RgY1lhMJIHaKJ4iYu6eHyNsIrtBuj8OQ4Oj6hmLmBsrMMcR4kXLGmVCmMNxDNKUw+ybC7myKbwJNQuQlKnVElDZQpuXlrjRdfOk2edci7bepI4qOUSjUwWlElPZARZXsXXsbUcYOqNYedPIRvTOPTDl6H/GKEYmBztvVBfDoBMkMJDwjWzG4K2UUIxSifx2ZN0DPItEXdmKPWTaxIMTbIo7YnFtludnG+hCyjqiKIWsjuPkTawja60GxQyxijM0x7lmhpATOzm439h1k59kqKAy+lmjqKUxFeSrQdIOuzOD/EOcvAVFipEUJh4ibj9m5GMgcVYdMJanqILMMrHVB0mTJek5T5frYmbubM/PNweU4S5XQ3tpGrZ3GxwM9GmImYcZSzIacZdPcw9g5lRihb4lSCiVpoU9IerGKqPj5KMFkPq1K0cXhRU2URMlGQZZS9/fSnDjJqL1H4GKOC/r2uK9YvT9Mfj3eepgKbT1A356kkWB8c28fsooqbmM5ufGOWMp1nc/IQMoqQziGFDHINX2F0zEbvAHU6hWs1qPfO4bxASE2V9UBKCuuoZUBuh90lhs15TNygLhJGVY/+5AHq6ePIrIOP27S0JpIeRgVW5Ni0QaUL0EkYVDRnqOO9+NEivtKMGrOMmgs4ITEyMAeKcSNkLLsaV4+po4ytiUPUaQeTNiiTNi5usrZwE8PmDCUS7xzCjqiVwrQXEGkbHzWwKsEnMmjhRRSkPDLCNaZ3Mtw/e11tkK/WZ6zt1THvfNsn6a8VV36m6oKb7nsbytVYGfHJm97Knuw8N+3b5PqTv/y3HBipQnOa7d39975HZ6vkaBZy39rqD4nl6Su/K9yNSDlPuatF9rxbEY0JpJa8g3EwRgC2WwoHzKzVNDqaS6u/yQ/d/+ustGKy0TNocxG9Mym6JrFUpeO704Tv/UaoI0FSef7pRs1G3ObD89cC0BoP2U4u4YjY1z9Gx3QQgKprHl/Yw/mZOQCkq7mu98s8XP8FANf2zrGvucG13Ut80eKDTPtWOAzecO36b7Jw01kW77jM8osu4T3MP/wGTv+l4cHmYe6/5rawTev4gvsUPelZjCTGWfQT7yK/5ZsQKubj9hLvmPhTHm4G6vgPT00howGunMKOd3Omv8xC4wIOyd2nvpynI3eFSTJjBJ/aFdH51AUmxh7jPU/uWWK4+8iOhb+neek0z+oC45tk+36Sc2dmePSjs9QjSWuhoOw3SNMh0fQjOPvps+3jBsvPPsVqr8GH9p/nVGF5pnRkMmJO1gysRwhBess3cP7Bg9zSuo/nIg00C5hxh8GZE7h4yGPFNFtlG4DHHt3LK92fcnkiImld5P3xd3CNfJqj4jS35X8GwAZNvJDo7XU8cOvTnyJiIUw1AQQ8e/n+kC0oFBvVZcbDt/OI2+Z3EkN52zSmEyOcJ64bmPQY0qzQu/T9gOHC3ATbeUB3nfCoquD8+gO86zfeSf8jfz9aGyUp+28KMVLOGP7gbR+j9AndmZQq6TCx/QST0Sk8oGJPd/QrrP70T/692/sfaymN+aVr9hCJMIaRwMg5vnZxisn4c3v4X62r9b+lBBDFWCmpZIIq1oNPha9J6m1aowv4KA0UZykhSiiyCUzcROCxQuKtRXrwSiGlgGoAnYWdeA9YMZ6+FAzpMogOYrJJKhXjhafOJxhM7cVnaRjOCkkaZxA1KFVGX0qsjDGAdYYqblClk4x0jIqnuX5lF53qJozSeFsGlKe3l+H0ESo7w4a+lq10P94FH4W6SPGyjZASXW8h6yHDiYNcvunN1PP7GTdngu7Te3SxTd2eoZrZy3BqP15FWJWyheTSxiWeil5Iv7UfaYqdaBpFnbSxeGqp8NWAjG2i1DHOZvFCI3VCISROenykqJzFpi1Ma44yz/DtCaJWk1pFDMs+tS2CU681uDjHJu2g60sT6h36qYnykB2ddDBKUXaXodpE2AoTJfT9LkrbweDCoGHiAEpFODqMG7P4KEFoD65mWE9RyN3EgIpjZLfJMJkIWctzsyA8Hk9Sl2hTUipNJWNs3EDZEoIlDzJtIXVCHTUCDVkJ6lSz0T2ETbt0+qfZmjpE0ZpltTnJdmseE2VgU8TaEl5MINpL+NYCZXuJUZpRdZcQU3uJ7RhpKnQ1wkiN26GeemMwqolrLaL1JGWUU6sUlzQwCKrGLP3eIfq9g1TZNHVvH276KOgUWw0wcUalY0xnBp/mlI0pCldhohjZ6iDySaJxyLIVOOruMlJHFNOHKToLDKXjUtJkxThGcRMlJDLKMI0pbNrBJhmiGTHcdR2X9t/J+uL1EGeI+QXknn1EkSBe3s144RCjaJmxmaFgGXPolbjeInVjktVkise7Rxm2FrFm57svabMycwOj3jIrU4tcVuC8x8iIsr1AlXWIfYGux4ybs2ynuxk2j1C29mJ6+/BeUKRt1vK9DPQUl+f2M9KeujXNeNfR4AsQJ/h8EqotZN4j0o6uD0aWJs7ZmLsOHWuKzd2M9SI2XaZu7YKsh027CECLgqT/OPHgDKLcopLBAC/ILiyi2sIJcM4GRFE1saIZaN1pl20ZBmQuytk8/CrOpbdTZ12cSolNEjTCRoUpm5SMiBk7ySBNGekMVIwQUGQTOB1hdIpRCV6l6GILlKboLmLTHrvWxzRrFxpIFZgxUSRQwlM2ZtjOelSDC0SNPs2FCouhqoc4b2lUjtQlWJlS2TaF77E1fYBSacbjDZwt2d7zElYPvwLdTHFpC5NNoOMMkzTYmtpL0Z1nO7seN/0abPP1+GRXGDTm0wznDnO6cTv9YRtRGEbxHH7HlMtFMS7OEUCsY0zcYJSE+6PUDaq4xSjrYDKFVQ6yHj7rUrqaEkddO2pngzFfs4uLG7goIO9WRhjvqPLpcN+X2xTtOarOHC5tMGrMsbZwA/1DtzJaOMIom6HI9jFmAdGeQ6kdbxopqOMGsu3AeIyKGQhNGUnk8PLVmKer9b9e557Y4Hd/5OOsn/8b2kjvuOHh/0JabeGB7Ht/kjd+7/PYf/fP0vnl74Fx0Gamt96KyDKyG274B99j/Kk1Ru/ZaRDEGp3oHVd+V/gbWKu/F7Rj71cdv/Lzp89uc89y0LZqQlTAlw4j9lUw3DKcvvt2/kh9AdKskm7/KgDWO1LhuX57zG/0Uza85Ok4bOOffMjR+yvFXXe9MFDsgF2DFb7swzWSiBvWjl5RKlxs9vj+r/vWK/vy0vp9xNsFa+vbRJFmo5zi5GCSU4NZCncLWgQK7KnRKa47/hgqCVsSAvR4gqeeeoTH3QF+9XXfyDNL+wF45cNPcsw6bmhECCEYXHqU/No3IqQmWn87N2TfybL6NQBi5xkrh3cSEW8AlpFpcLB3kovJEk+ut7E73hvCw81VxFPbI4Yq4+E9CSfufRzhNkHvaKeFoIg3WS7fD2js+i38ov96/mv1Gk7fG6jnKhrz7NnDrK3NMNDqyrG458SNrPZmkKbm7muPsNGKeHBUs2YczShlaAMCL3WMPv6tJBdrdmd/feX1W91HWD07hatSHl/fz3YVGuShabL33CO8wH+A7tIH2afO8Vb9O/xi9DaSHcOsc0nI4rbNDs822iTWcNPlXfQnv+HK9v/o2Kd4ZPAxNtQ2vXiGg+JlzLS+m8dvb0CiwAXq1ziPELXjxMlHkW6IMhdZn/ynPHUgMBakD2hVvHqRJ+xT/MW738fme04Fw5/PUC/5yq//9PW+fR/LxyY48eJA+x+pae7ZfuOOgQdkE5bs0R9l8/d+9zNu6zPVrd0mP310GSmCHlkC3/fUBf7dk+eonWf1KpJ8tf4PqCvhNVkHZYfI0UWKcptRkpFWmzQG56izCQCqrIeLGoxUzLaOkLFCaxgDq05SWxv8D/JJtlSDIm1Se4mbWWJj922sLlzLsDuPacxi0gls1mbcXmR88BaEjkODLAXGWmzSZLTToNitZ6gQmKzJaHo/55fv4FJzgbGIMb5J2ZoJ7q0ywlbbGBmznU4wai9SZwvY7gIu6VLlbcq0jZuaYzy5N5hHxSlyej+N5jTjxiK6N0FgEkps3MR3phHFiGJyD1VzijprB6S77iOzGNpdnEqQeGzWQvsaE2eUOmGoEmorqfMpZBrMjAQepyPGjRwZaWzSRvsSP8xJH4d04xLp8BJSCYQS2LyHtCVOabxQjJEUQjNsNCiiDrWKsWkLj6Uar+F7i+jd+xFZG5IcrVPqmeupe3sRzqKqrZBlHKeo8TqlbDGamKPwDSqpMWkb29lFpAIjqm/ajPMZVhZuZ5Xnczl+KSZqhQGDqxDWABJpK5QpQSvquBma+KQFOiLCEWUd0lzjhcCqFNVpQyPHxSnN4Tk2F69jNLEfOV5Hj9eCW3k+gW/NcnbXTVxe2EvRncF6h5rbi5ucpzHbRZgRphoh61HwmZOSzHtMe4nzN7yBujVFHXUoO9Ocmb+Zk7tfTp1N4hpTMLUXKV3IYI5i1uaPcvbYF9Hv7We8fB3sPYTXCU4BSYLTXc519jOMYzwWNzwbTNna82wu3swzSzcy7PaItWI4cYiVPTfTX9iLVBC3G4hmk9H8MdT8DFGucc0EIT1VOcAMnkHoMkT7SE2dTtI3XdZ6RyidQ0mNTVuU+RQbSYdxkgfDOecYqRSXt9mYvZaO6TK7McS5Gpc1sVFO2V3GNnu4RhubtoL7utAYHEWkUFqj20uU08eoGj3WspRaxWhn6Iw2cc1ZRlP7cWkXAKtzqmwSO7mIEgblbTBoi3K8WaZcuYbmpcfI1h/BFRdwKsJEDYpsEZo9KtXEji7hpKfMJqm6u6ldhR1eIrJDTJRj4xYjEbNhJxnaJYgytuavYdDZxcr8dWy0JjBWsekOMlbzbE4cpso6yAsx4qJGFBlFtJdK5xjrqZsTjDq7sDpj3FmgWNiLk3qHKu0RKsG2ppBa4VVE1VkO/gMqRjS7qEaPyBmq6d1sXvNyZBpjksCSMD7DxynC1Xg7RtQDIgVjJhk7wVbrOOQNyr3Xsj29l2rfrTQ6CQv9R7AWbHMKmWWYRpf6ppfij9+KzdqoKGYs94OexSweoZxcpm5N4eIY05ljvfM8+mmQiIzTSXy7Bwt7ka02TkYYpSlaXcbtWYZaUSQdiuZScIYfblNFigvdfWxOL1JNzLPVW6DQMZu9A2xNHmZw86spe4tIbxHSM8jnWevsp69itpM248YspEkAASQUsweJ8py5SKD23ELdWcbqFlZlwSDNVHgzRpoCGzdxrQSXx5i0zXZvgcHxA5DpK2kzn62uNshX62/VJ993mj/8yfsohn9bE3ni2d+nvRninab/5VvZ/2Uvh6118ltvRTYCRbf1xa8lP3YUhCCan/9732P7U6us/dajIaMsepTp+LsQOzEV3gv66TcAmu4L26hGdOV1H94dXUGPDfDCXpNXnHcUg0DjPTupKBJJNnwAXZ8kEcFcIjOO0ZmaB8cqOEkK6BQ9brxVMMhj/pgXAyCd5c2P/RGvuddzw5MV98/vuYKKb6l0J9Qd8I4vj3+dlYd6AGTLa5wZpWghaCU/ysi8EIDSFqz4u5g6vh40Njsbk7XjycuWQdYMIfVCMDHY4p9dbHJDI6alBBvG0Zk5jJCK+sxdxMl7mJdrvK4/5FhZUu0ch1gohLC05v8YhOGvn72F3/rIF/GgMlfQ4321xGqBX9uCvS1iW3Jj9TdyeI0h2riM3lzheZefZqa8TOUmQVYMi+tpHQsaIZ060mhI6dqYKDSN2hoQglGjxdKlM1ited+1Bi8kn9gccM/Q8lhl8d7gbYVqL7K+/dXc2Hgn7MzJq3gLzk2x9amX8aq97+cN+/6U5eYZAN755Bfytf7n+PmjL2FVtXmReohFGaKi/kIc4x1zj7KarOKTjJnBFmMds29thblh98rHK1LHjxz6Lb5q//dyPrqMmj7Bm276efpp40puJwDO89K7tjjyqaMsxT9Cf/LrMdlxzh39txQ78Z9GeQSe+NKzPKBP85EP38X67zyON3/3gduZmWP3dcEwbLzx11z7ErjmxUvc/iX7WZqqeGD8Wh4ZvezKNdacqxDv/maGH7nr7713/sf6ktkev3A8IMnP7cHPP7vCHR99hC9/8CkK+znmGVytq/V/Vwm/YyoV7jUD4Cu2Okus77qFKsqR1RCTtLFJi7q3CyUl2oxDnApQOc+GjPDOYFzNKJtl3N6LWTrOeOYAXipaEynNXoZrJvSb0xidsL1wA+WeE/jZJdyu/ZjODHXWw0hFPTFNkkhcoxfol60FqpkDFJ0lhBQorRh6KOOI7upJMCVF1KCOc/oTeygmD1I051GRQLS7uN4MdWOCtd23sj5xPGSxRhGaCiVLdCJpdBOakw3EzAK+0UZEinS0Qmt8gYlkG9VqUjanMUmObUxg8w7F/pupOvOoK6ZJDt/qIhpdfNpgJT7C2tIrcK0JpPQ4FWEbPezkbrbnbyZPmyidQNqlas9StafxSc4waVLmkwzi0KBuTh4lrrZR1RjnoNxqQDaDbE5TNSepowa1r3DtWaJem9HxF2F2HyFe3MV49hA+aYU8au9CvIsHqxM2G4cZdU9QiwWsVJj2JH52mUHZZVRPY61C10NwFStWstI+wGDmaDD6zBrYyTnquBEGFHkLFSlGzRksFuMNLush24tEjUmklqxIyemJZQa9PdSqSxl1KHUTmaXYBhhXghkxnDrGIMropy28jNBr58nHKySJwBiwaZvhdglK70RZhWvRpG1c1sbP7UUt72U8dxgvND5uMmO22TU6TcOXUI/x44s4M8YnGYPFa+nvuY3Rwedz6dDnMUhnkdUIkzUoGzFGOwoVU0QxIxnRdyOkqRDlBsn2OSpfE2cRbSWZSCVJFFFNzBBrR6RCVKGJOvgyZGFXY8dYtyFroIVCDQbEWURtCsp0GheFa2195igVhtrVPLdoEEIwQGCjBuPOLmyUobKEYmovZR6M4KqkhfUK4zWpqvBxznDxWsrJ3SSuwCSSYeQppERq0OPzdLaeInIlJm5QJVkY7uqc8cxxRt1lnI5xQmCFZNDZTdXbBVkb42qMK7FuQHe2SdruYBpTGCnwozWsLUFHmKjDSnIDlWxQNacpsqnggJ80cTP7YWoe0e5Au4eYmMZ1d7E6fZzh7DWMZvaSRp5qdh+2EbTTAJVtUsppbBRTNqcRQlL4Ln7mEK41iX/uG1xFeB1R5RMUvV2UCyewc3txcYOthRMUu26mOvJiVCRIGhGi1aZWLcpxjV1fgeEKAIVu45s9rE5xKMbbGZvFEnLXvhCnFSW4egTlGkmrQdnehcwb6EghdY1t9HBpg+ZEA1cbXG0Zq5gy7zKc3IWbmGP5ja8mSkNu+SgWbEznbOQdtlsLjLNpwCGTiPWJwwyndpPWW2TFOlYopJJILaknlxjNTrN555cgux2iWIWBv9RYlTLQ84yKGUY6wsYJVmjy9TMk5QZeKJSv6VWX2Dr8YranjlDHHba7+9mePMRg6QRex4FRpDTF1C7srgOk7Sz4wZSAE4wmDmHzSeq4iUuBLKKYWqZM2tRphyrtUM7NsD13DU4nDJNF3MzSp9d8n6WuNshXCwBnHe/5+Ye4+51P/Z3f7br4Iaaf+isAGi98IVNf99WY1VXOfs3XMHj/+3H9PkQRrec/n9nv+A72v+fdJAcOfMb3KR5fZ+vXHgXjOR3XdPk5Irlj2iSgiq6l3FoiWshpvPz6K6/brA3/7ezKlf+/nMb858NTvOANB3nJmw6zcHybj5wI+p46PwrdL2ZGh+ZgLnV8x/w0HkHiQqfzxqkR7mjBb/6jO6lV+NkbnvhLRp2LSA/f/vslX/q+PwHvyYdD8pNr2J1w8RZb5KuGtce7gGf7VEA8Y5UjSNmow2f/8KXfJ7/hSaT6dHOMg3NPJoDinlv/MU4ptHF88Ucf4cwwZOhZU9L2JUJFuOEq0fLzEdmdxDgU8B1rQRMu8dSixtsU33iCxv4fI+p9lNrp51IbALil1JxVJW95+vd51X0f4AWP3EfmDeOdqKT22jrpxTPBDRF4/vrdmMERvA0o+NnR/HMsbKbmniVfvEhTBA3yl913L4lxKGN45V/+Aa3+Jk8sT3FyumSsM8q1p9g0gvdtVpx94A/x9Qi955XEl3ezFN8PeISTPDuXcP7Uy/CDaT7/wHv55mt+A/D06xb3XriBb1Y/xScmDl85/4+6Xfzw6Nu5ZXiCe6fvxQhDIgRmZ0H9/KefCsMQAA9rnYpSVfzw8h/zluflrGTx37ous9oR3b3CntUa5eHOT0To5A6kWeF89ZN8+KZZRokltpJxZImGW6jBNh+LTnL/ww+w8vaHcaO/a7T1wjd+5ZX//uCv/3ekFFz/imVe8H1fyp7xQ/z19jdwrjp25W86y2OqX/wnlE8++Xe29ffVq6e7/OqJvTT/Rkbz2aLmgf6Yb3/i7Oesbb5aV+v/rjIyxMlst3ZRLhzGpS2aW2fZau+jaM6w2Vtm2J6mmlzCO49uzaNtEaKApEBKQdTMQhas9VRJm+1I4RJPmklaSU1rMkUl4RkdRwqlFFGqgs41irAyCSjK5BKmNUEkLbEy2LTBytzNjGcP4NoToFT4Llo6Qp11GE7sR+kc4mDsIyYWkZ0JOt2U0dxhBnPHcI0u1d7r2Fy6mXr3CcrWDOXhW+i3Z9mYPMz5xQP0OylRpqlLQx03EN0JXHsa9h5l4sAcjSlN2ZoKuuRsiqTcorl+kvaznyBe3v3pGCWpSaKEWEqEzlifuwEzs4xLg7mgafQw8weQcUbpJRtOcHH2emx7niKeQDZaZAf2Yd2Y/sZpzMwcNmkSmSFV0sbGGVXSBedIiq2gnUw7VPkEo3wWEzVJGzG216TIm/RnlrnYmWDLG6rODNtLR7mwfC11ZxKTdKiySUgnUDI0mUp60hSsjBAC6vYiQkny8QaqHoEQbMzfiElbmKklxJ6DofnpzZPu2RUYO1JjhcDImLHOqZpzFMIhpUBpgbOOKmoTjTaQVUlSb5OpAucF4yhlmHY515jkYjpL2ZqAOEJMz2HyDkIHBpdSMFTd4AadNfFRhk1aFL0FxnmDerJLnEb0Z4/TnzvO2u7bMXGMUkBdoFxJNL6AnppAzS7jszbNbvLcXBilJUVnHjOzi9OHvoQtsUBJF4nl7NJNnN3zQmxvjrozQdnKyapnaUtBbCxOgO8k6EGfZjulNxUah1JNIA4+j8byPEoLbNahOnQ9bnIWqUJz42RJ3WqhU0Uja+HjhMtRwkgH5N1FGVGmyZrRTuqkIFISHUmaxSXabos0dsgkxbensVM7ZqhSMJg+hG1OUC4dxLW6lO0ZbCyQQoApqXpzlN1d6GqArkdgSgyWwdQSVTZBJTwGz9hZ6qxHeccXUcQ542qEbVdkTUeUKZKmxs/tQyiBsh4XNRlnHS5f+zIuz13D5dlr2Vy4nkFrV2BDCE0lI+yhWxnOH8fIMVJ6rCuwcUJ/eR/F5DzxcAOlI7Q3KB0+s47EzlrKUzWm2Fq+mdHB22k//zZkp8Oou4wQAp828L3pkB8sFY16Ha6/ndHNn4+/9RVUu67BJ41ABY8kKlKM9xykFoJRlLEd5xRxxNb0EZwXDFoBjS7yKaruAsXycdaveRVOpyA8stnGTy1jp5dIrjtOcypjrKpA8fYDhu2UujEZzo1zbLRnWDn8EsrDt6KkvHJuEQIRSwb5LFYmVM0plPRE2lBnPVQrwXfa2LzJuDFPKRJ83kJmCfXUHgZ9Bw50oiiloBIC05tHNhcQ0QxSBSO0Ou0wai1QZV0iM0JKKAclJutSLBxhc+b4DqKuMFPLqChCSogaMU63KOqc5xa161qz5gSX27vZnr2eeuYIZdbGHTiBml+i6C5jZMqQDuO4TaWbrOd7MfE8Q1cH5uDnUFcb5P+Xl/eexz96kbe/9UM8fd/K3/rdC//JQU70znLg8XdApJn/0R9l8Sf/A9t/+m42f+/3QqadcyEvsa6pTgfUL5qd/YzvZTYK1n7rMQQwsJ589Cdk6mmsz6/8zdbwH4MWTHzZ0StmXgA/f3aFkQsNbyoFPzpxN0/e98VcWPsxjtw+w0euPccTsymJH1FFCxxsTrJdhyaoEpJtJ2lUTca64GDsOdzboBjGvGf9xQAkpuLLnvwANz0NlzugvGfx0kWEc0SX+3zolcF0aWptlZsvPsrGJ2eCFgWBdwIpHOvNjA9c+B1SvUS/XqduP0Vj77lPO8p7GLzr87hw3wxPHv9qnpnvgPd8yd3bzK3t4VKtePDZ+/GuRkUZ1ZPvo7jvl2H7E0TZ3VeORen3cmez3skvhGTnNpa6j4xXCdyx8LdNIVi0knbjJHfoR1nsb7J/K+igM2HZcCk3569FiYDUZ7rLX83fBrbLtFpBectvPv1a3N9AwK/f85f8NN/AdcV9NIeXOPbEx8mKEQ2f85K73wPAe29MMcKy3dpF7+JfspDEzN/wBh4tw0ZGrW/h+sZ7EEgag710169j3HqCC5/4crwXTGQbLDfPAvC7T3wxU36FyYUnWNM577K38XXVW3mamDc989W0XMLJ9kk8nlZVsJY1aZeGI1tHwg7vDAusnOBje97IxWzneO18qNR4Zj6xjhrUPKs8e6zkfXbMq+4akA7vIi4f5ZnpZ/jLGy/zZ7de5N6jIctZrj4N3vOh6FEeO/0El//rA5j1T2v2AWb27KPZC19Sl595ikfveoR3/NC9nH2m5Pn//p8wOXyG92x8B307ceU1veUtxj/+Kszly5/xPvpM9ZLJNu++6RD7soRcSp5TIb/j4gZvP/cPG4pdrf/n1Q/90A9xxx13kOc53W73M/7NmTNn+MIv/EIajQZTU1N8y7d8C1VVfca//f+mfJRQzh9gtO9G5PQkw/Yyot0hzjVpI8JM7aLsLlAcuJmqM0dkRkTCU80fxt/8UrYmjtCfOYLSChFrLmfTrOkMXV9CTnSYeuFNzLzsNpoTCclEmzhVTO3r0JzJaXRTpFYhJ9g5pNZEnSZeRpikjW92kVoxnD9GOXMAMT0f6HxK4tOcwfQRXJIj0iaDuWvoL9/K1otez8ApLg9rPArZnUBFEiGhOZGQtyJmd3fIp9qsHX4Fzx58JeM6RipB2oxxxmF1hs9a1K0pfLMNC8s4Lyl1i6Ixj83aXD70CqzOcUWJuPwsRoYF78quOyiO3UgxuY/x5BLZVBNbO/xoFOQi3mN2YvZ8EmEjxyjpMuosYjsTJDM9rAPZX0d4S5QlGJlhRcy4u4vR1F7G+TRWxoxFTN3oIZMMF+WYrIvUgum9HWJRM9ItNqqY8aDkmYOvZe3InVza9wK2dZt+b4KtpUPUvXnKJGXkhwxNSa0yZBLh2xP4vEu993ms7nkhl4++gmhuP1EWjKO2l25gsPtGLkT7MHkPOzHHeBjWAMl4nY2pYwwn9zHq7WZVKdaspChDXE6cagbJDKNsmnF7Ht+epN2uiSIoZIIBhJSs9vawvnwtzV6GnZhja3KeuBnjY4OUEtqTmJldFJN7KHr7GO19ASoO5lpxGp6yNm2xvXAddW+JlcVruDyxm8tJh5GKiKenaRw4iFo8SJQqZva0EUKEf0ogtMK0ZxDJBLXoomJNpDxxJ8f1pjE33sJocg9kGXk3oW7H1KlmK42QecT27DEuJvsgyZBxyBaWxQBnPDpRJK2E5r4ZuofnaN56K3r3Puz8IVLvUFGMijUqlpTtBbbnrmFlzwtYnz6Otx5rfPjO92AWjpHcdgcyihFCYHcdxM0dRF77AuZe9UJUIwzTx1GXevcxdLOJ7c2TJAkyadJPFJtJxqjRRU5MkgEaRyQ8aEd6cC9CyWCkRolpT6IiSbencBiMM2gN7a5maqlJmsckWUS5cCO2t4zpLjOYPQS9KYqkQz13A372RjI7xDR6bLTnglnaSDLsLNOPe/SLdVw1QCoBO0MRXxussRRpjzjVwe8AgXdgjceIiCqdgKl5OrumiW69E5e3A4tESUSjhUpjWm6NiZmYsWyxvXgDzO/CxDlSCsruIkU+hUxTLsx+Hqs3vIIzu17JxWtezerNr0fMLFKNHVtTx9iaPEB/8iDj5gJZO8ccuJ6VY6+ivO4LyE9ch5KCSjepNre57D2DfDKYELbmMP2aeu81mNYEKpZ0pyImF9pM7+5QVRYcqEgitaIsLGlD0ejFNDsxeVvTnUpYOjrB7MtfSnPfXrb2vwjTm2OjtY8inSRONVXtMKXDZG10JBm2J1mb2ofsTeKmF0kbMa0ju+ntmiI/sI/R9S+k7MwGFF079N79tHopUktco8P21GE2Z45RVWHgEkUepqYRcwtU+68PRsGNiM5iB5HnCB1RtucZL1zD6NgLsJPz1FmXUTv4Uwz1NNbEaFPg45yyzvBTh5A7Znmfra66ufy/tLzzPPzBZ7n7D56iLv8HGqaAl7/5KMvNdZ55z0+Bdyz84A/Tee1rGdx1Fxe+67s+HUujFFgLStG4886/8z7PlR3WXP6Fh/CFpXKe2j/G9Y1fxnuF9ymIEZv1V1H56+i8cg/RzKeb5oGx/OczoVlYiCP+0+T7qc79JwoE/f5jfPD+f81v2K8AASUpjfVfY0rdz5NY2tLxVBWmRcM46FU/r1OCgXt+78UU8zna1ex2H0Hs5PNObIMTgon1DXadPMV//uI3sjExAd5z7PHH+U7+Ox+4MHPlWAkfHFlzL3nR/JcCsFmtELclOAlyJ9bp8gInL69w9uBX84d37gIhOHip4qVrJed9QoLl+OQedNykPvMRik/9PlYIdmUfJtvR3BZEDK/f4gvjmk/1m2yIkhc1S967OYstu1Trt1/ZL4DBsQaXH7ufVG5yT+/fYFsPhl/v/P6T9TK3VhHXdF/AAxsfYGw2eXm9yu9GsxzAU+hz3Fcv89/uegtfd/svoJQlluHcf4n/PS7yPI4/+yDTm1v8zBu/gdf9xR8TVwXr3R737HmYO08tsDZ1gsn6JFF+hEONNEQ/RS00r2Fan+RiuYzyMWOXs2Ik7ZMvIdr9Mc4OlgDPVtXh8TOHObL7cT55W8JPfuyLeLaeBgHfKip+5+nv5rvmf/aK1rE3HmKAQ5tHONM4w2DnvAsMwpVkw49zsDjGg5PhGvsXj5esbzl+xcNdmeFIrfj8ccwH/ZBbzryMe/Y0KBovpmw/xDWP/yrXPB3TT2taY3jK38su8Tw+ED9MshrhftYw9ZXHiZdaV67fV3/LW3nHv/8uAB58/wdZO3+IRz50jrOPbZAvHiU6+zR/LL+P6xp/xL7442R6i+7iClvf/3JaP34PMv/0vfAP1aFGyntuOshTo5INY/mnDz6NBb7nyXMcaaTc2Wt91m1crf9nVFVVvOENb+D222/n7W9/+9/5vbWW17zmNUxPT/PhD3+YtbU13vzmN+O952d+5mf+r92ZOCE5coy6cwBVmKCNXNhDazpHIKkO3ISOJX79HLkskVkDKwRV7SnrlO3FG/EeemIDpRV521LX58g1LB3aT/vEQVo3H+GBD5xhbaOHm1+GaAPVTZnY1WTVC4TwRL5ApTGNxSm2y5qqM0mcSOI8wmqFTZso64i3+ox9jo4krckUIcGoFNdvUtSWartmIBPqwiCVCPKTSIJ3FIMaqSTd+ZyiX5F2c4wr0dahSotoQF05HIrt7l6sATmqoRMOlfegRI1MczJGjA/cQZ6UyLvfR5n2cDohjWompyvKaogQLZK5BmOZUD9RBF2xFKhIBm+DVsJgPCSSgPHE5RaRTXF1jJSgIwXOUk0u4azHXXMrfOgkYLAqpZ5aIGkmiOEWUaxIVUFzVjPcrqkf/ThuZMhzzSjLGMddTNKjuXKKzaRibDxoRdzMcNEc5uwDmLSJnd2HnNwVUCUlKfIMnTVRTY1bLxHW4/MW1f4bYHKGalswnNxH2smQkSJONTZp4OOUzenrcVKTjDcZN3pECJoTKa2JlP56geh08cWYqjmNiC1BcRLivnQkUFJcYXhNL7dYPTtgKEfknRghoT3XwvabPN2fYRBNYeb2Mbv6SZJM4RNFLUKT4b0NZmZZG6ObDA++lMX+w0RTNTJOaasK103ZqsNaIIoVcnaedrHJQHXJOjmb8zehiz6u2aHTSUj8kF7D0l/VRNah0oSqduRLLfL1AiHB+4zhxK24Kmcmf5KyXGEt2yIeWfJWjO7A5KQjH2+hpubYHEe4yzH/H/bOO96yqjz/37X7Pr3f3qf3wgBDbyKCNdEAtpgoEo3Rn4mmmESjxlhjYmKswRK7sWEJCqKA0hnKANN7uWVuO/f0s9v6/bHPPTMXBhgsiSY8fkDuOWfvvfbaa6293vd93ue1jDq+qdHwJagKuiEwoyn82SaGFoSq5b5EqAqSAE8oRLtyzG46H3fbfWiaS63eoGml0JNZAl+iKBBPmag5G7tooBkKLibliE215zQSmgJCw9Nj5FydoFQmXm9CLEDYNsl8FNPXkUclgYREcT/m7i2osQiOMPADlc4+jRlPo2d5mshMg9m9QLKAqM9Rz2UoVV1Ur4Y9sw8tlmE2N0J+7B4cVwMrjpdIUY7l0TwNq3gEU4SKyUZnHltMcUwspWHlaGpxTEJnU9GXJEVrK6cqBNEUVjxgYn+JuVoUK6KjSw1VV3CNOEbQwNA99JRNpdZHAxtRdfF8yHTaWJUszblaWBUtmWWSC5BJiaqqJHIW1aJDs+qiajLMw7ZiuNEMEomdtPDXbiJwA0RHhEDMIg/UcXqXoigKmp2j2H8OlqYRlxIjpWEkYyhCkOiKMKmAZiiUJusohHEU1VIwTBVqQUifNnRSixfRNZJEtzTSHREeKOuIB7ajeqFjyI4bRJMGzYiFpdgo/RtQUxq1h2agXMSghNdKO8tvXE4uvZSoY1DZcqzN7tEUlyCTwp2bJfADhBB4VgJNA8UNy6Cim6HSdjRLImfjTdZQNYV01qY2VccPJBUpMVVB3NZDpXVdR/QMUnMDTOsAarOGpgkEklhcJxXtRhg2p4JnIsj/xxD4AQ/fcphP/+lt3PbV3Y83jgEk7LxhK4de+1poNDCXLyP+nOdw7CP/wuHXXLOwZqvvIywLvbsbY6D/pNesPTrFoQ/dRzDTwAkkhuKxLPJhhPCp+ufhyBU0/LVU/N/BXJwidk7PguNvny3jtmiivx99EGf0I2hanOXL3oeiaLyjeDqB0BDSJzL3LSKVG3mwUgKg4guEPB5RHTICFlkB7u0JvlZ4FkhJIARHlt/Ju69WcZWwZrAE1CCgY3wcIQXnPXAPCEHPyDG22nGCRjh1pARNQG98LctZjKGEnqmEnmG1eflx41jC2AEfkbqSb53d27ZQX3bUYZMd4ZyYwuaYgR5J4x3bRlCZQADfGz6bXfEB/Jbxt6c/hrAcmqNreHk+LC91S8Nj+cwFNEZfinS7UGX4DDUJLzl4GKXzIIEqKSa2ILXjU35KZvid2Q5mXdjboaGJMOKeHbuLmFvCmNrPCvUYlnS4t7aCB3eeS4BoR64XWzuIRqaJGUkuMs8gUFW+d/HzcQwLgoDb1y1iTj2KouXY6agcqR5Aa3nPPSnx5GlsiO5DlQZV8yhNc5JGZIyxRy8l4fosSu1j3tL/ya4L8QMFRQm4aODn7XuYU2DCV3nX+DXcUriVhuqiIAkUFRXBupnTIQBfTePqQyQn3oP0xtmajWB6AX+wp87vHna4BpvzhcLFQuf6SBNbwsV1nXO2uWwunw+Kjmas47mHzyFTMTC8sB8HDgVM6SHz4kbjIcaqk0x+civ1bdPtNvatWM3iM84G4Mi2H3DRK/q5/HVr6FuWZtHp3Vz8yqUU3S5umftjHrjndLxm+BySuYNU/u5ipHfqYltJXWNDMsrF2QRv6M+HYw94+UN72VdrnvJ5nsFvN975znfy5je/mdWrV5/0+xtvvJFt27bxxS9+kfXr13PJJZfwj//4j3z605+mVCr9ytsj+xYRy1jk++NE+7uw8ynsZcvoXpzCzKVwhMW00UNJK+DkwohYKbME3VSxojqqrtBs0qJMC5xsD0E6TywfYz6zINURJTOYwVq6FLFiA2LNJmQyi50wEIZJ4bkX0XHZOZiZBMFzXooRj6DFomQHMsTSFpqhYq1eiTGyCKd/OQC6oaCoCs3OQYhoKIZGfPxRTCMsRajqCooqUBQljAoqCrqpkusJa20mMhaxjElv2iCrCdy6j2gZVX4ryVFrZcSkuhJYlsROhcfElSpqKk3feWvwk/kwRzrZgWEo4OtkqJAJpsj3x+kYTGD2FBCKCHOxUyZupgehKKiqxBACTVeJWBpusgsRjeJnuwGIJgzMqIEV1UnmbBRCTY9Gug8xtIRYykLVFCIJE9PW0QwViaAh4mhaeN+RqEYyb6PYNomBDiK5ODISx3fCGq9adzeyawC7K0c0bQEKCIHjO1RbeY2GqSNaz9c3FLyOIcxcBqlqmNkkZiJCPB8hmjJxUl00hjcg42nsQpqgexAzqpPIWeT6YuT74nQNJ4kmw35Mlvdj2mHESfVClo/QVAxbI5q2GNmQJ1WIkMzbSCFIFSKkO6N09kUwTBVNuriqhR4x0K3wXofW5OhfmaFjOEEsHb73RevfgWaiRW3QdJTqMcTMYRw9xtieOeyoRiRpoC5ZibFhHWougx6xkLE0jWQPAoHb8Kg0YsztKaNFY8h4kkb/qvZ8MqMahf4ES87oZMOl/SQLEeLDXZhZibUoj7VpPZFli8ksyjMzo7DHXcJkzWYuMUzgh+WMjJYTRQiBbmltw0e3VCIpk0hnpE3D9d2AiYMlPA/crlBUlGXL8XUVt+m31OEFkXyMRsVrGzyKrSFTFomoieIE4LnMJQcBHUOJM9e1nsqGZ9F0FIJAYhgqQtcRqoZmCNymR2qogOzsQy/0sutgBqEIjIhGvj9O/wobPWniCImDRbozgoWL5tfw547gpzqo961G6eiC3kWQKhBNm2BHUVTwzSiKqiKicZwVm1GWrEEms5hxkyCQIMAFXF3FioWiWY3+VbgNH88LKf2KrmDYYayx1rsap3MJ7rKNNJedS++GfkbWZ0EImrqCH9GJZW00QwnZJL4k8CWeG9A5nKBjKEmuN0YibxNXasTKR4h702gRk1xvHCMS1kYuR3VExiKxrgvttLMIYinshEGuN4pQNTxPksjZdFV24DsBzUQn5ck6jVYamAzamdNIEda51ufCPWfUnUXTBUEAuqkyvm+OWsnFiRfQcznMDZto1j2qJQc7ZhDP2qQ6o1RLARIF6fkEQRBueoFMV5Tcsl6iaZtEPoKRyeAqFo6VDB0OjbB8lW4qmKZE1yVabw+YFkpPP15gIACv6aNqCnbMIOsHdOoqtiIoCYHdE0MzVJTSFMbBbURn9mElw8BCM5NCP+1Mes5cTL4/jqIr+CdUYXkyPBNB/j+Eg49Mc+N1j+DU/fZnQm15aiTEMyYjGwvISpnCV/4GfyaU2Nc7u5C+z9y3vtUe9OEXOngefR//GNbKlaiJxOOuWTtSYvoL29EBT0oMRZDUPoGujCGlIKLeyaz7RurBmaHH/6plC6jVFc/nL3aF5XQySpMVM+9AVWOsXvUx9u3/CDfMmewUYQ6nhotVvQOAph8aA4EQRDybmhaqbD8/5WA+AJ9PPQenaWL7Df7svi/xT6uy7Oqd4wMv6eKvvj6OKiW+ojCZSvPhf3432dIcb0r+LdfIL/LTPYOt1kkEgp7ICs6MnY8bhBHomcY4nnSprP/qgr5w68/lh5v6cMxwR5equAwe9sBSSWsKCgJveg9CszFXvIim9GiuiLKUw6hIqprGxEB4bLSwh4Th85yky3/NGWyTLsjwJd2hHmU6fzfNiRdwlwNnR4tEiya+GX4vJfhAbrYfg3Bx/H7HTbzi0FIO13ag+w4vGfs2Mb/GqL2CDruMX2+wtT6CpMZp3NMWHVu0+F4evvs8zPHvsbjrQnZ3d7P20AFWyq18eeD53Lw64IVbplH1QbZUd9IVGUUV3ZR9SVoTaPIy8uoYnpuh4R8l0BvY8dtZs3uSN677BP98/+vZWxpmi1zBwVIfA6nDbO68lzuPbmLbzFKEgL+QDb4YxPjT8Vfw/p7ruGTsWRiBjycUOuppemu9PLTodQR6N4p3jEDvRgQ1/vLhCc467PJodTcrM+fxOlR6sfmYLvhu1OXFVRMfybrxH9A9/HK+7I/xsXUPcvWNYHoqdcMnVtfY2XyEiH4mUT/CD8wHWOZ1s/kLPunnLyK2OdyErnv25ey++3aQkp13fJXlZ/8Nl79uTWusL2LNwTt46P4GUxe8Ebm4C/nofyCARGQblX+4gtjf/vCUi9vP46XdOT55ZIpGIGlI+MLoFO9Y1PPUBz6D//W48847WbVqFd3d3e3Pnv3sZ9NsNtmyZQsXXnjhSY/75Cc/yac+9alTusb27dsBEHYUJz9IsuoSBODn+/AHB6AnzoBpcGTnDOWZBoqpU7cHsIplmpqG65kIRWDF9TBFQsujp6PMTlSp6wmiaQnUcEfHYANku6NUZhrhhj2ZJohu4NjBMo2pOgMrsySifWHaQrmIqinogyNotoYkNPLSXTZrnjXM7XMB+mwT3VRp1l0itoZT9/ALg1hTB0l3RVF7kngHq7gND88NcM0EsaCImu2gY0MevxUpjGctuhanoOzi112q+8dRFAXX8VGXrCCoVFBTSTr6VNxGFHNinAAFTVfRU3GswTixlIUSixP4odCZUp3CivWH5YZKNSozTTzLwescoSQ0kvEZ7EBhSqYIAoltS9S6JLDSBEsvILBVarqGM6dhFsfx4nkUZRzfA93WUOMxpFuEfDf6wAjsmyAQIQtLJlIAGKaOP7Iar17EiEDXUA+KaVEtxVCiIwQH5nA9D1dGELpBojNJdChP4EvSm7uYbMYodgzg1h0UFZoNH60lXtScaaDZOpGkQarDpln3yKhRmnWPZucQwVyNetcgajyOqLq4TssYUxViGYvAD3CbAT1L0xxsno+cGcNyG1i9vUSKR5k5vB+Jgp2M4hsmhqWhWxodA0nmJmsomoLv+cTSkTCiJiTxuQO4Hsw1etFNlcJgErsriTMr6BpOEs+YHHxkGuvhnxMEATNdGwHIrhxCjh0m0ALM3m6SZZtIwkD6EMtaqPFNRMUss1Muhi0Js7YE1ZKDqkB8doYmoJ12FthRKIX7mExXrG2U9y3PUpnqoP7QBCT7SPck8JQCZr6HoDJNpaLg+DZmYQlLNubZF6jU9ydpalFK2RiBlLhND6PljHKdgFRHhFQQZ+b+GpYWwbA0goiG1/DxIymaq88lCKA2WqVZs4gtXUpxohKqVWtKe5uoqAq5vA1+gKdAMYCGlqKZWY4orCZpNKF3ELfsojk+TsNH7epCq4W0b0/LERhRtE41jEQQUm9NS0PxAvy9DxE0jtBUBZqlEU1aeN2d2FFBVY8hfKikhompYKdMAj/AihkoSRMxqVLrXoHXNYwd2vcUBhOUpurUSg6e4wMGZlVFFyqeE1DuWEnC1rA9Dd1QWbqxi4OP6qj7ZmhYGVA16oUlWF1RKhWBYQUkcjbxjIOiCXLdUfSSyqKNBWp1wVRZ4LeM5NJUnY7BBHorPzaulrHiOq5fJRI3GFqTY3T3LOXZJrW5JnVDJZYyUcfr6GbYJ7GMiW4VqauCwcsG2f+5+8I9hm1TLTYoBw1mRqsth4iK7ymYKRNpawSmjggETsNHOAG+5zM9WsGpeiiKwEhEiCw7g1rJwXeDcI1rPeggkAR+QDJnUS6GmZcg8CIppo5WaNQ8KrMN6mWXZMSknuvHTWSJGgpe3wDe6Bi1TB8y0IhEHIRhwpLVIBykaYESpoPacR2v6eMQoGoKpq1hZUyMiE7XSBKz71xGvx/gVTzUwMdzu0GBC//odPZsOcbBR6ZpSkFwilupZyLI/0cwunuWmz7z6ALjGECGKTtke2P83l+fzlnPG6DvJ/+CfyCstat1dND5rncy+pa34k1MtI8ThgGuS+51f0R08+aTGsfFYzW2f3wrgrBmniYEmthJTP1Ry8CSKKJBQvsSmDrZV65YoFrtS8mVD+5l3Am9Xtf670VBUsg/h9173suhuV18ijcAEJNzeFKi+mE0L2iFjFONbNs4XmN5LJv1Odzs5raJkIqcrc3xsde+ChGE+dNOuo+bL76IummiBgHxeoOvXfJcblt7Ghv0bUx6Ko3peXqGIBABZXeW8dp+dCWM/M323ELtvM/jxlo5pIHg6C2v4PbY+WwdNkFKUhWPN/+wzBIznKkKgkZllKAygZoZwp/dzz2xGZJWjSbhefcssXEqeWpTw6hGDekYXGoarK0up+FbAOj6OJOxCbT4Dsz4wxx20mzZey6+fzznQgjY4XYQdUPK7ZHkTg4mEyztupycFQpuxPzQq5eYPMSkH+Go1Q2r4DTuoUiybaslkpMkC1McnduBOTcKwEN9A6x60MGuV3l06Vr2xe5FBmUwlnL79CwVd4a0plDzJZqissJOowYWUngYQcDv6N8mV2rQP+rzh6u/jNqqmfyN3c9FJUARkmvXfI4zOraQMEqMa3CtX2NxY4QLps/nUEKE9CUZblLXTK/BcmbD56V3g18hP/F+TpvyyJpdBEJw69hniIt/ZJQK9+KyX/PZr/kowMEDZxDdfiuvKvk4Rp07V7X8iiLsv5X7o9ycu4MHsw9RV+ps044wKUoUr99L8fv7kIGkb8UaNCN8Boe3PYyUkqmjFW7+/DYCP2DkkpVE0waHD7m4W64P1SBbpcdiwV3UP/KShc6pU8CAbfKTTct416JudODjhyd59r07nlG2fgaMj4/T8RitiHQ6jWEYjI+PP+FxY2Nj3H///af0T70eriGqqZHuiqNkLKQZ8lnVrbfj3P4Tsn1RZsdrqLpCJBHWSp4VDuXACwXmFYEQCqatk+6IEl0yTEnk8DDQE7EFbXvs9PBbFL+eJSlWnRcKQc0jm3RpZPso6h04DR8ZBHhOwOxYlUTWxoxqSCkxTQ0ZQFdcp7N3gBWveAErX/8iOhZlyffF0UyVwAuo5wZxe5eQPmM9iUz4fkh3RNvXU1MmaiECKkTTBpnuKL3nrMRavgKZ6cJevgwhQsVWRUDnUBI9GkZc6hWHSMpEM8Ko62xuJZE1q6gm+qikB2nWfAJPYsZMSrkBXMNA0xRAhMa7C8dkwKQqUFMGqY4YK87pQl+8gvLw6RBLomgKQhNIX2J05HATOaSqtXeI0biJ0jeAPrIIJdtPqjNCMmEQ6ekismiQoY09xHNWS/QHPCfAS3dir1pO16I08ZyF2tVFpQbVIEIkYdLsXobftwQzZhB4ElVXse1QWI1AUp1rsnhTJyvO7qZ7cYp8f5z0YJ7a4Abs/h6aNRfPbRnHWkgtt+M6ihpS4/N9CVJdcYJ8L838MKWKgp/uQtWUsBxPAI2qi6IKhtfkiWVMlJahHQTh+IlfcjFq/yBGzELTFYSi4C7eSOqs01DiyfbznR+fuqkgVA1UpZVKpJK++krSL3kxiy9eRqYriu9Jcv1xBlZkQzVdTad/RYZkzsawNXRdIZ6xsFMWc91rYeVpmOkkiax1fKy3Kmo4dQ/P8bFXr0bv6abpdeFVh+lbnmdobQ6sFLkug0RnBt1QqMy5JDMlimqD2qIhmoqN9CVOzadWcmjWXJyai9vw0S0N1dBQVEgXYqw8uxuhCGQQPitFEUTTJunOKF3PPZ/Oc9eTWdxJtjcWGnZOSDuPd9gkchZGRCcS10l3RUgOFjDSCbx0J/GMTa43hhnVocV0QFORkTj2yuXIpevpuOQszvqdxfQtS9OzJEXP0gwImJ2sMefoNLM9yGicwmAcI2HQ7OmjrFqYMQ0rqhIrRLBjOqqqkO+L09mlYcUNIpqDL9X2WpHM2W3nlhnRiSXDXGdNV0h32BhRDc1UMGydwmCCvqVJejYtIlh1Bo3O0GEfS5tEkga6rlIvH2dbdgwk0Ft563bcwI7pxJImdlQL1aRLLrWSQ63skMhZkO+CTIFGzwpUXSHdGaVR9WhUXMozTQxTRQaSZN5m5bk99K7IhFH15Rn6VmbxFYFvx1Fti4itEMknMSMaZkQj0xVBRHUiCQNXV6nMOnixLLn+OIkVi8n3Jsh0xUhkbUY2FjjjecP0LE6FkeSWDeF7QajwDlTnwoBUshBBy+cxCxncWIZ611I0XSHwJTNjtXDOFvow/Sq+Hcdp+JRrAnfVZrSeXiw7zNrUNIXouefRXL6ZdHecXG8c3dZQ1NCZWYkbNONG6BjR1XmBefRCgeQlF6EvWoaqCgwjS3RkIxP7y1RmGjgNj4rjt1MQnwrPRJD/l0JKya57Jnj0tqOYUY0DW49TPlec000QBOy4I9wIaYaC54S0iLG/fQe1u++mxa1BHxpi/O3voPLTn7aPF5EIslZDRKNkX//6k157atcsu657hAFFEEiJIgQedTr0f2kpImuAR807k6p8Pvlr12F0L9zwvG3XYbaUQ+P2NHUva4JdqGqGmdk7aTSP8JHgXaECtZS8kuvYWouzE8KYqBRogU7RmgYkCvBC4ZJ/xOVt0Zcy/+bPBWM8ot+P7XggBcuKA8zkFLasX0fvwSOsOLCH4aMH2T0wiNhusSsIIy5CDZC+AlJhxhkjooUOgoYo4q+6Hc8st+9jds9KdvoXcsMGGwLJlXeVGGoIzrJVjPnSEbVJgkP3YK14IUGzxCM7v8f6c/ayRuxFAHNxjYl4gtltF9Gx/usEjs2iLa9CNJdSUH2Cug4EeF4CWepEMSZoltcSocmZ2qF54UwAJoMoW4I+dNPjnIbOts4dTObfgKF4nFN4Id899HECPFAsYl6F88r3UBke4qfms1jMbn7KxbzW+QQdRqg+vnTlHTyw+0zOvfdmmqbN7uGVXHf+FbzgQJmvLo9y4zkX86pvfgEr+iJmtSV8r76dq6ng0Y1UVFJalCVmlZ1Tp5Mx9pPNFJkixZpDE3TUi+xUbuI/guewc3YJe4oDLEodJG5Uee2az3Og1Md77/lT9mrw106df5q7lPcq/4UgQl03sF0HO7DZeGSOny1TEX6Z1MQ7kd4EH4z/G+8v/i2r0+dyx7FZpuaGGUjYjOCwX7h8J+pwTcliuWvyH9u6eJFe5g963sqHN8Xpn/oqA6P7KSVzJOamWHkEHlyyhzF7lLMnzuYWsY3nBpvg50fxiw0yVy5l80uu5mdf+hxOrcqOO25j2+0xxvfNoWoK228fY2BVhv2zDt+Zfju/2/W3mEoNryFQDYldvInmZ16N+YfXPa1I8nDE5LWRAkO2ySse3s9DlQbn37ODO89YForQPIPfGvzd3/0d73znO5/0N/feey+nnXbaKZ1PnGQcSSlP+vk8urq62LBhwymdf/v27aGRLARdIwmKMZ2g1EAcLKMkUwgLLFsnnrUoTtQwbY1YRKIcPUxNRKgnlxJNmVRmm/gCIkkjpB5mzXA9SySwVubQ0mG5vcpMYwH7aP4+OgZCKp+aSOCOjRNNGFT3bUf34tBwaKQGQYTKx8Vj9dAwjmi4dR+36aPoClYhwkhfDL0/zvhYjSM7ZqjMNkNhn0CimDpBuhNxQn14K6ZRmfFwmz7jR0vkemMYlkFNQixlEkmaKGoF3wdr8WLKD24LD1QUrJiOGstQbUXNhs4covS9bZRTQ2jdXUQWjyDufBgaTRASPwgI/CCMKmZWosxO4U8niFkavgxwVEGgKjRrPrrp4TY9qqUmQtNJD6SY2Zum7pgYQLyvwOSMoFYXBFN1CjEdI2qR6EwQ7e9EJAZCx4WqEAQBjapHrRSyp3QzzBGOJAwaVRdVCyNvxw6UyQ+uINa7HBHREELgpjoJAkm2K0Jl1glpqjU3zDGea1INCOmdc02a8SE6l1tIN4IZrYGEQFo0Kx5WVMPzAjKdUZI5OzRKBEwdDTfFqY7QYeE5AXrXSuS2PVhOgNcaH/WyQ7PhkcjapLuj1A5p+OWAetVl/EiD6FmbCQ7XYVai6QqJvizHqlG6OkNnfjRhUpyqIRSBt+48/IaPMlMHRFuQK6jV0F0HK6pTL7uomsCwTxwrOoXBOJViE6EJsr1xmjWXWcdHScVAQDRlEs9Y6KZKIm/je2Ee7PRolcUbCxTOOw+luRXiSVRdQdUUMj1xUFYxNJxg9mgN3VCozk0TtyRWsoclZ0bYd/8UbsNH1RXsuEGt5NKouEyXqjRSPejVEuaiIZKFSOiIcMN+i8R17JhO16Ikpp2j5EVRgfiITf2ASbHRUiSfatDwQ6qtXnJI5CJIRSWSDMh2RdFMlVTB5sDt4HWPkF+aJZgNaBYrDK4pMHEk3AOaUZ3hdYV2n9mr80w8tIlyvIqnGHQMpzAtjUbDx1UVnABiER1FFSR6opiaAgEYcZ3oaUup7T3ErOgklrGwonrokNMEzXrokFdUQbIzSqnRgzIxh+weIqnZoZFbDdsgHYfCQI65iRQ1p4xQFHqXhfnCQgjsRjhGDEsjnrFIFSI0jqaZODCBkcuiGRpGVMf3JLqpUJ1ziGfD/PnsppVMFgaoTNbwKy7TRysEgQxTO1TRciqamBGdZtWjMtMg3Rkh3RUl8CWje4rYZ2zGUKs0x49hnbka91CNaCpkTai9MZoll0AXUHZxFYtmpp8lZw1jdBTQLRW15VT0vTBii4Bm3SO+fhNKo4aZT7bmfmvdFSB0DXdgPe5Mg2jMwLA0hADDUnGbGp6fIIgmSJsN7LhOcaKlEWFpZLMBqghQMmbo8NR04gmDbHeMmdEKtbKDFTHQIyquJ7ESBqaltdf6SrERarYoCjII3xnJM9dTKTaYPFShNueESvKniGcM5P+FmBmrcuuXdzK6u7jg83jOYsmmDorHauzdEkZa113ax8zRGr7nM/eJf2Pu+uvbwluRM8+kdmeoniwsC9loIOJxZLmMME36Pv5xFG3hEJJSMvGfu2huOcaAImgGklFTY2l/hK7JV6E6UwTSRhFhdKEp15B49csx+xdGoL8yNs3nR0OKtwL864ZLidbi7Nr9bprNI/yMC9iprgRAw2HIG2ebH+YWaZ6Jr/h0CoMjuIDgnIjLiv+UfP6iSzl0YD5XWlIb3IZdDYWrCo0+FBQIAu4cXs3NV7+Od33yw5y+bSur9+xmdvwwd470gJRIX0GT4AnotIdIGKFScWnkR8gTjGMpBYcOX83XzokRqApIyeigzVseDl+EAM36FMX9N1JYcTXSd6nc+2keWNfDFdqN7fPsHI4yuf25FFZ/C4ChRy9DL5/Bz0WTb/nzuaUCKSNo8a0Y2Z/hzJ1OM9C51R1hsXaMXlEiAG53BkEKRoIy9/Xcxe7+S5G6zc25MV44HmN95mK2zPwIN/BQEAzO7uIbXRvwhc7H5RtBejxQ9jjHTBGLFdF1l/z6KpP32jz/pq/y5Re+lr0dfThKuAGYznRw38qVnP7wV9CNdSza91/cfk4Hm91rESJKICVLrAhjrospAyoyQpYiQoB9zGZHMNi+v3++703808VvRRdhLp8fqPgyXMTvN3w+LR2e1TifDy2rMpnsZWTiCBsPbWP5xDS7c/fhNj6LEpRAwvbOad5ivJeray/ijPwV7C9vRciAtwqT1VLh28Ll87EG15Ytrq5YfCLe4K/2GHyyKvhsz2IGRvcTm5siAFbuT7BjoEzNrPHT7p9yxrEz+JGjsU4fZuARiV9yWPOSS7n7W1/Dqdf58b//G8/70w8wM5pjeG2OXfdOsH/rNNkui+mxYW6ZuZZn5/4JdI3Re2w6N5QxD38T5z9UjFd+6mnTrZ+VS/L/+gv886FjHGw4nHn3Du46c3lYfuMZ/FbgDW94A1ddddWT/mZwcPCUztXZ2cndd9+94LPZ2Vlc131cZPlEXHvttVx77bWndI2NGzdy//33I4QglraIZ208x6d7UZrp0QxOw2t7/iGk90ZNFaPDpjajYcc0NEMhmjbwmgGxTLix6V2apjTdINsbxRw6ThEvz4br/4llzZKt8jdAW+xOM1VsTad+YJSg7pFZvorybAO/FY1M5OxQcKfhY7UofWbGojGzk6kHxplNL8V1wnxoRRXU5HHl75M5F44dKlOfczBtjUjPEMHYDHLp8jC30z/eVqEqoRANOmZER80mqALJfASR34Q2mUeddulfmSVWiFMYSKCZVZqdMWQ0RrXYwHMDlHwnoqML84FJNF3FUUO2lhnVMGM6tYpDvewRTZmYEQ3D1nEGV9OYbJASIAodKGKKQDdJZC3Mio4sVbGTFqJRI35eHryAVNnBqHpUi00a1dAoNSMaRkSlYzDBwUenUZQwiq2rKiMbOihP13EbPr4ftJcwzVBJZGxSBZup8Sq2oRBoCvHW825WPSLdHVgjWaITNbI9MdymTyxnEThB6EzQQqfCPGQg0bSwXqsV1Zk+UiHwQ8dHU0RQlSqxziSyGBrkcxN1ElmbuWN13IpLvKXVkemMMldLUnc1BC6aqSBUBbfp4XsBi08L54rn+jSrHh0DCapzTYIdM4i5MJoeVCq4o2OoqTQyOIEh18pBj7Y27KlCFAgrDtgxnUxnhETGwozq1IrhO17VFXK9MeyYTq0UOhViaZNKsUn34k46LjwDp+G1GASQ642R6Y6iKIJkNkJpus5oQwUlwIhoxNMWncPJFkVWMnWkjO8FBD40Gw5EbEq6SXIwjW6q9C/LUplrYNgagScZ21tkfM8cifzx6DaA6BvGLO3AyffQqHnt5xxJGMw6EkWXOA0Pp+ETzZg4DR9FEUTSUaqDp6FUH2B4XZ5Ezm4byALaUe5o0sSwNYRhgS0RXoBhaZSm6zSqHvneKJViA1VTSBUiqIZGfDiJbI2/o+MOxa51CNcnmbcITiBWaoZK4IcGYbozihDdNAtZUkNpqofLoep1Vz9CqaJ1dKBWJckOm1olLLFkRjSadY9UIULxWG1Bv6S7osyuXUtd7iC6bik9xYBkwWL3vcdQVIVo0kBvpeAJIegYSrTnyvRope0gMSy1/T3Q3uubdji+FEUwO1ZlcHUOa1kfwaJuGMzgOMfXJ9+T+LqCbioUBuLUigaRZVkivTk047jzRkrJsYNldFtDq3tYER1sCz+aJJm3qZecsE8WDAAIJBi2SiRloWnhXKiVHCLozB42wSlhRrQwNWa2QaPm4TUhHgFQ8L0AwwrvNdMVxXN9BlblmJ2o4jZ9rIgeMmCFxLCOt1cohAaylGi6imHpeI6H7wdE4qGT9VTxjIH8vwiu43PfD/Zz/42HjpcWAobX58n3Rbn7uwfYcsPB9ucrzunm7N9ZTLPuUfnm1zj2959GWKHAkrVmzXwiAUosRlCpIFJJaNGdez/6r0RP3/S4NsxN1jm25RgZEVKkhYDOi/rI1z6KODrVimQ2kVJnyvkr4q94OeZwcsE5HijV+POdR5gvGPi8RJGcPMSDu/4Wx5lCZF7Iv89cDYAh61wbfJQzu/+Cf7z3zahoXL7jdWQiRZSNn+K6WZMoAX+4pc6jwwN8/eBz2+cdKu/n6IodKPMCXuU1YX/t3sMnX/MWpKLwF2/4S/7muo9w4Za7eaD3uPcSKVmfv5y0UQDCyenYk8wO3siJ4VoPla9u7KNqq4hAIhVBz7FjQAIQzFKheuhGepa+GCEU6g98hgc7TF6f/W77UhM5g3JSR3o6qvCRgYqsreKL4iE+pQ6DB35cQy17CKWG2XE9MS/CotRPKJXXMqo6nO6FBuV9bh9FIixxFR7u+w57C4cppq4EKfno0gIvGK/RG13CvTM3oeMxo6fIuEVW7XyUI91LQ1ZB/RF+XCszMLWaoYFHMc0a/UMPMTd7Kdxf5Nm3fofRQi/5uTkaQ2fzrVWLuOu0C1m25xEStbvY151m1fRhmupXMJOvDusCCsGZUY37qhEM0UAAPgrXBVexot4J8Ye5x1tNPdD4+91v5+1L3oUifRalD3BB78+55ci5IKEsBR/c2MkRS6IHHkuPHUIKDQWPy3Zs4796ykiVdumnXbkJPuB9hi/sfS9DsdVsnbmNNZlNvEDEuRyD31erfD/S4AU1i6urJv8Qr/PFScGbI8v5mf5jLDfAF6D7Cmv2JrlnxSye4nF7x+1UZipMleZYmRzkrEOLmPnUNs4858XcdtMXcGo1bvrku3jNv/w7QlG48GXLuPG6RykXPYSAfcF5PFjdw7ro9+g+w+XY1hi55RWM/V/H/Q8f/ZVPL5IM8Jcj3RQ9n8+NTnOo4XDandv46toRlkStpz74GfyPI5fLkcvlfiXn2rx5M+95z3sYGxujq6sLCIW7TNNk48aNv5JrzEMGQXtJ1AyVRM5m+mglpMa2WAzzuWVVVIwla9GmfHLpsCQOUlArOeiWyuDqPKatkyjYRGInjwTMz4qRdXkObZ/BaUWE0FrRHFND0w2KvYP40zWaJYdGxcWK6kSTBpFESGeeGasSTRrkeuNoukLplhq1soOaF0STOjIIN4BWXGd2rLWJFwsNdN0OczJVXUG31LCCw/AaZDyMCqYKdigGBEQuugR15yzq7BTmkIlId8PBKkJA8VidWCGB1BuUphqM7ZnDaEXLLROGzu7iyI5ZjuycbRvpiZyFlILeJauZOlIllo3QvzLD9OEqdtxA1RU8NwjFyWIahh1jaF2e+gOHiWVN1N4U3SMpeCi8F6UVTVIMFQwVzdKIKIJqsYnvBYxsKNCsecQzFoe3zzC2by7MIbc1fC9A0xRyLXX/0d1FoikLKQOklEgkiqqQWJpmdqxKTCjohka+L06qEObAmhGdzqEkiazN7EQVp+YxN1lHCLHAOFY1BYGgd1mGZj1kxmmmivQlMpBUelejqoJUxKAnHyWWsegYToS0ZQFBLE2hoBEf6cWK6ZTTKdRsloYZRt7c5gkaLq2+7lmabkcezUgoZOYNLiNy+gr0bBI1nUaxbZo7xltRQImiCjqHkiGt2gxrbz/686MEvkQ1QtEqVQ/HoRUJt+q53hg9S9I0KiEdt7MlRKa3DIRUx+MrHignsCqqs01kehG5Xp2eZWnKM8eFGxUVukdSbYpvZDxG1SnRrHnhe99QUfTQgWRGdGpzDoalnTTzR/QO4Wk5ZKAQ0cK8Vjtu4E6HjBLPCShN1vGdgJH1OQ48PIPb9MPUO0VgKS6aYS18xwk4dqCE0wxZGYWB0DiMJi0icZ1V5/ewZ8sxrKiGnTDpWqTSNRIa/7meGOmuKI1qSB+XMnwGVkRDURQCPyCSMLBjBpGE0bpsmN4Rfmai6mFd5CCQ0L+I+NndoUCdEoRGIxBJGBSP1bHjethvj30WQpAbzmKlTyOWNtHGa7iOT6YriqIJ7LiB7wd0DSfpX5kNjTxDwWl4GKaG0/Rw6h5W1MBzj4/D+THZNhRFmDZpJwyOJZeR7Y6R7YlRnm7gNL2wvF6LSh5NWiSyoXp296IUjaqLM9UgkQuFC5FQnqnj1j3y/XGKE3XqleNOwRPXdqAtWJbuiFAYjJPtjqLpCuWZJtGkSVdfmtojWWqejlAE+YE4nhuEtP2aAWoYqVZUhXSXHUbiEwaFgQRWVGd2oopuqkRyBs26i+8GWPEwDTHXE2fqSBkZS2BaGmZHLqRax006hhI4dX+BU/ap8IyB/L8Es+NVvvPhB9pUJwhf3pe+eiXNusePP7t9we8NW+XcKxcD0Pz5Tzn2nveArtPx128DTWf6Yx/DPXwYJZEgKJXChcpxkbUa2de8mti55z6uDXOTde7/8P0saW0S1HC3wNHv3kT/kgcxATcYwlD2AwGJ8zsxVzw+WrE6ZtOnNdnnGgzJ3fzu3Nu49z4TKes8UjyHz8gr8BUNZIAjbO5WL6djxxvxhcIlu68m70fpO+2j/PNcuGi9ptmE76f4pytehdfK5zW9JuNn7ULzwv4SFOithvnBt647HakoraQ2yZE1q7iZKq5XBykxHRfXskkbHdhaDK8lzjW5+GugHF+0pITPum/gUDqK4ksCVZCq1Xn9eJirNevPsL18D5uHXoDQTKb3f5eKc4TkijwZUUICAbBFP59jt51DdXw1i9MlNM3hm84EH81uQJtykIBe9wmAJeYkRiPPhqmQBhkww4xSISaSHPBTbPdDI/9M3+EuYyegoLhH8c1BipbKrqhgaTVCf8dzOHjsR2TcIgGCeGUO0XCQtkm2cj2vLzh08TBb7n0BfX3b6B94mOGl96BPXs0edZwbz38Bi/dv54U3fp7nma/ju0t7uP38l3DZf/07QggOlZJ09xU5VKuzNBpBSklUVVgdGeTHM2+lI/M9HmQVJdVGi05wuTrDA0ETNzA5ciDN+7J/yXNiP2SNfj9XL/sWUgqKbpKvL74YGVMx3YC6blK2omRqYZkny09w2eFLuGHgpuODTUBdc3jTwPv49/3vZG3mAvaUHmBxYj0agguFxucNhx9Jl2fXdS6s67zRqvPlRoTM+jex/dC/MzBexhcKyw4l2TZYphIJX4wPZR+irJcpOFlE2iCYdeiqdrMkeRq75u6jNHmMu779dTb/7lVkeqLk+mJMHa5gtESBHqj8HgPm/aS1oyRXJKhNesS7G+j7v4n7FRP96o89bSP5fUv78KTki2MzjDZdzr9nB7edvpTF0VP3qj6D33wcOnSImZkZDh06hO/7PPjggwAsWrSIWCzGpZdeyooVK3jFK17BBz/4QWZmZnjLW97CNddcQ+IkehK/DAxbe9wwdZ1wnRSKIJYyiact0l1RDm2bxurpJGk3iGctpo9U2huaRNYi1xtDBpJm3aVeXViz2YzoeE6TWDp0+Mzv2+c3knpHAXv1KsZ+fA+Nzl68rgye1Wz/UNUVepamQcKBh6doVF0CX5KaLzl43tmUHzpKLJeFuQbNmsfI+jy6qXFkx0wodilapZNa6BhI0Ls4zbFDZYQCldnQIJkXObRbGzsAoaoIRYFsAWtpJ+4JNdX7lmeIpWo0Gx5+M3R2uq6P7/jtTdzQ2hyeEyq9uo6P6wRku2OkuqIkO+JtKunUkQrN6vHcyNE9RYSiEIlpdI+kmDmoU7J1ZExD0RQ6zt2AVpslmJ1FGMcN0e5FaY7smiGZt0nkbIyWEjKEeZjRhIEEMl1h/ynaCeKbxQaFwTi+4zN7rE6j4jIzWuWs3xnhkduOcmTnLFJK0p3H87jnEUmERgzArnvHKU83oFX3uX9Flmx3jHRnJMyXPUFJ144arXPGUDRBtjtK10iKbE+Y2uU0wnVb5nupdkqs3p7WGFVp9K3Gn6ohfNnOBZYnSDmcSO3vHE4wPVrBjg2g53Mohopihcdke2JoRp1kLoJpa21jIhwTMhTwkmDZobS5ooSOGLcZtk03VaJJMxw3AuIZq93nT4VmzaU659AxmCTdHSGWtsh0xShN1pkZr6LpCmsu6iNwg7AU0J1HEXMmme4ow+vyC+4xmjIpTdVp1Dxcx1uQrmOYKs2aC6qGCIKwbm0hgrX6IgzXQ5nxOHag3FJv9qlXPIqTNfyaR2myTm/CoOkH1MpNEo9ZODpHksyOVcl0h+Mi3RWlUXYpDMYxbZ3B1TkCL3SELN/cybFD5VBgytJQVYXepWl8X7J3ywSTRwSGrbfXJjuu07c8w+EdobFuR3VUXbSdSX0rMpROUIKed46oukLf8gxzUzUMW6My3YS4TnACO6QwGKdjIIGqh/2UyNmhsd70iSVNkgWbyUNlNEOhPhNS8YUAK2owsq7A3FQdzVAY3VPEafjoBgsQSRihk+WEZ5TpOp6yON8WO26EBnJMp3tRiuJ4je7FSYoTdZyGRyAlY3uK4VizVOKZ8Jydw0msqEGjGgoFzt//vHMPGY7NfF+MVMEGAU7NRwgRrjc1F8/xwyoEpom3eD1e+fj6HUkYOA0PJdWN05g39sP5oQiBaWuYJ8yVIJDMjNeol91wDs3P8+4omhnm8M8OplBtA00Pae/1isP0aFgjXNVOzUp+JgntfwFmx6vc/s09beM4mjaxohpO3eeR245y03Xb2qIOEPLy8/1xnLpPbcsWRv/sLSAl+Te9iWMf+CDTH/84wjAwFi0KjWNA7+9H7+4m9ydvIP+mNy24vl9xGP/kQzz6j/expFU7ToiQXl3v3cE5yTdjTtxFIE0awRqcYBBXWYp5yYsXnMdrtfHfd9/KPkdHlR5/k7wTFZAypGT/xN7IhJJp7TAUhoJpXnr4X3kgUIg3sxzLPMpPNvwD7531mPUVVvkB53wC/mXdSxgTx41xMeCjere2/145MwiA4gfcvPZMAPqnxnjZPT8iMjOB44XX7/Ln8DSVQPrcOPo5Hp66hZieppbaSaXzPqQ8Lhbzrb1/wq3muaheQKCGzoIPbfWJCBNnz42UH/4yZ0bORRhR3MN34Q+dxc/PX8WlakitFsCeXDeVIIvbjHNBXKd770so7DyP8WSAOhU+75jqEHiSFY5KNN7LsDDwhY8jHFRU8m6SouJzuzsECAYc6GjGeKVzNhvGfBAmotXoDy0PX+RnRVZxVu45YZ8gKSYySNtEdY7iNfbguBF81yISLTI+PkIQKCQS0zRO/wYvc9cSr1bYPbySm855PmumGnTXfB4ZGGR6+XNASkrY3LmnSlB9d6jc3XrZZDSFfuNs7p38G44EAyAFnlFmrDHAmeI4+2HfA518zvtDvjJ6JZri84oVX+fa1Z8jG0xCIGnqCqon+fHy05i1wxeFRGLKCFEn2o4gz2+Oj1qTfEL5BIEIWJLcSNUrIYTg1dLkvEDlYdPny9EmqxxBzhV8q+Hx3GM6i/v/EEe3UGWAEkg27++l/fAk7Evs45vR7/D92h3ELugBIVifuZgLh1+GKnTu+tZXmTiwnx99+lGmDlfI9cVw6h6qrlCTMb438TZ21C7gnjvW4z37n5g7FMV3QN/1ZZzrXvW0hbsAPrSsn5d0pFp9As+/fw9F59RLST2D33y8/e1vZ/369bzjHe+gUqmwfv161q9fz3333QeAqqr84Ac/wLIszj77bH7v936PF77whXzoQx/6lbdlPg/ziRDPWsSzFoOrs3QOJRBqWNG82qKVCiHoX5lh/SUDQKiZcdLrPPY/TjI1jIEBEs+5lOTyETTteLRlvnnzIlOFgXjbMC7PNKhXHGLZGEsvWsrgmhz9K7J0DCTCfMqgFfWKhUJNqc7jUTxVU0h1RhCtmsMrz+kmmbfDyHO05ayN6JwM9dYGsnishh0zaFRc3IZH77JMmLedX8Gs1gHpHEIR7baLVj41QLPmMXWkQnm2wexYFUUTdAwmyXTHWHdRPx1DiTY9sjLdYN/WSXRNEkmaoCh0DCVIr19O/OyziJ1zNvELLmi3L5Y22xvjx96D5wQk8ja6qaIZ4T+PHQO6qWLFDUxbIwgkihr2xdDaPOnOCH3L0yftl8fj+HmtqE62J9aOds87SwASeZv+ldm2od63PNM2jiGMtPpOgFAVig2LZvP45t+K6XhuGPVNFaJhuZmEvuDY9nWyNtmeaEjlfMywT+RtIsmwpNaJxjHQSkUwiSaN9nPsXpxqpxacCEURZLtjp2wcAxx8dDrMGa+7xDN2+3kcd9IIasVmWM7JldiLR9AMldjqFQucPuEvQyNjZF2eRRsLmNHj7TCjOoapUSs5aIYaRsktjexAmmghEbZZhAZYqhAJ+6MVIZ+PIM9f5UTPmhACK6rTtSjVbo8V1Ul22Mx3tBXTMaMaiZyNUASKKjDMMP8XQjGpeskh3RUjnrFCg/XEuU/o0EkVbAqDcfpXZFlyegdDa3NYEb299swbuu22KQIzorcF44C2GjWExt6JYxHC9a00XWd2vIbT8LHiBp4TEEtb1MsuU0cq1EoOqq6Q6YqSyNrUyw6lqfrjqNu53hidrWj5iXgs9dlO6KQKETRDZXB1jsWbOkh3RTl2oER5toGiCLoXpYilzDb1H8IxbbdYGvMiZnZMp1EJnQXz103mIi0BsuMWvKoqLSEt0XrGktq8cdzav3QvSpHvi5PtibF4YyFMCSjYuHW/7ZCYx+CqHF3DSWbHq9TmHJAsCAwmsjZdi1LokTAQJSUc3TlLtdhssZbEE665j8UzEeTfUvh+wD3f28fMWI0DD4V5K6ouOPfKJSzf3MXU0Qq3fmnnAnEugFXn93DG84cxIxrO3r0ceP0fIx0HraeH5u7dWGvXYC1dirlsGWNv/XMAIuefT98//xOy2URNpR7XlumfHsbbX2I+s1cIQdEL8C7pY93MvyFbTSh5V5PUPo8UNuKP7wHt+AS8Y7bCn+08xF8XjvCu0bBu3Jn6fqy569u/2SPWcY95zvxF6PSmed5Xr+PWRedS1I/STO/mQOF+Sj6AwETylhuq/OfiS7m1dz3zOyZN1JHZryLc8G/Ds1g0F+ay3du/hIZpYbgOz952D5rrEDm447jAlZbAb/mVeqxhTss/GwCn6OFWVfRo6P26f/J5fHv4fJASv7VIvfSgw5q5gNvFNrqYZHDlq1F0m+a+n+D3beBh/TCXK3egz9eh1AUHsr1kO35McvBO7Ns+TEnqvD9lcevUGgSQM6qcWU2zR3qc7Wp09X4Q76EXsss4QkyGUcG6cLixuYwgsgdqy2goYZmn5MA2XhxpMnzzFzmgD/HDS17MA1mNYyYUmlDrWsa4sYfOo9vJzh4DKYmUvouQKh+/989ZLEucHt1DsxmjXo8QjVZIZcfZE/kS1267hg+dnuDBVaezo1FD86pAgv847yz+ZbzIgdk7KBsmoxMeA/VPoibejdDDF0hKU7g4Gufu6c0cie6mYU3QtCfJVgbD4s4IUji8x/4r7jLO4uHJZazO76DuW8xVIpAQqPvKRA9UqJ3XwQ/WnMWLHriVqNNEReOC0XM4mDzKjuQOPNVD8SFQ4buLt2Lf93FeGHkZST1DIAMUofD3RPhrWeNnus8XYi4vrRg4wDZR53kTGj9VC8y4oRBa98GAjqECE5FjbSN50p7kuv6vcHTbFJed+2wGthgUyr28YPmfcPPuL3DDv36Qy/743Rx8dI71l/TznX96gMlDYR57Revm5803sfllDdK/ezlOr8XUh/6K3OIJjCPfof7B52C/9YanHUn+1xWDmOIQXxyfYdbz2XjnNr65foR1icdHbJ7Bbx8+97nP8bnPfe5Jf9Pf38/3v//9/54GPQaJ7HFq8aKNoeOyPH1cZCs/EOforiJ2zGhv3OYX4VQhgu/Jdo7qPE7VVZTuDlN6ZidqCEKxpPoJ0QwhBPGs3d7Eje0tArBkU+eC9iey4frarIcbOLfpk++Pt88hpcSwNdyGH1L7CDdm89HPTGckjAimHhMOmm9nV5RayWkbcZ4XvhdCOrFOdnE3jhJpOSCOKxt7nk++L05tzkEzFHQz3OY1ai6qqpDM23iuz+Hts6iqwrIzu9h19wRBy+iInnUWHYMzaDNigeF3snd/o+oyN1nHjhnkeo8bm8mCTXWuSddIkrnJOsn8Qupv//Is1VKTWtEh3SWpluJke8K+iyQMOh+TdvVEsCI6zkmorPPoGIxjtYy3RM7Cc30CLyDw5ePEejRDpW95homDJQxLbVNQ50dWMmeR6Y7Rvfjx/bDA+Be0DVfxGAtZb9FQJw+ViabN9t/zeKwRNW+8PpkT5fCOGaIJM2Q/PAnaY9J8vG7MfLubdY/Jg2Uqs80w//aMC9C7jjNKepdmqBab2AkDzVCIpSziGZtoSlKaauC5IbuhZ1mambEqkVSo2D5Ph56HqoYOHVVTUBTB4Oo8224KHUodAwmUF1+IbDYRSpiXH3inNrtVVaF7UQrNUJk8GEapYwWzva5MHQ6Frk40/gQKcDwnXlFDsTJFCfPXw8/C7zqHE5RnmgvmxWMxf0yyYFMpNua79nFItxxpulEPI8StNAxNV5k4UMKKaVjR4+vFPOavfaLTYmzfHJXZxmPmjcSwNNIdUey43j5G08NxrZsqqY4IruPhtVS8w/sWjxuHANmeKIoqGNs71+6nEzqxdUWwowb1qtOeA42a287phnCdUkQo3js/9FTjuKOiUmzSMZQg3x+nMvv4vjZsrW00h/nash11PhFWTKdeCUXPjh0szWeMorXSGU4Fz0SQfwux98FJPvuWn3P/Dw+1jWOASNxk5TlhlOqhmw9z7OBxsahI0mDTFYOcd9WSsNbdoUMc+sNXE8zNYSxahHf0KOUbbqD7fe8j/qxnMfYXfwmA1tVFUCziHDz4uBdk4PhM/nA/9dvD8j7zC+2449HsfYR1O16I3HkjAnCDDuLatxFCIi/5B0S2r32ee4oVXv7wPvbXHd58QCcIY8a8wPmX9m92ilW8T/4pssW36/QmuOobnyTlTHOat4+z9vwBr2yupHmCB+2vDpW4tXAm1w29ADHPf5PQWG2hu7vbv1s6txgVlcDzuXfRKgDWH9qFJWvYh3a1o6sAHgrrMheS0zvZnL0coYTlQIK9XwqNYwlH6eFj2auQqkBIQAj6qz5v3ung4HJAnyZu5EPjeNcNlHZ+mx/pN6Ord7FK7Gpv9HaOJNA69oU1qg9cyt9Kj+eJCrcVrdD20qDeZ9LtCc7X96NFdjO64wym9Jm2cdwQDX7efStB5w+QfgRFmWFCg9sy49jZvUQjNc48717Wzd7Hol07APjY4vDl8XDK4K6V6wDomzjEZT/5Ci+6eR/MLaXiJtjpdVCvx4nb4+zedU6bNpjeNIr2wGc5ayxUuW5YETTPYWT/NnxF8L7nXcbp1pkIJG5apWfVHur3fbqVj9ZaqBVBt64SLy0hOrMW4ekkogewW0W7q4Gg7KS4QL+F4XQYWU4ZZf5E+wiLt86h7y7hOAEDh+tUrAjfX30WjVYOokWMpXNLufzw5WQbWQIVVA+kAl87bTtfrHyC+4J725sbRQjeIyIMIZjUJN+IuUyqAT/zVA7G5nDckMIdBqUFS/YsQzf+iMbE5cjWOepane9kvscnH72Oxkj44tDrOs/qeSWZUp4t3/sMZzxvGMPWeO4b1rajUFJCPB9l2e9fRulz70O/4dUUVo4zPbYEKcGu3Unlbzf/YpHk5f1c25vDEIJqEHDZlt289uH9C3Ion8Ez+HWgczhJ96IUEG74FEUwfbTS/j7bHWPlOd3tWq9w3AgRigjLwjzGaGjWXDQjzBnM98UX0A1PBlUTxLMm6c7I4yItiZxF10gY1ZiH0/CYOFBibvIxwjudUTJdMQZWZtufRZPhplY3VQ48MsX0aIXSdAMZSAZX5ehbnkHRQmO1vdF9THP1VpRnPvo1sq7A8Lp8+/vCQKJtQAmOR4+tiE6+P0GuL942iiDcuLYhQ9quaYcb6GxvmANpRXSMqEmyvxDSujNPrk8wv9Fs53m3YFgag6tzxNIWiqI8bkNqxXSyraoVolXax7DVlrDOqW9L+1dmGdkYpg1FEieJtKqh0FIotiTaTgPfDZg6Ul2QxwlQLTWxohqRhNk2dOaFj9Kd0QX9/0QQQoR1ilPW4yKNiVwYuZXIx/XZyTBvrDyRgTxPC6+Wmif9/kQsPq2DzuEk8azVqvH7eIztLVKZa1IcqxF4AUJRKZ9A9Y8kQvbh/FycjyYqimhHGN2mj26EwkqKIhYaUvNYMCBCsanO4QSpDpvDO2Y5OKqiD4SMkc6h5EmdEifixHdWLB2mEnQuSpJt5R7Pw/fDnPdUIUI8bdK7NE2+L3Y833ZBE0+yfkjxeEGqJ7o1SXuMJwuRx/1OURWyPaGImmGFZbPmc/Tn58CJKRjzf/ctzzC4OkfvsuMOEdmiUOum2i4vNzNWxYrq5PvjbYO3WmwydbS8IMVCEQqJnBWug0+yZiqq0r73aNIg2xtt32vHQIKOgQS1UpNY1qRnSbptlNtxfcF80gyVjuEEXSNJehanSRUibcfiiajNOXQMJk76nWlrZLqiZHtC3YRMZ3TBWg2019N59n+6YGPHjNb4P7VSl88YyL9FmJ2o8uV33sUPP/FwWxACQtW8tRf38dJ3nIFT9/jau+9h191hzeJ41mRkQ55nX7OK0583jBAC58hRDr7qD/COHUPr7MTZswdUFWNokPoDD3Lw5a9oC3SpqRSNhx5i7tvfaV9P+pKpzz/K6HvupnnLkZY5Gy4oY06TpdFr2Vh8GxQPIkRAIA10ZQJVzBEkF6Oe/ar2ue4vVXnp1n3U/IAOpiiLcNJvlj+jh9DwvpPNvEu+nbqIEveLdLlH+Tv1z1m8YTfnDAnq468iNXQHt2XuodmaFZd5DWYPr+PfEi8FJFIoDFTGCc5Mo0ceQrTMUMuzGS4Pg5R8dfOlIASG67D8yF7E5Ayqc/zlANBpD7M0eToXdF6JakRxzRnqM3cx87ywreVbFvE+/53UVYuI4yMVgeVL/v2uKgQeP2ELybGDmPd/g9rPPgjjX2d0uAfXUvkd8V9t5u9kymKqEC4o+p4reMO+C7kdnxNSPghiBmtKSWTkYZr2MZr2BF5g4LTurYHHLfkHKRkl9MQ2IkMfQ8vejSLhviDFl3a8mCAAPeKz4nl7ecG+L6F6TX7YpTNuCq7vNdg9tIIdwyuRwMrd2+iYNVm5bRATDwuXWGk3i/rvpKtrJ0eOLAcgFi+x+nnb+KvZPyHXCJ00xVQOqagMH9jB4ajKh593Dn+06FFeNXwf0YxLInEnzo7vIYRyPG+sRbWMeAkyMxsxnQQvMh5gmSjiovH1n76NH5Uu40P3voHxarhJ2pjfyrP6P8drFl8PSI7smwNfMhtL8r01Z1E0PVxa3kepc+7YuSyaW4SvhunjUoHvn36E65Vv86ng4xxrHAbCOtWfIcYrA50pLeDGiMs+zeP3qyapjgvo6bqkPUZGjhxECXp4zUWvRmsuIvDM1jOTzOlzfGHH9zlszSu0q2zIXkJhbweP/DDMjXYaXlhjsuXlnjpS5dbPPkD9ex9HECA9cJpJmm54zzFtO433nY/0F1KRTgXvXNzLls0rSLfopt+dmuPZ9+3koXLtKY58Bs/gV4t49sQ8eBFGHVubnFPJGesaSZHMRxhYlSXdGcWKhpTnrpHUEx4T+KEwkx01iJxACxRCEM9YCzb3YbS0xsSB0oJzKC2D/bGU2cdC0xXKs6EC8IkUxFNFKBKknvxLJWzzog0F+luGuueEuaTJnI2qKQuouvOGW7PuoWphJK97JEXf8gwQRiZHdxcpTzUef60T76llVDxRRCY01mMLInYnvbfWxlsIgWao9C4NjYBTgR0zGFydo+cpjCiAWMYikrTQdJXiZJWZ0Wr7u/kIvG5qDK/Lk2kZVqqu0DGYINsTI5E7Ba0GEVJen8iom4+syVPYoyuqINsTI5o+ef/Z8VBA6sR80ydDZabB9GjlhOj4Qmh6GDXN9cfoXZ5B09STGijzOa0n6gDMn7N9X/NRxQUOV7HgeM04XsOW/hHIFsBo3esp+GnbRuxJfqsbKtnuWLtU0YmwYjrrLx1gZH0BM6oTTZ6kf5+mdTTPBphfM9ymT7Ynxsi6QtvJdTIkcjZLNnWy6YqhtlpzvjfO0Jr8SaPHuqWS74svoNfP97GqKk/q4I6lTQr9ibaxCuG+JJo0F3z2ZFDVsIRYNHk8Mp/qiLSp5fVSqDI+//xzvXEK/XE6hhL0Ls1gRo63W7dUCgMJVFWh8JhKNs3aE+9nzIjO6vN7WX1hH4X+BKsv6H2cXkHXcJLB1TnMiI4dNYhn7bbRfqLQ3pPhGQP5twDFyRo/+NhDfPkdd7fVMiGcLGsv6ePl797MOS9ZzOxEjeve8jNmxo4v+s/6g5Vc9trVbW+9c/Agh171KryxMcx1a/EmQkM69/rXkX/zn3L0z/4MPA9hGCRe9EIGvvRFOt/9Lgpv+bP2xKveN05j+wyyNchcBSLr89gjChuSrySuTiCZr3UMgnARlQiU57yr/TbdWq5x1UN7qfgBg2bABOELsUce4vWE0eNbuZCP8qcgVDrlUf7BfwuvyurscFfRf3SQL4jN3HXWO7i+8EN2NcMFapnvsuTwUt6bfTW+VOk27gApOdzbhRvzic59u72grpteiyY17u1bSikSR8iAl936bbK7HsQshqWwLCWceJrQ6Y8tZay2F0U1kQSMrvo4h1/ySfxemJxZxl9v/HtmtDTZmkPNUNEDycfvKpHxBAQey/Yf5tyf/xwBfK8zw4OXbOCRNav4A/E1LOkiAQ/YuSR8Ecf3PI9v7HsuM619kWTeGSFRiw6R6e245hyqF6F6whvXD+AHzjImxq4m8FtRBgFqZD9Ba+H66eFz2TazLKyrZwasfdYOTlPvwxPwxUGD3loAQvC9S69m++rz2ovFxuI28s40iu8RVCuYsQaJ2ARHDq+k0Qj7SnYGzC2VvGfX32E44fPfN7AULfCIl2a5M5fmXUtegaZA0xf8NNFP48CPcI/c24565HSFfs0npQrWmRap2TXEm3lWGQcRCtyvKNxx9/M5VO7jpiMXtO/9rMRtbB66mdW921FcCS0K5HQsyY+7b+COjjuQrf8JBGtn1nLWxFnotF6SAu5bXuTewh7e1vlhbpn4Bo7fQEfwWsXmu8R4kWrwiOWz0hH8hdmBaYxgJxe323DJbdfz6dHr8a3dKJqD9MLN/t7kXm7uvpnPWzfw6dQNVAjnc1dkiOhPBOO3bGPn3ePMjFbpXpIi0opEbb9/jh8P/zuP1i9D0aBr4F6OPWDiynDOWM2HaL59FaUbvv+0I8B5U+eBs1aS18P5urXS4Nn37eIVW/dx31z1KY5+Bs/gV4MTc/aqc2FEbMmmTrpGkk9pfEIoWNQxmFgQ+cn3x590cxp4oV5GsmC3chmfuE3xTChq1L8i+7jfPRaVVv60U/fa92An9Cc2cH9BDK4Oo9HzRsD8htX3A4KWkzuSNOldllmwgZzvIyklu+4L9wC6dWKeIG116SeDqgmSefsJI82u4zNxoERx4gkcbq1HFc9aCzbIkYTxtPJrDUt7SsYAhHumeMZENRV8Ty4g3swbbSe7rqKGEfr5cflkkMGT91mmO0qmK7qgDvIToV5xOfjIFKWp+km/NyyN3qXpBfT2J0J1rkmj6hFLWY+jds8jmrTI98XpW5HBtDWG1+dPOn9OFkXNdEfJdsdIFsJ5NB/dblYfHynPdkeJpU3iOas9FotKgWP6AGZL1O/EvNInwnw7Hpt7eyp4Ml0EODkt+smu0rc8Q+fQcYrz3GT4zB7LIjhZO7I9sYUG6hMc0rMkTSxttWt7z8OKGcRSJkIVC8TBHgs7bpDqiCxYTzVdJZ6xyfU83hFyImbHq0weLpPtDRWxk0/gLIq3ROwURUFRFI4dLHHgkSkUVRBJGAucnSeuh48dU7r5xPPfdwOOHSwxd+yJHfmaobbV7/tWZMj3x1myqZOhtbkFgoFPhmdykH+D4dQ9bvjUwxzZPrvgc0UVLD+7m/XP6ieZt5FSsuVHB7jr2/vav7FiGs+5dg1dLcMYoP7wIxy+9lr8mRmUaJTm1odBStIvfxlaPs+R178egoDkS15C7OyzSFx2GQDJK15I8b8OEtQ8slcvY67YJJCgCJj2JOU1Ofp7foyy7e0I4ePKQaQUGMp+pAyLgEvVRLzyehjYDMD2Sp3fe3APJS8gxywHmmmEDMgxyTv4GwSS7/NCviJe0aaPnuXfxobVn2RkpsmxGwe5PVjJbav/iZrnghIWK0/jc1pzKe9tvppAqqzhFrY654EQyMRO4jMP46tZNH+M3kov3bVuSqrBluHlIANefv11ZMcPLlgcG0E1/NsymKqPsj57MUIIpgd/QCO7GymhKiN8yHwr0y2a0XTEINMM+MS9dYarCgcZo1/tpLtp40rJlkUreWj5OgLlKNfwJdIyjLQKYPeiKE1LpbnzIj5w8NnsFC4oIAUIn1YpEcFp6lH69Ak0J06XNsERrFDRupHmYWsXWrAMGaTxZjdh5G4HQIscwur6Ko2xqwDBR++/hj8//Z8ZTh1GEQGvdf4Nf1/A15eeE6b7Sokm4WXyLHZEtlOvTaIAzx77IT8oPJv7lPXce+cGVk1sQ/TpPPrIRazf8H2UVu2s2OoDvO3+f+Td69+Kr2jsGlqJ0QyjEp8beDGRWpVrbv8Ws7UI9/bFOGPLdQjdQutYDcBqrUlN04lrKpYiuK+0DNU/RIdRZFykGAs8hpI2ty65gsHqKOdGf44QYQ2+Ui1KICD6wCzVcwogFCrxFyH4GluEwkYpW2nCkq56F8868iy2ph5kaE+NO9bMcrTQQHcFn7JvY/quQ1zW8xqiWoKIFFwjLF6GyfdMB893ebMKH0xu5GjpAL50yRcnWbFbZ9vIyyk076Dc2IcuU7huQNEscntX+DwejDzKiw+fx7nqRnTFxPvhNAMDUWJXLWb5uT2Uphrc8uWdHN05S7Gicou8BisVZ4T/pPe0w0gH5u16Sx+HG1/J+E9fTtcHjqcnnAosVeH1/XneuXcMAURVwU3TJW6aLrE5FeUN/R1clIk/5abiGTyDXxzHN3bWCaI/PUvST2l0/KKw4waJrP2E0bz5fNhQVVackiFyIuYjFZqu4rn+4yJCvyyeyIhUVYVYyqRZ85g4MEe+L75ABRZgaE2e/VsniSZN+pZlFtaPztskT6VeqAgjWk/pwHiKxze/cf9vhZQL26WE7TjRKQILo+NO/akjT09lEMUz1pM6bU7EvLEzT32NpX7xknxHd4X7yErRp1tPtT/XDLU9Pnw/QEE8oQF94jHAAqMumjRPGon1vRMnV8sJEdGIJs0WBTu8N6c1VyTylA3etkPnFH+f643jOf4CKnEyb1OvOG1q8vGTn4xi/cTXmS9h5zS8MP/6acz1eeMzmY+gmxqlyTqTh8pkuqML2CZP1Mcnrkt2XKc0XScSP/Xrd408dc7//BqpaiLUXxDHx2dltknHYKjSPT+2h9bkQMDEgdICkS6AgVU56mVnQR+pJ9DK7ZjRztE+GZyGR/FYDUVRTqp0/2TQ9FPPQX7GQP4NRKPicvs3d7P7vgl89/iENCyVVef3suaiXqJJkyCQ3P7NPey4a4xGeV56HjZePsimK4bai4CUkuI3vsHE378H2WyCEATVKghB4oorQNMZf/s7ADCXLEHLZRl/x9+h9/Rir16FX3ap3jMOQnDgo/ejHamiCAgE7GjUOe3R/4e6724kUAmuIAhiJLSvtXJSJagm4lU/gL6wbrLvN3Em/oO414Unk0yJNIascyE3cyVfQiXg38RfcSenIWSAFArDchfPKd/GD+88i/hPK9TNVdx7+vuoOQEJRVIKBBEk5+/cwCeCK5FAl3OMmeYyiCtg1olGPguNUIEx3UyzcWojSPjWpotIFae46vufJV5dSJ+bx9LEGWTMTnqii1GESi25i8lF3wIJMyLNh+VfcySWor/s09QErpB8/LZRhoIkB9RJph75MrnROYLKOABJt8pybYI38DlsjntKpxMaXeN1Ds/08+ejl1IhIKsqTPlBaKSLcI1epx5llT4KgYKnlzksIkgCYqURSs1OdqkJyoQewdMPP4sD9h6K9gQooKceRLGO0hi9CrfZw/vvfSNvPe3fWJQ+gKk1Ode7gYcbS2lGQgrvm3Y0WFKVFPV+9hNG1SNBg7Nm7+ZbXS+EQLAzs5zLnEdRlCgz0z0kU+PouoeUsHjDffzD3Nt5d/SvqehR9MCjf9+j7O9bzMeW/z7N2hKuOVDg3j0foTGSgns+ibn8CoSZRe87Hb1Zo6HYdOkKm2Nwd6WfbmWKcRV8AX0TDtb+CJ8YeTNb9yzjRR3fpTt2jDeu/hR/+/O/oVE3MMdqNLujePYIFfUq9i+ZZvmONFERvpQd4WAGJptmzmCsewxNPIAr67i6ZDbl8e0zDzH56L/y+4k3YWvhy8gCrsTkd1WD70mX94s4L9Ui4IYiFufd82MOdV/LvsIF5PZ+GNfchtRD2rjm63iqy77kPj5rlHlgbBt/WL6clFHAO1glebhGRUqSF/RxyauWs+WGgzxy21FA4YcHX8pzN/TRf+TDKCZUxnWa5SjZxUWspE+++R/MfrKH1DVvDcvGnCJe199B1tB5845DVFovPhW4s1jlzuI+lkUtXtdX4EUdKYyncd5n8AxOBZUTarLOU1mLE8frhP46YERUOoeTlKZPHqED2mJcTwe9SzO4Tb+di9xmggbylCKdvwp0L05TnmkwM1Z9XHTG9wPG980RTZh0L0m12vj02xVPmezfOk3mCTap8+JnT5gj+z/gb5sXqVIeQ9tXVYW+ZZnH/d6K6cRSFoatPk5s7ESMrC/ge8FJKb2/KNyW+JBmKAyuzj2l8f1k6F+R5dC26ceJk+X7YsyO18j2xDiyc+bUTtbW9XriBzjvFHqsYwZCgz/THV0ofJexqJUdepakT7kP5/e4p2pQn2wdSeTsp3SMPB3MR0VPNUoJIVMAYG6yhmFpVIoNzJZI19NNx0jk7FZt81OjTJ8yTrid+Xubd6oJ5fE1uEvTdQJf4jS8tnjbPB5btgmOrz+arj6lI3Le6fJU+eBPcRtPiWcM5N8gPHzrYe789r72oghhDrEdN9hw6QCDa3JtesL4vjlu/cpOpg63hE0EDK/PcdErViwYeO7oKBPvfR/lm06o/SolkTPOIP37r2T6uuto/OAH4ee2jZpMMPvF6zGXX4k3E07a2sOT4EsCJNqRKp6UaEIgpOSixLfJG3fjBgMc8/8SW+4iY/xTW7BJAuKCv4K+TdTrhzly5MscHf0S9/jLmeKN1EWUTWIrV8ivsJhdFEnzLu+9TOh5aBnHBTnOS/k8t/jnctbt+5lL2mwZ/BZbnQCF0DiOSgvjoav4grkMTbr0Vic5EO0CQ4DeINL/QRBhxLBQL3DmxJmogco315/Pyu33ccHdP0J5Au+grcZZkT4LVegIIZkc+g7TI9cjFMn1/A7f4CoCRaWvGnA0quArgnc8XGdEphjb9y0a04+wdPQI837U3f1D7Dp9Oa8SX8eWTrvQelNofHXiL1ltXE+OKp3qLGdwO7f7G5mm9eKWsEodY606huYZeKoDAipKifTseiL1Hm5KHKPcqnc86HkcG/oCV8yeSfNnj/DNZ+1BqgLVmiQy9FEqu/4WL4jw/nvfyB+v+SwDnYf5t1Vvx2nVlYzVJ3nxIR1QWZ04k2PVPVS90ADsaY6zqXgf96Y3UVGj/MBfw5/2fZFc/gjT092k0+MIEUAAvcmdfKj5Jr7UuIafxc+gb+IgsVqZh5Zv4rqNm5mWW3ir/heo7gcxgiJzj3wboQowIlgdq5BS4ktJTlM4OwZOdZYdCY0aJj+zPK58sIzruWw5upat+5bzt2d+gN74BO877+9oeCb/XH0z++RKPGMQz1xGI1Lkpp63c+6RK8gqDQxpMKPPYQYaXY0uckdyPJJ+hH2JfeiuYDrlcP1ZR9l99B94S+VNdMkOFCHwZUhCfJEweLZI87XOK5moP0x/6SFUp8azb/02X33RH/H+uSr7Cik+JYrhY2wuJ1+JUUk/yKQ9yU3Dk/zM3crZhxbx2vrLSZCg9KODVLdNc8uUw8xYlcE1OQ5sDUX5vn//uVxx+Xp697wfp+dqEBbBKom44S1opiR19B+YeM0PEEuuIP/m/4diPnkO4Dx+rzNDwdB4zcP7qQQSH3hjf55bZitsLdd5045DvG//GK/pzfOK7iwJ7VdLGX0G/3cxH0FSVaW9WTp2KHRYxjPWKdeuPFUoitKmIf+q8djo0Xzd50BK1P9mq7BZc3Hqj99k1yuh0uwvwwpJ5CMUBp22WNNj8YvQWP878VQUcjhebumpoGrKr3yMnoinQzk/GayoTudQErfp47tB29iOpa22iFOhP0F5phGW+XoSzBsoj61FfiJ0KzSQFz7kJ37iqy/sBQlje+ZoVl0GVmefMiXBiuk06+4vzcx4rHEMJx+7+YEEY7uL5AeenI78dJEqRBYoq1sxHUUVTxpFfSIIIU6eU/1L4sTumB+L8/8fPYlA3ux4Dc/1Q4NdU57UmQIn5LWXn5pab1gayXzklPOmF+BprHfPGMj/Q/D9gIl9JRQVanMud393LzMn5BdrhsKmK4ZYe3HfAnn0+288yN77Jzl2glDIinO62PzCEawTPE3uxAQz//EfzH75K8h6PZRyCwKUaJTEC55P9OxzGP3Lv0K26hwjBNaSjQSsJHLRaxBCwZ2I4I5XqbWoOQrgBBJDEQR4ZLX3oitTTDl/SSM4B0u5g7T+z/Onw1cLKLbCbP8Ahx66hoemd/Ilfp9OXsKPxPNQpcs7o99jsPJFNDy2ci4fdl+Ha5i0ikuSlLM0PJuHJs7hKuUHlE/LMJPYzp2z4YQMEPRpUH/0Kvaby0g1Slwxfid35XpAdIPSINL3b6haDaRgzcxqBsuL0QK4p2uQ5970VfJTo0/4nGJqitMLV1D3G0SiNQ6u/jhedicQ5kd/gysJhIruSw5HFRQp+ZtHGpx28ABTD3wDc3wHPa1NmETiDRv0bpzmbO0/yco5PAW0IHQk/HRgmA/vWMzLYqfzmcVXElRdprYnKBLHsCRBI2CVNs46MYEQEk8La8DNeVny1WUk6wV26y67lHDxTvoBL6hESIxdwT/rccr9m7j6/s/x/Q17wtAgEqvzmzSPPY/AS/HRra9huDiKs9QARcEs34JZ/AJ/3T/A3x3+YyJajCt6r+VQdQd3TX4XgDPmtjAV6WC/2UddWPzTnqt5R3yK/Xs3EU9MsmzZHeE7MYC4Ocu15gc4/9h67MM+f/1770DxPaSUfOe0jUxt+Rmv2nURxmCOnPwu9v6DNO79FNpzPohQTRS/zpzUSWkaz4ou51itzBciEikE34jVOH9njUqnx/isxbvu+gvefuYH6I2PEzXqvN78OH/lfhjXCKNBijeDaznclb+BlRMvYlArknGTNAiYNKbIOVnWz6ynr9rHbV23Ea2pNHWfbb1FXuu/i/OOLuOlcy+iS+2hKH3uED6XS4M/0NLMxs/hi5E1FMa/QWH2GFde/yne8Ly3saa+l9X1+9gT3ItQktjGVYwfWYE69O+IQNDQG9w88gg/89/O+qmV/HnxFUQOw4imYA/GOfO5AxzdNdt2oP3XDTGe80ffYWhtqKw69x8fIR6EE1Uo0NH3EMVHd7P73G/S98lPElm//pTWpgsyCW7ctIxXbN3L3rrDmak4r+0t8I49o9w5V2a06fLuvaP884FxXtGd45q+HF3mr5Y6+gz+7+Fk25bepRkaVfcX2wg9BUbW59vm0dDa/K/VWEtkbeoV90lVYn8d0Fu0z8dGk+bb8USG7aliXm33iQzDeVGcJ3p+j1UO/m/BCSrDv+mIJA04enKF7l8EpelGqDScebzCNoRRwFOhuj9Znus82iP9FPt53hiWfkixPhUpjY7BBB2Diaf+4S+Ck0xV09YYXPPk4nHzNYrrJQe6T+1SkYTxK0+/+FVj3mGQ64ljRfV2jjlwXGjtJDgxL/vJMK+s/lhl+ZPBsLVf33M/Ac8YyP9N8FyfYwfLjO+dY2xPkSM7Z/GcAKEsVDPUDIXVF/RwxgtGFtBMpo5U+MHHH6IyfZyqlO6KsGhjgY2XDaJqCkGzSfXnP6d0ww8p/ehH4J6gAhcEbWq1s3cfxS9/pf2VkhvBXPY8tNyK8IOWlHLg+ox/5H6EhGYg0QUt43iMpHoLFf+luN4IUCelfZio+hOEgIbYBOe8jGOLJaMHP09171s5TB//IN5NiSQPsZHl8mHezD8SrZRx0Plw861s0U8HQ0FIHylURCBZsVPj+ZWf0L3q22CVmWhM8MVJk/nVy/QVjjz0JkpGB5rv8drD/8kHFr8alDpCVLD7PotqTpJw+rhwdAOa1Kg1XepScMlPv/GEzyuh51iXvpCOyACKUKnkHmT3ys9wr7mCMfk77BZLeVCcBlKSafjMWCpIyd8/WOfSYz77p7YRHd22YI0VZsDy0w6hCslsxKTmK0Qa4cPf2d3JW/b/BYql8ulFv4dxzxQqhMZxRuXK6t00TI0o7ny1KhQp0JwlBJUcSVfFUxvcbzqAjh3ASysRDATbKwNUM4eJLvo4tyoyNI5lKE6jJx9FSzyK8GyacxvZe/gyjJlJlOE7ibvfBKBojXLL6Oe5vOsaAHqii1nvX8wDMzcjpOS5Yz/kWGaA70fOJkBj+sF+1mh7uKexAcusMjD4UHsBFYFkef4BghcrXHn4a3yt9yXzSdX8fOO5TKd28P6dWR4Z+nPOLHwE+eAO6vddh7XmpSh2ioTfoOx6uMKg27E5SzS5ww7w0LjZlLwgeIRtqU52Fzt5511/wVs3foQlmQN0qeP8vfoW3iY/jI+Gb40w0/1+mvZXOOTdhpw+iwG1giUULCfHmDlKph6jGcyhO1CNhCW8zIagaUp+0r+d25s7ec7oRv6g+XJW+ILr/SZrVY3FisafqCkeTJzJzqkf0DE9zrVf+ABffuE1HOv+A0RwJaLm4457NIo6tpuk0IihKh4TkQkc1eHujge4Mvcw59c284ejV7BxNk79Ew9zxRkFHq0H7L5nAilh4mCpbSDbeR+xV0GI4HjJrZEaVno3Y3/8u4iBM+n/zHWo9lNTRocjJj88bSnfmyxyUTbBG7Yd5JvHjmshZHWVWdfnY4eP8ekjk7yoI8Xr+gosjz19OuozeAZPhF/nxlEox2MaT5Vz+cviVOr6mhEdTVOfULH4F4GiCSJxA8M6eYTsl4146qZKoT+BfpLzQ3hPg6tzT9i/J4vc/brhNDwMUwXxP3P9pwMrqjO0Nv+0Sl89GWJpE9PWfunz2XGdVCHypJHK+TrijZp7SiJ789AttR3l/nXPy5Nhvo6v/QtSlOd1B/xTrN3824Y260Iep1ifjIgzuCb3aysZ6To+xfHaU6Y9nAzPUKx/A1AvO4ztnWNs7xzje4scO1Q+abFzGYR0ikjCYPPvjDCwMtv21EweLjN1uMzeByY5+PB0+xhFE2x+wQirL+pFeC7VW35C6Yc/ovLTn4a5xYAwDLDtMHrcvphEWBa1u+8GRaCmF2EsvRytsLLVljqxs/tp7K3gH6vTeHgaT0p2NQJsAUOmQBWHQHZR9q9GE4dIa+8jov68zVoIMJk8o4896j8S7AmvvUes4738JQ104nKOVytfZJP8KSB5iDVcF/wR01YHSMk58sf8nIvJl+v8efHj5Hp2YcQnuaei8tCkwaMNlfkhbjRjTO//M2QrKuipGh/dnMWQt6BGd2HoY0ityaLiBtbMDqFKhX4vR/HQrXjeydV5Y1qalamz6YsuRREqnl7kwJpP4uZ2sItl/Ct/hhQChKCr7tNRlzyY0Yg5Pv+wtcHmKR93/CFyd4fGpQQ8RaATIFd7PLomTsNQEFKyfmvo7DgS6+fZvZ8kmK2i1DyU0Vp7EqsWXDV3CEWDqDhR9t7jKmcxlmzyIT1A8RW+bcIhTScWwFUVk6iEnyTrbE3fjpm5D6HPURatlUwIhAeB2mKc6HXM3M8xMnfh14bxDi3Cjawin9rGq3snifzuDKWdp6F5UbZb3+Sgu/aEceVTmN7Ha2b2cm5hH+vTYyhIVALuPLwRIQJ6+x5BVVvKboBCwPN7v85S50H+pfnnFBNpALaPLOOqzjLX3HwzSmSQwctvY3r3nczd+gDq0Asxl15BXA0X5nMjAbJmMKs6bDfCOtfXF9eyJpilx5jlqJ/mA/f9P/5k/SdZm99OL6P8IZ/m0+L1KIFHoKao5F7H9lSRo9P/SnrLuRjWNLaq0NXsZkKvsNU0aeogJCwuLcZRHA6aB9E8QdMM+M7QvdzSeJTfn34BL5jbjNN6IbhSsia2glptH4dr29F9j1d+8+PceO7z2brydGQMRhdBpHcJYqLOVHwOxTehuB4tvh1Pa+CpHjfHf8ZPF9/O8tISXjJ7CZseXkYzetwI3fJfBxnfN8dFr1iOuvmPMc55Kdz9CcR9n4VGEQA7EzB0yTSHf3YHu07fROZlryD3hjegxp48rzOuqby0K1Ts/dPBTh6u1BhruBiKwpQbeo81Eb4wvz4+y9fHZ7kkm+AN/QXOSEafEfR6Bk8Lub4Yo3uKJy0r838BiiIYXv/UdXafDuplh4kDJTJdC+tGCyFYfFrHL31+zVCfMuL4ZNTgaNJkerTyK1f3fjKMrCswsDKLbmn/4xTvU8Gv0kicGQ1rP+f6np7Y3GMhhKAwcGoRvKfLmgh8ieedWhkep+FRnm5gRrQ2TfyXRfeSFLWSs6AG+9OBqil4rv9L5Yv/RqL1GButfGkJOLVwH1A7icZA+NxP/dnPO1GeiooNYW7+7EQVTf8FDGRFnLLDRshfl4n/BNi4cSP3338/GzZsYMuWLf+dl/61QbaicRAatT/69CPMHXuM6Ecol3v8TwVWXxCq1J7+3OEFmwIpJY/+bJRbv7zzcdeKJAxe/P+WI7feS/mmH4dGca1FzdY0tFwOvaeb+pb7Fx6oquD7gMDa9ByEtQotu6j9tRJ3Mfo7aWyfgSDM9yx6kgfrPro4yoX5r5IL9jPj/hkgSemfwlSOt08CJWMdSedBRjtMdizLYBgF/qu5gs9xDSo+F3MjV4v/RJMVUGJ85Ojv80DHWbiqhSI9AqGR8Gf5f6XPsCRxJ0KR1AP4blHnzupCb543u476+EtocYURShUZWBiFH2FmbwMg4a/hjCN9LC7ZdPop7HqTvXP30wgqj+tXgcKq9DksTW4iUOpU3Cj7stu5Y+N2erX93MLF3MXZ+EJDDXyGKvCc0RpLZ/bz70uX8r6tLplyicaWz+IdewQB1E2T6sVRkvEKg4xj6U3uOi1NvOqxalsZ3ZfMjpv8Q/1VfKf3HIy8SnPKx/OOvxDzosKlxk50AgJjDLMygupmyNVidGc/wtvcN1GUcYSUSEXQ6Qne6Jos1VR0MUk1/jNmtVHuipb4dmoMKQQCScM+jVjyCozxzzJZ3IQd+TFCn3vC9AwDhWEdVkQabIh6mE2NA986nYI+wv7ifQt+mzLqKGmbK1N38m3zAna7K7GsKouX3EkqNdEa4+B7Gub9KuoPLe7+o6V8M/K77E8smp8EXHHPd3gj32PiyHI2Je7HmJlidnozcvBNCDWMKgW+RxP4jO8y7QXcYvs4AlQpicqAkhJW6X792k+zseMRAgmfFH/Cz8UFaEEdT1jtnBSz9Ci/+7MsfY0GY/m7iEgLKWFKL3N/4Q4uGbsEJPy0cCNz0ceXF7BdndVHO7iM59LrFehxCygozDbGuWnsC8hWFvpMMsu3L30pM9nQKaQ5e4iUbsCob0HMZ6pLiHgRavrC66TraTbNrWPz9KXYRoYDJ9QpFSqsvbCP0y4fxNR9gge+hvOtd2BZs8f73BFMb49iZTzq9pmk3/LPmENDtEPOT4I3bDvINybCcw1YOmNND1+GecoQzsT5/96YiPCG/gLPziVRfksM5f+N76b/Sfwi/fnfKWL1fwGNqhvmlCaMX0te4q8CtZKDYav/rUbybyp23Tu+4O8TRax+FRjdU8T3AnqWpH/tdP9G1aVabJLpPu4snZusM3Eg1DCJpUy6F6d/qWtMH60wPVr5lTl8fhWYOlJhZqxCx2Dy1JTgf0vguT77HpxE01SG1+dp1j32bJlg6kilXcrul0V5poEV05/SKeR7AYe2zZAq2E9bxRpO/d30jIH8NHHiC9xpeHz/Xx/C9yUv+cvTkFIysb/ENz+wBVVXCPzgpOUj8gNxVl/Qy7IzOpHAlhsOMHmwzMx4Fd1QmRmrLszxkJKsPsv6nmnsvfdRu/tuZIs+LQwDe9MmzEUjaPkCkx/6EPamTQRzczR37VpwXWGniV70NoQeDuSgMYOWMQjqsbbxHshQ5Tlc0ELvkCnuIab+kJq4hLq7joz2b0S029vnLUd1ti6P0rBVsrMupUInFa/Cx3gTj7CWC7mJ53I9KYpIYJxO3iHfR1UJ6w53cpTLuZ71/oOklFmEgFFHcGdV496qRkPOq32BDFTqR16GX10BSIQ2g/Qy4ZfCxSj8F3p+L+fPPp8XjhWoT+5gT+mJx5mCSoc9yOLUxZQyB5Gnf4r6TD81S/Lh1DUcFEPt3+rSIeKqzOkKCEF2bo5v3iOIBoL67C78Oz8BTgUJTG+wCV5Q4qxdU6iBZDJtYPgBriLIzPocpJdvFM/nW/pmBtUZ7mZ4QbtiNFmrHWWRMo0QcEHwU24tvYFsM4ML6MAXYk0mtJaKoITNDZWXKUUWW1ki8vHeVE+Z5OUbG6TlTp4Tu5Wv1RexM/FHIFTU/RW0vdPYPZ9Hj+05YegJCAxQnFCRHEAKVCeHXV7ES2Yv5eKqy8/Gv00zWGjMldUIP81dQLyjwdpgFt1XSKXH6O/fSjI5efyH8zcE3MWZfJQ/Q85zsoOASKPKuQcf4N3Fj9HvjOH5NtONt+Aqpy8w6gIpecDx+Fe1wR5VLnReSslwcj8vXnQ9A9mj/It4Cw+Jja38BtGieQekDn2d7kc3kkg/wGongtqaAz4+h6KHmWqMsDe5HS3xMLrUQIKneI+5VnjKL+x6D1kvhRCCR419HN3/M2ad8fZPto+s5rYzn005ngrHojeNVfkJVvV2VH8aV1+Gqz0fs/4dVBbOZS3Q6Kp1sXx6PX3jZ6MHC593Oquz+OwuBld3YEw+ij13J/qt70JwnH7dmFWZ3R2jVu8iMeyS6zsEV7wfsenVSN8nOPQgyuCGBZHgm6bmeM++MXZUQ8PcFoIz0zHmPJ/7S493GiyKmLy6N88LCynS+m82Yem3/d30m4Zn+vMZ/KaiPNOgXnZIFiInVVn+n8LcZI2Z0Wpb1O1XbSCXpup4TkCyYP9aBcWeCCcayIs2dvzSRnrw/9u78yipyjvh49+719LV+87SNCCCNIKCG65RY8agJuOJo75xJJM5yYlvUBl9k5gxMy6J0ZiJyZyY6GgS3+TNRDwzmoxJ1BFXQtTAsCggytY00PRC01vtdZfn/aObxrYbbLDtauT3OacOnOfervrVr+69Vb/73Ps8gWJ/c4LC8vC4+RwPFO1VUwqPuHdzPHNzPo1v7iMUsZg8u+/KspbtPdghg7IJH+6KhLEmBfJRUkqRTXkku7Mke7Iku7MkurJ0taboak3S3Z7m779/DqZtkOzJ8vhdfyGX8Sksd8gmPDKpwZOia7qGChQl1REKy8PMWljD1FMqcDM+ptM3H9dD//tl8H1Cmf2YfgbTS2O7vVRY3VTZnWjbNxJ0Hhx+XwuHiSxciN/dTZBM4m7fPlAwW1PrcZv3QmBgVDVgVZ2Mu+cN/LaNhE49F2vy3wIB2ApyB8/SKBQaGhH9RXStk5D+JobW3vec+l6UMsipOmxtZ9/IxH3Pgg6snldIuqyGjNvDeuaxjRNoZiKX8V9MYxtGf6/Y697prDcX4GEzlW3U08i0YBuO3jev8l5XY1PaYE3SoN3v7xkOwE3OwCjYhtt5JtmOiyEIozktgIbK1gBgh3Yw2XqOup44Nb0xZqQn05HZy8H+rYN0U6esPkLFnGYMS0PLFkO0k9WRKTyq34CHhYt12B61C/7nNW55/BeUzbkezXfJrvt/4GfxygPMy1PUmik6iy0SEYNQNsBKKpL7JrA6mM1D7qfYr2J4/b3fNm7fqNFKUeN1cVHXFkKVMbxQX8GhPJtQxwIKMWkyff7ieGQ0RZsRYCs4JatzWs4hrDTOjj3GhNgf2GVUsCVyNZPSU5gWN/HVFDK4tITWs6r4XZ6rnMWG6nNB63tdJ/Eihc1/JLf/Yjw/hlP9NLrT9oED/hlumPO7z+UTTRPY3v4S779UItAsOiJTeDs6FdN2mR3pwdQhFI5TVbWD0rI9FBS8Z55vBfu1Mv6V/8N2bcbgF1OKhd3r+ey+F/n0vhUU50J0564jo87r6z7tdy8p/sjg/fC9LKWoK95BOhZjp1mPKnJQUQMVMinuaeWE7s04dhObo5/ktF1N1PV2DNS/voJuFWJPUEAstJsapfFu0Ts0xZrwNA9Nger/3WEGOuf1LCCsHJ4r+TOxtM3i104m6XbhqYMjNdp2CV5BJS+dfj6rp0wGFWDm+k5SeM4MDLeFovb7MPzO/to7DGQG8qwHOlXxKUzsmUlt73QqE3UYauiPhSKjmU9V/RsVwYYhy7y0hm4r9m2biFt1CXb9FBKP/xjjpPOo+8UvAHDb2mn7znew58xh/ZV/w782tbGmN8WUsM3rZ8ziuzv28uNd+7D6R/c+IeLwbqrv0isduKgsxrU1ZZxbEiM2Dke/Hu/fTccayacYrw701BaWhUd0f/hY6m5P0d7UN3jqaBfIuzd3kk7kmDKn/EOPin003lsgj/Z7Gy/advbSsy9F+YQYpbUfzfR0+ZBNezRt7CBS6DDxxA/X859vc06ay8bNb0mBPBK/uv01chkPPxfgecEHjrqn9V21OWzvMMDk2WV4WY+i6ij1c8qomByjoCREECgycZc3/ms777zRSlV9jI49CbxsQGnHRuZtfOjQr+k4oBQq1//DWjcheF8xHqtBj1bit74JVoTYoh8B4CfawEhgRCaCOvxlVjXO32JoXYPaDkxDdEDGsNhYV0a3EUPzNLZVlFES2k+MOC4WIZXG0Ppu5e90S8n2RCBkUhpqxzZSdHoau3MaLa5Oi6vTnDXpVjBcOt2e2WT2/i2a2Y2ei6J0hUMPutJIauUUefv4Qs3jlCR7CXIGfq4aperJ9W7CSyn8nM6Cyk9inbyeoLAdXdkky94hY5gkKSBOAZtp4HUW0vjeguzAbvGeCtEMFPM7Pf5+42Zm/Oc9KP/AGViFGfWpmt9NrDaHUhoZbDoo4obcUtpVMVONLhqDMvapAhQH/+5AZmvp4XS9mWL74L3Rum8TStUSSU1AUwah7ncJ2lbQFCujI1rKVGMyxXYFrlWA0hR7q/6bTPnTTArSKHMKj0z7Z7qdcq5t+QObrWI2Rwpw7UkERvFAQakHHmE/w3V7/4N/bnycjGbwucqJ7MjMRw/vwozsRg/A7T0ZvWjDQC+yCvrvF9H7tsFQymTGtumk1Awizm6mt/ZSmDp0kepbDl5xGYEdwgpnKSvfTWV9C6FoL4bRP6o3F/Mr/h5XGzpIT1muk6if4aG3/5mKnGKbcQ1V8fkUehYasAmPtFLs1RR/cnP8jxHg9t8SozP8tvZeSgfNhNqp+1lQ+jblW32C+KG/7AIUCTNBt6bo9cPk7GbShXtxjRxZI0tWzwKKOanpnJisw29rwWzrwvYGn8VXgG9H6Ckqp620htayMpqrJtMdeZdoz38RSfcQyhqkQz5ZO0BhoAf+QFF+4ElimVLKkxOpSE6mKFNOLFtGoVdEgVHIxafvoa7lp5g97wx+bQWpNptMl4WXMYhUZ8j1mHjOJNx0GDftkNm6m/App1B7792YJTF262H2+jpnFRfw360dPLyrjVWJNAH6wasA3kfvf0yPOHymqoQLS2IoDXq8gDmxMKV56mkej99NxzLJpxivDhTIBSUhaqcX5zeY9/FyPjve3EdRRWTUR+qNd2bw3YBYeWhU52seqeOhQN67tYtEd5biysiI79M+FnTsidPZ0vf79Fj/7BpmzWXTO8dBgfzn/9xKvDODbujoukY6kaOrta/nrbA8RM++NIGnsCMGvqtA9c3/FwQKJ2wS+H09xh81w+vrGdYI+gbLUgGg0JRCI2DO5l8QSbR88BOZ4f45lLJo0SrMsukYlbMxy2eg2VFU4KFyCTSn6LCD5PQacYrMp7FVBltlsejB1raja11oWnbY2+QzuslLExt4a1IZlf52GvdP4dU952FrASYantlJNtyIrrmkrBY8LTMw4p2v+X3dwTDsffuBHiPQo2gqB4ELQUCu7QK87rOgvzfsrzvXMjH5LpqfwdNMApXj1C+8hWEf3IT/xPkY+CxkJUqBCjSe1z+Nr2nMYQOdlPIUV7FdO3HYvJSlXD7f8xQXbvN5qeozvFEY0LBzJ3N3NdPQup9oRQPu1v+mtWs728tq2ThpGm0VJWDpuJiklUOCMNvVSMb3D5iq9XJKxqY+U8z+8lUo3cXKFRFKVVHSGVAY30134VSq2lczbeczaMOcvTnQcsNtd5NxQoSyaVrKquktOPzBeUpqD9/f8i9cPfcH/M2u57jvrQcIFfbtC72axs+KC3m8MEZG1/HTEwj8KLrZjaa76Pb7TqIEBpre11t/4BLesqYTqW+38TWTWNBJfYc67AAMOR3iUSivTFNel6B2egedWin/wf9iJecfsuAyVRZP6z/xoxRFrk9NLktIZfh0a4YrGgv5AUleUC5TLJfPOTb78PlzGrb4ffPzTcOgF+ghIKv6B1cDrsPkE0ZAztBIsJ9dejNGYOBrLh6KhD78vjKcgABPd/GMLEkrSZock/faGJqD5maxkr39xwZF37EBdE1nz8SpbJ90MmZPM5/asoVEopltE3wCLYWuNNbNiNAy4VKc1CrOXdOE5Wn8z6xuTF/D9HQ0Bd2F/QO8KdCUgaYMzsjk+Lue/ZyeTTKS/tyg/77xdIeB5kNsYpZEewQjbKEZGpaTxjD6eoxTephXSs/j6yd+jQ7DBE2jXAWcqXksx+JQWdOAkK5RZBo4uo5CkfIVjq5RaZs0FISpdmze6ElwUjTMXSdMGGH2P5gUdKNL8inGq4ECuTg0ojmOx9p7x7X5OEnHc+x+p+9qyGO9yDoU3wtIdGWJlYXGfFq3j9KBnnE49j+746ZAXvbtVexvHjro0hHrvzJUN7Who033L6udXsSsc2pJ9WbZsb6Dth29VE4pZMIJxXhuQHtTL22NvYQLLNIJd9BTTNn5LFN3/uHI49ItjOI6tEg5WrgUe9oFaLoJZqjv30NQBARGDi0wCKwEbmg/2VgzW3ctIJVy8NU+rq/80mFfOlAanVTzNqexb2qK4knrAdia0fnJvg83YqBSOoFbgnILMEKtJIsuJ136mWGCCDB9MHxFoQ/hXBIv24XluWhKUTAhCZqG6v/BvYk56PjUspcMITKESBA75OXShvKI+SkqExrh3lamdTRTGe8eWK4HCt330IMAI/AxNR9L93hbq+E5f84RvWeNgBgZavU4E4weqvU4kWwRxd1z8PFxrQRmVkP5ihU0c1bzWubt28aE5D46YhPZPu1KTnvzpxjqPSd0tP5qDo1FD/ycVPiD73nRPZcvP7eMbxb+Eke5NNq1ZH4FZsTjhCvaB6272ypnWVEFT8ZM9oemYngdaCqF7nWBH0J5UXSrh/psNUaugt1WJ9lI47DpntgW4qSdhVR0O1j+4c9e65ZP6YweDMcntS9MujbCuhln8HrkPHq0g5f3FKlOksTwtEPMs6k8PG34/WShWkFitWJL13T+kwKqGRrTgVsPhuMT8H/tFSh9JCNuqv7H0Z21X+ieyMbty1Bq6Gv1hgN0HCwPbDc3JN542OPJTzQf8rmLfZ8LU2nOSqU5I5OhJBidr4T4nhB7Vpbi6QYdxSX4us6EjnZ8TePf/vpa/nj2hWScEIGuf+AAYcOpsk3ePLthVGIFKehGm+RTjFftTb10t6eonV48aqMfi5FJdGVxomZepnASR8/N+bRu66F0QnTcDvg3UiMtkMfHXe0fwie/eBK5tEfQP7l4Op4j0ZMF1TeJeG9HXy+ml/XJJFwUfWexVKCIFjvYIZNp8yuJ9R8k2xp78b0AJ2ISilo4EZMd6/exbvkuZi6sZeaZffe8FldGefPF3Zx0dg0n9rft2rSfjSuaqZtdRtnEgr65iYMATdPQX99P/KldfWcFDQN0DU03QNf7Bv3SD7bphTH09G40vxsjFsYpqcQqAlQrQe+/oGshTMvHcw064teTKugkE30dPX4KoBFL15KNtdE16/cEBRm8nEcQuCjdpalrAimjGiuI8lzmBtzAwQ8cdB+qzB2kvDKSfhk9fjW9fhVB/+hJMXsVQboMpQwyeg+T7EY8BTnAI8BH4aEIe1Hq951Oj91GW3gHyUgvemChBRa6GwJdw/SLcFJTIDWVhN1BTMtR6VfRZjajAoVSOkq3cE0b3zTxzRBZy2AfQLQQOHzPaIDJHiYDfQWwE+Qo8JOcmG6kPJGmeJ/DlP2NzN3zZ6q2NmOaIfZOPZF1lRPJOBAEOjkVwtACPN0ksDU8ZQEHDwp6YHIC+8gqgxwGvmHg6zqgURHEUcUm2ypLiWW7mb8tTbXVSlC8g6BqE6WbS3Bar0CZJaie18n4fyJhGOwN1WAqD1N51NgJ3prXQUu3TbV2KVGzkC3Os/x5SsBJOyPMaC2gMuazf2aG9nQXZR0Wj99xI72xGJtm1/FOaQEJZxKfWPsWHcVFbDxhMhN7WyiP7+fU9Y30FhXxtatvJaSyTE83cXbtarJhk3UFJ+JhktUdcobNiyUL+U3VRVhBBtvLMDtRzOSkT7f3PJrKEHFT5HIZ0mTotpMUGQ6TOv6OsJ+mS+tllxHHNlJEzRRB1OPd2QU8nazlBLuVssy7FO23qHAjtKerKHd9DNWJlYOQH6Jjew2TIhHeLngXf2eaBc0ruXjei7SG6nhOTSLplPH5xCtMLm5CeTr3Rb5Fjyrh/u23kK6ySasI9xbcBW6YCD6m3Y1lpHB8haM8prsJrpzyMtkSm5J1Z5KiFqVFifsBnlOMqWkoFGbgExgOgW6j8GiNt2BnUiTCUYqcBlJF+/GinRihDrQgQKFQno4TTWI7OcKxOIndtRRYWRQ6ETvDpOxktH1z6NaS7NX3owEOJj4BgRYQEAzMIagpwM2iDXv9ABSmdcDFN0wCM4Sv+yTtFK6p8IyAVOhgUW2mp2GkC8kVb0UPqtC1JhQOy6MhfhcrxM5OZGqynoWZKLXFTbT6b3OONosTqMYqgsbEFiJZnwpVRGjOyeC5+BPPp+0njxEkMgRZlyDnE+Q8VM7HrPYovuB8KgwT5XvgByjf55t+gm+ueBql+q4xMa66mr0zZvJ2Mk2v62PrOinfpy3rsTWVwdKh2rEptUwcTWNrKsPM6MdnhFAhxNiprCuktCaKKUXamDva6ZNEflm2waSTSvMdxqgY6fznx3wPsvjwXLcX308QBDmyXpZkTieR00jmNLwggh7YHJjRzNA1LEMnZhkU6AorSOMaHnESRCOFFNolZLI54tk4XbkuygyDSsPEKKwmY1jEc3EK0r2EcwlU0SQCw0HPdKP2bSHo2YeySsl4NknfJJ1LE3hpcnYhVsgmHaRI5fbRlQTbmU7x5FqMUAgv00aidT8GhRTXVBPyPWKmg9fTjR1ReNW1YBiEel1Cne3YpRHc7D4S3R2EcgpHd8DUSGoGra6JaYWxLR0npKOHijAMA5OASCSEj0HQ32lr2zZ4cXZ2byLp+xRFaknkspTaMVKZJIZlUxutwXc9LMfBcvpOwqTjvaQTcZTr4+c8AtftuxTd1FAKdENH03U0TUPTdcIFMQpK+0YNTKXiZHJpSgrL0XSdRC5Be7qdinAFMXtk84cGShH0T0l8YAqeA4XKcFPy7O7dTcpNMbVgGkHQN79d67tPoae7KZryCaKV09A0Dbe3k5aWnfhaBsMx6Ugk6M6lyOZSZLDBCOFrFt2eR1pTeHYhrm6CYWDrCjNw0a0wpdFSKpwiqhyLpOcT0nXwXPREEtwseAGBl0J5WSyrAEMHDZes10zgFGBGZ2JaFiEbksl3iDohaornoDwX13WJJ7bi+QrHqcPBgKyPG9+LjkY0PAFd11GGga/iBIZFOuHjZ1NESwrR7TAqCHCTSbLpBLHyUpxoAV4QYBoGmgEKDcPoHxlbg6wfoICwbQ7kGhj2ErpABaTcFLqmE7H6rgbIeBnSXhpHtyHj4bsuXuARBD6BpjAcGyccIWr3jSSZclP05nrxlU8QBPjKR9d0wmaYqBUdeF4xmHw3jS7JpxBCiPFmpN9Nx3wPsvjwLKsQy+rrlY0ARzY+Xd/fvfe8ku2EKKSQCQy+PzAEhMwQRCqA/oIbwImiFU0YuPjUAkZW6h1QAnXDNE9639muChsq+qZtMqgiNHHw4uL+x+EM2WHMEqZXn3P4P3pfR1c4Vkg4dnSDN0QiMSKRg9kpsAsosI9siH1d03j/rTGadui7gycVThradvJVQ9qswlImFx7M+eQjimoEyoo/YIWThzYVn3nw/6ZBKBQiFjt1mL8tH6atL8/DZ3fwFnq4A2nofYOhHO7eMl3Th3yeITPUt98ADB2vbIiIFZEiWAghhBDiKI39MHZCCCGEEEIIIcQ4JAWyEEIIIYQQQgiBFMhCCCGEEEIIIQSQh0G6SktL6erqIhwOM2vWrLF8aSGEEGJYmzdvJp1OU1JSQmdnZ77DOebJd70QQojxZqTf9WNeIEciEdLp9Fi+pBBCCDEilmWRy+XyHcYxz7ZtXNfNdxhCCCHEEOFwmFQqdcjlYz6KdWVlJe3t7YRCIerr64/6eQ6cAZCz030kHwdJLg6SXAwm+ThIcjHYm2++ie/7hx1lXIzcgTwahsHcuXPzHM3Hg+yzo09yOrokn6NPcjq6GhsbyWQyVFZWHna9MS+Qd+7cOSrPc2Aeq1mzZskci0g+3ktycZDkYjDJx0GSi8EO5KOhoSHfoXwsNDQ0sHbtWubOnSvb1yiRfXb0SU5Hl+Rz9ElO80MG6RJCCCGEEEIIIZACWQghhBBCCCGEAKRAFkIIIYQQQgghACmQhRBCCCGEEEIIQApkIYQQQgghhBACkAJZCCGEEEIIIYQApEAWQgghhBBCCCEAKZCFEEIIIYQQQghACmQhhBBCCCGEEAKQAlkIIYQQQgghhADAzHcAR+vLX/4yLS0t1NTU5DuUcUHycZDk4iDJxWCSj4MkF4NJPkaX5HP0SU5Hn+R0dEk+R5/kND80pZTKdxBCCCGEEEIIIUS+ySXWQgghhBBCCCEEUiALIYQQQgghhBCAFMhCCCGEEEIIIQQgBbIQQgghhBBCCAEcowXyPffcw8KFC4lEIhQXFw+7jqZpQx4PP/zw2AY6BkaSi127dnH55ZcTjUYpLy/npptuIpfLjW2geTJlypQh28Ftt92W77DGzE9/+lPq6+sJhULMnz+fP/3pT/kOaczdeeedQ7aB6urqfIc1ZlasWMHll19ObW0tmqbxu9/9btBypRR33nkntbW1hMNhLrjgAjZt2pSfYD9iH5SLL3zhC0O2lTPPPDM/wR7j5NgzMvfeey+nnXYasViMyspKPvvZz/Luu+8OWmck+2g2m+XGG2+kvLycaDTKFVdcwZ49e8byrYxL9957L5qmsXTp0oE2yeeRa25u5rrrrqOsrIxIJMK8efNYs2bNwHLJ6ch5nse3vvUt6uvrCYfDTJ06lbvvvpsgCAbWkXzm3zFZIOdyOa666ipuuOGGw6732GOP0dLSMvBYvHjxGEU4dj4oF77vs2jRIpLJJCtXrmTZsmU8+eST3HrrrWMcaf7cfffdg7aDb33rW/kOaUw88cQTLF26lNtvv51169Zx7rnncumll7Jr1658hzbmZs+ePWgb2LBhQ75DGjPJZJK5c+fy4IMPDrv8/vvv54EHHuDBBx9k9erVVFdX88lPfpJ4PD7GkX70PigXAH/1V381aFt55plnxjDCjwc59ozcq6++yle/+lXeeOMNli9fjud5XHLJJSSTyYF1RrKPLl26lN/+9rcsW7aMlStXkkgkuOyyy/B9Px9va1xYvXo1jzzyCCeffPKgdsnnkenq6uLss8/GsiyeffZZ3n77bX7wgx8M6pSRnI7c9773PR5++GEefPBBNm/ezP3338/3v/99fvzjHw+sI/kcB9Qx7LHHHlNFRUXDLgPUb3/72zGNJ58OlYtnnnlG6bqumpubB9oef/xx5TiO6unpGcMI86Ourk798Ic/zHcYeXH66aerr3zlK4PaZs6cqW677bY8RZQfd9xxh5o7d26+wxgX3n9cDIJAVVdXq/vuu2+gLZPJqKKiIvXwww/nIcKxM9x3xOLFi9VnPvOZvMTzcSLHnqPX3t6uAPXqq68qpUa2j3Z3dyvLstSyZcsG1mlubla6rqvnnntubN/AOBGPx9UJJ5ygli9frs4//3x18803K6Ukn0fjG9/4hjrnnHMOuVxyemQWLVqkvvjFLw5qu/LKK9V1112nlJJ8jhfHZA/ySC1ZsoTy8nJOO+00Hn744UGXLxwvXn/9dRoaGqitrR1o+9SnPkU2mx10eczH2fe+9z3KysqYN28e99xzz3FxeXkul2PNmjVccsklg9ovueQSXnvttTxFlT9bt26ltraW+vp6rrnmGnbs2JHvkMaFxsZGWltbB20njuNw/vnnH5fbCcArr7xCZWUlM2bM4Etf+hLt7e35DumYIseeD6enpweA0tJSYGT76Jo1a3Bdd9A6tbW1NDQ0HLc5/+pXv8qiRYu4+OKLB7VLPo/c008/zYIFC7jqqquorKzklFNO4dFHHx1YLjk9Mueccw4vvvgiW7ZsAeDNN99k5cqVfPrTnwYkn+OFme8APirf/va3ueiiiwiHw7z44ovceuutdHR0HDeX1x7Q2tpKVVXVoLaSkhJs26a1tTVPUY2dm2++mVNPPZWSkhJWrVrFN7/5TRobG/nZz36W79A+Uh0dHfi+P+Szr6qqOi4+9/c644wz+NWvfsWMGTNoa2vjO9/5DgsXLmTTpk2UlZXlO7y8OrAtDLedNDU15SOkvLr00ku56qqrqKuro7GxkX/6p3/iwgsvZM2aNTiOk+/wjgly7Dl6SiluueUWzjnnHBoaGoCR7aOtra3Ytk1JScmQdY7HnC9btoy1a9eyevXqIcskn0dux44dPPTQQ9xyyy384z/+I6tWreKmm27CcRyuv/56yekR+sY3vkFPTw8zZ87EMAx83+eee+7h2muvBWQbHS/GTYF85513ctdddx12ndWrV7NgwYIRPd97C+F58+YBffeiHgsF8mjnQtO0IW1KqWHbjwVHkp9/+Id/GGg7+eSTKSkp4XOf+9xAr/LH3fs/42P5cz9al1566cD/58yZw1lnncW0adP45S9/yS233JLHyMYP2U76XH311QP/b2hoYMGCBdTV1fHHP/6RK6+8Mo+RHXtkmzpyS5Ys4a233mLlypVDlh1NPo/HnO/evZubb76Z559/nlAodMj1JJ8jFwQBCxYs4Lvf/S4Ap5xyCps2beKhhx7i+uuvH1hPcjoyTzzxBL/+9a/5zW9+w+zZs1m/fj1Lly6ltrZ20FhJks/8GjcF8pIlS7jmmmsOu86UKVOO+vnPPPNMent7aWtrG3JWZrwZzVxUV1fzl7/8ZVBbV1cXruuO+zwcyofJz4ERabdt2/axLpDLy8sxDGPImcT29vZj9nMfLdFolDlz5rB169Z8h5J3B0bzbm1tpaamZqBdtpM+NTU11NXVybZyBOTYc3RuvPFGnn76aVasWMHEiRMH2keyj1ZXV5PL5ejq6hrUo9Te3s7ChQvH6B2MD2vWrKG9vZ358+cPtPm+z4oVK3jwwQcHRgiXfI5cTU0NJ5100qC2WbNm8eSTTwKyjR6pr33ta9x2220Dv2PnzJlDU1MT9957L4sXL5Z8jhPj5h7k8vJyZs6cedjH4c4GfpB169YRCoUOORXSeDKauTjrrLPYuHEjLS0tA23PP/88juMM+gI5lnyY/Kxbtw5g0EHn48i2bebPn8/y5csHtS9fvvy4P3hms1k2b978sd8GRqK+vp7q6upB20kul+PVV1897rcTgP3797N7927ZVo6AHHuOjFKKJUuW8NRTT/HSSy9RX18/aPlI9tH58+djWdagdVpaWti4ceNxl/OLLrqIDRs2sH79+oHHggUL+PznP8/69euZOnWq5PMInX322UOmHtuyZQt1dXWAbKNHKpVKoeuDyy/DMAbGSZJ8jhP5GBnsw2pqalLr1q1Td911lyooKFDr1q1T69atU/F4XCml1NNPP60eeeQRtWHDBrVt2zb16KOPqsLCQnXTTTflOfLR90G58DxPNTQ0qIsuukitXbtWvfDCC2rixIlqyZIleY78o/faa6+pBx54QK1bt07t2LFDPfHEE6q2tlZdccUV+Q5tTCxbtkxZlqV+/vOfq7ffflstXbpURaNRtXPnznyHNqZuvfVW9corr6gdO3aoN954Q1122WUqFosdN3mIx+MDxwVgYJ9oampSSil13333qaKiIvXUU0+pDRs2qGuvvVbV1NSo3t7ePEc++g6Xi3g8rm699Vb12muvqcbGRvXyyy+rs846S02YMOFjmYuPkhx7Ru6GG25QRUVF6pVXXlEtLS0Dj1QqNbDOSPbRr3zlK2rixInqhRdeUGvXrlUXXnihmjt3rvI8Lx9va1x57yjWSkk+j9SqVauUaZrqnnvuUVu3blX//u//riKRiPr1r389sI7kdOQWL16sJkyYoP7whz+oxsZG9dRTT6ny8nL19a9/fWAdyWf+HZMF8uLFixUw5PHyyy8rpZR69tln1bx581RBQYGKRCKqoaFB/ehHP1Ku6+Y38I/AB+VCqb4ietGiRSocDqvS0lK1ZMkSlclk8hf0GFmzZo0644wzVFFRkQqFQurEE09Ud9xxh0omk/kObcz85Cc/UXV1dcq2bXXqqacOTB1yPLn66qtVTU2NsixL1dbWqiuvvFJt2rQp32GNmZdffnnYY8TixYuVUn1TStxxxx2qurpaOY6jzjvvPLVhw4b8Bv0ROVwuUqmUuuSSS1RFRYWyLEtNnjxZLV68WO3atSvfYR+T5NgzMsNtj4B67LHHBtYZyT6aTqfVkiVLVGlpqQqHw+qyyy6Tbbff+wtkyeeR+/3vf68aGhqU4zhq5syZ6pFHHhm0XHI6cr29vermm29WkydPVqFQSE2dOlXdfvvtKpvNDqwj+cw/TSmlxqavWgghhBBCCCGEGL/GzT3IQgghhBBCCCFEPkmBLIQQQgghhBBCIAWyEEIIIYQQQggBSIEshBBCCCGEEEIAUiALIYQQQgghhBCAFMhCCCGEEEIIIQQgBbIQQgghhBBCCAFIgSyEEEIIIYQQQgBSIAshhBBCCCGEEIAUyEIIIYQQQgghBCAFshBCCCGEEEIIAcD/B4LKuiJWqIytAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "az.plot_trace(idata, var_names=[\"mu_alpha\", \"alpha\"]);" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "5cL_9iEkFy1U", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 112 + }, + "id": "5cL_9iEkFy1U", + "outputId": "a800dac4-fe43-4477-ef8b-a66c58ae2568" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
mu_alpha0.2160.246-0.2630.6460.0040.0034175.03124.01.0
mu_beta7.9240.2367.4798.3420.0040.0033320.03141.01.0
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk \\\n", + "mu_alpha 0.216 0.246 -0.263 0.646 0.004 0.003 4175.0 \n", + "mu_beta 7.924 0.236 7.479 8.342 0.004 0.003 3320.0 \n", + "\n", + " ess_tail r_hat \n", + "mu_alpha 3124.0 1.0 \n", + "mu_beta 3141.0 1.0 " + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "stats = az.summary(idata, var_names=[\"mu_alpha\", \"mu_beta\"])\n", + "stats" + ] + }, + { + "cell_type": "markdown", + "id": "YkJy6W8rBb6i", + "metadata": { + "id": "YkJy6W8rBb6i" + }, + "source": [ + "```{hint}Here, $\\alpha$ refers to the threshold value (also the point of subjective equality for this design). We can observe that the group of participants has an average threshold very close to 0 and a slope of 7, which is relatively small in this context and indicates a precise decision process. A higher value means lower precision. By looking at the posterior density of the threshold ($\\alpha$), we can see that the 94% highest density interval (HDI) includes 0, suggesting that we have good evidence that no bias can be observed at the group level for the exteroceptive condition.\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "0ELIN4YQMxQk", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 331 + }, + "id": "0ELIN4YQMxQk", + "outputId": "1ab583bc-6570-4caa-bb92-0db9ce6fb8f4" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHACAYAAAA/T2vQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgQ0lEQVR4nO3dd3zTdf4H8FeSNuneC9rSlj2K7L1BRMRTRD1wnCAg7kMPz4HwQ0/xXCenh7hFcbHExZRRZE/ZLbulLaV7r6RJPr8/Qr9J6G7TfpPm9Xw8+iCf78o7Dfn2nc9UCCEEiIiIyGkp5Q6AiIiI5MVkgIiIyMkxGSAiInJyTAaIiIicHJMBIiIiJ8dkgIiIyMkxGSAiInJyTAaIiIicHJMBIiIiJ8dkgIjqNGPGDCgUCsyYMcPm146OjoZCocBXX31l82sTUf0wGSAiInJyTAaIiIicHJMBIiIiJ8dkgIiIyMkxGSCqwejRo6FQKPDKK6/AYDBgyZIl6NOnD7y8vBASEoLJkyfjxIkT0vGlpaV4/fXXERsbC09PTwQGBmLq1Km4dOlSlWu/8sorUCgUGD16dI3Pv3PnTigUCigUCpu8nuTkZHz44YeYNGkSOnfuDE9PT3h5eaF79+545plnkJyc3KjrWv6edDod3nzzTdx0003w9PSEv78/xo8fj02bNtXrWjqdDu+88w569eoFT09P+Pr6YuzYsdi8eXOLvy4ipyKIqFqjRo0SAMT8+fPFzTffLAAItVotPD09BQABQHh5eYnDhw+L7Oxs0adPHwFAuLm5CXd3d+mYkJAQceXKFatrL1q0SAAQo0aNqvH54+LipGvY8vVU/vj6+gqlUmlV3r17d7XnTp8+XQAQ06dPr/G6L730khgxYoQAIFxcXISfn5/V8y1atKjaa0dFRQkA4n//+58YNGiQACBcXV2Fl5eXdK5CoRBffPGFzV8XEZmwZoCoDsuWLcOxY8ewZs0aFBcXo6ioCIcOHUL79u1RXFyMuXPn4pFHHkFeXh62bNmCkpISFBcXY9u2bQgODkZmZibmz58v98tAbGws3nzzTcTHx6O0tBT5+fnQarU4ePAgbr31VhQUFGDq1KkoKytr1PWXLVuGQ4cO4eOPP0ZRURHy8vKQnJyMe+65BwDw6quv4tdff63x/P/7v/9Damoqfv75Z5SUlKCoqAhnz57F4MGDIYTA3LlzUVBQ0OKvi8gpyJ2NENkry2+c1X2z3L59u7Tf3d1dXLhwocoxX3zxhbRfp9NJ2+WoGaiNXq8XN910kwAgvvnmmyr761MzAKDab+8Gg0GMHDlSABDdu3evsr+yZkCj0YiEhIQq+zMzM4Wbm5sAIL799lubvi4iMmHNAFEdhg8fjuHDh1fZPmrUKGg0GgDAPffcg44dO1Y5ZsKECQCAsrIyXLhwoXkDbQKVSoVbb70VALBnz55GXSMyMhIPP/xwle1KpRILFiwAAMTHx+PUqVPVnn/PPfega9euVbYHBwdjyJAhAICTJ082KCZbvC4iZ+AidwBE9m7gwIHVblepVAgKCsLVq1cxYMCAao8JDQ2VHufl5TVLfA2xe/dufPHFFzhw4ABSU1NRUlJS5ZjU1NRGXbuyI2F1Ro4cCRcXF+j1ehw5cgQ9e/ascsygQYNqvHbbtm0BALm5udXub87XReQMmAwQ1cHb27vGfS4uLrUeU7kfACoqKmwbWAO98MILePvtt6WySqWCv78/1Go1AKC4uBglJSXV/iGtj/Dw8Br3aTQaBAYGIiMjA5mZmdUeU5/fc3W/w+Z+XUTOgM0ERE5g69at0h/MJ554AqdOnYJWq0Vubi7S09ORnp6OZ599FgAghGjUc9hqCGRDtMTrInIGrBkgkkHlN93y8vIaj6mu53xjrVy5EoCpD8OHH35Y7THp6elNeo7aquG1Wi1ycnIAACEhIU16Hkst8bqInAFrBohk4O/vDwBISUmp8ZiDBw/a7Pkqn6dPnz7V7hdCYMeOHU16jj/++KPGb9+7d++GXq8HAPTv379Jz2OpJV4XkTNgMkAkg169egEA0tLScODAgSr7MzMz8dlnn9ns+Xx9fQHAasZESx9//DEuX77cpOdITk7G119/XWW70WjEG2+8AQDo1q1btZ0HG6slXheRM2AyQCSDoUOHIioqCgAwY8YMHDlyBEIIGI1G7Ny5E6NHj4bRaLTZ81UOr9u0aRNee+01qTNdfn4+3njjDTz99NMIDAxs0nP4+vri8ccfx2effSY1f6SkpOC+++5DXFwcAGDx4sVNeo4btcTrInIGTAaIZKBUKvHJJ5/A1dUV586dw4ABA+Dl5QVPT0+MGTMGer2+xjbwxnjooYcwYsQIAKaZ/ry9vREQEIDAwEC8/PLLuPXWW/H444836TmeeOIJ9O/fH3PmzIGPjw8CAgLQrl07rF69GgCwYMEC3HXXXU1+LZZa4nUROQMmA0QymTBhAnbv3o3bb78d/v7+MBgMiIyMxIsvvoijR48iLCzMZs/l6uqK33//HYsWLULnzp3h6uoKIQQGDhyIjz76CL/++itUKlWTnkOtVmP79u1444030KVLF2i1Wvj6+mLcuHHYsGEDXnvtNRu9GrOWeF1EzkAhON6GiJpg9OjR+OOPP7Bo0SK88sorcodDRI3AmgEiIiInx2SAiIjIyTEZICIicnKcgZDIgTSmUyFn4COiurADIZEDacz8//yIE1FdWDNA5ED4h52ImgP7DBARETk5JgNEREROjskAERGRk2MyQERE5OSYDBARETk5JgNEREROjskAERGRk2MyQERE5OSYDBARETk5JgNEREROjskAERGRk2MyQERE5OSYDBARETk5JgNEREROjskAERGRk3OROwAiallGo8C5jCKczyiCUQi4u6rQNcwHUYEeUCgUcodHRDJgMkDkJOLTCvH1viRsS8hATomuyv4wHzfc0y8CDw2NQoi3mwwREpFcFEIIIXcQRNR8knNK8a/1Z7AtIbNex6tdlHjm5k6YM6I9XFRsSSRyBkwGiFopIQS+3JuEtzefhVZvtNqnVACdQ73hpXFBbqkOl7NKqpzfO9IPn/ytH0J9WEtA1NoxGSBqhUp1erz44yn8eiLNantsuA9mDovBuK6h8PVwlbZnFWmx9mgqvtybiKwirbQ93M8dXz08AJ1CvVssdiJqeUwGiFqZtPwyzPzqMM6mF0nbgr01WDCpG+7o1bbWToIFZRX412/x+PHPVGmbv4cr1jw2BB1DmBAQtVZMBohakdS8Utz32QGk5JZJ24Z2CMT/7uuDQC9Nva/z1d5EvLo+HpV3hza+bvjx8aFo6+du65CJyA4wGSBqJVJySzHt0wO4mm9OBGYPj8GLE7s2qiPgL8ev4plVx6WEoEuoN356cig81ByERNTasKswUStwJacEUz/Zb5UILJjUDQtu797oEQF39g7Hv+6MlcrnMorw0rpT4PcHotaHyQCRg0vKLsG0Tw8graBc2rboL90xe0T7Jl/7b4OjMGek+Tq/HE/DtweuNPm6RGRfmAwQObDLWcWY+ul+XLNIBP51Zw88PCzGZs/x/IQuGBQTIJVf35CA8xlFtZxBRI6GyQCRg7pWUIYHPz+IjELzUMDFd8XioSHRNn0eF5US/7u/D4K81AAArd6Iv/9wDOUVBps+DxHJh8kAkQMqKK3A9C8PSU0DCgXw5pSeeGBQVLM8X4i3G965t5dUPptehGVxF5vluYio5TEZIHIw5RUGzF5xGOcziqVtr97RA9MGtmvW5x3TJQQzhkZL5Y93XUZSdtWZC4nI8TAZIHIgeoMRT/9wDIeT8qRtT43paPOmgZo8N6ELwq5PT6zTG/HKb2c4uoCoFWAyQOQghBBY+MsZbI3PkLZN7R+Jebd0brEYvDQuWHB7N6m881wWfreIh4gcE5MBIgfx0R+X8MOhZKl8c7cQLL4rttbphZvDpJ5tMKxjoFT+12/x7ExI5OCYDBA5gE2nruHtzeekct92fvjffX1lWWJYoVDg1Tti4aoyJSFX88s49wCRg2MyQGTnTqbm49nVx6VyVKAHPp8+AO5qlWwxdQzxshq58GHcRRSVV8gWDxE1DZMBIjuWll+GWV8fQXmFEQDg4+aCL6YPQICnWubIgKfGdoTH9YQkr7QCn+9OlDkiImosJgNEdqpEq8esr48gq8g0qZBKqcBHD/ZDxxAvmSMzCfLSYPZw80yHX+5JREEpaweIHBGTASI7JITAc2tOIOFaobTttTtjMaxjkIxRVTV7ZHv4uJlWMSzS6vHFXtYOEDkiJgNEduiLPYnYdDpdKs8eHoP7BzXvpEKN4ePmilnDzQsZLd+biIIy1g4QORomA0R25lBiLv696axUHtEpCC/d1q2WM+Q1Y1g0vCtrB8r1WM7aASKHw2SAyI5kFWnx5Pd/wmA0zerX1tcN70/rA5WyZecSaAhfd1fMtFgl8at9SSjV6WWMiIgaiskAkZ0QQuCldSelDoOuKgWWPdjPLkYO1OXhYdHSyIL80gqsOpwic0RE1BBMBojsxJojqdiWkCmVX76tG3pH+skXUAP4eahxn8VCSZ/vTkSFwShjRETUEEwGiOxASm4pXv3tjFQe0SkI0y1WCHQEs4bHwEVpnpVw46lrMkdERPXFZIBIZpXDCEt0pvn9fd1d8c49vVp8zYGmauvnjjt6t5XKy/cmyRcMETUIkwEimf3451UcTMyVyq9NjkWYr5uMETWeZUfC4yn5OJ6SL18wRFRvTAaIZFRQWoF/b0yQyrd0D8UdvdrWcoZ9iw33Rf8of6n89b4k+YIhonpjMkAko3d+P4ucEh0AwN1VhUV39JA5oqaz7Ouw/mQaMovK5QuGiOqFyQCRTE6m5uO7g8lS+e/jOiHcz13GiGzj1tgwhPpoAAAVBoEfDnKYIZG9YzJAJAMhBP71WzyEaW4hdAzxwiyLRX8cmatKiQctljf+7uAVDjMksnNMBohksDU+A0eu5EnlV+/oAbVL6/k43jeoHdQq0+vJLNJix9nMOs4gIjm1nrsPkYPQG4x4a7N57YExXYLtbjXCpgry0uCWHqFSeTVnJCSya0wGiFrYumNXcSmrBACgUAAvTOwqc0TNY+qASOlx3LlMpBewIyGRvWIyQNSC9AYjPoy7KJWn9IlA1zAfGSNqPsM6BEkdIo0C+PHPVJkjIqKaMBkgakG/nkjDlZxSAIBKqcDfx3WUOaLmo1QqrGoHVh1OgfH6aoxEZF9c5A6AyFkYjAJLd5hrBSb3DkdUoKeMETWPjIwMvP3221i/fj2Sk5Ohgwtcg9qhKHYc9k+JxbCOwY267sWLF/Hrr78iLi4OJ0+eRHp6OlxcXBAeHo4RI0bgiSeeQL9+/Wo8/+TJk/jtt9+wa9cunD59GllZWdBoNIiKisLYsWPx1FNPoXPnzo192UQOTSGEYKpO1AJ+OX4Vc1ceBwAoFcC2f4xC+2AveYOysaNHj2LChAnIyckBAHh5eaGkrAzCYFp3od1Ng3H+0E5oNJoGXXfv3r0YPny41TZvb29otVrodKZJm5RKJV5++WX861//qnL+d999hwcffNBqm6+vL4qLi2G4HptarcYHH3yARx99tEGxEbUGbCYgagHGG2oF/tKrbatLBAoKCnD77bcjJycHXbt2xeHDh1FUVISfD11CwPjHAKULkk8ewJNPz23wtSsqKqBSqTB58mSsWbMG2dnZKCwsRGlpKQ4dOoThw4fDaDTitddewxdffFHt+RqNBg8++CA2bNiAgoIC5Ofno7S0FNu2bUNsbCx0Oh0ef/xxbNu2zRa/DiKHwpoBohYQdy4TDy8/DMA0guD3Z0aiU6i3zFHZ1sKFC/H666/D3d0dZ86cQUyMaRIlnd6IIf/ejsvbvkX+rhVQqlRIiI9vUJV8amoqysrK0KlTp2r363Q6DBgwACdPnkSHDh1w8eJFq/3nzp2Dt7c32ratft2H/Px8dOvWDenp6Rg3bhwTAnI6rBmgVm306NFQKBR45ZVXYDAYsGTJEvTp0wdeXl4ICQnB5MmTceLECen40tJSvP7664iNjYWnpycCAwMxdepUXLp0qcbnMBgM+OqrrzBhwgSEhoZCrVYjODgYEyZMwMqVKyGEwJd7EqXjx3UNRadQb2RmZuLLL7/ElClT0K1bN/j6+sLd3R0dO3bE7NmzcebMmRqfc8aMGVAoFJgxYwYAYO3atRg9ejQCAgLg4eGB3r174/3334fR2HIz/61YsQIAMG3aNCkRAAC1ixJT+obDu99foFC7w2gw4LvvvmvQtSMiImpMBABTFX9lM8ClS5eQl5dntb9Lly41JgIA4OfnhylTpgAADh8+3KDYiFoFQdSKjRo1SgAQ8+fPFzfffLMAINRqtfD09BQABADh5eUlDh8+LLKzs0WfPn0EAOHm5ibc3d2lY0JCQsSVK1eqXD89PV0MGjRIOg6A8PX1tSqPm3CbaPfcTyLqhfUi6oX1Yu+FLCGEENOnT7c6zsfHR7i4uEhljUYj1q5dW+3rqjx3+vTp4sknnxQAhFKpFH5+flbXfOihh5r191vp7Nmz0nOuXr26yv6EawUi6oX1wq19PwFA9O43wOYxfPDBB1IMWVlZDT7/H//4hwAgPD09bR4bkb1jzQA5hWXLluHYsWNYs2YNiouLUVRUhEOHDqF9+/YoLi7G3Llz8cgjjyAvLw9btmxBSUkJiouLsW3bNgQHByMzMxPz58+3uqZOp8Nf/vIXHDx4EH379sWGDRtQUlKC/Px8FBcX4+uvv0ZISAi2b9mIvJ1fAQC6hnljSIdAAEBMTAwWLFiAY8eOobi4GAUFBdBqtTh9+jQeeOABaLVaTJ8+HWlpaTW+rl9//RWfffYZ3nvvPeTl5SEvLw/Z2dmYPXs2ANO39R07djTPL9XC6dOnpcexsbFV9ncN80HXMG+og0xrFpxNSKhyTFPt3LkTANCmTRsEBgY2+vyePXvaMCoiByF3NkLUnCprBgCI3bt3V9m/fft2ab+7u7u4cOFClWO++OILab9Op5O2L126VAAQPXr0EIWFhdU+f9ye/QJQCKhcRMRT34qVh6rWLtRk0qRJAoB47bXXquyzrFVYvnx5tef362f6Fj579uwq+5YvX25Vg9DQn7i4OKvrWX4rLygoqDaeT/64KPzHPSIdV9PvrDH27dsnlEqlACAWLlzY4PNXrlwpxfXFF1/YLC4iR8F5BsgpDB8+vMrQNAAYNWoUNBoNtFot7rnnHnTsWHUSoAkTJgAAysrKcOHCBXTv3h0A8PnnnwMAnnjiCXh7V98Z8Kw+GK5B7VCRfQUuGfG4s/e0esc8adIkbNiwAXv27KnxmMjISDz00EPV7rvjjjtw9OhRnDx5sso+d3d3hIaGVnNW/ajVaqtyUVGR9NjDw6P6eHqFY76reUjh3oQU3Dqwe6NjqJSVlYX77rsPRqMRnTp1wvPPP9+g88+fP4/HHnsMgOn/SWU/DCJnwmSAnMLAgQOr3a5SqRAUFISrV69iwIAB1R5j+UezsmNaUVGR9Ed24cKF1Y5tB4DcEh0qSk1/KLv76ODmqrLaf+LECXzyySfYs2cPkpKSUFxcDHHDAJ/U1Jqn8R0wYACUyupb+yo7zOXm5lbZN3XqVEydOrXG6zaHMF83dAz2Qs718qZT6U1OBoqLi3HHHXfgypUr8Pb2xpo1a+DlVf8hm+np6Zg0aRLy8/PRtm1b/PDDDzX+PolaMyYD5BRq+uYOAC4uLrUeU7kfMI1XB0x/RCp76lf3x7Y6XYOsv00vXboUc+fOla6jUCjg6+srTchTVlaGwsJClJSU1HjN+ryuypibk2UcpaWl8PGpfr2FbiFuOHj98fZLRdDqDdC4qKo9ti4lJSWYNGkSDhw4AC8vL2zcuBG9evWq9/mZmZkYN24cLl68iNDQUGzfvh0RERGNioXI0TEFJmqEylnrAODAgQMQQlT5eeK7o4h6YT2iXliPh5cfwn/eXCydk5CQgGeeeQZGoxH33nsvDh06hPLycuTl5SE9PR3p6el47733AKBKTYE9shy2d/Xq1RqP8xWmWhKF2gPFRhfsPJfVqOerTAR27doFT09PbNiwodpmoJpkZmZi7NixiI+PR0hICHbs2IGuXVvn6pFE9cGaAaJGsGw6OHXqFAYNGmS1P6dYi9/PpEvlaRYL9gCmeQEMBgO6deuGlStXVls1nZ6eXmWbraxatQpz5zZ8JsBK69atw9ChQ6Wy5QiC06dPo1u3btWedz4hHgDgGmT6ffz051VM6BHWoOeuTAT++OMPeHh4YMOGDRg5cmS9z8/MzMSYMWOsEoHKfiBEzorJAFEj+Pv7o3v37oiPj8fKlSuloXyV1v15FRUG0zf6EG8NxnYNsdqfkpICAOjVq1eNbdTNOQteWVkZMjIyGn1+5XoAlbp06YJ27dohOTkZmzdvxr333lvlnJKSEuzevRsA4B7dFwCw42wmCsoq4OvuWq/nLSkpwW233WZVIzBq1Kh6x52RkVGlRqBHjx71Pp+otWIzAVEjzZkzBwCwfft2rFy5UtouhMAPh5Ol8r39I1BYkG91rq+vLwBTrUJ1zQCbNm2Sxr03hxkzZlTbtFHfn9GjR1e5ZuWohpUrVyIpKanK/g8//BDFxcVQqVQI7z8eAKAzGK1qUGpzYyKwcePGBiUClk0DoaGhiIuLYyJAdB2TAaJGeuyxx6Tmgb/97W9YsGABUlJScORKHi5nlcBYUY7y5JM4vea/6NChg9W5t956KwDgzJkzePLJJ6VOiCUlJfjkk09wzz33NGriHDk999xzCAsLQ2lpKSZNmoSjR48CMNUifPTRR1i4cCEAUxI1eXR/6bz1J68BME+xrFAoqly7tLQUt99+O3bt2gUvLy9s2rSpQU0DWVlZUiIQFhaGuLg4Ng0QWWAzAVEjaTQarF+/HlOnTsWOHTuwePFiLF68GBoPL1QYBIzaUgACK2A9IgEAxo0bh2nTpmHlypX46KOP8NFHH8HPzw9FRUUwGAzo168fZsyYgaefflqW19YYvr6+WL9+PSZMmID4+Hj0798f3t7eKC8vl0Y03HLLLViyZAn+TC3GdwdNtSd7L2Yjr0RX26Wxdu1aqaZEr9dX2wxh6cY+DR999JG01kNRURHGjBlT6/mHDx9GZGRkrccQtSZMBoiaICgoCNu2bcNvv/2Gb775BgcOHsTVtHQIACrvQNzUsydm3X83Jk+eXOXc7777DoMHD8aXX36Jc+fOwWAwoGfPnpg6dSqeffZZ/PDDDy3+epqqX79+OHPmDN566y2sX78eKSkp8PT0RGxsLKZPn46ZM2dCqVRiYIwawd4aZBVpoTcKbKmjqcBywaXy8nKUl5fXevyNfRoszy8pKal1uCZgPVqEyBlwCWMiG9pyJh2PfmOqHndzVeLIgvHw0jDnrs6iX07j6/1XAADDOwbh29mD6jiDiJoL+wwQ2dAvx81j7Md3D2MiUIvbe5nnJth3KRs5xVoZoyFybkwGiGyksLwC2xIypfLk3m1rOZr6tfNHmI8bAMAogE2nm29eBSKqHZMBIhvZfCodOr2pbdrfwxUjOwfLHJF9UyoVuK1nG6m8/mTNSzUTUfNiMkBkIz9bNBHcflNbuKr48arL7b3MycDBxFxkFtXeMZCImgfvVkQ2kFlUjv2Xc6Ty5D7hMkbjOPpE+iHczx0AIIRpJUMianlMBohs4PczGagclxPu546+7fxkjcdRKBQKTLrJXDuw8dQ1GaMhcl5MBohsYNNp8x+xW2PDqp1Fj6pn2W/gcFIusjmqgKjFMRkgaqLcEh0OXM6Vyrf1bNgqfM7upnBftPE1jyrYFt/4BZSIqHGYDBA10db4dBiMpjaCUB8N+kT6yxyRY1EqFVbLGG+u58JFRGQ7TAaImmijRae3W3uEQalkE0FDWSYD+y7moLC8QsZoiJwPkwGiJigorcC+S9lS+dbYNrUcTTUZEO2PAE81ANOyxnFnM+s4g4hsickAURNsS8hAhcHURBDoqcbAmACZI3JMLiolxncLlcp1LVxERLbFZICoCSyn0L2lRxhUbCJotFtjzU0FcWezUF7BlQOJWgqTAaJGKtbqsetCllTmKIKmGdoxUFrYqazCgF3ns+o4g4hshckAUSPtOJsprUXg6+6Kwe0DZY7IsWlcVBjbNUQqc1QBUcthMkDUSFstxsOP7x7KtQhswLKpYFt8BioMRhmjIXIevHsRNUKFwYg/zpl7vI/vHlrL0VRfozoHQ+Niui0Vlutx0GIyJyJqPkwGiBrh6JU8FJbrAQBqFyWGdwySOaLWwVPjYvW73JbA2QiJWgKTAaJG2GExDn5I+0B4Xu/4Rk1nWcuyNT4DonIFKCJqNkwGiBrB8hvruG4htRxJDTWuWygq13m6ml+G+GuF8gZE5ASYDBA1UGJ2CS5nlUjlMV2YDNhSsLcGvSP9pPK2eM5GSNTcmAwQNZBlE0GXUG9EBnjIGE3rZNVUkMAhhkTNjckAUQPtOGtuIhjLJoJmcYtFMnD6aiHS8stkjIao9WMyQNQAReUVVsPdxnVlMtAcOgR7ITrQXOOynaMKiJoVkwGiBth9IRt6o6l3u7+HK/q085c5otZJoVBYNRX8Hs9kgKg5MRkgaoDtCeb+AmO6hHBhomY0vrt5NsIDl3NQWF4hYzRErRuTAaJ6MhgFdlrMOsj+As2rbzs/+Hu4AgAqDIILFxE1IyYDRPV0IjUfOSU6AICLUoERnYJljqh1c1EpMbar9QRERNQ8mAwQ1dMOiyaCAdEB8HV3lTEa52DZbyDubCYXLiJqJkwGiOppu8X8Apx1sGWM6BQEtcXCRYcTuXARUXNgMkBUD5mF5UiwmBZ3DIcUtogbFy7iqAKi5sFkgKgedl/Ilh5H+LujfZCnjNE4Fy5cRNT8mAwQ1cOei+ZkYESnICgUHFLYUiwndrqaX4az6UUyRkPUOjEZIKqD0SisagY4iqBlhfi4WS1cxFEFRLbHZICoDmfTi5BdrAUAKBXA0A6BMkfkfG5sKiAi22IyQFSH3RfMk93cFOEHPw+1jNE4J8tk4NTVAlwr4MJFRLbEZICoDtZNBEG1HEnNpVOIF6IsFi7aZjHnAxE1HZMBolqUVxhwKMk8tp39BeShUCgwvhubCoiaC5MBolocSsyFTm+a9c5TrUKfdn7yBuTEbrZoKth/KRtFXLiIyGaYDBDVwrK/wJAOgXBV8SMjl/5R/vCzWrgou44ziKi+eGcjqgWHFNoP08JF5jkHtsanyxgNUevCZICoBpmF5VYT3LDzoPws+w3s4MJFRDbDZICoBpazDob7uSOGUxDLbmTnYOuFi5K4cBGRLTAZIKrBjUMKOQWx/Dw1LhhmMekTRxUQ2QaTAaJqCMEpiO3VzVy4iMjmmAwQVcNyCmKFAhjWkVMQ24ubLfoNpOaV4VwGFy4iaiomA0TV4BTE9ivUxw29LBcuOsOmAqKmYjJAVA2rJoKOHEVgb8Z3sxhimMBkgKipmAwQ3aC8woCDiZZTEDMZsDfju4dJj0+mFiC9oFzGaIgcH5MBohscScq7YQpif5kjoht1DvVCuwDLhYtYO0DUFEwGiG6w75K5iWBgTIA0rp3sh0KhsOpIyCGGRE3DuxzRDfZdypEeD+3AJgJ7Nd5q4aIcFGv1MkZD5NiYDBBZKCqvwKmrBVJ5SAcOKbRXA6L94etuWrhIZzBi1/msOs4gopowGSCycDgpFwajaRIbX3dXdG/jI3NEVJOqCxexqYCosZgMEFnYd9HcRDCkfSCUSk5BbM8smwp2nM2EngsXETUKkwEiC5b9BdhEYP9Gdg6GWmW6jRWUVeBwUp7MERE5JiYDRNfllegQf61QKg9lMmD3vDQuVkkbmwqIGofJANF1By6bawWCvDToGOIlYzRUX5ZNBVsT0rlwEVEjMBkgum7/ZcshhYFcsthBWM43kJJbhvMZxTJGQ+SYmAwQXWc9vwCbCBxFmK8bborwlcqbT6fLGA2RY2IyQAQgs7AcFzPN3yjZedCxTOhhXqtg46lrMkZC5JiYDBDBuokg3M/dat57sn+TeraRHp/LKLJK7IiobkwGiGCazrbSEPYXcDjRQZ5WE0SxdoCoYZgMEIH9BVqDSTeZawc2nGQyQNQQTAbI6aXkliI5t1Qqs7+AY2JTAVHjMRkgp2fZXyAmyBNtfN1ljIYai00FRI3HZICc3gFOQdxqWDYVMBkgqj8mA+TUhBDsL9CK3GbRVHA2nU0FRPXFZICcWmJ2CdILy6Xy4PZMBhxZDJsKiBqFyQA5NctagS6h3gjy0sgYDdkCRxUQNRyTAXJqlp0H2V+gdbjthlEFCRYrURJR9ZgMkNMyGoVV50H2F2gdYoI80SvSTyr/fOyqfMEQOQgmA+S0zmcWIadEBwBQKoBB7C/QatzVu630+JfjaTAYuawxUW2YDJDT2nfRXCvQo60vfN1dZYyGbOkvvdpCpTRNKZ1eWI4DFs1BRFQVkwFyWuwv0HoFemkwqnOwVP6JTQVEtWIyQE7JYBRW3xbZX6D1uatPuPR406lrKNMZZIyGyL4xGSCndCatAEXlegCAi1KBAdEBMkdEtja+eyi8NC4AgBKdAb/Hp8scEZH9YjJATslyyeJekX7wvP5Hg1oPN1cVJsaGSeW1R1NljIbIvjEZIKfEKYidwz39IqTHuy9kIzmntJajiZwXkwFyOjq9EYeTcqXyEA4pbLUGxgSgfbCnVF51JFnGaIjsF5MBcjonU/NRer0zmdpFib5R/jJHRM1FoVDg/oHtpPLqI6moMBhljIjIPjEZIKdj2V+gXzt/uLmqZIyGmtuUvhFQq0y3uqwiLXaczZQ5IiL7w2SAnI5lfwHOL9D6BXiqMcGiI+EPh9hUQHQjJgPkVMorDDianCeV2XnQOdw3IFJ6/Mf5LKTmsSMhkSUmA+RU/kzOg05vajP2UKtwU4SfvAFRixjcPhDRgR4AACGAbw+wdoDIEpMBciqW/QX6RwdA7cKPgDNQKhV4cHCUVF55OBnlFZyRkKgS74TkVDi/gPO6t38k3K93Fs0vrcAvx7leAVElJgPkNEq0epxIyZfKTAaci6+7K6b0Na9X8NW+KxCCSxsTAUwGyIkcTsqF/vq69t5uLujR1lfmiKilTR8aLT1OuFaIw0l5NR9M5ESYDJDTsOwvMCgmUFrvnpxH51BvDOtorhH6al+ijNEQ2Q8mA+Q09nPJYgIwfUi09Hjz6XRcySmRLxgiO8FkgJxCQWkFTl8tkMqcbMh5jesWipgg03oFRgF8uuuyzBERyY/JADmFg4k5uN5dAAGeanQJ9ZY3IJKNSqnAoyPbS+U1R1ORWVQuY0RE8mMyQE7BsolgSPtAKNlfwKnd1TccId4aAKZVLJfvTZI3ICKZMRkgp7D3Yrb0eDCbCJyexkWF2SNipPK3+6+gsLxCxoiI5MVkgFq9jMJynM8olsrDOwbJGA3Zi/sGtoOPmwsAoEirxzf7r8gcEZF8mAxQq7fngrlWINzPXZqjnpybt5srHrIYWfDZ7sso1urlC4hIRkwGqNXbY9FEMKJTEBQK9hcgk5nDY+CpNk9R/PW+JHkDIpIJkwFq1YQQVsnA8E5sIiCzAE+11ayErB0gZ8VkgFq1cxlFyCrSAgAUCmBYByYDZG32iPasHSCnx2SAWjXL/gKxbX3h76mWMRqyRzfWDnzO2gFyQkwGqFVjEwHVh2XtQF5pBVbsT5I3IKIWxmSAWi2t3oCDl3Ol8ggOKaQaVOk7sIu1A+RcmAxQq/XnlXyUVRgAAG6uSvSL9pc5IrJnrB0gZ8ZkgFqtPRezpMcDYwKhcVHJGA3ZuxtrBz5l7QA5ESYD1GpZdh5kEwHVB0cWkLNiMkCtUn6pDictlixm50Gqj+pqB4q4ZgE5ASYD1CrtuZgNcX3J4iAvLllM9ffIiPbw0pjWLCgoq8BXXNGQnACTAWqVdp4z9xcY2SmYSxZTvfl7qjHjhlkJuaIhtXZMBqjVMRoF/jhvTgZGdQmWMRpyRLNHxMD7eu1AYbkeX+5JlDkioubFZIBanfhrhdIUxEqFqWaAqCH8PNR4eHiMVP5iTyIKylg7QK0XkwFqdXaey5Qe94r04xTE1CizhsfA281UO1BUrscXrB2gVozJALU6lv0FxnQJkTEScmS+7q6YZVE7sHxPIgpKWTtArROTAWpVCkor8GdynlQezf4C1AQzh8fAp7J2QKvH53suyxwRUfNgMkCtyu6LWTBaDCmMbesrb0Dk0HzcXDF7RHupvHxvEvJLdTJGRNQ8mAxQq8IhhWRrDw+Lhq+7KwCgWKvHV5yVkFohJgPUahiNwioZ4JBCsgVvN1fMHGbRd2BvEkq4ZgG1MkwGqNU4npqP7GLTkEKVUoFRnZkMkG1MHxolrVlQUFaBHw4lyxwRkW0xGaBWY1t8hvR4QLQ//Dw4pJBsw89DjQcHR0nlT3ddhlZvkDEiIttiMkCtxlaLZODmbqEyRkKt0azhMVC7mG6ZmUVa/Hj0qswREdkOkwFqFZKyS3Ahs1gqj+/OZIBsK8THDff2i5DKH/9xCXqDUcaIiGyHyQC1CtsSzLUCnUO9EBXoKWM01Fo9OrIDVNdHqCTnlmLDqWsyR0RkG0wGqFWwbCJgrQA1l3aBHrijV1up/PEflyEq18omcmBMBsjh5ZXocOSKedZB9heg5vTYqA7S44RrhThwOVfGaIhsg8kAOby4c5kwXJ92MNhbg14RfvIGRK1alzBvjOgUJJW5gBG1BkwGyOFZ9he4uVsIZx2kZjfTYgGj7WczkJRdImM0RE3HZIAcmlZvwB8Wsw6yvwC1hFGdgtE+2NRJVQhwimJyeEwGyKHtv5SDEp1p8hd3VxWGdgiq4wyiplMqFVZTFK8+koKCMi5vTI6LyQA5tE2n0qXHIzoFwc1VJWM05Eym9A2XFjAq1Rmw+nCKzBERNR6TAXJYFQYjNp8xJwOTbmojYzTkbDzULrh/UDup/NW+JE5CRA6LyQA5rL0Xs6WqWbWLEuM4pJBa2ENDouByvcPq1fwyq86sRI6EyQA5rA0nzbO/jekSDC+Ni4zRkDNq4+uOW2PDpPJ3B7maITkmJgPkkHR6I7ZYNRG0reVoouZjuZrh7gvZuJLDYYbkeJgMkEPaezEbheV6AIDGRYlxXUNkjoic1aCYAHQINq+F8f0h1g6Q42EyQA5pvUUTwdiuIfBkEwHJRKFQ4IFB5tqBNUdSodUbZIyIqOGYDJDDKa8w4Pd4jiIg+3F33whoXEy309wSHbacYUdCcixMBsjh7DibiaLrTQTuriqMZRMByczXwxV/sVjN8NsDV2SMhqjhmAyQw1n3Z6r0+NbYMHio2URA8rOcc+BQYi47EpJDYTJADiWnWIudFmsRTOkbLmM0RGZ9Iv3QMcRLKq/786qM0RA1DJMBcii/nUiD/vpyxaE+Gq5FQHZDoVDg7r4RUnndsVQYr/9fJbJ3TAbIoaw7Zv62Nbl3OFRcrpjsyF19wlH5XzIltwyHk3LlDYionpgMkMO4kFGEk6kFUnmKxbcwInsQ5uuGYR3NtVU/WvRvIbJnTAbIYVjWCvRo64MuYd4yRkNUvXv6mZPUjafSUabjnANk/5gMkEOoMBjx41Hzt6y7+rDjINmnW7qHSetkFGv1VtNmE9krJgPkEHaczURmkRYA4KpSMBkgu+WuVmFST/NEWGwqIEfAZIAcwkqL+d4n9AhDoJdGxmiIamc55HXvxWykF5TLGA1R3ZgMkN27ml+GnefNcwvcP7BdLUcTyW9AdAAiA9wBAEYB/HSMcw6QfWMyQHZv1eEUiOvDtaMCPTC4faC8ARHVQalUYEofc0fCH/9MhRCcc4DsF5MBsmt6gxFrjqRI5WkD2kHJuQXIAVhOQHQxs9hqWCyRvWEyQHYt7lwWrl1vb3VRKqyGbRHZs3aBHhgYHSCVfzuRJmM0RLVjMkB27et9SdLjW3qEItibHQfJcdzR27yS4fqT1zg9MdktJgNkty5kFGHPxWypPH1ItHzBEDXCxNgwacrs9MJyHLmSJ3NERNVjMkB2a7lFrUD3Nj4YGBNQ88FEdijQS4OhHcwdXtlUQPaKyQDZpYLSCqyzmKxlxrBoKBTsOEiO5y+9zE0FG09dg95glDEaouoxGSC7tOpIMsorTDfNAE817rC4oRI5kgk9wuCqMiWyOSU67L+cI3NERFUxGSC7U2Ew4ut9V6TyfQMj4eaqkjEiosbzdXfFqM4hUnn9iWsyRkNUPSYDZHd+O5GGq/llAEzDCR8cHCVzRERN85de5rUKNp2+Bp2eTQVkX5gMkF0xGgU+2nlJKt/ZOxxtfN1bPI69e/di2rRpiIyMhEajQXBwMMaOHYuvv/66UTPJPfbYY1AoFFAoFIiOjq7xuPT0dMyaNQthYWFQq9Xo3LkzXn/9dej1+hrPyc7ORlBQEMLDw1FYWNjg2CxVxvjKK6/UeeyMGTNqfD1JSUnStSx/3NzcEBISgu7du2PatGl47733cPVq3VP1jh49GgqFAqNHj274i7IDN3cLhZur6XZbWK7H7gtZdZxB1LKYDJBd2ZqQgQuZxQAAhQJ4fHT7Fo9hwYIFGD58OFatWoXU1FR4eHigsLAQcXFxmDFjBm677TZotdp6X2/nzp349NNP6zwuLy8Pw4YNw5dffomMjAyo1WpcuHABCxcuxH333VfjefPmzUNOTg6WLl0KHx+fesfVUnx8fBAaGorQ0FB4e3sjPz8fCQkJWLVqFebNm4eoqCg88MADyM7OrvtiDspT44JxXUOl8q8cVUB2hskA2Q0hBJZZ1ApM6B6GjiHeLRrD559/jsWLFwMApk2bhpSUFOTl5aGoqAjffvstvL29sXnzZjz99NP1ul5paSlmz54NFxcX9O/fv9ZjlyxZgsuXL6NXr164cuUKiouLsWPHDnh5eWHt2rXYuXNnlXN27NiBFStW4M4778Rdd93V4NfbEt5//32kp6cjPT0dWVlZ0Ol0SEtLw48//oiJEyfCYDDg+++/R69evZCUlCR3uM3GsqlgW3wGyisMMkZDZI3JANmNfZdycCIlXyo/MaZDiz6/wWDAwoULAQB9+/bF999/j4gI0/THarUaDzzwAD744AMAwBdffIFTp07Vec2XX34Zly5dwvPPP48ePXrUeuzWrVsBAIsXL0a7dqaVGceMGYNHHnkEAPD7779bHV9eXo7HHnsMXl5eWLp0aQNeqfzatGmDKVOmYOPGjVi1ahVcXV2RlpaGSZMm1dok4shGdwmBp9rUEbZEZ8Cu82wqIPvBZIDsxrKdF6XHIzoF4aYIvxZ9/iNHjiA9PR2Aqeq9unkNpk+fjtDQUBiNRnz99de1Xu/AgQP44IMP0LlzZyxYsKDO56+sJu/QwToJ6tSpEwAgK8v6j8frr7+OCxcuYPHixVLS4oj++te/4o033gAAxMfH1/l7dVRuriqM7WZuKth4iqMKyH4wGSC7cDwlH3svmsdfPz66ZWsFAODKFfNwxu7du1d7jEKhQJcuXQAAmzdvrvFaWq0WM2fOhBACn3zyCdzc3Op8/sBA00x1ly5dstp+8aIpSQoODpa2xcfH4+2330b//v3x1FNP1Xlte/fUU08hKCgIAFptMgAAt8WGSY+3JWSyqYDsBpMBsgvvbzsvPe7Tzg9D2gfWcnTzMxhqvklX7jt37hx0Ol21x/zrX/9CQkICZs2aVe8e8OPHjwdg6sCYkmJatnnXrl347LPPrPYLITBnzhwYjUZ89tlnUCod/2Ps5uaGsWPHAgAOHjyI8vJymSNqHqO7hMD9+pwZxVo9dl9ovZ0mybE4/l2EHN7RK3mIO2euAn96bEdZph62HCJ3+vTpao/R6/U4d+6c9PjGqnsAOHbsGN5++22Ehobi7bffrvfzP/vss4iKisLx48fRrl07eHl5YdSoUSgqKsJdd92FMWPGAAA+/fRT7N27F88++yx69+5d/xfYAO+++y7CwsJq/Vm1apVNn7NXr14AAJ1Oh9TU1DqOdkzuahXGdjNPQMSmArIXTAZIdu9tPSc97h3phzFdQmo5uvn069cPYWGmaty33nqr2o5sn3zyidUQuBvH9ev1esycORN6vR4ffPAB/P396/38AQEB2LdvH6ZPn46QkBDodDp06NABr7zyivSHNz09HS+++CKio6Px6quvAjB1PBw+fDg8PDzg5+eHu+++GxcuXGjw67dUUlKCjIyMWn9s/e09IMC8EFVubq5Nr21PJvW0HlWg1bOpgOTHZIBktf9SjlVfgXm3dJZtQSKVSiVNtpOQkIBJkybh6NGj0Ol0yMjIwJIlSzBv3jy4urpK59xYRf/mm2/i+PHjuP322/HXv/61wTG0bdsWX331FTIyMqDT6XDx4kUsWrRIes65c+ciPz8fy5Ytg4eHB3799VdMnDgRx44dw5133onBgwdj3bp1GDp0KJKTkxv9u1i0aBGEELX+TJ8+vdHXr05jJnNyRGMsmgqKtHrsYVMB2QEmAyQbIYRVrcDAmAAM7xgkY0TAo48+ihdffBGAaShf//79odFoEBYWhn/84x/w8/PD/PnzpeMtv/nHx8fjtddeg5eXF5YtW2bz2DZt2oTVq1dj2rRp0vj8p59+GgaDARs3bsQPP/yAzZs34+WXX0Z2djZeeuklm8fQnPLy8qTHlZ0pWyN3tQpju5prvzawqYDsAJMBks2uC9k4nGT+AzBvvHy1Apb+/e9/48CBA5g1axZ69uyJyMhI9OvXD/Pnz8fp06eh0WgAmBIByx7+Tz75JHQ6HV5++WX4+/ujuLjY6qey2UEIIW2rqKioV0ylpaV44okn4Ofnh//+978AgKNHjyI5ORn9+vXDqFGjpGOfe+45KBQK/PbbbzAaHWcO/BMnTgAANBoNwsPDZY6meU3saR5VsJVNBWQHXOQOgJyTEALv/W6uFRjRKQiDZB5BYGnQoEEYNGhQtft27doFABgyZIhV8pKYmAgAeOmll2r9Vp6cnAxvb9PMikuWLMEzzzxTZzyLFi1CUlISPv30U4SGmsaqX758GUDVeQn8/PwQFBSErKwsZGVlScfbs/LycuzYsQMAMHjw4HoNxXRkY7uGwM1VifIKI4rK9dh7MRtju9r/+0StF2sGSBYbTl3DidQCqfyP8Z1ljKb+kpOTpZkCbd1mXpPjx4/jv//9L4YPH47Zs2dX2V9WVlbjNnuoaamPpUuXSh0zZ8yYIW8wLcBD7WLVUXbDyXQZoyFiMkAy0OoNeHuzuVZgfPdQ9GlX/173cqmoqMCcOXNgMBgQGxtbZS2ApKSkenW4i4qKkrbVVStgNBoxZ84cKJVKfPLJJ1Z/3GNiYgAAf/75p9XIhzNnzqC4uBje3t7SRD72bM2aNVI/jNjYWDz44IMyR9QybrMYVbA1Pp3LGpOsmAxQi/v2QDKSc0sBACqlAi9O7CpzRGaXL1/GggUL8Oeff0pD5wwGA/744w+MHTsWW7ZsgZeXF1asWGE1qqC5LF26FIcPH8YLL7xQZVbEfv36ITw8HFevXsWCBQug0+mQl5cnLaJ0++232+2EROnp6Vi3bh0mTZqEv/71r6ioqEB4eDjWr18PFxfnaL0c2zUEGhfzssZ7L3FUAcnHPu8U1GoVlFXgfzvMY+DvGxiJDsFeMkZkrbCwEIsXL0a/fv3g4eGBgIAAuLm5YfTo0dizZw/atm2L33//HX369Gn2WFJTU7FgwQJ07twZL7/8cpX9Li4ueP/996FQKPDWW2/Bx8cHQUFBiIuLQ0BAgDTfv9zmzp0rTVQUEhICjUaDNm3a4O6778bGjRuhUqnwt7/9DSdPnkRUVJTc4bYYT411U8HGkxxVQPJhMkAtalncReSXmnrQe2lc8MzN9tVXIDo6Gv/3f/+HkSNHok2bNigpKYGvry+GDBmCt956C+fOncOQIUNaJJannnoKRUVF+Pjjj6URDDe6++67sWHDBgwZMgRKpRJeXl6YPHky9u3bZzWjopwKCwuliYoKCgrg4+ODbt26YerUqXjvvfeQnJyMFStWWE065CwsRxX8Hp+BCgObCkgeCuEsM32Q7FJySzHuP39Ad/2G99wtnfHU2E4yR0Ukn2KtHn1f2yr1F/jq4QEYLdMMnOTcWDNALebd389JiUCYjxtmDW8vc0RE8vLSuGB0Z/NcFVyrgOTCZIBaxMnUfPxyPE0q/+OWznBXq2SMiMg+TLrJPKqATQUkFyYD1OyEEHhjY4JU7hrmjbv7RsgYEZH9GNs1BOrrowrySyuw/1JOHWcQ2R6TAWp22xMyceCyeRW6+bd1g0rpGJPhEDU3bzdXjOzEpgKSF5MBalZ6gxH/3mSuFRjRKQgjLdpIiQiYdJN5VMGWM+lsKqAWx2SAmtWqIym4lFUCAFAoTLUCRGRtXLdQqFWm23FeaQUOXGZTAbUsJgPUbIq1eizZap5g6J6+EejWxkfGiIjsk4+bK0Z2Nk8dzaYCamlMBqjZfLzzErKLtQAAN1cl5t3SReaIiOyX5VoFW85kQM+mAmpBTAaoWaTll+Gz3Zel8pwR7RHm27qXpSVqipu7h8JVZepYm1uiw8HE3DrOILIdJgPULN7Zcg7a67OqBXtr8OioDjJHRGTffNxcMcJiVMEGNhVQC2IyQDZ3IiUfPx27KpWfu6UzPDXOsRIdUVNYNRWcTmdTAbUYJgNkU0IILN5gPcHQPf0iZYyIyHGMt2gqyCnR4RCbCqiFMBkgm9pyJh2Hksw3sAWTunOCIaJ68nV3xfCO5lEFbCqglsJkgGxGpzfi35vOSuWxXUMwvFNQLWcQ0Y2sRxWkw2DkwrLU/JgMkM18c+AKruSUAgBUSgXm39ZV5oiIHM8t3cPgcr02LbuYTQXUMpgMkE0Ulldg6Q7zBEP3D2yHjiHeMkZE5Jh8PVwxrCMnIKKWxWSAbOLTPy4jr7QCAOCpVmHuzZ1kjojIcU2yaCrYdJpNBdT8mAxQk2UUluPzPRYTDI3sgCAvjYwRETm2W3qEWjQVaHE4iU0F1LyYDFCT/XfbBZRXmMZDB3mpMXtEjMwRETk2Pw81hrKpgFoQkwFqkouZxVh9JEUqzx3XiRMMEdnApJ7mZY3ZVEDNjckANcm7W85JN6noQA9MG9hO5oiIWodbuodJc3RkFWlx9EqezBFRa8ZkgBrtZGo+Np9Jl8rPTegCVxX/SxHZgr+nGkM7BEplNhVQc+Kdmxrtva3npcex4T64LbZNLUcTUUNZTkC08dQ1GNlUQM2EyQA1ytErudh5LksqzxvfBUpOO0xkUxN6mJsKMou0OHA5R+aIqLViMkCN8p/fzbUCfdr5YXSX4FqOJqLGCPBUY6TFlN5rj6bKGA21ZkwGqMH2X8rBvkvmbyjzxneBQsFaAaLmYLnq56bT6SjW6mWMhlorJgPUIEIIvLf1nFQeGBOAYR0DazmDiJpiXLcQ+LiZhuuWVRjYkZCaBZMBapDdF7JxOMk8xGne+M6sFSBqRm6uKtzRu61U/pFNBdQMmAxQvQkh8B+LEQQjOgVhUHvWChA1t7v7RkiPDybmIvn66qBEtsJkgOptx9lMnEjJl8r/GN9ZvmCInEjvSD90CPaUyj/+ydoBsi0mA1Qvpr4C5lqBsV1D0Kedv4wRETkPhUJh1ZFw3bFUzjlANsVkgOrl9/gMnEkrlMqsFSBqWXf1CUflVB4puWU4xJUMyYaYDFCdhBBYuuOiVL6leyhiw31ljIjI+YT5umF4J/N8HpYLhBE1FZMBqtOuC9k4dbVAKv99XCcZoyFyXvf2M3ck3HDyGvJLdTJGQ60JkwGq04cWtQKjuwSzVoBIJhN6hCHISw0A0OqNnJGQbIbJANXq4OUcq7bJp8Z0lDEaIuemdlHir/3NHQm/PXCFHQnJJpgMUK2WxplrBQa3D0D/6AAZoyGi+wa2Q+U8X0k5pdh7KVvegKhVYDJANTqRko/dF8w3mqfGsK8AkdwiAzwwpkuIVP72wBUZo6HWgskA1ciyVqB3pB/XICCyEw8Obic93paQiWsFZTJGQ60BkwGq1tn0QmyNz5DKT43pyDUIiOzEqM4hiPB3BwAYjAJf72PtADUNkwGq1odxl6THXcO8Ma5bSC1HE1FLUikVmD4kWip/f/AKSri0MTUBkwGq4nJWMTacTJPKT41lrQCRvZk6MBJeGtPSxoXlek5CRE3CZICq+GjnJVSOVmof7ImJsW3kDYiIqvBxc8W0AeZhhl/uTYTeYJQxInJkTAbISmpeKX46dlUqPz6qA1RK1goQ2aOHh8dIn8+U3DJsOZNRxxlE1WMyQFY++eMy9NerBcL93DG5T7jMERFRTcL93DGpp7nm7tNdlyAEJyGihmMyQJKMwnKssmh3fHx0B7iq+F+EyJ49MqK99PhEagF2XeAkRNRwvNOT5LNdl6HTm9ocQ300uMdiURQisk89I3wxqrN5NcP/bjvP2gFqMCYDBADIKdbiu4PJUnnOyA5wc1XJGBER1dfcm82zgx5LzmftADUYkwECYOqJXFZhAAAEeqpx38DIOs4gInvRt50/aweoSZgMEArKKrDCYgazWSNi4KF2kTEiImqoG2sH/jifJWM05GiYDBBW7EtC0fXZy3zcXPC3wVEyR0REDXVj7cBbm8/BwOWNqZ6YDDi5Eq0eX+xNlMozhsXA281VxoiIqLH+Mb6z9DjhWiF+PJoqYzTkSJgMOLnvDl5BfmkFAMBTrcLDQ6PlDYiIGq1XpB/u7N1WKr/7+zmuWUD1wmTAiZVXGPDpLnOtwINDouDvqZYxIiJqqudv7QqNi+nWnlmkxSe7LsscETkCJgNObNXhFGQXawEAGhclZg9vX8cZRGTvwv3cMWt4jFT+dNclXM0vkzEicgRMBpxUeYUBH+00L1N838B2CPbWyBgREdnK46M7IMjLVMtXXmHEwp9Pc6gh1YrJgJP6Zv8VpBeWAwDULko8Ooq1AkSthbebK16a2E0q7zibiY2n0mWMiOwdkwEnVFRegWU7L0rlvw2OQhtfdxkjIiJbm9I3HMM6BkrlRb+eQcH1zsJEN2Iy4IQ+352IPIsRBE+M7iBzRERkawqFAosn95Q6E2YXa/HvTQkyR0X2ismAk8kt0eHz3ebexbNGtEegF/sKELVG0UGeVjMTrjycgh1nM2SMiOwVkwEnsyzuIkp0pjUI/DxcMXtETB1nEJEje2REe8SG+0jl59eeQm6JTsaIyB4xGXAiafllWHHAvAbB46M6wIezDRK1aq4qJZb8tbdVc8E/Vh+HkVMVkwUmAw2g0+nw3nvvYcCAAfD19YWXlxd69uyJRYsWoaioqNHXzcnJwfLly/Hggw+ie/fu8PT0hEajQUREBCZPnoyffvqp3tdKT0/HwoUL0a9fPwQEBMDd3R1RUVG49dZbcc/jL0CrNX0jCPXRYDpnGyRqtYqKivDKK6+gZ8+e6NOhDVL++1dc+/pZFB5ah7j4NHwYd7Hui9ShtvvNm2++iYqKqh0WZ8yYAYVCUeePXs+ZE1uSQnDwab3k5eVh3LhxOHbsGABAo9FApVKhtLQUABAVFYU//vgDUVENX+TH1dXV6j++m5sbVCoVSkpKpG0TJ07E2rVr4eHhUeN1Vq1ahTlz5qCwsBAAoFar4e7ujoKCAumYyLkroXTzwptTemLawHYNjpWI7N+VK1cwevRoJCUlAQA8PDxgMBig1ZomGVOHdkDofYvx3RNjMaJTcC1Xqll97jd5eXnw8/OzOm/GjBn4+uuv4ebmBl9f3xqvf/XqVahUqkbFRo0gqF4mTpwoAAgfHx+xatUqYTAYhBBC/P7776JNmzYCgOjZs6fQ6/UNvjYAMXDgQLFs2TJx6dIlaXtiYqKYNWuWACAAiAcffLDGa6xevVoolUoBQEydOlUcO3ZM2pdfUCgG/32p8O5/p4h8dq2Y9MEuoTcYGxwnEdk/vV4vevbsKQCINm3aiK1btwohhDAYDOLLFd8KlcZDABBu7fuJPv/6XSTnlDT4OWq73xQVFYndu3eLZ599VhQXF1c5d/r06QKAmD59emNfIjUDJgP1sG3bNukP8g8//FBl/759+6T9n3/+eYOvv2PHjlr3P/roo9L1k5OTq+xPS0sT/v7+AoB49tlnq+z//uAVEfXCeunncGJOg2MkIsfw+eefS/eLffv2Vdn/9ofm/SFTXxc3/2enyC/V1fv6dd1v6sJkwD6xz0A9fP311wCA9u3bY+rUqVX2DxkyBKNHjwYArFixosHXHzNmTK37Z82aJT0+cuRIlf0ffPAB8vLyEBERgTfffNNqX26JDu9sOSeVJ/dui/7RAQ2OkYgcQ+X9asyYMRgyZEiV/c89PhMh4aYmwpIzO3AhsxhPfHcUOr2xXtev7X5DjovJQD1s3boVAHDrrbdCoVBUe8zEiRMBAHv27EFZmW0XBXFzc5MeGwyGKvsrE5AHH3wQarX1qoP/+u2MNIzIQ63CixZTlBJR61JaWoq9e/cCMN+TbqRQKHD3HZMAAOWJpj5Qey/m4MV1J+s1wqC2+w05LiYDdcjNzUV6umlO79jY2BqPq9xnNBqRkGDbWb527twpPe7Zs6fVvsTERKSlpQEARo0ahWPHjmHq1KkICwuDWq3B0jm3IOuXt6C9moDnbumCMF83EFHrlJCQAKPR9A2/PvcrQ0keDGWmkVDr/ryKBb/UvqBRbfcbjUaDyMhITJs2Dfv3768z1u3bt6Nz585wc3ODj48PevbsiWeeeQYXLlyo9+sl22EyUIerV69Kj8PDw2s8znJf5YfFFvLz8/Hvf/8bADBixAh06dLFav/58+elx4cOHcKgQYOwevVqFBQUwKhyhaEoG6VndyP9u+dxbdcPNouLiOyP5b2nvverHr7mkUzfH0zGq7/F15gQ1Ha/cXd3R2pqKlatWoVhw4ZJ962apKam4vLly/Dw8EBpaSlOnz6N999/H7Gxsfjoo4/qfK1kW0wG6mA5f0Btw/os9zVlzgFLRqMRf/vb33Dt2jVoNBr873//q3JMXl6e9PjVV19FaGgoNm/ejGe/PYCIuavQdvZHcI/uBQiBBS+/jJ9//tkmsRGR/WnM/eqf46LQt52fVP5qXxLe2JhQbUJQ0/2mpKQE+fn5SEhIwLhx4yCEwPz586u93/Tt2xdLly5FUlIStFotcnNzUVhYiB9//BEdOnSATqfDE088gbVr1zbw1VNTMBmwY3PnzsX69esBAMuWLUOvXr2qHFNZJVj5eM2aNVBE9ML3h1MBAK6BkVj4/nK0bdsWAPDKK680f+BE5DA81C74auZA9Iowj/n/bHciXv0tvkofguruNxMmTIBSafpT0rVrV/zyyy+13m/+/ve/48knn0RUVJQ0j4CHhwemTJmCgwcPIjo6GgDw3HPP1dpkQbbl1MnAlClTEBYWVuVnwIAB0jHe3t7S48oJhqpjuc/ynMZ67rnnsHTpUgDAkiVLMHPmzGqPs3yu4cOHI6Z7b7zw40lpW2y4D+bd1gtPPPEEAODEiRPIyOBCJUStUWPvVz5urlgxcxC6tzGvYfDVviT8Y/VxVBiMVsdWGj58OAYPHlzl2p6eno2+3wQGBuLll18GYJo4qXKSN2p+Tp0M5ObmIiMjo8pPVlaWdIxl25pl/4EbWe6rzIob6/nnn8d//vMfAMA777yDZ555psZjLePr2rUr/rH6uLQ8sburCu9P6wO1ixLduplHEVy5cqXKdYjI8Vneexp6v/L1cMW3swfhJosagp+Pp+GRFUdQrDX1K7C831jeU27UlPuN5XDIy5cv13Ik2ZJTJwM7d+6EME28ZPVTOYUnAAQEBCAsLAwAcPr06RqvVblPqVTW+iGpyz//+U+88847AIC3334bzz33XK3Hd+/eXapqO3W1EHsv5kj7Fv2lOzoEewGAVXVbTcMjicixdevWTaqyr8/9KiwsDAEB5nlHAjzV+P6RwRjaIVDatvNcFu75aB9S80qt7je13Ud4v3E8Tp0M1Nf48eMBAFu2bKmxDWvz5s0ATFVn7u7ujXqe5557Du+++y4AUyLwz3/+s85z3NzcMHLkSADA8VPmD//E2DBMHRAplSuHOyoUCqlNjohaFw8PDwwbNgyA+Z50IyEEtmzZAgC45ZZbquz30rjgyxkDcGuPMGnb2fQiTP5wL+Izy6T7TXx8fI1xNOV+c+DAAelxTAyXWG8pTAbqYfr06QCAS5cuYc2aNVX2Hzx4EHFxcQCAhx56qFHP8dxzz0lNA++++269EoFKE+6aBgDQpsZDezUBHUO88PY9N0kZeWlpqTRUZ9CgQQgObtzCJERk/yrvV3FxcTh48GCV/WvWrJGq32u6X7m5qrDsgb54dFR7aVt2sQ7TPj2AXuMmAzBNsFbdfAK13W/q6hCYm5uLN954AwAQERGBPn361Ho82ZAMUyA7pMqFinx9fcXq1aulhYq2bdsm2rZtW+tCRcuXL5fmAo+Li6uy//nnn5f2v/feew2KKy2/VAx+/XehbtNZABCuPsFi+cqfpPgSEhLEuHHjBAChVCrF9u3bG/7iichhVFRUSAsVhYeHi23btgkhTAsVrV69Wvj4+AgAYuLEidWev2jRIul+lJiYKFYfThYd52+Q1jZp9/yvIqKz6fqRkZFi8+bN9b7frFixQtx1111i7dq1IiMjQ9peWloqfvrpJ9GpUyfpuVeuXNlMvyGqDpOBesrNzRV9+vSR/qO6ubkJDw8PqRwVFSUSExOrPbe2ZODKlSvSPqVSKUJDQ2v9eeedd6Rz80q04ub/7BRRL6wXEU9+I1yD2knXcnd3F76+vlLZ1dVVfPrpp834GyIie5GYmCiio6Olz7+Hh4dwc3OTyn369BG5ubnVnntjMiCEEAcuZYter26REoKIJ78RPm1iGny/sbwXAhCenp4iMDBQqFQqaZtGoxEffvhhc/56qBouzVTh0Or4+/vjwIED+N///ocffvgB58+fh8FgQGxsLKZMmYJ58+bBx8en7gvd4MZxu3UNwykuLgYAlOr0mPnVYVzINJVVXv5YtuZ3FBxdj1WrVuH8+fMoKytDdHQ0xo4di2effbbW6UmJqPWIjo7GyZMn8e6772LdunVITEyEq6srevTogfvuuw9PP/10g9YVGNQ+EL88OQxzVhzFuYwiqLz84Xf/e/A5swneaYeRduVyve43Y8aMweLFi7F//34kJCQgJycHBQUF8PHxQceOHTF27Fg8+uij7CsgA4UQnNXB0ej0Rsz55gh2njMPgfz72I74xy1dajmLiKhpSnV6LPjpNNYdMw9NVCqAZ27ujCfHdIRKyZEDjorJgIMprzDgqe//xLaETGnb/YPaYfHkWA7hIaJmJ4TAD4dS8MqvZ6CzmJBoQLQ/3vtrb0QG1DwNMtkvJgMOpExnwJxvjmD3hWxp28TYMCy9vy8zciJqUadSC/D4d0eRmmdest1b44LX74rFnb1rXiSJ7BOTAQdRUFaBR1YcwaHEXGnb+O6hWHp/H2hcVDJGRkTOqqCsAv/3y2n8ctx6pdY7e7fFa5Nj4ePmKlNk1FBMBhzA1fwyzPjykNRZEABuv6kNlkztDVcVp4ogInn9fOwqFv58GkVa83LI4X7uWDK1NwbGBNRyJtkLJgN27vTVAsz86jAyi7TStrv7RuDte25i0wAR2Y2U3FI8u+o4jlwxL3OsUAAPDY7C87d2haeGg9fsGZMBO7b2aCpe/ukUtHpzJ52nxnTEvFs6s7MgEdkdvcGIj3Zewn+3X4DBYvnjCH93vDnlJgzvFCRjdFQbJgN2SKc34vUN8Vix37zal0qpwGt3xuL+Qe1kjIyIqG7HU/Lx3JoTuGjRtAkAf+0fgZcmdoO/Z/3nOKCWwWTAzlzJKcGzq47jz+R8aZu/hyuW3t8XwzoyqyYix6DVG7B0x0Us23nJqpbA190V827pjPsHtoML+zzZDSYDdkIIge8OJuONjQko1Rmk7T3DffHRg30R4c+xu0TkeM6kFeD5tSdxJq3QanvXMG/Mv60bRnQKYrOnHWAyYAdS80rx0rpTVvMHAMC9/SLw2uRYuLly6CAROa4KgxHL9ybig+0XUWwx4gAA+kf549nxnTG0QyCTAhkxGZBRqU6Pj/+4jE/+uGTVSdDfwxWvT+6JSTe1kTE6IiLbyiwqxzubz2HN0dQq+wZGB2Dm8BiM7x7KkVIyYDIgg/IKA1YfScGyuEtILyy32jeuawj+fXdPhHi7yRQdEVHzOpGSj3d/P1elNhQwzU8wbUAk7uwdjnaBbB5tKUwGWlBBWQXWHEnB57sTqyQBwd4avDSxK+7qE243VWVJSUlyh0BE10VHR8sdgs0dTsrFkq3nse9STrX7+7Tzwx292uLmbqFc86CZMRloZkajwLGUPKz78yp+OnbVqnMgAKhVSswaEYMnx3SEl51NymEvSQkRmToZt1ZHr+Ri+d4kbD6dDr2x+tfZPsgTIzsHY0SnIPSPCoCvB6c6tiUmA81ACIHjKfnYcPIaNp66hrSC8irHqFVKTBsYicdHd0AbX3cZoqwbkwEi++EMt+r0gnKsPZqCn4+nVZmjwJJCAXQJ9cagmAAMiAnAwJgANq02EZMBG0kvKMeei9nYcyELey7mILtYW+1xfh6umDagHWYMjUaYr33/52UyQGQ/nOlWLYRA/LVC/Ho8DdsSMnApq6TOc9oHeWJgTAAGtQ/AwJhAhPvZ55cse8VkoBGEEEjNK8PhpFwcTsrFocTcWv+zKhXAkA6BuLN3OO7o1dZhhgoyGSCyH858q07JLcWuC1nYdT4Lh5PykFuiq/OccD93DGofgEExARgUE4ioQA/e02rBZKAeDEaBs+mFOJKUJyUAGYXVf/OvpFAAg2ICMOmmtri1RxiCvTUtFK3t8INDZD94qzYRQuBSVjEOJpq+iB1KzMW1appibxTircHAmAAMiDb9dA3zhpJDGCVMBqqRVaTFydR8nEjJx7GUfBxPzrdamrMmkQHuGN4xGMM7BmFoh0CHn3+byQCR/eCtunqVNbWm5CAHhxJzkZRTWud53m4u6B/lb+pzEB2AnhG+0Lg4Rq1tc5A1GbiQUQRXlRIaVyXUKiU0riqoVUq4qhQt8ofIaBRIzi3F2fQinEsvwtn0QpxMLcDV/LJ6nd8+yBP9o/0xINrUgSUq0LOZI25ZHFpIZD9a49DC5pJeUI5DSabk4ODlXFyopTNiJbWLEt3a+KBrqDe6hHmjaxtvdArxRpCX2im+GMmWDAghEPPSxmr3qVVK+Hq4wtfdFX7urvDzcIWvuxp+Hqayt5sLvNxc4aVxMT3WuMBdrYKpxkeByvetVGtAUXkFCsv1KNbqkVlUjqt5ZbiaX4a0/DKk5JahrMJQbQw3UikViG3rg/7RARgQ7Y/+0QEI8nK8qn8iImeTU6zFYYtm3jNphVaLJ9VG7aJEuJ872vi6wd9DDS+NCzw1LvByc4HGxbzQUuWfUqMwrTyr1Rug0xuhMxih1RtNjyvLFaZ/Lbfp9EbojUYcnH9zs/wO6iJbMqDTG9F5wSY5nrpeQrw16B3ph16Rfuh9/cfTzuYBICKihivW6nEsOQ+HE3NxKCkXx5LzraaEl9OlN26TZTpm2f666QxGuLkqodUbIWdTmEIBRAV4oEuYN7qEeqN7Wx/0jvS3+2F/RETUOF4aF4zoFIwRnYIBmL6cxl8rxNlrhVKz8bmMonqNWrA1nd4Id3XL912QvQOhEAJ6o7herWKqWinR6lFQVoH80us/ZRUoKNWhoKwCeaUVKNbqUVyuR5FWj2JtBYrL9SirMEAImH5gekkeahepKcHHzRX+nq4I9/NAWz83RPi7I8LfA+2DPeGh5jd+IiKyVlhegbTrzcpp+eUoKjf/zSnS6qHTG6FQKFD5PV6hABQwNS1oXFRQuyhNPyrl9W2mH/N2lbS9cluvCD9ZagZkTwaIiIhIXsq6DyEiIqLWjMkAERGRk2MyQERE5OSYDBARETk5JgNEREROjskAERGRk2MyQERE5OSYDBARETk5JgNEREROjskAERGRk2MyQERE5OSYDBARETk5JgNEREROjskAERGRk3Opz0Hr1q1DdnZ2c8dCREREzSAoKAhTpkypcX+9koHs7Gxcu3bNZkERERGR/ahXMhAUFNTccdi9iooKZGdnIygoCK6urnKHQy2E77vz4XvunFr7+17X33GFEEK0UCwO7dq1a/j0008xZ84ctGnTRu5wqIXwfXc+fM+dk7O/7+xASERE5OSYDNSTl5cXRo0aBS8vL7lDoRbE99358D13Ts7+vrOZgIiIyMmxZoCIiMjJMRkgIiJyckwGiIiInByTASIiIifHZICIiMjJMRmoweXLlzFz5kxERERAo9EgMjISs2bNQmJiYqOut3PnTigUilp/pk2bZuNXQZbi4uJw++23Izg4GO7u7ujatSsWLlyIkpISu7om2ZYt36NXXnmlzs/xxx9/3AyvguojPT0d3377LebOnYthw4bBw8MDCoUC/fv3b/K1W/1nXVAV+/btE15eXgKA8Pf3F/369RN+fn4CgPD29hYHDx5s8DXj4uIEAKHRaMSwYcOq/Vm0aJHtXwwJIYT44IMPhEKhEABERESE6NOnj9BoNAKA6Natm8jJybGLa5Jt2fo9WrRokQAgQkJCavwc//zzz830aqguS5YsEQCq/PTr169J13WGzzqTgRuUlJSINm3aCABi5syZoqysTAghRFlZmXj44Yel/wylpaUNum5lMhAVFdUMUVNtjhw5IpRKpVAoFOKTTz4RRqNRCCHE1atXRb9+/QQAMWXKFNmvSbbVHO9RZTIwffr0ZoiYmuqLL74QN998s3jxxRfF2rVrxRtvvNHkZMBZPutMBm5QmVl27NhRaLVaq31arVZ06NBBABAffPBBg67LZEA+d955pwAgHnrooSr7zp8/L5RKpQAgTpw4Ies1ybaa4z1iMuBYli9f3uRkwFk+6+wzcIM1a9YAAGbMmAG1Wm21T61W4+GHHwYArF69usVjo4YrLi7G5s2bAQBz5sypsr9Tp04YO3YsAPN7L8c1ybb4HpEtONP/IyYDFgwGA44cOQIAGDFiRLXHVG4/fPgwDAZDg5+jsLAQjz76KG6++WbcdtttePrpp7F169bGB021OnbsGLRaLTQaDQYOHFjtMZXv6YEDB2S7JtlWc79HJ06cwP3334+xY8fizjvvxMKFC3HmzJkmxUz2x5k+6y5yB2BPkpKSoNPpAAAdO3as9pgOHToAALRaLa5cuYL27ds36Dny8vLw6aefWm1bunQpxo0bh5UrV9a55jQ1zPnz5wEA7dq1q3GN8sr39Ny5c7Jdk2yrud+j48eP4/jx41L5119/xeLFizF37ly8++67UKlUDQ+a7I4zfdZZM2AhNzdXehwQEFDtMZbb8/Ly6n1td3d3PPTQQ9iyZQtSUlKg1WqRlJSEd999F56enti+fTvuuOOORtU2UM0q39Oa3k/LffV9P5vjmmRbzfUehYWF4fnnn8eBAweQlZWF8vJynDx5Eo899hiEEPjvf/+L+fPnNy14shvO9FlnzYCF8vJy6fGN/QUqaTQa6XFZWVm9rz1o0CAMGjTIaltUVBTmzZuHoUOHYsSIEdi/fz9WrlyJBx54oIGRU00q39Oa3k/A/J7W9/1sjmuSbTXXe/TYY49V2dazZ0989NFHiImJwQsvvID33nsPjz/+OKKjoxsWNNkdZ/qst5qagccee6zOyUCq+xk9erR0DTc3N+lxZXPBjbRarfTY3d3dJrEPGTIE99xzDwBg3bp1NrkmmVS+pzW9n4D5Pa3v+9kc1yTbkuM9mjdvHtq2bQu9Xo/ffvvNJtckeTnTZ73V1Az4+voiNDS0wedZVv/4+/tLj3Nzc9G2bdsqx1s2JVge31RDhw7FqlWrpDYqso3K98jyfbtR5b76vp/NcU2yLTneI5VKhUGDBuGnn37i57iVcKbPeqtJBt566y289dZbTbpGdHQ01Go1dDodLl68WG0ycOnSJQCmqqGoqKgmPZ+lymoovV5vs2sS0LlzZwBAcnIyKioqqu0EVPmeVh4rxzXJtuR6j/g5bl2c6bPeapoJbMHFxQX9+vUDAOzevbvaYyq3DxgwwKY9hk+fPg0AiIiIsNk1Cejbty/UajW0Wi0OHTpU7TGV7+mQIUNkuybZllzvET/HrYszfdaZDNygsu3+q6++QkVFhdU+nU6H5cuXAwDuvfdemz1nWloavv32WwDALbfcYrPrEuDl5YUJEyYAQJUhnQBw4cIF7NixA4D5vZfjmmRbcrxHGzZskOYa4Oe4dXCqz7rcUyDam+LiYhEWFlbr2gRt27YVJSUlVc6dN2+eiIqKElOnTq2y79577xVbtmwRFRUVVtsPHjwounXrJl23oKCgeV6YEzt06JBQKBRV5hZPS0uT5hafPHlylfOGDRsmoqKixJIlS2x2TWo5tn7fT58+LebMmSOOHz9utd1gMIjvv/9e+Pj4CABi0qRJzfaaqGHqOx0xP+tcm6Bae/bsEZ6enlarFvr7+wsAwsvLS+zfv7/a86ZPny4AiFGjRlXZ5+vrKwAId3d3ERsbKwYNGiQiIyOlVbUiIiLEsWPHmveFObElS5ZIq45FRkZarTrWpUsXkZWVVeWcqKgoAaDG1SQbc01qWbZ8348dOyZ9XgMCAkSfPn3EgAEDpHsDADFixAiRl5fXMi+OqkhOThaBgYHST+Xqsy4uLlbb33rrLavz+Fnn2gTVGjZsGE6cOIHp06fD3d0dJ0+ehLu7O2bMmIETJ05g8ODBDb7mm2++ifvuuw/R0dFIS0vD0aNHUVRUhKFDh+LNN9/EqVOn0Lt3b9u/GAIAPPPMM9i6dSsmTpyIkpISxMfHIyoqCvPnz8eRI0caNfNjc1yTbMuW71F0dDRef/11TJo0CX5+frh48SKOHz8OtVqNiRMn4ptvvkFcXBz8/Pya7wVRrQwGA3JycqSf4uJiAKYOnZbbS0tLG3RdZ/isK4QQQu4giIiISD6sGSAiInJyTAaIiIicHJMBIiIiJ8dkgIiIyMkxGSAiInJyTAaIiIicHJMBIiIiJ8dkgIiIyMkxGSAiInJyTAaIiIicHJMBIiIiJ8dkgIiIyMkxGSAiInJy/w/dcWd2/vTZPgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "az.plot_posterior(idata, var_names=[\"mu_alpha\"])" + ] + }, + { + "cell_type": "markdown", + "id": "wwL7l3YzkoXq", + "metadata": { + "id": "wwL7l3YzkoXq" + }, + "source": [ + "# Plotting\n", + "Extrace the individual parameters estimates." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "yUPOD7P_PAqk", + "metadata": { + "id": "yUPOD7P_PAqk" + }, + "outputs": [], + "source": [ + "alpha_samples = az.summary(idata, var_names=[\"alpha\"])[\"mean\"].values\n", + "beta_samples = az.summary(idata, var_names=[\"beta\"])[\"mean\"].values" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "1j8c193ZBJJO", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 424 + }, + "id": "1j8c193ZBJJO", + "outputId": "7b71f973-102f-4705-a75d-ce5f0b45c9c3" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv4AAAI1CAYAAACuSv7OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5xcZfX/P3d625ZOOiWNkgaEktBLQKRHKVJEKSp8JfhFRCQKBvFnAfErX+k9CkhRpCsQvvSSCkIghRRaQkmybfrM8/tj+Tx77p2ZLdnd1PN+sWR35s69z73TPs95PuccxxhjoCiKoiiKoijKVo1vUw9AURRFURRFUZSeR4W/oiiKoiiKomwDqPBXFEVRFEVRlG0AFf6KoiiKoiiKsg2gwl9RFEVRFEVRtgFU+CuKoiiKoijKNoAKf0VRFEVRFEXZBlDhryiKoiiKoijbACr8FUVRFEVRFGUbQIW/opThiiuugOM4OPDAAzf1ULqNAw88EI7j4IorrtjUQ+k27rzzTjiOg+HDh2/qoWyzvPjiizjqqKPQt29f+P1+OI6D4447rluPsTW+drc0hg8fDsdxcOedd27qoWz1fPvb34bjOPj2t7+9UY+7du1a/PCHP8SOO+6IcDgMx3HgOA7Wr1+/UcexKdiWPmMCm3oASvdTLBbxyCOP4NFHH8Vrr72GNWvWoKGhAYlEAoMGDcKECRNwxBFH4Oijj0Z1dfWmHq6ilLBixQorMLbWD+LrrrsO69evx3HHHYfx48dv6uFsEK+99hoOPvhg5PN5OI6D3r17w+/3o66urkOPf/755/H8889j+PDhG13kKEp3sTW8lwuFAg455BAsWLAAAJBIJOz72OfbcmPE//jHP7BgwQKMHz++2wMSWyoq/LcyXn/9dZx55pl4//337W1+vx81NTVobm7GO++8g3feeQezZs1CdXU1rrjiClx00UWbcMSKUsqKFStw5ZVXAmhb+NfU1GDUqFEYNGjQRhpZ93Hddddh5cqVGD58+BYrFq677jrk83lMnjwZ//znP9GrV69OPf7555/HlVdeiQMOOECFv7LF0t3v5e222w6jRo3Cdttt1/XBdZB///vfWLBgAYLBIJ577jlMmTJlox27J/nHP/6Bu+66C2eeeWabwn/o0KEYNWoU+vTps/EGt4lQ4b8V8Y9//AMnnXQSstksevfujenTp+P444/HzjvvDMdxAACfffYZXnzxRdxzzz149NFHcf/996vwV7ZYjj/+eBx//PGbehjbLG+//TYA4OSTT+606FcUpTy//vWv8etf/3qjHpPv5bFjx241or8z3H333Zt6CBsNFf5bCe+99x5OP/10ZLNZjB07Fk8++SQGDhxYsl2/fv1w4okn4sQTT8Q777yDW2+9dROMVlGUrYFkMgmgxRagKMqWi76XtyGMslVw4oknGgAmHo+bZcuWdWlfv/jFLwwAc8ABBxhjjHnwwQfNYYcdZvr27WscxzG/+MUvXNvPmzfPnH766Wbo0KEmHA6b2tpas88++5g//OEPJp1Od+gY5Zg9e7YBYMq9TL2Pv//++83+++9v6urqTCwWMxMnTjR/+tOfTD6f35BL0KHxrV+/3lx11VVm0qRJpra21oRCITN48GBz8sknm1dffbVk+2uuucYAMP369TO5XK7ifovFohk6dKgBYGbOnFlyfz6fN3fccYc5/PDDTb9+/UwwGDR9+vQxhx9+uLn33ntNsVgsu98DDjjAACh5/jrD0qVLzQUXXGBGjx5t4vG4iUajZvTo0ebCCy80K1eurPi4RYsWmXPOOceMGDHCRKNRE4lEzODBg81ee+1lfvrTn5pFixbZbYcNG2af93I/Z555pt32jjvuMADMsGHDSo7pfQ4feeQRc/DBB5tevXqZqqoqs88++5i///3vrsfcfffdZt999zW1tbUmHo+b/fbbzzzzzDMVz+u9994zv/3tb80hhxxidthhBxOJRExVVZUZP368+dnPfmY+//zziuNq66ccs2fPNieffLIZMmSICYfDprq62uy5557mN7/5jWlqaqo4xo7Q2fdwe+Nfvnx5m8dbvnx5u/u444477PbytVssFs3NN99sJk2aZKqqqkwikTB77723ueeee9o9zw19/baF9zX4r3/9yxxxxBGmT58+JhKJmJ133tnMnDnTpFKpivt47bXXzKmnnmqGDx9uwuGwicViZujQoWb//fc3v/zlL82HH35otz3ppJMMAHPkkUe2Oa4lS5YYx3EMADN79uyS+7/44gtz5ZVXmkmTJpm6ujoTDofNsGHDzOGHH25uuOEGs379etf2fF/ecccdJpPJmN/+9rdm7NixJhaLmerqanPQQQeZJ598ss0x5fN5c9ttt5mDDjrI9O7d24RCITNw4EAzbdq0smMk8vnP5/Pm2muvNePHjzfxeNz07dvXHHvssWbBggV2++bmZjNz5kyzyy67mFgsZnr16mW++c1vmqVLl7Y7vs58tnbmvSxf88uXLzdLly4155xzjhk+fLgJhUKuz7Azzzyz5LPOy6pVq8yPf/xjM27cOFNdXW0ikYjZYYcdzDHHHGPuuuuuNl9vEh6r0g+/L9r6PpZwG+/z6X38kiVLzFlnnWUGDx5sQqGQGTRokDn77LPNRx991Ob+M5mMueWWW8zUqVNNv379TCgUMgMGDDB77723ufLKK80HH3xQcrxKP3KMHfl+fOihh8xRRx1lXxv9+vUzRx11lHn44YcrPsb7XD7wwAPmgAMOMHV1dSYajZpx48aZ6667zhQKhTbPuztR4b8V8Mknn9gP+O9973td3p8UTD/60Y8MAOM4jqmrqzN+v9/1xvjDH/5gjw3A1NTUmGAwaP8eO3as+eSTT9o8RiU6KvwvueQS1xh9Pp993NSpUytOPjp6Dcrx2muvmf79+9vj+P1+U1VVZf92HMdcffXVrsesXr3a+P1+A8A89thjFY/9/PPP2314BdTq1avNXnvt5frwqqmpcf19zDHHmEwmU7Lfrgr/m2++2fXchsNhE41G7d/V1dXmX//6V8nj/vWvf5lwOGy3CwaDpra2tuyXizHG7LHHHqaurs7e179/f9fPD3/4Q7ttR4X/z3/+cwPA+Hy+kut1ww03mGKxaD+gA4GA67n0+/0Vny85SXEcx9TW1rreD4MGDTLvvfee6zG/+93vTP/+/e3rtLq6uuQcJblczpx99tmuMScSCftaAmBGjRplVqxY0Ylns5UNeQ9znJXOYdWqVW0ec9WqVaZ///4mHo/b14T3Gtx33312e752L7/8cnPsscfa56m6utp1XX7+859XPOaGvn7bQ74Gr7/+ensta2trTSAQsPufMGGCWbt2bcnj77zzTtf156Su0iSIn4s+n6/NycpPfvITA8CMHDmy5L6nn37a9R4LBAIl70nvpJiv9T/96U/2MygYDJpEIuF6D9x2221lx7N+/Xpz4IEHut5X3vfLxRdfXPaxfP4vu+wyc+ihhxoAJhQK2dcP3xNvvvmm+eKLL8yECRMMABOJRFzPcb9+/Spesw35bO3Me1kK/7/85S/2usViMROPxzsl/O+++24TiUTs/kKhUMlY58+fX/axXn74wx+2+V783e9+Z4zpXuH/3HPP2fOvqqpyvU8GDhxYUfx/8MEHZtdddy35zJWfhRdeeKExxpiXX37Z9O/f316nSCRS8ty8/PLLdt9tfT9mMhk74eZ7z6s1TjnlFJPNZkseK5/L888/3z7e+34744wz2ryu3YkK/62Av/zlL/bF88QTT3R5fxRMfGNecskl5rPPPjPGGJNOp63AePTRR+1xjz32WDvTzmQy5u6777biad999y2JvHeX8OeH3QUXXGDHWF9fb2bOnGm/UC666KINvgblxrd8+XL7pp02bZqZO3eujeCvWbPGzJgxw36Qeb88jzzySAPAnHTSSRWP/d3vftcAMPvvv7/r9kwmY/bcc08DwEycONE8/vjjprm52RhjTFNTk7nrrrtMv379DAAzffr0kv12Rfj//e9/t18Kl156qVmxYoUpFoumWCya9957z3zjG9+wX3zeL9addtrJADCHH364efvtt+3tqVTKvP322+aKK64wt99+u+sxHf2S6Yjwr6mpMX6/31x11VU2ivnRRx+ZqVOn2i+en//85yYSiZgbb7zRXtPFixebPfbYwwAwQ4cOLRuROemkk8yf/vQns3TpUisIMpmMeeaZZ8ykSZPsc1UOGUFtiwsvvNAALROgP//5z+bLL780xhiTzWbN7NmzrciZOHFip6NGXXkPd+YcKtGRzwFjWl+7dXV1pqamxtx5550mmUwaY4z58MMPzdFHH22/UBcvXlzy+K68ftuDr8FYLGaCwaD5xje+YSc+qVTK3HjjjXbie/zxx7se29zcbK/xaaed5opINzU1mTlz5pgf//jH5vHHH3c9bsyYMW1OdLLZrA1M/P73v3fdN2/ePCuGdtllF/PEE09YwdLc3GzefPNN89///d8lK118ruvq6sygQYPMP/7xD/u49957z+y99972e8O7WmBM66p0KBQy//M//2PfZ59++qn5zne+Y1+HN9xwQ8lj+fzX1taa3r17mwceeMBks1lTLBbNG2+8YXbYYQf7Oj3++OPN8OHDzdNPP20KhYIpFArmmWeeMX379jUAzLe+9a2S/Xf1s7Uj7wMp/BOJhNlrr73Mm2++ae9///337e9tCf/HH3/cfrdNnjzZvPjii/Z9X19fb1544QVzzjnnmHfeeafiWMrR3nuxO4V/XV2dOeaYY+xKbyaTMffff799L5x++ukl+62vrzcjRoywj7/55pvt6yybzZr333/fXHPNNebaa691Pa4jqyfGtP39+N///d92ojFjxgyzbt06Y4wxa9euNZdddpk9r5/85Cclj+Xx6+rqTCgUMtdee62pr683xrSsusmgzrPPPtvmGLsLFf5bAT/72c/sC6dcdL2zyOXLH/3oRxW323nnnQ0AM2XKlLKi4J///KfdzwMPPFD2GF0V/pU+JIwx5vLLLzdASzTr448/rniccrQ1vmnTprV5XGOMufbaaw0AM27cONft9957r40+lPtyTKVSdjJz6623uu67/vrr7Zd1Q0ND2ePOmTPHOI5jQqGQWbNmjeu+DRX+mUzGDBo0yACoGM0zxphjjjnGFXExpmUitCGvze4U/gDMVVddVXJ/fX29K2I4a9askm2WLl1q73/xxRc7PH5jjGlsbLTiq9xjOyIW3n77beM4jonFYuatt94qu01DQ4MZPHhw2Ylme3TlPdzRc2iLzgp/oCVa6CWdTpuBAweWfa678vrtCHwN8jzKTb5uvfVWu80bb7xhb3/99dcN0GLRbMv+5+W6664zAMzgwYPLPm8PPvigFdleu9mUKVMMADNixIiyn0GV4HMdDodd1jzy2Wef2QmF973E8wRgbrrpprL758SgT58+JTYV+fyXey89++yz9v5oNGqWLFlSss1tt91m7/dGZrv62dpZ4T9s2DDT2NhYcdtKYjWXy5ntt9/evmfLrexuKBtT+B900EFl3yf/8z//Y58j7/uB3+fhcNjMmzevw+fVVeH/0Ucf2UDeT3/607KPpTMiGAyWfM9JK1Wl18fuu+9uAJizzz67o6fVJbbc4qyK5csvv7S/V6qssXTpUgwYMKDszyuvvFL2MT6fDz/5yU/K3vfWW2/h3XffBQDMmDEDfr+/ZJujjz4akyZNAgDce++9nTqnzvDzn/+87O0//vGPEY1Gkc/n8dBDD3XLsdauXYuHH34YAHDppZdW3O6MM84AACxcuBBr1qyxtx977LGorq5GOp3Ggw8+WPK4f/7zn6ivr0ckEsG0adNc9zER+wc/+AGqqqrKHnf33XfHLrvsgmw2i9mzZ3fu5Crw5JNP4uOPP0b//v1x1llnVdyO5/z000/b26qqqmwN6E8//bRbxtNZIpEIpk+fXnJ7dXU19tlnHwAtpdxOPfXUkm123HFH7LTTTgBaXvOdIZFI4IADDgAAvPTSS50cdQu33XYbjDE46qijsNtuu5Xdpqqqypapk9e+PTan93BHmTx5Mg466KCS28PhMKZOnQqg9Hnqyuu3s1x++eVla56fddZZGDx4MADgvvvus7fX1tYCALLZrOtzvD3OPPNMxGIxfPTRR3jiiSdK7r/lllsAACeeeKKrPOGSJUvsa/Hqq69GTU1Nh49Jpk2bhtGjR5fc3rdvX/t+8j4HPOfBgwfj7LPPLrvfmTNnAgC++OIL/Pvf/y67zZQpU8pWnDnggAMQDoft+PielfD1kUqlsGTJEtd9G/uz9YILLtigJNrZs2dj+fLlAIA//OEPCIVCXRrHpuKyyy4r+z459thjAZR/jm6//XYAwNlnn40JEyb0/CC/4qGHHkI+n0ckEqn4nX/55ZcjHA4jl8uV/V4HgCFDhtjPGC/HHHMMgM5/x2woWtVnGyGfz7sEqCSbzZa9faeddkK/fv3K3jdnzhwAQCAQsOKmHIcddhjeeOMNu313M2TIkLIf8kCLsNt9993x0ksvddvxX331VRSLRQDAwQcf3KHHrFy5Ev379wcARKNRTJs2DbfffjvuuecefPe733Vte8899wBo+QCUX8qNjY32Q2HGjBn45S9/WfF4a9eutcftDigU1q1b12Zdab6O5HGj0SgOOeQQ/Pvf/8YRRxyB733vezjqqKMwYcKEjfaltfPOOyMej5e9j8/LHnvsYUvelttm6dKlWLduXdn7H3vsMdxzzz148803sWbNGlsdQ/LRRx9t0Nh57Z988kkMGDCg4nZNTU0AOvecby7v4c6w1157VbyPVcz4+iddef12hkAggP3226/sfT6fDwceeCBmzZrluo477rgjRo8ejffeew977bUXvv/972Pq1KnYbbfdyk7ESG1tLU466STccccduOWWW3D00Ufb+1auXGmF87nnnut6HIM8fr8fRx555Aad54Y8Bzzngw46qGIzqDFjxmDQoEH4+OOPMWfOHNc5EU5Cvfj9fvTp0wcff/wx9txzz7Lb8L0OwPVe3hSfrZMnT96gx/H5GzBgAPbYY48ujWFTUuk1JCsRytfQypUr8cknnwBA2ddFT8LX7p577lmx4WldXR322GMPvPzyyxU/J/fcc8+Kr/1K75ueQoX/VkDv3r3t72vXri375TZ69GgYY+zfK1aswPbbb9/mfiuJfqClHwAA9OnTx0ZaysEoF7fvbtpr3MT7u+v4/PABUHEi5cUrBM844wzcfvvteOGFF7By5UoMGzYMAPD555/jqaeesttIVq9ebSccHf1wKCdANwSeczab7dA5p1Ip19+33norjjnmGCxcuBAzZ87EzJkzEQqFsOeee+LYY4/Fd7/73R6tAV8pgge0iLWObpPL5Vy3F4tFnHbaaa5IeCAQQF1dnZ3U1NfXI51Oo7m5eYPGzmvf1NRkxX1bdOY531zew51hQ56nrr5+O0p717HcZ5Hf78d9992H448/HsuXL8ell16KSy+9FLFYDPvuuy9OOOEEG9338r3vfQ933HEHnnjiCXz88cd2/7feeiuKxSJGjRqFAw880PWY1atX27FWmgy3x4Y8Bzzn9j6vBw8ejI8//rjia60r72Xe7x3fpvhsbeu7tS34/PE7Y0tlQ54jsrHPvTOvXbm9lw153/QUavXZCth5553t72y33R20FXEilaKkG7pdZ+mp/VaiUCgAaIlkm5YcmXZ/vF+++++/P4YNGwZjDGbNmmVvv++++5DP59G/f38cfvjhZY8LAK+99lqHjttWx9sNOecjjjiiw+csGTp0KObNm4ennnoKP/zhD7H77rujWCzi5ZdfxiWXXIKddtoJzz33XLeMdWNy22234d5774Xf78fPf/5zLFmyBJlMBmvXrsXq1auxevVqa9fyXpOOwmv///7f/+vQdX/++ec7fYxN/R7uabr6+u0oG3p9xo0bh/feew8PPfQQzj33XOy6665IpVJ45pln8IMf/ACjR4+2zZUkkyZNwsSJE1EoFHDbbbfZc73jjjsAAOecc063j7WrbI6vtU3x2dqR79a22FLfi92Bvna7jgr/rYCDDjrIvtj++c9/bpRjMmLx+eefI5PJVNyOFoe+ffu6bucMN51OV3xsfX19u+Noz0Lx8ccfu8bbVWi3SKVSWLp06Qbtw3EcnHbaaQBarT3y91NOOcUV+QDcy9TlREBPwnPuynF9Ph+mTp2KP/7xj5gzZw7Wrl2Lv/zlLxg6dCjWrVuHU089taLlbHOFvuWzzz4bV155JXbaaaeSpVwZqdoQuuPaV6Kr7+EthZ68hpL2rmNbn0WhUAgnnHACbrrpJrz99tv4/PPPceONN6JXr1748MMPceaZZ5bd5/e+9z0ALZPQYrFoo//hcLjsY7ga/Pnnn2/wKtSGwHP+8MMP29xuU7zWNuVna2fh80ef/8ZEfidV+t7uyHf2hiBdDCtWrOiRY1Ric37tbigq/LcCtttuO5xwwgkAWsTjxvhQoL8wn8/j//7v/ypu98wzzwBAie+yrq4OQNtvptdff73dcXz44YdYtmxZ2fsaGxsxd+5c13i7yr777msnWTJJr7PQyvP+++/jzTfftP/K+yR1dXV2Zacrx90Q6Ef9+OOPNzhJ1UtVVRVOPfVUG6lcs2aN60tXCugNjcD2NHztVko0a2pqavM1zHNs6/x47R9//PEOWX06Q1ffw91BR65BV+mJ12858vl8xf0bY/DCCy8A6NhnUe/evXHeeefhN7/5DQBg/vz5ZZN/Tz31VFRXV2PVqlV4+umnbVLvCSec4ErqJfvuuy+Alij3k08+2bET6wZ4zrNnz7a2Gi/vvfeenRz1xGutEt3x2boxXsdA6/O3Zs2ajZ5zw+9soPL3dke+szeEoUOHWivNo48+2qnHdvW54Wt3zpw5FSc269evd+UCbO6o8N9KuOqqqxCPx9Hc3IzjjjvO5UXvCcaOHWs/LK+66irXcil54okn7AfBKaec4rpv3LhxAFr8t6+99lrJYz/77DP7JdYerAbh5ZprrkEqlUIgELATo67Sr18/W3ngd7/7HRYvXtzm9pU8oyNHjrQJTnfffbeN9u+6664VhSQT9Z599tl2v6C6M0no6KOPthGXCy+8sF1/qzx2e1H8aDRqf5fL3zKJav369Z0Z7kaDydcLFy4se//MmTPR2NhY8fE8x7bO75xzzoHjOFi/fj1+/OMftzmeXC7XqclBV9/D3UFHrkFX6crrt7P86le/Kits77rrLqxatQoAcNJJJ9nb21ohACq/P0g8Hsfpp58OoOU5ZIUfb1Iv2WmnnbD//vsDaKms0tDQ0Obxu4uTTz4ZQMvkixV0vLA6W58+fXDooYdulHGRrn62bozXMdCyur/DDjsAAC666KKNuko6cuRI+3osVyWvWCzi17/+dY8d/zvf+Q6AlhyW+fPnd/hxXX1uTjzxRAQCAaTTaTsR93L11Vcjk8kgGAzixBNP3KDjbExU+G8ljB49GrNmzUIoFMJbb72FsWPH4qqrrsI777zjmuk2NDTgqaeewn/91391+Zh8E7z44ouYNm2aXWnI5XL4y1/+YoXCvvvua8sNkn333dcm6Xz729/GnDlzYIxBsVjE888/jwMPPLBiZEhSU1ODu+66CxdeeCG++OILAC2R/quvvtpOCM4///x2E3M6wzXXXIPevXujoaEBU6ZMwe233+6KBHzxxRd4+OGHccIJJ7QplviFfd9991mvP28rx/e+9z07WTj99NNx+eWXuyIvyWQSzz//PC644ALsuOOOXTpHSSQSwZ///Gc4joN58+Zh8uTJePrpp11fOsuXL8dNN92ESZMm4c9//rO9/ZVXXsHYsWPxhz/8AYsWLbLPqTEGr7zyCr7//e8DaEmMkuUqR44caRNkb7311s0y6n/EEUcAaCmdePPNN9vrsXr1alx00UX47W9/60q897LrrrsCAB588MGKFYPGjx9vS5HeeOON+MY3voEFCxbY61EoFGzS9I477tjpHJ+uvIe7A16Dd955p2JZ4a7SlddvZ4jFYnjppZdw6qmn2mX/dDqNW265xb7Ojz32WFdlmvvuuw+TJ0/GTTfdhA8++MDeXigU8PTTT9vygfvss48t/emFdp9XXnkFhUKhbFKv5I9//CMikQiWLFmCyZMn46mnnrJJhclkEq+//jq+973v2ZWe7mDSpElWEP3Xf/0Xrr/+ejsBW716Nc455xw88MADAFomzJFIpNuO3RG6+tnakfdyd+D3+3H99dfDcRy89NJLOOSQQ/DSSy/Zz9WGhgY8//zzOO2002yp3u5Citqrr74af/vb3+x76P3338fxxx9fMQjSHVx88cUYMWIEMpkMDjnkENxyyy124prL5bB48WL88pe/xO9//3vX4/jcvPjii3jvvfc6fdxBgwbhwgsvBNCSa/WLX/zCTiLWr1+PGTNm4He/+x0A4Ec/+lGblcM2Gza8BYCyOfLqq6+aUaNG2YYRQEtr9N69e5e0ga+qqjIzZ84saZbS0aY6xrQ0qpIt12tra00oFLJ/77bbbhWbZz311FMmGAzabWOxmG0AM2LECNvsqtzLVI7xkksuMUBL185evXq52ncfeuihJefXEdq7BvPmzTPDhw+3x3Ecx9TV1bna1/P4lfjiiy9c18rn81VsVU4+//xzc/DBB7uOUV1dbWpra13PQyAQKHlsVzr3GmPMrFmzTCwWcx2jd+/etispf2QDJdm0BV81OOndu7erRXt1dbV54YUXSo7HDsZ8bQwdOtQMGzbM/Pd//7fdpiMNvNp6HXekuUul67Zu3TozevRo1/Mnn4fzzjuvzf3/3//9n93W7/eb7bbbzgwbNqzkXPL5vJk+fbrrOkYikZLrCMC89NJLFc+jEl15D3e1gVcul3N9XtXV1dlrIBuGdeS1297zvSGv344gX4PXX3+9vZZ1dXWuz7dx48aZL774ouxj+RMOh03v3r2Nz+eztw0cOLBswywJm3IBpZ16y/H000/bRoF8X9bV1bnG4m0G15Hnuq3X+/r1612NuAKBgKmrq3O99i6++OKy++3I89+R8fE43uZSxnTts7Uj72XZwGv58uUVx2hM+59Ld911l+t1Gw6HbTd5/syfP7/NY3jpyOflhx9+aBvl8XVDXVFVVWWef/75ite4qw3AjDFm2bJltukgP3Pr6upc3/neBnxr1661XZuBlgZxfG5effVVu11br7FMJmO++c1vlhxXvk9POeWUksZwxnTsO6at77GeQCP+Wxl777033n33XTz00EP49re/jdGjR6O6uhr19fXw+XwYM2YMvvWtb+Guu+7Cp59+issvv7xL0ZWLLroIc+bMwWmnnYYhQ4YgmUwiGo1i7733xrXXXos33njDVZtXMnXqVLz44ov4+te/jrq6OhQKBQwZMgSXXnop5s6d22bdcslvfvMbGzkrFosIhUIYP348/vjHP+Kpp57qkejRhAkT8O677+L666/HoYceij59+qCxsRHFYhEjRozAqaeeivvuu882+ypH79698bWvfc3+fcghh7S7MtGnTx8888wzeOSRRzBt2jQMGTIEmUwGqVQKgwYNwpFHHonrr7++RxKgvvWtb2Hp0qW4/PLLscceeyCRSGD9+vWIRCIYP348LrjgAjzzzDOupm977rkn/va3v+H73/8+dt99d/Tp08c2KBs/fjwuueQSLFq0qGz98//93//FFVdcYSM2q1atwsqVK+3KzqamtrYWr7zyCqZPn47hw4fD7/cjEAjgwAMPxL333osbb7yxzcfvv//+ePzxx3HooYeipqYGa9aswcqVK0tqhPv9fvzhD3/AvHnzcO6552LUqFHw+/2or69HXV0dJk+ejCuuuAILFizYoPrgXXkPd5VAIIBnn30WZ599NoYPH47m5mZ7Dbo7p2FDXr+d5fzzz8fTTz+NI444Aj6fDz6fD6NHj8Yvf/lLvPrqqyUrQMcccwzuvvtunHXWWRg3bhxqampQX1+PqqoqTJo0CTNnzsQ777xTtmGW5Bvf+AYAVEzq9XL44YdjyZIl+NnPfoYJEyYgGo0ilUph+PDhmDp1Km666aYO9ynpKDU1NXj22Wdx22234cADD0RVVRWampowYMAAnHjiiZg9e7aNnG4KuvLZ2tH3cndxxhln4L333sP06dOx8847IxAIIJvNYscdd8Rxxx2He+65B2PGjOn24w4ePBivv/46zj77bPtdlUgkcMYZZ2DevHlt9gPpDnbYYQfMnz8ff/7zn3HggQeirq4OTU1N6N+/P/bZZx/MnDkTF110kesxdXV1eOGFF3DyySdj0KBBqK+vt89NW8VFJKFQCPfffz8eeughHHnkkejduzcaGxvRu3dvHHnkkXj44Yfx17/+FcFgsCdOu9txjNkM19AVpR2uuOIKXHnllTjggAM2qIShoihKd3DnnXfirLPOwrBhwzZ6xRFy9NFH47HHHsMpp5yCv/71r5tkDIqibBloxF9RFEVRtlA++OADm9TLXAJFUZRKqPBXFEVRlC2QhoYGfP/730exWMRee+1V1jKnKIoiCbS/iaIoiqIomwsXX3wxHnjgAaxevRrZbBaBQADXXXfdph6WoihbABrxVxRFUZQtiC+++AKrVq1CKBTCPvvsg6eeegp77733ph6WoihbAJrcqyiKoiiKoijbABrx34z41re+hd133x3f+ta3NvVQFEVRFEVRlK0M9fhvRrz33nuYN2/eph6GoiiKoiiKshWiEX9FURRFURRF2QZQ4a8oiqIoiqIo2wAq/BVFURRFURRlG0CFv6IoiqIoiqJsA6jwVxRFURRFUZRtABX+iqIoiqIoirINoMJfURRFURRFUbYBVPgriqIoiqIoyjaACn9FURRFURRF2QZQ4a8oiqIoiqIo2wAq/BVFURRFURRlG0CFv6IoiqIoiqJsA6jwVxRFURRFUZRtgC1e+K9evRqzZs3ChRdeiMmTJyMWi8FxHOyxxx5d3vfs2bPx9a9/HX379kU0GsXo0aMxY8YMNDc3d8PIFUVRFEVRFGXjEdjUA+gq9913Hy666KJu3++f/vQnXHjhhTDGYPDgwRgyZAjeffddXHXVVXjooYfw0ksvoVevXt1+XEVRFEVRFEXpCbb4iH91dTUOPfRQXHrppXjwwQdx9dVXd3mfc+fOxfTp0wEAN910E1atWoV58+bhgw8+wO67745FixbhnHPO6fJxFEVRFEVRFGVjscVH/L/zne/gO9/5jv37zjvv7PI+Z86ciWKxiDPOOAPnnnuuvX3gwIG49957MXr0aDz88MN46623MHbs2C4fT1EURVEUpaMYY1A0QLFYRKFoUPzqp1A0KJqW341Byw8MvvoPxpivHl96+1d32f0boPzjXPe1Ps7IHXTmXDbag4ANHCLMBhzQ53Mwetjm5wzZ4oV/d9PU1ISnnnoKAFyin4wYMQIHH3wwnnnmGTzwwAMq/BVFURRlG8MYg2Q6j+ZUDqlsHulMHulMwf6eyhaQyeaRyhSQzuSRzRWQKxRb/s0XW34KReT5e959e6FQRLGIr0R9EUVjUCi2CP1isUX0K5s38UgA9/3qqE09jBJU+HuYP38+MpkMwuEwJk2aVHab/fbbD8888wxee+21jTw6RVEUZVulNera+i9/LxaLJbfl8/mS2wqFQslj5D6LxaLdvlAouG7z3i9v437z+XxLNNqzH97Pv3O53Fcitoh8Po9CoYBisWhvl/fL/XrHIceey+Vcx+G4vNdHnnfr+QN540fOBFt+ikFkTRB540fBBJA3fuRNAIWv/s0bPwBnQ59KRdlkqPD3sHjxYgDA0KFDEQwGy26z4447AgDef//9dvd300034eabb+7QsRctWtTBUSqKoihbI1I0y7+lkKag5e1Aq6D3bst9yH+9+5I/XrEvxTnQMpngdvw9l8vZ36Voz2azrnF6x82xeyct8hqUE+kbdl2BrAkiUwwjWwwhwx8TRq4YRM4EYLb8tEdFaRcV/h7Wrl0LAG1W7OF969ata3d/n376KebNm9c9g1MURVG2GiqJXHmbjJZTNMu/5X7KISPmXvHNfUiBz+PJSLw3Cs9/5XhktN0bqfeO0Tvx6N5rCmSKIaSKUaSKEaQLkZZ/i2EV9ooCFf4lpNNpAEAoFKq4TTgcBgCkUql297fddtth4sSJHTr2okWLOrRPRVEUZcvEG2X33i6Ft4yOS4sOADiOA5/PZ/8FYP+Wop3bOo6DQCAAYwyCwaA9HrfzTgZ4H3/kOBzHsY/x2muMMa4x8ZjebQCU3CbPr63JTOs2QKYYRnMxhuZCy0+qEEVRBb6iVESFv4dIJAIAyGazFbfJZDIAgGg02u7+zjvvPJx33nkdOvbuu++uqwOKoihbIVLIS7yed95GQW6Mgd/vRzAYtALe7/fD5/NZoe/3++E4DnK5HLLZLIrFor3NcRwrxqUAz+fz1qLj/V1ONIwx8Pl8yOVy9keuUAQCASvuKfZ5vHw+b8cAwPWvtCj5fD77dy6Xs/sonQwAjdkg1qbDWJ+Noj4T/cprv/njwMDnGDiOgd8BfA7g97X8+HyAX/zd8uPA53w1wXMA56sfn+N89W/L336fA5/Padm/zwcHBg5a7mstfWPgwGn51+cT98vxtfyPNxtj7G0+8RzKv1vG5sDvb514tr4uWw7iExNUY1oq3fCxxaKBz/fV6/OrIxdNET7HZ4/F59/n87X8/tUpOT4xppLzaL3d99WFc78OAcfx2c1axtf6t98fcD2W5+NzfHB8X+0Djv1dbtvyu++r/WyeOSAq/D3U1dUBaLX8lIP3cVtFURRFKQcj597odbmkV2MMcrmcFdHBYBA+n8+KeL/fD7/fj0AgYEV2Pp9HJpOxfnqZKOv1+csIPkV8Op125RRwW0b1s9msKxDGCQiAEqEvJxm8T0445ISCKwjycT6fD4FAwB7bcRw0Zww+aw7js+YwvkyFkS9u/Gh+wCkg6Csi4C8i5Csi6DcI+YuIBB2Egw6CfiAc9CEYcBAJ+hAK+hAJ+RENBxDwGYRDfviFSORzyRUZXkPeJyd4vNa8Ln5/y0TH5/OVXRHi9ryenFTJ1RjvpEo+V3xt8Xd5mxwD9y3HI4/N23k8eZ7e/JJyqzvyepT7l8fja02Oxz0Bab2OvA2Aa3zefW/tqPD3MHLkSADAqlWrkMvlyib4Llu2zLWtoiiKokgqRfgZ7ZZCmIKdIquc0Kfo4r4p2rPZrCtSD7SKIoo+indG9fkYaRfiY7mfTCZj7+dKuLQOyQmJPBZFO8U+j0NxFwgEUCwWWyO4aBWKfr8f+XwB65IOPmmIYXVjEPWZ8kU2ugOfU0Q0kEc0kEckUETYX0Q0aBAO5BEJGMTDDqpiAfh9DoLBIILBIEKhqF2B4cqK91rI68Dzk+frtWlJWxSfP14PXjdpyeLf8jUSCoVcORRy9UgKX3lMvq64DymSpcDn+cqxEe+5eqs5eccirwnxTnbkcaSIl2JeXnN5n9yfUh4V/h4mTpyIUCiETCaDN954A5MnTy7Z5sUXXwQA7LPPPht7eIqiKMpmjIzkSyhYGG2X/nhG9yl0AoEAgsGgS+xLS1A2m7VRfibPyhWCYrGIdDptI/ZS7FOYUbhKEU6hToEuk4wdx0EkEkE4HEYwGHSV15RJvHKyw3Ph4+W+eD8f35jxYdVnAaxaF0dTtvvsOz7HoCpcRFU4j0Qoj4g/h3ioiES4iLC/xWrCnD4K4Eikxp6njIBLYVnuOa+U40BB7xWsvE0Kb5lbwdUfrn7IKDzQOrnkGHhsvg44fq9AliKbop6/y0mHpFx51nKVmryrCV6Bz/F7o/Q8diU7m7xPRX3XUOHvIZFIYOrUqXj00Udx8803lwj/JUuW4LnnngMATJs2bVMMUVEURdkMKWfrodihGJd2G4o0isuWiHLIikbuk0KrUCggmUxaUS+jtvThZzIZZDIZawGSuQKO49jiFN5KPhyTd5UiEokgFApZiw+3l1YToEU0e607FKzSYiItIZmcwbLPfVj+pR/rUl2XI5FAEb3jBr0TQK8EEA9kEUQKPkeugvjh8wXtmEOhkJ3QUOzLyRbPyWuT8VpYOFmTglkKWP7tFbJA62RJrtzIVRQZ+ed9QMs5hUIhK+69QpnjkqtGlVaR5LlUSvSuJPKlEJfi3Gu3KReh90byVdz3PNus8J8yZQo++ugjTJ8+HdOnT3fdN2PGDDz22GO45557MHnyZJxzzjlwHAeffvopTjnlFBSLRRx33HEYN27cphm8oiiKsllB8Uyk2Mlms0in0zbCXywWXdFYCn4pdhhFp8jKZDJobm5GPp+3gq81adJY2w+PJasABQIBhEIh+P1+W7mOIpIrB7JWv9/vRzgctqISgOt+np9Myi0X8fX7/cjlci6ferFYxJdNwPtr/Fi1LoB8ccMEngODXnGD7WodDKhx0LcKiAYd1ySpZaIRcVU9CgaDiMVidkLD8+M5yVUJ70SFeKsoyW1kNN/rQ+ekwhhjczKy2axL1MuourzOckXHK6hl5JyCXr62vMLa67H35l1IkV9u9cp7zjzXchH8cl58Ffibli1e+H/44YeYMGGC/ZsVdxYuXIg+ffrY2y+55BJccskl9u+PPvoIK1euxPr160v2ueeee+Laa6/Fj370I5x33nm46qqr0KdPH7z77rvIZDIYNWoUbrnllp47KUVRFGWLQZbOBFotLo7jIJVKIZVKuWwZkUjEijNvhN9rFcrlcmhubkYmk3GJR0aWKfTz+TxSqZTLuy+FYCaTsaK/WCwilUpZzz8nCJyMhMNhl+BnhJ+iUVb1oVj2Rvs5SaDYz2RzWLXWh0WrA/iyecOsPHXRIgb3djCktx+DegUQ/Go3csWC1iVeH4rfSCSCeDxuVzy8IpgTMl5bY4ydjHlFrlfkS9uOV4S35C3kXSs+XnuOt4KS13rD15ScAHhXi+TKjxTYfA7lcaTQ95aPLZeXIsfhzRnwTjy8EX8V+ZsfW7zwLxQK+PLLL0tuz+fzrtuTyWSn9jt9+nTstttuuOaaa/D666/js88+w7BhwzBt2jT89Kc/RSKR6PLYFUVRlC0XGZUnFHzGGDQ1NSGTyVhRxUg6E0VldBiAK1JNocjovfSJBwIB5PN5JJNJ699nGUw5MQiFQigUCkilUtZ2w6RgKfgpIvkjPf/cF48hJwBM6pTJq9ls1greYrGIVDqLpZ85eHd1GE2Zzgk/v2OwXa3BDv0C2L5/EHWJVrsRx8fIOcfDCVc4HEYkEkEsFrMCXtpwpK2pXASdz6HXty+3lSsCMsrO68xcDLmK4O2ZwIlJuci89NzLFR7py+f5eleL5AqM7BshE4WldUc+p7JqlHxdy2i+d0JUzouvbJ44xltDSdlksI7/xIkTMXfu3E09HEVRFKUNZO19AC7R3NjYaG0c+XzeClEZCSbeCYQU9VKc8zEyWs9ynBS3TNz1+XzW/kOxLC1ArAwEtKxABINBhMNhV4Sf4pWTFgAlItLn87lyFjj+TDaPxWsc/OeTAFK5jotAn2MwqNZg1MAgRg4MIxGPuAQzx87kV5ljwIlVPB53lULl9ZMWFilUZYSdx5L7pSCXEwCZGMvr651UyVwH6d2XNi9ZjYYTDu5bVtrxPsaL93nx/u0t9UoqRea9Ew+ZN8CxysmQsuWwxUf8FUVRFGVjI0WnjJIWi0U0Njbaiiz5fB7RaBSRSMQKOymUvIKWkXXp96b4KhQKVsxT+Pt8LeU28/l8yWoDBTsTfSnSmWtACwzLdcpKLM3Nza6KQzwXGRWWEwMm+2ayOaz40o8FH4bQlOn49exXVcTogQHsPCSK2uqorRwkhSrFOydUjuPY3AUZ3ee20oZEe41MiJWrLpzoyHOWia88lqzSwxUH9kTgcwW0llzlao20d8mkXV5Lb+lKWdmpkrBuT+zLEqASbxKwFPryX3ncch59ZctEhb+iKIqidAIZnW9P9NNXzkivFJNyPyzVSdEv7StMkmU0mbls4XDYClb68lOpFNLptH0co/FA60qB4ziIRqOIx+N2osCIcCaTsZYe+uGlJUbahYDWRNdsNotP6x28sSKEdc0du44Bn8GI/g7GDQtiSP+ErR5EQS0tKJzo5HI5K0xpm+KKhYzMSz+79NxTTNMiI6sacRs+P3xuOUGQCdHSJsNt5QpMIBBALBaz45KWGDkBlP54r32nHPK1UUnsy22IXFWQpTPbityXyxdQtnxU+CuKoihKB/Em8lLAFQoFNDc3u2qvJxIJa8Hxin5uJ8Wa/BdoTSJllJ+C2CtQY7GYjfLTN06/PQC7UpDP5xEKhRCNRhGNRu2EglFrbi+96nLVgecoPf2FQgHrmwuYtyqIDz7vmHO4OmKw2xAHuw2Loa7GLfgzmYwV0hTTvOacsNATz0RkClNeH/4uo/TeykneVQAJVxDktrw23so3jOxzYpRIJFzVe7i/cs2o5KTCm+8h8Yp7mYwsk8FlhSWel9eaxHMtl7TMx6jY37pR4a8oiqIoHUCKRaDV0y+r5HC7eDxeVvRTNMqqKtJXzh8Ka7kCwGg3hT2rAqXTaaRSKXu74zi2825zc7MVw5FIBNXV1bZ5l7QNMUrtTVBlNJy/A601+/P5It5Z7cecD4BCsX3R3ztuMGGYD2OGxlCVSNiSoRT83jwBaVOhpUcmSEvLDW1PAOy5Uuyzq623ChHh4yjEgdIEWe8kRFY34mSEj+Pkq1ztel5j70qAF6+4l68XTij4OpJVgrzefG8+STnbkIr9bQsV/oqiKIrSDrJEJQCXvYein+IsGo2WFf2y1j9FLWvrS6sP/fwUfrS5eAWkz+dDKpVCJpOxZTPlCgLHxcTdWCwGx3FcvnRZDYgi0RjjWmWQFWgomNen/Ji9CPi8oYD26B03mLSjHzttF0YikbAWGMdxbOUiRvi9JSeleJWiX06KpH2FFXC8Nfo5dj5PMvotJ1N8ruW/MudCWry4asLnk8f2durlpEXaeyohJ4BAa7SfE0RpMZK1/mVknxWAZEKyFxX72y4q/BVFURSlHSgYgVafNKPmMhrOKDYAl1dbin5GalkmkyKOAp774uoA/5bRYinsQ6GQTXilZSedTsMYY1ceODGQCakUzRTKQEsvHPYd8FbvAQDH58fcFcCcD7JoryZgTdRgzx38GLldAIlEAlVVVXYSkk6n0djY6LINSesTrzFXNthZlxYmWQqTUW5vAq187ujL5wSH0X9ZtcYbXZfJxXweZSIut2eeAc9DVuHxeurL0V50X+Y5ePtFyMpEMheB+5XH9J6vsm2iwl9RFEVR2sBbVtM2pfoqEVZaYChEpfiU4l12x6W9pVgsIplMWp87vffS7hIKhWw5UCbh5vN5BINBlx2IkXom51IMeisGSf877TbJZNJW/5GCn4K2Ie3DkwvS+LyhWOYqtRIKAHsMd7DbkACqqloEP8uZFgoF1NfX2zFKL7xcWeAxo9GoFfypVMqKVynAucIio9icaHGSQGsNb2cUXtqsZN6CrBwkK91QMNNOJFcVvCU3K5XeJDJ6D7gnAHIbbzI5f3g8mVMgH0s6MhZl20GFv6IoiqJUwOvrp9CjMJf13mWiJi0gUvTLBlicMFBwM1IrK/HQW88kYU4IOOHg5AGA3Q+j2jI5lWPlWGRDK7/fj2Qyaav08BjGGCum8/k8/vNhHi++l0a+bc2P0dsB+4wIojoeslF+VhxKJpO2zCirCXESQisLxTmj/FwVqRThl95/Pl+ylj5XXbh/7pMim/uSqy4AXLfLCDnHIKPt0t7TXqJuOa++nABQnNP6JVeZ5PG9OQ5ewa/RfaUSKvwVRVEUpQJeXz9Fu0zypNhjlF8KMq/oZ/lNPj6ZTLqiuIzwchsKZ4pXKfpZmjOTyVhrDxNavRWDuK1ckXAcx+YIMGLM+v62H0Ayg2f/k8PSNW17+etiwIE7+zG4d8vKRFVVlbX25HI5rFu3zlVmlKKcFhwmzzqOg6qqKnvtaWWSuQ0U/F4rFVczZOlRAFbweycb0jokqwlR8MvKN94cCK6UePMEOmrnAVqj+QBcE0LZL4G3M7Iv7Tzekp081/asRcq2jQp/RVEURSmDFFYUntJ+QyuMFFveSjOAW/QzYZaRe04cKPozmYwVw1VVVdZOks1mkUqlbIUe7puefIpgWcGG9h45TmlbaW5uthFtnmc0GrVJt1805PDkwjzWNlUO8/scYMIwB3vsEEA00pJAXFNTg1gsBp/Ph+bmZjQ2NtoovkxE5dgY8WYlHp6bTOrlKgYj/LTl8BylD9+buConCDJ3gLkQAFwTEmnxobiXz69M2O6o4JerRhT8vA48B6/gl959XgtZFcr1PKidR+kgKvwVRVEUxYMskwi0iFCKfinQgFbRJQW8V/RLCw0TcPP5vKsPAP35xhgr+pkIm0wmXeVCKRbT6bQtJcmGW9wHa/5LGwjFLS0tMoJNm1E6ncbS1Tk8858csq0LHiX0Sjg4dBc/+te2iNPq6mrU1dXZ5OP169cjmUxaAcvIubTjyPr8jHhLOw2Tpb0Rd2+5TynEvfXr5fPE68IJGC1CciVA5hBwQsDjd0Xw82+OixNAmcQr7UNewS+tP0QFv9JZVPgriqIoigcZ7afw8pZQZCRdVm+hQANgo7oU1LJkpxSAjP7TcpNIJGzCai6Xs43B+Bg5eaAYpfhnBJsNpyhAZe14Wk4oXGWFoXQ6jTnLC3h9aRuKH8DYoX7ss5MfoWCL175Xr16orq62qwUNDQ12fDJaTlsNLUi0SPF3WlnC4bAtl8ltKPhl8yx53aUwl4JZJu3y2DLyL1dC+CMj7t4Vg7Y667YV4Zdj5cTDe3xatWS5WFqYJCr4lQ1Fhb+iKIqiCMrVSKfYpPiW0WGKQVnrX9pVuErAqD7FHv3vFP0AEIvFEIvFEA6Hkc1m0djY6KocxGg9o/lSFDNfQFbuyWazCIVCNk+AkxHWwufkJplMIp3J4sX3Dd79uLLojwQdHLZbCMP7+qwfv66uDrFYzO6noaHB1RCMlhmuXPC4UkRTZLOzMC1LTESWKy18DnifMcaudkiPPkW/tNLI+wHYyQ+fR4rpcoK/LaFdSfDL48ieDF5Lj4zwy8mdCn6lu1HhryiKoigCb610WYpTikaKSFnpRyZd0tYiG2pR9LJ0p2z+FYvFkEgkEIlEkMlk0NTUZG0pFIiMWFOUUvRztUBGtAHYuvkyKg64K8mk02mkMnn8+z9FrPyichJv/xo/vjYhhES4ZUJTU1ODPn362JWJxsZGK+ylN95xHCSTSSSTSQCwKwwyOTYcDru6HfO6eoWyrMXPyYNMxuW5MZrPFRZZD5/30+YjbTvepGG5EtDW60WuEEmbmCwhyteB18PPxGOOT1aCInyuVfArXUWFv6IoiqJ8hYzSUvzJ0o+MPssIsfTvU1DL7rIU5nwc99Pc3Gz9+LFYDNXV1YjH4zYyzuZgQIs4pS9eWlFkhJ/bUyCzW6+s8EJxylWEdDqN5rTB4wsLbdbn32VIEAeMDsDva5lM9O7dG71797aVgZqamuyqBcUzBXlzczOam5utGJfRdFqb2AALgL12qVTK5cN3HMf2MuAEAICd6MjoPCdccpWAEw6uDniTdr0Cvz0ff3uCX1p6ZLlSubrh7ezsrdTTkYmHonQGFf6KoiiK8hUy0kqRT0HPCLRM8KSVh2UaKfqB1sZfLMHJbQOBAOrr661QZvnLRCKBVCqFZDJpVwK4P1b6oQCUnvlcLodkMmkr/rDUZCKRsGNhkjFLiDLfoCFl8M95edQny4t+xwEO3jWCnQc6dqy9e/dGXV1d6z4aGuwEhaI/GAwim81i/fr1yGQydhy0HeXzeYTDYSQSCSvAGdGmLYeed64gyMkEk2O91Xyk4PfWx/eW35TlV6Wwbs9O4228JV83svKOrOwkVzHYKVlOxmRPCNLexENRNgQV/oqiKIoCd7QfaI2OM+pcrvIL0CrwKe7ppZfdY/l4lrj0iv6qqiqX6E+n03aSQFHIiQOPzQ6zzc3NSKfTVlhGo1GbJyA98YVCAU1NTVZormsu4p9zc2hMm9KLASAUcHDMnnEMrCnaaHu/fv1QXV1tLUj19fV2bLTvMFq/fv162zAMgI1wA3BF+WWfgnQ6bSPiAFyWIFphgFZblfToS0Eu/fYU24A7OVdWGyLeSYCkLR+/tBZ5JwYU8BT8nFCU2593jIrS3ajwVxRFURS4m3UBcNV0ZyTaW86Rj5H2H4o5Rp6laKVQLxaLNipfU1ODXC5no/y0uFAMs9kUo/bMHchkMmhoaEAmk7FikXkCsp4/0CJQmXRbLBbxeUMB/5yXQzJTXvQnoj6cuFcC1eEcHMeHaDSKfv36oaqqCrlcrsUi1NxsrwU77RaLRSSTSVu7n1V62Em4WCzalQiKfmmFkVV1+Fhagrz+d15vXn8mz3JSwMdz1YARfm9uBvfVltguZ+vhJJCvA++EgysHMs+ClKvHrz5+ZWOgwl9RFEXZ5pEdVb23M5pMoSfr0ZdL5pXWDVkdKJPJWJtNKBRCTU0NqqqqUCwW0dTU5CrdCcAlXikSKa4ZUWeEPBAIoKqqCtXV1SUdao0xWL9+vR3rFw15PDKvgFS2vOjvWxPECZNiCPmyVrT3798f8Xgc2WwWyWTSin5aaFgOlPdxrH6/H/F43E6iEomEjarTOsXIPQDbsIril5Murm7IKDrPkz+0VHFCIScR3rwIKcLbi/J7bTj8XU7yZO8GCnjmE3D1gvsrF+X3TkQUpafQV5miKIqyzSPLZQKtdfplQq+M9ntLfErRT4HKv0OhEBobG20ZzkAggHg8jqqqKvj9fluyM5VKWS8/ANvJlscIhUK2EhAj/Uziraurs/vj+XDVob6+3k4E1jUV8M/5lUX/wF5BnLh3HD6Tg8/XMk6W62Sd/+bmZiug6b2nPampqckKb5bl5PkwqZYiXNa29/l8rsRdoDWizyg+b6c9hxObfD5vKyZxEiJXC+TKgLehV6UofzmBLleAZOK2d8WCkyFamEi5KL/aepSNjQp/RVEUZZvGa4mR3VxZU5014BntZ5SfSajcXnajzefzNjGXDbeMMVb0B4NBpFIppFIpK6oZNY5Go1Y4sjsvE3OZB5DP5xGNRtGnTx9bEtKbcEqfvTEG9ckiHpmXr2jvGdI3hGn7VAGFLOD4EIvF0Lt3byv6WWKUop9RdVb0YeUe5hfI6+Qtl8m8AFp6IpGIqyoOt2euA0U+vfoAbEWhTCZjxb6sic9tyon+tiLs5QS6rPTECR+fb56ftDx5VxC8JTq1Wo+yqVDhryiKomzTUJB5q6rIuvAySszIryzRyN9Zc58Tgnw+j2QyiXw+j1wuh0Qigerqaiumm5qa7DbSthONRq09iGOgHYi5ALFYDHV1dXZ7OXlhRR0K72QWeGRuDk0VEnl3GBDG8XtVwRSyMIBL9NPT39TUZMUqRTYr+iSTSfj9flRVVVk/v5wEMf+A0XJaehihlzXuKciZ60C7Fb36tF41NzfbyRXHFY1G7f1eOw+f00o++kpRfj7vsomY7MbL/YXDYdfEhI/nygDRKL+yKVHhryiKomyzyCizVyzK+upE+udZS54iP5VK2YkBRTgj89lsFuFwGFVVVYhGoygUCraOfyqVstFyn89nG1mxGRcANDQ0wBhjK/jEYjHU1tYiFAqhqqrKHpPWGIp+AMgVHDwyJ4OGVHnRv33/ML45uQ6ZdItvPxaLoVevXjah2Ds+/tvQ0GBXIUKhEOLxuLXzyE650WgUVVVVrhr2rOUPwNp4KN5lszPeztwGNjGj3SgSiQBoqRgUi8VsJJ6rChwv0LbgLhfl99p6ZE6HHG8gEHD1ISCynKd8/WiUX9mUqPBXFEVRtlko0GUSLv+l8JS+f6DV0iPLa9LG4/f7bZSenn5uk0gkEI/HbUlPWnyamprseGgDSqfT1vqTTqet7SWTydhmX+yeKy1H6XQajY2NdmJSKBo8Ni+HL5vK1+kf2jeEk6bUIZ9Lu47PFQQ2E6NNhtF+TixSqZQtScpVACYoO46DWCyGmpoaK7plZ14ANtJPES2TeHk9pW2HKyOM8gMtE5VIJGJFNkugervzVrL2lOuUS9Evq/kw14J2r7ai/N6EYD5Go/zKpkaFv6IoirLNQlEnG2/RKgKgRLzxMXISwO65bKjFv9PptBWLjHozkt/U1GTtM5xERCIRVFdXW7FP4c99JpNJRCIRxONxBINB1NbWWnsRj81VBIrgZ9/J4+N15UX/wF5BnLxfLxTyLSsLiUQCiUTCRs6ZyCt98aFQCOvWrbPNu8LhMKqrq60NhxMCVvOpq6tzJdtyP4C7Fj+vuVzl4PGYyMtrxdwHv9+PRCJhrULMPWD/A/7dlrXHa8ORyIRiTgBk069yXv5yKwdasUfZnNBXoqIoirJNwqiyLNNJqw7gTvqV3nLZTIsWH1pL+JPJZOzjg8Eg4vE4otEo8vk8mpubbUJsLpezVpa6ujorRulfZ2OuxsZG6+UPBoOIRqM2ws9qP6wOlM1mAQCvLi1i8aeFsuferyaA0w/uC5/JIZ3PW5tOPB63kwmW7ARgx/jll1/aiVIoFEJ1dbX1v7N6EEuL9u7d20bGeV15nbgiIDvkyuRmdv/lagrHQtEfDAaRSCSs0GcDLU6iKPorRdnL2XDk64LiXVrBZPKw7LxbaZ9al1/ZHFHhryiKomyTyGg/I7JMzAVQYvOhf56WFP7N+/l7LpdzVaKJRCJIJBIAYJtusfMtACugaROqr6+3kX4+Bmip9MMk2VgsZkU/ANTX17u2fffjIuavKC9sq2N+nHZwXwScApKpNKLRqLXrcCKTTCZdHvlwOIy1a9e6PPTV1dX2vJubm1EoFBAOh5FIJNCvXz+XRQeArfLDBGiKdQC2v4HMAwBgy4Rye9qHotGofe74fMhKQZX8/OVsOByjt0EYV2tkD4BIJFISvS+3T03gVTZXVPgriqIo2xzSsw20dlkt16hJ1tD3QmHIyUI+n7fRflavicVi1oqzfv16W5Unn8/b7r3hcNhGttPpFr897UO0CtEOxJUDetjXrl0LoCVins1m8XmTHy+8V170h4MOTj+oLxJhB83NaYTDYUQiEcRiMYRCIevp5wSHx6SFhysjNTU1AGDLkOZyOTvB6d+/v+0cDLSWruQ5y7r6gUAATU1NrmZjrP3P86GAZv8D2oqYG8DoPKP7law1lbrlyio9HId3IsEKRN7ofTm7kFp7lM0ZfWUqiqIo2xyyQous+iK75nIb+tApQmV9fvrPGcVOp9Mui5CMTjc0NKCpqckmArMSjqz1z0TfdDqNQCCATCZjK+CwXCVvC4fD1l5j8wYKQTyxIItiGdu63wd868B+6FPtR3Nzs62fT/HPzrs8T97PFQiK3qqqKptzwJWLeDyORCKBPn36IBKJuCYJtA7Jnge04lD0A7C9AQqFgq3fLz318XjcVZZTPl8U/ZWq5pSz4fC581p7WI2Ix2ZfAG/03juRUGuPsiWgwl9RFEXZ5pD12mUZSSKj/RT79LLTWgK0CNhUKmUtMrLaDzvXBoNBK/ppxaFthI2risUiGhsbrfDkGBhtpsWH44lGo7bEZz6fb3ms48cTC7JI58qf8/H79MKwfiFbpYdNv2RPAYp+3tfY2GgnNcVi0dqBmGhbKBSQSCRQVVWFXr16IR6Pu/z77GRMGw/QWlM/mUxasc0KOVwx4blTeMdiMSvoKdil6Jf19CXlavPL/gzS2iMnghw/uwmXe/14JxJatUfZElDhryiKomxT2FKXwlPu9evLxF/ZEIpVfDgRYOlJltsMBAKuhN1wOIxkMonGxkaX0GXEnsdhhFsmGzMxmFVxKEaj0SiSySSAFmvR+vXrUSwW8dwi4Mum8ue8/y5VGLt9wtqQKGirqqpswjEFPqPm9NfTDsPqPfX19XbcrFZUV1dnm33xelKcS9FPmw4rHsmOvExMpsWGKwBsysUEYSm6KfrLie5KzbMqWXtkhaFK1h5eczmRUD+/siWhwl9RFEXZpvB6+2UlH8Dt/+d9jPYz+i8tPvSpA63R5FgshmAwiGKxiGQyaav0SPEOtJa0lP9SEIfD4RJRSe88x0erzzufOPjgs/JlO0cNiuCw3Xsj+5WdiII2kUi0dPX9yrJDAc7GXaykI2027BHAnIhEIoHa2lrblKyc6OfEIRwOu1YAuB9eU9pmKL5pQZKJwB0V/eVsOByX7MALoKLo70hisPr5lS0NfbUqiqIo2xTlbD7StiGj/RR1spwnhSzFMn9n1Jo2GQA2WZb5ABTXMtotBS3FZTwed008pP0mk8nY8p2ZTAafNQCvLS0v+vvVBPCN/foil83asXEMsikYANuMqlgsor6+3tqVIpEIgsEgmpqaXFVuqqurUVVVZe1KFP0U8RTUAGxDMHr9Kfp5bbk9n49IJGInKOyWnM/nrY2IqxLlIu3lbDicuHnv48SExw2FQhWrAXlXD7QLr7IlosJfURRF2WZgJBhoreTD2wG4urXyb6BU+DNq7ff70dDQYOvTM1LNiQObdMnjcT9e4csoubSYULRS9LNxVlNTU8uEIg88806xbDJvNOTg1AP7IRRwkE7nbdScUX1W5GE0nqsJbNAVjUbtcVljnwI5Ho/bxGWOkZV75KoFRTwFNwU+rwGj/bKCDnsVUNjzutCKFQgE7I9XoJez4QCtkwF5n8wjYDJzuei9V/RrEq+yJaPCX1EURdlmkFYNilgpBqUIZ4Rein7mAvAxFJOsUc+6+pw8yHr4xWLRlgWVJS0pqrkqwCRXWoVisZhNHmWUv7m5ucXX/24RTZnS83QAHL9PHXpXt1QMYhUdJsvKLrmsTW+MsRV8GHGn8GYjMZb3ZAdh2YTLK/qZwMxrwR+Zv8BrTbsOVxeY1yBXCYAWe085gV6plj6fC3mfTCjmdZWdhSXlLEOaxKtsyeh0VVEURdkmoDhkgi4FnBSLFKfchv8CKPGI+/1+JJNJK44ZBeY2FOjcL73zgHvSwUg4ALtaQBFKUR4Oh5HJZGzZznw+jwUri/hwbflznbJzAjsPq7ZNwAC4koVZPpRJviytSTsQu9PyHCniWeIzkUi4EoGZmMvrJ0U/I/YyNyIYDNooOq+bV/SzTKm3m2850c8JB5GdfHkfn08+l9LPX6lyj4z0V8onUJQtCY34K4qiKNsE9NID7oZdMpor67nLOvQU4/TXy8o+hOKRtzc1NVnPO206AKzPnlF3iltaSBjtpxefqwnMFUin0/i8oYg3l5fx9wAY3i+Eg8fVWrHLMbHKUPYrv7/srMsKPjweE2ebm5tthSKOPRqN2ui/FP2MjnNyQLsTV0h4nVn5iKsFAOxxaeFh5R+Kfum/l3QmiVdO4ji5qGTZ8eYCyG7CirIloxF/RVEUZZuAjbMAWH94JZuPFP6MSjNaz8fQH89qP9wHo/2M5FPU53I5xGIxAK25A8lk0jUhoFinJYfimh19U6kUMtk8nltkyvr6ExEfTty3F4LBgI10s/IQI/BMSuZ50mbE43GVQZb+5Pji8biNkFP0szQnJzhctZC+ekbjmWTLiRftPTw2xbWM9MueAxJOKrwdgjkW732EExtObrx4RT8nCYqyNaDCX1EURdkmoJijzUd22OUkQPrT6QGXUXNuL20lspssa/inUikrIBllj8VidlsmBUuLCkUrRa6sp08hnM1m8cZyB+uTpefnADhhnzr0qonaevqszc+EYV4Drkqw2zB/57Fp24nFYjYhmMm+jH7n8/myoh9wV+rxlvlkTgDzGXiu0t7DSZYck4Q2HCIrCtFWVHJ9vnreZV+Ecq8R+ViOTVG2FvTVrCiKomz1SNFOe4eM9gOwdhWZ+MlmW+l0GgCs2KRVRXZ65cSBAl1uQ+HM1YFsNotUKmXvj0aj9riMLlNcs/FXKpXCqi8N3vm4vMVn3zFx7DQobu0tLNPJZmGyKy6FNsfA6jsyD4ErEOwUzJUA2pY4uaGYp4WJ5U0p/jl54nVgFJ6CXlp4stmszUuQEwPvcymfO15/6ecn3kh/pRKg5far5TqVrRGN+CuKoihbPTI6TGEtBSI94RR+3EZOEOS/tMrI6DWr8rBZlywJyso8/GloaADQugpBMUpbDS0oqVTKiv7GZA7Pv1e+Xv92vYI4aGyt7UlA8R8MBm3UXpbk5ERAVraJRCKuUqeyHCcnD3JcsgkX76Po57nR0pPP512in0nFUvTncjk7WZEVfiTlRD8f6xX9HI+M9KvoV7Z1VPgriqIoWzWMPANwNYSSIlF60aU4pI9dRq/5N8t48vFM/mX5SSYEsy49RWg6nbbimI2/WEufUfNAIIBkMmkTY1OpFF5ZapDKooRgwMFxe9UiHosgnU67Eo/Z+ZbdebmiQAFPcc/JAa8NVx+i0ShCoZDNTfD5fNaKwwkQRb/03PP8WeaTDbyAVtEvo/m0DREm+0pkGVUArsdS9PMa0zZFW0979h6530qlPRVla0CFv6IoirJVI5M8KRal6Afc4o8iXXb05b8Uz7lcriShl7Yc2n0Y0aYw5sSBNfgpdKXlhYKdYhYAmpqasGqtg6Vrylt8Dp9Qg0F943Z/3qZczBGg158Vdzj5iEQiVizLykfhcBjBYBDRaNS1qkFfP0W/tNpQfPP6sSGZ3KfXt89rweeI14yUK9fp7ebrLdNJCxZtXZWSc8uJfm3MpWzN6KtbURRF2WqR0X6gvM1H1tKXja54nxTDjGTLZl2yMg4AWw2H9hnZtIvlQGlrYfQ7Go0CgLUQ0XufTCaRzBTw/KLSZFUAGDkwgj1HJGxSMkUwRT+78wItYjkej8MYg2Qyae00FPYsL8oyorKePycztPh4Rb9MqKXopujnNeLqg1f0c7LE54d2J3lt5fPFxl7lKvewNwJzEVT0K4obfYUriqIoWy307gOwfvxyNh8mo9IO4q2A4ziOK9ovE1lZx55iXop+WmS4r3Q6bUtgMspPIcxxUajTevTKkmJZi08k6ODrk1p8/Ry/tLdwAsHxxONxBAIBNDU1Wd97PB63thaOnasCtPhwHOl02k5gaIfh9chms3bFgCsltExJ0S99+8xdkFWN2hL9HDMnanIVgKKfx+XYVPQriht9lSuKoihbLd7GUd5OvYzeM0osy07yfgpqitBisWh9+RTXrJfPiLnf77fdbVlak2KV21NYs3oO98Xjp1IprPyiiPc/LZ/QO3ViDapjAbvSQGtQKBSythyeVywWQyQSQVNTE4AWS4w8NhN/2ck2HA4jFou5uhDLHAFv8y52L+b1lD57TpJoHSIcH8cTjUatB7890c/7OEmj6JcTEhX9ilKKvtIVRVGUrZJySb1Aqc2HNetpW6HwplhnaUxp8WGUnA24KOp5nOrqalslh4I4nU4jnU4jk8kgEAggkUjYCLdsrGWP5wTw7H8yZc9tp+3CGL9D3CazUqAz2k9xzLKdkUjEJhWzylBVVZW1HVE0S3sSz58TGhnpZ4dh5jqwXKf091P0095D2w8AO5EAWkQ97UZ83rzRfHlOvI/PFT39FPAq+hWlMvpqVxRFUbZKvB1jvTYfWXOfUWLWqKeYZNIqo92MXAOt4pVCXSa8VldXuyYejIzTIy+99SxFyRyDTCYDv9+PF95pRnMZ3R8OOvj6nrV2ksDzoECW+6Kvv1Ao2Io/kUgEiUTCjo+rDGzAxXr+FPycLDDKz2vEiQ4nCHLCxDwDJhTLZF1eC6C1Vj8nUhT90rfvFf0ykZcTDLlao6JfUSqjr3hFURRlq4PReYpxRvO90X6WiKRwpJhmBFtG4gFYcZxOp62IZ8Sfj4vH4wgGg1bcch9NTU3IZDIIh8OoqqqyApWefznZ+Ky+gLc+LJSeGIBDx1WhNhG0x2a0n+Ka+6B9hmVGi8UigsEgqqqqrLDnZIAWH5YelXkLLPPJH9qaOBnwVj5icjAnE9K3T9uQrOAjE4A7KvrlBKQjol/2aODzqKJf2RbRV72iKIqy1UHPPNAaGebt8n5aWKQnXQpCdpLlbdFo1EbCGVlnx1/65mtra619SHrkaVGJx+M2oZfiW0bODYB/LWyGKVO9c1jfICbuGAfQmn/AFQsmCHPywkkKI93SXsTjymTYaDRa0kGXuQjchsej6JdVj9icjNvKakW85pyAALCTDZ5LOdEvbVRe0S8TiKWVywv3QbQ5l7Ito8JfURRF2erwCv9yNh9GgXk/o/qMvLNxFtAqRAOBAFKplLXnyIo6TOhloqnP57MCu7m52ZbvjMVitmY/S1n6/X6kUin4/X7MW5bEmvpS1e/zAV/bo9aOj+dA+w5v4/4SiYSrzGY0GrVVhlKpFLLZrD0nRvqDwaDNRfD65lm2UzZB4yoKr61M/PUm68qxsIEXJylcMZHXmisyHRX95Zpz0QZFVPQr2zoq/BVFUZStCopQafOh8Jf303LCFQFZv59VdWTSbznfu9wHvf2srsOIOS0zPp8PtbW1NoKeTCZtoi8nIE2pAl5+v0ztTgD7jIqjb03QVamI4pzWJE5sKPCBFgtOOBxGPB6Hz+dzJRizxCZ9/ZlMxlbbYdReJtBygsPjy8o7nDjIjsG83tLXz2vF56RS9Z6OiH6uMFQS/Xwu+HgV/cq2jgp/RVEUZavCW12GopDiktF8im0J7T6yAg4j6kBrQi/94hSWfr8f1dXVruNzkpBMJq34Zidc5ghQtHKFYPZ/mpEt06urLu7HfjtXuW7jigPzCTihkRV0aPlhRL9QKKC5udmOmVV8AoGA7UPAkqSypwHPibcBsN57wO3rZ1MyIq06cuWE97Un+nkOvE+KfjkeibdxGycNirKto8JfURRF2aooZ/Ph7QCsKJeRaka2GTmXUXomjLIyjuxQS29/OBy2lXJkbX9Gzx3Hsf56x3HQ0NBgBS3F7Mo1Sbz3SfmE3iMmViHghxW8simZHE84HEY0GnXtm9F8AGhubnatEsRiMXvunOwArb0AWKlHrpzwusloOsV+KBRyJdhycsBrIH393pKdTBymJUj2X2CknxO59kS/t/qPin5FaUHfCYqiKMpWg/SbU8hTrMrSlyx/CcD+K2vzSy86rUCM0jOZtVy0nx1+Kfo5AQgGg4jFYrZzLpteSVvS/71b3uIzZnAYw/q2il8ArtUKjoeRffrY6eFngi1XK6Top6hm3gJXJuRKiayXz+soy3Gyr4EU9RyjXBVg1J4rHF7RD6BE9HO/0nLFfanoV5TOoxF/RVEUZatBRvUp/GUZT1bY4bbchqKUAljW7WfkPJVKWVFKKwltQBTc0iOfTqdttDwejyMUCqFYLNruufTK+3w+vLUihTUNpQm9Qb+Dg3Zt6bAr+woAsL9zHKyXHwwG7Rgp+h3HQTKZtMdlxR8mINNawxUO2nIY6Zd19mmT4oSA1h2uEvDacmyyHChXKLylNQG4yocyQTkYDLqeJ6Dt+vveJOFKEwRF2VZR4a8oiqJsNbRl8/EmklKQSnGfyWSsMKUFyO/3I5fL2Qo/FJeM5LNuvzHGrggkk0lXmc54PG5v5745hqZkBq8uKWPsB7Dv6BjqqkL2fOTxOQaKfvr4gZbIOSPxFP3szsuyo7wuUnBHIhE7GWG0XB6X28smXazQI1cgeA0p4Cn8vfX0uQIgPf1syMUVEQCuSH9bot+bL6CiX1HcqPBXFEVRtgrK2XxYLpKRakbLKZhp4ylXphOAbSAlK/nQh+44DqLRqI2y09bDMp1MFI7H44hEIq5Ov1LwvrYkg2QZl09t3I9JI6JWvBtjkE6nAcDl82eTLPr1ZQdhWcGIopliXZY0lZMRGclnxF9WKqKYZi8CTjAIBTjtSLLxl7e0Jq1RMjlZin5OQoC2q/KUa9Clol9RSlHhryiKomwVUPhJsSiTUWV1mXw+b/3ooVDIldDLyDgnBIz2U4gCsJHscDiMcDiMYrFoa/KzGy4nIIlEwlYCyuVytqlWsVjEZ+vSWLiyfELvYeOrEI2ErCVIWmdkvX6W6qTY5TF4HVKplKvqDi1HvGYU87KRGW07tC/x+snyp+y6Kz30PC/p66dY94p+2oyk6JeefFleta2qPN4JRVtWIEXZ1tF3hqIoirLFQ+Eoo8TS30+By20BuOwsjMZ7E065SpBOp60/nfuLxWI2obW5udkmliaTSeuRj8fj8Pv9tnMvhTV7ALy+rIBimQ69O/QPY8R2raIfgO0y7I2Mx2Ix2wyLScOc8MhoPkttAq2TJIp+Wa+fEwQmCPO6ypUQVu+RkXV5PI6Pz4O3tCa7FEt7D49NZEO1tkS/rC7UlhVIURQV/oqiKMpWgDepF2j1xHttPrIWPMU9I/LSEkM7DEU9BSqFNJN68/m8nVSk02mXLz0WiyGdTlsLEVcXjDH48PM0lq4plpyL4wCHTaiyYt5xHGsjks27/H6/tRHRClQsFu0xWIlIVs3hJMfn87mq3zC6zgi+FOZAS84A7TrBYNDafLy+fllhiNdQjpkinvYprlzw2N5KS3LsXsrV6tcGXYrSNir8FUVRlC0eCn/aX4BWmw8TUnm/jHB7hT/QahVhVN4b7ZdNsiikmcza3Nxso/JVVS0Nt7hfRtS531eXlop+ANhjpwQG1IVd+QScUMgmWNFoFLFYzArmbDZrhTZzAGQ+QSQSsYm5QGtnYV6PcDhsO+6yZKds3gW0iGs2/JKCXFqoKPi9j2XeACdKXEmQ+QSAW/S316BLy3YqSufoceGfz+exePFivPzyy3jllVewePFi1wy9u5g9eza+/vWvo2/fvohGoxg9ejRmzJhhOxR2lrVr1+JnP/sZxo8fj0QigVAohEGDBuHEE0/E7Nmzu3n0iqIoyobCSDeRwpFRcpnUK20t9MQzAi0nBMYY+x0iRTcj+azkQw98U1OTqxRlKBSy/nU2n+I43v84jU/WlQr/UMDBgbtV29UGueLAsp1SpMvqPLyP0X6ej7TWMBrPSL4cK1cYANgkYlmZB0BZ0S8j/bJbssyJKLe6wvsqefLbStDluOS+FUVpnx4R/g0NDbjhhhtw6KGHora2FmPGjMH++++P/fbbD2PGjEFtbS0OOeQQ3HDDDWhoaOjy8f70pz/hkEMOweOPP45IJIIxY8ZgxYoVuOqqq7Dnnnti7dq1ndrfkiVLsNtuu+Hqq6/G22+/jf79+2PXXXdFU1MTHn74YRx88MG46qqrujxuRVEUpetImw+RFX2k0JRWIN5P/72sbMOkWPraGbXP5/OIRCLWB08xXSgU0NTUZB+fSCSsuM7n8y4Rm0yl8erS8gm9++1ag3jEZ88lm82WNBOjSKfol5MC1uKXnXJ5Ppx8cCLEbbkvbsv+AxTzXDlhPkM5Xz+3ZYTeK/rlJEmWI21L9Ffy6ssKPlq2U1E6R7cK//Xr1+OSSy7BwIEDccEFF2D16tU46aSTMHPmTPz5z3/G9ddfj5kzZ+Kkk07CmjVrcMEFF2C77bbDJZdcgvXr12/QMefOnYvp06cDAG666SasWrUK8+bNwwcffIDdd98dixYtwjnnnNOpfX7ve9/DJ598ghEjRuCtt97CsmXLMG/ePHz++eeYMWMGAODnP/85Fi5cuEFjVhRFUboPKfylzYeCmEm19NhzO0bgKa45WaCXPZPJWEFLgUvLjKzv7zgOGhsbXWUueZ+3EpDjOHh7VQ7rm0szeqtjfuw9Km63LRQKaGxstH/LyHw0GnU155L9C2TUn2Pi+THaT+sTKwLxushrwQkLE3VZtlM285J5Ezyed/WFEwrum9dE9hmQtOXVr1QSVFGUjtGta2M77LADamtrMWPGDJx66qkYMmRIm9t/+OGH+Otf/4qbb74Zt912G7788stOH3PmzJkoFos444wzcO6559rbBw4ciHvvvRejR4/Gww8/jLfeegtjx45td3+NjY3WyvP73/8eu+yyi70vFArhl7/8JR599FEsWLAATz75JMaNG9fpMSuKoijdg7T5eBN7ZSMpWTmGiaqO4yCdTtsIOL3y9MtTuHuj3hSm0kZEb38+n0c8Hkc2m0UwGLS+e44tmc7i9SWZsudy6IQ6+FCE4wRsh19pHWJ34VAohOrqahv1ZuQ+l8u5uu7yuJx4UMTTXx8Oh1FV1ZpEzAkB8wNozeGEg1V8iCwtCsDVQ4B4u/LyeeJ19Ir2trz65ZJ5tYKPonSObn3HXHPNNViyZAl+8pOftCv6AWDIkCH4yU9+gsWLF+Oaa67p9PGamprw1FNPAYBL9JMRI0bg4IMPBgA88MADHdonIzxAy0SmHLxdlhBTFEVRNj7lvP38nVV6ZN1+6fFnXX3pTeeEQVa8kTYh+tv5eKDF3iqTbhn15hhks625y1Jlm3UNqAthl8Ehu990Om07/1LEU/RXVVW57EqcfDCpVpYz9Vpi0um0tfzE43Hb9EsmEHPstOxQ8EtLjeySy8kB7UHeLrucUHgnMfIYHGNbXn1N5lWUrtOtwv+ss87aoFJafr8f3/72tzv9uPnz5yOTySAcDmPSpEllt9lvv/0AAK+99lqH9tmnTx87aXn55ZdL7k+n05gzZw4AYK+99ur0mBVFUZTuQ0b7ZVIvo/YyKh0MBm1zKwBW9DMqz8fKWv0Uzoz6U4DLyjfJZNJG02OxmBXCXFlgRL6+MYV5y8sXtzh8Yi84TmslIiYVUyjHYjFbsz8Wi9ncA/rxgdaIuzwPwtWITCZju/rW1NSUlNaU1yqfz1vbEnMaOCaZ80ABLpOAvVYqueLCCYTXFtSWbUdONDSZV1E2nB595zz33HM24t4TLF68GAAwdOhQ6yH0suOOOwIA3n///Q7v97e//S1OPfVUXHLJJfD5fDj66KNRXV2NRYsWYcaMGVi1ahVOPPFEHH744e3u66abbsLNN9/coeMuWrSow2NUFEXZ1qlUzYeinGKWEW7p7advn1YgNrbifvnDyjjS/y9tPk1NTQBgffByLBTHjKDPX55FusxC8ZC+YQzv2xqhb25udkXRmVMQiUSsxYf3yW66rMUvz432Jb/fb61DwWAQdXV1tuOwd4IUDodtIzBOdMr5+uVkizYjXn/ahGStfnYPluMkmsyrKBuHHhX+hx56KI4++mj87ne/w8iRI7t9/6zW06tXr4rb8L5169Z1eL8nn3wyqqqqcOWVV5ZYiPr06YPrr78e3//+9zu0r08//RTz5s3r8LEVRVGUjiFFv4TRbtkVNhKJuOw+FMasVc/JAvcr6/rzPia4ympAyWTSTgrC4bBdGZD+ewBoTuUxf2XlaD/FOy0+HAcTbwOBAOLxuI3Q+/1+JJNJOwmQjbF4XE5EuDJAO1B1dTUSiQQA2D4FFPThcNiVE+BtrCXtNozwc0WjXHK0LLspJyHyudNkXkXZePSo8L/tttswY8YM7LbbbjjvvPPwi1/8Ar179+62/fPDUbb49sIl3VQq1al9L1u2DGvXroXjOBgyZAjq6uqwbNkyfPHFF7j55psxceJE7LPPPu3uZ7vttsPEiRM7dMxFixZ1epyKoijbKlI8SuFOAS2j/RTkFKWMIjNSn8/nbcSat1PQArDCnxHwpqYmG5nnxIHbymTibDaLSCSCOR+kkS2j+3cYEMGQ3n67LWv2A7Adch3HQTQaRTwet4KeybI8LkW1rD4kI++cgESjUdTU1MDn8yGbzbomGfTep9Npuz9p8ZEinrYdTgQYhS9XwQdo+S6WOQgd8eprMq+idD89+g4666yzsHjxYlx66aW4/fbbsdNOO+H3v/99tyXFcmmWZcnKwcYqLHvWEc4//3xceOGFSCQSWLhwIVauXIkFCxZg7dq1+PWvf4233noLBx98cIci+eeddx7mzp3boZ8xY8Z0eIyKoijbMtLm400QldV6GBEHYJtyAa2RZApY3k/rD+9jdJrJrRTS9MXLZFg5lmKxiGQyCb/fj1QWWLCy/PfeoeNrbfnMVCplRTsA20U3GAwiFotZq5Ixxk5sGEGXzcJkE61cLodcLodisYhQKIRevXohFArZBGKufhhjEA6HrWVH5jPwenMVgxYf3kbhzmh8Npt1+fo5eeCqQEe9+prMqyjdT49PnWOxGK688kosXrwYxxxzDH7yk59g1KhRHa6y0xZ1dXUA0GaDLt7Hbdvjrbfewg033IBAIICHHnoIu+22m70vGAzi0ksvxZlnnol0Oo3LL7+8C6NXFEVRNpRKNh9WkZHJoABc9f0phOnflw22pD9eJqBSDAeDQaRSKaRSKaTTadcqgBT9tLmEQiG8viSNfJl+XSMHRTCwV4uYlZYbYwyi0ahNrI3FYtaP7/P5bMMxRvVpY5IdijlBYAKz4ziora21AbNMJmPFOXMc5KQBaJl4lLP4EFqHKMplBR8+R7JsJ1cIiHbmVZSNz0ZbMxs4cCDuuusuvPnmmxg6dChOPvlkTJ48Ga+//voG75N5A6tWraq4irBs2TLXtu3x0ksvwRiDESNG2MRgL1/72tcAAG+88UZnh6woiqJ0A22V8aSf3StMCQUyxT2bSVHccuJAoUrxSvGdTqddK81SLNOekk6nEQwG0Zx18Naq8t9PB4+tsasGqVTKJbwpuiORCKLRqMumlEwmbfSc9fWlh5+inzX5gZZOwolEwk50aPFhUzPZpwCAndAAKJlEyXKn3I52Ktn0TE6IuFJC2krmVV+/ovQcG90sN2rUKPzyl7/Efvvth1dffRX77rsvTjnlFKxatarT+5o4cSJCoRAymUxFEf7iiy8CQIf8+ABsl8S2PmQY9eAHp6IoirLx8Np8vMikUvrCGdVnpDyTybhu5+P4L4UwfesU/6lUytXoCoC1ANGCw0lBLBbDG0vSKJRZnNh5aBQD6oJWRHPMFPu0FoXDYRuN56SGKxE+nw+xWMweU9bP56oGxXltba0V2s3Nza78B04oZIIuVwZk6U7CHAaKd9qhpHWIkxKOh48BYB9T6blVX7+i9Bw9+m7KZDJ47bXXcP311+Pb3/42dtllF9TW1uKggw7CCy+8gH79+uHII4/Es88+izFjxuC6667r1P4TiQSmTp0KAGVLZi5ZsgTPPfccAGDatGkd2idXBhYvXowPPvig7DZsGjZq1KhOjVdRFEXpOtJyIpN6adWRVh/p76fQZ+IuhTIr/dCqwhr50uJDoc3cgUwmY8V+KBSyEXYeOxgMIp334a2VpV16HQAH7VZlI/fJZNI1SYnFYlb0s0AFKxUx4OQ4DmKxGBzHQTKZdHXrlSsWPp8PtbW1rokLrwFLd/I6UmDLhF4pwmWPA0bxuULAiYtM5pUVftTXryibBz0q/KuqqjB58mT88Ic/xP3334+amhr813/9F/76179i+fLlWL16NR577DEsX74c3//+93HxxRdj5syZnTrGjBkz4DgO7rnnHtx88832A+PTTz/FKaecgmKxiOOOOw7jxo1zPW7KlCkYPnx4yWRj6tSp6N+/P/L5PKZNm4Z33nnH3pfL5fC73/0Od955JwDgzDPP7PxFURRFUbqE1+YjJwL0v9NfT8HOEpuM9jOSTasKo/zpdNqKZz6WEX2Wz2QJUJbgZLIsjwsA8Xgcc5Zmykb7dx0WRW3MsZMFRuuNMUgkElbwUvxT1CeTSXvOtAM1Nze7RL604bAaECcITOgFWr7PmDzMKD8Aez5Aqa9fRv/ZwZjJvLJ0KicO9PZ7LT7q61eUTUePvquqq6sxffp0TJ06FePHj6/YZCsej+P3v/89isUibrzxRsyYMaPDx9hzzz1x7bXX4kc/+hHOO+88XHXVVejTpw/effddZDIZjBo1CrfcckvJ4z766COsXLkS69evd90ei8Xw17/+Fcceeyzmz5+P3XbbDUOHDrXlPGkFOuGEE3D++ed3/GIoiqIo3UKlxF5Zf58RdJaapChlfX/CqD0j/hT1mUwG8Xjc2nxYt5/CnxWA4vG4FdQU/sFgEEUnhLnLyvePmTwmbktm1tfX2wlEIBCwNp9QKGSTe5kszJUIRvvz+bwtAU0Bz/OLRCKIRCJ2IgHA5hGwJKhsTMZryki91+JDgc9jUdyzFwKvP1cWKPy911p9/YqyaenRiP/atWuxww47YM8996wo+iWTJk3Cp59+2unjTJ8+Hf/+979x5JFHorm5Ge+++y6GDRuGyy67DHPmzEGfPn06tb+DDz4Y//nPfzB9+nTsvPPO+Pzzz/Gf//wH0WgURxxxBO6991489NBDFT2KiqIoSs9A3zrgtvnwPnrwZdScApJReUb3Gc3PZrM26i9tKbKspbTxMAlXiltZGjSRSOD1xc3IlankM2ZwGIlQ3gppjgVosa9yzKzWQ/HN0qC0FoVCITQ1NVmfPlc0GP0PhUKIRCLWyiPLetLiw5UD2bCLEyGvz55Ju0CLFUj6+isl83ptOx319bc1QVAUpWts0nW0xx57DDfddBMeffRRAC02m/vuu2+D9nXIIYfgkEMO6fD2K1asaPP+YcOG4Q9/+MMGjUVRFEXpGbxNuyiM6dtniUpvQymKUxnFlom/LNPJLrfhcNhGr7lfRt5lJ1969Gl1CYVCML4w3lhcvsz0PqOidlWgoaHB1UOA1hv5Oycz0sMfjUZLJjCcjOTzecRiMVsNiFYbCvdsNmurBMnHMRmXqwZSsPPcOE6ugLSVzNsVX78G1RSl5+h24T9r1izMnTsXkyZNAtB2dZz6+no88cQT9u+6ujp885vf7O4hKYqiKFsJlfz9FOWyjj2Fuc/nQyqVsiKapScjkYj18lMUcyLA3i+BQMAmxEoPf6FQQDwet/YfADba/+riJmTz7pr3ADBiuyBqIgV7DFpuWGOfEXfW7qcgZr+BYrFoq+0wIZgiW1p4EomELfPJx9NKw2NwgkErDo/rtfhwvzw/lhll+VDZd0AKfK3XryibJ92+lrZ+/Xr8+c9/xre+9S04joOzzjoLu+++O84++2z87//+L1555RU0NzcDAN5+++0ON9ZSFEVRtm0oMgG4rCCM5rO6Da0ujOjT4kL/P/3wtPkwcZfin/56oNUeBMDaagqFgstCIzvfFuHHa+81lh3/njsGbe4BrTssnSmr4MhKPrJsNMV8LpdDOp2214DHLxQKSCQSCAaDNvrOiQkFNoW7nDBIi47X4iP7FdDXL1dWZBK1XEGR+6hk25HdgAH19SvKxqDbp9YXXHABzjnnHMybNw+TJ0/Gvvvui3w+jwceeAC33367TSSqra3FunXrOlxmU1EURdm28dp8OAlgci3LSdK7z8ZSTU1NAGBLcDLyLQUqff7pdBpVVVXWtkPhLJt7UeRyPBTPsVgMry1uRjpXGu0f3tePXrEi/P6Qq7mY4zhIJBJWjFP4M2eAExM7sRC+eopsCvRwOIxoNGqrEHFVgeOWViJeN54LG3vJ0qic1ACwCceyMhAtSxTs5Xz9HbX4aL1+Rdk49MiaWjgcxj777IOpU6figgsuwFFHHQWgpYvu/PnzsXDhQqxYsQLDhw/HxRdf3BNDUBRFUbYyvMKfwp2VdiiWI5GItfpQvHIbivmqqiorqmVUnBF4VvqRj+f+w+Gw9d9TuAaDQeSLwGvvNZUd+547BKzIbmpqsqVCo9GojcKzOzBzF1KplKvXACPyLP/JZGJ69KuqquD3+21fAk4QWA1IToZkEy45ESAy4ZYWH/r6ZRUkjisYDLpsQh3x9UuLj/r6FWXj0KNmuieffNL194477ogdd9xRo/yKoihKp/B266Uvn1HxfD5vK8tQ+LNmPwBrWaHVh0h7SzabteU0WdqTwp+Ve2TNe94GAJFIBAtWpJHMlkb7B/f2oW+VsVF1Rrr9fj+qqqpczbCCwaDdhisTvF/ajuT4c7kcotGotSjxvFndqFAooKqqqiTaz0RajkvCiQGTdmXzMibuxmIxACjr6+f1L4c3j0AtPoqy8ejWdbVp06bh6quvdpVXUxRFUZSuUq5bL6PSTDQtFou2Yg1tJ7ydjbnoz6fwZcIuhSij4tw3y2DyfkblpXhtqQAUwqsVov17bO+3UW1WB2LlHlkylNFzJuTKkqOszkNvPXMFaLfhZIcTByYqS4uP3A8nHly5kKsp0nvPCYn09ctcAenrl7YdLd2pKJsn3Rrxf/XVV/H3v/8dF198MUKhEBKJBMaNG4fx48fbn912281WJVAURVGUjlDO30+BzMg7/fG0usjoNK0p+XweoVDIVsBhmct8Po9wOIxIJOKyBnElgTYgRqdlRZtwOIx3P0yhPlnaWGxAjYPtalp+5z4p0Kurq13inkKeqwwUxRTrHItsTkabTTAYRDQadY0bgL2fEXhZc5/H5rYyZ0Im/XLixPtkky6uRHTUtsN983lUi4+ibFy6Vfh//PHH+Pzzz201gZNOOgkLFy7E7bffjkwmYz2NI0eOdE0GDjvssO4chqIoirKVUc7fT5FLoc5OuxT03IZRf5kgy33KCDRFKDv3SisPewOEQiFXdJsi+OVF5bv0jh/mt+JdRvuj0agtoSkbjVH4M2pOCwyj+DISz065bOjF0qOczLDMJo8BwLVywWi/F05yuBrBPgJeX3+5Zl9t2XY6kwOgKErP0O3vur59+9rfb7vtNgAtHyKLFi3CggUL7M+//vUv3HvvvfaDTlEURVHKUa6MJxNN6cP3+Xw22k9hziRYmQzLCDa70QKwFXYottkTgHYZ5gcwwZURefrfV36ew+p1+ZJx18YcDOvT8h3IRGNahWiVkRF5OUlhAA1oFcw8r1Ao5OoczIlENpu1kwNOVDipIIz2U5zLykS8FnJMtDmV8/Xz2pL2Snd2NAdAUZSeY6NMt/1+P3bddVfsuuuuOO200+ztH330ERYuXLgxhqAoiqJsoXij/QCs957inVFvBpOkJUbWnJcRad7G6jYA7ISAXWlpqYnFYq6GYUCrjeaVStH+4X44cHcYlhMU2bCL50grEM+TtiKZbCtXJpjMzAkKhT/Lb8rJDCcr0vbD68B/pcWIEyCvr5/3e8t/andeRdn86VHhf8stt2D58uW4+uqry94/ePBgDB48uCeHoCiKomzhlPP3MyJPMdySYNsa2Wb1G3atlYKWUXtZlx+Ata40NTXZiQMnBRSqFOC0Fn1Wn8ey1Vl4iYUc7NTXoFg0drWBCby039AjLzvmyso7snIRx8sJg7TdxGIxu/LB1QtG+3lOHLsU3FLwy54A3opIXl9/uQ6/8tp70e68irL50KOp9LfccguWLFniuu2HP/whYrEYRowYgYcffrgnD68oiqJs4ZQr45nNZq3wZ9Sd9hduTwFMwUwBL/39sga+rLrD6DQFuxSqtKtQVL/2fnPZcY8fHoQp5u0+OH5OUDgJocWH+6bw5phpWaJoZ+Iyx0vrjYz285rIiQ4fI61SQKufX3bxlc27uurr1+68irJ50aPCf9myZdh7773t36+99hquv/567LbbbujVqxdOOukkzJ07tyeHoCiKomzBlCvjSdEvI+Qy4ixFKavRACgbtZeiHIBNZOWEQTa+ojguFAoIhUJoSBbwzqrW/ZOg38GIfnmXeGe0nEm9FP0U3fTWcyLAaD899rLWv6zmEw6HbalNThw4uWA+A8+Z589rKs9d9gzgeHiu4XAYQKto70xlHu3OqyibFz36DsxkMujVq5f9+29/+xv69OmD559/Hq+88gomTZqEX/3qVz05BEVRFGULxmvzKRQKtm4/vewU/SwtSRHtrdHPyD2j39KfTjEthTZFP4/LFQaK3dcXN6NYpm3N2GEhBJyCnUywYk8sFrNWHZbSlNF+mWfAccuynNFo1CYyO46DeDwOAHYFhI8NhUJ2ggC0Wnko6qWFiMeSopwWqnw+b/MHZBWgjlbm6UyZT0VRNg49KvyHDRuGZcuW2b8feeQRHHfccdbf+M1vflMj/oqiKEpFpPCnME+lUla0snEV4K4cQ0uQtPl4k3Ol6KannVF9inbpaadYDgaDyOQNFiwvjfY7DrDzdkUbFZfH43cfI/3ShkNhzXOUSb0ArADnuTGiXygUkEql7GQlGo3ayUo5W1M5vz9XJADYCQQtTpyklLP4tFWZRy0+irJ50qPC/5hjjsHtt9+Ot99+G7feeitWrFiBr3/96/b+aDSKzz77rCeHoCiKomyheMt4UuTydkbSGdGmiKbgldvSruKtYMNtZSMrCm9629kBGGi1q7y9Io1svjTcP2ZQCCFfa9IxxxiJREqi/dJOU658pxwby3Vy/IlEwp4jy46yko/MZZCrGrRGyYg9Jx0AbGlOTnJkFR+gc8231OKjKJsnPZpa/+Mf/xgPPvggxo8fDwDYaaed8LWvfc3ev2zZMvTu3bsnh6AoiqJsoXibSzHaT7HPLrvhcNiVoArAinXeFgqFXMKVoj+Xy1mrED31FKqcLMhSnI7jAI6DN5cmy4553FCfTSyW4pgiWnr0ORYKdTYe4/g59mg0asfHyQiTmXk9isWiXVGQCcWM5stryWPJSQGPx/Nl0rDcn1p8FGXLp0eFf69evbBgwQLcf//9WL9+PU455RTXh8UjjzyCsWPH9uQQFEVRlC0UKVaZ1CtLc/r9fiuyveKV9efpU2fEm4Kb+5NVbmQ+AMWt9NnTMvTBmjzWN5d2vB3aN4iqUBbpdGtCL4UzE25lTX2gRSSzMRj/5rlQ5IfDYVejLE4EUqmUtSmxKZg32s/zzefzCAaDNgGYthuKeuYO5PN5hEIhV0MztfgoytZDjxfTjcfj+M53vlNy+5dffolJkybhsMMO6+khKIqiKFsgUsAyuVY2sfImpTLS7DiOzQMoFApIJBIum4vsvstJQyAQQGNjIwDYjrz02/OYPM7riyuU8BwWRDabsqKfpTfj8bi14VCo8/wYeQ8Gg0gmky5LDuvxc1uK8XA4jGKx6Fr9iMViJVV7eBxOIqR1SJLJZFyJvzx3bxUkPlYtPoqy5bLJumj07t0bd99996Y6vKIoirIZI6P9hULB1ZyKIpilJmWVGgC2vKV3ZUCWomRkHWhNGuZtFL28jccMBAL4vKGIVZ/nSsZbG/djSK8i6te31uIHWv35chw8J04m5MSFqwzcB6P0hKsXzc3N9nauCsj9y5UNNuDK5XI2l0CWC5XXkxYfWdpTLT6KsvXQo8J/zZo1+NGPfoQ33ngD0WgUo0ePxoQJE+xP//79e/LwiqIoyhaKtMLwRzbbklYaWS8faI0653I5K5QpiuXkQCYGy+Rdb9lPoNWH/+bSVNnxTtwhglSysaQMaDgcRiAQQDgctsfgGCiuA4EAmpqarMWHt8kqP4y0RyIR5PN5G6UHWlbWvT5+eS1kV15vNSEmBnMSJUt3qsVHUbY+elT4f/e738UTTzyBKVOmIBwO4+WXX8aDDz5oPwz69++PCRMm4PHHH+/JYSiKoihbGExszeVaoutMupVddWW0XCbDJpNJK0KrqqqsmE6n07abrzeSn0qlWpN3AbudJJUFFn2UKRlrKOBgZH+DZFNrEy5OHqRthuLbG+1nInIwGEQ2m7Wef0b7ZT8Av9+PpqYmK9xl+U4Z7Qfc1iegVYwzks9EYtmojNWB+PgNsfjI50VRlM2LHhX+L7zwAn7wgx/g+uuvt7d99tlnmD9/PubPn4958+ZhwYIFPTkERVEUZQuD0XvaTCgiA4GAK8lVVuORNeszmYyNdLOKDq0/oVAIyWQSgUAA6XTaVvuhvYa2GD5ejmnBijQKpTm9GDssgmI+bcdIgR0KhRCJRKwnX65MyLKeyWTSRt0pvmVDMU5IIpGItebIPgayQy/QmrArk5Jlk7N8Pu/q9FuudKe0+PBxlZDJyu3ZgRRF2bT06LszkUhg3Lhxrtv69euHqVOnYurUqT15aEVRFGULheKYnXJZcpNiVPrwuT1FaiaTsTYeRttpjZHbc1/hcNhOLmQUXk4GACCTzWPB8tJoPwCMHeZHNt0yIeFxAbisM1yxyGazNnLPsbFrbz6fRywWQzabtePieOnhl70JYrGY7RMgffhAa7SeKxqM5HNCwGvLcqgcp0wIJm3Zdrx2ILX4KMrmTY+uxR111FHamVdRFEXpFBSntLlQvDLaz6gyo9WMOLOuPYUxLTMUwdyHMQbpdNpVHYhiX3a4lTXsl64pojlT2rBrxwFBRL5q2MUVBop/+vtl8rGsSsTuwryfZTq50iCj/aFQyFYY4kQhGAzaFQvC82HXXwp+aStiqVMAdj/SyuO17bRl8fHagdTioyibNz36Dr3yyivx1FNP4cUXX+zJwyiKoihbESzdCbRMAmhT4USAwt+b1JvNZpFOp624jkajyGQyVuzTwkNhzIkBRT5XE6SQ5qRiXoVo/4ThQTtWCmyg1Y9P3z73S/8/cwh4Tryddh8KajYf46oBb2OlINkITCbk0nrDCQb3zfwGALb+v7TnlEvSrURnKv4oirJ50KPCf8yYMQCAQw89FOeffz6ee+45NDU19eQhFUVRlC0Y6cdntJ2JsRSZjPYDrasDfBxFMK1BFMDS9sNoP7330kvPx8tqP2vqDdasL5SMtU+VD9vVGFdkPRQKuaLosqMwhT+FPcfNmv+yvr+0NHF7ALbBltwP4XilTUkmGmezWXuNvL7+chaftqr4dHZbRVE2D3pU+B9//PGoq6uD4zi44YYbcNhhh6G2thYjR47EySefjN/85jf417/+1ZNDUBRFUbYgZLQfQIklBmiNrMtutwBs0y5GxCmCWf0mnU67kny5ksDqPrKiDycUxWIRb60qrdsPAGOH+q1Il82qIpGIS5jTRiRXKqQ45/nIyQ4nLLQOyaZc9PvLayDtQdwPJ0icOEmLDycP5Rqg8Tjt1ezvqB1IUZTNhx5dl7vzzjsBtEQF3n33XSxYsAALFy7EggUL8Mwzz+Bvf/tbybKqoiiKsu1Cqw5hfXqKWUbAAXc1mUwm40qGlX5+Rt9TqZQV/rJ6DkU+98t9FItF5Io+vPdxae3+cAAYPSiITDrpEu/cL39YErRQKNjJBgV2sVhEJBJxNcuSTcakZ56lTUOhkD2OrOTDKkWcUHBywIkG7+MKCi0+5RKkub9KlEvoVRRly2CjvFsDgQDGjh2LsWPHum7/6KOPsHDhwo0xBEVRFGUzhw2lgNZKNhSkFNAyuszofrFYtBOGfD5vH0eYGMuIN/3/9NfT5sP9y+Zh735sypbwHD3QBx+KttsuxTjFNgU3xwjAJfq5AhCJROz58rhye2n/kVYiuR0nR7L7sCwrKvMcuBpSzuIj99dWkq5afBRly2WTTtMHDx6MwYMHb8ohKIqiKJsJtOoAcEX1ZQScYlWWqywUCjbizyi6bHzFMpi0wYTDYUQiEWQyGZcI5zE4iSgag7dWZsuOdZdBfnsMlu8MBoOuCjqytwAnBXKFIZFI2IkI/wVgE3wBuOw8svqO7GLs9/ttRJ8TJtp8isWirXSUz+cRjUZLLD7eOvztVfHp6LaKomx+9HjdrVmzZmH33XdHdXU1hgwZgjlz5vT0IRVFUZQtjHw+b6P6FJQU5dLmEwqFrHhmsi6r49CuQ9HNiUIul0MqlbICPxaLuSr40OLitRV9vM7B+ubScP+gOqBXVWsnXtqP5GoE90WBzhUAoFXYc8LApFxZJYc191ltiEKe0X6Zj2CMsRMfXiNul0ql7L4DgUBJoy6vbaetCH45O5BG+xVly6JHhf/dd9+NM844A5FIBKeeeio++eQTNDQ0AGjp4HvKKadonX9FURTFeu8BuKw8AGwXXdmB1nrwczmXxYU2HzbEYmIro/j0t1Pwc7JBYcxjFQoFvP1h+fyzsUMDVizTc88oOicBclIibTM8J1mzn5MNHleW9eTtMkovE31ltB9oXXWghSmdTtsVBmnxIZ1J0tWa/Yqy5dOj79prrrkGRxxxBF5++WVcddVVLs9lv379sHr1atx44409OQRFURRlM4cRe1ptaGWRDbUocimUpc2H4tbn85WsCHDbbDbrSsKVwlxW9KGATub8WLa61OYTDwPD+/jsWL19BTh+mUgrG3tR2FPUy/r8srwnJy9M1JW1+Cm4uaogcxeY1CubmRUKBUQiEWs3khYfrdmvKNsWPSr8lyxZgmOPPRYAyi4HTpkyBS+99FJPDkFRFEXZjJF1+yl2AbjKYFLI0xrDJNVsNot8Po9sNmsFPcWxFPLpdBpAi1CORqOuSYMsfcnoPwAsrODtH7MdYEzRRuQ52ZB+e5/P51rBIBTO4XDYjoerFlyZYAJwKBSyqxBAqSh3HMfmI8hoP68RE3p5LcpF+72VebRmv6Js/fSo8K+rq7PWnnIMHToUn3zySU8OQVEURdmMkZ1kKZppw5H172WVH4p2NqSiwA6HwzZqLu1BFP5yNYH2Fwp2mWBbKAL/WVUq/H0OsMvgFpsPhTIj+bS+0JvPGv2yig4nL1wd8Pv9rq6+3AcnQEwK5oSiUrQfgEvcy1WQQqGAaDRqVx2ItO10JKFXa/YrytZBjwr/Qw45BLNmzap4f2Njo3oEFUVRtlEYtQdgRbFMtuU20jLDlQHag+ih9/l8VvgDrdF1TgQYlWfEW3a4lZYgn8+HJasLSGUNvAzvA0RDrVYXWdGH4l9adzhuKdrlyoQsX5rL5VzWHkb9pdCW9iJG+2Vn4mAwaBN9eX6hUMhW+WGUXmv2K8q2S4+q7ssuuwxLly7FqaeeWhL5N8bg/vvvx0477dSTQ1AURVE2U2S0noJWCnAmvcomXBTrrGJDm0woFHJ16i3nY5c2Im4nE4YZ+V+wIlN2vLsOcqytSK5AcFzML5CWIWktkiU9AbgmCNI6w2tBsV7O289rwO2ZLMx+BbJPACcfREbwtWa/omxb9KjwHz16NB555BE8+eSTmDBhAhzHwT/+8Q9ce+21mDJlCubMmYNzzz23J4egKIqibIbQ2w7ARuTLldaU/nV6+22d/a8Evkyo9Zb6zGQyNsLOfRQKBVv+U0bBfT4fVq/L49N1pdV8esWBvlWtpTlZHUhOXJgnIOvccxuKb/7wPGTCLycH7DXAfcpzLRftZ0Sf1h/ap2grklF6b5JuW7adztT3VxRly6DH1+wOPfRQvPPOO7jyyivx4IMP4vrrr285cCCAH/zgBzj77LN7egiKoijKZoa3fKesqe/tWCutMRS2tKBwJUDuU4pwaY+hiJY2H044gsEg8vk8Fq7KlR3vmIEAYOzYWA+fEwlaiXK5nL09Ho+7vP2coDC/QPYBANx2IVkelPvkeWWzWTtpCgQCduVBWnyCwSDC4bDrWgKdi+BrtF9Rtj56NOL/+OOPo76+HgMHDsRNN92Ezz//HMuXL8fChQvxxRdf4E9/+pN+kCiKomxjyPr5TJDlbTLBNZvN2kRXKXhlMqy0Bcnut4xWszKOTOqVJTylXSedLeK9j0ptPkE/sGPflt85iQiHw3Y/LBPKyQTHTK8+7TQyYp5Op61FyNujQDbZ4iqH97rIZl2sCMScB15Tnre87htas1+j/YqyddCjwv+YY47B448/3nownw/Dhg3Dbrvthurq6p48tKIoirIZQg88RSV98ewuKyvYSCuLrFQjBT4FsaxiI1cQgNZy0jLaz0kGVw1yuRyWrCkiV6Zn18gBDnzIWwEvxbas3c9EXa4IcELDSQdtPKxIRFHPaD4nDIzsA61Rd64A0L8PtNifZEIvE55p8WHiMc9dE3oVRelR4S8bdpXjsccew9FHH92TQ1AURVE2I6S332t9kZFtCk8p7ClcOUGgaObjAdgouGyGJTveSosRRTPzAd5aUb52/4h+BSvI/X4/IpFIyXgB2Ci84ziIxWKusp/8V5YX5flR+HMlgRF7HkNOhjhB4gRE9gxgZSAmO3stPjKhVy0+irJt0u3T+FmzZmHu3LmYNGkSgPKNu0h9fT2eeOKJ7h6CoiiKshlSLtoPtHrzKXgZFZf17DlZoLVGimdGwWX1GkbTvcenTcbLmvoC1tTnS27vX92S2EtBzUh+Mpl0RehpK2KTsHA4jHQ6bYVzJBKx586kXpmwywRnRvvligUnF+zEWywWbW1+XhsKeyb6ymh/Z5J0NaFXUbZuuj3iv379evz5z3/Gt771LTiOg7POOgu77747zj77bPzv//4vXnnlFTQ3NwMA3n77bdTV1XX3EBRFUZTNEOntpy9eluDkbRTItqGWsOZwgkBvPCcJ9MvTXiNLaFJYc7+ywy4tO4s+Kb9CvfOgVuFLAc8VBq5W0OZDgR6Px20DMQB2DKzbT0Evy5TKDsDMH+DEhdF/nitzHhzHsZOmTCZj98XOwKSjEfxyFh+N9ivK1kW3R/wvuOACnHPOOZg3bx4mT56MfffdF/l8Hg888ABuv/12uwxaW1uLdevWYdq0ad09BEVRFGUzwyu8KYYpXCmCpRedEXFaaKQ1iGJe2nwA2IkDBSuFPe1CckJBYZ3K5LHoo1KbTygADKrJIhKJ2so89NlT+FPcc5+RSMTmJHCCQetRsVhEKpVyTRg4IYhGo/D7/fa6yORnx3GQyWTs2JkXwWRiTopYslR68qXFp7MJvdpgU1G2PnokYyccDmOfffbB1KlTccEFF+Coo44CACxbtgzz58/HwoULsWLFCgwfPhwXX3xxTwxBURRF2Yxg1RmgNdpP0UrRHAqFbESckwE+NhwOI5PJuMpbMkFWJgHT15/NZq3I5f0ykZaC2+/3Y8nqArL50oj/iAE+REKwKwpVVVU2H4ATB5/PZ8fjOI4tXOFtkMXzymazNoIfiUQAwDURCoVCZaP9PE9ZoYiTCe6Lqwakswm9Hd1WUZQtlx59Zz/55JOuv3fccUfsuOOOGuVXFEXZhpDJu0x0lRF4RtP5O33rjIzL7rhM/PX7/a6a+bJyD0U9bT9Aa+Rblv/kJOKdj8qU8gEwsl9rR11G+2nXkcIfgE3oZUlOwD3BKRaLaG5uthMH2Yk4Go3aaD0nEkRG/wHYhmAy2s/ryc7ARGv2K4riRdfxFEVRlB7F25GX9ellxJ72GGndYSWbcDhsb6MdRdbzZ5SfnnRahOREgvuWFiFjDL5sBj5dV5rU27faQZ+q1mo88XgcQEsiMaGoZ7Q/kUjYSQXvZx5DLpezXYRpa+JjKdxpCZJJvXLCwlUB3sbtuAogJx2a0KsoSjl6NOK/Zs0a/OhHP8Ibb7yBaDSK0aNHY8KECfanf//+PXl4RVEUZRMjS1BKkSsr0UjBLiv8AK2illV8OAFgFFxG3blyIFcCuHIgO/jysYVCAe9+VD6pd8x2DhwHdlIRiUSsVYfHoh3GGGOr/fDcZPMsevulvYi5B5FIxIp2n8/nmljIyj68FjJxWVp/vM26NNqvKEo5elT4f/e738UTTzyBKVOmIBwO4+WXX8aDDz5oP1T69++PCRMmuJp8KYqiKFsPMtrPCDgbTgGwia2cIEhbi6y/z5r4TI6Vwp++fQpxfsfICQBvp2B2HAcF42BRmU69AX+Lv99xWgS2bDgpm4JReLOSj0w85rnmcjnkcjmbc0CxL5N/mQAsr5W3HKls6MUVDHne0pOvHXoVRalEjwr/F154AT/4wQ9w/fXX29s+++wzzJ8/H/Pnz8e8efOwYMGCnhyCoiiKsomgkKX1hkKeib5StNPX720yJb383qRf7ouRfCYH0w4j7Sv8XZYOXbbGIFMmqXfkAB+CfsDnaxHybNjFfcrKRFwNYOQ+k8nYyQA9/LL+vrT/8DGs35/JZFznxzHLFQJ5P2/3VheSqwRtCXlN6FWUbY8efZcnEgmMGzfOdVu/fv0wdepUTJ06tScPrSiKomxCZLlJwB3tz+VyVsDyNjkZYKIqxSztNfTIp1IpAHDV+6fYlscm9OB7Jw3vlCnhCQC7DA4AKLoaYtF7LxOJuV8m5zLaL4V6Npu14y8UCohEIiVJzuWi/dw/J0y8Rjw3HoP74JhkBF9OCMrh3VYtPoqy9dOjyb1HHXUU5s6d25OHUBRFUTZDZLSfApQRcK+9RIpeWW6TSOEMwLUCwO0pnrlC4BXp0krk8/mwrtng47WlSb19Eg76JFrzBuLxuN0X8wyktz4cDiMWi1n/Pc+Vk4VUKuXqQkwRz4kNy3DyWkkrEicHPGd5Pfkjk3FpAeJ1bC+ht6PbKoqy9dCjwv/KK6/EU089hRdffLEnD6MoiqJsRshov4yAeyP79N9L37q0rkgvv6zqA8BaeqQIZ0SfXXRZLUjWwaftqFIJz12HBqzoppWH5yMbinF8kUjETjqAVp98sVhEOp122ZfC4bA9Z9ll1yv6gVYxzgkOz9/bdVhG6r0Wn7Yi+J3ZVlGUrYceFf5jxowBABx66KE4//zz8dxzz6GpqaknD6koiqJsYqSQZaSfpTkpbAFYLz4AG8nm7Xwck4ALhQICgUBJ9B+ATZZl9R8mBMvmWYyYO44DOH68+3FrEjEJ+ICRA1pFMMtnFotF2zysUCjYCUEwGEQsFnN1B6b9JpvNIpPJlKxkSFtSuWi/3JaTDhnt5woA/+U1k9e2vQh+Z7ZVFGXrokeF//HHH4+6ujo4joMbbrgBhx12GGprazFy5EicfPLJ+M1vfoN//etfPTkERVEUZSPSVrTfa/NhB1wJBS9FdiaTKUl2pcimuJfVf+T27Hora/kHg0Gs/MIgnS3TqXc7P4L+1n3KpmK0F9Eq5Pf7EY/HXZ59TlYAIJ1OI5PJ2IlNJBKx+QzS5sPrIROXaRViaVBpFZLXh5Yo7dCrKEpH6dF3/J133gmg5UP63XffxYIFC7Bw4UIsWLAAzzzzDP72t7+V1ClWFEVRtlyk0JZC1VsRh39zUiCj6RTQyWTSVdOfzb04qSgWi6iqqrJJs1xRllV+mpubS2wt//mwfFLvzoP8dhsKa5l/wH0z+ZhinknHtAexWZe3mpHMAQiHw3Y1glF9TlhoXaItiufLBl2M0Mtov8yZ6GhCb3vbKoqy9bFRpvqBQABjx47F2LFjXbd/9NFHWLhw4cYYgqIoitLDyMh6uWi/LKkpRTDQmrArxWgymbSiX0a/C4WCjcZHo1FbJYi+f0bVAVjLDY+VLgTwwZpkydhrYw76V8M+jtF55gw4joNsNotAIIBgMIhwOIxwOFximWHVIdbvl821ZKKzjPZ7G2hx4pHNZu0EKRqN2smFvE4a7VcUpTN0+7v+/PPPt515d9ttN4RCoYrbDh48GIMHD+7uISiKoiibANlVlt14ZYKuTL4FYKvWMLLNkp/09jOJlmI1n8/b6Drr61PkZ7NZe3x68Bl552QgEAjgP5+UX2EeM6g1yk+8JTQ5Xr/fj1gshnA4bBOJAdhzyWQy9py5OkALDysQMQ9ARvu9Y5cTJF5PHovRfjlp4DaV0A69iqJ0u/C/4YYbXK3WR48ebScCEyZMwPjx411dEBVFUZQtn7ai/bxPRv4pohnZNsYgFApZQZtMtkbl2QGXk4FgMIhCoWA7/kYiETQ3N9vtKZSbm5tdHX5DoRDeWlka7XcAjBzg2Mcxd4CCXFqUWMknGo3a/VLQBwIBNDY22rKhsuymLOfpjfZzYsPjA7DRfvYSkCVOZdOzjibpdmZbRVG2Xrpd+C9evBgLFiyw3Xnnz5+Pu+++G3fffbf90Np+++1dE4Gvfe1r3T0MRVEUZSMiI+OshsPOugBcQpfCmhFzJutyIpDJZOyqgLSzeCPjwWDQ+v5pFaKVhuU0KdpDoRA+a/RhXVNpxH9oHx8SEZ+1+TAHQZYc5VgCgQBisZirkhAAW8c/lUrZiYw32s+8A64M8HpIexKPzYh/MBh0NScDKkf723t+5OM12q8o2ybdLvx32mkn7LTTTpg2bZq9bfXq1a6JwPz58/Hwww/joYce0uReRVGULRxZmUaW7wRa7T0Unvl83pbClDX8KXABIJVKuRpVZTIZK6g5maiurrbbsJKPrHTD5lkArOB+e2mm7PjHDGytic+EXApymZTMhN5oNGq/u2RSbzKZRC6Xs+OUPnz+Hg6HAcB17rI6EVdAuHLCiYLs5svSqBua0KvRfkXZdtko6fwDBgzAkUceicsuuwwPPPAAli5dinXr1mH27Nm49tpru+UYs2fPxte//nX07dsX0WgUo0ePxowZM1zLvxvCE088gRNOOAEDBw5EOBxG//79MXnyZFx++eWuCIqiKMq2CAU//5UVcaTY57ZS0DNaz4g8fe+M9svINhN4KXxDoZDNJUin0wgEAigWiwiFQnAcx9U8y+/3A74gFn1YKvwjQWBYH8dG1SnoKby5wsBofyQScZXwBGBFN8t3cvIgE4W90X7aouQ5sZIPhX8gELDnQ7qa0KuiX1G2bTZZHa/q6moccMABuPDCC7u8rz/96U845JBD8PjjjyMSiWDMmDFYsWIFrrrqKuy5555Yu3Ztp/eZz+dx+umn46ijjsLf//53+P1+jBs3DolEAnPmzMGvfvUr275dURRlW0V692WUW94na+BLgU0BzKReNsqS5SsZzWcjr1wuh0gkYnME0um0FeHctzEGTU1NNsodCoWw+NM8coUytfsHOAgFAy5bDr3wtAxJ4R+NRq3FiIRCIbsqwQpCPCfuR0b7OeEhMg+A58/JDW+X28oIfkc69Gr5TkVRyBb/CTB37lxMnz4dAHDTTTdh1apVmDdvHj744APsvvvuWLRoEc4555xO7/f73/8+Zs2ahXHjxuGNN97Ahx9+iDfeeAPLli3DunXr8Mgjj9gPcUVRlG0RGe2XXWUpTgHYUphAa/ddADayzhUAVuahP17Wsk+lUi7PPf31wWAQqVTKNupiiU/ZMZdR+rdWlA/UjN6utcpOoVCwybYyuZeTgmg0astqcnJSKdovRT8Al2WnnDWKkwx5/qFQyE5keF15HXkN24rga/lORVG8dOunwMEHH9zlfTiOg2effbbD28+cORPFYhFnnHEGzj33XHv7wIEDce+992L06NF4+OGH8dZbb5X0EajE7Nmzceutt2LgwIF47rnn0KtXL9f9sVgMxxxzTIfHqCiKsjUiRT+j+FKc8kf63AGUNMaidUZabCjEuQrA48RiMXs/7TKyak4+n7dJvUCLWK5POfjoy1zJ+PtWOehT5XOtHgBwVc/J5/MIh8MIBAKIx+Ou+v7cf6FQQDKZtJMcRvtlwi4DRfK8OWZOIFKplKt8ZygUKlkZ6EySrib0KoripVsj/lwS7cqPXD5tj6amJjz11FMA4BL9ZMSIEXYy8sADD3R4v8w7+PGPf1wi+hVFUZTy3n6gVQjTzsKGU5wcAHDZfKS3XXa7DYfDVojLaj4U1aFQCOl02kbKZWnQbDZr9xMKhbBwearsOYwaAFcTLplsy3wDJsPGYjFr86F1iSKfCb3MJ5CrGrQscXIi8x2kGGfVIu6TkyFp05HfkVq+U1GUDaFbI/7PP/98d+6uXebPn49MJoNwOIxJkyaV3Wa//fbDM888g9dee61D+0yn03j66acBAMceeyzefPNN3HHHHViyZAmi0Sj22GMPfOc739HGY4qibNMwal0u2s+GXDIB1vs7fyhwgVZbkLTPyCRdds2lYPY282ISMGv3B4NB+ANBvL2yqWT8fh8wYoDPlRfARFu5+sCyoZFIxNWFmGMwxiCZTNpJkPTRM7mXjSxl92JuywlANptFLpezx2sv2t+ebceb0KvRfkVRgB4o57kxWbx4MQBg6NCh9gPWy4477ggAeP/99zu0z4ULFyKXyyEej+PBBx/EpZde6lqFePTRR/H//t//w1133YVvfOMb7e7vpptuws0339yhYy9atKhD2ymKomxKpHe8nLefop+3yci1bOjFiLhsZMUVgFwuZ207MoeAwpjRcaA1ot3c3FyynxWf5dGcKU3q3aGvD7FIa3dhJg/TniMrC4VCIVc1H+Lz+ZDL5azwB2AtPTw35i/QlsRjyIpB9PZLi483ydgb/W+vfKdG+xVFKccWLfxZractOw7vW7duXYf2+emnnwJoiTRdcsklmDJlCv74xz9i1113xcqVK/Gzn/0MDzzwAE477TSMHDkS48aNa3d/8+bN69CxFUVRtgQoYGUdewpR2myA1g6zjMB7xa4UpGziBbREyBsaGkpWDpggGwgEkEqlXM28uC0FOy02C1eUt/mMHuizHYBDoZBLlMvx+Hw+xGIxW1ZTTjgCgQDq6+vtY2UDMD5WRvs5XmnvYb4DexlwoiAj9t5+N5rQqyjKhtLjnwizZs3CH/7wByxZsgQ1NTX4+9//jj322KNb9k3/Jz9Yy8HoCxu5tEdTU8uScD6fR58+ffDEE0+gqqoKQEvOwH333YclS5ZgwYIF+NWvfoW//e1vbe5vu+22w8SJEzt07EWLFnV4nIqiKJuCtqL9jNIDcCXoymi/bEQlq9lI3zwAJJNJV5QcgO2ayxUC2mX8fj/S6bQV/xTG2aIfy1aXJvVWRRwMqmu1wHAFQlp5KMTD4TDi8bi1Esl8gmKxiGQyaYV5JBJxnTsnK/IaAK3JzXK1gysUnGDIyROvHa9zW9F+5ijwOFq+U1EUSY9+Itx9990444wzEIlEcOqpp+KTTz5BQ0MDAOCzzz7DKaecgrlz527w/vkhywhPObh8G41GO7VPoCVhmKKf+Hw+XHTRRQCAp59+ut1k5PPOOw9z587t0M+YMWM6NEZFUZRNBYW99PZLTz7gtpdIIer1t3NbrzUom826qvPQuhMOh121/Rntl4msHJfP58M7qzIolrp8MHqgz05KKLIZieckBICt28+ymkxW5qQgnU7bXAAKff6wBKhsZMbxyskTJwWM9Huj/ZwkeK9rOTTaryhKe/So8L/mmmtwxBFH4OWXX8ZVV13linj069cPq1evxo033rjB+6+rqwOANht08T5u29F9AqgoxHl7Q0PDBjUHUxRF2RKRvnPaVABYjzw/41mD3yusZfIsxa5cDWCknDaeXC5nhSx99lxZkBMKVsTx2nzeWlmhdv/A1mRX+udlUi8nJpFIxNp8yuUlyBVib7Sffn0ZmJIdjaV9R3bu9d4ug0udadalCb2KopSjR4X/kiVLcOyxxwJA2Q+gKVOm4KWXXtrg/Y8cORIAsGrVKhuh8bJs2TLXtu0xevRo+7uM/kvk7TK6oiiKsjVTKdovo+S03shJAn/3NqKSkwC5CpBKpazo5+2hUAixWMyWzczn8zbaz8dzZaBYLOKLRuDLxtIV2cG9fKiJ+Vw+/Vwuh3A47CpD6vf7XQ275LlQ0EvrD8+HkXuuOjBXgNF+mXjLiREf4+3Sy+Nx3+1ZfDq6MqAoyrZLjwr/uro6a+0px9ChQ/HJJ59s8P4nTpxoW6W/8cYbZbd58cUXAQD77LNPh/Y5aNAgDBs2DEDrpMELbw+Hw+jdu3dnh60oirLF4bXTSPFOiw8AV6Mqbst/KfTlxEEK1kAggEwmY3MFvMKfn/eypr9MAGbk3nEcvPNheQvo6IE+K8TZZIvnkUql7Bjp649EIiU5CD6fz45DTkDkCoi3/CYnArlczj6e15ArBLLjMQDXJKAj0f6ObqsoyrZLjwr/Qw45BLNmzap4f2NjY5cSjxKJBKZOnQoAZUtmLlmyBM899xwAYNq0aR3e70knnQQAuOuuu8p6+G+//XYAwAEHHKAeSkVRtgmkkJeiUnaiZaSbYl4mrwKwYh+Aa7VA+vJZGpOTCTbzisfj9ni0yjCazr9txSADvPdJ6Spw0A/s2N9fUmWIEwjZaCwajVprEcdIe5Js2OXztfYCYDKvrGYkJxm8VnJfzAWQ4wfcop+rKJXQZl2KonSUHhX+l112GZYuXYpTTz21JPJvjMH999+PnXbaqUvHmDFjBhzHwT333IObb77Zflh++umnOOWUU1AsFnHccceVlN2cMmUKhg8fjuuuu65knxdffDFqamqwaNEiXHTRRdajaYzBH//4Rzz66KNwHAc//elPuzR2RVGULYFK0X6vqGf9eU4EmJgqS1gSaQeSzawymYyN4lOEs4GWFM6BQMAlyKXdc+XnRaTLuD93GuBH0O/Y40vhn0wmbcQ9EokgFAohHo+7fP8AbElPTkA4Dgp/Tn448eGEhhMBPp6lP5kULJN4vXaf9oR8Zxp7KYqybdOjwn/06NF45JFH8OSTT2LChAlwHAf/+Mc/cO2112LKlCmYM2cOzj333C4dY88998S1114LoKWCzrBhwzBx4kRsv/32mDt3LkaNGoVbbrml5HEfffQRVq5cifXr15fc17dvXzz44IOIRqP4n//5HwwYMAB77bUXBg4ciOnTp8NxHPz2t7/FgQce2KWxK4qibAl4G08BKPGpS8ErVwVow5GJsd5Sn7KJFr3z0q8eiUSspcg7WZAJxFxBfn91+WprOw8KuqL0cswyEp9IJGzEnxMQOdng+KSoZ1SeIl2uePBcuRLC23gdeJ7eRGegY826tHynoigdpUc/IYrFIg499FC88847OOmkk1BbW4vrr78eF198Md5880384Ac/wNlnn93l40yfPh3//ve/ceSRR6K5uRnvvvsuhg0bhssuuwxz5sxBnz59Or3PQw89FAsXLsS3v/1txONxzJ8/H/l8Hscccwxmz56Niy++uMvjVhRF2dwpF+2nQJbefFkDX4pyOQngYymOZRlPY4zL5kMhHQ6Hbd4AVxi8IhloFcDJTAErPi8V/tVRBwNqDLLZrKskpzHGNh2jEI/FYrZLLycFFNWFQsFl85ECPRqNuqoY8RxoS2KuAK+XtAXJ5GEZ8W8rgu8t36kWH0VR2qPH1gTz+Tyqq6vxu9/9Dueffz5uuukm3HDDDfjwww/R0NCAYcOGobq6utuOd8ghh+CQQw7p8PYrVqxod5sRI0bgjjvu6MKoFEVRtmy80X5ZPUc2nuLfUojmcjlXIq78nZFzrgAUCgWk02krwim0w+GwFb8s45nP521jLCbKcoxL15gKtfsDruZbsgmXrBRUU1NjKwgxybhYLLoacXHcAMquYnASwZUFWS1I5gTIXgYyh4ICvrPlOzXaryhKe/SY8GfUhD5GoCUiwoo5iqIoyuZNuWg/feoU5xSxQGsE35vUWygUEIvFbKMrn89nu5TL5l6s6APAJsrSkiNXGWQtffr7aRVaXMHmM3I7B/l8zibSxuNxa73hhIK5BPzuSqVSVpBThNNu5BX87CAvk2x5XSjQC4UCgsEgAoGAK5LvbXDGx3emWZdG+xVF6Qg9Gh44/PDD8corr/TkIRRFUZQeQnacldYdWakGaLXwyKReRsopdgkTaGUNe6Cl6y879cqIPx/LiDnv478yCr+uuYjPylSQ3q7Oh0SoNZIeDoftPphTwAlGIpGwNh85Fop92pA4EeLtsskXACvueQ1ZvpMWHyJtS96maFq+U1GU7qZHhf9VV12Ff/3rX/j73//ek4dRFEVRuhnZcIvQ2kPRS+EuPewAXH8bY6zQZbRfThK4TVNTk432UyAz+Zb7k8KfkxFWXSsUCliyuvy5jBkYsKsNxhjEYjF7Ptls1o4lFoshHo8jGo0il8u5VgJox/GWM+VYORZZyYcTAU5O5DkR2dtAriK0V75Tm3UpirIh9Kjw32233WCMwbRp03DaaafhiSeeQGNjY08eUlEURekGZIlIAK7OvNLGwqi3tOjICjZS6Jar689jNTc3W+uOFMgU1rKJFm+nMDfGIF8oYsma0vPw+4Dt+7RaacLhMEKhEPL5vC3LyWOwjCcj+7Jpl9/vtw2+eF4cazgcLrH4yNWIbDZrJ0hsCCavB6+BbOjVFhrtVxRlQ+nRgr8nn3wyFi5ciPXr1+Ovf/0r7r33XjiOgx122AETJkzAxIkTMWHCBBx++OE9OQxFURSlE8ikUfm3FPv8l3XpKWbptaf4p1WHEwZ66imoi8UiUqmUtdBks1lEIhG7Lwp81s2n35+WIVqAVtcDzWWa9e7Qzw/H5BD46nHRaNROFtLptM0PYJMw2nwymYxNBmb0nkm9hULB9ixghR55TjKRWdqfuHIg8eYttFeSU5t1KYrSFXpU+N92220AWr40Fi1ahAULFtif5557Dg888ICrmoGiKIqy6ZGfydJW4q0cQ9Epm2cxos/KOxTC0vZCQU2LC20+wWDQRvspqoPBoK3vD7TWqudxmC+weLUBUBr5HjnAsT78QCBghb+0DjGpl8KfEwIez+/3I51Ol1Ql4qqErHTE8XHfrOTj8/lc0X55vWhDkte0EtqsS1GUrrBRPjX8fj923XVX7LrrrjjttNPs7R999BEWLly4MYagKIqidAAZ7ffacmjrAVqj/YzE8zZG/9kBV/rWZQScke90Oo10Ou2qrU+bjMwHkFWEaPuxtfELwIovSkV/NAQMrgOKRZ9NwGUHXa5KMBIfjUZt0i+TjAHYKD0FfC6Xc0X7OUaZ71CuAhEnQV6bj1wR0GZdiqL0NJs0XDB48GAMHjx4Uw5BURRFEchov2ywJSvRAK2RaRmBpkiX9f1pzeG+aYnh9ul02nrn2QGYVh65UiAj59bX/5XwX/ZZEfliqQgeOcAPY4quajpcZWBUn70CYrEYotEo8vm8nRQEg0EEg0FXLoFsRib7F8hcgHJ2HG90XlqBeJ8261IUpafp8XDB7NmzMXXqVGy//fbYddddceqpp+Jvf/ub2nsURVE2M2REmVF2wG2v4d8UwDKpl+UxmUQrE0+l1YcR/XQ6jUwmY8tpyl4BfDwnH7QOEVbkKRaLWFomqRcARg9sLftJ4S8r+XAFIRgMIh6PIxQKIZVKuSxAzGHgNeE4OYnwdgHmuXKi4jiOPReZNyFXBGSH30rIKksa7VcUZUPp0U+OJ598Eocddhhef/11DB48GL169cK///1vnHzyyRg/fjyWL1/ek4dXFEVROoEssSmDM7JqDdAamZZJvUDrCoFMZPU29GJknI9nUi8j47KSDzv/UkQHg0ErytlIqyFZxOqG0q+y3gkHveJw2Wwo1in8mWvAEp4AbF1/b21+GfGn8GaCsYy+c7wU8kz+ZYTfe73lvirhjfart19RlA2lR4X/z3/+c4wbNw4rVqzAiy++iBdeeAGfffYZ/vGPf6ChoQH7778/1q5d25NDUBRFUToAo/0UmRSpUsAD7mg/E275eEbGKXalyGcyrfTAy2o+AKzQpvAHWkWv7BdQKBSQyWTgOA6WrHGLaTJ6oM/VKViW6ZSlRqW/P5vN2twBViOiNYgTGvYlMMbYiQhXAWTtfor9cDhcMjaZO8Fzba9Zlze3QlEUZUPoUeH/n//8B9/5zndQW1trb3McB8cccwxeffVV5HI5/PKXv+zJISiKoijtICPK0rPPKLuM6lOQs5oOAFdEnCKbYl7exyRYJufKSj20y+TzebvCwG1lGU5ab1oi/wbLPi/9GnMcYMQAf0nzMEb6OQFh7f5EIgHHcazwZ66B7FZMYd+yf8eVgCw7+2azWZdnnyJd2oB4LTob7dfynYqidJUeFf7V1dUVvfwDBw7Eeeedh3/+8589OQRFURSlHWQVGkb9aVMB4Ir2U/zKEp4U06x0wwg40Or95/3cVzabRSaTsfuQx6K4Z9UgCmh+nySTSRhj8FmDQUO6NPo9tLcP0aBxJeCGw2GkUinbbIyCOxKJuGr3y/u4bblOxYFAazdgWd8faI3Kc9XAi4z2t2fbkRMxjfYritJVelT477///pg1a1ZJ3WIyZMgQfPLJJz05BEVRFKUNKPhlQmo5AQ+0Rvu5LX+noPdG+4mMslMcs2Qmu9/SL0+xzGRZ3g/A+vvT6TR8Ph/eX13+u2XUdq2NxuTKA3MG5H2JRMKV9CubdnlzFLz79Eb+WepT5hXwGnMMcmWEx6mEtzqQJvQqitJVevRT5LLLLsPChQtx8skn48svvyy5f/bs2RgwYEBPDkFRFEVpAyn6WYqS4tbr7afwpAAHWiP/rOQjq/9wUsGVBFaxkfkA3CcFNAW/FNTS3sJGWvmCwYovS7/CQgFg+76t+2R0Xo6T+2fTrnw+b+1D8tzlhEXuj+Oh2Gf1IV4jr8XHW9mIj23PtuMt36nRfkVRukqPlgaYMGECZs2ahdNPPx2PPfYYvv71r2PMmDEIh8N46aWX8PTTT+OKK67oySEoiqIoFaDXXNbrp1Cm8CYy2bZctF9WzZH7kp18gRbBm0qlrNBmJJuRfZkQLCcRuVzOJvUWi0Ws/NJBNl8qnEcM8CPgd+A4rRF1NuUCYD34LLPJ5FtG+2VpTdp+ZHKxd1LEc8/n84hGo/Y6eG2uXq8+cwgqIcupqrdfUZTuosdrgn3jG9/AzjvvjF/96ld49NFH8eCDDwIAotEoZsyYgZ/97Gc9PQRFURSlDIxoyyo09JzLLrMy2i+TelmRR0b7vZ1/abGRx6DIljYfeX+5SkJAa+1+AFhaJqkXAEYP9JdMJGSJTUKbDycZrBIkk3UZxZfddTlGin2WHeWYZa8BWb7TO4lqz9uv5TsVRekJNsqnyS677IK//vWvKBQK+OCDD+A4DrbffnuNYCiKomwiGIFmJJ6iV0bgyf9n78/j7Kqq9H/8OXeeqiqpJIQhIQlJSAKEkAQik4AMCiJTCyL4QUURaOiv8rFtmwYRtNFuWsVW6J8MrTKqDPIRVBRlEsIoGRgDGUgCmclQw53Onc7vj+LZd51zz61Ukro15K7361VUcu8Z9tm3qDx77Wet5Y32y7wAvscEWXl9Ge2XXnnZCZd5BIz0y4g/Fx4s4ZnP51Eul5ErAGu21dpe2uIWxo0KuyrmADCRe7mQiUajSCaTANzRft6fwtsrwLkjwgUIrynLhtJWJEuAyutwkVAPuXjSZl2KovQn/S78r776asyePRuzZ8/G5MmTXe8Fg0FMnTq1v2+pKIqi7CAyes7IuExalbYUmSBLUVooFFx17b3Rfh7PEpq8BxtkyW63FMjsiAv0COm8XcQ7a3N45/0M3t+cx9buMsoVC5YVhONTvn/6PiFXtJ/XlJF7Cu5oNGruXygUzA4Hn7dQKCAYDMK2bXMt6d1n/X5p8eHiR+54AFXbDq/RWwRfm3UpitJI+v03yn/8x3+YX4wtLS2YNWuWWQjMnj0bBxxwgP4iUxRFGUQodr2daAG4LDaAW3jKRGBZgScWi7muLcUvvfUU4+l02th/YrGYKdspKwmVyhU8u3gznnltK9J5b+Uey1f0A8AB4yKmOhCtOHLRIm05sVjMWIx4PMcodyd4HkV/OBw2VYVo9eG4uRDg8xIuIgC4qv34oc26FEVpJA1R4NFoFKeccgqy2SwWLVqEZ599FkC1dfqBBx5oFgKHHHIIjjzyyEYMQ1EURfGBibKA27cOuL39MtpPbz9FO20xspKPN9JdKBRQKBRciay2bbsaX7F8ZrlcRjKZxAedRfzmbxuwdrONHeXRRXmcOLOMUamqNUZWD6JQD4fDiEajZgdCPqvsIcDnZCMzinCW7SwUCsYuxMUP5467HLIq0Pa8/d5ov9phFUXpb/pd+P/2t7/FlVdeiT/84Q/4x3/8R/zqV79CPp/HwoULsXjxYixevBiLFi3CL37xCxNVqdfkS1EURelfKpWKaZzFYIwU+hIpPCn86c+np1023vIK/2w2awR/LBZDNps11wqHwzWJwOu3VXDHX9ciX/Svz789NnaW8cCLZZx5WBz7jgnUPBej+JFIBLFYzFWWlFF/HkNrECP9TEJmQnOhUDCLHlqd5BzwfrQKAXAl/vqhzboURWk0/S78zzrrLJx22mm46aabcP311+Puu+/Gtddei8suuwynnnqqOa6rqwuLFi3C4sWL+3sIiqIoSh1s2zbiVHrWgdpov2zYJS0+AEzkXCaeMmGX3ymSmRCbzWaNGG5paUEmkzF2m247iLueXg/bR/QfuN8oHDFzL0zepw2pRATpbAEr1nbihdfX48133T1iCiXgd3/P4XMfDaM9Va2lH4lEYNs2wuGw8ewz+CTLh8pmXLT+xGIxcwxtO+VyGalUygh/Pj+/02ok57JeJ185x965VxRF6U8sx6nnltx1tm3bhuuuuw633HILJk6ciB/84Ac4/fTTG3W7Yc/cuXOxcOFCzJkzBwsWLBjs4SiKsptRLBaRy+UA9IjceDzuEqcAXIsCis9isYhCoYBsNmusK/F43NhlgGrlHXrms9ksOjs7EYlEzAJj69atqFQqSKfTSKVS2LJlS0/N+4qDB160sX5b0TXe8WNb8LVzD8G0Ce11n+md1Vvxk/sW4/2N3a7Xx7YF8ZkjYoiEQ8bGk8vlEA6HMWrUKLS391yTCcj08lN0ZzIZY/FJpVLGjsSFUygUQiqVQjweN4KeuyFs6pXP58295XH1PhtZIUiFv6IojaChNcJGjhyJn/zkJ3j99dcxbdo0nHnmmTj++OPx6quvNvK2iqIoigcKXBKNRmtsKdLnL0t4UszSmhMKhWpErKxg4zgO8vm8iayHw2FTJ79UKiEajZpKOoFAAItWlWpE/6EzxuLH//fYXkU/AEyb0I4f/99jceiMsa7XN3aWsWhl0UT0KapjsZjZhZBjl1YdWao0HA4jHA67FgiO4yAWi7nmQe50cL5lQ7DevP0a7VcUZaAYkOLA+++/Px555BE8+eST2LZtG+bOnYs777xzIG6tKIrS9LB2Pm06tLtQbPIY4vX2S9HLvABpE5KLBkaubdt2NQNjJRx63rPZLILBIArFEha+W12QAD2R/iu/cBii4b4J4Gg4iCu/cBjGj21xvb5wVRHFUtnkkskmW1KoyzwDWpGY1BuLxYww984fu/4CtTYfJgYD26/kI739WvVOUZRG0tDfMCtXrsSbb76JN954A2+++SbefPNNvP322z3t1levbuStFUVRlA8plUqu6jYUvrJJlF/EmdFvin4ApmylFPsU0Iz2SzsRK+cweVbah6LRKN7dWELGdvv6v3buIX0W/SQaDuKr5x6Cf/nps+a1rO1g5aYKDpoYMkKcUXzuBHDngeNlAnM0GjXH2rZthH8oFEIkEkEkEnEtkKTw55xzgdCbmNdmXYqiDCT9LvwvvPBCvPnmm1iyZAmy2Swcx0EqlcLMmTPxkY98BBdffDEOPvhgzJo1q79vrSiKonhgd15GoilGpe1H4lfJR0b7o9FoTSUg/plNvfL5vLHHxGIxdHV19TTkyudN11sK7/c2u0X/gfuN2q69px7TJ7TjwP1GuRJ+391YwEETe0pushIRxyabh/HPcoEQi8VcJUyBnmh/KBRyRfvl7oG0+HjLgHrR8p2Kogw0/S7877zzTiQSCZxxxhn49Kc/jVmzZtV08FUURVEaj+M4rko8jNbLKHO9uv0UpX7ne5t8cWHBmv3sZsvXKaa5eGA5UQDY1OUW/kfM3GuXnvmImXu5hP+mzorLSsNIPscmo+2yMZnMTQCqOxShUMjkCRBZEpQ7Ayz/uT1vv0b7FUUZSBpi9clms/jNb36DP/zhD67OvbNmzcJBBx3Ua2UDRVEUZddh9JoRaArR7UX7GZ1m+U5eg0I4HA67RD/vxWvSH89SmIyU85xSqeRqpLWlO+261uR92nbpuffznL8107N44YIlHo+7knilrUk27OKuBoU8n98b7edc8dko5tnjoJ6Y90b71duvKMpA0O+/aZYuXWqadPFr/vz5AGBqOR9wwAE45JBDTOfeY445pr+HoSiK0tQwqk9vPUtEyiizt5KPFKlMBma0nEKd0XJCe0upVHLZfOiH50Ign8+b67IBWM/ug3sRkUr03uRqe6Ti7sBSqVzNW6Bop/CnQJfj4nGRSMQ8Z6FQQCwWQzAYRCKRqLHucA5kN+TtleSUuy7arEtRlIGi34X/lClTMGXKFJx99tnmtQ0bNrgWAosWLcJdd92FO++8Uzv3Koqi9DMUoRT59JnLCLwXWeJSWnykbYXVaaQ9pVAomCi+7HorI/xA1VLE61H4h4IWikL8p7P+uxF9JZ1zP18oWO1RIDvsUnhzzMVi0Sx+mPzM/AY+ezgcrum+yznmjkelUjE7A32J9mv5TkVRBpIB2Vvcc889ccopp+CUU04xr2nnXkVRlP6Hvn4ARmRTXMp68TyWSPHJZF6KeRntl+fTr08RLTv98joch+z8y0660WgUY0ZEsW5L3lxzxdpOHDR59E4//7trO11/b08Gzbji8TiAnsUIFyjBYBC5XM7sUPA5OY9cOHk7+BIKfx7LcqHeXgESuWOi0X5FUQaSQcskam1txbHHHouvfe1rgzUERVGU3Q4KUIpvKfzr7a5K8cloP8Us32PCqxT+MpmVtetlsjCTedm4S9qOGBXfd4+4aywvvL5+l57fe/7YkT3xLZbglOP1RvtZtYjPTvsSz/XLT5MVfziXXFD44W3WpQm9iqIMJPobR1EUZTeByaUAjI8e6EkclYsBAK4oszfaT+ErS1IyqVdeQ9a3Z1UcwN3FV46LvnrWwI9EIpg2Pul6hjff3YJ3Vm/dqed/e/VWV0UfANhvbI9YZ9OxYrFoniMSiZhcBgp8inHuVsi6/V6RThHP/ACgp2pQb9F+b/lOjfYrijKQqPBXFEXZDZDJpazCwyg2G1MR6dP3RvspjFnhpl60n4sDGUGnsJevSYsPAFd1nGAwiOnjEkjF3dHxn9y3GHZxx3K/7GIZP71vseu1ZCyA/feOmhwFjpu2JD6ntOgA1YZnskOvn0j3in76+vsa7Vdvv6IoA40Kf0VRlGGO9PUTRqcZ7ZfCv563nzXrpRVGdrqlaJWNqhgtl6Jf3oPCn69RTJvouVPGEdNSrrG/v7Eb/3nn3/ss/u1iGf9559/x/sZu1+vzpsQRDgVN7X05R6w8xDwGinrmLXCMsVisbqIuF0qyOVpv9fjl/bV8p6Iog4EKf0VRlGEOPfmEwpMiVEbqJTKKTU+719vPyLwU9fT2y+g1LULyNQpreugdxzHVfLjgKJVKOGxqHHu0uv85emXJRvzfH/9tu7aft1dvxf/98d/wypKNrtfHjgji8Ok9Cwoufjg+7mRwfCy/ydcKhYKxI8ViMdecEtkngXPpWtB4kOU7tVmXoiiDRcNDDh0dHZgzZw7uvfdeHHHEEdi8eTPmzZtn/q4oiqLsPBThgNvCA8AI9t6SegF3Ay5GrwG4fO9S9PO7FLN8TdbH5zG8Hst48jsXGsWCjU/MiuG+F7IoiI2L9zd24xs/fRYH7jcKR8zcC/vt04ZUPIx0roh313bihdfX13j6ASAasnD6Ya2IhEPGy89xctdBJuVKKxDLd1L0U8x7bT5yoQTARPv97Dvez0AtPoqiDBYNF/7lchmrVq1CLpfz/buiKIqyc3gtPt4a+xTf3k67fJ9ilgmujIh7bT5AtWwlrT2ykg3tPDL6TaFbKBTMroO0woRCIWSzWRSLRZRKJYxuDeKMQ2N4ZIENu+ge75vvbvEV+H5EQsDZR6Sw16i4eU5+91bz4dg4Zj5HLBZDIBAw5T/9ovOyKzJ3B/oS7e/tOEVRlEajv30URVGGIbSaEEb35d8B1I3202NOsSttMIA72s/j/PIEpNdfNvCSnX+ZI8Dr0VbDqDmTfyfsEcMFx7YhVls1s0+MbgHOOyqJfUZVqxDJ3gJcfMjyopw3evs5NxT/nAsJvf0U9L0l9Wq0X1GUoYRmFymKogxDZBRZRrEBt7dfWlykhUd6++W1eByr7wBV0U+hzONl91tWAZLNrIrFoktY84s2H9u2jcUI6BHcyYj94Vj6XuYyGbUwe2IYB40DWluiRtzzWb3PxYUJo/zxeNwsDGKxmGku5p0rwgZnXEjQGuRXmlPLdyqKMpRQ4a8oijLMkNF3VpPxRv+B+tF++b7Xl09BTEHL+9FSxAWGvDaFPmv0FwoFc21G9+X3QCBgOv4yR4FJtCs3FmGXasVxLBJAqeygVHYQCgAjkhbGjY5jwpgApuwZRi6bMbkItOgw6s8vjkE27eJzS28/y3cC/tF+mVfB5/Gz78h50vKdiqIMBVT4K4qiDCO8vn5Grf2i/bK0poyAy8i8jNp7a+0T1roHqtV6ZD6ALAPKHQHp92czMYpvoCdqXiwWjQDncW+tqe4ASM4/bg/skSqhq6vLjK+trQ2ZTMaMMZVKmeRhWogY/ec9gsEgbNs2zx+NRs1z0NcvS21KQS87+jLXobdqPt7PSaP9iqIMNurxVxRFGUbISjIUnDL6TtG6vWg/k3FlRaBKpWKuKa9DAUvbi+x+S787hbNM9OVrvL7jOIhGo6ZkJn3ytNVk8yW8u6m29GhbIojxo0PmuhT+XLDkcjlXMjKfQeYhcMHDhQkXJxwzz43H476WKM4F50zuXvhF8rVZl6IoQxGN+CuKogwTZOUcGSWX0X4K7N6i/TIhl9fi8RTVPIf1+YGeRQXFOs/zdq6VOxLexliMetPbz+Moxt9ZV0SltgARDpmcQqVcxsIVWeTsChKxMo48MGrmo1gsGhFOm498bo6NiwF69Ll7wY69yWTSZdvxRvu5CJI7I32N9iuKogwFNOKvKIoyDPBW1fGL7Pcl2i+Tb2XNfhntl0m9UsRT+PM9ACbaTrzHU/Czfj53CGzbRqlUMmMOhUJ4fXXed9xzprSgWCzipeUFvLC8gpeWF1x2Hop3NgfjYoC7IRxHOBx22Zu4EOAORyKR8G2EJudUin7ez4u3WZcKf0VRhgoq/BVFUYY4Xl8/o9cy2s9oukwolSKWthtZkUcKdtpe6FlnAqxsUMUuvEDVAlQqlVxRfUbfpY2GAjoSiaBYLJrkXy4GHMfBtkwFGzprw/3jR0fRFndH0C1YZpeCi5hQKIRIJOJK6GVEn/0DIpGIK6mY9w8EAkilUq4dCmnz4aJLLr64M+AX7dfynYqiDFVU+CuKogxxpK+f4rxefXhvtJ/ilTYcKfwZ8Wa0n1FxXseb7JvP5131/vP5vLENMQIvdxHYIZd/5wIml8uZRGAK79dX+Td1nD2lBaVSyVX2E1b1WrZtmwZazBXggqVUKpnFAO08csycS9btZ/Sfz0y80X5Z7tSbsOuN9muzLkVRhhIN9/i3t7dj5cqV2HPPPQEAY8aMcf1dURRFqY+skEP7DF/3i/ZLbz+hUJXRekbjgarNR0b7vSUrGeFnNJ1/Z2TcsizTCZeRdO8igDsEzBuQuxBvvGfXPHswAMzaL4VCrtv9PLBci5BotKd2PxOHuQtRLBbR0tJiFjTZbNYVteeCIZFImF0KQsEuk3S9uy7eaL53MeZnA1IURRlMGh6KsCwLEyZMcDVDkX9XFEVR/JEeewCuOvR+0f56DbtkiU1Zs19aYmSVGpkDwNco1nl9aZlhJ1xp3WGTLuYN0Jpj27ZZEHBxsGZLGd35WpvPtHEJhAMV1yIEAGD1LF5s2zbXYTWfQqFgxhMMBo33PxAIGOFfKBTMa2zW1VuDMzm3nLvtRfu1fKeiKEMR3YNUFEUZgvjV62cUul43WL4uI+0yqs73+HeKcW+pS1mykteX1X24IGFkXV6fY5Qde2UTrVwuZ65DwV0vqfew/dtcCbxeyxD9++FwGLFYzBzLhREj+pFIxOQncMzcJYjFYq6xymeQQl5G/mkP8n5e6u1XFGWoo8JfURRlCOL1ilNo1usGK4/ne0A12i93AuR32dzKu0DgPend5zmswc/r8z0KaI5Hwki7tydAoeTgnXW1TbsS0QCm7pNwJRj7zQ+FPxtxcVEgxX0wGEQmkzGlPLmY4fteHz53Q+QzyOePRCI152izLkVRhgMq/BVFUYYYMrFW+vr5HpGWFFnJR0b7ZUde2lS8OwPengDSfw/AJNbyPQp4nicr67BJl+yaSxFNXz5Q9fyv2FhC0af66KxJScApGyEvI+isOBQIBBCNRo0FiouRYrFoFgS8D8fM8p7RaBTxeNw32i+7ExO50GGiMNFmXYqiDBdU+CuKogwh/Ep3SouLX7RfRqOlzYei3Ht9784AI9T18gYo7Nl8i39nPgAXD6zT7/dMXDDwOry+X1IvABw6bYSp9y+rDpFKpeKq2MPGYlykcBeAY6T4l75+2eFXCn+ZJM3xy0Rnb7S/nvVKURRlqNFw4X/PPfdg7ty5aG1txfjx4/HKK680+paKoijDEkayibcr7Pa8/d5ovxT5sq498Ub7va/L8p8yqZd1+OV5FPI8jlF6vi93CVhBJ2MDqzZVn5eMaQthr5FhV9nRQCCAUS0hjGoJoi1u1Qh4LnAY7Y9EIsb3n8vlXI2+6O33K7cpex3wueRnEo1GaxYgGu1XFGW40FDhf9ddd+Hzn/88YrEYzj//fKxbtw5dXV0AgE2bNuG8887DggULGjkERVGUYYMUnF6Ljzfa71duUjbLkuU6eY7XvgLA5cvned4kWr5Obz/tMnJRwQTacDhsxDe79HoTgXnOO+vcuxFkzpQWs9PAZ4hEIjjvo2344nEpnHlo2CQjy0TcQqFgdgdisZi5HncpABjRz8h9vaRezhl3OThX7HNAvLsziqIoQ5mGCv8f/ehHOPnkk/Hcc8/h+uuvd/3jsscee2DDhg245ZZbGjkERVGUYYGsLy8baZF6yaP1uvRK+49fNSBZf99bv15G7eV7+XzelMtkZJwCnF56WmtYU9+bcMtcAAC+1XwsALMnt5j7yWeQlhsm7XKBw/njTkA8Hjd5BdIuxJ0APoNX+HvnmaKf95TRfm3WpSjKcKOhv6WWLVuGM844AwB8PY9HH3005s+f38ghKIqiDHn8Snf2xU4ihTCFLY+ROwdArUiVib7eEpzyeO4iMNpfLBZrfp/LPASOi8m2rCpEfz3f35IJYHN3bT7ApLERtCZCLtsTm2XJcpyhUMi8zqZdfC8ej5vny2azZrcjEokYq4/sLyDxzrMU/nIXQct3KooyHGmo8B85cqSx9vix7777Yt26dY0cgqIoypCHybIATPdcST2B6RftB1ATwZe7CUB1YeCt/iM9+TLaT+FPESw9/4yicwFRKBSM3YeLB5bQZPnNYDCIJWtqvf0AcMjkFCyrpzOv7DHgbSrGij18Nop+ivtKpYJisWgSigOBAOLxuKuZpDfa7+26y2cAeqL93upKcg402q8oynCgob+pTjjhBNxzzz113+/u7tZfloqiNDVSYPslh/YW7fc25fLi14jKG+3n9WSfANpzeF0myNLmI6Pl/HMulzMdcyORCHK5nMkDYOlN0zys4uCN93I1442EgJmTWuA4DmzbdtmRyuUy/rggg98vKuHPr9qu8qOs5EObD+eKrzPazwUDUBuhl4sZLjby+aoVSXab12i/oijDlYaq7quuugrLly/H+eefXxP5dxwH9913H6ZMmdLIISiKogxZvJF4r4cc6Fu0X0auZfSf4tjr7ffuCPCLx9F2RKGez+fNAsWbPyAbYMkEYopur+i3LAurPqggV6htyjVjXAzxaNhUDeIY+Bxrt1Xw3uYy1m4pu/IMuIPBuv6ck0wmY66dTCbN/HotPt4Sp7wfrUbcSSDarEtRlOFKQ4X/9OnT8fDDD+NPf/oTZs+eDcuy8Lvf/Q433ngjjj76aLzyyiu4+OKLGzkERVGUIUlv9fpJX7z9MmrvreHPe3iTfHksBTCj/bwfv2QDLxn9pjCOxWKucpe0+eRyOZP0y/dkU7DXV/vX7p8zpcUsGijo+YwuO9OH08RFCJ+bnn+gp5IP54m2IO5A8Hu9xVIgEHB1DGY/gN4+E0VRlOFAw302J554It58802ce+65GDFiBG6++WZ84xvfwN///ndcdtlluOiii/rlPk899RQ+9alPYcyYMYjH45g+fTquueYaV8RnV3j00UfNlvPEiRP75ZqKojQvXkHuJyC9nnMiO+wCVQEsPfuhUMjVARiAyx7DvzNizevJuv0UwNls1nj4ZeIwBTGj+qzqY9u28chTfLNSUa5oYfmGWuE/IhHA5L2TKBQKrkRg+vjrzSEXCN45ZGnPQCBgFig8zlsm1Sv8aTXi6zLar826FEUZzgyIwX7vvffGrbfeig8++AArV67Eq6++is2bN+Omm27ql1+aN910E0444QT88Y9/RCwWw4wZM7Bq1Spcf/31OOyww7B169Zdun53dzcuvfTSXR6noigKUOvr96v/7o0sy4o4FJ+M9nvtPhT93sUFrTgMYkixLCP9xLIs5HI5FItFV6Iv6/bTakM7kcwP8Nb5572WrCnCqXX54OCJcbOIkDkG/DPHLOcHqNqfZAlUjofPmEgkXDkJ8lpcrPBazFPgHLN6kN9notF+RVGGGw0V/rfffjuuuuqq6s0CAUyYMAEzZ85Ea2trv9xjwYIFuOKKKwAAt956K9577z0sXLgQ7777LubOnYslS5bgK1/5yi7d41//9V/x/vvv48wzz9z1ASuK0tR4Pfd+Fh+gfmOoetF+KV4pyL3Raa833XtdinigWuUmk8m4mnjxvqyFz4UIFxmFQsF05vUrv/nqyqzvvMzdv9Wc49dx2Ju8TIHu3TXhNbzRfi6QZMlSKeKlkJcLHWnz0WZdiqIMdxou/JctW+Z67atf/SoSiQSmTp2Khx56aJfv8e///u+oVCq44IILcPHFF5t/QPfee2/8+te/RiAQwEMPPYTXXnttp64/f/583HLLLTjrrLNMTwJFUZSdwc/X71eNp7fGUN5ovzcizte8opjRdP6OlEm5HJe0AbGkphTvjNyzOg4788qkXtnVlxFyLkY2dFZ8a/dP3COM9paIsdfIhRAXNt6GZnxWXpuLDY6B8xGLxVzJx97mZ37RflkClAJfm3UpirI70NDfXCtWrMDhhx9u/v7iiy/i5ptvxsyZM9He3o5zzz0XCxYs2Onrp9Np/PnPfwYA3yThqVOn4vjjjwcAPPDAAzt8/Xw+j4suugipVAo33XTTTo9TURQF6JuvH+i9kg+j4RTIMrmX4rVetF8m/vpF+6XoZ7Rf1rGXIlx20pWdcymuS6WS8f6z2s6iFf45V7P3S5rdApm0zGeUixQAgFNrc5LjL5VKppswm25xAcK54u6GtAB5PyP5nPXyLRRFUYYTDRX+tm2jvb3d/P3+++/H6NGj8fTTT+P555/HvHnz8L3vfW+nr79o0SLYto1oNIp58+b5HvPRj34UQM+iY0f57ne/i3feeQff//73sc8+++z0OBVFUaSNpp6vn8f1Ndrv59eXdhleg110ea1IJOKKqnNsMkGYDbu4Q8FxBYNBU9OegrhQKJgdg3A4bBYE3A0IBAKoOAG89X61MhCJhi1MHxc3Y5CVdrjL4BX+DqrRe0bmZQ4D7VO0+fB6fJ3j9qtqJMuWckfG26xLE3oVRRmuNDRsMWHCBKxYscL8/eGHH8aZZ56JeDwOAPjMZz6DG2+8caevv3TpUgA9HYC928Bk8uTJAIB33nlnh669ePFi/OAHP8C8efNw2WWX7fQYb731Vtx22219OnbJkiU7fR9FUYYuFJSknq+/t8ZQ0ttPUVwsFk3FGWlJ2RFvPxts8c+hUAilUgm2bZtx00ZD64vsassoPQU3E4sp+hmxf3tNDnaxNqv3oAlxhILVhGc5XrmgkZV3LKtafUcm6nL+otEoLMtCMpl0WaFkIjOfVS6umNTL9+Sccjya0KsoynCmocL/9NNPxy9+8Quce+65eOmll7Bq1Sp86lOfMu/H43Fs2rRpp6/Paj1yV8EL39u2bVufr1sul/HlL38ZAHDbbbftkpdz/fr1WLhw4U6fryjK8Kavvn4ALo+9N9ovI+8Ux4w+y5Kc3mg/z6VA9kb7ZVIvr5HP503TLj4DAGOfYX1+r8WGARguCGiticViWPzuB77PfMikhJkj3l/akmTDrUMmxZG1S4hHguZegUAAhUIB8XjcNSes3c9xMhdALq5ktN87d6xapM26FEXZnWio8P+Xf/kXPPjggzjkkEMAAFOmTMEnP/lJ8/6KFSswatSonb4+G8rIGsteuCWdy9W2h6/HD3/4QyxcuBDf/OY3MWvWrJ0eHwDstddemDNnTp+OXbJkyQ6NU1GUoU9fff29+ci9lXxopaGIl771etF+mQwrYbSf16Nth020aB+i+I5Go+Ye+XwelUrFVPLxCmt6+7tyFazcVKh55jFtIYxtqy5OeL6M7rMTbygUwpHTYua52A2Ylh25AAB6OvXKHRKZ/yATd2WiL6/H63NeOH+a0KsoynCnocK/vb0dixcvxn333YeOjg6cd955rn/MHn74YRx88ME7fX0mbbE1vB+23dMohv8YbI9ly5bhuuuuw6RJk3Dttdfu9NjIJZdcgksuuaRPx86dO1d3BxRlN6Iv9fpJbz5y6e2XCb28JiPlrEYDVEtvMpJPoevyyosoN8WwbdtG9MvjaBEKBoPmd24+n3ctQvicXOxwofPy0rTvM8/eL2nmibYlWT+fz0erTqlUQiQScSX18rVisWjOYRlPmXDM97gQkl1+vVWN+J4261IUZXej4aUJkskkvvSlL9W8vmXLFsybNw8nnXTSTl975MiRANBrgy6+x2O3x6WXXop8Po+f/exnSCQSOz02RVGam77W6we27+33i/jLUpZAbbSfNhXZ1MsbsZaddUOhkFk40N/P60oxzfuzm6+ss29Zlum8GwqFEIlEEI5EsPjd2t/RlgXMGBc2PQCYwJvP5000X1YSoo1HdhuWHYFt20Yi0WMbYsMuWU6UOxc997bMtTnHcrHCxUZfdmoURVGGE4NWk2zUqFG46667duka+++/PwDgvffeQ7FY9E3wZXIxj90eCxYsgGVZ+MIXvlDzHm0477//Pvbcc08AwEMPPYQjjzxyp8avKMruyY74+oHa8p31ov38TsEvI9Zeb7/swCtzAeQYvTafrq4uFItFk5grvfv09/O5crmcqfWfSCRMcq/XE//eBwV0ZGpr90/dO4ZktNr517tDUalUEI/Hzdiy2aypsBOLxVxVhqTdJxAIIB6Pm2vVmw85F4z2cwEkn53HK4qi7A40VPhv3LgRX//61/Hyyy8jHo9j+vTpmD17tvkaO3bsLl1/zpw5iER6mr68/PLLOOqoo2qOefbZZwEARxxxRJ+v6zgONm7cWPf9SqVi3u/NZqQoSnPSV18/4I72+4lzRvv9hKs3Yi2RpTG5UOithCe71dK+I0te0qvP87g4YIScJTxlsi/HuPhd/9r9sybGzQKJ15FWJ84JFwXFYhG3P5FGd66C1sRWfP3MvcyxpVLJjI8lPGX1Iwp/Wc5UzoPXZsVdAjl3iqIouwMN/W325S9/Gb/+9a+x1157YezYsXjuuedw9dVX49RTT8Xee++NvffeG6eeeupOXz+VSuETn/gEAPiWzFy2bBmefPJJAMDZZ5/dp2t2dHS4EsLk1y9/+UsAPWVK+dpxxx230+NXFGX3Y0d8/Tye9Bbtl0mq3oi19PZ7o9XS906k4KbIpfBnNR65GAHgirJz91M20aJ/nq9FIhGUnQDeXJ2teeZENID9xoZcFXxkYi9tPnxOWbbUixTswWAQiUTCjJkJw/I5vOVMpfD368ir0X5FUXYnGir8n3nmGVx22WV45pln8Ne//hVr167Fhg0b8Oijj+J73/sejj76aCxbtmyX7nHNNdfAsizcfffduO2228w/AuvXr8d5552HSqWCM888s6Y6z9FHH42JEyfiv//7v3fp/oqiKGRHfP08vl7VGBk990akpXAtlUo10X6ZWMtrymt7O/UyMbhYLJoFgSyNGYvFTO1+VvzhToS0WMqGYqFQCEvW2CiWa2v3z5wQh4Xq4oMLDS4CaO/hIoLWIzh8Ppi5AKoddsPhsKs8JxckErmAkPPApF7ucvD6mtCrKMruREOtPqlUqkZw77HHHvjEJz5hIvW7ymGHHYYbb7wRX//613HJJZfg+uuvx+jRo/HWW2/Btm1MmzYNt99+e815a9aswerVq9HR0dEv41AUpbnZUV8/0HdvP20q9NnL46S3n+MA3H0ApM2HCwlp86H4zefzpvY9dw5Yh5+7CrJLr7QQUbjz2cPhMBat6PJ97pkTouZ4jjEUCsG27ZokXI6/WCwCHz62ZVWfs1wum7KmsVjMNR4AZpx+5UxltJ8LFs6JNutSFGV3pKER/1NPPRULFixo5C0AAFdccQX++te/4pRTTkEmk8Fbb72FCRMm4KqrrsIrr7yC0aNHN3wMiqI0Nzvi6wdqo/1ebz8FqYl2w12CEoBLbEvxL6vsALVVgmSUW4p5XqtQKJhnoIin958LAI5ZdrflPYPBILZ0l/D+5tocqL3aw9ijreccWZSBibvekprymSRecR6JRMy1ZJKw/JKLMdm4jAscmQeg0X5FUXZHGhrx/853voMjjzwSzz77LD760Y828lY44YQTcMIJJ/T5+FWrVu3wPb74xS/ii1/84g6fpyjK7s2O+vqB2mi/33veevjeymXS2y+RuwJeC5GM9gNVAcyGiIz0S2+/3CVgJSApjGViL++/cIl/7f5DJiWMZYjPJXdLGMHn64z2u57dqe5isDSnPIfPJav0+EX75WcmrVRavlNRlN2Vhkb8Z8yYAQA48cQTcfnll+PJJ59EOu3/j4GiKMpwxOvr91px6p3TW7SfUWhG3i3LQiQSqRHwFMuy4o934eE9h9eXEW8m5coGVzw3Ho8jm+1J0GWnXopk3kfajXoEegCvrartQh4MANP27jmnUCggEomYyHwulzPCnXPI8qA1ixurOo8U6ZwfuXPA+fDmO3AO5OfGY9XioyjK7kxDhf9ZZ52FkSNHwrIs/OxnP8NJJ52EESNGYP/998dnP/tZ3HDDDfjLX/7SyCEoiqI0DD9ff1/sId5zJBTnLBXstdQQGe2XEfpoNFpT+tN7bdkQjKKf16AQD4VCNZ16ZUMwjl0uBCiw316bRbZQuxNxwPgEwoGKa2dA3pevRyIRE+2X4p44TrUzMa1IssMvhT/HyoWEbHbGcctov3eBoCiKsrvRUKvPHXfcAaDnH4u33noLixcvxquvvorFixfj8ccfx/333+9KwlIURRkueJtmea0k9ZDVdLzlI2U0vlgsmoVENBqtSfzl4oHHcQysvsPr8zxZIUgK31KpZJ6D9fx5/IgRI5DP501Enq/zWXk+RTYr6yxYvs332WdNqvYCYCUe784DRTzr88ua+l54LK9FES9LkfJastmZ3HHxNurSaL+iKLszA9K5NxQK4eCDD8bBBx/sen3NmjV49dVXB2IIiqIo/Yq0oPTVHiJFKVDr7ZcWH5mQ6j2O0X5ZjQaojfZ7bT7yHtLu4q0KxCTYUCiErq4us8ghtB7JJl8c45ZOG6s/qA3mjEwFsc/IgOkXwL4AoVDIWIkqlYpZ5FD40/MvdzUsC+ZcfnFcPIeLKpk8zHvwuQOBAAqFgllg9cWmpSiKMpwZEOFfj3HjxmHcuHGDOQRFUZQdxush76tg3F60n9F4JrPKjrnyGhThpVLJiF4KYGkRktYWin1G96W3n/5+2cgqHA6b9xnRp9WHkXWZfMwxLFzR6fvss/erJvUCPUnD+Xze1OnntaPRqNlNkIsYADj3mLHI5QuIRnueORKJmIg/559VkPj8/JI7HzLaLysfabRfUZTdnYYbGZ966il84hOfwKRJk3DQQQfh/PPPx/3336/2HkVRhiUUzKSvvn6vkPV69hmJlgm9FP8SCnvZLIuC2buwkGKX33kfRv75WjAYRD6fN175RCJhbD6s+MOmXhTaXBBQNBeKRbzxfm0JT8sCDhpfTeQNh8PGu2/btnkWVuZhQy8ew3uMHx3C9H1TmDAmYpJ5ZS8B6dvnOX4LIEb7ZR+Bep2BFUVRdicaKvz/9Kc/4aSTTsJLL72EcePGob29HX/961/x2c9+FocccghWrlzZyNsriqL0K95k3h1JBPV235WLBYpR1tKn+PWKUXr/uYjwdq71s/nI+8pFAxcwsg8A69nzfHbo5THS0kO7jOwZsGxtDul87bPvv3cU0VC1fGgikTC5ArwHS29KES+j9d7Ow9FoFKFQyMyRzE/g32XEXz637GFQL3laURRld6Shwv/b3/42Zs2ahVWrVuHZZ5/FM888g02bNuF3v/sdurq6cMwxx2Dr1q2NHIKiKEq/4W3S1Vex6E049fP208JDoepN6AUA27bNOGRUmz52bwlLwD/azz/zOxOCuSCJRqMmj8C2bWMDop2IIpv5AKzu8+oqH9UPYNbEWM0OBcdFzz/QE3WPRqPmOWXXXVmBJxqNmnniXPKzkX0P/HYDuOsgm3VptF9RlGahocL/jTfewJe+9CWMGDHCvGZZFk4//XS88MILKBaL+O53v9vIISiKovQLO9OkS55L/DrCsrIOo+B+Cb2M9lMwe+1AfiU8ZbRfVusB4PLoW5ZlklyBHv99LpczNh+W3eR3aanhQqAzU8TKTbUWzpZ4ABPGVJ8lHo8bcZ7L5VxRd1qIZN6AnK9Vm2wsXZvF6g8KriRkuRCRFp96Nh8+g1wgKIqiNAMNFf6tra11vfx77703LrnkEjzyyCONHIKiKMouwwRY0ldfP9B7sy5em5Yb2YzKL9ov/enccaDwleOrF+2Xibp8JjbJ4viA6qKA96RIpvDnuYyol0olLFqRRqW2dD9mToiiIhYbkUjE7Fjk83kTpefOAd+T/n2O74FnP8DdT36AXz+13rX7IBdDssIPr+PNa5B5AJxDRVGUZqChv+2OOeYY3HPPPTWVGcj48eOxbt26Rg5BURRll/CW4NxRodhb+U6gJxJPuwuj3n6LA1n5hgsIimNvEy1ZoUfWrZd2F3kO8wrK5TJisRiy2axJ9mVVIUbq5XWZYFsul/HG+0X4MXPfalIvdzPkIoRzHA6HEYlEzIKC1iOO17vDInsJeC1O3t0IuQDyevs12q8oSjPRUOF/1VVX4dVXX8VnP/tZbNmypeb9p556CnvuuWcjh6AoirLT7GyTLuIt+1lP0MuIup+FqFAouLrrchy0tNSz+QBVi5K3og8999L3Lv3w+XzeLEZM1Z4Pff/SH18ul7F8XQad2dpw/4TRQbTGA0aARyIRk8wrOw+HQiFXwq+8L1/z7h7L3Qe/7r5cZMiFDndL5Gep0X5FUZqJhpYxmD17Nu655x5ccMEF+MMf/oBPfepTmDFjBqLRKObPn4/HHnsM1113XSOHoCiKstN4m3TtaOUX706BF5ayrFQqpia93+KAwp9joJBmxFsmDjMCLyPhfk2ruHtAixGTZlm7n6U95XMz+ZgNuPjnV1fZvs9/0PiwGRcA05RLVuAplUrmWvJY7nxwHIFAABY+bOCF6iLK2xeBzc/4d3kfeby31KeiKEoz0PD6Zeeccw4OOOAAfO9738Pvf/97PPjggwB6to2vueYaXH311Y0egqIoyg7j16RrR8+v16wLgLHuMFrNGvZeuDgA3FFqCtfevP0U9bJkJqPn0uYjo+C2bSOfz6NcLiMej5tIPbvrytKejuOgO1vA8g3V5GUSDwNT946YBQrnUu5AAHBZhjg2mbAra/mDaQ8ffpcNuNgbQFb1kYnItDNVKhWTEK2iX1GUZmNAChcfeOCB+NWvfoVyuYx3330XlmVh0qRJ6q1UFGVIsrNNuohfXoAX27aNGGfEu160n6JZWo28lh6+JqvXyDKWFPry2aRlJxwOG+tRoVAw94pGo6hUKqasJ3cneP6rK7Mo+6RxTd8nhGDAMnYbLkCA6s6BbdsIhUKmWy93EDgXtm2bBYZ34VUulxGJRIz/n3kBQHV3Ri6AiLRcqfBXFKXZGBDh/+6772L16tVIpVKYMWMGUqnUQNxWURRlh/E26dqZqi+9NesCYMQ8o9v1vP35fN6MxWvxkaIeqE3qLZVKCIfDyGQycBwHhUIBkUjE7CBIrz6FealUQi6XM0224vG4GYe32RXvv+hd/9r9M/etduGlZYqLEVYxYrSfol928OUYeyu5yTFFIhGXtYnX40KACw1WD/KW+lQURWkWGvpbb/369TjmmGMwdepUnHjiiTj88MMxatQonHHGGXj11VcbeWtFUZQdxpvM6xeF78s1eqvkw6ZYFO2yGZWE5TSBqtVIWnKAasMujlWKfgpdlgvldbxRcFkZqFAomGg/I/FAdXdCVhUCgBXr89iWqQ337z3SQnsqgFgs5noe6cGXPQu8uQ3S5iOTmS1UF1B8Pr/qPqwcBMBV31/mK6joVxSlGWloxP+yyy7D/PnzccEFF+BjH/sYHMfByy+/jF/96leYN28efvKTn+DSSy9t5BAURVH6zK4m8/IaxC/az+i57ITrtzhg5B2A6xjZyVbmIDCSTvsQo/sU7LTc0G5TLpcRjUZdPnk21AqHw2htbQXgrigkO+GWy2UsfDfnOwcH7xs2XXgzmYyxEHlLeYZCIUQiEVfjrlgs5rImycZeEs4DF0T5fM/OA2v5c2HFsqAAXHYhFf6KojQjDRX+Tz/9NC666CLcdttt5rULL7wQ3//+9/Fv//ZvuPzyyzF+/HiceuqpjRyGoijKdvF25vUTm9tje826aHHhMb1F+ynQaWWRlXF4L7kzwYWATNalaGeibjqdNjsCfEZG+NPpNGzbRiQSQSQSQSKRQCaTMU28ZDfdcDiMTVvTWLqutppPPAzsv3fE5AZISxOtPLJCEav3SG8/rVC9JUfLJl/ehQJQ25lYlu5Um4+iKM1KQ4W/ZVn4yEc+UvP6yJEjccstt+Ddd9/F9ddfr8JfUZRBRVaZAXY8mZf0Fu2nlYb3kpVsJI7jIJvNGiHLxYH3mt5qPizDyYi97AjM8yjiS6USotGoq0Z+V1eXGU9LSwuAakUhCnWOoVAo4NVVeTg+nXoP2CeAcCiIWCxmavVzx6FSqZhqRozkx2Ixc02ZsMzqOyxzCgDfvXAGwuGwWZQx/0IuuOQiiNF+7+6Nin5FUZqVhv72O+KII/DSSy/Vff/Tn/60ev0VRRlU+iOZF6gt3+kX7ZeWmXolJW3bdvnvpWDdXrSfQp7X4Q6At3GWrMwD9Fh8pBhPpVIoFArGPlMsFhGJRMyCoVgsYZGPzceCg5n7hhGNRs1uQrFYdEX6ZVlR2nwY7eezyGfjPDlilcFjOc/SosX5lHkN3kWYCn9FUZqVhv72u/rqq3H//ffj//2//+f7/pYtW9De3t7IISiKotSlP5J5eZ3eEnqlxUdWlvHmEFQqFeOzB4BYLOaKtPPPMqmXgppCVwp/2n6i0Siy2axZCCQSCWPdKRaL6O7uNr0EWlpaTN1+GTWnWHccB8s3FNCdq03qHT/Kwqi2GJLJpInsy8ZZ9PrzXoz2c0Ekvfl8Ntm1l4m8nD+ZwMwFFQCzS8HFAbv88poq/BVFaVYa+tvv+OOPh+M4OPvss/HZz34Wf/nLX7B582Z0dHTgkUcewY033ohLLrmkkUNQFEWpS38k8wK15TulsKTYZrSbUfx6ib9+Cb28LoCapF7uWFCYM9GV943FYigWi8a2I3cbHMdBPp+HbdvGVtPa2mqaeDEZmFH1nmh/sW4Jz4P3DRlBn8lkzBxzwVAoFMziKpFImKpBfC4+j7fMqawkJBuYcUEiP0O5EPDLs1DRryhKM9NQj/9FF12E119/Ha+99hruv/9+PPDAA673DznkEBx66KFYs2YNxo0b18ihKIqiuOiPZF6g92i/FOWyNKWfIKU4ZyReimJvtF8KXZmfwGuy8y4Tg7u6uky0nXXzubuQTqdrov3btm0z0XpGyLlo+KAjjxUbapN6U1EHU/aKIRaL1Sx2QqGQa8cjGo2aij5cfJnuvIBLtFPMW5aFR1/agFLFQjIewWdP2t+UB5WViTjX9er/q/BXFKWZaajwv/nmm82fV69ejVdffdX1tXjxYnzqU58CALS2tuLAAw/EzJkz8bOf/ayRw1IUpcmhFYTsbDIv0HtCL4WvbEblF+1n5J0LEVmzn9cl0uYjK9fQApPJZFze/kqlYl4DgHg8bgRzJpMxjb3i8Tji8TgqlQry+Twsy3KV/uR7i1fVin4AOHBcT5ffRCKB7u5uVylNy7JMvgAAsyvA5ymVSqaxo7QscYeBuxPPv7EF29IFtLdE8bmTZ5ixMS/Amx8gG4MBavNRFEUZkM69ADBhwgRMmDABp59+unktk8ng9ddfdy0GfvWrX6nwVxSlYVBokp1N5uW16pXvlPXqGX2XNhUJ/fgy8ZfIRYK0+QDuBQzr9MtryTr6jNizK65t26aZViwWQyqVQigUQjabNYnBxWLRVBUKh8OwCyUs9knqDVgOZu+XMMcyT6FQKCAej5uoPC1DvBefQfrw5e4IcxCMR59rJQummo88x7tY8n6uO5O/oSiKsjvRUOF/++23Y+XKlfj+97/v+34ymcThhx+Oww8/vJHDUBRFAVBbwcfPCrIj1Iv2y0g8Rb+rA62I9rNmP4+LRqOu9+X45C6FfBYZ7WeiL61CbARWqVSQSqUQDAZh2zY6OztNU61kMmmaedFuJG1HtEG9vcZGrlCb1DtxNDCipcfmk8vlEAgEYNu2yZtIp9Nm/PF43JQyZcWfeDyOcDiMfD7vSkhm3gIAl/UJgNm14OIKgJk37qpwcSDPURRFaWYa+lvw9ttvx7Jly1yvffWrX0UikcDUqVPx0EMPNfL2iqIoBr8KPjubzAv0Xr6T73mTTL3HsbwmBT0FMekt2i+bU7EkJstnAj12oWw2a8R1MBhEPB43VXwY7Y9Go2hpaTHVgWg5yufzZhchEonAcRy8sjzjOxdz9oub+vqsBpTP513inNdvaWkxwlw+N3cYpD8fqO5kuD8ry7XbQouPFP78XORntLN2LkVRlN2Fhgr/FStWuKL5L774Im6++WbMnDkT7e3tOPfcc7FgwYJGDkFRFAVA/1XwAXpP6KWtxivUGZWX12DJSwpz75i8iwSOXyYm8zxG9hntZ94Aj02lUqbiDz3/oVDICHFet1QquRYLoVAIoVAI67cW8P7mQs1cjIhXsN9eCVOKk0KfTbtkVZ9YLGYactGSZFkW4vE4ABjhz3sC/h2QLas6HzyHuyqy1KdG+xVFUdw09DehbduuOv33338/Ro8ejaeffhrPP/885s2bh+9973uNHIKiKEq/VfAh9cp3ygWBt9ut13NOkc3jOCa/uv28HuDuMsyqPRTrTMYNh8PI5XJGhLNDrm3b5nWeyy69FO1cMHAsTMJ9eWnady4OHBd0iXnahGR9fo41Go0aCw/nisnGMg9BNjartzPDhZWsCiSPZeUiosJfURSlwcJ/woQJWLFihfn7ww8/jDPPPBPxeBzBYBCf+cxnNOKvKEpD6c8KPkCt8JbRaIpQil1p8/HbFaDwlxFuv+t6o/2E1X9oz2GFHi4qOJ5YLGZ897TihMNhtLa2GisNk3FLpZIR7lx8pHMlvL46WzMXoYCDQ/ZLmXr7snY/y3ACVZtNS0sLAoGAq4txMpk05zB6L20+chFggbYn1I32c/44//L+iqIozU5Dhf/pp5+OX/ziF3j99dfxv//7v1i1apUp3wn0lJXbtGlTI4egKEoT058VfIjX4kNBKZNMpfdclpXkaxT+UvTLaL9XqMpdBD4PI+gU68Vi0ewc0EbDaH80GjWin9H+cDhsRDeFv23bpqIPcwKCwSAWLE+jVH1sw9SxDlpTMWOrYY4BK/XIOeA4+CzFYhGxWMxlS6KXn/MaiUTMs/b8gXeujpe2HpkfodF+RVEUfxpa1edf/uVf8OCDD+KQQw4BAEyZMgWf/OQnzfsrVqzAqFGjGjkERVGalP6u4AO4xb2Myst7McosG3bJaD4FuazIQw+8rP4jn4P3ZBddAMYyUygUTGJsOBw24pu2H1p18vm8sf7Q4iN98Mw3yGazCIVCCIfDPXadioOX3+n2nY9ZEyKm/Ch3EmRDLe4sMLLPcp6cR5lUzPPkvTnPABN2q4shPjeFvzyeFYOICn9FUZQeGir829vbsXjxYtx3333o6OjAeeed5/oH8OGHH8bBBx/cyCEoitKE9HcFH17TaxkiUmTKRlIymg+4G3oxqu4VuF5vvxTmrHjD52G0X/YAyGaz5l4U0BT0hUIBgUAAsVgMiUTCVQmnWCyaZGA29AoGg3hjVQZdudoSnvuMqGDsyKgps0l/P5t2cdwU3dFo1NXFOBwOIx6Pw3Ec5HI5s0vAXRlv195AIICDJo9CZ9pGSyJs8hAAuBYKrOSjNh9FUZRaGt7AK5lM4ktf+lLN61u2bMG8efNw0kknNXoIiqI0Gf1ZwYd4y3dS0Mp7UaQyYZe2FaBqO+J3b6SaY/VGp3lfGe2PxWIol8tmMUCxLavy0M4D9ET7uRCKRCJIJBIua5FlWcjlcmbREIlEjAXnhbe7fOfjoHE9C4hwOIxisQjbts0CiBV+uOiJRqOIRCJmDOVyGW1tbeZ5ZLQ/FAohEonUjC8cDuMbn5uLQqEA27ZNPoFfw7N6FZcURVGanQHr3Otl1KhRuOuuuwbr9oqi7Kb0dwUfwB3tlwsJmegLVJtKAVULD6PWXCDQ4sPotoy6+0X76WWXz8NEXRlBD4VCpnY+S2jyz7lcziwO6LWXSbTcEWDUnQuDtZvzeO+D2hKeLdEKJu0RMdF+2TiMop8Wp2AwWBPtD4VC5h7MKwB6IveRSMRYn2S0PxQKmZ0Sevt5jpx/zhvnS20+iqIoVRr+G/Gee+7B3Llz0draivHjx+OVV15p9C0VRWlS+ruCD/Hr0OvNIWBJSvrOZbTf29CLOwbeqLY3Ok0xzW62FP6yAg7HwEWIXHhw0SB3ABKJhMv+EggEkM1mkU6nzY4AFwYvveNfwnPanhVTk585BbLCDu8PVDvucny8BxN3uWjgQoHNwjifMk+Cop/C3lv1hxYjuTOjKIqiVGnob8W77roLn//85xGLxXD++edj3bp16Orq2TbetGkTzjvvPC3nqShKv9CICj5A/YReafGhr5z3l+U5vQ29vN1liVf0c6FA+wwr18gx8Tt3AHie9Lnn83nX+eySK+/X3d1tFhepVArBYBCZfBmvrart1BsKODhwXMhE5rnzwF0G5gjISjscC6sYRaNRhMNhlMtl5HI5swCiV5/j43yzM7FcBHEXgOfyNa3moyiKUp+G/lb80Y9+hJNPPhnPPfccrr/+evOPJADsscce2LBhA2655ZZGDkFRlCaAPncio+27Qr2EXu9iwLIsVyMpLjrk+bK2vTeht160n5V2mAtAsSwr43CxIe9D8UxRzjFFo1FTbYeiuFwuo7u7p2oPE38rlQr+vqwb5dqcXkweU0Yq0ePZL5fLsG3b7DLwObijwDwBRu9Z1pOdenO5nGt8rEBEAU8xz+e+7n9fxtW3L8R//eoNs6PBe/HvavNRFEWpT0N/Ky5btgxnnHEGAPhutx999NGYP39+I4egKMpuTiPKdhK/hF7vzgKTSSm8ZflOLgYY6ZcNvSTe6D+r48iSnxTa/GLpTOYVyEg5LTJsxOU4jskN4LPwe0dHh6ntz0o+pbKDv9fr1LuPZexAsocA7ysTerkoYsIzS3Uy0ZfRfqDHEiTFvBT+3NHYsDWHdZtz2Lgt76riQ5Evo/2a1KsoilJLQ4X/yJEjjbXHj3333Rfr1q1r5BAURdmNaUTZTuLt0MtEXK/oB+CK9jOZWCYZ8zp+0X7pUSf06jNKzio30t4jrUZcoHBXQe4WcCEUj8fNLoT00W/dutWMI5FIAABeW5lGt08Jz73bythjRLWEZy6XM+OkNYd1+2kp4ngAmLwACnnu0tCCROEvqwKxapCcd86lt++BN9FaURRFcdPQ34wnnHAC7rnnnrrvd3d36y9nRVF2mkaU7ZTXJhS13h0A2ZAKgMujLrvt8jVGpuUOqF9k2rZtc34kEjFCWEb8i8WiaVTF60vLk23bZj5o3wHcOQAdHR2mHn4kEjFe+ueX+DfsmrFXxYyHwp2RfNbmp12ICxUugmi/4rFMBubChNV55Hl8T85HD9WSqbQWeZN6tXa/oihKLQ1V3VdddRWWL1+O888/vyby7zgO7rvvPkyZMqWRQ1AUZTeFwhHov7KdRAp8iktp5+EiQybfei0+QDUqTVHqXZj4RftlhRzuIADuqji0+Egxzx0G7oIwYs7oO+9HC04oFEJ3d7e5TywWQzAYxLK1WWzqdEfXAaAtXsF+YyNm94GR/kKhYCoN8dqcL0bwAZiKPbQm8Vmk8OdCgHMVDAbN4sKNe/HFOZbzqiiKotTS0N+O06dPx8MPP4w//elPmD17NizLwu9+9zvceOONOProo/HKK6/g4osvbuQQFEXZDfHW6u+vsp2Af0JvvSRfWcKSQrVeQy9v+U55HXlvimKg6nuXvn7eU+YOeBN+y+WysfMw2i/98+VyGfl8Hh0dHUaox2KxDxt2+Uf7D9oHxnoju/TyPuFw2Ox4UMQz2i8r9vD+3KmQ9izp75f2HUb35dzJHQFAa/criqL0hYY38DrxxBPx5ptv4jvf+Q4efPBB3HzzzT03DoVw2WWX4aKLLmr0EBRF2Y3wq9Xfn0JPCncKU3aW9b4mk29ZeUZG4b1dfCXeZl1ANdrPSDgFNBcejLBL25FcEFiWZQQ1FwyMxnPngMKb0X4eGwqFsG5zDis21DbsiocdTNurulsgm5Gxln8qlTILgEKh4GpOFgqFEI/HzWKF53MuZfUfzp2sYATULpLkgs9rwVKbj6Ioij8D0rl37733xq233oqf/exneP/999HV1YUJEyagtbV1IG6vKMpughSCQP+LfvrkgWpE2ZtHQD89BTqj2YA7L4BVfGSlG+91vM/GaD8994B7B0Lek+KW1X14DaAqfumn996zXC6js7PT3DuZTKJcLuP5OtH+6XtVEAlHTSfgUCiErq4uk8gbDofNZyGrCvHZZUKzbHImq/Zw3LT5cJHAxUnPHFcFvdcGJV9XFEVR/BkQ4U8CgQAmTJgwkLdUFGU3wa9BV3+WbPRW7PGz+DCPQNpxGDH3E/20udBmI7vayqg0j6Wwp5Bm4yvaeJjQ6432cxdANs+Sgpp2HI4zn88jn8+7+gN0Zop48718zbyEAsCB+wSNsJfJxMxziMfjrkURv8v7czHi7YHAhGDuTvB1AK7563mv2gtG9kpQm4+iKErfaMhvyE2bNuHOO+/ET37yE7z00kt1j6tUKvjb3/7WiCEoirIb4Vc7v7/rtPvZRbwLAVkqE4CJzHuTgTlmmWArm3V5xSk70jIhVtpaOAZG9XkNCmh27PVWzuH9pKWGC4nOzk4zXtqJ/r4s69uwa8oeFbQkwi4rTi6XM9F+GemXlXX4+XCRQ+8+RTqvxftzzjlemfzL55JNIP2i/Vq7X1EUpXf6PeL/2muv4cQTT8SWLVvMP3YXXHAB7rjjDgBANpvFH//4R5P029HR4VOxQVEUpQdGvBtRq5/I8psATDUZKWIpPGU1IYpfbxdfLlRkqcl60X4p4CmQZcKqrNsvu+1yh4D5B7JHACPzTKilQC+VSigUCshms2a84XAYhZKDhe9mfedm5jjLzLl3VwRw7yYw2i8bd3mTcvlcPFcugij8mUPBRQUXB2ceMwG5fBHxWNjVRZlotF9RFKV3+l34X3311eju7sbVV1+NSZMm4Y9//CPuvvtuHHHEEVi3bh1+/OMfI5PJwHEczJgxAxdeeGF/D0FRlN0EvwZdjPT2J97IvoxcS288xTbHQqsLoWVF2oCk5cXr7aegl+U35cKA98rn8+b6PJbJxVxo0DLDpFhpx5GCOJfLmeflMyx8N4d8oRpNJxNGORiZqnb+tW27Jnm5UqkgHo+bhY7jOIhGo7Bt2+wyyKi+d4El/1wsFs2cchHBZ8rlcjjukD3N/bR2v6Ioyo7T78L/73//O/6//+//w3e/+10AwIUXXoivfOUr+Na3voWtW7di9uzZuPDCC/GpT31K/f6KotTFK/r7u0EX8e4mANUosuwPwFKbXosMoWCl997boZfHyOeTNh6KXI6B1h8eJ3cXCoWC6WbrFb7Shy9tP1yQMNpPQV4qV/DS0jrR/n0csxDhc/HPcm4o2jl2ucsg7VDy2aXvXxIKhUyZUACmAzCf1VvNh2i0X1EUZfv0+2/KTZs2YebMma7XLr/8cmzZsgWf+9zn8Morr+Dyyy9X0a8oSl289p7+btAl7+ONQPt17AXgaiQlxTBQFZ3yet6EXm+zLop62QBMJgJTSDNyLncTWEef92RUPxQKmeZess49I+O2bSOXy7l89kvXl9CRqbVbjm0F9mjtmftYLGbKhQLuakrcYWB0X5bmZD8BLoT4mXKHgmOQViX+mc/McqScL+n3lws09fcriqJsn4aESLy/gMeNGwcAOOeccxpxO0VRdjO8DboaIfp5H8JSlcTbHIrJtYyq+3X2leU7pegH3NF+2YXXtm0jZHk/WZ5TiudKpYJsNusqdSl99PJ3L+eNot9xHGSzWVfSbDgcxnNLMr5zc9A+1cRa2SiMFhvucMguvbxnPp83z87a/wDMuCORSM38yvwIuVPAeQCAzkwRnZkStnXbrt0WjfYriqL0jYaU83zppZcwc+ZMHHDAAa6IWTKZbMTtFEXZjZDJs40U/d6ykgDqJhBLb7s3WZURae5SyIReaX2R9/BafLzVbCiwbdt2lRXN5XI1Dcyk4ObuAAAjmjlu27aRz+fNuZFIBCs2lrG5y52sCwAjkxbGjSghHI6aiL5sRMboPz8bWZNfRuxp55HJ0uVyGbFYzMwlk5bl+d5oPxc53/nlYmzrLmBUWwy3Xfkx1xwoiqIo26chYZKbbroJhxxyCFKpFA477DB87Wtfg2VZWLlypSk9pyiK4kVG+oFqCc3+xludhpFm/tlbTrOe/cfbaEraVWT5TilMpd3FG0HnDoCs1c/FQLFYRD6fN8Ja7jywso6MyvMZZH5CPp83CcGhUAjPv+0f7T94nINwuNp0TC5qTG7Ah+VDaVUCeqL7FPK0CHEeZMlT2o8o/L2fs2yKJufW+xkCmtSrKIqyI/R7xH/p0qVYvHgxFi1aZL4WLFgAALj44ovxj//4j5g6dSpmzZqFWbNm4eCDD8Ypp5zS38NQFGWYQR83YZWaRt2LSNEPuBcbMqFXRqIBmMg+hS+FMa/nF+2XuwwUyBSwoVDIlPQEenYDGG2vVCqmGhrPo8CnyGdDLgCIxWIuoVwoFJDL5VyR+vWdAazbWhXtpDVuYUJ7EZFIwohqWX6TTcJ4/1KphFgsVpMYzYg954jR/mg0ap6bx3LOudAIhULm2WWytMXOvWINoDYfRVGUvtPvwn/KlCmYMmUKzj77bPPahg0bXAuBRYsW4b777sNvfvObmsoMiqI0H177SiNFvxTfAFwC2Vv6kpVz5LiAqhWI0XvaYBgR9yvfKZuQyaRUimHudlAoy0o6tm3X5D1w7Ey8ZfJsJBJxlRktlUomqZfvh8NhPP+qf7R/1nggGqk252LPANmQixYljoV2HhnVp50nGAwazz+7/PIYRvuZR8BdAFqIahqjGd3vuO6tKIqi9I2GePy97LnnnjjllFNckf2uri4sWrQIixcvHoghKIoyRKGwJF7x3Z/IKLO3065snAXA1RWXCbaMSlOoUphKq46EdhtpLeLx3rKfrOIjbTXMd2C0v1wuG5uNbKrFZl2sqsMFBHsE0N/PhcjWbBirNqVr5icRAfYbUwFQrQrEXQjaibjbwEWBLOkpG5sxsi8TlfnZcgeFNiX5eXAhwM9JJv56UZuPoijKjjEgwt+P1tZWHHvssTj22GMHawiKogwyfqK/kYmaskSoNzLv7RHAkpkU0XyfthRafGh5kfXtgaoViMfwvhSysqSm7Mor36evX/r9OXbLshCNRk2H21KphHg87rLIOI6DfD6PXC4H27YRi8UQDofx4pKc7/zM2jeAUKDs+hxk12FvaVJZwUgey0o+oVAI6XTaWJHi8biZD16fCwo+ExdY/LmQuzNeNNqvKIqyY/Trb8233357p89dsmRJP45EUZShjlf0y/KOjbofRaRXzHorB8luurTiANXdCJmgKxN6ibT4SBuTTMD1LgB4HpNvC4UCKpWKSehlJ1suWGTFG8KoP0V5Pp9HPp9HJpMxYr27EMbSdfma+YmGgWl7Ca6DPQAAbTdJREFUVhcX3Dng83kXAnyddhs+Szgcdll1vJV7ZOffcDjsKhcqy4fK+fKz9Hj7IiiKoijbp19/ax500EE4//zz8cILL/T5nGeffRaf+cxncPDBB/fnUBRFGcL4if5GdOUl0mrj9cl7K8qwsg6tNYxAU/xKuxA96jxPRvulR5/v84u7BBKZ78RovywjSjFNG1A4HDa7DpVKBdFo1DwLFyG0+Ni2bQT5i0v9K6vNHBdAKFC12wAwuQPyueT7fk28KOZlroK0BMm5p99fevuZK8A5I37CX1EURdkx+vVf2meeeQbf/OY3cdRRR2HixIk4+eSTcdhhh2G//fbDyJEj4TgOtm3bhuXLl+Pll1/GX/7yF7z//vs4/PDD8be//a0/h6IoyhBloEU/ACOQZYdY3tsrIJlIK4WstPrIBF0Z6fZL6GU1G8JIPschFx20wwAwTbr4d0KBLGvp87oU/tyNYLQ/l8uZZ00Xo1iyprNmfsJB4IC9HbNo8PPOyxKjsmEYF0NcfFC8M5mZUX529JU7BRyvvJZ3B8SbN0G0dr+iKMqO06//2h555JGYP38+nn76adx666246667cMstt9T8A+I4DhKJBE477TTccccdOO644/pzGIqiDFFkZRtgYEQ/hTCj/t7KPBLWy6cVJ5FIuI7j6xS6tNbI33FygeAVrVz0yEUCLS9MomWUn4uPSCRiqujQzy8tQZxDPhfQM8+5XA65XM6UBQ2FQnj6Lf9o/0HjgogEywB6FhAU4HKcclHAxGN6+eWOAPMDCoWCSe71dvel6OeuAP8sk3plDwGv1ceU9VQURVF2iIb8i3vcccfhuOOOQ6lUwoIFC7BkyRJ88MEHAIAxY8ZgxowZmDt3br/+g//UU0/hRz/6EV566SWk02lMmDAB55xzDq688sod6hjsOA5eeOEFPPLII5g/fz6WLFmCrq4ujBgxArNnz8YXvvAFnH/++VpJQlF2ENpXyECIfnr0Abctxy+ZF4BJpK1UKqYsJi0q0i4kk1N5PT4TI+NSwAJVCxGtL6xmIyvzULAHAgHk83mEw2GXt5+7BIz2UxAzaZe1/LPZLDKZjMkTiEaj6LTDeGdtbSWfcBA4eDxMZJ6iXz6ftPKwbCgFPnc8IpEIgsGgqfUvF0kU7azow89e7gBISxHnTdqyKpUKrv3yYahUHJNzoSiKouwYllNvH3UYcdNNN+FrX/saHMfBuHHjMGbMGLz11luwbRszZszA/Pnz0d7e3qdrPfHEEzjxxBPN32lTWrlyJbZu3QoAOPXUU/Hb3/623//xmTt3LhYuXIg5c+aYpmeKsjswGKKfYpqCndFxv2ReAK5a94FAAIlEApFIxIhWWnRYb15Ws6EIZ9SdJSz5HhuBsTwoS1ZyAZLNZlEqlZBOp10LgGg0inw+b6L+FN6FQsGcG4lEkEqlzDPbto0PPvgAnZ2dyGazAIBEIoHHXnewfEN1XGTOxCAOnVgtrcndAS5eHMdBKpUyeQJAz8InkUi4avBHo1FEo1Ekk0l0d3e7Fjo8Dqj2Qkgmky5vP3MpOGdc/HDngYsq2q8URVGUHWens6MqlQreeustvPjii1i6dGl/jmmHWLBgAa644goAwK233or33nsPCxcuxLvvvou5c+diyZIl+MpXvtLn6zmOg0mTJuEnP/kJNm7ciBUrVuCVV17Bli1bcNdddyEajeKPf/wjrr322gY9kaLsXgyG6AeqJTS9pTC9ybwcYz6fNxF9RtD9ynGyhCVQm9ALwPWssmY9E4Y5Bn6n/ce2bSPubdt2leqUvnpenxF3RtoZke/u7kY+nzeWpVAohK3ZoK/oDweBQ/at/jPgjfZzMSBtP1z0SNsOhbnsNMyFgxTztPTInQIuwuRnInc45FzKeVYURVF2nB0W/sViEf/6r/+K9vZ2zJw5E0cddRRmzJiBMWPG4Hvf+17dRKxG8e///u+oVCq44IILcPHFF5t/PPbee2/8+te/RiAQwEMPPYTXXnutT9ebN28e3nnnHXz1q1/FHnvs4XrvggsuwLe//W0AwO23395rfWlFUaqeeTJQop/Ck9+l0ParBsNIP9BTV55iGnBXBJIdbKUYlhYY/g7ke0y0pXiXYwGq9qJsNmsaZlGA09rD+3t99pFIBLFYzFhvaPGxbds09YpGo3hhWa3oB4DZE8MIBcquRlqsqy8XTKVSCdFo1NWhmJF6uRDgYgWoNiSTYp8LIS5mOJd8nc8oS6ZKtFOvoijKrrHDv0HPPPNM/PCHP0RXV5erPN2WLVvw7W9/GxdeeGEjxulLOp3Gn//8ZwDAxRdfXPP+1KlTcfzxxwMAHnjggT5ds7W1tddtZHYf3rp1q8lbUBSllsGo3gNUhbrsgCurxnhhyUsK6lgs5hqnrAgEVEWqN6FX9glgBJsLD4phWbKSibylUsl05pVin0mvcoFBzz53I+LxuEs0d3R0GEsRr7Opy8KqTdXPgURCwEHjqo3M5M4F+wPIxYDsGSC76/JZ4vG4a8ElF0my+o9sdlav8ZmM9sscgfmvbcBjL67G0wvX7OBPhaIoigLsYHLvAw88gD/96U8AgClTpuCcc87BuHHjsGrVKtx7771Yt24d7r77blx44YUD0pF30aJFZkt83rx5vsd89KMfxeOPP44XX3yxX+4py+uxC6WiKG4GS/QDMAKVEWdGmv3uX6lUTOlMoGrxkdeqZ/GR1hO5K8DXKID5O4OiXzayKhaLZreB0X5W+OGx9MlzDIlEwpTvZHWdYDCI7u5u06GXOwChUKhutH/OpAiCqFbUYXUh2WSLwjwcDpukY0b3pehnInShUECpVDL5EJwvLiD4eXD+ZNUgfpcLDy4AOI67Hl2CLZ15jGqL4bg543b4Z0NRFKXZ2aF/ie+55x4AwMc//nE8/PDDruTWq6++GscffzwWLVqEe++9d0CEP3ML9t1337pR+smTJwMA3nnnnX65569//WsAwKxZs9Da2rrd42+99Vbcdtttfbq2di9WdgcGU/TTV877y3rxfqTTaVN9JxKJIB6PGxEqKwLJKj5+Nfu9diYmAFMIcw6k1YiiXzYLk11rKcC5c8CynIFAwIxVLko6OjpQKpWQz+fN/TZ0WXh/S7nmuaNh4MC9HdfOBOeKCdH06ycSCfN8FOuRSMQsOAAglUqZHQvmK8RiMZctiHYh+blIqxRf5/PIikBq8VEURekfduhf44ULF8KyLPz4xz+uqWjT2tqKG264ASeddBIWLVrUr4OsB6vs9Faxh+9t27Ztl++3cOFC3HLLLQCAK6+8sk/nrF+/HgsXLtzleyvKcGAwRT9FJ6PFFMl+FXwAmBr3QI+AZyQdcPv6ZWKt1+Lj5+tnuU523pWVaGTeQDabNTX7padfJvRK6wyj/ABcot9xHHR3dxvLkmwgNv9t/2j/oftFYTk2QuGIq5eAbNIFwNTp52uhUMh4/SnE2bSLixhWHGKVHtqEpM1KVkSS8yabgfEzZVBHk3oVRVF2nR36F3nz5s2IxWKYMWOG7/uHHnqoOW4g4BY6t5H94D+U7F65s2zcuBFnnXUWisUizjrrLHz2s5/t03l77bUX5syZ06djlyxZssvjVJTBYjBFP4U6RT/tKPVEf7FYRCaTMX9vaWlxjVWKX2+VG6/FR/r6uRCg6GekWpazBHo687KEJ6/Lrr6yG7CMonM3gmU0uUhgGVBabDjW97YGsLGz1tsfC1uYNrZU00CLnn1ZYYeineOjV79QKJjFR0tLi9kZYVIxrT/SGiUTgXk9OZ88lrslcufDr5OwoiiKsuPs0L/Ktm1jzz33rPt+W1ubOW4giMViANw1s71wLLvix+/s7MQpp5yC9957D3PnzsUdd9zR53MvueQSXHLJJX06lnX8FWW4wYZNhMJ7IO/PMdBH7le2E+gRlt3d3ebv8XjcFTyQFh8pTBl1B6qedNmkKxwOmzHw9w5fl6Lftm10d3cbWxLniYsA2n2ksKeIDofDiMVixhrEakCFQsE07+oZm4UXllXtR5J5UyIIBYoIBqv34T3p06c9SnbP5QKG1XhkH4FCoeDqU8D+B9xB8Jb+9Db1kn5/in55nkb7FUVR+odhbZocOXIkgKrlxw++x2N3lHQ6jZNPPhmLFi3CgQceiMcee6xP3n5FaRYGW/TTVsMmXV4vvcRxHGQyGVd1mkQi4XpfRuFlZFpGwiloCYVzuVw2FYL4uhxLpVIx0XkKbQpsaWvx5irwuGQyaYQzhXY+n0culzNiulKp4J2NwLZMbWnllriFA/Z2dxiWyb0soxkIBBCNRl3VdTgGRvQdx0FbW5vZkeAOBs+VzxyJRMyizBu950KNcB65IOFYFUVRlF1nWP823X///QEA7733niu5TrJixQrXsTtCNpvFqaeeihdffBH7778/Hn/8cYwaNWrnB6wouxlsEkUGWvTLBFreX3rpJaynz6h0IBBAS0uLS4RKv369aL+segNUE1XL5TJyuZyr1j13EnhuOp02jcIo9GnR8fYCYH5AOBw2kX6K5mKxaL66urpcpUQrCODl5bUWHwA4aloccMpmocHFB8U5ewjIz5FiXjb3Ys1+JgAzoddxHFNtiIsIWb7Uu2PCeZLzzGfx7gQoiqIou84O/0bduHGj+cXv92VZVq/H9Kfnd86cOeYfq5dfftn3mGeffRYAcMQRR+zQtfP5PM444ww888wzmDhxIp544olebU6K0kw4joNisegSwPUEdyPHIEU/Pf31RH+hUDA5NIFAAIlEwnWsrFMvhb6s4sO/y2ReNthiIy6Kc0bMeW4ul0M2mzWCOxqNuvzzLOMJVOv1ywo+LDVaLBbN4iGTydRYhl5/30HWx/04uiWA/feyzHVZlYf2G9mfgPYk7wJH2oISiYSxHElLEhcoPJdJvn4J0t4yq17hX6/3gqIoirJz7LDwl027dvarv0ilUvjEJz4BAL4lM5ctW4Ynn3wSAHD22Wf3+brFYhGf/vSn8fjjj2PcuHF48sknMW6c1oxWFKBqh5FJrawIM5Aw4k1xzYRSv/FSLFPQRyIRV2Uyr6/fK1L9cgVoK6K9h954in4Z1S4Wi8YKQ3uN7I4rFxncxWAkPBaLmbFWKhXkcjnTf4ALBNqcMnYFi1b7dxQ/9sAkCh/2B+BnyM+M5TnL5bJr8cQ5kQsE7mTQvlOpVEyitIzuc0eDuyHS30+8ydfS3lSv94KiKIqy8+zQb9Vrr722UePYaa655hr84Q9/wN13342jjjoKX/nKV2BZFtavX4/zzjsPlUoFZ555JmbNmuU67+ijj8aaNWtwxRVX4IorrjCvl8tlfO5zn8Ojjz6KPffcE08++SQmTZo0wE+lKEMTimiKN4rfwRD9tJZQyPv18qDA5SKBixRZr9/bfAuA6z0+mxTovA4Al31I2mQYAWcCLncEWOFGlvIMhUKmkZis7BWNRhGPx801u7u7Xc/DaDs996+sBIq1ZfsxblQI49sd5HI9ibm5XM6Ibkb38/m8KdfJCjz8YrSfi5FkMmmeJZ/Pm2Zp/Bwo9HltWpm80X75mfFz4Ll+P1cjW6Ku74qiKMqOMeyF/2GHHYYbb7wRX//613HJJZfg+uuvx+jRo/HWW2/Btm1MmzYNt99+e815a9aswerVq9HR0eF6/f7778cDDzwAoKdq0IUXXlj33jfddBNmz57dr8+jKEMVRpal6K9XLrOReBNo6YH3g9V+WN+eVhSvxUf6+mX03e/PQLX0ZD6fN2WFaUuhb59CV9br53hpz+G4uZiiqKf4ph0pHA4jm82aJGZahpgH4DgOPugq4531/juqxx/cgny+2/jueW8m7HJ8vC8XB7QucUeH3n5G9IEeC5NfozRvCVPCuff+7LCTMVBdFHh/tn78f4/zfT5FURSlb+wW+6hXXHEFZs6ciR/96Ed46aWXsGnTJkyYMAFnn302/u3f/g2pVKrP15KlSFetWoVVq1bVPbazs3NXhq0ow4ahIvppdZGiX9pqJBS4FOZM/JWLBJkUC7gj/bKrrXxP1r/nWLjrQP87o+SMhlPYc9xMopX+f9qRKJaTyaSx1DA/gRF+PhcbY5XLZbywAvCT/QfuG0d7vIhstieBVwp1+u+Z5EvhzwUTPf0AXMKfOQUci3yff+fCIpfL1ZTwlDsm8rPgufUWDYqiKMqusdv8Zj3hhBNwwgkn9Pn4eoL+i1/8Ir74xS/2z6AUZTfA25iL3uvBEv0U4sFgELFYrFfRTzsMrTLyeC5m/JClMWlx4T0pbtPptKujLu0xjPazmZVt267ylBS39MhzjEyWphWJ/QXooWdEXPr6mZS7fH0R63yak4eCFo45IIZCIWOacUkfP8dJQc/nyGQyrjKespIP54OVh4BqdR65OJIVjbxJvd6cEF5LJhdrwy5FUZT+R+ukKYpSF0Z+ST0LxkBAjzzHIX36EopblpiUol/69eVzyYRTesyZfCs79TKin06nXdFpNtXiNWnJYbUbVvphjgSbD9IjXygUTAddlhmlX767u9sIfS4SuKgIBoMolsp4eaX/nB0xPYVooGieRc4HFxUU7VxoyPF4m3XJ6D8j9FzUyKZdrOPP+eAOiEwQlshov99ugKIoitI/7DYRf0VR+hdvY67+Lse7I9DWAlRFv19CMcdM/zuFtLfij7QtAXDtAvDPFOIUq6zEk8lkjBc9GAwimUy6ylBKQUwPfrFYRDgcRj6fRyQSMbsGXBgwOTYcDqO1tRXRaBShUAhdXV3mmdgdl6KcUfhXVhTQmUMNqXgQh02OIJ/tNpWFpI8fgBH2iUTCRPP9kqalGOeuBcfNa8hdEdnQjFV9+Hn5Je3KnzXOjx83P7AY6WwRqUQY/3TOIb38xCiKoih+qPBXFMWFt1wnMPCNuSS2baNQ6ClMb1lWTXIuoXiUza8o2Gk74XHy2YjMX6B3npF6iv5cLmfGwuo29Mhzd4Qe/3w+j0AgYEpzUtyzfn+pVHJdj026EomEKa/JJGYeXygU4DgOKpUKYrEYNnfksGC1f0LvibNaUS7mzfGFQsEsKLzViZhEzARijpXzzPwIzodcSLBKERdItFMxp0GW9ZRRf8JFGudfflZeXlmyEVs68xjVFqt7jKIoilIftfooimIYCo25JIxwk1gs5rvrICPGsjKMFKKA21LihU2jZEMwb9lOmcybSCRMIqwsr8lxy7FQvMfjcbOrwJ0DCuNQKGQSeqWdSO4eyPKdlmXh+WVllHweZ+9RUUwdW5vgLDvo8jlGjhxpEnaZZExxzvtQjPPv3KmQZTvD4bCJ1nPxIxudcSHBxQORCdacB0VRFKUxqPBXFAVAtZyit3LPQNfoJ4VCwRUJZudaL1LMU3zL7rn1fP3eUpIU/UzClaK/UCiY6DtFv4zc876MhDPSzVr+hULB2JNoF5K+/nA4jGQyafIWMpkMcrmcscnkcjkzNu5iLF+fx7sf+M/dybNbTBIwhTzngnMTDAbR0tKCeDzushJxYcJnp6iX/Qm4CCmVSmZhyLwBGemX3n6/aL93oalJvYqiKI1Fhb+iKKaqzFAS/bS1AD2NrPwsIDL5mEKTY5bRYwpMIjvIUnRyAUHRz3NpyeHiIhqNupJ5uUCh5UdafViKk9FwniMtPizZmUqlEAwGYds20um0Eei8PiPj0WgUxVIFzyypPo9k7tQWjEqWjeiXlYkYvWc+QVtbm8lByGazZg5kMi/LpSYSCVcVIm/ZTlnfn4soabfirpH8mZI/d+xXoMJfURSlcajwV5QmZyhV7uF4GHkGqsLY7ziKT1atId76/t4eBLJhF79Ym14+PwUx54eddPmebdvGy0/Ry1wAJvAyGZliOZ1OG7Ebj8dNgjAXCRTgrIFP+43jOEgkEgCAl5fnfBN645EAPjYzZcp+stymbMAlLT5sJsY5p7efX4zmx+Nx10LHsiyzsJG2J0b6ZUUkuYiSNh9vLslgLjQVRVGaBf0tqyhNCqPg3so9gyn6Kaal6Pdr0OUn+nkOE2il6Pc24aLw5zUYnWaUm8KeYhiAqa9PQU/PP1CtdCN7DbAPAHcHAoEA0um0KcVJC008HkcqlYJt22YhwZ4A+Xze2J3i8TgA4IMOGwve9c9TOGnOSAQqtrEmyYpEzHcIBAJobW01SdK2bSObzRpBz+fhgisSiSAWi7kqJvHaTBZm7gKfu1AouHZOeF1vtJ/Xo1VIhb+iKEpj0d+yitKESBsIGcxuqVyEyIUI7TG9iX6eK4W99PV7k3lltJ/nlEoll7WF1hd62TmWeDxuqvtks1lks1mTD0BfPKviMOlXLkByuZzp5MtdgHA4jFQqZe7HhUQ4HDaLBN4jFAqhVCrhiTdslGqLEmGf0VEcvG/E2IgYcZeRe1q4WlpazPW42OA88P6cf+5WyJ0YPqNlWWhra3N5+jnv0lpEZL6F7AbNEqBq81EURWksKvwVpcmo5+cfrMo9slwlxSdFZ2/13glLeMoOukBtZ15G4Pke68wD8BX9rOBD2xAFbC6XM51taZ9hQi674LI7LhdSrNJD4cxFRDKZNBFy7gREo1Ffi4/jOHhtVR5rtvqofgCnzWtHLpd1JSKzsRbLoFKoU2jz2EKhYJpysZwov8LhsMkx4Nw4jmOi/YlEwswld1/43HL3SNp8NNqvKIoyOOhvWkVpIur5+QdLdEnRz+ozrHLjXYh4bUlMIJUecdmYyvuc0tcvdwJob2KtfdaVl9eMRqMAepKO2UkXqJa3ZDSfwjYYDJqGWJZlIZ1Om6h6LBZDLBZDNBpFMBg0diJafGSpTwr3UCiELR1ZPLPE9p3HI2a0oT1RNnYhGUXnIooinjsN5XLZ7FxQtEuLj6xcJBt2MVmZVYEAuGxXckEkqzDx85TWLB7LL0VRFKWxaMFkRWkC/JpyDWYnXo6JQlvabby13OuNnXYWoOpJp5VH7mhIewng9vwzH0CK/nw+j0qlYnYBZDJvR0eHq8NsKBRCOp024lkmB1PY5vN5YwsKBoOIxWKuTsIU0/w8uEggyWQS5XIZT76Rh11dyxhGJEM49qAkMulOUw2JtfpZV58Ll7a2NvPcuVwO6XQauVzOzBH7JPB7JBJBOp02uQucQy6GaAOS/Qpk+U5el+Ph/PO7rPrTF5vPMbPHIZ0tIJWo3+RLURRFqY8Kf0XZzZFeajKYnXgBt+iXybPexYhXxFNQ0nICVKPrjOp7K/gAVT+/rLcvS1tK0U+rimz+VS6X0dnZae7JBUF3d7eJzjPKLUuIAkBnZ6cp3RmPx81CwrIsY+/hQsO2bWQyGTMvbW1tCIVCWLy8A8s2+Kh+AKcfPgolO2vEOQDTfIvj5AKAUX/LstDd3W0sQZVKxSTxRqNRY+OhNYnj5PxzVyAYDJpFCp+Bn4mM4MuqR7K5F5OP+/qz+KXTDuzTcYqiKIo/ureqKLsxtGcMFT8/4E4slqKfkV9ST/TzmQB3xB6oreAjff1cLHAxQGEs7T1S9MsKPl1dXUa8s/xmJpNBNps1Nfy5WyGj20zQ5djp1efOBC1HFMlM/i2XyyaivqUzi8df86ndCWD2lDbs2dKTFM0yoXxuNgVjbkIymQQAUyZU5iRYlmUsQF7hz0pLMtofj8cRi8XMopLJzbI7r1f4A1VLEL97dwYURVGUxqK/bRVlN8SvVOdg+/kBuIQio+cck0wE9esizJKZfF1GtYFa0U/RzvdoLQHcol/OlYz0s+pNJpMxUe1AIICWlhZj32HEXEb6eQ9aaSjymcjLZ6FVie+zPCjnJZVKoVwu49G/dyJbqO7WkGQsiI8dGDWVeZigy0TeZDJpFnmMznOMnZ2dJleBycbsLJxMJs0Ci7sgpVLJCHR2UGYpUO4Y0K7DMfCzlAswRvr5Wcga/4qiKErjUeGvKLsZ9Up1DnZXVIr2voh+r12Hyag8n68xedRbtlOK/nK5bEQx78lym7KMKEU/KwOxso8U96y3z8VApVIx16PA5TXT6bR5BkbTS6WSEf3SeuXt5ptMJhGNRrFoRTeWbfDv0Hvy3JGwKjZKpRKy2ax5XUbkmfdAe1E4HEYmk0FXV5fZaWDJTu5IUOAz4dg75+wFIJN0pU+fX5xvfpcdluV7Gu1XFEUZODTUoii7Ed5yl4yoDra4YlUYAC7RTzEpyzx6q/Ew0i8j5FJse8/h8bLTLK1AXtHP+aJopQeeQty2bRPtZpMqin42qaKVhs9A0c+FF5Nli8UiEomEiaTLrsHFYtE0/qIQ39ZdwJ8XdvnO54ETUpg8poJCoWx6B1BwJ5NJs9CQfQ2CwSAqlQq2bdtmFhjS2mNZFlKplCnrSZsPFyu0/3CuOHcseSpFv7SScREmqyrJz2pHfjYv/c8nsLUrj/bWGG658oQ+n6coiqL0oMJfUXYDvH54AK4o7GAiFyOyZKe3q6t30cKdAIp3bwUf2ke8op+iulwuGw87AFMvXi4KGPWWvQNKpZKJdBeLRSP6Hccxnn2W7mTyL3cEKODls0SjUZTLZUQiEZcVie8XCgWk02lTFSiZTCIYCuGh59bBLvpbfE6YGUOxaJt6/xxDKpUyuQGcW+6KRCIRbNmyxdyLIp5lR2lF4ufE3gKcVy5gvJWTuGvA1+XPm9fbL38+d8bmky+UkLNLyBf8E50VRVGU3tE9VkUZ5jA6642kDra1x5tnwMo3UvRLa4zXqkPRLyv4yMZeMjmY59BvLkU/I9DhcNhE2GVCKsUxa9bT0y5FP1BN1KWthjsArLVPa4wU/bwnn5XimAKZCwU+RyKRQCKRwLNvdODdjf41+z912AiEUHAJ80qlglgshkQigVQqZRY7FOQsEyp9/RTs3AVJJBJmQSItPrIPAD8v2fyMfn9pzZJWHm9FKS5+NKlXURRl4NHfuooyTKFglhFvWbt9MJHlOoGq6Oe4vKLfm48gE3llCU2KTD/RL20/jMjLSjMU3H5WqHA47BLu3JlgNLy7uxu23RNhL5fLSCaTRryHw2EjwqXtiMKWY5B+dj43E3rZCTeRSGD1xhz+unCb77zOnpzChFFVCxMXGRTuiUQCsVisZo7lbgXHxmRe5gBwt4Rzbtu22XVhQi9QzdXg3NHzD7i783pLqcpFD8c32LtRiqIozYYKf0UZhvgl8DKqPdhiyluRhx556bOXEXu/UqNS9DNizsZe9UQ/K/cwkdfbHEqKfkb7peiXwl1641kms1AoIJ/Pm7KYAFy7BHIRQwsRFzGsqCMTimXN/mg0imQyiQpC+M3fNqJS6/BBWzKE4w6IIp/Pm7r6tAfJaD8995yrYDBomoxxDrg4ZA8ELhZob7Jt28yNN5+CVin+vHGRRvjzx1wB+bpsnDbYi1NFUZRmRIW/ogwjaFPxE8xDIYIqy20CVdEvK+pQEPo9g3yP70sB6vX0U9zzeFnHXn6nPYVjlKJf5hBwvBTGnZ2dRghns1m0traaMcZiMZTLPcm1tO0wIZaimuUvmdzLcyn6KaATiQTi8Tju/9t6dGTK8GJZwOmHtQKVapSf9i6W7mxpaXHtcMgKQlyYyAg/y3jyZ0c265Kfm0z4lRYp5lpwbr3VfGR0X1YBAnY8qVdRFEXpHzS5V1GGCX4deIdKAi/gTs6lGGQ0Xnr6/ZJ4+Qxe0c9IOaPX8vkpcHk8I9HSdkKLD8W+FP3yXPreZS16iv5SqYR0Om2EdbFYNFafTCZjrkPBzMUI7TdcXLBTL21DHC+r8Dz35la8+V62dmIBHHtQK/ZoKSOfL7h2GNhtN5VKufz8nN9AIGD8+lw0xmIxYy2if59lOSn82ZyLNf29O0xyB0beSyJ3owKBgLEZeZO6FUVRlIFDhb+iDHFkh1fChNWhYJfwVhRipJdjk0LPz57Eyi5+op+RfopWKfoZpWa0nsJdLhg4Fu4KyPKhcrHAJFaOn+LccRx0dnYilUoZOxGtPplMxixkWINf2lwSiYTr2crlsvHZy2TeZDKJ1RtzePTvW33nd+IeUcydFED+w2pBXotPKpUyVh1G+svlMuLxOLLZrNkZ4DywJwKblPG5AoEAMpmM2VmRCb/cyeC8y8ZpjPbLz1xW95GLL/59KPzcKoqiNCO616ooQxhGWv3KXA4F8eT16UuBCbhLNtZL4gWqop/i3iv65T0YyWe3WkaqZdlOin7CiLu8HkU/Pe8knU6bhNuOjg5XJ1suADKZjHlein6Z7Nve3m4i4hTi3d3dLjtSPB5HIpFAd66EXz29CeXq1BjikQA+OSeOiojIU4DHYjG0trYaAc97lUolE8XnuFh9KB6PG9Evq/QAgG3brsVTa2urEfRM9OVOAcW7tPnwc5efMReoctGm0X5FUZTBQyP+ijIEkSUnyVCK8gO1dfcBGFsP/+zny6/XtIvP6yf6CSPO0r5C+w7f53lMJpVVgbgzwAUKy2BynjOZjPHsd3Z2GlFdLBbR0tJijuH1u7u7jailRWjUqFHmGWj/yWazpiEYAMRisZ4yoVYAv35qPbpztb5+ADh1bgqxUAW5XN5VMYiVdvhFDz7LdHJeZOlQCvpAIGA8/pyjQCCAQqFgchGSyaRZGHR1dRnRzkg/cwX4+cuuxXLhJy1a8vNTFEVRBgf9DawoQwxZOYUMJS+/36LEC4Wm9zjvc8hIf19FPxtkcRwyoVVG+mV0nJYcjp/H0O/OJF2K/q6uLlPjvlgsorW1FQCQz+eNYE6n02bxw8o8jPTLykS5XA7d3d2mWy475QaDQfz+pc1Y/YF/vf4j9o9j0h5Bs9CoVCooFAqIRCKIRqNoa2szlYf4vBTdnBvODyv92LZtnoXHhUIhE9HnZ8d8BnYo5oIuHo+7dnFoOaI1iAnFQLWcKXdlgF1P6r3s7FkoFMuIhIfG4ldRFGW4ocJfUYYI9aL8Q6kCSr0EYymm/ewdgNvPD8AIU6/o90aJeY9gMIhsNmsWRYVCwSTpehcUXtFPew1hvwNeJ5/PI5PJmCg+xyoj/Wy0xYUBn7lYLCIWi2HkyJHGFuQ4jqnR39XVZZ6REfpwOIxXlnXjpXfSvvM8aY8wjpoRM4scoMeKw/lpaWlxlW/lwkAmPMv58/r65bEysblQKGDkyJHGssMdCgBmkcFoPxcaXBTIev38GZClV2UX4Z1l3gF77tL5iqIozY4Kf0UZZPySd4FqEuRQiPIDtdYer+ADqpVdvNYe7+Jle6Lf28XXsixks1kjNguFgin/6RWUFJu0RLGuvxwzFyAs08lr53I5YxeqVCqmlCVFf6VSMcfSQx+Px9HS0mI65lYqFeTzeeTzeXR1dZnkY9bqB4AV6/N4+MUtvvPclgjg1LkJFEVCbT6fNz7+RCKBaDRq8hKYfEshz58linmW5iyVSojH4yiVSkgkEka0yzKj3E2QeRD8DKLRKAC4knr5vLT98D2/ZO6htIBVFEVpVlT4K8og4mfrGWpRfm9yLQCXvYR4O7XyOK9FiYKSop+Ctp7oB+BqPlUoFFzRZxn1lrX4uWvAa/B4GZGn6GdtfUaqWWaT1iKKdyb9Aj2LhmQyiWQyiba2NjP+QqGAbDaLjo4OU7YzHA6b3YDN3WX86umNcHyadIUCwBmHJREOVJDPF4yolx2ZWS2IuxIcN6P0cg5471wuZ/z7FPasBCSj9q2tra55prjnfPM4HsNn9iZeS7uRTHoeKotYRVGUZkWFv6IMAhRoQzl5F6gm3kpkNRcv3qo98lkoBGXzLin6vfNB8c6ymrSvSNHPqLfcNZE2I95fJqQCPbadXC6HbDaLUqlkLC0UrfF43FQOyufz5hgK4Ww2i1QqhUQigba2NkQiEbODkU6nXT0AgsGgseZkbQd3/nU97KKP6gfw8VlxtCcd5PO2seDIxFzuQDAPgp8NPxNG3qVVidfgMbKhGjsMy2ZeshKQ3InhPPJz5nm8PoU951zuYvVXp97l73egVK4gFAxgyvgRu3w9RVGUZkOFv6IMIPVsPUMpeRfoPd9Aevelr1/+2btjQeEuPd9MgvVeE4ARrfIcRqkpLpkADFRtSEwmBaoWIRlpdhzHVNhh4qp3ERKPx03DKVbt4aKE0XM23Uomk4hGo+aYdDqNrq4u09ArEAigra2tR1CXHNz1hH9nXgD4yJQwpu4ZcNXd57go+lm7PxKJGNFNAS7LdtLTT5sQy3uyUo+cOy4GEokE8vk8wuGwaRAm7VRy8cDFhUz8lT/DtGP1d7T/+l++hC2deYxqi+GOb39il6+nKIrSbKjwV5QBoJ7gH2q2HsDffkQRLQU6I71S0PnlJdByI3cPuBvgTQLm9SjIaZ1hdJ8ikgIUgFmgUGxKS49MJnacnk67LKvJaD6vGQqFTOJtPp83UXtZf56JvLTb0DPPqkAdHR0oFAomV2DEiBE9ScQI4O4n1mLtloLvnE/bO4g5E+AS/UBPQi076bIaUDQadeVWeGvpyx0Z+RnJOfR+ZrFYzFQAkoscuUPABQgXGzKPgHMtdxJktF9LeCqKogwN9LexojSYej7+oWbr6S3KL6vsyIivrNnvt4CRXn7ZOVcuJLww0i+tO7y2zAWQ46V1inPKHQE+iyzXycZfUvSzdGc0GkU6nUZHR4cRwjymVCohHA4bGxD98LQjbdmyxYh+y7LQ1tbWs3sQDOGOx97Hyo3+ZTv3HhnAsdOqFh2gmo/AiDoXJLFYzHj3pVBn1F/66zk2WV5TJjZTwDOiz0UNo/6y8o/MjZA7K3JXRXbtlQsm7hooiqIog48Kf0VpEH6lL4GhV60HqB/ll5FdHsf3OP56z8NIOEUqhbv0gHuh6Oe8yXKdtIvI6D5Fv4w8087CMReLRZPIa9u2KZHJhFl+hcNhdHR0oLOz04hby7JMNZtAIIBEIgHLskwH32KxiEKhgE2bNpmdBMdx0N7e3pPMGwrhN0+txdtrcr7z3pawcOIMB5Vyydh3OJdcmKRSKVNtx9vfQDbskpYczj0j/Vw8yMg9X+dOBi1LtOvIsVD007pDO5VcjBG5SPTuuiiKoiiDi/5GVpR+pp7gH2o+fqD3KD8A8xyyQg6Fe70ov7wmBajXCiJtKrwWRbQs/ygtQTye9h9Gn3ksI/bS627bNorFovH1sywnFwgsixkIBLB161Z0dnaa68kSloyGAzDVfrgrsWnTJmQyGSPGR4wYgVQqhWgshl8//h4Wrcj4zn0yauGUmUDQKiEUiprIOcfNykLxeNyU8JT5DrTxMGpPMc8KRXIhwEZlLHvK8/hZMWIv8xikxcfbJEwuEGg94ufDzwbQaL+iKMpQQ4W/ovQTfpV6AHeJw6HC9noHyB0A6eXmM9SL8lPsy+8U0fSgyxwBACa6LZtsSdEvKZVKrqozXquO3AHI5XIuiw9FP33yPK9SqWDTpk3IZrMAYCrmxONxAD1lO7k4SCQSxvbDSH93d7eZoxEjRvR01I3FcM9fVmFhHdEfDQMfP7CCWLCMSCTq6jrM7sCJRMIIf4prLsT4JeeVc2rbtlm4SSuPrGzETsbcVWEzs0gkYhYw3p9b3lMm9MrOwYC7CpRG+xVFUYYe+ltZUXaReoJ/KCbuAv47EhwrxSWfiXYR2mx6eybp56f4k1VhZBUZinZZrpMRaApywtcLhYJL+DJZNRKJuCoDsaJOpVJBOp02or9Sqbii/JFIBLlcDtu2bTPlPOmlZ4OrfD7vKvHJHQXbtrFx40Z0dXWZxVN7e/uHybxR3PWXlXUj/eEgcNKMCloiJQSDYbNbwcVKpVJBNBpFKpUySb2yFKqcFynkOV6+TqsOBbjMreDOCkW/tPJwoeP9rOXnyxwK+TlptF9RFGXoo8JfUXaS4Sb4/Ww9QNXWQmHn7fwqfd5+ychy98Dr55cWEACuEpS09kihGo1GjeWE9y2Xy8jn8+Z8oCeazLrzcrFCa0+lUkFXVxey2aw5NxKJGGEfiUTQ0dGB7u5uk6RKO00ymTRVfzg/sppOd3c3PvjgAxPpB4CRI0di5MiRCAbD+OWf3sVrq7K+n0HAAo6bVsaIWBGhUHU8tOfQatPa2mrKdlKQMy+BcyhFt/xZlLkCAEzFIn6xqRgXBBT5siqS9/OWjcE4J7Q+Ebkw4cJAURRFGVqo8FeUHaQ3wT/UKvUA2+8dAMBVRUdG+SnK6+UmSEuPtwqPdwyySg7tLLIsJ601UrRSyPMaTMilVYeedy4OOJ6Ojg5j7eGzULwXi0Vs3LjRWIEikQiSyaSx8bDGPwCzO8DE2G3btmHjxo2mqVcgEMDIkSPR3t6OUsXCbY8sx/L1/tV7ggHgY9PKGJsqmlKgjOazbn4sFjNjofXHW0LT69Xn7gmbm8lqPly0MF8hm82aOeEYIpGIWXQUCgWzoJCfuSyZKjv5ys9X1u3nYkJRFEUZWqjwV5Q+4lf5Bhi6gh+oX0qUOxKM4nqjtX6JnV54jqwywwg8BSDHIKsCUXhyl4EReC4MaNspFAo11hYKVXrUGeVnlRnbto11h4KYgp8ddzs6OswYYrEYWltbzfu5XM5cS4p+y7LwwQcfYPPmzeZ+4XDYRPo70zZ+8ec1WLu16DtXPaK/hLGpIiwr0JP8G42aHIRKpYJYLIZ4PI6WlhYA1QUQE2mZ1Ov19bNJF+fetm2zaOOCJZFIGNEPVCP28XjcPK8szykr9XAHhZ9FLBarWdhx8cWfH/X2K4qiDE30t7Oi9AKjp36Cfygm7ZLeegdwvLJePoW6rKJTbyEjLUNeaw/fp3WHvnvZGEraRyiqi8WiOZ/lNuXiIRKJIB6Pmyg4S34yyk8/f1dXlxlbIBAw4h0Atm3bhnw+j3K5jFAohEQigZaWFlNJh1V/eB7PdRwHGzZsQEdHh+n2m0gkMHLkSLS0tGDdB9248/EN2NLt35E3GABOmF7GmGTPYqOlpQWxWKxG9HMRIpOWOS/eBGtZ0ce2bVN9iB5/b+1/uTiiTSqZTNZYtLh48OZ7MNrPnRb5M8+dAv6MySo//c3/75vHN+S6iqIozYIKf0XxoZ49Bhjagr8vvQPK5bIrUVa+Lz39flAgSvEvxahsBiXnjtF8JqGynCZtRRS3MlLPhUo0GjWRa+4YFAoFIzaLxaKx9tCDLiP9+Xwe6XTajCcSiWDEiBFIJpNG3ObzeVPCkrsKfO+DDz5AV1eX8ca3tLSY5lzvvN+Fe5/cgFzBqZ0s9CTyHj+9jFFxG5YVQFtbGxKJhCkxSjHNSD9FdjweN6KfoltWLaIwlxWHMpmMqcwjk5grlYqxLgUCASSTSdezU7jzmlzEyR0dLpaYCEyYDMwdHdnIqxEkYpo3oCiKsiuo8FcUQT3/PjA8Bb/051MAyuOkraO3HgPy+nJBRK+59KDLiLuswCNLdXLhwNcZkabgp0/cG+UvFApGaDqOg0wmYxpuUaRKi0tHR4crGh2Px9HW1mbGXSqVkM1mUSgUTDSb9ysUCtiyZYupCuQ4DlpaWow16Lk3tuCPf9+Gir/mRzwMnDC9iJZIAYFAECNGjEA0GoVt28bTz2eMx+Pm5y6RSBh7D38eg8Gg6T8gux7Ta59Op83igL5+7mSwERifn30IaKXi58VIPhcLXJTxvry2/BmhTYw/azLhWFEURRl6qPBXmh5Zq97Pv0/BPxSTFfvSO4BRWVlqEahWXqG9ww8p9GWUn9dmdB6AEZIyss/7SPEv6/czgs/3eXwikTBRdx4jFy22bSOdTpvnkguRSCTiWiDwmqlUCi0tLWa8xWLRRMkZAedCJZvNYuvWraa6TyDQ48uPx+OAFcRD8zfg78v8y3UCQEsMOH5aAclwCeFwxHj6maxM0U+fPZ+TFiAuPjif9O3LKka0IVH08/OU1YD4mdO+RGsTrVLSfsUdFl4/GAyaKj+8tozmy0ZqAMzOg6IoijJ0UeGvNC29RfelH34oCv56icZS8HvLW8pjKCJ7E2reJl5SXDP3AahN7JRRfhn15zn07vM8WT6SjbN4HQp+ltakWM9kMq7EZFp7uAtAwUyrEAUvULWn0NoTjUbNgiIQCKC7uxvd3d0mB0KK/rRt4Td/WYf12/yTeAFgVAo4bqqNaLCMeDxuhHihUDDJtSxFyo66jN4DcPnr+R7nhouTWCyGUqlkFjfsZcDEW5lwzXNTqZSxV8kvNvHirgB3YrzJut7ynN4F10CU7/zd35Yjmy8hEQvhzGOnNPx+iqIouxsq/JWmorfoPjC07Ty9JRrLSj2M9LJJkzyGEfHenk9G9r1efkamgdourRSlnEPOtUzulUm+QLUJFUUrrSL0+8vk3Vwuh0wmg1KphGKxiFwu57q3XOAwMp1MJtHS0mLGJa9Lvzr97wDQ2dlpcgVYuYei/633c3j4xa2wi3W8PQAmjgYOn2gjaFUQjyeM5YY5FbQw8YvNtGhp4nxQ0DP6z0UBcwKYZMzIP0tz8jOSkfpgMGgSinlNRvy9Niz+nHBnhnPrTdjlooif4UCV7/zd31ZgS2ceo9piKvwVRVF2AhX+ym4PBTO/vAz16H5vixWvpYcWF+9xFPy9JV56bT38M4U5xyCrvMhFkozwUxQC1aZdsua8TCJlIqrMQ2AiLf/OKD6TYhmJ93aW5XUjkQhaW1vNAoSedi4kYrGY+TvfS6fTZgehWCwiFouhpaUFxTLw8Itbsehd/6Zc5JDxDg7aq4BAwEI8njKfjRTJTDiWSdCyERl7HMgqPrJmPvsM0GJDuxAFPudein7ajDhHUvTzc2NZVQCmhCjv6f25kd2W/d5XFEVRhi4q/JXdlt6sPMDQju4DfU80lrXs/QS/t9mSF+/CQtp6vNV2pFiUiZ4y0szxSo86n0cKfrkY4aKFAp/lNSnyK5WKqwsvqw/J+eCuRzKZdCWZWpZlxDLPoS/esix0dnYaIcvxM8q/+oMCfv/3LnRm/Et1Aj3lOo+dBoxrKyIUqj4TuxMzUZe9ArhA4uKCOzDsM0BRzl0Q6b/PZDKuxRPLobL7LxN8uZBIJBLmGO7QyIZoHIccg1z8svqS/FnxVvHRDr2KoijDBxX+ym6FNyLtZThE9+vZeYBq2U0Ario9XkuPX+nF7d2LlXsAmMh9LpdzJfDKZmX8MwBXFNnr5ee59IpT9MsGUVLgF4tFdHd3m2o8+Xwe3d3dRgzznhTQHFcikTCJshSx5XLZdOi1LMsIawDGzkM7U7FYRDgcRltbG0oVC39e2IkFK6o2ID9GJIATD7SQDBUQiVTLZzIxlqJfLgY4NywbyvFzbPTs81lY3aerq8s1n4lEwnwGTBimtYgVfLhwYCKvdzeI+QP8CofDZnElFxZE5ikwYXgo/n+kKIqi+KPCXxn29EXsD+XKPEDvzyDHL0WqX4MuRmB3VPAz4k/bBy0xXCBRYNJaw9dklRo+h0zslQsFKfh5Lv30UvBzAcDKPSy1yeenQCW0z/A1Lg5Ym59zRvsQo9acC/45lUohHA7j7bUFPPFaBum8/04RmTrWwtFTAQtlhMMxI/Ypnlmlh9F0Rt1DoRBSqZSripG0L8m+BeFwGKVSCV1dXa5+CRT9AMwzyTwBNgRjPX6vPYe7OlyIMclZ5jt4F44sp8qfNY5RURRFGT6o8FeGHdKzzwizF4plGRUeamwvui/Hz6ZbftV8pFd+Ryw9XisRO8lSXMuovmzsRR+51/4jE3tl0i7PpSgtFAquCL9t28bGQw86k3gDgYCJfNN2wt0I2mdYzYdJqHLHgNeTybKM/jMKTp/8lu4ynni5E6s2lXr93MJB4OhpQUwZw4VR1VsfDAbNQkKOlbsAkUgEiUTCVb40nU6b3QbmO3D+c7kc8vm8WcwVi0Ukk0lXKVVW+eFc8xoyL4NzKxOueQ8+Pxd7AFwJxQBMkzPp6+eOjaIoijJ80N/cyrBgewm6wPAS+70lGsskWQp+ilbvcYyg76zgl75vrw1KCm0KZb9qQRSRsioNxT6/AoEA8vk88vl8jeDPZrOmJjx3ABiB5nNSyAJVi4nsPxCPx1EqldDd3W2sPbS2yHr1cmciEAigtbUV6XwFjy1O47VVBdSv19PDXiOAk2ZGkQiXAfREw2USNG1EcnxMJuZ80odPGxItOqz0Q4sSrT9c2JTLZSSTSWPd8f4MRCIRs+Mju/zKykjSgiW7IsvSnNwxINwB4txxgaIoiqIMP1T4K0MS6RWvZ+EBdg+xD1STU3k8xbX3HEbUKax7e2Yp8KXgZ+Uavuf17Uu7EC04UrAD1ZKPUuQz4szPgjYRCn7eM5vNIpPJGOsNo8nsUEtfuSzzyeekwJU7EZZlIZPJ1CQCc9EkffGMtCcSCRRKwDNvprHg3QKK9XN3AfQk8B4xJYhDJoY/nDfHNa+MvHPXgb0O5KJF1uKXjcF4PPsqsFQnS3/K6wDV6kX8jJjALROmGdWn6Kfdh3PB4xKJhKvqEHMDON8soyp3Ary+f0VRFGX4oMJfGTJIkV9PIAO7j9jnc/B4v3KZAFxCWgr03u5L4cfr0p8txb6s/c8SmLK2fC6Xc4lCjtkr+ClAuXihDYWddRl1ZnSf4pyJopVKxeX9ZySaEX/aengfjhsAbNtGJpMxUX7mHHDM0hdPUZsvOnh2SRaLVhZQ6N3VAwAYPyqAjx0QQUvMcTX1kj0KALg+G1qIpP2GUXjaqfgev2Qytfz5lv0T5PP7iX7uJMhKT3KcLAHKRmm0QfGzZfM0AGasUvTTdqUoiqIMT1T4K4OGFPn1vPpECqGhKjz6KvYl0nctxb5XlG+vEpHXr09hLcW1FO28HoUj7SMse8lEUNngiWOhSJeJvlzAsLEWBSVr8DOiL3ccOA5GwaVnn3Mh69jL5+d1OV4m79ICw+g5BW8kEkG6EMD819J48/3SdiP8AJCIAB+dHsbUPYMf7koUzZxQLMvnpyjnIopjiMfjAGDGR6uPzH/gvPiV5KxUKq7FAa/L3RFZKYk/B9yhkfYdmQvAZl4yWVfaqWhD4s+T3IkZTCbvMwKjR9hoS0a3f7CiKIpSgwp/ZUDwlnnsLaIPuKP60qoxlOirHam382Sirlfsb29Xw7s7wCgvo97Eey3pBfeeI8cjFxs8R46PcDeBDbEYhadlxbubIW0qvDZFJ59D9h+g+GVEP5PJmIRYWRGIHnpW/6E4XrO1gldWZLFyUx/UPoCABRwyMYRDJ4UQClTMboL8rPkMxFuqlGMJh8NmnKyiI3dIANTsxLA6D+8pn4l+/2AwaI7j9biw4sJL/lyxCg93Uyj65cKIvn0uAOXPgbT/DCbXfPkjgz0ERVGUYY0Kf6UhyCh+X0Qxhb78PhTpix3JrxynPNdr4/HaZHrz7str0LvNaLcUe3IOKUop/ACYUpmMNPNZ5A6DTBSVYp9Cm1aSbDZrrEGy6y4A10JCVh+SicPMJQBgxLIU+8wLYOUfWd2I9hdekxHrdL6Cd9aX8Nb7OWzN9G1BBgD77xXEvP0CSEYqKBVzKIgdGdktmMnOfB6ZmMvXZPIuxTXnkSJfRuX57KwQJBcIvC877NKSw2tyUcSdFdp6+NnRwsU+A/xZ8Yp+b+dnb46FoiiKMrxR4a/sMl67zvai+cDwEPp93aWQCZ5ANcLqPZdCy/vcvdmYvLsDFOq08Eh7j0yolZ59RoMp1KWlhOOVOQTyPFpEmIDLa0iRz2i/HAvHLav9yGRUNqWioKVA5TMySp7L5cy9KFZlRZtYLFZNmC2WsWxNAUvWlbBmi7PdCj2SfUcHMHeihfZ46UOrjGMEMoW0FPy0vrAaDy07FNCyHj53Mrw/J9yVkfkNnBPaamTeA/MGGH3njgMXQ9LS5bUTyQUH7UYyEVleR45bPf2Koii7Fyr8lT5D8SK/+iLygWoEeqgLfa9Q9ztGfsln4vvSFgLURvX5Wm9iX0bzKYT5XdpNpLdc2k2AanImryHLgQLuLrwUsLwWE3KlfYe7ChTh0hok8wGAavMnmUvg/fxp5WEVI46T9+T9Zc4EI9Smzr1dwTvrbby7qYI124By334cDRNGB3DI+AraE5xfuOabY6bgpyhn113ZmAyASWbm5yJLffI63uo6FOT87Pi6tD5VKhWz0OB8sgwrv/NnR+4EyJ8PLpr48ycTjrlTQGi/Gor/nyqKoig7jwp/pQY/gb+95FuJFHdSFA8lvLsUfs/n9/x+Qt+7I8Bnl2JXnucV+xRkMtotkz1lLoC30osUd1wsyGZV8pl4vrfSjNwRkIm5FPcsxUlx7l3wyd0C2ehLClvvzoZMxmVknYm6vC/FqlzUOAC2pC2s2VrGe1uL2Nhp7VBkH+jx8E/eA5i2RxEjEz0i3LZLZiwUx5xjzmEikTAWG7l7wbmh4KdVh55+uRPD+aqXFBwOh00Nfdlbgbsw/Llj3gF3QfjZMlFb3kPuwvC5uLDwWsS4IBuqdfr//ecvoTPTk9yrfn9FUZQdR4V/E7OrAh9wl3eUAneo0Ndn9Np6vCKfz8T3pEe6njffK3YBd/UdRmr5Gq8pRbtX3HMMvL60bshdCvkMMrpLjzeFfkdHhxHgFNwU+PzOccuIvlyAyEZa3uRkOa8y0VfalfjlJ1DLFQdpO4SNXcCGzgrWdQCFMn++duznLBYGpo0tY/LoAuJhNqaq2oq8nxlFdywWcyU3y8o3hULBtfAqFApmB8W7yyN/lrhQ4utspNWzCLFr5pLJvXJxws+dn6/cYeE8ei1o/Lwcx0Emk3Et4PiscpEy1FixtgNbOvMY1Rbb/sGKoihKDSr8mxxZ/aU3vJHroSby+yLwezumng2JYovXkcLNe6x3ASQFr4zg88/SxuG1TMm5lcmaUvTzGt7npBCU0XWWeKQnXwpuGXWX5UV5H7+uvHxOx3FqOgdzXHLHgfeRibneSHPFAdJ5oDMfxLZcCJvTAWzOhFCu7MrPmIM9WyuY1F7E+JFlwOmZ+65c9Vlps+GzyWRoWR+f0L/P5+fnKRcJ8n3+Wfr1+TlR8ANVm5Ds1CuPl12WpaVHRviJ3H0C3D0GZPI1xyZ7OCiKoii7L7uN8H/qqafwox/9CC+99BLS6TQmTJiAc845B1deeSWSyeSQueZQQgpU72tDTeB7I9l9Fffe14DaZ5Tnykg7v6QVQx4rz6d4p6iS0VlvNR8piOXCQz4nAFdE2BvRJ9LvT2QirhTbMrLOcTD677XVSIsOo9y0ssh7O45j7gPAJaZlGUtpSXEcIFu0kLYD6LaD2JYNoDMfRJcd3EWRX6UlWsbE9iL2ackhGuwRyx3bSq4kawpmLpK4IyLLiDK6z90K706KFO9yN0hafGQOBgCzkGAnXnbX5aLDtm1YloVEImEi/bTkeD8fADU/l3LBIHde5EKL8JmHcpRfURRF6T92C+F/00034Wtf+xocx8G4ceMwfvx4vPXWW7j++uvx29/+FvPnz0d7e/ugX3MoIsXlYAn8egK9nojv7Vg/pNWByAi7X7RfRth5rIyw857ScgHUNuSisObxMklVzre0l8jFhNwl8N5bXp/fGRGWybz87i3bCcBl1ZFiVtpuvN1dvR2GvfalUqmCbKFH3NvlILK2hWwxhHQhiEwhgEwhCGcHbTp9oSVawp6pPMbEs0gG83CcCgrZCmynWmFIRttlxRuZm8Bn4m4JoZCWNfo5V4VCwXUt764QcwKYMFsul5HJZFyfRaFQgGVZJnFYNtGSdh4Kefmzwh0guVDlZ+ddtPJZhrqtR1EURel/hr3wX7BgAa644goAwK233oqvfOUrsCwL69atw+mnn44FCxbgK1/5Cn77298O6jWHKo34h99PpHu/U1h6fd3b++59TUbKvYsWKaC94p/iie9Lb78co993impp0eF3b0UfKai9CxPvwkKW55R2Ge88yXv4/dlvfnh/WfGHUXzaveRix4zNAQrFCuxiBXYJyBUc2EUH+aKFfKnHb18sB2CXLNjlMPKlKArlAHbUf78zWHDQFrUxOpZBezSNROjDiHYZyBcrJmLvzT+RuxhywSV3Kij65QJBlt0EYN6XvQ4A9wJB3sNxHOTzeXMfmXxLYc/PJJ1Om2tzsSB/BuU4vNWauFiRCx2iEX5FUZTmZtgL/3//939HpVLB5z//eVx88cXm9b333hu//vWvMX36dDz00EN47bXXcPDBBw/aNYcLfgLb+2cZLa9nu6kn1Hv77jcOWZfcD7/3vNeVgthru5GC2vtnr9inoOJ1ZTSYxwQCH9ai/3DcRsRXqvXnKxTvHx5TrvTUnC+VKqg4DiqVHjtMuVJBpdIjvnu+9/y5XK58+H7PcQ4AWAGUyxWUyxVUEOg5rgJUHMt8rziAgwrKFaBUdlBxSiiVKyhXLJQcC8WyhbITQKlioVQOoORYqDhDqyJTMpRHWziN1mAaqVAaAXy4wCpayBaqVY+kvUUuACiavYsBfnY8RpZGZQQdgGmgJZNkvTtFMhIva+ZLpOCXfQ3YFIy+f8dxzE4Adw34XNK25K3yJCP8suToUKywpSiKogwcw1r4p9Np/PnPfwYAl0AnU6dOxfHHH4/HH38cDzzwQJ9EeiOuORR58pX38YvfvwE4gKvVEYUk/+oV1XX+0ts13H93/L59eC/vKJ3qfx2/d9wn+i0N6qwXfK7huZ+LRkav5d1UlEmCKCMZzCAVyiAZzCIZzCJkieh2BfCW7a9UKibi7i0tKnde5E6NN4+DEXa5OJBVlWjt4c6A94tin2IeqNp5eC9pFeIiwLIsVx6GTKQOBAIm+ReAq6SovDcXGN6Fi6IoiqIAw1z4L1q0CLZtIxqNYt68eb7HfPSjH8Xjjz+OF198cdCuORQpFMvoTBe2f2BToRVNBouoZSMezCEeyCMRzCEeyCEaKGBnUk5kfgNFr/TbyxKZFM/sKxAIBJDNZgG4K+JI8e8V5N4IO+AuCyoFuKysIy1W8tq043gTz/3KdsoEdPmlkX1FURTFj2Et/JcuXQoA2HfffV3l9iSTJ08GALzzzjuDcs1bb70Vt912W5/uvWTJkj4dpyjDkZBVRCxgIxooIBqwP/xzz/egtYMtdz1IUe8VxV6B7vX7+y0K5C6AfF8mB3uvRdHuFeDe63sXEt7xyt0GLhjk3+Wz+JWVVRRFUZR6DGvhv3XrVgDotboO39u2bdugXHP9+vVYuHBhn+6tKMORIMoIWSWErBLCgSIiVtH3e1/FvVeAey0sXjEv+wh4LTpMZvYT1n4Re7/XpNjmGLxlOunB947ZK+K9UXq5mJDne5+TY2t2zjx2MrL5EhKxYf1Pl6IoyqAxrH97spFOb+3lWSs7l8sNyjX32msvzJkzp0/3XrJkSZ/HqSi7SjAABC0gGATCQQuREBAJWT1f4QCi4QAiISAeCSEStpCIhpCIBZGMBpCMh5CKh5CMhREKuqPXQFWAA1WxLpNeeYwf3kRZeU353c9eU+9a3r/LhYL3OO/9d+T6EhXs/c+Zx04Z7CEoiqIMa4a18Gfli0Khvled9cfj8figXPOSSy7BJZdc0qd7z507d8B2B/YancSxs8e5XnNpGMv3jx8eV0+wef4Oq+579a7X1+NqxtXH8dZc3tqJ4+AVkz6DRe/j9Z4TDAYQsCwEAhYCASAY8Pl7wELAshAMMDJtIehzTDgUQCQURDgU6PkKBxAO9vw9Eu55LRRUe4iiKIqiNBvDWviPHDkSQNWe4wff47GDcc2hyKypYzBr6pjBHoaiKIqiKIoyQAzrPej9998fAPDee++ZChleVqxY4Tp2MK6pKIqiKIqiKIPNsBb+c+bMQSQSgW3bePnll32PefbZZwEARxxxxKBdU1EURVEURVEGm2Et/FOpFD7xiU8AgG/JzGXLluHJJ58EAJx99tmDdk1FURRFURRFGWyGtfAHgGuuuQaWZeHuu+/GbbfdZjrNrl+/Hueddx4qlQrOPPNMzJo1y3Xe0UcfjYkTJ+K///u/++2aiqIoiqIoijJUGfbC/7DDDsONN94IoKeCzoQJEzBnzhxMmjQJCxYswLRp03D77bfXnLdmzRqsXr0aHR0d/XZNRVEURVEURRmqDHvhDwBXXHEF/vrXv+KUU05BJpPBW2+9hQkTJuCqq67CK6+8gtGjRw+JayqKoiiKoijKYGE59LEogw7r+M+ZMwcLFiwY7OEoiqIoiqIouxG7RcRfURRFURRFUZTeUeGvKIqiKIqiKE2ACn9FURRFURRFaQJU+CuKoiiKoihKE6DCX1EURVEURVGaABX+iqIoiqIoitIEqPBXFEVRFEVRlCZAhb+iKIqiKIqiNAHawGsI0d7ejm3btiEej2PGjBmDPRxFURRFURRlmDB9+nTce++9vR4TGqCxKH0gn88DAHK5HBYuXDjIo1EURVEURVF2J1T4DyH22GMPbNq0CbFYDJMmTRqQey5ZsgS5XE53GfqAzlXf0bnqGzpPfUfnqm/oPPUdnau+o3PVNwZ7nqZPn77dY1T4DyFWrVo14PecO3cuFi5ciBkzZmDBggUDfv/hhM5V39G56hs6T31H56pv6Dz1HZ2rvqNz1TeGwzxpcq+iKIqiKIqiNAEq/BVFURRFURSlCVDhryiKoiiKoihNgAp/RVEURVEURWkCVPgriqIoiqIoShOgwl9RFEVRFEVRmgAV/oqiKIqiKIrSBKjwVxRFURRFUZQmQIW/oiiKoiiKojQBKvwVRVEURVEUpQkIDfYAlMHl4osvxvr167HXXnsN9lCGPDpXfUfnqm/oPPUdnau+ofPUd3Su+o7OVd8YDvNkOY7jDPYgFEVRFEVRFEVpLGr1URRFURRFUZQmQIW/oiiKoiiKojQBKvwVRVEURVEUpQlQ4a8oiqIoiqIoTYAKf8Wwbt06jBgxApZlwbIsrFq1qtfjf/vb3+JjH/sYRo4ciWQyiUMOOQQ//OEPUSwWB2bAA8DixYtx5ZVX4oQTTsCkSZOQSqUQi8UwadIkfO5zn8Pzzz+/3Ws0wzwBwLJly/Bf//VfOOWUU7DPPvsgEomgra0N8+bNw3/+538inU5v9xrNMFe5XA4PP/wwvvWtb+Hkk0/G6NGjzf9zfZkjoDnmiTz11FP41Kc+hTFjxiAej2P69Om45pprkMlkBntoA8aGDRtwzz334Gtf+xqOOuooJBIJWJaFQw89dLvnFotF/OAHP8CsWbOQTCbR3t6O448/Hg899NAAjHxgcRwHzz//PK688kocffTRGDVqFMLhMMaMGYOPf/zjuPfee9FbPZNmmisA+P3vf4/LL78chx9+OMaNG4dYLIZUKoWDDjoIV1xxBVavXl333GabKy+PPvqo+b09ceLEuscNyXlyFOVDzjjjDAeA+Vq5cmXdY//5n//ZHDd58mTn4IMPdoLBoAPAOeaYY5x8Pj9wA28g1157rQPACQQCzp577unMmTPHmT59uhOLxczzf/e73617frPMU6lUcv3s7Lnnns6hhx7qjBs3zvX8q1atqnuNZpmrRYsWueZKfnV3d2/3/GaZJ8dxnJ/+9KeOZVkOAGfcuHHO7NmznWg06gBwZsyY4WzZsmWwhzgg/PjHP/b9eZk7d26v5+VyOefoo492ADjBYNA5+OCDncmTJ5vz//Vf/3WAnmBgePzxx13zs99++zlz58512tvbzWunnnqq7/8jzTZXjuM4xx57rAPACYfDzr777usceuihzsSJE51AIOAAcBKJhPPYY4/VnNeMcyXp6upyxo8fb553woQJvscN1XlS4a84juM49913nwPAOfPMM7cr/B966CEHgBONRp2HH37YvL5kyRJn0qRJDgDn61//+gCNvLE8/vjjzgMPPFAjMLZt2+ZcfvnlZq5eeOGFmnObaZ6KxaLT2trqfPOb33SWLFnieu+FF14wz/uRj3zE9/xmmqs33njDmTdvnnP55Zc7v/zlL51HH320z8K/mebplVdecQKBgGNZlnPrrbc6lUrFcRzHWbt2rTN37lwHgPMP//APgzzKgeHnP/+5c+KJJzpXXnml8+CDDzrf//73+yT8v/rVrzoAnEmTJjlvv/22ef3hhx82C6hHHnmk0cMfMP761786kyZNcn7yk584GzdudL131113mWf2E1zNNleO4zh33nmn8/jjj9cshJYvX+4cc8wxDgBn9OjRTjqddr3fjHMl+cd//EeXXqon/IfqPKnwV5wtW7Y4Y8eOdcaPH++8/vrr2xX+s2bNcgA43/72t2vee+KJJ4ww2bRpU4NHPrhUKhXngAMOcAA43/zmN2veb6Z5qlQqvUZfn3vuOfNztWjRopr3m2muvKxcubLPwr+Z5ok7kJ///Odr3lu6dKmJSr766quDMLrB5Ze//OV2hf+GDRucSCTiAHCefPLJmvevueYaB4AzZ86cRg51QOns7HQKhULd97/3ve85AJz29nanXC6b15txrrbHhg0bzO+lRx991PV6M8/Vs88+61iW5Zx11lnm/0M/4T+U50mFv+J8/vOfNytPKUL8hP/SpUvN+2vWrPG93pQpUxwAzv/+7/82eOSDzz/8wz84AJx/+qd/cr2u81RLW1ubA8D5zW9+43q92eeqr8K/meapu7vbRMTmz5/ve8yJJ57oAHC+9a1vDfDoBp++CP/bbrvNAeBMmTLF9/01a9aYn6fly5c3aqhDioULF5pn3rBhg3ld58ofWqQefPBB81ozz1Uul3OmTZvmtLS0OGvWrOlV+A/ledLk3ibnL3/5C+666y58+tOfxmmnnbbd41988UUAwKRJk7DPPvv4HvPRj37UdezuSj6fx4IFCwCgJslO58lNuVw2iaeJRML1ns5V32imeVq0aBFs20Y0GsW8efN8j9ldnrVRcF44T1722WcfTJo0yXXs7k4+nzd/jsfj5s86V7UsWbIEW7duRSAQwOzZs83rzTxX3/3ud/HOO+/g+9//ft3fwWQoz5MK/yYmk8ngkksuQWtrK37605/26ZylS5cCAKZMmVL3mMmTJwMA3nnnnV0f5BCks7MTzz33HE477TSsXr0aRx55JD73uc+5jtF5cvPwww8jm80iFArhiCOOcL2nc9U3mmme+Kz77rsvwuGw7zG7y7M2imb6eekrv/71rwEAs2bNQmtrq3ld56oHx3GwadMmPPTQQzj99NMBAN/4xjew3377mWOada4WL16MH/zgB5g3bx4uu+yy7R4/lOcpNKB3U4YUV111FVatWoX/+Z//wd57792nc7Zu3QoAaG9vr3sM39u2bduuD3KIsGbNGowfP9712siRI/G9730PX//61xEKuf9XatZ58qOrqwvf+MY3AABf/vKXMXr0aNf7Old9o5nmqZmetVHoHLpZuHAhbrnlFgDAlVde6Xqv2efqnnvuwQUXXOB6bfr06bj33ntx/vnnu15vxrkql8v48pe/DAC47bbbEAhsP2Y+lOdJI/5NygsvvICbb74Zhx9+OC699NI+n8et0kgkUveYaDQKoKde+e5CNBrFUUcdhaOOOgpTp05FJBLBtm3bcN999+Hll1+uOb5Z58lLuVzGeeedh5UrV2LixIm44YYbao7RueobzTRPzfSsjULnsMrGjRtx1llnoVgs4qyzzsJnP/tZ1/vNPld77LEHjjrqKBxxxBEYP348AoEAli5dinvvvRdr1qxxHduMc/XDH/4QCxcuxNe//nXMmjWrT+cM5XlS4T/MuPTSS03TiB35Ou6448w1CoUCLrroIgQCgT6vXkksFjPXqIdt2wDcHsqBpj/mSTJmzBjMnz8f8+fPx9KlS/HBBx/g6quvxuuvv44TTzwRL7zwguv44TJPQP/PFXEcBxdffDEeffRRjBw5Er///e/R1tZWc9xwmatGzVNfGS7z1B8007M2Cp3DHjo7O3HKKafgvffew9y5c3HHHXfUHNPsc/Xxj38c8+fPx/PPP4/33nsPy5Ytw+mnn45HH30Uhx9+ODo7O82xzTZXy5Ytw3XXXYdJkybh2muv7fN5Q3me1OozzGhra8PYsWN3+Dy53XTDDTfgrbfewpVXXomZM2fu0HVGjhwJoLqN5Qff47GDQX/MU2+0trbi+uuvx+bNm3Hrrbfi29/+Nv7617+a94fLPAGNm6uvfvWr+MUvfoGWlhY89thjOOigg3yPGy5z1eifqe0xXOapP2imZ20UOodAOp3GySefjEWLFuHAAw/EY4895vL2E50rN/vttx8efPBBzJo1C2+++SZuvvlmXH311QCab64uvfRS5PN5/OxnP6spTNEbQ3meVPgPM2644QZfu8SOwEo0t99+O375y1+63iuXy+bPhx12GILBIL7xjW8Yj/b+++8PAFi+fHnd669YscJ17GDQH/PUF0477TTceuuteOWVV1yvD5d5AhozV9/4xjdw8803I5FI4NFHH8Vhhx1W99jhMlcD9TNVj+EyT/0Bx//ee++hWCz6JvjuLs/aKPbff38899xzTfHz4kc2m8Wpp56KF198Efvvvz8ef/xxjBo1yvfYZp8rP4LBIE455RS8+eabrn/fmm2uFixYAMuy8IUvfKHmPVp03n//fey5554AgIceeghHHnnkkJ4ntfo0MVu2bMHGjRtdX5s3bzbvb968GRs3bkQ6nTavsSLLypUrsXbtWt/rPvvss65jd2dYorJSqbheb+Z5+ta3voUf/ehHiMVieOSRR3D00Uf3enwzz9WO0EzzNGfOHEQiEdi27ZtDA+w+z9ooDj/8cADA/Pnzfd9fu3YtVq5c6Tp2dyGfz+OMM87AM888g4kTJ+KJJ54wwsyPZp6r3vD7960Z58pxnBqttHHjRnR1dQHomR++RmvPkJ6nAe0aoAx5ttfAy3EcZ+bMmdvtHhqJRHaL7qHb4//8n//jAHCOPfbYmveacZ7YGTMSiTh//OMf+3xeM84V2ZHOvc00T6eddlqfOvcuXrx4EEY3uPS1c284HN5u59DZs2c3cqgDTqFQcD75yU86AJxx48Y577777nbPada56g3btp3Jkyc7AJxrr73WvK5zVWV7nXuH6jyp8Fdc9EX4P/jggw4AJxqNOo888oh5/e2333YmTZrkAHCuuOKKARpxY/n85z/vPP/886727o7jOJs3b3b++Z//2czVww8/XHNuM82T4zjOT37yEweAEwqFnIceemiHzm22uZLsiPBvpnl6+eWXHcuyHMuynFtvvdWpVCqO4zjOunXrnLlz5zoAnDPPPHOQRzk49EX4O47j/NM//ZMDwJk0aZLz9ttvm9cfeeQR0xn5d7/7XaOHO2CUSiXnnHPOcQA4e+65p7N06dI+n9tsc/X3v//d+da3vuU7R++8847z8Y9/3AHgpFKpmk7hzTZX9ehN+DvO0J0nFf6Ki74If8dxnCuuuMIcN3nyZGfWrFlOMBh0ADhHH320k8vlBm7QDYTPmEwmnYMPPtg5/PDDnWnTpplnDYVCzg9+8IO65zfLPK1du9axLMsB4IwcOdI56qij6n79/Oc/971Gs8yV4zjO7NmznVGjRjmjRo1yRo4caZ6br40aNco5/fTTfc9tpnn68Y9/bH6uxo8f78yePdv8gzlt2jTngw8+GOwhDgjvvfee62cjlUqZ3z/y9RtuuMF1XjabdY444ggHgBMMBp1Zs2aZKC4A55//+Z8H6Ykaw69+9SvzbBMnTuz199DChQtd5zbbXD311FPm2caMGePMmTPH+chHPuLsu+++5vX29nbniSeeqDm32eaqHtsT/kN1nlT4Ky76Kvwdx3Huv/9+59hjj3Xa2tqceDzuzJw507nhhhucQqEwMIMdAO6++27nS1/6kjNz5kxn9OjRTigUclpbW51Zs2Y5X/3qV50333xzu9dohnmSPzfb+5Lbxl6aYa4cx3EmTJiw3Xnys4+RZpknx3Gcxx9/3DnllFOc9vZ2JxqNOvvvv79z1VVXbXd3ZHeir/9/+f2/Zdu2c8MNNzgzZ8504vG409bW5hx77LHOgw8+OPAP0mAoxPry9dRTT9Wc30xztXXrVuenP/2p8w//8A/O1KlTndbWVrOQPProo53rr7++14V1M81VPbYn/B1naM6T5TiOA0VRFEVRFEVRdmu0qo+iKIqiKIqiNAEq/BVFURRFURSlCVDhryiKoiiKoihNgAp/RVEURVEURWkCVPgriqIoiqIoShOgwl9RFEVRFEVRmgAV/oqiKIqiKIrSBKjwVxRFURRFUZQmQIW/oiiKoiiKojQBKvwVRVEURVEUpQlQ4a8oiqIoiqIoTYAKf0VRFEVRFEVpAlT4K4qiKDvFF7/4RViWhS9+8YuDPZRe+da3vgXLsvBf//Vfgz2U3YqTTz4ZlmXhySefHOyhKIrSR1T4K4qiALjuuutgWRYsy+r3a99xxx247rrr8PTTT/f7tYcqQ+WZ16xZgxtvvBFjxozB5Zdfvt3jt23bhlgsZn4Wli1btstjkD9b3q9EIoGpU6fiC1/4Ap5//vkdvkYsFsO4ceNw+umn4/7774fjONs99ze/+c12x3zqqae6zlm1apXvdQHgG9/4BiqVSp/nQ1GUwUOFv6IoSoO544478J3vfGfQRXB/s9dee2HatGnYa6+9at4bKs989dVXI5fL4Zvf/CaSyeR2j7/33nth27b5+y9+8Yt+Hc/YsWPN15gxY1AoFLB8+XLcddddOOqoo4yY7us1LMvC2rVr8fvf/x7nnnsuTj31VNf4/fjlL3/Z6/vr1q3DY489tt1xHH744fjEJz6BRYsW4Z577tnu8YqiDD4q/BVFUZSd4j/+4z/w9ttv4z/+4z8Geyi+rF27Fvfeey8ikQi+9KUv9emcn//85wCAo446CgBw5513olwu99uYNmzYYL42bdoE27Yxf/58zJ07FwDwne98p9fIv/camUwGb7zxBk466SQAwJ/+9Cd861vf8j1v9OjRSCaTePzxx/H+++/Xvf5dd92FcrmMiRMnbvd5Lr30UgBQG5WiDBNU+CuKoii7JbfffjvK5TI++clPor29fbvHL1y4EIsXL0YoFMI999yD1tZWrF+/Hn/6058aNsZgMIijjjoKv/vd78xrDz/8cJ/PDwQCOPDAA/HII49gypQpAIBbb70VpVKp5thkMomzzz4blUoFd955Z91rckegL7kbnNs333wTzz33XJ/HrSjK4KDCX1EUZTscd9xxsCwL1113HRzHwe23346PfOQjaG1tRUtLC4444ghfq8Mdd9wBy7Lwt7/9DUBPNNfr0fbzTm/YsAFXXnklZs2ahba2NsRiMey333646KKL8NZbb/XrGCX3338/TjnlFIwdOxbhcBgjRozA1KlTcfrpp+N//ud/kM/nXcf7Jff29Zm3bduGRCIBy7Jw//339zqua665BpZlYb/99vP1sPvhOI6J3p9//vl9OofHf/zjH8fEiRPx6U9/2vV6Ixk3bhxGjRoFAEin0zt8fiwWwznnnAMA6O7uxttvv+173IUXXgig53Pym8v58+dj6dKl2G+//XDMMcds976RSMTM02233bbD41YUZWBR4a8oitJHyuUyzjrrLFx88cVYuHAhLMtCOp3Giy++iAsuuADXXnut6/h4PG5ENNATcZX+7LFjxyIYDLrO+cMf/oCpU6fihhtuwGuvvYZcLodQKISVK1fi5z//OWbPno277rqr38ZIvvzlL+Pcc8/Fn//8Z2zatAmxWAzFYhHLly/H73//e/zTP/0TNmzYsN056uszjxw5Ep/5zGcA9C4Yy+WyiUBfdNFFfU6+fuONN7BmzRoAwEc/+tHtHp/P5/GrX/0KAHDBBRcAAD7/+c8D6PlMNm7c2Kf77ixr167Fli1bAADTpk3bqWuMGzfO/Lmrq8v3mGOOOQaTJ0/GihUr8Oyzz9a8L6P9fZ1rLhD+/Oc/7+iQFUUZYFT4K4qi9JH/+Z//wdNPP4077rgDXV1d6OzsxPvvv4/TTjsNAHD99de7qsCce+652LBhA4488kgAPdVPpD97w4YNGD9+vDn+5Zdfxqc//Wmk02lccsklWLJkCXK5HNLpNFavXo3LLrsMhUIBX/7yl/HKK6/0yxiBnijvL/7/7d1/TFX1H8fxJ7dbFyci5iDmulSmRk6WGJMSi36AWi2VLRPB7dbUrM1Zi63azOmqTd20tazttohaVCuQmVg2suyHOvqBM9vaqhHsunAgmFCAAZfL9w/2Od0LXLj3chH25fXYzibcw7mfz/nH9/mc9/v9KSnBZrOxZ88eLly4wD///ENHRwctLS1UVVXhcrm46qqrRrxH4cz5iSeeAODYsWPU1dUNeb0jR47Q0NCA3W4POU8f4NtvvwXA6XSSnJw84vkVFRW0trYybdo0Vq1aBUB2djYpKSl4vV5KS0tD/u5w9Pb2Ul1dTV5eHgBJSUnWA0e4/N8eBUtt8n9DM7BwuaOjg7KyMmw2W1gtWjMzMwE4f/580DcNIjIxKPAXEQnRxYsXOXjwIC6XiylTpgD9q6zl5eXMmjULn883YtrKcLZs2UJ3dzfbt2/H7XaTmppqvRFISUnh9ddfZ+vWrXi9Xl566aWojdEUk+bk5PDMM88EBI0zZ85k2bJlvPPOO8yaNSviuQ0lMzOT9PR0KzVpKOZtwMqVK0MK4I3vv/8egFtuuSWk8006z0MPPWTdt5iYGAoLCwM+H63k5GTrSEpKwuFwsGTJEn777TcKCwv54YcfSEhICPu6f//9N++//z7QH/TPmzcv6LkulwubzcaBAwcC0orKyspob2/n3nvvDXggHcncuXOJi4sDoLq6Ouyxi8jlo8BfRCREWVlZ3H333YN+73A4WL58OQA///xzRNc+c+YMP/74I1deeSVFRUVBzzOrwV988cWQ3WYiGaMJNJubm6PawSYUpivM22+/TU9PT8BnDQ0NVmHt5s2bw7ruuXPnAEhMTBzx3Lq6OqvtqEnzMcz9/vXXX0fsthOKpqYm6/C/352dnbS1tYWdUtTa2sqXX37JPffcY835ySefxGYL/t+70+kkJyfHWuE3TJpPOG9WDFOfYMYgIhOTAn8RkRCZlIahmNXwv/76K6JrnzhxAgCfz8dNN90UsDLsf6xYsQLoT8swOeGjHWNOTg6xsbGcPn2aO+64g7feeov6+vqI5hGugoIC4uPjaWpq4vDhwwGflZSU0Nvbyw033GC1qwxVc3MzEDzlZeD39PX14XQ6yc7ODvgsNTWVjIwM67zR6uvrCzguXbrE6dOncblcfPLJJ9x5550BHX6G4l8oPWPGDHJycjh16hQA69evZ9u2bSOOwxT5mjnV1tZy/PhxEhISWL16ddjzMvfZ3HcRmZgU+IuIhGjatGlBP7Pb7QCDVq1DZVZKe3t7A1aFBx4tLS3W33R2dkZljLNnz6a4uJi4uDiqq6vZuHEjs2fPJikpibVr13Lo0KGQu+mEKy4uzkqn8S/y9fl8VnrNpk2bwt5R2XQgcjgcw57n39qysLBwyJVys+r/0UcfRdRxZzixsbEsXLiQ4uJi8vLy6Orq4pFHHglanAuBG3ilpKSwaNEiNmzYwLFjxygtLR1UMD6UvLw8ZsyYwcmTJ/n999+t1f6CggJiY2PDnodJjxrY+UlEJhYF/iIiE4BJ+UhNTR20KhzsCGWDpVAVFhbi8Xhwu92sXbsWp9NJc3MzZWVlrF69muzs7GGD0dEwRb5Hjx61ClQ///xzPB4PdrvdWp0Oh0k9uXjx4rDnVVVVWd1/Bqb5GPn5+djtdtrb20dVwzGSTZs2AdDW1saRI0eCnudfKO3xeDh16hTFxcVDpngF43A4WLduHdBfv2A6RUVyr+G/t0jmvovIxKTAX0RkAjCFq3V1dXR0dIzLGK6++mo2b97Mhx9+yNmzZ6mtreW5554jJiaG48ePs3PnzjH53rS0NJYsWRKwym+KfVetWhVWUa9hcvtHSr0y33frrbcyf/78oNcyKVbRSPcJ5rrrrrP+fTlSrUyQ/8orr/Dnn3+yYMECK60pXOY+h1JTISLjR4G/iMgYM+kjw6XLZGVlAdDd3c3Bgwcvy7hGcuONN7Jr1y5rA6yjR4+G/LehzNmfWfUvKSmhoaHByvd/7LHHwhmyxQTxwdqEQn8+emVlJRB8td8w6T4nT54cs5aV5s0D9O9/MNYyMjJIS0uju7sbiKyoF/o3DDMpaDfffHPUxici0afAX0RkjMXHxwP9HViCycjIID09HYBt27aNWCQZaRHxULq6uob93ORvh5I7boQyZ39r1qxh5syZnDt3joKCAnp6eiIq6jXMplJnzpwJOr/S0lJ6enqw2+3k5+cPe70HH3yQ6dOnA2O36m82EAMiXnkP1549eygqKqKoqIj169dHdI2amhp8Ph92u916gBWRiUmBv4jIGFuwYAHw32ZUQ4mJicHtduNwODh79iyZmZkcOHAgoIC3oaGB9957j9zcXJ599tmojW/Lli08/PDDVFRUcP78eev37e3tuN1uK//7/vvvD/maoczZn8PhsDaNMptvRVLUa2RlZWG32+nu7uann34a8hwTwN91111MnTqV9vb2oIfX67U29nr33Xfxer0RjWsojY2NPP/881aR8W233cbtt98etesP57777mPv3r3s3bs34jQds2fCokWLrH7+IjIx2cd7ACIi/+9cLhf79u2jtraWlJQUEhMTrc4pJ06c4NprrwVg8eLFHD58mHXr1lFfX8+aNWu44oorSEhI4NKlSwEPARs3boza+Hp6eigvL6e8vBzo77Rjt9sDVuuXLl0aUptII9Q5+3v88cd5+eWX6evri7io14iPj+eBBx7g0KFDVFZWDmpz+t133/HLL78A/XsiDNcNaaCmpiY+/fRT60EgHAPrFf7991/a2tqsn9PS0qioqIj4gWc8mHQpkxImIhOXVvxFRMbY3Llz+eqrr1i5ciWJiYlcuHABj8eDx+MZtHKcm5tLbW0tu3btYunSpUyfPp3W1lZsNhvz589nw4YNVFZWsn///qiNb/v27bz66qvk5eWRmppqdbBJSkoiNzeXkpISvv7667DyzsOZszFnzhwWLlwIRF7U689s+vXBBx8MqjUY7U68kf79wPasnZ2dJCcns3z5ct58801qamqivkPyWKqvr6e6upopU6ZYdRAiMnHF9I1Vc2YREZEwNDY24nQ68Xq9VFVVsWzZslFdz+fzMW/ePP744w+++eYbK+9foueFF15gx44dPProo2Pa8UhEokMr/iIiMiG43W68Xi9z5syJuKjXn81m48UXXwRg9+7do76eBOro6GD//v04HA527Ngx3sMRkRAo8BcRkXFXU1PDvn37AHj66aejluOen5/P4sWL+eyzz6wiVImO1157jZaWFrZu3RqwB4GITFwq7hURkXFz/fXX09XVRWNjIwDp6elRLVyOiYnhjTfe4OOPP7Z6zUt0TJ06lZ07d/LUU0+N91BEJETK8RcRkXFjVvaTk5NZsWIFu3fv5pprrhnnUYmI/H/Sir+IiIwbrT2JiFw+yvEXEREREZkEFPiLiIiIiEwCCvxFRERERCYBBf4iIiIiIpOAAn8RERERkUlAgb+IiIiIyCSgwF9EREREZBJQ4C8iIiIiMgko8BcRERERmQQU+IuIiIiITAL/A5GSZjjomB27AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(figsize=(8, 6))\n", + "\n", + "# Draw some sample from the traces\n", + "for a, b in zip(alpha_samples, beta_samples):\n", + " axs.plot(\n", + " np.linspace(-40, 40, 500), \n", + " (norm.cdf(np.linspace(-40, 40, 500), loc=a, scale=b)),\n", + " color='gray', alpha=.05, linewidth=2\n", + " )\n", + "\n", + "# Plot psychometric function with average parameters\n", + "slope = az.summary(idata, var_names=[\"mu_beta\"])['mean']['mu_beta']\n", + "threshold = az.summary(idata, var_names=[\"mu_alpha\"])['mean']['mu_alpha']\n", + "axs.plot(np.linspace(-40, 40, 500), \n", + " (norm.cdf(np.linspace(-40, 40, 500), loc=threshold, scale=slope)),\n", + " color='#4c72b0', linewidth=4)\n", + "\n", + "axs.plot([threshold, threshold], [0, .5], '--', color='#4c72b0', linewidth=2)\n", + "axs.plot(threshold, .5, 'o', color='w', markeredgecolor='#4c72b0', \n", + " markersize=15, markeredgewidth=3)\n", + "\n", + "plt.ylabel('P$_{(Response = More|Intensity)}$')\n", + "plt.xlabel('Intensity ($\\Delta$ BPM)')\n", + "plt.title('Group level estimate of the psychometric function')\n", + "plt.tight_layout()\n", + "sns.despine()" + ] + }, + { + "cell_type": "markdown", + "id": "46f986be-5daf-4c04-84e4-ee2347c84eb6", + "metadata": {}, + "source": [ + "## System configuration" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "7302ac9d-f687-426d-88f1-d0144dd0aad6", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Last updated: Fri Nov 10 2023\n", + "\n", + "Python implementation: CPython\n", + "Python version : 3.9.18\n", + "IPython version : 8.16.1\n", + "\n", + "pymc : 5.9.0\n", + "arviz : 0.16.1\n", + "pytensor: 2.17.2\n", + "\n", + "matplotlib: 3.8.0\n", + "numpy : 1.22.0\n", + "pymc : 5.9.0\n", + "pandas : 2.0.3\n", + "pytensor : 2.17.2\n", + "arviz : 0.16.1\n", + "seaborn : 0.13.0\n", + "\n", + "Watermark: 2.4.3\n", + "\n" + ] + } + ], + "source": [ + "%load_ext watermark\n", + "%watermark -n -u -v -iv -w -p pymc,arviz,pytensor" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "psychophysiscs_groupLevel.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + }, + "vscode": { + "interpreter": { + "hash": "40d3a090f54c6569ab1632332b64b2c03c39dcf918b08424e98f38b5ae0af88f" + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/examples/templates/HeartBeatCounting.ipynb.txt b/_sources/examples/templates/HeartBeatCounting.ipynb.txt new file mode 100644 index 0000000..6229bef --- /dev/null +++ b/_sources/examples/templates/HeartBeatCounting.ipynb.txt @@ -0,0 +1,725 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "0Ze0aik_KdaW" + }, + "source": [ + "(hbc_template)=\n", + "# Heartbeat Counting task - Summary results" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RS4nPf2SHuhG" + }, + "source": [ + "Author: Nicolas Legrand " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "ycke-WOSKead", + "tags": [ + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "%%capture\n", + "import sys\n", + "\n", + "if 'google.colab' in sys.modules:\n", + " !pip install systole, metadpy" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "3o_vVIqZKdaU" + }, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.dates import date2num\n", + "import numpy as np\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "from systole.detection import ppg_peaks\n", + "from systole.plots import plot_raw, plot_subspaces\n", + "\n", + "sns.set_context('paper')\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5mcNYW3jKdaX" + }, + "source": [ + "**Import data**" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "hkz-kmdeKdaX", + "tags": [ + "parameters" + ] + }, + "outputs": [], + "source": [ + "# Define the result and report folders - This should be adapted to you own settings\n", + "resultPath = Path(Path.cwd(), \"data\", \"HBC\")\n", + "reportPath = Path(Path.cwd(), \"reports\")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# ensure that the paths are pathlib instance in case they are passed through cardioception.reports.report\n", + "resultPath = Path(resultPath)\n", + "reportPath = Path(reportPath)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "8cYkrDMvKdaY" + }, + "outputs": [], + "source": [ + "# Search files ending with \"final.txt\" - This is the main data frame that is saved at the end of the task\n", + "results_df = [file for file in Path(resultPath).glob('*final.txt')]" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "id": "sDGCesoGKdaZ", + "outputId": "822027f9-83e5-4a6c-b90b-da0f437ab6d2" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
nTrialReportedConditionDurationConfidenceConfidenceRT
0036Count4045.146
1127Count3059.909
2229Count3544.279
3339Count4553.278
4447Count5054.007
5523Count2552.635
\n", + "
" + ], + "text/plain": [ + " nTrial Reported Condition Duration Confidence ConfidenceRT\n", + "0 0 36 Count 40 4 5.146\n", + "1 1 27 Count 30 5 9.909\n", + "2 2 29 Count 35 4 4.279\n", + "3 3 39 Count 45 5 3.278\n", + "4 4 47 Count 50 5 4.007\n", + "5 5 23 Count 25 5 2.635" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load dataframe\n", + "df = pd.read_csv(results_df[0])\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "xN2uZaX6Kdaa" + }, + "outputs": [], + "source": [ + "# Load raw PPG signal - PPG is saved as .npy files, one for each trial\n", + "ppg = {}\n", + "for i in range(6):\n", + " ppg[str(i)] = np.load(\n", + " [file for file in resultPath.glob(f'*_{i}.npy')][0]\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2MJccOwsKdab" + }, + "source": [ + "# Heartbeats and artefacts detection" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9PLQ2a7ZKdab" + }, + "source": [ + "```{note}\n", + "This section reports the raw PPG signal together with the peaks detected. The instantaneous heart rate frequency (R-R intervals) is derived and represented below each PPG time series. Artefacts in the RR time series are detected using the method described in {cite:p}`2019:lipponen`. The shaded areas represent the pre-recording and post-recording period. Heartbeats detected inside these intervals are automatically removed.\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "koNvSFIhKdac" + }, + "source": [ + "## Loop across trials" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "OefHkBG2Kdad", + "outputId": "2e5d50f1-8b5a-45c1-e685-52b5458d6333" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Analyzing trial number 1\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABcQAAAHSCAYAAADCCcgbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZwlVXn//6nt1l177559BphhnxlBQQFFRzYxChIUVBhl9Cv6Nb9oSEzUGAPIC2Pi1ySamCgaA75Evwn4jStuIYgsGiMIyCCbLMM2wOw9PT293Kr6/VG3bt9bXXVvnVPPc3p6+rxfr37B9FLn3ltVp855ns/zeYwgCAJoNBqNRqPRaDQajUaj0Wg0Go1Gc5BjzvUL0Gg0Go1Go9FoNBqNRqPRaDQajUYFOiCu0Wg0Go1Go9FoNBqNRqPRaDSaBYEOiGs0Go1Go9FoNBqNRqPRaDQajWZBoAPiGo1Go9FoNBqNRqPRaDQajUajWRDogLhGo9FoNBqNRqPRaDQajUaj0WgWBDogrtFoNBqNRqPRaDQajUaj0Wg0mgWBDohrNBqNRqPRaDQajUaj0Wg0Go1mQaAD4hqNRqPRaDQajUaj0Wg0Go1Go1kQ6IC4RqPRaDQajUaj0Wg0Go1Go9FoFgQ6IK7RaDQajUaj0WjIeNWrXoUrr7yy+e9qtYpbb711zl6PRqPRaDQajUbTig6IazQajUaj0Wg0EmzYsAGFQgHVahU9PT1Yu3YtvvKVr2T+OQDcf//9uOiii7B06VJUKhUsX74cp59+Oq699lrVb4eNsbExbNiwYa5fhkaj0Wg0Go1GA0AHxDUajUaj0Wg0Gmk+/OEPY2xsDLt27cJHP/pRvOc972lTQ3f6+U9/+lO8/OUvx/DwMO644w7s3bsXjz32GP7iL/4C3/72tzO/hiAIUK/Xad9YBqanp5WPqdFoNBqNRqPR5EUHxDUajUaj0Wg0mpxYloWNGzdicHAQd999d6afv+9978Nb3/pWfO5zn8Nhhx0G0zThui5OO+00fOc730kd68knn4RhGPjKV76Cl7zkJSiXy7jrrrswMTGBj33sY1i9ejX6+/vx6le/Gvfcc0/b3371q1/Fcccdh97eXixatAh/9Ed/1PzZL37xC5x66qno7+/HoYceio9+9KOYnJxs/vyQQw7BFVdcgbPPPhu1Wg1/+7d/i3q9jg9/+MNYvHgxhoeH8ed//uezXq9hGLj55psBALfeeisMw8A3v/lNHHHEEajVajjzzDPx7LPPNn//hRdewHnnnYe+vj4cdthh+PrXvw7DMLTtikaj0Wg0Go2GBB0Q12g0Go1Go9FoclKv1/G1r30NO3fuxIknntj154888ggeffRRbNy4UXrMf/3Xf8X3v/99jI2N4fjjj8f//t//G//zP/+Dn/3sZ9i2bRsuvPBCvO51r8Pu3bsBAP/yL/+CP/3TP8VnPvMZ7NixA7/73e9w/vnnAwCeeuopnHHGGXjzm9+MF154AT/5yU/wve99Dx/5yEfaxrzmmmtwxRVXYHR0FB/84Afx6U9/GjfccANuueUWPPPMM7BtG7/85S+7vvZvfetb+NWvfoVnnnkG4+Pj+NjHPtb82UUXXQTP8/DEE0/g7rvvxg033CD9GWk0Go1Go9FoNHF0QFyj0Wg0Go1Go5HkM5/5DPr6+rB48WJ89rOfxbXXXotXv/rVXX++bds2AMCyZcuav3v//fejr68PfX19KBaLuO222zqOffnll2PFihWwLAtjY2P46le/in/6p3/C8uXLYds2/vAP/xC9vb34/ve/DwD47Gc/i4985CM444wzYNs2arUaXvOa1wAAvv71r+OII47AZZddhkKhgMMPPxxXX301vvSlLyEIguaY73rXu3DyySfDMAyUy2Vce+21+NCHPoRjjjkGruviyiuvRH9/f9fP7VOf+hR6e3vR29uLiy66CP/zP/8DAHjmmWdwyy234G/+5m/Q39+P/v5+fPKTn8x4NjQajUaj0Wg0mu7Yc/0CNBqNRqPRaDSa+cqf/umf4uqrrxb++fDwMIAwAHz00UcDANatW4fdu3ejXq/DcRz4vt9x7EMPPbT5/7/73e8AAK94xSvafmdqagrPPPMMAOCJJ57AkUcemXisp59+GqtXr2773po1a7B//35s27YNIyMjs8aMXn/r9yzLwsqVKzu+bgBYunRp8/8rlQr27t0LAE3rlFWrVjV/fsghh3Q9nkaj0Wg0Go1GkxUdENdoNBqNRqPRaBRzxBFHYM2aNfj617+OM888U+oYpjlT7Ll48WIAwG9+85vUgPQhhxyCRx55JPFnK1aswH//93+3fe+xxx5DqVRqBu/jYwLA8uXL8eSTTzb/7Xkenn76aaH30UqkmN+yZQuOOeaY5v9rNBqNRqPRaDRUaMsUjUaj0Wg0Go1mDvjiF7+If/u3f8Nll12GJ554Ar7vY3p6Gj/72c+Ej7Vq1Sqcd955+P/+v/+vGUDeu3cvfvjDH2Lr1q0AgD/6oz/C3/zN3+CWW26B53nYu3dvc6yLLroIDz/8MP7xH/8RU1NTeOyxx/CXf/mXeM973gPDMFLHveSSS/C3f/u3eOihhzA5OYmrrroKO3fulPg0QpYvX44NGzbgz//8z7F7927s3r0bH//4x6WPp9FoNBqNRqPRxNEBcY1Go9FoNBqNZg44/fTT8ctf/hLPP/88TjnlFFSrVRx66KH45Cc/ia997Wt45StfKXS8b3zjG3jZy16GM888E7VaDUceeSS+/OUvNz3A3/ve9+JTn/oULrvsMvT39+Pwww/Ht7/9bQBhQP0nP/kJ/v3f/x0jIyM47bTT8PrXvx6f/vSnO475kY98BOeffz5e85rXYPny5Ziamppl2yLKN77xDQRBgFWrVuH444/HueeeCwAoFou5jqvRaDQajUaj0QCAEbR2ydFoNBqNRqPRaDSaA4h7770Xxx9/PJ577jksWbJkrl+ORqPRaDQajWaeowPiGo1Go9FoNBqN5oBh8+bNmJqawnHHHYfnnnsO73znOwEAt9xyyxy/Mo1Go9FoNBrNwYC2TNFoNBqNRqPRaDQHDHv27MHb3vY21Go1vOxlL8PQ0BC+/vWvz/XL0mg0Go1Go9EcJGiFuEaj0Wg0Go1Go9FoNBqNRqPRaBYEWiGu0Wg0Go1Go9FoNBqNRqPRaDSaBYEOiGs0Go1Go9FoNBqNRqPRaDQajWZBoAPiGo1Go9FoNBqNRqPRaDQajUajWRDYc/0CDlS2b9+OH//4xzjkkENQKpXm+uVoNBqNRqPRaDQajUaj0Wg0Go0mgf379+PJJ5/E6173OgwNDXX8XR0QT+HHP/4xNm7cONcvQ6PRaDQajUaj0Wg0Go1Go9FoNBm4/vrrcfHFF3f8HR0QT+GQQw4BEH6IRx999Ny+mDng0Rf2zvVL0Ghycfii2ly/BI1Go9FoNBqNRqPRaDQ50TEqMRZqPOTBBx/Exo0bmzHdTuiAeAqRTcrRRx+Nl770pXP8atTjPLNnrl+CRpOLdct75/olaDQajUaj0Wg0Go1Go8mJjlGJsdDjIVmsr3VTTY1Go9FoNBqNRqPRaDQajUaj0SwIdEBco9FoNBqNRqPRaDQajUaj0WgSmJicwNZtL2JyanKuX4qGCG2ZotFoNBqNRqPRaDQajUaj0Wg0LXi+h29873u4+ee/gB/4MA0TZ5xyMi465xxYpjXXL0+TAx0Q12g0Go1Go9FoNBqNRqPRaDSaFr7xve/hjrvuwvrly1ArFrF3YgJ33HUXDMPAxnPfNNcvT5MDbZmi0Wg0Go1Go9FoNBqNRqPRaDQNJiYncPPPf4EjRkZQKxYBALViEUeMjOA/7/y5tk+Z5+iAuEaj0Wg0Go1Go9FoNBqNRqPRNNg1Ogo/8JvB8IhasQg/8LFzdHSOXpmGAh0Q12g0Go1Go9FoNBqNRqPRaDSaBgO9vTANE3snJtq+v3diAqZhYqCnZ45emYYCHRDXaDQajUaj0Wg0Go1Go9FoNJoGbsHFGaecjEdefLEZFN87MYFHXnwRZ77yFLgFd45foSYPuqmmRqPRaDQajUaj0Wg0Go1Go9G0cNE558AwDPznnT+H53uwTAtnvvIUvP2Nb5zrl6bJiQ6IazQajUaj0Wg0Go1Go9FoNJp5wcTkBHaNjmKgt5dVqW2ZFjae+ya8cf1L8MKTW7B4zWr0Ll/ONp5GHQesZcrnP/95nHDCCXBdF29729vafnbLLbfghBNOQE9PD1auXIm/+qu/avv5z372M6xduxblchknnngi7rvvPpUvXaPRaDQajUaj0Wg0Go1Go9EQ4vkevvadb+N9l1+BD/+f/4P3/uXl+Np3vg3P91jHdSwLi0eG4bCOolHJARsQX7p0KT7+8Y/j0ksvbfv+5OQkzjvvPLz73e/G7t27cfPNN+Mf/uEf8O1vfxsAsGPHDrzpTW/Chz/8YezatQtvf/vbce6552JycnIO3oVGo9FoNBqNRqPRaDQajUajycs3vvc93HHXXVi/fBlOPfxwrF++DHfcdRf+7/e/zztwvQ6rWERQr/OOo1HGARsQP//883HeeedhaGio7fvbt2/H3r17sWnTJpimiSOOOAKnnnoq7r//fgDAf/zHf2DNmjV45zvfCdd18cd//MfwfR8333zzXLwNjUaj0Wg0Go1Go9FoNBqNRpODickJ3PzzX+CIkRHUikUAQK1YxBEjI/jPO3+OySk+IWzgeTDdAnwdED9oOGAD4mksW7YMF154If7lX/4F9Xodv/3tb/Hzn/8cZ555JgBg8+bNOO6445q/bxgG1q9fj82bNyceb+vWrfj1r3896+vBBx9U8XY0Go1Go9FoNBqNRqPRaDQaTQd2jY7CD/xmMDyiVizCD3zsHB1lGzsIApiOoxXiBxHzsqnmxRdfjEsvvRR/8id/As/zcMUVV+Ckk04CAIyNjaG/v7/t9/v6+rB3797EY11zzTX4xCc+wf6aNRqNRqPRaDQajUaj0Wg084/x/fuxbedOjAwOohQLyGrUMNDbC9MwsXdioi0ovndiAqZhYqCnh23swPNgOA4Cj9erXKOOeRcQf/DBB/HWt74VN954I17/+tfj6aefxlve8hYsWrQI73//+1GtVrFnz562v9mzZw9qtVri8d73vvfh3HPPTRxn48aNLO9Bo9FoNBqNRqPRaDQajUZzYFP3PHz2uutw449+BM/3YZkmLjj7bFy2aRNsy5rrl7egcAsuzjjlZNxx111N25S9ExN45MUXceYrT4FbcNnGDhXiBcD32cbQqGXeBcQfeOABrF69Gm984xsBAIcccgje+ta34qabbsL73/9+rF27Fl/60peavx8EAX7zm9/g/e9/f+LxlixZgiVLlih57RqNRqPRaDQajUaz0NDKyoWH6nOurzENF5+97jrc9NOf4uTDDkN/uYxd4+O46ac/hWEY+NC73z3XL2/BcdE558AwDPzkzjvh+z4s08KZrzwFb2/ECNnwfZi2Db+uFeIHCwdsQLxerze/fN/HxMQELMvC8ccfjyeffBI/+tGP8LrXvQ7PPfccbrjhBpx11lkAwmacf/Znf4brr78eF154If75n/8ZAHDGGWfM5dvRaDQajUaj0Wg0mgWFVlYuPFSfc32NaTgZ378fN/7oR81gOAD0l8t4ybJluOGHP8QfXHSRTsAoxjItbDz3TThz6XLs3rsHh7zylazK8CZBAFgmgIB/LI0SDtiA+NVXX93m7X3jjTfikksuwXXXXYevfvWr+PCHP4wLL7wQlUoFb3rTm/Dxj38cADA4OIhvf/vb+MM//ENceumlWLt2Lb773e/CdRXcIBqNRqPRaDQajUajAaCVlQsR1edcX2MaTrbt3AnP95vB8Ij+chme7+PFnTuxaunSOXp1C5uCZWJR/wAKtpqwZuD5MAxTyVgAMDE5gV2joxjo7VUT8F+AHLAB8SuvvBJXXnll4s/e/OY3481vfnPq327YsAGbN29memUaCvTNrdFoNBqNRqPRHLxoZeXCQ/U519fYwkaFTc7I4CAs08Su8fG2oPiu8XFYpomRgQGWcTXZMBwH/vQ0LJe/GiQIfBgWf0Dc8z1843vfw80//wX8wIdpmDjjlJNx0TnnwDJ11QslB2xAXHNwom9ujUaj0Wg0Go3m4GculZXaT3puUH3O9TW2MFFpk1MqFnHB2Wfjpp/+FC9ZtqxZhXDfs8/iwte/Xp/7GKrvC9NxENTrgAqNZRAAhsE+zDe+9z3ccdddWL98WbNp6B133QXDMLDx3Dexj7+Q0AFxjVL0za3RLFz0xkGj0Wg0moXDXCgr57uf9HxfK6k+5/oaOzDhvo5V2+RctmkTDMPADT/8IeqeB8s08dbf+z380SWXkI81X5mr+8KwLfjTdbbjzxoPvAHxickJ3PzzXzTjZQBQKxZxxMgI/vPOn+OCs8/WDguE6IC4Rhn65tZoFiZ646DRaDQazcJjLpSV89VP+mBZK6k+5/oaO7BQcR3PhU2ObVn40Lvfjf911lnY8pv7MTI0hCUvP5F0jPnOXN0Xht1QiB8k7BodhR/4zXhZRK1YhB/42Dk6iiVDw3P06g4+dEBcowx9c2s0C5O5WiDNd5WVRqPRaDTzncs2bQIMAzfcdBO8IIBtWbjw9a9nUVbOZz9pVWslFWujyzZtAgDc8IMfsJ/zaDzDMPDv+hoTguNaUHEdz6VNTtG2sXLJEgSex3L8+cpc3hembc9BQNwI/cQZGmwO9PbCNEzsnZhoi5vtnZiAaZgY6OkhH3MhowPiGmXom/vARjc6XVioChbPxQLpYFFZaTQajUYz37EtC3/yjnfgLYuWYG/BwZpTX8W27pjLQFkeVKyVVK6NbMvCn7zznTi/fwD7Bwdw2CtewbrWtC0Lf3LJJTiv1ouJkSHW8ebrNdYK17Wgas0/l00uA8+HVSxievcetjHmI3N5XxiWBV9xQNywTASeD8OmD4i7BRdnnHIy7rjrLhwxMtK0GX7kxRdx5itP0XEaYnRAXKMMfXOLoSpArRudLixUB4vnYoE0F4p0rUbXaDQazXxC5XPLn5pCtbcHNafAOtZcBsryoGKtpHptFNTrqNRqGOjtU7Iu8qenUentxSDzePP1GmuF61pQteafyyaXgefBLBSUB2CpoZ7/5/K+MCwLweQk2/FTx/TqgM0TTr3onHNgGAZ+cued8H0flmnhzFeegre/8Y0s4y1kdEBco5To5v7PO+9sBOP0zR1HdYBaNzpdWKjeEKleIKlWpGs1ukaj0WjmE3Px3PKn67DKZXj797McP2IuA2V54F4rzUW1XuB5MIsl+NPTpMdNw5+ahl0ps483X6+xCM5rQeWaX6VNTiuB58F0bMD3Wcfhgmv+n8v7wrBtQLGFTRgQ5xvTMi1sPPdNOGPJUuwZH8chJ5+kxaNM6IC4RinRzf36o4/B9uefx+I1a9C7ZMlcvywpuBTcKgPUutHpwmIuNkSqF0iqFem6sZJGo9Fo5hNz8dyKVJX1sTGW47fSDJT94AfwfF9ZoCwP3GuluajW8+serFIR/tQU6XFTx5uagl2poD4+zj7WfLzGIjivBZVr/qjJ5VtWrMTO/RM46qwzlCQjAs+D4Tjs43DBOf9H98UNP/gB6grvC8O24KsOiNu2Eh9517Yx0tOj4zGM6IC4Zk5wDQNLhodRMIy5finCcCq4VQeodaPTAw/OEua58ndT2VBLpTrlYGqspNFoNJqDnzl7bvkeDJPeazWJKFB2wapDsGNsDEe97qx58SzmVLzOhZ1B4HmwXBeeggA1APjTU7BKJUyPjrKPFV1jF61bj+effhqrT30Veobnx36J+1pQmSwIPA/lYgll11V2jweeB2OeVoByz//RffHOV5yEZx55FKtesh4Dhx1K9fJTMS1LeVNNk1khrlGHDohr5oTA92EWHPje/PPf4lRwqw5Q60anBw4qSpjnyt8taqj15qFh7KtWsfqUk9kWrirVKQdDYyWNRqPRLBzm6rkV+L7yIFLJcbC8v39eBMOBVsXrKuwcH8dRrzuT7LXPhZ1B4NVDK4OA/NDJ401PwywU1AzWwDUMrFy6FEVr/oRUuK+F6Dp+21FH4/mnn8bR57wR5dh8Q0Xg+zBtC/60OvuScC5Tk9yjRtX8X7RtrFy6FK7JK3wMAh8wDMCyENQVB6dVjmkYCHwPhu7txsL8mb01BxWB78MqlNVPXjnhVnCrDlDrRqcHDipKmOfS382frqPa24fecol9c6pKnXIwNFbSaDQazcJhrp5bgecBihTiABAEiqKwDJQLBZQL9M1HL9u0CcHUFG78r/9SYvOhWkkb+L7SawwAguk6rHIJfl2NTzoVKio3i6aJlUuWwGW8BoJ6PbzGFPnUA/NbIa5q/g+8hl3SJK9dUuD5MAyT3c87CZVjmrYN3/NYeslpdEBcM0c0vQT37p3rlyIEt4J7LgLUzS7Gd9wBPwh0o9M5QGUJc9Pf7Yc/RN3zFDahqTe8JPkXrarKped7YyWNRqPRLCzm6rkVeIpVlb4PGCYQzK/Gd83EAUPDPtuy8MEL34q3r12PneP7cPhrXs26TgnqHgzbAhS5YwaeD9NVG9oIK54Lyu0a8hJVbl54yKHYOb4PR55B778d1OuwSiUE09OAyyOw8uuNKgSFhAHx+RlCUzX/+41z709OkhwvjSAInyuGZSHw1QbEVVimBAgAGKFf+fQ04KitgFkozM+7WTP/8QOYhQL8ebaAUKHgVh2gtkwLF7/xjTitfxDjjo0VLz1eK8MVo7KEOQoWv+u1r8WTv74HK9cei6EjjyQ5dicCL9w0eBMT7GNFROXSRaaFODA3DWQ4feY1Go1Gc3AzFw0BA99vlnsHQQCDuYdQEAQwTBOBxxMQ53oOB54XWkBMMQXyfQ/VWhUl22JfPwReXWngMLzGFFtZBPMzIA6ETUirPT0o2TaPZY7vw3RdViHMjFrbUHb+wzHNho3FHFxzOVFRHRAqxEv8wkcvrAoxFGXdghb/J8O24O3nFXkFXth7Q1UDz4WKDohr5oTAq8Ny598Coqng/tWvcMSiRSwKbsu0sPHcN+H0RYsxOjWFQ17xcvYAte95KFUqqBQcHQxPgTMIORclzEXLxsrFS+AqKr9qekkqxrCsUGnFVN4YJRje8YpX4Kn778cRp52GnpERlrFU+MxrNBqN5uAmem5dfPzxeObBh3HU752Nal8f65hhoNcON/b1OgzHYR0PQQDDNBB4tEEr7udwqBC3APAEWgLPg+m6mB7lr9AN6h7MogMEapIgaDnPSsbDjELcn+a1huAgqNdh2jY4w2zcn01UhWAWHPjT07AYBTDNMRtBeMO2mgFLLjj2nlF1wFuGF2GsXMLqV55CXx3QCIj7U8z3RaA4IREEoWc5EO4ruRXiDb963cCTFx0Q18wJQRDAcArzzkMcCBXc/uQk/uuuuxAEAUwGBXeAAMVCAcVCQU2AuqHenW8eeCpQEYScm2ZHDX837sVKy3hz4bln2I1FMvPYLoBVS5fDNfgWZip85jUajUazMCgaJlYtWwZXlarSdWE64TPZZA6IB37YbM10bNKgFfdzmNtaJvD8RqNLfo/1SO1uWCarMKE5XsNDnFsIEcd0bHjj40rGoiS81ng/I7PgMCvEwyoE03FYrVnaxwz3M6Ztw5+us8xl3HtPf3IKld4e9JTLrHtMbuFj4KkPiEeJNtOy+YWdDQX8nDQNXUCQB8R938dDDz2EnTt3YmBgAEcddRTMeVZKolFAEJaaqPZ7osAyLbzttNNw1vIVmOrvw+LVq+mD1r4PwzCUNQUKvDoMxwbmocKBG1VByMs2bULgebjxxz9mK2FrpZm9Z/Z3mxlvbsoKTccOA+LMpcH+1DTsaoVNCaPSZ16j0Wg0Bz/+9DSsSllJbw9ESrcocKVivMaagypopeI5HCoCwyAyh5AgOr4Kh4GmktZRI0yYUe6qGS/CsJ15ZwEKqGl0azoF+Iz3e1BvucZUzGOY2c9E1S4ccO89/ekpWOUy21wceF441zP0QmgbJ1DbSDfwZxTihmXB51ZtNxTwc9E0dCFBdgX9+te/xsaNGzEwMIC1a9fi1a9+NdauXYv+/n5cfPHF+PWvfy10vM9//vM44YQT4Lou3va2t7X9zPd9fOITn8CKFStQrVZx7LHH4rHHHmv+/Jvf/CZWr16NcrmM008/HVu2bCF5jxpCDCjxe5qYnMDWbS9icoo26BfUPZTKZQzXelgU3L7nKbWXaC6QNW1Em59ItQ20b372E/ph25aFy972Nvz7O96Jr/3pn+HWr30NH3r3u9msMALPg1VUqRBXa5kSLsKMxuabf6PiT03BrlTYFuRZfOY1Go1Gc3Awvn8/tjz7LOk6I06zUkyBGKKp3nVCVaWy8WwbgUcznorncOC3B5GpUVmt59dn1LucQdGIyBonEkIoIRJ4zceAuIK9n+nYrAmwwAttX1RdY+GYUeKFJyCuYu8Z1Bt7QKa5OEpUcBP4gaqevdGIMBqVwCqC1H4j+aItU3ghCYi/613vwjnnnINly5bhW9/6FrZt24apqSls27YN3/nOd7BixQqcc845eNe73pX5mEuXLsXHP/5xXHrppbN+dtVVV+GWW27Bbbfdhr179+Jb3/oWBhoeuw8++CA2bdqEL3zhC9ixYwfWr1+PCy+8kOJtajhgEkB7voevfefbeN/lV+DD/+f/4L1/eTm+9p1vwyNSpPueB7PIWArkecpK/YBoEan2kcJFlAShWDCoDkL6U9Oo9PVheV+fgmZH4TWsbgEZlQEb7IqBcDwPpmOzbSrj+FPTsCoVtrFafeZb4fSZ12g04qgIZGoOHKjPd93z8JmvfAWvfec78eYPfhAb3vEOfOYrX0GdYTMceD6sYkmJsjIK9Jq2osBVo7SdMmil4jkcNezjCvCF58Fk23+10ZKUUFaFYJrKhBARJqNSmJPonuSEew3uNwKvSn3cGw17TcdhsRpVk3hrJEO4KtEbnxE7QQC0xC8C5oktCIJmdY1hK/AQbzbVVKBGX8CQyPXWrVuHa665BoVCoe37g4OD2LBhAzZs2ICrrroK//RP/5T5mOeffz4A4N5778X27dub39+9ezc+85nP4J577sGhhx4KADjiiCOaP7/++utx9tln46yzzgIQBs+Hh4fxwAMP4Nhjj5V+j5r5xTe+9z3ccdddWL98WbPx5R133QXDMLDx3DflPn7geaxdxQPPg2lZ4A8bRgPOZDy5mZicwK7RUQz09pKq6z3fwze+9z3c/PNfwA98uNO7cvutqW526U83VMYqArj1OizXVeZJFnh1mE5BSRMaICyRNlSqRgIfluties8elsPPhc+8RqPJjm56u7DgOt8qe0VEDRZ9BcmbyK/YUGSZEvgBYJqNYCXNOkfFczhcH1lsQWSV9nVBo7Gp6ThKAsZNuxnHURccNRCeK8b3x9FYEZhJvgAGWxNS7nPf7E0AqEuCNAOiPIkQFXtP9mSIMo1di2LbjGymGKuRG70pgIZlCvceOmj0fFDQwHMhQ3LF/Mmf/EnX3ykUCvjjP/7j3GPdf//9sG0b3/72t/F3f/d3KJfL+F//63/hz//8z2EYBjZv3owTTzyx+fu1Wg2rV6/G5s2bEwPiW7duxdatW2d9/8EHH8z9WjVzw8TkBG7++S+awXAAqBWLOGJkBP95589xwdln5w/ENjYR9b08Xdr9+kzAMEDAbi/T6onFNV48YG0aJs445WRcdM45sMz8D+V4EsSa2J57E6k6COlPhp5u3v79pMdNIvDCzuyqCDwfRtFkbULTNl69zlrSmITBvPC/bNMmGIaBf//BD+D5PrvPPMC3EdNoVKDy+p2rprcq36OeD2bgON/qe0UEsNwC21q2baRGIlypfYZhNIIWdM/l6Dl8ww9+gDrDczgKWJuOQ2b10n58hQ3Og6DR2FTROW94Yqu0zwD4AqPcSdYZL+zQ8sVgWJcbNrN9TVSFYJpK9k6tcFUGKEu8HQSJ+rind+B5AGdAPEDTszwMxDMr0j0vnENVNPBcwKgzdCXi6aefxp49e7B582b87ne/w7PPPouzzjoLy5YtwyWXXIKxsTH09fW1/U1fXx/2piz2rrnmGnziE59Q8Mo1iTDEeXeNjsIP/GYwPKJWLMIPfOwcHcWSoeFcY/ieh4LrYnrX7lzHSSNoeIhHyhZ27+VGxpMzu8qp2k9KglBtIrk3P63409OwKxXUR0fJjx0nUiGpgttzb9Z4UemsbStbJHP7VtqWhQ+9+924YNUh2DE2hqNedxZbUEqrXTXzGdXX71w0vVX5HvV80A7X+c5SKr9q6VKS9xARNqNToKb1/abyOYhZjrAQ0HuIAzPP4Xe+4iQ8tXkzVp96KvqWLiE7fjNQZZosa6Xm2s8w2INiYVIiaj6o1kNcpWUKl5cwe5K1oahvBnYZAuLsCvFGFQJ74D0Bw7HhT/LMnZdt2oTA98NnbhDQ7z195kqRIPZftnFaFNu2za+iZqqkSMUPmk2WtWUKH8oC4m94wxtw00035T5OubFIvPzyy1GpVHDEEUfg0ksvxfe//31ccsklqFar2BMrWd+zZw9qtVri8d73vvfh3HPPnfX9Bx98EBs3bsz9ejWdMQwjLNshDMwN9PbCNEzsnZhoC4rvnZiAaZgY6OnJPUZQr4ce4gzqDQCA3/AQjxYp7M0Iw9JSw7JZsqvcqv20JAjFJrJ18/P0gw/h0JefiP6VK6RfayeCeh1WrapMSaNWIT7TXElJlrtlM8xZytqKYavZhJUcB8v7B1CM2ZRRMldqV42GAtXX71wEMlW+Rz0ftMN1vlXbtAGYG/WukuBo0FC/0lmmtFK0baxcshQudWwkaqppgC8gblkNBTqzSrTh72s6DuoqkiCNIJ/hOPAmxvjHA8KmmgwBMhVJ1sj+M1onc1wJKhTiYRKkoDwgbto2vH0817VtWfjjiy/GBUuXYV+ljMNOOonYLifq68SMMZOoYiFAu4WJ57Fcx83hAmVmtuF4kWAxis9oWFBjIgZg5cqVJMdZv349gPSHz9q1a3Hvvfc2/z02NobHHnsMa9euTfz9JUuW4KUvfemsr6OPPprk9Wo6wxGscgsuzjjlZDzywgvY2/BF3DsxgUdefBFnvvIUEt/qwPfDjDpTc8CgHnqIm5aazuXN0lKmTulZVPt5aE2CtI1LuIks2jZWLVsGlzPdHQSNJid8QzSHUlwuFy2+wntenVKI65pOQmWZLudYKjrcazRczMX1q7rprcr3eDDNB1QNMLnOd1Qqf9+zzzaPzd0rwlTm6e03mkUqUu82Awk8a4DA82CVS+QK0fa1EsPn1DgPhsMvFmgmJRyFlYEqG7cyoqqxYrOKgvj8BI1mjdxq2iDwASOcV5Q0bm3BsHmTe0HdQ6VWw9KeXvK5Pzz3Vhiw5mis2eqzzhnIDWKWKeye3miOp4KZCggL8NQG4xcSygLiX/jCF4R+v16vY2JiAvV6Hb7vY2JiAtPT0zjssMPw2te+FldffTUmJibw+OOP41/+5V+aKu+NGzfihz/8IW6++WZMTEzgiiuuwPr163VDzQMULvuEi845B6esW4f7nn4atz3yCH7zzLM49cQT8fY3vpFmAI/XxsRvdhVWpG5tLFopmw+1khawplLtJyVBqDeRfr0Oq1yCx1QeB8wsTlUQNDqzsy2GZo0XKsSVeXq3XdOKFOImv59chFlw2IIKKjZiSVAFqzQLm7m4flUHMlW+x7maDyipex4+85Wv4LXvfCfe/MEPYsM73oHPfOUrqEtu1DnP92WbNuGNp52Gnz/2GL573334xeOP442nncbWK8Jo9PXgptlUU9G6Ngha7DMYAjKB5zUakxMHEj0PMBs2FgznpakQV7E2aiQlVAWooyoEVY1bAbA1D1SSZOVsehoEgMG/n2l67hcKCFQ1Um3AndwL6nVYxSLL/Bw1VDVMM7xPmTCZny9B4DeTLkr2l6otU4KG7ZRpwudyJdAcuB7iV199dZu394033ohLLrkE1113Hb7+9a/j0ksvxdDQEAYGBvAHf/AHeMc73gEAOProo3Httdfive99L55//nmcdNJJuOGGG+bqbWi6wJU5tEwLb33NBpx95FEYA7D8mKNJlOERft3jLTUKArasffJwYYaVa6MSBazvuOsuHDEy0vQQp1TtX3TOOajv24ef3nsvgiCAW99N3OjIg1UqsS6yI79FNd25W8uJeZrptI3Wqg5TpBTivKbnGoOx7Fx12b72J9ZQMhe2E4Daprcq3+NcfZ6UcFi+cJ3vyKbtbUcehR1jY1i5di36ltHa7bSiKpHb2lRTSbAyaKxxLJ6qtMDzYFUq5IHemX4rDsvaJQq4q/BcjpISqhTikX2JqUD9zo2SxoqM6+TofmenYctjWBZb1XYa3PuLwAvtWTmaHke9BJp2OUxrbfY4RlJTTUaChsWsKgI/gGEbobWwAvHaQoU8IH7qqaemZk5uu+22zMe58sorceWVVyb+bMmSJfj+97+f+rcXXHABLrjggsxjaeaAxj1tMj5MfK+OcrWKMkAaDA8JGt2FeQgCxerWoD04ysFF55wDwzDwkzvvhO/7sEwLZ77yFDLVvmVauPCUV+L3jjoGE+USTn/VS2j91hqZ+qldu8iOOYtIIa7imRfdgw3rDZM7IN7sZm+raeAV+OzX9FxiMjZCU7ERa2Uu/InH9+/Htp07MTI4yNaYVDM3qL5+I6JA5lvXHI5dk5NYcewx6CP2DY9Q+R7n6vOkuke5vHibgeujjsa2nTtx2MtPRM/IiPTrjFM0TaxavgwFU6EajZVwnQlVivSWYB9H5WOkEJ8mrmiKxANcaxfu47cPFgarVNrJAepsgLjhTrIGjUa3YTUCcWLHV+RRrVqx2wJ33yC/3phjdu0mP/ZMA9rGveJSx0lCuOeZAIDReEaaCgLi8IOYZs1AgAAGl5KtxRJGwwd5QPyMM85o+/dzzz2HG2+8Ee9egE13NN0xbBtg8nsK/ACm66I+pqixCiW+DxhQFjwMfB+G3VgUMZXkWKaFjee+Ca8/8khsf24rlq1bh+rQEOkYge+hXK2gVqnQ+615HqxSEf6LjArxRvli8/85H4KNQ4eB1Wmg3PnXc9NocsnZhKZ9uJnxDsaAOPdC/LJNmwDDwA033cTT4b6BisZRrRwsanTOgP7BkCxQqdaO48LAIStXwmbexKh8j9FYN/zgB6gzj0V9j3I3PC0aJg5ZvhwusUjCn66zV6XNBcqsxZq2aXwe4mbRhb+dOpA4Y2nCEUSOrGu4rQyAhrrRMADF6zDDcZQkXbiJkm4XrDoEO8bGcNTrzqJ9JrcqxKmvNc5Gii2otJqMw3WPRoTVuzxmDjOVKLwqd/Ymyg0PeSDcF3n79/ONhYZnfUuSOtpjGjaPqKw1LqDhg/wuu+KKK2Z97+1vfzu+/OUvUw+lmacECGaaLVgW30TcaHhT38284OPIDEaWKYaJQEFn9jD4agK2wf4wKRgmFi9aBIdhfg/qYcd0ls1PPbJM4Sz9am8EyW1jAkCd12IjwM9VBjxruMZmGKapvIxSBWahwLoQty0Lf/LOd+Itw4uwt+hizamvYgmOcger4syFGp0SzoC+qmSBioB7WyBh7xiOOps4kNCRMBlP3WwvTvQeLz7ueDz/3HNYtX49+leuYB3rHSe+HE9t3owjzjgdPcPDLGNR36Pcli9+vQ6nWKTf9AdBOM8zX0cHK1HgItxnzCcP8YbXOpPNSNDSo4hfId5o2gjwN7trIRSTqLYXMJqqW2pKjoPl/f30Qp8gmKkWIN77xQPVXCKfptXkHGBYvDYWgRf2XmKhtVKEY1/b+FjYFeJ+ANOKxrIAboV4gLbrzXAa1RVMAfHQ310HxLlRMoO85jWvwU033aRiKM18wJ9pgMBpmRJ4HsyCy7IQjjBMno7G0QNemQ9ei0oA7F3nfVhFl6dJiO/DLBZZVO6RlxurGqCtvFSNuoU9e98g8Gd86tU01Wxc03NQaqaiSanpKPD/nJ5GpbcHS3t62IKJShpHNYjU6JHtA9CuRp8PzTxbg4XnrF+Pkw87DDf99Kf43Fe/ekAfG6BvbJiFkuNg+UA/ikzlwGmYLm/CqpWiaWLVsmVwFaiIipaFVUuXwWXaoHHco+wNTwM/DIxSn28DMB2+60jFc2pOaayjDabKx1AhXmTzXuarblO7FjNUrsPmMG7E1by1FfJ7trEf57jWWpMDrNfaHCrEuQnqoYqb5dhRFS3zHpC9SrfhIQ8wiyybw/ltFibslTaBWs/yhYqST/ib3/wmenp6VAylmQeEgbHGpceYzYtsQDhVAoZt8ViMRIFRhR7iMNU0IAw8L1TPMVjBzCjEmZIU7GqAqAGRg0BBkBpQ6LXY8PRWdU1HPvyqYVdDNK4/FZtZv16HVS6zXh/swaoWsqjRD2Q4A/oqkgXcAfc0TKegpm9B65iFAvypSSVj+fU67HI5tL5SMJZVKcOb5Ekecd2jl23ahDeedhp+/thj+O599+EXjz+ON552Go3lSxCqxDg2xazP55ia9WALkAd+a3N6njUhS0Vi0FLd5vFUt81J40kVweo5vIQNy2INjBkWT9AaRtj0lPxaaJlfOD3kWy0lDNPk95BWiF+vw1RgmUKtEA/FXeH/szceDWZ6uhkWjz1WbMC2gHhoz8S7vtSWKfyQ32UrVqxoywTv27cPe/fuxec//3nqoTTzlKjrOMCvEOcOiIWTrwcQi8+aD3hmn+BWIq9F9gVyEIRNQkZ5umZbboHtPbCrXIKWjL0idaHh2EpKsiM1AsvCOwlVDX1iROp+tialjQ2MaTvsC7+gXodZKMBjtm26bNMmBL4fWnUw+pVzWydww2kvw21do9orvhXTDQPilkKVuEqri2C6DqtUhLefv8IhqIe+1lzBd657NLJ8uWjdejz/9NNYfeqrSC1fTMdBfWwf2fEiDMZKoGaSH421rOeFVYIHCYHvw7RtVvsMwzDIDx0oqm5T3nBcRbBacdwoaLEz4KpEiDALDGvLRvLFMA0W6x+0BMQ5FeJNJXpj72TNo34wnWi1TKG2nGk21eSIw/jtvt6s1q8tAWqD8zqL8GMBceY4TescAzDZ9GroA+JXX311279rtRqOP/54HHroodRDaeYr/ky5CadaNOqezUm4AGLIRkeWKQoU20DYxAeILFOYS/48n+2hFfg+DCYPcRXM6vrNOlj4H9MpsGzkk8bjKs1MHC7wYZjqN/fhJnMaQInl+JHyXUU1hz89zRfYb8G2LPzx29+OCw85DKMI2PzKIzX6TT/9aVMJzaVG54AzoM+dLFDtFd9KqNaeC4W4mjH9eh1WqcySZI4TNZfmej4179FbbsFLli8nv0eLloWVS5fCJRZLGDbPM5tVWel5iMxXm8FRhQFx9sbhLaX084qWYBInrEHKhUKrOplrP9gg3BdMgXJtGQpVDBiGSa5ub0u4MTafDFoClKbjwJ+ahnWAr+WyEtQ9GLYVint8HyAM9DcV4o5D7x/fcl+wxzFa1OgqGgVHllMR4TXHuNZrDfg3KiDYfOUXMOSf6CUMHec1BxlBAETKTXZfMd7FsGnb8Dm8CZsKERNKZBWNBoRK/Ld8H1bBhc+ycAzCRSPHsVWoWxoPPq7y6yTYH+YR0a2oqKQx8NQ12mktNWdX9zcbr/InFsLO6WoWXv70NHoG+lGdmmINTF+2aRMMw8C//+AH8HyfTY3OAWdAnztZMJfq/DkJiDc25krwfTYbsjhRc+mp/Xz2Qpdt2oT62Bj+47bb4AcBLMJ71J9mULgbfPM+Z3I83FgrUHAmED2/OBuHczU45KY1mMQJZ5DyQGAmeMQnjApalbCWxaIUDdeXRqh+Jn6mBC17P3o7Fq/NMoVtfgnUWLN0fAlcDUNbbE38ep1U+R5ZdLIErNtU2wo8xKN7UEHMJPDbz7Xh8Crg2yyBGpVc0AFxcvQnqlFO0NpUk9PvSYWHsGWxKapVLuSDyENcRQA+CGA4fEp0A/QlrI0DszOzQFGwqIv83bgXK/FhVTVXijUiYVWjtWyKuAMLM41w1ATETYUBcatcZq9WiKwTLlh5CHaMjeGos8864JXhrXAG9DmPPRfq/MDzQnshhfYlEeHzW52hbVROz41fr8MqFllLhG3Lwh++4Y14+9HHYHLRCFYceSTZ9RHU67DK/eRBZpMpiW1YVqNkmoGWZ6Lq4Ci7tRjAr7Tmur19Nf1PlPUoamBY/AHq1nOiwj6jNeliclmm+D4M0+A5fqNBIIvdS6ypJqf1U9OapVBoqOjV0byuGdbKQVwAQ2n7FszYWFI/D2fdF8wBcaUe2y2KdACwnAKmOMUIMfsZMPWVWOgoC4j39PRgdHRU1XCaA5mWQLVhWmyNfAI/zKpzYtoWi9I5Uogrg7t0NYYKJTobhsGnPIqaqRYceMQlbGnMlaKCm6CxiQDC64263LBtrNY5jTmwEL0v7gZOQKimNAsF1jFmBlOr5isVHCwfHERRgSUMJVFA/+LjX4qtW57CoSe8FH3Ll5MemytZoFqdH3geTNuC6RZQ3zvGMsaBwkw5PTORGp35meFPT6M2MICh3l7SazDwwoA+tZpeZSNsKqKmk8AcBEeZrcUAdUpr6m2GqvW/ocReID6eOn/naG3Lap/RYssTqniZ9oPNCl7a4zcDrhzq5tZAtcPrs2y0eEhzV2bFYxZRdRaLeKTZM4hnfg5tLB12D3HepprtHtvstDTxBACz6MKf5Gug3irmMqww5nRwOOQfWCgLiH/xi19UNZTmACeIKTf5xmkExAyjUbpFP4UYls1TpqzA7qUVpQF4Q0FZE8dbaXpuN0p9mQKFhmE0lS0qUOJXDqgUSzbGiwWpicsN22gJvnMv/Jv2RgoUqKHqxQJgsPu9tm6elBAAVrEAb3IKdpkvKMNF0bJwyMoVKPj010Cp4GD5wACKxHNcM+C+6hDsHB/HEae9FuVKhXSMVvyG5c9cWKYoxWBWEsdQYQfjT0/DrlRYlP1moYD6GG2CpNlgfT4R+O2BJIUBcSWJeO4q0ehxSD0Ft1hAwOCrbjNMMwzoKkKJLU/Lx8Td7A5oV8Jy2I60jsHiUc54jwQtje0N24Y3yducHYjmFeZnfdAutjNdF/7EJBDrj0IyVOMz5Awqc1QJt3mIc+8xY00uAd7GkwEwq6kma2KxzTLF1H0fmFC2+7zoootUDaU5wAk8X00urxF4Ny2bbaNo2EyWL0G7ZUrAHfhSYS9zkKAiWK1msxj+J/QkO/hKsALfY/d2bI7VkuTjDiyoDBzPNHmlL6lMHMtSOwfN50BpUK/DrlTgEStToo72oQUHU+NEx8HKRYtQYPb4DxtSLYCAuEoM8JTXx/F9WCV6JTcCsFzbKivsqGhTcNr8c3wrKoKjrWsAYLayk4xG1SAVrU0CDUutcp8TlUIPQNE6uvVc2RZPf5yG2jY8PnHg0mMUQ/kzSlpVwhuzoKB3R6zyxCoW4U1O8I0VWdowzQMs6vN4oohxjxkAbeeD3XK0JZEMgC3w3hwuiD0P/HmWeJ8nsO5GgiCA7/vNL40GwCxvX04MGIDNp9xpNjggJgpKAA1bGW7lka+45IgbRg9x1tLiyNfbVqTajo0778dopcWHk73LeWtfBObAgtJGYc0mryo2lureV7NpsSqbCQai5oAs3o+WxR5EDsuM+cpMgdAeo/leFHuIA/PcGiyNoBH8ZRaW+vV6eI0wfH5sjaTn2RKqtTmYykbezfG4A1eKAsv0gdD26raDJSCu2p5PxXhBwO+VHARBqBK2bIa9IKNCvK2xopoKFNMpKBFvtCbarGJDIc42VugfzzU/c1SXBQmqbTZi54PDE72VtPfGJlxsqUiYl5Vo8wTyWXDHjh24+OKLMTw8DNu24ThO80ujARQHdMDbuNPkKGEDGiWTijo0A+GEG6kzGxYz8xrT4Dkv4PdDA/gadEUEsaYgyu1MDJPt/EQELbZDhsOraGxV2rEHjxXaG0VWU5yL8ZmxGs8FYrVd4lj1OkynoRyep/75gRcGxMlff7MqgFdpZbq8vovATNVBeJ7VB8S1Ml2ewPNhuUUe31QudTLbc5RpTmwRp6i+Vi23yH//NwKJAHjsJhpwPh9Nh3+9qYqmtYQilPj6tylhmc5V9EzmUqBz0bKPZRWKtDVSVdAcOFZRbbpFeBM8CvEgskhkb0xJfTyFApcgaNsSsVcJBLMD4qzJt9a9LJMIU8MQEP/jP/5jPP744/jyl7+McrmM//f//h9OOOEEfO5zn6MeSjNfCWYHdDgtQcImBHQPkvC1zqhOOBZArRYMpuPA517UtXgUmrbN0ihUJZyKYBWlf/yLn6Ato64as6BALRK0KsSZy7MVjhUE6qxFAq/hXangmo+SCkpUXc2xeFWK4/v3Y8uzz2I/w2YpqHuhpQS1Qtzzws+mUGBVzytRbfs+DNNSamfRqh4Lg4zzM+GSiqqP0vdgujwJK8oAZqCguo5tTmxVtxb4E1StmEWXLYjUpK1yi08Yw2khdDApxK2iS27x1UoQ93ZWUPXQpoJmClg3K9osBcFeQlqfhaoU4laxCG8/77wStDRSBZiT+0Gjoeo8mweU9gSKBagNp8CaCEtq1myWivC5rrsWC10dEOeDvKnmzTffjF/+8pdYsWIFLMvCeeedh2OPPRbvete78Id/+IfUw2nmIwHaJi/TKcCfnITl8nQCJ59AfL/58g3bAriUyJhpSMHeNbvNB88G6h6goKiDrfFF5BntunTHjDy3FSjEuQM4QUsTyHBA1uFmEZWsW5TnJ0Zro1jupidtY3ErVBpBPiU0Fv4qknIzwXeb/t6Nj9VUQRdQH6dv9FT3PHz2uutw449+BM/3YZkmLjj7bFy2aRNsqsauQcCidG1TVTM+dyzXZfnsW1FdjTYzZuPZXSiw28K0Yphh5Y3B1Ty4bTDewweeB9N16YMAjQakIFJct/U+IGyA2Op3zTUntj63LDdsMKwKi1FVGdFWuUW8bms7P4xBClaLPoRN2vx6HaZNHg4IadE6mW4R/o6dPOMAbc3Ngcg+Yw/feJhZtwB8yYsZlTBzMMwgfn7EbAvZRBWt6mAVjVv9dg9p7kSPYRgwHRv1Mcb3Rfw8b7Xjio7P1Rw4PG6LhY1bgMdZiRJLvAGNRMzEfjg9PQzDtVjo2haC/TogzgH5E3Dfvn1YsWIFAMB1XUxPT+Pwww/H/fffTz2UZr4Sy+aFShHGgLhN67sWBo9nsnU+s5+T4TgImEtZg5YmEYZtw/fq4N5SR15YBsNCPFSI0y2+4sHV+ZSpT2RWyZehNHgUquwVWXAgOme8nnJtfuXMwfeZ88R73pqB44ICT/tWqw5FZc5cXoOfve463PTTn+Lkww5Df7mMXePjuOmnP4VhGPjQu99NNg7HtRb4M1UBHKqnSMVnFgoI9jAHKxTaCzXxW1W3imwoomStEyqqLRUBcWabrcjLnm0cqstiVvMwojVN/DpimBNbgxaqLVPMogJFekughHof0Obratts6xluAUaU+GQLiLdglYq8CvFZXsIqmtPPqIXZfOqjZzKj7Q8wU1lL9fwI2j4bep/quSKufg6r3XjnMpZ9Z5Dy/yTHbu8VZzoFPhFUbD9rlUqYHt1LP07reDGFuFUqoj62j208o80yZZ7HHw5QyHfRK1euxO9+9zsAwJo1a/Ctb30L//Vf/4VKpSJ0nM9//vM44YQT4Lou3va2tyX+zq233grDMPDRj3607fvf/OY3sXr1apTLZZx++unYsmWL3JvRsBAE8ewqr5cg9SKitYlKuNjm3RlahQI8JYs63sYwQMNupkVpzertTvmZtTyQVJRhchP4fltG3VThU99CuFHht0tQZl3QmjCxrLDMkYnWIB/7eWtuxBwlHuKRVQd3YKZtLOK5dXz/ftz4ox/hJcuWob9cBgD0l8t4ybJluOGHPyS1T2G51lqSIBznIag3Gl26BdbgCIA2hRrQrurkos3uTHWQUUWjwuZgzH0gouadjMcnOUzQXl1HNR+3We9wNQENWhTUzM+tOCZ1gDqB1j4iJnFSvLUywOS2TGF89rLPUS23sOW68DmrAmJWBqYSP+mZtTTX3iC6jg3GflgAQ7+qmJJaVa+iqOqBjZjS2TBN9vfGXSlCTdh/qDVpwCiq8dt7YlmlEvz9+3nGAhI9xEOFOJOPfOsag6WxrgZgCIi///3vb6rBP/ShD+Giiy7CWWedhcsuu0zoOEuXLsXHP/5xXHrppYk/n5qawgc/+EG84hWvaPv+gw8+iE2bNuELX/gCduzYgfXr1+PCCy+Uei8aJmIdei2Xt9zIpC5njDckZEaFfy8wY9ECzkVXfIPClem0aRfC8dLb+bQwSSSmcFCipGnBLKjxiW5uWJk3fSp9vVuDfNzqsSi4p8rX2zAt9gBAOFbQaFJF/7627dwJz/ebwfCI/nIZnu/jxZ1EJeNMz6DA401MBPU6DNtWmvgA1PR+ANpL6FX4pLclyJibh7YmFDj7dABgub45EiJt55s4IN5W4cQSaAuUVYWpSEbNGnPWs5J6HzCTBOeqFOW+z7h7RbQSqhsZxQLx6mNFlYhtewOOPU3gN5ubcyvEacVjc9OryKpU4DHasQX+7IAoNyz9ylrfAnWCO8UJgIeYGp1bwBOzaAEAo1BAwCVGaPkszYOo0uJAg7xG6g/+4A+a/3/++edjy5YtGBsbw5FHHil0nPPPPx8AcO+992L79u2zfv6pT30Kb3jDG7B169a2719//fU4++yzcdZZZwEArrrqKgwPD+OBBx7AscceO+s4W7dunXUMIAysa3gIgPYsftGFz1k6TR3g9dsnX27Y1EFp41FvHFoIS3Rb7Wa4FOIW6QOxVVHNEURLHZfTc81s3zgoDYjb/L74rY0uLZc5+BZT3HOiMjkTeH7Dv1CxZYqqsRhUKyODg7BME7vGx9uC4rvGx2GZJkYGBkjHo6bpIc50HlR5lDfHioKVrgt/agpmocA6ZpvVBfe8A7WJv9ZmzCq8/snhsJdqnY8p75lYModlTlRpKZQUHGP0lQUwq3KL8lnZuibkfA4bjo2AUVVtOI5S73hWYvd32DuGe/6duX65ruPmc4y5Koe8107M092w1PS4sCsV1MfGWPycAaC1GXGE0RBhmQ5P8y1y9T7Q7u9PbZcTuxetYgneBJNqm/MZkjjc7IA0976lKVhkbA690GE3DVu2bBn5MR955BF84xvfwD333NMWgAeAzZs348QTT2z+u1arYfXq1di8eXNiQPyaa67BJz7xCfLXqOlA0O7zZpVKPNncyJqDRSGubvI1VPj3tmDaNptiv81uhnMTYRFbprRtetUoxKPPx+BYYPlJShqF15jL08ywlVnKScZNX6AwSdbWtI+77Lxx3bM3CkWLjYnjqLk2TKO5iaGkVCzigrPPxk0//WnTNmXX+Djue/ZZXPj616NU5OmVQUVY6mrxKcQjGx7T5LdoiAWLvclJ2NUq65BtqnQGS55ZtHlN8yYa43MPd3Npatq8X4mCsW1JF0qFeKtNW8FBfR/9nBhPjDe/x7G+TRjLKhbh7d8PO1ZNQzdk+3qT1K6jLTFtsa0vTIe26iOu1LeKRbbGv0lVAYZtsQUOW+2qADVWFvFqSw6itSx30I96TxYE7Z+NWSzC2z8BuypmoSuKXa2wzJcR8UqEmTH3odDXxzIme3PdaF9LleCOOwEUi2zr+sCf3eQSptFcy9IPiFnn31BkG2AwJ8UWMiSz+Ac+8AHs2LGj4+9s27YNH/jAByiGw/vf/358+tOfRjlhETU2Noa+2ITU19eHvXuTDfbf97734e677571df3115O8Vs1sAj9or9SxHdagjkncmTvugW4Y4cTLRZh5VLjx5MxAttjNUHdMD1pWvtRWEnG/SBXng9OrPJ69V26Z4hZ5vSQRK5dm9iwP4l6JnMRK6TkbUDabaiqzTFHTwDNaKHNtmC/btAlvPO00/OLxx/Hd++7Dzx97DG887TT80SWX0A9GTWsDL4bnQKvFBDetG3JVft5tAVLH4bdMUelZ3jr3KOw7QWW3MbvRMsHrjwddqT6T2HXEMicGsxW1bP1jEtTodrUKbx9TIzKgrUrMdOjtIAzuZooArKILn9JqINZ40moEKVmIjQU01LtcwUqV67AGQYJamBxF1kbkQVe/3VrCKvH5LLdiVyq880rC+bCrVdTHxvjGNE16q4yWW4V6Xxu/L8wi454v8GclW03XZVt7JSWSVXEwNac90CBRiC9ZsgSHH344zjrrLLzuda/D2rVr0dvbiz179uCBBx7Aj3/8Y/zkJz/Bn/7pn+Ye6/rrr0epVMKb3vSmxJ9Xq1Xsidlv7NmzB7VaLfW1L1myJPfrOtjY99RTqKxcyXPwQK3lCLn3VuxhaDRKv60iTxmYqsxjBKvyq0VJa1I3h2hZDIdNNQkXRC2qKYO4OVMahuM0xinRHzy+WFHcKNQq8vYNANCoROEtZW0bKzan8dnd+DDM8NHN7mcfzKh5VVmmKEnOcFgntGBbFj707nfjXaedjqcf+C0WLV6ExS97KdNoxqwEVx4iD3FWGwNVAXHFft4A2m0aFPSbiGyNgIaadGo331it6ndF1mFR4tywCbYr8WQFgVKVy6e+zRqLzb4oaOt9Ed4jkzxl/wm+q1YlVFW6w8P046Exl7U0IyNNHscqA9js/1xa7914MMcq8QWqkgJHUeCw0NdLP16Ct3PUYNGkmD+SUOAnHSh6ZpILiYKg2TMKaFSDczY7jMZpzCtchIn22HVdKWNqN5/1K0/VTsvxORqqmrFkCFvlOWY3uSwU4E1Nwipx7J/TvfEDBKwxG9XxoIUEyRPiYx/7GN797nfji1/8Iv7u7/4ODzzwQPNnxxxzDM4//3z8/d//PRYvXpx7rJtvvhl33HFH81h79uyBZVm46667cPPNN2Pt2rW49957m78/NjaGxx57DGvXrs099kJiascOtoB40iKJc9Fi2BZArURuCyY68OvTsMBYCs9Z/hMfinOj29qIyLZJrXJabSsMy4I/wdlUk79kiVOVO7v5UIF1oRpX+IXZe+aAOBQEwhvEm5NFijEOu5u2IB+zSjO67sMqGF5VQuB5oWWKgkCbqg1m0bKwasVy1nMUXQMGkTd2azUMB+Hx+Z9jAGb5edf3Miq4GrR+foZh8Dfgbg3IugXWxFV71Y0q67BGkJlgbcgRvI6rzqkqkVq9idnmxJhqO1LvctgKxYNj0XgTLzxPPlbLqC22abQNFluDr9TVjq2QJ9VmNbsr8q39UqwlpveMMo03OzFslcvw9u+HmSKKyz9kfEzaBPXMGPxrWcO2adflMcW+VSyyWplE8FsJzk7u2dUqxp95lm9MgNX+h/oZE09OWa7LV4mChEQYc5PLpK1lcy1u8/jIa3ghiz4uXrwYV155Ja688kpMTExg165d6O/vR1HSL7Nerze/fN/HxMQELMvC5z73Ofz1X/918/f+6I/+CCMjI7jyyisBABs3bsSJJ56Im2++Ga961atwxRVXYP369Yn+4Zp0zEYpvslxYwez/Z6sUgnexARMyoV4ZM1B3AE+8Px2yxcFTS+tYlhqZpd5vdeARpNTpm7QrXYzhm3TJiraSpepm2oqaJwTDxo7jH6w8QCuY8MfZQxCxjLqhmHwezuqJBZYaAaqWfzfZ8qQDdtmn3vUJRXCQKJhWwosU9SUIAf1OqxSCVPbO1vKCR83CGZ6ZDhOmEymDIgzJl7DxG57Y2Uu9V7Qcq+YBRf+JO15SB5TTeJ6Zrx21TNrg7zWvgzs1Snhf0yn0eyL4pAxyxeSNULchoUqyd/mRU8bzI2Ii1NsRmVlayXDzHhl1McYrQ2AlvUm8Tq9db3JaJlC/fyNB2tN2w6V9Ay0Nh6NsKtV7H/2OZ7xEgLwYY+q/XCYAuIIYlUWjkOaoA7HUGMzZtoWvH20VpPxfmGT27aTHR+gs9MSGjPB/skql+GN86vfqQha7EuBRkUypa1k7L4wLCt8pjERV05HCnEOks4/0FiLT07xxM007LDMsMViEUuWLJEOhgPA1VdfjVKphE9+8pO48cYbUSqVcOmll6K3txeLFy9ufpVKJVQqFQwODgIAjj76aFx77bV473vfi4GBAdxzzz244YYbqN7agsHkLG1KUIqEDxOezHG4ICN8aMZev+E4fJnIBhaniiOGYZiNpAUDrQoz6jJT30f0hCe3NVGhKI0tHs1CgXaB0kLUVDDCYlZsq1K4dH0dTNd1EMQSDIw+87M8ipnnHlU0my2q8OiPLWi5rgu/ERAn969v2fiH9lA8VgAstDWBZPa8brkvraKrxL8UgZpkS3O42OfJ9cyIj6Wq7wSpQrbN5oLm9bdWpkXVghS0VRowNP8FMOteZ/XBTbAVC31l+SvFgEbDWVIFZLxqkPGZRbl0SvD1ZqtiSbDHtEolRg/xhIB4uQxvP2eDxVjjyAK9QEqdZQrd/AUA8Ua6dqVCv89PENgBYdU5W/PBhARF2I9mHql8Yp+b5bqkyXRV12wapsuoEAdmJfqAxj6acf2l4YXJVCs/kdq8G9ddd92s711wwQW44IIL6F/UAiIKwDq1HvqDJ2bxi+xKESpCJfKMXskqFFBn3mhb5RJjuVEyHF5YQWsJa0MdSHfwAIg2kBZDI1VGGwEgQblTLKI+ylhaGlNucHUAD8dL8Fk0kspN+Yg2rRw2JojZTLA2oWxtFKaoUaASooC4SZzATCCpuR6LvU29HvrxEr+dtmAZcdPlwPebn0XU0Z7S4qTNtiK6fhMapFOPpUrBNWsjaNB/hm20BuaYGy61Bd8VBQEp59K4LzeZZUqrZzzVvdjyjOaaE4NY5ZZdrfDZCiUkilQ2QCRfE7ZZ2vBZpjTHI+pJorIhXFiJFbfHtNgCh0nrdLtMr0puG9NrX0ubjf44lLZD8TG4+tOQzl+IbJJiPQqIg5RpFm9WuYz6+DhLZUBSJQKAcE/DdG6i45MRmwdM14W/exfd4ROqQ8LK7fx9O7JgOgVGz/Lk828U+Juoa/iYu/SN5oDGKjF2Hk9qrlOkVaQHnAGV2GKOvNQogchSRhXUapqItrJZ2wIorWxaN6bUkpf4w91kUB/ManbEV6XRqmoDomuY14t61j3f8HZURWQ7xEFcJTTTEJVhrKSA4kFAWyCRWWjTrqpl9Oqv18MeFtS02JpQJ1/C4C3f9dW6geVudNlamWIYhpLy6laPfwBwBwcwSWyZ0zZePAjE+RaDdlUsW/PtFijVt7Oqayjm6LZGo3SfyazECsd5jVVumYUCm8ItqeEhAH6P/WgY6iBVLBFFacsYh3QeTmw8yVeBkNZwkmUuTvB2tkplfrFH2z3EYDnZEljmtJ4gbw4b8xBnISU4ybo2TpnLTNdla1AbQXXfxJ8v5GuxhOoQlgqBFFj7qfh+4nPLKrjwlOzHjHDPqSFFB8Q1ibAG44LZk4lB7ZHYYSGW/9jtEz11qVESoQ+emgcJ0AgecqjpWhaPpmXB92gV4lxq4/jiwXJ5AkVtYzAmpYLYQlXJojWhoRZnJ/g4kZckB3EFT2jPwOdfFwUxuAOK7fAHFJUpBmPN9bhsZwLPC/2xid/WrHJ9YiuAtgoE6k1FrNEla0InVoFiuQX+xHJsTKe/D9O7dzOPp8azPB5Q5vb6B4iV6G2vn0YN2V6tQaewVFE9Fa7FYzYmXImOIDk4ZnCICxTQ1rOG2R/XKhbJAm1Bgt2DXeGxrEwaC4g88RkEN0nezpziLsy+T61iEd4k7XhtFW2ElbWzm93TPo/jCnEAgGEQV2qkXGOMNpBp1zV3LICyyiUuUjJd2r1Ekk1mpNpXAWvCPum6RiOOpSAgHvVV0dCiA+KaRMIGVEzefglZfErvRSAqZ2S6vONd2t0Cq/8yEPpdsnbNjo9XKsFnSIi02s0YJm3pZGoZG8Wx/fYyOLNQIF/4JI3B5keW4OcJMKl2EJXOJmzCFHScj+DsUxBfIFklxrHidh+USaU4LZdDGEBS5FfOnp8J2ixHuN6XX6+HzYOJaVNZEz87WwOsBkOyoD3g7rIGxONJxsLQEGv5fHPMlnnc6e3D1O49ysZj85sG2uceRluo9qaxdD0F4pYpJPdNEFOdU30mMRViVG5OStJzuVqFx5CoTgyOIbSG4yptZ4VJgJG0BjNdwgR7QgCRLVClWr2b5O3MnKyIv0eryKAQb610Ik4QtjW7p7bB8mfbh4T2n4R7yyRPfDRES1zB6ZSm7GaxCJ84GdK6Bic9P7MqG4j3m0nWuGV1ez7yKvFWgmTxjsUhIElARd+6hQjJTu2WW27J9HunnXYaxXAaBbB2HgdmqUUNGMQloXHvOoPMEzue+SQP7CK5SYhKrFKJx7+aUWHaZsdCTby8zHXhU3ewjo1hGNT3xAzx4DsAWJUyvH37SL0PmyQpdyoVTDy3lX6sFOxyGRMvvshy7PicYFfK2P/MM2xjNYM6Kj1YG8Ees1BQMh6rF2PcOoHLJqAlIE76fmJKV8rky2xLHtp5LvD95mdiuQXU9+4lPf6ssVrm1OKiEYz97jGUVyxnHdNsSYJYpSKmtm9j886cpVAshdZQXGOpqKyIN42l2kTP8kAnUoij1eubsKS91Qonss2jPK9BUoP7SgX1sX1wenvJxgGQGBwDGo3IJibZ+ghwMUuNTPWoSgjwWYSBtiThiN0459QkrTOBGUGJTbzU5BTFpI4Zq9AxXXprvlZLPsqKmVnN4Ik/uyTFflgZOk62z0jzxDcLBUzv4enBlHadWcSq9HCcmX+TnvvYuoF6vxm/L4BwbcJaLaeI0K4kodpJVdWcoobmCw2SgPgZZ5zR9XcMw4A3D8viNAz4Pm/2DrMfxGZDNWU5BMGcBA900sCl7yev6QywNLpMwi6VMPHCC/QHTvORpCBBgUTXiCjWNJFBfZBYhsfVeDKhA3hhoB9TO3eyBMSTy3QVW6aUGW2HYhuLsEkpl/+7ukak8cU4ZfPGjsM2SkM51NVA+/Mh9BDneV9BvQ7Ttskbd7aVUHN6iHMoxL1WhThzdVUsuGTXapjmalTcOmZso1lasQL1vWMoDPSTDxf3LI+soViaibUEuDib37bZkNh0FRCtnxXVfRP4PkyHqQokfl73E5/XBI9frsaaYVAv2XeX2mIijcgrmySpEF/LEt0KSQE+s+jSnZOENbhVKWNyO0PlTEolIptCPG1/wdAcembM9r2mVaSvrm6btyitIBJsLUin9BR7HtJ1fwfLFLbKkzQrIMr7FEhU8NOde+bkUZIIitHGJg2WmEmKZlFZXxVFgfeFBsmu2vf9rl86GK6JSMoaA6AVRcfLTR0bIMuqJyzyTAOBT+XtlVJa6hToS/FSMItMzUFSymZpDh3LeBP6rcWbarKU+qeUsvJ4O87edBX6+vlK+xMUFaHHn7qGkLxNSr32hStnmW5cQRbwWd20onIRZti8YwW+N2MLYjtsth2RojZUdNAtlONKXcoyZ/aGozGPck7PzbjK1jAMmE6B1aKh1Y4nwunp4QvExwLwdrWK+j76gGbSWGwNPFsSjFRe39Fx2xTuFAFxjylBGfP3titlchXvrMadACwGhSuARKtEgMliIgVKP+n43EJGktUAYUPwWU14wSdOSLLKA/h6RyS9N2CmaoaD+FqaxUqqtQrFtsnsMxNtjAg9/ZP2sla5Am8/ZUVbhwaXXB7iqTYttNdZPClKmUhK80Ena9qZlNjjTFIkYNpMSuq0fhiKKvstx1HUvHNhoT3ENekYkX0Hw6ETlCKGQRdUjgdeTduGR6R0C/xg1rRHGdwLAj9x42AWXZbS/qRzbBgmy2Y3SHmQkDDLS5UuqDa74WWJfAORVIbn1GqY5rAUSGimZTF6eieVzqq0+wCicnamg3OrLVqIB9y4GlTFIfeq7jQWo2obiKuUaQPKccIgrIOAskdGm2KMeNHfUupqOrzNgzk3reFgswMy7vAQprbv4BszIbHJGRCPl70X+vswtWMnz1hcQcCEcaL5lFJ11VZZQVV+Hg8qGTRBhXgwxK7WUB8jTnQkVDuahA0c24ZKEcJwWEykEdrOECXFU9bp+Q+bIIygTOb7s1932CCX4RmYds4ZFeKJSRfGhurx+Z5jXds6xxuWRdtkeFbyhTJomWDNWCQWwqQ2bmVs2J0ahCceMxZUJq1MTphnSNfCCccn96jvgsHU9ygIwCbsy4KhaM+30CA/o57n4VOf+hQOP/xw9DY86H784x/jy1/+MvVQGma4smtp/ltGoUBWnh0PvBqUAYmErLpN2Vk8rRENV7OshEVR86VQRxATFCNkY8STIKTNuNoXdk4P/eY0SWlm99RQH6UPiCcpd1gXkCmlszCMcKOsEA41dZIqlK25XUIpvYrO7aoC7wCvrzeANqVraAvCdd2H/wkbA1IHrWcUtKSWKW0B6wL5OW/1lqT0XE4fKxac7u3hSTJ2GNOuVfm80mcFTqt8wZ948IFp/o5bBJAF61oD4kSeqfH+EVRJpPh6gMPKJNFD3C3QNXBsGyw5cMVhMZEGtUK8bU1DpaxNUJ9SJg7TFLUcpKlQwwpL+nOelnSxy2VSVfLsMRktNIHZz3vCBGF8XW66Ltk9kkTYIJZWRZ1YUW3bdBXC8TFTfMst4mRi/L3RKsQTqnaLxPNj7L7g7IuVBEuFIwAosq5Nw1TUvHOhQR4Q/8QnPoEbbrgBn/jEJ5oBpDVr1uALX/gC9VAaZgzH5ulk6yc3JCDtchwL+FEqINI8/ui6wM/epAB8nYXDBXLSopU+UBR/CBumRVf+Fwvsk1oJxBcmHIqahM0pm0I8YePAqdhO870Ofb2ZgjcJmFyb7zQvVpYy5FhAvFLh80ZvIVQiq1F3mMz2LEGbJQP/4tK0ab242xqrEqtuZnuI81tDcVn+BF5KUy9qpW3rmL43O8jgOGTPudnjzfZmDoKAJ/EX2+SybThbkzKEicWkzyo38bJ2KhVfbD1gFgrk6rqkRuSGRdskvjlWil2eSWgH0g2rWCRTWsdFElT3QtL+gjSQlBKkprTKmBkrRdxToO/BE42XGKgs8/V0SapCMiyT1Eu4dd4ybBuBR2chlVSNQNXANQnSBCeSq0/ZSbFMMSyLNEE8e44hFC0l9RIoFgkraJLvRZUYToGn8qULXM4KEWxWMAsc8oD41772NXz3u9/FRRddBLMx0R566KF48sknqYfSMEMaoG4lIfAHNDbfVLYjaJ/sTceBRzWBJAT0TZcwM5ywSAEiywKOyT15PA7P5XjQ2rApy/9iHdMJvfySFMDR96lo9TWOUOkhDqDZxJOcFFWS6saafF6Zs1UqYeCNYaxYkC+07+FqFjrzvyo7mxuE1R2JtKg6ucoqw4M3/kMc4G+zfiDeDLZ7iPNapgCRapMrKZay4WcMwIVBRnXltIkWC0WGHhcJY1Er4prjtATtKAO0HA2Jk+zUKK5nJc2TUyu3GMZKCVyxVqbFIL334wkLqgbEzArutMQEpXq+OVbaOWf0EE8U97hFXj/peJUF8bq9taLTsOgCykmKeqtUZBWpGIZBO7+kxBM4Sd0/UTNLIU5ZKTLb/ozSWihNua9SWK1yzxIRWhrRJRaDhA6erHuWBQz5amvv3r1Yvnx52/c8z4Nt03dh1/DCtlANkKwaIFT0xpUvRsFBQPVekixTCJu2pAUkuSwLwkVRwnjFInzq0rnY4oVS7RBXn5PaLiQogEMlGOEiO0FNw+Z7nabYLpVY1FpppbNzEhDnCFIn+HJalQo8lvfWHuSzq2oU4tyq7faxmJKxDeJNKdkV4sT+64Hn8QXL/PZgJHWCLB7oKwwOYvKFF0nH6ETYbJnRpiltI8ihwGyMN9uihclqK2bjwabu5QoGMwXE2+Zjqmdaopd0kfb5lSK+4Oofk1j5qFDdSSnySGx4R/DMSlsrUamOk6oCgIY6lDponJJwIUsexElJJljUa/UWkoL+5Ova1iQ1aU+F2fe/Xa2yVlCRw+Tl33nMlHmTfJjZcwxZE/KEz42yIXdaMsyw6K7fbrDZzHaA1J4XaMQe2r9lWrZyq9GFAPkdvW7dOnzzm99s+953vvMdHH/88dRDaZgJLTM4PMSTH2CUzZPigVfLLdJ15U3pnsyuEOcqk0noBA4AFkNH6CDWxClc3DFZphA2IElUANeqpJ6eqYowhkBKapf0cpkniJtSOmsx2RekKfdDixaG4HFSkkxRsN8ul/lU7219GNQtLk2Htqw2TpvCmrPZagPy95MWdCVg1lzH6IcKAOVVKzH2+ONstimqSbWHYlLCJz2b+Joxt89zFqHnaNswTNc3y3GTLKwI5uMktWthcBBTu3flPnZzjJQAIkv/i5SGh+ELoR0qDYMyEBu3D6JKGKes/8nU7WkVuq5LbpWRNheG32Pq5ZL03igDiXES5hSLWHjR1mTYIbRIC1IsxbgFFoSnvqMnvsGThA5SbF8bg9IFK+PPFsLKiqTPjdTCMi0Z5hbgc/SoSIC6MjML1AKbUOinOOGzQCH/lP/6r/8a7373u3HxxRdjYmIC73nPe/Ce97wHV199NfVQGmYMSg/mVoIg8VlC+aAPM6sz9hNmwSEtNZqt5LXCBwzF8ZEcoGYLSKX5/HGUXceDbJZF6ofXvlkvkfmhJSmA7Spx0CFlYefUqpgmbqaV5u8WNh/iCNokb/LsagUeh91HyiLCKnG9P3/W52lXynxWJi2YBSafvJhNUOj7qWohy1xGr8KOAMBMU03iRTLz629T9hDbKM1qFGXbKAwMYHrPKNkYc0naueGbW2dbbdk9NZYmnvF5ziKsjGsfh8cXdtZnRZBsjieX7SpNMCypyTa1rUVcRNAcp0jb+A6YXcHXBoNIPCnBRnlNxe9zqmB7WmNIMnV7iiDJcgn7IEV0ClYqrHw0LKthdUlPkqI/XNdSVnK0KsQJrSATPi9qj+8kDNsiFL+lr4XYmg+m2A4BjcQSU+NLyus40WqNcg4Ikp/hHEK7NCy2pprpkKvSA8y5F/tCgXxH9YpXvAJ33XUXhoaGsGHDBvi+j5tvvhknnngi9VAaZkymoESQMlGSemTHFsOGaYWLM5JDd1C6UOAHifsDLsuCULGf1viGuoQywTKFLAnSHnQlVa8lqfB6e1EfpQviJHm6AY3yd+LgRprXIoePJIDEJp4Apy1TSnMlLr/ihIA/5yZMBfGNeXiueBaX8eAFR/+CtvHiVTHM601y1YiqgD6iEmpCtVtL084Ip1ZDfYxB0ZwC6YY8TqpHL1NjN5Vl74o8xLkqIGZZvjj5qxITrTMonmlJytMi8byYpuIrFulVfMHspHGEwdXQMVF5k15BJnp8o63pKdEcnxJENos0gaRZz76W41Ov95V5LbeMp1xNmZDooVZZtzXRplSIJ61bFVgYhdUIRAK1Dok2SkV125gJApjWMamCyklJUTIS5v6wXwdVwD1lnnFd+FMHr0LccBwEhPukIKGKI/wB2Jt3LjTIjb3r9TqOPPJIfO5zn6M+tEYxbP5Lad3mLcLxUiZjmmPzlasD0eInoYzVtHjKylPUuyzeurGgtWnbdBuhmBe6VaLbrCc11XR6apimDognBVLKJVJrFiB9oWWVSti/9XnSsYBkFQ3At/hOU1mFfQqYSihVd7pvpRFQMCyr++9mZJYCjvP9xVSWXMrTiDRlJDlRU02beGEeewYZDOc/wuntxfSePXB6aiTHS5rn7GpFqUI8tDibhFml722Tlti0yiVM7drNMl58vWDaNt88x9BAMmmc+DWSJqQQO3D7urApMnBd+WPG70WieSUpmMiRsE71k6ZWiPvJjcmB8H70Jqdgl0uEAyaPZ7rhZ5h3rLiowHQKJOu0tLUSVUO9wPdhJvT0sgiDlC2DdQxQk9zTrXQIVHKRtJYO5xXahGv0OYX7cr6mmiqIlMh2pZL/YCn7VyASdfEIbtKua7NYbFgP9dKMw3Q9c1VhtQyQWn2kzDKF0oY3I2F/BMJrLuUeNeyweaeh+zOSQR7VW7p0Kf7sz/4MDz/8cK7jfP7zn8cJJ5wA13Xxtre9rfn9Rx55BOeddx4WLVqEvr4+vOY1r8Fdd93V9rff/OY3sXr1apTLZZx++unYsmVLrteyUOHsZGskKDcMxwYoFeIJkwhFRi1cxCX8wDDCRXL+EZQ2CUm1aDHovXXDz6dVIW6ReYjHN7ukDeESAmjk3sNpqm2OxmUpCy2Lqay/Y+ksB9xVHLPGU+f/ngSHPUta0oQjKZcYfOcUPyQkNTk9rE2HbhMLzA66GpTVVTGcvj5M7aLzLU5sAqm4kRdrwqVTw2JFwWMAdErYDmOxVY3E5lOqSrJEm4uca9ykZDkMI/+8n3BeZ4ItvLCsOToE38LriFidnDKeXS2T9BGZVW3ArBAPg4iMHuJcSZCUYCVldWhzvE4BeIPQ27l9VKVrW0oVb9q6lbWCCrQq4bRmvYD6ClSgEfAls2edbYdGhhJhX7JCnNIypVNMJynOxI1ZIBa/BEj+HBVaWC4UyO+GL37xi3jggQdw7LHH4lWvehW++tWvYr/EJmDp0qX4+Mc/jksvvbTt+7t378bv/d7v4YEHHsCOHTvwlre8Ba9//euxr+HX9eCDD2LTpk34whe+gB07dmD9+vW48MILSd7bQiPsZKuuJMOgbrAYV01RlZqleW4TeXx3bBLCQOD5yh4b8QUypXIy8L3ZQVCiyze1GRdh0CFVIc7RuCxFmcPlH9ixdJaraWgHZQV9oCjNJoHJgiYGSwPPhJJK8sVec6iEa58hoNd67Nbr37DoN+dtwxFv/mcFJhlLQ52eGmmwOmkutUolJX77zfEI+0vE6egBzGKZklZZRBP4i48VDzgFQUAeaJrlM0/VIDvhvsm9ZktIltuVcm7LhKT7hD1R2IDNPqODQpx8vIS+L0Cjj8g4wbMyFlg2nQLJHJyqECf6jNI+F5bgYQc7C5PDzqLD3oksYZFAmtL2QG8UHXSw9+K0rIsqtEjo0Kw3bKZKHzTspKw3iX24Z/UrI0pWpO3JDMJK/UQrVpfYZi3NGmuOoPT4B5C6V7dcF/40Y5+lBQh5QPz888/HD37wAzzxxBM488wzceWVV2LJkiV4//vfL3yc8847D0NDQ23ff/nLX473vve9GBoagmVZ+MAHPoB9+/bhoYceAgBcf/31OPvss3HWWWehVCrhqquuwn333YcHHniA7D1qeAizeVQRzNkPSaNA09047lUdYRYKNN5RaZ5RAM9mqEODEBjEPlWxTQRpg40UNQrFolTJJiLNO5Jps5hcFcC0sOjQ+MYi8sZsH65DGSXDZj+s6khrhMUf6LMqxE2ckByktjgC70CKX66aZALAs1lunXfI76uEwB5XoyKTqFlcK7OqbSwL8b4fnJiuy3ZtpVVWmExNytPmcrtC09wxPlb8vTm9PfQ9Lph8ueOJUooEcNLnb1eruedj9pL2Dlguj0I87f3w2HUkr2vtconk3p99jRLNwWn7C6qkUMrnwtPENt3ChCMA30l4wbGODgdN/jabOpmQwEuxtWAOiFOu+Tt5iLMkXZC+HwRo586k5y3ZdZVakcx0n0THdwvwKG1s0ir25wjq/WWa6wBVPEszA1u9xIoVK3DFFVfgrrvuwqtf/Wp86UtfYhnnV7/6FXzfx5o1awAAmzdvxnHHHdf8ea1Ww+rVq7F58+bEv9+6dSt+/etfz/p68MEHWV6vBkoULkGCutFyXXgUZVp+u+1HRNgUlCIgjvQAtWkg8InVtJ26dFP7iAdBWxmTSegnFiSUgpI1oEkJOlAG7dK8Z8Nzw1D63sXbkXq8tFJWHgV8elKJTamZgF0u8zTSi49TZQhUp1lbEAe/gORrPwzyq7HR4Aj6JqlpqZjl5cxlddTAsCw2dV0rqhR1VqnIuOlLT8axjJZq0cJhgZA8J0wT97iY1byTKHGeVFmRV2WVlACxKJIRqVVpXNYPM1D2X4no1PAwbBhJHBxNCcaGzW0JktSxQJxB5Bud2v+kUCBRBHYKUpPT4RnIUvLfodm0VeSc8xPGK/MGlUlIU4hzNUtuQKoSVpx0AZBqOwQ09rSMIimq+yZt3RBaJ/HdJ9SJqbCivvN6S2XzyVAhTih8SEmQhvGsAzvhNt9gW7XfcsstuPjii7FixQps2bIFn/3sZ8nH2LFjBzZu3IirrroKvb1hA4OxsTH09fW1/V5fXx/2pmzir7nmGrzsZS+b9bVx40by1zsv4Vg3KViLBX4waxiTakEUBEBS4LLgkCg4OjV8Iy/HATqXNRI3JZml0DJMMmVg0udml2m8ldPKfUmVFNQNhrqMlbagI+1iH9GplJVj8Z2yiAAIN8QZULUpCq9zYjVowmbJqdXog19IXpwXBvoxtZPQu7oDHIqotAQX2bHbmhvyqundoUFM7dzJdnygsRFTVBHA4pGcEfKgf0o1DEtQI3FOyK+GnjVM7HkRqmNpxAzt9w2FWnj2s43CEz/dQo3IS7oDhmUh8IiD7p18d90i/XMyzYubKHmY2PeCYvmW8rrJ7HI6rPep6aTYtjiSIJ2SLm6BJ9CX8lGGwgt1NmAypCeNeJ/FlCrhTr7xXAHxTtU7luuSPXcTqzSp4hhp82OxyGYnB3AIvDrYcQKNBuNqG2tSEjrCpCRIdUCcFPLd2ic/+UmsWbMG559/PqrVKn72s5/hvvvuwwc+8AHScfbs2YPXve51OPvss/HhD3+4+f1qtYo9e/bM+t1arZZ4nPe97324++67Z31df/31pK933mLQK5KVkLBxIwvupnk6FYgydh0D1PTdyzv77tE2Owo4mx0mBEFDpRZBAC8lSUEZSEv1KY9+ThhI6WQpYjN4z3bcGLEoGdOvaZtZTdtK6FfKvykyCwXyeSGpnNbuqaE+Oko6DoBEZZc7NITJ7dvpx0qAo6ljarNDCpICe4zXmTs8jMltvOfCrqi5VwB+BVwaLDYBadVLXEkeMx78rWGa2zLFpVHdzaqsIPqMEj3E8yYJUir3aIL46ulUJcaRFE/14iZScnNVAHWq2CQ5fofqQMMibqbY0c6CYQ7uqBbmtYKIYxFZ86RBsh/oOMcwe4gTWmWqEnQ1SahAjzAsi66CJ+H8UDW/TduTkfq7K6CTZQ4QVe7wVzfGIVOlp1Q766aa9NjUB/zBD36Av/iLv8Bb3/pWlMtl6sMDmAmGn3jiifjc5z7X9rO1a9fi3nvvbf57bGwMjz32GNauXZt4rCVLlmDJkiUsr/NgwLQd+PU6rAJTp+NZGOGCMOdCM2myt1wXkxQPEj+5iYNRKCCIJWPkBujgg0dlyzJrvE7NjggXFAnloGGTkGmYtpPr0EkbLrtaQX00/2Y9PehQxPSL23IfPxojtTlMIyBguS7JWEnnISJaDDuNqhuq8dJLWUuYprhvWgk6+JWWS5jcsYN2vBRCpc0BXjabRpKvt0uv6gKS76/IrilQUDlhVyuY3EZzH0ckWSlQvRfVlilOTw1jjz7KdnxArWqbRQGbgUh5RzaPI72ijEVxn6RYKzMkY+JNNQsu/Mn8c3b8nuSq4An94vMJSdLWHCwVVSroELgIVe/q7DMoSAwoGWGDcMPKsV/qEOAjoUPPoCgYZlZpQgNhYiv5s7CKLia30TduTb/GipjevZt0vE5YpTKmd/GMFzXpNpy8e6bkylfuai1KlXAnsY1h2wg8BnWwomreJGGPVSzSVOt1sFojuU9UuZSkWNhGmLYNb2oaVknR60EY0wjqHgw7/zyaVo1gFhhsHhc45KuFO++8E+9617tyB8Pr9TomJiZQr9fh+z4mJiYwPT2N0dFRnH322TjmmGPwz//8z7P+buPGjfjhD3+Im2++GRMTE7jiiiuwfv16HHvssblez0IlVCSru+lM26ZRKCQE/MiCu0FKmRmRp1Onsj+Dwes2DCQn/4ysVLk52GyrDqtUogmE+MGs92FXqiRWEmkPJatUIvXCS9uoUPtsd1IhcZRLdrqmOTzEk+w+muOVy/AIbHSyQBEYyT5YuBmnIk3hHAYTifsYpNiLWKUyT/AntlgnqyRpJXY/Gzbd55bYdJBDCdWA47kTZ94G+gRgabKbolZTpUY3TJN88xu3KCNrwhZL/ofl1AduBWTimoOyEXmnsS2O50lK4Mqks85rjtdFOZhbYZtoZ5D/3AQdBCqheCR/E9h06xria6tLgJpDIZ62ziSp2kgi5TKyyyW2/jGhWIBnnwwosmOgut07nHOuoHWnClTacRLmGCKRTVrFDktD5TgG4bMlQKr9JzA3CnGrXEadqv9RyhxqmGob0S8EWNLn//f//l+ceeaZWL9+PQDg9ttvx7e//W2hY1x99dUolUr45Cc/iRtvvBGlUgmXXnopvvWtb+G///u/8e///u+o1WqoVquoVqu4/fbbAQBHH300rr32Wrz3ve/FwMAA7rnnHtxwww3Ub3HBQPbgzTqeW0BA1Uk9Ntmbtk0yCacF28KMHZGHeMrPTNtm8RBPDY4WCBuEpIxlFovwKQKiCeclXARTNFBKV2uRWaZ09Fsswqf0deu0UeEol+y0CeNo4JVg9xFxsHqvkavRU5ImdpUneJykJAvHYtjExogSsbS2RDGPWZtuYR54fpsKkWrjl/b+VaihqBXiqhp0isCl5E86PxznLNU71TBok2Qx1TtL42VuiBOUzcO6ap5fVKX5TTokxTlIqtCJoPgM09Sbua/TFMENQGRn0M26ZpJwDu5kYeLSVwV0WkOHCVd1FgPUn2UroUI8/1oirTeSsl5GBHQ653yDdqs+IWp8zCkgS/ncyPZjHU4JpYd8t54IYTNitQFxp1ol3Ld0aNI+f27TeQH56uQf//Ef8ZGPfASvfe1rsWXLFgDAwMAAPv3pTwsd58orr0QQBG1f1113HS655BIEQYB9+/ZhbGys+XXqqac2//aCCy7A448/jvHxcdxyyy1YtWoV6XtcUNi2WoW468Ij8KxOXYgRTSBGkmUKVcaug7rVYFDsd2pKYrjUTTVn283YpSLqVE2OYu/DsKxGSVV+EsuWbJuu9L6TrQixz3anzSKL92yna4ypgVfqPaR6sW/QBec6HceuVEibhaaV7Nuki72ZsZKD71U6pUUrCZdAoa+P1LonVL3PBK1Nx6ZLLvverM+LQj3Y0WbAAJ03ZgLklildLBMM21K+UeL2ZmUndU7gnXsMywqT0nlJmvqZAtccvTEAdQldy6Vt3tkpOAow3I8dGodbBH1Skp5ZFFUunbzWKRTcHYUX1EHqTupdhqqATnM+27ov5bBkTVATiOzkcpNit0VB0MXKgmze7SDo4qKbQpzKIz1pjjFsm6QHQtr6ntQDPQXKZFHQwR4TaNwrigVQlD2JwphJ2g8Jvco19AHxz3/+8/jRj36Ej33sYzAbN9tRRx2FRx55hHoojQIsqgdvRsiabSjspE5NR5WD49A2vUEH1RcIF14zg832di/S2I4EHZQ184FuTadoFXKqFeKK78cuCg6VwTCrWKTz2O2YNKH18k0LUjs1ngaUiYG2ihqFOAC4ixZh4vkXyI4XeO1Ba8q5NOnzsmu13P0SOjX25Q7mUleKdGtSPBfNCe1KGfW9DAmeNKiDvUZyYIm6KW2i9zDTvo+siiwGdUA5QlVAnFxR2yVwZddqtPdG0MG/ulSCl9fOIqFqkCQJ0qlJoOvmb3LfsdElbeNJ1erdrlYWTMmvTnBUKplEFmadnpGGZebba6aozyNClTBN0Lhz5QmRWrt91I7XGVllY8J7I6sG7NCzihuLcp7pphB31SvEw74qRGvllKaawIxXuYYG8rth27ZtOOaYYwC037gHYvmqpjuGw2DR0QEqL9SweVlyKVjg804guTN2QXLTToAhQB2NlzbhEtfkJNnNkAV7O1jZcHtuUsxvaQFIIEwaUG+u0xZWHIrttNLM5pjEVkDdNkZ2pcLjJ5k0Vk8P6nvzN3YFOm9gyAM7fnIAw67WME30fiLSKhZY7FlScIeHMLltO90B4ypXxyEpcwaSPy93aDB3Y9BOc5BdqdA3T2yBet7p9F6AKABHex13Iyx3Vle2zxXsnTVOtUIbzOzQ9Jma3M+ClEc/l0UDeaPzFMgtjLqcU6dG+1zpNB5Vci++hqJYp3W2zstvmdJ5nUkbEM9iZ0DrWd5lzq+USStZusHVVJ1MYZuyTwby3yPd7vfwPfCL37gCop0C006tSjKXsSaUOlTQcENplxSe/k4K8YJSqySA2N87QHoT5AJxj7cFDnlA/IgjjsCtt97a9r2f/exnOProo6mH0ijAdBgeJh3mCaqscVppr8G8mTAsgoyd76c+qAzbQUDdVFOxiiMeZKfydkeQHMC3KhXWJoqGE3Z8z02nEt8Soco488shTGJ2Kc0kD3x2KaMjV6N1wOntwfSeUZJjdQxYEluZpG1oQvUD8bWY8r5UBX+AcB6islcCZp8r2mTm7GSFQ2D5Evcmb8Uql5QEV8noohyjVjVnxbAIrG0ywmY5NGucGr1CPJZA5Upsc10HXJYpYeKI//ohn+e7eIhTJ6g6VT7aZZ7AaBiwzqsQ71ApSNH0slslIrlNTodz3lMlXYd1qwpSWXEGNMQQozRrv1asIk1AMeiw1wz3TXkShenBdoDOnqebFdNcBA3tGtHzMO3+Iah06HRvGsyVFKSVKCn9vZpjFWn7oGUVPJKt84L055jluvCnD75+WHMFeUD88ssvx+///u/jL/7iLzA1NYWrr74ab3/723H55ZdTD6VRAIsiudN4rouAojFlECQmjckC7imE5az5j9+pyzz5g6qbGstoeEDPU+wqrxqYSknVaYFiOo7S0ihqi5ZuZY2FwQFMbt9BN14HD3EAcPp6MbVrF9l4nXB6ezG1m8ibultDLAWb2dD7k2yY5liJCcy58HsnCorPDojTeD+mQWIB0kk9yNQQMg6l336nqhRqRWpW3KFBTO2gm+s6oaopLbUSPWnu4Ups29WcgZ8ULLcIj7IRdgNOb+JW6BXbnYUXTk8N05TBww6BEqe3B1Pbt2Ny2zbSxD9FQDno1OSewBatoyUjtR1PlySIw1Cl01l4oTYJWujvw/7ntuZaUwQJFcMW0Vqvs8Ai37OjU7AdIAyKdtlbkPcmyYBdq2GaYM2f1nuJJNnayTqJ+TOj6IUQEfhBxzp2A0bYh5DqoZmxes2u0Yi8wmsg+WdGQb36/WCGPCD+e7/3e/iP//gPbN68GStXrsQtt9yCL33pSzjrrLOoh9IowHDomzh2mr1C6wSirFqifQaBB18HLDd/NrJTMxJqC5NwwM6LVtOhbayZPAiflQ1JeWynqgYKP0qgaxM4QJ31lNNTQ32UrsFgWkfziOLICCZffJFuOK+zQrzQ34+pnTvJxuuEXS7D208TyOkU5CMPHndSWxkGaWKuo5KMWK3SaX4Nm60RBbFiTTUN5uSyYRjNBuSyBL6XbslTLudOLHZ7baSJuC7zKUulQwaKxF71nXD6+jC1kz/xR9m8GkDiZp1NyV1m8hAv8VimqMIsFGgTeB28UKPxKHyRZ4broIC0LNSOPhpjjz2O/U8/TTamadskFaJpayUS26oOdnLUyZZu6l27Rp0E6fxjp7cX04qEEADgDg8j8H2MP/WU/EESPkOygGWHYHJYXZQnIN65ZwCVPU+3CmfTzW8zNHvQzj82bRsIgvzr1pTPkCLI38lDnLy5bgyT0popg/WLRXgNpNnxxiFbr/gdbI3cAjzFDUMPZlgc9V/72tfiO9/5Dn7729/illtuwZve9CaOYTQKYFEkdxqPKOAbpGQ/w8wko2UKRcauW0NQg8CnPDZe57JGfq9Vi8pPLunYLm+2O7TEIFADdOtcXuTxI0zCHR4m9VNOux8jzEJozUTW/KaLQtwwTRT6+zH+zLM043WhtGQJtt/5i/wH6hLky90IqYVOGw1yL86O3tXEAasOSQWnVkN9jMjv3WsPLps2YUA8Zfq3y/l9PzuqExkV6EAjEUfot9/xXmGodMiC09+nrDolSsYpSaQyVlcAfJVepuPksyBJeaxxquwo5/lukF07XdaZAGCYhA3wuqynSksWo++4l2D0tw/RjEdEmioUoOmzEHTx2SbV3HQ5B05PD4mSNivc1aJxDNNE30vWY/SB30rvo5Oq56iU/J2qEexKBdN5mnR3SYBZpRLNGrLL3iJcP6o75xGFoQFM5qwES1PZWxTCgQ6CF+pq0zi0AfcgtXlyhF0jTKYHyGQxSxUQD4B0JX+B1g5moUMSEH/88cczfWnmHyyK5AzkDvh6yQ9jo1BAwGiZYrlu7oxd14y3Q+uJFtpZpP+80NeHqd27iQZL/rZVLKLOFOwlUR12+Hyc3l6igHjnjYo7PEjb9K8DhYF+jD/1NN3DtmsneKAwMICpXbtpxgs6K5MAoHbkEaTqsG5jASCpHumYvKL0EVftV542Frm3bIdma5UKpok8TePniqXaKkY4F8kr7tKamwJRMCa/b2VHj9dalbYBbbeqCerqgwzBQ8MwYDq81m2tqLIJoLTUSboOSd6HwgQIiVo4BYpKliQrhjgmhSd2NF6X4ChAW6HTKdjXHK9YhF2rHVhBhQyfU64kRbfPhVRr0y2Bb9FWm2XYrlLOh1nOg+k4KK1YIb2HSlrzkSn5O9nnOA7g+7kC+SqaWndSOgNAYXCQ1I4RQKbrrLhocf5KsBT/aIqAdUfBC1OPhQjKirLA734jUAbEgy6JngiyyrMO/bB0U01aSALia9asweGHH972tWbNmub3o/9qNFkwXQpfpGSFKEXAuhOmS5C57+aJViL2d+6mEK9V8ykFWkl5jpBkvFMIP6+cD6ZOlimED75OwSKVpfaGaaLnmKOx/9nnSI6X1CQtTnHRCCZfoHl/4ea7+2bYm5zMrYDL+vfu0CAmt+dLaHQL8jn9/dj/zDO5xmgbq4MH6zRVkgydN0/FkWFMEF0X3cYqDAyQ+TvP8hAvOHSBl7R5tJLTtzBm8xLHdOxc76HbJpnUt7hLyTbQ8C0mangbjtk98QcA7sgwJl/cRjduB4qLFmHfE0+yj0MaeE94FpJYn6WOx2NHltfCKA2Lwoari50FQNz/okujayCcf/OqKptkeH8AvWrYsPM1U+smiLGrlVyBxCBFLBSR9/W3D9Y9uF8YJDznGSguGsHEC0T2fFnn++Ec833GMWTotp50F41gz/2b5SrbuuwrDdNE4BPMj10sM0zbVlrlHlEY6M9tV5a2BicJWHdIvHH11WiF7LmYQfhAKqrJkEgGQjFpludP1+E6nKdwT6Gux9/BDsks+8QTT8xSgz/xxBPN70f/1cxfqJoqhsrvLiqRUil3M6K0rDFpUCIBq1TO/SAJOnQVBhrNpYjtCjotuAzDhGmZ8Bi7GZstm11qL3HDMGBYNluJcXSuKB7wHRsCVSpkXtRZKC4mDMB3uaYBwB0ayh0wFhkPaJTs5g2IdfHgjyAJgnUJ8pWXL8PE8y+QqE/D4GVycLQwNERbrdBJjd7Tg6ldu+iaLXZQQdvlEryJCZqxYpuZ0PeRV80RbsJCb3yZTWAnD3EAcEdGMJHD67/TZw80gqqECv1O7wUI38/+rTRJv2jMbkF4oDG3EiZ5OlFaugSTL25jt9iwq3SJc1ZVZAKGYyOQ+Hy6zRNWkaek2a7kb5aa5f4ojlAmqTPcj8NDmNxGkyjqZD3Sil2hDYhbea3tuqzH3UWLMLH1efnjo3OQOvfrbx0pQ1Iy7B+jJjkIND4/qmu6S/KiOebQoHTPmk59Y3KvU7o8r6qrD4NVKmHvI48IHzpLhRZFQjrwu6/1uff9SRim2ezrIktaHCNseJpvndS5oWqVLhGagl0uEVWZdrbHBADLCb22Saxm/e6e5RGGQdAbrUNS0TAtOosxDU1AfNWqVZm+NPMTUmWO73etNrGrBGXrQZAYdzdMq5Hh48G0bfh5y2S7KUSIy5m6BeABoHzIIRh79HdkY8ZxamEgpD6+Dy/853/Jbd472pr0oJ5ns97tmq2U4TE05po1jqLydyC876kWkVk2w5EylULNEQSdO9xHFBcvyr3h79Y4KsLp68u9yOz2ORqWhZ5jjsKe39yfaxwAHZUXZE2DGnR6X4ZhoLh4MfY9/gTJWB2bhaKhEidouBrEm2qaJuuzB2h4Ro+PI/B9PH3DN4VLhbsFdHNXqWS4fgPfJ1nkB76XIRgzjP3PPEs6z2UJiIeBf96+HBGGZaG0bClNAqvD5UsZzEwN1LT4lG+77XbxxF/KNG3LVlZksQWgqq5rOy7B9ZOhOZjTT2iXh+6Nn0nXNxmCsUBDYEK4dguPl6MZYRdlbWnJYux/9tlc/Sg6nQent5fO1zuDvUBrElcFluvSNYvNON+bjiNvn5QyhlnIb8HWbT1pOg6qa1ZjaofE+cmSDCFYf3errAWIbT8FyO31nqJ+J2l43MHOyLAsmAVHWljTqXF9RF5xxcxY2cRPNtU8n8GKK8Jw8zcP7WqhS1nRs8DhqcPRHFRQLhizWBkUBgYx+cIL8HM0OsqiTODCcguY3C6/MezWgNAq51ehxwbsGtAr9PXRWJqkbKijTOfehx9FcdEIqR0DEJZJ7rrnHrx4y61ygYEucazS8mXY++ijci9OgPKK5dh9H0GwMysGjfI966LFHR6mUYl36Mw9a7y8QZyMCyTDMAgUI92DfKWlS0kUb91sbsqrVmLbz24nuj46j1U74nDse+JJ7M+ljGsZq5PKfsVy7Lr7ntx2QYHX/VzJHzz9R3athud//J+oHLIKE8+LfV5dFdy1KqZ27JC+vuJJgiQoSo0BZApWGJaFymGH0ZXQd2nm2xzXMHgtQGKQBB6Ajntcy3VhGAZGH3o49zBpZcKRT/n4089g/3NbhZSlneapQn+/VKPTbgElUgugFihUzUEXqwFAvd+9YRihlQLRMyVLUpy66V6o3sxxvC4J9jDBtYwu+RTD6e0hTdZ1W/d1ex6wQLWuzWAJk3uMFGGC6brNpr3jTz2NXXf/WuLgGRrdWlZoKSUofshy/7nDw5jIWx2Q4T04/X2YpupPJICVUyjVba3qTUzghf+8WcpyqFtPh8qqVdh+2+2YlEmGZIgpuCMjmCQIiKeJH+PIPuNnD5ddrGG5LrxJAgvdDm/Q6enB9Cih7d8CRgfENV1xajWSpoEh3SdK07bhDg3lfIB1KDMxDNaMWvXII7D/2a3yB+gyAYaeaHRlMkFGy4dQ/c73uTm1KgKvjsphh5E8uFopLlqERaefhoGXn4B9Tz5JemwAKC1ZgqkdO9m7mRcXLUJQrysrkyLzds+g4gDovHWzboZNx8l9L2Vq3heNl7d0M6MiySrl3+R3W4xXDlmFwtAgjc98l7FMx8HgKSdh7NFH83u+dxmr0N+Pkde+Bnvu35xLAZ84Tmwjvn/r83Ibjg4U+vsBAAMvP1FcedclYG0YBvqOPw47f3W3lEIxi4K6tGwp9hFY7GWpSgFo7Uuy9EqIsGs1GtuLDLtBp6+P1is9hcGTT8L4U081AzXyJAc5IiX3+NNPY9Hpp4kFBTv2DgiTMOPPPINd99yb+fV3nUsGB7Dv8SeE56xuv59LcRqN4XX39AYavT0UWlqQWXZktE2zGlU14sdP/nakcg88D6MPPiR+2AxBVpexn4xVqWL/c3Q2UlkwLCKVY8bbTPqcx4frkkBuxbBtyWdm8lwYWos2AuJPP4PJHTvE55kMDVyBRqWI6H48SLfciwjX317OdVaG+4WjsWYGcvcn6OTzXati5y9/BXd4WHIN3qUSZdlSDLz8RIxv2SJ+5Ay+95E9YW4yCpLIrGYFFOKmS9CUukviujA0iLHHHsM+ifOkaUcHxDVdcXp76LwhM2bU7Z6e3KWTRspG0enrw/ToKM1knIDlFODXp+X9qoIA6LapNgi9tj0/W3f2Shn1fTnLWTuMU12zGn3HH0fbxDOGXa3KLVAyfD6969ey2spE2D2EDUK6kLf8t5VMnt61Gk3JtMCiJTcCTY/yVtsEGRWoJEG+DHN177HHYOx3j+UbB9nU1Ha5DKenJ395dYZAqek4KK1YluszDDxvVnDZdIttC+Q999+P0d8+KH7wDqelctihWHzWGVIWRN08xIHQ87W0bCn2P/Ns5uM2yRAQdwcH4U/Xcz+fswan7WqVzjIhY8IKIFL5ZnyPWeZeKnqOPhr7nuTZnLlDg9j35FPwp6ZQGBoUWid0SpBYlQrqo6MYe+R3cHp7MP7U09kO2mXutysVOH294pYDGa+jXMnBjElqlX73QHQ/0lQ4ZXl/0gKTTvY7+8ax78kt2H3vfeL2hhnWE+GejCfBZZdL4XOW2UO4bUwCT3zx8SjWmdmusXBMySB8mmWK68Jv9CTxp6dRHBGvrA09qrNVboo2G88abHcHB/JVhGVo1msWCvCnp1gaHHci7zO+Y7P5RYswuW0betetlRMPZvgo7B7J2E9Gb32SXhgZe0VQibvCnprZ1lOW68IjsOPr3Ii+B33r1qE+OqqV4jnRAXFNVwzDBEwiVXVGRZNdKbN5JTt9vZjYuhXbfnYbTZOFBOxKBZ7sRB9k8Fqs1QiDxtmCbFa1yrpoNUwLpmXDMMxGB3LBgH/GU2lYYl3Hs6qx3eFhJT51NvN5aBuLuOFUN0LPvfxds1Wqtjs1PYqTVzGSVZGUe5OBbGpew7JgOnZuD+aswQt3eJjmfWU4X6Vly8n9sq1SsRno9aenYZXKoUJKoOKj26YubCIcBsPDMtHd2Y8t0BRSJjGRWbW9aCS/53XG90IZLBaZd0jmVhG1Ug5P0HCobA/Y4qKR/EmrlKEKQ0Mojgyjd926hp1H9rm707VtGAZ6161D77pjURwZyZxwzjKX9K49FqMP/DbT8VqP222Tb5WK+RRvGa8d0oRRBiyiNUdaQzpuTMeBPz2NscceQ/8JLxOex7I0ajQMIwy2MIl6SiuWkzVTzQKZd3zGqdyuEa2hM1YhAKEqXab3U1q1o1V04U1OwpuchOUWwt4nEiruLM9jp1YVtn7KGmx3+vtyBfKyrimoEm0i2HkFRR18votLl2DZ779pRvggWjWc4bINLawM4WNnFT5S+IgHfpDptg8TnwQiQpG9ZZHAQzxDzMwqFlFauRLjTz2Va6yFDttq4Y477sBtt93W/PKImm9p5oZCfz+mdxPYWATorn5Gwx8tr/dSCk5PD4K6B3dkGFMUjaYSKAz0Y1LS9iP0qOreiGaayFYk68bBoWjklBGrJFE2m3UxLBqUFPCI5raVAWg6jGceS3FAnIwMDcMicm/AMy78AYLPM+NizCqV4I3nKzvPGnyX2ojFx8rcjDD/tR/6sHf3Lc2rwkt6T62+0ZPbt8MdHkKhr1dsHIGKBKdX7NhZz7nsdZzFAx9oWCfl9MjNElRsYhg0zXwFFOIU1TdCAfi8idSsDeQoGn6lvCXDMFA59BC4gwMAAKenlr0Be5fX7w4PwR0ehlUqZf6cspxvq1iE4dhCG/8sx3VHRnJ534tcOyohW3Nk8EiPMIgbkxX6+1A78kiUliwWn8cy9j8qDA2x2UC4Q0M0vVwyilTsKl0lYrbxaKosswZjgUZAXGb+TbEesYrhWqI+uhd2T03aBia7rZDgejJjsD13g+kMAjKAr59DJ/L2Cemksm8VPlgVifOTEalzn1VYMTKc30dcYJ6nIAg693hoxSRoqpmlUhcACr29JGKyhQxZQPy6667D7//+7zf/feaZZ2LDhg3YsGEDXvva1+KGG26gGkozBxSoPLgyZtQNNBrQMSi4DdNC30vWo3bE4ZgUVDJlfT1Of46AdZemOkAY6CAracxY3hQ1tFJBuJDIrn4RuU7CBVj2oJrQopfKp6wDdkXS9kUCSsuUrBiWmXtzGgTZPMQBirLGbBUWzbFyBHSzBtzCRkg5506RDU3eBE3mgDiBykdAOWw6BSnfTyBZPWqXy6g31JaTL7yI4qKRhpe02HyUvSJB8NxkteAwzfC6FyXrea7Vcpd/ijTWtity6r1ZYwp4yrZWC6gYL1RF5pt7ss5zQE47j4yE80G295T19RuWhSAIsr3+jMny2uFrxJTCGV5rcfEijD+5RTqRI3J/UAeMOxFWhxIpxDPfi7QNbvtesh6VVSulLNJCC4AMVbRVvrVm5O2cm4xxKqqqgKzYZZrznbVZfDim3P4p7Tq2e2qhTcKePXB6esl80ZMwTFN4PZlZ5JD33AtcYyorXYDGsyRXv6eMVTyVCurjPPdPaGMpWB2Q0drRKpXg5xQ+BgLiJ8My4Xs5n2MBMo8XVQvlGi5jfEaTH7KA+Ne//nV88IMfbP67WCxienoa09PT+MlPfoKvfOUrQsf7/Oc/jxNOOAGu6+Jtb3tb2882b96Mk046CeVyGccccwxuueWWtp9/85vfxOrVq1Eul3H66adjizabz03u5hANRDr0mqUifMYArFUqiR8/oxrUcgrwJVVSQYDuHreWjcD3hT7P1PEyer0ZhplZ8ZE4jsAfCwcLBFS6jmBgQKT0VoWiOvRyV7OwowjaCI9JkXjxsy+S8m7As5aGAgTKbUFv9DxBqcwbmpyBtmiszMEqiiaoIkFEgeRZ2zgJwUq7NqNMm947Bqenp6F6z379iQR6RJV3Qsm/oit8n2Y+z4YBw7TyBWWEPieiEnqBz88wjFzPU9Hx7EpVeGPbitB111PL18Qza3O8UnZfUKEAqVtAkGEjm1Vl7fT1Cfn7ZtkEW8ViWOUoa08joBDnDLbFMYvFpjdyLkR6exSLQs3Psj5XpeyYBBpnqzon3Niy6mlJqKz5ROZfSzIInzbHhNWoHia3bYM7PBQ+jxWv1TuSMeFG0SA4C1RJ7wMRzvnZrlazV2FFCOyJcpNRQQ1Ez5acIoSMCUug0ccu7xovCDI/x8LEtVaJy0IWEH/44Yfxqle9qu17lmXBsiy85jWvwSOPPCJ0vKVLl+LjH/84Lr300rbvT09P45xzzsG5556LXbt24YorrsDv//7v48VG2cWDDz6ITZs24Qtf+AJ27NiB9evX48ILL8z35jQwYMAquPCmci5URVRbpRLqBE0Q0jBMC77ghjsMHmecnExDMmAdpDYEbcXpqUkHa2aNJ+C1KK3aF9mAFcU6UAd+MKuBXRrhA14gMCAUdOBvDmRYVsOLXw6RIClJ0EYQEruPFN/FxPHyBuAFGivlVW6LBCzDTV8O9YWIwidvQFxA6QoQBPq5FNatJJyr1uRL1HQzDFQKJOgEPivRjX9WOxmgYcci4ysq5LefowGtYGUPhQ2VSNC1+TcKklZAZDeU4/MUuO6c3h4l9mpCyl5BxXA9wzMo62cSKsUEBBJZS84XLZLucxAEAveiQgUvVSBFRFlnFl14IkF4kfvcEPP3zSpQ4Q7wGZadW92YfSyCirY5IOjg8RxH2j6hw57Zcl1M7dod2jKZ+QRLWRB5VmX1kY5+l7uiyCqX6RTiB9il2lp5SH5sCcFL1jkMAAw75zwjYJliuW6uPirN8VRajQVB5uGk7G00TcgC4rt27YLjOM1/33777c3/tywLOwVVDOeffz7OO+88DA0NtX3/1ltvxfj4OD760Y/CdV289a1vxdq1a3HjjTcCAK6//nqcffbZOOuss1AqlXDVVVfhvvvuwwMPPJA4ztatW/HrX/961teDDz4o9HoXAiRKQGSfTERVGzKYjiNYCirSxKqQuxyoE7YCe444pmMjkCydDQRUu2ZJULHje4Jqp+wPDZEgTi6LEcFFlvQCUjRoYxCUvwv8OUn5soCSOm8AXiYIlm+sjNd5Jd8GIGtAkUbhIzCvuoV8vnwC50u0mqSVwPdmJemiElpvchJmIVwvWWXB68/3Myf/RBGy4JBJFoh89r29ufqWiAWLaRpuic4FZsHJpESmGC+3Okog8Sea5JlF1g2ggLWaqN+vtz/D3CmSoHSyb/yzvtbCQD+m90ha54lWvilU8AIEaw6RBEhRrBJOpD+BVRITdyDjHsl0nPxe/R1QWYkIQPk6k2Q8kcCfpLik01xQPeJw9B3/EvGDSiDcfF5krZqn+WDGzzS3QEQSw+K3mwo9xHnu1TCRIDj3CySK7LyvXUQh7hJUhgjc8wDCeSZHBkWk14dVlOi9pmlCtovv6enBk08+2fz32rVrm/+/ZcsW9PT0kIyzefNmrFu3DmbLzXbcccdh8+bNzZ8fd9xxzZ/VajWsXr26+fM411xzDV72spfN+tq4cSPJ6z2YIMk+CUwmZrEIb4L35jZdV7xUMvNmjdduwpwDO4vw85INRgkEvRxH7MEl4OMs7Icn0Ele1SYiT/dqoWZziB6y6q4zioC4yCIiDOjmWLAKVL0AORURoorQXB3u6dR6lISJ2RwWN4JBX+Fy0S7jWKUSxp96Gu7wMADx+SjwPSEvZ6HrTUTBLWEnIxLALQwOYnKHpB0EIHavVMo0ClhBn+2sSuRURKpTct7Lwmp0BYpiw3HgT2cLcgh7SmdRiAts/EUqkbJ6E+exkBKroFBrz2E4dq5EESCmUDVdUQGG4HkXvBcOhOeu6v4xeRvQiezNKMYD1IghOokg3MEBlJYsaf7bsEwa7/cEzGJR6PMKBJ5NKpStlJUnwtcZhQVUB6h7ILRi2rawD7rI3GuV81W6iFiahiLF/ApxIdGDnXN/ieye5VbRhTcHSZ+DBbKZfMOGDfiHf/iHxJ/9wz/8AzZs2EAyztjYGPr6+tq+19fXh72N8sxuP4/zvve9D3ffffesr+uvv57k9R5M2AQ+VUEg4LdbLMIblwzEZfWgLBbhTQqM4fHZfogSWsqozQaahYK0bU4YpMz2u1ksY2IHZ1uYCtlU5A2uZkTUd7gV0UU8ycZI4HTKei22IdBoJS8iwXcg8r2Ve39C/tcqy9wF1I+JCOSn8qpPhe7nPKralIVzcdEI9ty/uRkQn/n1bB+C6P0bzhUZGw96s1XtqceVsBkJPIHrV9D/fNZYwvN2/kBCIKjez7uRFaleAiBs39AGQ0A5L0KqS6EgZinbWlckSSBS1q6ggalIU03LVetPHCq289ozMja4zdg0DpgDpXU3Ml4qqpJaEeJK+hiiQg+KOUp032FKBKxFbFkYxSuiwpjAE6hAyRMUFdkqklQFiF5ngjEGCQ6EBFobIs+WvP0DBBIUpuvmrhIIPcSz/77h2LmcAoQSu4X8Sb6FjE11oI9+9KN4xStegT179uDiiy/GsmXL8Mwzz+DrX/86/u3f/g2//OUvScapVqvYEysR3LNnD2q1Wqafx1myZAmWtGRYNelk3iR0IoDAw93NrP6ZRVYVtyvoHYjsC2GzVEQ9T2OpbscXVLeTjCmoEmhDQMUdEWT0UxcNSkaqSbPF5qnTsZVYYgg8ZKOgoDs0KD6O4GY7Uk+6w0Pdf5kAEoW4gK9c699ILSwFN0WRUtCRqJoKr8XsAcv9zzwrPEYTkeuxEewp9PXyj1WtYuL55+XGgdj9zLHRKC5eBH9yEk7vzPmPkiR2udz17wNPLOgaNYws9PdnOLYHZLy+hH2RIRYwNm07VwNV4WAxAYHnScwFOdZUAuqo5ngTE5muszgiCYbwM8jVgVvs1zPM3UKK6FI2NTeLDQvErt0oCGaXS5l+v4lIFRWBmlYEq1iEPzkBIHnflgWhcyO4DxCyLiuXMbV9R+ZjiyCyjhXFrlSk/ellsFw3DLj2yf29sNCjuc7s/lzsNKZYRVDjXq1WhMYw7Gyhmug9iRw/K6K2QiJJI6tcUmLJFM1jVrEofQyR3gQAYLlqK2wPBMLqgOxV1VM75OfHQED8RKIQF7B+bY6ZRywkICQ03QJ7NcLBDNluYd26dbjppptwxx134IwzzsAxxxyDM888E3fccQe+//3vY926dSTjrF27Fvfffz/8FpXLvffe27RoWbt2Le69997mz8bGxvDYY4+1Wbho5DBMK2yWkAPlHXq7IFwGJtA92S7yKrgNg7+JSpzQv1cySSEYOAwDLhk9N4PsTTUBQRWyoGdY2OlZMFAkqFrI47sWflaCGweFiRfTtvOrNQW7nOfxFxTfFOVQJon4yZVKypRpuQN7AuTuZSG4cTYsU84DMuU0WcUiVrz1grbrU8iP2xcLuoocOwy2C3w2hiHWaMvL3rQzNxJ+3rnVQ6JBmZzqKNG5J08DXJW9EkTIOncL2VwUsymixawzStl7OgTZEx1hnwPxBqYiTTVVNOxrhUTpKpDgFm5ULlotwbR+krJlFGrQpk7Zbgn2DZqFaKCSxJpPTEQhM6aI0jpP9WE3hKvlBM6HVVbTD4uqP5HIfjCPvaWYJ74pX/3V7dCWJVbZIJCoz10NJJB4EYkppA4HiJ3/vN71Iu+vUJAXkWroAuIA8NrXvhYPP/wwHn74Ydx+++14+OGH8cgjj+C0004TPla9XsfExATq9Tp838fExASmp6exYcMGlEolfPrTn8bk5CRuvPFG3H///bjgggsAABs3bsQPf/hD3HzzzZiYmMAVV1yB9evX49hjj6V8qxpZRDv0MlcCCXcdFmzgEChQ1eRp2CCKVZAvnRXpPA2INc8LPI9tYSqqNJTaSMiUe8puHqSVNPMH4SB1DpsW0evDzjOWQDLDsCwxr/wcCAV7khB4mXmbFQsHEav5PMuTiN9/oT1IdvWo2OvPXvqe1Ai0E6KbPVEFdR4rHmErI4LGgSKWM0DjvOf1z1SYjBM6dzL2AM0/zv6rWf2tRXoHZA4ACwVGRTzExayFpK5bweoClVhFwXV5AoFERSLHsTnXT1beRrkdCCt0ePyoE8cTVSDHELEWAAiDo9xBeBGl9QGUfBFqBlhSo6Km6k8kVJVVLLH3QgMAyy3kt5lKwYyqNzIistfPXX0UBJlvexIRoajYSqDPSSICvZzmQiR5MEG6Wrjtttvw93//93jxxRdxyimn4PDDD5c+1tVXX41SqYRPfvKTuPHGG1EqlXDppZfCcRx897vfxbe+9S309fXh8ssvx3/8x39gZGQEAHD00Ufj2muvxXvf+14MDAzgnnvuwQ033ED1Fhc8MurXNkTVtoYRNhFjQiToCjTi4Zk3VVZ+v7IukJQAiYznutLBKFFLilCRkPG9CTa6EAuIi6kaZbybRQMbZo5u0sJBlDnqXJ3r3hG81nItlIWDUjn8EiVUmtxzEADY5Uquxjgi5G8OKHg/V+UUmCILU0vAF10uCJox2C4c0BVrrCl6fJHXPmssRq/1VASTFbmTOwJBXiB/4k+4EkZiLPFqqYzPW8HXnwWRjX9W1Xl4XBHluVxSRThgnMN/N1Quiogh8q85RKo5OY9NUvGWdmzFDc85EbbkiCE8F1IFR5nHFG4GzJV8EewjIGLvl1tFmxGSwLtoEqSYo6mmSPNOxuSYeI8F0eSz/B5FVPiQFxE7GKAhjJySV6UHgdizUyMPmYf4v/7rv+I973kPBgcHsWvXLlx33XXYuHGj9PGuvPJKXHnllYk/W7duXUdP8gsuuKCpGNfQEgVgzYyeZrMQzOIbjSYIVlHQHzHr8U0rDNJnRfHk2w2rHD7gLVfeE02EXKoR0Q214AZStLHh1I6d2X5Z8JqVUWwJB8RznAfRwIbhOAgEvYLzEiWqZL3+RDf7eZST4psi+UW58HXS2GhYris1XlZI+ksIENmYyDyHRDfOdq2KqZ27hMcRQWTOEA0qC9kdCKhRgBk7lsz9BYSrKRp++70S3vSiAfFKFVM7Mz4TUhCtFskdsFOhUIyGkrGD2TcOu1oVG0hmnNHuvVoCwaR5ljkm8D2YTiHb8UTuQ5FAu+TcG/i+0PxpOg6C6WkYhWzvt30wUZu2HL1qmmMKrnNsK7sfN0NypYlIIrVUQn1v9mStaELDsOQ9ykXHyq12Fzzf4f6C4BoTrOycfEHQl13Er54xIC6s5BXYk6lqCmmVSpjevaf7L3ZA1CYnb+VDVqxSia15Z6hyF0iGKHQCEPEQb/5Nxt5kKX8s5iHuOPByWqaIWEHBMEI7tAO0+utAhuwT++xnP4uvfe1r2LZtG6699lp87nOfozq05gDCKhZzlTKGN6rABq5QEB6P00IkCLIvTlSgutkRAOmHl0gjIkDwvfkBIKI8LApapght0CvwBBXirBusGKIBwbnoYB41npRGdJ5RqJwU9iuNjyX6vmQD1SI2JjkqRwAIzyl2Tw+m90hubKQsUySUwyLqHhGFlIyXsxGpNLv/ngh2tYppkYCMQFNNIAyM1XMkqoStZXIqxEWrD5p/J6u8FfRkzxUQF00kVauo7xP/PANB+7Co6XNXJALt3ZKkop77WRFJrEgrawWsGIB8gR3hNZRws/tkhNYAAv2ERPzXZ/6Gfl8irtwMIDLJh/eWfDWbyH1s5PX3FawKzKtMBRrBUWYxRCAQ6M9bcdQJ0T4Cor2KVGCVCHzxBRMvqqyHLIFqEdG5yHRdsWSV4H2BIMf8KOrpnnOeEQ32G4W8CnHB91dw2OaAgx2y2eqpp57CRRddBAC46KKLsGXLFqpDaw4gcgdgRS1TZCYT0VLJRkYtE4LZQW7LF8t182UfZZBeQwZim3c3+2I/8EU9xAUWD6KBgIq4JYaosrD5dzKLCMXN0WReY16li6ryfkD8+shDGIARaR7bPahDgeqkiTs8hKntcp3pZZSu3JZBIp+fTBCO6zpwalWh5F/geYL3pXyzVhXl7LPGlJgLRG3b2sYT9XzPY98gGECV9baWuj+zeIhzPBNEn6UZfdVFPgPZhpeiAgWRgEvSWELrfssKA08KMYsCPrmCPsKGYyPI2cwtCeFzItF40pf0Pxa9j/NboUmISvIuWwSvaxlrEKHeByLrCG4rPcF9eFShIYxIRQVJVYBY4kUVQhUWMlWtQgpxQVuRPJY5fiAmPnELCPIEjH1fbDzHgV/Pl+gTEkGJ9sXTNCHbxfstk59lWajn8ZnWHLDk2bwB4bNLaEHmSijE/UBImWA6TubJWHhhn1c52QWzoF4hLusjL9oB23QL8LMmQwQz0qbjIMj6HgTL0k0JixHRzQMgkbVvGUt04yC9WAWkAvBWqZg7gCeqDpP2FpRS7BpyqhFfrCmhXc7hVy665s/hMStKqD6Va4AoZWsh87YE/yayaOiGX6/DELSKEVVyZyXcyGSfF4Q9xCvZm43OQqIJJEnDJZlkRZ5knCIVnrAne0WiUgoQ92G3bQRe97WFVHPsLskYcU/8jIEFQSsGKSR6ifiyJfkyz0jFzcGsYnbLAankSta1mmhlkUgPJNF7K49SX7TUPyeiVhYhhvC+pG1MwfcoFUgVVNqzHldgjcd6j0hCVRVwINmmRpiiFqOifaSEFOJiCUPR5uztCFY6FQrwpvI18RSqfCHw/xY5hilQ6aRph8xDfHJyEpdffnnz3/v372/7NwBcddVVVMNp5gjLdTE5uV3+AILeRmbBFfdjFmjoADQm46mpbD7cgaBlQWPytUo8Huiqm2q2jins3yvo6xx2TM64+BIsYwsHyPZrMsFqYSTGsCthI0PRa0vm/YRquQk5L0mJhbdVKmN6127hsWTJs1CWSTCEFi0TsKsVsbGEA4plTG6XnK8FPw7TDRUqwtejxOdul8tS6lNAUtHfSGCIfPaiWJVQUVvo6+yXHdTrMCyxudcdHMDECy+itGRx519kDkKp9tuXeSbkme+l5oKof0F/v/h4EtekYUv6Agva3YgmSyJkq6W6HtcTTSaWMLmt89wpHvQJE712pfO8H/g+TCf7PS7TU0H0uWwWXdRH5ZJqUvdiXgTnMqtUzN7HQdgqI6w2cHp6Mhw882Ebr0HIx0Jo/2WVipiSXIfJnXNDfv6V2ANECSq7XBYfDxCeE2UQTuA3BEvd5gLRngoAYDrZe9IEgkHR5j1Sqwm9JuX9BgXjCwAAw+RfP4pYpoieG0F/f9GkQfTaM82Ps8YSjCmJCO0SBxS/b1RiFrILPDXtkAXETz75ZNx+++3Nf5900klt/z4QS0w04phuvuxT4AcwbDGFuPDNLVPGNjkFZHkOi/oucivE807uEkQ+8t02dXFkF7pZGmCEDaLkvFu7zU2B54kH/wUDK3JB1XKonhwcFHtt0gHx/XB6BBeryBOA57f6oCB8f2LXnl2poL5vn3hAXEZ1o0ghHlkkCCf/JK6PsKRe1ndZRmFdQX3feObrXybI7w4OYmr79mwBccHX7/T1Ye/Djwi/pixEC3AzQ7M9UcufvOtG0b+P1Nqiz7YIUY90oNEYT/YelZl7aqEnfkEwAB/4PgyBIK0sMs+LLEGgwBNLJGU5L+IK8WzVAIHnw3DFbZ1MkWCS4MY+bAj4Yvbj5xgLyB7YSz+A2K/b1Somns/Y8FC4ibt8025KwvWDSB8f+UaXMortyNLCLosLiPKsM2UD4qJJNkA8ISned6OUbS6QrNz0JyayNWkXrcjJkfwWIqe4QbhhJBrX9eSkfOIlA6bjIPAyViZL9D0SqqQQbaKcp/ooELRMKRSkxTThcGKWKeEfSQ8nTCgizdcLZ6FCtrq99dZbqQ6lOYAxbEvegxIQ9kMyHAkFdABAZDIWaNwZqgsFGxwwZutEVNRUSNvmCD64gKhBxGRX9X7gizdwibLS3RbfgefByLIAbD12tNDOGFiRWczblQqmdu4U+ptoLKngu6SXr6jlDBBtjBQsjluRXSjLnLuoUeOiEbGxIBbkk1VpyhA10XOHh4T+TnpzIqnmDeri49nVKup792ZPCEmoXAuDAxj97YPdD12vCyf/Qh/DDM9tifhzaMcyBndwoPsvS6mrFFXpoJGoGtsnHxCXCJA4tSomt22TH0/qWpYMiAsnriSUcTKBmoaPuNlBYRbUPRgC903on9z5GSTT1LQ+Otr9FwWfmTLqStHgaJjEVePnD8xYwpnVqtSYomT1ogfEVbtZqg2aSMzBWYQdgHiQWrhpZysS60wzCoxJBMRF+1MB6nvVhGMWhaotxZNuYfKl21wgXc20fz+c3s5JeyDcK4uKN0SrEcIgreg5L+YLTos2jEQ0l00CAmNy2g+KWv0IH18weW4WXdT3ygVxs859zbFcF/4O8X1zE1+sygZoVHB5dZiClZ0yWHMgkjxYIN1h3Hbbbfj7v/973HnnnZSH1RxA5PVDEp2Is/pDtg8i2MzDLWRueBO+fpGyYRe+gF9VoNg4MRxP7JzKVgnIlOhl9lcVVOwAgF2roT6WoQRYIrgVBjwFstASiyy7ItcxXSr4XpZXOEkFUij8fAWxynIehjIbC7sWBli5kVXYymw08jTRkymnFwlgxEYUvh4L/X2Y2r0r8+/7ErYmVrmcKeAUeJ6wQhwIe3fk8UtNI1IccyF/nsUJg3453ot0ckzW/scTfjY5kudLJvhuSvRmCASr8ICGhVKXe0f09WdRxXE1blVhLSQ6hlDflYSxxIOVxfwN8AQQ2msIJvYyn/cgkLAqE/DfFbQVydPsTtS6EpDwKm4dT7ZXTQ5VsorqR9Ekq9gcI15BlTUpJqtsF0HGXit3EkSwYWRzTFEFNKcIgFlgIJzEcXMk3kSr9vM08ES0PhE7/0ahgEBRkFpKRKoBQBgQ/9d//Vds2LABf/VXf4XXvOY1uP7666kOrTmYkAi0iCK6+LYKAmpUwc7ZYVNQgclX8PgAQgWdZPQwXGwJBr7KJdRlFhSCXl/hWBkXYDJByWq2wED4cBe0WBAMOsiqNeoyQWrVFiZ5PHkVVj/INvKUVffLNoWUQfRzlNloZL2fZo0lqRB3h4cx8aKcslYUu6dHyD83DFoLejsbBgzD6HquAhn/Z4S2KVO7ugT1JW43p6cX03v2iP9h1uPXaiwNQZPIE5wG5CxTDMtqrIvkxpN57k1LqLFELUcAOYWpjMe/VSl3beAp8xzvhmhT08wBOJlAu2jSiKtZX+JYEmKIPEESZkT91zOvn2TWgSJBZEFRSi7LKpl1Zp7m5jIB+LzWfEoC4kyBZSkRTvZ1K1cgv425sGP0xUVklutKJSxF52fDDCuyuh9bPOlsWFampu/h8SX6uMkGcQPBppOOAz+jADJxOIk4RhgHUhOklhKRagAQBsQ/+9nP4mtf+xq2bduGa6+9Fp/73OeoDq05wDBMA35Wr6o4Etk1mSGEJmPXzZwxFN2AhpnB7AHx0PpDohxedoIXVLwDM6WswkMJlugCjY1uho2e73nC5UihSrd7YCBUe4qWpdeEFMBy5ehygRSlwXfIBzzNotx1JotdqcqpQ2XKwR0nn/WUyFgSi01RKwCgpReDIFJNLgEUF43Ie9oKYrmuUBliaM8gHnyzq5Wuc5I/PQ1DIiBeXLSoo0eubPLJ6e3B9J4MNhCSFIYGs9sN5CSscpBXiIuWiUcYti21YZJVbUs9vwWDv4C6IEfUYLoToVWSXDO0VKQajXafI0OfUpFgUsZKutYxZHu6SMwTMmsO2es0L1nen+hnZ1hWpiCFlOJYsJmeqFJfFhmv5TxrPilv56wVqGlj5rAdERiETSEu/Norjb5FmRALuJuOg2BaLK4g3dA+h5+/lP2TTMBXwtbEzJgcCySEd0KNNUUTuiJVLjkJbWbl/15GLCTqFKCZG8gC4k899RQuuugiAMBFF12ELVu2UB1ac4BhuG6+8g/RBZlpIPAFgkeCiz4RX3ThzKcllq0LN0KiFibyD5PA84THk32gBIId7oHGRi9DQDyQCVpXMgY/pNSygoEVRR65gNwDPZeKUTJIlFetKTxerYZpARVwhKzlB6BGAW+VSsLerzLBrzz2LDLXvlUsqu2mbpqZE4+hmlY8CVQYGsLEC10auwVyn7U7NIjJbdtSrzmZZp1AvrkhC4W+PtaAeyt5y2kB8UZyAFAY6Mf0bnGVvUxAXPo+lbEBkiyDF7Y/y/AsDzzxBo12pXOFWuB7YgKJjO9LNEkoZf0g0+jSsaVsU2Su07B5u9qAuFlwstknSqhrsyBr+5E1UCXT6BKQTILIVHoU5WzrZMcLk/jygSqZiqBwTuFb11plAcsU0b1m7ucjLSosa2aPKTOXST4HuapFJBOUWS2swtcuaE8mq2pWk9+bwZOw/3JdMacAzZxA9kT3WyZXy7JQl/Sa0xz45Cn/kCk3EW0MJ+qNJuSLniP4lQmJ4GGzYYcMQSDUgLTtT0Wj4hIb3azlPzIL06wqXSkVnmDZkmxQ1XBs8eoAhcF3QF4hLmvBIYu0t65EggHIWSYogNTnKHE/AWFAQfTZIN1UE2g2QhUbUG6o4uJFmMioSA/qnnDwDQDKy5dh/KmnxN9TBgzLgjs0hP3PPpv4c39qCqZbkDu4aWYupxWFO+AeJ9y8qFXzOD09mM7SbDGGbHWFYVvCzw0pGyUJayiZgEOWQI1MYtauda70yjV3dUJwPSDj7y1VsSfp8SwXRBK3GciLVcnWByPwPPFKVyNDYFk6UJXVMkXi+I5kEFSmmXoeT28Zb9+canmZJsphT4wclh1dMG2bbV+T9/PKglDyRWKdmjsgLpXokajSZKwWkff3z/a5yfQ2UUoOm1kE4lX8RqGAQOWaUlREqgEAkBnqTU5O4vLLL2/+e//+/W3/BoCrrrqKajjNHBKWf0hmu2TK2hoLPqtYzDiEL1zunxXpMlME2QLvMg+qQo4ERY4NtbAtgESzrHCwcHLveE4lPHtnXlZn1UyeTW/WDtiy11Xosb4Phb6+7K9JciyzcZ1Zriv0dzKbYSBU2U88t1X472QxCwXhkk0A0gkGuxpa9mSd12Rxh4cw9sijqKxamflvRJWPzbFGRjD5wgsor8w+Vp4kY2GwH2OPP4Ha4Wuk/l6E0rKl2H77HSgtW9r1npZViBuWhephh2Hb7XeGSd0AcPr70Ld+nezLbqNy2GHY9rPbUFq2bNZ78CW9yYFIfb4dpSWLKV7mLKJEi+jcI4PT14fp3bthLVrEPlaE3VPDxPPPC/+d7LPJ6e3F9J5RuEODrGOFc5xY1U24rhB/T2EwYD+sUin1d0QDOk6tiqnde5B+RPFjGrbd9V4LPA+m5HomK4GMr3dUNl+riY0lESAxi3LN2/MQ3hd7UBjo7/h7UgIMN/zsOl2fUk0CBdSnUlYJDQW61LpP1HYtR+NWBOJiq9xIN4xX3DE+gcCTqwiDIb+H6HroRgVKVks4KfuSvCp3ifWq4ThCoj4ghx1aljlTMtjezZYsguv6SB5M/E9MO7SZtRxxAUg4r4l6iKsVWUQiUqvIu4Y42CALiJ988sm4/fbbm/8+6aST2v6tIrOoUUO+zuPivlihz9s4kDXoJ7PYyBJ0BeT8ghtleZbbPfAlVfZXLKK+c6fQ3zTHkwjAA9E1MCmmgpQo0QVmPN/sajX1d/y6+EMKmFHpdgpK5vXA7rQBaiKpyLUqldDTTyggLhfstHtqqI+OwhoeFvq7+aIQj8iaxGj+vuTiL1Kku8NDwn8rgl2tiqs0Jc9ZcdEijP72t0IBcdmECQD0HHUUtt/5C7GAuORSxC6X4Q4Nob53L5yeno6/60vajwBA5dBDUDn0kOa/X7z1Nuz45a8AANU1h0kfFwgbIlcOWYUdd/4cZqGAnmOPgV2phK95cgpmQU4hXly8CONbnmILiIsGqUMrMLkNWTjWHhRVBsQrFbnGoZLP1CjwJxQQr0soCk0zbOAlgGzzS3dkBBMvbktP/Enc94WBAYw99kT6L0gsNe1qpWsSO1Qgi8+JQs8umYo9yaaH4bpWospOUZ+NiEJfL8YefwKVLr8nZQHTUD93DIjLqE9FGtdKBfJdeBOTcHqF/kxK/JQH6SrLRiNCmTWItF0eY1A5PL7R9T3JWqRZpdDWxi6X87zC9GPv3585MS/z+RuGIV0lGI6pRlkvOxdM79md4diSwfZuTdkjZK7tHPehKKZbQDA5BUgFxMWFfaYr5nKQlyhGxy22OtggC4jfeuutVIfSHOCYbkFY9dNExjLFLaAu4q+ZY8LqllGTaw4ULigzBcQlShrzZB9lFeJWqRGkLnfbOrSM5ftSm9Ko8U2ngDgg3hwUaJSq794Na3F6ICdvQDdLQDzwfalGed08ThPHkjznTm8PpnbvgSscEJezFBFtZNgcL4f6xnQLXRMks8aT8JQDwsar4888I/x3oshsAIK6uN8u0Aj2ZFSRzIwlvwg2LAuGaWBq566uqj6gcW3k2AwVly7F3oceRu+6tZ0DGzneU5zhU18Jf3oa06Oj2HX3r1FatjTX8WpHHQl/chJTu3Zhz2/uR2n5chSXLIY/mb0KK47T14ep+37T8Xfy3Jfu8DAmtm7NHKTOo7At9PVi/KmnpP5WFsM0pStwZLCrFYw/JZZEl30ORhZ7Wd9X4HlS1j3FxYuw5/4H0gPiMkqyQkFesZpCtC7oHBCXadzV2ARn/Zxl7AaKrlRfj8Dz5KpPJOOpge9L/XFUtdX1+DLVEuUy6uPjHZ9TUs3VbTtzZZt0IF/KJkcy4CsZGAt8H2ZBZs0S3o9Or2jEX34tXejvx9SOnWxiCLsSXmtOh0oO2TWeVS7D27ePNSDeTXAQIfv55yHwfZiOTK8Vseta7l7N1jBUxj7MKrqZ5wFRD3FgJmFoV7PHFABIPSPMQgHe1CRsdIoppJGx2r+FsO+auqoQ09VNPGU4gE1+NAcqluvCk1WIy5QECgZ8Zcuosowh6k8OiDW9lDt+Dn+qQE6ZLNw0ElF1gIyStoapPV0SIpLPmkhV1vHQkioQp1bFdIbNVTSGVNC4XIEn2qBHcqNS6O/H9O7dwn8X+iwqLN3KobwJG2uKevnKXdd2LdvmuzlKjgWVYdtCVT2+qB1SC3ZGH9aZsepSG4yI3vXrseuee7L5bufsAVFcNAJ3eBi7fn1vx/GCHBZOcQzLglUsojgygt5jj0V1TT57GMMwwuMtWoTi0qWY2rULY4882lAvygXEDcMIn6EdNkx51D+FgX5M7cyoTso5Vl6PUVmKixdjYqugbYpkwNDp6RFvVCr7/G4o7jMPI9G8EwgDjt74PvpGxY0AXSISn3+4duo8P8o0ABX1X5ZrdCnX9FDaU1bW5lWy4s6wrEyBC+lgVbd5RVbxmvE6lAuEZW/aGR9Lal0kIfIA5JPQdrUqV50DSM+JxcWLpSyyspKlIb3sGi/sCyF+frIg/OyVXOsblnzPE2kRmWg/DZmmmhk/P6nni8A8IDPf25ETgAJUK7ZVYzmObuIpgQ6Ia4QxczQIkCllFgkoh4PI+ZRnGUMmqBsqXbNNTmFAXLQs2RIuS26O53ly6tZaTa5Rn0QZu9Pbg+k9e+BN0jdYKvT3dQ+0BHIlb3ZV4DOS9aGWUYhLBgVlmwEFvnxwUDSQG44ntxkGQr/tyW3bpf5WFNNx4E9PZQ/g+L60DUShvw9Tu3Zn/v2wnFbuMywuGsHECy9kH2t6GoYt510NAE5PDbUjjsC2227v+rt5vXkN00Tl0ENg16p44T//q6FETBhHMqjXjdKypWQKYsM0UVm1Er3HHoN9W7ZgatcuWAIVP3FqRxyBPb+5P/XnsiXaQPhaDcvM3AgyTEjIf/5WqSxsM5QX7iBJK+H8GLA0b43j9PYIJVLz3KMd1yWyyQOBxHYW7Ep3KzCZZ7R4IkfMGgyQE0IAyNWkWcqeMUdSPEtjaKmAeKUMr0v1lKwwIitSr7ss3hgXACC57rMrFXjjclUIMsKLsHGu5P0tOacUBgcwuUPO5jILdk+4Z+qE7BrPznAdyyKc1JO0f7RKJakkD4DGXCbZM0hg7pS2ZsmwnZCpQDIsK3W9O+v4Mh7l5ZJcokWy8kt1f4pcjTxFh3ILCPL45C9Q5m1A/Mknn8Qb3vAGDAwMYGRkBO985zuxt5Hlffrpp3HWWWehUqng0EMPxb/927/N8as9uMgTgIUfAKKloJYdKhsyIuVTXipm20xI2COYrpv94Svh65gLyUaXVsEVzkCGmzzx92YYJsorlmPsd48J/23XY5smTEc86JqFyHM7CzLd6oGZoKoIssE6wzCk1Hfh4ks+QN1NwT9rvBwqYHdwEFPbd0j9rQyF/uzK1zybZbunR8jmSracFgDcRYuEAuJ5mjlGlFcsR2FwENt+dnvHYIZPZGXSt34dKqsPw7Zbf5a4yfHr09Kfn2oMy0LvunWY2rETdk2mhDTEHRqENzmFvY/+LvHnQb2e6zy7w8OY3JZtLsh7nouLF2HihReF/iavMtkul1Dfu1cs4JhjSHdoCJMK5rrC4KDQOH6OZFJp2TLs/OWvkp/nkp9VYWAAUztSXr/EMcOeKN03/sLNDxUo7GQbT/v1ulSw0qpUpJIRedYAhcHBrklxKcuUSvdkgkwjSgCA0aGKIX584dctp9gO+/pInPOypEJctnl7Tbzx78ygcn8W7ju6J15kiZpcdyJMPMpZpnAli0WTerK2PJENpwyyc0uWyqC2cWSr3DpVNLUcW6ZHRWakAuLy50QUYZElxZiOk1nQkZcwPqMtU0SZtwHx9773vRgYGMCzzz6Lhx9+GM888wz+8i//EgDw9re/HWvWrMH27dtx7bXX4tJLL8XmzZvn+BUfZEh7+8kF/oSQUCJH/n5dCQJxhYWI5YtkgBqQyz6G5V9yJzMMkAokKnJYZxRHFsGbmER9H636C4hsU8SCH1kw7eyJHH96WspDHMhu99McK4dFhV0pi1vl5Dnvi0YwKXhuZJMLQEM5aRjS5ZSiFJcsxsTzWzP9bh7lu1OrYr+AHUOeppBWY7GZ9Z7yp6dzqXkj+tavQ+XQVdh9732pGwJ/cgImkcK6dvga9K5fj513/XpWENifmJS2H5kLysuXYckbXp+7+fnQq07B+FNPYe/Dj8wKEHuTk9JNO4HwXtn35JZMvxt49XwB8UUjmBQNiBNUBfSuW4vxp57O/gd5nnuLFmHsMYEks+RYluvCn57Ori7LYTdUWrIYlcMOxa6778GeBx7A6EMPI/C88FqUfP2uYMVLNwzT7B5Ik2nWKWhVlQfR5I9scMeRqURsjie3BiguXoTJLudbxjbBdJzuTUJlA3wZlbWyylAIrPNnxpIMUItaSzTHk7QdLJWkGsXmReYZkxXTcQDf7xgY9aenpZ5XnJZiwgFx6R5YRdQlql3DMWWva0GFuOT1XBjow2RaArd5bHnBQJa5XyZpYMsmWiQ9xDlEcB3HFBFGNgjjK+JvMLSE0QpxUeZtQPyJJ57A29/+dpRKJfT39+PNb34z7r//fjz66KP45S9/iU9+8pMolUrYsGEDzj33XHz1q19NPM7WrVvx61//etbXgw8+qPgdzS8M05IKGkk3WhEIvsookc2M/liBL24xIjI5yQaozUIB/oR4RjBU00t6rWZUOjXHylnGXl1zGPY9/gSmR0cxPTraHhzP0yhv0SLsf/pZUp/Qmb81MgUC8qhkRZSTgLzXIhB+VsLKyRyLL2lrnhxJN3d4CFPb1dimuIODmHj+hWyLzLp8kM/u6QGCIPMmIG9wb+AVL8ee+36T7doXaATXjdLy5bDLZYz97rHEBKc3IdYwtRuFwQH0vWQdJl94ARPPP4/p0b3NcagC7/MJwzAweNIrMLVzJ/Y/+xymdu5qJuv8yXyfidPTA9NxMnn8BzmrDqxiEd7khJCliD89DbOQr9LBHR7G/q1b6X2wEygM9AO+r8Qaxh0aTFdZx8jzvACAyiGrUD18DYqLFsOfmsL4U0/nuh4iy7v4ejdPkL3594SI9qSQJetauQ1FNgMR0vsMNPqIdFEMcwWUZDy+gShx0F3lnPfeEkK2L06lLN4XB9F7k6t8lCbHnxaXLMb4052bqgd5bPIGBzpWH8pamGVK6Eli2nb3pFErsvaPOYL6snOLaKWF7DjFRYsx8XyXhJ7vS9mSiXxuwhVOEokpWQsSs1BQptaOyNrwtBWZnnJAo9GyyH2kATCPA+KXXXYZvvGNb2BsbAzbt2/HjTfeiNe//vXYvHkzVq1ahf7+mU7exx13XKpC/JprrsHLXvayWV8bN25U9VbmJVa5BG9C7oEi4yNtlQQbOoj6cBvZHvKBL+4hnvXYgHyA2q5Wsinc4+PlUNMW+vsxKdToLJ8/YqG3D05/PyZffBGTL76I0YcexvToaMNHTn5lateqsCpljD74UPIv5Fj8OT21rl5+QL4ATnHRIkGliVwjIEBOLZdHrWWYJgI/EAoe5FFSAw27hC4LSioMy0Khvx8Tz3VXifvT8jYmhmGgvHJ5V+VbRB6/ZyBUe5RXrsRYin1GK/7EBMwinS929YjD4U9PY8edP58V0PQn5BtHJo5nGCj096PvuJdgctt27Pjv/4Y3OQl/eopE9T4fsSsV9L5kPaZ37cL4M89g53//D4BGMsKVV4gDQGnp0kyNJ/2pqVxqdACorl6N0YdSnglMYxqWhcLAAPY/+2zX380bUDUMA6UVK7LP53mSzksWZ65QyRu0M0wT7tAg3KFB1I48AnsffTR3dUJ1zRrsja0P8syRdq3a2U5NRvXmOAgUVDY5PbVm4i8rssFKuyYXEM+TFI+aDndOHsutobolE6Sbq2esDpDpUdT8W0VVAWFFrbi6Mdc6U7bJYo450a5U4E9PdUy+5OmnUFy0qGNPirwCpY6JnRyBfKHXIF1RkUPlLt3I0woD+BmRrazN0oA8qNelLFPsakZ7IYn7QvTzAeTjFwayea1TYpUlrjnJpr1GLhXfwmXeBsQ3bNiAhx56CL29vRgeHobruvjgBz+IsbEx9PX1tf1uX19f0188zvve9z7cfffds76uv/56Be9i/hJmu9R0BI7Gy5xd9X25klsDGVTogVRAP9uxGxO8hGJB9nzkUdIUBgcwvVOkMYzkZ9dCeflyVNesQXXNGtSOPAKjv/0tpkf35trsGoaB3rXHYmrnLjz/k5vbHlp5gw7lQw7B6G+7B1XyWKbYtWpXRRMVkVpO6HPJGaB2alXs76KkaSX0x5O/zpy+Puzf+ny2bu0EKr/aUUdh7yOzLSZmjVWvS18jQNi0b/ShhzKptgPPk7bViaiuWY2JF7dh5113dxnLJ/XbtlwXvWuPRfXww7Ht9jux7bbbse222/HiT2/F9J49sGs1srEi7GoVvevWou8l6/HCj/8Tpm3nth+Zz9jlcvh5rF8Hp78PL/zXLRh79NFcTTuBMCG3/9nnMP5M5/nAn5KfTyNKy5ZicpuA9zVBQBwAaocfjv3Pdk+Q5U1aAWHyb99jj7NYhrVSGBjA/meezWTtlaeCKY7luqgccgh23XV3rqRbaekSTO3aHc4lt98JAPAn5c83l397EIglj2Vw+nqFmqQC8sHKsMxcovIxh4c40BAZvEifFHe6rNVCqyfxe9rJmDiQDVLLeO7m6QVgmOL9avIk0pzeXkzv7i5coaZ33TrsuPMXqfOiPzUl/RwrDA5gatcujD3+ROLPwz4xspWbnQOjeYRW4V4527mfi4B4roStgcxVZ7LjGKYJ07Y6KqBlK5LtmngyVAjRJbNkwDgaS8TyNS92qYy64DWXK7G0cLcf0szLgLjneTj77LPxhje8Afv27cOePXuwbNkybNy4EdVqFXtiisw9e/aglrIJXrJkCV760pfO+jr66KNVvJV5S2iXoaYBAtAoN8oY8A08T2oSCdUbPI0IMi/sJTzKgVAhIpWgkGx0CQCm7SDw/FChPQc41Rqqa9Zg9Le/hZVXmWeaGH71q9C7bi223/kL7PjFL7HngQdC5XaOMvhCXy+AoLtlTiBfuplN0URHoa9PaEMs21AromftsV1LS1vJ27zPMAz0HnsM9j/7XPexCBpC2uUSnN7erkH/vM0nrWIRlUMPxd6HH+n6u34Oe5YIw7IwfOor4U9MYOf//Ep5iWLlkFUY2fBqDL/6VAy/+tTQGunZZ+H09LCNWVy0CLWjj0Jl9WFsY8w3+tavw/CrT8XUzl25mnYCYUn14MmvwOhvH8S+J55M/b3Qhif/M8EqFdMrh+JjEtnk2NUKvH37uiqqKZrRWq6LwZNPwp7fbO5i5ZAvyWgYBnqOORr7Hnu86+8GXv5AfyvVNasxuW07SkuWSh8jWh8Mv/pUWKUi9mx+AN7+/dLVJo7gMzQrUcKaE6e3N1PVWyuyjbVl10R5GlADob/+3kceZbC16WwBJ5sMsjI07ATkExMy5f6ylinN8QQbawY5epE4vb2YHpUIiOcMOrmDA+g55mjs+PkvMJUwH+SqCjRNDJ58EsZ+9zvs+MUvsfeRR2cdW/bzcocGMdnBVjDP/WcWCtmTL5KJL9NxpJoDA/mSbYWBzjY2beT4DN2REUy+mG6jKZtMd4cGMcXYiNvI0BC0lTBgLHcTWqWSuPVXDsyiuIc4/ACQfo6J9XjTzNOA+K5du/DMM8/gAx/4AIrFInp6evD+978fP/jBD7B27Vps2bIFu1seLvfeey/Wrl07dy/4IEQm2wVAukzFKpczB3wD34cp0/SiVEJ9P4/qvdDXl7jgiRPU64DMgrhUlAuI52jiCQBOXw+mBDdHlLhDQ4AfwOnrJTleacliDL/6Veh76XGY2rkbk9u2wyqX873GkZGwuZdgOZgIxcWLML4lW8O5vLiCPuJ5rXKiJo1exsUERZNGd9EIxp96qquiMY+yv5XedWux99FHO5Y959nwRdSOPAL7n32uexf6HJulOIMnnwS7VsPogw9h35Nb2r7GHnuczC6lG7Wjj8Ki153F7qFaO3wNSkuWsI4x3zAdBysufAuJV7xVKmHktNdi35NPpj5T6+PjsEr55m0AGDjxBEy+uC3T3FMfH4ddLuUeEwCGTn0lRn/7245BLroAfBWFwQGMPfJoqm2ANzkJK+d9Wl61EhMvvICpbkrMHMnhJAzTxPK3nB96phPQ/9LjMb17N6ZHR2GV5M53aAXSweJCcp3s9PdhSqhqTxwpr1dfXlUpZWeRwxoECJPUxZER8uCP09vTUYks2/A8cwN3SUVtaJPTvXdDK3mUtO7wkFBfnHA8+UrE0KteopcCQb6kvHIF+v9/9u47PI7y2h/4d2Z77+rdsi25yEUSGDcccBQggUASulNIHEpuEgg/Um4oBkIKCSn3pgBpcHPhkkBCboDcJGCKbbolV1lyk6zeV9v7zszvj7UWy1bZ1a607XyeRw9GuztzVjszO3Pmfc+pXwv7gYORfgdnXCcICZ5fshIJ8i76EPRrV8M/NARPVxc8Xd2n3+vcR9dKzZZIrNPcMErk/FFqMsU8eyaRxPtcZ9MkMqs60oMpxrKFCSTe5QX58PZO35x7rseZSG+V+Rk0CJy+sRdP/wCen1O+BIiz6kASMEyk/GdcBH7O50KsVAJ+DqWncllGJsTNZjOqqqrwq1/9CsFgEB6PB7/+9a+xatUqLF68GI2Njbjnnnvg8/mwe/duvPDCC/jsZz+b6rCzSuRu1/wdGM8Wz0k4P9fadbGMep/rhYpWG9MJ5ZxPiEXi+A+2OH2nOIELB6nJjODowjQgnI5p43rIzJakLY+VSiGSyaBftRKju/dAoktsRKm6qhKczz9jPb9EKUpK4OvrW5BRuDKLOa6a5cmY2q+uXhRTPWrg9KiaBMt9iGQyqKurYT9wcMaT5kgjvcTLJLASCfR1K2Hbf2DaGydJqVHMMFBXL4qMfpshKS5wcx+ZdM46RSJoliw+PVvi3Md0KxfmZjXDMEktzULik8wbEaxYDMPaNbDvOxCp2R4MTvoJu90QJSE5zbAstCuWwXG4ddr9RRAiM4BCDgfE6uSU44kcD+pg239w2vVyAX/SGsRql9WCD4fgOnps0ncIHwpB4DhwXt+ck78TGIaBfvUq2Pfti7/sVoISabI81bLkRYVwHT8OyRzLLzEMMy/lTWQmU0wJ8UTWO5fY59osEphbsjKhkg2nKYqL4BucvXRRPCIlB6a/Dkj0XGnWsmtzvDaa26wAbk51ioFIebe5nC/PNXkk1mpSUjJlgkSrhbZmKXz9/ZMGm/DhxM8vWbEYIpkMhrVrADAQeB6Ow4cTWqZYqYBIoZz2pkUicUdqYMd2U2+udbaBD2ZixSuRGz1SowFBaxzvba4lgLRagGEQsFqnPCYkcpxhGGb2wV1zvJ8dqVEee88IgZ97wjieqgPR9SV4B4wVi8GHY79GT6g5tFI55z5/uSojE+IA8Ne//hW7du1CQUEBysrKMDAwgD/84Q8AgD/+8Y84duwYTCYTPvOZz+Dxxx+nEeJJFmkUOZfOCQuwPo6f0zQTkTKGu5NzjF+kim2Ee6Su29xHBMR7wObDiSW+JDotAmNWcKHU3YmcrwYSEq0W2mW1UBTNfao18EHSz3mkDUFb7E1I48GKxdDU1MBxKLET3VjXxUolMV+wJGMKvKKkGAGrNaaRmpGR1ImP2laWlYIVi+E80jbtc/hgMOGyBRNkFgtkFjNs+/ZP+XiyEmCK4iKEXS5Y33l32uck2pj0bIxIBGVZGVQV5ef8iBOcgUFyk0Sng2pRFez7DsDWsn/Sj6KwMGlJUKnRCEYkwsjru6Z83HmkDePv7wUrlUKsTqxG+plkFjPkeRYMv/r6lEnxsMsNsSo56xPJZNDW1IDz+TDy6uvRmwzDO1/F6O49CDmdSam9LzUYoKyogPWd92K+wZmOFMXFkFkskBjmPupcrJ66zEUi08DFWg3CsdR4TbDpndSgR8hmj+MVwtwTF2o1wu54m3gmVkMciOz3/oHBpI6IZBgm0jRymvMYIYG626xcPmtd5LkmqSVaLUKOeEeI83OuUT0xEnWhbppFroGE+Mo1CEJS6/TKCwqgW1UHx+HW6CwaPhhKeHDHBLFaDVVFeWSAjt8/pwFUZ9KtXA77gUNTPpZIKcHIzZfYtrVEEruxzto+RyINe0UigGVjGriUaHNpzdIlcLa2wX1WqZzIwud+8yimXMZcBw7G20SZn/ssB5Ei9qoDExK90SrRaeO6sSgkMIN/oUfAZ4OMTYjX1dXh1Vdfxfj4OKxWK/7+979j0aJFAIDS0lK88sor8Hq96OrqwvXXX5/iaLMUwyxo/WiGZWKaOinwc7trLFYp59bRPgaxTpcRQmEwczwBEqtVsXWAPnN9YW5uDUhPYxAZcWo/cHDGbUHguTlf5KWSflVdUkYAi5UKGOrrYWtuOacedqTER+LJR0VJMcIeD9wz1GlN1gWGbtUq2A8einkabaJT4BmWhbp6EaxvvzvrMSAZ9YMn6NeugX9oeNoa5pzPP+c6slPR1iyFEArB+s670c9qvLkFgdHRyLqSUF6ElUhgPK8RrFwOx+HWhJdHSKqoystguuD8c340S5ckbR0Mw8Cwdg3khQUYeWM3rO/tjT5mfe99BEZGYNqwHoY1q5O2zgmapUugqqzA6K490eawEz++vj7I8pI3M4oRiWBsbIBu1UqM7XkLY2++Bd2KFZCaTHCf7IA8SetSV1XCvHE9vD09U4/AzYDTBJFMBmNDfUKDCVTlZXAdPXbO7yO14ee23EgN8RiSLfzck5VAZEp+rFP/ExVp4BffebnAJT5LjBGJoFtVh9Fde5LadFZZXjZtX4JEBqjILOYZ6wYDcy9fx4hEcZf8izQITWD2qV4fe73lJIinVAeQnJmPZxMrlTDUr8X4+3sR9vqSNrjjbLK8PEgN+oSWIVYqoSgsmLJpOh+ce3m/SPmf2PIKc51RDUyUl4p/+0q4YW+eJaZyQImMfgci+49pwwXw9fdHzxmi/SUS+I6VmWauH58IsVozY9PhsyXyWYgU8vhLf3HcnG9YAvF/lwnc3EfAi5TKOTeOzVU0f5jMWaSunAtSvX5B1idSqxH2uCHVzby+OZ/0MSxEUhlCbjck6nObf0UaFMz9m0Qkk4LzzzzKM5FmdlKjEUHrOCSa2Et8CByX8EmdPC8PnM8HZ/tRyAsLIDOaznlOZKRD8k/sMonUaEDeRR/CyGuvT2qoJQhCwtPRgUjixrxxA0Zeex0SrRYyi/mc5yT6hT5BrFTAeP55sLXsg2n9BTPXBk7SIB9lSQk4jxeOw63Qr1417YlC2OuFMgn1g4HI3zTvQxdi+NXXELLboSgtgUSjgevYcQgch4DVCt3y5UlZ1wTTBetgP3AQ9v0HwEokCIyOIux0gg+HE65nfyZjQz1G3tg9ZVI8npFShOQC3fJlACJJcPuhw5EG2AyDvIs+NK/r1SyuhmZx9byu40yKwsJJNfCVpSVA3cqkroMRiWDZvAmju3Z/UKeZZaBZvDip60lnMosFjiPtCDldkGg/GH0vJFqGi2VnTawmUs4CiPRusR84CM2SxfPek0GsVsfVVBuYSJQlflNcUVgAqV6H0T1vQVFYAFVl5elSTHO/DlAUFcF1/CScbe3Q1CyFf3gY8rw8MCIR+EBgzj015AX5cBxuhaqifNrnJFLLnZVI4irblnDisLAQ/qEhyEzGOS8jrvUV5MN17Djk+XkxPT8ZTY2nEmm0WQNPZycYkSgpM3PONvFdlvByVq6A9Z13YT90GAzDQFleBolWm/CglFi3tUSuX6V6PZyt08/+nEkiA3xk+fnwnDo168zjRMplTGDF4uj5ibuzE/ZDh0+Xzpk7WX4+HIcPQ1VRMeXjiQy6ipStjX1UcyJ/I4YVxV3lIHITLIHeFFot/ANxlIIS5v7+4um7RyIydoQ4Sb1Y62JPkkByTKxUgo/ljp4gREqszIF6cXWkuRR37ihUPhAEK537CZDEoEfAOtsIhLnHLjHoEYxrGmtiJ8hnUpaVQllaCk/nKYRckW1CgICgw4GQ0znrjYBcwYhEMK2/AIri4uiP80hb0v42E53lHa2tk2Y78OEwAtZxcF5v0kY0S/V6qCor4TzSNu3ooWRPeVVXLwJ4Hr4pLpDDbg+CNltS3yMQ+czM6y+AvLAQ9v0HIvW3eR6K4mLoV9VBaj73BlCitMuXQVVRAUVxMfIu+hAMjQ0wr1+f1Fq4AGC64PxJ2+LEj/H885O6HkKyhWHtGihLSqAsLYV+HkaF5wpWKoXpgnXRYw4AOA63zksCKF3pV9fBcegQAmNWBKzjp+vRJ9ZIT55nQWCWEc1CmEuo0fVECSzfQHJrbE9FpFSCi3Pqd2TmY3LGe4kUCpjWnQepyQj7oUORpHWCzWxN5zeC8/ng6erG6Bu74e48BT4chsBxcx4hLj6dAJnpnCuhusR6XXzXFwk2x5WZTfAPDsV0Dhm5wZN4iRzwfMx1hedjhPgERXExAqOjCDmdCV1zLgRDQz2UJSWQF+TDtu8AQi4Xwl5PQk2tZWYTAjH0phJCcx9AxohEc+vjkOAljUSnRdBqnXXGRSKzxaeiqqgAKxbD29ODRG7oiU8nraftqcLNfdY5w7IQeD7mzyTRWSjxVjlI9HtFJJHG1ecrkfJprFgMIUwDm+JBCXEyZ2KNJq4SHYk2JBCr1fEn4OMkksshNZvgmqLuFpfgibC8oAC+gYHTI82TjxWJAUGIu4xNMmpwMwwLiVYLVUUFXMeOI+xxwz8wCF9vL1wnTsI3OJiUJmfZQKxSQWo0RH/ymz4M1aKqpC5fvbga1nc+KC/ibGuH88iRSMJhitkPc6UsL4PA8/B0dU35OOfzgU3ijRBGJIKmtgbujo5Jtdj4cBjWd96B41ArAiOjSR+1JlarITOboKqsAAQBmqVLIp+fwZBwOZipsBJJdPsQyWSQaDRJrU88QSSTTdoWJ37EtK8SMqUz981cn/WUKLFaHf1bapYuhUiphDqJ34XpTqrXQ15UBP/wEJytRxAYHQUfDMw842oW8sIC+AdnHoWWaO8YIDJzIJY+IonWXWUYBmBiK5cYXWc4nFBJmLNJtFooiooghMPwDw0nfMNdpFBAu2I5OJ8P5g3rEXa74WxrTzjZJtZoZi77mECSWl6QP6+N4c/GiESQGvQxrZMLJF4mj2EYKEpL4R+KrRQQH0hsP50tFt2KFRCr1Uk9X58PE9+HMosFyrJSWN95F2GnK6Hz1VhLMiV6HBMpFAteVoJhGMgLC+HpPDXj8/hQ7LMxYlovy0JTsxT2/QcTvhZXL6qC69jxKR9LtMxPPP0KEq2zLtXr4qojn4zvzVhL/0ZWKADzPAOLfIAS4mTOWLkMnD+OhjM8D4ZN4M6kNr76UnOlKisDwhxs+/dHf6zv7wWfYFM7ViSG3GKBt6s7idFOJtFrEYyzG3wyyczmSDOPo8fhHxqGeukSaGuWgvN6ITUszNTHTCMzGZN+Yq0sKYGmthZjb76N0d17wHm8MJ5/HvhQKOEmoWdiGAb61avg6xvA0MuvgA+FwIfDGH5lJ0Z378H4+3tnnMI7F2KlErq6Otj2H4jWxht7822olyyBrm5FUusHn01VUQHtslpKhBFCSBKxYjG0tTWQaGMv+ZYN1FWV0C1fDkP9Gtj3HzidcJ17wkKs0cw6cERIQrJFrFaDD4amTYxMCHs8ECXY/FVRUgxn65GYn8/P0+hd/ao6WN99b1KJm7kSyWTQLV8GZVkp9KtXwT8wGPPo5Omoystg339w+ickcO9eajTOW1P46WhqayLl6WYZMcp5vRCpEi8nFymbciymknGcz5/UwR5nk1nM0C1fllHnmuqqSmhragAwiR3DYp19LiTW/F1ekD9lH4f5plm6BJ7ubvhmunGZ4AyLqYjkcmhqlibcD0RRXIzAmBVDL+88p+lwpNRNAjOcCvIRiLE/RaIlXyWny8zGSggGE5q9BQCKkhK4OzpiWx8/9xriAMBKxOBCwTm/PtdQDXEyZwwYMAwDQeBjKvOR6EkqAwasWAIuFIRopvqASfgO0a1cMen/3Z2d8HScgromsWSbsqIc4+83Q6zRQGaeXOM50RH0ACA1meHp7IQshuTzfI1Ul2i0MNavPeMXUhjr6+dlXWR6ypJiKEuKJ/0ub8uFSV8PKxbDsnkj3J2nMPbmW4AQKT00XY25ZJCZjNO+F6nBMG/rJYQQQpJNrFbDsHYtRnfvQV4C350Mw0CsUsE3MDDtzW8+mGCd8tNM69dh+OVXwPn90K+qm/RYwDoO17Fj4Lw+aGqWJrQeVWUFRna+ipDLBUkMJXWEearvLNHpoFm6BPL8/KQul2EY6FbVJVzzVWaxAEePIzA6Gvl3EjEMA5FMBs7nS0rPm1iIlUpItFpY334H+jWrIT6rh0pgdBSuEycj21gSBkKIZDKoFy2C8+jRaXvDhN0eONvaINZqk3JjJNsoy0qhLCtNaBkMw4CVSuEfHom5pvtcKMtK4ensjO9FScgvsGIxzBvWY/SN3RCrlAt6E1hbW5PwMiI9QDbC1z+AsT1vRUecaxYvhsDzCQ0clFkscHeciml/FjgerDSBhLhWA9fx4+DDIbAxjGrnAoGEZ+rKzGZ4urrgaG+HtrYGDBgIEMB5PBCrzpoNkmAdebFOh5DNDlHe/O1D2YRGiJOEiLWamKe3IAkNHCVGA0KzdYZObtliAJET8pDTGdPJ+EwYMDCsXQP3qVPwDQxM+vH29CZ8kSLV6cBKJPCPTH+HlQ+H4BsYgOdUV07V6yTzS11VCfPGDTBv2jCvyXBCCCEk28gsZhRfeQWkel1Cy9HVrYTr6DGEPZ4pH090FN8EhmGQv/VicF4v3Cc74BuM1BTnAgE4Dh6Evq4Olgs3nXNjfi7r0dWthLP1SEwjRzl/4nW+p2NYu2ZeEsKKwoKklAsyrFkNx5E2BOIY+RgreWEBPKe6Zn2eIAhJSRwCgH71KijLyuA4fGRSOZiw1wtH6xHo61bCcuEmKBLcxiaoF1fDPzgMT1fXOfV+Q04n7AcOQBAA17FjkOgS20/J9Az1a+E8cgSBsRn6biV4rc8wDMQaDbx98TXtTQaRXA7juvNh338QQXvqZnUnQlFcBMuFm2BsbIB+9WrYDx6K3DBLZCa9RAIhFIqplE2iTS4ZhoWytPR0XfXZhT0eiJWJl640rF0DhmXh7eqO5GI6OjH25tvwDQxMGtEtCIk1JpZotTOX0CKTUEKcJERqMiI4PlujyIhkTGOUmYwxNKZMPoZhYd60Iaa7iLNhxWJoliwGw7KTfkRSKdRViZ8QqxdXw9vTi7DXc850GQECPKe6wAeDECuVlLgkScVKJBk1xZMQQghJF8nofyGSy6GprYHjcCv44AfngHw4DP50siFZ5R4YkQj6NavBSqVwtR9F2O2G/cAhqKurIVarknY+IMvLg/J0SZDpGpMJHBdplDePDQ/TnVitgnZZLRwHD4Lz+8H5/ZGGnYKQcAJRWVoKb1//rA0Bk9F4dALDslCUFENRXAjbvgPR9+RsPQL14sUQq9VgJZKklZdgGAbGxnqEPV64jh2Pro/z+2Hbtx+qqkoYG9bCeN55ECkTL9NCpiaSyaBbuRL2AwfB+XyTtjk+GAQfCiXUGHiCbvkyuI+fiKlcERcIJPX6RqrXQb1kMez79k/azpLRJHahTFzziZUKSE1GuE+eTLjuvXZZDRxH2mZ9XuTGbmLHGXmeBYGx8VlLi/DhUNJmxzCsCOpFiyCSy8GwLMQqVaSkaTAI7xk3HAWOB5vA+YBIFX9D6lyWm2cMJGmkOh28p2KriZ2MhgQipRJCKIywx33u9BKcLjuS/B53AJCUO4MTpDo9ME+DC0QyOdSLq+HpPAXO74eqvDw6fdLX1w/eH4B6cXVSmmkSQgghhJD0oSgsRHB8HKO7dsPQ2ACJTofRN3YBggCxVgtlEnt7iORyKMtKIVIp4TjSBpFMlnDZhLMxDANFURE4rw8jr7+BvA9tOSc5NfLa61CUlEAQhHlpdp0p5Hl54JcEYT94CADAeTwwrb8ArDyx5BEjEkGzuBquY8dnLL0QciQ+m3bSehkGypIScF5f9D2JlUooipPXD+dMEp0OWrUatv0HousDIrWTJ8oQKQoL5mXd5AMyixna2hrY9h+AWKmEfvUqBO12jL/fDECAvCDxz0CkUEC3cgWs77wL3YrlM5ZDCrsT74dwNkVhATjfB9s1HwhCpJBDnISa+AtNu6wWztYjkBoTK1spLyiAs/0oQg7HjLMwEh2NDpxOTlcvgn3ffhjPa5yy/C/n88J+4BCU5WUJretMrFh8zvYr0esw/v7eaOJdCIeBBBqgiiRScEGqIR4rSoiThDCsCGAYBO02SPXnHgTDHg+c7e0QqVSQmUwJj9pgwEBZXgbX8ZMwrFl9zuNCOLGuw9lCqtNDqtOD8/thP3gwOiWMD4dhrF9LyXBCCCGEkCylW74c8oJC2JpbwIjFUBQXgxGL4evvn5eyHzKTCTKTKenLPZO6ehEYkQiju3ZDv6oOMosFAsdh7O13Idbq4B8aolIWiDRWV5aUAACcbe0YeX0XlGUliS+3vAwjr72BsNsNY2PDpMfCXh/G33sPAsfB0JD8vkGaJYuTvszpMCIRjPPwHkh8FMVFkBcVYuzNtzG6ew/4YBCG+rWw7z8ARWFhUtYhs1hgPK8R4+++h2CJbdLNHv/wCJxtbWBEIgSt49CvXZOUdZ5JXVUJdVUlgEgjxeGdr0G3fFnS1zPfRDIZDGf2D0uArm4lrO/thXnjBojPSgqP723GeL8DnNeX8CBLAJAZjQgXFWG8uQX6FcshUky+GeE+1QV1zZKYerMlggED9eJquLu6oKutjTQNTTCfJVYp4Wg9ApSsT1KU2YsS4iRh2toa2A8ehH5VHUTyDw5cfDgE59FjUFdXw9vTc7rRi3mGJcVGqtfDJxZNmYQXwqGEuwBnE5FcDtP556c6DEIIIYQQsoBkJiPyt1486XeaxdUpiiY5VJUVkJpNGH9/L2QWCzifDzKzKSkN47KRdlktQg4H5PmJj6hlWBb5Wy+C9Z33YD94CGKNGuqqKvChEGwt+6CtrUnKyF1CJjAMA8umDZN+l7/1oqSuQ6LRIG/rxRh57fVJJZn8Q8OwXLgJIpkMwztfgzwvuc1qz8awLAqats7rOjKBzBQ5ntv37Ys0M65ZClYigbujExAEqBdXw9eTvNrvqtJSiFUqONqOQlVZAZnRCIHnIiVmA8F5T4ZPkBmM8HZ1Q+A5CBwHVpRYmlZbQ9+JsaKEOEmYSC6HesliuE+chKL0gxEI/uERyAvyIdXrIZLJMLp7DxTFyWt84jjSDl2dCqxYfLqxpwA+GIRonprpEEIIIYQQQlJHotHAdP754MOh6P+T6ZkuWJfU5Rka1iLs8cB+4CDEKjUCIyOQ51kgm6HkBCHpjGEYmDdumNTQUV1VFc0pJDsJT2amKCmGRKuBt68f7hMnITUa4Ovvh+mCdZAOeyFdqU/q+qRGQ6QXxtGjYFgGIYcTAs9Du2JhR+uLVSqEvT7wSRghTmJHCXGSFDKDEZzHi9AZ3ZJFMlm0zppIoYB+9SqINYk1W4guW66AoqgA7uMnILNY4B8cglijhvvESehW1SVlHYQQQgghhJD0IlYnt54viR0rkUCq10O/ejX8g4NgJJJIOZscrt1OMp9IJqNBdWmCYZjI6HCVCu6THQja7NCvqktqY9NJ6wMDiVoNVUVFNJelqqxMSlmWeIhUKnBuNxAOg5FQmnah0F+aJM1EvbrpzNSsYi4UhUUI2h3w9Q9Au6wGIpkcnNcLqWlhprYQQgghhBBCSK6R6nWQ6qlmOyFkfrBiMbQ1SxdsfTKzGTJz4uV950qsUiFotYIPhxPuu0diR39pktF0tbWT/3/FihRFQgghhBBCCCGEEEJI7MQaNTxdXQAio9bJwmBTHQAhhBBCCCGEEEIIIYTkGlYkBngBoGT4gsrohPhf/vIXrFixAiqVCuXl5Xj++ecBAK2trVi3bh2USiWWLVuG1157LcWREkIIIYQQQgghhBBCyGSapUugWbo41WHklIxNiL/22mu444478Pjjj8PlcmHv3r1YvXo1QqEQLr/8clxxxRWw2WzYsWMHrrrqKoyMjKQ6ZEIIIYQQQgghhBBCCIkSq1QQK6lp9ELK2IT4fffdh/vuuw8bNmwAy7LIy8tDVVUV3njjDXi9XnzrW9+CTCbDtddeixUrVuC5555LdciEEEIIIYQQQgghhBBCUigjm2pyHIf3338fl19+OZYsWQK3242PfOQj+NnPfobW1lasXLkSLPtBrn/16tVobW2dclmDg4MYHBw85/ft7e3zFj8hhBBCCCGEEEIIIYSQhZeRCfHh4WGEQiH88Y9/xGuvvQa1Wo0bbrgBd9xxB6qqqqDX6yc9X6/Xo7u7e8plPf7443jggQcWIGpCCCGEEEIIIYQQQgghqZSRCXGlUgkA+PKXv4ySkhIAwN13340rr7wS3/72t+FwOCY93+FwQKPRTLmsW265BVdcccU5v29vb8e2bduSHDkhhBBCCCGEEEIIIYSQVMnIhLher0dpaSkYhjnnsRUrVuDhhx8Gz/PRsikHDhzA9ddfP+WyCgsLUVhYOK/xEkIIIYQQQgghhBBCCEm9jEyIA8D27dvxi1/8ApdddhlUKhV+8IMf4IorrsCWLVugUCjwwx/+EF/72tfwwgsv4PDhw3j++efjWr7P5wOQu7XETwy7Uh0CIQkJjUw9K4QQQgghhBBCCCGZg3JU8cnVfMhEDncipzuTjE2If/vb38bY2BiWLVsGsViMj370o/jpT38KiUSCF154Adu3b8cDDzyAiooKPP/888jLy4tr+V1dXQBAZVMIIYQQQgghhBBCCCEkA3R1dWHDhg0zPocRBEFYoHgyytjYGP71r3+hoqICCoUi1eEsqIn66U899RRqa2tTHQ4hZAHQfk9I7qH9npDcQ/s9IbmH9ntCck+u7vc+nw9dXV34yEc+ArPZPONzM3aE+Hwzm8248cYbUx1GStXW1mLt2rWpDoMQsoBovyck99B+T0juof2ekNxD+z0huScX9/vZRoZPYOc5DkIIIYQQQgghhBBCCCEkLVBCnBBCCCGEEEIIIYQQQkhOoIQ4IYQQQgghhBBCCCGEkJxACXFCCCGEEEIIIYQQQgghOYES4uQchYWF2LFjBwoLC1MdCiFkgdB+T0juof2ekNxD+z0huYf2e0JyD+33s2MEQRBSHQQhhBBCCCGEEEIIIYQQMt9ohDghhBBCCCGEEEIIIYSQnEAJcUIIIYQQQgghhBBCCCE5gRLihBBCCCGEEEIIIYQQQnICJcQJIYQQQgghhBBCCCGE5ARKiBNCCCGEEEIIIYQQQgjJCZQQJ4QQQgghhBBCCCGEEJITKCFOCCGEEEIIIYQQQgghJCdQQpwQQgghhBBCCCGEEEJITqCEOCGEEEIIISQuXV1dYBgGJ0+eTHUohBBCCCGExIUS4oQQQgghJCNs2bIF99xzT1KWdf/992Pjxo1JWdaZnnzySZSUlCR9ueQD8/XZTWAYBjt37py35RNCCCGEkNSihDghhBBCCCEk7QmCgHA4POfXh0KhJEZDCCGEEEIyFSXECSGEEEJIRqqoqMCDDz6Iyy67DBqNBosWLcJf//rX6OMHDx7EhRdeCL1eD4PBgPr6ehw7dgxPP/00vve97+Gdd96BWq2GWq3Gnj174Pf7cfXVV6O4uBgajQZLly7FL3/5y5jXuWfPHtx6660YGBiILvfpp58GANx8882oqKiAWq1GZWUlduzYAZ7no8vdsmULbr/9dtxwww3Q6XQoLS3Fo48+Omnd7733HrZs2QKTyYTy8nLce++9kxLE7e3tuPTSS2E2m1FSUoJbbrkFDodjUuy//e1vJy3zzNHQPT09uOyyy2A0GqHT6bBixQrs2bNnxs/grbfewqpVq6DRaLBu3Tq0tbVFH+M4Dj/+8Y9RW1sLnU6H+vp6vPrqq9HHW1tbcfHFF8NisUCn0+H888/Ha6+9Fn18oizL7373O6xatQpKpRIPP/zwlJ/dVCoqKrBjxw5ccskl0Gg0+PGPf4zBwUF87GMfQ35+PjQaDerq6vDcc89FX7N8+XIAwOWXXw61Wo1LL700pvdCCCGEEEIyiEAIIYQQQkgGuPDCC4W77747+v/l5eVCaWmp0NLSInAcJ/z4xz8WNBqN4HA4BEEQhPXr1wsPPPCAEAqFhFAoJOzfv18YGhoSBEEQduzYIWzYsGHS8r1er/D73/9esNlsAsdxwksvvSRIpVLhn//8Z8zrfOKJJ4Ti4uJzYv/Nb34jDA0NCTzPC++8845gNBqFxx57bNJ702q1wquvvipwHCf8+c9/FliWFU6cOCEIgiAcPXpUUKlUwjPPPCOEQiGhq6tLqKurEx566CFBEATB6XQKRUVFwp133il4PB5hYGBA2Lx5s/Dxj398Uuy/+c1vJsUFQHjllVcEQRCEG264Qdi+fbvg8/kEjuOEo0ePCp2dnVN+FqdOnRIACBdffLEwMDAg+Hw+4ZOf/KSwefPm6HN27NghrFq1Sjh69KjAcZzw/PPPC0qlUjh58qQgCIJw+PBh4eWXXxa8Xq/g9/uFHTt2CFqtVhgeHp60jvXr1ws9PT1COByOPu/sz24q5eXlQn5+vvD2228LPM8LHo9H6O3tFf7yl78ILpdLCAaDwm9/+1tBLBYLra2tU/5NYn0vhBBCCCEkc9AIcUIIIYQQkrG2b9+OtWvXgmVZ3HLLLXC5XGhvbwcASKVS9PT0oLu7G2KxGKtXr0Z+fv60y1IoFLjpppug1+vBsiw++tGP4pJLLsHLL78c8zpnijM/Px8Mw2DdunXYtm3bOcv95Cc/iYsuuggsy+KTn/wkjEYjWlpaAAC//OUvcfnll+O6666DWCxGeXk5vvGNb+CJJ54AALz00ksIBoN4+OGHoVQqUVhYiJ/97Gf429/+hqGhoZj+llKpFENDQ+jo6ADDMFi6dCkqKytnfM19992HwsJCyOVy3HTTTdi7d2/0sZ/+9Kd4+OGHsXTpUrAsi6uuugrr16/HM888AwBYsWIFPvzhD0OhUEAmk+H+++8HwzB47733zllHaWkpRCIRZDJZTO9lwk033YQLLrgADMNAqVSipKQEn/jEJ6BWqyGRSPCFL3wBy5YtmzQyfSqzvRdCCCGEEJI5KCFOCCGEEEIyVlFRUfTfKpUKAOByuQBEGlwyDIOLLroIJSUluOOOO+B2u6ddViAQwF133YUlS5ZAp9NBr9fjH//4B0ZGRmJe51QEQcB3v/tdLF++HAaDAXq9Ho8//viMy51Y9sRyT5w4gb/+9a/Q6/XRn9tuuy2a7O7t7UV5eTnEYnH09dXV1QAipVBi8cgjj6C6uhqf+MQnkJ+fj5tuugnDw8Mzvubsv4XP50M4HMbw8DCcTieuvvrqSTG//fbb6O/vj8Z13XXXoaysDFqtFnq9Hk6n85y/y2xJ+Zmc/VqbzYYvfvGLqKysjK7zyJEj56zzTLG8F0IIIYQQkjkoIU4IIYQQQrJSeXk5fvOb36C7uxtvvPEGXnnlFXz/+98HALDsuafBP/nJT/Diiy/ixRdfhM1mg91ux6WXXgpBEGJe51TL/eMf/4if/exn+MMf/oCxsTHY7XbccsstcS23oKAAN9xwA+x2e/TH6XRGE/ylpaXo6emZVFO8o6MDAFBWVgYA0Gg08Hg80ccHBgYmrcNkMuGnP/0pjh07hv3796Orqwt33nlnzDGeSa/XQy6X46WXXpoUs8fjidZG/+IXvwie57F37144nU7YbDZotdpz/i5n/02n+htP5+znfutb38LRo0exa9cuOBwO2O12LF++fNI6GYaJ+70QQgghhJDMQQlxQgghhBCSlZ588kn09fVBEARotVqIxeLoCOqCggL09PTA7/dHn+9wOCCTyWCxWMDzPJ577rlzyprMpqCgAGNjY7BarZOWKxaLkZeXB4Zh8Prrr+Opp56Ka7lf+tKX8Oc//xnPPfccgsEgOI7DyZMn8c9//hMA8NGPfhRisRjf/va34fP5MDQ0hK997Wu4/PLLUVBQAABoaGjAM888E02mf+tb35q0jj/+8Y/o6OgAz/PQaDSQyWSTRpzHQyaT4dZbb8U3vvENtLe3QxAE+Hw+7N69G8ePH4/+XdRqNQwGAzweD/793/99xhH8E6b67GLlcDigVCphMpkQCoXw85//HEeOHDln+ceOHYvrvRBCCCGEkMxBCXFCCCGEEJKVXn/9dZx33nlQq9VYtWoVLrjgAnzzm98EAFx77bVYunQpioqKoNfr8eabb+Kuu+5CaWkpysvLUVRUhFdffRVXXnllXOu86KKL8PGPfxxLliyBXq/H//zP/+Bzn/scLr74YqxcuRJmsxmPPfYYtm3bFtdyGxsb8corr+A3v/kNiouLYTKZ8KlPfQrd3d0AAK1Wi1deeQUHDx5ESUkJ6uvrUV1djf/6r/+KLuOhhx6CVqtFaWkp6uvrcdVVV01ax8GDB3HRRRdBo9Fg0aJF0Ov1eOSRR+KK80yPPPIIrr/++mipkYqKCnz/+99HKBQCAPznf/4nDh48CIPBgGXLlqG4uBglJSWzLneqzy5WDz30EHw+H/Lz81FRUYHh4WFs2LBh0nO+//3v4+GHH4Zer8fHPvaxmN4LIYQQQgjJHIwQz1xNQgghhBBCCCGEEEIIISRD0QhxQgghhBBCCCGEEEIIITmBEuKEEEIIIYQQQgghhBBCcgIlxAkhhBBCCCGEEEIIIYTkBEqIE0IIIYQQQgghhBBCCMkJlBAnhBBCCCGEEEIIIYQQkhMoIU4IIYQQQgghhBBCCCEkJ4hTHUC6Ghsbw7/+9S9UVFRAoVCkOhxCCCGEEEIIIYQQQgghU/D5fOjq6sJHPvIRmM3mGZ9LCfFp/Otf/8K2bdtSHQYhhBBCCCGEEEIIIYSQGDz11FO48cYbZ3wOJcSnUVFRASDyR6ytrU1tMClwYtiV6hAIScjifE2qQyCEEEIIIYQQQkiCKEcVn1zNh7S3t2Pbtm3RnO5MKCE+jYkyKbW1tVi7dm2Ko1l4kj5HqkMgJCErS3SpDoEQQgghhBBCCCEJohxVfHI9HxJL6WtqqkkIIYQQQgghhBBCCCEkJ1BCnBBCCCGEkCQIBoOwWq0IBoOpDoUQQgghhBAyDSqZQgghhBBCSAJ4nsfOnTvR3NwMnufBsiwaGhqwdetWsCyNPyGEEEJIcgiCEP3JJYLApzqEjMJxXKpDmDcMwyTl/JoS4oQQQgghhCRg586daGtrw6ZNm2AwGGCz2dDS0gIAaGpqSnF0hBBCCMl0PM9jZGQEdrs955LhACCEKSEej+PuoVSHMK8kEgnKysoglUrnvAxKiBNCCCGEEDJHwWAQzc3N0WQ4ABgMBtTX12P37t3YsmVLQifrhBBCCCHd3d1gWRYVFRWQSCSpDmfB+ULhVIeQURSS7E33CoIAq9WKnp4eVFdXz3k52fsXIoQQQgghZJ71D1nBcVw0GT7BYDCA53kcPNaHNcsqIBZR6RRCCCGExI/nefj9fixevBhicW6m8Vgu90bFJ0IkEqU6hHllMpkwPj4eLVU4F3RmTgghhBBCyBx0DTpxot8LlmVhs9kmPWaz2SIn6KwMbx4cgMMdSFGUhBBCCMlkEyVSGIZJcSSEpIeJfSGR8kGUECeEEEIIISRO7afG0TvswvrVZWhsbERLS0s0KT5RQ7yxsRGNy4uxuFSPvW3DGLJ6Uhw1IYQQQgghJDfnWhBCCCGEEDJHR7vHYXX6cN7yAsgkImzduhUAsGfPnujUzYaGhujviy1qKGVi7Ds2Al4QUGRWpzJ8QgghhBCSoW7e/nnk5xfgO9/9XqpDyWg0QpwQQgghhJAY9Q67MGz1onFZJBkOACzLoqmpCXfddRduu+023HXXXWhqappU09CglaOhNh/tp8YxYvOmKnxCCCGEkKTbsmULHnvssYSXwzAMjh49moSIImqXVOPlf/0racvLRcn6bM/05JNPYt26dUldZrwoIU4IIYQQQkgMbE4/jvfYsLYmL5oMP5NUKoXJZIJUKp3y9Tq1DKuXWHDoxBjVFCeEEEIIIWmL5/k51egOh8PzEE3yUUKcEEIIIYSQWYTCPA6eGMXyKhM0yqkT3rEw6RRYVmnE/mMjCIS4JEZICCGEEJJ6b7zxBgoKCvDzn/8chYWFyMvLw49+9KPo483NzTj//POh1WphsVhw4403AgDWr18PAKivr4darcavf/1rAMD111+PqvJSFFpM+PBFW9Daeji6rJu3fx53fOXLuP6aq5FvMuC8+jU4ePAAAOCzn96G3p4eXH/Np5Bn1OP+++4FAHzz63dhaXUV8k0GrD+/EXt2744u77vfeRA3XHsN/u22W1BoMWFlbQ1ee/XV6ONOpxNf/bcvYXFVBSrLSnDn7V+F3++PPv7Uf/8Ba1auQFGeGZd+5MM4dsZo97NHq//214/jkg9fDCDSHPLb3/omKkqLUWA2Ys3KFdi9a9e0f2OX0znlewaAoaEhXHvttcjPz0dpaSnuv/9+8DwPADh16hQuvvhimEwmmM1mXH/99ZMaw1dUVOCHP/wh6uvroVQqceutt2LPnj244447oFar8elPf3rKeBiGwa9+9SvU1NRAr9cDAH70ox+huroaGo0GtbW1+Mtf/gIAOHz4MG699Vbs3bsXarUaarUaHo8HgiDgJz/5CZYsWQKj0YjLLrsMfX190/4NEkUJcUIIIYQQQmbRdsoKk06BApMq4WUVWdTIN6pw8MTonEbeEEIIIYSks7GxMfT29qK7uxsvvfQS7r77bpw8eRIA8JWvfAVXXHEF7HY7ent78aUvfQkA8PbbbwMAWlpa4Ha7cfPNNwMAmpqacODwEXT1DaC+oRGfOysp++yf/oiv3H47BkbGcOGWD+Hrd34NAPBf//0USsvK8Myzf8bIuB33P/gdAMCatWvx1rvvo394FDfcuA3bbrgOXu8H5ez+8X9/x0cuuRR9QyO4+dZbcdstX4w+dusXt8Mf8KPlwCHsP9SKkydP4gff+y4AYPeuXfjmXf8Pj//2t+jqG8CHPnQRPnnlxxEIzD4rcOcrr+DPzz2Ld95vxtDYOP76wosoLS2d9vnTvWee53HNJ69CdXU1uru78d577+Fvf/sbfve73wGIJN6/+c1vYmBgAEePHsXg4CDuvffeScv+wx/+gOeeew4ulwu//OUvsWnTJvzsZz+D2+3Gf//3f08f07PPYvfu3RgdHQUAVFZWYteuXXA4HPjOd76DT3/60+jr68PKlSvx2GOPobGxEW63G263GyqVCr/4xS/w9NNP4+WXX8bw8DDWrl2L6667bta/3VxRQpwQQgghhJAZDFk9sLkCqKkwJm2ZS8sN4DgBJ3rtSVsmIYQQQnIHzwvz/jNXLMvioYceglQqxXnnnYeamhocOHAAQKTEXHd3NwYGBiCXy7Fhw4YZl3XTTTdBq9VCJpPh3+++B+1tR2C1WqOPf+yKK7B+w0aIRCLcsG0bDuzfP+Pyrrv+BpjNZojFYnz5q7cjHArh2NH26OPnr1uHKz5+JUQiEW789GfQ19uLsbExjIyM4O8vvYgf//Q/oNVqodfr8c1//zae+9OfAAB/fOZp3Pjpz+C889dBKpXirm98Ez6/D2+/9dasfy+pVIqA34/2tjaEQiFUVFaisqpq2udP9573tTSjr68PDz30EORyOYqKinDnnXfimWeeAQBUVVWhqakJMpkMZrMZX/va17DrrJHoX/7yl1FVVQWJRAKxWDxr7BO+9a1vIS8vDwqFAgDwqU99CsXFxWBZFp/61KewdOlSvPfee9O+/tFHH8VDDz2EiooKSCQS3H///di7dy96enpijiEesb8zQgghhBBCckyY49HeNY6Vi8yQiJM3loRlGaxZYsHbhwdg0slh0imStmxCCCGEJFcwGITL5YJGo5m2V8hC4nkBL7/XPe/raTq/HCzLxP06o9E46e+kVCrhdrsBAL///e+xY8cOrF27FhaLBf/v//0/fP7zn59yORzH4e6778azzz6HsbHRaMNy69gYTCYTACA/v+CD9SiU8Hg8M8b2s5/8BH948gkMDg6AYRg4nU6MjX2QYJ+0PKUSAOBxuzE6OgKO47B0UWX0cUEQwHGREngD/QP4cFNT9DGWZVFaWoqBgf4Z4wGAC7dswd333of777sHJ0+cwIebPoIf/PBHKCwqmvL5073n7u5ujI2OwmAwRB/neT462nx4eBi333479uzZA5fLBZ7nodFoJi27vLx81nincvbr/vCHP+AnP/kJurq6AAButxtjY2PTvr6rqwvXXnvtpKb0LMuir68PZWVlc4ppJpQQJ4QQQgghZBon++zQq2Uw65OfsJbLxFhWacLhDis21BUlNeFOCCGEkMTxPI+dO3eiubkZPM+DZVk0NDRg69atkxJ3C41lGTSdP7fEZbzrSbZFixbhqaeegiAI2LVrF5qamrB582ZUV1ef89z/+Z//wfPPP48X/+8fqKishNPpRFGeOeaScwwmx//Wm2/ixz96GP/38itYvnwFWJZFcb4lpuWVlJZBLBajq29gypsiRcVF6O7+4CYFz/Po6+tDUVExAEClUsPn+6A0y/Dw8KTX33zrbbj51ttgs9nw5dtuxT13/zt+98R/xfQ+J5SWlqK4pATdp5PQZ/v2t78Nnudx6NAhmEwm/O1vf8Mtt9wy6TkMw8z4/9M583nd3d3Yvn07du7ciQ0bNkAkEmHNmjXRv/NUyywrK8Njjz2GLVu2xLS+RNFZNyGEEEIIIVNweYPoG3YntVTK2QpMKhi1MhztGp+3dRBCCCFkbnbu3Im2tjZs2rQJV155JTZt2oQjR47gry/8H9zeYEpjY1lm3n/mwx/+8AeMjIyAYRjo9XowDAORSAQAyM/PR0dHR/S5LpcLMpkMRpMJPp8PD+64L6515eXn4VTn5OWJxGKYTWaEw2H88Affh9PpjGlZBQUFuOTSy/D1O78Gm80GQRDQ19sbbZR57XU34On//gOa976PUCiEHz/yI0glUqw/XRJm1epVePaPf0QwGER7exue+u8/RJfd0rwX7737DoLBIJRKJRRKRfRvEo/6hkaYzWZ85zvfgcfjAc/zOHHiRLQsisvlgkqlgk6nw8DAAB555JFZl3n2ZxKLiRHrFosFQOQzb21tnbTM/v7+SfXVb7vtNtx9993RddlsNjz77LNxrTcelBAnhBBCCCFkCse6bagq1kEhm99JlbUVJlidfgxZZ57iSwghhJCFEwwG0dzcjPr6+mgJCoPBgIaGBrQfOYh3DvXi/SNDcLhnb5pIPvDKK69g5cqVUKvVuPrqq/GrX/0KlZWRMiQPPPAAtm/fDr1ej9/85jf4zGc+g6qqKiyuLMfaVSuxtqEhrnXd9fVv4qc/+TGK8sx48P4d+HBTEy659FKsqVuBmsWLIBZLUDJD88qz/fp3v4dEIsEF5zWg0GLCxz/2UZw8cRxApOzJ9x7+IbbfdBPKiwvx2s5X8Je//Q0ymQwAcN+OBzA4OICSgjzcecftuOHGbdHlOp0ufPXL/4bSwnxUV5TB6XDiwYe+F9d7BQCRSITnnv9fnDhxAosXL4bBYMA111yDwcFBAMCOHTtw6NAh6PV6XHbZZbjyyitnXebtt9+OF154AQaDAZ/97GdjimPZsmX4+te/jg0bNiA/Px8HDhzA+vXro49fdNFFWL16NQoLC6HX6+HxePCVr3wF1113HT72sY9Bq9Vi1apV+Nfpmw3zgRGotf2U9u3bh/r6erS0tGDt2rWpDmfBHe5zpDoEQhKyskSX6hAIIYRkMKvDh8Mnx7BpTQlE8zRC6uz1HTwxho2riiCVxD8iiBBCSGIc7gDsrgDcvhDCHA+xiIVaIYFJr4BaIUl1eCQFrFYrHn300SmThv/7v/+LW265FZ6wFCd77VhSpkdZgXZe4uA4DsePH8eSJUvmNGo4G3iD4VSHkFGU0uyukD3dPhFPLje7/0KEEEIIIYTESRAEHOu2obpUvyDJcAAw6RTIMyjQ3jWOVYstC7JOQgjJdaEwj95hF/pGXOB4ASadHGqFFGIRgzAnwO4O4GSfHRqlFItL9TBo5akOmSwglUoNgIHNZpvUpNBms4FlWeh0WlikUph0crS0DyPMCagqpoFZhGQCSogTQghZEOnWmZ0QQqYzPO4FxwsoMqsXdL1Ly41462A/Rmxe5BmUowCFQQAAh69JREFUC7puQjJFKMwDADWhJQnheAFdAw6cGnDCqJNjxSIzDBrZlI3eOF5A/4gL+4+PoMiixpJSA8LhEJ3X5oATfS6ULVqGlpaWaNkUm82GlpYWNDQ0RD97jVKK85YX4P0jQ5BKWJTkaVIcOSFkNpQQJ4QQMq+m6sy+tr4ejedvgtMbgi8QRjDEAQBELAu5TASVQgK9WgalnKanEkIWFs8LON5jw9Jy47w1k5qORMxiWZUJbZ1WGFbJKeFHyGkeXwhdg06M2LwIhngAAuRSMYotapQXamlfIXEZs/vQdsoKhUyM81cUQKOcOaEtYhmUFWiRZ1Ri/9FhPP32LvR0tkMQIue1DQ0N2Lp1K1iWtsNs0jfigs3lx7WfvBy73ngNe/bsiV7LTHzmZ1LKJVhbk4+9bUNQySU0m4CQNEcJcUIIIfPqzM7sE6Mq9u5txuCYB43rNkMpl0CjlIJhAI4T4AuGMTDqQVvnOEQiBnkGJQpMShi18ilH7RBCSDINWj2QiFnkG1MzQjvPoMSg1oNj3eNYscickhgISRc8L+Bknx09Qy6U5KvRUJsPtUICQQAcngC6Bpx469AAVi+2QK+RpTpckuY4jsfRbhtGbF7UVhhRYFLF9Xq5VAzHYCtGB7uwefOmSaOFAaCpqWk+wiYp4PGFcLTLhsZl+ZBJxWhqasKWLVtmnRWgVUmxrNKEgyfHsKGuiG7WEZLGKCFOCCFk3kx0Zp9IhgORzuyNjQ3Ys2cPllz9sWlPKAVBgNMTxIjNi7bOcfCCgNJ8DUry1NRwjhAyLwRBQGefA0vLDbM/eR7VVhjx5sEBWB0+mHSKlMZCSKoEQxwOHB+FIAjYsKoICtkHl64MAxg0chiWyjEw5kbL0WGsXmKh/YVMy+kJ4uCJUajkEmyom1vz4mAwiH0tLeec19bX12PPnj3YsmULlU/JEm2nrKgo1EKn/uBGm1QqhclkmvW1hWYVRu1etHdZUVdNPUEISVd0u4oQQsi8cblc4DhuUhMaIHLxwPM8XC7XtK9lGAY6tQyLSw3YtKYYK6vNcHoC2L2/D0c6rfAFqNM4ISS5hqxesCwDiyG1STWpRITaCiNaO6zgOD6lsRCSCv5gGO+3DUGlkKBxWcGkZPjZisxqrFxkxsETo3D7QgsYJckEgiDg1IAD7x8ZQnmBBmtr8uY8sMLlcoHn+Tmd15LMMTDmhj/AoTKB5pi1FSZYHX5YHb4kRkYISSZKiBNCCJkXHC+gdywIhmFhs9kmPTbRmV2jib3hjFErx+olediwqhgA8NbBfrR2jMHrp4tfQkjiBEFAZ78Di0p0aVGeqdCsgkYlxYlee6pDIWRBBUMc9rYNw6xXYHmVKaZa/nlGJSqLdDh4YhQ8LyxAlCQT+INhtBwdwcCYB+tWFqKsQJvQ8jQaDVg2Oee1JD2FOR7Hum1YVmWEKIE+IhIxi6XlBrR1joOjYxIhaYkS4oQQAEA4FITLYUM4RMlFkrhQmENz2xDCPIv6hnq0tLRELx6m6sweD4VMjOVVJmxcXQwRy+LtQwNTjhgPBoOwWq0IBoNJeU+EkOw2YvOBF4SU1Q6fyrJKIwbG3LA5/akOhZAFwfEC9h8bgVErR025Ma7XVpxurtnRb6dzgBx09mc+YvPi7UODUCskWLeiEGpF4o3apVIpGhoazjmv3bu3ec7ntSS9dA86oVVJk1J+qcishkwmQvegMwmRkZQTBPAcBwh0gyNbUA1xQnIcz/M4svdNdB49BIHnwbAs8itroSmpgz/Ig2UZaJRSWAwK6FTUrIjMLhDi0Nw2DJ060lQGS5sgYtlZO7PHSy4Vo7bSiMpiLU71O/HWwX4UmtWoLNTgzT1voLm5+Zz1sSzdByaETK2z346q4vQYHT5BLhWjpsKIwx1jWF9XBLGIjmEku7V2jEEkYlFbEV8yHIiUWltWYcAzf34RI73HIAgCnQPkAJ7nsXPnzuh5H8OyWLR4OSzlq1G3OC/pJbAmzl8nzmsZhkVheQ1Wrl2f1PWQhRcMcTg14MT5KwqStsyaciP2tg2hNF8NiZh6ICUqz6jHW+++j8VLlizcSgXA53Uj4PdFkuEMA5lcAYVSDcxwynjz9s8jP78A3/nu9xYuVhIXSogTkuOO7H0TQz0nceHmzdFO6e/vbQbDMFjRuAk8H2lseKLXBrVCikXFOvoyJ9PyB8ORac46BWorJy5mmZg7s8/FRGK8okiLzn4Hnn7uBbisvdGGRxMj0gGgqakpaeslhGQPq8OHQIhHoUmV6lDOUWRWY9jqxbFuG5ZXzd7Mi5BM1T3ohNMTxLoVhTGVSZnK22/ugsvai81nnNfSOUB227lzJ9ra2iad9+3d2wytWgbLeeVJXx/Lsuec1467QjjRY0e+UTXnbZekXueAAxaDAhpl8q5TtCopzHoFTg04saQstQ2759uWLVvw7rvvQiwWQyaTobGxEf/5n/+JJdMkr9944w1cdNFFUCqVYBgGFosFX/rSl3DXXXdNu46RcXvM8dQuqcZ//PyXaPrIR2J+jSDgnLJbAZ8H4VAAGrUaYrEY4XAYHq8XAKBQqWNeNkk/dJuckBwWDgXRefQQGhsaJnVKP6+xAUOdbZCJAI1SimKLGmuW5EEiZnHoJNVsJlMLhTm0tI/AYjgzGf6Bic7s8zWdVCETY3GJBiO9x87Zpuvr69Hc3ExTpwkhU+oecqG8QJO2iYzlVSYMj3sxZqfmXCQ7OdwBnOi1Y80SCyTiuV2iBoNBNDc30zlADpn4zOvr6yd95o2NDTiwf9+8fuZnntcWmFSQSlj0jlBTzUwVDHHoG3Zhcak+6cteXKpHz5AL/mB49idnuJ/97Gdwu93o7e2FxWLB5z//+Rmfn5eXB7fbDZfLhWeeeQY7duzAzp07FyhaAAIQDvPwBzh4fCF4/WEEwxxCYQ4+fwDBUBhBvxcqpRJicWQ8sVgshkqp/GDEOMlYcZ1tOJ1OPPfcc/jGN76B7du34xvf+AaeffZZOByOuFf8i1/8Ag0NDZDJZLjuuusmPXbzzTdj6dKlYFkWjz322Dmv/fOf/4xFixZBqVTi4osvRnd396TH7733XlgsFuh0Omzfvh2BQCDu+AjJBT6vB8I0ndIFnoff647+TsSyWFSsR7FFhSOnrJQUJ5NwHI99R0egVUvjrvmZTC6XC4IgTLlN8zwPl4suVAghk3n9IYw7fCjJS99RPlKJCCuqTGjtGEMozKU6HEKSKhTmcfDEKJaWG6BOYGSmy+UCP815LZ0DZCfruB0cx6XFZ76k3ICOPjtCYX7B1kmSp3vICYtBCaU88VrzZ1PKJSgwKdGV4lriC9lbQalU4rrrrsP+/ftjfs3555+PZcuWzfgalUyCY0ePAoiUJLnjK1/G9ddcjXyTAefVr8HBgwcAAJ/99Db09vTg+ms+hTyjHvffdy8A4OSJE7jy8o+htKgAy2uW4Oe/+AXCnACxiMFPf/R9bP/s9fjaV25FVWkB/vOnP0J1eREOHDgQTYYHAgEUFxdHYhQEfGbbjagqL0WhxYQPX7QFra2Hp4zbarXimk9+AsX5FhTnW3DhxvUYGxuL+W9D5kdMCXGbzYavfvWrKC4uxl133YX29nb4/X60t7fjG9/4BkpKSvDVr34V4+PjMa+4qKgI99xzD774xS+e89iqVavwq1/9Cuedd945j7W3t+Nzn/scHn30UVitVtTV1eGaa66JPv7b3/4WTz/9NN577z10dnbi6NGjuO+++2KOi5BcolCqwUzTKZ1hWciV5yYHCkxqlOap0d41jiBdlBNEppUdPDEGiViE5ZWpnc6v0WjATrNNAwxGHBwlkwghk/QMuVBoTv/annlGJUw6BVo7rKkOhZCkOto1Dp1ahtJ8TULLmekcgGVZaDSJLZ+kD6vDhwPHR3CwwznttcxCf+YGjRx6tRy9w3TjJdOEOR49Qy5UFunmbR1VxTr0DbtTch3C8zxefvllPPLII3j00UfxyCOP4OWXXwbPz9/NG5fLhaeffhrV1dUxPV8QBLz11ls4cuRIzK8BgGf/9Ed85fbbMTAyhgu3fAhfv/NrAID/+u+nUFpWhmee/TNGxu24/8HvwOv14qOXfgSXXPZRHD56Cn/689/wi5/9BG/teR1iMQuGAf7v7y/h4q0fRt/QCL72/+7CVZ/4JJ7/618RDkdG9//zn/+E2WzGmjVrADDY/KGL8c7egzjR1Yf6hkZ87tOfnjLO//jpT8DzPE6c6kbPwBB+9p8/h1wuj/l9kvkRU0K8rq4OEokE77//Prq7u/Hiiy/iqaeewosvvoiuri68//77EIvFpzeK2HziE5/AlVdeCbPZfM5j//Zv/4aLL754yg3kqaeewiWXXIKmpiYoFAo8+OCDOHjwII4cOQIAeOKJJ3DnnXeiqqoKJpMJO3bswBNPPDFtHIODg9i3b985P+3t7TG/F0IylVgigaWsBu/vbZ7cKb25GVW1dRBLpr5DXmBSw6iV41i3DTxNE8p5x3ttCIY5rFpsTnm5AalUioaGBrS0tEzapltaWrB6zVoEwsDu/f042WenxDghBGGOR9+IG+WF2lSHEpNllUZ4/KHoKLOFHO1FyHwYsXkx5vBh2RSl1uI10zlAQ0PDvJVsIwsjFObQNejEngP9aO2wQquS4UPnVeK8xsa0+cyrinXoGnSC42iUeCbpG3FDp5ZBq5q/7UUpl8Csl6N7aOFvmJxZZ//KK6/Epk2b0NbWNi+lSe68807odDpotVq8//77eOqpp2Z8/sjICPR6PRQKBTZu3IivfvWruPLKK2Ne38euuALrN2yESCTCDdu24cAMo8v/7+9/R15ePj77+S9Cq5ZjxYpa3PSFL+C5Z/8Yfc6atWtx9TXXgmVZKBQKXHfDjXjxhRfgdLkQDofxpz/9CVdffTU8Xi9kCgW2b/8CzCYDxGIpbr/zW2hvOwLr2LkDF6RSKcbHrejoOAmRSIQ1a+uhVqfvzMRcEVNTzXfffRfFxcXTPl5bW4uf/OQnMxa/T5bW1lY0NjZG/1+j0WDRokVobW3F8uXL0draitWrV0cfX716NUZHRzE8PIz8/Pxzlvf444/jgQcemPe4CUlH/mAYrGUZLDIJdu3eDeF0Z/aq2josb9g442vLC7Vo67Sib8SFsvzMSCSQ5Bsc82BwzIMLVhZCJEqPthRbt24FAOzZswc8z4NlWTQ0NGDr1q1gWRYubxAdfXbs2teHQrMaFYVaqBTJnx5JCEl//SNu6DUyqDPkGCASsVi9JA/vHOzHoZY30XrowJTHOUIyQSjM40inFcsrTUmboXHmOQDH8WAYBo2NjdHfk8xjdwXQO+zC8LgHRp0CtRVGmHRyMExkEMZM530LTa+JJFUz6UZrruN5AV2DTqxcNP+zXCuLdGg5OozKQu2CXTdN1NmfaDoLfNBbYc+ePdiyZUtSbxz95Cc/wa233oqTJ0/isssuw4kTJ7By5Uo8/fTTuOWWWwAA5eXl0QGteXl5GBoaQigUwsMPP4wXX3wRoVAo5pjy8wui/1YqlPB4PFM+j+cFdHR04vChg1hU+sFrOI7D+g0f5D3KyiY34t2wcSPkcgXeeeddrFixHP/85z/xjW9+ExKpDFKZAvfe/W389S9/wdjYaPT8q29gGFqdAThj3OAdd/4/+Hw+3HjttfB4Pbju+htw/4PfgWSaAYhkYcSUEJ8pGX6moqKihIKJhdvthl6vn/Q7vV4frQ929uMT/3a5XFMmxG+55RZcccUV5/y+vb0d27ZtS1rchKSjzgEHiixqlK24ECsb18PvdUOuVE87MvxMLMOgulSPQyfHIid/StkCREzSicsbxJFOK+pr8yCXxvR1siBYlkVTUxO2bNkCl8sFjUYz6aRKo5Ri9ZI8eP0h9Ay58M7hQRi0MlQUamHSKVIYOSFkIQmCgJ4hF2oqUtf3YC7UCglcw63o6jgRvcCdGBEJAE1NTSmOkJDYHO0eh1ErR55RmbRlnn0OcKTLjZoqC90oyjAcx2PQ6kHPkAuBEIfSPA02riqGXHbu+eZs530LrapYh0MnRlGan76NmskHRmxeSMXsglwDREahy9A36kZ5wcLcMImlt4LJlPybAdXV1fiP//gPfOELX8Cll16KG2+8ETfeeOO0z5dIJLjnnnvw0ksv4dFHH8Xtt9+ecAwMIvsfxwnwBzmUV5Rj3QUX4J+vvDr9axjmnP+/5rrr8Pxfn8fo6BjqVq3GqjX1AMPgf55+Ci/87//ixf/7ByoqK+F0OlGUZ4ZUwoDjBYR5ATwfyYqr1Wp89/s/wHe//wN0dnTgqisux5IlS/DZm2ZuOkrmV9xnBr/85S9x4MABAMC+fftQWlqKysrK6En4fFOr1ec08XQ4HNH6YGc/PvHv6eqHFRYWYu3atef81NbWztM7ICQ9ODwBeP0hFFsiU3XEEgnUOkNMyfAJcqkY5YUadPQ5qHRKjgmFeRw4NorFZXoYNOlZ/0wqlcJkMk17UaSUS1BTYcSFa0uidXnfOjSA/lE3OJ62Z0Ky3ajdBzCAWZ+ex7DpBINBHD1yCI2NDeeM9mpubqbyKSQjjNl9GLX5UDtPN6QmzgHKiwzoG3HP/gKSFsIcH5nFt78PA6MeVBXrcOGaElSX6qdMhp9ptvO+hWLUyiGTijE0PvVIVZJeugedCzqav6xAg54FLJuSyt4Kl156KfLz8/H444/H/Jp///d/xw9+8AP4fL6E15+Xn4eOjg74gxzkUhE+9rGPobu7G//1xO8RCAQQDofR2noYLc17Z1zOdTfcgBf/9jc8+eTvcf0NNwCnk+ZulwtSmRRGkwk+nw8P7oj0LmQZBnKZCCKWAS8I8PrDeOnFl3Di+HHwPA+NVguJRAJWlN69a3JB3AnxH//4x9GR4Pfeey+uueYafOYzn1mQcikAsGLFimhCHoiMCO/o6MCKFSumfPzAgQOwWCxTjg4nJJf1DrlQbFFDlOCImXyDChIRi8ExOunLFYIg4PDJMeg00gUb3TCfJGIWFYVabFpdjEXFOvQOu7B7fx9O9tkRDFGdcUKyVfegE+UFmnNGA6W7WEZ7EZLOQmEerZ1WLKs0QiqZ34RAoVkFq91H3+dpbqJsxe79fXC4g6ivycd5ywtQYFJl5Cjr8kINuk/3eiDpy+UNwuMPoSCJs1RmY9ErIAgCrI7EE76xSHVvhW9+85t4+OGHY05wX3HFFTAYDHEl0adz513fwM9+/AgWlxfgu9+5H2q1Gi/+/R/4+0svYcmiSpQXF+IrX7oNTufM5021tcuwqLoa+/ftwyevvib6+xu2fRqVlVVYXFmOtatWYm1Dw6TXMQwgFrGQSUQ4fuIEPn75R5FvMuD8hrW4aOtW3HAjVaRItbjnuFutVuTl5SEcDuOtt97Cc889B6lUGnfCORwOR394noff74dIJIJEIkEwGATP8+B5HuFwGH6/HxKJBCKRCNu2bUNjYyN27tyJjRs3YseOHairq8Py5csBAJ/73Ofw8MMP47LLLoNOp8ODDz6Im266Kd63SUhWs7v9CIQ45BlVSVleZbEOrR1WmPVyyCTpUzqDzI+Ofgd8wTDWLS6Y/ckZhGUZFJhUKDCpYHcF0H36wqzIEqkzrpRTjTdCsoXbG4TTE8SapXmpDiVuZ472OjMpvhCjvQhJhuM9NujVUhSYknMeOhOpRASjTo7hcS9K82nfSEd2VwBHOq0QiRjU1+RDp878MowFRhWOddtgc/nTdiYlAXomBogtYB8khmFQmq9B95BrwUo1LlSd/TfeeOOc31133XW47rrrpnz+li1bMDQ0NOl3DMOgra1t2nV4AqHov3/9299PemxpTU30cUEAtn7kozhy7HKIxR98vtWLF+PZvzw/5bLvvve+adf79nvnjiJXq9XnLOvGbZ+eMr477/wavvLV2xEK82BZBlIxm5E3+7JN3JkrpVIJm82G1tZW1NTUQKlUIhQKIRQKzf7iMzz00EOTmlk+99xz+OxnP4snn3wSTU1N2LVrF4DITvuVr3wFTzzxBD73uc+htrYWTzzxBG6++WYMDQ1h3bp1ePbZZ6PL2b59O7q7u9HY2IhQKIRPfepTePDBB+N9m4Rktf5RN4otKoiSNCpOJZcg36RAz7ALi0sMs7+AZKxRmw89Q06sW5E+TTTng14jg15jgdcfQvegC28fGoRJJ0dFkZYubAjJAl2DThTnqSHOwOPYmaO96uvrozXE9+5txqrVa1NeLoCQmVgdPgyPe7BxVWw9qpKh0KRC36ibEuJpRhAEdPQ70D3oxJIyA0ry1Bk3Y2c6LBtJevYMuui8MU2FwjwGx9xYXzf/ffDOVpKnRkefHb5AGIpZSgElQ7rV2V8I/mAYYhEzKRmeahIxC4mIRSjMwxfgIBYxkEpEyJLDXkaKe++76qqrsHXrVrjd7miX2EOHDqG8vHyWV052//334/7775/ysanuLJ3p6quvxtVXXz3lYwzD4KGHHsJDDz0UVzyE5AqPPwSvP4ya8uRODSs2q7H/+Cg8/hBUNJI2K3n9IRzuGMXKRZacGS2tlEtQW2lEdakOvcNuHDg+CoVMjMoiHfIMiuiFWzAYzJkTzGxAn1duC4Y4DFk92LCACblkm2q0V3XNSsjNNRgZ9ya1SeEE2m9IIoLBIMZtDhzpdmNZVd68l0o5k8WgxJFOK/zBcFo1Ac9loTCPgydGEQpzuGBlYVaeV5bla7B7fx/8gfCs9c/JwhsYdcOgladk25OIRSgwqdA77MKSsoUbTDZRZz/bBUM8GGBBv2dixgASCQuxmEUozMHrD0EsYqdOjAtC9ByPsubzI+4j83/8x3/gv/7rvyCVSrFtW6TmjdPpxD333JP04AghyTc45kGeQZlw7fCzScQiFFvU6B5yYllF9n/R5hqO47H/+CjKCrSwGBZmel86kYhFqCrWobxQiyGrByd77TjeY0NlkQZH9r+DlpaWc6Ygsknex0jieJ7Hzp070dzcTJ9XDusbccOkUyzIqKz5Mt1orzG7D60dYxgYc6Om3JiUJAztNyQRZ24/HMeBYVlwjY3IX8DtRyJmYdYrMGz1LmjzPDI1fyCMlqMj0KqkWLM0D6IsLRsglYhgMSjRN+pGdYk+1eGQs/QMu1BTPj9NfWNRmq/BvmMjqC7RU+mMJOJ5AaEwD6U8vc/xGCZyjJCIRQiGPkiMS8QsWIaBz+tGwO+L1H5hGMjkCiiUaoA2laSKeyuRSCTYvn37pN996EMfSlpAhJD5EwiHYXX4sHqpZV6WX2BSYtDqhsPth05N0wOzyZFTViikYiwq1qU6lJQSsQyKLWoUmVUYHvfin//8F8aHu7Fp06Zo2YKWlhYAQFNTU4qjJV5/CA53EL5AGGGOx8HmN9HXfZI+rxzG8wJ6hpxYtXh+vgcX2tmjvcx6BTasKsbJXjvePNiPYosG5YWahEbA7dy5E21tbefsN8Ewj42bPhRtGiWXibM2sUXmbrrtB1jY426hWRVppEsJ8ZTyBcJ478gQisyqBR0Zmyql+RocPjmGRcW6rCkHkw3srgA4jodZn7rrVZ1aBqlYhDGHD3mGhWvqmdUEwB/kIJOyGTOgmmEAmVQEqSBCOMzDH+TABb0QwiFo1GqIxWKEw2F4vF4AgEKlTnHE2SXuhLggCHj22Wfx/vvvn9PF/te//nXSAiOEJN+I1QejTg6ZeH7umIpYFsUWNfpG3ZQQzyLdQ044XEGsW1lIJ/OnMQwDo0aCge6j0Yt8ADAYDKivr8eePXuwZcsWKiuQAoEQh95hFwbHPAgEOeg1sshIYCGMY+2HcOHmzfR55bDhcS+kEhEM2uz9jpKIWdRWGlFRpEVnvwNvHxqEWimBRa+AUSeHRimdsXa6IAgIhDj4Axxcbi/27t2LzVPsN7t27YYmvwYsK0GY5xEMcVDKJTDp5Cg0qbL6b0xiEwwG0dzcnBbfkyadAodOjiEY4tJzGn0O8AfDaG4bRolFjepSfarDWRBGrRwsw8Dq8MOsz70Zlumqf9SNIkvqa9YX56nRP+KOKSE+EasgCPMdVsYKhjmwLJOR/WGYiVIqIgYOdwAaTSQZDgBisRgqpRIutxsKpYrKp5wlkf047qzYbbfdhj/96U/YtGkTVKr57wxOCEkOAQJGbF4snucT0DyDEn0jbri8QWiUlFzKdDanHyd67Dh/RQEkadSUJB24XC7wPB+9yJ9gMBjAcTxcLldO1OlLF/5gGJ39DgyMumExKFFbYYxciJ4esWq1WgFBmPLz4nn6vHJF91DujBBVyMRYXmVCTbkBo3YfrA4/Wjus8PpDkEpEkEpEELMMGJYBzwvgeAGhEIdAiIOIZSCTisEF3dMe5wABKyo00f2G43g4PUGM2n04eGIUUokIS8sNMOkoCZSrZvqeXOjjrkTMwqiVY9TuQ7GFRtgtNI7j0XJ0BBajImeS4RNK8tXoG3FRQjxNcLyAwTEP1q0sTHUoKDKrcKLHFtONOpZlIRKJ4Pf7oVbTMexskVIpQtqXSpmNIPAAhGgyfIJYLP6gpriIbuoCQCgUAsMwC5sQf/bZZ9Hc3IxFixbNeaWEkIVndwXAsgy0Ktm8rkfEsiiyRE78aqmWeEbzB8M4cGIUKxaZ6ObGFDQaDViWhc1mm3Sxb7PZwDAMTg37oVCFsrJRVDrheQHdQ0509DlQaFZhw6riKWtDz/R5AQzAzu+xkaSe3RWA1x9GgSm3BnSIRCwKTKro++Z4Ab5AGKEQhzAngBcEiFgGIpaBRMxCJhVHb4AGg0G8vVM05X7Dsiw0Gs2k9Ri0chi0clSX6DEw5sahk2Mw6xRYVmmEKANHbJHEaDQaMAwT0/azECwGBUbGvZQQT4HDHWNQyMRYmgNlUs5WZFHjZK+dZiekiZFxL9RKCdSK1J+fSyUimPUKDIx5UBHDzXqLxYL+/n4UFxdDLpenfIT7QuN5btrHfAEOYhELQeCQ6YPoeUFAMBiclBQPh8PgT7+xmf4OZ+K47N0+BEHA8PAw9Hr9wibEtVotysrK5rxCQkhqjNi8yDMuTH2yAqMS/SNuePwhqCgZmJF4XsDB46MoNKtyLnkUK6lUioaGBrS0tKC+vn5SbdSGhgZo1Uq8fWgQJXlqLCrRQSKmi6Bkc7gDOHRyDFIxi/OWF0Crmv7GzUyfV+2KVThwchyrl4hoNGsW6x5yoixfk/N1rkUsE0kExJAMmO04N125C5ZlUJKnQb5RhcMdY3i3dQj1tXmQSzN75BaJDy+wyC9diubmFjQ0xL79zJc8gxInemzgeCHnjwMLIRgMwuVyweoW4PGFcf6KgpxL4AGA7HTSs3/Ujcqi3O7Fkw76R91pdVOsOE+N4z22mBLiEzcWBwYGwHGxJUWzSTDMn/UbAYIgQBCAMC9AmiXXWqGgH/3hMKRSKViWBc/zCAaDEInFsI7bY16ONMtnd8vlcuTl5SW0jLjPSr/+9a/jvvvuw/e+972c/EIjJBMFwxzszsCCnYSJWBaFJhX6R9w50TAnG7V3jYNlGSwppc9vJlu3bgUA7NmzJzKFjWXR0NCArVu3gmVZlOZrcKLXht37+1FVrENZgZYuwpOA5wV0DjjQNeDE0nIDSvNjG2U40+c15vBj/7FRrFlqoaR4FvIHwhgZ92Lz2pJUh5JxZtpvZiMRs1i7NA/He2x4r3UI5y0vmHIGB8lOrZ1WbNi0Bb0n9s1p+0k2hUwMpVyCcYcfFgMd5+cLz/PYuXMnmpubwXE8GIbB6jVrwa4sSHVoKVOSp8HxHhslxFPMHwjD5vSnVWNts06BI2ErHO4AdOrZZysaDIZo2alcqyd+ZMAJIHKMaW95B13HWyHwPMCwKKqsweoLNoFlMz8JLOZ5nNj3DrqORd4fw7KoWLoCtWsvABPH+1tSlL0lAhmGScpnzQhx7kX9/f24+OKL0d/fD4tl8oGks7Mz4YDSxb59+1BfX4+WlhasXbs21eEsuMN9jlSHQJKof8wNtyeIpeXGBVtnKMxh37ERrF5igUyy8Be/K0vohHOueodd6Oh3YP3KQpraGaOJUVAajWbKEW8OdwDHemzw+sNYUqZHoUlFN5XnyOsP4dDJMQgCsGqxeU4laab7vEZsXhw+OYb6mnzoNVRCJZsc77EhEOSwstqc6lAy1mzHudmc6LVhyOrFuhUFNGMmB/QMOdEz7MIFK4sgYpmEt59kOdlrRyDEYXkVlfWbLy+//DLa2trOmVWybNkyNDU1pTq8lOB5AW/s60NDbf6Ms9nI/Orsd8DlDaZVQhwAjnaNAwBqKhbuWj0TTeSoDr+3G0M9J9HY0BA9xuxtbkZBeTVWnrc5xVEmTzgUgt/rhlyphlgS//VOruZD4snlxp2luv7662GxWPClL32JmmoSkiHGbD6UFixsnUaJWASzToEhqxflBdl7dzLb2F0BHOu24bzlBZQMj4NUKp2xMZhOLcN5ywowYvPieI8N3YNOLCmjZnPx6h124Vi3DRVFWlQV6aINM+M13eeVZ1CittKIfceGccHKIhrJmiU4jkffiAv1NfmpDiWjzXacm83iUgP8QQ4Hjo+ioTafbgpmMY8vhOM9djQuy4/Oikp0+0kWs16BgydGUx1G1goGg2hubsamTZui5R0MBgPq6+uxZ88ebNmyJaU3RFKFZRkUmVUYGHNDq6KkZ6r0j7pRm4ZJ50KzCvuOjWBpuYG+G2cRDgXRefQQLty8edIxprGhAbt270btmgvmlDxOR2KJBGodzdaeT3Ff6e3btw8jIyNQKhemFjEhJDEefwjBMAd9DFOwkq3ArMKRTitK8tQQZcH0pWznD4Sx//gIllUZafTKPMkzKGHWRepIHjo5Bq1KiqXlxrRo7JPOgiEOrZ1WeHwhNC7Lj2lK6VwVmdXw+ELYf2wE5y8voEaAWWBgzAO1Qjqv2w2JzfJKE947MojOfgcWlehTHQ6ZBzwv4HDHGCqLtGm5z+nUUoQ5Hm5fiL5754HL5QLP85OaqAKIlnhwuVxpcWMkFSaSnktKDXO+oU/mzu4KgON4mHTyVIdyDp1aBjHLYtzpp8Eys/B5PRCmOcYIPA+/101JZBKzuK/yFi1aBJ/PNx+xEELmwZjdB6NWDjYFd5tVcglUCjFGbd4FXzeJTyjMo+XYCIotahSZ06fRTDZiWQal+RpsWl0MnUqGdw8P4vDJMXh8oVSHlpZGbT68dWgAMokI61cWLkiCpbpED5lUhLZT4/O+LjL/eoZcKFvgWVJkaizLYNViC7oGnbC7AqkOh8yDrkEnBAFpWyuZYRiYdQpY7XQ9Ox80Gg1YloXNZpv0e5vNBpZlodHk7rFYp5ZBLIokPcnC6x91o8iiTtsR2IVmFQbHPKkOI+0plGow0xxjGJaFXEnXsSR2cSfE77jjDtx44414++230dnZOemHEJJ+xuw+WPSpu9NcaFZjcMwLAbnV9CPdBYNBWK1WBINB8LyAgydGoVZIqAnqAhKLWFSX6rFpTTGkEhbvHB7EweOjcHmDM77uzM9uvqVyXWGOR9spKw53jGF5lQnLq0wLNlqbYRjUVVtgdfoxMOZekHWS5AsGgzjZ1Y9AIIA8A81sTBdKeeS75sgpK3iezg2yidMTRGe/AyurzWk9Atakl2PMQQnx+SCVSlG7vA579zZHE1YTNcQbGhpyslzKmYotajqvSAGO4zE45kGxJX2TpYVmFYasXnD0vTgjsUSCqppzjzF7m5tRVVuXNeVSyMKIu2TKF77wBQCRZhkTd9cEQQDDMOA4LrnREUIS4vRGRl9pUlj+wqCRoRuRaWoGTfpNUcs1PM9j586daG5uBs/zYFkWFdXLUVXbiDVL81IdXk6SSURYWm5EZZEO3UNOvH9kCDq1DKX5Glj0imhSYarPrqGhAVu3bk16R/VUr2vZ8lXQFa+EXiPHhlVFkKWgnr1EzGJVtRn7jo3AoJFTPfEMcuY2xXEcWJZF2N44L9svmZuSPDX6RtzoHXahvJD6jGQDjhdw+OQYFpfp074UiVmnQPupcXC8EK1xTpKD5wUYSurAMAz27NlzzjlEris0q/DWQTvCHA8xlWRbMCM2H9RKCVRpfGxSKSIzq8fsPuQb6Sb+TJY1bsCI3Ytdu3ZDEHgwLIuq2josb9iY6tBIhon76u7UqVPzEQchZB6M2X0w6xVgkLqTfQYM8k1KDI97KSGeBnbu3Im2trZosyObzYa9e5th1MohWlmU6vBymlQiwuJSAyqLdBgYdeNkrx3tp6wozlOjwKTCO2++cc5n19LSAgBoampKaixTbScLua69e5tRxQAfuuKjSV1XvAxaOUrzNTjcMYZGagKYMRZy+yVzwzAMllUa0dw+jCKLChIxNXHOdB19dkglLMry078khlwmhlIugd1F9XqTrW/EBblMgiuv+Cguu+TDcLlc0Gg0OT8yfIJCJoZWLcPIuBdFaTxaOdv0j7rTenT4hMjMajclxGdhd4dgrFyLzRddhIDXA7lSTSPDyZzEfVuyvLx82h9CSPrgBQFWhx/mFJZLmZBnUMDhDiAQCqc6lJwWDAbR3NyM+vr6yV25Gxuwb1/LgpTFILMTi1iUFWixYVURVi2xIBji8e6hPrz//t5zPrv6+no0Nzcn/NkJgoAwx8MfCGPc7sbevfO3rjPNtE22tR5Mi22yukSPUIhH3whNcc4E021T87H9ksTo1DKY9QqcGnCmOhSSIJvTj95hF1YsMmfMjUOTXo4xqiOeVBzHo6PfES2/J5VKYTKZKBl+lkKTCgNUK3rB+ANh2Jx+FJhUqQ5lVgUmJUZtPoTCfKpDSWtDY+7IzXSJFGqdgZLhZM5iGiHe3NyMhoaGpD2PEDL/HO4ApGIRVPLUf0GIRSKYdAqMjPtQmgEjh7KVy+UCP01Xbp7n4XK5YDKZUhQdmYpBI4dBI0e+VsC7rwhTfnYcx+HgsT6YjCaIRJPng3C8AI4TEOb5yH/DPEIcD47jEeYEhDge4TCPMBc58RaLWAT9028nHMfhrf2nYDIZIZeKIZOIIJOKIv+WiiCTiGKqGxsIcXC6gzjVMwCO49J6m2RZBsurTGg5OgyLQQG5lEqnpDM6zmWW6hI93jk8iLICDe1bGSrM8TjcMYbaCmNGlZay6BU42mXDUhrTlTQ9wy5olFIYtTQjdCYFJiWOdo0jGOIgTUFJuFwzMOZBnlEJiTj9S9TIpWLoNDKM2r0oMqf/iPZU8PhD8AbCMNPsHpIEMZ21fP7zn0d1dTVuueUWbNmyBTKZLPpYMBjE66+/jsceewwdHR04dOjQvAVLCImd1eGHUZc+J6T5RiWO9YyjOE8NNkNGD2UbjUYT7cp9ZrLIZrOBZVloNHSzIl1ptVqIRNN/dmqVGv5gGBwnRBvYCkIkwS0SMRCzLGQSBmIR+8GPmIEk+m8WIpYBwzAIBoM48KZo2nUtrsgHL7DwBzk4PUEE7Bz8wTD8AQ5hjo8mxuVScfTiQ4CAcFhAIBSGP8ghFOahUUqhU2vAZsA2qdfIUGBS4ViXDauWWFIdDpmBRpMZ2xSJUCkkKDAp0T3oxNJyY6rDIXNwrNsGtVKaceUf9Bo5vP4Q/MEw3YxJAo7jcWrAgfqa/FSHkvYkYhGMOjmGx700UGgB9I+6UVuROd8vBUYlhqyUEJ/OkNWDPIMCIuoJQ5Igpm//ffv24Ve/+hVuu+02DA4OoqqqCjqdDg6HA52dnSgsLMTtt9+O5557br7jJYTEgBcE2Fx+LK8ypzqUKI1SColYhDGbGwpRGAqq9bXgwjyD4ooa7N3bjMbGhkm1dRsaGmhKaxqTSqVoaGhAS0tLtBTExGfX2NiI2qrkNUSdbV0l+fppXxvmeASCkQR5IMghxPHREetiERtJlkvFUMrE0ZHkfY2NU64r3bbJJWUGvHmwP9qbgaQnqVSK+vp6Os5lkIoiHd49PIiqYn1GjOAjHxiz+zA87sXGVZnXg0TEMjBo5Rh3+inxlAR9I+7TN7plsz+ZoNCsQt+ImxLi88zuCoDjeJjSaJDYbPKMShzrtlHj1SmEOR5jdh9WLabBKSQ5YkqIi8VifPWrX8VXvvIVtLS0oKWlBePj4zAajaivr0d9fX3G1IsjJBe4PAGIRSyUaTR1led5+PoP4e0324GJbtA1dVjeuBEs3eGddwOjbrSdGseGjVtw6mgz9uzZA57nwbIsGhoasHXr1lSHSGYx8RktxGc313WJRSzEChYqRew3uxbyfSVCImaxtNyA9q5xbKgriqk0DEmNFWvWY9DqSfttikSoFRIYtDL0j7pRUahNdTgkRqEwh8MdY1heZcrYsg9GrRzjDkqIJ4rnBZwadGLlIipHFas8gxJHOqw0Q2Ge9Y+6UWRRZ1SuSi4VQ6uSYmDYAZWMp6a0Zxi1eaFTyWifIUkT15bEMAwaGhqoTjghac7q9Kdd/b4je9+Ea6QbWy7cHB2xt7e5GWCAledtTnV4WSsU5tF2ygq7K4D62jwYNHIsLmvCli1b4HK56CQrg7Asi6amhfnssnVdiSoyq9E96ELviAvlBZS4S1c9w240fbgJZt3H0n6bIhEVhVoc7rCivECTUYmLXNbeNQ6zToF8ozLVocyZSSdH77Ar1WFkvEGrBzJJpF8QiY1YxMKsV2DY6kU53QicFxzHY3DMgwtWFqY6lLjwPI/eE8145cghAMKkm/q5PIhMEAQMWb2oLKb9hSRP7u5RhGQpAQLGnf60mhoWDgXRefQQGhsaojVdDQYDGhsa0Nl+COFQKMURZie7K4C3Dw0AANbXFcGg+WCbkEqlMJlMlCTKQAv52WXruhJRW2FER58doTCX6lDIFGxOP/zBMApMqozZpghg0ikgFjEYtftSHQqJwfC4F+MOP2oyqC7vVDRKKUJhHl4/nYfOlSAI6Ox3oKpYl+pQMk6hWYVBqyfVYWStEZsPaqUkrlmL6WDnzp3o6+7AhRduxpVXXolNmzahra0NO3fuTHVoKTXu9EOAQGWZSFJRQpyQLOPyBsGAgVqRPgkAn9cDgecnNTgDIklxgefh97pTFFl2EgQBHX12NLcPo7pUj1WLLVSXlZAk0WtkMOsVONnrSHUoZAqnBpyoKNRSSZsMVJKnQd8InQ+ku2CIw5FOK1YsMmf8uQXLMjBq5bA6/KkOJWON2CI3sfIMNDo8Xha9Am5vEL5AONWhZKX+UTeKM6zZbzAYRHNzc7SvDhC5Xq6vr0dzczOCwWCKI0yd/lE38o0qMKDzO5I8mX0WQwg5x7jTD5M+fUaHA4BCqQbDsrDZbJN+b7PZwLAs5MrMOllJZ/5AGHvbhzFi82J9XWHGnQgSkgmWlBrQP+qmUYVpxu0NYtzpR0keNSnLREVmFax2H/xBSg6ls7ZTVuQZFFnTXNikizTWJHPTPRS5CUmljuInErGwGJQYolHiSecPhGFz+lFgUqU6lLi4XC7w0wwi43keLldulngKczxGxr0wp1mOg2Q+SogTkmWs9vSrHy6WSFBVU4e9zc3RpPhEDfGq2jqIJZk1lS1dDY978fbhAehUUpy/vBBKOf1dCZkPcpkYpflqnOyzpzoUcoZTA06UFWgyftRqrpJKRMgzKDEwSsmhdDVk9cDuDmZ8qZQzGSkhPmcubxAuTxBF5sxKOqaTApOKEuLzoH/UjTyjMuPOBzQaDdhpBpGxLAuNJjdv+A+Pe6FVyyCTUDNNklyZdYQghMzI7QtCgACNMn3KpUxY3rgRBeXV2LV7N/7617/ijV27kFe6CMsbNqY6tIzH8QLaT42j7ZQVqxZbsLTcSOUCCJlnlUU6jIz74PLm7vTVdOILhDE87kFZQW5eLGaLIosag2MeBINBWK3WnJ4enm4CIQ5tp6xYucgEsSh7LiHVCgkEQYDbRzN+4tU96ERJnhqiLNoeFppZr4DHF6YZZ0nWP+pGSV7mzZKVSqVoaGhAS0vLpEFkLS0taGhoyNmeKJlY/oZkhphusZSWlsY0DaqnpyfhgAghczfu9MOgkadlbS2WZbHyvM2oXXMB/F43eq1B6LSqnO6WnQxefwgHjo9CKhFhfV0RZBJRqkMiJCdIJSJUFGlxoteOtUvzUh1OzusedKLQrIZcSqOHMplBI0X7obfxxkvHIAgCWJZFQ0MDtm7dSucLKXb01DjyjSqYdNlRKmUCwzAwaRWwOnxQZ1jzvVQKhjgMWT3YsKo41aFkNBHLIN+oxOCYB4tK9KkOJyvYnH7wAtJuxnSstm7dCgDYs2cPOI4Dw7I4r7Ex+vtc4wuE4XQHsHZpHsYHc7NkDJk/MV01PPTQQ/MdByEkCawOP6qKtKkOY0ZiiQRqnQH5rB89Q04Umelu71yN2Lw4fHIMFYVaVBXrqH4jIQusolCL3fv7YHcFoNdQ1/tUCYY49I24sb6uMNWhkAS99tqrcI71YvPmzTAYDNGRcQDQ1NSU4uhy16jNh3GXHxuzNPlp1MkxZvehvCC9z6HTSd+IGyadAgoZ3YRMVIFJheM9NkqIJ0lkNLEqY6+LWJZFU1MTtmzZgtExG1q7XLh43aKcnf07cLr8TTbNTCLpI6ZvsM9+9rPzHQchJEHeQBihMA+NKjOSMnq1DJ0cD5c3mJYlXtJd96ATHf12rF5iybrRWoRkCrGIRWWRDid6bWhcVpDqcHJWz7ALZr2c+iZkuGAwiObmZmzatCnaUMxgMKC+vh579uzBli1bcna6eCpxHI8jp6yorTBmXD3eWJl0chzvsUEQhIxNoi0knhfQM+xCXbU51aFkBZNODn8wDLcvRLMUEsRxPIas3qy4QS6VSlFclI/uMQ5Whw95BmWqQ0qJgTEPllVmT98Kkl7mfFbj8Xhw6tQpdHZ2Rn8IIakz7vDBqJWDzZATeZZhYNErMWLzpjqUjCIIkXrh3UNOnLe8kJLhhKRYWYEWbl8INmrKlhIcx6NnyInKIl2qQyEJcrlc4Hk+mgyfYDAYwPM8XC6aKp0KJ/rs0CqlKDBlb+NEpVwCkYiF00M162MxYvNCImYztiRFumFPl00ZGqPmmokaGvdCq5Jm1Q3yfKMSw9bcvF62uwLgOJ6ONWTexJ0Q7+rqwvr166HValFdXY3FixdHfwghqWN1+mHUZdaXRb5RiTG7HxzPpzqUjCAIAo50WjHu8mPdikIaRUJIGhCxDCqLdOjod6Q6lJzUN+KGRimFTp0Zs6PI9DQaDViWjTYSm2Cz2cCyLDQaapi60BzuAPqG3ajNgdF5Jq0c43RjMya9wy6U5dP+mEyFZhUGrZQQT1T/qBvFGdhMcyb5JhVGbF7wvJDqUBbcwJgbRRY1zdwh8ybuhPjtt98Oi8WC5uZmqNVqtLS04NJLL8UTTzwxH/ERQmIQCIXhD4QzLiEgl4qhVojpAiQGgiCgtcMKlzeI85blQ0rNMwlJG6V5ajg9QdhdgVSHklM4XkDngAPVVHc1K0ilUjQ0NKClpSWaFJ+oId7Q0EDlUhaYIAhoOzWOxaX6nKgTbdTJYXXQ+ehsvP4QHO4ACs3ZO2MgFQwaOUJhDi4vzVKYK68/BKc7gAJjdpUWUSskkElFOXe9zPMCBsc8KKJjDZlHcZ/dvPPOOzh69CiMRiMYhsHq1avx61//Gh/96Efxmc98Zj5iJITMYtzhh14jgygD755ajJGyKRZ9dp28JNuxHhtc3iAalxVkbQ1PQjKVSMSiskiLjn476mvyUx1OzugbcUGlkMBAU2mzxtatWwEAu/fsAc9xYFkWjY2N0d+ThTMw5gHPCyjNkZHARq0c7aes4HkhZ5vXxaJvxI1Cs5oa3CVZpGyKCoNjHmjK6ObfXPSPupFvUkGUhdtmvlGJ4XEvzPrcKZU5avdBIRNDTb3GyDyK+2gRDodhNEamzSmVSni9XhQVFaGjoyPpwRFCYjPu8mdsbS2TVg63Nwx/MJzqUNJW16ATw1Yv1tbkUTKckDRVmq+Bwx2Aw02jxBcCxws41e/AomKqHZ5NWJZFU1MTvn7XXbjw0mtx3WduRVNTE1iWvvsWUpjjcbzHhpoKQ84khxUyMWQSMRweOoZPh+cF9I24UZJlJSnSRaFZhSEqmzInPC+gf9SDEkt2bpv5RhWGx70QhNwpm9I/6kZxln6eJH3EfXZZVVWFw4cPAwCWLVuGxx57DL///e9hMpmSHhwhZHahMAe3JwSDJjMT4iKWhVknp+aa0xi1+dDZb0dDbT7k0uyfskxIphKLWJQVaKmW+ALpH3FBKZdQY+EsJZVKUVVWCJubbpanQkefHXq1LOf2L6NOjnEqmzKtEZsXcqko40o0ZgqDRgaOF+jG+hyM2X2QiNisnTGmVUkhFjE5U5ovGOJgtftQQOVSyDyLOyH+rW99C4ODgwCAe++9F/fffz9uvfVWPPDAA0kPjhAyO5s7AI1amtFTFy1GBUZtPgjInbvesfAFwjjcMYqViyxQUQNNQtJeeYEWNqefaoDOM54X0DngxKISGh2ezSwGJWxOPziOGm8vJI8vhN5hN5aWG1IdyoIzUmPNGfWNuHOmhE4qMAyDAiONEp+L3hEXSvOzezRxvlGJIWtuDCAbsnpg0ikgo55ZZJ7FnUH71Kc+haamJgDAhRdeCKvVCpvNRvXDCUmRcbsfRk1mj9TQKmVgWYZGRJyB5wUcOD6CsnwtLIbcGqFFSKaSiFmUFWjQSaPE51X/qBsKqSjnRq/mGplEBLVSSo0OF9ixbhvKCzVQynPvRrxRJ4fdFQDH0wCNs3n9IdhdfmqmOc8KzLmT9EwWrz8Em9OPQnO2J8RVGM6RGdX9ox4UWehYQ+Zf3AnxO+64A0eOHIn+v0QigUpFGyshqcDxPBzuAAy6zJ8elmdQYmTcl+owUi4YDMJqteJY1yhELEsjIAnJMOUFWozavLA7PbBarQgGabR4MvG8gI5+BxaV6FMdClkAJp2cEuILyOb0w+4OoLIoN889ZBIRlHIJ7C7a5s7WN+JGgUmV0TNSM4FeLYMA5ExpjEQFg0G0neiFWSfN+j5LOrUUEISs3zbcvhA8vhAsBmWqQyE5IO6jRmdnJ1avXo1169bhd7/7HTyeuU3p+cUvfoGGhgbIZDJcd911kx5rbW3FunXroFQqsWzZMrz22muTHv/zn/+MRYsWQalU4uKLL0Z3d/ekx++9915YLBbodDps374dgUB2HzTI9MKhIFwOG8KhUKpDmRd2VwAKuQQycebXljYb5LA5/QhzXKpDSQme5/Hyyy/jkUcewa9+9Sj+8j+/wWj3/pxqnkJINhCLGIx2H8Avfv4zPProo3jkkUfw8ssvg+ep7EMy9I+6IZOIYNbT6PBcYNYrMOagm+UL5XiPDYtKdDmd9KSyKeeaaKZJ5VLmH8MwKDApqWzKLM68bvrH/z6Nv//591l/rsUwzOnmmtm9bQyMulFoVkGUIw2dSWrFfbbzwgsvoLu7G5dffjm+//3vo7CwENu3b8e7774b13KKiopwzz334Itf/OKk34dCIVx++eW44oorYLPZsGPHDlx11VUYGRkBALS3t+Nzn/scHn30UVitVtTV1eGaa66Jvv63v/0tnn76abz33nvo7OzE0aNHcd9998X7NkmG43keh9/bjb//z6/x6vP/jb//z+M4/N7urPuSHHf5YdJn/uhwAJCJxdCqpRiz5+aF786dO9HW1oZNmzbhqquuxIUXbsaJ48ewc+fOVIdGCInDzp07MdR/Chdu3owrr7wSmzZtQltbG+3LScDxAjr67FhSpk91KGSB6NUyBIJh+ALUXHO+jYx7EQhxKM3L7aQnNdY8FzXTXFiFpkgdcRoUM73J101XYfPmzTlxrpVvUmJ4PHvLpgiCgIExKpdCFs6cbv8XFRXh7rvvxsmTJ/G///u/6Ovrw4YNG+Jaxic+8QlceeWVMJvNk37/xhtvwOv14lvf+hZkMhmuvfZarFixAs899xwA4KmnnsIll1yCpqYmKBQKPPjggzh48GC0jMsTTzyBO++8E1VVVTCZTNixYweeeOKJaeMYHBzEvn37zvlpb2+P869C0smRvW9iqOckLty8GVdddRUu3LwZQz0ncaT5zVSHljS8IGDcEYBRkx0JceB02RRb7iXEg8EgmpubUV9fD4Mh0sTKYDCgvr4ezc3NVHKBkAwxsS830L48L3qHXVAqJFQ7PIewLAODVg4rjRKfV4Ig4HivDdWlerA5PirPqJXB4QlSM9cz0OjwhaVTR3orZXtpjLnK5esmg0aGMCfA6cnO9zju9INlAEMW5TdIektoPtwrr7yCxx9/HG+88QZWr16dlIBaW1uxcuVKsOwHoa1evRqtra3Rx89cl0ajwaJFi6Z9fPXq1RgdHcXw8PCU63v88cdRX19/zs+2bduS8n7IwguHgug8egiNDQ2TviQbGxrQ2X4oa8qnuDwByKQsFLLML5cywaCVIxDi4PFnx2cUK5fLBZ7no9vrBIPBAJ7n4XK5UhQZISQetC/PnzDHo7PfjiWlhtmfTLKKWaeA1U4jdufTwJgHDMOg0ESj8iRiEdQKCWyUjATwQTPNAto2FlSBSYVBKpsypVw+14qUTVFmbdmUyOjw7G6OStJL3Anx3t5ePPjgg6isrMQ111wDs9mMd955By0tLUkJyO12Q6/XT/qdXq+PHtjifXzi39MdGG+55Ra0tLSc8/PUU08l5f2QhefzeiBM8yUp8Dz8XneKIksuq9OfdXdPWYaBWafAaI500J6g0WjAsixsNtuk39tsNrAsC42GRuUQkgloX54/XYNO6DVy6DU0ZT/XmPQKWJ0+Kh8wT/jTpYgWl+rBMLk9OnyCUUd1xCdMNNPM9oaF6abApMKQ1UvHvSnk+rlWJCGefdfKHMdj2OpBkZluvpGFE/fQ0srKSmzcuBEPPvggrr76asjlyU3IqdVqOByOSb9zOBzRA1u8j0/8e7oDY2FhIQoLC5MWP0k9hVIN5vSX5JlJcZvNBoZlIVdm/l1HAQJsTj+WlhtTHUrS5RmVaDtlRVmBFmyOXJhJpVKsrFuNvXub0dgYmdlgs9nQ0tKChoYGSKXSVIdICImBVCpFQ0MDWlpaolN5aV9OXDDEoWvAifNXFKQ6FJICaoUELMPA6QlSDeN5MGT1QCxikWdQpjqUtGHSKnCyzwYgt2ek8LyA/lE31i7NS3UoOUerkkIiYjHu9FOZsLNIpVKsWr0mZ6+bjFo5AkEObl8IaoUk1eEkzbDNC41SCqU8e94TSX9xJcQ5jsPrr7+O888/f94ONCtWrMDDDz8MnuejZVMOHDiA66+/Pvr4gQMHos93u93o6OjAihUrJj0+UdP8wIEDsFgsyM/Pn5d4SfoRSySoqqnD3ubmaNkUm82Gvc3NqKqtg1iS+QdZjy9SUkStyL4vfJVcAqlEBJsrAJM2u0bAzyS/cg38QQ579uyJHv8aGhqwdevWVIdGCInDxD47sS8DDJatXEX7cgI6BxzIMyqgUWbfdx6JjUmvwLjTTwnxJAoGg3A6nTje7UZtFSU8z2TQyuDyhhAK8zk9MnrU7oNUQs00U6XArETfkB0Ie6HRaLI+0RuPiqWNcHpCOXndxLIM8gxKDFs9UJfoUx1O0gyMUrkUsvDiSoiLRCJccsklcLsTLzkRDoejPzzPw+/3QyQSYcuWLVAoFPjhD3+Ir33ta3jhhRdw+PBhPP/88wCAbdu2obGxETt37sTGjRuxY8cO1NXVYfny5QCAz33uc3j44Ydx2WWXQafT4cEHH8RNN92UcLwksyxv3AgwwK7duyHwPBiGRdWyOixv2Jjq0JLC6vDDkMXJ4jyDAiPjnpxJiNucfrh9YXzi4x8F97GPwOVy0YkvIRmKZVk0NTVhy5YtcLlc8IZY9Iz4JvVGIbHzB8LoG3ZhfV1RqkMhKWTUyjFk9aCySJfqUDIez/PYuXMnmpubwXEcGIZFoLEBH/7wh+k4dZpYxEKrksLm9CPPmLsj53uHXSjNowRVKvA8j2OH3sWB/fsACJMSvrm+nwZDHAatXnz88kshZi/JyeumfJMSJ3vtWJQlCXF/MAyb049Viy2pDoXkmLhLpixevBiDg4MoKkrswuShhx7CAw88EP3/5557Dp/97Gfx5JNP4oUXXsD27dvxwAMPoKKiAs8//zzy8iIjF2pra/HEE0/g5ptvxtDQENatW4dnn302upzt27eju7sbjY2NCIVC+NSnPoUHH3wwoVhJ5mFZFivP24zaNRdgcMQKq1vAyqXZUxpn3OlHVZE21WHMG4tegZ5BFwLhMGTi7GkaOp0TvXYsKtZBJGIhEklhMplSHRIhJEFSaWRfNvACTg16MGb3waynac/xOtFnR6FZTVNoc5xRK0f7KSt4XgDL5kY5tfmyc+dOtLW1YdOmTZNKDTAMg6amplSHlzaM2kgd8VxNiPsCYdhdlKBKlZ07d+LkiWO48MLNk/ZTADm/n3YNOpFnVETPC3LxusmkU+DQiTF4/aGsOD8aHPMgz6DM6Rk5JDXi3uK++tWv4tprr40cpE+eRGdnZ/QnHvfffz8EQZj08+STTwIAVq5ciffeew8+nw/t7e24+OKLJ7326quvRmdnJ7xeL1577TWUl5dHH2MYBg899BDGxsbgcDjwu9/9DjIZTfPKVWKJBEVF+QiEGfgC4VSHkxRefwhhjodGlb3btVgkgkErx5g9+xsajdl98AbCKMnP7gYwhOQqlmVQUahF54Bj9ieTSZyeIIatXlSX6lMdCkkxhUwMiVgElzeY6lAyWjAYRHNzc7THARBpOl9fX4/m5mYEg/T3nWDSyWF1ZP956HT6RlzIp2aaKUH76fSCIQ49Qy5UFetTHUpKiVgGFoMia5prDox6UGihZppk4cU99HL79u0AIncmJzqRC4IAhmHAcVxyoyMkCUQMA7NOjlG7F2X5mT+q2urww6iRZ33DyTyjAqcGnCg2Z/dUzc4BB6qKtBDRiDdCslaxRY2TfXY43AGqxRqHY93jqCrWQSYRpToUkgaMOjnVEU+Qy+UCz/OTms4DkWQbz/NwuVw5OdpyKnq1DB5/CMEQB2mOHYN4XkD/iBurltDo8FSg/XR63UNOWAyKrGomOVf5RiW6Bp0ZX0rM6QkiEOJgpuaxJAXivuV76tSp6M/EyPCJfxOSrsx6OcbsvlSHkRRWpw8mffbX1tapZeB5Hk5vINWhzBuHOwC3N4hiaiBCSFYTiViUFWhxikaJx2zE5oXHH0Z5YebfyCbJMVHCgsydRqMBy7Kw2WyTfm+z2cCyLDQamq02QSRiodfIcnKbG3P4IBazMGiy/3ojHdF+OrVQmEP3oAuLijM7AZwsFr0CLk8Q/gyfBT8w6kaRWUXl0EhKxJ0QLy8vn/aHkHSlVcsgCIDTk9nJVa8/0vFem8XlUiYwYGDWKzE6nh03MqbSNehEab4GIhFNRyUk25UXaCIlkvyhVIeS9nhewLFuG5aU6Wn2DIkyauWwOf3geSHVoWQsqVSKhoYG7G1ujibbJmoTNzQ05FRTulgYtblZNqVv2I3SvNxMuqaDif20paWF9tMzdPY7YNEroFbm5vs/m0jEwqRXYNiWuWVTeF7AwJgHRTQ4jKTInLrVPfPMM/j973+P4eFhHDp0CHv27IHVasWVV16Z5PAISQ4GDPIMSozYfBmdTM6VcikT8o1KHDwxhooiHqIs66juC4QxavNi05qSVIdCCFkAErEIxRYNTg04sbwqN6c6x6pvxAWxiEWhiepJkg+cWUecyqbM3YZNW9Az5MTu3bshCAJYlkVDQwO2bt2a6tDSjkkrR2unNdVhLCh/MAyrw4eV1fQ9lUoT++OePXvA8zwABo2Nubuf+gJh9A67sb6uMNWhpJUCkxJ9I26UF2TmbLoxhw8yiQhaFd3kIKkRd0L85z//OR555BHccsstePjhhwEARqMR3/zmNykhTtJanlGBA8dHUVGohThDR+RanT5U5ND0cblUDLVCjHGnHxa9MtXhJFX3kBMFJhXVxiUkh1QUafHWwX5Ul+pp359GKMzjZJ8Da5ZYor1qCJkwUTaFEuJz1zvixgUbP4TFJVfA5XJBo9Hk7IjT2ejUMvgDYfiDYcilcxpHlnH6R9zIMyohEdN3VCqxLIumpiZs2bIFLpcL7b0eVJUYwWbZAKFYney1o9iihlJOtcPPZNErcaTDmrG9DgZHPSiiZpokheI+ov7iF7/AP/7xD3z729+OHpBrampw/PjxpAdHSDLJJGJoVFJYHZlZgsMbCCMYyo1yKWf6/+3deXCc9X0/8Pc+e9+XVrd1+JIt+cJaGQcQmOBRc5WWJCQNoQPpMKGETtom6QU/woRJCGkzk0xDmoY2pEeGAElJQifNhChcIiHBKzC2LJ+ydUurlbTaQ7va6/n+/hBaELZlXatnj/drRjP2Put9PvLud5/n+Xy/z+fjcZkwUcC3gl1KKi1j2B9FQ4E3QSGilTHqNSh3mTA4HlY6lLzVNzIDl00Pp421a+liC401aXXSmfnzj/oqG3Q6HdxuN5PhS5AkFZwlVLteCIHhiSg2VbBcSr5YGKf1VU6MBmaVDkcR4dkk/NMxbKnlddO7aTUSXHYD/NOFd62cSsuYCMZQVcaEOClnxQnxQCCA5uZmAFi0ckcI1vOj/FfhNMFfoDWpp0JxuG2lUy5lgdtmQDSWwlyysBuGvNPwRAROm54d0olKUGO1HYPjEaQzstKh5J1oLIlhfxRN9S6lQ6E85bTqEQwnWEd8lUYmojz/WCG3vXTqiE+F5iCpVHBxQjLvVLrNCIbniup6aLlOD0xjc429IFdAb4QKl6kgE+LjU7Nw2gwlc/cN5acVJ8S3b9+OF198cdFjL730Enbu3LleMRHljMNmQCKVxmwBNjWbCsXhdpTeCapaklBmNxbNKnFZFhgYj5RU6RsiepvVpIPdosfwRFTpUPJOb/80GqttMOp5cUSXZjJoodVIiMSSSodSkAbHIwVba1YpLpsB0yWSEB+eiKC2gs3t8pFWI6HcacLYZGmtEh+fmkU8kUY9r5suq9xpQjA8h1S6sBZajASiqGEzTVLYihPiX/ziF3HLLbfg/vvvRzKZxJe//GV84hOfwBe/+MVcxEe0rtQqFTwOIyYKbBZ1di6FVLr0yqUs8DiNCATjECj8FWH+6Rh0Ggluu1HpUIhIIY3VNvSPhbnK9R3Gp2Yxl0izlBRdkauESlisp6nQ/HmU2156iyvWwmbWIZWWESvAxTQrkUhlEAjGmaDKY9UeC0YCpTOZns7IONU/jZ0Nbqil0rpDeiV0WjUcVj0CBbR4bDaeQjSWQrmruHqEUeFZcUL8Ax/4AJ555hn09PSgrq4Ozz//PB577DF0dHTkIj6idVfuNCEwE0dGLpxZ1MBMDGV2Y8mVS1lgM+shqVQIRRNKh7Jm/WMhNFRzlQNRKXPbjdBrJYxPldZKr8vhRS+thNM2XzaFVmbIH8GmCiub1a6Q6q0SIsVeNmVkIgqP08iyFHnMbTcglZaL4npoOfqGZ2Cz6OFxchHRlVS4TBgvoAV/I4EoqsrMPOcjxa3qntQbb7wRN95443rHQrQhTAYtzEYNJmfiqHDlfxMHAYHJmTh2lHhN1XKXCRPTcTgshbuyaTo8h0Qyg8oC+NwRUW41VtvRNxxCNVfj4fxIiBe9tGwumwGn+oMQQjC5u0xzyTQCwTiaG91Kh1KQ5uuIx4u22aQQAoP+CPZsLVM6FFqCJKlQVWbGaGAWdktx3zUcjSUx5I/i2r3VSodSEMpdJpweCCKdkaFRr3jN64YSQmA0EMXe7R6lQyFa+Qpxm+3SKxtdrtJO1lFhqXRbMD5VGLOo4WgCakmCxahTOhRFlTkNCIbnkM5klA5l1fpHw6ivskHibDhRyatwmZCRZQSChdnoeb1E4ykMjkewo96pdChUIEwGLTRqFSKx4i5hsZ6GJ6Iod5m4+neVPE4jJmfmirbMVSAYh0bNZpqFoMZjwdhUtGg/i8B8v6XjfZPYUmtnT5FlMug0sJl1mJzJ/3PK6fAc1JIEp5XfN6S8FSfEhSjeL18qHS6bHumMjFA0/29/DMzMwePgqjm9RgO7VY+JAk0ezcZTmA7Poba8OFcXEdHKqFQqNFbbcWEspHQoihFC4ETfJDbX2GEyaJUOhwqI0zY/SU5XJssCw/4I6op0dfNGMBm00GvVRVuqYpCfj4JhNelg0GkQKIDE52r1j4UBqNDARporUuE2F0QpvuGJKKo9vFua8sOyp9wWmmamUqmLGmieOXMG9fX16xsZUQ6poEJlmRljUzHY87gER0aWMRWKY+823lIEAJVuEy6MhFFVZoYKhbXKun8sjNpyC7Sa/L6NjYg2TrXHgrNDM5iJJOCwFvftz5cyPBFFOiN40Usr5rIZMDkTRz0/O1c0OROHVqOGk6t/16TMYURgJl50/4+z8RRmIgnsY/mCglFbbsHwRAQVRdiQMBpL4vxICAd3V7Ek1gpVuEw4NxRERhZ5W5s7lZYRCMawva5G6VCIAKwgId7V1QUASKfT2T8DgCRJqKysxPe+9731j44ohyqcRgz7I0ik0tBr8+92rHQqiZHxSZh0Egy6/ItPCXaLHgICoWiioGqJJ1MZjE1Gce1eHvyJ6G1qSYX6SisujIZwVVO50uFsiGQyiUgkAq3OiDODQXh3VrCMFK2Y02bA2aGg0mEUhEF/BJsq2KtgrcocRpwdCmJ7XXGVdxryR1DtMed93WF6W1WZBWcGg4gn0kVVUuSdpVIsRt41tlJGvQZmoxZTM3GU5+lkyfjUfP37YvrcUmFb9ifxhRdeAADcc889+M53vpOzgIg2ikatRpnDiNHALBqr7UqHkyXLMk4ceQXnTx2DLMuQVBIwvQctbddBkkr7ZFUF1Vu3g8UKKiE+6I/A4zDx4E9EF6mrtOKl10cwG0/BXMQXgLIso7OzEz6fD7IsA1Bha9MuWFv/UOnQqADNJ0tUiMaSsJhKu8fKUmJzKcxE5nin4Tpw2fSYjacwl0wXzUKVTEbGSCCKq1sqlQ6FVkCrkVDhNmN4IoJtm4pngubc8AwkFUulrEWFywz/dCxvE+LDE1G+v5RXVpxdYzKcikmNx4KJYAypdP40ajxx5BWMD57DDddfjw/fcgtuuOF6jA+ewwnfK0qHlhcqnEaEogkkUmmlQ1mWjCwwOB5BQzUP/kR0Ma1GjdoKCy6MFnct8c7OTvT29qK9vR1//Md/PH9sG7mAzs5OpUOjAuWy6THNOuJLGp6IoqqM5drWg1otwWU3YCpUPJ+50clZWM06TioVoE3lVgxPFE9zzcmZOIYnItizzcNSKWtQ6TbBPx1DJiMrHcpFwrNJxBOpvE3WU2la8dnR2NgYPvWpT6GlpQV1dXWLfogKjUGngdNmwFieNKBIp5I4f+oY2rxeOJ3zM/5OpxNtXi/OnzyGdCqlcITK06jVcNuNGJ+KKR3KsowGorAYtbBbSq8+MBEtT0OVDeNTs4gnCmOib6WSySR8Ph9aW1sXHdtaW1vh8/mQTCYVjpAK0XxjzeJscrgeMrLA8EQEteUsl7JeyhxGBIKFcf65HIPjbKZZqBxWPXRadVE010ykMjjeN4ldm8t4N+0amQxaWExa+PPwe2rIH0GNx5K39c2pNK34G+eOO+5ALBbDvffeC7OZ3WGp8NV4LDhxfuqtL2hlV9DEY7MQspxNGCxwOp0Qsoy5WBQWe/HcGrdalW4TTvZPo7bCCnWeryIYGA9jexHdzkhE68+g06DGY8X5kRBaNruVDmfdRSIRyJc5tsmyjEgkAre7+H5vyi2XzYDzI8V9Z8VaTEzHYNRzQn49eRxGnB2cgSyLgu99MDkTR0aWi7IxY6nYVG7BkL+wm2sKIXD83CQqXWauHF4nNR4LRgOzqC7Ln8nQTEbG2OQs3rO7SulQiBZZcUL897//PYaHh2G1cjaZioPZoIXVpMX4dAw1Ch84jCYLVJKEYDC4KHEQDAahkiQYTPlzYFOSxaiDXqvBdCgOjyN/T54CwTiEDHicRqVDIaI811hjwytHR9BYbYPJUFy1xK1WK6TLHNskSeI5Ja2KxaiFLIuir7+/WkP+COoqObbWk8mghUGvRjAyB7e9sM/tLoyG0FBlY3mKArbQXDM2lyrY84azQzNIpTPYXl8ajcU3QqXbjFP905hLpGHIkxX3o5OzsFl0PFZT3lnxctjKykoeOKno1JRbMBqIIiMrW29Lo9Vi8449eO2ID8FgEMB8wuCIz4fNO/dAo+VBZEFVmQljk/lR6uZyLoyFUF9l5XcmEV3RO1eJFxudTod9V+3HkXcd27q7u+H1eqHTsX4trZxKpYLTZmAd8UuIxpKIxJKo5IrLdVfhMhVM2b7LCc/Ofz5qPFxoU8i0GglVZRYMjkeUDmVVxqdmMRKI4qrt5SyjsY60GgnlThNG8+g6eXgiik3lnKCl/LPihPjDDz+Me+65ByMjI5BledEPUaGymfSwGLV5kWCt3uGF2laNl15+GT/5yU/w0ssvo7J+K1q81ykdWl5x241IpTMIzeZn/dBQNIEoLzaIaAUaa+Zricfmiq9fRHn9PlRv2oKuri789Kc/RVdXF5qbm3H48GGlQ6MC5rIZEIwwIf5uQ/7ofClANZtprrcKlxljgRAmJycLsv9BMpnE8dMDqHIZ+PkoAvVVNgxPRJFKF1YuJhJLoqdvCvu2efJmFXMxqfZYMBKIKh0GgPlr4ngiVdClfah4rfjb59ZbbwUAPPHEExdty2Qya4+ISCF1lTacOD+FCpcJWo1asTjGp2NoabsOZbabMBeLwmCycGX4JUgqFSrLLBgLzMJuzr/6mP1jYdRV2HixQUTL9s5V4ru2lCkdzroZ8kcQT2Rw64c/hEzmfYhEIrBarVwZTmvmtOrRPxZWOoy8ksnIGAlEcZC1WtedLMv43W9exGuvHcGrzwmo1RK8Xi8OHz4MSeE+RFciyzI6Oztx5MgRyLIMSZLQ1tZWELHT5VmMWjhteowGoqivsikdzrKk0hm8cXoCTfVOOG0GpcMpSmUOA9LnZYSiCcX7SAyOR7CpwlrwfReoOK04If7CCy/kIg4ixZkNWjiseoxORlFfaVckhmg8idhcGjvqTVBLEhtoXkGF04RhfxSxRBqmPFpdEE+kEQjGsPOqWqVDIaICs1BLfHONvWBrgr5TNJ7C6YEg2poroFZLUKt1bKBJ68Zm1iGdlhFPpGHMo/MAJS3UarWwVuu66+zsRG9vL2644Xo4nc5s6ScA6OjoUDi6pS3Efv31hRc7La2hyoaevinUVeZ/mcaMLPDG6QDcdiM2VbCERq6oVCpUl5kxPBFVNCE+l0zDPz2L6/bVKBYD0VJWfOZ4ww035CIOorxQV2HFm2cnUeEyw6Db+AurIX8E1R4L1FypsSwatYQKtxFjgSi21DqUDierfzSMqjILdFrl7jQgosJk0GlQV2nD2cEZ7N3uUTqcNclkZLx5JoCtmxyKr1Ci4jRfR1yP6fAcS5S9ZXgigsZqZRZ2FLNkMgmfz4f29vZsc2Cn04nW1lZ0dXXh0KFDeXvXSyHHTlfmthuhUUuYCMbzuiyFEALHzwUgSSrsbHApHU7R21RhxW+PjWJ7nRNajTK5hSF/BOUukyJ5FaLlWNYn8+WXX8b1118PAHj++ecv+7z3vve96xMVkUIMOg0q3Ub0j4Wxo35jD9ThWALReArb67gqfCWq3GYcPRPApkordAqWulmQSmcwEojimj28VZmIVqex2o6uo8N5cavrWpwaCMKgV6OhQG7jpsLktBqYEH/LfK3WDMqd+ZsUK1SRSASyLGcTygucTidkWUYkEsnbu18KOXZanvoqK/pHQ3mdED89GERsLo0DLZUsn7EBTAYtHFYDxiajqKvc+POwjCww5I+gdUfFhu+baLmWlRD/4Ac/iEhkvnvx5ZofqVQq1hCnolBbbsXRMxOYic7BYdm4umZcHb46eq0GLrsBY5OzqFfgYP9ug+MRuO2Goih1QETK0GokbK5x4PRAEAdaKpUOZ1XGp2YRCMZwzZ5qpUOhIueyGTA8EVE6jLww6I+gttzCZFMOWK1WSJKEYDC4KLEcDAYhSRKs1vwt/2C1zpfSKMTYaXmqyiw4NzSD6fAcXHlYl3tgLAz/VAxX76qEhv2VNkxdhRVnhoKKJMTHJqMwG7QFvbCDit+yvo0WkuHAfEOOS/0wGU7FQi1JqK+048JIGBkhNmSf05E5zCUyqMzjWf18VuOxYnwqhlRa2e+hjCwwMM5blYlo7TZVWBFPpDERjCkdyopF4ymcOD+FPds8LB1FOWcz65BIZjCXTCsdiqJS6Qz8U7Osy5sjOp0OXq8X3d3dCAaDAJCtw+31evO65IhOp8Pm7btwxOcruNhpedSSCo01dpwbnlE6FADzZXqmpqaQTCbhn46hb2QGrTsrWDpjg3mcRqQzAtPhuQ3bZzKZxOTkJM4NTPGamPIev5GILqHMYcTETAzD/kjOVx1nhED/aAgNVTauDl8lk14Dl12P0clZ1LgNiMdmkSw3bvgJ/shEBBbjfHNWIqK1UEsqbKtz4MxgEGV2Y8Gs+EylZbxxagJbax15uUqNio8kqeCwztcRry4r3bIpo4FZOG0GNhfNoYU7pbu6uiDLMgAVdu3Zd9k7qPNFbC6Fsk17Ybfos7FLkgSv15v3sdPy1XosOD8SQjA8B6dCx19ZltHZ2QmfzwdZlqFSqVC+qQkfvvkDbPSrAJVKhboKKwbHwzk/J3vne5/JZKBSSUgeaMPhw4chMcdBeYpnTESXsaXGjjfPTsJp08Nmyl2Cc3xyFnqdGm67MWf7KAXVbjN++8KvcTTQByHLeFGtzp7ob8RBOCMLnB8NY/cW1mAkovVR5TZjcDyCgfFwQayyEULg2LkAHFY96lk3nDaQ02ZAMJwo6YT4oD+Cpnr2ocklSZLQ0dGBQ4cOIRKJIDgLROKZvE/2nBkMor7aju0H34fDN70XkUgEVquVK8OLjFotobHajr6RELwKJcQ7OzvR29ubbeAaDAbh8/nQ/dor6OjoUCSmUldbbsHLb8wgNpfKaUnPS7333d3dAMD3nvJWfh+9iRSk12rQUG3DuaEZZGQ5J/uIzaUwPBFFY1X+Jzry3fljv4OIjuGG66/HLbfcgvb2dvT29qKzs3ND9j8aiMLIiQ0iWkcqlQrNjW70DYcwl8j/chBnh2aQSGbQ3LixTamJ3DbDht4Snm+mQnHIsoDHwXOQjaDT6eB2u7GpyoHJmXhel+sJRuYwHZ7LTqouxM5keHHaVG5BeDaJoALfh8lkEj6fD62trdla9U6nE16vFz6fD8lkcsNjIkCnVaPGY0X/WDhn+7jce9/a2sr3nvIaE+JESyh3mGA2anNSj00WAueGZ1BbYWEDxjVKp5I4f+oYDrR5FTkIy7JA30gIW2odOd0PEZUem1mHGo8FpwamlQ5lSSOBKEYCUVzVVA41G2bRBrNZ9Ign0kikSrOn0ZA/gk0V840TaePotWqUu0wYnogqHcolCSFweiCILTUOaDX8Xi4FarWErbV2nBoIbvi+I5EIZFle1LgVmL8mk2V5UV862lgN1TaMBqI5O0byvadCtW5HxnQ6f2fGidZia60D8UQaI5Pre7I75A9DUqlQXWZe19ctRfHYLISCB+GRQBQGnRplXJlFRDmwdZMDwUgCkzNxpUO5pMmZOE71T2N/UznrF5Mi1JIKDotekVWRSptLphEIxlFTXrrlYpRUX2nDkD8CWRZKh3KR4Yko0hmZjVZLTG25FemMjPGp2Q3dr9VqhSRJ2catC4LBICRJgtXKz6FSjHoNyl0mDORolTjfeypU65IQf+KJJ9DU1LQeL0WUd9SShKY6F0YDUUyF3k5GpFNJREJBpFOpFb/mVCiOwEwc2+odUIGredbKaLJApdBBOJOR0TcSwlauDieiHNFqJDQ3utHTN4lUOjclvFYrPJvEm2cD2LvNA7uFDYVJOU6bHsFwQukwNtzIRBTlLhP0WrXSoZQkh1UPvVaNiWBM6VAWSaYyODsUREuju2CaMtP6kCQVmuqcODMYRGYDJ2q0Wi3qtzTjyBFf9ppsoY601+tlmR6Fba62Y3A8gmQOVonrdDrs39/K954KzrKX8QSDQXzhC1/AkSNH0NzcjEcffRRjY2P41Kc+hfPnz+Nzn/tcLuMkUpRRr0FTvROn+oMABEZP+XD+1DEIWYZKkrB5xx60tF23rKY6odkE+kZC2FHvhF7DlXTrQaPVYvOOPTji86HN613UyCPXB+GB8QgsRi1XhxNRTlW4TPBPz+Jk/xR21NnzoilaNJ6C76QfOxpc/A4kxblshrfO00qHEAJDE1Hs2VqmdCglrb7KhgujYVS68+euz9ODQZQ7TXAq1FyRlFXuMqF/PIwLoxu3aOdUfxD1TV64HUZ0dXVBlmVIkgSv14vDhw9vSAx0eRaTDhVuE/qGQ9hSY1n388j6plZMhuJ876mgLDsb9/nPfx6///3v8YEPfAD/+7//i9tuuw3Hjh3DXXfdhb/5m7+B3c6mgFTcbCY9ttc5cOTlF4C3mjcuJF6P+HyACth94PolXyM8m8DpgSC21jpgM3Ml3XpqabsOUAEvvfzy/ESFSkLz7r05PQgnUxmcHwnhQEtlzvZBRLSgqc6JHzz1M/zvU6cghFh0sbGcCdn1FI2ncKR3HFtq7ajxsFQDKc9h0WN2LoVUOgOtpjRWSwdm4tCoVXAx6amoKrcZZ4dmMBWK50Vz9cmZOALBOK7bW610KKSglkY3Xj0+hiq3GWZjbvtVnRueweRMHFfvqoJuXy3ee+ONeTFxT4ttrrbhiR89i2eGTq/reWR4NomRQAwf+eMPQa36AN97KhjLToj/6le/wiuvvIL6+np8+tOfRlNTE5599ll86EMfymV8RHnFopcQC/Rlk+HAfJ3qNq8XL738MnZe9R5otJc+4QjMxHB+JIytmxy8cMkBSZKw+8D12HnVezAXi2JLpQs9F2aQygjoc5QnOjc8gwqXCTYzD/ZElHsvvfg8wpODuP4dE7Ld3d0AgI6Ojg2LY/atZPjmajvqK20btl+ipajVEmxmHYLhBMpdJqXD2RALzTRJWZKkwuZqG/qGQ4onxJOpDI73TaJlsxs6ltEpaWajFg3VNpw4P5XTxTsXRkMY9kdwoKUy+5nT6XRwu9052yetzm+6XkRkamhdzyOFEDhxfgpbNzmyfWT43lOhWHaaKBQKob6+HgCwbds2GI3GnCbDz549i46ODjgcDtTX1+N73/tedltPTw8OHjwIk8mE5uZmPP/884v+7Y9//GNs2bIFJpMJN910EwYGBnIWJ5WWpZo3ClnGXOzixpuJVBpnBoMYHI+gudEFN5PhOaXRamGxO1HutqHCZcapC9M52U8omsBoYBbbNjly8vpERO+UTCbh8/ngfassFDB/7GltbYXP50MymdyQOELRBH5/YhyN1XbUVzEZTvnFZTNgOlIajTVn4ykEwwlUl/EOjXxQU27F7FwK0wo3du29MIUyhxEVJTIpREvbXG1HKi3nrJli/1gYA2NhHGiphMmQ21XotDYL55Ft63we2TcSAgDUcXKWCtCq103q9bkr95BOp3HzzTejvb0dk5OTeOaZZ/D5z38eL730ElKpFP7wD/8QN998M4LBIB588EHccsstmJiYAACcPHkSd955J77zne9gamoKe/bswcc+9rGcxUqlZanmjSqVhLSkQyKVRiyRxlQojrPDQRw9E4BGo8LebR5YTVxJvJG21zkRjCYwNrm+XdYXZsK3bXLAoGcdeCLKvUgkAvkyE7KyLCMSieQ8hsmZ+HzN8HonGpgMpzzktBowHSqNhPjgeAQ1Hgu0mo0tl0SXppZU2FJjx+mBaQixcY0M32nIH0EomsSOepci+6f8I0kq7N1WhrNDMwhF17fp8IXREPpHQ2hrZjK8EOTiPDIYnsPAWBh7t5WxeS8VpGWfQc3OzqKuri77EwqFFv29rq5u3YI6ffo0+vv7cd9990Gj0aC1tRW33HILHn/8cbz44ouIxWL4+7//e+j1enz84x/Hrl278KMf/QgA8IMf/ADve9/70NHRAaPRiIceeghvvvkmTpw4sW7xUel6Z/PGd3ZQPnLEB2ftdlwYncWxc5PovTCJ8elZmAxa7NvuweZqBzRqXrBsNK1Gwt6tZei9MIXYXGpNr5VMJjE1NYVkMon+sTBUKqCukjPhRLQxrFYrpMtMyEqSBKs1t99HA2NhvHk2gD1bPahmzXDKU06bHpFYCqm0rHQoOZVKyxgJRHkekmdqy62QZaz7QozlmInM9ym6qqmckyS0iMWkw44GJ948G0AylVnz6wkhcHpgGgPjEbQ1V+a8Pjmtj/U+j4wn0jh6NoDmRjcnRKhgLXtp4+OPP57LOBYRQlw0sy6EwLFjx9DT04Pdu3cvKvq/b98+9PT0AJgvp9LW1pbdZrVasWXLFvT09KClpeWifY2NjWFsbOyix0+ePLlevw4VmYuaN0oSNu/cgxbvdRve1IyuzGkzoKHKhqNnAri6pRLqFU5MyLKMzs5O+Hw+yLIMlUqF8k1N+NiHPwSVijPhRLQxdDodvF4vuru70dra+nZT5yM+NGxtgUazPhcjyWRyUTOkTEZGz/kphGeTuHpXFSy88KU8plFLsJm1mIkk4HEq39wwV0YCUThteiai8owkqdBU78Txvkl4nKYNS0zPJdM4emYCzY0u9rWhS6ottyI8m0T3qQkcaK6AWi1ddLxfjoVzgmg8hYO7KmHQ8U7ZQnG588iFcnwraYCZSsvoPuXHpnIrqsrMOYyaKLeW/Q12xx135DKORZqamlBbW4uHHnoI999/P9544w385Cc/QWVlJaLRKBwOx6LnOxyObJ3wy22/3C0g3/3ud/GlL30pF78GFal3N280mCyXbaRJ+WFzjR2h2STePDuJq5o8K0pkd3Z2ore3F+3t7YtOHH7/25c3tIkdEdHhw4cBAF1dXZBlGZIkYf/+VjhqduONMxPYu82z6ruR3j35J0kSdu3eB1v1LtgtBhzcVcVVh1QQnDYDgpG5ok2ICyEwOB5Gy2Y2LctHZQ4jnFY9zgwGN+Q9SqVlvH5qApVlZt69Q0va2eDCG2cC6D7lx/TQMbz+enf2eO/1enH48OElF3fF5lJ440wABp0aB5oreU5QgN59HqlSqVBZvxNbmtuu8C/flkxlcOSkHw6LHlvZS4sK3Jqm9D74wQ/i5z//+XrFkqXVavGzn/0Mn/3sZ1FdXY2mpibceeed6OnpgcViQSgUWvT8UCiUvcXjStvf7e6778bNN9980eMnT57E7bffvk6/ERWjheaNlP9UKhX2bi3Da71+9F6YRnOja1lJ8YXmIwvJcGC+zprX60VXVxcOHTq0otl0IqK1kCQJHR0dOHTo0OJV3LJAT98kXj02hj3bymC3rLzPy6Um/44c8aFBlnHoj3LXRJ1ovbmsBpwfDV35iQVqIhiHJKngthdnwr8YNDe68cqbo6hwmVDmyN37lJEF3jgzAbNRi6Y6XpPQ0lSq+Z5WT/7oZ/CPXFh0vO/u7gaASy72EUJg0B/BuaEZNFbb0Vht412yBepS55GpjApHeseRyghs3+RcshZ4KJrAm2cD8DhM2NHA7xwqfGua1uvq6lqvOC7S0tKCX//615icnMRvfvMb+P1+HDx4ELt27cLx48chy2/XBjx69Ch27doFANi1axeOHj2a3RaNRtHX15fd/m5VVVXYv3//RT87d+7M2e9GRBtPrZbQuqMcoWgCPX1TkOUrNzzKhyZ2RETvptPp4Ha7sxNyamn+Ireh2oYjvX6cGpheUQ3lhcm/hVtogfnvubY2L06dOIZkMpmT34MoF5w2PcKzSWQyxVlHfGA8jPpKNrXNZzqtGrs2u3Hs3CTiiXRO9pHJyHjj9AQklQq7t5QxQUnLkkmnMNDXi7Y276LjfWtrK3w+36LjvRAC/ukYXj0+hpGJKLw7K7C5xs7PWhF453mk2ajFwd1VmIkk8LueMUyF4hc9fy6Rxqn+aRzp9WNzjR07l7m4jCjfrWmFeC47aB87dgxbt26FWq3GD3/4Q/z617/Gt7/9bdhsNhiNRvzjP/4j/vqv/xrPPvssjh8/jmeeeQYAcPvtt6OtrQ2dnZ247rrr8OCDD2LPnj2XrB9ORKVFp1WjrbkSb5yegO+kH3u2lS1Z+85qtUKlmm8+8s6k+EY1sSMiWolNFVa47QacGQzi5TeGsanCihqPZck6w0IIDI1NIpPJLDn553azPAMVBq1GDbNRi5loouhWUYeiCURjSVQ3lSsdCl1BucuETbMJvHF6YlU9bJaSSmfw+qkJ6LRq7NnmWXJFJ9E7LbXYJ5PJ4MLQBIxmGyKxFCaCMWg1EjZX21HpNvNzVsQMOg2ubqnE8EQUPX1TEABsZh3UkgqxuRSisRQq3WZcu7caRj3rxlPxWNOnub29fb3iuMgPf/hDfPe730UymYTX68WvfvWr7MXYs88+i7vuugtf+tKX0NDQgGeeeQbl5fMnhjt37sT3v/99fPrTn8b4+DgOHjyIp59+OmdxElFh0WokeHdW4MxQEL95cxRbax2oLbdc8kJlOpJCZX0Tjvh8aPN6F91WuNLmI0REG8Fk0GLf9nJEYkkMjIXxu54xaDUS7BY9TAYNNGoJQszXgIzGU5iJJKBWZSBJnPyj4uGyGjAdniu6hPiF0RDqKm3rmlyl3Nla60A0Nl93+artnnV53yKxJN44PQGXzYDmRjeTlLQiVqv1ssd7lSQhGAPmMglYTFrsbypfVQk2KkwqlQqbKqyoLbcgPJtENJ6CLAvUeCywW/SsGU9FSSXWYZl3JBLB1772NXz5y19ej5jywuuvv47W1lZ0d3dj//79Soez4Y4PF2/tRSoNu2vtV3xOKJrA6cEgwtEkPE4jrCYdVCogNpfG5Mx8jc6ttXYcf/23ixrNLafxDBFRPpBlgdBsApHZJGKJNDKZ+dM+vU4Nk0EDh0UPk0GL5557Dr29vdmyKQuTf83NzWwgTAVnYjqGvpEQ3rO7SulQ1k00nsLvjo/hhv010GrUSodDyyTLAkfPBJCRZezb7rnie5dMJhf1iFiwUMf57OAMttc5UMeyObRKPN5ToWKOamWWkw8pRivJ5a5ohXhXVxeOHDmCnTt34v3vfz9kWca3v/1tPPTQQygrKyuqhDgRFT+7RY8DzZWYjacwGYojGktBCAGjXoM9W8vgsOqhUqlQdYkmdkREhUCSVHBaDXBaDUs+7/DhwwDmz/XePflHVGhcdgOOng0gmcpApy2O5PGF0RBqKyxMhhcYSVJh73YPei9M4dXjY9i7zXPJVbeyLKOzs/OSCzDCsymcHphGWhZoa67gql1aEx7viYjmLTsh/thjj+Gee+6By+XC9PQ0vva1r+G5555DX18fvv71r+NP//RPcxknEVHOmI3aJWvsAm83HyEiKkaSJKGDk39UJDRqCU6rHpOhOKrLLEqHs2ZziTT8U7O4bl+N0qHQKqil+caXQ/4IfCf9qHCZ0FhtX3Tu2dnZid7eXrS3t2dX7fp8PvinY6jZuh+baxyoq7CyRAqtGY/3RETzln2//7e+9S08+eSTCAQC+O///m/cd999aGhowMmTJ3HHHXewdAARERFRgVuY/OPFMRW6MocRgWBc6TDWxYXRMCrd5iUbgVP+21RhxbV7q6GWJLx6fAyvHh/DmcEgzg9P4ciRI9kSFsB8k0Ov14vBvhM42FKOhiobk+G0rni8J6JSt+ws9tDQEG699VYAwMc//nEIIfCNb3yDX6BERERERJRXPE4TpkJxrEO7JEXFE2mMBCLYUutQOhRaBwadBjsbXTjUWostb9V3HR2fgizLi5ocAvNJcSEE4rFZJUIlIiIqastOiMuynP2zWq2G1WqF2WzOSVBERERERESrZTFqIUkSQtGk0qGsSd/wDKo9Fhj1XB1eTDRqCeVOE7bXOXFgTwPUajWCweCi5wSDQUiSBKvVqlCURERExWvZZ1aJRAJf/OIXs3+fm5tb9HcAeOihh9YvMiIiIiIiolXyOIyYnInDYS3MJoSxuRTGWTu86Ol0Oni9XnR3d2fLpgSDQXR3d8Pr9fKObCIiohxYdkL8Pe95D7q6urJ/v/rqqxf9XaViTTMiIiIiIsoPHocRfSMz2LrJoXQoK5JMJhGJRNA/kUBthZW1w0vA4cOHAQBdXV2QZRmSJMHr9WYfJyIiovW17LOrF198MYdhEBERERERrR+33YA3z6YQT6QLouSILMvo7OyEz+dDJiNDpVKhtbUV2zd1QJKWXemSCpAkSejo6MChQ4cQiURgtVq5MpyIiCiH8v/MkIiIiIiIaIXUagkepxET0zHUV9mUDueKOjs70dvbi/b29kVlM9Tq+WQpFT+dTge32610GEREREWPSw2IiIiIiKgoVbjMGJ+aVTqMK0omk/D5fNka0gDgdDrR2toKn8+HZLKwm4MSERER5RMmxImIiIiIqCh5nEaEZ5OYS6aVDmVJkUgEsixnk+ELnE4nZFlGJBJRKDIiIiKi4sOEOBERERERFSWNWoLbbsSIfwZTU1N5u9LaarVCkiQEg8FFjweDQUiSBKvVqlBkRERERMWHNcSJiIiIiKgoybKM/lOvobfnTQACkiTB6/Xi8OHDedWoUqfTYWfLXhw54kNbm3dRDXGv18sGi0RERETriAlxIiIiIiIqSp2dnRjsP4cbbrh+UZIZQF41qown0rBVtWCLpEJXVxdkWV6UvCciIiKi9cOEOBERERERFZ2FRpXt7e0XNars6urCoUOH8mLltSwLvHk2gE2Vdmw/8AG8/w8OIxKJwGq15kV8RERERMUmf+4TJCIiIiIiWieF0qjy9EAQkkqFrbUOAPPlU9xuN5PhRERERDnChDgRERERERWdQmhUOTAWxkQwhj3byiBJKqXDISIiIioJTIgTEREREVHR0el08Hq96O7uzibF86lRpX86hr6RGbTurIBBx0qWRERERBuFZ15ERERERFSUFhpSLjSqBFTYd9V+xRtV+qdj6OmbxP6mcliMWkVjISIiIio1TIgTEREREVFRkiQJHR0dOHToECKRCPwzGWQgQZKUu1F2fGoWJ85PYX9TOZw2g2JxEBEREZUqlkwhIiIiIqKittCocvMmF/xTMUTjKUXiOD8SQu+FKezfwWQ4ERERkVKYECciIiIiopJg0GlQX2XFuaHglZ+8jtIZGcfOBTASiOLgrio4rUyGExERESmFCXEiIiIiIioZDVV2TIfnMB2e25D9zUQS+O2xUciywMFdVTAZWDOciIiISElMiBMRERERUcnQaiTsqHfhRN8UMhk5Z/tJpWX0XpiC76QfW2od2Le9HFoNL7+IiIiIlMYzMiIiIiIiKinVHguMBg3ODM6s+jWSySSmpqaQTCYXPZ6RBQbHw+g6OoJUWsZ1+6pR47GsMWIiIiIiWi8apQMgIiIiIiLaaLu3luHVY6OwW3SoXkHCWpZldHZ2wufzQZZlSJIEr9eLG298L0anYrgwEoLJoMVV2z1snElERESUh5gQJyIiIiKikqPXqnFVUzl8J/3QqCWUu0zL+nednZ3o7e1Fe3s7nE4ngsEgjvh8GPRHsKf1WuzeWga33Zjj6ImIiIhotVgyhYiIiIiISpLdosdVTeU43jeJgfHwFZ+fTCbh8/nQ2toKp9MJAHA6nWjzeuEfPIV9W11MhhMRERHlOSbEiYiIiIioZLlsBhxoqcTgeASv9Y4jGJ675PNkWWBkfAqZTCabDF/gdDohhEAkEtmIkImIiIhoDVgyhYiIiIiISprVpMM1u6sw6I/gzbMBQKWCw6KDVqOGLATiiTTC0SQkZKCSJASDwUVJ8WAwCEmSYLVaFfwtiIiIiGg5mBAnIiIiIqKSp1ZLaKy2o6HKhvBsEuHZJNIZGSqVCuVOE6wmLUwGLdIzbeju7s6WTQkGg+ju7obX64VOp1P61yAiIiKiK2BCnIiIiIiI6C0qlQp2ix52i/6S2w8fPgwA6OrqgizLkCQJXq83+zgRERER5TcmxImIiIiIiJZJkiR0dHTg0KFDiEQisFqtXBlOREREVECYECciIiIiIlohnU4Ht9utdBhEREREtEKS0gEQEREREREREREREW0EJsSJiIiIiIiIiIiIqCQwIU5EREREREREREREJYE1xC8jHo8DAE6ePKlwJMo4648oHQLRmqQmrEqHQERERERERERrxBzVypRqPmQhh7uQ010KE+KX0d/fDwC4/fbblQ2EiIiIiIiIiIiIiK6ov78f11577ZLPUQkhxAbFU1AmJyfxy1/+Eg0NDTAajUqHs6FOnjyJ22+/HT/4wQ+wc+dOpcMhog3AcU9UejjuiUoPxz1R6eG4Jyo9pTru4/E4+vv78Qd/8AcoKytb8rlcIX4ZZWVl+OQnP6l0GIrauXMn9u/fr3QYRLSBOO6JSg/HPVHp4bgnKj0c90SlpxTH/ZVWhi9gU00iIiIiIiIiIiIiKglMiBMRERERERERERFRSWBCnIiIiIiIiIiIiIhKAhPiRERERERERERERFQSmBCni1RVVeHBBx9EVVWV0qEQ0QbhuCcqPRz3RKWH456o9HDcE5UejvsrUwkhhNJBEBERERERERERERHlGleIExEREREREREREVFJYEKciIiIiIiIiIiIiEoCE+JEREREREREREREVBKYECciIiIiIiIiIiKiksCEeAGamZnBxz72MVitVlRXV+Ob3/xmdltPTw8OHjwIk8mE5uZmPP/880u+1o9//GNs2bIFJpMJN910EwYGBhZtf+CBB+DxeGC323HXXXchkUisKq7VxEZEb8vXcf/oo4/C6/VCr9fjT/7kTy7aznFPtHr5OO4TiQTuuusuNDY2wmq1oqWlBU888cSi53DcE61ePo57APj0pz+Nmpoa2Gw2NDQ04OGHH160neOeaPXyddwvmJycRFlZGQ4ePLjocY57otXJ1zF/5513QqfTwWKxZH8GBwez24eGhtDR0QGz2YzGxkY8+eSTq/sPyBeCCs4nP/lJcfPNN4tQKCSOHTsmPB6P+L//+z+RTCZFQ0OD+MpXviLm5ubEk08+KWw2m/D7/Zd8nd7eXmE2m8Uvf/lLEYvFxF/91V+JAwcOZLf/27/9m2hsbBR9fX1icnJSXHvtteJv//ZvVxyXEGLFsRHRYvk67v/nf/5H/OQnPxH33nuv+PjHP75oG8c90drk47iPRqPigQceEH19fUKWZdHV1SVsNpv47W9/K4TguCdaq3wc90IIceLECRGLxYQQQgwODoqdO3eKp556SgjBcU+0Vvk67hfceeedor29XVx99dXZxzjuiVYvX8f8HXfcIf7u7/7ustuvvfZacc8994hYLCZeeOEFYbFYxPHjx1f/H6EwJsQLTDQaFTqdbtGH7r777hMf/ehHxXPPPSfKy8tFJpPJbrvmmmvEo48+esnXuu+++8RHPvKR7N/D4bDQ6/Wip6cn+2+/9a1vZbc/99xzwuPxrDiuhX+7ktiI6G35Ou7f6cEHH7woIc5xT7R6hTDuF7z//e8XX//617P/luOeaHUKZdwPDg6KlpYW8ZWvfCX7bznuiVYn38f9iy++KK699lrx+OOPL0qIc9wTrU4+j/mlEuJnzpwRGo1GTE9PZx+77bbbxBe+8IUr/Mb5iyVTCsyZM2cgyzJ27dqVfWzfvn3o6elBT08Pdu/eDUmSLtoGAIODg3A4HNlbHnp6erBv377sc61WK7Zs2ZJ9/ru379u3D4FAAH6/HwDwmc98Bp/5zGeuGNfCay0VGxFdXr6O+yvhuCdavUIZ97Ozs/D5fNk4Oe6JVi/fx/0//MM/wGw2o66uDrOzs7j99tuzr8VxT7Q6+Tzuk8kk/uIv/gLf/va3oVKpFsXNcU+0Ovk85gHgscceg8vlwt69e/H4449nH+/p6UF9fT2cTuclYytEGqUDoJWJRqOw2+2LHnM4HIhEIohGo3A4HBdtW6ghVFdXh5mZmUWvdannRyKRS25f+HMkEkFFRQX+5V/+ZVlxLbWvd9c3IqKL5eu4X07cHPdEq1MI416WZdx5551oa2tDR0fHkvviuCe6snwf91/96lfx8MMPw+fz4ac//Wn2opjjnmj18nncP/LIIzh8+DD27t2LN95446K4Oe6JVi6fx/xnP/tZfP3rX4fD4UBXVxduvfVW2O12fOQjH7nivgoRV4gXGIvFgnA4vOixUCgEq9UKi8WCUCh0yW2Xe62lnv/u7Qt/vtTrLRXXcvZFRJeXr+N+OXFz3BOtTr6PeyEE/vzP/xyjo6N46qmnsivHOO6JVi/fxz0AqFQqtLW1wWAw4MEHH1zWvojo8vJ13J87dw7/8R//gS996Uur2hcRXVq+jnkA2L9/P8rKyqDRaHDjjTfi3nvvxY9+9KNl7asQMSFeYLZv3w6VSoUTJ05kHzt69Ch27dqFXbt24fjx45Bl+aJtl7Jr1y4cPXo0+/doNIq+vr7s89+9/ejRo/B4PKioqFhRXAuvtZLYiOht+Trur4Tjnmj18nncCyFw77334ujRo/jFL34Bi8WyaF8c90Srk8/j/t3S6TT6+vqyr8VxT7Q6+TruX3nlFYyPj2P79u2orKzEX/7lX+L1119HZWUlwuEwxz3RKuXrmL8USZIghMi+1sDAwKIV6gU/5hWuYU6rcNttt4k/+qM/EuFwWBw/flxUVFQs6kj71a9+VczNzYmnn356WR1pf/WrX4l4PC4+97nPLepI+9hjj4ktW7aI8+fPi6mpKdHe3r5kR9rLxSWEWHFsRLRYvo77VCol4vG4uP/++8Wtt94q4vG4SCaTQgiOe6K1ytdx/5nPfEZcddVVi5rqLOC4J1qbfBz309PT4r/+679EKBQSmUxGvPLKK8Lj8Yh//ud/FkJw3BOtVT6O+1gsJsbGxrI/3/zmN8X+/fvF2NiYkGWZ455oDfJxzAshxFNPPSXC4bDIZDKiq6tLlJWViR/+8IfZ7ddcc4249957RSwWEy+99JKwWq2LmoMWGibEC1AwGBQf/ehHhdlsFpWVleIb3/hGdtuxY8fEgQMHhMFgEDt27BCdnZ3ZbQMDA8JsNouBgYHsY08//bRobGwURqNR3HjjjaK/vz+7TZZlcf/99wu32y1sNpv4sz/7MzE3N5fdfvfdd4u77757WXFdKTYiWlq+jvsHH3xQAFj0c8cddywrNiJaWj6O+/7+fgFA6PV6YTabsz9f+cpXlhUbES0tH8d9MBgUN954o3A4HMJisYimpibxyCOPCFmWlxUbES0tH8f9u33/+98XV1999aLHOO6JVidfx3x7e7uw2+3CYrGI5uZm8a//+q+L4h4cHBSHDx8WRqNR1NfXiyeeeGI9/1s2nEqIt9a/ExEREREREREREREVMdYQJyIiIiIiIiIiIqKSwIQ4EREREREREREREZUEJsSJiIiIiIiIiIiIqCQwIU5EREREREREREREJYEJcSIiIiIiIiIiIiIqCUyIExEREREREREREVFJYEKciIiIiIiIiIiIiEoCE+JEREREREWmpaUF//mf/6l0GEREREREeUejdABERERERLR8Fosl++dkMolMJgOj0Zh97Be/+AVOnDihRGhERERERHlPJYQQSgdBREREREQr9//+3//DK6+8ghdffFHpUIiIiIiICgJLphARERERFZmGhgb8+7//OwCgv78fKpUKjz/+OPbs2QOz2YzrrrsOw8PDePTRR1FfXw+Hw4G7774bmUwm+xojIyO47bbbUFNTg/LycnziE59AIBBQ6lciIiIiIloXTIgTEREREZWAJ598Ep2dnfD7/QCAm266CUNDQzhz5gx8Ph+eeuopPP300wCARCKBm266CdXV1Thz5gzOnz8PjUaD2267TclfgYiIiIhozZgQJyIiIiIqAQ888ADKy8thsVhw6623Ynh4GA8//DD0ej22bt2K9vZ2vPbaawCAn//854hEIvinf/onmM1mWCwWPPLII+js7MTw8LDCvwkRERER0eqxqSYRERERUQmoqqrK/tlsNsPj8UCtVi96LBKJAADOnj0Lv98Pp9O56DX0ej0GBwdRW1u7MUETEREREa0zJsSJiIiIiGiRyspK1NfXo6+vT+lQiIiIiIjWFUumEBERERHRIh/+8IeRSqXwwAMPIBQKAQAmJibw1FNPKRwZEREREdHaMCFORERERESLWK1WvPrqqxgcHMTu3bths9lwzTXX4OWXX1Y6NCIiIiKiNVEJIYTSQRARERERERERERER5RpXiBMRERERERERERFRSWBCnIiIiIiIiIiIiIhKAhPiRERERERERERERFQSmBAnIiIiIiIiIiIiopLAhDgRERERERERERERlQQmxImIiIiIiIiIiIioJDAhTkREREREREREREQlgQlxIiIiIiIiIiIiIioJTIgTERERERERERERUUlgQpyIiIiIiIiIiIiISgIT4kRERERERERERERUEpgQJyIiIiIiIiIiIqKS8P8BdvFHJn8jHykAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/cAAAIyCAYAAACO1Dp8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxJ0lEQVR4nOzdd3xTdfs//lfSNl1Jk6Yr3Yu2UCijgKhsRBkqIkNFUKYCAnIr6u1AEERURBT1VlBvQFBBQb0/iAwHKChVECirBUqhTenebdI2SZPz+8Nf8yW07DSnbV7Px6MP6XmfnFxNketc570kgiAIICIiIiIiIqJWSyp2AERERERERER0c1jcExEREREREbVyLO6JiIiIiIiIWjkW90REREREREStHIt7IiIiIiIiolaOxT0RERERERFRK8finoiIiIiIiKiVY3FPRERERERE1MqxuCciIiIiIiJq5VjcEzmJAQMGYP78+WKHQURERM2EuZ7IubG4J2oFzp8/j3HjxiEkJARyuRwhISEYPnw48vPzxQ5NNJs2bULfvn3h4+MDiUSC+vp6sUMiIiK6Ycz1jT3//PNISkqCj48PgoODMW7cOOTk5IgdFlGLxeKeqBUYPnw4FAoFTpw4AZ1OhyNHjuDBBx+ERCIROzTR+Pr64oknnsC7774rdihEREQ3jbm+MYlEgnXr1qGkpATp6emQSCS49957xQ6LqMVicU/UwpWWluLUqVOYMWMG1Go1ACAoKAgTJ06ERqMBAKxbtw5hYWE2r3vllVfQp08fm2MVFRUYNWoUFAoF2rVrh/Xr11vbtFothg8fDrVaDaVSiU6dOmHfvn0211+5ciXCwsLg5+eHKVOmQKfTWV+/YMECxMfHQ6FQIDw8HHPmzEFNTY21vb6+HitWrEBiYiIUCgXCwsLw5ptvWtv/+usvDBgwAH5+foiMjMTLL798xd74IUOGYNy4cYiJibnej5SIiKhFYa5v2uuvv47u3btDJpNBpVLhueeew9GjR1FeXn69HzGRU2BxT9TC+fn5ISkpCdOnT8fatWtx7NgxWCyWG7rWf//7X0yePBnl5eV47733MG3aNPzxxx8AgBdeeAGhoaHIy8tDeXk5vvnmG5ubiIKCAqSmpuL06dM4duwYjh8/jqeeesraHhcXh59//hlVVVXYuXMnduzYgVdffdXa/sorr+DDDz/EunXrUFlZiWPHjqFfv34AgNOnT+OOO+7AjBkzUFhYiL1792Lr1q02NwRERERtFXP9tfnxxx8RGRkJX1/fG/psiNo8gYhavJKSEuHll18WevbsKbi7uwu+vr7CvHnzhLq6OkEQBGHt2rVCaGiozWsWLlwo9O7d2/p9//79hVGjRtmc88ADDwhTpkwRBEEQJk2aJNxzzz3CiRMnBIvFYnPe2rVrBalUKlRUVFiPbd++XXBzcxPq6+ubjHnFihVCcnKyIAiCYLFYBLlcLmzevLnJc+fMmSM89NBDNsc+//xzITY29rKfSYM9e/YIAASTyXTVc4mIiFoq5vor++mnnwQvLy9hx44d13Q+kTNizz1RK+Dn54fFixfjwIEDqKysxJo1a/DJJ5/g9ddfv67rREdHN/q+YWGa5cuXo127dhg1ahSCgoIwefJkFBYWWs/19fWFUqm0ea3JZLKes3r1aiQnJ8PPzw9KpRIvvfQSioqKAAAlJSXQ6XRISEhoMq6MjAx89913UKlU1q+ZM2eioKDgun4+IiKi1oq5/vK2bduGMWPG4PPPP8fQoUOv6/MgciYs7olaGXd3d4wcORKDBw/G4cOHAQAKhQJ6vd7mvLy8vEavzcrKavR9w3A8Pz8/vPPOOzh9+jSOHDmCrKwsPP3009Zzy8vLUVlZafNaNzc3BAUFISUlBbNnz8bbb7+NgoICVFZW4rXXXoMgCAAAf39/yOVynDlzpsmfSaPR4OGHH0ZFRYX1q6qqymaeHxERkbNgrv9/vvjiC4wfPx5fffUV7r///iueS+TsWNwTtXDl5eV4/vnncezYMRgMBpjNZvzyyy/Ys2ePdR5bt27dUF1dja+++goWiwW//vorNm/e3Oha27dvxw8//ACz2YydO3fiu+++w+TJkwH8s7VcZmYmLBYLFAoF3N3d4erqan2tRCLBvHnzoNfrkZeXh4ULF+KRRx6Bi4sLKisr4eLigoCAALi5ueHw4cP44IMPbF47Z84cvPDCC/j7778hCALKysqQkpICAHjiiSewZcsWbN68GUajEWazGWfPnsXOnTsv+7mYzWbU1dXBaDQCAAwGA+rq6m54jiIREZFYmOub9sEHH2D27NnYtm0bhgwZYpfPmqhNE3dWABFdjU6nE6ZOnSrEx8cLcrlcUCqVQseOHYU33njDZr7cRx99JISFhQkKhUJ46KGHhKeeeqrRPLxZs2YJ999/vyCXy4WYmBhhzZo11vbnn39eiIiIELy8vAR/f3/hwQcfFIqKigRB+H/z/N59910hJCRE8PX1FSZOnChUVVUJgiAIZrNZmDt3ruDn5yf4+PgIQ4YMERYtWmQzN9BkMglvvvmmEB8fL3h7ewuhoaHCm2++aW3/888/hTvvvFPw9/cXlEql0KVLF2HVqlWX/VzWrl0rAGj0tWfPnpv+zImIiByJub5pAARXV1fB29vb5mvv3r03/6ETtUESQfj/x9IQEV3GunXrMH/+fFy4cEHsUIiIiKgZMNcTtX4clk9ERERERETUyrG4JyIiIiIiImrlOCyfiIiIiIiIqJVjzz0RERERERFRK8finpxeRUUFoqKikJOTI3YoV7R06VLcddddN/TarKwsSCQSnD171s5RNb+wsDCsW7dO7DAauZnfR1P0ej0iIyMvuz8wEVFbdmku/vXXXyGRSFBfXy9yZPY3f/58DBgw4IZeO2nSJEyYMMG+AbWi979Rn376KaKiosQOo0lyuRy//vqr3a739ttvY9KkSXa7HrUuLO7J6S1evBgjR45EeHi4Xa7XXInvxRdfxI8//mj369pLS3mAEBUVhU8//bTZr2nv34e3tzeefvppzJs3z27XJCJqLeydi+n6tKSHKS3hAcK6desQFhbmkGvqdLobftjTlNmzZ+PHH3/E33//bbdrUuvB4p6cWlVVFT755BM8/vjjYodChEcffRQ///wze++JyKkwF4vLZDKJHQLZkbu7OyZMmIB33nlH7FBIBCzuyan9+OOPUKlUSExMtDn+119/YcCAAfDz80NkZCRefvllm6fZFy5cwPjx4xEWFgYfHx907doVhw8fxtKlS/HFF1/gq6++glwuh1wuh1arBQD88MMP6N69O5RKJeLj47F8+XJYLBbrNSUSCVasWIGePXtCLpfjlltusXnq+sorr6BPnz7W72trazF//nzEx8dDoVAgJiYGn3322RV/3j179iAxMRE+Pj644447kJmZaW0zm814++230aFDByiVSnTv3h2//PKLtf3EiRO44447EBAQAKVSiV69emH37t3W9o4dOwIAunTpArlcjhkzZgAAPvjgA8TGxkKhUCAoKOiKQ8V0Oh2mTp0KPz8/hIaGYuXKlY3OOXXqFO655x4EBQUhNDQUTzzxBPR6PQBg2LBh0Gq1mD17NuRyuTUmAFi/fj26dOkCpVKJjh07YtOmTTbXTUlJwaBBg+Dv7w+1Wo2BAweitrb2ste89PdRUVGBxx9/HGFhYfD398ewYcNw+vRpa3vD+YsWLUJwcDDUajWmT59u8/fK19cXPXv2xHfffXfZz4iIqK25XC6+mNlsxltvvYX4+HgolUr06NEDO3bssLY39Dxv2bLFmhfvvPNO5ObmWs8pLCzEyJEjoVKpEBMTgy+++AISieSKQ6Iff/xxREVFQS6XIzo6GgsXLrTJ3QMGDMDcuXPx8MMPQ6lUIjw8HB999JHNNTZs2IC4uDgoFAqMGjUKFRUVV/w89uzZgx49ekCpVMLPzw+9e/dGeXm5tb2+vh6zZ8+Gn58fgoKC8PLLL9u8PiUlBX379oWvry+io6Px/PPPw2AwWNujoqKwcOFCDB06FAqFAq+//jqGDRsGAFCpVJDL5Vi6dOll4zMajZg2bRpUKhUiIiKwbNkym/Yr5WkAWLBggfV3FB4ejjlz5qCmpgYALnsfpdVqMXz4cKjVaiiVSnTq1An79u27bIy7du1CUlIS5HI5Bg0a1Gjq5ZXuefbt24cZM2YgLy/PGsMXX3wBAMjNzcXDDz+M0NBQBAYGYty4cSguLrZe93L3Zle6pkQiwc8//2y9xrXcL77//vvo3bs35HI5kpKS8Pvvv9v8fEOHDsX333/fIkZikIMJRE7s3//+tzB06FCbY6dOnRK8vb2FjRs3CiaTScjKyhI6d+4sLFmyRBAEQaipqRHi4uKESZMmCcXFxYLZbBZOnjwpZGVlCYIgCBMnThTGjx9vc80DBw4Ibm5uwldffSWYTCbh77//FoKDg4V33nnHeg4AITY2Vjh58qRQV1cnLFy4UPD39xcqKioEQRCEhQsXCr1797aeP378eKFnz55CWlqaYLFYhNzcXOHQoUNN/pznz58XAAg9e/YUtFqtoNfrhalTpwodOnQQTCaT9fpdunQRTp06JZjNZuHbb78VvLy8hLNnzwqCIAjHjx8XfvzxR6GmpsYan4+Pj1BYWGjzHhkZGdb3PXPmjODp6SkcP35cEARBqK6uFn777bfL/j4ee+wxoVu3bkJOTo6g0+mESZMmCS4uLsLatWsFQRCE4uJiwd/fX1ixYoVQV1cnFBcXC3fccYcwbdo06zUiIyOFTz75xOa6a9euFcLDw4WDBw8KZrNZ2Ldvn6BQKIR9+/YJgiAIJ06cEDw8PIQPPvhA0Ov1gsFgEPbs2SPU1dVd9pqX/j7uueceYcCAAUJ+fr6g1+uFuXPnCmFhYUJ1dbX1fFdXV+Gtt94SDAaDcPr0acHX11dYs2aNzXVnzZoljB49+rKfERFRW9NULt6zZ48AwJqjli9fLoSGhgqHDh0STCaTsHHjRsHNzc2a9xrOf/jhh4WKigqhoqJCuP3224VHH33Ues1BgwYJ99xzj1BWViaUlZUJI0aMEAAIe/bsuWxsn3zyiVBQUCBYLBYhJSVFUKvVwqpVq6zt/fv3F3x8fIRffvlFMJvNwpYtWwSpVGrNhX/88Yfg6uoqbN26VTCZTMLWrVsFDw8PoX///pd9z5CQEGHNmjWCxWIRDAaDsH//fkGn0wmC8M89hkwmEzZu3CjU19cL+/fvF1xdXYXdu3cLgiAI2dnZgpeXl/DOO+8IBoNBOHPmjJCYmCjMnTvXev3IyEghKChI2L9/v2CxWAS9Xt/o876ciRMnCq6ursKqVasEo9EopKSkCL6+vsLnn38uCMK15en169cL2dnZgsViEU6cOCHExsYKzz//vM17XHof9fDDDwvTpk0TamtrBbPZLJw6dUo4d+5ckzGeO3dOkMlkwurVqwWj0Sj88ccfgr+/vxAZGWk952r3PGvXrhVCQ0NtrltXVyckJCQI8+bNE3Q6nVBdXS1MmDBBGDx4sPWcK92bNXVNQfjn/u+nn34SBOHa7xc7d+4sZGRkCCaTSZg7d64QERFhc83i4mIBgPX+i5wHi3tyao899pjw4IMP2hybM2eO8NBDD9kc+/zzz4XY2FhBEARh8+bNglqtthZ+l2oqKT3++OPCyJEjbY6tWLFCSEhIsH4PQHjvvfes35vNZkGj0Qjr168XBMG2mGz4R/vgwYPX9HM2FN5bt261HquqqhJcXFyEvXv3CoIgCD4+PsLOnTttXjd48GDh1Vdfvex1lUql9ZpNFffnzp0TPDw8hE2bNgmVlZVXjNFsNgvu7u42MVZUVAgSicRa3L/99tvCrbfeavO633//XZDJZEJ9fb0gCE0X4klJSTY3Y4IgCNOmTROmTp0qCMI/BfXdd9992diuVtzn5eUJAITU1FRru9FoFPz8/ISNGzdaz4+Ojra5xpgxY4QZM2bYHHvxxReFgQMHXjYWIqK2pqlcfGmxGR8fL7z77rs254wYMUKYPn26zfnZ2dnW9g8++EBo3769IAiCkJOTIwAQTp48aW0/fvz4VYv7Sz355JPCqFGjrN/3799fmDx5ss05/v7+wqZNmwRB+CfXXHy+IAjCqFGjrljcR0VFCS+99JJw4cKFRm0TJ05slCN69OghvPHGG4IgCMLSpUuFrl272rR/++23gqenp2CxWARB+CenXVxMC0Ljz/tyJk6cKCQnJ9sce+6554RBgwYJgnBtefpSK1assLlmU/dRkyZNEu655x7hxIkT1p/jcpYsWdIoxqefftqmuL/aPU9Thfg333wjhISE2Lz/hQsXBABCTk7OVe/NrqW4v9b7xc8++8z6/YkTJwQAQkFBgfWY0WgUAFyxQ4XaJg7LJ6emVqtRWVlpcywjIwPfffcdVCqV9WvmzJkoKCgAAJw/fx5RUVFwd3e/5vfJyclBbGyszbF27dpZh+w3iI6Otv5ZKpUiMjKyyVX8z58/DwBISEi45hguvb5CoYC/vz9ycnJQWFiIqqoqjB071ubn3r9/v3VIo1arxUMPPYSIiAj4+PhApVKhqqoKRUVFV3y/TZs2Ye3atYiIiEDPnj2xcePGJs8tLi6GwWCwiVGpVEKtVlu/z8jIwKFDh2xiHD58OCQSifX305SMjAzMmzfP5nUbN25EXl4egH8+z+v9LC/W8Du6+Hfs5uaGyMhIm99xSEiIzeu8vb1RXV1tc6yystLmZyYiauuaysWXutY8evG/sxf/G9uQyyIjI63tV1s9XRAEvPbaa+jYsSN8fX2hUqmwevXqRnnvSv+2X7hwwSavAWj0/aW2bt2Kc+fOoXv37mjXrh0WLlxoM7z6Su93uc+ptrbWZvj41WK4kqZ+noY8eC15evXq1UhOToafnx+USiVeeumlK95LAMDy5cvRrl07jBo1CkFBQZg8eTIKCwubPPdqn/m13PM0JSMjA4WFhda/CyqVCh07doS7uzu0Wu0N35td7Eb/ngOwuZ9o+P+J9xPOh8U9ObXu3bvj5MmTNsc0Gg0efvhhVFRUWL+qqqqg0+kA/HMzkJWVBaPR2OQ1pdLG/1uFh4fbzG8HgMzMTERERNgcy8rKsv7ZYrFAq9U2ubJqww3J9S68dvH1dTodSkpKEBYWBpVKBQ8PD2zbts3m59br9da5g4899hgsFgsOHjyIqqoqlJeXw8fHB4IgXPbnBoD77rsPO3fuRElJCZ599lmMHz++ybgDAgLg7u5uE2NlZaXNPEONRoM+ffrYxFhZWYm6ujqEhoZeNg6NRoMPP/zQ5nU6nQ7bt28H8M/neaXP8nI/W4OG1Z0v/h3X19dDq9U2+h1fzfHjx9GjR4/reg0RUWvWVC6+1LXm0ctpyBHZ2dnWYxf/uSmbNm3Cu+++i/Xr16OkpAQVFRWYPn26Ne9di7CwMJu8BqDR95dKSkrCl19+iYKCAmzZsgWrVq3C2rVrr+n9wsPDce7cOZtjmZmZ8PT0REBAgPXYpXntannuYk39PA33KlfL0ykpKZg9ezbefvttFBQUoLKyEq+99prNZ9pULH5+fnjnnXdw+vRpHDlyBFlZWXj66aebjO9qn/m13PNc7l4iMjLS5jUVFRWoq6vD7bffftV7s2v5jG/273mD48ePQy6Xo3379tf1Omr9WNyTU7vrrrtQVlaG9PR067EnnngCW7ZswebNm2E0GmE2m3H27Fns3LkTAHDPPffA19cXTzzxBEpKSiAIAtLS0qw3CRqNBpmZmTCbzdZrTpkyBT/88AO++eYbmM1mHDlyBG+99VajlYFXrlyJ9PR0GI1GvPbaazAajRgxYkSjuAMCAjBu3DjMmjXLumhbfn4+Dh8+fMWfd8mSJbhw4QJqamowb948tGvXDrfffjvc3d0xY8YMPPfcc0hPT4cgCKitrcXevXutSaqyshJyuRy+vr7Q6/V44YUXrA88GmKSSqU2i8idPn0a27dvh06ng6urK5RKJQDAxcWlUWxSqRQTJkzAK6+8gtzcXOj1esybNw8SicR6zuTJk3HkyBF8+OGHqKmpgSAIyMnJwf/+9z/rORqNxiYGAPjXv/6FV199FQcPHoTFYoHBYMDBgwdx6NAhAMDMmTPx008/YdWqVaitrYXJZMJvv/1mXYCoqWteLDg4GMOHD8e8efNQWFiI2tpa/Pvf/4ZMJsPdd999xd/JxSoqKnDgwAGMHDnyml9DRNTaNZWLLzVt2jQsX74cqampqK+vx9dff43t27dj2rRp1/QeYWFhGDBgAF544QVrUTZ//vwrvqayshKurq4IDAyERCLBnj178Pnnn1/XzzZx4kRs3boVP/zwA8xmM3744Qfrg+WmGI1GrF271trLrlQq4eLiAldX12t6v4cffhinT5/G+++/D6PRiMzMTLz88suYNm2aTT69lEajAYAr5roGR48exaeffor6+nocOHAAn3zyCSZPngzg6nm6srISLi4uCAgIgJubGw4fPowPPvigUSyX3kdt2rQJmZmZsFgsUCgUcHd3v+xnMm7cOBw/ftwa459//on169db26/lnkej0aCkpASlpaXW140aNQomkwkvv/yytWe8qKgIX331FYCr35s1dc1LXev94tXs3LkT99xzzzX/vaG2g8U9OTWlUolp06Zh9erV1mM9e/bETz/9hE8++QShoaHw8/PDmDFjrMW7p6cndu/eDZ1Oh6SkJCiVSowfPx5lZWUAYP0H2N/fHyqVClqtFr169cKWLVvw2muvwdfXF2PHjsWTTz6JuXPn2sQzc+ZMPPLII1Cr1di6dSu2b98OlUrVZOyffPIJ+vfvj2HDhkEul6N3795X7fmYOnUq7rzzTgQFBeHMmTP4/vvvrf/wL1++HOPGjbMOU4uKisLrr79u3SLnvffew9GjR+Hr64vExESEhobajCrw9PTE0qVLrSvoPvHEE9aHFKGhofDx8cG8efOwfv36RkPOGrzzzjtISkpCUlIS4uPjkZSUZL3hAICIiAikpKTgp59+QmxsLFQqFYYMGYLjx49bz1mwYAH+7//+DyqVCp07dwYAzJ07F6+88gpmzJgBtVqN0NBQPPvss9bVezt16oSff/4ZGzduREhICIKCgrB48WLr6rRNXfNSGzZsQFRUFJKTkxEWFoaTJ0/i559/hkKhuOLv5GLr16/HHXfcwSftRORUmsrFl3r66acxa9YsjBkzBmq1Gm+++Sa+/fbb6xrp9OWXX0IQBERGRqJbt27Wh+ceHh5Nnj9p0iTccccdSEpKgr+/P1atWnXd+6/36dMHH3/8MebOnQuVSoX//ve/mDJlyhVfs2XLFnTs2BHe3t7o378/Jk2ahIkTJ17T+0VGRuLHH3/EV199hcDAQAwaNAjDhg1rtKL9peLj4zFnzhwMHDgQKpUKb7zxxmXPvf/++/Hnn3/C398fo0ePxjPPPGP9XK6Wp++66y7MmDEDAwYMgFKpxIsvvtjoZ2vqPuro0aMYNGgQFAqF9brLly9vMr6YmBh89913ePfdd6FSqfDiiy9i5syZNudc7Z5n0KBBuO+++xAfHw+VSoUvv/wSCoUCKSkp0Gq1SEpKgo+PD26//Xbs3bvXet0r3Zs1dc1LXev94pUYjUZs2LDhsiMbqG2TCNcztoioDSovL0fXrl2xb9++6x72ZE8SiQQ//fQTBg8eLFoMJB69Xo+OHTti165dNzVfj4ioNRIjF6empqJbt27Iy8tDcHCwQ96TqLmtWLECR48ever2yNQ2sbgnaiFY3BMRETWfEydOwGg0omvXrsjLy8Ojjz4KANi9e7fIkRER2QeH5RMRERFRm1dZWYmHHnoICoUC3bt3h7+/P7744guxwyIishv23BMRERERERG1cuy5JyIiopv2wQcfoEePHnB3d8dDDz1k03bixAnceuut8PLyQmJi4lWHQX/wwQcIDQ2FXC7H6NGjbbbEJCIioqaxuCciIqKbFhISgvnz5+Oxxx6zOW4ymXDvvfdixIgRKC8vx8KFC3H//fejqKioyev89NNPWLhwIb7//nvk5+fDxcUFM2bMcMSPQERE1KpxWD4RERHZzSuvvIJTp05h06ZNAP4p1idMmID8/HxIpf/0KfTu3RsPP/wwZs2a1ej148ePR3BwsHWbq4yMDCQmJqKkpARKpdJxPwgREVEr4yp2AGIoKSnBrl27EBUVBU9PT7HDISIiQm1tLbKysjBkyBD4+/uLHY7dnDhxAklJSdbCHgC6du2KEydOXPb8YcOGWb+Pi4uDTCbDqVOn0KtXr0bn5+fnIz8/v9Hx8vJypKeno1u3bsz1RETUIjR3rnfK4n7Xrl2YMGGC2GEQERE18vnnn2P8+PFih2E3Op0OKpXK5phKpUJ2dvZ1nV9dXd3k+atXr8aiRYvsESoREZFDNFeud8riPioqCgCwbNkyxMbGihsMkYNkZmbiueeew4YNG5CYmCh2OER0ifT0dEyYMMGao9oKuVyOyspKm2OVlZVQKBR2OX/69OkYMWJEo+OpqamYOnUq3nzzTeZ6ciqZmZn497//zXxP1AI1d653yuK+YXheTEwMOnbsKHI0RI7RsLxG+/btkZycLHI0RHQ5bW0IeadOnfDmm2/CYrFYh+anpqZi3Lhxlz0/NTXV2qNx9uxZGAwGtG/fvsnzg4ODERwcfNn3j42NRadOnW7ypyBqPYKDg/Hiiy/irrvuQmBgoNjhEFETmivXc7V8IiIiumn19fWoq6tDfX09LBYL6urqYDKZMGDAAHh6emLZsmUwGAzYvHkzjh8/jrFjxzZ5nUmTJmHt2rU4cuQIdDod5s+fj1GjRnExPaJr5Ovri5EjR7aptTuI6NqwuCdyEu3bt8fvv/+Orl27ih0KEbVBS5YsgaenJ1577TVs3rwZnp6eeOyxx+Dm5oatW7fiu+++g0qlwoIFC/Dtt99aexT37dsHuVxuvc6dd96JV155BXfffTc0Gg2MRiNWrVol1o9F1OqUl5fjf//7H0pKSsQOhYgczCmH5RM5I6lUCplMZrNiNdGVCIJg/aKbJ5FIrF9t0SuvvIJXXnmlybakpCT89ddfTbb17dsXOp3O5tjs2bMxe/Zse4dI5BTy8/OxdOlS3H///RyWT1fFXG9/EolEtPttFvdETiIrKwvz58/HF198cdm5q0QAYLFYUFRUhIqKCiZ7O5NIJFCpVAgMDOSDNiIiEg1zffNyc3NDREQEZDKZQ9+XxT2Rk6ipqcHhw4cb9ZARXSo7OxtSqRRRUVFwc3MTO5w2xWQyobCwENnZ2YiOjhY7HCIiclLM9c1HEASUlpZCq9WiXbt2Dn1vFvdERGTVsBBaXFwcXF2ZIuzNxcUFoaGhyMjIsFk9noiIyFGY65ufn58fysrKHJ7reVdBRERWDUPz2uq88Jag4bPlMEgiag5eXl5ITk62WaiS6GLM9c1PrFzP4p6IiIiIqI2IiorCqlWrEB8fL3YoRORgLO6JnERwcDBefPFFREREiB0KUZs3YMAAbt9GRKKwWCwwGo2wWCxih0LUprXEXM/inshJ+Pr6YuTIkfD39xc7FKKbNmDAALi6uuLMmTPWY6dOneIQQyJyeqdOnUKfPn2QmpoqdihEN4W5/vqxuCdyEuXl5fjf//6HkpISsUMhsgulUomXX375pq9TX19vh2iIiIjI3pjrrw+LeyInkZ+fj6VLl0Kr1YodCpFdzJkzB9u3b8eRI0catVVVVWHq1KnQaDQICwvD008/DYPBAADIysqCRCLBunXrEB0djc6dO+PXX3+FRqPBypUrERwcDD8/P3z66ac4dOgQunbtCqVSiUceecR6c1BVVYV7770XgYGB8PX1xfDhw/n/FhERkZ0x118fFvdERGQ3RqMRWq0WaWlp0Gq1MBqNzfZeGo0GTz75JF588cVGbU8++SRyc3Nx6tQp/P333/jjjz+wePFim3N27tyJo0eP4tChQwCAkpIS6x7069atw+zZs7Fo0SLs2LEDZ8+exb59+/D1118D+GdO68SJE5GVlYWcnBz4+PjgiSeeaLaflYiIqCVxVL5nrr8+LO6JiMgujEYjUlNTkZ+fD4vFgvz8fKSmpjZrgf/ss8/iwIED2Lt3r/WY2WzGxo0b8eabb0KlUkGj0WDRokVYv369zWtfeeUV+Pj4wNPTEwAglUqxaNEiyGQy3HvvvZDJZHj44YcRHByMgIAA3HXXXTh8+DAAQKVSYcyYMfDy8oJcLscLL7yA3377rdl+TiIiopbC0fmeuf7asbgnIiK7KCgogCAICA8Ph1qtRnh4OARBQGFhYbO9p0qlwr///W+88MIL1mMlJSUwGo2IioqyHouKikJ+fr7NfrORkZE211Kr1XBzc7N+7+XlBY1GY/O9TqcDANTU1GD69OmIjIyEj48P+vbtC51OZx0OSEQklnbt2uH7779Hp06dxA6F2ihH53vm+mvH4p7ISXh5eSE5ORlyuVzsUKiN0ul08Pb2tjnm7e2N6urqZn3fOXPmICsrC9u2bQMA+Pv7QyaTISsry3pOVlYWgoODbVbYvZnVdt9++22kpaXhzz//RFVVFfbt2wcANjcURERikMlkCAoKgkwmEzsUaqPEyPfM9deGxT2Rk4iKisKqVasQHx8vdijURsnlcuj1eptjer0eCoWiWd/X09MTCxYswBtvvAEAcHFxwUMPPYQXXngBFRUVKCwsxKJFi/DII4/Y7T2rq6vh6ekJlUqF8vJyvPrqq3a7NhHRzcjJycHzzz+Pc+fOiR0KtVFi5Hvm+mvD4p7ISVgsFhiNRlgsFrFDoTZKo9FAIpEgJycHZWVlyMnJgUQiQVBQULO/99SpU+Hr62v9/r333kNQUBASEhLQrVs33HLLLViwYIHd3u9f//oXjEYjAgIC0KtXL9x55512uzYR0c2orq7G7t27UVFRIXYo1EaJle+Z669OIrTkcQXN5PDhw+jevTu2bNnC+UjkNE6cOIExY8bg4MGD6NGjh9jhUAtlNptx5swZxMfHw8XF5bpfbzQaUVhYiOrqaigUCg4NbcLlPuOG3HTo0CEkJyeLGGHbwFxPzor5nq7mZnM9wHx/NWLlele7X5GIiJyWTCZDeHi42GEQERFRM2K+b5k4LJ+IiIiIiIiolWNxT0RERETURgQEBOCJJ55ASEiI2KEQkYOxuCciIiIiaiMCAgIwadIkm727icg5sLgnchLt2rXD999/z4Wl6Ioa9oN1wrVWHabhs72ZvXeJiC6nqqoKe/fu5Wr5dFnM9Y7j6FzP4p7ISchkMq5kSlcllUrh4uKCuro6sUNps+rq6uDi4gKplCmYiOzvwoULeOaZZ7jPPV0Wc33zM5lMkEgkDi/uuVo+kZPIycnBm2++idWrV6Ndu3Zih0MtWEBAAHJzcxEaGgoPDw/2MNuJIAioq6tDbm4uAgMDxQ6HiIicGHN98xEEAYWFhVCpVCzuiah5VFdXY/fu3RymR1fl6+sLAMjLy4PZbBY5mrbFxcUFgYGB1s+YiIhIDMz1zcvDw0OUB/ks7omIqBFfX1/4+vrCYrFwTp6dSCQSDsUnIqIWg7m+eYiZ71ncExHRZbEYJSJqXWQyGaKjo+Hh4SF2KNRKMNe3HfxNEhERERG1Ee3atcNXX32FxMREsUMhIgdjcU/kJAICAvDEE08gJCRE7FCIiIiIiMjOWNwTOYmAgABMmjQJGo1G7FCIiIiomaSnp2PgwIFITU0VOxQicjAW90ROoqqqCnv37uVq+URERG2YIAjQ6/WwWCxih0JEDsbinshJXLhwAc888wzOnTsndihERERERGRnLO6JiIiIiIiIWjkW90REREREREStHIt7IiIiIqI2Ijo6GuvXr0f79u3FDoWIHIzFPZGTkMlkiI6OhoeHh9ihEBERUTPx9PRE+/bt4eXlJXYoRORgLO6JnES7du3w1VdfITExUexQiIiIqJnk5eVh2bJl0Gq1YodCRA7G4p6IiIiIqI2oqKjAli1bUFJSInYoRORgrba4Lykpgb+/P2699VaxQyFqFdLT0zFw4ECkpqaKHQoREREREdlZqy3un332WQ4vJroOgiBAr9fDYrGIHQoREREREdmZq9gB3IjffvsNGRkZmDp1KlavXn3Z8/Lz85Gfn9/oeHp6enOGR0RERERERORQra64NxqNmD17Nj7//HMcOXLkiueuXr0aixYtclBkRERERETiUqvVGDduHAIDA8UOhYgcrNUV92+88QYGDx6MLl26XLW4nz59OkaMGNHoeHp6OiZMmNBcIRIRERERiUKj0eCpp55CWFiY2KEQkYO1quL+7NmzWLdu3TUvCBYcHIzg4ODmDYqolYiOjsb69evRvn17sUMhIiKiZqLX63Hs2DEkJCTAx8dH7HCIyIFaVXH/+++/o6CgAPHx8QCA2tpa1NbWQqPR4MyZM/wHjOgKPD090b59e3h5eYkdChERETWT7OxsTJs2DV26dEGPHj3EDoeIHKhVrZb/4IMP4ty5c0hNTUVqaioWL16MpKQkpKamQqFQiB0eUYuWl5eHZcuWQavVih0KERERERHZWasq7j09PaHRaKxfSqUSbm5u0Gg0kEgkYodH1KJVVFRgy5YtKCkpETsUIiIiIiKys1ZV3F9q0qRJ+PPPP8UOg4iIiIiIiEhUrbq4JyIiIiKi/8fFxQUqlQqurq1qaS0isgMW90RERNSs5HK5zZerq2uTW9U2kEgk8Pb2tp4/bNgwB0ZL1LolJCTgxx9/ROfOncUOhYgcjI/0iJyEWq3GuHHjEBgYKHYoRORkdDqd9c9msxkRERF44IEHrviaQ4cOcetOIiKi68CeeyInodFo8NRTTyEsLEzsUIjIie3cuRM6nQ6jR48WOxSiNikjIwOjRo3CyZMnxQ6FiByMPfdETkKv1+PYsWNISEiAj4+P2OEQkZNau3YtHnroIXh6el7xvEGDBsFsNqNHjx5YtmwZOnbs2OR5+fn5yM/Pb3Q8PT3dLvEStTYmkwkXLlyAwWAQOxQicjAW90ROIjs7G9OmTUOXLl3Qo0cPscMhIidUUlKC77//Hnv37r3ieb/++ituu+02GAwGvPnmm7jrrruQnp7e5IPJ1atXY9GiRc0VMhERUavBYflERETkEF988QXatWuHXr16XfG8/v37QyaTQaFQYMmSJXB1dcX+/fubPHf69Ok4dOhQo6/PP/+8OX4EIiKiFos990REROQQa9euxeTJk6/7dVKpFIIgNNkWHByM4ODgmw2NiIio1WNxT0RERM3u8OHDOHnyJB555JErnnfy5EkYDAZ07twZRqMRy5YtQ21tLW677TYHRUrUukVERGDlypVo166d2KEQkYNxWD6Rk3BxcYFKpYKrK5/pEZHjrV27FnfffTeCgoIatcnlcuzbtw8AUFRUhIcffhhKpRIRERH4888/sWvXLqhUKgdHTNQ6yeVy3HbbbVw8l8gJ8S6fyEkkJCTgxx9/ROfOncUOhYic0Pvvv3/ZNp1OZ/3zwIEDcerUKUeERNQmFRcXY8OGDXjllVcQGhoqdjhE5EDsuSciIiIiaiOKi4vx6aefNrlFJBG1bSzuiZxERkYGRo0ahZMnT4odChERERER2RmLeyInYTKZcOHCBRgMBrFDISIiIiIiO2NxT0RERERERNTKsbgnIiIiImojfHx8MHToUPj6+oodChE5GIt7IiIiIqI2IiwsDIsXL0Z0dLTYoRCRg7G4J3ISERERWLlyJdq1ayd2KERERNRMDAYDcnJyUFdXJ3YoRORgLO6JnIRcLsdtt90GHx8fsUMhIiKiZpKZmYnRo0cjLS1N7FCIyMFY3BM5ieLiYnz88cfc95aIiIiIqA1icU/kJIqLi/Hpp5+yuCciIiIiaoNY3BMRERERERG1cizuiYiIiIiIiFo5FvdERERERG1EYmIiDhw4gOTkZLFDISIHY3FP5CR8fHwwdOhQ+Pr6ih0KERERERHZGYt7IicRFhaGxYsXIzo6WuxQiIiIqJmcP38eU6ZMwenTp8UOhYgcjMU9kZMwGAzIyclBXV2d2KEQERFRM6mtrcWJEyeg1+vFDoWIHIzFPZGTyMzMxOjRo5GWliZ2KEREREREZGcs7omIiIiIiIhaORb3RERERERERK0ci3siIiIiojYiJCQEixYtQlRUlNihEJGDsbgnIiIiImojVCoVhg0bBrVaLXYoRORgLO6JnERiYiIOHDiA5ORksUMhIiKiZlJWVobNmzejuLhY7FCIyMFY3BMRERERtREFBQV46623kJOTI3YoRORgLO6JnMT58+cxZcoUnD59WuxQiIiIiIjIzljcEzmJ2tpanDhxAnq9XuxQiIiIiIjIzljcExEREREREbVyLO6JiIiIiNoILy8v9OrVCwqFQuxQiMjBWNwTEREREbURUVFReP/99xEXFyd2KETkYCzuiZxESEgIFi1ahKioKLFDISIiomZiNpuh0+lgNpvFDoWIHIzFPZGTUKlUGDZsGNRqtdihEBERUTM5ffo0Bg0ahKNHj4odChE5GIt7IidRVlaGzZs3o7i4WOxQiIiIiIjIzljcEzmJgoICvPXWW8jJyRE7FCIiIiIisjMW90REREREREStHIt7IiIiIiIiolaOxT0RERERURsRFxeHXbt2ISkpSexQiMjBWNwTOQkvLy/06tULCoVC7FCIiIiombi5ucHX1xdubm5ih0JEDsbinshJREVF4f3330dcXJzYoRAREVEz0Wq1mDdvHjIzM8UOhYgcjMU9kZMwm83Q6XQwm81ih0JERETNRKfTYd++faisrBQ7FCJyMBb3RE7i9OnTGDRoEI4ePSp2KEREREREZGcs7omIiIiIiIhaORb3RERERERERK0ci3siIiIiojYiMDAQc+fORWhoqNihEJGDsbgnIiIiImoj/P39MX78eAQFBYkdChE5GIt7IicRFxeHXbt2ISkpSexQiIiIqJlUVlbi559/Rnl5udihEJGDsbgnchJubm7w9fWFm5ub2KEQERFRM8nNzcWLL76I8+fPix0KETkYi3siJ6HVajFv3jxkZmaKHQoREREREdkZi3siJ6HT6bBv3z5UVlaKHQoREREREdkZi3siIiIiIiKiVo7FPRERETWrSZMmQSaTQS6XW7+0Wu1lzz9x4gRuvfVWeHl5ITExEbt373ZgtEStm7u7OxISEuDp6Sl2KETkYCzuiYiIqNk9/fTT0Ol01q+IiIgmzzOZTLj33nsxYsQIlJeXY+HChbj//vtRVFTk4IiJWqfY2Fhs2LABHTp0EDsUInIwV7EDICLHCAwMxNy5cxEaGip2KEREl/Xrr7+ipqYGzz//PKRSKR588EG899572Lx5M2bNmtXo/Pz8fOTn5zc6np6e7ohwiYiIWgz23BM5CX9/f4wfPx5BQUFih0JETujjjz+GWq1Gly5dsGbNmsued+LECSQlJUEq/X+3KF27dsWJEyeaPH/16tXo3r17o68JEybY/Wcgag3S0tLQu3dvHDlyROxQiMjB2HNP5CQqKyuxZ88exMTEwM/PT+xwiMiJPPnkk1i+fDlUKhX27duHsWPHQqlUYvTo0Y3O1el0UKlUNsdUKhWys7ObvPb06dMxYsSIRsfT09NZ4JPTMplMEARB7DCIyMFY3BM5idzcXLz44ou48847WdwTkUMlJydb/zxw4EDMmjULmzdvbrK4l8vljbbsrKyshEKhaPLawcHBCA4Otm/ARERErRCH5RMREZFDSaXSy/YqdurUCcePH4fFYrEeS01NRadOnRwVHhERUavE4p6IiIia1ddff43q6mpYLBb8/vvv+OCDD3D//fc3ee6AAQPg6emJZcuWwWAwYPPmzTh+/DjGjh3r4KiJiIhaFxb3RERE1Kw++OADhIeHQ6lUYvr06ViyZAkeeugha3vHjh3xxRdfAADc3NywdetWfPfdd1CpVFiwYAG+/fZbBAYGihU+UasSExODjRs3cis8IifEOfdETsLd3R0JCQnw9PQUOxQicjJ79+69YvvJkydtvk9KSsJff/3VnCERtVkeHh6IjY1lvidyQuy5J3ISsbGx2LBhA5/kExERtWG5ublYsmTJZXeYIKK2i8U9EREREVEbUVlZia1bt6K0tFTsUIjIwVjcEzmJtLQ09O7dG0eOHBE7FCIiIiIisjMW90ROxGQyXXb7KSIiIiIiar1Y3BMRERERERG1cizuiYiIiIjaCD8/P0ycOBFBQUFih0JEDsbinoiIiIiojQgKCsKsWbMQGhoqdihE5GAs7omcRExMDDZu3Mit8IiIiNowvV6PQ4cOobq6WuxQiMjBWNwTOQkPDw/ExsbC09NT7FCIiIiomWRnZ2PmzJnIyMgQOxQicjAW90ROIjc3F0uWLEF2drbYoRARERERkZ2xuCdyEpWVldi6dStKS0vFDoWIiIiIiOyMxT0RERERERFRK8finoiIiIiojXB1dUVgYCDc3NzEDoWIHKzVFfcGgwHTpk1DdHQ0FAoFOnbsiC+//FLssIiIiIiIRBcfH49t27YhKSlJ7FCIyMFcxQ7getXX1yMkJAS//PILoqOj8ccff+Duu+9GdHQ0brvtNrHDI2qx/Pz8MHHiRAQFBYkdChERERER2Vmr67n39vbG4sWLERMTA4lEgj59+qB3797Yv3+/2KERtWhBQUGYNWsWQkNDxQ6FiIiImsmZM2dwzz334Pjx42KHQkQO1up67i+l1+vx999/Y+7cuY3a8vPzkZ+f3+h4enq6I0IjalH0ej0OHTqE+Ph4KJVKscMhIiKiZlBfX4+ioiKYTCaxQyEiB2vVxb3FYsGkSZPQs2dP3HXXXY3aV69ejUWLFokQGVHLk52djZkzZ6JHjx7o0aOH2OEQEREREZEdtdriXhAEzJgxA3l5edi1axckEkmjc6ZPn44RI0Y0Op6eno4JEyY4IkwiIiIiIiKiZtcqi3tBEDBr1iykpqbi559/hlwub/K84OBgBAcHOzg6IiIiIiIiIsdqlcX97Nmz8eeff+KXX36Bj4+P2OEQEREREbUIkZGR+OijjxAXFyd2KETkYK1utfzs7Gx8+OGHSEtLQ3h4OORyOeRyOZYuXSp2aEQtmqurKwIDA+Hm5iZ2KERERNRMvL290b17dygUCrFDISIHa3U995GRkRAEQewwiFqd+Ph4bNu2DUlJSWKHQkRERM2ksLAQ69atw6uvvorw8HCxwyEiB2p1PfdERERERNS00tJSfPbZZygsLBQ7FCJyMBb3RE7izJkzuOeee3D8+HGxQyEiIiIiIjtjcU/kJOrr61FUVASTySR2KEREREREZGcs7omIiIiIiIhaORb3RERERERthFKpxIgRI+Dn5yd2KETkYCzuiYiIiIjaiNDQUMyfPx+RkZFih0JEDsbinshJREZG4qOPPkJcXJzYoRAREVEzqaurQ2ZmJmpra8UOhYgcjMU9kZPw9vZG9+7doVAoxA6FiIiImsm5c+cwbtw4pKenix0KETkYi3siJ1FYWIj//Oc/yM3NFTsUIiIiIiKyMxb3RE6itLQUn332GQoLC8UOhYiIiIiI7IzFPREREREREVErx+KeiIiIiKgNcXNzg0QiETsMInIwFvdERERERG1EYmIi/vjjD3Tr1k3sUIjIwVjcEzkJpVKJESNGwM/PT+xQiIiIiIjIzljcEzmJ0NBQzJ8/H5GRkWKHQkRERM0kMzMTjzzyCLfCI3JCLO6JnERdXR0yMzNRW1srdihERETUTAwGA06fPs18T+SEWNwTOYlz585h3LhxfJJPRERERNQGOXVxn5ubC51OJ3YYRERERERERDfFqYv7lStXolevXpgwYQI+/vhjnDp1CoIgiB0WERERERER0XVx6uJ+6dKlWLx4Mby9vfHRRx9h5MiR2L17N8xmM3JyclBVVSV2iERERERE1yw0NBRLly5FdHS02KEQkYO5ih2AmOLi4vDggw/ihRdeQGVlJX755RckJCSgpqYGixYtQkpKCjp37ox+/fqhX79+6NChA6RSp34eQq2cm5sbJBKJ2GEQERFRM1EqlRg8eDB8fX3FDoWIHIyVKgCJRAKVSoXRo0ejU6dO6NatG1atWoXXXnsNKpUKn3zyCUaPHo1vv/0WZrMZ+fn5qKioEDtsouuSmJiIP/74A926dRM7FCIiImomJSUl+OKLL1BYWCh2KETkYE7dc385Li4u6NixIzp27IjnnnsO1dXV2LNnD8LCwlBTU4MVK1bghx9+QFJSkrVXv2PHjuzVJyIiIiJRFRUVYeXKlZgwYQKCg4PFDoeIHIjV6FVIJBL4+PjgvvvuQ/fu3dGtWzcsW7YMb7zxBvz9/bFmzRqMHTsWa9asgdlsRklJCcrLy8UOm6iRzMxMPPLII9wKj4iIiIioDWLP/XVycXFB+/bt0b59ezzzzDPQ6XT49ddfoVarUVtbi48//hgbNmxAx44d0b9/f/Tr1w+dOnWCi4uL2KGTkzMYDDh9+jRqa2vFDoWIiIiIiOyMPfc3QSKRQKFQ4N5770Xv3r3RtWtXzJ8/H8uXL0dISAg+++wzPPjgg3jnnXdQX1+PiooKlJaWih02ERGRQxkMBkybNg3R0dFQKBTo2LEjvvzyy8ueL5FI4O3tDblcDrlcjmHDhjkwWiIiotaJPfd25OLigri4ODz99NN4+umnodfrsXfvXri7u6Ourg4bN27EypUrkZiYaJ2r36VLF/bqExFRm1ZfX4+QkBD88ssviI6Oxh9//IG7774b0dHRuO2225p8zaFDh9C+fXsHR0rU+snlcvTt2xdKpVLsUIjIwVjcNyNvb29rb4PZbIavry+io6Oxa9cufPnll1i1ahXGjBmDV155BQaDATU1NQgICBA5aiIiIvvy9vbG4sWLrd/36dMHvXv3xv79+y9b3F+r/Px85OfnNzrO9UXIWUVERODtt99GbGys2KEQkYOxuHcQFxcXxMTEYO7cuZg7dy5qamqwb98+WCwW1NXV4fvvv8eiRYvQvn17a69+165d4erKXxHZR2hoKJYuXYro6GixQyEiJ6fX6/H3339j7ty5lz1n0KBBMJvN6NGjB5YtW4aOHTs2ed7q1auxaNGi5gqVqNUxmUwoLy+HyWSCu7u72OEQkQOxchSJl5cXhgwZAgCwWCzw9/dHQEAAduzYga+//hoff/wx7rjjDqxcuRIWiwXl5eUICgoSOWpqzZRKJQYPHgxfX1+xQyEiJ2axWDBp0iT07NkTd911V5Pn/Prrr7jttttgMBjw5ptv4q677kJ6ejp8fHwanTt9+nSMGDGi0fH09HRMmDDB7vETtXQZGRkYM2YMDh48iB49eogdDhE5EIv7FkAqlSIyMhKzZs3CrFmzUFNTg/3790On08FgMOD333/H3LlzER8fb+3V79atG9zc3MQOnVqRkpISfPPNNwgLC+O+t0QkCkEQMGPGDOTl5WHXrl2QSCRNnte/f38AgEwmw5IlS7Bhwwbs378fQ4cObXRucHAw/00jIiICi/sWycvLC4MHDwbwTw9HYGAg3NzcsHPnTnz77bf49NNP0aNHD6xduxYuLi4oLCzkjQ1dVVFREVauXIkJEybw7wsROZwgCJg1axZSU1Px888/Qy6XX/NrpVIpBEFoxuiIiIhaPxb3LZxUKkVYWBhmzpyJmTNnoq6uDikpKSgqKoLRaMSJEycwceJExMbGol+/fujfvz+Sk5Mhk8nEDp2IiMhq9uzZ+PPPP/HLL780Oby+wcmTJ2EwGNC5c2cYjUYsW7YMtbW1N73wHhERUVvHfe5bGQ8PDwwcOBAPPvggunbtirvuugurV69G586d8f3332PSpEkYNWoUTCYTAKCwsFDkiImIyNllZ2fjww8/RFpaGsLDw6371y9duhTAP1t37du3D8A/o4wefvhhKJVKRERE4M8//8SuXbugUqlE/AmIiIhaPvbct2JSqRQajQaPP/44Hn/8cRgMBvz11184f/48TCYTzp8/jxEjRiA6Oto6V79Hjx5cOZWIiBwqMjLyisPqdTqd9c8DBw7EqVOnHBEWUZuUkJCA3bt3o0uXLmKHQkQOxuK+DXF3d7cW8RaLBWFhYfj000+xc+dO7NixA5999hkCAgLw888/w93dHcXFxQgICBA7bHIQuVyOvn37QqlUih0KERERNRMXFxfI5XK4uLiIHQoRORiL+zZKKpUiICAAU6dOxdSpU2E0GnHw4EGcPHkSZrMZubm5GDJkCEJDQ60PBHr27AkPDw+xQ6dmEhERgbfffhuxsbFih0JERETNJCsrC4sWLcJnn32GhIQEscMhIgdice8kZDIZevfujd69e0MQBJSXl+OTTz7Bjh078OOPP2LDhg3w9vbGb7/9BrlcjrKyMqjVarHDJjsymUwoLy+HyWTi1AwiIqI2qqamBn/99Reqq6vFDoWIHIzFvROSSCRQq9WYNGkSJk2aBKPRiMOHD+PAgQNwcXFBaWkphg0bBqVSib59+6Jfv37o1asXPD09xQ6dbkJGRgbGjBmDgwcPokePHmKHQ0REREREdsTiniCTyXDrrbfi1ltvhSAIqK6uxgcffIDt27djz549+PLLLyGTyfDjjz8iKCgIFRUVUKlUkEgkYodOREREREREYHFPl5BIJPDx8cEjjzyCRx55BEajEceOHcOePXugVCpRVVWFsWPHwmKxWOfq9+rVC97e3mKHTkRERERE5LRY3NMVyWQy9OjRAz169IAgCKipqcEbb7yBHTt24LfffsOmTZvg5uaGLVu2ID4+HlVVVfDx8WGvPhEREZEINBoNnn32WYSHh4sdChE5GIt7umYSiQTe3t4YP348xo8fj/r6ehw7dgzbt29HeHg4Kisr8fjjj6OoqAh9+/ZF//79ceutt0Iul4sdOhEREZFTUKvVGDt2LLc7JnJC0pu9wIEDB9CrVy/cfvvt2LFjh/X4/ffff7OXphbO1dUVycnJmD9/Prp27YrOnTvjpZdewp133om//voLs2fPRq9evXDw4EHrXH5BEMQO22klJCRg9+7d6NKli9ihEJEDMD8TOaeKigrs2LEDZWVlYodCRA520z338+bNw5o1a+Dm5obZs2cjPz8fU6ZMQUVFhR3Co9ZCIpHA09MTDzzwAB544AHU19fj5MmT+P777xEXF4eqqio8++yzOHXqlHUF/ttvvx0KhULs0J2Gi4sL5HI5XFxcxA6FiByA+ZnIOeXl5WHhwoUYPnw4/P39xQ6HiBzopot7FxcXdOzYEQDwww8/YMKECaisrOScayfn6uqKLl26oEuXLhAEAXV1dXjqqaewdetW/Prrr/jmm2/g4uKCd999F4MHD0ZNTQ28vLz496YZZWVlYdGiRfjss8+QkJAgdjhE1MyYn4mIiJzLTRf39fX10Ol0kMvlcHNzw8aNG/Hoo4/iwIED9oiP2oCGXv2RI0di5MiRqK+vR3p6On744Qd07NgRVVVVeO2117B//36bXn2lUil26G1KTU0N/vrrL1RXV4sdChE5APMzERGRc7np4v69996DXq+3LpomlUqxYcMGfP311zcdHLVNrq6uSEpKQlJSkrVX//HHH0dAQAD27NmD7777Di4uLli0aBFGjx6Nuro6uLu7Qyq96SUiiIicBvMzERGRc7np4j45ObnRMYlEgjFjxtzspckJNPTq33333bj77rthNptx6tQpm179jz76CFu3bkWfPn3Qr18/9O7dG76+vmKHTkTUol0uPz/44IMiRENEjuLp6YlOnTrB29tb7FCIyMGarSt02LBhzXVpasMa5og+99xzGD58ODp37ozx48djzJgxSE9PxzPPPIPevXtjzZo1EAQBBoMBFotF7LCJiFqcgwcPcrV8IicUHR2NNWvWcH0dIid00z33CxYsaHRMEARkZmbe7KXJyUkkEnh4eGDw4MEYPHgwzGYzzp49i++//x7R0dGoqqrCpk2bsHbtWvTu3RsDBgxA7969oVarxQ69RdJoNHj22WcRHh4udihE5ABPP/00V8snIiJyIjdd3H/00Ud4++23G+1f7uXldbOXJrLh4uKChIQEJCQkWHvtDQYD6urqsHv3bvzwww+QSCSYPn065s6di/r6ekilUm799v9Tq9UYO3YsAgICxA6FiByAq+UTOae0tDSMGTMGBw8eRI8ePcQOh4gc6KaL+w4dOuCOO+5AaGiozfFdu3bd7KWJLquhV79v377o27cvzGYzzp07h23btiEgIABVVVXYuXMnVqxYgdtvvx39+/dHnz59nHq/14qKCvz000+Ijo5uls/BaDSioKAA5eXlqKmpgaenJ9RqNdRqNcrKyqyrdms0GshkMru/PxHZ4mr5REREzuWmi/vffvutyV6AL7/88mYvTXTNXFxcEBcXh6eeegoArHPxi4uLsXv3bjz//PMAgHHjxmHBggWwWCwQBAGurjf9v0CrkZeXh4ULF2L48OF2L+6NRiNSU1OtBX5NTQ3c3d0RGBiI3bt3o127dlCpVMjPz0dBQQG6du3KAp+omXG1fCIiIudy05UNh/dRS+Tu7o5bb70Vt956K8xmM7Kzs7Ft2za4u7ujqqoKBw4cwIsvvojbb78d/fr1Q9++fREYGCh22K1WQUEBBEGAm5sbzGYzAgICUFZWhoqKCkilUshkMhiNRtTX16O8vBw5OTmIjY0VO2yiNo2r5RMRETmX614tf8yYMfjkk09sjv3www/YtGkT9Hq93QIjshcXFxfExMTgySefxPTp09GlSxf07t0bkydPRm5uLubPn49+/frh6aeftvbom0wmscNuVXQ6HWQyGU6dOmUdNWEymZCWlgZvb2+kp6ejpKQEFosFtbW1OHToEIxGo9hhE7UpzM9ERETO7bp77v/880+8/vrr1u8XLlyIV199FQAQFxeHlJQUrlZOLZq7uzu6deuGbt26wWKxQKvV4ocffoDJZEJ1dTXOnDmDGTNm4LbbbkP//v3Rt29faDQascNu0eRyOc6dOweZTAY3Nzd4eHjAaDSirq4OBw8eRHh4OMxmM0wmEzw8PCAIAgoLC7lyP5EdMT8TEQDExsbim2++QWJiotihEJGDXXfPfWVlJdq1awcAsFgs+Oijj7Bs2TIUFhaiffv2ePvtt+0eJFFzkUqliIqKwqxZs/Cvf/0LXbp0Qbdu3fD444+jqKgICxcuxIABAzBt2jRYLBYA/yxS1Rp5enqiU6dO8Pb2tvu1NRoNampqIAgCysrKsHfvXuTn58Pb2xsnT55EdnY2SktLcfr0aWi1Wmg0GlRXV9s9DiJnxvxMRMA/nRjh4eHw8PAQOxQicrDrLu5VKhUMBgMA4Pjx46ioqMD06dMREBCAt956C999953dgyRyFHd3d3Ts2BErVqzAkSNHcP78eXz00UcYNmwYdDodzp49i169emHmzJnYtGkT8vLyxA75mkVHR2PNmjVISEiw+7VlMhmSk5Mhl8uhVCqhVquRmJgIDw8P3HbbbVAqlaivr0dMTAyioqJQVFQEhUJh9ziInBnzMxEBwIULF7BgwQKcP39e7FCIyMGuu7i/5ZZb8MUXXwAAdu7cieTkZOtNenx8PPLz8+0bIZFIpFIpIiIiMGPGDLz44ovo0qUL4uPjMWPGDJSXl+PVV1/FoEGD8MADD8BsNgOA9b/OKCIiAhqNBlKpFDExMZDL5fDy8kLXrl0RFBQEQRDg7u4OvV6PmpoaBAUFiR0yUZvC/ExEAKzbAZeXl4sdChE52HXPuX/ppZfQr18/fP311/jzzz/x8ssvW9s4zJbaMplMhri4OCxfvhwWiwX5+fnYsWMHsrOzodfrodfrMXLkSHTt2hX9+/dHv379EBYWJnbYVmlpaRgzZgwOHjyIHj16NMt7qNVqnDt3DlqtFt26dYNSqURlZSWCg4MhlUohkUjg4uKCwMBAnD17lvveE9kR8zMREZFzu+6e++TkZOzYsQN+fn6YNGkSZs+ebW37448/EBkZadcAiVoiqVSK0NBQTJs2Da+++iq6dOmC6OhoTJ8+HTqdDq+99hoGDx6M4cOHW4fJNszZb4sa9rkvLS1FQkICfHx8cObMGbi6uqKwsBBlZWXQaDTWBQwvXLiA/Px8aLVapKamcuV8IjtgfiYiInJuN7TPfd++fdG3b99Gx1NTU3HffffddFBErY1MJkNkZCTefPNNWCwWFBQUYNeuXTh+/DgMBgP0ej1GjRqFuLg4a69+RESE2GHbjVarRX5+PlQqFaRSKW699VacPHkSmZmZ0Gg08Pb2htlsxrlz56BUKhEUFIS8vDwYDAYolUr4+flx33siO2B+bkwQBGRnZzcavRAQEICAgABUVVXhwoULNm0ymcy6OGF6ejoEQbBpj46OhqenJ/Ly8lBRUWHTplarodFooNfrkZ2dbdPm4uJiXfckIyOj0barERERkMvlKC4uRnFxsU2bj48PwsLCYDAYkJmZ2ejnbFgZ/fz586itrbVpCwkJgUqlQllZGQoKCmzavLy8EBUVBbPZjNOnTze6blxcHNzc3KDVaqHT6WzaAgMD4e/vj8rKSuTm5tq0ubu7W/9dT0tLa3TdmJgYeHh4IDc3F5WVlTZtfn5+CAoKavIzdHV1RXx8PADgzJkzjRa5jYyMhLe3NwoLC1FaWmrTplQqERoairq6Opw7d65RTA2fYWZmpvXBfIPQ0FAolUqUlJSgqKjIpk0ulyMiIgImkwkZGRmNrpuQkAAXFxdkZWWhpqbGpk2j0UCtVqOioqLROj6enp6Ijo4G0PRnGBsbC3d3d1y4cAFVVVXW4039/SAi53BDxf3lPP/88/a8HFGrJJVKERISgsmTJwMATCYTSkpKMHnyZPz888944403sGTJEoSHh2Pz5s1QqVSwWCyQSq97IE2LYDQacfjwYQD/3ESXlJQgPz8ftbW1kEqlCAsLg16vR15eHjw8PBAYGIiCggK4urqivr4eZWVlOHToEMLDwzk8n6iZOHN+rq2txUcffYTdu3fbHH/iiScwadIk/P7773jmmWds2qKjo/HVV18BAB599FHo9Xqb9vXr16N9+/ZYtWoVtmzZYtM2btw4PPXUUzh27BimTZtm06ZSqfDjjz8CAGbNmtXoocLKlStx2223YcOGDfj0009t2oYOHYrFixcjJycHY8aMafRzHjhwAADw73//GydOnLBpW7RoEYYNG4b/+7//w1tvvWXT1qtXL7z//vvQ6XRNXnfXrl3w9fXFa6+9hn379tm0zZ07F+PHj8eePXvw4osv2rQlJCRgw4YN1s/k0gcZGzduRGxsLN5//31s3brVpm3ixImYNWsWDh06hJkzZ9q0BQYGYtu2bQBg3dnmYh999BG6d++OdevW4bPPPrNpGzFiBObPn4/MzEyMGzfOps3NzQ1//PEHAOCZZ55p9KBj6dKlGDx4ML755husXLnSpq1v3754++23UV5e3uRnuHv3bsjlcixatAh//fWXTduzzz6LsWPH4qeffsLChQtt2jp16oQ1a9YAQJPX/eabbxAeHo4VK1Zg586dNm09evRASEhIo9cQUdsmES59HO0EDh8+jO7du+PQoUNITk4WOxxyIg37u+/atQspKSmYOnUqBEHAI488goCAAPTv3x99+/ZFVFQUJBKJXd/7xIkTzTLnXqvV4tixY5DJZNZF8k6cOIGioiL06dMHoaGhAIB9+/bBYrHAaDTC3d0dwcHB0Ol0KC0thVqtRpcuXbjvPTk15ib7avg8Dx48CJVK1aiHPSQkBBqNBhUVFY16cT08PKy9uKmpqY2mVbVv3x5eXl7QarUoKSmxaQsMDERYWBh0Oh3OnDlj0+bq6orOnTsDAE6ePNmod7hdu3bw8fFBfn5+owUQfX19ER0djbq6uiZ7cRv+zpw+fbrRw4ioqCio1WoUFxcjJyfHpk2hUCAuLg5msxlHjx5tdN2kpCS4ubkhMzOzUQ97aGgogoKCUF5e3mhldk9PT3To0AEAcOTIkUajHzp06ABPT0/rVqkXCwoKQmhoKKqrqxv1hLu5uSEpKQnAP7tCXPrQIC4uDgqFArm5uSgsLLRp8/PzQ2RkJGpra5Genm7TJpFI0K1bNwD/jNa4dPRDdHQ0fH19UVhY2GiUglKpRGxsLEwmE44fP45LdenSBS4uLsjIyGg0giQ8PBwBAQEoKytDVlaWTZu3t7d1pEfDQ/SLNexKc/78+UaL54WEhLC4J2qBmjvXs7jnDRSJyGQyoaqqCu+++y5++uknHD58GCaTCaGhofjss88QFhYGQRDsUujX1tbi3LlzGDp0KLy8vOwQ/T/S0tJgMBhQUlICQRDg6emJY8eOwWAwYNSoUdbe+JMnT6KkpATV1dVwdXVFQEAACgoK4OPjg/j4eLi7u1tvpomcEXOTffHzJCKilqa5c1PrHAdM1Ea4ubnBz88Pr776KlJSUpCbm4sNGzZg8ODB8Pb2RmVlJSZOnIjJkydj7dq1yMzMbNT7ca3c3d0RHh4ODw8Pu/4McrkcRqMR8fHxCAgIgMVigclkgqurK4qLi6HX61FQUICSkhLU1dXBx8cHRqMRZWVl8PHxQY8ePWA0GrnvPRERERHRTbip4r6qqgpffvklli1bBgAoLCxstFALEV0biUSCgIAATJgwAevWrUP37t2RkJCAe+65BxKJBO+88w7uvvtuDBo0CKdOnQKA6yr0L1y4gAULFjQaOnmzNBoNJBKJ9f99rVYLuVyOgIAAHD9+HN999x1SU1MhlUoRFRUFmUwGHx8f+Pn5IT4+HiUlJZBIJNz3nsiOmJ+J6EYYjUZotVqkpaVBq9VyNxuiVuaGF9RLTU3FkCFDoFQqkZeXh+eeew5HjhzBp59+2mhxGSK6fm5ublAqlXj55Zcxf/58lJaW4qeffsKOHTvg6+uLyspKvPzyy6ioqEC/fv3Qr18/xMXFXXYIf1VVFXbu3NloXt7Nkslk6Nq1KwoLC3HmzBkolUp07twZEokEp06dQmlpKQICApCUlASZTIacnBz4+/tDJpOhuroa/v7+CAoK4mJ6RHbC/ExEN6JhW1uj0QiDwYCysjJ4eHhg4MCBkMvlYodHRNfghnvu//Wvf2HhwoU4c+YM3NzcAAC9e/fGn3/+abfgiOgfEokE/v7+GDduHNavX4/bb78dCQkJGDx4MGQyGd5//32MGDECAwYMwMGDBwFcX6/+zZLJZAgPD0dwcDBiYmIgk8ng5uYGuVyO9u3bw8fHx1q8e3t7w2AwIDw8HImJiVwln8jOmJ+J6EYUFBTAaDSitrYWZrMZGo0GxcXF+Prrr5GamsqefKJW4IZ77o8fP27dVqahp1ChUDRaBZSI7M/V1RVKpRLPPvssnnnmGVRUVOCnn37C9u3b4efnh8rKSixfvhznz5+39uo7otiXy+XIz8+HWq0G8M9qyeXl5dBoNNZz9Ho9/P39rXsmy+VyaDQaFvhEdsL8TEQ3QqfTwWAwQBAEBAUFob6+Hi4uLsjPz0dxcTEMBgMKCgrQtWtX5myiFuqGi/uG7UCCg4Otx7Rarc1NPBE1P4lEAl9fXzzwwAN44IEHUF9fD71ej379+qGoqAgffvghVqxYAZVKZff3NhqNKCgosBbparUaBQUFyMnJgbe3N2pqamCxWKzD+/R6Perr66373Ht7eyM/P583C0R2xPxMRDdCLpejrKzM+m9FZWUlampqrCPywsPDkZOTg5ycHLi5ufEBPVELdMPD8h944AFMnDjRuv/ohQsXMGfOHIwfP95uwRHR9Wvo1Z89ezb27NmD/Px8bN68GUOGDMG4cePstu9tw9y8/Px8WCwW5OfnIy0tDYmJiQgJCYFUKkVkZCTGjBmDyMhISKVShISEICgoCK6urggPD4darUZ4eDgEQWi0HzER3RjmZyK6ERqNBh4eHjh//jzKy8uRnZ0NNzc3eHh4WLfQlclkOHTokDX3a7Va7Nq1i8P2iVqIGy7uFy5ciJCQECQkJKCiogKRkZFwdXXFv//9b3vGR0Q3QSKRQKVSYcyYMdi0aRO+/PJLuxX3BQUFEAShUZFeXl5uM59eLpfbfG80GuHt7W1zLW9vbw4ZJrIT5mciulYXr45fUFCA3r17W0f/eHh4QCqVwtXVFQEBAQCAzMxM6HQ61NXVoaqqClVVVSgvL0dxcTHy8/OtC/IRkThueFi+u7s71q1bhxUrVuDs2bPQaDSIiIiwZ2xE1ILpdDprkW40GlFcXIzCwkJUV1dfcfX7S+flA//Mw7fXQwciZ8f8TETXomEEniAI1mlyEokEAwcORHl5OcrKyqDVauHp6YnMzEwUFRXh2LFjSExMhCAI1h7+hIQEm2H7hYWFCA8PF/vHI3JKN9xzv2HDBqSmpkKtVuOWW25BREQEjhw5gi+++MKe8RFRCyWXy6HX62E0GpGWloaSkhIYDAbU1dVd8cm9RqOBRCJBTk4OysrKkJOTw33uieyI+ZmIrqSht37v3r0oKiqCRqNpcgRely5dMHDgQOh0OpSUlMBsNiMgIAAGgwEKhQJqtRqenp7Iz8+3DtvnSDwicd1wcb9o0aJGi/MEBwdj4cKFNx0UEbV8DUX60aNHodPp4OLiApVKhaSkpCvOoZfJZOjatat1Xn5ISAgX0yOyI+ZnIrqci9fLqampQW1tLc6cOQOTyQSgcXFeVlaGwMBA9O3b11rwm81mnD17FkajEZWVlairq7MO29fr9VAoFKL8bER0E8PyG570XUyj0XBRLCIn0VCk63Q663w8tVoNNze3qz65bxi+R0T2x/xM5Lwu3cXm0pXsL14vRyqVoqSkBIIgoKysDEFBQY2myV08Bc/LywslJSWIj49HVVUVVCoVXF1d4efnh/LycuTm5qKmpgZ+fn4wGo18aE8kghvuuQ8ODsaZM2dsjp05cwaBgYE3HRQRtQ4ymQzt2rWDv78/goKC4ObmBoBP7onExPxM5Jwu7pU3GAw4duwY/ve//1l72QHbYj0gIACCIKCiogJ5eXlNTpNrmIJ38fk5OTlQKBTw8PBA9+7dkZiYiIyMDFgsFsTFxaG0tJQL6xGJ5IaL+7Fjx+LRRx/FkSNHoNfrceTIEUyaNAkPPPCAPeMjohZOrVajqKgIf/zxB9LT03Hu3DnOoScSEfMzkXNq6JXXaDQoKSmx9pynpaVZi+2Li3WZTIbExER4eHjA09OzyWlyF6+To9Pp4OPjA19fX/j5+Vkf7Ofl5cHd3R2dO3dGUFCQdWecw4cPIy0tjVvkETnQDQ/Lnz9/PrKystC9e3dIJBIAwLhx47BgwQK7BUdELZvRaMTRo0dRX18PvV6P0tJSBAYG4q677uJwPCKRMD8TOaeGXvnS0lIIgoCgoCBIJBKUl5fj/PnzsFgs6NSpE3JycnDw4EFIJBIIggB/f3/07NmzybzdMAWvYTecyMhI3HLLLQBgXWm/rq4OBoMBaWlpSExMBADk5ubCYrHA398fZWVl8PT0xKBBgyCXyx36mRA5mxsu7j08PPD5559j5cqVOH/+PKKiouDv72/P2IiohdNqtTh37hyCgoLg7++P2tpaFBYWorCwkAmcSCTMz0TOqWGr2fr6enh6esJkMiE9PR2+vr5QqVTIycmB2WxGfX09XFxcrMV9Uxrm7peVlaG2thZeXl7w9fW1bnWr1Wqtc/fd3Nysq+kXFxcD+Gd6nkwmQ319PYKCgqDVavHrr7/y4T9RM7vhYfkN/Pz80KNHD4feOFRUVOCBBx6AQqFASEgI3n33XYe9NxH9P9nZ2fDw8EBQUBB8fHwQFBQEDw8PZGdnix0akdMTIz9fyfXk7t9++w2dOnWCl5cXevbsiaNHjzouUKJWqmEIfXl5OQoKCnDy5Em4uLggMTER7u7uaNeuHUpKSlBdXY3k5GR069YNycnJcHV1tVlws2HuvlarxenTp5GRkYGMjAxotVrr8P6L5+77+flBIpFAp9MhPz8f586dg8FggFKpREhICHx9fREdHW3tACCi5nPDPfcXEwTB5smfVHrTzwyuaPbs2TAYDMjNzUV2djbuuOMOJCQkYNiwYc36vkRky2QyoaysDNnZ2dDr9XBzc0NRUREX0yNqIRydn6/kWnN3aWkp7rvvPrz33nt48MEH8Z///AcjRozAmTNn4O7uLlL0RC1fwxD6nJwcHDp0CHq9HqGhoSgtLYVEIoFcLkdxcTHMZjOCgoIQEBAAmUzWaIebhrn77u7u8PHxQUhICAoLC+Ht7Q29Xo/Dhw9Dr9dDp9PB3d0d1dXVkMlkqKmpgUKhQGBgIOrr623uBWpra+Hn53fFnXSI6ObdcJYvLS3F+PHjERAQAFdXV7i5uVm/mpNer8fmzZvx2muvwcfHB0lJSXjsscewZs2aZn1fIrJlNBqh1+uRm5uLv//+G+fOnUNGRoZ1CB8XzyESh1j5+UquJ3d/++23aNeuHR599FG4u7vjqaeegsViwc8//yxC5ESti0wmQ2xsLEaOHInk5GSYTCYEBAQgKioKGRkZ0Ov11i3w0tLSYDQaUVFRgaqqKqSlpeHs2bNIS0tDSUkJtFqtdQi9p6cnKisrkZubi5ycHKjVapSVlWHTpk04ffo0CgsLIQgCFAoFOnXqBIVCAa1Wi6qqKhQWFkIikUAmk/HhP1Ezu+Ge+6eeegrnzp3DJ598gkceeQQbNmzA66+/jkceecSe8TVy5swZ64IgDbp27Ypvv/220bn5+fnIz89vdDw9Pb1ZYyRyBgUFBQgKCkJERASKiorg7++PqqoqREREICAgAIWFhdzLnkgEYuXnK7me3H3ixAl07drV+r1EIkHnzp1x4sQJ3H333Y3OZ64nakwmkyE5ORlSqRRGoxFZWVnWPeoBwMXFBRUVFTh06BCqq6vRrl07GAwGHDp0CMXFxdBoNLBYLCguLoZKpUJtbS3q6+thMBiQlJSEoKAgJCYmoqqqCq6uroiKirLm/vLycgwaNAi//vorCgoK4OfnB5lMBplMxp10iJrZDRf3P//8M/766y+Eh4fDxcUFI0eORMeOHTF58mTMnj3bnjHa0Ol0UCqVNsdUKlWTw3xWr16NRYsWNVssRM5Mp9NBpVIhKioKvr6+cHd3R0BAgHXhHg69IxKHWPn5Sq4nd+t0Ovj6+l7TuQBzPdHlXLzSfXFxMcLCwhAbGwsAKCsrg8lkshb2MTEx1of2SqUS5eXl8PX1RW5uLvbv34/g4GAYDAZ4eXlBrVYDAOrr6xETEwMfHx+EhoYCgHWIf3h4OO666y7rKvsKhcK6GB8RNZ8bLu71er21V87d3R0mkwlxcXE4fvy43YJrilwuR1VVlc2xysrKJof5TJ8+HSNGjGh0PD09HRMmTGi2GImcQcOqvEqlEiaTyTonT6lUQq/XIyQkROwQiZySWPn5Sq4nd8vlclRWVl7TuQBzPdGVyGQyhIeHQxAE5OfnW6fnBAUFwWg0wsPDAyqVCsA/8+IFQcD58+dx4cIFqFQqeHt7Q6VSIS4uztp733ANT09PlJeXQ6PRWN/v4vzf8N5E5Dg3XNxHRETg7NmzaNeuHdq1a4fvvvsOfn5+1pUzm0t8fDwkEglOnjyJjh07Avhnn82Lh/o1CA4ORnBwcLPGQ+SsNBoNCgoKYDAYUFVVheLiYnh5ecHLy4tD74hEJFZ+vpLryd2dOnXCxx9/bP1eEAQcO3YMM2fObPLazPVEV9eQs3NycqwL40kkEkRGRqK0tBRqtRqCIOCnn35CVVWVtWA/f/48AgMD4e3tDUEQkJOTg3PnzsHb2xtarRZ5eXnw8vKCq6sr9Ho9ysrK4OLiggsXLsDT0xNqtRoajYY99kQOcsPF/cyZM3H8+HG0a9cO8+bNwwMPPABBEPD666/bM75GvL29MWbMGLz00kvYsGEDsrOz8emnn2Lt2rXN+r5Ezq5hz1udTge5XA61Wg21Wg2tVgsfHx/I5XL4+PhArVZz6B2RiMTKz1dyPbl71KhRePbZZ/H555/jgQcewIcffggAGDx4sKPDJmozLh6iX11djZCQEOtD+LKyMuTk5ODs2bOoqqpCYGAgEhMTYTabYbFYkJGRAblcjpiYGPj6+qKoqAh1dXWQy+UYNGgQioqKkJ6eDk9PT/j6+iIrKws1NTVwd3dHaGgoCgoK0LVrV94XEDnADRf3TzzxhPXPo0aNQnZ2NnQ6HRISEuwS2JX85z//wWOPPYbg4GAoFAo8//zz3AaPqBk17HkrCIL1af3u3bvRrl07BAYGWnsAOnTowORNJDIx8/OVXCl3y+Vy7NixA3379oWfnx/+97//Yfbs2XjsscfQqVMnbN26ldvgEd2kyw2Tbyj6jxw5gujoaISEhMDV1RVeXl4IDAy0TsFreKhfUVEBV1dX9OjRAwAQFhaGgwcPwsXFBT4+PjAajYiLi0NeXh7c3d1hsVi4yC6Rg9zUPvcpKSlYs2YNcnJyEBYWhilTptgrritSqVTYvHmzQ96LqK25tAf+WobLNex525CYa2trIZVK4e3tbU32OTk5TN5ELYRY+flKrpS7dTqdzfcDBgzAiRMnHBEWkdNrKPq7dOmClJQU6wK5AHDq1Cl4enrCy8vLer5EIml0DYlEAolEgtraWnh6egL4Z05+TU0N97cncqAb3ud+w4YNGDBgAKqrq9GtWzfo9XrccccdWL9+vT3jIyI7auiBz8/Ph8ViQX5+PlJTU6+6J71Op7PO123YUqeurg7Z2dkwmUwA/t8KuUQkLuZnIroRSUlJ8PHxwZkzZ3D06FEcOnQI5eXlUCqVCAgIgNFotO5zX1RUZHPvIAgCBEGAp6cnamtrAfzTEeDl5QW9Xs/97Ykc5IZ77l999VX873//sxkOv3PnTsyZMwePPvqoXYIjIvsxGo04dOgQtFotYmJirPPmr6XHXS6XQ6vVorKyEidPnkR1dTXq6+uhVCpx5swZxMfHc4V8ohaC+ZmIboRcLsdDDz2E1NRUZGRkwMvLC3feeSeqqqpw4cIF5ObmwmAwWPe9//XXX9GlSxcYjUb4+/sDAGpqalBVVYWCggK4u7tDoVBwkV0iB7rh4r6goABDhgyxOdawnyURtSwNPfYXLlyAl5cXSkpKUFxcjMTExGvqcVer1fjxxx+Rk5MDi8UCNzc3VFdXIy4uDhUVFTh+/DgCAwOZvIlaAOZnIrpRcrkcffr0QZ8+fazHjEYjDh8+DKlUiqSkJOs+98ePH0dZWRni4+Ot+b+wsBAKhQJ1dXVwd3eHn58fF9klcqAbLu7vvPNO7Ny5E8OHD7ce27VrF+688067BEZE9tMwZz42NhYlJSUICgpCXl4eiouLYbFYrtrjXlBQAOCfIt/FxQXu7u7W+Xfu7u7w9PTkSrhELQTzMxHZk0wmg4+PDzp06GAt7AEgKioKUqnUZuRfeHg4194hEtENF/chISEYO3Yshg8fjujoaGRlZWH79u2YMmUKFixYYD1v8eLFdgmUiG5cw5x5hUKB0tJSFBYWor6+HufOnUN0dPRVe9yzsrLg4+ODmJgYVFRUwM/PDxkZGTCbzQgNDUVISAgLe6IWgvmZiOxNJpPh5MmTKC0thZeXFwICAmym493IYr1EZH83XNyfOHECt9xyC0pKSlBSUgIA6NmzJ44fP249p6nVNInI8eRyOfLz86FWqxEfH4+ysjKcPXsWUVFR19Tj3rAKrlKpRGVlJUpLS1FXVwej0YjIyEgOxydqQZificiejEYjCgsLUVVVBaPRCEEQcPLkScTFxSEoKKjRdrn5+fkoKChAYmIiysrKWPATOdANF/d79uyxZxxE1Iw0Gg0KCgqQk5MDb29va1F+rUPpIyMjkZeXh9LSUqhUKhQVFaGurg69evXicHyiFob5mYjsqaCgAK6urujXrx/KyspQU1OD8vJya7Gu1WpttstVq9U4d+4cfv31VwQEBNgU/LxnIGpeN7wV3qXOnj2L8+fP2+tyRGRHMpkMXbt2RUhICKRSKUJCQq4rwUZERCAmJgZGoxE1NTXw9vbGbbfdhl69ejVLkv6///s/jBw5EqtXr0Z2drbdr0/kTJifiehmNEztc3NzQ1BQEKKjoxEVFQWDwWDTfrHa2lrU1tYiPDwcarUa4eHhEASBC3sSNbMbLu6nTJmC33//HQCwadMmJCQkIC4uDhs3brRbcERkPzKZDOHh4UhMTER4ePh1FeUymQw9e/ZEly5dEB0djS5duqBnz57N9vS9oqICBw4cwBNPPIGoqCh06NABn3zySbO8F1Fbw/xMRPYkl8uh1+ttjl28d31T7WVlZfDz87M5di278xDRzbnh4n7Hjh1ITk4GALzzzjvYtGkTfvjhB7z++ut2C46IHMdoNEKr1SItLQ1arRZGo9Gm/WYeDlyvjh07Ij8/H6tWrcLrr7+O+Ph4FBYWIicnBzt27MA999yDDz/8EOfOnWu2GIhaK+ZnIrInjUYDiUSCnJwclJWVIScnBxKJxLreTlPtnp6eje4TLn4gQETN44bn3NfU1MDLywvV1dU4c+YMRo8eDalUigcffNCe8RFRM7h0VVu1Wo20tLRGi+GIPTdOrVajX79+GDlyJEwmEwoKCnD+/Hnk5+dj7ty5qK+vR1xcHGbOnImnnnpKtDiJWhLmZyKyp4apfYWFhSgtLYXRaIRer8fevXsRFRWFiIgIa3t1dTVCQkLQsWNHpKWlWdf60ev1Ng8EiKh53HBxHxAQgPT0dJw4cQK33norpFKp9X9cImq5mlrV9ujRo/D19UVMTAyAf4rqnJwcFBYWtoj9aiUSCWQyGWQyGe644w4MGDAApaWlSElJwf79+5GbmwutVov8/Hy88sorGD58OIYNG4Z27dqJHTqRwzE/E5G9yWQyBAUFQavVIisrCx4eHhAEARcuXEBcXBx69uzZ6H7h0oI/KCiIi+kRNbMbLu7/9a9/oUePHgD+mdMHAHv37kXHjh3tExkRNYuCgoJGq9pqtVrU1tbanNeS58a5uLggMDAQ9913H0aMGAGTyYTCwkKkp6ejpKQE8+bNw5NPPonY2FhMnDgRL7/8stghEzkM8zMRNYeCggKUl5cjKCjI2gPfsJNOU50BDdP5iMhxbri4nz17NoYOHQpXV1dERUUBAGJjY7Fq1Sp7xUZEzaCpVW3VarV1P+wGer0eISEhjgzNytfXF0OHDoWPj89Vz724V79hBf+ysjKkpKQgJSUFWq3W+vDiySefxLBhwzBs2DDEx8ezJ5PaJOZnImoOOp0OZrMZtbW1yMvLg7u7O2QyGUwmE6qrqxtN+eO+9kSOd8PFPYBGQ17j4+NvKhgian5yuRz5+flQq9XWY+7u7vDy8moxc+Oio6OxePFiyOXy636tVCqFv78/7r33Xtxzzz0wmUwoKirC2bNnUVlZieeeew5PPfUUoqKiMHbsWCxbtqwZfgIicTE/E5G9yWQyZGVlwcvLCyEhIaioqEBRURECAgLg7u7eaMpfS1i7h8jZ3FRxn5KSgjVr1iAnJwdhYWGYMmUKbr/9dnvFRkTNQKPRoKCgwKaQl8lkGDhwIMrLy1vE3Li6ujrk5OQgJiYGnp6eN3ydi3v1u3XrhrVr16KioqJRr76rqyumTJmCO++8E8OGDUOHDh3Yq0+tGvMzETUHb29vGAwGFBYWwmKxoKioCEFBQRAEodGUv5a0dg+Rs7jh4n7Dhg2YNm0a7r//fnTr1g1ZWVm44447sHr1ajz66KP2jJGI7OjiVW8vLeRvpKe8OaSlpWH06NHYsmULOnXqZLfrSqVSqNVq3H333bj77rutvfp5eXmoqqrCSy+9hGeeeQbh4eG455578J///IdFPrU6zM9E1ByMRiO6d++O2tpa5ObmAgBCQkIQEhICo9HYaMrftazdk5eXh7y8PJtjvr6+iI6ORl1dHdLS0hq9pmGrz9OnT0Ov19u0RUVFQa1Wo7i4GDk5OTZtCoUCcXFxMJvNOHr0aKPrJiUlwc3NDZmZmaisrLRpCw0NRVBQEMrLy3H+/HmbNk9PT3To0AEAcOTIEQiCYNPeoUMHeHp6Ijs7G6WlpTZtQUFBCA0NRXV1NTIyMmza3NzckJSUBAA4fvw4TCaTTXtcXBwUCgVyc3NRWFho0+bn54fIyEjU1tYiPT3dpk0ikaBbt24AgPT09EZrLkVHR8PX1xeFhYXW33MDpVKJ2NhYmEwmHD9+HJfq0qULXFxckJGR0eh3Hx4ejoCAAJSVlSErK8umzdvbGwkJCQCAw4cPN7puYmIiPDw8cP78eZSXl9u0BQcHIzg4GFVVVTh79qxNm7u7u3W9mWPHjqG+vt6mPT4+HnK5HBcuXEBRUZFNm7+/PyIiIlBTU4NTp07ZtEmlUnTt2hXAP/esdXV1Nu0xMTFQqVQoKCho9Pf70s/U3m64uH/11Vfxv//9D8OGDbMe27lzJ+bMmcObB6IW7tJFbhr2uL94nhyAK86dawtz69zc3ODm5oaEhAT897//RWVlJf7880+kpKQgKysLWq0WCoUCkydPRp8+fTB06FB06tSJBT+1aMzPRNQc5HI5qqurERUVZV3PIycnB35+fhAEodGUv6ut3ZOXl4f77rsPf//9t83xoUOHYvHixcjJycHo0aMbve7AgQMAgClTpuDEiRM2bYsWLcKwYcOwefNmvPXWWzZtvXr1wvvvvw+dTodBgwY1uu6uXbvg6+uLefPmYd++fTZtc+fOxfjx4/Hzzz/jxRdftGlLSEjAhg0bAAC9e/duVIRv3LgRsbGxWLJkCbZu3WrTNnHiRMyaNQuHDh3CzJkzbdoCAwOxbds2AMA999zTqPj86KOP0L17d/znP//BZ599ZtM2YsQIzJ8/H5mZmRg3bpxNm5ubG/744w8AwCOPPILTp0/btC9duhSDBw/GF198gZUrV9q09e3bF2+//TbKy8sxZMgQXGr37t2Qy+WYM2cO/vrrL5u2Z599FmPHjsWOHTuwcOFCm7ZOnTphzZo1AIBbbrml0XW/+eYbhIeHY8GCBdi5c6dN27Rp0/D4448jJSUFc+fOtWkLCwvDt99+CwC46667UFFRYdP+6aefonPnznjnnXewceNGm7YxY8bgueeew6lTpxrlTm9vb+zZswcA8OCDDzZ64LN8+XL069cP69atw4cffmjT1rNnz0Y/nz1JhEsfL10jHx8fVFRUQCqVWo9ZLBaoVCpUVVXZLcDmcPjwYXTv3h2HDh2yPv0jclaXbo2n1+utTzZdXV1t5uA3zJ1r6jUXt9+sv//+Gz179rR7z/31MJlMqKurQ3l5ORYtWoRDhw6hrq4OoaGhGDp0KD744AN4eHiIEhu1TfbKTa05P9sTcz2RfV0p9wO47vuChlz/5ptvIjY21nrcx8cHYWFhMBgMyMzMbPS6xMREAMD58+cb9TqHhIRApVKhrKwMBQUFNm1eXl6IioqC2WxuVNAC//SEu7m5WTs7LhYYGAh/f39UVlY26nl1d3e3xt/USIOYmBh4eHggNze30YgAPz8/BAUFQa/XIzs726bN1dXVul7KmTNnGvU6R0ZGwtvbG4WFhY1GBCiVSoSGhqKurg7nzp1rFFPDZ5iZmQmDwWDTFhoaCqVSiZKSkkYPFORyOSIiImAymRqNNAD+edDh4uKCrKws1NTU2LRpNBqo1WpUVFQ06s329PREdHQ0gKY/w9jYWLi7u+PChQuN8lhAQAACAgKg0+mg1Wpt2tzc3BAXFwfgn5EeZrPZpr3hMywoKEBZWZlNm0qlQkhICGpraxsV7xKJxDpa4+zZszAajTbtYWFh8PHxQXFxMYqLi23a8vPzMWfOnGbLTTfcc3/nnXdi586dGD58uPXYrl27cOedd9olMCJyjKa2xjt8+DAsFot1O61L58419Zq2NreuoVdfoVDgk08+QVVVFf766y+kpKQgPT0dBQUFUCqVePLJJ9GxY0cMGzYMnTt3Zq8+iY75mYiaw5Wm9QE3vq99bGxskw/yPT09r/iA/+IHApfy9/eHv79/k21SqfSK120YldAUX19f+Pr6Xrb9StcNDw+/7D2SQqG44mvbt29/2baGYelN8fLyuuJ1GwrfpgQGBiIwMLDJNnd39yteNyYm5rJtarXaZoTHpa503YiIiMu2+fj4XPG1DcV4UxqmlzTF29v7ite90oK1F28b6SjXVdwvWLDA+ueQkBCMHTsWw4cPR3R0NLKysrB9+3ZMmTLF7kESUfNp2BrPZDKhtLQUtbW1KCsrazT//uK5c01tp3ctc+taK6lUCpVKhSFDhmDIkCHWzyonJwdarRbffPMNXnjhBWg0GgwdOhQrVqy4YvInsjfmZyJyhCvtXc997YnEd13F/aXzT2655RaUlJRY98fu2bNno7kvRNSyyeVyaLVa5OfnQxAEeHp6orKyEsXFxUhOTrY+db947lxT2+ldbW7d9UhOTsaBAwdazAJ/l2ro1ZfL5Vi1ahV0Oh0OHDiA/fv348iRI9bhcS+//DKCg4MxbNgwdO3a1WaYNJE9MT8TERHRdRX3DQsHEFHbodFocPToUZSXlyMiIgI6nQ6RkZEoLS3FsWPHEBMT02jf+6a207u43ZlIpVL4+Phg8ODBGDx4MEwmEyorK1FaWorTp09j3bp1mD9/PgIDAzFkyBC88cYbdnsIQtSA+ZmIWhtfX18MHToUPj4+YodC1Gbc8Jz73bt3N3lcIpFg4MCBNxwQETlWwzA6Dw8PSCQS+Pv7IyAgAOXl5SgvL4dUKm00d+5q8+5u1unTpzFlypRGi+y0Bg29+gDw3nvvQa/X4+DBg0hJScHBgwdRUlICDw8PLF++HB4eHhg2bBi6d+/OXn2yG+ZnImoNoqOjsXjx4hY7So+oNbrh4n7w4MGNjjUsJHXpSoRE1LKp1WoYDIZG2+PFxcWJMrdOr9fjxIkTjVbBbW2kUikUCgUGDRqEQYMGob6+HnV1dcjIyMDJkyexe/duLFy4EH5+fhgyZAgWLVqEdu3aiR02tXLMz0TUGtTV1SEnJwcxMTHw9PQUOxyiNuGGi3uLxWLzfV5eHl544QWMGjXqpoMiIsfiMHvHcHV1tfZQvPHGG9Dr9Th8+DD279+PP//8EwUFBVCr1fj0009RU1ODoUOHomfPnnBxcRE5cmpNmJ+JqDVIS0vD6NGjRd32lqitsds40JCQELz//vt47rnn7HVJInKQhmH2ISEh1mH49tqznprW0Kvfv39/vPDCC/jmm2/g6emJs2fPIjU1FStWrMBtt92GwMBAjBs3DseOHRM7ZGqlmJ+JiIicww333DdFEATk5+fb85JE5CDcwkZcF/fqL1iwAPPmzcORI0esvfpZWVkICwvD5s2bceHCBQwbNgy33HILXF3t+s84tVHMz0RERG3fDd8VrlmzxuZ7vV6PjRs34vbbb7/poIhIfEajEQUFBdDpdJDL5dBoNA7ryY+KisKiRYucdlV5iUQCuVyOvn37om/fvqivr4fBYMDZs2dx6NAhfP3111iyZAlUKhXuvPNOzJs3D7169RI7bGohmJ+JiIic0w0X96+++qrN9wqFAj169MCSJUtuOigiEpfRaERqaioEQYC3tzfy8/NRUFDgsKH6arUaw4YN4wq6/z9XV1drD/3TTz+NmTNn4siRI0hJSUFKSgpOnTqFdu3aYdeuXTh+/DiGDx+OW2+91bpqPzkX5mciIiLndMPF/fnz5+0ZBxG1IAUFBRAEwTpMX61WIycnB4WFhQ4Zul9cXIzNmzfjvvvug7+/f7O/X2sikUjg5eWF3r17o3fv3tZe/czMTBw4cADr16/HG2+8AaVSiTvuuANz5szBgAEDxA6bHIj5mYhag+TkZBw4cIAP8ons6LoX1CssLERRUZH1e5PJhMWLF2PkyJF455137BocEYlDp9PB29vb5pi3tzeqq6sd8v45OTl46623UFBQ4JD3a81cXV3h7e0NpVKJGTNmYPfu3Vi3bh0eeOABZGRk4PDhwygtLcX27dvx3HPP4ddff4XRaBQ7bGoGzM9ERETO7bqL+6lTp2LXrl3W71988UWsWLECrq6uWLJkCZYvX27XAInI8eRyOfR6vc0xvV4PqVSKlJQUbNu2DSkpKdDpdCJFSE2RSCTw9PTErbfeinnz5mHTpk0YMGAAMjMzsX//fvz3v//FwIED4e/vj5EjR2L79u1ih0x2xPxMRK3J6dOnMWXKFI42IrKj6y7uU1NTMXToUAD/rL67Zs0arF+/Hlu2bMHXX3+N9evX2z1IInIsjUYDiUSCnJwclJWVIScnB3V1dfj999+RkZEBQRCQkZGBLVu2sMBvwVxcXKy9+hMmTMAvv/yCDRs2YPz48cjOzkZKSgpKSkrw+++/Y968efjll19gMBjEDptuEPMzEbUmer0eJ06cQG1trdihELUZ1z3nvqqqCgEBAQBg/R9y2LBhAICBAwfiwoUL9o2QiByuYd/7wsJCVFdXIyQkBOfPn4dMJkOXLl0AABERETh69ChOnjzJldpbgYZe/Z49e6Jnz54wm82oq6tDZmYm9u3bhw0bNmDFihXw9vbGwIEDMWnSJIwePVrssOk6MD8TERE5t+vuuVcoFKisrAQAHDp0CJ07d7auyFxfXw+z2WzfCIlIFA373icmJiI8PBxVVVXw9fW1OcfX1xfFxcV2f2+FQoFevXrBy8vL7temfzT06qtUKtx///34+eef8cUXX2DixInIzc3F7t27UVxcjOPHj+Opp57Cjz/+iLq6OrHDpitgfiYiInJu113c9+/fH88//zxSU1Px0UcfWYcAAv/MnXHWfamJ2jofHx9kZGTg/PnzyM/Ph8lkQnl5ubWn0J7i4uLw/vvvIyoqyu7XpsYkEgnc3d3RvXt3PPnkk/j8888xdepUnD9/Hnv27MGXX36JIUOGwM/PD3fffTc+//xzsUOmJjA/ExERObfrLu6XLl2K3377DcnJyTAYDJg7d6617csvv0SfPn3sGiARic9oNEIQBNTW1uLcuXM4c+YMtm/fDqPRiI4dO9r9/cxmM3Q6HXsaRXLxXP277roLP/30E7788ktMmTIFRUVF2LZtG4qLi5GdnY0nn3wSO3bs4JzJFoD5mYhak6ioKCxatIgPHons6Lrn3EdFRSEtLQ1lZWVQq9U2bf/+978hk8nsFhwRtQwFBQXw8PDAQw89hMzMTJSXl0OlUuGWW25plv1pjx49ikGDBmHLli3o1KmT3a9P166hVz85ORnJycmYOXMm6urqcP78eRw/fhxbtmzB+++/Dw8PD/Tv3x+jR4/GY489JnbYTon5mYhaE7VajWHDhnGfeyI7uu6e+waX3jgAgEql4hxZojaoYd97T09PdOrUCX379kVycjIsFovYoZGDXdyr37t3b+zcuRObNm3C448/jrKyMmzZsgVFRUUoKyvDnDlz8MMPP6CmpkbssJ0K8zMRtQbFxcXYvHkzysrKxA6FqM247p57InI+crkc+fn5NkWDXq/nUDon19Cr37VrV3Tt2hUzZsxAXV0dsrKykJWVhe+++w4ffPAB3N3d0bdvX9x7772YM2cOJBKJ2KETEZHIcnJy8NZbb6FXr17w9/cXOxyiNuGGe+6JyHk0te+9RCJBUFCQ2KFRCyKVSuHl5QWlUonOnTtj+/bt2Lx5M2bOnInq6mp8/vnnKC4uhk6nw7x587B161bodDqxwyYiIiJqE9hzT0RX1dS+90FBQZzDS5fV0KuflJSEpKQkPP7449Ze/YahmCtWrICbmxv69OmD4cOH41//+hdcXZmWiIiIiG4E76KI6Jo07HvvCElJSdi1axc0Go1D3o+aX0OvPgAolUps374dGRkZ+OOPP5CSkoLVq1djwoQJUCgUeOONN5CcnIw77rgDPj4+IkdORERE1DqwuCeiFsfNzQ2+vr5wc3MTOxRqJm5ubkhMTERiYiKmTp2K2tpaaLVa6PV6bNiwAUuWLIGrqytuv/12DB8+HLNnz4a3t7fYYRMRkZ0oFAr06tWLi30S2RHn3BNRi5OZmYl58+ZBq9WKHQo5gFQqta7AHxISgm3btuG7777DU089BYvFgnfeeQcVFRXQ6/VYtmwZtmzZgoqKCrHDJiKimxAXF4f3338fUVFRYodC1Gaw556IWpzKykrs27ePi605KTc3N3To0AEdOnTA5MmTUVNTg9zcXGi1Wvz3v//FmTNn4OLigttuuw3Dhg3DzJkz4evrK3bYRER0HcxmM3Q6HTw9PSGVsr+RyB74fxIREbVYUqkUcrkcSqUSarUa33zzDb7//ns888wzkEqlePPNN1FaWgq9Xo///Oc/+Oqrr1BeXi522EREdBVHjx7FoEGDcPr0abFDIWozWNwTEVGr4ebmhri4OEyePBmrVq3Cnj17UF5ejpMnT2LNmjV46KGH4O/vj9tvvx1LlixBYWGh2CE7vbfeegtJSUlQKBSIiIjASy+9BLPZfNnzBwwYAA8PD8jlcusXERERXR2LeyIiapUa5ur7+PhAqVRi/fr12LZtG55//nl4eHjgzTffhFarhU6nw/r167Fx40aUlpaKHbbTsVgsWLt2LcrKyrBv3z5s27YNy5cvv+Jr3n33Xeh0uv+vvTuPjqrM8z/+yQIBUlkghBC2AEHCEhBEoA8IgqNCbEWFsDUISqug6OiMzXJAmmEGEQ866igqiuyLrZAWRaOI0IiydbMYIoGwBQQiCCSEkISE5Pn90T/Sxiwkkqp76/J+nVPnpO59qvJ56qH48uVW3Vt8AwAA18Z37gHYTuPGjfXMM8+oQYMGVkeBF/H391erVq3UqlUrjRw5Ujk5OSosLNS+ffu0YMECbdq0ST4+PuratavuuecePfLII2rWrJnVsR1v0qRJxT9HRUVpxIgR2rx5c4ntAADg+tHcA7CdiIgIjRgxgo/j4je7+l39q+bOnasff/xR3377rbZt26ZXXnlF3bt3V7169bRu3Trl5OSoX79+Cg8PtzD1jWHTpk3q2LFjhWOmTZumqVOnKjo6WtOmTdN9991X7tj09HSlp6eX2p6SknLdWQEA8CY09wBsJyMjQ+vXr1ffvn05Czqqhb+/v1q0aKEWLVpoxIgRysnJ0ZUrV7Rv3z4tXrxYn3zyiXx8fNSlSxfFxcVp1KhRatWqldWxHeeNN97Q3r17tWTJknLHvPTSS2rbtq1q1aqltWvXatiwYdq4caO6detW5vh58+ZpxowZ7ooMwE06dOigL7/8Ug0bNrQ6CuAYNPcAbOfo0aOaMmWKVq1aRXOPavfro/qzZs3Sk08+qS1btmjLli16/fXX1bp1a0VERGjr1q1KT09X//79FRERYWFqe4qPj9fq1avL3W+MKf556dKlmjVrljZu3KiwsLByH9O9e/finwcOHKg1a9YoISGh3OZ+7NixGjBgQKntKSkpGjlyZGWmAcACNWrUUN26dVWjRg2rowCOQXMPALih+fv7q3nz5mrevLmGDx+unJwcXb58WSkpKVq6dKmWLVsmSercubPi4uI0YsQItWvXzuLU9rBq1apKjVu+fLkmTJig9evXq02bNlX6Hb6+viX+k+DXIiMjFRkZWaXnBGC9w4cP67nnntPUqVPVvHlzq+MAjkBzDwDA/+fj46PAwEAFBgZKkiZPnqzRo0fru+++09atW/XWW28pPDxcTZs21d69e7V//371799fjRo1sji5fa1cuVLPPvus1q1bp9jY2ArHZmZmauvWrerTp49q1qypzz77TB9++KHWrVvnobQAPOXChQvavHkzV8QAqhHNPQAA5fD391fTpk01bNgwDR06VLm5ucrNzVVKSoqWLVumd955R8YYdezYUf3799fw4cPVqVMnq2PbypQpU5SZmalevXoVb+vVq5cSExMlSXFxcerVq5emTJmigoICTZ8+XSkpKfL19VWrVq20ZMkS9ezZ06r4AAB4DZp7ALZTu3ZtxcTEKCAgwOooQDEfHx/VqVNHderUkSQ99dRTGjRokLZs2aKtW7fqvffeU40aNdSyZUulpaVpx44d6t+/v5o0aWJxcmsdPXq0wv1Xm3xJCg8P144dO9wdCQAAR6K5B2A7bdu21dKlS7kUHmzNz89PTZo00ZAhQzR48GDl5eUpOztb+/fvV0JCgubMmaOioiK1b99ecXFxGjx4cLknhQMAALheNPcAAFwnHx8f1a5dW7Vr15YkjRo1Sv369dPWrVu1ZcsWLVq0SNnZ2WrTpo3Onj2rr776Sv3791dUVJTFyQHAGo0bN9YzzzyjBg0aWB0FcAyaewC2s3v3bvXs2VMrV6685gm4ADvy8/NTo0aNNGjQIA0cOLDEUf2vv/5a06ZNU2Fhodq0aaO4uDgNHDiw+OP+AHAjiIiI0IgRI/iUHlCNfK0OAAC/ZoxRQUGB1TGAanH1qH54eLhCQkJ0//336+uvv9asWbN00003admyZXr99dc5YzSAG0pGRobWr1+vCxcuWB0FcAyO3AMA4EF+fn5q2LChBg4cqAcffFD5+fnKyMhQWlqa1dEAwGOOHj2qKVOmaNWqVapbt67VcQBH4Mg9AAAW8fHxUUBAgBo2bKjAwECr4wAAAC9Gcw8AAAAAgJejuQdgO23bttXKlSvVsmVLq6MAAAAAXoHmHoDt1K5dW9HR0apVq5bVUQAAgBvUrl1bMTExCggIsDoK4Bg09wBs59ixY5o5c6ZOnjxpdRQAAOAGbdu21dKlSxUdHW11FMAxaO4B2M65c+f0ySefcHkcAAAAoJJo7gEAAAB41O7du9WzZ0/t27fP6iiAY9DcAwAAAPAoY4wKCgqsjgE4Cs09AAAAAABejuYegO1ERERo9OjRCgsLszoKAAAA4BX8rQ4AAL/WuHFjjR8/Xi6Xy+ooAAAAgFfgyD0A27l48aJ27typS5cuWR0FAAC4Qdu2bbVy5Uq1bNnS6iiAY9DcA7CdgwcP6oknntCxY8esjgIAANygdu3aio6OVq1atayOAjgGzT0AAAAAjzp27JhmzpypkydPWh0FcAyaewAAAAAede7cOX3yySe6cOGC1VEAx6C5BwAAAADAy9HcA7CdGjVqqEGDBvL354IeAAAAQGXwL2cAttOhQwetXbuWS+EBAAAAlcSRewAAAAAeFRERodGjRyssLMzqKIBj0NwDsJ29e/fq3nvvVWpqqtVRAACAGzRu3Fjjx49XRESE1VEAx/Cq5n7OnDnq0KGDgoKC1KxZM02dOlWFhYVWxwJQzQoKCnTmzBlduXLF6igAAMANLl68qJ07d+rSpUtWRwEcw6ua+6KiIi1cuFDnz5/X5s2btXbtWr388stWxwIAAABQBQcPHtQTTzyhY8eOWR0FcAyvOqHepEmTin+OiorSiBEjtHnz5hLbfyk9PV3p6emltqekpLgtIwAAAAAAnuZVzf2vbdq0SR07dix3/7x58zRjxgwPJgIAAAAAwPO8trl/4403tHfvXi1ZsqTcMWPHjtWAAQNKbU9JSdHIkSPdGQ/Adbjpppv09ttvKyoqyuooAAAAgFewTXMfHx+v1atXl7vfGFP889KlSzVr1ixt3LixwstnREZGKjIyslpzAnC/oKAgdenSRYGBgVZHAQAAblCjRg01aNBA/v62aUcAr2ebE+qtWrVKxphyb1ctX75cEyZM0FdffaU2bdpYmBiAu5w8eVJz587V6dOnrY4CAADcoEOHDlq7dq1at25tdRTAMWzT3FfGypUr9eyzzyoxMVGxsbFWxwHgJqdPn9bixYt17tw5q6MAAAAAXsGrmvspU6YoMzNTvXr1ksvlksvlUlxcnNWxAAAAAFTB3r17de+99yo1NdXqKIBjeNWXXI4ePWp1BAAAAADXqaCgQGfOnNGVK1esjgI4hlcduQcAAAAAAKXR3AOwnbCwMA0YMEAhISFWRwEAAAC8gld9LB/AjSEqKkrPP/+8XC6X1VEAAAAAr8CRewC2k5ubq8OHDysvL8/qKAAAwA1uuukmvf3224qKirI6CuAYNPcAbCclJUXDhw/XkSNHrI4CAADcICgoSF26dFFgYKDVUQDHoLkHAAAA4FEnT57U3Llzdfr0aaujAI5Bcw8AAADAo06fPq3Fixfr3LlzVkcBHIPmHgAAAAAAL0dzD8B2fHx8VKNGDatjAAAAAF6DS+EBsJ3OnTvru+++41J4AAAAQCVx5B4AAACAR4WFhWnAgAEKCQmxOgrgGDT3AGwnJSVFDz30kA4fPmx1FAAA4AZRUVF6/vnn1bhxY6ujAI5Bcw/AdnJzc3XgwAFdvnzZ6igAAMANcnNzdfjwYeXl5VkdBXAMmnsAAOA2ixYtkp+fn1wuV/Ft+fLl5Y7PzMzUkCFDFBQUpEaNGum1117zXFgAHpOSkqLhw4fryJEjVkcBHIMT6gEAALfq2rWrtm3bVqmxTz31lC5fvqyTJ0/q2LFj+rd/+zfFxMQoLi7OzSkBAPBuNPcAAMAWLl26pI8++kg7d+5UcHCwOnTooMcee0wLFiwot7lPT09Xenp6qe0pKSnujgsAgK3Q3AOwnRYtWmjWrFmcZAdwiKSkJIWHhyskJESDBg3Sf/3Xf6l27dqlxqWmpqqoqEixsbHF2zp16qSEhIRyn3vevHmaMWOGW3IDAOBNaO4B2E7dunV15513cp17wAF69+6t5ORkNW/eXAcPHtSoUaM0ceJEvfHGG6XGZmdnl7osVmhoqC5evFju848dO1YDBgwotT0lJUUjR468/gkAcAsfHx/VqFHD6hiAo9DcA7Cd06dPa/ny5Ro0aJAaNGhgdRwA5YiPj9fq1avL3W+MUcuWLYvvx8TEaPbs2Ro+fHiZzb3L5VJWVlaJbRcuXFBQUFC5vyMyMlKRkZG/IT0AK3Xu3Fnfffcd/5EPVCPOlg/Adk6ePKnXX39dZ86csToKgAqsWrVKxphyb2Xx9fUtd1/r1q3l4+OjH374oXjbnj17SnxMHwAAlI3mHgAAuE1iYmLxCe+OHDmiyZMn68EHHyxzbGBgoOLj4zV16lRdvHhRycnJmj9/vsaMGePJyAA8ICUlRQ899JAOHz5sdRTAMWjuAQCA22zYsEGdO3dWYGCg+vbtqx49euiVV14p3j9u3DiNGzeu+P7cuXNVo0YNRUZG6q677tLkyZO5DB7gQLm5uTpw4IAuX75sdRTAMfjOPQAAcJs5c+Zozpw55e5/5513StwPDQ3VRx995O5YAAA4DkfuAdhOSEiIevXqxUl2AAAAgEriyD0A24mOjtYrr7xCcw8AAABUEkfuAdhOQUGBMjIyVFBQYHUUAADgBi1atNCsWbPUuHFjq6MAjkFzD8B29u7dq379+ungwYNWRwEAAG5Qt25d3XnnnQoJCbE6CuAYNPcAAAAAPOr06dNavny5zp49a3UUwDFo7gEAAAB41MmTJ/X666/rzJkzVkcBHIPmHgAAAAAAL0dzDwAAAACAl+NSeABs5+abb9aGDRsUHh5udRQAAADAK3DkHoDt+Pn5yeVyyc/Pz+ooAADADUJCQtSrVy+5XC6rowCOQXMPwHYOHjyop59+WmlpaVZHAQAAbhAdHa1XXnlFzZo1szoK4Bg09wBs5+LFi9q+fbtycnKsjgIAANygoKBAGRkZKigosDoK4Bg09wAAAAA8au/everXr58OHjxodRTAMWjuAQAAAADwcjT3AAAAAAB4OZp7ALbTtGlTTZgwQQ0bNrQ6CgAAAOAVuM49ANsJDw/X4MGDuTwOAAAAUEkcuQdgO+fPn1diYqIyMzOtjgIAANzg5ptv1oYNGxQTE2N1FMAxaO4B2E5aWpqmT5+uU6dOWR0FAAC4gZ+fn1wul/z8/KyOAjgGzT0AAAAAjzp48KCefvpppaWlWR0FcAyaewAAAAAedfHiRW3fvl05OTlWRwEcg+YeAAAAAAAvR3MPwHYCAwMVGxur2rVrWx0FAAAA8ApcCg+A7cTExGjBggVcCg8AAACoJI7cAwAAAPCopk2basKECWrYsKHVUQDHoLkHYDu7du1St27dtG/fPqujAAAANwgPD9fgwYNVr149q6MAjkFzDwAAAMCjzp8/r8TERGVmZlodBXAMmnsAAAAAHpWWlqbp06fr1KlTVkcBHIPmHgAAAAAAL0dzDwAAAACAl+NSeABsp127dlq9erVatmxpdRQAAADAK3DkHoDt1KpVS02bNlVAQIDVUQAAgBsEBgYqNjZWtWvXtjoK4Bg09wBs5+jRo/rzn/+sEydOWB0FAAC4QUxMjBYsWKAWLVpYHQVwDJp7ALaTkZGhL774QllZWVZHAQAAALwCzT0AAAAAj9q1a5e6deumffv2WR0FcAyaewAAAAAAvBzNPQAAAAAAXo7mHoDtREZG6tFHH1V4eLjVUQAAAACvwHXuAdhOZGSkHn/8cblcLqujAAAAAF6BI/cAbCcrK0tbt25Vdna21VEAAIAbtGvXTqtXr1Z0dLTVUQDHoLkHYDuHDh3SM888o+PHj1sdBQAAuEGtWrXUtGlTBQQEWB0FcAyaewAAAAAedfToUf35z3/WiRMnrI4COAbNPQAAAACPysjI0BdffKGsrCyrowCOQXMPAAAAAICXo7kHYDsBAQFq0qSJatSoYXUUAAAAwCtwKTwAttO+fXslJCRwKTwAAACgkjhyDwAAAMCjIiMj9eijjyo8PNzqKIBj0NwDsJ2kpCTdfffdOnDggNVRAACAG0RGRurxxx+nuQeqEc09ANu5cuWKMjMzVVhYaHUUANcpLi5OLper+BYQEKDg4OByx/fp00e1atUq8RgAzpOVlaWtW7cqOzvb6iiAY9DcAwAAt0lMTFR2dnbx7YEHHtCQIUMqfMxrr71W4jEAnOfQoUN65plndPz4caujAI7BCfUAAIBHnD9/XmvWrNGGDRuq7TnT09OVnp5eantKSkq1/Q4AALwBzT0AAPCIFStWqHnz5urRo0eF46ZNm6apU6cqOjpa06ZN03333Vfu2Hnz5mnGjBnVHRUAAK9Dcw/Adlq3bq358+crKirK6igAqtGCBQv0yCOPVDjmpZdeUtu2bVWrVi2tXbtWw4YN08aNG9WtW7cyx48dO1YDBgwotT0lJUUjR46sltwAAHgDmnsAtuNyudSxY0cFBgZaHQVABeLj47V69epy9xtjin/+/vvvlZSUpM8++6zC5+zevXvxzwMHDtSaNWuUkJBQbnMfGRmpyMjIKiYHYLWAgAA1adJENWrUsDoK4BicUA+A7Zw4cUKvvvqqfvrpJ6ujAKjAqlWrZIwp9/ZLCxYsUP/+/avciPv6+pZ6LgDer3379kpISNBNN91kdRTAMWjuAdjOmTNntHLlSp0/f97qKACqQX5+vpYvX64xY8ZUOC4zM1OJiYnKzc1VYWGhPvnkE3344YdlfuweAACURHMPAADc6tNPP5WPj0+ZJ8aLi4vTrFmzJEkFBQWaPn26GjRooHr16mnGjBlasmSJevbs6enIANwsKSlJd999tw4cOGB1FMAx+M49AABwq0GDBmnQoEFl7ktMTCz+OTw8XDt27PBULAAWunLlijIzM1VYWGh1FMAxOHIPAAAAAICX89rmvm/fvvLx8VFeXp7VUQBUs/r16ys+Pl6hoaFWRwEAAAC8gld+LH/x4sV8hAdwsGbNmmnixIlyuVxWRwEAAAC8gtcduT937pxmzpypOXPmWB0FgJvk5ORo//79ys3NtToKAABwg9atW2v+/PmKioqyOgrgGF535H7ChAl69tlnFRERcc2x6enpSk9PL7U9JSXFHdEAVJP9+/dr1KhRWrVqlWJjY62OAwAAqpnL5VLHjh0VGBhodRTAMbyquf/mm2+0d+9ezZ8/X8ePH7/m+Hnz5mnGjBkeSAYAAACgsk6cOKFXX31Vjz32mBo1amR1HMARbPOx/Pj4ePn4+JR7Kygo0JNPPqm5c+fK17dysceOHaudO3eWui1btszNswEAAABQnjNnzmjlypU6f/681VEAx7DNkftVq1ZVuD8tLU379+/XgAEDJKn4hHrNmzfXokWL1L9//1KPiYyMVGRkZPWHBQAAAADARmzT3F9L06ZNdeLEieL7P/74o7p166bt27erYcOGFiYDUN18fX0VGBgoHx8fq6MAAAAAXsFrmns/P78STfzV69tHREQoICDAqlgA3KBTp07auHEjl8IDAAAAKslrmvtfa968uYwxVscAAAAAUEX169dXfHy8QkNDrY4COIZtTqgHAFft27dPQ4cO1aFDh6yOAgAA3KBZs2aaOHEiZ8oHqhHNPQDbycvL09GjR5Wfn291FAAA4AY5OTnav3+/cnNzrY4COAbNPQAAAACP2r9/v0aNGqWjR49aHQVwDJp7AAAAAAC8HM09AAAAAABejuYegO20bNlSL7/8spo0aWJ1FAAAAMAreO2l8AA4V2hoqHr37s117gEAcChfX18FBgbKx8fH6iiAY3DkHoDt/PTTT1q0aJF+/vlnq6MAAAA36NSpkzZu3Ki2bdtaHQVwDJp7ALZz6tQpvfXWWzT3AAAAQCXR3AMAAADwqH379mno0KE6dOiQ1VEAx6C5BwAAAOBReXl5Onr0qPLz862OAjgGzT0AAAAAAF6O5h6A7YSGhuqOO+5QUFCQ1VEAAAAAr8Cl8ADYTsuWLTV79mwuhQcAAABUEkfuAdhOfn6+Tp8+zffwAABwqJYtW+rll19WkyZNrI4COAbNPQDbSU5O1n333ccZdAEAcKjQ0FD17t1bwcHBVkcBHIPmHgAAAIBH/fTTT1q0aJF+/vlnq6MAjkFzDwAAAMCjTp06pbfeeovmHqhGNPcAAAAAAHg5mnsAAAAAALwcl8IDYDudOnXSt99+q9DQUKujAAAAAF6BI/cAbMfX11c1a9aUry9/RQEA4EShoaG64447FBQUZHUUwDH4lzMA20lNTdW4ceOUlpZmdRQAAOAGLVu21OzZs9W0aVOrowCOQXMPwHays7O1a9cu5eTkWB0FAAC4QX5+vk6fPq38/HyrowCOQXMPAAAAwKOSk5N133336dChQ1ZHARyD5h4AAAAAAC9Hcw8AAAAAgJejuQdgO82aNdOUKVMUGRlpdRQAAADAK3CdewC2U79+fT3wwANyuVxWRwEAAAC8AkfuAdjO2bNn9fHHHysjI8PqKAAAwA06deqkb7/9Vm3atLE6CuAYNPcAbOf48eOaNWuW0tPTrY4CAADcwNfXVzVr1pSvL+0IUF14NwEAAADwqNTUVI0bN05paWlWRwEcg+YeAAAAgEdlZ2dr165dysnJsToK4Bg09wAAAAAAeDmaewC243K5dMstt6hOnTpWRwEAAAC8ApfCA2A7rVu31jvvvMOl8AAAAIBK4sg9ANspKipSfn6+ioqKrI4CoBI2btyovn37KiQkRA0bNiy1PzMzU0OGDFFQUJAaNWqk1157rcLn27Rpk2JjY1WnTh117dpV33//vZuSA7BKs2bNNGXKFEVGRlodBXAMmnsAtrNnzx7ddttt2r9/v9VRAFRCYGCgxowZo//93/8tc/9TTz2ly5cv6+TJk/ryyy81a9YsJSYmljn23Llzuv/++zVx4kRlZGRo+PDhGjBggC5fvuzOKQDwsPr16+uBBx5Q3bp1rY4COAbNPQAAuC7dunXTQw89pOjo6FL7Ll26pI8++kgvvPCCgoOD1aFDBz322GNasGBBmc+VkJCgVq1aadSoUQoICNB//Md/qKioSOvXr3f3NAB40NmzZ/Xxxx8rIyPD6iiAY9yQ37nPzc2VJKWkpFicBEBZrh6xP3LkiHx8fCxOA3jGkSNHJP2rRjlFamqqioqKFBsbW7ytU6dOSkhIKHN8cnKyOnXqVHzfx8dHHTt2VHJysn7/+9+XGp+enq709PRS2/fs2SOJWg/Y1b59+zRr1iyFhISU+R+DgBMdPnxYkvtq/Q3Z3O/evVuSNHLkSIuTAKjIxIkTrY4AeNzu3bvVs2dPq2NUm+zsbIWEhJTYFhoaqosXL5Y7/tcf061o/Lx58zRjxoxyfz+1HrC3SZMmWR0B8Dh31fobsrlv27atJOn9998vcXTAm6WkpGjkyJFatmxZ8fy8HXOyP6fNR2JO3sKJc9qzZ4/++Mc/2m4+8fHxWr16dbn7jTEVPt7lcikrK6vEtgsXLigoKKjc8RcuXKj0+LFjx2rAgAGltm/fvl1PPvkktd7mmJN3YE7257T5SM6ck7tr/Q3Z3F89ItCpUyfdcsstFqepXm3btmVOXsBpc3LafCTm5C2cOCe7nVxq1apV1/X41q1by8fHRz/88IPat28v6Z//uPnlx/R/KTY2Vu+++27xfWOMkpKS9MQTT5Q5PjIyssKzbVPrvQNz8g7Myf6cNh/JmXNyV63nhHoAAOC6FBUVKS8vT/n5+ZKkvLy84rPbBwYGKj4+XlOnTtXFixeVnJys+fPna8yYMWU+18CBA3Xw4EEtW7ZM+fn5ev311yVJd955p2cmAwCAl6K5BwAA1+Wbb75R7dq11a9fP50+fVq1a9dWTExM8f65c+eqRo0aioyM1F133aXJkycrLi6ueL/L5dLmzZslSWFhYfr44481e/ZshYSEaPny5frkk08UEBDg8XkBAOBNbsiP5QMAgOrTp0+fCr97Hxoaqo8++qjc/dnZ2aWeLzk5udryAQBwI+DIPQAAAAAAXu6GbO4jIyM1ffr0Ck/A422Yk3dw2pycNh+JOXkL5oRrceLryZy8A3PyDk6bk9PmIzGn38LHXOsaNgAAAAAAwNZuyCP3AAAAAAA4Cc09AAAAAABejuYeAAAAAAAvR3MPAAAAAICXc2xzv3HjRvXt21chISFq2LBhqf2ZmZkaMmSIgoKC1KhRI7322msVPt+mTZsUGxurOnXqqGvXrvr+++/dlLxy4uLi5HK5im8BAQEKDg4ud3yfPn1Uq1atEo+xm0WLFsnPz69ExuXLl5c7vqpraIU5c+aoQ4cOCgoKUrNmzTR16lQVFhaWO96u61SV19pu75Vfu3z5sh599FG1aNFCQUFBat++vVasWFHueB8fHwUGBhavR1xcnAfTVs7DDz+smjVrlvhzc/z48XLHJycn63e/+53q1Kmjdu3aacOGDR5MWzm/nIvL5ZK/v78GDBhQ7ni7rtObb76pW2+9VQEBARo2bFiJfVVdhzfffFONGzeWy+XSoEGDlJGR4c7oXsHptV5yXr2n1tt3jZxU6yXqvWT/ek+tL/u5rqvWG4favn27WbJkiZk/f76JiIgotX/EiBFmwIAB5sKFCyYpKcmEh4ebzz//vMznOnv2rAkJCTGLFy82eXl55pVXXjHNmjUzeXl57p5GpQ0ZMsT88Y9/LHf/7bffbt5++20PJqq6hQsXmu7du1d6fFXW0CqzZ882f//7301+fr5JS0szHTt2NLNnzy53vF3XqbKvtTe8V7Kzs820adPM4cOHTVFRkdm8ebMJDg42W7ZsKXO8JJOSkuLhlFUzevRoM2nSpEqNzc/PN82bNzcvvPCCycvLMx988IEJDg42p0+fdnPK3+7KlSumUaNGZunSpeWOses6rV692vz1r38148ePN0OHDi3eXtV1WLdunalXr57ZuXOnycrKMoMHDzZDhgzx1DRs60ar9cZ4f72n1tt3jZxU642h3ntbvafWV0+td2xzf9XGjRtLFfzs7GxTs2ZNs3fv3uJtU6ZMMfHx8WU+x7vvvmu6dOlSfL+oqMg0adLErF271j2hq+jcuXMmICDAfPfdd+WOsWsh+aWqFPyqrqFdvPTSS+bee+8td78d16kqr7Xd3yvliYuLMy+//HKZ++xaSH6pKsV+3bp1pkGDBqawsLB4W48ePcybb77prnjXbe3atSY4ONjk5OSUO8bu6zR9+vQSBb+q6/CHP/zBPPfcc8X3U1NTjb+/v8nMzHRfaC9yI9R6Y5xR76n19lyjG6HWG0O9t3O9p9ZXT6137MfyK5KamqqioiLFxsYWb+vUqZOSk5PLHJ+cnKxOnToV3/fx8VHHjh3LHe9pK1asUPPmzdWjR48Kx02bNk1hYWHq1q2bPv30Uw+lq5qkpCSFh4erVatWmjRpknJzc8scV9U1tIurH2OriN3WqSqvtd3fK2W5dOmS/vGPf1S4LnfccYciIiL0+9//Xj/88IMH01Xeu+++q3r16unmm2/WggULyh2XnJysDh06yNf3X3/92/29s3DhQg0bNky1a9eucJw3rNNVVV2HX7+3brrpJtWsWVP79+93d1Sv5bRaLzmn3lPr7bdGTq/1EvVesvf7h1pfPbX+hmzus7OzFRISUmJbaGioLl68WO740NDQSo/3tAULFuiRRx6pcMxLL72kw4cPKz09XZMnT9awYcO0Y8cODyWsnN69eys5OVmnT5/WZ599pr/97W+aOHFimWOruoZ28MYbb2jv3r3605/+VO4YO65TVV5ru79Xfq2oqEgPP/ywunbtqrvvvrvMMX/729+UlpamQ4cOqXPnzrr77ruVlZXl4aQV+/d//3elpqbqzJkzeu211zRx4kStXr26zLHetkZnz57Vp59+qjFjxlQ4zhvW6Zequg7etm524LRaLzmj3lPr7blGTq71EvX+KruuE7X+t40vi1c29/Hx8fLx8Sn3di0ul6vUH4QLFy4oKCio3PEXLlyo9PjrVZX5ff/990pKStKoUaMqfM7u3bsrODhYNWvW1MCBAxUfH6+EhAS35C9LZebUsmVLtWzZUr6+voqJidHs2bP10Ucflfl8VV1Dd6jKOi1dulSzZs3SunXrFBYWVu5zWr1OZanKa+3p98r1MMZo3LhxOnXqlP7yl7+U+3fH7bffrpo1ayooKEgzZ86Uv7+/tmzZ4uG0FbvllltUv359+fv7q2/fvho/fnyF7x1vWSNJWr58uVq1aqXu3btXOM4b1umXqroO3rZu1cHptV5yXr2n1lPr7Yh6/y92XSdq/W8bXxavbO5XrVol88/zBZR5u5bWrVvLx8enxEc59uzZU+7HdGJjY7Vnz57i+8YYJSUlXfMjV79VVea3YMEC9e/fX5GRkVX6Hb6+vpV6rarLb1mzijJWdQ3dobJzWr58uSZMmKCvvvpKbdq0qdLv8PQ6laUqr7Wn3yu/lTFG48eP1549e5SYmFilMxXbYU2upaKMsbGx2rt3r4qKioq3efq9UxULFy685pHKsth9naq6Dr9+bx06dEiXL1+u8t8p3sTptV5yXr2n1lPr7YZ67x31nlr/r/HXXesr/e18L1NYWGhyc3PNl19+aSIiIkxubm6Js3j+4Q9/MPfff7/Jysoye/fuNREREdc8g+7SpUvN5cuXzauvvmqaNm1q+VlBL1++bMLCwszq1asrHJeRkWE+//xzk5OTY65cuWLWrFlj6tSpY7799lsPJa2czz//3Jw6dcoYY8zhw4fN7373OzN27Nhyx1dlDa2yYsUKU79+fbNr165rjrXzOlX2tbbre+XXnnzySdO5c2dz/vz5CsclJyebnTt3moKCAnPp0iUzffp0ExERYTIyMjwTtJL+8pe/mKysLFNYWGg2b95s6tevb1auXFnm2Ktnbn3xxRdNXl6e+fDDD2179tydO3caf39/89NPP1U4zs7rVFBQYHJzc83UqVPN4MGDTW5ursnPz6/yOqxbt86EhYWZXbt2mYsXL5qhQ4dytnxzY9R6Y5xV76n19l0jp9V6Y6j33lDvqfX/Uh213rHN/caNG42kEreoqKji/RkZGSY+Pt4EBgaahg0bmldffbXE4wMDA80333xT4vnat29vatWqZW699Vaze/duz0ykAqtWrTL169c3+fn5pfb179/fvPDCC8YYY86cOWO6du1qXC6XCQ4ONrfccotZtWqVp+Ne05/+9CcTERFh6tSpY5o1a2b+8z//02RnZxfvHzt2bIl/AFxrDe2gefPmxt/f3wQGBhbf+vfvX7zfW9apotfaG94rv5SWlmYkmYCAgBLrcnUdfjmfDRs2mJiYGFOnTh0TFhZm+vXrZ/bs2WNl/DL16tXLhISEGJfLZdq1a2feeeedEvvbtWtnli1bVnw/KSnJdOvWzdSqVcu0adPGrF+/3tORK+Wpp54y999/f5n7vGWdpk+fXqoWjR492hhT8Tp88803JjAwsMRzvfHGGyYyMtIEBgaaBx988Jr/WL0R3Ai13hhn1XtqvX3XyEm13hjqvTHeUe+p9dVb632MsfFnGQAAAAAAwDV55XfuAQAAAADAv9DcAwAAAADg5WjuAQAAAADwcjT3AAAAAAB4OZp7AAAAAAC8HM09AAAAAABejuYeAAAAAAAvR3MPAAAAAICXo7kHAAAAAMDL0dwDDtSnTx89//zzVscAAABuRL0H8Es094ANHT16VMOHD1ejRo3kcrnUqFEj3XPPPUpPT7c6mmV27dqlgQMHqkmTJgoMDFTjxo01cOBAFRUVWR0NAIDfhHpfGvUe+O1o7gEbuueeexQUFKTk5GRlZ2dr9+7dGjp0qHx8fKyOZonNmzerV69e6t+/v1JTU5WVlaUNGzaoX79+8vXlrzEAgHei3pdEvQeuD+8SwGbOnTun/fv3a9y4capXr54kKSIiQqNHj1bDhg0lSc2bN9f8+fNLPM7Hx0fr168vvp+ZmamBAwcqKChIrVq10pIlS0qMf/PNNxUdHa2goCBFRETo4YcfLt7Xp08fPfXUU+U+fu7cuYqNjVVwcLAaNmyohx56SGfPni3x/Lm5uXr++efVunVrBQUFqWXLllq8eLEkKS8vT1OmTFF0dLTq1q2r3r17a/fu3eW+Jm+99ZZ69Oihxx9/XHXq1JGfn59iYmI0duzYKryyAADYB/W+NOo9cH1o7gGbCQsLU4cOHTR27FgtXLhQSUlJv+mjaO+//74eeeQRZWRk6P/+7//06KOP6rvvvpMkHTx4UBMnTtSaNWt08eJFHT58WGPGjKn04xs2bKiEhARlZmZq+/btSk1N1dNPP13i8Y899pjWrVunNWvWKCsrS99++606dOggSRo3bpx27NihTZs26eeff9aQIUPUr18/ZWZmljmX8PBwbdu2TbNnz9aePXtUWFhY5dcDAAA7od6XRr0HrpMBYDtnz54106ZNM127djUBAQGmbt265rnnnjN5eXnGGGOioqLMe++9V+IxksxXX31ljDHm9ttvNwMHDiyxf8iQIWbMmDHGGGOOHDliatWqZT744ANz4cKFUr//Wo//tYSEBFOvXr3i+z///LORZP7+97+XOTdJZv/+/SW2t2rVyixdurTM57906ZJ56aWXTNeuXY2fn5+pX7++mTZtmikqKjLGGFNYWGhuu+02ExYWZqZOnVr8uPK2AwBgB9T7kq5V7//xj3+YHj16mF69epkePXqYbdu2GWOo98BVHLkHbCgsLEz//d//rR07dujChQtasGCB3nvvPb344ouVfo4WLVqUuv/jjz8W//zBBx9o4cKFatasmbp27aqVK1dW+vEJCQnq0aOHGjRooODgYD300EM6f/588f+wHz16VJIUExNTKtehQ4ckSd27d1doaGjx7eTJkzpx4kSZc6lTp44mTpyoHTt26Ny5c5owYYL+53/+R2vXrpUk+fr6asWKFXr55ZdLPK687QAA2AH1vqRr1ftGjRopMTFR33zzjebNm1f8KQLqPfBPNPeAzQUEBOiBBx7QnXfeqV27dkmSgoKCdOnSpeIxp06dKvW4tLS0UvebNGlSfP/+++/XF198obNnz2rChAkaMWKEUlNTr/n4EydOaPDgwXr66ad1/PhxZWVlaenSpZIkY4ykf35HUFKJ57vq6vcIk5KSlJmZWXzLycnR5MmTr/l6hISEFH9f8OLFi8XbmzZtWub48rYDAGAn1PuSyqr3kZGRCg4OliTVrFmzxEn2qPcAzT1gOxkZGZo8ebKSkpJ0+fJlFRYW6uuvv9bGjRvVu3dvSdKtt96qlStXKjMzU1lZWWUWyc8//1yfffaZCgsL9cUXX+ivf/2rHnnkEUnSgQMH9Pnnnys7O1v+/v4KCQmRJPn5+V3z8dnZ2SoqKlL9+vVVq1YtHTx4sNQRhvDwcA0fPlzjx4/XgQMHJEnp6enatWuXoqKi9MADD2j8+PE6duyYpH8W7cTExDIv/fPiiy8qMTFRWVlZMsYoNTVVjz76qKKjo3XfffdVwysOAIDnUe9Lqkq9Lygo0Pjx4/X888//1pcfcCSae8BmatasqbNnz2rw4MGqX7++wsLC9Mwzz2jSpEl67rnnJEkzZ85UcHCwmjZtqi5duujBBx8s9TxjxozR+++/r9DQUI0fP17vvPOOevXqJUnKz8/XCy+8oMaNGys4OFjPPfeclixZoujo6Gs+vk2bNnrxxRc1atQoBQUFafTo0Ro5cmSp3//ee+/p9ttvV1xcnFwul3r27KkffvhBkrRixQp16dJFd911l4KCghQTE6P33nuv+EjAL+Xm5mrSpElq2rSpQkNDNWDAALVv317btm1TUFBQtbzmAAB4GvW+pMrW+8LCQo0YMUJDhgzRvffee32LADiMjynr3QXghtanTx/ddtttmjlzptVRqmTRokU6dOhQqdzlbQcA4EbmbfW+qKhIo0aNUufOnYv/A+SXqPe40flbHQAAqsPw4cOVlJSknJwcbdu2TYmJiapRo0a52wEAgHf58MMPlZCQoBMnTujTTz9VSEiI1qxZI6n8fwcANxKaewCO8Ouz/15rOwAA8C7Dhg3TsGHDytxHvQf4WD4AAAAAAF6PE+oBAAAAAODlaO4BAAAAAPByNPcAAAAAAHg5mnsAAAAAALwczT0AAAAAAF6O5h4AAAAAAC9Hcw8AAAAAgJejuQcAAAAAwMvR3AMAAAAA4OVo7gEAAAAA8HI09wAAAAAAeLn/ByEO4Xf2FltYAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reported: 36 beats ; Detected : 40 beats\n", + "Analyzing trial number 2\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABcQAAAHSCAYAAADCCcgbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebwcVZ3/j79Orb3ePSEJWUnCGpBdFNGIgKDCIDMqYEajH3GZcWE+zsdt/Ajyg3HGcWZkxnFk/Gj0B85nBvwoOrgOIgouyCKQhMiehISQ/d7cvbur6vtHdfXt7lvVXVVnq9yc5+NxH5C79DldXcs57/fr/XoTz/M8KBQKhUKhUCgUCoVCoVAoFAqFQjHH0WRPQKFQKBQKhUKhUCgUCoVCoVAoFAoRqIC4QqFQKBQKhUKhUCgUCoVCoVAojghUQFyhUCgUCoVCoVAoFAqFQqFQKBRHBCogrlAoFAqFQqFQKBQKhUKhUCgUiiMCFRBXKBQKhUKhUCgUCoVCoVAoFArFEYEKiCsUCoVCoVAoFAqFQqFQKBQKheKIQAXEFQqFQqFQKBQKhUKhUCgUCoVCcUSgAuIKhUKhUCgUCoVCoVAoFAqFQqE4IlABcYVCoVAoFAqFQqFQKBQKhUKhUBwRqIC4QqFQKBQKhUKhYMarXvUqXH/99Y1/l0ol3HvvvdLmo1AoFAqFQqFQNKMC4gqFQqFQKBQKRQrWrl0Ly7JQKpXQ09ODNWvW4Gtf+1rsnwPAxo0bcfXVV2PRokUoFotYvHgxXve612HDhg2i3w43xsbGsHbtWtnTUCgUCoVCoVAoAKiAuEKhUCgUCoVCkZqPfexjGBsbw8GDB/GJT3wC73nPe1rU0J1+/vOf/xxnn3025s2bh/vvvx+jo6N49tln8Vd/9Ve48847Y8/B8zzUajW2bywG1WpV+JgKhUKhUCgUCgUtKiCuUCgUCoVCoVBQous61q1bh8HBQTz88MOxfv6+970Pb3vb23DzzTfjmGOOgaZpsG0b559/Pr73ve9FjrV161YQQvC1r30NL3vZy1AoFPDQQw9hamoKn/rUp7By5Ur09/fj1a9+NX7/+9+3/O03v/lNnHrqqejt7cVRRx2Fj3zkI42f/eY3v8F5552H/v5+rFixAp/4xCcwPT3d+Pny5ctx3XXX4eKLL0a5XMbf//3fo1ar4WMf+xgWLFiAefPm4ZOf/OSs+RJCcPfddwMA7r33XhBC8O1vfxvHHnssyuUyLrzwQuzcubPx+7t378bll1+Ovr4+HHPMMfjWt74FQoiyXVEoFAqFQqFQMEEFxBUKhUKhUCgUCkpqtRpuvfVWHDhwAGeddVbXnz/11FN4+umnsW7dutRjfv3rX8ddd92FsbExnHbaaXj/+9+P3/3ud/jFL36BvXv34q1vfSte//rXY3h4GADwf/7P/8Ff/uVf4gtf+AL279+PZ555BldccQUAYPv27bjgggvwx3/8x9i9ezd++tOf4r/+67/w8Y9/vGXMW265Bddddx0OHTqED3/4w/j85z+P22+/Hffccw927NgBwzDwwAMPdJ37d7/7XTz44IPYsWMHJiYm8KlPfarxs6uvvhqO4+D555/Hww8/jNtvvz31MVIoFAqFQqFQKNpRAXGFQqFQKBQKhSIlX/jCF9DX14cFCxbgi1/8IjZs2IBXv/rVXX++d+9eAMDRRx/d+N2NGzeir68PfX19yOVy+OUvf9lx7M985jNYsmQJdF3H2NgYvvnNb+Jf/uVfsHjxYhiGgQ9+8IPo7e3FXXfdBQD44he/iI9//OO44IILYBgGyuUyXvOa1wAAvvWtb+HYY4/FtddeC8uysHr1atx44434t3/7N3ie1xjzXe96F17xileAEIJCoYANGzbgox/9KE488UTYto3rr78e/f39XY/b5z73OfT29qK3txdXX301fve73wEAduzYgXvuuQd/+7d/i/7+fvT39+Omm26K+WkoFAqFQqFQKBTdMWRPQKFQKBQKhUKhOFz5y7/8S9x4442Jfz5v3jwAfgD4hBNOAACcfPLJGB4eRq1Wg2macF2349grVqxo/P8zzzwDAHj5y1/e8juVSgU7duwAADz//PM47rjjQl/rhRdewMqVK1u+t2rVKkxOTmLv3r2YP3/+rDGD+Td/T9d1LF26tOO8AWDRokWN/y8WixgdHQWAhnXKsmXLGj9fvnx519dTKBQKhUKhUCjiogLiCoVCoVAoFAqFYI499lisWrUK3/rWt3DhhRemeg1Nmyn2XLBgAQDg8ccfjwxIL1++HE899VToz5YsWYLf/va3Ld979tlnkc/nG8H79jEBYPHixdi6dWvj347j4IUXXkj0PpoJFPPbtm3DiSee2Ph/hUKhUCgUCoWCFcoyRaFQKBQKhUKhkMBXvvIV/Md//AeuvfZaPP/883BdF9VqFb/4xS8Sv9ayZctw+eWX48///M8bAeTR0VH86Ec/wq5duwAAH/nIR/C3f/u3uOeee+A4DkZHRxtjXX311XjyySfxz//8z6hUKnj22Wfxv//3/8Z73vMeEEIix33nO9+Jv//7v8cf/vAHTE9P44YbbsCBAwdSHA2fxYsXY+3atfjkJz+J4eFhDA8P49Of/nTq11MoFAqFQqFQKNpRAXGFQqFQKBQKhUICr3vd6/DAAw/gpZdewitf+UqUSiWsWLECN910E2699Vace+65iV7v3//933HGGWfgwgsvRLlcxnHHHYevfvWrDQ/w9773vfjc5z6Ha6+9Fv39/Vi9ejXuvPNOAH5A/ac//Sn+8z//E/Pnz8f555+PSy65BJ///Oc7jvnxj38cV1xxBV7zmtdg8eLFqFQqs2xbkvLv//7v8DwPy5Ytw2mnnYbLLrsMAJDL5aheV6FQKBQKhUKhAADiNXfJUSgUCoVCoVAoFIoM8eijj+K0007Diy++iIULF8qejkKhUCgUCoXiMEcFxBUKhUKhUCgUCkVm2LRpEyqVCk499VS8+OKLeMc73gEAuOeeeyTPTKFQKBQKhUIxF1CWKQqFQqFQKBQKhSIzjIyM4Morr0S5XMYZZ5yBoaEhfOtb35I9LYVCoVAoFArFHEEpxBUKhUKhUCgUCoVCoVAoFAqFQnFEoBTiCoVCoVAoFAqFQqFQKBQKhUKhOCJQAXGFQqFQKBQKhUKhUCgUCoVCoVAcEaiAuEKhUCgUCoVCoVAoFAqFQqFQKI4IDNkTyCr79u3DT37yEyxfvhz5fF72dBQKhUKhUCgUCoVCoVAoFAqFQhHC5OQktm7dite//vUYGhrq+LsqIB7BT37yE6xbt072NBQKhUKhUCgUCoVCoVAoFAqFQhGD2267DW9/+9s7/o4KiEewfPlyAP5BPOGEE+RORgJP7x6VPQWFYs6w+qiy7CkoFAqFQqFQKBQKhUIhBBVTksuRGoPYsmUL1q1b14jpdkIFxCMIbFJOOOEEnH766ZJnIx5zx4jsKSgUc4aTF/fKnoJCoVAoFAqFQqFQKBRCUDEluRzpMYg41teqqaZCoVAoFAqFQqFQKBQKhUKhUCiOCFRAXKFQKBQKhaKJiclJbNu5E5NTU7KnolAoFAqFQqFQKBQKxijLFIVCoVAoFAoANcfBF7/xDdzx4x/DcV3omoa3XHwxrl2/Hoauy56eQqFQKBQKhUKhUCgYoALiCoVCoVAoFAC++I1v4Ac//zleccwx6C8UcHBiAj/4+c9BCMFH3/1u2dNTKBQKhUKhUCgUCgUDlGWKQqFQKBQK6ci2KZmYnMQdP/4xXnb00egvFAAA/YUCXnb00bj9Rz9S9ikKhUKhUCgUCoVCMUdQCnGFQqFQKBTSyIpNyd4DB+C4biMYHtBfKMBxXew5cADLFi0SNh+FQqFQKBQKhUKhUPBBBcQVCoVCoVBIIys2JfMHB6FrGg5OTLQExQ9OTEDXNMwfGBA2F4VCoVAoFAqFQqFQ8ENZpigUCoVCoZBClmxK8rkc3nLxxXhsxw4cnJgA4AfDH9u5E2+95BLkczlhc1EoFAqFQqFQKBQKBT+UQlyhUCgUCoUUsmZTcu369XAnJ/Hte++F47owdB1vveQSfOSd7xQ2B4VCoVAoFAqF4khkanoKBw8dwkBvL2zLlj0dxRwnkwrx6elpvOc978GKFStQLpdx0kkn4d///d8bP9+0aRPOOeccFAoFnHjiibjnnnta/v7b3/42Vq5ciUKhgNe97nXYtm2b6LegUCgUCsVhg6yGls02Jc3IsikxdB0fvPxy3HXd9fjau/8H7r31Vnz03e8W6mXejOxGowqFQqFQKBQKBW8c18Gt37sT7/vMdfjY3/0d3vu/P4Nbv3cnHNeROq+p6Sns2rsH05VpqfNQ8CGTCvFarYZFixbhZz/7GVasWIFf/epXeOMb34gVK1bgzDPPxKWXXoprrrkGv/jFL3DnnXfizW9+M55++mnMnz8fW7Zswfr16/Gd73wH5513Hj71qU/hrW99Kx544AHZb0uhUCgOSyYmJ7H3wAHMHxxUthEckXGcZTe0DGxKfvDznzdsU2TblLiVKkq9vTi6p0fa+S77c1EoFArF3EWt68JRx0WhkMe//9d/4f6HHsIpi49GOZfD6NQU7n/oIRBCsO6yPxI+H8d18O//9V+4+9e/geu50IiGC175Clx96aXQNbUWnytkMiBeLBZxww03NP79qle9Cueeey5+/etfY2xsDBMTE/jEJz4BTdPwtre9Df/0T/+EO+64A3/+53+O2267DRdffDEuuugiAMANN9yAefPmYfPmzTjppJNkvSWFQqE47FBBOTHIPM5ZaGh57fr18BwHd/z0p5mwKfEcByQnt0QzC5+LQqFQtKMChsnJ0jHL4rouC8cni8dFoTiSmJqewt2//k0jGA4A5VwOx86fj//+1a/xlosvFm6fkrUAvYIPmQyItzM+Po6HHnoIH/nIR7Bp0yacfPLJ0LQZt5dTTz0VmzZtAuDbqZx11lmNn5XLZaxcuRKbNm0KDYjv2rULu3btmvX9LVu2cHgnCoVCkRxZm4UsBeWysGHihazjHDS0DMYFWhta/tnVVws51oau49q3vQ1vf9mp2P3Sbhz/+gulfsae44Do8pZHWflcFAqFIkAFDJOTxWOWpXVdlo5Plo5LwFxe9yoU7Rw8dAiu5zaC4QHlXA6u5+LAoUNYODRP2HyyGKBX8CHzAXHXdbF+/XqcddZZuOiii/C73/0OfX19Lb/T19fX8AkfGxsL/fno6Gjo699yyy347Gc/y2PqCoVijiG6yYfMzUJWgnJZ2jDxQOZxzlJDS7dSRbFUwuL+aekbP8+pgRjyzq0sfS7NqM25QnHkksWAYTtZu0dl7ZhlZV0XkJXjk7XjMtfXvQpFGAO9vdCIhtGpqZag+OjUFDSiYaCnR+h8shagV/Aj0wFxz/Pw/ve/Hy+++CJ+8pOfgBCCUqmEkZGRlt8bGRlBuVwGgK4/b+d973sfLrvsslnf37JlC9atW8fonSgUisMZWR5iMjcLWQnKyTwGIjbXMo9zc0PL5vFlNLR0a1VopilsvE54NbkK8Sx9LoDanCsURzpZCxi2k8V7VBaPWVbWdUC2jk+WjguQnUSBQiES27JxwStfgfsfegjHzp/fsCh5as8eXHjuK4WrsbMWoFfwQ+v+K3LwPA9//ud/jkcffRQ/+tGPUCqVAABr1qzBxo0b4bpu43cfffRRrFmzpvHzRx99tPGzsbExPPvss42ft7Nw4UKcfvrps75OOOEEfm9OoVAcVjR7iJ23ejVOWXw07n/oIfzfu+7iNmawWQgaDQKtm4XJqSluYwOtQblmRAblZB2DmuPgC1/7Gl77jnfgjz/8Yaz90z/FF772NdQc9l3OZR7noKHlYzt3NsaX1dDStynJRnDVcxxodYW453nCx8/S5wK0bs4vPeUUvOKYY/CDn/8cN3/zm0LnoVAo5BAnYCiTLN6jsnjMsrCuC8jS8cnScZG99lcoZHL1pZfilS97GR7bsQO/fOopPL5jJ8476yxc9aY3CZ9LEKB/as8ejNavO5kBegU/MhsQ/+AHP4jf/va3+MlPfoKepgzM2rVrkc/n8fnPfx7T09O44447sHHjRrzlLW8BAKxbtw4/+tGPcPfdd2NqagrXXXcdTjnlFNVQU6FQpCLwEAuy1UCrh9h0ZZrLuLI3C1kIysk6BiI317KP87Xr1+MN552HXz/zLL7/2GP4zXPP4U3nny+8oaWvys5IQLxWA9F1EF2HxyEJEodr16/Hm84/H79+tv65PCvnc8ni5nxichLbdu5UgQGFQhBZChi2k8V7FJDNYyZ7vdFMlo5Plo6L7LW/QiETXdNx5Wtfi39817vxmT+6HP/2/7sB6y77I67V2J24+tJLcd5ZZ2UiQK/gRyYtU7Zt24Yvf/nLsG0bS5YsaXz/U5/6FD71qU/h+9//Pt7znvfgs5/9LJYvX47vfOc7mD9/PgDghBNOwIYNG/De974XL730Es455xzcfvvtst6KQnFEINpbWySyPMSyYJtw7fr1IITgP3/4QziuC0PX8dZLLhEWlJNxDGSU8co8zoau48N//CdYd9rp2L1nD4674HVSSt8914FmWgAIPNcF0eTl6wO1OjFMeNUqYIhfKhm6jo+++924es3JODA5gfnz52OehMq1LJWSZ9EWQaHgQda8sIOA4Q9+/vNG4Flm1UozWbpHNZPVY3bt+vUAgNt/9CMp67qArB2fa9evh1er4Y7//m+pxyULa/8wsnZPUsxdvGoNhZ4eaJOT0mMKuqZj3WV/hAsWLsI4gKNWrkRJYgJYwYdMBsSXLVvWsUz55JNPxgMPPBD587e85S0NxbhCoeCHLG9tkcjyEMvCZiEIyr1l2XIcmJjAsee/FoVikfu4ATKOgYzNdfNxHq7VsOKss1Ae6Gc6RifcyjRKfX0wJqekbXS8mgOS16GZhq/Qtiwp8wBmAuKaacCt1qDnpU0FNiFYvnQZnGk+lSjdyNLmXPmqKuY6WU76yE6QR5Gle1Q7165fD69SwR0/+1lmjpmh6/iLdetw5epjsffAQRx/8UVyg/OE4PYMnFOGruPaK6/EutNOx0u7duH418s5LllY+zeT5XuSYm7iVKswMpZ0sQ0D5f7+bAZOFdSoz1Wh4MxcVk83e2sHzS/uf+ghEEKw7rI/kj09Jshs8pGVDWjeNLF04ULICFFeu349vGrVV+14HvdjIHNznTdN9AwOIqeLVUd7NQdEggq6ZQ6OA6LpIKYJt1KFJjMg7rqApkEzTbjVqrR5AIBbqUIvFlAdHZUyflY251lqwNY+L6WaU7Aiy0mf5sTtRE8ZQz09GDruOKlzArJzjwrD0HV8+E/+BH96ziuwa/t2aUHWdtzpCoqlEmxA+vH5n3/6p3jbMSuxb2RE+vFxaw4K+TwW9/dLnce169fDcxzc8dOfSk8UZPmepJibeNUqSLksexqzIKYJr1KRPQ0FB1RAXKHghCz1tKgAfOCtHQTDgVZv7bdcfPGcSQBcfemlIITgp7/6FVzXha7puPDcV3L3EGtsQJcux8HKNFae+0qUenu5jhmFZllwpyuAQIU4MGPpcfWak7F/YhyrX/1qrhuVxub6nnvwssWLhW+uNcuCWxEbhG1uIikLz62rsi0LbrUCQOx51g4hxF/81uQGxD2nBj2f961bJJGFxFzWbBGUak7BmqwmfdrJmybmL1mC6sgh2VNpcO369YDr4vaf/ER6ALEdZ3oapXIZi/vkBlmbcSsVaLYFjMmeCeBWqygWi8hpmvTj49Vq0sUBgL/u/chb34Z1p54mVa1+uNyTFHOLrFyH7eiWhZrqXTMnyd7ZplDMEUSrp0UH4GV5a8sg8BC7aPkKDI+NY+Gxq1AW+N7ylony4ACkpRc8QLdtabYNbqWC8uAgcrouZPF97fr1qB46hO8GCRCBm2timvWAsDjcWg2GXQCI0GFb8FXqeiZU2QH+XGpyJ+HJSZI005yY2z8+JmVznjVbBKWaU7Ama0mfSDxAk7geCMPQdXzkyitx9cmnYPdLu6XagLTjVipSK57C8GpVaIYJoutwazVoEoNPbqUKzTThTE5Km0OA58wE4jzPAyHyFkVe1Vfxy1SrHzb3JMWcwnNdaLoGgMDzXBAir6dQM8Q04Y1mJxGsYEc2zjDFEcvU9BR27d2D6Up2FtYsCNTTgcUG0Kqe5vF+mwPw561ejVMWH437H3oI//euu5iPBbR6azfD21tbJjbRsGjBfCnWIbptw5VYqkVMU5pK1a1UoBcKwoKThq7jzy95A773sY/j///Rv8S9t96Kj7773VyVn0HfDD/4KfZz9mo1EN0Aolt38J9D3TJFq1umZAFiGNIV4iDIRJLArdVQyNnSNudB5cZjO3fi4MQEAEizRQhUc4E9A9CqmptUCiJFCpqTPs1kwQu7Hc224WYoIA74gdVisSjd7qIdr1oDMU2AoGN/LJG4dQVmFp63XrUKYpogmgbPceTOpZ4c0Ezx67B23PpxkcnhdE9S0DExOYltO3dmYv3iuS5AtHofn2zsBwBAs+TfLxV8UApxhRTmejNG0eppGfYlMr21A0T7s7u1Gqx8QcoDkUgOimkSlMsBbq0Go1SEyIhtoEovTEyI2Vy7LoimQbNM1EbF1jF7jq/OBvEXokQTnysP5iAz8dKOZhiotW0EhePB/zwkB1ICX3e3Wm00HRVNu3WLrml42xveINwWQanmFDzIshd2O76FWrYC4kGZPdE16arnZoK5EN2oP+fkzys4Vo0EfEFe52i35ivE/aqDCgypc3Hqc/EtAnVbnu1joJyXyeF0T1KkI5P2b64L6JovSqnWAMn2q57rgBACzbIysz9RsEX+U1lxRDLXmzE2q6ebg+K81NOy7EtkeWvLS6h40GwLtUOCG9x5qGfKxds3eI4DEALNNOBICg56Eja3XrUKo1hAdWREzHiOA6LXlUmCEw8zqijT3yhLKO8OgqyaaaA2LjkIXYeYBryaZMuUjOBVZ8r+3UoFel580CKwbrnqxJMwaujoJRoWnHG68Hlkzb5FMXe4dv16wPNwez04kSUv7GY0w4DnuLKn0UJgd6HVq+myEhD3ajUQ06irC7MxL7dag1Eo1AM8cpXQDbs024ZbmZYanPdqNZB8rqkCQl5jP7e+BgXRpCWhgZAeIpqOt74he/ckRTqyaP/mOb5NimbJr44EALeeyCSGAbcmt4pFwQf5T2XFEceR0IxRtHpadAA+IPDWvmDhIoy5LhYedxyKfX1cxmpGZkIlUEmKwi8dA4hhwpVQyua5bkO5K2th4larwlVVbs3xbVqmxWwWPccB6gpx0RUIbt0yJfiMZfidek5dIZ8phbgpPyAu0de9Gc9x6+enf/+TERAPsImGwWXLMfHCC1LGV6o5BS8MXce1V12Fq048CXv27pXWTC+KYD2SRbya4yd2g2BmWwWHLJoTzm6lCmRgWs0KcUfQGidyLo6//tBtW8oat3Uu9XPIEi9MmDWX+mek25ZU5XyQiL7y+BNwiBAM9pQx/6STpMxFwZasNk31XBdE10CysAYHAMcBdB0EBFK9JRXcUAFxhXCy0IxRhNXGbPW0hgvPPZeLelq2fYltGCj19sAUsFGSnVDRDFOot2BQYquZJmqjgpXpmPGXluljLKPjuOfUoOfzwjZFnuMvAGV4ejbGNuRUIfhzaFZgZGABDN9DPAvqFADSg1Ce4wd1PM+T7qHo1YJrU955Mks1l1Elr+Lww63Um+nVapkKhgMzlUwApN+T2gmsSbJm59Lw6w4U0BlgJiAuPwHtOS4025DSP6Udt1qtr3flrYUCGmtvy5KunAeAnKZhYOkSVA4OS53HXGdichJ7DxzA/MFB7vf/7Nq/eb5CPAP9c4B6slWWfYxCCCogrhCOLDUzINZqI1BPX7h0GSYtEz12DgMrVzIdo5mrL70UXq2Gu3/3O6H2JQHEFOOtJTWh4kF4CdfMoljOwsBXzOh+pl5iQFy4ZUpNrNenr4jQ640cBW/E3LpdiVR/PM/36MuQQlzKZxGF5zdkI0ROFCoo2SaaJl8559Sg53NSS/2bVXP7Dh7E8jNOR++CBdLmo5g7uJWKlCqdOATKvca/Jd6T2vEcBySfk96AvJ1gLZGFBpYBwbrONS04k4ekzyWwAxFVkddxLvWmmrL7hwSfUVZ8i4NEtLdnr+ypzElkeHln3f5NMw3UJuU3+XSdmt9nSTFnUQFxhXBkqpllWG3YhKBvwUJUhw9yef0AXdPxtvPPxxtPWoN9+/Zh+dlnCbWe0QUt9mUmVEAAoumAK65kqlk5LGNR7NZmvJ1lKWYChZVYL0WxG32vHpQmhgHPEXucPde3wyASG6cGyG4e24xmylWre02NNImhS23I1rBMyUhQh+i6f95KxvY8LF++DIe3yZsiS/gNbE0QTa53cBjN1VpZahIJBOIB3e/zkpE+FEBgCaJnQgEdEDzzNdOEW5OtEJ9JttbGxuXOpVarWwTKT4Y3jktG1kS+kj+XmXN4riHDyzuz9m/1pa8vxJKbsAPaKqMUcxKt+68oFOy5+tJLcd5ZZ+GxHTvwy6eewuM7duK8s87iqmYOrDaCIDzQarUxzamU0XNd6JYFT0AjBq9SRb5cwvxiUVgw3Ks/uYglxkokSKg8tWcPRut+gyLtYUTTCJRKWhQHjapkBGobc2gorLJjp8Eaz3FANE2K2m7Gv1timXB9AaxlSJUtXSHuugDRMjGXRtNTQff5wwWv5sAoFOf8MZmYnMS2nTsxKdnj90jArVahGSa0XA5Oxo53c4A+a/eCmWq67FiTBBBCMmFPEuC5M898T7Y1SBD4lViF2JhLrclDXLZ9S80BtLoYJQNJaBBAt8X2UDpSCLy8g6A00OrlzfO5e+369XjT+efj188+i+8/9hh+89xzeNP552fC/i0L1kVAfQ/aSEyTRtxDMXdQ6Q6FFJqbMY6MT2D5K8/hHsiUabUhyovWrdWgCc5i+oE8XWgDutn+7GLtYUTSCERJ8ncOgtFyy6Lb7DTsuZX0ACBZCej5wXhJjVubyYryF4B0K4Bme4LAS1GXpNjx3Hr5tmnBrQxLmUNW0Sz55fW8kFHGfaTjOQ5IzoZeD4gbxaLsKTVoCYhnqEkkUF//mv76V7b1RhiaZcPJiLd5kARHBtTHMwpxXfpc3KDKwJB/XND0zM3E88Wrr88c/uKuIw2ZXt6B/dtVJ5yIA1NTWLhkCQZX8bN3jUV96U1MU3rCDgDQvBavi1OIYUqelIIlKiCukIbnOrBNE/N7eoSoemVabfjqPgEKcccBERwsnFF36MLUu7qm4+2XXSY0oSIrIxxYphBd9xWjwsevZaZkOyulozxobFAlIqtxK4DWBm0SxRdekypbNkHVAFB/hkjcGHg1ByRn+huUjCj4s4Jm23A5W6LJQkYZ95FOQ+ls23CnshFADWhWyvnextkJPDfWorr8wGoYWVKII7BM0TTpx0q26KN1Mm6jEkr2ZzVjmZKdqrksILLppCiy4OVtg2DFiuXyr8EmNMOQbukEAJ7nggTVmkFVjQqIzymysetTHJEEZaGAmGCjTKsNYujwXAFZdccR3/ihPqbokn63WkU+l8f8XjEJlebglEg811fgA2gNGooav15C6v9D/PjNyOk4TsQolutNNWUitaN7RioQg1LyLOC5XmMusr1eW4MW8jcoWUKzrEwqUmmRVcZ9pNuzePU1lW5nR1EcEFi4AfXzPgtWDnW8ai1zzSubyVJC3/PcelWY/GDrjB2XBS8DwS8gqOqVfFyafd6zcN5I7p1bcxx84Wtfw2vf8Q788Yc/jLV/+qf4wte+htocUKwHXt6P7dyJg/VqANFe3m61AqNcll4l2gzRdMCTvznwr0X/AiAZCdIr2KIU4gppeNWan4V3nYYtA2+kWG14ABG0knADRQEhrYFUAWMK9/6tOYChA7VaS/aWF36gzD+eRBN3fGUrh/3NSjYChDI2b5ppCEmGeI4DyPqcgwY2MpVIJOL/BSMr8RVKfUMMZEAhXi8ZzZRaTWiT3Wg0e24GxEWXccu0Z8mS6jBo4KXZNmrjcpsMttOqEM+Yh7hTg2YY/vy8bNhuNZMJBXRAPfEr2xYMaLLh0TQhlbRx8NcA8gNxvlWgfD9zANIPx1yvVrp2/XoQQvCfP/whHNeFoet46yWXiPPy9uDbdGUsCZsFWsQpWbqPK5ihAuIKabj1bvWNsksBAfFm7/Ix18XCY1ej2M+/FEkUXt3/zs9g1qBb4gK2RNPhCczkuvXNDwynrqjiHMRy2jPEoo5vU8BHwoLUc10QMxuPCk1CMC5QCmkm3/K4ZuVdoEoXHZjNjBJJJk1egbIJVHyA/M+mEaTL0GYgaLKrywyIE/mfDS9El3HLCHhk0SPdc3zvYMCGm7HgRLOFGjEtOJOHJM9oBq8pgZhFshSoz9Kx8pqEPIommoUKGXnmBnieJ/TzCqqVgmcD0Fqt9GdXXy09kUlL4OX9lqXLMVyrYsXZZ6M80C90Dnoulw2FuPxcVCuuC5CZ/b/sSpYDDz2E8rHHwuRo9Xukwfxp6LounnjiCdx///144okn4KYsNf/Sl76EM888E7Zt48orr2x8/7777kOpVGr5IoTgH/7hHwAAW7duBSGk5efvf//7mbw3BVuChbVmGHAElzfahoGFRx0FQ8RNV+Aab8bPW2Dg0PMaDwqRNKw8DF3MYtGbsbQghgGIKtNz5SogWwKzmia1oU6QiBA9pohryXNnNhjCA//1y7fRtDQDiEyutYwbEiiQNRc0XXuiGjNH0Ui2Sg7q+J9FcJ3IPV+D84JompSyXt7WIiLLuGXZszQH4S895RS84phj8IOf/xw3f/ObXMaLQ3Ct6bYFJ2OVB57j1oP1dcuUjDwvAhpBuqwFVDJIVgLQWajyySRN6zLZ11nzGojo4oUpcaqV5gp5y8TSBQtgS0hYZaGpvax+XR3xvMa+IAuikMqBg6gMD0udw1yDmezvkUcewT/8wz/grrvuwqFDM4qBcrmMN73pTfjoRz+K008/PfbrLVq0CJ/+9Kdx9913Y9++fY3vn3feeRgbG2v8e8uWLVizZg3+5E/+pOXv9+3bh9xhni2c89RvMETGptarNwTKQhkaQ5pVfKJKD5tVjCLxajVA1xveujryfMdz2oJTtRpELOGDppr+wBI8jpuaDGqGXEWmZhhwxieEjylk8d9sj1HfAGmWxX/cJoiuw3PkK9gaDWQlnGftFkVEr1vmCKhgmjWXpnNCasNTzFimSKdpHkS2V7Akv3mRqmZRZdyi7VmA7KoOg/sN0bTMKcTdWg2G5R+rrFmmKA5fshKczyKyEq4tND13Nau+PuVcNdlMFppOiiBIPEhtWCw7Ht3k1+1DhNiidsJz25pqSn4uG4UCnAmxe+G5DpMd3rve9S789Kc/xbp16/Dd734Xp5xyCnp7ezEyMoKNGzfixz/+MS699FJcdNFF2LBhQ6zXvOKKKwAAjz76aEtAvJ2vf/3reN3rXoelS5eyeCsKgTSsNmQo34j/wKlNTnIdxvNczEjEBdzUXRdEI2KbPjSVEonEq9UtU1xXiGq4JTglUKnsW5b4C0/NNH31mMBAaXMAvuEfbPNvYhoGMcQ3FhR1LXmeN7PhyECjK5G0K7CDZ4KMxIvX1tzU9+6uCrH0mj2X5qqBLFimyFfx+R7vdYWq7GMiyXZApLVIcxn3/rExHPf6C1HIs08+ywh4yAjCx8Gt+X0M/GoM2dGJNloCYxnxNg5oPlREju2YYm4h2hokqwQWpwBmmtYWuvwRQ4JqpR/8/OeNKiLRTSeFUF9/apaE6iDS9l9JNPt1A03WeKZYgVALLdWaptT9mec60HL2nOxbIxMmO7yTTz4Zt9xyC6y2IM3g4CDWrl2LtWvX4oYbbsC//Mu/sBiuQa1Ww6233op//Md/nPWzVatWwXVdvPrVr8bf/d3fYcmSJaGvsWvXLuzatWvW97ds2cJ0rorZBIEHzdBRm+AbmJ49uK8u8ziXnDSrDTVD5+517QWqe9GWKRI2Hb6HuCms2VxLYNgw/KaeAmhuailDOdz8vmUHaoV91k22DMKuJddtbLyIKb8kTyhNVQjATKBTl7HJaQuiNBbj4mfSVjUg99rLVEC8OSAnOSDeOFcEbSJlqJo9z0PeMrFk3jzkOCWGZAQ8Mqs6bLJnkx2caMet1UD0tsBYVmg6VoGKVZeUvD+cIFo2mhP7k8lOEDqwBiECldAtZCgX5jUHxCWpl69dvx4gBLfLajopALdaBTFMaJZMOzi5yUTPbW1s3xClSAyIe82WKaZc+0J/b5SHK6uCYI7CZGX7P//n/+z6O5Zl4S/+4i9YDNfghz/8ISqVCt785jc3vjc0NIQHH3wQp556KoaHh/Hxj38cl156KR5++OFQtdktt9yCz372s0znpYiH5zrQTLOebRNfCh4EOnjieU1l5kFgzeC7uCIgYi1TmgJ5vipnRsHHd1xfUat5ojyenVmWKSKQroj0vFnNRGUh4poF0KqCExSIbK1AMKU3bRFJ++JbaEKvfS6O05LgkzqXtmSUzCSJb90kP2DSPA/NNOR6iDviN40yVM2BFZuez8GZmuJWKi/KniXgiFEdMqQ5cOqf+xmK2jURqNezFhDPVPC5TiC0kNqcOJiLITkI3YQMa5Cs0nLdS0qEGbqO//mOd+BtK47BvkOHcPzrLxJyj56YnMTeAwcwf3CQ+3j++WZAsyxUR+Q0LJaeTGyzS5RdCQi0xjmIKVkhXnNADB04craIQhBfA8yQDRs24KqrrmrxCi+VSjjzzDMB+MHxL3/5yyiXy3j66adx/PHHz3qN973vfbjssstmfX/Lli1Yt24dv8krGmUxUgIOJFh4cQ4aO7NtNkQsOYlhwBkfFzASgKbyJs0w4DoOdAEB8cCqhRiGGC+tpoe0ZuioTYrpxO01NdWU0USuXRkvXSEuKjjd1FFcRFl4u0fdEaUQ9zyQJs9AmQvgdssUTebi12u2K5KbJGkP4shS8TXfD4lpwpkW9JwLo80yRcQxkaFqdiv1Tbptw52aBspl5mMATfYsy5Zj1DBw9Mpj0Ld4MZexAkQH4dOQFcUsEPibyw+cdiNzdi51shR8DpBakRUxlywEoWU3bc5SdYhXa9qHWJY0dapbqaBYKiGnG8hxrpQV2asjIFDiE1Ps/ctznJleUbYNd3paWkDcc9yW552oyuBOtIhTdF2qMMyt28WKkTweOQgLiL/xjW/ED37wA2avt2fPHvzgBz/Ar3/9646/RwgBIWSWR2nAwoULsXDhQmbzUiSgrsTTDB2uI+7SDjoYa4YBz+GsEG9SFYsMrBAB7y2guZQIuu5biYhYywb2MEQTEijy1YAzQVIIOmebm2oSGYHC5oWAaQoP1Dbfu0VZtrQrc4U08mzzqBd1r5j1bJTQuLXdi1nmAjhMrS4zON+wTNF1YVU/EbOZUchILCVvVvBrhmSFeHOyUNeFHJOGqvmee/CyxYuFqJq9agWaZTUU4rzJmyYGFh8NTYD4uNkjfbxcxPzBIQyuWsl/4JhoZraUzs0Va1kmK3Yu7c/XLAWfA7IQcAqQHoRuQnrT5iaILreyoHlszTJRG5OTiHYr/rPIc13/vsjxOhLZqyPAqznQDAO6LT4grhlNCQ+J/tSe1+YhbslVZANo6ZVGNLm9PTxnxr7IgweSpczZYYywHW/Sppe1Wg1TU1Oo1WpwXRdTU1OoNj0kb7vtNpxwwgkNNXjAAw88gC1btsB1XQwPD+ODH/wgVq1ahWOPPZbJ+1Cww99M6nU/ZnE3O69WX9Brmh9w4DlWc3MIXRe26PRtHsRbpgQKcXHjanU/L1FB0royUbRlSpNFgPCAdJO/s6/QlheQJ7rO/ZqdNaZhCmvaKiPx0b7JkqGIbm4e6c9BnjWPH/BpWoxnxDIlKwpRQM59KGDWdSK1uZGcRkvXrl+PC087Hb9+9ll8/7HH8JvnnsObzj+fm6rZrVRBTNMPzgpSBuq2mOB7QN4ysezoxchG2HkGzZYbnGinOUHvf0PeXDqhCQ4oRRJmB5aR4HOAdEuCpnMoS9Vxmim+iXsUUsQwTbSKRExp15Y7XU/O1lXMvAh6dQRWWkBrr45JTs+moAJOdDLGFxr4+wDdtuFwPLZdaRPIaKYJR3aSzPMAXZxIqBONKgJNtkhmbiHs0/3Xf/3XRL9/4403Ip/P46abbsIdd9yBfD6Pa665pvHzDRs24F3vetesv3vuuefwxje+EeVyGccffzwOHDiAu+66K1PlaQqf4AFLBJef+A8cTUxWrd0DVpRCXBeoavS8mcxpXSUnhMb5Y/gPc860qP2Fv88gEC/XMkWGj3FzQF7omKJtYprK4oUGYds37JKqEFoV4hJVYu1zkRichztzb5VOS9BCnmKnpaeCZIV4S1WHwPPE0HX82QUX4Ic33oRvfujDuPfWW/HRd7+bWxm3W/MtDHzPdkFJ/VwOrqCAeKDi1XM5ONPigvBx0DgHfhLjhdwfZQcrQtAEWw5E0V79JLsRcBjSA+LNzVAN+X7BAZqVHYW47IqHln2AxIaPgTqWtyVSnF4dPAgq4ETb0rQoxG0bbkXeM8fzZqqxgfp6U/K9vNnSUjZBFQGR2nh17pFZD/Hrr78e119/feTPN27cGPr9q666CldddRWnWSmYEgQ0Rd9k2ho28KTZj1YzDNQEbfB8yxSBSm0JHtOBVYs4X2lvdoNUAbRYBJgmaqOCG9DKCA4301Y+J2TItiSA6KaaohXiaCqBl5L08FqD8pppojY2JnQOM3Np8zMXZZkTNhfB1jVx0WTayDQ11ZTd5LdFrS5Y+enWaigPDkIbHeXe6Cto4iTyvqTnxKnUGk1Dc3WP9AwhXa3XRvs9ySgUUBufgNXXK3FWIdYklgV3eFjOZJpoP15+8Fl+oL4Z2f0pmtEsS16wte0cIoYpLCnXbS7SkxaS1qftBMFAT9O43hdl9OoAZrzaRVcEum0e8bLW3wDq4qCZe6Zu2XBkJzfd1iC9TFzHgWGZ0E0TTqUCPZ+XPaU5AfOA+HnnnRd5If/yl79kPZziMKZ5Mymy7LK9JJ7rWK4zo/AzdGG+08TQhQXEfS9v8Qpxz3H8HgGi3mtzYFpgVUNzibKMRbHnea1BH+F2Gm7j/BJGc5JHkPJTRhC+Ma7eqmATviENLSuXtPnz2ucisWy66drLEjIDKK0WUnIVMn7V0MxcRJ4nXrUKo1SEIyCAG9ybfMsUvu/Rt8QiQn1MgxJkzbaFHM/uE5r5X9lqvVm03av1QgHOxDggOSDue7o2JTKzop6bFRDPomWKgZqspG97ENo05FkEtVUjapYEAUrTXNor96Q21Xbb9iGS1OrB8593s/tGr46f/7xhm8K7VwfQ2jRcJH6zZD8kKLsqyWvy6wbgK6FlK8Sbe6UF35Pl312PRci+J8w1mAfEL7jggpZ/v/jii7jjjjvwbk4NCBSHL81djcWO64p74DSp0TVdoGWKyJt0k4JX08U1SA0ab4h6ry0e4pru2xkIGbe1mY1whXazR7wEz94WH35RYzYtfoQFp5u92kUqxEMtU8QuPj2v1RpEphrK3/jNLI1kBjA81wUxM1LI11zWLqG5boMm6yoRfUA6z6WtOkqkQrxahWbb/n2DM345teHbwnAOhHi1GjTTENsYvHlMyc272oMBmi1ZrddGuwWIHxCflDgjn/bELsmoZQoxLThTkoKsEfj2MsNyBm8PQpvyGjaGq/nlN9RuzCUjliki783tuLUaDNsC0TQ4E3yTONeuXw9CCP7zhz+E47owdB1vveQSbr06AD8+odkympXXWhTiUu+dbVaBmm7AcySu8+o0xxqCJvdBEkEkgRCDGMpDnCXMP8nrrrtu1veuuuoqfPWrX2U9lOJwx5XTpMBzHWhNAXGeWT7PmSmz8W9e2VKGsMBzHQTREmIY8ERllts2jryRZV/QrIj0G60IDlbKtkwR/DkDwXXbFHQT4lHfpMARaFvS8l4hqXFryByk3SvbFuMybTlmJSt0bVYTVBn4n49My5RsNBptvjcKbwTrwT83RByC+vsUoUhyq34DT5GfrRs0qcqCX39bVQjv5nFpaD5ORqGACU5+uoloV65npKnm4WCZItUTelZ1mERlf5s9n0wf+nbP4ixYpmThuTujEOd/PAxdx0ff/W68ZdlyjFoWFi1biv6lS7mOKWt91zyubltwZDZyDlFjyxBid6LRR0dKQNxfI4gUWR4JCInuvOY1r8EPfvADEUMpDiPaF0KeIN8UrzZjfRFk+biN1awq5jyWLJoVvCK9y4V3fW5TbAjDQ0uzRfFNLZsqACQ00Gr3lwYIf1VosxpG1OK/qakm0XUhyk8A2Who2WS7BEj2qGwLSIlW/rbQpp6T7ZndMg+Jqvlmz3uZyOqfIZpGEELAGsar1aAFm0xBVnpetSY9yRQwK4CaMQ/xdvRigbtSMw6zlNi6nglV4SzLlAw0agxsiQJkqumzrMomMu1tZs1Ftj2YpP1P+zycGohu1BXzYs7ZvGli+ZLFsAQ8j/xnbX1NIUiMA8z0CQHq+w9P3r3TC/PrFmirGweRtqntBLa/c3nNKQMhd7dvf/vb6OnpETGU4jCiZTOpa8ICQM0WFLxvKF5TeTfRBQaLRdKUzRXezFOg5Y7XZB0ilKYhhQZKA7wZhbaUpE6YByfnc6y9bF0EsjYc7YoUKT71TV7MQBDMkHSvbLvOtQwpxGV7ZmdhHllQyDdoq+qYq5uT4DwU8fwL1NoiafFtJbN9jcXOpc0qQaCXehqyMr+sNiCe9XnatnzlelvSV0ZVWPNcoGVjLrP6qUi3bmubi2wP8QxcX57jghi68PNEz+WENFhtrQgWl6jyg6wZWVe1NdUEUH8uZyDBWUezLGmVPv69QZdqXTQXYb7qXLJkScuieXx8HKOjo/jSl77EeijFYc/MTY/ovvJUt/nfkJs9xDXON5SgtAWoW6a4YoM8Ipo+NAeKhWZN27LIIt5rJrpMy4jJBwFxTYPoVH17M5NAnaqZHH32ZqnS+dNuGyJsXC8DCq02D3GpJbntqmyJaplwf3f5AXEioZdAQLOCSjatCnHBAYumS8Rrqi7hgchGX161OnNvJ0RIAqSloXE9CKHbNtcxI+fS9hyQ8cxNQiZsZoBZifOsEBrYlJxAmNW0TmIyr10NKrVRXPvzVuK1NysZLruyICPXl1fzq3n85u/iriMtl4Ozew/3cfznnR+aC2yf9HxeyLiabTV9g/uQ0XPxZouDtFwO7vQ09Bz/YxEHzZaYCK431fRFGHNQZCkJ5gHxG2+8seXf5XIZp512GlasWMF6KMUcotEcQMAexHOdxoaLGJwDuM3+y7wD021PMKLVVfe8s76eN7OgNXT/Zi2A5kCpiPfaHigLMtYiVer+RMQOJxvPaVXs+pu3KgB+CyM5au3WoLAwZgVdxW+Os6I+AjDLR1QqbVYyvmWS/IC4ZhgSPWezoxD3XLehZpbVfDWopuCpqhaZrGtWiGu25QsleAfEm4LuWs737JYVEA8NPB0Gz3zeSZmu44c8s4mh+81neSbPu9FkmwhkI8ExK9EqM6kxq0+GPGvJTK1DsuStjrDri0g5Xg11rK4LbaitWWIqO1osUwQ2Ug2Oa8v3JN3TPdeDZrSOa+TzqE1MZicgblmSm//qgOFlwkJxrsB8Bf1Ojt13FXOMpjWhyLJ0z3FB7MAri3PwR+SCoV31UW+4oFv81VVBoFi0r1aQZBDyXl2vRZWn1e1hiJGRBfRcpb2kVoB/cbuqSxRSFp9t6mwpCnFXUjIgBF+dkpG5hCjEs2DLIdXjvT04S+Q1Gm2eiyx/90aghKfNiMD7oVetQTMDhZwfhNBzOb6DNl1num3DmZqCKcnmMcquS3bAuRO+Wm6a/+fUgbDgnJ7Pw5makhoQz1SQtY6sarQwZvl2y06qZOQam2W1I9PWBk1BuKb5eLUaiGV1+CsO8xB87gb2WaIU+s2Bac0S6O0fIYwhMu6d3uz9gJ7Pw5mcADAgfj4h6HYOlf1ymknPNJafuzZ9MsjGE1FxxCPUC6lZtW1wbqrpOK2qYo54bb5b/nsTcEzdGRUj0XT/YSYYIe+1vfP1HPaMzRLNPvyAoKBgiD+9DF9ZEWO2bzA0gaqUxhwiAm5SjrkjoeojihD/fBmb4vbPQapfdvsxkdlotL2ppoTPRsQ50RKcIeCqzPMcp1Hp5ftT828oObPBDBTi8iwtwgKoQcA5q+iFAmrjchtrhgXK/CDKpKQZ+WSlGWELYXOSFAfOUsIgW4kCr00hLnm/EWbfJsPCpW0/wBvfosWoV2LxP/6BJQwg1qe6PRkkszdEaHKzkIczIfde3kxQSSaFeqyHGBJ7Lc1BhN1VVFNNxSyamwUKLNNv8YvU+W6mw8qQ+A3mzQoUCCk9zIDFABHwXtvtUXw1vISHESFCSwWlE3peCwwAQUAlSQjCGg232XLIatzaHoSW1lizPfElkVl+5rLKpkN81WXdg2ZdmxIsfsLmIiswL6Kio8VShHNCsmUsy4IjYFPe/Dnqdg6OgOZpkYQEK41iEbVxOeXZcTBKRTgTcgPiYcdNz4tphNeJ0CBrvapFFu19Q6Tiyt8/NIh49ktpspslWxuEKNYtS0qTT6F7atSfR4Yu7Pg33y98hbgoy5TWppq6bcORGPBtT9Dp+UKmAuJEQKVy1zmAyHbfmlMIewp95StfETWU4nCh2TJFF3hzaSrH4Z11b244yZuwRjkiNuh+YETuYk1IMKK9+Y8oxUbbA0+KpUUbIjcIMs7rLKhzRNlSZEGhFaaik6FU9yfjob15LhFsBdWYSphCPAPzkMmsYyJxY9JcRi4ykdT8zBXRhK6leSjn+1KLYEFQyXjLmDKVX8Fc2qpljFIJTpYD4sUiamNjUucQqirM5eBMyg2Ih9kmCrVCCCPsfi4pSJ8lBX17NSIgRwzhzyU7xwUIW4uYUs5hzxFrayMlAN9ICIs7xrMqRWXeo0ISU4FFaVbg3ROuy+AKDgi721599dWihlIchogMOHlNAQ8RVi2tCyzie9TywPUAXXwQz1ebyL1Di3ivnodZgVkZC2UiqXlbY3zRCmIZwekMBCKF2VJ4bc1iJeC5s/1xNcuCJ6hctHUuszdcmi2modLsybSp92UpxEOSBNJoV6vL9FWXlChoDprKUIgLC4jbggLiTe9Pt2UHxFuVegCgF+VbknTCKJakK9gjPcQzaJmi22IqH6IITUBbcoQWYUFov2G9fFU2INGmTKCYKhZtgiDNNCXtQ5r2A0TjXqnmOWItWprfn2gP8ZYKAInPQc91smNbqDhi4HrGeZ4H13UbXwpFC82WKYI9xIObLW9bkVm+XIbuZ7j5DNaygNJEHdMMWAwIOX/aPNqFBSzb1sSaaUopVQwQ3TzO37w1L8QlWKYohThfQjbosjwqQz18LQvulPjNQagqS0rQIjtqNc/zWhS0vkJcUoNPScfF36QHAWoBCdLmILXJNynTEnwXlYhqCcLbcCRc62FzCTDLZVQPHZI0oe74/q5ZtEzJRkB8tie87KTL7CoEaZWHIcdHltgkPFEgJzEf5fOeFasy6VUOCJIVvJPB8tbHIo+x125NKSgZHYo7u6km4PcKk7n3bYdoBK6ouJWCO8yv8v379+Ptb3875s2bB8MwYJpm40uhiEKY3zVaA2zcg3ttwTzo/Jo/ti+8/fcm5phKLR+Cn2jg/l7b3qL/cJbjGStFJRqML7p5nBdyXvNeBIepYeaqQjxi8SkSL0SBLG3D5XmzFPPS/BRD7umyAgXSkyYBs5p7yfUQl3JcmhuDi1CIixyv2ZddWFPNmUaespvXhSqK83n51h8dIJom3cs0LMgrrfFfMxkMiIc1DZdlURZplyYp8Tv7HJKoEG9PWliW1ORva8BUosd0MAcRe6EmyxTRfW2EXpNtex6ZycR20UOAXpDjI+7BQ5hPiZbLwZOcFAKC+SloYb6S/4u/+As899xz+OpXv4pCoYD/9//+H84880zcfPPNrIdSzCFEqk6bM6HcNz9hDQE5ZRS9NqU2MQxAhqUHIfBcsV5fMt6rPMsUwZuFtmetf62KG7+9saCQQLE326ZFdPJDqEK8fRMoOtkTWu4up7ldezIEkBfA8NqSFbLKt6OSJjLK2mdXXUnsqdB+3grKK3lOk2WKoPcfVJ/x3qRL8xCvH0/ZNgVRSRZyGDTTlmJzEYwdpjTOgOVEuGWK3GBilpTQoQp6WaKP0ESBBTcrx0VmIiUkIC41qQNByWDHmUnQCvZN94+3mHtq+z3BKBSkVf1E2QXp+ZycOYXsCQC/R0VNcgUS0eU2aJ5LMA+I33333bj99ttx+eWXQ9d1XH755bjtttvwH//xH6yHUswhiEjVadOGmhh8M77tAQ2ezdk8p/UhIiOI548rPkAhJWApqdmOtKBYML5g5W5Yg0v+TTWdlsWhcFU8BAX+gboVUEgAWKBtQHvSAwD0XB7OlITFZtv5BsgMiIcoxCWUaIYGm3Q5TY7a7weaJa9iZlZgSVA8sL3Jpcj3L8RDvBHsF3OOZasCYvb9BwCMcgm1Mfk+3VHo+ZxcexIv4jPU5AYMQgObWWjcmhGLsrDzXaYqO0ytLi04H2bdJsl7vv3Y6LaY6p1OiFBQNzfVlKnQ582stabM6hovXIChFwqSRDLhz2TfKkx2QFxuRdtcgvkKcHx8HEuWLAEA2LaNarWK1atXY+PGjYle50tf+hLOPPNM2LaNK6+8suVny5cvRz6fR6lUQqlUwkknndTy81/84hdYs2YNCoUCzjrrLDz22GN0b0rBnPYSD2Lo4lTFTUpq3lYfXpuvN9eSq1lqdDmWHjJK2DVdTtNDOZYpgq0k2j3MRVtZtCtCBTTzafcNlKMQF7MpjFawiVt4hjZEy+Wk2AR43uymmtIUfV6blz0hcqwJQoJNfhJbRoPP1s+HSOypMKu6ghBBAdyZRl+iG/7yfr7L8Gxt9mQHIK+pH6J96Y1SCbXxMQkzasILDwwA/vwciY01I4+b7IakIepCPS/Xcz3sGpP1jAttYm1acCtyKrKykijIWmVB+zmjWXIbwwKCGko3PWuJaci3YOJFe0BcYnVNu595gJEvoCbhvhm2JwAAvVAUfh8PjZ0Jssad6zBfdS5duhTPPPMMAGDVqlX47ne/i5/97GcoFouJXmfRokX49Kc/jWuuuSb059/97ncxNjaGsbExbN68ufH9/fv344/+6I/wsY99DAcPHsRVV12Fyy67DNOSM5mKNtoygCI9qL2QsjhuuLNtTHh6iKNNIQ4JN0p/kSI4UGzowt+riAdR2KZceMKhbQqivSbb/eR4Vlk0aFMsy7DHEaUQD7sfarmcWPWP57X2WkBdRSdBDRLu+SqvwVBWy/5lVqqQtgSZtE1qSNNTIQFxp0m1JlohzjshKqNRaXvDONFJ5yai1OpGsZgNhXhkQFzu/KISKUaxiFrGAvV6To4dWIM2e0VAnmo90hpExvUXYd8izc889LjIimW0VWrqup+clohmmfA4J8Nbmjybc1khPvueIK2Ja0iSDAj2BBLOfyf8uSfFwmWWZaAcYd5cxGD9gh/4wAewceNGrFq1Ch/96Efx1re+FZ7n4XOf+1yi17niiisAAI8++ij27dsX++++853vYNWqVXjHO94BwPc0/8d//EfcfffdeOMb3zjr93ft2oVdu3bN+v6WLVsSzVeRjCiPKCFE+EHxojnYz7V5aNvCW0jgMARi8l+ktKPpuvBuz0LsC0KsJDRL3MYlLCCv2ZbYLL07u8qC90J8Vsd1CQFxYV7xUUokwZYpszZ/hiFlMR62MciCX6ZMIn1eM7AQJ4ZEyxTHaSsz9hv+apbFd+DmJpcCmgw3w9uz3HNnAhCiaPZkB2aCg7ptC50HgNCgHADoxSKm9+4VP58mOlnL6MUipl6cvZcSRlQioVRCbUyesj7UnkRyE9LQiixbUpA+dP1hoTpySPhUQhO/sp79EVVz1UPijwsA6U1zwyCmCWeU87XdbOFlmuJ99onWEpTnReg9IZ+HMzUFo1DgOvbsyYQE5yFWONlChGJd0w1/vyByKiEWojJsFOcizAPif/Znf9b4/yuuuALbtm3D2NgYjjvuOKbjvPOd74TrujjppJNw00034dxzzwUAbNq0Caeeemrj9wghOOWUU7Bp06bQgPgtt9yCz372s0znpohBh9JLAUOHZh9FQAyDX0axvREgEdeQoxkRCvFZZUOaXv9gxUF0nXvAzg/Mtts3CCxVDPFyE62e66RK48YsPz0JljyCjnPYOablbNT2C1TVhSR+AEjahIV4qgvyMo6LF+L7zpWwUnLBgdgoNEtCRVKd2Q0+RVV1zGyQRQfXiMm3n8Ispa+AgEB7MCBQ8Jo9PdzG7DSX9moZIAPWH+hsZ+MHnrOlxAZ85brUREKW/OkDmnyRAzRbjj91WFNvLZeDs0f8ZxYeFMzJs5IJC1BKbuKXJUQ0lG5OlhLTEH6NBM3ljYQuC4kJswosFOCMTwgPiHes4if+/l+0q0CnmJHI+Xht9oUyqpfnKswD4u0cffTRzF/ztttuwxlnnAEA+MY3voFLLrkEGzduxLJlyzA2Nob+/v6W3+/r68Po6Gjoa73vfe/DZZddNuv7W7Zswbp165jPXeHjRTRNEDS4OMuUNny7Cz4P8G43bVFohsFfQSyzwqCOkAdgZGMdQQrxsM2KZQlVZAq1OGoac1ZTTcGLDj1ni1FsharFxKqiMtXULoqMKKSCJpKEtwq5iXCfVzml5O34fTkkbQg8SOk1MOt6Efgo5P65t1fn1C1a9Hye35Dt1jeCmwp3mktAJioyvOjktPDeIm34x2120kTPoGUK0FRNYppS5kTaxpV2foWIo0RWQbYQUj0scr3dTNi6129cK8lqJ/QZQ4Sol6MQ0VC7+VrRTEt40i/opcM9II7Z9nxG0ffsFl4n5XmRaxrNNOvVWzmB04kWcGqW4Pm4LiDKdeAIg8kO9EMf+hD279/f8Xf27t2LD33oQyyGw6te9Srk83nk83l84AMfwGmnnYYf/ehHAIBSqYSRkZGW3x8ZGUG5XA59rYULF+L000+f9XXCCScwmasiAic8eNuu/BUBIYRfQ8/2hoQGP7/TMKWnDPyMJe9FSnhJFd9BxQ4HhG+mfMsQQZMJDcibYje+EeVzXIds2xj5aliOqsi2RQ5Qtx4S1VQzxENc6MYr4t4VBA0UM2gSGmuFlv1nIUAHyR7rbUOLUusID0I0PW7884Dj86ftmOoi/PvbAr0ym9dlUlFcp1PiUrZAIeq4yQ4YRHrCFwrSAvXt65sGEj7CcPsWeUHoWettidaeoWt/GZ7OEeiFvLwAPcTYCvrP2hnLFNFJP9+2RE5VgFEqoxYhJuVJWHPbAL+/keDEawcBnl4oCN8rQW8TYag9EhOYrLoWLlyI1atX48orr8SGDRvw4IMP4qmnnsKDDz6Ib3zjG7jqqqtw/PHHY9GiRSyGm4WmaQ2v2zVr1uDRRx9t/MzzPDz++ONYs2YNl7EVKQkJchFNULfckE2sKDsErg0RJShpwxDR5Ky9bGiu4rmCrRHaxw+p5BDmbR3MQbDnP4BZFhHcA10hAWFRn3uoP7RgtV+Uii5TJcKalgnbFCml7SHKUE0lK2ahcU6cNWi/ZjNSvcADUQmglkatkhoMAp0twoghpy9MgxjB+rC+IyKQYq0Wg8hmnzK9zaM+RymiD2dWQt6v+pHRPyQ7+4qw6sysYRQKcCbl2TgJ2Ws2VZ5w3b8jXJwisyrA7O1BtU1gKoboKn4Znv4dm0kXCkIba7b331Me4uxgcrf91Kc+hSeeeALHH388/uEf/gEvf/nLcfzxx+PlL385vvCFL2D16tXYvHkzPvnJT8Z+zVqthqmpKdRqNbiui6mpKVSrVWzfvh333XcfKpUKKpUKvvrVr+LBBx/ERRddBMD3LX/66adx2223oVKp4OabbwYAXHDBBSzeqoIRnjc740YMXYriTKQHE8+OwFHek6JV97wXDQAiu1BzJWw43oc26kEs6K2HbeaEB+glbFLaF0C8bRmkbuY9b9Z9Q/RnHJX4yVJAPPBylI2McvLQpMkR3mg0DFENpdubQM5lZFhxSGswiC6NK/N5OBPy7ofdnlMiLAyi6HTchFe1NdPB21yW53rk50iI8KRvJ1964XQ4h0Q3+I48n4m8pFM7eiGPmsD7Ufv7FhEMbK7G0iyLc0PpsEaq8tbAIvqBJUW3bdQEP5s7CfC0fE7s59NuKacsU5jB7Cm0YMECXH/99di4cSMmJiawc+dOTExMYNOmTbjhhhuwYMGCRK934403Ip/P46abbsIdd9yBfD6Pa665BmNjY/jQhz6EgYEBLFiwAN/85jdx1113YeXKlQCAwcFB3Hnnnfibv/kb9Pb24lvf+ha+//3vw5bRLV4RTUhJjGaaUjJdROANhWfzxzCfKxFNR9rhGfRvEGqjQeB5ElQlHKPinR7EQhbFGVBdhakmgkZrPMdsbVDLN0Acvfkh/Bu3ZkEV1VEhLj8IDcw02pONFDuH0LL2nAqItyFKIT4roMUxSOJ18PMUgYyAuJaz4cq61jsFxHM5uNPy7kHdnhWabcOR5L0e5v8cINNHPNIypVSWphCP9FuXYYGRgTVmQFSiQJPxrIuyAMpQIlrPi1XHzmp2L0C44TlOY0zNMPgm/KKauoq4JiOWD5qMqqQOSxn/GSj+WowS4OmWDUdkNW1b1bZIh4O5DpemmrlcDgsXLqR6jeuvvx7XX3996M+aLVHCWLt2LTZt2kQ1voIvXkgJtqxyUCEBXBGE3LSJWX+Am+IasPEM+ge0lw0B/oPbcxwQQ9zimui+zQ8xOPUnjmywVW80xjnRlwlrmtBEj8HXRzek4zpXwoL+mNn88GwoBze8wTHRNWFexVHnmZ7LoXLgAPfx45AVtbpm28KDO17IOaLZljyf5VmQTCR2ZHmIB+O2N8pjguTjqlmW8MCh/3yR49XbSYUtvLdDO13OhcDv1uwJ79nEk45l7fWAuNXfL3hW0QFxvZAXG0xsJipIXyyiNjEOo8S/gV9A1PEJ9oMar7V1grkE1WFc12Ehc+lkI6fnxDUV9Cc0+1tGsYDJHTvETcF1xTfwbLKuIbrOVaAS9plrkpOget0SROvpkTaHZjTLEt/wukMfK2Ka8EQGxJ0Qy5S5EL/KANlIyyqOODzXmyU6IrohpIlcO8QwgAx4w1ITctP21VUcS7xkmZeGNd2Q8GDgbfMT5uENCPQ4zUCQKcwKiJj8k1gibUOi/CL1HH81cPQmUGAAOAtz6IJML8dmZHkozrJOytBCXM9JVKY2ISwg3vZ5aBz7OniOE9LvRZyfvmbb0uwuZFgTdLRMEfA86EQ3yxQ9l5OmrO983CTeu0PEP0C9Oa2k5XNksFWwH64/mfCG2lLsgaLWIRKqw6IaC2ZrTSTYMkVCNYHIMcP2AYQQMfeJiO2OUSyKvyd02HpplglXgC1dM76tU/ikhCfP2+I8pC4EVNCjAuIKOYQFb01Tmof4XFCIeyFNNYnJ2dNRhpc3wisMNF2Hy8n6Jirwz9vDLspfUdSiOGoxSHRx1RxhGwPupYuiCVHBA4I28hHqbF+NKGazE6ZABrIThAbkejm2zMO24IhuqhlyH5DZ7Lcd2SqqxjwEJOqAoIx7tkKcy1ghqjxiirMx0SxLikWAZou3agHQxTIlL8/KBTEsU2QGnjt5iEsM1AMd7pVEvDc10MHGpVBAbVxs8KtjcF5ww8bIucg4rzuJBGT0EQg5hYmu+2sDQcjwmxeqSs+AAKkdvVBATVYlSwhE0/2qVoGE2dHKor2alkBQwuQIIBufsOKII7RJl2UJ9WJqjCvBqoWLsjrMf8w0uR5Tz4vuBs0TL8Qvkqs6L8SiBRBgtxPS8BAQGRAPb3Yoort7gzAroDmSxArwIhJLIgJ9nUtzRW0CwxecspKkYWQlOC8jQOhFqPiyQlb83YkhqKlg2zXLWyHeHhDQTDFe6YCfAJIRmDZKJSkez50tU2y553mEajVAlzi/TsctKw2R25Gm9o0KthbFK8Sjg/PiA78dLVMEf05R57Os+1ImiPh8eFbyNHuI8yYy4SiwIqsdXcJ12DU8InopGiI2bEHkfCSJEI8EVEBcIYcQj15hipy2m61oyxRem1cvRHVPLIvvBj0qc0oIPJfjMfW8WU2B+KrkvFCPZ94l8p7rzHqfgMDgXFSTIYGKzDB/aVl2Ddwa13Uq1RXwOYclPbJUmpsFfKsS+UEVovPv0TCLDCqXmtFztnhfyRA0S0wT6/YgtcaxEixUvMAxAD9rfabrUvy8jVIRtVE5AfFIhbjMppWIZ5kia36d1KOyj1sUUppYItyGDpClhI6yBimgNiG4EWpkQLwgJSAeti4zSvIaxIYiMFgb6rHNWTQhqo8O0CEJUshLU2nLqBrpiuDlb3fbHOJXrQuZTLSfuYIOJt0q7rnnnli/d/7557MYTjEXCLVMkVMaK1pt6jdhYN/oMrTRpMU3yRCpbK17l+s5PguJsHE1ngHxCFsJYnD2vY/wEBdpmdLRskVEk6rIgIzYgHiw8ObTuC7icxblFR+Cns9jevduKWO341eiyFVFSPF8zUgpZLR1kiG08VlUQkrL5VDZL7/5atDslzft92Wea5iwQKNmWfCqcny9uRDaMK6EqT0S7n8dAuJ+MkxOs08gvDKvGRn9DWaIVq/LPm5R+PYXEwAGhY4b2chS0yD6oRO1h/DV6qKD0OHBJj2fk6CSjRCjGAY8TtaQkVPpkIAP1PNGqcR/HmG9TEwTbqUCjce6HJh9Pyb8ms1HWmTWfbzNsvhmxVLs6Lot9YlfZU8ESbO7Wab4FXNV6JbNfy4RiTIFPUx2MRdccEHX3yGEwFHG74o6ocFbm28DyAZt9xJN5xNIjbJF0S2Lj7oq5KYd3Ki54YZbegSBeG6d0EMWrsTQ+Z0/nhf6kNZtCzWOiprOymEBC/SIRIBI+4iwTYoMhXhgVcFj4R3VVFOmJ2t2LEJ89Sux2CYQs44Xcc8B0PCeFVrKG1Iho9n1a0JQQNy/D2ej6ZlMZjfV5JiYDVPlcfKx73jOC8YoFVF7TrwSU0bjuNhEPKcC/KRhRrJ4hwF6voDaoUPiB+707PDEJqBlV8e1zSb0fUupykKG+nR0OF+MYhG1iQkhAfFQcYzB176r/X4c9AnReajGo+yDivKqAjJzDjahGXVxksEpCdJOREVNYz6BAFBAQDyqokZkgmCuwmTV5bpu1y8VDFe0EKKI9DfcEhbThs4nuBahfAgy2qwJVU3zLG0GIi1TNNuGW+GnFApLqPD1EA9XjhDOVQ1RigFfrSxGiRjtLy1KMTN7k8KzGiAKzbbh8PqsPTfUGkezLLiSlJhCx+5w28+UdYtIL8eOzfUEWxNE3QdsG67ABp9RClVdQtO8SNWcgCWM57QGJvkqxEM8xG2bT+VZlHKVY2I/KgjvN2KUo3bOYhACyHiwPgY8vYbTYBTkPNuilNDATAJa4GTC19YquRKJZln81qIhdPbnF+cx7TnO7OSsgGql5vsxb3uyqAaztTHOAfHD6FIjpiG2r0g3hbhlcY13tE4lJHama0Kb285VDt+VjeKwRlbX3jDVNq/GiH5DwpBgpmXyCTS5LtCm3iEaX2VDZLmjaXJRkDUIK53jpPQHEK2U5hUYaIwbrsAXRVfLFEnIaKrJLQiE6OuIEHkdxGWO3Yzsc60Zkc21/HOiwyZU4DGJrGDgmSQKnUj4uoHwTvyG0eHzETJ2W1NNoR7iFh9rjGgPVY4+plFB+IwGpYkuvgl8QNyqlKwFngG+10ha9Lwcb+COPvWFgvA5ZfVaa0F0Y8MOl5BRKvIPkDZPpeP5khfWiNVfh7T1juK912zDT0bw2geEN/A0SkU4HH28o/YfLb+ToXu6Zpli3ATqeK7T8fgIczdAhBhQ5+wEcITAfDXvOA4+97nPYfXq1ejt7QUA/OQnP8FXv/pV1kMpDmMifZC8aKsRNgN7aJcDEcJLiRChnrYsPuXNXngAnu/hjHiPORseT+/yEFUJr8QGUFfUhOA/mPl6tHfagHJfpER6W8u109A4VVl0HNPiVw0g0v7icCMr1i2AH5gTGRDvFLRwJgUGLSJK6DXbFqrMjvQylxBQifx8CP/7sue2qraJwVFB7c5WiOs2n3thZAK2WITDqcFeR9Wz6CBYDGRUQzSI8Zzi3bcmLVoGbZWIafLtQROFFx0A0wsFrsG32XOJ/hEx9MwEemSp+cMwSiU44wIb/nayTCkUhSVQwp4PItdkAN/q58iKYN73VM/raIXFu3FpUohpCU1uehE2JQFC+9+F9N8jhi68r8BchPkO/LOf/Sxuv/12fPazn21sUlatWoV//dd/ZT2U4nAmQvnK+8Lu1hSI9VihpbgcLVNEvbcGUU01Tb4lfeGWKfzOnajAP28Fvr9xiSpt5b/x7Nh8SaJiwM/Ii910+0EgTmN2WnAR4t9LJEB0+QEhkWroboFMvZBHTVRzrU5lygVxZcpAJ+WuYKW606GhkODbUdS9UYQStX3jzHPDGtpUk1NlQFSzMj2f56YQ79QgzSgWpHm3RqHlbLF2SU3EsUzR8xID9h0Q1nelnU4BX4nK6KixjaJ4hXgUmaoO41mlEkaHU0Mv8LsfhtHZMkVgw9GQZ64ueA3CtXFwiAIe4H+f6KYQ12w7U8lE3TThiNz/RfTQCdBsTn3hQvBjEW0Worz60h1hMA+I33rrrfj+97+Pq6++Glr9xrVixQps3bqV9VCKw5hIZTFvLyaRVi1RvtOcAplehJoXGvFLfjjgeeFBeJ72EkB4xpYYBjyHn2WKDO/MTipRo1xCbYyvSiSrymWui9IOY/JK8ngdmrboEgMgMpt6tsxB1GI8omljgO+XKUgNFbLwnZlHQdg8gE7WSYKDJ53uw/VGo8KIUqsLqV5pff5xtYwJUYhz69cR2VSMnwqw4zO2xP8ZmxQ9l4czJSdI6B+rzs3ksqjEBur3bknP0W5kyY7AKBbhiEwCdYj1GcWi0OdcJ/zgfEbmIlgV3ekeKbLhaFhgXi+IXQvxFMZ0TDhyFMZ02+fpAvtpxHEIIJZohXiXppoiFeJhveIyWpV1uME80jE6OorFixe3fM9xHBiGwXooxeFMlPc070BqSEMCfoNFKMi4lTdHeZZz9LfyvPBmgIbBt4Qn5AFFdB2ew3HBIEPNE5XkQN1HcJTzZj2kPKuBROWyZhjClctckzwR9wogaO7GMcCQhYaWndRQggPinaps9LzAjWjHMmXByrkIv2yh6jB03rjxTsKGziXMV53n8zYCf03Byy5s9iad17OwU1MxbjYOXZPOGVOI27a0Zp9xLFOk2al1iaNkVbmetWCGDA/xKGR5rIdhFAtCn3WdMAQHgeNc9yII72fBsXIzBN7CmM5e7ZySwhFWLQFazoYzLVCU0mlDAPH3zG4974R6mofsyTWTU1+6Iwzmd7iTTz4Z3/72t1u+973vfQ+nnXYa66EUhzMRSjximXwfbk735hGsiPKd9j3LhUwBAKBz7EgepxkHn4FDfLRAuj1HKcZD5PskmgaXkzI9KugCiFGJdLLh0fOSlWCCRVWyPMR9ZRvHz7lTMDoDJcvc1KghdLufiSzP9SIqjIBAhSxWIRN2HxKpDgPQcWOuCy7rjVTNi240ivrnwEs95kQ/g9iPFW5fwnMD3NkypZg9hbjE5243pRwQVDRlL/AszTKly5pUtOVDN7LkF6xnKAgtvBqqAzzFP2F0s0ri2cOihZBnrmihEnfLlKjkbLHIz76ry+erWeKSsHGsX3n37ppFl32BLwoUVyXRLnwklqReFHMM5rLtv/mbv8EFF1yAO++8E1NTU3jPe96Db3/72/jv//5v1kMpDmMiN5OWjRpXNWRUkIH49h8dyuWTDyXQnqUDxObY4LKDghnwy58Ihyh12EOhPiAXuikTvUoFyHOogoloZgcIClZ2C9ROTsIoFPjOQTBR5cs8Vel+wDH8/JHZVFLP51E7dEjK2AGEEGHJj26lo9wrX9rnEpWEE7wJzIp1Umcv07x/nfQJmkyUh7jMpoccEPnZR/as4Hi+xzqnMoRuyw2Id22qmcvDndotaEZNdDlFZFi5xLFCaVg+9PXxn1BcMuLgYoj27e5Alpp7i6bbde+r5yeg9fbyn4dphv+sw16JJTrHgHinZ1FwjLmM26FCFfCTidWRYS5jz54MuorsNJ4WcWF0qpQWTUhwXjctVDJUZXS4wvwTfvnLX46HHnoIQ0NDWLt2LVzXxd13342zzjqL9VCKw5kI6xJiWfAEN2ME6iXHrFURMRoQiUC3OTa47BD010yOqgHRARovOkOsWSYcCZ5yIkqTuwcLJKp3CCfvTRnBvw5NNWV6xvqbwGwotITQxUNcKDGeH8K8ZztYjRFdY//sjJpGp+tEsMdrpL1HRj2U0xKloCYah4a7ne69nO73nRTwWVLLBki1/ohjmSK7ciwCKdYkcY9XRlTQDQiR3kwbqCcXRVk1dIFnFU4qRH5G3TymBdns+M+iMJsy/o2sA7hbc0atbzgrxDsHxAUqxLsE5wHxVfaRAryWXxI0F8+bdQ0Q0Yr5OQrznV+tVsNxxx2Hm2++GT/84Q/x9a9/HWeeeWbi1/nSl76EM888E7Zt48orr2x8/6mnnsLll1+Oo446Cn19fXjNa16Dhx56qPHzrVu3ghCCUqnU+Hr/+9/P5L0p2BHVMEy3ba7dg6NU28Qy4TEuQY9qOAmIDSJols2tUWkniwG/tIxToDgqY0viNeVIMWBkcIr38Y1qYqWZJr8mos3jRywEZG/kNJPPIrhbeSgPOjfVlKsQz0Rwg1fyo4045ZrC5tJlY6DZ4gI8nTwmfYWjfF910eX1UTYy0iwjeInjopTwHKxhOtmX8LoPeq7TtVFkliC6Lq13R5xnY9Y8sQNk9ICJc7yyZMUR4Nu4yH/ui6wOO9wQ+Rl1O4+59nhom0fYvdr3ms9YUikNHdafPC1Tun2+mm2La0gs0NY2NjH2BUQj8Fz+CaowUaevmM9W4v5whPmuf9GiRfhf/+t/4cknn6R+nU9/+tO45pprWr4/PDyMN7zhDdi8eTP279+PP/mTP8Ell1yC8bYbxb59+zA2NoaxsTF85StfoZrLkcjoM8/wHSAi0KbZnLv1ehGqLttm35TAC29yCXD2IWvDV6xxCth2UojbNjclU7TSn08pledGl+NxbaLWzaOd92ahk0JccKf7dng1t+lWHspFpdjRmkZeU82sBDeEzaODArkxF473tda5dFHtCK3QiFaIi1RmdywpFl1eH7E59y1T5DQ95BEo9RwHCHufHNYwHSuSeDWSy4gd0OFAHMsUFcScIc7xMjISfG7GKBZRm8hOM1lhlVDd4FEVE0WXt2wUCkKfu90sU7ipl5uJslotFOBwOF+9GA0emY7nuqHPWoBvM+WuVoECxFdNs4knSOIlfgshUoDXPB1RTd1DYi6+Yj4j98jDGOarwK985SvYvHkzTjrpJLzqVa/CN7/5TUym2LRdccUVuPzyyzE0NNTy/bPPPhvvfe97MTQ0BF3X8aEPfQjj4+P4wx/+wOotKADURke5vn6UIpJ3KUxUIJWYJvOHTSf1tJ7LCeva7CcZeHmIR/vc+s3FOL3HKKW/aTBX+gPoGJj2lZocFypdGprx3CyElWcFyLZM4XZeu26kbQbROTV47JBYEt1AqWVsAcGNWD6rgnyZvQ7WSI25CPIVjqXKEqgsjLrPGwKV2R17OQgur4+ai6wkkmZanJLBEUp4DqqxjolBXkEPJyMN4w4HMpo88BNBcQJXRKy6PpbnevZ6Doh+tnRCZCVUNwxBDVDjec+LU0V3qhDz5yJmDRBpU1bIcxk/yqKFm31Xh/0e1wqXDN3XO/XOaYaX+C2Kbr3QdJOfdWozXpR9YcZE9YcjzK+AK664Aj/84Q/x/PPP48ILL8T111+PhQsX4gMf+ADroQAADz74IFzXxapVq1q+v2rVKixatAhXXnklXnjhhci/37VrFx555JFZX1u2bOEy38MFoutwa/xuNl4H9TTAMfMXEXjSbQsO65ur28FmQ6CKjGf20POirR78AIVYqxbN4hQU6BCw1C2b34OwS6MYYnIK0AZ0WJxoFsdESwx4NRfrlATgFYT3XEeKd7W/uBI+bCsdEhABGscql/a5dFf0CfLL7FCVAtQD8xkoE/ZL/gWpCTt8PqKVqVGbcyHWDCHvk1fgyHPCLUV4VK508vM2igUuAaBuSWeRzfQ8z4t1DnPxb4+B12FN2wLhU60QSYdndjN6TlxlJhDPMkWGlUs3MtXMUpQdR8wGqELsbWIoUvW8wKRFN0sNQUngqHu1USjy+VyiqsBMi49neYz1J69AfBb6nQGIVaUJ+OsdT+L+sx1i2/BYuwyEkUVLmTkCtytgyZIluO666/DQQw/h1a9+Nf7t3/6N+Rj79+/HunXrcMMNN6C33t14aGgIDz74ILZu3YrHH38cxWIRl156KZyIxeMtt9yCM844Y9bXunXrmM/3cIKnzQaAzopbyxQeSCUmh2aenYKoghfmvOjY5CzHMVDsukBocxVOC7MOgWmeNj9dVaKcVdqdxpe9kdNsTt7tnVSovM6vbotAmQ1ECV9VXZyycv9+KUIhHmcjKqgyosu1Lyow3w1e6qww4mzcRJXXd1PNiUYzTS7WXZFKeB7NQ7sqxNmf71EB/8a4IiuhOjSvbYbLsY9BnHs1EDybxQUrYs9LcD+OuPPKGn4/BvnPFkCgfUusBqh5IcclltWOwM+o23yE7QUiLVP43KN9u7Bwa1ce8ZGu1iWcmod22se3/J6I3jkd7Pma0SwLDqfK7DSIUohHJ8uIL1BUpIbbk/qee+7B29/+dixZsgTbtm3DF7/4RaavPzIygte//vW4+OKL8bGPfazx/VKphDPPPBOGYWBoaAhf/vKX8cQTT+Dpp58OfZ33ve99ePjhh2d93XbbbUzne7jhK5g5bgI8LzSgCXAuSY9QuPBQiPvB9/Cf6XYONYEbGqIRuDw8wDomNix+KviICgO/uQQPBW+0Ep5oun9ecaBbd2sRAfGsbuh4dT7vWLbPyQaoa1Mbng1Eu6mzefc7iGiw3DoHQYGMLqpsIAgAi1CsdVGuCirf7oYoCxkguDajPx9eG8ZQOt0bBTVebYZXsi5Kta3n2J9/Mjziuz3j9Ly44HMcizSAj11NLGJYSgGBoEZs4DmOwlF4EjHm+okYOlyelX4JkdnIux2RDRu7nUNGqYTaWHaC88IsU2IJJ/g/8yKTs5zWqJF2YZz2XVEB+ABuidBuvaogLsnpOTEtU2xbaoVyO8TmVDXQhudF9N8zzcxYSx2uGKxf8KabbsKGDRuwb98+vO1tb8MvfvELnHXWWUzHCILhZ511Fm6++eaOv0sIASEk8ka9cOFCLFy4kOn85gLcFeKdFLc8PfUiVNuaxV4h3rnhJOfmoe3j1e1LtALjS97zov2WNZ2fVUtEYIRYJjweC5UuFj/cbCckK8S72VkQ0/dX1UyTy/CdFti8Focdvf95LYS7Bfrq71WzLA7jdtt4+WPr+TzTsZvn0FWVnbMxvZf//bJT4qsxF1HNZLskw0Q2Zu4E0QQ29PG6e5nWJiZgMb5OwqcSfd4GwWndtvmMG2YXxstrN8q3lUOg2PdsDVdrE13358KaGM/YysFh9uNGzCWu0lmW73ScYEUjoNrHfz5A/CCKXiyiduiQgBn5xA3UB/ZXWk+Z/5xi3KtF3dPjeL8bhTymXnpJyFw6rvEBGOUSas+MCZlLt3UIt/thGDHO46DZOK91ItDFpozD6eong8PtwnjtPTqub+r7ALOnh/24XRKxevD5cljTtE7G63ruA774oTbK/1qMi25ZqIgISEfsFTXbt4vV7Rz/OcxRmEv/fvjDH+Kv/uqv8OKLL+KWW25JHQyv1WqYmppCrVaD67qYmppCtVrFoUOHcPHFF+PEE0/El7/85Vl/98ADD2DLli1wXRfDw8P44Ac/iFWrVuHYY4+lfWtHFLxVMZ2DTvzGjlJtE01nn93usMDiqSoOg1uCo0PQnyeeG15WpZscgwKdNlyE+D7QjPG6qGd5K3m6LZQM3s2XOgTkuSUDOtkA8Wog2OU64qa4i7H45K1G7OaVDfgKcSEBIC/cM7JlLoK887sFU0R7ZmeBWI1GBXnfdqwk4Xhfjrona5yefZ4bHqQmBvv+FTIqkjoF4YHgs8yOJRAgtil7GoQH7N3wwFU7vg+9OIV4bMV/Pg9nUtC8OohYWhDhAx+jOkxYg884QV+Bz/4sVWZ26qsT4Fdf8L1P+vZWHXqPMd7De274eNyavHe5j/EaN875JqqPjxdjDQ6Ir0LqBhHlox9hmcK1Iv8Igfkd91e/+hXe9a53oVAoUL3OjTfeiHw+j5tuugl33HEH8vk8rrnmGnz3u9/Fb3/7W/znf/4nyuUySqUSSqUS7rvvPgDAc889hze+8Y0ol8s4/vjjceDAAdx1113QYyyWFDPwXtB6HRTivJrlNcaNuvEzDi50ajgpGl8hLlZNC4BboBgIV2wTi1PZUJfAIbfyra7l3JwV4t0CtZzLNjslBDTDgFfjkITosDHi1cio23UkcyHMo3leC3EU4rYlpoN7RKKtGVF+mXESBVlBs0w4AtTq3Xy7hVoidPO75hTgivK85mqZIkqVF9HErDGmrjG3luhumZIXFtyNGwjLkqVFGEaphOroqLDxYicSRAVXA7qczwFGsYjauJjGxHHPMaNY5H6s4nxummlyWeeFzaVb0Fe2V3Y7xPArNLMwHyHXVqf+PjmbU5PnkGctB7swIIaHOK/7fpzP1xbTxyeOfQsg1qovDr5dqxi7PhKi6tQF9+2Yi3BJQf7f//t/ceGFF+KUU04BANx333248847E73G9ddfD8/zWr6+8Y1v4J3vfCc8z8P4+DjGxsYaX+eddx4A4KqrrsJzzz2H8fFxvPTSS/j2t7+NFStWsH6Lcx5eDZoadOhWz+PBNjNu97I4VvgBjU42G+yCxX4zhU4BNU5+y12UA34ZtyBPVwQPJQ5ejF0CwwYnxVa3AJ2e568Q7zg+x8APgNgbA5ZEqUIAjqWSXQJ9Wo6TSjuOMoRjghIIFCFdNqKCyoP9sumMBKFjBAsCyyLZ+N6qAspXuwUvBTcai0yc8VSqR4zLzz9dXBVYNw9VP+jC2re8s0Kc8F4LNxPbMiUbdklRWH29qA6PCBsvdlNNTkn0KOLOy+zrE3e84gbEe3pQ5WwvkyUldOxzyLK4J3/jJnjMnjL3zyiYTxYC4l4HBbVRKrLvMRGlEOe07/KcLvutPJ9qJV+8100hLqhvhYdYAXGi6fwrWBJAILdik/CyzDuCYP4k+ud//md8/OMfx2tf+1ps27YNADAwMIDPf/7zrIdScCQsA8V4gMgxNN3wA4Ec6Kja1hirmbsEE5l6fnaz1uDVxNN1O54rvt2CwOahhI/3YbeEA6/FQlfFgGkyL1tvGb9LoJZ7U0+vu2KXi9VRxHvmZlPRZUHKqzwwjiKae1O5DG2Ku30OASKUWbF8HXlXiDQm0/nHRrmMmgBFaLdAgVEsignMo/O9mac1Q1STSz9QI3ZDpDGuyOp2zvtBF7ZK2m7POJEJskSWKRlSx7VDdD9YIayxbMJniKh5xW72WSoK88NNFGwd4RxsjdHUG0BdPCTCvqX7XKyhQUzv3ct3KgmSFrVDIp67nROVgBg7ok4BY6PIPikfFYDnVY3VLfnMSxXd7RkI8K3cb5lLgns50TW4TnaaEctEt8TGWuYizHehX/rSl/DjH/8Yn/rUp6DVT+rjjz8eTz31FOuhFLwhgDfHTEo7qbb9hxzDIEeE11OAzjCI2i2wxauJZ7fmL1lXMsXF6+ArDXD0OI4ZoONGl4C0Xsjz8dQOhu+mnOawMI27YWQ9pozzK5Z3oM2nuqQxhxhJD38imq8g5Uhsy4JCnr8SuYOtWAB3D/+YGOWSkIBOt8Znosrrgc5+pjwV4lHnKL9NejQ6Y4sar4vFBBefWgn3+yi6rTMCRJZnp0VYsg7JntlCg88xAk2A38QyqITmPqcuDbwDfNX6MP+5xPFYF/C8jXsO2fPmYXrvPr5ziXne+EkL/pUFsQKmeb57gfpMopPQpRJq44wD4hEVS7KqCLk942MkpoTt5WNapgD19a+gZ0xcZMXMNGWZQg3zVeDevXtx4oknAmi9aQhTCiiY4dumSLrAWKu1AzrcbJk/bLooDlgGubrZDvBq4tnRkx3issrtMH8odVMmclTRxll8cbu/ks7jc1eqdVNOcyhd7BaU4GJT0bWpJqdyxTilkpYFt8rvORB38yekIVrMgJSIhXicDTpvD/8GXW5BZrksxjM4TtBCRDO4LnPhGZyObHKp6/71zHzA6B+xDvx3a5rGwxInlncwB+/yUJKo4zTCPUFIgzXQj8qBA0LG6nbeNGMNDKBy8CDnGdVJENwxyyUhVTZxzzHdtrlXnMRNQFt9fajwDs7HDUL39vBXzncRUzXm0iNgLkA8az3O1ard0At55knoqGosAP46Q3Bci1cgPpYlji3GMsUDYiXsAEAvFuGMiem9EAdi6EItuZrRDCPT64HDAeYB8WOPPRb33ntvy/d+8Ytf4IQTTmA9lIIzPPwa4+I3KeQRAOrgXc54E+v7L0f/XM/Z7LzouniPcaObLYwEhTgP9VQ3b2FfRSunXEmGMjCAaHwsagLiNDxj7mHeZUweqtxu3oG8jnOchTB3NUyXhrUBRrEIh3Pjsa5NguvoxQKqnFWGvpd954Zs3D38Y6JZFjwevRva6NazAhDXoK5TIJXnNdMxcCNYd8I8SdUt8VwoMPeJjddYWIzaOYnS2ezp4X4PoiF/9CJMvrBDyFhJyuzN/n5UBQXEk8zLnj8fU7v3cJ5RvZo05py4N0uOaVMixGM95rOfEALNNPlaBXboY9MyF10HMQ3+ViVxrW2C35WAbyvI9lztVLGk2ZJsqzgk/GPtA3gl3NtJ0OfNKJVQ5WyRl0Rc5+/FOcc7lLaYG8wD4p/5zGfw5je/GX/1V3+FSqWCG2+8EVdddRU+85nPsB5KwRl/YylnwW3k81w8rzvd+HXWAfEY6mlmweI4igIeqvsu4/qJDcG+prYFj8OY3RT4vHzvu6EXOTZwk003yxYOgYpuQQk+qlxxjetaiOEhzps4gV/AP8+ZN02aNZl4n4M9OIjK/v185xLH352DKooG7oqpGBs3a3CA/2eDGJvIpo2r57oYffIpNoGLLk0gRaIX2Capuqm1tRx76yjP6X489XxeSMI7biAMqAcJRSmdU2AUCnCmK2JUlIkSCQK8seskC4jPw/Tu3ZxnlGxO+aOPxsT2F7jOJc76w+ztEWPfEvO4FI9ZjrHnnuM3mQRzKa1cibFnnuU3F8Q/Nr56Xlwz3WZ4iEY6VZ4YpQJ3gUYYej7Pvho5S7Zhnfq8tWGWS/w99LuI4ZphbrurEArzK+ANb3gDvvOd72DTpk1YunQp7rnnHvzbv/0bLrroItZDKTjjK/LkbLa5KW47BNiYd+nt5nfKsFFeNwUzwEl170V7sgNyvC4124YzzdpGQ5ICPwZGqSTGriACng0Guy3EjVIJNcYlc92uJR5l+3EgpsHFLz3uxotbYCNJ2TTnAFDspnY8NiUhc4nTVJO7Oizm526US6gd4htoinO+5hYswOTOF7nOA0DX87a5Ee7E9hcwvX8/xp5+hnrYjucoEWujwVohLqXBZRw7gFxOjFdpkgDq0BCm9/H1Mp5FwkeAIShZH9eLGvADZ8TQxVj5JQg06bYNohvM1zNhc4p7jhUWH43JHTu4Pfvj2pRopgnPA2dVdvzjkluwANO793BTQyepFLHnz0Nl336+9/2Y87GGBjG9j38yOhICtschoqkmUG/iKSMgzqE/SZzKO/8X+YseOvV5aycQ0ngcleue68UWIGgWn15tLXRYAhHCyWr4CIFLSui1r30tvve97+GJJ57APffcgz/6oz/iMYyCM3ohz1+RFzU2B29gIFBth99RdMtiWh7YteGkYTDzm+qmRgcAI5djrrrv1qCHdDOf5QCX5hJdPksAfjBCwsPIGhgQ5tUZhtnH0cewi0rW4OG72a0Zbl5OQJyHFUTcTSDPhV7cppp6scg9WBC34RjgJ2MqPMu4Y9zTg/JtrpZJnoeuJuIACkuWYOy55/nNAzF91XM5EE3H1B6+9gPd5uIreIfheR7Gn38eA2edyaTsv5Oi2bdhE1eRpZkmU6ucuPcjlpvyuF79IsrjkwTC/IqZ7PinhiEqaJ8kmAkAhWXLMLFtO8cZ+SQJ1ANAadUxfJXHSHaOEV2H1c/RCz6mVzYAlI9bjYOPPMo1MR/7uBCC3KJF3BKvSc5nQgjySxZjYsdOLnNpzCfGeWwPDaEiMSBuMvaaj2qqCYizZps9LodeOjFV0FpOgDVoQvGZ1d+Hyn5++1/PdWLbBemSm3xqvHt6zXGYBMSfe+65WF+KwwvfBsKR0jVXZ6iebqGDaptYFjyG5S5xgtTMiLGY88uNWXusybdcaEfP59h738f4LLWcnC7PZk8ZNYleomZvH7dy1q4l9KYJtykgM/XSS9RJrW5jGgVBjQzbxy1xUKTEaKoJ8G3eFFclRgiBZuh8K06SqOeWLMHUi/yUyHGrUuz58zG56yWu84i1GZ43hOrIIUzs4OcbHPdc6T/zdBzatJl/kKDDXOx5Q5jeuxfOxASMYhGaaTb+jte4fjJYbM8OpsRcx7Dc9MW1TBHlIR5b6UwINMYiju6DJvt1s7+fu9UFgET3bQDIL1zA9Z4ZkDRQbw0NoXKAdxVUfFseACgecwzGnuGzf08yF3vePOg5G1Mv8fncPC9Z8qK4YjnGn+eUAE543hSXL8PEtm185oL457G/b5+U1tzPnsc2IN/pfqwL6GkTOm6BvVVL3CSZ2dODKucqwLg9hQKsefP4CsJcF4h5X+Ai0EqAXixKEWvNFZhE61atWoXVq1e3fK1atarx/eC/isMPs6eHfzOTEHg11eyk2mZu7xGz0SWLhEMcZSOfBpfdy5uIrsMV2H28PXM/feAA9fhxAv9GPi9FMcC7sWU3LMaqjBa87g1WCCHwPA/O9DT2P/A7jP7hSboxuyz+tVwOLmNLnjjwuBfH3ej4pbCclH4JlFnWwABX25QkzaNszuXBcT+b4rKlGHv6aX7JuASb84GzzsDkCzswvnUrt7nEeaZqpon+s87E5As7ML2X33nb6biYvb2ojhzC9L79sIYG69+j31B2SgroIR7blQMH6dY1XQ4368Z73ZRqfgKY7aa825i8KhbbiZvwCbDnzcP0nr0cZzRDGmWuWS7xD6AgmeoZqDcj1DT+gbuEgU1CCP95JZyT2VOGOz3FJxGdUAndc9KJGH+Wk7gu4XHRbRsgfD6rpOezZpogmsZPLJDEd37xYkwIaqbbjjUwgOl6/5Dp/fsZ7Ps6VGPlOYn2uuCvK+TsA8y+Xv7xIM+L1VMowODsZBDHjjZAN60WgZZo/GOR7aqxLMMkIP7888/PUoM///zzje8H/1UcfuQXLcLkTn4qqygI0bg0Keyk2mZu7xGjHFCz2AThPS+6G3aAwUt13wU/EC9uXM0wG1Y0zvQUhh97DJOUqkXP6/5QNHp7+Df4iIDoHBfDXdCLBW5WFrHK2Qt5OBMTGHvmGQycfRYq+w9QldV2U+YSQqR0+rYG+tmrx2JWePi2PHwC0Z1srNqxj5rP1x86QVVPsFHiuQmNE5zXLAvl44/H8OMbuUwjrqUN4Ccj+888A2PPPsdFueo/52I2zyuX0XvyGow9y6fhWLd7E9E0gBCMP/cc8gsXAgCswUH68t5OqrW2wK0zNYX9v/kNRlKeG3HuowbLCqUYp5mvUhP7nNUYN1yPJKnSedFCTL64i+OEmkiQLAwgut9snL/vbLLjBgC5BUdx7zWQNLAJcHrON5FmToWlS7gEOb0ElilA3Q6Lk896kmR4gNnbw0UMkuZ8Nvv7+FXxJThnisuXYXwrP7V6J/S6Xebkrpew/9e/xaEntlC9XqcEpax9gG7bzNdWcROxZm8vX5tABNdh/N8nms5VEJbEQ9yfkDwfb6NYRE2iZcvhDpOA+LJly2J9KQ4/jGIR7nRFqMI3wPf05tBNucvdlpVFjBdD3arlcnBZKI9iBC0025YSEPebPrKz9Ij7+XjwMLFtO/pe9jJM79tH97nGWLibZQHlZBHY8+ZhavduKWPz9DH2G6x0SUSUy6gOj2B6917kFiyA2ddL1dzP34x0WQAR/s1lZg2p6/Bcl7l/biwPccOA5zh83nOCzZ81MIDq8DC351HSYEFh6RJum78k9gmFxUfDGZ/gcw060Y2lwtBME4WlS/koVxMGCoxSEc7UFJfzNs4msu/UU9C7Zg30fB5AEOyiC4h3Okf1QhG1iZlg0fjzW9F32qmojo6lu2ZiBIn8556/SZ7etx+TuygCtDE+JqOnzFYhF2PMoAqJN0nvP0axKMyzNE2QDhDkv54yIM7b3zzNMbP6+/lV3CHdnOx581DhcKw8J776MiC/+Ggua91UnxWn5EXSShGA8/7Di9/QWDNNmOUS9wboURSWLMGBB36H+a97rd9slMairENTzQDR+wAA0G3G4raY1okirMPSWM1qpgGnyidh7TlOonuUUS6hKsk2RWurEKwMD6M2Ls9O9XBDkMGx4nDGPmoepvcy3tzGeIaY/X3sy3M8r6MfVLNi24OH6hjFzSSGjYlRKqFGM0ZjrO4BW6Lp/u8Jxmbd9DFG8F8v5OGMT6A6OgproB9mD716u1sFgWYYcGsOXIdhsC7mx1VYvgzjz8tRZQD+5nLsGQ5KzBgBAntwAAceehiF5ctACPHL+mg+6xgbI73uY+vWaph88UVqX+C4+HYBDBdbCdTZVl8vF6++RE2+CEFh2VJMbH+B+TyCucQ9HkB9c/4Sn0RU0g16cQUnZVaaAMrgIJcNcRp1o8HNV7H7xs3s6YE9b6jxbxZNlzo21SwU4DSVD0/v24/cUUfBHhxIpR6Mcw4GQaHq6ChGNm3G2FPPcFVw+2sm8WXB3JvXIl1Qjui6GM/elD1xrL5eVId5+2KnuC+wWnt3Iq3Sl2cw0U3+Ofr3LT49nZJ+br5twzDzqaQJQnOrnEtzPvf0UAlBWJJfslhc5UobxWNWYNGlb4RRKMAa6KdKnnpOZ497vViQ4tlsMbbri/vcIYTwt0Dt0OctCr3Yuu5hipdMIW4PDWF6N9+G7lEQzFQtONUKxp55Boe2/EHKXA5HVEBc0RXeioXIcfv6mG+qvS432+YMW2XvPhx86CFM70+njIhTDmj1sgkyJfG5Et0kVc/7lhbMlPcxHphmbw+mdu2CbtkgIH73cca+a2HkFszH+HPPo8rY47Qbum1DMw1pmeni8mWY3ruPeTldnEZH1tAQ+k8/DcXlfhWSUSxSbXTjbK4DH7+xp57G2DPPCisRtefPxxhDD81EpbDHHMMl6ZE0CFRYupRfA6mEcwmU81xIYFUCALmFCzG9h/1CPFWwiWNzoaSKQhkWG1GwKLPudL20+5oGwXOzrw/VkeF0Y3W5/+rFImqHRnFo02b0nnwSiitXpFdwxvhoCSHQbYtdY+OYp5M10I/KwWE2Y0YRQ5HYjtXXK2R9nuY+ANTvBZwTGH5zxmTHjWh8bBmbSXPM9Dzfpt1p5pT0nht7LimSLNwSYik/Kx6K2STVYQFmmW0lbgsJP35LVDPdEIKgLVDvsUDRQ8S/VqLvK2a5zGxtkURpnjtqPqZoKrHaSVKl2d+HKsfnYKc+b1HoBX7NJD3XSbQON/t6ue3DPa+7wwHRCFynhqmdL6KwZIlfTXA4N1oXiAqIK7oSdDVmGkiNcX/RS0VUR0cxfWB//UbAgC4KQD2Xg1NfjE7u3ImBM8/E5I70PoPdVMV6Pg+3WsP03r2Y3r8vfeY1rvWBbc1quiUCa6AfE9u2s1HkxFhEmz29GHv2OZRWr/T/XS7zVwPB99w3ikWMPvkUm5K2BOuC0upVfFTaMSC6jt6XnYKxZ55h+8Ixkh+EEBSWLG6cE0axRNVYJI5K2D5qPsaffx5TL72E/jNO51JOHEZ+0UK409MYY9STI0kw2m+uVWHvDZ3Qu1MzDP8+zavpclJ1Sj7HJYCRVLGmmSbcWo15CW8a1apmzvRxkI3RU86Mcg6Ab7dEUVHiq9bCN+nNAXe3UoFmmQDSN8OKcw4SQtD7spORX7IY9uAgrIFBLpUkzRSPWYHRLVuElqtb/X3c31c62wZ+/R2aSROkA8QosX1bpzR2LjmuFgCpFP+E+BY9nKrO0lrfEF1jrwxNWJEFcAzO03xWzJ+5KRI8ul63BJWPZprMmwumOcbW0CAq+9Mrqf2EcvQ5wVSVn2gt3gNnYpJZxVKSJJk1yLjiu30uaZJkhQJqvJT6rgskSFITEGicVPRx9qZGvYp4et8+2PPnwRoaxBTnXhlzBRUQV3SFgPiWE4wWtXGyXMG45dWrUdm3H+PPPc9obHTM9pl9vvLTdWrwPH8xn1oBGPP53XPCcahNTKCy/wAmtqdTPsZtTtPchVskhaVLAQAjT2yhthTp1vQQ8EuoBs45G3rO927VcraQRAAhGvKLFqG4YrnwZrT24KB/7krw+wd8pZozPsG0yWAqhVW9yWZq4tgE9PUhf/TR6DvtVOiFAldFVzNE09B/5hmY2MoouZQwAFw8ZgWze3FAmo2owcACKXwyyRfjVn8/pxL35HMxywwbHAakDKDQBn5ZYZZ7pFXOhEGtKoxxT/Q8D5WDw7D6+gDUg5Jpzgs32p6lGXtwEIXFi/2xCvw9o+3580F0HZMcGv1FYfb3c/fF9VwnuYVEP70vfSxS3geMYhE1XuXsASnnZvX1sfWjbyONDQfAt8Im9edYKsGhEBqEkbbqQLM42BeltATSbPYNd9OeN4AcT+swdNtiK1pIcd7SNqDs9jmYPWVUR0fheR6GH9+IPT+/N/1YCa+F4oplGH9+a+rx2ombaLKHhjDF0xLE6b6/bycQbfIgqY0iAL8i7xCH50qMe5Q1OIRDm7fAGugHIRpyC46CXiiwn8schFtA/P7778cvf/nLxpcjwuNOwQ2zN53CKJREvrV9KB27GpWDB9moxD2vo+I0aABZHRmB1d8HwG/Y4NbYBfna0XN5FJctQ/GYY1KXX8W1TLHnz8Pkzl3Cg6aaYaK4bBly84boO6G7nX3gAT+ZYvX2zfybaEI7gluDg9T2IWkWtrkFC5j5/acaf9FCpg2PUql2NLrPOm5yqbhsKaz+fu6KrnY0w0Dp2FWY3PUS9WslPb75RQvZL4ZTbETNnh4utkRpyjWtgQFpDaTa4aHeSW2VwM27OxmyfD6jMEqUFSwdPMQBQLP8AE11eBhmfz+AmaaQSe/paT97346C3/2QEIKeE09gY1UV85Dotg23wrfBfJpAmIgEBBBPiBCGCOUqjZ0LVzul1PMqU90jOpH2WOnFInNLjtSNWjnNJe1zjnkFRMpqDL/igcO9IMV62mQsFPBS2EkBdLZ23cbUCwXUxsYx9eIuOJOT0CwrdbI76fvLH300Jne+KDwBopkmNNPkdn9CzP1Xy5wMA57Dq6ImhWK9p8xFsBPnGWz19qJ87GoUlvkWooRoyB11FPO5zEWYBcS/8Y1v4M1vfnPj3xdeeCHWrl2LtWvX4rWvfS1uv/32RK/3pS99CWeeeSZs28aVV17Z8rNNmzbhnHPOQaFQwIknnoh77rmn5eff/va3sXLlShQKBbzuda/DNl5+o0cQRqnI7Aboucm8UQkIzN5eNsq3LsMSEBBNw9TuPbAGBgD4G+pUnnUJ9w7BgzuVNU3MoJKmGygsXYJDmzf7aiTBGCwa4njJO9M3/lRQVNw/jwjdMU5h38C0632q8dmWb8tQyqQKSrBudtkFe2gIFRZNdRIkJwE/0EU0wtQ3O00Q2uS44EwenC+jmhFLDrOvj7l3p1++nS5oIcKmqhssfLtZYqRdT9Tpdo4GCYDKwYOw+npnvl8P6CYaq0vwPXIOhXzDeo4XmmX5G3OBDTYLS5dwa+gLILV6l4dtQztpg5eNv+c4v9SBVY7es0D93pni+jGKBW6q+rTHiodCPM0aE/AroZxxHsH55PuKLCnnfXuibFRD+esidnNJncgpUFxLXudrJehnMbJpE/pOfZkfpE4pVEm67yC6DnveEJe+Md0oLF/Gt7F9insCwGl/n2I+Zk8PvfAvdC7xkgX2vHnQdIP9+HMcZgHxb33rW/jwhz/c+Hcul0O1WkW1WsVPf/pTfO1rX0v0eosWLcKnP/1pXHPNNS3fr1aruPTSS3HZZZfh4MGDuO666/DmN78Ze+o3hS1btmD9+vX413/9V+zfvx+nnHIK3vrWt9K/wSMcvzEimw2O1+UhE4bV1yessafV34fpPXtg9vQAAIxCETXGi68odDsHdyp5iVcS9U5+wQKYPT18N3YR+A3O6B4UaYOkXMosO2AUi1RWGqn8RBk2s/ESBksB3zaF6UIghVoAoFTKpDnufX38G6414Xto0yuB0mwyzN5epgHgVJYpJU4NpFKoQTTLgsfYLzMtXOwJUgdQikKDlR3JiH0LAOhFOk/lbl7OZk8Z1eEROFNT0PP5pnELcBKeGzTBMxFrpuIxyzFOK3hJ8IgrLF2Kie3b6cbrQGoLiRwnZWgTaZMjAB9biRZS27lw9J4FhWUKz2RiysCvWWbvBZ/+/sJeIZ6l5xzVfTcjz1zaSqh2qK4lXmpmAD0nnYiek06Cbtu+UCVthV6Kzzy3aBFf+5IIbEpv9o546e5Pfn80Pn2Fkj73NMPkU0mW0tZJEQ9mR/bJJ5/Eq171qpbv6boOXdfxmte8Bk899VSi17viiitw+eWXY2hoqOX79957LyYmJvCJT3wCtm3jbW97G9asWYM77rgDAHDbbbfh4osvxkUXXYR8Po8bbrgBjz32GDZv3hw6zq5du/DII4/M+tqyZUui+c51iKbXDbgZkKL00ujrRY2j118zhaVLMPjylzf+rRcLQkpSgRkP88QkVFkWli/D9L59whTTAZpOoYKv43kplQICNo3NGOUyahS2Dmmb2TFrZpPGrkTXmauH0yyOaGwS0pSG+yXO6TZoaZVztP6IAEUTt/0MbTlSnmc8yvDT2gJkBb+ZJeNmVjRqNY4b0STohQJ7xXLKR5hRKiYOTLcM2yUwYM8/CqNPPgU93+obmabxVNogqB/QS/bZe56X+Jj6AQhxdkWaYfjHkVPQKa0tgH9O8b3WaALivBtrpk4kmCbnZGa6AIZe5Pd5eo4DJGzYCPiiKNbJ1iwFfmmsZJgnCpy09wFO11mKJZHB+hymsNfheW80e3pQWHx0fazkSeeAdOIUTkrkLvgN3PlUmMe1rGzHF6CxT256jpNqT6CZBpwq494Ch/n+JOswC4gfPHgQpmk2/n3fffc1/l/XdRxg5Gu5adMmnHzyydCaLphTTz0VmzZtavz81FNPbfysXC5j5cqVjZ+3c8stt+CMM86Y9bVu3Tom851T0FpABKS44emmBafCwMc7xoaLaDr0XG5m7Dxlk74E+A+4FAHxhJlDQjQ/iMfTPzGCtCr4gLh+6e1ouRxcBqrauJhlypLBtOpoRs1sUm8Q8nl2TSbTLoLzFL7BKSpYfBuElOOlfI++PQZlkjCNLc7gAKYZBsS9lGXTIGytW+qTSWdZoGvSmtnyppsiOYo0QVFe+CoxxoGClPuSwOM7NV1sGIxCHqVVK9G75sSW76dpNpw6IJ7GYi/FeUabGPOrBhJWQQ0OcmtiSaeC5KvIp7Ev410tQjO3LMLXEzddsJXoDEVRjcl4ie3SgPpafortWj617U4+D4fxXGjU6rwTY3HxxTHszuH0iXm+CvFm0lp5AikFUBT+6LRoJr+Ka5JiccUtTuN171kWhtnTgxpjK0VPKcS5wuzI9vT0YOvWrY1/r1mzpvH/27ZtQ0/dfoKWsbEx9PX1tXyvr68Po3X/1m4/b+d973sfHn744Vlft912G5P5ziV8hS19oCttQFO3TOYZtzhohgkvTTY0xdoxbcl7msyhPTgopRmcXsjDmaI4jzwvna9pLgeHQ0lV5HiUzdxSexoy8lf2XC/VdWoy9NNOvQgu5Kma2yRu6kKRbKFq5kS50E9lV1IoMHkO0MwBqFtDZKSxFm8VUhKYB+dTfj481OppyZJanWbTDMQ7R0urVsIoFlu+l8YvOX1APLlSMe1YmmWmTgCnSfbwaFzbgMqiJsMKcUqboG5Q+ZvztFPKUO+CAP9zzIYXfNrPjfYeGjqXlEkVHj0qPNdJV/FgWXBZCMcySNpeJqIT88Qw4FZTfAYU66xU41Fi9YuzsY2DlrOZJ8kAivOup4dN37tmlEKcK8wC4mvXrsU//dM/hf7sn/7pn7B27Vom45RKJYy0KWhHRkZQLpdj/bydhQsX4vTTT5/1dcIJJzCZ71xCLxbZlB17yZpqBhg9PajRlgdl/F6S1pomTebQ6GWfwYwDbfl62rIhnYOqpBOEaHQL5dS+mIw2xxIDtQFUqh2KoG3SDRfNpiitYotJEDaFTzyAesNYRkGEtCWSnBpIpdlsZ8m707+/slPK0DbTywKZ8jMHAE1LrexKHaQu5FNYpqSrDkhjRZHWyoGqkazr+muuJOPxapgFShUk7/PbdUCMdAFxnXdQKqWNHhAIJcStC+OSOrDWBZr7ud+bhaH1VNrqMIDqHho5l4w0jaWqeGC8x6V5XzTJylnzSGkjIzoxb5RLqSqD0977zb4e+krRFJj9fajy6JuU8nTjJXjzUvQVAoJncjYa/yriwWyX84lPfAJf+cpX8D/+x//APffcgyeffBI/+9nP8O53vxtf+cpX8MlPfpLJOGvWrMHGjRvhNm3GH3300YYifc2aNXj00UcbPxsbG8Ozzz7bolhXpMMo5JkEulL7JHLyiIoD0QhcJ+FDVeR9K0UnZFobGt8HPE1pU44uYBOz03I7WkY3PlHQeffSP4hTB6MplfEtpJ1DCr9calIqzVKXyTMoBU2tiGa4+KTziWfsC50SkWW53WDdWDPtOQLwC+okhXWTOtrgh1EspP+MvHRJmzTNXz2nBqIbicdKg+e40FIEXK3+9A2N/SB8QpsWTYPneVxUxZ6TTo2m2TaXhmLNuDUncfIgQM/zt6tLqxrm+hyh2ANQ3SM6kDawCNR7pbC8j6a04wKC48OwaWMXK6pOaDkbLqPAb302VElopvemlPt1gHEiLKVSVzRmuQwnxf4rrRLZ7GHb5D4uvPtCJEWzbbg8HATSKvc5VGt4XvIEviI+zO4uJ598Mn7wgx/g/vvvxwUXXIATTzwRF154Ie6//37cddddOPnkkxO9Xq1Ww9TUFGq1GlzXxdTUFKrVKtauXYt8Po/Pf/7zmJ6exh133IGNGzfiLW95CwBg3bp1+NGPfoS7774bU1NTuO6663DKKafgpJNOYvVWj1iMQhE1mZYptIFUCrR8Hq6ghoxE1xIH372ETTUbY2nEb1KZhrSBrAJdk9LUHuKGkc76hgKi66ntC1JnpouMmn6l9FM2Cuw2cmn9pfk3y5pNai9JmgXXNN0CMK0tjn8NS0560PjEM4ZlVQQtzBXitN7BGTguaYLBHaFRNkKM5zML0irEAYAYeqJkiB98TyGU6OlJbdGVNiBn9qYfs8uMMmMh0Q6NZQoPW4kWKF7bf45wukfRzItDs0YAVIFF1vYTVDY85TJTSwKquTBc89LCWimbNkkHsPU0p7r/COzxkrZaJ+06i/V6Ly7czvmUjzICPs8Y10mXCE7jg959MsoyhSdM022vfe1r8eSTT+LJJ5/EfffdhyeffBJPPfUUzj///MSvdeONNyKfz+Omm27CHXfcgXw+j2uuuQamaeL73/8+vvvd76Kvrw+f+cxn8J3vfAfz588HAJxwwgnYsGED3vve92JgYAC///3vcfvtt7N8m0cszDyaUjYG0PN5oZYXLWMz9s3tRBq1T9pmC5qdXtnguemsb6g9zyj9IpPiUTxlqa6ZlA8/v+GQvKaaLJuX0nqDisRIaWGS9jgzCYKkVYgX8sxUdV7Kig8an3jW+A19GM8l5W2HeXCe4hpkrczOCjTKRkCixU7CKhY63+hklQqek76Jc+p+ESmDEDSqdG4QhjZWYVCe8wBbW4kWaJXYGak0asYolbj0paC6phmrQunmwv7ZQldlkJGAOOO5pLWyAupBU0ZzoalU8+1exXw+erGUrrdN2sr5FFZoLODSZDeLOA6Q0irMj9EzPEYp7SUV8WBaC/nLX/4SDz/8MM4++2yce+65VK91/fXX4/rrrw/92cknn4wHHngg8m/f8pa3NBTjCnZQeyLXSR0A0nQ/eCIBI59DbWISdszfp7kJ+hn+yVlNsTqSovR3Zqwp6Ll84r/1UiqIaTOnacdt/D28ZHOgyMrS+FOmDbqwUotRNTxidZnS+Dp69USRoIy6Xg9E2vPmJfo76oZgFO8xvUd7gVn/gbQVH8Q0M9NAKksNJJlviCmuQaNUZOa37AfT0l/LxPCrdTSDftlL66uuF4uY3ruXeh6Jx62rB41CvOc9jWVKoHC1+npjjpUuOEbXvyGlH3uxhKk9e9INyokgSWmUEqwbE0ATvAQAzbbgTk9Dz+UYzooePV+As/NFPi9OE6gvFTG1axe7udShvZ+zDNJTVR8VS5ja9RKzudBgFArc+gokZaZybpDJ69FUCenFIpwX2ZzDVFY/9WeR2dMTf7yUwV49n65XFZ0AKb0Ayk+ipr9RidxjdSOoyGaxxgvwHAdaWisls/7Ms9k889LulRTxYJZq+PrXv461a9fir//6r/Ga17wGt912G6uXVmQJQvwO2DRQNi+RgZZLqE6n2LynKnmjUN2nVllSBIpTebLXSaskA+rq9EoymwnfVoKiYVNKtbTvKZc2M03oGw6ltGwJYKEG8zwv9WJcs63EnzUNRlrVNEVwjabCAwCFLQ5DdbZMhTxLMjIdFlY6zdDch5gqCmlV2QzL/WmDg1T+txTnWdLyappgSFKFq+c66TeyKZ93aT9HJg2NGcPbtolGKQqw723ACl5e3bTwtOFI++xknYSmuY/6CaBsfG56hizTWFfO0SR/mdon0li3lEvJ7XVoBEEpoBIgUUBzDfo+2eL2WN1Im4zoBFVlQp5x3zLKPbmiM8yO7Be/+EXceuut2Lt3LzZs2ICbb76Z1UsrMgSLLuM0WS7NNODW0i3I6FXb8W9sNN2A01hOpF0s+AHxtJYe6ct3aLLaNAs0PYWdCI0iXcvZ6b3nad4ng0WxR5HwYNZkiOJeQZXsSTVeuvJQugUXnVVH6qaajJuW0izquZXhp4CVZQHNtcc6UUCj4tPzeab9BGhV2ayC89RqWdMU3s8CSB40FWlp4NXSVbk1xkpz700bEGe90WWAiIB4mqanAVmylWiG6LqflM0YWZwX8yR0SiEPUO8J5GTj+BiSfJzD0Ats7wM0zUZZnsMeRXNPs1xGNWHPB5rxUiVoadY3Xvp1MNV+uliAwzppR7Gc12yby3M5bVW7lssx7T3nKcsUrjA7stu3b8fVV18NALj66quxbds2Vi+tyBC+FxdlkIkiy6XRBIBoAvFJGzJSLPT0XC5xkDrtjdIfK6X/JmVgOnXjF9cF0qqG63Y0ifC81Ko8mvdJ8/BjocbKgjKEKlgseJPiJwvTlEpSKF8YBKZTNahl2bSUYo+dJYUK02ZWFJURMy/BKFFAcQ2y9JmkSRIAjD15KYPzsvAV+/EDAyIbzVH7ladqZCbepoUXrP2d26GuishQ0FAErO6/WUr4AmjYtClmILqemeA8CzFMM7TXPdt5iNsLUHmnp0jQ0ux1qNbBFJV3WWmaHkBTkc0D1olzZZnCF2Yrerfpg9J1HbWM+Gkq2MKigYPnUZagpA7gisuuUalrbStVWWKaLKaWs1M/SOmU0+kbL9IEEFMFrWiU8LYNt5ry+DrpH34GCzUWVRMbNptfWnUq80aHHfCDfyk2RZIrAQ5nMlU2XSjAmcyGGtpvrJuBxrbBa7AIoFDOwyyzCxjS2HYFENOgay6dAqOnjNqhBKptimBI0mQIjRIxbTCYKtiTscCgwfD8DoPWMiVLthLtcLkWGdw3A9/1LKHZDG0JaGM7vBvJHoYkFm91g/I8JobO5tqiUGwTLXn/M+EBeIrANM06mGYtw6UqiUYgk7MTV4DzhKaHWCieRyUKUXSGmfP89PQ0PvOZzzT+PTk52fJvALjhhhtYDaeQhFEoYmoPXTMoz3WhmSl94/J51A4lK31qjEvZjNHfALnx/KQpgqj+6yd9eqcayg+ip21IRROszNmoHhxON67rpfc8y+XgHjiQcLz0AXia40sVkC4UMbWbruEQTckguyZDFJUW+TyqBw8ymANfaFXw03v3MZ5RfGQ31PE3HpNAf7+0OczMpZ6AYdDLiuacAOq+uBMT0PPJmyWHzYVFcJ52LrRBaJ21nymlai5o9GUlOHdpG2DpdrIEOIv3Gfce4TkuNDvdlsQop2tySdUwrl7JF7dBKW+YVu2EQHOsAH4KcRZJiSCwY/X10U+oDpN7RKmE2th4phqRsny20BIIpIwin0aySSC6xryhX/rJsHsp2vM4CA5rvfGaK3ecB9X+nSR6L3QNX5MHimneH806mKrSm2dD4hTodraszHSGwhSAjThFEQ2zO/crXvEK3HfffY1/n3POOS3/VjL/uYGfgaO7wD0KyxQjX8DU7uQbHwAA5YY6aFYWa3FKG3wXLDzy4CVXmFO8R93OYTLleeQ5DkWTy+Te1jTnKw00ijm9QO/tRtfwqIhJRt3l0+JXsyRTT1NvromW+LhRBWUEq+CbCXziZW7W9Tx9xRIr9HwBtUMskkB0mzGg6fofZBCdpw3Olwp+UIc2IE7TdBGBSoyVfQujYNf4eLKAuOOAUPg4A/49LnaQukYZDAkCVoVCjLFqIDF+Lwway5S051TQWDMrAfEAXklK2nOel60Eu+QU+4A4jaIemLEksIcY3McZoRfy7J4tLOYykY2AeBCU1HrKsqcCgDALntEmoo2ibx9i0gbEXZeuqW/9WjJ7emKOR7f/qr44nOhvPKcGkvJZRNMYmO59sq3QpOnzBtBVvPOAaDrbKjLXBVL2plN0h1lA/N5772X1UooMQ0jy0qNZ0DbrS1sSQ+HrDcz4QcUJANEGNIiuJ1MbUPnwmnArFeiWnejvqDzPKEpBaUrLiGHATaiiolUmBCWDmmkmG7fmQMsl+5sAFt5lnutAs6x042fAyiKVLQ9NIx3M+IgbpfgbNJqNi0wP7SAYTx0Qp3ieGIUCKgkrPnhhFAuY3r2bzYtRbmaNYgGVlBU47dDcb/25+IFfe94Q3Twomi42IGwChiyCDUaxgMrwSLJxHQdEp1u264kSWXRrJqNcRm1sLF5AnOa5nrJ5m+c4ILlk656AQAVIe16zJFhX8UhSsvISZh2w99dndPPSi0VmycwA2vsm4J9jtBW5rGFX/UePUSgysymjxSgW4UyMw8xAQDxY/8e573aDqrkk2IhzAAY9DMpl1EbH4gfEqXpaJO/t41VrqZ/tNJWiNLEK5o1tKS1BqCqyDwcoY1iKzjA9sr/85S/xj//4j/jVr37F8mUVWUMj8FwKjzKKZoF+QD5tN2WH6mar5/Kx1fEuZRDVV1+KKf1J08QTAF2zNU33bWXS4KRPqBCQ5MkDj3JBmMulyt5T+bcyaPrlK5dTWtOwXiilIM2mmzb5YaTxkXbd1Bt6QlKcz4xg0dATANX8s+Shrufz7Cw5KFXZLBvK0gZ/fSU0vbcxi4Ccn8SRvzkH0vleezUHGqVC3A8MpLOdSzxWAuU2K3uWRL9P28iTwXndmAsL6w/Ony1tIFtLu9bsAIuqCR5euLSiGADQi6VUlQ880QsMjxXlKa+nqAIMnQaDa09ntB5iNRcWQWiAwZqYUeNFGk9vwO8hUk1wb6R5Nmh2cuEeTbWS38A65TFmUO3Giqw1jaSNGQF+ZaLrsLEyo20sr+gMs4D417/+daxduxZ//dd/jde85jW47bbbWL20ImP4AdT0ixDPTW950XiNFCspjzK7puXs+KpbBkFU1huHKLR8Dm6Kz9Nf8Eu4OVMeWyDZ+eOXvtJ56DoTKcq5GSiMaBbXXq1GrbySTopGOlSNw9LYtFAGP+FRfM4Ue68sBKPTbDyi8BebFNe5acJj1EycOgjN0C+bhVqdRVCH1jIFmPHkpZ4LpZ8ykM7uyHNq1M8+s1xOFBigIUnQnzYgnqaRLI262CgVURtjqE5lUHXgB304NdZkoLwze8qojTJWYjOxTGHvb06rrAV8pS9LD1oW0NgzsCbow0ALk2QrqyA05ToESKdQjoLWKimtndXsedAm5svJzhWK8dIEdd1aLXViT7Os1P0jqPcfmm8TyQQGCuigup4FruNAo6zIY9rgXinEucLsyH7xi1/Erbfeir1792LDhg24+eabWb20ImPoxSKVb63fFJHGy9tMZbfhOXTZxyQdg2nLu/V8XlhziLRj+TdnikVkykoD6iZvZsLzh6KJJwAYKZWjXi19CR1Ab6dB7ZPLcqGUEmIkWxzRJiH0vNju8oB/P/Sq1XR/TKXO5tMkLQnMS+8pg5zMoLzHpbWQCIN2w+RvCOiTFiwsU1ip1WmqOgKIrtebZCYYtuak9hkNMHrKqRuTJx6rLC4gnqpMnUJdzHKjC9QDIpSbb5Hq/zSYPT2oMj73WAQzefibUzcBRDZ7b7F8ttBWt7Fag7Cw3WEVhKZRCjfmwvA+QJv8ZSUUoKlYBQC9mCxh4VL2zyB6sv2Px+DZngba/XTQJ4TVXGgV0Eyr6x0XoKw+ShI36orrUotJFdEwO7Lbt2/H1VdfDQC4+uqrsW3bNlYvrcgYfrM6igc/5UXtKxNT3GAorFqAZB2DmfiuCQo2GWkD4o5DtWDX7HQNMJjYCSR4gNNubLR8Hk6Kcjbq7u6UqifahXDgpy0TPZ9MxUy96E6jmqZekFKUDdMoxCU29OQBC3/mwKOaei60qh2WeHSBGVZBHSaBglIRNQYKWtqqoQBCSKLzhYVCPJFVC+WprJlmbOUafUC8mPg5S21LxhDPcUBMFhUQnBTiDPCTMdlTiDdei2kDNEbzIkicOIvCf38MzltCqMUOLI410TR4aa0Xm+fCoOKHVbWan/SkrALq6UGV1XXGqjkn7edN29Q38bOWLkBtlJJV69A+2zXLgpNKKMigAoBVrILymANsq+s9pwaNtnKEYUDcU001ucJsx+U2ef/ouo4ao5IFRfYwCnQ3QNqLOmmQq3lcKtVdgo7B1ErTpLY0FGsNzU5gBdMyJqVyOpeDk3IBSSgW9UntBKgz6Gk9xGmb2VHaJlAvlAoF1FJYxbAkadCWujw0RSKL+vxK41vOAJkNPZshpgE3rUK+CRYKcc1moxr1XAbqwnoz30zAIoDC4PNhFTBkFYTTi4VEAXraTTogp79DnIAedQI4xfOOVhnK8hrzKBWJQKDGlFuV1QkuXt0MjhsQKAvZ2G8B7JJmvjiGkQKT0X2LiS80A2sQIFD3U57zDJIXSQOuUfiVoQzuAyktNGbNh8E5o9n0a0UmFRcJzhWvVqMLiKdQ6dMkWY2eUqpkP73wiU1fFgBwGfRdMAoF1Bgp1l0W12KOoa2jskzhCrP6jOnpaXzmM59p/HtycrLl3wBwww03sBpOIRH/Ak+/6ae9qPV8AZUDB5L/IQvVXcz1juc4VJlFkZvWtA0uPYeu4QTteZQWvVhA9aXdsX/fc12qhZFmGKlKBmktU5IGW2aNTxksYLmRo5pDgmAxbdAtjQ2C51LaKxUolNoUYgMWCkn/WNG9TpCE0Hp76ebCwou27iGv5/NUr8NClRUEf63+frq5MCAoJzfL5dSv4TkONMuimgergCGL/g4AUFiyBBPbt6N3zUnxxmUU/IOmwa3VOiruPc9jIiYNbFPMnp6Ov+d1mU/XcYoFTO7YkehvaIMBLK8xFoGwxmt5XjbtNhgpepuhtnarE6hq9VyOwax8pS9tRQsw07zVKBWpX4tFUBGYsb7pdk13nAuje6gZ3F8onv/MEpx1+wia57/n0AViGxB6sQUQeFvTWrj4wVrdtlO/BouquaCxptXX1328Wg0axTVnlEuo7E8Rp0g7XskPwNtDg4n+znNq0Mz06yqjWMDUnr2p/75lLhQ+6gF6oYDp/fuZzMedrkCjOGcBxv3gGOyXFNEwC4i/4hWvwH333df49znnnNPy7ywuzhTpIESjK6V1KC0vcrlUASAWi4PAk7jbQtdzXRCbbvMeF8+T1HnY8wAabzk7x7x8Ng5JfZ5leQtTb9YLBUzv3iNtfL2Qp18QUu6d9Xwu0RxYeEkmxaNURej5AqoHh1MOnnrYmZegCL7QePgGBJYxNBvixlxoyyMDm6LBAbq5MNj8BQol6mAdi6BoPXBIGxBndR+mDRiyCsLZQ4MY/cOT8cd1atAorxcAsAb6UTlwALn586PHqlahmSb9WP39qBw42D0gTmtXlcI6ijb45F9jjALiDl1CIECrb8CNAmVSrgmWViKaZcKtVKiTWwEeA4sJoP5ZHhoFOlwTSaBVmAY0GgEfxWBSjILQRrmcTpTUBDO1er1JMF1AnI1FmdXXh8rwCPI0AXFWiZRSvERk9/kwCIinDNa2QxtHMuvPojgBcbdWpRIkGaUyxp8XZx1slsuYSJgQBur3zzyF8CqhBWnHubj0+y+WVp3O9DQMygSpZttwq4wqaSljLorOMAuI33vvvaxeSnE4QEj6m5dH2RQxl857GgwaNvgNKCehlbps7BmUSyYKvlP6SgWdmZMsxDzXofOCz9mY3iNeIZ5YfU9pDQP4DVZSHV/qEnKKslYG9iET219IPz4DjEIBky/EXyTSBmV8SLLkG2WiLlAlJ4VJA5t6cCOt8odJEJqRZQwL9a2eLzBJ8rFI3prlMqb2xK+E4YnZ14vKgYPIL1yY+jXcWhXEoA/QBio+o1BI/Rq0SawAousAQexng1utUc07wJ43hOm9+zoGxFkFLc3+fow//zyKy5dRv1Yn0jT7o/0czXKJmTqORcNUADB7yqiNjbINiDNIXAaYvb2ojozAnjePyesx6f0AX/U8tpvd/dKr1aAxUJsbpSImXjjIYEZs1L6Af46Nb6UL9rGzbyllJjg/85xbkPo1WNg0AEHSs3sisut8qvSJurTBWtbYgwM49IcngWNWdP1dr0p3reh5tk2XuxGo8JPi92ahS0Qzs3Ri8Awkmu4HjhngTk1B66MT2hAQJsIjoL4vUE01uXFYHtlSqdTyZRgGLrvsssbPly9fjnw+3/j5SSfFK0dVxEfPp1NpA/SBmLT+0Sz8l+Le/JkEevL5WIEeP3jCIKua8OHtuR5d93GbrWdjUryYTynfGobyvCkWk3tLU55DtPYA1J6u+ZTNb5uhVKcmb6rJIkCbcExKNbCWy6Xqqk7b+BdI38+hMQdWx5vBgpyF6jco36aeC4PgvN/AjkGDPQaLeau/H5WDdEEd2g1qgNnXl76iojEXNuppAMgvXoyJbdvjjVurUTdeBAB7cBDTu3d3tHdypqapy4WBeoD2UDIv1dQkbWrr0d17jXKZWRNLX63OQjFbYn68WamdAcDs7UFleITJawHsKkeMcrImeN1wazVoDK5Vo1hkd44x+hy1HH2wj0XSF6grxCnPd2a2O729qFKe257D5h7P4pkLsFKIszuHadCLxdi+3kkFTO2IdkXw93vJrTndKp0SnmgaswA0Kxslfx1AbzlbGx+HUaS3qoLmC0hpYdH8VxHNYXlkx8bGGl8jIyM46qij8Na3vrXld7773e82fmfz5s2SZjp3Mfv6Unex9lwGjQFS3PBYNCrTYzbN8z3EKbslx828OvSdh7V8Hu5UwqAS5YJW043Efsus0PI5uDEDeUy8hVM2k5JpNUUbqE2j2GONX/mQYCHi0m+ukzfypGz2S9IpEFj4ica9H0bPgX5TnNQCKXoubNTqLJrGMbGSsVNWUnHAb8BK13yQVYDJV0fTqXpZKS0BoLhsKSa2bY8VyGWl2ia6jtyiRZjc+WLk7ziTk9AZqIyJpsHzPKa2G1HohQKchI01aZ6xms2wYRZlz5AA36KGrXetW2GXADJ7e5la5bmVCpUHbgAhBKTurc8CZsFnBvfOAK9WY/I5Bg0kaa5p1r7dNLBQQQN1O09KkQ9tL4WANE0dQ+fDwNNcsyxmTT5pIIT4CZSR7kkLFslnYrBp+J6EpNckq+qfrDSUBeiFOg1cj4mFplEopKrinY2nFOIcOeyP7I9//GOMjY3hj//4j2VP5YjC6uulyD7TX9S+KjLZwoOFHYJRLPh+fl1wWQQ04ipNPY/ebzaXQy2hmpeJwoP/HjkUq7cXlZF4mzIWljS+yoc+UJYYQmJ3VQ//c8kBeQYPf6LFPwZ+gJa2sWLCRp4Mg2tJYKE2oFVns1Bm6Tk7cXVL6FwYqLJ9tQz1VJgFx5jA6BagmXSbQ1bXidnbS61QZakQJ7qO3MIFGHl8Y9ffdRmOW1p5DA498QQmIiylaJvDNSNKIWjW/YRjQ3mtsnw+smqYqhf8BrYscaenmDWbNEqlZJ9RF9xqFZrF5pqwBgdQZaCqBdgFNoEZS0NaWNlxAPVqKJqm7YwqfgghfoCeYp3Lcg2WZL0ZhlupgrBI8NQb2LIIVLK6z4lIinYjt2BBLJsrFknAuDYm/nGhP8Zazk5cucGuSpORKIVBAFpnsN92qhUmAgx/PgU4GaiQUHTmsA+Ib9iwAVdeeeWsJhbvfOc7MW/ePKxduxa/+tWvIv9+165deOSRR2Z9bdmyhffUD2v0XB4OI2VMGox8PrkSz3WpGxJocVV3LMrM8gXUYgTEmSjf88kfaEwCloxKiZLilzYOx/pdJpY0xSIcBsrRpBildMp0Zmha6s0Bq1Jos6cndik0q8VhEjUAizGJoScPNrIIRufpgi9M3jurIDSjsmmipz/nZ+biMmmeqNkWlWKNhV1UgNlHV07OKsBENM0PFtAEUBjYDTVTPv441MbGsf83D+DQlj9E/h7LZoSaaeKoC16HsWefw/7fPtDyNfbsc6iNjcEolpiMZc+b11GV7wfqGNgn9PTEUv81YBDnYaUC9ByHyQacEAKNsTKxNsEuOUIIgW7nmAXtWSan7CHfW58FLKtILMp7ZwCrIDTgJw8qB/an/ntaS4pmzP4+qiQny0SjNTBAVaHhVivMEjxGqZi4YmYWjGLYfqWD/Iq13Px5mN6zJ8Zv0leyx03Q+gkZBpY9KSy82FjiMLIKdFj10ehJ7WAQUBsdhUHRBL4Zo1hCbULiPlwRi8M6IL5v3z7813/9F9797ne3fP+2227D1q1bsX37drztbW/DJZdcgm3bwhuA3HLLLTjjjDNmfa1bt07EWzis0QwDbk1sOVBAmgYSXq1GHdgkqJcKdlkluDX6IHXcbC8TL+A0Sk8GCQY9l6wjdFzf767jFguoxV0oMnifJmN/yrj4ZZPyMtN+w8d0C3JWQSc/EDccb0wGQfikFh7sLHnEetQD9J7ZrMqmE3sHh86FzfnmKyDprjlWCnGjTOffzDJoQetpyjIIbc+fh8ldLzF5LRYQQjD4ipej7/RTURsdxf7fPoADv3twVpCHZUAL8JWn8847F32nndryNbV7N6Z274FRZhMQz82fh+ndHQLiU1NMAq724AAq+9nahXTDKJeoPYyBICnA6FobGEDlABulM8DOPicgt/AoTO+OE5Tqjq+oZacQn2Z0/rjT08ySV9bAABM/aKb384FBqnPMq7L73OyhQVT2pU9ksFSI2/PnYSpWwDUcX5nM5ryxBwcxvY9N019azN6EyUpOaJYFz3GorW3iYA0OxrJnY2XZk6b6xm+qSdk0tacH1ZgV193mwkQEVS5R2wXVDo0yW//oxeRWbqHIL7CY0xzWAfFvfetbWLVqFV7+8pe3fP9Vr3oV8vk88vk8PvCBD+C0007Dj370o9DXeN/73oeHH3541tdtt90m4i0c1qRWfDG4qNNkJD3XhcbIs87tFsT16L2nCPFL3rrhdx6mkzql6czMouOxXiwmtJdgU1JFQOolhd1Vgix8jmX5afuBeEENzULwPaZTNt9lFCxNotjxVV2UZZIxbZWaob1+/QaKyRakLBRstN6QzHxEU3gHz5oLo3Jyo4feu5PdxiChhUT7PKpsGnwB9c0hRaCAJcUVyzH+3POyp9EC0TToto3+M05H38tOQfn443HggQdw8JHft6h9WdtYEV2HbtstX4MvPxtHve61zMbS83k409ORquXaxAT0QoF6HM2yhHu2plHlhcFKJQgE6l12iYHa6CiMEpvgAADY8+dTBQ2bYanu1QwDnuNQV/gA9bUqMwV0Pyr706uxA1g15QWCRFD6IJhbY6zs30ehVmdZZTA4iOkYlhyRc6mwswDKLVyAqV27mbwWLdZAPyopPyOWlWoAUFq1EsO/f5S7hUvQ4Lhbryy3UmHSwNpI0cDacxxqy1VrgE3fClb7AaLpvl0QRbBpev9+WP391HMBAN204DDqA6Hgx2EdEN+wYQPe9a53df09rd7UJ4yFCxfi9NNPn/V1wgknsJ7unMMaHMQUZXOqtOh2Ds50svIrZopTgZluomtwnc4BJ2bqBpLMvoSJt3Y+n0jZ6jd4YeeBGEfZxUyZSOlzmAajxGaznhaapossmj4Cvko2roKPxbVE9OTJJVrSBD5ZedYC6dXZrBbAvi0OnUKFVYd7k0EzK1ZqUdrgPMughW7bILohp5dCyFw022Ki7GUN0XXo+TzMnjLmrX0NrIF+IZv39jmwUrcGlI5ZgeHHHofneXCmp3Hw94/i4CO/hzM56duzMAq46vlcLMsqVseTWfM6purdASYB1IDaOJuERYDfZ2OSTQNLj97aoBl7iE753ICwS14ZhTzc6Qq15YQzNQXdZuMFTwiBUSik3guxrHahTYQx9RDXdZh9fZhOef35TWIZPXNzOThTk1TrMzA6h+156ZXzrBpqB+QXLYJRKuHQ5icAAGPPPIuDj/weEzt2AmD3bCCEwBoaROXgcMffY1VNYpbLqZJUtPcpPe/fn2hhJXgDfGFS2r2nW6tB03VmcwEAzWDTB0LBj8M2IP7II49g8+bN+NM//dOW72/fvh333XcfKpUKKpUKvvrVr+LBBx/ERRddJGmmcxezVIIzwWhRm4I4weJmvJoDUAZwAcDs7UMlpgUD9VgxlPC+EkVCt3YWzTyLhURjsgziWfPmYWp3HPWEB8LAbFRUY7FmmJVqpYRGocpMLUBIbM9gZkEJSo/ipBg9PSmUIWw2gTTnGIvGngBg9pSpSzb9842NTQltVYbHoCkzUL/+KI4LS39ewFdmjT3zDLPXo6G0alWqufhqLzHNhnXbRnH5cmi5HCZ3vkj9vJVJYekSaIaBgw8+hP2/+jVyR82HPX8+Dj7ye1QPDjPz67QHB2MFg1ld72Zfb9eARxxY+8O7tRp1YKc2MYnhRx8D0XXmlQmFpUsxsX071WvwSBJZg4OYprDfaMB4asWVKzD27HNUr+ErUdklukqrV2H06XT3c5bJVsBfA6S1lWHZmBWoP+dSHhd4bPtT2ENDmHopnUqc5XEJKpHSWJWwtgoDgJ4TT0BtdBQHHnoYU7v3oLTaXw9M7d7tW0QxaiIcx7Oc1XXpi3HQVZHOC2rbQpdhVQ2FjUv10CGYvb1M5tGYT28vqiPDTF9TwZbDdnW9YcMGvPGNb8RRRx3V8v2xsTF86EMfwsDAABYsWIBvfvObuOuuu7By5UpJM53b2IMDsf15GzBaV5sJ1W9+0zQWPl1+YJOVn3XHsXp6uqrY3FoVGqXNA1C3oUkY2KINFGsJPcSZeiD29qI2OgrPE7N4sAb6Y2+cPc9jsqGi2sSysDZKYeXRGJ6VvzSCkr7umyWXUUmxaKsaPW6z3yZYBf/N3t7UCUJWXeXN/n5UKT1WWVmmaLYNl7LhNCvFGtF1EI2kVha6DH1eAdTVUgcTJ4tYl0wDM2uXpJ7BrINKcSivXoUDv3sQ+aMXCR2XNb0nr0H5+OMw8PKzkV+0CIXFR8OeNw9jzz4Hs4dNQNwaihkQr1aZXGMNmw3KYADza62vj8pP3XMcHPjtb2EfdRQGzzmb2bwCCkuXYGLbdqrjVhsbg15kp1wH/ADW1K5dVEEllsragPyiRdTzcqemmAX6AL8vRG1sPJU625mcgp6jt4kIKK1ehdEnn0r1tyz93gE/Ee1Wa+l8qhlvK0vHrsbIxo2p5uIwPl/sefNS9Q5wKxXoDCxFmiGahoGzz0L52NUYPOdsmOUyBl9xDg5tfgLO+Dj0YpHJONbQEKa6vGdnagqaxeb90TYvT0tiQV0IrKwCAbpK/trICAzWAfG+PvrPRYwO44jlsA2I//M//zPuvPPOWd8/8cQT8eijj2JsbAwHDhzA/fffj7Vr1wqf35ECq2YvaTB7k934WakRCQiMUglOROm357nMFsNmjIAiK59XGnuLtBCiJbKXYNWFOsDs66PuRh2XRN3nGdk3AAAx9HTlpAxOYT9YkG4DxzIgnl+0KJYajVmQuL8fVQaqwSR4npcouOAyqrawBtIHo5l5iNt2YgutsLloDFTZLJSULM/93IIFXTdkUbBq9hRACEFh6VKMbNyU6O+cySnoeXYb84CBc87B8COPJHoG1MYnmDSATIKez2PRm96A0jErhI7LGqLrMHt6YDQFG0qrV2Hhm97IzPbC7OlB5cCBrvdCZ7oCnVFiI6k4IxSPrT88bTXG+LbtyC1ciPzCBUyVvAGaYfiNdlMG7ce3bcfwo48zTxIRXUdu0SIcemJL6teoTUzAKLEJqAUQTUP+6KMxWbd1SAOrZ34zpWNWYOTxjYkTG/49nd191CyX4TlOuibuHpja7gB1i6hHfp9wTVZjtu4P0G0bPSeegOFHHk2cTPGb6bJLOOUWLcTEjh2J/86Znmbisd1O8DwKrgndtmENDeHQlidhDQwwGUMzDBilIsa3bgPgr9NHn3oaIxs3YWTzZjjT03DGx5lZhvl++gwqXBLiV6lS7qU9UPclC9CLxcQCv4DqyAjMnh4m8wgwe+Jbd4YhQoB5pHPYBsQV2cAol1AdGUl2sTK6rs3evmQZQM9jdrO1BgYw3RQE8uBhfPt2VEZG6g1aGHnj5XJwuqgNPVZ+symaATKBILZKm7U6zw/mDTN7vU4YCfzd3EoFhFGn+USB+Dq+gpPR5jylfQhLX0drwFcydVPJsGgwE4wXx0OSZcm3nrPhJlABMbPl6O1FJa3ywXWZ9QTQbSudIiuYCkOFpmZb1GoZVsGxuIrZMNzpaeZq6OKK5XArlUSl9pUD+2ENsGlw1IxRyKP/rDNx4MGHMLL5CYxsfiLUf9rzPIw/vxUjm5/A6B/+wGyznATWnt5ZwfciZhcYI5oG+6j5mHrppY6/505NMgvI2UOMbDYYYpRKvkp1Kn4FXoDneZjYug3lY1dzmNkMpVUrMbJpU+KE/cSOnZjcsQO9J5+E3IIFzOdVPnY1KgcOJq7ymtqzByObn8ChTZthDw0yn1fxmBU49Icn09lOeB5z2xvAV/pD05JbhLDqzdNE+djVOPhwsiA0wMd6J7doIfRiEQcffiT251U5cABmfx/zuRQWL4bZ2+PPJcH9wJlgd48E/N4BhJDECXqXU0A8jNLKYzC5cyfseUPMXrPvZadgfOtWjGze7H8GExPILVoEs9yDQ5s213tosFKky3kWWf199NZhDG9PBAS6baE2kSym4cGD67hMhSBA0OjTTR/Ydl0u92/FDCogrqCCEM1XecTsHs1SPR2oT2V4mFsDA5ja+SKcagVOZRqjTz4FZ2ICY08/zXQRQUBAtM7NLt1aDToDnzctpb8b9bi5XGyLAXdqiunCyOrrw/S+fUKyr4QQ6LlcrKSDW2XXRMYaHMB0wu7ufhMbNsFBsyedp7LHuJFOafXszvJjzz0/69iwWHQYpVKsz9ljepx7EildWSXSAsuANLi1GrPGNbSN5Fiqoa3BwdRNtVhj9vb6itkUpfZ+yTRbNTTRNPSfcTomd76IQ09siVTNeJ6H0aefwaEtf8Do088gv3Ah03kEWH19GHz52cjNnw+rrw8HfvsADm35g2/tUp/DyGOPY2rPXuTmz0f5uOOQX8RnLgo2lI45BuNd/JadKXZBFmtoCNN701/vPCw2AKC0cgWGf/9Y4oDf2DPPwj5qPvOAZTtGqYTSMcfg4EMPx57j9N69GHvqaQycdSasvj4uQQKiaeg9+SQcfDh+9Yhbq+HQpieQmz8fpWNXI79kCfN5aaaJnhNPwIEHHsT41m2ojo5i9MmnOj5/PdfF6NPPYPz557kEWwGg75STMfXSboxs3hxLpMTL49gaGoJRKmL49492TUhXhodxaMsfMPz4RmZ2Tc0QQtC75iTkjjoK+3/jP1MmXghXR49v3YpDW/6AQ09sQf7oxcznAgDl445FbuEC7P/1bzH61NORn0FtfNyfy5Y/YPz5rbDnz2M6j/4zz8DIxo2J1qqsLW06YRSLOPqKy5kGRDXTxOArzkFu/lEoLl+O3lNOhj04gMLSJageOgSPYQA2sE8U2cMI8O2TmDQjZkh+yRJMbH8h0d/UxsZhMLbhCjCKhUhngW64jHqeKKJRR1dBTX7JYhzavAX2UPeMKivbkoDcwgWY3LULRQ6Lz05ohoHS6pUYeXwTiKYht2A+cgsWYGLbdow98wzyRx/NbCyjVEJ1dAxWhKeVO81GTUxAQHTN91pn2F25G/77OxQrieBMTTHN3BNN9wNGBw/C7p+t+mMdKM8vWoSp3btRKh3T8ff8ZjbsFOKjTz6d6G9Y2fAAdS+34RFYfX2J/s6t1piqU3MLF2Jy54sYeXwj9FwObrWK2ugYxp97DgNnn810U0QIgZ7P1ZUf0aWQ7jS7RmpGvYlMbv78WL/PsmFS0Cwpqc+jx1CVbQ0NYnLni8gvSllCz7CZlT1vCBNbt6GwmM/mNgmEEOQWLcLkiy8mno87NQWNoc9rY066jqFzX4HK/v04+NBDoc9LZ2oKbrWKwtIlyC8+mqtNiVEqNa5To1SEMzWFgw//HmZfL3TbRm7RQlj9/VysIxTs0fN5EF3H5K6XkF8YriB2JiZgMVLxGoUCnPFxeK6bynphev9+WIPsKyByCxdieu8+HNq0Gb0nr4n1N5O7dmF6924MnvtK5vMJI79kMSrDwxh+5PfIL16M3FHRzy/P8zD8+EYMvfIV3ANkVn8/eteswYEHH0LvSSd2VKJ7nodDT2xBccVypuvTMAqLj4ZRKmL0yacx8vhGFJYtxcHfPwqz3pRWsy0Uly8H4FtejGzaDM22MfqHJ7HwjZdwmRPRdQy+4uWoHDiAAw8+jMKSxbCGBmEPtl5fEy/sgDMxAWdqikvFDyEEfS87BRMv7MCBBx9C7qijoBcKKCxpfe4509M4+PAj6D3pREDTZs2T2Xw0DYUli2GUS3ArFYw9/Syqhw41gp9mXy+m9+1HdXgEpdUrkV+0kHkzv8ZcdB2FxYthFIqY2L4dw48+hvzRR7dcb9N792Fk4yaUjz8WxDBQWLKYuXe3ZpoYOPtsHHzoIfSceELkdTW9z68KI5oGZ3ISuQVHhf4eD1i/5+A19XmzX3fo3FcyT4YWlizB+LbtXS3WfEEKm3iMZllwqxVulShpsHp7Mfb006iOjcGMaUkzuWNH+j1Et/kMDGB6//509jiOC2jZOK5zFRUQV1CjWzY028LUnt3Ize/80PKDrQwD4kfNx8FHfo/CksXUDR6TYg8OQasHogO/qcKypTB6emD1sVvU2POGUNm3LzIgzsr6AAh8rg7B6uu8WGUZKLYH+jHxwo6u5w5QVywyDowUlizB6JNPhQfEGXsu2vPnYfj3j6G0snNA3KtWmAVfmpt+xV2o+I1aWXX77k3lG+hWq0x9OAkh6D/9NL+csK5G6znheNTGx3Hgdw9i8JXnMG1olF+0CFMv7UZpVYeAeKXCLCBsDw5g+NHHgdWrYv2+W6k07l+0mP19qBw4GBl8ipwDwyoAq68PhzY/weS1aPF9jA+m2hywaqjbTHHFcuz75X2w581LtNlzppInOeKimSZyCxZALxThhJS1mn29sOfNY+7t2g2ztxdmby+MugelPX9eZjZ4ivj0nX4a9v/q16iNjc36mdXnJ8FLMe+VccgtXICpXS8l8rSujo5i6qXdmHpxF/pOPYXZXAIIIeg9eQ32/+a3OPTEFj+x0yExPb1/P0a3/AGD575S2DkfKGmn9+7FoSeeQHVkBEaxOOs4utUqDm35gx/kFOThbw8NYuCsszD8+0dRHTkEPZ9DYenSlt+Z2rMH07v3wK1UUFi+TMi8rL4+DJx5up9w7+nB9N69QF3xO/78VtTGJ6BZFiZ37kRp1Urkjz4afaeczHVOmmn6n03Ob6438tjjLSp5t1JBdWQEpWNWwOztgT2PrfI4gGgaisuW+o0tK9MYfeoZ1MbHQXQd+YUL4Tk1HPz9Y+g75WRuc2gnuOZ8z3y/kqQ2MYl99/0Kg+e+EuXjjmVu0RA5l4F+mP19mN6zF4e2bPEV/fVrfXLHDvSdfhrT/WsYZk8Z/Wee2biuApvC/NGLMLnzRQDAwYceRvn449Bz/HGoMWxymTV4JPaKy5dh7y/uQ3HF8o73cZfxftrq60PlwIFUCSbXYRecb6bnxBNw6Ikt6D/zjK4xItepoTY+ztw/PMAeGvTjVcuWJo5XeS77/g+KVlRAXMGE0upV/x97dx4fV13uD/xzzuxbZs2+L22aNl2TlEIpFKgB2QRlt15Ay+aGckG4CBQqV38ooPcKCooUFS4IiIpeuUgESkAoTUqXtOneZmn2ZDKZSWY/5/dHyNC0SZu0MzlZPu/XK5DOmTnnmcmZM2ee8/0+D3o/2Qqt0wnxeNM64twUURBV0Nhs8B8+DGOCppodz9EHTkEQoYtzfVFNUhL6DzYMuy3i8yHS3w996mASOV4XA7ROJ4LtHSdOiEfjd2FjsPnF8acRSdHI4IeBJMd99LpKr4cgCoMNZI46OZBC8Z2qp9LrEQ0GBhOBx3kfRIPxrZWuNpsQ7R97o6fBEeLxSdSqkywI9/aO+3GDNcTjOyJTUKli75khmqQkWBeUwrN1W1zqhw/RpSTDXbsZ5qLCUe8TGYhfgz6VwTCukkfxrMevczoQaO8Yf0I8FL8R8oJKBVmSJ8UIFUEUoUtJRrC9fdw1buP5mgwZbKw1Fz0bN8G2cP5xR6HJkoSBxiao9LrBEa8JPgnXJFkSMmX9VB05apymHpVOB8ey00b87Ondug2iRhvXEf+mgnz0fFwz5oS4FA7DvakW5tlFSJo3N3EjQ0URjtOWItjZid7Nn8CYmzs4cjUnO/belsJhDDQ1of/AQThPX5awi2DHi1GfmjrYZ6W3F/0HB8uBHPn3CbS1Q5eSPOGNZTVJFjhOq0Copwf9BxtiyeYhAw0NsMwpHrx4N4GfO4JKFdtnjpwVpktORqCjA5Bl2BYsSMhI7OOJXVC0WIaXTzEZYZlVNGGlL4aet9bpRLCzE3Ikip5NmyBL0oQmw480dBF4yIkSlokiCAL0qSnQJFkQOqIXluO00+Laz+F4NEkWOJYtjV0gCHv60P7mW0iaWwK1xYyML1yCYEcn3Js/GTwnmqALBtOBoFJBl+xC/4GDxx18FRkYiGvTVENmJgKtbSeXEI9zk90haqMJGqsVAwcPwZCTfdz8VLC945jvh/EkiKrPLho4xvcayZI84YNDZhoeYSguVBotjDnZ8O7ZC3NRIVSjjDyUwvFrlDfElJeH3q3bIEsy9C7XiAdVWYpO2ekmgqiCIABhnxcaswXBnm749h+ASqeDqNfFtSGMxmqFb9/+E95PDochxCuRBQGiRoNoODTifhP2+dC3vQ6iThe3Eg9HM+Rko7+xEUnFxcNujwaDUOn1cd2WMScb3t27YZ03b9T7RAcG4tq4TZ+aCv/hw7AUzx7T/aPBQNy+FItqNQSV+tN6xGN/LePZnPZE9Ckp8GzbHtdSRyrdYJPLcF9f7MKZFInA39wMyINf2KL9/VDHcTSC2mwa7JA+huRKXJuWOp3w7Kgf9+PiGQPwaTPTjsSe1I6VubAA7s2fjDshHvX7oUrAl1JDZgZErQbu2s0w5Q8mlXTJrmOSvp66HYAsw7e/K2FTyYkmgtpohHqEL/xauz2uFz+BweO9qNUg7PXGylccj6duByxzZidsevaRRLUahvT0wfJ0Hg/C7l64P9kSe3/7W1uhczrhOG0p1AqOxBz6e+mSkxFobx+2zFxUeNxyKomk0uthyMiALiUFgbZ2HDmFx7HstBH3MaUMjYRWmtpkUnRfGiJqNLH3mNpsBkQx4SOgx0rpC/cqgwGGCZptMeL2dbrY30afng59evqwv406LxdSMAj35k+UCnHKsswpRud71YOlcnJzYvtaoL0dUb8fhqwshD19UFvid9Ff67Cjr3583wNkyAh1dkGWJYgJ2hdN+fnwNzfDu7Me5llFo/bF8be2wbYw/jO1jmTIyoJ39+7xJ8SHBgVSwjAhTnGjT02BHI1+Wq9w/ohXdE80MvZkiGo1rAtKEe7ugWfHDhiOqJMq6rTQ2R2QQvGryawEy9wS9G7dBn1aGkJd3UgqKYGoVqF32/a4nnQOdmbWnTB5GQ2GoIrj6Cp9SgoCrW0wHTUddSj5by6eDUCG2piYE2yt1Qbf3sGplUe+nlIcG28NMeXno+fjTejbtXvEizcqg37E0eqnwpCRjs4N1TDPnjWmk/CoPxDXxiLG3Bz0HzyEpJI5Y35MIkbKHk/KeefGfZ32JYvhrqmFqXBwlLj/8GFoHQ6ojQb01NRCbTJBH8cvr+aiQnj37oOjvOzEd5bj94VMEMXB5r/R8U/ri+eXQsusIvTUbB53QlyKxP9kU2UwQBDFY44pJxLtj++onSPpkpNhLy9DuNcDQEb3xo9hLvqsbER0YADR/gE4lpYPJgzjeLGVaLJIVMkNc9FgXxnbwgXHnY0V8fkQ9nhgX7woIXGMRmOxQGOxQM7MRKClNdZ4zVyQP+4Ld4kkajSTov/C0US1Gsas+F00p4k10aPlaewEQRjxQoV5VtG4ylDRIFGjgWv5GfBsr0PE6x0ceCNJ6D90aHDWxJatiPh8cJ62NG7bFFQqCCrVuAY/DRxqiDW+tJctiVssRxLVahjzchHs6ETvtu2wLV50zOC7sM8HldGQ8JkIKr0eEASEet0nnIl/pImYrTnTMSFOcSMIIoyZmZCjUfQfODCYfDuqlIccCcd9hDgwOEJdlZYG8dP6dUP69x+AOEcLSNKUToirtLrBesdeH5LmlUClHUzSmouKoDbEdwSz1uXCQFMTLLNmjXofORSCEMdEsS4lebC2Vk52bJ8JtLcj0NqKpJKSMTfEOBWWOXPg2blzWIPWQHs7LEXxqzMKfNr4Z9FCBFrbRkw49dXthBQOxfVK9dAUurGWcIj6/dDFqeEY8GlC/t09sMwpHnsd82D8L0YcTyJG62isVtiWLP40ATk4O8CQmTnYdNNoQvtbVXDE8YRUa7Mh4uv/dHT9xDYA1KenY6CpKdbQ60RkWYYsxTfhqjIYoNJpj9tM72jBzi4IGnVCkmTmokL07dgJe0X5CfevcF8fwr2ewbqvxzn2nipNUlJsxoLKZEbE640tUxmNMM8q+uzEm7WzicZM53QimpuDno+HX2g6mm/fPjiWxu+4P16CIDDJRESTniCKLF12klR6PexLFsN/uAWyJAGCAOfpyyDqdPAfboGo1cT9vNdUkI++nfWwLV50wnPeYE8PQm43nMtPHyzpmcAZJQIE6FNSIIgC+nbshCEtDRprElQGIyI+H/r37YPpBL294sUyezZ6t22HdW7J2PftqMTz8QRjQpzizpiTDe+u3Rhoah6WXAQGS6Yk8gqc1mYDjmgapHXY0bttO8z5eROeIIo3jdkCjXn4VNx41ysHBkf6e9rbEezqhM41WGcv1NsLKRQC8OkI5mAQqjjWuB6qrTXQ0Dj4AS1JGGhuhnXhglHL78SbxmyGZfYsRHyf1TMfmmYcbyqdDqZRGjDpU1MghcNxvxpsKixEz0cboXW5RnwPBru6EQ0EBn/v7IR13ty4bVsQRejT0hBobT3hFPFYDeg4jmBWktZmG7GRmc7lRNrnL4j7czTl58FTtwNJc0uGlb2RZRnB9nZIkSi0DkfcGvEeud3OdzdAn55+wnI74b4+QBDiOgthiHXBfHRVvw9BFI47UnyoVnbv1m0QRDEhUyUHp/53wLO9DjqnE/q01BHf18HOTvRu3Q5TQf7gtOEJGsmmczqgc8b/M4RopjJmZUKl1w8e40ZhnT8/rg2jiYiIjiaoVDDmZB9ze6JmuujT0hBs74Bv7z5YZo88sEOGPNiT4cBB2BYtgqhSQ0xQI8uj6VzJgCgi6g/As2MnjDk56G9ogDk/HxrLxMSg0uthnTcXnp074agoH1MPuHiXl6Rj8dWluBMgwFxU9GnjIg30qSkQhMF6jXIkAkE/caM+VTo99Ckp6Nu1G9bS0gnb7lQmCCKS5s1D75Ytg1eVJRkDzc2xkcUDjY1Q6fQwxbm5kTEvF4G29lji3VpaOmHJ8CFaqw1aq21Ct3k0lcGQoOYiBhhzsuGu/QTGnOHTkaN+P/zNLTBkDJbvsC9eHP+EfEE+uv/1IXQpKSMm5KOBAPrqdyHQ1oa0ys/FtTb+ZJWIWpbGrEzI4TC6P9wIS/FnJ6Rhdy/CXi/UZhN6t2wd9WT1ZIlqNZJKSuCu3Qzn6ctGTPTLsgx/UzPcmz+BoBITMkVSpdfDcdpp6N2yFZH+fqgMBoha7bB62LIsw1O3A3IkgrTzP4ewxwNdSmLq0yaVzEF/QwOC3d3wt7TAcNQXkYivH8H2dtjLl4x44YSIphadyxnXGVZERESTnSAISJo3F93/+giiRgPx03xPsGsgdp9Ifz8ifX1IKpmjSLPUofrdapMJEZ8PSSVzjhlsmGhqkwk6pwP+w4dhzDxxeTApEklYDzUaxIQ4JcRQXe/+/QcQ8flgLiqEAGGwDMIEN+oyZmdBbTYx2TAOQ8mtYE8PAMA6vxQq3WBpFlGrRe8nW5BUGr8RxIPbnJx1I6cTc1EhRK1m2Cj4IY6l5XFvIHoklV4PY17uYFO/EUbH99Xvhik3B2qzGd0bP4YqzqWAZgpBpRpsbGwwDPs7i1rtYG1xUYTW4YQ+JTnu2zZkZiDs9cKzdRv0I5QsCbS1Q45EkLrqPAS7u+NaP/1ImiQLnMuWor+hERFfPwIt+2DMzYntU+E+72D9xE8T94nc7wWVCuaCwamYQ/EczV5RHrcmtkREREREE03UaOBYthQDjU2QfBEAQMQfOOIOIiwlcyCqlU3wjjZ7d6IYc3Lh3rwZWpv9hOVi5EgEwiRq3jwdMSFOCaPSaGGZU4y+7XUItndAn5oKKRiEagJHiAOD5Th0TteEbnM6GK1LvC7ZBcdpS2Oj/mlqMR7VuHQimQsKIKrVsZraR0oqKY6VuBA1GmjttgmObno5Xo3YsdbXPhmW2bPg239gxL+xymiEuSAfgkqV8JIBolYLy6zBOr7GnGwMHGqAFAwOLhSEwamKE1ySx5Sr3HuPiIiIiCiRVDpd7PwbAEyGY78PzHSiWg3bgvmjNvo8khRJbLlhYkKcEkyAAEtJCXq3boXKYIAUZh2kqU4QRI62p5M2loT8aPXVafITRHHYifBkoNLpYCmerXQYREREREQ0w6n0BpiLiuDZum2wnvoo+TE5EoGoYe4skfjqUsINlt+YA8/2OgAYUwMBIiIiIiIiIiKi6UTncEAOhdC3cydMeXnDlokGPVQaLaRgEMIE91SbaZgQpwmhNpqQNLcEUjCkdChERERERERERESK0KelQZYlBDs6YrfJACJeH+yLF0GOSiyZkmB8dWnCaCxJwMQ28iUiIiIiIiIiIppUDOnH9n3q27ULwe4uBaKZeaZkV7wbbrgBWq0WZrM59tPY2Bhb3tTUhMrKSphMJuTn5+Oll15SMFoiIiIiIiIiIiKi0Zny8tD7yVaoLWalQ5n2pmRCHADuuOMO+Hy+2E/OEY3arr32WhQVFaGrqwvr16/HTTfdhLq6OgWjJSIiIiIiIiIiIhqZSq+Ha/npMBXkKx3KtDftSqbs3bsXGzduxF//+lcYDAasXLkSl156KX7729/iJz/5yTH3b21tRWtr6zG319fXT0S4RERERERERERERFAZjEqHMCNM2YT4r371K/zqV79CdnY2br/9dnz1q18FANTV1SE3Nxd2uz1230WLFuHtt98ecT1PP/00HnrooQmJmYiIiIiIiIiIiIiUMyUT4t/+9rfx6KOPwmazobq6GldeeSWsViu+9KUvwefzwWazDbu/zWaD1+sdcV233HILLr300mNur6+vx+rVqxMRPhEREREREREREREpYEomxJcsWRL7/ZxzzsE3vvENvPLKK/jSl74Es9kMj8cz7P4ejwcWi2XEdaWnpyM9PT2h8RIRERERERERERGR8qZsU80jiaIIWZYBAKWlpWhoaEBvb29s+ZYtW1BaWqpQdEREREREREREREQ0GUzJhPjLL78Mr9cLSZLw/vvv44knnsDll18OAJg1axYqKipw3333we/347333sPrr7+O66+/XuGoiYiIiIiIiIiIiEhJU7JkyhNPPIGbb74Z0WgUOTk5ePjhh3HNNdfElr/00kv46le/CqfTiZSUFDz99NPjHiHu9/sBDNYSn4n2to9cc52Ixi/cMXLJJiIiIiIiIqLphjklZc3UHMRQDncop3s8gjxUa4SGeeGFF9hUk4iIiIiIiIiIiGiKeP755/HlL3/5uPdhQnwUXV1dePPNN5GXlweDwaB0OBOqvr4eq1evxvPPP4+SkhKlw6EZiPsgKYn7HymJ+x8pifsfKYn7HymN+yApifsfKWm67H9+vx+HDh3C+eefD5fLddz7TsmSKRPB5XKd8GrCdFdSUoIlS5YoHQbNYNwHSUnc/0hJ3P9ISdz/SEnc/0hp3AdJSdz/SEnTYf9bvnz5mO43JZtqEhERERERERERERGNFxPiRERERERERERERDQjMCFORERERERERERERDMCE+JERERERERERERENCMwIU7HSE9Px9q1a5Genq50KDRDcR8kJXH/IyVx/yMlcf8jJXH/I6VxHyQlcf8jJc3E/U+QZVlWOggiIiIiIiIiIiIiokTjCHEiIiIiIiIiIiIimhGYECciIiIiIiIiIiKiGYEJcSIiIiIiIiIiIiKaEZgQJyIiIiIiIiIiIqIZgQlxIiIiIiIiIiIiIpoRmBAnIiIiIiIiIiIiohmBCXEiIiIiIiIiIiIimhGYECciIiIiIiIiIiKiGYEJcSIiIiIiGpdDhw5BEATs27dP6VCIiIiIiMaFCXEiIiIimhJWrlyJ++67Ly7revDBB3HmmWfGZV1Heu6555CVlRX39dJnEvW3GyIIAqqqqhK2fiIiIiJSFhPiREREREQ06cmyjEgkctKPD4fDcYyGiIiIiKYqJsSJiIiIaErKy8vDunXrcOGFF8JisaCwsBB/+tOfYsu3bt2Ks88+GzabDXa7HWVlZdi9ezdeeOEF/PCHP8SHH34Is9kMs9mM6upqBAIBXHnllcjMzITFYkFxcTGefPLJMW+zuroat956K1paWmLrfeGFFwAAN998M/Ly8mA2m5Gfn4+1a9dCkqTYeleuXInbb78d1113HaxWK7Kzs/HLX/5y2LY3btyIlStXwul0Ijc3F/fff/+wBHF9fT0+//nPw+VyISsrC7fccgs8Hs+w2J955plh6zxyNHRjYyMuvPBCOBwOWK1WlJaWorq6+rh/gw8++AALFy6ExWLBsmXLsHPnztiyaDSKxx57DCUlJbBarSgrK8M///nP2PK6ujqcd955SE5OhtVqxWmnnYa33347tnyoLMtvfvMbLFy4EEajEY888siIf7uR5OXlYe3atbjgggtgsVjw2GOPobW1FRdffDFSU1NhsViwYMECvPLKK7HHzJs3DwBwySWXwGw24/Of//yYngsRERERTSEyEREREdEUcPbZZ8vf//73Y//Ozc2Vs7Oz5draWjkajcqPPfaYbLFYZI/HI8uyLJ9xxhnyQw89JIfDYTkcDsuffPKJ3NbWJsuyLK9du1Zevnz5sPUPDAzIzz77rOx2u+VoNCr/7W9/k7Varfx///d/Y97m+vXr5czMzGNi//Wvfy23tbXJkiTJH374oexwOOSnnnpq2HNLSkqS//nPf8rRaFR+9dVXZVEU5b1798qyLMu7du2STSaT/OKLL8rhcFg+dOiQvGDBAvnhhx+WZVmW+/r65IyMDPmOO+6Q+/v75ZaWFvmss86Sv/CFLwyL/de//vWwuADIb731lizLsnzdddfJa9askf1+vxyNRuVdu3bJBw4cGPFvcfDgQRmAfN5558ktLS2y3++Xv/SlL8lnnXVW7D5r166VFy5cKO/atUuORqPya6+9JhuNRnnfvn2yLMvy9u3b5X/84x/ywMCAHAgE5LVr18pJSUlye3v7sG2cccYZcmNjoxyJRGL3O/pvN5Lc3Fw5NTVV/te//iVLkiT39/fLTU1N8h//+EfZ6/XKoVBIfuaZZ2S1Wi3X1dWN+JqM9bkQERER0dTBEeJERERENGWtWbMGS5YsgSiKuOWWW+D1elFfXw8A0Gq1aGxsRENDA9RqNRYtWoTU1NRR12UwGHDjjTfCZrNBFEVcdNFFuOCCC/CPf/xjzNs8XpypqakQBAHLli3D6tWrj1nvl770JZx77rkQRRFf+tKX4HA4UFtbCwB48skncckll+Caa66BWq1Gbm4uvve972H9+vUAgL/97W8IhUJ45JFHYDQakZ6ejp/97Gf4y1/+gra2tjG9llqtFm1tbdi/fz8EQUBxcTHy8/OP+5gHHngA6enp0Ov1uPHGG7Fp06bYsp/+9Kd45JFHUFxcDFEUcfnll+OMM87Aiy++CAAoLS3F5z73ORgMBuh0Ojz44IMQBAEbN248ZhvZ2dlQqVTQ6XRjei5DbrzxRpx++ukQBAFGoxFZWVn44he/CLPZDI1Gg6997WuYO3fusJHpIznRcyEiIiKiqYMJcSIiIiKasjIyMmK/m0wmAIDX6wUw2OBSEASce+65yMrKwne+8x34fL5R1xUMBnHnnXdi9uzZsFqtsNlseOONN9DR0THmbY5ElmX853/+J+bNmwe73Q6bzYann376uOsdWvfQevfu3Ys//elPsNlssZ/bbrstluxuampCbm4u1Gp17PFFRUUABkuhjMWjjz6KoqIifPGLX0RqaipuvPFGtLe3H/cxR78Wfr8fkUgE7e3t6Ovrw5VXXjks5n/96184fPhwLK5rrrkGOTk5SEpKgs1mQ19f3zGvy4mS8sdz9GPdbjduuukm5Ofnx7a5Y8eOY7Z5pLE8FyIiIiKaOpgQJyIiIqJpKTc3F7/+9a/R0NCAd999F2+99RZ+9KMfAQBE8djT4Mcffxx//etf8de//hVutxu9vb34/Oc/D1mWx7zNkdb70ksv4Wc/+xl+97vfoaurC729vbjlllvGtd60tDRcd9116O3tjf309fXFEvzZ2dlobGwcVlN8//79AICcnBwAgMViQX9/f2x5S0vLsG04nU789Kc/xe7du/HJJ5/g0KFDuOOOO8Yc45FsNhv0ej3+9re/DYu5v78/Vhv9pptugiRJ2LRpE/r6+uB2u5GUlHTM63L0azrSazyao+97zz33YNeuXdiwYQM8Hg96e3sxb968YdsUBGHcz4WIiIiIpg4mxImIiIhoWnruuefQ3NwMWZaRlJQEtVodG0GdlpaGxsZGBAKB2P09Hg90Oh2Sk5MhSRJeeeWVY8qanEhaWhq6urrQ3d09bL1qtRopKSkQBAHvvPMOnn/++XGt9+tf/zpeffVVvPLKKwiFQohGo9i3bx/+7//+DwBw0UUXQa1W495774Xf70dbWxu++93v4pJLLkFaWhoAoLy8HC+++GIsmX7PPfcM28ZLL72E/fv3Q5IkWCwW6HS6YSPOx0On0+HWW2/F9773PdTX10OWZfj9frz33nvYs2dP7HUxm82w2+3o7+/Hf/zHfxx3BP+Qkf52Y+XxeGA0GuF0OhEOh/Hzn/8cO3bsOGb9u3fvHtdzISIiIqKpgwlxIiIiIpqW3nnnHSxduhRmsxkLFy7E6aefjrvvvhsAcPXVV6O4uBgZGRmw2Wx4//33ceeddyI7Oxu5ubnIyMjAP//5T1x22WXj2ua5556LL3zhC5g9ezZsNhv+53/+BzfccAPOO+88zJ8/Hy6XC0899RRWr149rvVWVFTgrbfewq9//WtkZmbC6XTiiiuuQENDAwAgKSkJb731FrZu3YqsrCyUlZWhqKgIv/3tb2PrePjhh5GUlITs7GyUlZXh8ssvH7aNrVu34txzz4XFYkFhYSFsNhseffTRccV5pEcffRTXXnttrNRIXl4efvSjHyEcDgMA/vu//xtbt26F3W7H3LlzkZmZiaysrBOud6S/3Vg9/PDD8Pv9SE1NRV5eHtrb27F8+fJh9/nRj36ERx55BDabDRdffPGYngsRERERTR2CPJ65mkREREREREREREREUxRHiBMRERERERERERHRjMCEOBERERERERERERHNCEyIExEREREREREREdGMwIQ4EREREREREREREc0ITIgTERERERERERER0YzAhDgRERERERERERERzQhqpQOYrLq6uvDmm28iLy8PBoNB6XCIiIiIiIiIiIiIaAR+vx+HDh3C+eefD5fLddz7MiE+ijfffBOrV69WOgwiIiIiIiIiIiIiGoPnn38eX/7yl497HybER5GXlwdg8EUsKSlRNhgF7G33Kh0C0bQxK9WidAhEREREREREE4I5JWXN1BxEfX09Vq9eHcvpHg8T4qMYKpNSUlKCJUuWKBzNxNM0e5QOgWjamJ9lVToEIiIiIiIiognBnJKyZnoOYiylr9lUk4iIiIiIiIiIiIhmBCbEiYiIiIiIiIiIiGhGYMkUIiIiIiIiIiKiSU6W5djPZCbLktIhzGjRaFTpEBJGEASI4qmP72ZCnIiIiIiIiI4rFArB6/XCYrFAq9UqHQ4R0YwiSRI6OjrQ29s76ZPhACBHmBBX0h5fm9IhJJRGo0FOTs4pnY8wIU5EREREREQjkiQJVVVVqKmpgSRJEEUR5eXlWLVqFURRRDgiwTcQgj8YgT8YQSgsISpJkGQZAgSIogC1SoBWo4JBp4Zeq4bJoIFGzeqdRERj1dDQAFEUkZeXB41Go3Q4J+QPR5QOYUYzaKZvuleWZXR3d6OxsRFFRUUnvZ7p+woRERERERHRKamqqsLOnTuxYsUK2O12uN1u1NTUoLvXj6xZ5RgIRmA2aGDQq6HXqqDTqKBSqSEKgAxAkmREohL6/WF0ewLwByIYCEZg1KlhMWlgs+jhtOphNmggCILST5eIaNKRJAmBQACzZs2CWj010nhidPKPYp/OVCqV0iEklNPpRE9PT+xC/cmYGu8kIiIiIiIimlChUAg1NTWxZDgA2O12lJeX47333sOqVefCYTVBpRrfl9FoVIJ3IIy+/iB6fUEcbPFAlmU4kwxIdRrhshmgHuc6iYimq6ESKbxoSDRo6L1wKuWDmBAnIiIiIiKiY/R6+hCNRmPJ8CF2ux2yLEOUQ1CpLONer0olwmbRwWbRIefT23z+MLp6/Who7cP2fV1w2gxId5qQ4jBCJTIJRERERPHDhDgRERERERHFyLKM5g4fdh/qgyCIcLvdw5LibrcboijCYhl/Mnw0ZoMGZoMGeelJCIQi6OgZQENbH3Ye7Ea6y4TMZDOsZl3ctkdERDQV3bzmq0hNTcMP/vOHSocypXEeGhEREREREQEA3H0B/Gt7K5ravVhSkoGlSytQW1sLt9s9uNztRm1tLcrLy6HVahMSg16rRk5aEpaVpuO00nSIooDaXR3417YWtHT6EJWGT5EOhULo7u5GKBRKSDxERHR8K1euxFNPPXXK6zHpNNi9a1ccIhpUMrsI/3jzzbitbyaK19/2SM899xyWLVsW13WOF0eIExERERERzXDRqIS9Tb1o6fJhVrYdWSlmCIKAVatWAQCqq6tjzavKy8tjtyea2aDBnFwHZmfb0f7pqPHdjW5kp1qQmWxC9YZ3UFNTc0xsJ9tki4iIiAabuZ5M3fpIJDIlmr/yLIGIiIiIiGgG6+sP4V/bW9EfCOOMBRnITrXEvgSLoojKykrceeeduO2223DnnXeisrJywhPOoigg3WXCstJ0LJ6dgn5/GM//4S+o27EDK1aswGWXXYYVK1Zg586dqKqqmtDYiIjoM++++y7yc7LwyyefQEFuNnKzMvDTxx6LLd9cW4OzzzwDaS4HcjPTceP1XwEAnHv2CgDAmaefhhSHDc8+82sAwPVfWY2C3GykJzvxuXNXoq5ue2xdN6/5Kr7zrW/i2quuRKrTjqVli7F165bY45oaG3HtVVcgxWHDgw/cDwC4+647UVxUgFSnHWecVoHq996Lre8/f7AO1119Fb5x2y1IT3ZifskcvP3Pf8aW9/X14dvf+DpmFeQhPycLd9z+bQQCgdjy53//OyyeX4qMFBc+f/7nho12P3q0+jO/ehoXfO48AIOlyu69527kZWcizeXA4vmleG/DhlFfY29f34jPGQDa2tpw9dVXIzU1FdnZ2XjwwQchSRIA4ODBgzjvvPPgdDrhcrlw7bXXxmaAAUBeXh5+/OMfo6ysDEajEbfeeiuqq6vxne98B2azGV/5yldGjEcQBPziF7/AnDlzYLPZAAA/+clPUFRUBIvFgpKSEvzxj38EAGzfvh233norNm3aBLPZDLPZjP7+fsiyjMcffxyzZ8+Gw+HAhRdeiObm5lFfg1PFhDgREREREdEM1dLpw8c72pCXnoSyOanQa0ce1aXVauF0OhNWJmU8bBYdSnKt6GjajYry8lh9c7vdjrKyMtTU1LB8ChGRgrq7utDc3Ixde/fjj3/6Mx5aez/279sHAPj3734HF118CVo6urB7/0HcfMutAIC3N1QDAN7/cCM6enrx1TU3AQDOW7UKW7bvwKHmFpSVV+CGo5KyL//hJXzr9tvR0tGFs1eeg7vu+C4A4Le/fx7ZOTl48eVX0dHTiwfX/QAAsHjJEnzw0cc43N6J6768GquvuwYDAwOx9b3x9//F+Rd8Hs1tHbj51ltx2y03xZbdetMaBIIB1G7Zhk+21WHfvn34fz/8TwDAexs24O47/x1PP/MMDjW34JxzzsWXLvsCgsHgCV+vqrfewquvvIwPP65BW1cP/vT6X5GdnT3q/Ud7zpIk4aovXY6ioiI0NDRg48aN+Mtf/oLf/OY3AAYT73fffTdaWlqwa9cutLa24v777x+27t/97nd45ZVX4PV68eSTT2LFihX42c9+Bp/Ph9///vejx/Tyy3jvvffQ2dkJAMjPz8eGDRvg8Xjwgx/8AF/5ylfQ3NyM+fPn46mnnkJFRQV8Ph98Ph9MJhOeeOIJvPDCC/jHP/6B9vZ2LFmyBNdcc80JX7uTxYQ4ERERERHRDCNJMnYe7Maepl6Ul6QiOzV+DTIngtfrhSzLw5p9AoNJ8WhUgtfrVSgyIqKJIUlywn9OliiKWPvQOmi1WpRXLMXs4mJs27YVwOAF1saGBrS2tECv1+P0M5Yfd13/dv0NSEpKgk6nw398/z7U79yB7u7u2PKLL70UZyw/EyqVCtetXo0tn3xy3PVdc+11cLlcUKvV+Oa3b0ckHMbuXfWx5actW4ZLv3AZVCoVvvyVf0NzUxO6urrQ0dGB//3bX/HYT/8LSUlJsNlsuPs/7sUrf/gDAOClF1/Al7/yb1h62jJotVrc+b274Q/48a8PPjjh66XVahEMBFC/cyfC4TDy8vORX1Aw6v1He86ba2vQ3NyMhx9+GHq9HhkZGbjjjjvw4osvAgAKCgpQWVkJnU4Hl8uF7373u9hw1Ej0b37zmygoKIBGoxlX6ZN77rkHKSkpMBgMAIArrrgCmZmZEEURV1xxBYqLi7Fx48ZRH//LX/4SDz/8MPLy8qDRaPDggw9i06ZNaGxsHHMM46FYUZcnnngCzz33HLZv347LL78cL730EgBgz549+N73vocPP/wQwWAQCxcuxGOPPYby8vLYY1999VXcfffdaG1txemnn45nn30Wubm5seX3338/nnrqKYRCIVx55ZV48sknodOxIzkREREREVE0KmHr3i6EI1GcPj8dOo1K6ZDGzWKxQBRFuN3uYUlxt9sNQRCwt8UPUROAPUmvYJRERIkhSTL+sbEh4dupPC0Xojj+OtJ2h2PYjCKj0QifzwcA+OXTv8bDP3gIZyxbimRXMr71ne/g+htuHHE90WgUDz5wP/70xz+iq6szVq6ru6sLTqcTAJCamvbZdgxG9Pf3Hze2nz3+OH733Hq0trZAEAT09fWhq+uzBPuw9RmNAIB+nw+dnR2IRqMoLsyPLZdlGdFoFADQcrgFn6usjC0TRRHZ2dloaTl83HgA4OyVK/H9+x/Agw/ch3179+Jzlefj//34J0jPyBjx/qM954aGBnR1dg77XJQkKTbavL29Hbfffjuqq6vh9XohSRIsluEXxI/Mr47H0Y/73e9+h8cffxyHDh0CAPh8PnR1dY36+EOHDuHqq68eVpJNFEU0NzcjJyfnpGI6HsUS4hkZGbjvvvtQVVU17AXp7e3FhRdeiGeeeQZ2ux2/+MUv8PnPfx6HDh2CyWRCfX09brjhBrz22mtYsWIF7r33Xlx11VWxqwzPPPMMXnjhBWzcuBFWqxVf+MIX8MADD+CRRx5R6qkSERERERFNCuFIFLW7OqDVqFBekgqVampOGtZqtSgvL0dtbS3Kyspgt9vhdrtRW1uLiopypDot2LK3EyaDBoWZVjitBqVDJiKKG1EUUHnaySUux7udeCsoLMSzz/0Osiyj+r33cOlFn8eZZ65AYVHRMff9w0sv4vU//xl//fsbyMvPR19fHzJSXJDlsY1eFzA8/g/efx+P/eQR/P0fb2HevFKIoojM1OQxrS8rOwdqtRqHmltGLB+WkZmBhobPLlJIkoTm5mZkZGQCAEwmM/z+z0qztLe3D3v8zbfehptvvQ1utxvfvO1W3Pf9/8Bv1v92TM9zSHZ2NjKzstDwaRL6aPfeey8kScK2bdvgdDrxl7/8Bbfccsuw+xzdSHOsjTWPvF9DQwPWrFmDqqoqLF++HCqVCosXL469ziOtMycnB0899RRWrlw5pu2dKsXOfr74xS/isssug8vlGnb70qVLcfPNN8PlckGlUuFb3/oW+vv7sevTQvTPP/88LrjgAlRWVsJgMGDdunXYunUrduzYAQBYv3497rjjDhQUFMDpdGLt2rVYv379hD8/IiIiIiKiySQUjuLjHe2wGLVYPDt5yibDh6xatQpz585FdXU1/vznP6O6uhpz587F5z73OeRnWHHWokykOozYvq8LG+ta0en2Kx0yEVHciKKQ8J9EeOH536OjowOCIMBqs0IQBKhUgzOVUlJTcfDAgdh9fV4vtDotHE4n/H4/1q19YFzbSklNwcED+2P/9nq9UKnVcDldiEQi+PH/+xH6+vrGtK60tDRc8PkLcdcd34Xb7YYsy2huaoo1yrz6muvwwu9/h5pNHyMcDuOxR38CrUaLM5YPloRZuGghXn7pJYRCIdTX78Tzv/9dbN21NZuw8aMPEQqFYDQaYTAaYq/JeJSVV8DlcuEHP/gB+vv7IUkS9u7dGyuL4vV6YTKZYLVa0dLSgkcfffSE60xNTcX+/ftPeL8jDY1YT05OBjA4Wryurm7YOg8fPjysvvptt92G73//+7Ftud1uvPzyy+Pa7nhM+jOgTZs2QZIkFH16paiurg6LFi2KLbdYLCgsLIy9sEcvX7RoETo7O4+58jKktbUVmzdvPuanvr5+xPsTERERERFNNaFwFJvq22FP0mFegXPMI74mM1EUUVlZiTvvvBO33XYb7rzzTlRWVsamW6tUInLTkrBicRYyks3YebAbH25vQUfPwAnWTEREifL2P6uwtGwxUhw2fOXaa/Gz//458vIHy5Dcd/8D+PpttyAjxYX1v3kG163+CvLzCzArPxdLFs7HkiPKKY/FnXfdjZ8+/hgyUlxY9+BafK6yEhd8/vNYvKAUc2YVQq3WIOs4zSuP9qvfPAuNRoPTl5YjPdmJL1x8Efbt3QNgsOzJDx/5MdbceCNyM9PxdtVb+ONf/hIr4fzA2ofQ2tqCrLQU3PGd23Hdl1fH1tvX58W3v/kNZKenoigvB32ePqx7+Ifjeq4AoFKp8Mprf8bevXsxa9Ys2O12XHXVVWhtbQUArF27Ftu2bYPNZsOFF16Iyy677ITrvP322/H666/Dbrfj+uuvH1Mcc+fOxV133YXly5cjNTUVW7ZswRlnnBFbfu6552LRokVIT0+HzWZDf38/vvWtb+Gaa67BxRdfjKSkJCxcuBBvfnqxIREEeazzDBLkwQcfxK5du2I1xI/U3d2NM844A1/72tfwve99DwBw3nnn4fLLL8c3v/nN2P2WL1+OG2+8EWvWrIFKpcLWrVtRWloKAAiHw9Bqtdi7d28sqX709h966KFR46utrcWSJUtO9WlOOdubPUqHQDRtzM+yKh0CERERzWDhSBSbdrbDah5Mhs9UkiSjtbsfB5o9EFUCCjOtSHUYp8XFASKavqLRKPbs2YPZs2ef1KhhJQyEIkqHMKMZtYpVyJ4Qo70nNm/ejLKysjHlciftK+TxeHD++efjggsuiCXDAcBsNsPj8Rxz36Ei8EcvH/r96CLxQ2655RZceumlx9xeX1+P1atXj/AIIiIiIiKiqSEqydi8qwMWkxZz8x1Kh6MoURSQmWxGhsuEtu4B7Gvuxd6mXhRmWZHmMCWsPAARERFNLpMyIT6UDK+oqMB//dd/DVtWWlqKLVu2xP7t8/mwf//+2IjwoeXLP63Rs2XLFiQnJyM1NXXEbaWnpyM9PT0xT4SIiIiIiEghsixj+75OqNUi5uVPjzIp8SAIAtJdJqQ5jWjvGcCBwx7sa+pFQaYVGS4zE+NERETTnGI1xCORCAKBACKRCCRJQiAQQDgcRl9fHy644ALMnTsXv/jFL4553OrVq/HGG2+gqqoKgUAAa9euxYIFCzBv3jwAwA033ICf/vSnOHjwIHp6erBu3TrceOONE/30iIiIiIiIFLW70Y2BQAQLZyUzyTsCQRCQ5jThjAUZmJPnQFO7D9VbDqOp3YuopGhlUSIiIkogxUaIP/zww8Nqd7/yyiu4/vrrcc455+Cjjz7Ctm3bhnUTfeONN7BixQqUlJRg/fr1uPnmm9HW1oZly5YNu9+aNWvQ0NCAiooKhMNhXHHFFVi3bt2EPjciIiIiIiIlNbV70dY9gGWlaVCrFBsHNWWk2I1IsRvR1evH/uZe7G/uRU5aErJSzNBqpkbNXiIiIhobxZtqTlbjKcQ+HbGpJlH8sKkmERERTaRebxA19e1YOi8NSSat0uFMSe6+ABra+tDV60eqw4TsVAtsFp3SYRHRDMSmmjRebKo5hZtqEhERERER0fgEw1Fs2dOBufkOJsNPgT1JD3uSHoFgBM0dPnyypwM6jQqZKWakO01jGjUeCoXg9XphsVig1fJvQURENFkwIU5ERERERDQNSJKMrXs7keowISPZrHQ404Jep0ZRtg0FmVZ0uAfQ0tWPPQ1uOKx6pLtMSLYZoVEPL0kjSRKqqqpQU1MDSZIgiiLKy8uxatUqiCLL1xARESmNCXEiIiIiIqJp4MBhD6JRGcW5dqVDmXZEcbABZ5rThHAkirbuATR3+FC3vxs2iw7JNgNcNgPMBg2qqqqwc+dOrFixAna7HW63G7W1tQCAyspKhZ8JERER8fI0ERERERHRFOf2Dta8XjjLBVEUlA5nWtOoVchOtWDp3DScU5aF7BQLvAMhbNrZjn98eAAff7wJZWVlsNsHL0zY7XaUlZWhpqYGoVBI4eiJiKamFIcNe/fsUTqMMbl5zVdx//fvVToMOg4mxImIiIiIiKawcETCtr1dKMl3wKjXKB3OjKJRq5DuMmFBUTLOLc/GvDwTZFmKJcOH2O12RKNRfLjlILbt68SOA93Y1dCDfU29ONjiQUNbH5o7vGjp8qG9ZwBdvX64+wLw+ILwDYQwEAgjEIogEpUUeqZERKNbuXIl9Ho9zGYznE4nvnDxRcdNXr+3YQPMei1SHDakOu2YVzwbP3v88eNuo6OnF7Nmzx5TPCWzi/CPN98c13OgmYUlU4iIiIiIiKawnQcHy3ZkuFg3XGkpLgdUKhXcbvewpLjb7YYoiijISYEEFSRJRiQqISJJCIZlSJKMqCQhKg39/tn/B3+XYv8WBQF6nRo6rQpGnRoWoxZmowZJJi006hM3+yQiSoSf/exnuPXWWzEwMICv3XQTbrvlJlS9s2HU+yenpOBgYzMAYNPHG3Hh+ZVYsHAhzj3vvIkKeVSRSARqNVOm09m4/rp9fX148803sWnTJvT09MDhcKC8vBznn38+rFZromIkIiIiIiKiEbT3DMDtDWL5ggylQyEAWq0W5eXlqK2tjZVNGaohXlFRgey0U6vvLssyguEogqEoAqEoBgJh9PWHcLjTB58/DJNeA0eSHi6bAU6r/pjyOaFQCF6vFxaLBVqt9pRiIaKpYyLf+0ajEVdeeTW+8uVrx/yYiqWnYU5JCbZu2TJqQtyk02Dz1u0onjMHN6/5KowGI9rb2/H2P6uQm5eHXz+7HgsXLsL1X1mNpsZGXHvVFVCpVPj6N7+FB9f9APv27sWdd3wXm2trkJRkxbe/8x3cfOttAID//ME61G3fDqvNitf//Gd889u348mf/zde/9+/o6y8AgAQDAZRmJuNP//1byivWIrrv7Ia1e9tgH9gAKXz5+On//1zlJbOPybu7u5u3HbzTfjg/WoAQNGsWfjjn1+Hy+Ua70tLcTSmhLjb7cbatWuxfv16OBwOLFiwAFarFfX19Xj55Zfxta99DTfeeCMefPBBOByORMdMREREREQ044UjUew82I3SAhc0albDnCxWrVoFAKiuroYkSRBFEeXl5bHbT4UgCNBr1dBr1Th6SFo0KqHXF0S3J4A9jW4EQhGkOozISrEgyTTY7LOmpuaYmESR+w7RdCVJ0oS/971eL1566UUUFBaO6f6yLOOjD/+F+p07UXj32B4DAC//4SW8+qc/4/kXX8I937sLd93xXfzjn+/gt79/Hh9v/Aj/9fMnUXn++QCAgYEBXPT583HnXd/DK6/9CQcPHMAlF30ehUWzcN6nx+a//+/f8Mz65/CLp36FYDCIlsOH8dKLL8YS4m/+3xtwuZJRXrEUAHDeqlX4+ZO/gE6nw9r778MNX/kKaj7Zckyc//XTxyFJEvYebIBOp8O2rVug1+vH/DwpMcaUEF+wYAGuuuoqfPzxxygpKTlmeX19PX79619j8eLFaGhoiHuQRERERERENNyuBjdcVgOS7QalQ6EjiKKIyspKrFy5ckJHY6tUIpxWA5xWA2bn2OHzh9Ha5cMnezrQsLsG7vZDWLFixbBR6wBQWVmZ8NiISBlVVVXYuXPnhLz377jjDtx9993o6+tDQUEhXnzllePev7OjAxkpLgQCAQSDQdxx51245NIvjHl7F196Kc5YfiYA4LrVq/Hb9c+Oet83/v6/SEtLw0233AoAmF1cjBu/+jW88vJLsYT44iVLcOVVVwMADAYDrrnuy/jKl6/F//vxT6BSqfCHF1/E1dd+Nur9366/Ifb7f3z/Pvz8v36G7u5uOJ3OYdvWarXo6enG/v37MH/+AixeUjbm50iJM6bLQR999BEee+yxEZPhAFBSUoLHH38cH374YVyDIyIiIiIiomN19frR6fajOPfUSnBQ4mi1WjidTsVKk5gNGszKtuP0eSk4fHAnysvLY3XN7XY7ysrKUFNTg1AopEh8RJRYoVAINTU1sfJNQGLf+48//jg8Hg/27t0LURSxf98+AMBLL/4PUhw2pDhsKF+0MHb/5JQUtHR0ob3bjQcefAjvbXgX4XB4zNtLTU2L/W40GNHf3z/qfRsONWDrli3ISHHFfn762KNob2uP3ScnJ3fYY5afeSb0ej3eeftteDwe/N8bf8c1114HAIhGo7j/+/eidE4x0lwOlMwaHNne3dV1zLa/c8e/4/QzluPLV1+NwrwcfP8/7hnX86TEGFNCPDMzc0wry8hg3ToiIiIiIqJEikYl7DjQjbn5Dmg1bKJIx9ff74Msy8OafAKDiTFJkuD1ehWKjIgSyev1QpKkCX/vFxUV4cePPY47vnM7/H4/rrn2OnT09KKjpxc1W7Yec3+NRoO7/+NeCIKAXz/9VFxiECBAkmSEwhKCoSjSMjKx9LRlaDjcgea2zlgi/k+v//WzxwjDey4IgoCrrr4GL734Av782h+xcNEi5BcUAAD+8NKLeP3Pf8Zf//4GWju7Ub93P4DB8i9HM5vN+M8f/T9s21mPt/75Dv72+uv4n+d/H5fnSSdv3AWDnnzySWzZsgUAsHnzZmRnZyM/Pz825YKIiIiIiIgS50CLByaDBmlOk9Kh0BRgsVggiiLcbvew291uNwRBgNlsVigyIkqk4733RVGExWJJ2LbPv+ACpKSk4De//tWYH3PnXXfjsUd/Ar/ff9LblSQgGIrClZyMffv2AZChEgVceNFFaGxsxO9++yw83gH0+QLYsmUbajdtOu76rrnuOvz1L3/Bc+ufjY0OBwCf1wutTguH0wm/3491ax8YdR1v/O//Yu+ePZAkCZakJGg0GogqXsxW2rgT4o899lhsJPj999+Pq666Cv/2b/+GO++8M+7BERERERER0WcGAmE0tHpRkudQOhSaIrRaLcrLy1FbWxtLjLndbtTU1CIzvwTbD/QiEIooHCURxdto7/3a2lqUl5cnvJzTHXfehccfe3TMCe6LLrkEdpt9XEn0o/mDEQgCcNfd9+CJ//4p8jJT8cOHH4LNmoS//f0NvPnG37Fo3iyUFGbj9m9+HZ3dvYhGjx3VPaSkZC4Ki4rwyebN+NKVV8Vuv271V5CfX4BZ+blYsnA+lpSXj7qO/fv34bJLLkaq047Typfg3FWrcN2XV5/0c6T4EOSRxvMfh9VqhcfjQSQSgcvlQktLC7RaLVJTU9Hd3Z2oOCfc5s2bUVZWhtraWixZskTpcCbc9maP0iEQTRvzs6xKh0BERETTxOZdHTAbNZidw9rhNHaSJKGqqgo1NTWQJAmiKKK8vBznnHse9jV50NrdjwVFLrhsbNBKNNlEo1Hs2bMHs2fPhmqcI4tHe++vWrUKojjuMbJjNjCBF9miURnBcBQqUYBWo8JRlU/G9FiNSoRGk7jXY6IZtWqlQ0io0d4T48nljvsVMhqNcLvdqKurw5w5c2A0GhEOh1kQnoiIiIiIKIE63APoGwhh4SyX0qHQFCOKIiorK7Fy5Up4vV5YLJbY6NCSfAecNj227etEbloSCrNsygZLRHFzvPf+dBAOSwhFJOi1KqhU48iEf0qlEmAQ1QiEIpBCMnRaljKZKcadEL/88suxatUq+Hw+PlgdswAAYT5JREFU3HLLLQCAbdu2ITc39wSPJCIiIiIiopMhSTJ2HerBnFw7VKrpM4qNJpZWq4XT6Tzm9hS7EctK0/HJ7k54B0IoLXRBzf2MaNoY7b0/lQVDUUQlGUa9elyjwo8mCIBBq4Y/FEEwFGVSfIYYd0L8v/7rv/Db3/4WWq0Wq1cP1rzp6+vDfffdF/fgiIiIiIiICGhq90KvVbORJiWMUa/BaaVp2L6vCxvr2rC4OBlGvUbpsIiIjhEIRiFDhlGnBk4hGR5zRFI8FJagnUblU2hk406IazQarFmzZtht55xzTtwCIiIiIiIios+EIxL2H+7FkuJUpUOhaU6tErG4OAX7mnuxcUcblhSnwGrWKR0WEVFMIBQFIMOgjVMyfIgA6LVq+IMRiCKgFoVY3fVTGoJOk9K4E+KyLOPll1/Gxx9/DK/XO2zZr3518p1giYiIiIiI6FgHWzxwJOlhszAxSROjKMsGo16Nmvp2zC90IcVhVDokohlL+DQZK8uywpEoLxiKQpYTkAz/lCAAeq0KPq8XUiQIyDIgCNDpDTAYzQnZJp084RQuVIw7IX7bbbfhD3/4A1asWAGTidP1iIiIiIiIEiUQjKCxzYszFqQrHQrNMBkuM3QaFbbu7URhyIbctCSlQyKakURRhEqlQiAQgNlsVjocxYTCEqQEJsOHBP39QDQMi9kMtVqNSCSC/oEBAIDBNHNf/8kkHA5DEISJTYi//PLLqKmpQWFh4UlvlIiIiIiIiE5sb3MvMpPNrOVMinBaDVg6Nw01uzrgD0ZQnGM/pQQEEZ2c5ORkHD58GJmZmdDr9ZP+fShJ0biuLxKVEQpLMOhUkOQokKjB8jLgH+iHxWyGKIqxkikGvR5enw86vWFKjBKPRqdAkCdJlmW0t7fDZrNNbEI8KSkJOTk5J71BIiIiIiIiOjGfP4z27gGctThT6VBoBjMbtVhWmobNuzqwdW8n5hclQyVO32QL0WRkt9sBAC0tLYhG45tsToRQRIrbumRZRjgiQaMWE34hQJYl+Pt9MBqPLRM1MDCAru4eCMLkb7ipVU/+GE+FXq9HSkrKKa1j3Anxu+66Cw888AB++MMfTvorUkRERERERFPV/uZe5KRZoNWolA6FZji9Vo2l89KwZU8nana2YcmcFGjU3C+JJpLdbofdbockSZO+nviOlr64rCcciWL7/i7kpSXBYTXEZZ3HEw2H8e7f/xdnLl8Om80Wu723txfvf/ABzr/qq1BrJv+MrdkZ07fElSAIg41OT9G4E+KXXXYZzjvvPDzxxBNITk4etuzAgQOnHBAREREREdFM5xsIodPtx9lLODqcJge1SsSS4hTsPNiNj+raUDYnhaV8iBQQj2RgosVjFLUMGfsO98GeZIDTNjE9DDVaHXJnzcOmmhpUlJfDbrfD7XZjU00NcmfPg0Y7NZpbq1S8YHki406IX3vttUhOTsbXv/51NtUkIiIiIiJKgP3NHuSmWzgKlyYVURRQWujC/uZebNzRhiXFKbCap0aCiIimluYOH8IRCcW5jgnd7ryKMwEB2PDee5AlCYIooqBkAeaVnzmhcVBijTshvnnzZnR0dIxYT4eIiIiIiIhOjW8ghM5eP84u4OhwmpwKs2ww6NSoqW/H/CIXUuzMDxBR/PQNBNHa1Y8FRS6oJrhcsyiKmL/0LJQsPh2BAR/0RvOUKJNC4zPuOQyFhYXw+/2JiIWIiIiIiGjG29fcy9HhNOllJJuxaHYytu/rQlO7V+lwiGiaiEoS9jX1Ii8jCXrtuMfxxo1ao4HZamcyfJoad0L8O9/5Dr785S/jX//6Fw4cODDsh4iIiIiIiE5OKBRCY3Mr2ru8yEufvg2xaPpwWg1YOi8N+5t7safRrXQ4FGehUAjd3d0IhUJKh0IzQCQcgtfjxoHmbhj1GqTYOPOEEmfcl1q+9rWvAQD+8Y9/QPh02oIsyxAEAdFoNL7RERERERERTXOSJKGqqgo1NTWIRqMQRRGCrwKrVq2aEs3TaGazGLVYVpqO2l0dCIQiKC1wQRQntsQBxdeRxyRJkiCKIsrLy3lMooSQJAk7Nr2PA7u2QZYkQBCQVzwfUvZZ3N8oYcadED948GAi4iAiIiIiIpqRqqqqsHPnTqxYsQJ2ux1utxu1tbUAgMrKSoWjIzoxvU6NpfPSsHVvJz7e2YZFs5MVLXVAp4bHJJpIOza9j7bGfTj7rLNi+9ummhrsUA3W8iZKhHFfasnNzR31ZzyeeOIJlJeXQ6fT4Zprrhm27Oabb0ZxcTFEUcRTTz11zGNfffVVFBYWwmg04rzzzkNDQ8Ow5ffffz+Sk5NhtVqxZs0aBIPB8T5NIiIiIiKihAuFQqipqUFZWRnsdjsAwG63o6ysDDU1NSxVQFOGRi1iSXEK7BYdPtzeip6+gNIh0UkIBoPYtGnTiMekjz/ehHc3HcI7tU3456ZGvFPbhA2bm/Hh9hZs2dOBPY1utPcMIBhm9QAam0g4hAO7tqGivHzY/lZRXo4D9dsQCYcVjpCmqzElxGtqasa0srHeDwAyMjJw33334aabbjpm2cKFC/GLX/wCS5cuPWZZfX09brjhBvzyl79Ed3c3FixYgKuuuiq2/JlnnsELL7yAjRs34sCBA9i1axceeOCBMcdFREREREQ0UbxeLyRJiiUChtjtdkiSBK+XzQpp6hBFAcW5DpTkOfDJ7g4cau1TOiQaRTQqweMLoqXLh71Nbmzd04kPtrXgzQ92j3pMkmUZeWk6LJ2bhjMWZGDp3DQsmZOC2Tl2uGwGAEBDax/e29yMD7e34lBrH8IRJsdpdP6Bfsij7W+ShMCAT6HIaLob0xymr371qygqKsItt9yClStXQqfTxZaFQiG88847eOqpp7B//35s27ZtTBv+4he/CADYsmULurq6hi37xje+AQD4wQ9+cMzjnn/+eVxwwQWxaTrr1q1DcnIyduzYgXnz5mH9+vW44447UFBQAABYu3YtvvzlL+ORRx4ZU1xERERENHP5gxEMBMIIRyQAgE6jgtmohUbNGpaUGBaLBaIowu12D0sIuN1uiKIIi8WiYHREJyfNaYLZqMWWPR3o6vWjtNDJEipjFAqF4PV6YbFYoNVqT3l9kiRjIBCGdyAMnz80+P+BEPzBCAw6NUwGDUwGDRxWPbLTLNAU2lH3kWrEY5JKJSIj1QmtVnPcbUajEjp7/Wjp6se+pl5kJptRkGWFTqM65edD04vBaIYwymegIIrQG80KRkfT2Zg+kTZv3oxf/OIXuO2229Da2oqCggJYrVZ4PB4cOHAA6enpuP322/HKK68kOl7U1dWhoqIi9m+LxYLCwkLU1dVh3rx5qKurw6JFi2LLFy1ahM7OTrS3tyM1NfWY9bW2tqK1tfWY2+vr6xMSPxERERFNHpIko9sTQFtPPzrdfkiSDJNBE0uAB0NR+PxhJJm0yEoxIyPZDJUoxD1hQTOXVqvFkiVl2LSpBhUV5cPq9ZaXl3P/oinLbNDg9PkZ2Nvkxr+2tWBuvhNpTlNs+WQ6jk6GWOLRyNIfjMA7EIJvIBz7v88fhlYjwmLUwmzUINVhRGGmFWaDBirVyOstLy9HbW1trGzKeI9JKpWINKcJaU4TBgJhHDjsQfUnh1GYZUVuWhKbrlKMWqNBal4JPt5Ug6VHfAZuqqlBQckCqDXHv/hCdLLGlBBXq9X49re/jW9961uora1FbW0tenp64HA4UFZWhrKyMgjCxBzQfD4fbDbbsNtsNltsKuHRy4d+93q9IybEn376aTz00EOJCpeIiIiIJqFIVMLhDh8OtfZBpRKQ7jShYm4qzAbNMee1QyPdGtu92NfYg96W7ajfse2kExZER5uz4DR0uAdQXV19zH5FNJWpRAFzch1IthlQt78bzR0+FOfY8OEHG04p8Rsv8UhCx8tYG1mGIxIGAmH0B8IY8EfQHwij3x/GQCAMQIDFqIHZqIXdokN2qgUWowYa9fhGZg8de+JxTDLqNSgtdCE7NYidB3vQ0TOABbOSYdBxxgABwXAEcJbApVZhw3vvQZYkCKKIgpIFmFd+ptLh0TQ2riOQIAgoLy9HeXl5ouI5IbPZDI/HM+w2j8cTm0p49PKh30ebanjLLbfg0ksvPeb2+vp6rF69Ol5hExER0RQxGUaJTaY4phtZltHc4cO+5l5YjFqUFjrhtBqO+5gjR7r95fX/xcH9e0+YsCAaK1mW0dTRjwsuOB8200V839O05LQacObCDBxs6cNLf/wrvN1Nk+I4OlISuqa2FsFQFGeedQ6ikoxIVIIkyZBHWYfw6X8ECBi6nioIQux2ABA/XSAc8+/B/4fDIWzatAlnnXXWMY0sN7z3HpLS5yIqifAHI4hK0melTvQa2C06ZKWYYdJroI9TklkURVRWVmLlypVxOyZZzTqcNi8N+5p78eH2FiyclXzCz1+a/hravEh1mJBfuhILli5HYMAHvdHMkeGUcFPuklxpaSm2bNkS+7fP58P+/ftRWlo6bPny5csBDNYoT05OHnF0OACkp6cjPT094XETERHR5DZZRolNljimI3dfADsP9kAQgAVFrnF/EQ+FQthRtzWWOAE+S1hUV1dj5cqVTGLSuHV7ApBlGck2AwRBgNPpVDokooRQqUTkpBrR0bR7xMTvRB1Hh3pFuPv68fGmTTj7qFjKy8qwYcN7sGbMhU6rhUolQhQFjFTlQ/40Sy5/+h8Z8me3yfJnt3/6u/zp70c+VpJlDPg8ozeylCTYDEBqqgN6rRo6jWrCSo5otdq4HpNEUcDsHDtsZh227OlESb4DGS7WiJ6p+gaC8PiCWDw7GcBg+RSz1X6CRxHFh2IJ8UgkEvuRJAmBQAAqlQoajQahUAiSJEGSJEQiEQQCAWg0GqhUKqxevRoVFRWoqqrCmWeeibVr12LBggWYN28eAOCGG27AI488ggsvvBBWqxXr1q3DjTfeqNTTJCIioilitKnKsgycfc65CIaiiEQlRKMyopIMSZYhSTIE4bORYIIgQCUKUKkEqFXi4I9ahFoURq3TOdY4AI5APlmRqIS9jb1o7fahONeBDJfppMr9eb3eURMWkiTB6/UymUnj1tDWh9y0pAkrQUmkJK/XC1mWRzyORqNRtLR3Iy/71AesRaIS+v1HlBX59Pd+fxiCAJgMGkjhfsijHNMBGfNyzRN2TA+FklH73miNLFUoyEmZVhdcUxxGlGtTUburHbIMZCYzKT7TyJBxqKUP2SlmqFVstkoTT7GE+MMPPzysdvcrr7yC66+/Hs899xwqKyuxYcMGAIM1q771rW9h/fr1uOGGG1BSUoL169fj5ptvRltbG5YtW4aXX345tp41a9agoaEBFRUVCIfDuOKKK7Bu3boJf35EREQ0dYRCIWzaVIOzzjp25O+GDe8BlgIYDQao1SJUqk+T3qIAAUJsNNjgyK/BZHkkMpg4j0jS4O+SDEEQoFEL0KhUUKsHE+Ya9RFJc5UIyJFRp0wrOQJ5Kpdv6fb4Ube/GxaTFmcsyIBee/KnvxaLBaIojpiwEERx1BJ9RKPp94fh7gtiQVGy0qEQTYgTHUf3tfixv60RFpMWSSYtDDo19Fo1tBoR4qcXnSEIiEal2EXqQCiCYDiKQCg6OPrbH0YwHB1WVsRh1SMr1QyTQRP7HAiFQtjwfyMnocUJPqZrtdpTbmQ51VjNOpTNGUyKi4KAdJfpxA+iaaOz1w9ZBlIc/LuTMhRLiD/44IN48MEHR1z27rvvHvexV155Ja688soRlwmCgIcffhgPP/zwKUZIRERE01k0KqG7L4CuXj+aW9ohSdFRR4mVF9tPaZSYJMmIShLCkcGfSFRCJCojHIkiEh1MoIfDEtzu3lFHIEejUbz5wW6YLFaIgjA4fVsUIApCbGT60L9FEUf8Lgz/PfZ/QK0WYdCqodOqoNOqBxMNw+KeuuVbwhEJexrdaO/pR0meMy5ftEdLWGzaVIOCWaXTMmFBidXY5kVmshka9eR+PxHFy/ESv0srKrDqtAIMBMLo6w/BOxBCny+EjtAAQuHBOt7RT+uMDF2YVqtF6DQq6LUqJBm1SLEbYdKrYdBrjvlMG08sSiSh49nIcqqwmnVYUpyKmvp26LUq2JP0SodEEyAqSWhs68OsLFusnj7RRJtyNcSJiIiITlY4IqG9px9t3QNw9wVgNmrgshmwoDgTm95N3CixwaS0Chr18aeEhjLNeHfU0WoqnF1RCLVaA+nTGqTRqAxZHizfEpUGS7gMlXIZ/B3DbhtqDDZ0WzgiIRCKIhiKIBSWoNWoYDZoYDJoYDZqsGXT+zi4f8+UK9/S1etH3YFu2MxanLkwE1pN/KbijpSwWLykDHpXCZo7vMhK4ShxGptwRMLhTh9On89+RjSznCjxa9RrYNRrkOZM/MjRyZSETkQjy6nAZtGhtNCJT/Z0YllpGox6NlOc7po7fDAbtLCaeQGElDOmhHh2dvaYato1NjaeckBERERE8dbV68fhTh86egZgs+iQ7jKhtNA5rHxGRYXyo8SON1qtoqIcSWZjwrYdlWQEghH4/GH4BkLo6vFh+9ZPcPbZk6t8y/GEIxJ2NfSg0+3H3HxHQpIpoyUsPL4gNu1sh92ih8nAL/N0Yi2dPtiTdNxfaMaZTInfyRTLkHg3spwK0pwm+PzhT5Pi6Scc3U9TVyAUQVv3ABbOcikdCs1wY0qIs/wIERERTTXRqISWrn40tPVBkmRkpVhQnGOHXjfy6c9kGSWmVBwqURistWrQINVhRHd3FMDojc92HWhFYW7GpEnmdbgHsONANxxJepy5MCOuo8JHcnTCwmrWIT8jCdv2dWFZaRobJNJxybKMhrY+zM2fWUkvoiNNpsTvZIplpirMtKLXG8TeRjfm5DmUDocSpLHdi1Sn4ZR6uhDFw5j2wOuvvz7RcRARERHFRSQqobHNi0OtHpiNWszOtiPZbjhhgnKyjBKbLHEcr/GZKIoIyxp8VNcKrVqFZIcBKXYjbGYdxASO6hqpuac/GMHuhh64vUHMy3cixZG4UfQnkp9hRYfbj4MtfSjItCoWB01+nb1+CIIAl82gdChERJOCIAgoLXTiX9ta4bQakGzn8XG66Q+E0esNYvFsNpIm5Z30JZn+/n50dHRA/rSpBQAUFBTEJSgiIiKi8YpGJTS2e3GwxQOrWYeyOamwmnXjXs9kGSWmdBzHL99SgbKSDEiSjF5fcHB09v5uhCJRuGyDyXGXzRC3RoEjNfdcsqQMBSUVaGz3ISvVjDMLXIo3JhRFAfOLXPhoeyvSnEbWQaVRNbZ5kZPGevNEREfSa9UoLXBix4EunLkoE2oVGw5PJ01tXqS7TCfsqUM0EcadED906BCuu+46bNy48Zhl0Wg0LkERERERjUdbdz92NbhhNmiwpDgVNsv4E+F0rBOVbxFFAY4kPRxJeszJBfr9YXS4B9DU7sX2/V2wWXRIsRuRYjecUnK4qqoKO3fuHNbcc9OmGnT1+nHZFy6CeZKUbQEAs0GDnDQL6g/1oGxOqtLh0CQ0EAij1xvAwlkcIUdEdLQUhxEtXT7sbexFST5Lp0wX3oEQvP4QZuXYlA6FCMBJJMRvv/12JCcno6amBitXrsSGDRtw33334aqrrkpEfERERESj8g6EUH+oB4FgBHPzHUixK1cuYzoab/kWk0GDfIMV+RlWhCNRdPb60dnjx76mXuh1KqTYjbBb9Egya6EbY43vUCiETZs24ayzhjf3rKgoR3V1NbSqC+PyXOOpMNOK6q0t6OgZULSEC01OzR0+pDlNis9oICKarObkOfDB1hZkJJtOarYfTT6N7X3ITDZDJfKzjyaHcSfEP/zwQ+zatQsOhwOCIGDRokX41a9+hYsuugj/9m//logYiYiIiIaRJBkHDntwqHWwVnNuehJUCaxdPdOdTPkWjVqFDJcZGS4zJEmG2xtAp9uPfc298A6EoFWLMBu10GtV0OvU0KjEWP3xSFRCOCLBH4igvbMTkiSN2NxTkiR4vd5JUeLmSCqViJI8B+oP9cBpM3DfpBhJktHc4UPZnBSlQyEimrT0WjWKsm3YebAHp89PVzocOkUeXwCBYBSpeSalQyGKGXdCPBKJwOEYnLZiNBoxMDCAjIwM7N+/P+7BERERER3N4wuibn83NBoRZyxIZ53mKUAUBTitBjitgw2yJElGfyCMfn8Y/mAEgWAU/mAEkiRDlmWoVSI0ahEOqx7pzixselc1anNPi2Vy1mFOdRjR0NaHxrY+5GewwSYN6nAPwKBTccQjEdEJZKdY0NjmRVt3P9KcTKROZQ1tXmSlmKE6QYN7ook07oR4QUEBtm/fjvnz52Pu3Ll46qmnYLPZJt3IHCIiIppeZFnGwZY+HDjswewcG7JTLRB4Yj0liaIAi1ELi3H08itHqqgYublneXn5cUu4KK04x47aXe3ISrGwPAYBABrbvchKmZwXcYiIJhNRFFCcY0f9oR5YTWoM9PtOWLqNJp/uvgCiURnJLGtIk8y4E+L33HMPWltbMX/+fNx///245JJLEAgE8MwzzyQiPiIiIiIEw1Fs39eFUDiK0+enwzSJmihS4p2ouedkZTXr4Ewy4GCLB7Nz7Cd+AE1rPn8Yfb4QyopZLoWIaCxcNj0adm/C+2/shCzLwz7/RdainvRkyGhq70NOmgUiB7HQJDPuhPgVV1wR+/3ss89Gd3c3QqEQTCZOYSEiIqL46/b4sW1fF9IcJiwuTmE95hlovM09J5NZOTb8a1srslMtMOjGfepN00hzhxcZySaoVEziEBGNRVVVFbrbGmKNtYdmiAFAZWWlwtHRiXT2+iEIAhxWvdKhEB1j3Gdj3/nOd7Bjx47YvzUaDZPhRERElBANbX3YsqcTJXkOlOQ7mAyf4Yaae06VZDgAGPUaZCSbcOCwR+lQSEHRqITDHT5kp7JcChHRWIRCIdTU1KC8vCzWQ8Rut6OsrAw1NTUIhUIKR0jHI8kymtq8yEm1QADP32nyGXdC/MCBA1i0aBGWLVuG3/zmN+jv709EXERERDSDSZKMHQe60dDah9PmpbGZEk1pBRlWtHb54A9GlA6FFNLeMwCzQTPmuvlERDOd1+uFJEnDGmoDg0lxSZLg9XoViozGor2nHzqNCnYLR4fT5DTuhPjrr7+OhoYGXHLJJfjRj36E9PR0rFmzBh999FEi4iMiIqIZIBQKxcqwhSNR1OxqR38gjGWl6TAzgURTnF6nRrrLzFHiM1hjuxfZaRwdTkQ0VhaLBaIowu12D7vd7XZDFEVYLDymTlbRqITDnT7k8HOPJrGTKmSYkZGB73//+/j+97+Pt99+Gz/+8Y+xfPlyRKPReMdHRERE05gkSaiqqkJNTQ0kSYIgCMjIK0HZ0jNRWpgMkSVSaJooyLTig62HUZBpZS3xGcY7EMJAIIxUB2e6EBGNlVarRXl5OWpra1FWVjashnh5efmUKp820zS0eWHUa5Bk0ikdCtGoTuls/K233sIzzzyDd999F4sWLYpTSERERDRTVFVVYefOnVixYkXsi05NTQ3aDpqxYBabJdH0YThilPi8AqfS4dAEamzzIiPZzB4IRETjtGrVKgBAdXU1JEkCIKB0waLY7TT5hCMSDrZ4kMOeGTTJjTsh3tTUhPXr12P9+vXo7e3Fddddhw8//BCLFy9ORHxEREQ0TQ01SxpKhgODdSHLy8tRXV2NlStXcvQPTStDo8QLM63Qc5T4jBCJSmjt6sfp89OVDoWIaMoRRRGVlZVYuXIlvF4vPH4BXZ4QRHHc1X9pghxs8cBp1UNl4Dk8TW7jPork5+fj7bffxrp169Da2oonn3ySyXAiIiIaNzZLopnGoFMjzWnCobY+pUOhCdLa1Q+rWQuTQaN0KEREU5ZWq4XT6URuug0+fwgeX1DpkGgEwXAUjW1ezMq2n/jORAob19CUaDSKd955B6eddhpHbBEREdEpsVgsEAQBbrd7WFKczZJoOsvLsOKj7a0ozLRBo+YIt+muqd2Lgkyr0mEQEU0LKpWI7FQLGtr6sKAoWelw6CgHmj1Icxp5EZimhHGdhatUKlxwwQXQaLhzExER0anpD0hIzS5GTU0N3G43ALBZEk17ZoMGDqseTe2cATHdeXxBBMNRpNiNSodCRDRtZKda0N49gFA4qnQodAR/MILDnV4UZtmUDoVoTMZdvHDWrFlobW1FRkZGIuIhIiKiGcDdF8Dm3R246MILsH3zv2LNkkRRRHl5OZsl0bRWkGHFJ3s6kJuexEaL01hTuxeZyWaI/BsTEcWNXquGy2bA4U4f8jM4A2ey2NfUi6wUCwzskUJTxLj31G9/+9u4+uqrsXbtWuTl5Q1rZlBQUBDX4IiIiGj68fiC2Ly7A6WFLqQ6jEg/olmSxWLhyHCa9mwWHYw6NVo6fchOZWmg6SgckdDW3Y8zFnAQERFRvGWnWlB/sAd56UkQBF50VJrPH0Z7zwBWLM5UOhSiMRt3QnzNmjUAgMrKytiBR5ZlCIKAaJRTVoiI6FjhSBSdvX70+ULoGwghGIoiHJEgigK0ahFmowY2sw7JdiNHFUxz/f4wand1YE6eA6mOz8oIDDVLIpop8jOt2H3IjawUM7/MT0MtXT7YLHoY9Sw1SUQUb06rHjJk9PQF4LQalA5nxtvb6EZuugU6jUrpUIjGbNxZh4MHDyYiDiIimmYkSUaHewBN7V70eoOwWnSwW3TITUuCXquCRi1CkmQEw1H4/GF0ewLY0+iGzaJHQaYVjiR9bF2hUIijh6eBQDCCTfXtKMi0IjPZrHQ4RIpKthmwR3Sjw+0fdnGIpofmdh+Ksm1Kh0FENC0JgoDsVAua2r1MiCvM4wvC7Q2gtNCldChE4zLuhHhubm4i4iAiomkiGpXQ2O7FodY+6DQqZKdasGh2MjTqkUcMmAE4rQbkpiUhEpVwuMOHrXs7YTPrMDvHhg+q30VNTc0x9aWPLNlFk18oHMWm+nZkJpuQl56kdDhEihMEAfkZVhxs8TAhPs24vQGEI1Ek25ikISJKlIxkM/Y19SIYjnJksoL2NvUiP8MKjZrfzWhqOal56S+++CKeffZZtLe3Y9u2baiurkZ3dzcuu+yyOIdHRERThSTJaO7wYv9hDyxGLRbNTobdoj/xA4+gVonITU9CZooZ+5p78eKrr8Pb1YQVK1bAbrfD7XajtrYWwGDpLpoaIlEJtbva4UjSY1a2XelwiCaNNKcJuxvc6PUGYbPolA6H4qS53YfMFDbTJCJKJJ1GhRS7EYc7fCjIZHNNJXR7/PAOhLB4drLSoRCN27gv4fz85z/HPffcg3POOQcNDQ0AAIfDgR//+MdxD46IiKaGXm8QH9a14nBnPxbOSkZ5Seq4k+FHUqtEFKSb0d64G+Xl5bDbB5OodrsdZWVlqKmpQSgUilf4lECSJGPLnk4YdRrMzXcoHQ7RpKISBeSkWdDQ1qd0KBQn4UgU7T39yEphs1QiokTLSjXjcKdP6TBmrL1NvSjMtEKl4uhwmnrGvdc+8cQTeOONN3DvvffGpqvPmTMHe/bsiXtwREQ0uYUjEnYc6EbtrnbkpFqwrDRtWO3vU+H1eiHLciwZPsRut0OSJHi93rhshxJr58FuRKMSSotcbBxINILsVAs63QMIBCNKh0Jx0NLZD3uSng2iiYgmgCNJj6gkw+0NKB3KjNPhHkAoHOUFYJqyxp0Q7+zsxNy5cwFg2BdbWZbjFxUREU16PX0BfLCtBZGohDMXZSI71RLXhKfFYoEoinC73cNud7vdEEURFgtPvia7A4c9cHuDWDInBSqWDiAakU6jQqrThMZ2XuSbDpo6vMhO5ecTEdFEEAQBGS4TWjr7lQ5lRpFlGXsbe1GUZWN5MJqyxp0Qnz17Nt59991ht23YsAElJSXjWs8TTzyB8vJy6HQ6XHPNNcOW1dXVYdmyZTAajZg7dy7efvvtYctfffVVFBYWwmg04rzzzouVbhly//33Izk5GVarFWvWrEEwGBxXbERE9JlQKITu7u5YiRJJkrGn0Y1PdnegOMeOhbOSE9LIRqvVory8HLW1tbGkuNvtRk1NDcrLy6HVauO+TYqf1q5+HGrtQ9mclFEbqhLRoLz0JDS1exGNSkqHQqfA3RdAJCqzmSYR0QTKTDajtaufn6ETqLV78AJEusukcCREJ2/cc/keeOABXH755fj617+OUCiEhx9+GD//+c/x+9//flzrycjIwH333Yeqqip0dXXFbg+Hw7jkkktw0003YcOGDfjzn/+Myy+/HHv37kVKSgrq6+txww034LXXXsOKFStw77334qqrrsLGjRsBAM888wxeeOEFbNy4EVarFV/4whfwwAMP4JFHHhnvUyUimtEkSUJVVRVqamogSRJEUcSChYthz5oPjVqNMxZkJHxK+KpVqwAA1dXVkCQJgiAgNXsOyk47M6HbpVPj7gtgx4FulJekwqjXKB0O0aRnMWqRZNLicKcPOWlJSodDJ6mpw4usFDPLQxERTSCTQQOLUYN29wAyXGalw5n2JEnGvqZeFOc6+HlHU9q4R4hfeOGFeO2111BXV4ecnBy8/fbb+NWvfoXKyspxreeLX/wiLrvsMrhcrmG3v/vuuxgYGMA999wDnU6Hq6++GqWlpXjllVcAAM8//zwuuOACVFZWwmAwYN26ddi6dSt27NgBAFi/fj3uuOMOFBQUwOl0Yu3atVi/fv14nyYR0YxXVVWFnTt3YsWKFbjsssuwYsUK7Nm9Cy37P0HF3NQJqY8qiiIqKytx55134rbbbsNdd92Fiy68ANv2dSMQYr3dycjnD+OTPR0oLXTCZtEpHQ7RlJGbnoSGNi/LEE5RoXAU7d0DyEpmMoaIaKJlJJtZNmWCNHd4oVGrkOowKh0K0Sk5qWzGOeecg3POOSfesQAYLJcyf/78WMNOAFi0aBHq6upiyysqKmLLLBYLCgsLUVdXh3nz5qGurg6LFi0a9tjOzk60t7cjNTX1mO21traitbX1mNvr6+vj+KyIiKaWUCiEmpoarFixItbU0m63o6KiHNXV1QiHz5/QkiVarRZOpxMAkO7SwtMfxNY9nVg6L40jEyaRUDiKzbvaUZBpQ5qTUyiJxiPZZsDuQ2509QaQbGfJjanmcKcPTpsBejbTJCKacGlOE3Y39CAQjPA4nEDRqIT9hz1YOCtZ6VCITtm4jxRJSUno6+s75naHw4Genp5TDsjn88Fmsw27zWazxeqEj7bc6/WOuHzod6/XO2JC/Omnn8ZDDz10ynETEU0nXq8XkiTFkuFD7HY7JEmC1+uNJaiVMDvbjo072nCwpQ8FmVbF4qDPRKMSand1wGUzIC+dJR+IxksQBOSmW9DQ1seE+BTU3OHDnFyH0mEQEc1IGrWIFIcRhzt9KMyyKR3OtNXQ5oXFqIUjSa90KESnbNwJ8URP4zSbzfB4PMNu83g8sFgsJ7V86Peh5Ue75ZZbcOmllx5ze319PVavXn3yT4SIaAozmcyAIMDtdg9LirvdboiiOOoxdaKIooAFRS58uL0VTqseVjNLcyhJlmVs29cFnUaFkjwmhIhOVkayGXubeuEbCMFsZOPgqaLb44ckyXDZmCAgIlJKZrIZOw/0MCGeIOFIFAdbPCgvOXagKdFUNOaE+AMPPABgsOnl0O9D9uzZg9zc3LgEVFpaikceeSTWwA0AtmzZgmuvvTa2fMuWLbH7+3w+7N+/H6WlpcOWL1++PPbY5OTkEUeHA0B6ejrS09PjEjsR0XQwEAhjy55u5BTMRW1tLcrKymC32+F2u1FbW4vy8vIJLZcyGpNBg+JcO7bt7cIZC9KhUo27LQbFye5GN/zBCE5jCRuiU6JWichKMeNQax9KC10nfgBNCs3tPjbTJCJSmCNJj6gsw+0NwG7hBcp4O9jSB5fVwIFING2MOSFeXV0NAIhEIrHfgcGGZ2lpafjNb34zrg1HIpHYjyRJCAQCUKlUWLlyJQwGA3784x/ju9/9Ll5//XVs374dr732GgBg9erVqKioQFVVFc4880ysXbsWCxYswLx58wAAN9xwAx555BFceOGFsFqtWLduHW688cZxxUZENFO1dPlQf7AH+RlWnHbVpfjnP/+J6urq2EXK8vJyrFq1SukwY7JTLehwD2Bf82Cnc5p4jW19aOsewLLSNF6UIIqDnLQkfLD1MGbn2KHVqJQOh04gFI6iwz2A4rxMpUMhIprRBEFAhsuEls5+JsTjLBCKoLHNi9PnczApTR9jToi/8847AIDbbrsNv/zlL095ww8//PCw2t2vvPIKrr/+ejz33HN4/fXXsWbNGjz00EPIy8vDa6+9hpSUFABASUkJ1q9fj5tvvhltbW1YtmwZXn755dh61qxZg4aGBlRUVCAcDuOKK67AunXrTjleIqLpLBqVsPNQD7o9ASyZkxI7iaysrMTKlSvh9XphsVgmxcjwo83Nd+KDrS1Ic5o4YmGCdbgHsLepF6fNS4NeywZGRPFg0KmRbDOisd2LIk77nvSaO3xItht4DCQimgQyks34aHsr5uQ5oBI5ayde9jd7kO4ywWTQKB0KUdwIcqKLgk9RmzdvRllZGWpra7FkyRKlw5lw25s9J74TEY3J/KzJ3fSxrz+ErXs7YTZoUFrohEY99UYkNrT14XCHD8tK0yHy5HdCeHxB1NS3Y9HsZDitbABIFE+93iA27+7A2Uuy+IV+EpNlGRs+OYwFRS42GCMimiQ+3N6K/IwkpDlNSocyLfT7w/hwewvOXJQ5rou/zCkpa7LnIBJlPLnccc9tbm1txY033oh58+YhJydn2A8REU0tDW19+HhHG3LTLFhcnDIlk+EAkJNqgSgKaGjrUzqUGSEQjGDz7g4U59qZDCdKAJtFB5NejbbufqVDoePocPuhUYlMhhMRTSKZySYc7vQpHca0sa+pFzlpSZwJRdPOuPfo66+/HgMDA/jGN74Bk4lX3IiIpqJwJIrt+7vR7w/jtNI0WIyTrxTKeAiCgNICJz6qa0OqwwijntP5EiUckVC7qwOZyWZkpViUDodo2spNT8L+Zg8yk81Kh0KjaGr3IjuVfx8ioskk3WXC7gY3guEodOzFcUp6vUF09/mxooB9Mmj6GXdCfOPGjWhubobFwi/BRERTkccXxCd7OuGy6rFwfvq0aYRoNmqRk2bBrgY3lhSnKB3OtCRJ8mB5HaMGs3PsSodDNK2lOozY3eBGt8fPmRiTkM8fRq83iEWzk5UOhYiIjqBRq+CyGdDa1Y+89CSlw5nSdjX0oDDTNmVnERMdz7izIGlpaRAE1jIkIpqKGtv6sGlnO2Zl21Ba6Jo2yfAhBZlWeHxBdPX6lQ5lWqo/1INoVEJpoUvpUIimPUEQkJeehIMtLAU1GTW1eZGZbIZ6mn2OEhFNB5nJZpZNOUVt3f0IhyVkp3IwLE1P4z6D++EPf4jbbrsNhw8fhiRJw36IiGhyikYlbN3biYZWL04rTZu2U/DVKhFzch2oP9iDqMSe0fF0sMWDHk8Ai4tT2OSPaIJkppjR6w3C5w8rHQodIRKVcLjTh5w0JgmIiCYjl82AYCiCvv6Q0qFMSVFJxp5GN2bn2iHyvJ+mqXEnxK+88kq88MILyMnJgUajGfZDRESTj88fxod1rZAkGcvmp0/5euEnku4yQadToaGVoyrjpa27HwdbPFgyJwVa1mIkmjBqlYisVDOPZ5NMS6dvsPGpgd9/iIgmI1EUkO40o6WLo8RPRmNbH/RaNVIdRqVDIUqYcdcQf+eddxIRBxERJUBbdz92HOhGYZZtRtXQK8lzYGNdGzJcJuh17Ih+Knr6Aqjb342yOSlM/hApIDctCR9sPYxZ2TZekJokGtu9mJ3NPgpERJNZRrIJtbs6MDubo5zHIxSO4sBhD8pLUpUOhSihxp0lOPvssxMRBxERxZEsy9jX3Iumdh+WFKfAnqRXOqQJZTFqkZVixu4GNxay4dlJ6+sP4ZPdHVhQ5Jpx+xDRZGHQqZFsM6Kx3YuiLJvS4cx43R4/IlEZyXY2OiUimsysZh10GhW6PH6k2DnSeaz2N3uQbDfAatYpHQpRQo0pIf7ee+/hrLPOAgC8/fbbo97v3HPPjU9URER00iJRCdv2dcEfjOD0+ekwzNAR0oVZNlRvOYxujx9OKxMX4zUQCKN2Vztm59iRwumSRIrKTU/C5t0dyM+wsoa/whpavchNs0AQ+HcgIprsMpJNaOn0MSE+Rt6BEA53+nDmwgylQyFKuDFlSS666CJ4vV4AwKpVq0a8jyAIiEaj8YuMiIjGbSAQxie7O2EyqLFsXhpUqnG3ipg2NGoRxbl27Drkxunz9ZwqOQ6hcBS19R3ISbWwszzRJGCz6GDSq9Ha5UNWCt+TSun3h9HTF8D8IpfSoRAR0Riku0zY19SLcCQKjZplx05k54FuFGZZWXKSZoQxZUqGkuEAIEnSiD9MhhMRKcvdF8BHda1IdRqxaHbKjE6GD8lwmaBSCWhq9574zgRgcIZB7a52OG16FLI8A9GkkZuehIZWHsuUdKi1D1kpZmjU/HwlIpoK9Fo17El6tHUPKB3KpNfS5UMoIiE3beb0naKZjWdzNCNFwiF4PW5EwmGlQyGKi7buftTu6sDcfCdrzB5BEASU5Dmwr7kXwTAv3I4mFAqhu7sbfn8Am3d3wKBToyTPoXRYRHSEVIcRUUlCp9sfe8+GQiGlw5oxQuEoWrt8yEnjCH0ioqkkI9mEw50+pcOYlIbOJ/oHAtjd4MbcfAdn1dKMwXkQNKNIkoQdm97HgV3bIEsSBFFEwZwFmFdxJkSR14doajrY4sHBFg/KSlJgt7Dx4dGsZh3SnCbsaXRjfiGnuR9JkiRUVVWhpqYGkiQBEJBXNA/XXHEJ6+MSTTKCICA3zYK/v/F/OHyoHpIkQRRFlJeXY9WqVTyPSbCmdi9cNgOMeo3SoRAR0Tik2o3YeaAH/f4wTAYew4ERvgMIAvKL5uHsxZcqHRrRhGFCnGaUHZveR1vjPpx91lmw2+1wu93YVFMDCMD8pWcpHR7RuMiyjF2H3OjsHcBp89J5gnccs7JteH/rYfR6g7BZ2DF9SFVVFXbu3IkVK1bEjom1tbV4++1/orKyUunwiOgo9ds+QnfboWPeswD4nk2gqCSjsd2LxbNTlA6FiIjGSaUSkeY0oqXLh1nZdqXDmRRG+g5QU1uLqqoqnk/QjMGhJDRjRMIhHNi1DRXl5bDbBz8I7XY7KsrLcaB+G8un0JQSlWRs2dOJXl8Qp5UyGX4iWo0KRVk21B/qhizLSoczKYRCIdTU1KCsrGzYMbGsrAw1NTUsxUA0yYRCIWyurUVFRTnfsxOsrbsfBp2aF1SJiKaozGQzDnf283sARv8OUM7zCZph4pYQj0Qi8VoVUUL4B/ohS1LsoD/EbrdDliQEBlhXjKaGaFTC5l3tiEoyls5NhU7DjuljkZ1qgSQDzR18rwODDbOlUY6JkiQNa6hNRMrje1YZsizjYIsH+RlWpUMhIqKTZE/SQxQAtzeodCiK4/kE0aC4JMT/53/+B8XFxfFYFVHCGIxmCKIIt9s97Ha32w1BFKE3mhWKjOj4jmyeFo5I2FTfDrVKxJLiFKhUnOgzVoIgYG6eA3ub3AhH2GDTaDIDEEY8JoqiCIuFjeOIJhOLxQJxlPMYvmcTp71nAACQYjcoHAkREZ2KDJeZzTXB8wmiIWOuIe52u3HnnXdi06ZNmDt3Lp544gm0trbixhtvxIEDB3DHHXckMk6iU6bWaFAwZwE21dTEyqYM1RAvKFkAtYYlJyZaJBqFpz8M30AQ/mAUwVAUkagESZYhCgLUahF6rQomvQZJJi3MRi3EIxr9RcIh+Af6YTCap+Xf7+hmJ4IgIDOvBIsrzsT8omR2AD8J9iQ9XDYD9jb1Ym6+U+lwFBONSqg74EZu0VzU1tbGpkwO1SMuLy+HVqtVOkwiOoJWq0V5eTnfsxPswGEPCjKsbDRMRDTFZSSb8K9tLZib55jRg4qGzic2baqJlWHj+QTNRGNOiP/7v/87Nm7ciAsvvBB//etfcd1112Hbtm1Ys2YN7rrrLlitnEZIk9+8ijMBAdjw3nuQh7opz1mAeeVnKh3ajBGORNHt8aOrNwCfPwyzQQOLSQuHVQ+9RgW1SoQoCohKMiKRKAKhKHz+MPY3exCOSnBa9UixG3Bo+0Yc2LUNsiRBEEUUzFmAeRVnQhSnz8nNSM1ONtXUoP2QGQtns9nJyZqdY8f7W1qQlWJBkmnmnfCFI1Fs3tUBrUaFa6+4FG+//U9UV1dDkiSIoojy8nKsWrVK6TCJaARD783q6mpEo1EIooilFRV8zyZIp9uPSFRCmtOkdChERHSKjHoNLEYt2t0DyHDN7Nnhs0qXoqXTh/eqqyHzOwDNUGNOiL/11lt4//33kZubi5tvvhnFxcV4/fXXcfHFFycyPqK4EkUR85eehZLFpyMw4MOhriBcNvO0SqJOVgPBCFq7fOjq9SPJpEWa0wR7kg6q4772GlgBpB6xjg53Pz7a8DZkbyvOPuusYYliCMD8pWdNwLNJvKFmJ0PJcOCzJrDV1dVYuXIlr96fJL1WjcIsK+oPduO00nSlw5lQ/mAEtbvaYTXrMC/fCVEUUFlZiZUrV8Lr9cJisXC/IprERFGMvWd73B5s3d+H0xdl8zwmQQ4c7kV+hpUzsoiIpomMZDNaOvtndEJ8cLBZH7542cXQay7mdwCascZ89uzxeJCbmwsAmDVrFgwGA5PhNGWpNRqYrXaku6zocPuVDmdaC4Yj2NPkxvZ9XVCpBCyanYySPCdcNsMJkuHHMurUyHIaMNCxH0s/nd4FfJYoPlC/DZFwOBFPY8Kx2Uli5aYlIRSR0NI1c+oIenxBfFTXijSnCfMLXcMSPFqtFk6nkyfCRFOEVqtFWmoyCrOd2NvUq3Q401JPXwD+YAQZyTM3aUJENN2kOU1w9wUQCEaUDkURkiRj295OFGZZkWTS8jsAzWgnPZxEp9PFMw4iRdiT9AiGo+gPTI8k6mQSlSQ0tPVhy54uaNUilhQnIy/NCp1mzBNTRuQf6Ic8SqJYliQEBqZHgtNisUAQ2OwkUURRQEmeA7sb3AhHJKXDSbgO9wBq6tsxO8eOoiyb0uEQUZzkpieh1xuAxxdUOpRpZ1/T4OhwFUeHExFNGxq1iBSHES1d/UqHooh9zb1Qq0XkpScpHQqR4sacEO/v70dOTk7sx+PxDPt3Tk5OIuMkSghREJBsN6Cte2Z+IMZLJByC1+OOjc72+ALYurcT/kAEC2e5kJduhUatisu2DEYzhFG6YguCCL1xeozkElVqZOWXYFNNTey5stlJfLlsBrisBuxq6FE6lIQ62OJB3f4uLJqdjEyOdCSaVjRqEfkZVo4Sj7OuXj8GghFkpfLiMxHRdJPhMuNw5/QYRDUe3R4/mtq9mF/oYqNoIoyjhvizzz6byDiIFJPmMGHr3k7kpiVBPYO7TZ8MSZKwY9P7w5pbOrKKoUufh4IMO1w2Q9y3qdZoUDBnATbV1KCivHxYDXFzehEOtPpQmG2Dagp/yEejEjbv7sD8Jaejs8HEhocJNCfPjve3tqCr15+Q/VVJ0aiE7fu74POHsaw0HUa9RumQiCgBclItONTah56+ABxJeqXDmRb2NrlRlMXR4URE05HTqkckKsHjC8JqnhmVDwLBCLbu7UJpoQsG3anN2CaaLsb8Trj++usTGQeRYvRaNZJMWnSw2/S47dj0Ptoa9w1rbvnxphokmbRwzT07YdudV3EmIAAb3nsvlogvKFmAOUvOwL5mD+oPdKM41x63UekTKSrJ+GRPJ9SiiEWzkyHOqcQ557DhYaJo1CrMzXei7kA3li/IgEY9PS6KDQTC+GR3J4x6NZaVpvNiH9E0plKJKMy0YneDG6fPn1mNghOhvWcAkYjMc0IiomlKFAWku0w43OmbEQlxSZKxdW8nMpNNSHUYlQ6HaNI4pW/IF110UbziIFJUusuEtu5+yJCVDmXKiIRDOLBrW2yUNjBYx3tpRTkO7d6e0OaWoihi/tKzcNF1t2DVF7+Ci667BfOXngWNWo3iXAcMejXqDnQjEJpazVKGTlYAYOHs5FjTQzY7SaxUhxE2sxZ7Gt0nvvMU0NLlw4fbW5HmNGJxcQqT4UQzQFaKBZGohNYZWhM1XmRZxt4mN2bl2IY1HiYiouklM9mM1q5+RKXp//1/T5MbgiBgVrb9xHcmmkFO6VtydXV1vOIgUpTVrIMgCOj1sinVWE2G5pZqjQZmqx1qzWelIERBQGGmDSl2I+oOdGFgijRMlWUZ2/d1IRKVsHh2MqdpT7C5+U50uAemdD+BSFTC9n1d2NPYiyXFKShk80yiGUMUBRTn2rG70Y1odPo3Ck6U5g4fREHgCDoiomnOYtTCbNBM6XP/sWjr7kdrVz8WzHLxQi/RUU4pIS7L0/9qGs0MAgSkOYxoneYfiPGk0RkBYZTmlqLyzS0zk83ISjZjx8Fu+PwhRWM5EVmWUbe/G/5QBEuKU6DiiN4Jp9WosKDIhZ0Hu+EPDs4sCIVC6O7uRig0ufcfAOj1BvHhtlZEJQnLF6TDzjrCRDNOit0Is0GDQ619SocypQwd6/sHAtjb5EZJnoPNxoiIZoCctCQ0tk3fz0yPL4i6/d1YNCsZei3rhhMd7ZTeFStWrIhXHESKS7Yb0djuw0AgzOZzJxAIRVDf6IEje/aIzS0LShYMG7WtlDSnGSqViJ0HezAn144k0+SsEbfzYA+8AyFUzE1jeQsFOa0GZKda8Mnudnhb61BbW3tMM1NRnFx/n2hUwt7mXhzu8GF2jh3ZqRalQyIiBRXn2rGxrg2ZKWZ++T0BSZJQVVWFmpoaSJIECALyi+Zh5ZJLlQ6NiIgmQKrDiF0NPej1BmGzTM7viScrEIxg8+4OzM13cKAM0ShO6Uz573//OwDA6/XikUcewcMPPxyXoIiUoFaJSHMacbjLh1lZrK81moFgBPUHu5DiMGFh0SrsqHn/mOaW88rPVDrMmGSbEaIgYFeDG8U5NljNk+uEYNehwZOwirmp06ah41RWmGnDh++/i662Q1ixYkXsQk9tbS0AoLKyUuEIP9PTF0Dd/i6YDBosX5ABPTvGE814FqMW6S4T9jb1Yn6hS+lwJrWqqirs3Llz2LG+prYWVVVVk+pYT0REiSGKArJTLGhq906rhHg0KmHz7g5kJpuRkcwG0USjGVf2pbq6Go8//jjeeOMNAIMjK37+85+joKAAf/zjH+Ma2N69e1FZWQmbzYbc3Fz85je/iS2rq6vDsmXLYDQaMXfuXLz99tvDHvvqq6+isLAQRqMR5513HhoaGuIaG01f6S4TejwBBMNTqxnjROkPhLHjQBcyXGZkp1hGbW452UbROq0GzMq2YVdDL7r7AkqHE7On0Y1Otx/lc1Oh1aiUDocARCJhNB3YeUyz2LKyMtTU1EyK8imBUATb93Vhy54OFGXbUDYnlclwIoqZlW1Dp3sA7kn0eTfZhEIh1NTUoKysbNixvnwSHeuJiCjxslLNaO/pRygcVTqUuJAkGVv2dsKgU2NWtk3pcIgmtTFnrX71q19h5cqV+NGPfoSLL74Yjz76KC644AL87Gc/w6OPPoodO3bELahIJIJLL70UK1asQFdXF1577TX8+7//OzZs2IBwOIxLLrkEl156KdxuN9auXYvLL78cHR0dAID6+nrccMMN+OUvf4nu7m4sWLAAV111Vdxio+lNq1bBZTOgpZO1xI/m84ew82A3clItSHcNv9I8UnPLycZu0WNOnh37m3vR0TugdDjY1dCD9u4BVMxNhY7J8EnD6/VCluURm8VKkgSv16tQZEBUknGwxYP3t7RApRKwYlEmMlwc9UFEw2k1KhTnOrDjYDckif1+RuL1eiGN0hhc6WM9ERFNHL1WjWSbEU3tU/+4L8sy6g50IRqVsWBWMvthEJ3AmBPiP//5z/HSSy+hs7MTv//973HvvfciLy8P9fX1uP766+M6InT37t04dOgQ7r33XqjVapSVleHyyy/Hs88+i3fffRcDAwO45557oNPpcPXVV6O0tBSvvPIKAOD555/HBRdcgMrKShgMBqxbtw5bt26Na8KeprfMZDM63AMIR6bHVeJ46OsPYufBHuSlJyHVYVI6nJNmNekwN9+BhtY+tHb5FIlBlmXsPNiNrl4/KuZxZO9kY7EMznwYqVmsKIqwWBJXo3u0Jp6yLKOly4cPth5GZ68fp5WmYW6+Exo1L6QQ0cgyk83QqlVssDkKJY/1REQ0ueSkW9DY7kV0il9E3nXIDd9AGIuLU6ASmQwnOpExZ2Kamppw5ZVXAgCuvvpqXH/99fjpT38KrVYb96BkWYYsy8fctm3bNtTV1WH+/PnDEvCLFi1CXV0dgMFyKhUVFbFlFosFhYWFqKurw7x5847ZVmtrK1pbW4+5vb6+Pl5Ph6YYvVYNh1WPlq5+5KYlKR2O4np9Aexp7EVhlg3OadCQw2zQYl6BC/UHuxGJyhPahFCSBpPhnv4Qls5NY5mUSUir1aK8vBy1tbWxqfRutxs1NTUoLy9PyGfe0Y3djmzi2eH2Y19zLwQImJPrQIrDGPftE9H0NLfAiY+2tyLNaWSz8KNotVqUlZVh06YaVFSUD+sXkahjPRERTU52ix4mvQYtnb4p26B+X3Mvunr9WFqaxr5URGM05oS4JEmx31UqFSwWC0ymxIwULS4uRlZWFtatW4fvf//7+OSTT/CnP/0JaWlp8Pl8sNlsw+5vs9lidcJHWz7a1Menn34aDz30UCKeBk1hWckWbNvXhTSXETr1zB3B29MXwL7mXszOscE2yZpRngqjTo3SQid2HuhBJCohLyMJAhJ7FT0SlbB1byfCEQlL56ZydO8ktmrVKgCDfTMkSYIgCEjLmYOc2WWQZTnu0w9HbOxWU4OWLh8KS05DUbYNaU4jpz0S0biYDRrkpltQd6AbFSWpPIYcpWjeUrR29eO96mrIR12MJCKimSU/w4r6Q93ISjFPuc/LfU29ONzpw9J5aSzFSTQOY870BYNBPPDAA7F/BwKBYf8GgHXr1sUlKI1Gg7/85S/49re/jYyMDBQXF+OGG25A3f9v785j46rPf49/ZvHY45nxEu9JSJw4QIydhcRZIAkNAqWX3+9eKrXQskQCVYi0UKnLH5UKjSL+YOkiFbVQqbQCWnELyW1pL1IbAaalSbrGAd84W504tU0c78t4xsuMPed7/wAPmDiJk4wzc2beLymSPWfmnGecx49nnjnn+xw5Ir/fr2AwOO3+wWAwfmnjxbZ/2o4dO3TnnXeec/vx48e1ffv2hDwf2I83263i/Bx19IS1dH5BssNJir6hMZ0+G9T1iwuV70ufqdtTsrPcqqkq0vHWAf27bVDXXlMg1xwNAx2PTuq9Ez3KzXFrdXWZXC4+tU9lTqdT27Zt09atWxUKhRQIBGQZp95v7tHBY92qrSpK2NmWU4Pdpprh0keD3erqtG/fPt3z+f9WTk76/f4BuDqqFhTo70c61d4V0uIKrnqbEgxH9J+zId31+f8lj+t/xms9Z4YDQGYqKfSqud2p7oFRlRfZZ4nQkx8MqrNvROtryuVlKU7gksz6N+amm27S/v37499v2LBh2veJ/hStpqZG77zzTvz7e+65Rxs3blRtba2+973vxS8rl6TGxkbde++9kqTa2lo1NjbGHxcOh9XS0qLa2toZj1NRUaGKioqExo70sLDMr8bmXs0v9ivHk1l/XLoHR9TeFVJ15TwFctP3zaHH7VLt0iKdOjOkIy39Wl5ZqOysxP5fD49E9I+mYZUX+3T9okLbnXGQyTwej4qKiuLfb6ipUEvHkP52uFOV8/O0pCLvij/cCIVCisVmHuxmjNHISJiGOIDL5nQ6tHJZsf55pEtFBV75vSydEp2IqbG5V9cvLoz/PD5Z6wEAmWnJgjy1dARt0xBvbh9UV/+I1t9Qzlwq4DLM+rfm3XffncMwznX48GEtW7ZMLpdLr776qt555x09//zzysvLk9fr1fe//31985vf1BtvvKGmpia9/vrrkqTt27dr3bp1qq+v1+bNm7Vr1y6tXLlyxvXDgQvJznKrbF6uzvSEtWxhQbLDuWo6+8M60xPWDUuK5MuANUddTqeuXzRPH/SEdPhUn6oWFmhe4MqXhzEyOts3oo6esP5rzUJVFNvjhRXOz+l06NprClVe5FNz+6D+8n6Hrinz65rSwCW9CLUso2A4ou6BUZ3tGZbD4dDg4OC0pjiD3QAkSiDXo6UL8tV0qlcbairkzOBBW5Zl1HiyV8UFXtuuEwsAmBvl83xqORNUV/9ISjfFp+ZSDYYiNMOBK5Cyvzmvvvqqfvaznykajaqurk5vv/12/OyNN954Qw899JCeeOIJVVZW6vXXX1dpaakkqbq6Wi+99JIefvhhdXV1aePGjdqzZ08ynwpsbEGJX+839yo8FpXfm75nSk/p6Aurqy+smqXFys2wP6zXlAbk92appWNIg4EcVVbknbOEyuREVGOjI/Lm+uXOOv+HBaORSZ0+M6SYMaqtKqYZnmYCuR6tXV6mYDii9q6Q9jd2yOfNUlF+jgK5HuXmZMntdsrpkCwjTUzGNDY+qZHxCQ2FIgqGI/JkuVQ2L1c3VldoYvDcIZ4MdgOQSEvm56l3cPSjuSCFF39AmjreOiBJqq6cl+RIAACpxul06LpFhWpuG1SBz62RkXDKLacVi1lqPNmryUlLG2vLmUsFXAGHMcYkO4hU9N5772nt2rU6dOiQ1qxZk+xwrrqmM8GL3ylDdPaF1Rcc14qq4mSHMqfau4fVOzimmqVFGbdEzCdNTMZ0uiOo0FhUi8vzVFzglbGMjh48oNMnDstYlhxOp5YuX6madZvjSzdNPbajN6zugTEtLPWrotgnp8OhFQvzk/iMMNdiMUsDwxENhsYVGo1qLDKpiUlLlmXkcjmV5XLKm+1WrtetAn+2CvzZ087ksCxL9fX1amhoiC8HNjXYzTlH69oDyDzjkUn9ralTtVVFKi3MTXY4V93JDwbV1TeqDbXl8jB0DAAwA8uy9KvX/q86/nNMxpiUel0enYjp0IkeZXtcWrWsOOXnUtFTSq5M7UFcSi83c7tewCyVFfnUPTiq3qFRlRSk5xvI1q6gBoMR1VYVJXwNbbvJcrt0/eJ5GgqPq7VzWGd6wop0NinU06bP3HJL/Azegw0NkkOqXb9FodGoegfG1BccV1F+jlZdW5zRHypkGpfLqZJCr0oKvZf1+JmGeKbSmSgA0kNOtlsrlxXr8KlebaytSNhwYDv4z9mgOnpHtKGGZjgA4Pzq6+s12N2qWz7xvu/QoUOSpG3btiUtrmA4ovebe1VWmKvllcylAhIhtT9SAlKA0+HQkoo8tXUNazJmJTuchDIyaukYUjAUVQ3N8GkK/DladW2JFhR71fWf41pXVxdf47mwsFDr6urUcuyw/tnUoZPtQ3K7nVp1bbGWLSygGY7LMjXEk2Y4gLlSXODVorI8NTb3KpZmr2nO53RHUK2dw1p/Q5m8GbYcHABg9qLRqBoaGlT3qfd9a9euVUNDg6LRaFLi6uwb0cFj3Vq2MF/VS+bRDAcShIY4MAv5/g/XBm7rGk52KAljGaNTZ4Y0MjahmqXz5GH9sXM45JDXNSkZa9rAQ+nDF0cylpaV52jt8jItLs+jEQ4ASHlVC/OVk+3W4VN9SveVE0+0DehMT0gbasoz6ox4AMClC4VCsqyZ3/dZlqVQKHRV47EsoxNtAzrRNqC11aVaWMowaCCRaIgDs7Rkfr4GhscVDI8nO5QrFjNGze2DikRiumFJkdwumuHn4831y+F0anBwcNrtg4ODcjidKijIzLW5AAD25HA4tGpZscYikzr5wVCyw5kTkzFLjc096h8a13qa4QCAWQgEAnKe532f0+lUIDB3DeloNKr+/v74Weij4xP659EuDYejuqm2QoWBnDk7NpCpOJ0RmCWP26XKijy1dAS16lqPXDYddhezLJ1oG5DD4VD1knm2fR5XizsrS0uXr9TBhob4silTa4gvrV4pdxZvsgEA9uJyObVmean+0dSpHI9Li8rzkh1SwoyMTej95h75vVnaUFsud4oPHQMApAaPx6O6ujodOnRIa9eunfa+r66ubk6WNbQsS/X19WpoaJBlWXI6naquWalAea0qFxSoakE+S6QAc4SGOHAJSgpy1T/04bDFqgUFyQ7nkk3GYjreOihPllPXXlMoJ39cZ6Vm3WbJIf1l3z4Zy5LD6dTS6pWqqduc7NAAALgsOR636qrL9K9j3XI6Hba/FNsYo/bukE62D6lqYb6WzOcKLgDApbn99tslSfv375dlWXI4HCpftFw1q2+ak+PV19fr2LFj2rJly8cN+IMNWuZyatmG/5qTYwL4EA1x4BJVLczX4VO96g+OqSjfm+xwZi06GdPx1gH5c7K0dGG+HKIZPltOp1Mr1t+i6htv0vhoWDm5fs4MBwDYnj/Xo3U3lOngsS45HQ7NL/EnO6TLEh6N6ljrgCYmLK2vKVeej+HEAIBL53Q6tW3bNm3dulWhUEiBQEAjEUuHjvcoNydLhXmJW7pkaojnVDNc+nC98nXr6rR//379j223z8lZ6QA+xDWEwCXKcru07JpCtXQENR6dTHY4szIamVTTqT7l+z2qWlhAM/wyubOy5M8vpBkOAEgbgVyP1i4v04m2AbV22mt4eHQipqOn+/WPI12al5ejm1ZU0AwHAFwxj8ejoqIieTweFQZyVFtVpPebexQMRxJ2jFQb4glkGhriwGXI92VrfrFP/24fVMyykh3OBQVHIjp6uk/zi32qLOfyYQAAMF2+P1vrayrU1jmsE20DMsbEt3160FcqGItM6kTrgPa93yHLMtq8er6WLSyQ08kH/gCAxCsv8ml55Tw1HO9Wf3DsivdnWUb9YSPJkZQhngBYMgW4bAtK/Rodn1Rz+6CWV85LmbOuJyeiGhsdkTfXr8GRCZ3uGNayawpUlMDLuwAAQHqZGkL5/r97dOhEj2qXztO+v/x52qCvuro63X777XLO0UDuaDQav0T905eJG2PUHxxXR09YvUOjqij26+aVFcrN4aotAMDcm1/sl9vlVGNzryor8rT0MgZeWpZRZ/+IWs4MKcfj1qrVa84Z4nno0KE5G+IJ4GM0xIHL5JBDVQvzdfT0gFrPDid9eJNlWTp68IBOnzgsY1mSwyl/WZXWbblV+X6a4QAA4MJyPG6tr6nQidYB/e//84aGe9unDfo6dOiQJGnbtm0JPa5lWaqvr5+x+R4anVD3wKjO9o3I5XBoQalf11cWKsfD2xgAwNVVWpirm1ZU6P+d7FNX/6iuW1So4oKcizbGx6OT6uwbUXtXSJ4sp5YvnqfSebmyqj+r+npXfIjnJ//+AZhbvJIEroDL6dTyykIdbelXW9ewFpfnJS2WowcPqKv9lD5zyy0fT6huaFD7sX9pxfpbkhYXAACwD5fToWsXBvT7thO65aPXFNKHa5quXbtW+/fv19atWxN65lp9fb2OHTs2rfl+sKFBH/SEtbR6nUoLc7VqWXFCh5kBAHA5cnOytLG2XGf7RnS8tV+SVDYvV4WBHHlz3HI5HYpZRmPjkxoejap/aEzDI1GVFHpVW1WkonxvfF8zDfHkzHDg6qAhDlwhj9ulG5bO09HT/XI4pEVlV78pPjkR1ekTh+PNcOmjCdV1dfrLvn2qvvEmBkECAIBZCYVCMsZccNBXUVFRQo4VjUZ18ODBc5rv6+rqtG/fPm2/+7+VnZ2dkGMBAJAIDodDC0r8ml/s08DwuPqGxtTaOayxyKRilpHT6VButls+b5YWV+SpKD9HWW7Xefc3NcQTwNVDQxxIgOwst2qWFunY6QFNTFpaMj9fzo8um/rkmt5z1ZQeHQnLnGdCtbEsjY+G5c8vPM+jAQAAPhYIBOR0OjU4ODjttcXg4KDkcChquRWzjFyXOcRydHxCQ6GIBkMRnenolnW+1zDGKBwO0xAHAKQkh8OhonzvtLO+AdgDDXEgQbKz3KqtKtK/2wZ1om1Ayxbk6d/v/T2+prfD6dTS5StVs25zQodRhUajaumOSI6Z37g6nE7l5PoTdjwAAJDePB6P6urqZhz0dV31Sp0+O6Ijp4dUmJejPJ9HgVyPcjwuebJccjkdMvpwCObEpKXIREzjkUmNjE0qPBZVaHRCxhgVBLJV4M/WjTcs1KH9rhlfwzidTgUCgeT9IAAAAJCWaIgDCZTldql6aZFaO4LaX18vK9R5zprecigha3pPTMbU3h1Sf3Bci8oCclWv0MGGBq2rq5t2vKXVK1kuBQAAXJKpgV4zDfpyOp0aj0xqYHhcw6NRdfSGFZmIKToRk2UZSZLD8eHrouwsl7I9Lvm8WbomLyB/rke+HPe0AWTna77X1dWxlioAAAASjoY4kGAuh0OLy3J1pL5Fn/lM4tf0noxZOtsXVmffqIryc7T6uhJ53C6VFm6Rw+HQX/bt+/iM9OqVqqnbnMinBwAAMsDFBn3lZLs1v8Sv+Qk41oWa7wAAAECi0RAH5sDY6IiMSeya3qORSXX3j6hncEwFAY9WVBUpN+fjprrT6dSK9beo+sabND4aVs4crlkOAAAyw9UY9HWx5jsAAACQSDTEgTngzfXLcd5hVE6NTrqUE4vJ7Tr/pGnLmPjQqYHhiMYikyot9GrFsmLlZp//V9edlcUATQAAYDtXo/kOAAAA0BAH5oA7K0tLl6+ccU3vsiXV6h6K6nTnyIframa75HG7NLWU5tQAqrHxSWW5ncr3Z2tBqV8Ffo9cCRzGCQAAAAAAAGQaGuLAHKlZt1lyaMY1vZ1Op2LGaHRsQtGJmCITMZmPHhfwOZXtdsqbkyWP+/xnkAMAAAAAAAC4NDTEgTlysTW9XQ6HArmsjwkAAAAAAABcLTTEgTnGmt4AAAAAAABAamBBYgAAAAAAAABARqAhDgAAAAAAAADICDTEAQAAAAAAAAAZgYY4AAAAAAAAACAjMFTzPMbGxiRJx48fT3IkyXGyO5TsEIC0MdETSHYIAAAAAABcFfSUkitTexBTPdypnu6F0BA/j9bWVknS9u3bkxsIAAAAAAAAAOCiWltbtWnTpgvex2GMMVcpHlvp6+vTm2++qcrKSnm93mSHc1UdP35c27dv1yuvvKLq6upkh4MMRA4imcg/JBP5h2Qi/5BM5B+SjRxEMpF/SKZ0yb+xsTG1trbqs5/9rIqLiy94X84QP4/i4mLdf//9yQ4jqaqrq7VmzZpkh4EMRg4imcg/JBP5h2Qi/5BM5B+SjRxEMpF/SKZ0yL+LnRk+haGaAAAAAAAAAICMQEMcAAAAAAAAAJARaIgDAAAAAAAAADICDXEAAAAAAAAAQEagIY5zVFRUaNeuXaqoqEh2KMhQ5CCSifxDMpF/SCbyD8lE/iHZyEEkE/mHZMrE/HMYY0yygwAAAAAAAAAAYK5xhjgAAAAAAAAAICPQEAcAAAAAAAAAZAQa4gAAAAAAAACAjEBDHAAAAAAAAACQEWiI29DQ0JC++MUvKhAIaP78+Xr22Wfj244cOaKNGzcqNzdXN9xwg/70pz9dcF+/+c1vVFVVpdzcXN12221qa2ubtn3nzp0qKSlRfn6+HnroIUUikcuK63JiQ2qya/5VVlbK6/XK7/fL7/erpqbmkp87ki9V8++5555TXV2dsrOzdc8995yznfqXHuyaf9S/9JGKORiJRPTQQw9pyZIlCgQCqqmp0a9//etp96EGpge75h81MD2kYv5J0sMPP6wFCxYoLy9PlZWVeuqpp6Ztp/6lB7vmH/UvPaRq/k3p6+tTcXGxNm7cOO32lK9/BrZz//33mzvvvNMEg0Fz+PBhU1JSYv74xz+aaDRqKisrzZNPPmnGx8fNa6+9ZvLy8kx3d/eM+zl27Jjx+XzmzTffNKOjo+Yb3/iGWb9+fXz7z3/+c7NkyRLT0tJi+vr6zKZNm8y3v/3tS47LGHPJsSF12TH/jDFm8eLFZu/evYn7QSApUjX/fvvb35rf/e535tFHHzVf+tKXpm2j/qUPO+afMdS/dJKKORgOh83OnTtNS0uLsSzL7N+/3+Tl5Zm//e1vxhhqYDqxY/4ZQw1MF6mYf8YYc/ToUTM6OmqMMaa9vd1UV1eb3bt3G2Oof+nEjvlnDPUvXaRq/k158MEHzZYtW8yGDRvit9mh/tEQt5lwOGw8Ho9pamqK3/bYY4+Zu+66y7z11lumtLTUxGKx+Labb77ZPPfcczPu67HHHjNf+MIX4t8PDw+b7Oxsc+TIkfhjf/KTn8S3v/XWW6akpOSS45p67KXEhtRk1/wzhhcD6SBV8++Tdu3adU5DkvqXHuyaf8ZQ/9KFHXJwyh133GF++MMfxh9LDbQ/u+afMdTAdGCX/Gtvbzc1NTXmySefjD+W+md/ds0/Y6h/6SDV8+/dd981mzZtMi+++OK0hrgd6h9LpthMc3OzLMtSbW1t/LbVq1fryJEjOnLkiFasWCGn03nONklqb29XQUGB2tvbJX14+cLq1avj9w0EAqqqqorf/9PbV69erd7eXnV3d0uSHnnkET3yyCMXjWtqXxeKDfZg1/yb8sADD6ikpERbt27VX//61wT8RHA1pWr+XQz1Lz3YNf+mUP/szy45ODIyooaGhnic1MD0YNf8m0INtLdUz7/vfOc78vl8WrRokUZGRrR9+/b4vqh/9mfX/JtC/bO3VM6/aDSqr33ta3r++eflcDimxW2H+udOdgC4NOFwWPn5+dNuKygoUCgUUjgcVkFBwTnbptYEWrRokYaGhqbta6b7h0KhGbdPfR0KhVRWVqaf/vSns4rrQsf69HpFSG12zT9JeuWVV7R27VpJ0ssvv6w77rhDTU1NWrx48ayfP5IrVfNvNnFT/+zPrvknUf/ShR1y0LIsPfjgg1q3bp22bdt2wWNRA+3FrvknUQPTQarn39NPP62nnnpKDQ0N+v3vf6/CwsILHov6Zy92zT+J+pcOUjn/nnnmGd1+++1atWqV3n///XPiTvX6xxniNuP3+zU8PDzttmAwqEAgIL/fr2AwOOO28+3rQvf/9Papr2fa34Xims2xYA92zT9J2rx5s7xer7xer7761a/qxhtv1N69ey/2lJFCUjX/ZhM39c/+7Jp/EvUvXaR6Dhpj9JWvfEVnz57V7t2742cKUQPTg13zT6IGpoNUzz9JcjgcWrdunXJycrRr165ZHQv2YNf8k6h/6SBV8+/UqVN6+eWX9cQTT1zWsVIBDXGbue666+RwOHT06NH4bY2NjaqtrVVtba2amppkWdY522ZSW1urxsbG+PfhcFgtLS3x+396e2Njo0pKSlRWVnZJcU3t61JiQ2qya/7NxOl0yhhz0eeM1JGq+Xcx1L/0YNf8mwn1z55SOQeNMXr00UfV2NiovXv3yu/3TzsWNdD+7Jp/M6EG2k8q59+nTU5OqqWlJb4v6p/92TX/ZkL9s59Uzb8DBw6oq6tL1113ncrLy/X1r39d7733nsrLyzU8PGyP+pe85ctxue677z7zuc99zgwPD5umpiZTVlY2bcLs008/bcbHx82ePXtmNWH27bffNmNjY+Zb3/rWtAmzL7zwgqmqqjKnT582/f39ZsuWLRecMHu+uIwxlxwbUpcd86+trc3s27fPRCIRE4lEzAsvvGB8Pp85depUYn84mHOpmn8TExNmbGzMPP744+buu+82Y2NjJhqNGmOof+nEjvlH/UsvqZqDjzzyiLnxxhvNwMDAOduogenDjvlHDUwfqZh/AwMD5le/+pUJBoMmFouZAwcOmJKSEvPjH//YGEP9Syd2zD/qX/pIxfwbHR01nZ2d8X/PPvusWbNmjens7DSWZdmi/tEQt6HBwUFz1113GZ/PZ8rLy82PfvSj+LbDhw+b9evXm5ycHLN8+XJTX18f39bW1mZ8Pp9pa2uL37Znzx6zZMkS4/V6za233mpaW1vj2yzLMo8//rgpKioyeXl55stf/rIZHx+Pb9+xY4fZsWPHrOK6WGywDzvm39GjR82qVauMz+czhYWFZtOmTebPf/5zYn8wuCpSNf927dplJE3798ADD8wqNtiHHfOP+pdeUjEHW1tbjSSTnZ1tfD5f/N+TTz45q9hgH3bMP2pg+kjF/BscHDS33nqrKSgoMH6/31x//fXmmWeeMZZlzSo22Icd84/6lz5SMf8+7aWXXjIbNmyYdluq1z+HMVwvAQAAAAAAAABIf6whDgAAAAAAAADICDTEAQAAAAAAAAAZgYY4AAAAAAAAACAj0BAHAAAAAAAAAGQEGuIAAAAAAAAAgIxAQxwAAAAAAAAAkBFoiAMAAAAAAAAAMgINcQAAACDN1NTU6Je//GWywwAAAABSjjvZAQAAAACYPb/fH/86Go0qFovJ6/XGb9u7d6+OHj2ajNAAAACAlOcwxphkBwEAAADg0n33u9/VgQMH9O677yY7FAAAAMAWWDIFAAAASDOVlZX6xS9+IUlqbW2Vw+HQiy++qJUrV8rn82nz5s06c+aMnnvuOS1evFgFBQXasWOHYrFYfB8dHR267777tGDBApWWluree+9Vb29vsp4SAAAAkBA0xAEAAIAM8Nprr6m+vl7d3d2SpNtuu00ffPCBmpub1dDQoN27d2vPnj2SpEgkottuu03z589Xc3OzTp8+Lbfbrfvuuy+ZTwEAAAC4YjTEAQAAgAywc+dOlZaWyu/36+6779aZM2f01FNPKTs7W8uWLdOWLVv0r3/9S5L0hz/8QaFQSD/4wQ/k8/nk9/v1zDPPqL6+XmfOnEnyMwEAAAAuH0M1AQAAgAxQUVER/9rn86mkpEQul2vabaFQSJJ08uRJdXd3q7CwcNo+srOz1d7eroULF16doAEAAIAEoyEOAAAAYJry8nItXrxYLS0tyQ4FAAAASCiWTAEAAAAwzec//3lNTExo586dCgaDkqSenh7t3r07yZEBAAAAV4aGOAAAAIBpAoGA/v73v6u9vV0rVqxQXl6ebr75Zu3bty/ZoQEAAABXxGGMMckOAgAAAAAAAACAucYZ4gAAAAAAAACAjEBDHAAAAAAAAACQEWiIAwAAAAAAAAAyAg1xAAAAAAAAAEBGoCEOAAAAAAAAAMgINMQBAAAAAAAAABmBhjgAAAAAAAAAICPQEAcAAAAAAAAAZAQa4gAAAAAAAACAjEBDHAAAAAAAAACQEWiIAwAAAAAAAAAyAg1xAAAAAAAAAEBG+P92++w5hjacywAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/cAAAIyCAYAAACO1Dp8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACqHklEQVR4nOzdeVhUZf8/8PewDNsMMwz7DiKgIIpbVuaSWYqZmUtlWq6lpmZlq7lhZmlm2arVo6aWllbPY65lWplimoqJ4IZs4oCyM8MyMHN+f/Rjvo6ACw5zGOb9ui6u5NxnzrwZzPt8zn2f+0gEQRBARERERERERFbLTuwARERERERERHR7WNwTERERERERWTkW90RERERERERWjsU9ERERERERkZVjcU9ERERERERk5VjcExEREREREVk5FvdEREREREREVo7FPREREREREZGVY3FPREREREREZOVY3BPZiL59+2LOnDlixyAiIqJmwr6eyLaxuCeyAhkZGRg1ahQCAgIgk8kQEBCAQYMGQa1Wix1NNJs2bUKvXr3g7u4OiUSC2tpasSMRERE1Gfv6+l577TXExcXB3d0d/v7+GDVqFHJycsSORdRisbgnsgKDBg2CXC5HSkoKNBoNjh8/jsceewwSiUTsaKLx8PDAs88+iw8++EDsKERERLeNfX19EokEa9euRUFBAdLS0iCRSPDQQw+JHYuoxWJxT9TCFRYW4vTp05gyZQpUKhUAwNfXF2PHjoWfnx8AYO3atQgKCjJ53YIFC3DPPfeYbCspKcGwYcMgl8vRtm1brFu3ztiWnZ2NQYMGQaVSQaFQoEOHDti/f7/J8VesWIGgoCB4enpiwoQJ0Gg0xtfPmzcPUVFRkMvlCA4OxowZM1BRUWFsr62txfLlyxETEwO5XI6goCAsWbLE2P7XX3+hb9++8PT0RGhoKObOnXvd0fgBAwZg1KhRaNOmza1+pERERC0K+/qGvf322+jatSukUimUSiVeeeUVnDhxAsXFxbf6ERPZBBb3RC2cp6cn4uLiMHnyZKxZswb//PMPDAZDk471n//8B+PHj0dxcTE+/PBDTJo0CQcOHAAAvP766wgMDMSlS5dQXFyM77//3uQkIi8vD8nJyThz5gz++ecfnDx5Ei+88IKxPTIyEnv27EFZWRl27dqFnTt34s033zS2L1iwAJ9++inWrl2L0tJS/PPPP+jduzcA4MyZM7jvvvswZcoU5Ofn448//sDWrVtNTgiIiIhaK/b1N+fnn39GaGgoPDw8mvTZELV6AhG1eAUFBcLcuXOF7t27C05OToKHh4cwa9YsoaqqShAEQVizZo0QGBho8pr58+cLPXv2NH7fp08fYdiwYSb7PProo8KECRMEQRCEcePGCYMHDxZSUlIEg8Fgst+aNWsEOzs7oaSkxLhtx44dgqOjo1BbW9tg5uXLlwtdunQRBEEQDAaDIJPJhM2bNze474wZM4THH3/cZNuGDRuEiIiIRj+TOvv27RMACDU1NTfcl4iIqKViX399v/zyi+Dq6irs3LnzpvYnskUcuSeyAp6enli4cCEOHz6M0tJSrF69Gl988QXefvvtWzpOeHh4ve/rFqZZtmwZ2rZti2HDhsHX1xfjx49Hfn6+cV8PDw8oFAqT19bU1Bj3WbVqFbp06QJPT08oFAq88cYbuHz5MgCgoKAAGo0G0dHRDeY6d+4cfvzxRyiVSuPX1KlTkZeXd0s/HxERkbViX9+4bdu2YcSIEdiwYQMGDhx4S58HkS1hcU9kZZycnDB06FD0798fx44dAwDI5XJotVqT/S5dulTvtZmZmfW+r5uO5+npiffffx9nzpzB8ePHkZmZiRdffNG4b3FxMUpLS01e6+joCF9fXyQlJWH69Ol47733kJeXh9LSUrz11lsQBAEA4OXlBZlMhrNnzzb4M/n5+eGJJ55ASUmJ8ausrMzkPj8iIiJbwb7+/3z99dcYPXo0vv32WzzyyCPX3ZfI1rG4J2rhiouL8dprr+Gff/5BdXU19Ho9fv31V+zbt894H1vnzp1RXl6Ob7/9FgaDAb/99hs2b95c71g7duzA9u3bodfrsWvXLvz4448YP348gH8fLZeeng6DwQC5XA4nJyc4ODgYXyuRSDBr1ixotVpcunQJ8+fPx5NPPgl7e3uUlpbC3t4e3t7ecHR0xLFjx/Dxxx+bvHbGjBl4/fXX8ffff0MQBBQVFSEpKQkA8Oyzz2LLli3YvHkzdDod9Ho9zp8/j127djX6uej1elRVVUGn0wEAqqurUVVV1eR7FImIiMTCvr5hH3/8MaZPn45t27ZhwIABZvmsiVo1ce8KIKIb0Wg0wsSJE4WoqChBJpMJCoVCiI2NFd555x2T++U+++wzISgoSJDL5cLjjz8uvPDCC/Xuw5s2bZrwyCOPCDKZTGjTpo2wevVqY/trr70mhISECK6uroKXl5fw2GOPCZcvXxYE4f/u8/vggw+EgIAAwcPDQxg7dqxQVlYmCIIg6PV6YebMmYKnp6fg7u4uDBgwQEhMTDS5N7CmpkZYsmSJEBUVJbi5uQmBgYHCkiVLjO2HDh0S7r//fsHLy0tQKBRCp06dhJUrVzb6uaxZs0YAUO9r3759t/2ZExERWRL7+oYBEBwcHAQ3NzeTrz/++OP2P3SiVkgiCP9/Lg0RUSPWrl2LOXPm4OLFi2JHISIiombAvp7I+nFaPhEREREREZGVY3FPREREREREZOU4LZ+IiIiIiIjIynHknoiIiIiIiMjKsbgnm1dSUoKwsDDk5OSIHeW6Fi9ejAceeKBJr83MzIREIsH58+fNnKr5BQUFYe3atWLHqOd2fh8N0Wq1CA0NbfT5wERErdm1ffFvv/0GiUSC2tpakZOZ35w5c9C3b98mvXbcuHEYM2aMeQNZ0fs31ZdffomwsDCxYzRIJpPht99+M9vx3nvvPYwbN85sxyPrwuKebN7ChQsxdOhQBAcHm+V4zdXxzZ49Gz///LPZj2suLeUCQlhYGL788stmP6a5fx9ubm548cUXMWvWLLMdk4jIWpi7L6Zb05IuprSECwhr165FUFCQRY6p0WiafLGnIdOnT8fPP/+Mv//+22zHJOvB4p5sWllZGb744gs888wzYkchwlNPPYU9e/Zw9J6IbAr7YnHV1NSIHYHMyMnJCWPGjMH7778vdhQSAYt7smk///wzlEolYmJiTLb/9ddf6Nu3Lzw9PREaGoq5c+eaXM2+ePEiRo8ejaCgILi7uyM+Ph7Hjh3D4sWL8fXXX+Pbb7+FTCaDTCZDdnY2AGD79u3o2rUrFAoFoqKisGzZMhgMBuMxJRIJli9fju7du0Mmk+GOO+4wueq6YMEC3HPPPcbvKysrMWfOHERFRUEul6NNmzb46quvrvvz7tu3DzExMXB3d8d9992H9PR0Y5ter8d7772H9u3bQ6FQoGvXrvj111+N7SkpKbjvvvvg7e0NhUKBHj16YO/evcb22NhYAECnTp0gk8kwZcoUAMDHH3+MiIgIyOVy+Pr6XneqmEajwcSJE+Hp6YnAwECsWLGi3j6nT5/G4MGD4evri8DAQDz77LPQarUAgISEBGRnZ2P69OmQyWTGTACwbt06dOrUCQqFArGxsdi0aZPJcZOSktCvXz94eXlBpVLh3nvvRWVlZaPHvPb3UVJSgmeeeQZBQUHw8vJCQkICzpw5Y2yv2z8xMRH+/v5QqVSYPHmyyd8rDw8PdO/eHT/++GOjnxERUWvTWF98Nb1ej3fffRdRUVFQKBTo1q0bdu7caWyvG3nesmWLsV+8//77kZuba9wnPz8fQ4cOhVKpRJs2bfD1119DIpFcd0r0M888g7CwMMhkMoSHh2P+/PkmfXffvn0xc+ZMPPHEE1AoFAgODsZnn31mcoz169cjMjIScrkcw4YNQ0lJyXU/j3379qFbt25QKBTw9PREz549UVxcbGyvra3F9OnT4enpCV9fX8ydO9fk9UlJSejVqxc8PDwQHh6O1157DdXV1cb2sLAwzJ8/HwMHDoRcLsfbb7+NhIQEAIBSqYRMJsPixYsbzafT6TBp0iQolUqEhIRg6dKlJu3X66cBYN68ecbfUXBwMGbMmIGKigoAaPQ8Kjs7G4MGDYJKpYJCoUCHDh2wf//+RjPu3r0bcXFxkMlk6NevX71bL693zrN//35MmTIFly5dMmb4+uuvAQC5ubl44oknEBgYCB8fH4waNQpXrlwxHrexc7PrHVMikWDPnj3GY9zM+eJHH32Enj17QiaTIS4uDn/++afJzzdw4ED89NNPLWImBlmYQGTDXn31VWHgwIEm206fPi24ubkJGzduFGpqaoTMzEyhY8eOwqJFiwRBEISKigohMjJSGDdunHDlyhVBr9cLp06dEjIzMwVBEISxY8cKo0ePNjnm4cOHBUdHR+Hbb78VampqhL///lvw9/cX3n//feM+AISIiAjh1KlTQlVVlTB//nzBy8tLKCkpEQRBEObPny/07NnTuP/o0aOF7t27C6mpqYLBYBByc3OFo0ePNvhzZmRkCACE7t27C9nZ2YJWqxUmTpwotG/fXqipqTEev1OnTsLp06cFvV4v/PDDD4Krq6tw/vx5QRAE4eTJk8LPP/8sVFRUGPO5u7sL+fn5Ju9x7tw54/uePXtWcHFxEU6ePCkIgiCUl5cLv//+e6O/j6efflro3LmzkJOTI2g0GmHcuHGCvb29sGbNGkEQBOHKlSuCl5eXsHz5cqGqqkq4cuWKcN999wmTJk0yHiM0NFT44osvTI67Zs0aITg4WDhy5Iig1+uF/fv3C3K5XNi/f78gCIKQkpIiODs7Cx9//LGg1WqF6upqYd++fUJVVVWjx7z29zF48GChb9++glqtFrRarTBz5kwhKChIKC8vN+7v4OAgvPvuu0J1dbVw5swZwcPDQ1i9erXJcadNmyYMHz680c+IiKi1aagv3rdvnwDA2EctW7ZMCAwMFI4ePSrU1NQIGzduFBwdHY39Xt3+TzzxhFBSUiKUlJQId999t/DUU08Zj9mvXz9h8ODBQlFRkVBUVCQMGTJEACDs27ev0WxffPGFkJeXJxgMBiEpKUlQqVTCypUrje19+vQR3N3dhV9//VXQ6/XCli1bBDs7O2NfeODAAcHBwUHYunWrUFNTI2zdulVwdnYW+vTp0+h7BgQECKtXrxYMBoNQXV0tHDx4UNBoNIIg/HuOIZVKhY0bNwq1tbXCwYMHBQcHB2Hv3r2CIAhCVlaW4OrqKrz//vtCdXW1cPbsWSEmJkaYOXOm8fihoaGCr6+vcPDgQcFgMAharbbe592YsWPHCg4ODsLKlSsFnU4nJCUlCR4eHsKGDRsEQbi5fnrdunVCVlaWYDAYhJSUFCEiIkJ47bXXTN7j2vOoJ554Qpg0aZJQWVkp6PV64fTp08KFCxcazHjhwgVBKpUKq1atEnQ6nXDgwAHBy8tLCA0NNe5zo3OeNWvWCIGBgSbHraqqEqKjo4VZs2YJGo1GKC8vF8aMGSP079/fuM/1zs0aOqYg/Hv+98svvwiCcPPnix07dhTOnTsn1NTUCDNnzhRCQkJMjnnlyhUBgPH8i2wHi3uyaU8//bTw2GOPmWybMWOG8Pjjj5ts27BhgxARESEIgiBs3rxZUKlUxsLvWg11Ss8884wwdOhQk23Lly8XoqOjjd8DED788EPj93q9XvDz8xPWrVsnCIJpMVn3j/aRI0du6uesK7y3bt1q3FZWVibY29sLf/zxhyAIguDu7i7s2rXL5HX9+/cX3nzzzUaPq1AojMdsqLi/cOGC4OzsLGzatEkoLS29bka9Xi84OTmZZCwpKREkEomxuH/vvfeEO++80+R1f/75pyCVSoXa2lpBEBouxOPi4kxOxgRBECZNmiRMnDhREIR/C+oHH3yw0Ww3Ku4vXbokABCSk5ON7TqdTvD09BQ2btxo3D88PNzkGCNGjBCmTJlism327NnCvffe22gWIqLWpqG++NpiMyoqSvjggw9M9hkyZIgwefJkk/2zsrKM7R9//LHQrl07QRAEIScnRwAgnDp1yth+8uTJGxb313ruueeEYcOGGb/v06ePMH78eJN9vLy8hE2bNgmC8G9fc/X+giAIw4YNu25xHxYWJrzxxhvCxYsX67WNHTu2Xh/RrVs34Z133hEEQRAWL14sxMfHm7T/8MMPgouLi2AwGARB+LdPu7qYFoT6n3djxo4dK3Tp0sVk2yuvvCL069dPEISb66evtXz5cpNjNnQeNW7cOGHw4MFCSkqK8edozKJFi+plfPHFF02K+xud8zRUiH///fdCQECAyftfvHhRACDk5OTc8NzsZor7mz1f/Oqrr4zfp6SkCACEvLw84zadTicAuO6ACrVOnJZPNk2lUqG0tNRk27lz5/Djjz9CqVQav6ZOnYq8vDwAQEZGBsLCwuDk5HTT75OTk4OIiAiTbW3btjVO2a8THh5u/LOdnR1CQ0MbXMU/IyMDABAdHX3TGa49vlwuh5eXF3JycpCfn4+ysjKMHDnS5Oc+ePCgcUpjdnY2Hn/8cYSEhMDd3R1KpRJlZWW4fPnydd9v06ZNWLNmDUJCQtC9e3ds3LixwX2vXLmC6upqk4wKhQIqlcr4/blz53D06FGTjIMGDYJEIjH+fhpy7tw5zJo1y+R1GzduxKVLlwD8+3ne6md5tbrf0dW/Y0dHR4SGhpr8jgMCAkxe5+bmhvLycpNtpaWlJj8zEVFr11BffK2b7Uev/nf26n9j6/qy0NBQY/uNVk8XBAFvvfUWYmNj4eHhAaVSiVWrVtXr9673b/vFixdN+jUA9b6/1tatW3HhwgV07doVbdu2xfz5802mV1/v/Rr7nCorK02mj98ow/U09PPU9YM300+vWrUKXbp0gaenJxQKBd54443rnksAwLJly9C2bVsMGzYMvr6+GD9+PPLz8xvc90af+c2c8zTk3LlzyM/PN/5dUCqViI2NhZOTE7Kzs5t8bna1pv49B2ByPlH3/xPPJ2wPi3uyaV27dsWpU6dMtvn5+eGJJ55ASUmJ8ausrAwajQbAvycDmZmZ0Ol0DR7Tzq7+/1bBwcEm97cDQHp6OkJCQky2ZWZmGv9sMBiQnZ3d4MqqdSckt7rw2tXH12g0KCgoQFBQEJRKJZydnbFt2zaTn1ur1RrvHXz66adhMBhw5MgRlJWVobi4GO7u7hAEodGfGwAefvhh7Nq1CwUFBXj55ZcxevToBnN7e3vDycnJJGNpaanJfYZ+fn645557TDKWlpaiqqoKgYGBjebw8/PDp59+avI6jUaDHTt2APj387zeZ9nYz1anbnXnq3/HtbW1yM7Orvc7vpGTJ0+iW7dut/QaIiJr1lBffK2b7UcbU9dHZGVlGbdd/eeGbNq0CR988AHWrVuHgoIClJSUYPLkycZ+72YEBQWZ9GsA6n1/rbi4OHzzzTfIy8vDli1bsHLlSqxZs+am3i84OBgXLlww2Zaeng4XFxd4e3sbt13br92on7taQz9P3bnKjfrppKQkTJ8+He+99x7y8vJQWlqKt956y+QzbSiLp6cn3n//fZw5cwbHjx9HZmYmXnzxxQbz3egzv5lznsbOJUJDQ01eU1JSgqqqKtx99903PDe7mc/4dv+e1zl58iRkMhnatWt3S68j68finmzaAw88gKKiIqSlpRm3Pfvss9iyZQs2b94MnU4HvV6P8+fPY9euXQCAwYMHw8PDA88++ywKCgogCAJSU1ONJwl+fn5IT0+HXq83HnPChAnYvn07vv/+e+j1ehw/fhzvvvtuvZWBV6xYgbS0NOh0Orz11lvQ6XQYMmRIvdze3t4YNWoUpk2bZly0Ta1W49ixY9f9eRctWoSLFy+ioqICs2bNQtu2bXH33XfDyckJU6ZMwSuvvIK0tDQIgoDKykr88ccfxk6qtLQUMpkMHh4e0Gq1eP31140XPOoy2dnZmSwid+bMGezYsQMajQYODg5QKBQAAHt7+3rZ7OzsMGbMGCxYsAC5ubnQarWYNWsWJBKJcZ/x48fj+PHj+PTTT1FRUQFBEJCTk4P//ve/xn38/PxMMgDA888/jzfffBNHjhyBwWBAdXU1jhw5gqNHjwIApk6dil9++QUrV65EZWUlampq8PvvvxsXIGromFfz9/fHoEGDMGvWLOTn56OyshKvvvoqpFIpHnzwwev+Tq5WUlKCw4cPY+jQoTf9GiIia9dQX3ytSZMmYdmyZUhOTkZtbS2+++477NixA5MmTbqp9wgKCkLfvn3x+uuvG4uyOXPmXPc1paWlcHBwgI+PDyQSCfbt24cNGzbc0s82duxYbN26Fdu3b4der8f27duNF5YbotPpsGbNGuMou0KhgL29PRwcHG7q/Z544gmcOXMGH330EXQ6HdLT0zF37lxMmjTJpD+9lp+fHwBct6+rc+LECXz55Zeora3F4cOH8cUXX2D8+PEAbtxPl5aWwt7eHt7e3nB0dMSxY8fw8ccf18ty7XnUpk2bkJ6eDoPBALlcDicnp0Y/k1GjRuHkyZPGjIcOHcK6deuM7TdzzuPn54eCggIUFhYaXzds2DDU1NRg7ty5xpHxy5cv49tvvwVw43Ozho55rZs9X7yRXbt2YfDgwTf994ZaDxb3ZNMUCgUmTZqEVatWGbd1794dv/zyC7744gsEBgbC09MTI0aMMBbvLi4u2Lt3LzQaDeLi4qBQKDB69GgUFRUBgPEfYC8vLyiVSmRnZ6NHjx7YsmUL3nrrLXh4eGDkyJF47rnnMHPmTJM8U6dOxZNPPgmVSoWtW7dix44dUCqVDWb/4osv0KdPHyQkJEAmk6Fnz543HPmYOHEi7r//fvj6+uLs2bP46aefjP/wL1u2DKNGjTJOUwsLC8Pbb79tfETOhx9+iBMnTsDDwwMxMTEIDAw0mVXg4uKCxYsXG1fQffbZZ40XKQIDA+Hu7o5Zs2Zh3bp19aac1Xn//fcRFxeHuLg4REVFIS4uznjCAQAhISFISkrCL7/8goiICCiVSgwYMAAnT5407jNv3jz873//g1KpRMeOHQEAM2fOxIIFCzBlyhSoVCoEBgbi5ZdfNq7e26FDB+zZswcbN25EQEAAfH19sXDhQuPqtA0d81rr169HWFgYunTpgqCgIJw6dQp79uyBXC6/7u/kauvWrcN9993HK+1EZFMa6ouv9eKLL2LatGkYMWIEVCoVlixZgh9++OGWZjp98803EAQBoaGh6Ny5s/HiubOzc4P7jxs3Dvfddx/i4uLg5eWFlStX3vLz1++55x58/vnnmDlzJpRKJf7zn/9gwoQJ133Nli1bEBsbCzc3N/Tp0wfjxo3D2LFjb+r9QkND8fPPP+Pbb7+Fj48P+vXrh4SEhHor2l8rKioKM2bMwL333gulUol33nmn0X0feeQRHDp0CF5eXhg+fDheeukl4+dyo376gQcewJQpU9C3b18oFArMnj273s/W0HnUiRMn0K9fP8jlcuNxly1b1mC+Nm3a4Mcff8QHH3wApVKJ2bNnY+rUqSb73Oicp1+/fnj44YcRFRUFpVKJb775BnK5HElJScjOzkZcXBzc3d1x9913448//jAe93rnZg0d81o3e754PTqdDuvXr290ZgO1bhLhVuYWEbVCxcXFiI+Px/79+2952pM5SSQS/PLLL+jfv79oGUg8Wq0WsbGx2L17923dr0dEZI3E6IuTk5PRuXNnXLp0Cf7+/hZ5T6Lmtnz5cpw4ceKGj0em1onFPVELweKeiIio+aSkpECn0yE+Ph6XLl3CU089BQDYu3evyMmIiMyD0/KJiIiIqNUrLS3F448/Drlcjq5du8LLywtff/212LGIiMyGI/dEREREREREVo4j90RERHTbPv74Y3Tr1g1OTk54/PHHTdpSUlJw5513wtXVFTExMTecBv3xxx8jMDAQMpkMw4cPN3kkJhERETWMxT0RERHdtoCAAMyZMwdPP/20yfaamho89NBDGDJkCIqLizF//nw88sgjuHz5coPH+eWXXzB//nz89NNPUKvVsLe3x5QpUyzxIxAREVk1TssnIiIis1mwYAFOnz6NTZs2Afi3WB8zZgzUajXs7P4dU+jZsyeeeOIJTJs2rd7rR48eDX9/f+Njrs6dO4eYmBgUFBRAoVBY7gchIiKyMg5iBxBDQUEBdu/ejbCwMLi4uIgdh4iICJWVlcjMzMSAAQPg5eUldhyzSUlJQVxcnLGwB4D4+HikpKQ0un9CQoLx+8jISEilUpw+fRo9evSot79arYZara63vbi4GGlpaejcuTP7eiIiahGau6+3yeJ+9+7dGDNmjNgxiIiI6tmwYQNGjx4tdgyz0Wg0UCqVJtuUSiWysrJuaf/y8vIG91+1ahUSExPNEZWIiMgimquvt8niPiwsDACwdOlSREREiBuGyELS09PxyiuvYP369YiJiRE7DhFdIy0tDWPGjDH2Ua2FTCZDaWmpybbS0lLI5XKz7D958mQMGTKk3vbk5GRMnDgRS5YsYV9PNiU9PR2vvvoq+3uiFqi5+3qbLO7rpue1adMGsbGxIqchsoy65TXatWuHLl26iJyGiBrT2qaQd+jQAUuWLIHBYDBOzU9OTsaoUaMa3T85Odk4onH+/HlUV1ejXbt2De7v7+8Pf3//Rt8/IiICHTp0uM2fgsh6+Pv7Y/bs2XjggQfg4+MjdhwiakBz9fVcLZ+IiIhuW21tLaqqqlBbWwuDwYCqqirU1NSgb9++cHFxwdKlS1FdXY3Nmzfj5MmTGDlyZIPHGTduHNasWYPjx49Do9Fgzpw5GDZsGBfTI7pJHh4eGDp0aKtau4OIbg6LeyIb0a5dO/z555+Ij48XOwoRtUKLFi2Ci4sL3nrrLWzevBkuLi54+umn4ejoiK1bt+LHH3+EUqnEvHnz8MMPPxhHFPfv3w+ZTGY8zv33348FCxbgwQcfhJ+fH3Q6HVauXCnWj0VkdYqLi/Hf//4XBQUFYkchIguzyWn5RLbIzs4OUqnUZMVqousRBMH4RbdPIpEYv1qjBQsWYMGCBQ22xcXF4a+//mqwrVevXtBoNCbbpk+fjunTp5s7IpFNUKvVWLx4MR555BFOy6cbYl9vfhKJRLTzbRb3RDYiMzMTc+bMwddff93ovatEAGAwGHD58mWUlJSwszcziUQCpVIJHx8fXmgjIiLRsK9vXo6OjggJCYFUKrXo+7K4J7IRFRUVOHbsWL0RMqJrZWVlwc7ODmFhYXB0dBQ7TqtSU1OD/Px8ZGVlITw8XOw4RERko9jXNx9BEFBYWIjs7Gy0bdvWou/N4p6IiIzqFkKLjIyEgwO7CHOzt7dHYGAgzp07Z7J6PBERkaWwr29+np6eKCoqsnhfz7MKIiIyqpua11rvC28J6j5bToMkoubg6uqKLl26mCxUSXQ19vXNT6y+nsU9EREREVErERYWhpUrVyIqKkrsKERkYSzuiWyEv78/Zs+ejZCQELGjELV6ffv25ePbiEgUBoMBOp0OBoNB7ChErVpL7OtZ3BPZCA8PDwwdOhReXl5iRyG6bX379oWDgwPOnj1r3Hb69GlOMSQim3f69Gncc889SE5OFjsK0W1hX3/rWNwT2Yji4mL897//RUFBgdhRiMxCoVBg7ty5t32c2tpaM6QhIiIic2Nff2tY3BPZCLVajcWLFyM7O1vsKERmMWPGDOzYsQPHjx+v11ZWVoaJEyfCz88PQUFBePHFF1FdXQ0AyMzMhEQiwdq1axEeHo6OHTvit99+g5+fH1asWAF/f394enriyy+/xNGjRxEfHw+FQoEnn3zSeHJQVlaGhx56CD4+PvDw8MCgQYP4/xYREZGZsa+/NSzuiYjIbHQ6HbKzs5Gamors7GzodLpmey8/Pz8899xzmD17dr225557Drm5uTh9+jT+/vtvHDhwAAsXLjTZZ9euXThx4gSOHj0KACgoKDA+g37t2rWYPn06EhMTsXPnTpw/fx779+/Hd999B+Dfe1rHjh2LzMxM5OTkwN3dHc8++2yz/axEREQtiaX6e/b1t4bFPRERmYVOp0NycjLUajUMBgPUajWSk5ObtcB/+eWXcfjwYfzxxx/GbXq9Hhs3bsSSJUugVCrh5+eHxMRErFu3zuS1CxYsgLu7O1xcXAAAdnZ2SExMhFQqxUMPPQSpVIonnngC/v7+8Pb2xgMPPIBjx44BAJRKJUaMGAFXV1fIZDK8/vrr+P3335vt5yQiImopLN3fs6+/eSzuiYjILPLy8iAIAoKDg6FSqRAcHAxBEJCfn99s76lUKvHqq6/i9ddfN24rKCiATqdDWFiYcVtYWBjUarXJ82ZDQ0NNjqVSqeDo6Gj83tXVFX5+fibfazQaAEBFRQUmT56M0NBQuLu7o1evXtBoNMbpgEREYmnbti1++ukndOjQQewo1EpZur9nX3/zWNwT2QhXV1d06dIFMplM7CjUSmk0Gri5uZlsc3NzQ3l5ebO+74wZM5CZmYlt27YBALy8vCCVSpGZmWncJzMzE/7+/iYr7N7OarvvvfceUlNTcejQIZSVlWH//v0AYHJCQUQkBqlUCl9fX0ilUrGjUCslRn/Pvv7msLgnshFhYWFYuXIloqKixI5CrZRMJoNWqzXZptVqIZfLm/V9XVxcMG/ePLzzzjsAAHt7ezz++ON4/fXXUVJSgvz8fCQmJuLJJ58023uWl5fDxcUFSqUSxcXFePPNN812bCKi25GTk4PXXnsNFy5cEDsKtVJi9Pfs628Oi3siG2EwGKDT6WAwGMSOQq2Un58fJBIJcnJyUFRUhJycHEgkEvj6+jb7e0+cOBEeHh7G7z/88EP4+voiOjoanTt3xh133IF58+aZ7f2ef/556HQ6eHt7o0ePHrj//vvNdmwiottRXl6OvXv3oqSkROwo1EqJ1d+zr78xidCS5xU0k2PHjqFr167YsmUL70cim5GSkoIRI0bgyJEj6Natm9hxqIXS6/U4e/YsoqKiYG9vf8uv1+l0yM/PR3l5OeRyOaeGNqCxz7iubzp69Ci6dOkiYsLWgX092Sr293Qjt9vXA+zvb0Ssvt7B7EckIiKbJZVKERwcLHYMIiIiakbs71smTssnIiIiIiIisnIs7omIiIiIWglvb288++yzCAgIEDsKEVkYi3siIiIiolbC29sb48aNM3l2NxHZBhb3RDaibdu2+Omnn7iwFF1X3fNgbXCtVYup+2xv59m7RESNKSsrwx9//MHV8qlR7Ostx9J9PYt7IhshlUq5kindkJ2dHezt7VFVVSV2lFarqqoK9vb2sLNjF0xE5nfx4kW89NJLfM49NYp9ffOrqamBRCKxeHHP1fKJbEROTg6WLFmCVatWoW3btmLHoRbM29sbubm5CAwMhLOzM0eYzUQQBFRVVSE3Nxc+Pj5ixyEiIhvGvr75CIKA/Px8KJVKFvdE1DzKy8uxd+9eTtOjG/Lw8AAAXLp0CXq9XuQ0rYu9vT18fHyMnzEREZEY2Nc3L2dnZ1Eu5LO4JyKiejw8PODh4QGDwcB78sxEIpFwKj4REbUY7Oubh5j9PYt7IiJqFItRIiLrIpVKER4eDmdnZ7GjkJVgX9968DdJRERERNRKtG3bFt9++y1iYmLEjkJEFsbinshGeHt749lnn0VAQIDYUYiIiIiIyMxY3BPZCG9vb4wbNw5+fn5iRyEiIqJmkpaWhnvvvRfJycliRyEiC2NxT2QjysrK8Mcff3C1fCIiolZMEARotVoYDAaxoxCRhbG4J7IRFy9exEsvvYQLFy6IHYWIiIiIiMyMxT0RERERERGRlWNxT0RERERERGTlWNwTEREREbUS4eHhWLduHdq1ayd2FCKyMBb3RDZCKpUiPDwczs7OYkchIiKiZuLi4oJ27drB1dVV7ChEZGEs7olsRNu2bfHtt98iJiZG7ChERETUTC5duoSlS5ciOztb7ChEZGEs7omIiIiIWomSkhJs2bIFBQUFYkchIguz2uK+oKAAXl5euPPOO8WOQmQV0tLScO+99yI5OVnsKEREREREZGZWW9y//PLLnF5MdAsEQYBWq4XBYBA7ChERERERmZmD2AGa4vfff8e5c+cwceJErFq1qtH91Go11Gp1ve1paWnNGY+IiIiIiIjIoqyuuNfpdJg+fTo2bNiA48ePX3ffVatWITEx0ULJiIiIiIjEpVKpMGrUKPj4+IgdhYgszOqK+3feeQf9+/dHp06dbljcT548GUOGDKm3PS0tDWPGjGmuiEREREREovDz88MLL7yAoKAgsaMQkYVZVXF//vx5rF279qYXBPP394e/v3/zhiKyEuHh4Vi3bh3atWsndhQiIiJqJlqtFv/88w+io6Ph7u4udhwisiCrKu7//PNP5OXlISoqCgBQWVmJyspK+Pn54ezZs/wHjOg6XFxc0K5dO7i6uoodhYiIiJpJVlYWJk2ahE6dOqFbt25ixyEiC7Kq1fIfe+wxXLhwAcnJyUhOTsbChQsRFxeH5ORkyOVyseMRtWiXLl3C0qVLkZ2dLXYUIiIiIiIyM6sq7l1cXODn52f8UigUcHR0hJ+fHyQSidjxiFq0kpISbNmyBQUFBWJHISIiIiIiM7Oq4v5a48aNw6FDh8SOQURERERERCQqqy7uiYiIiIjo/9jb20OpVMLBwaqW1iIiM2BxT0RERM1KJpOZfDk4ODT4qNo6EokEbm5uxv0TEhIsmJbIukVHR+Pnn39Gx44dxY5CRBbGS3pENkKlUmHUqFHw8fEROwoR2RiNRmP8s16vR0hICB599NHrvubo0aN8dCcREdEt4Mg9kY3w8/PDCy+8gKCgILGjEJEN27VrFzQaDYYPHy52FKJW6dy5cxg2bBhOnToldhQisjCO3BPZCK1Wi3/++QfR0dFwd3cXOw4R2ag1a9bg8ccfh4uLy3X369evH/R6Pbp164alS5ciNja2wf3UajXUanW97WlpaWbJS2RtampqcPHiRVRXV4sdhYgsjMU9kY3IysrCpEmT0KlTJ3Tr1k3sOERkgwoKCvDTTz/hjz/+uO5+v/32G+666y5UV1djyZIleOCBB5CWltbghclVq1YhMTGxuSITERFZDU7LJyIiIov4+uuv0bZtW/To0eO6+/Xp0wdSqRRyuRyLFi2Cg4MDDh482OC+kydPxtGjR+t9bdiwoTl+BCIiohaLI/dERERkEWvWrMH48eNv+XV2dnYQBKHBNn9/f/j7+99uNCIiIqvH4p6IiIia3bFjx3Dq1Ck8+eST193v1KlTqK6uRseOHaHT6bB06VJUVlbirrvuslBSIusWEhKCFStWoG3btmJHISIL47R8Ihthb28PpVIJBwde0yMiy1uzZg0efPBB+Pr61muTyWTYv38/AODy5ct44oknoFAoEBISgkOHDmH37t1QKpUWTkxknWQyGe666y4unktkg3iWT2QjoqOj8fPPP6Njx45iRyEiG/TRRx812qbRaIx/vvfee3H69GlLRCJqla5cuYL169djwYIFCAwMFDsOEVkQR+6JiIiIiFqJK1eu4Msvv2zwEZFE1LqxuCeyEefOncOwYcNw6tQpsaMQEREREZGZsbgnshE1NTW4ePEiqqurxY5CRERERERmxuKeiIiIiIiIyMqxuCciIiIiaiXc3d0xcOBAeHh4iB2FiCyMxT0RERERUSsRFBSEhQsXIjw8XOwoRGRhLO6JbERISAhWrFiBtm3bih2FiIiImkl1dTVycnJQVVUldhQisjAW90Q2QiaT4a677oK7u7vYUYiIiKiZpKenY/jw4UhNTRU7ChFZGIt7Ihtx5coVfP7553zuLRERERFRK8TinshGXLlyBV9++SWLeyIiIiKiVojFPREREREREZGVY3FPREREREREZOVY3BMRERERtRIxMTE4fPgwunTpInYUIrIwFvdENsLd3R0DBw6Eh4eH2FGIiIiIiMjMWNwT2YigoCAsXLgQ4eHhYkchIiKiZpKRkYEJEybgzJkzYkchIgtjcU9kI6qrq5GTk4OqqiqxoxAREVEzqaysREpKCrRardhRiMjCWNwT2Yj09HQMHz4cqampYkchIiIiIiIzY3FPREREREREZOVY3BMRERERERFZORb3REREREStREBAABITExEWFiZ2FCKyMBb3RERERESthFKpREJCAlQqldhRiMjCWNwT2YiYmBgcPnwYXbp0ETsKERERNZOioiJs3rwZV65cETsKEVkYi3siIiIiolYiLy8P7777LnJycsSOQkQWxuKeyEZkZGRgwoQJOHPmjNhRiIiIiIjIzFjcE9mIyspKpKSkQKvVih2FiIiIiIjMjMU9ERERERERkZVjcU9ERERE1Eq4urqiR48ekMvlYkchIgtjcU9ERERE1EqEhYXho48+QmRkpNhRiMjCWNwT2YiAgAAkJiYiLCxM7ChERETUTPR6PTQaDfR6vdhRiMjCWNwT2QilUomEhASoVCqxoxAREVEzOXPmDPr164cTJ06IHYWILIzFPZGNKCoqwubNm3HlyhWxoxARERERkZmxuCeyEXl5eXj33XeRk5MjdhQiIiIiIjIzFvdEREREREREVo7FPREREREREZGVY3FPRERERNRKREZGYvfu3YiLixM7ChFZGIt7Ihvh6uqKHj16QC6Xix2FiIiImomjoyM8PDzg6OgodhQisjAW90Q2IiwsDB999BEiIyPFjkJERETNJDs7G7NmzUJ6errYUYjIwljcE9kIvV4PjUYDvV4vdhQiIiJqJhqNBvv370dpaanYUYjIwljcE9mIM2fOoF+/fjhx4oTYUYiIiIiIyMxY3BMRERERERFZORb3RERERERERFaOxT0RERERUSvh4+ODmTNnIjAwUOwoRGRhLO6JiIiIiFoJLy8vjB49Gr6+vmJHISILY3FPZCMiIyOxe/duxMXFiR2FiIiImklpaSn27NmD4uJisaMQkYWxuCeyEY6OjvDw8ICjo6PYUYiIiKiZ5ObmYvbs2cjIyBA7ChFZGIt7IhuRnZ2NWbNmIT09XewoRERERERkZizuiWyERqPB/v37UVpaKnYUIiIiIiIyMxb3RERERERERFaOxT0RERE1q3HjxkEqlUImkxm/srOzG90/JSUFd955J1xdXRETE4O9e/daMC2RdXNyckJ0dDRcXFzEjkJEFsbinoiIiJrdiy++CI1GY/wKCQlpcL+amho89NBDGDJkCIqLizF//nw88sgjuHz5soUTE1mniIgIrF+/Hu3btxc7ChFZmIPYAYjIMnx8fDBz5kwEBgaKHYWIqFG//fYbKioq8Nprr8HOzg6PPfYYPvzwQ2zevBnTpk2rt79arYZara63PS0tzRJxiYiIWgyO3BPZCC8vL4wePRq+vr5iRyEiG/T5559DpVKhU6dOWL16daP7paSkIC4uDnZ2/3eKEh8fj5SUlAb3X7VqFbp27Vrva8yYMWb/GYisQWpqKnr27Injx4+LHYWILIwj90Q2orS0FPv27UObNm3g6ekpdhwisiHPPfccli1bBqVSif3792PkyJFQKBQYPnx4vX01Gg2USqXJNqVSiaysrAaPPXnyZAwZMqTe9rS0NBb4ZLNqamogCILYMYjIwljcE9mI3NxczJ49G/fffz+LeyKyqC5duhj/fO+992LatGnYvHlzg8W9TCar98jO0tJSyOXyBo/t7+8Pf39/8wYmIiKyQpyWT0RERBZlZ2fX6Khihw4dcPLkSRgMBuO25ORkdOjQwVLxiIiIrBKLeyIiImpW3333HcrLy2EwGPDnn3/i448/xiOPPNLgvn379oWLiwuWLl2K6upqbN68GSdPnsTIkSMtnJqIiMi6sLgnIiKiZvXxxx8jODgYCoUCkydPxqJFi/D4448b22NjY/H1118DABwdHbF161b8+OOPUCqVmDdvHn744Qf4+PiIFZ/IqrRp0wYbN27ko/CIbBDvuSeyEU5OToiOjoaLi4vYUYjIxvzxxx/XbT916pTJ93Fxcfjrr7+aMxJRq+Xs7IyIiAj290Q2iCP3RDYiIiIC69ev55V8IiKiViw3NxeLFi1q9AkTRNR6sbgnIiIiImolSktLsXXrVhQWFoodhYgsjMU9kY1ITU1Fz549cfz4cbGjEBERERGRmbG4J7IhNTU1jT5+ioiIiIiIrBeLeyIiIiIiIiIrx+KeiIiIiKiV8PT0xNixY+Hr6yt2FCKyMBb3RERERESthK+vL6ZNm4bAwECxoxCRhbG4J7IRbdq0wcaNG/koPCIiolZMq9Xi6NGjKC8vFzsKEVkYi3siG+Hs7IyIiAi4uLiIHYWIiIiaSVZWFqZOnYpz586JHYWILIzFPZGNyM3NxaJFi5CVlSV2FCIiIiIiMjMW90Q2orS0FFu3bkVhYaHYUYiIiIiIyMxY3BMRERERERFZORb3RERERESthIODA3x8fODo6Ch2FCKyMKsr7qurqzFp0iSEh4dDLpcjNjYW33zzjdixiIiIiIhEFxUVhW3btiEuLk7sKERkYQ5iB7hVtbW1CAgIwK+//orw8HAcOHAADz74IMLDw3HXXXeJHY+oxfL09MTYsWPh6+srdhQiIiIiIjIzqxu5d3Nzw8KFC9GmTRtIJBLcc8896NmzJw4ePCh2NKIWzdfXF9OmTUNgYKDYUYiIiKiZnD17FoMHD8bJkyfFjkJEFmZ1I/fX0mq1+PvvvzFz5sx6bWq1Gmq1ut72tLQ0S0QjalG0Wi2OHj2KqKgoKBQKseMQERFRM6itrcXly5dRU1MjdhQisjCrLu4NBgPGjRuH7t2744EHHqjXvmrVKiQmJoqQjKjlycrKwtSpU9GtWzd069ZN7DhERERERGRGVlvcC4KAKVOm4NKlS9i9ezckEkm9fSZPnowhQ4bU256WloYxY8ZYIiYRERERERFRs7PK4l4QBEybNg3JycnYs2cPZDJZg/v5+/vD39/fwumIiIiIiIiILMsqi/vp06fj0KFD+PXXX+Hu7i52HCIiIiKiFiE0NBSfffYZIiMjxY5CRBZmdavlZ2Vl4dNPP0VqaiqCg4Mhk8kgk8mwePFisaMRtWgODg7w8fGBo6Oj2FGIiIiombi5uaFr166Qy+ViRyEiC7O6kfvQ0FAIgiB2DCKrExUVhW3btiEuLk7sKERERNRM8vPzsXbtWrz55psIDg4WOw4RWZDVjdwTEREREVHDCgsL8dVXXyE/P1/sKERkYSzuiWzE2bNnMXjwYJw8eVLsKEREREREZGYs7olsRG1tLS5fvoyamhqxoxARERERkZmxuCciIiIiIiKycizuiYiIiIhaCYVCgSFDhsDT01PsKERkYSzuiYiIiIhaicDAQMyZMwehoaFiRyEiC2NxT2QjQkND8dlnnyEyMlLsKERERNRMqqqqkJ6ejsrKSrGjEJGFsbgnshFubm7o2rUr5HK52FGIiIiomVy4cAGjRo1CWlqa2FGIyMJY3BPZiPz8fHzyySfIzc0VOwoREREREZkZi3siG1FYWIivvvoK+fn5YkchIiIiIiIzY3FPREREREREZOVY3BMRERERtSKOjo6QSCRixyAiC2NxT0RERETUSsTExODAgQPo3Lmz2FGIyMJY3BPZCIVCgSFDhsDT01PsKEREREREZGYs7olsRGBgIObMmYPQ0FCxoxAREVEzSU9Px5NPPslH4RHZIBb3RDaiqqoK6enpqKysFDsKERERNZPq6mqcOXOG/T2RDWJxT2QjLly4gFGjRvFKPhERERFRK2TTxX1ubi40Go3YMYiIiIiIiIhui00X9ytWrECPHj0wZswYfP755zh9+jQEQRA7FhEREREREdEtsenifvHixVi4cCHc3Nzw2WefYejQodi7dy/0ej1ycnJQVlYmdkQiIiIiopsWGBiIxYsXIzw8XOwoRGRhDmIHEFNkZCQee+wxvP766ygtLcWvv/6K6OhoVFRUIDExEUlJSejYsSN69+6N3r17o3379rCzs+nrIWTlHB0dIZFIxI5BREREzUShUKB///7w8PAQOwoRWRgrVQASiQRKpRLDhw9Hhw4d0LlzZ6xcuRJvvfUWlEolvvjiCwwfPhw//PAD9Ho91Go1SkpKxI5NdEtiYmJw4MABdO7cWewoRERE1EwKCgrw9ddfIz8/X+woRGRhNj1y3xh7e3vExsYiNjYWr7zyCsrLy7Fv3z4EBQWhoqICy5cvx/bt2xEXF2cc1Y+NjeWoPhERERGJ6vLly1ixYgXGjBkDf39/seMQkQWxGr0BiUQCd3d3PPzww+jatSs6d+6MpUuX4p133oGXlxdWr16NkSNHYvXq1dDr9SgoKEBxcbHYsYnqSU9Px5NPPslH4RERERERtUIcub9F9vb2aNeuHdq1a4eXXnoJGo0Gv/32G1QqFSorK/H5559j/fr1iI2NRZ8+fdC7d2906NAB9vb2YkcnG1ddXY0zZ86gsrJS7ChERERERGRmHLm/DRKJBHK5HA899BB69uyJ+Ph4zJkzB8uWLUNAQAC++uorPPbYY3j//fdRW1uLkpISFBYWih2biIjIoqqrqzFp0iSEh4dDLpcjNjYW33zzTaP7SyQSuLm5QSaTQSaTISEhwYJpiYiIrBNH7s3I3t4ekZGRePHFF/Hiiy9Cq9Xijz/+gJOTE6qqqrBx40asWLECMTExxnv1O3XqxFF9IiJq1WpraxEQEIBff/0V4eHhOHDgAB588EGEh4fjrrvuavA1R48eRbt27SyclMj6yWQy9OrVCwqFQuwoRGRhLO6bkZubm3G0Qa/Xw8PDA+Hh4di9eze++eYbrFy5EiNGjMCCBQtQXV2NiooKeHt7i5ya6PbpdDrk5eVBo9FAJpPBz88PUqn0ptuJqHVxc3PDwoULjd/fc8896NmzJw4ePNhocX+z1Go11Gp1ve1cX4RsVUhICN577z1ERESIHYWILIzFvYXY29ujTZs2mDlzJmbOnImKigrs378fBoMBVVVV+Omnn5CYmIh27doZR/Xj4+Ph4MBfEZlHYGAgFi9ejPDw8GZ9H51Oh+TkZAiCADc3N6jVauTl5SE+Ph5SqfSG7UTU+mm1Wvz999+YOXNmo/v069cPer0e3bp1w9KlSxEbG9vgfqtWrUJiYmJzRSWyOjU1NSguLkZNTQ2cnJzEjkNEFsTKUSSurq4YMGAAAMBgMMDLywve3t7YuXMnvvvuO3z++ee47777sGLFChgMBhQXF8PX11fk1GTNFAoF+vfvDw8Pj2Z9n7y8PAiCgODgYACASqVCTk4O8vPzERwcfMN2ImrdDAYDxo0bh+7du+OBBx5ocJ/ffvsNd911F6qrq7FkyRI88MADSEtLg7u7e719J0+ejCFDhtTbnpaWhjFjxpg9P1FLd+7cOYwYMQJHjhxBt27dxI5DRBbE4r4FsLOzQ2hoKKZNm4Zp06ahoqICBw8ehEajQXV1Nf7880/MnDkTUVFRxlH9zp07w9HRUezoZEUKCgrw/fffIygoqFmfe6vRaODm5mayzc3NDeXl5TfVTkStlyAImDJlCi5duoTdu3dDIpE0uF+fPn0AAFKpFIsWLcL69etx8OBBDBw4sN6+/v7+fJY3ERERWNy3SK6urujfvz+Af0c4fHx84OjoiF27duGHH37Al19+iW7dumHNmjWwt7dHfn4+T2zohi5fvowVK1ZgzJgxzfr3RSaTQa1WQ6VSGbdptVoEBATcVDsRtU6CIGDatGlITk7Gnj17IJPJbvq1dnZ2EAShGdMRERFZPxb3LZydnR2CgoIwdepUTJ06FVVVVUhKSsLly5eh0+mQkpKCsWPHIiIiAr1790afPn3QpUsX3rtMovHz80NeXh5ycnLg5uYGrVYLiURivK3kRu1E1DpNnz4dhw4dwq+//trg9Po6p06dQnV1NTp27AidToelS5eisrLythfeIyIiau34nHsr4+zsjHvvvRePPfYY4uPj8cADD2DVqlXo2LEjfvrpJ4wbNw7Dhg1DTU0NACA/P1/kxGRrpFIp4uPjERAQADs7OwQEBJgslnejdiJqfbKysvDpp58iNTUVwcHBxufXL168GMC/M3r2798P4N9ZRk888QQUCgVCQkJw6NAh7N69G0qlUsSfgIiIqOXjyL0Vs7Ozg5+fH5555hk888wzqK6uxl9//YWMjAzU1NQgIyMDQ4YMQXh4uPFe/W7dunHlVGp2Uqn0uovj3aidiFqX0NDQ606r12g0xj/fe++9OH36tCViEbVK0dHR2Lt3Lzp16iR2FCKyMBb3rYiTk5OxiDcYDAgKCsKXX36JXbt2YefOnfjqq6/g7e2NPXv2wMnJCVeuXIG3t7fYsclCZDIZevXqBYVCIXYUIiIiaib29vaQyWSwt7cXOwoRWRiL+1bKzs4O3t7emDhxIiZOnAidTocjR47g1KlT0Ov1yM3NxYABAxAYGGi8INC9e3c4OzuLHZ2aSUhICN577z1ERESIHYWIiIiaSWZmJhITE/HVV18hOjpa7DhEZEEs7m2EVCpFz5490bNnTwiCgOLiYnzxxRfYuXMnfv75Z6xfvx5ubm74/fffIZPJUFRUZLKaOVm/mpoaFBcXo6amhrdmEBERtVIVFRX466+/+IhZIhvE4t4GSSQSqFQqjBs3DuPGjYNOp8OxY8dw+PBh2Nvbo7CwEAkJCVAoFOjVqxd69+6NHj16wMXFRezodBvOnTuHESNG4MiRI+jWrZvYcYiIiIiIyIxY3BOkUinuvPNO3HnnnRAEAeXl5fj444+xY8cO7Nu3D9988w2kUil+/vln+Pr6oqSkBEqlEhKJROzoREREREREBBb3dA2JRAJ3d3c8+eSTePLJJ6HT6fDPP/9g3759UCgUKCsrw8iRI2EwGIz36vfo0QNubm5iRyciIiIiIrJZLO7puqRSKbp164Zu3bpBEARUVFTgnXfewc6dO/H7779j06ZNcHR0xJYtWxAVFYWysjK4u7tzVJ+IiIhIBH5+fnj55Zf5yFkiG8Tinm6aRCKBm5sbRo8ejdGjR6O2thb//PMPduzYgeDgYJSWluKZZ57B5cuX0atXL/Tp0wd33nknZDKZ2NGJiIiIbIJKpcLIkSP5uGMiG2R3uwc4fPgwevTogbvvvhs7d+40bn/kkUdu99DUwjk4OKBLly6YM2cO4uPj0bFjR7zxxhu4//778ddff2H69Ono0aMHjhw5YryXXxAEsWPbrOjoaOzduxedOnUSOwoRWQD7ZyLbVFJSgp07d6KoqEjsKERkYbc9cj9r1iysXr0ajo6OmD59OtRqNSZMmICSkhIzxCNrIZFI4OLigkcffRSPPvooamtrcerUKfz000+IjIxEWVkZXn75ZZw+fdq4Av/dd98NuVwudnSbYW9vD5lMBnt7e7GjEJEFsH8msk2XLl3C/PnzMWjQIHh5eYkdh4gs6LaLe3t7e8TGxgIAtm/fjjFjxqC0tJT3XNs4BwcHdOrUCZ06dYIgCKiqqsILL7yArVu34rfffsP3338Pe3t7fPDBB+jfvz8qKirg6urKvzfNKDMzE4mJifjqq68QHR0tdhwiambsn4mIiGzLbRf3tbW10Gg0kMlkcHR0xMaNG/HUU0/h8OHD5shHrUDdqP7QoUMxdOhQ1NbWIi0tDdu3b0dsbCzKysrw1ltv4eDBgyaj+gqFQuzorUpFRQX++usvlJeXix2FiCyA/TMREZFtue3i/sMPP4RWqzUummZnZ4f169fju+++u+1w1Do5ODggLi4OcXFxxlH9Z555Bt7e3ti3bx9+/PFH2NvbIzExEcOHD0dVVRWcnJxgZ3fbS0QQEdkM9s9ERES25baL+y5dutTbJpFIMGLEiNs9NNmAulH9Bx98EA8++CD0ej1Onz5tMqr/2WefYevWrbjnnnvQu3dv9OzZEx4eHmJHJyJq0Rrrnx977DER0hCRpbi4uKBDhw5wc3MTOwoRWVizDYUmJCQ016GpFau7R/SVV17BoEGD0LFjR4wePRojRoxAWloaXnrpJfTs2ROrV6+GIAiorq6GwWAQOzYRUYtz5MgRrpZPZIPCw8OxevVqrq9DZINue+R+3rx59bYJgoD09PTbPTTZOIlEAmdnZ/Tv3x/9+/eHXq/H+fPn8dNPPyE8PBxlZWXYtGkT1qxZg549e6Jv377o2bMnVCqV2NFbJD8/P7z88ssIDg4WOwoRWcCLL77I1fKJiIhsyG0X95999hnee++9es8vd3V1vd1DE5mwt7dHdHQ0oqOjjaP21dXVqKqqwt69e7F9+3ZIJBJMnjwZM2fORG1tLezs7Pjot/9PpVJh5MiR8Pb2FjvKLdHpdMjLyzMuDObn5wepVCp2LKIWj6vlE9mm1NRUjBgxAkeOHEG3bt3EjkNEFnTbxX379u1x3333ITAw0GT77t27b/fQRI2qG9Xv1asXevXqBb1ejwsXLmDbtm3w9vZGWVkZdu3aheXLl+Puu+9Gnz59cM8999j0815LSkrwyy+/IDw83Go+B51Oh+TkZAiCADc3N6jVauTl5SE+Pp4FPtENcLV8IiIi23Lbxf3vv//e4CjAN998c7uHJrpp9vb2iIyMxAsvvAAAxnvxr1y5gr179+K1114DAIwaNQrz5s2DwWCAIAhwcLjt/wWsxqVLlzB//nwMGjTIaor7vLw8CIJgvJVApVIhJycH+fn5vL2A6Aa4Wj4REZFtue3KhtP7qCVycnLCnXfeiTvvvBN6vR5ZWVnYtm0bnJycUFZWhsOHD2P27Nm4++670bt3b/Tq1Qs+Pj5ix6ZraDSaeqv9urm5oby8XKRERNaDq+UTERHZllteLX/EiBH44osvTLZt374dmzZtglarNVswInOxt7dHmzZt8Nxzz2Hy5Mno1KkTevbsifHjxyM3Nxdz5sxB79698eKLLxpH9GtqasSOTQBkMlm9f1e0Wi3kcrlIiYhaLvbPRGROOp0O2dnZSE1NRXZ2NnQ6ndiRiOgGbnnk/tChQ3j77beN38+fPx9vvvkmACAyMhJJSUlcrZxaNCcnJ3Tu3BmdO3eGwWBAdnY2tm/fjpqaGpSXl+Ps2bOYMmUK7rrrLvTp0we9evWCn5+f2LFtkp+fH/Ly8pCTkwM3NzdotVpIJBL4+vqKHY2oxWH/TEQAEBERge+//x4xMTFNPgbXvCGyTrc8cl9aWoq2bdsCAAwGAz777DMsXboU+fn5aNeuHd577z2zhyRqLnZ2dggLC8O0adPw/PPPo1OnTujcuTOeeeYZXL58GfPnz0ffvn0xadIkGAwGAP8uUmWNXFxc0KFDh3rT3FsyqVSK+Ph4BAQEwM7ODgEBATyxIGoE+2ciAv4dxAgODoazs3OTj3H1mjcqlQrBwcEQBAH5+flmTEpE5nbLxb1SqUR1dTUA4OTJkygpKcHkyZPh7e2Nd999Fz/++KPZQxJZipOTE2JjY7F8+XIcP34cGRkZ+Oyzz5CQkACNRoPz58+jR48emDp1KjZt2oRLly6JHfmmhYeHY/Xq1YiOjhY7yi2RSqUIDg5GTEwMgoODWdgTNYL9MxEBwMWLFzFv3jxkZGQ0+Rhc84bIOt1ycX/HHXfg66+/BgDs2rULXbp0Md7/GhUVBbVabd6ERCKxs7NDSEgIpkyZgtmzZ6NTp06IiorClClTUFxcjDfffBP9+vXDo48+Cr1eDwDG/xIRWRr7ZyICYHwccHFxcZOPwTVviKzTLd9z/8Ybb6B379747rvvcOjQIcydO9fYxqt51JpJpVJERkZi2bJlMBgMUKvV2LlzJ7KysqDVaqHVajF06FDEx8ejT58+6N27N4KCgsSObZSamooRI0bgyJEj6Natm9hxiMjM2D8TkblwzRsi63TLI/ddunTBzp074enpiXHjxmH69OnGtgMHDiA0NNSsAYlaIjs7OwQGBmLSpEl488030alTJ4SHh2Py5MnQaDR466230L9/fwwaNMg4Tbbunn0ioubA/pmIzIVr3hBZpyY9575Xr17o1atXve3Jycl4+OGHbzsUkbWRSqUIDQ3FkiVLYDAYkJeXh927d+PkyZOorq6GVqvFsGHDEBkZaRzVDwkJETt2s6l7fE5mZiYkEglCQ0MREhLCkwKiZsb+uT5BEJCVlVVv9oK3tze8vb1RVlaGixcvmrRJpVLj4oRpaWkQBMGkPTw8HC4uLrh06RJKSkpM2lQqFfz8/KDVapGVlWXSZm9vb1z35Ny5c/UeuxoSEgKZTIYrV67gypUrJm3u7u4ICgpCdXU10tPT6/2cdSujZ2RkoLKy0qQtICAASqUSRUVFyMvLM2lzdXVFWFgY9Ho9zpw5U++4kZGRcHR0RHZ2NjQajUmbj48PvLy8UFpaitzcXJM2JycnREREAPh35ti12rRpA2dnZ+Tm5qK0tNSkzdPTE76+vg1+hg4ODoiKigIAnD17tt4it6GhoXBzc0N+fj4KCwtN2hQKBQIDA1FVVYULFy7Uy1T3GaanpxsvzNcJDAyEQqFAQUEBLl++bNImk8kQEhKCmpoanDt3rt5xo6OjYW9vj8zMTFRUVJi0+fn5QaVSoaSkpN46Pi4uLggPDwfQ8GcYEREBJycnXLx4EWVlZcbtDf39aIq6NW+IyHo0qbhvzGuvvWbOwxFZpbor3OPHjwcA1NTUoKCgAOPHj8eePXvwzjvvYNGiRQgODsbmzZuhVCphMBhgZ3fLE2laJJ1OhyNHjuDcuXNwdXWFRCLBpUuXkJ+fj+7du7PAJxKBLffPlZWV+Oyzz7B3716T7c8++yzGjRuHP//8Ey+99JJJW3h4OL799lsAwFNPPVXv3uN169ahXbt2WLlyJbZs2WLSNmrUKLzwwgv4559/MGnSJJM2pVKJn3/+GQAwbdq0ehcVVqxYgbvuugvr16/Hl19+adI2cOBALFy4EDk5ORgxYkS9n/Pw4cMAgFdffRUpKSkmbYmJiUhISMD//vc/vPvuuyZtPXr0wEcffQSNRtPgcXfv3g0PDw+89dZb2L9/v0nbzJkzMXr0aOzbtw+zZ882aYuOjsb69euNn8m1FzI2btyIiIgIfPTRR9i6datJ29ixYzFt2jQcPXoUU6dONWnz8fHBtm3bAMD4ZJurffbZZ+jatSvWrl2Lr776yqRtyJAhmDNnDtLT0zFq1CiTNkdHRxw4cAAA8NJLL9W70LF48WL0798f33//PVasWGHS1qtXL7z33nsoLi5u8DPcu3cvZDIZEhMT8ddff5m0vfzyyxg5ciR++eUXzJ8/36StQ4cOWL16NQA0eNzvv/8ewcHBWL58OXbt2mXS1q1bNwQEBNR7DRG1bhLh2svRNuDYsWPo2rUrjh49ii5duogdh2xI3WNkdu/ejaSkJEycOBGCIODJJ5+Et7c3+vTpg169eiEsLAwSicSs752SkmKRe+6zs7Nx/PhxSKVS44lFfn4+dDodOnXqxFEAokawbzKvus/zyJEjUCqV9UbYAwIC4Ofnh5KSknqjuM7OzsZR3OTk5Hq3VbVr1w6urq7Izs5GQUGBSZuPjw+CgoKg0Whw9uxZkzYHBwd07NgRAHDq1Kl6o8Nt27aFu7s71Gp1vQUQPTw8EB4ejqqqqgZHcev+zpw5c6bexYiwsDCoVCpcuXIFOTk5Jm1yuRyRkZHQ6/U4ceJEvePGxcXB0dER6enp9UbYAwMD4evri+Li4nors7u4uKB9+/YAgOPHj9eb/dC+fXu4uLggKyur3gi7r68vAgMDUV5eXm8k3NHREXFxcQD+fSrEtRcNIiMjIZfLkZubW++xbZ6enggNDUVlZSXS0tJM2iQSCTp37gzg39ka185+CA8Ph4eHB/Lz8+vNUlAoFIiIiEBNTQ1OnjyJa3Xq1An29vY4d+5cvRkkwcHB8Pb2RlFRETIzM03a3NzcjDM9jh07Vu+4MTExcHZ2RkZGRr3F8wICAljcE7VAzd3Xs7jnCRSJqKamBmVlZfjggw/wyy+/4NixY6ipqUFgYCC++uorBAUFQRAEsxT6lZWVuHDhAgYOHAhXV1czpP+XTqdDXl4eNBoNZDIZiouLkZWVBXd3d3h4eAD4d+XesrIyhIeHG0+YicgU+ybz4udJREQtTXP3TWadlk9Et8bR0RGenp548803sXDhQhQUFGD37t3Ys2cP3NzcUFpaihkzZsDe3h69e/dG79690aZNmyYV+05OTggODoazs7PZ8ut0OiQnJ0MQBLi5uUGtVhtH6SsrK43FfWVlJQRB4CN0iIiIiIiayW3d5FtWVoZvvvkGS5cuBfDv1NtrF2ohopsjkUjg7e2NMWPGYO3atejatSuio6MxePBgSCQSvP/++3jwwQfRr18/nD59GgDqTXO8nosXL2LevHn1pk7ejry8PAiCgODgYKhUKuN/7e3tkZ+fjzNnziA1NRVpaWkoKytDdXU1dDqd2d6fiBrG/pmILKFuAd3U1FRkZ2ezjycSWZOL++TkZERGRmLBggVYuHAhgH/vqbr60TtE1HSOjo5QKBSYO3cu/vzzT+Tm5uKbb75B//794eHhgdLSUsycORNPPfUUvvzyS5w9e/a6xX5ZWRl27dpV776826HRaODm5mayTalUIjw8HL169YK7uztKS0sRFBSE9u3bo7CwEMnJyez8iZoR+2cisoS62XtqtRoGgwFqtZp9PJHImlzcP//885g/fz7Onj0LR0dHAEDPnj1x6NAhs4Ujon9JJBJ4eXlh1KhRWLduHe6++25ER0ejf//+kEql+OijjzBkyBD07dsXR44cAXBro/pNJZPJ6i3cpNVq4enpiYiICMTExKBz586466674Ovri+DgYOOigkTUPNg/E5ElNDR7j308kbiafM/9yZMnjY+Vqbv/Vy6X11sFlIjMz8HBAQqFAi+//DJeeukllJSU4JdffsGOHTvg6emJ0tJSLFu2DBkZGcZ79Zuj2Pfz80NeXh5ycnLg5uYGrVYLiUQCX19fAA2P7Lu5ufHfCaJmxP6ZiCyBfTxRy9Pk4r7ucSD+/v7GbdnZ2fDz8zNLMCK6ORKJBB4eHnj00Ufx6KOPora2FlqtFr1798bly5fx6aefYvny5VAqlWZ/b6lUivj4eOTn56O8vBwBAQHw9fU1PsteJpNBrVZDpVIZX6PVavl4HqJmxP6ZiCyBfTxRy9Pk4v7RRx/F2LFj8cknnwD4d7GuGTNmYPTo0WYLR0S3rm5Uf/r06Zg2bRpKS0uxZ88ebNmyBXZ2dmbvdKVSaaPPrr/RyD4RmR/7ZyIyl2sfd+vn52e8gM8+nqjlafI99/Pnz0dAQACio6NRUlKC0NBQODg44NVXXzVnPiK6DRKJBEqlEiNGjMCmTZvwzTffWPSKet3IfkBAgPHCQnx8vPHEgIjMj/0zkW0z1wr2N1owj308UcvT5JF7JycnrF27FsuXL8f58+fh5+eHkJAQc2YjolbgeiP7RGR+7J+JbFddQS4IAtzc3KBWq5GXl9ekovvqBfMAQKVSIScnB/n5+cZt7OOJWpYmF/fr169HXFwc4uPjcccddwD491E7qampnPpHREQkEvbPRLbregW5r6+vyRR7lUqFoqKiBqfcAze3YN71pu0TkeU1eVp+YmJivcV5/P39MX/+/NsORURERE3D/pnIdjVWkBcVFZlMsc/OzsaWLVuQnZ3d6DPqG3vcrVwuB8Dn3BO1RE0u7i9fvlzv5MHPz4/PtiQiIhIR+2ci29VYQV5ZWWnyTHonJyfY2dnBzc2t0WfU+/n5QSKRICcnB0VFRcjJyTFZMI/PuSdqeZpc3Pv7++Ps2bMm286ePQsfH5/bDkVE1sFci/YQkfmwfyayXY0V5M7OziYj+hUVFfDw8EBFRYVx27VT7m+0YB6fc0/U8jS5uB85ciSeeuopHD9+HFqtFsePH8e4cePw6KOPmjMfEbVQNzMdj8U/keWxfyayXY0V5CqVymRE39XVFcXFxXB1dTVuu3rK/dXHCw4ORkxMDIKDg03up7/RtH0isrwmL6g3Z84cZGZmomvXrpBIJACAUaNGYd68eWYLR0Qt141W0TXnir1EdPPYPxPZtoZWsL/2mfTV1dUwGAzQarUoKipq9Bn1fM49kXVpcnHv7OyMDRs2YMWKFcjIyEBYWBi8vLzMmY2IWrAbTce7mUfoEJH5sX8momvVjejn5+ejvLwcoaGhiI+PR3FxMcrLyxEQEABfX1+Ti+86nQ5HjhzBpUuXcOnSJZSVlcHPzw/Dhw+HSqWqd8yGjkFEltXkafl1PD090a1bN4ueOJSUlODRRx+FXC5HQEAAPvjgA4u9NxH96+rpeDqdDrm5uTh16hTKysqg0+l4Lx6RyMTon6/nVvru33//HR06dICrqyu6d++OEydOWC4oUSt17RR7mUzW6JR7AMjOzkZaWhrS0tJQXV0NuVyOtLQ0fPnll9BoNA0ek4U9kbiaPHJ/NUEQIAiC8Xs7u9u+ZnBd06dPR3V1NXJzc5GVlYX77rsP0dHRSEhIaNb3JaL/4+fnh5ycHBw4cABpaWkwGAzw8/ODr68vkpOToVKpUFhYCJlMhitXrqCiogIlJSXo0KGD2NGJbIal++frudm+u7CwEA8//DA+/PBDPPbYY/jkk08wZMgQnD17Fk5OTiKlJ2q9Gpp6DwBJSUk4evQoBEFAmzZtoFKpYG9vj7y8PJw6dQo9evS47jFY6BNZXpN7+cLCQowePRre3t5wcHCAo6Oj8as5abVabN68GW+99Rbc3d0RFxeHp59+GqtXr27W9yVqrZq66J1Op0NOTg727t2LwsJCKBQKSCQSVFZWQqfTQSKRoLa2Fr/99hsyMjJw+fJllJWVIS8vjwvrETUjsfrn67mVvvuHH35A27Zt8dRTT8HJyQkvvPACDAYD9uzZI0JyotatocVxjxw5goMHDyIlJQXl5eVwdnZGXl4ezpw5g7y8PLi5ueHKlSvG158/fx5btmzBvn37cO7cOfzzzz84cuQI+3oiETR55P6FF17AhQsX8MUXX+DJJ5/E+vXr8fbbb+PJJ580Z756zp49C4PBYDL6Fx8fjx9++KHevmq1Gmq1ut72tLS0Zs1IZC2auuidTqfD9u3bcejQIdTW1sLb2xvu7u5wd3dHWVkZnJycUF1dDV9fXxQXF8PDwwOurq5QqVTIy8vjffdEzUis/vl6bqXvTklJQXx8vPF7iUSCjh07IiUlBQ8++GC9/dnXEzXsZkbT6y64Ozk5obCwEK6urrh8+TIKCwsRFBSEiooKODs7G1fXr6yshIODA7y9vY3nENnZ2cjLy4NcLkdJSQm8vb1x4cIF+Pn5ISIiQqSfnsg2Nbm437NnD/766y8EBwfD3t4eQ4cORWxsLMaPH4/p06ebM6MJjUYDhUJhsk2pVDZ4H++qVauQmJjYbFmIrF1TF707f/48Dh06BIlEAk9PT1RVVSE9PR1RUVFwdXVFYWEhIiMjUV5ejrCwMKhUKuNred89UfMSq3++nlvpuzUaDTw8PG5qX4B9PVFDbvbifVFREXJzc+Hu7g4XFxcUFBQgIyMD5eXlcHBwMBb1devp6PV6SKVSxMbGGs8hJBIJVCoVwsPDceXKFUilUjg7OyMrK4vFPZGFNbm412q1xpN/Jycn1NTUIDIyEidPnjRbuIbIZDKUlZWZbCstLW3wmZqTJ0/GkCFD6m1PS0vDmDFjmi0jkbVo6qJ3ycnJ8PDwgEKhgMFgQFVVFfLy8pCWloagoCCEh4fD19cXgiBArVabFPdarRYBAQHN8vMQkXj98/XcSt8tk8lQWlp6U/sC7OuJGnKzF+8rKytRXV1t7Jflcjl+//13XLx4EWFhYVAqlXB1dUVBQQFcXFwQFBSEIUOGQCaTITs723gOodfrAfz7b05VVZVxvY+bvRef9+wTmUeTi/uQkBCcP38ebdu2Rdu2bfHjjz/C09OzXqFgblFRUZBIJDh16hRiY2MB/FtoNLRIl7+/P/z9/Zs1D5E1k8lkt1R813W+GRkZ0Ov1xtc7ODiguroaxcXF6NGjB/r27QupVMpn4BKJQKz++Xpupe/u0KEDPv/8c+P3giDgn3/+wdSpUxs8Nvt6ovpu9uK9q6srXF1dkZ+fDxcXF1y6dAmOjo7w9/eHs7MzqqqqUFlZCb1ej7CwMPTs2dM4Gl93DhAUFGS8PaaiogKOjo7Q6/WIi4u7qdkDTb1FkIjqa/KCelOnTjWOAsyaNQtPPPEEHnjgATz//PPmytYgNzc3jBgxAm+88QbKy8uRkpKCL7/8EhMmTGjW9yVqjfz8/CCRSJCTk4OioiLk5OQYi+9rF9rTaDTGRXfCw8NRXl6Oy5cvIyAgwLga96BBgzB48GDIZDIA//dc3YCAANjZ2SEgIICdNVEzE6t/vp5b6buHDRuGc+fOYcOGDdDpdFixYgUAoH///paOTWS1rn5cbR2tVltvBoyHhwf8/Pzg7e0NOzs7ODs7w8PDA/Hx8YiPj4e/vz/c3d0RGBiITp06oXv37sY+vO4coqamBp6enlCr1SgpKYGrqysiIyPh6OhonD2gUqkQHBwMQRCQn59vkuHqWQbX24+IbqzJI/fPPvus8c/Dhg1DVlYWNBoNoqOjzRLsej755BM8/fTT8Pf3h1wux2uvvcbH4BE1QV3xnZ+fj/LycgQEBBhH1a+9in7ixAl4eHigTZs28PLyQmlpKS5evAiJRGJ8FvXgwYPrFe51z8AlIssQs3++nuv13TKZDDt37kSvXr3g6emJ//73v5g+fTqefvppdOjQAVu3buVj8Ihuwc3OnKvbT6fTQaFQoLi4GMC/0/ODg4MRHByM/Px86HQ6xMTEmPTxV59DyOVytGnTBk5OTvD09ISvry/Onz9/U7MHmnqLIBHVd1vPuU9KSsLq1auRk5ODoKAgi42eK5VKbN682SLvRdTaNVR8Z2dn17tXLzs72/iYu6KiIrRp0waCIMBgMKB79+6IjY01jtgTkbjE6p+v53p9t0ajMfm+b9++SElJsUQsolapsYv3DV2Av3q/9u3bQyaTITMzE1VVVZBIJKiqqkKbNm0avKWu7hyioYv4N3vr363eIkhEjWvytPz169ejb9++KC8vR+fOnaHVanHfffdh3bp15sxHRCJo6Cq6SqXC5cuXkZqaioKCAjg5OUEmkyEsLAydO3dmYU/UQrB/JiLg/wrvmJgYBAcHN3pL3NX7RURE4O677zbOovH09ES3bt2MI/HZ2dk3/fz6693615T9iOjGmjxy/+abb+K///2vyXT4Xbt2YcaMGXjqqafMEo6IxNHQVfS6FXALCgoQHh6OyspK+Pv7w8XFhc+tJ2pB2D8T0e2QSqWIiIhARETEbS1219TZA43tR0Q31uTiPi8vDwMGDDDZ9sADD3DxC6JWoKF79aRSKTp16oSysjLY2dnB29sbKpUK5eXlvC+OqAVh/0xE5nKzj9RrzM2uu8P1eYjMo8nT8u+//37s2rXLZNvu3btx//3333YoIhJXY6vc+/j4wM3Nzfgce0dHxwZX3yUi8bB/JiJz4WJ3RNalySP3AQEBGDlyJAYNGoTw8HBkZmZix44dmDBhAubNm2fcb+HChWYJSkSW1dBVdD63nqjlY/9MRObCxe6IrEuTi/uUlBTccccdKCgoQEFBAQCge/fuxmfrAoBEIrn9hETUYvC+OKKWj/0zEZkLL+oTWZcmF/f79u0zZw4ishK8L46oZWP/TETmcvVF/aKiIgiCACcnJ+Tl5cHPzw9SqRQ6nQ55eXnQaDSQyWTG7URkeU2+5/5a58+fR0ZGhrkOR0Q27H//+x+GDh2KVatWISsrS+w4RFaN/TMR3Q6pVApfX19UV1dDIpHAwcEBarUaycnJ0Gg0SE5OhlqthsFgMG6/2cflEZF5Nbm4nzBhAv78808AwKZNmxAdHY3IyEhs3LjRbOGIyHx0Oh2ys7ORmpp6S8+pFUNJSQkOHz6MZ599FmFhYWjfvj2++OILsWMRWQX2z0Rkblevmq9SqRAcHAxBEJCSktLgdj6dg0gcTS7ud+7ciS5dugAA3n//fWzatAnbt2/H22+/bbZwRGQedc+pvd0r61dfIDh//jzOnz/fLBcLYmNjoVarsXLlSrz99tuIiopCfn4+cnJysHPnTgwePBiffvopLly4YLb3JGot2D8Tkbk1tmp+QUEBV9MnakGafM99RUUFXF1dUV5ejrNnz2L48OGws7PDY489Zs58RGQGt/ucWuD/LhAIggCpVIrDhw/D3t4eHTp0QHl5OfLy8hAfH2/W++xUKhV69+6NoUOHoqamBnl5ecjIyIBarcbMmTNRW1uLyMhITJ06FS+88ILZ3pfImrF/JiJza2zVfC8vL2i1Wq6mT9RCNLm49/b2RlpaGlJSUnDnnXfCzs7OuIImEbUs5nhO7dUXCHJzc+Hr6wt7e3sAQHBw8C1fLLgVEokEUqkUUqkU9913H/r27YvCwkIkJSXh4MGDyM3NRXZ2NtRqNRYsWIBBgwYhISEBbdu2NXsWopaO/TMRmZtKpUJycjIyMzOhUqng4uICqVSK2NhYpKamcjV9ohaiycX9888/j27dugH4954+APjjjz8QGxtrnmREZDZXX3GvqalBYWEh0tPTERwcDJ1Od1Oj7VdfICgrK0NVVRVqampQWVkJlUpl0Wl49vb28PHxwcMPP4whQ4agpqYG+fn5SEtLQ0FBAWbNmoXnnnsOERERGDt2LObOnWuRXEQtAftnIjInnU6H1NRUqFQq6HQ6FBYWorq6Gn379oVMJuMjcolakCYX99OnT8fAgQPh4OCAsLAwAEBERARWrlxprmxEZCZ1z6m9cOEC8vLyUFFRAScnJ9TW1iI5OfmmptPXXSCQy+VQq9UoLy+Hq6srDAYDzp49CxcXF4SGhpolr4eHBwYOHAh3d/cb7nv1qP5dd92FHj16oKioCElJSUhKSkJ2djays7NRWVmJ5557DgkJCUhISEBUVBRHMqlVYv9MROZUN3MvKCgIV65cgb29PUpKSpCfnw+ZTMZH5BK1IE0u7gHUm/IaFRV1W2GIqHnUPaf22LFj0Ov1aN++Pby9vSGVSm96On3dBYKTJ0/C3t4eNTU10Gg0CAoKQm5uLlQqFe644w6z5A0PD8fChQshk8lu+bV2dnbw8vLCQw89hMGDB6OmpgaXL1/G+fPnUVpaildeeQUvvPACwsLCMHLkSCxdutQsmYlaEvbPRGQuGo0GUqkUqampkEgkcHFxQXV1NY4ePYrg4GCO0hO1ILdV3CclJWH16tXIyclBUFAQJkyYgLvvvttc2YjIjKRSKdzd3REbG2uy8M3NTqevu0Cwf/9+GAwG4yh9TU0N/P39jRcLzKGqqgo5OTlo06YNXFxcmnycq0f1O3fujDVr1qCkpKTeqL6DgwMmTJiA+++/HwkJCWjfvj1H9cmqsX8mInORyWQ4d+4cpFKpcaE8nU4HnU7XbGvtEFHTNLm4X79+PSZNmoRHHnkEnTt3RmZmJu677z6sWrUKTz31lDkzEpGZNLba7c2uaiuVShEZGQm1Wm3Smefk5MDT09NsOVNTUzF8+HBs2bIFHTp0MNtx7ezsoFKp8OCDD+LBBx80jupfunQJZWVleOONN/DSSy8hODgYgwcPxieffMIin6wO+2ciMic/Pz9UV1dDp9OhrKwMlZWVkEgkCAwMvO21di5duoRLly6ZbPPw8EB4eDiqqqqQmppa7zV1j/o8c+YMtFqtSVtYWBhUKhWuXLmCnJwckza5XI7IyEjo9XqcOHGi3nHj4uLg6OiI9PR0lJaWmrQFBgbC19cXxcXFyMjIMGlzcXFB+/btAQDHjx+HIAgm7e3bt4eLiwuysrJQWFho0ubr62v8HM+dO2fS5ujoiLi4OADAyZMnUVNTY9IeGRkJuVyO3Nxc5Ofnm7R5enoiNDQUlZWVSEtLM2mTSCTo3LkzACAtLQ2VlZUm7eHh4fDw8EB+fj5yc3NN2hQKBSIiIlBTU4OTJ0/iWp06dYK9vT3OnTtX7+9GcHAwvL29UVRUhMzMTJM2Nzc3REdHAwCOHTtW77gxMTFwdnZGRkYGiouLTdr8/f3h7++PsrIynD9/3qTNycnJuN7MP//8g9raWpP2qKgoyGQyXLx4EZcvXzZp8/LyQkhICCoqKnD69GmTNjs7O8THxwP495y1qqrKpL1NmzZQKpXIy8ur9/f72s/U3Jpc3L/55pv473//i4SEBOO2Xbt2YcaMGTx5IGqh6qbW386qtuY4Rkvh6OgIR0dHREdH4z//+Q9KS0tx6NAhJCUlITMzE9nZ2ZDL5Rg/fjzuueceDBw4EB06dGDBTy0a+2ciMiepVIouXbrg9OnTsLOzg7e3N1QqFfLy8uDl5dXk4166dAkPP/ww/v77b5PtAwcOxMKFC5GTk4Phw4fXe93hw4cBABMmTEBKSopJW2JiIhISErB582a8++67Jm09evTARx99BI1Gg379+tU77u7du+Hh4YFZs2Zh//79Jm0zZ87E6NGjsWfPHsyePdukLTo6GuvXrwcA9OzZs14RvnHjRkRERGDRokXYunWrSdvYsWMxbdo0HD16FFOnTjVp8/HxwbZt2wAAgwcPrld8fvbZZ+jatSs++eQTfPXVVyZtQ4YMwZw5c5Ceno5Ro0aZtDk6OuLAgQMAgCeffBJnzpwxaV+8eDH69++Pr7/+GitWrDBp69WrF9577z0UFxdjwIABuNbevXshk8kwY8YM/PXXXyZtL7/8MkaOHImdO3di/vz5Jm0dOnTA6tWrAaDBWzy///57BAcHY968edi1a5dJ26RJk/DMM88gKSkJM2fONGkLCgrCDz/8AAB44IEHUFJSYtL+5ZdfomPHjnj//fexceNGk7YRI0bglVdewenTp+v1nW5ubti3bx8A4LHHHqt3wWfZsmXo3bs31q5di08//dSkrXv37vV+PnOSCNdeXrpJ7u7uKCkpgZ2dnXGbwWCAUqlEWVmZ2QI2h2PHjqFr1644evSo8eofka2om0ZXXl4OuVzepFVtzXGM6/n777/RvXt3s4/c34qamhpUVVWhuLgYiYmJOHr0KKqqqhAYGIiBAwfi448/hrOzsyjZqHUyV99kzf2zObGvJzIfnU6H5ORkCIJgcmH/ZhbkbUxdX79kyRJEREQYt7u7uyMoKAjV1dVIT0+v97qYmBgAQEZGRr1R54CAACiVShQVFSEvL8+kzdXVFWFhYdDr9fUKWuDfkXBHR0dkZ2dDo9GYtPn4+MDLywulpaX1Rl6dnJyM+RuaadCmTRs4OzsjNze33owAT09P+Pr6QqvVIisry6TNwcHBuF7K2bNn6406h4aGws3NDfn5+fVmBCgUCgQGBqKqqgoXLlyol6nuM0xPT0d1dbVJW2BgIBQKBQoKCupdUJDJZAgJCUFNTU29mQbAvxc67O3tkZmZiYqKCpM2Pz8/qFQqlJSU1BvNdnFxQXh4OICGP8OIiAg4OTnh4sWL9foxb29veHt7Q6PRIDs726TN0dERkZGRAP6d6aHX603a6z7DvLw8FBUVmbQplUoEBASgsrKyXvEukUiMszXOnz8PnU5n0h4UFAR3d3dcuXIFV65cMWlTq9WYMWNGs/VNTR65v//++7Fr1y4MGjTIuG337t24//77zRKMiJqHOVa1tYWVcetG9eVyOb744guUlZXhr7/+QlJSEtLS0pCXlweFQoHnnnsOsbGxSEhIQMeOHTmqT6Jj/0xE5la37k5zPPIuIiKiwQv5Li4u173Af/UFgWt5eXk1OqvAzs7uusete8pIQzw8PODh4dFo+/WOGxwc3Oi5k1wuv+5r27Vr12hb3bT0hri6ul73uHWFb0N8fHzg4+PTYJuTk9N1j9umTZtG21Qqlcntode63nFDQkIabXN3d7/ua+uK8YYEBAQ0eouqm5vbdY97vQVrfX19LT6z9ZaK+3nz5hn/HBAQgJEjR2LQoEEIDw9HZmYmduzYgQkTJpg9JBGRmOzs7KBUKjFgwAAMGDAANTU1KCwsRE5ODrKzs/H999/j9ddfh5+fHwYOHIjly5dft/MnMjf2z0TU3Gzhwj6Rtbul4v7a+0/uuOMOFBQUoKCgAMC/9xBce+8LEdGt6tKlCw4fPtykR+FZQt2ovkwmw8qVK6HRaHD48GEcPHgQx48fN06Pmzt3Lvz9/ZGQkID4+HiTadJE5sT+mYiIiG6puK9bOICISKfTIS8vDxqNBjKZDH5+fjb5rFs7Ozu4u7ujf//+6N+/P2pqalBaWorCwkKcOXMGa9euxZw5c+Dj44MBAwbgnXfeuemnExDdLPbPRGRtPDw8MHDgQLi7u4sdhajVaPI993v37m1wu0Qiwb333tvkQETU8l27sI5arUZeXt5tLaxztTNnzmDChAn1FtmxBnWj+gDw4YcfQqvV4siRI0hKSsKRI0dQUFAAZ2dnLFu2DM7OzkhISEDXrl05qk9mw/6ZiKxBeHg4Fi5c2GJn6RFZoyYX9/3796+3rW4hqWtXIiSi1iUvLw+CIBjvvVOpVMjJyUF+fr5Z7sfTarVISUmptwqutbGzs4NcLke/fv3Qr18/1NbWoqqqCufOncOpU6ewd+9ezJ8/H56enhgwYAASExPRtm1bsWOTlWP/TETWoKqqCjk5OWjTpg1cXFzEjkPUKjS5uDcYDCbfX7p0Ca+//jqGDRt226GIqGXTaDRwc3Mz2ebm5oby8nKRElkHBwcH4wjFO++8A61Wi2PHjuHgwYM4dOgQ8vLyoFKp8OWXX6KiogIDBw5E9+7dYW9vL3Jysibsn4nIGqSmpmL48OGiPvaWqLUx2zzQgIAAfPTRR3jllVfMdUgiaqFkMhm0Wq3JNq1WC7lcLlIi61M3qt+nTx+8/vrr+P777+Hi4oLz588jOTkZy5cvx1133QUfHx+MGjUK//zzj9iRyUqxfyYiIrINTR65b4ggCFCr1eY8JBG1QH5+fsjLy0NOTg7c3Nyg1WohkUgs/izP1uTqUf158+Zh1qxZOH78uHFUPzMzE0FBQdi8eTMuXryIhIQE3HHHHXBwMOs/49RKsX8mIiJq/Zp8Vrh69WqT77VaLTZu3Ii77777tkMRUcsmlUoRHx+P/Px8lJeXIyAgAL6+vmZbLT8sLAyJiYk2u6q8RCKBTCZDr1690KtXL9TW1qK6uhrnz5/H0aNH8d1332HRokVQKpW4//77MWvWLPTo0UPs2NRCsH8mIiKyTU0u7t98802T7+VyObp164ZFixbddigiavmkUqlZFs9riEqlQkJCAlfQ/f8cHByMI/Qvvvgipk6diuPHjyMpKQlJSUk4ffo02rZti927d+PkyZMYNGgQ7rzzTuOq/WRb2D8TERHZpiYX9xkZGebMQUQtiNjPsL9y5Qo2b96Mhx9+GF5eXhZ7X2sgkUjg6uqKnj17omfPnsZR/fT0dBw+fBjr1q3DO++8A4VCgfvuuw8zZsxA3759xY5NFsT+mYisQZcuXXD48GFeyCcyo1teUC8/Px+XL182fl9TU4OFCxdi6NCheP/9980ajogsr+4Z9mq1GgaDAWq1GsnJydDpdBbLkJOTg3fffRd5eXkWe09r5eDgADc3NygUCkyZMgV79+7F2rVr8eijj+LcuXM4duwYCgsLsWPHDrzyyiv47bffLPq7JMth/0xERGTbbrm4nzhxInbv3m38fvbs2Vi+fDkcHBywaNEiLFu2zKwBiciyrn6GvUqlQnBwMARBQH5+vtjR6AYkEglcXFxw5513YtasWdi0aRP69u2L9PR0HDx4EP/5z39w7733wsvLC0OHDsWOHTvEjkxmxP6ZiKzJmTNnMGHCBM42IjKjWy7uk5OTMXDgQAD/rr67evVqrFu3Dlu2bMF3332HdevWmT0kEVkOn2Hfetjb2xtH9ceMGYNff/0V69evx+jRo5GVlYWkpCQUFBTgzz//xKxZs/Drr7+iurpa7NjUROyficiaaLVapKSkoLKyUuwoRK3GLd9zX1ZWBm9vbwAw/g+ZkJAAALj33ntx8eJF8yYkIouSyWRQq9VQqVTGbVqt1mZXrm8t6kb1u3fvju7du0Ov16Oqqgrp6enYv38/1q9fj+XLl8PNzQ333nsvxo0bh+HDh4sdm24B+2ciIiLbdsvFvVwuR2lpKRQKBY4ePYqOHTsaV2Sura2FXq83e0gispy6Z9hfuHABlZWVKCoqgouLC2JjYwFYZrE9uVyOHj16wNXV1azHpf9TN6oPAI888ggefPBBpKSk4MCBA0hKSsLevXvRu3dv5OXlYfXq1UhISEDv3r3h7OwscnJqDPtnIiIi23bL0/L79OmD1157DcnJyfjss8+MUwCBf++d4egekXWTSqWIiYlBSUkJSkpK4O3tDZVKhdTUVGg0GossthcZGYmPPvoIYWFhZj0uNUwikcDJyQldu3bFc889hw0bNmDixInIyMjAvn378M0332DAgAHw9PTEgw8+iA0bNogdmRrA/pmIiMi23XJxv3jxYvz+++/o0qULqqurMXPmTGPbN998g3vuucesAYnI8oqKiuDt7Y2ePXuiXbt2aNOmDQRBQEpKikUW29Pr9dBoNBxpFMnV9+o/8MAD+OWXX/DNN99gwoQJuHz5MrZt24YrV64gKysLzz33HHbu3Ml7JlsA9s9EZE3CwsKQmJjIC49EZnTL0/LDwsKQmpqKoqIik3tyAeDVV1+16LOwiah5NLaoXmZmZr3R9OZYbO/EiRPo168ftmzZgg4dOpj12HRr6kb1u3Tpgi5dumDq1KmoqqpCRkYGTp48iS1btuCjjz6Cs7Mz+vTpg+HDh+Ppp58WO7ZNYv9MRNZEpVIhISGBz7knMqNbHrmvc+2JAwAolUreI0vUCshkMmi1WpNtWq0WXl5eDW6Xy+WWjEciunpUv2fPnti1axc2bdqEZ555BkVFRdiyZQsuX76MoqIizJgxA9u3b0dFRYXYsW0K+2cisgZXrlzB5s2bUVRUJHYUolbjlkfuiaj1q1tULycnB25ubtBqtZBIJIiNjUVqamq97b6+vmJHJhHUjerHx8cjPj4eU6ZMQVVVFTIzM5GZmYkff/wRH3/8MZycnNCrVy889NBDmDFjBiQSidjRiYhIZDk5OXj33XfRo0cPeHl5iR2HqFVo8sg9EbVeUqkU8fHxCAgIgJ2dHQICAhAfHw+ZTNbgdk73JQCws7ODq6srFAoFOnbsiB07dmDz5s2YOnUqysvLsWHDBly5cgUajQazZs3C1q1bodFoxI5NRERE1Cpw5J6IGiSVShEcHHzT24muVjeqHxcXh7i4ODzzzDPGUf26qZjLly+Ho6Mj7rnnHgwaNAjPP/88HBzYLRERERE1BUfuiajFiYuLw+7duxEZGSl2FDKTq0f127Ztix07duCHH37Ac889h+rqaqxatQoFBQXQarWYO3cufvzxR5SVlYkdm4iIiMhqcIiEiFocR0dHeHh4wNHRUewo1EwcHR0RExODmJgYTJw4EZWVlcjOzoZWq8X69euxaNEiODg44O6778agQYMwffr0ek9wICIi6yWXy9GjRw8u9klkRhy5J6IWJz09HbNmzUJ2drbYUcgC7OzsjCvwBwQEYNu2bfjxxx/xwgsvwGAw4P3330dJSQm0Wi2WLl2KLVu2oKSkROzYRER0GyIjI/HRRx/Ve8QuETUdR+6JqMUpLS3F/v37udiajXJ0dET79u3Rvn17jB8/HhUVFcjNzUV2djb+85//4OzZs7C3t8ddd92FhIQETJ06FR4eHmLHJiKiW6DX66HRaODi4gI7O443EpkD/08iIqIWy87ODjKZDAqFAiqVCt9//z1++uknvPTSS7Czs8OSJUtQWFgIrVaLTz75BN9++y2Ki4vFjk1ERDdw4sQJ9OvXD2fOnBE7ClGrweKeiIishqOjIyIjIzF+/HisXLkS+/btQ3FxMU6dOoXVq1fj8ccfh5eXF+6++24sWrQI+fn5Yke2ee+++y7i4uIgl8sREhKCN954A3q9vtH9+/btC2dnZ8hkMuMXERER3RiLeyIiskp19+q7u7tDoVBg3bp12LZtG1577TU4OztjyZIlyM7Ohkajwbp167Bx40YUFhaKHdvmGAwGrFmzBkVFRdi/fz+2bduGZcuWXfc1H3zwATQajfGLiIiIboz33BNRixMYGIiZM2fCx8dH7ChkRRwcHNC2bVu0bdsWY8aMQUVFBfR6PVJTU7F69Wr8/vvvkEgk6N69OwYNGoTx48cjJCRE7Nit3quvvmr8c2hoKEaPHo39+/ebbCciIqLbx+KeiFocX19fjB49mtNxqcnq7tWv88knnyAnJwd//vknDh06hPfeew89evSASqXCzz//jIqKCgwYMADe3t4iprYNv//+Ozp27HjdfebOnYs33ngDERERmDt3Lh566KFG91Wr1VCr1fW2p6Wl3XZWIiIia8LinohanOLiYuzZswf33nsvV0Ens3BwcEB4eDjCw8MxevRoVFRUoLa2Fqmpqfjqq6+wdetWSCQSdO3aFQkJCXjqqafQtm1bsWO3Oh999BFOnjyJdevWNbrPkiVL0L59ezg7O2Pbtm14/PHHsW/fPtxxxx0N7r9q1SokJiY2V2QiaiZxcXHYvXs3/Pz8xI5C1GqwuCeiFicjIwOzZ8/Gli1bWNyT2V07qr948WI8++yzOHjwIA4ePIgVK1YgKioKvr6+SEpKglqtxsCBA+Hr6yti6pZpxIgR+P777xttFwTB+Of169dj8eLF2LdvHzw9PRt9TY8ePYx/HjZsGP73v//hhx9+aLS4nzx5MoYMGVJve1paGsaMGXMzPwYRicDR0REeHh5wdHQUOwpRq8HinoiIbJqDgwPCwsIQFhaGUaNGoaKiAtXV1UhLS8P69euxYcMGAEDnzp2RkJCA0aNHIyYmRuTULcOWLVtuar+vv/4aL7/8Mvbs2YN27drd0nvY2dmZXCS4lr+/P/z9/W/pmEQkvvT0dMyaNQtvvPEGwsLCxI5D1CqwuCciIvr/JBIJ3Nzc4ObmBgB47bXXMHbsWBw4cABJSUn49NNP4e3tjeDgYJw8eRKnT5/GwIEDERAQIHLylmvjxo14/vnn8fPPP6NDhw7X3bekpARJSUno27cvpFIptm/fju+++w4///yzhdISkaWUlpZi//79fCIGkRmxuCciImqEg4MDgoOD8fjjj+Oxxx5DZWUlKisrkZaWhg0bNmDlypUQBAEdO3bEwIEDMWrUKMTHx4sdu0WZPXs2SkpK0KtXL+O2Xr16YefOnQCAhIQE9OrVC7Nnz0ZNTQ3mz5+PtLQ02NnZoW3btli3bh169uwpVnwiIiKrweKeiFocFxcXREdHw8nJSewoREYSiQSurq5wdXUFAEyfPh3Dhw/HwYMHkZSUhC+++AKOjo5o06YNMjMzcfjwYQwcOBBBQUEiJxdXRkbGddvrinwA8Pb2xuHDh5s7EhERUavE4p6IWpz27dtj/fr1fBQetWj29vYICgrCo48+ipEjR6KqqgoajQanT5/GDz/8gHfffRcGgwGxsbFISEjAyJEjG10UjoiIiOh2sbgnIiK6TRKJBC4uLnBxcQEAPPXUUxgwYACSkpJw8OBBrF27FhqNBu3atUNBQQF++eUXDBw4EKGhoSInJyISR2BgIGbOnAkfHx+xoxC1GizuiajFOX78OHr27ImNGzfecAEuopbI3t4eAQEBGD58OIYNG2Yyqv/rr79i7ty50Ov1aNeuHRISEjBs2DDjdH8iIlvg6+uL0aNHc5YekRnZiR2AiOhagiCgpqZG7BhEZlE3qu/t7Q2FQoGHH34Yv/76KxYvXozIyEhs2LABK1as4IrRRGRTiouLsWfPHpSWloodhajV4Mg9ERGRBdnb28PPzw/Dhg3DI488Ap1Oh+LiYmRmZoodjYjIYjIyMjB79mxs2bIFHh4eYschahU4ck9ERCQSiUQCJycn+Pn5wc3NTew4REREZMVY3BMRERERERFZORb3RNTitG/fHhs3bkSbNm3EjkJEREREZBVY3BNRi+Pi4oKIiAg4OzuLHYWIiIiagYuLC6Kjo+Hk5CR2FKJWg8U9EbU4WVlZWLRoEXJzc8WOQkRERM2gffv2WL9+PSIiIsSOQtRqsLgnohansLAQW7du5eNxiIiIiIhuEot7IiIiIiKyqOPHj6Nnz55ITU0VOwpRq8HinoiIiIiILEoQBNTU1Igdg6hVYXFPREREREREZOVY3BNRi+Pr64uxY8fC09NT7ChERERERFbBQewARETXCgwMxLRp0yCTycSOQkRERERkFThyT0QtTnl5OY4ePQqtVit2FCIiImoG7du3x8aNG9GmTRuxoxC1GizuiajFOXfuHKZOnYqsrCyxoxAREVEzcHFxQUREBJydncWOQtRqsLgnIiIiIiKLysrKwqJFi5Cbmyt2FKJWg8U9ERERERFZVGFhIbZu3YrS0lKxoxC1GizuiYiIiIiIiKwci3sianEcHR3h4+MDBwc+0IOIiIiI6GbwzJmIWpy4uDhs27aNj8IjIiIiIrpJHLknIiIiIiKL8vX1xdixY+Hp6Sl2FKJWg8U9EbU4J0+exODBg3H27FmxoxAREVEzCAwMxLRp0+Dr6yt2FKJWw6qK+3fffRdxcXGQy+UICQnBG2+8Ab1eL3YsIjKzmpoaXL58GbW1tWJHISIiomZQXl6Oo0ePQqvVih2FqNWwquLeYDBgzZo1KCoqwv79+7Ft2zYsW7ZM7FhERERERHQLzp07h6lTpyIrK0vsKESthlUtqPfqq68a/xwaGorRo0dj//79JtuvplaroVar621PS0trtoxERERE/6+9e4+OqrzXOP4kXAJkJgkkIQz3mwQhIIhAFwqCRwVajQjhVgGVolDR2nMsl8WlHM5RxKUe8SgqiuEmYAVSqUgseqCitkDLxRAJhFtKgRgEEkIgITF5zx9dpsZcSCQz+8L3s9asxez9zs7zzuvw4+ee7A0AQKA5qrn/oU8//VTdu3evdP+SJUs0f/78ACYCAAAAACDwHNvcv/LKK9q/f79WrlxZ6ZjJkycrPj6+3Pa0tDSNGzfOn/EAXIMbbrhBr7/+utq0aWN1FAAAAMARbNPcJyQkaMOGDZXuN8aU/nnVqlVasGCBtm3bVuXtM3w+n3w+X63mBOB/Xq9XvXr1UmhoqNVRAACAH9SrV09NmzZV3bq2aUcAx7PNBfXWr18vY0ylj++sXr1a06ZN08cff6zOnTtbmBiAv5w6dUqLFy9WVlaW1VEAAIAfdOvWTZs2bVKnTp2sjgK4hm2a++pYu3atfv3rXys5OVlxcXFWxwHgJ1lZWVqxYoXOnTtndRQAAADAERzV3M+aNUs5OTnq37+/PB6PPB6Phg4danUsAAAAADWwf/9+3XPPPUpPT7c6CuAajvoll+PHj1sdAQAAAMA1Kioq0pkzZ/Ttt99aHQVwDUeduQcAAAAAAOXR3AOwncjISMXHxys8PNzqKAAAAIAjOOpr+QCuD23atNGcOXPk8XisjgIAAAA4AmfuAdhOfn6+jh49qoKCAqujAAAAP7jhhhv0+uuvq02bNlZHAVyD5h6A7aSlpWns2LE6duyY1VEAAIAfeL1e9erVS6GhoVZHAVyD5h4AAABAQJ06dUqLFy9WVlaW1VEA16C5BwAAABBQWVlZWrFihc6dO2d1FMA1aO4BAAAAAHA4mnsAthMUFKR69epZHQMAAABwDG6FB8B2evbsqS+++IJb4QEAAADVxJl7AAAAAAEVGRmp+Ph4hYeHWx0FcA2aewC2k5aWpvHjx+vo0aNWRwEAAH7Qpk0bzZkzRy1atLA6CuAaNPcAbCc/P1+HDh3SlStXrI4CAAD8ID8/X0ePHlVBQYHVUQDXoLkHAAB+s3z5ctWpU0cej6f0sXr16krH5+TkaNSoUfJ6vWrevLkWLVoUuLAAAiYtLU1jx47VsWPHrI4CuAYX1AMAAH7Vu3dv7dixo1pjH3/8cV25ckWnTp3S3//+d/3bv/2bYmNjNXToUD+nBADA2WjuAQCALVy6dEnr1q3T7t27FRYWpm7duumRRx5RYmJipc19ZmamMjMzy21PS0vzd1wAAGyF5h6A7bRr104LFizgIjuAS6SkpCg6Olrh4eEaMWKE/vM//1MNGzYsNy49PV0lJSWKi4sr3dajRw8lJSVVeuwlS5Zo/vz5fskNAICT0NwDsJ3GjRvrzjvv5D73gAsMGDBAqampatu2rQ4fPqwJEyZo+vTpeuWVV8qNzcvLK3dbrIiICF28eLHS40+ePFnx8fHltqelpWncuHHXPgEAfhEUFKR69epZHQNwFZp7ALaTlZWl1atXa8SIEWratKnVcQBUIiEhQRs2bKh0vzFG7du3L30eGxurhQsXauzYsRU29x6PR7m5uWW2XbhwQV6vt9Kf4fP55PP5fkR6AFbq2bOnvvjiC/5HPlCLuFo+ANs5deqUXn75ZZ05c8bqKACqsH79ehljKn1UJDg4uNJ9nTp1UlBQkL766qvSbfv27SvzNX0AAFAxmnsAAOA3ycnJpRe8O3bsmGbOnKn777+/wrGhoaFKSEjQ7NmzdfHiRaWmpmrp0qWaOHFiICMDCIC0tDSNHz9eR48etToK4Bo09wAAwG+2bt2qnj17KjQ0VIMGDVK/fv304osvlu6fMmWKpkyZUvp88eLFqlevnnw+n+666y7NnDmT2+ABLpSfn69Dhw7pypUrVkcBXIPfuQcAAH7z/PPP6/nnn690/xtvvFHmeUREhNatW+fvWAAAuA5n7gHYTnh4uPr3789FdgAAAIBq4sw9ANvp0KGDXnzxRZp7AAAAoJo4cw/AdoqKipSdna2ioiKrowAAAD9o166dFixYoBYtWlgdBXANmnsAtrN//34NHjxYhw8ftjoKAADwg8aNG+vOO+9UeHi41VEA16C5BwAAABBQWVlZWr16tc6ePWt1FMA1aO4BAAAABNSpU6f08ssv68yZM1ZHAVyD5h4AAAAAAIejuQcAAAAAwOG4FR4A27npppu0detWRUdHWx0FAAAAcATO3AOwnTp16sjj8ahOnTpWRwEAAH4QHh6u/v37y+PxWB0FcA2aewC2c/jwYT3xxBPKyMiwOgoAAPCDDh066MUXX1Tr1q2tjgK4Bs09ANu5ePGidu7cqcuXL1sdBQAA+EFRUZGys7NVVFRkdRTANWjuAQAAAATU/v37NXjwYB0+fNjqKIBr0NwDAAAAAOBwNPcAAAAAADgczT0A22nVqpWmTZumZs2aWR0FAAAAcATucw/AdqKjozVy5EhujwMAAABUE2fuAdjO+fPnlZycrJycHKujAAAAP7jpppu0detWxcbGWh0FcA2aewC2k5GRoXnz5un06dNWRwEAAH5Qp04deTwe1alTx+oogGvQ3AMAAAAIqMOHD+uJJ55QRkaG1VEA16C5BwAAABBQFy9e1M6dO3X58mWrowCuQXMPAAAAAIDD0dwDsJ3Q0FDFxcWpYcOGVkcBAAAAHIFb4QGwndjYWCUmJnIrPAAAAKCaOHMPAAAAIKBatWqladOmqVmzZlZHAVyD5h6A7ezZs0d9+vTRgQMHrI4CAAD8IDo6WiNHjlSTJk2sjgK4Bs09AAAAgIA6f/68kpOTlZOTY3UUwDVo7gEAAAAEVEZGhubNm6fTp09bHQVwDZp7AAAAAAAcjuYeAAAAAACH41Z4AGynS5cu2rBhg9q3b291FAAAAMAROHMPwHYaNGigVq1aKSQkxOooAADAD0JDQxUXF6eGDRtaHQVwDZp7ALZz/Phx/fa3v9XJkyetjgIAAPwgNjZWiYmJateundVRANeguQdgO9nZ2froo4+Um5trdRQAAADAEWjuAQAAAATUnj171KdPHx04cMDqKIBr0NwDAAAAAOBwNPcAAAAAADgczT0A2/H5fJo0aZKio6OtjgIAAAA4Ave5B2A7Pp9Pjz76qDwej9VRAAAAAEfgzD0A28nNzdVf/vIX5eXlWR0FAAD4QZcuXbRhwwZ16NDB6iiAa9DcA7CdI0eO6Mknn9SJEyesjgIAAPygQYMGatWqlUJCQqyOArgGzT0AAACAgDp+/Lh++9vf6uTJk1ZHAVyD5h4AAABAQGVnZ+ujjz5Sbm6u1VEA16C5BwAAAADA4WjuAdhOSEiIWrZsqXr16lkdBQAAAHAEboUHwHa6du2qpKQkboUHAAAAVBNn7gEAAAAElM/n06RJkxQdHW11FMA1aO4B2E5KSoruvvtuHTp0yOooAADAD3w+nx599FGae6AW0dwDsJ1vv/1WOTk5Ki4utjoKgGs0dOhQeTye0kdISIjCwsIqHT9w4EA1aNCgzGsAuE9ubq7+8pe/KC8vz+oogGvQ3AMAAL9JTk5WXl5e6WPYsGEaNWpUla9ZtGhRmdcAcJ8jR47oySef1IkTJ6yOArgGF9QDAAABcf78eW3cuFFbt26ttWNmZmYqMzOz3Pa0tLRa+xkAADgBzT0AAAiINWvWqG3bturXr1+V4+bOnavZs2erQ4cOmjt3ru69995Kxy5ZskTz58+v7agAADgOzT0A2+nUqZOWLl2qNm3aWB0FQC1KTEzUww8/XOWY5557TjfeeKMaNGigTZs2acyYMdq2bZv69OlT4fjJkycrPj6+3Pa0tDSNGzeuVnIDAOAENPcAbMfj8ah79+4KDQ21OgqAKiQkJGjDhg2V7jfGlP75yy+/VEpKij788MMqj9m3b9/SPw8fPlwbN25UUlJSpc29z+eTz+erYXIAVgsJCVHLli1Vr149q6MArsEF9QDYzsmTJ/XSSy/p66+/tjoKgCqsX79exphKH9+XmJioIUOG1LgRDw4OLncsAM7XtWtXJSUl6YYbbrA6CuAaNPcAbOfMmTNau3atzp8/b3UUALWgsLBQq1ev1sSJE6scl5OTo+TkZOXn56u4uFh/+MMf9N5771X4tXsAAFAWzT0AAPCrDz74QEFBQRVeGG/o0KFasGCBJKmoqEjz5s1T06ZN1aRJE82fP18rV67UrbfeGujIAPwsJSVFd999tw4dOmR1FMA1+J17AADgVyNGjNCIESMq3JecnFz65+joaO3atStQsQBY6Ntvv1VOTo6Ki4utjgK4BmfuAQAAAABwOMc294MGDVJQUJAKCgqsjgKglkVFRSkhIUERERFWRwEAAAAcwZFfy1+xYgVf4QFcrHXr1po+fbo8Ho/VUQAAAABHcNyZ+3Pnzunpp5/W888/b3UUAH5y+fJlHTx4UPn5+VZHAQAAftCpUyctXbpUbdq0sToK4BqOO3M/bdo0/frXv1ZMTMxVx2ZmZiozM7Pc9rS0NH9EA1BLDh48qAkTJmj9+vWKi4uzOg4AAKhlHo9H3bt3V2hoqNVRANdwVHO/fft27d+/X0uXLtWJEyeuOn7JkiWaP39+AJIBAAAAqK6TJ0/qpZde0iOPPKLmzZtbHQdwBdt8LT8hIUFBQUGVPoqKivTYY49p8eLFCg6uXuzJkydr9+7d5R7vvPOOn2cDAAAAoDJnzpzR2rVrdf78eaujAK5hmzP369evr3J/RkaGDh48qPj4eEkqvaBe27ZttXz5cg0ZMqTca3w+n3w+X+2HBQAAAADARmzT3F9Nq1atdPLkydLn//jHP9SnTx/t3LlTzZo1szAZgNoWHBys0NBQBQUFWR0FAAAAcATHNPd16tQp08R/d3/7mJgYhYSEWBULgB/06NFD27Zt41Z4AAAAQDU5prn/obZt28oYY3UMAAAAADUUFRWlhIQERUREWB0FcA3bXFAPAL5z4MABjR49WkeOHLE6CgAA8IPWrVtr+vTpXCkfqEU09wBsp6CgQMePH1dhYaHVUQAAgB9cvnxZBw8eVH5+vtVRANeguQcAAAAQUAcPHtSECRN0/Phxq6MArkFzDwAAAACAw9HcAwAAAADgcDT3AGynffv2euGFF9SyZUurowAAAACO4Nhb4QFwr4iICA0YMID73AMA4FLBwcEKDQ1VUFCQ1VEA1+DMPQDb+frrr7V8+XJ98803VkcBAAB+0KNHD23btk033nij1VEA16C5B2A7p0+f1muvvUZzDwAAAFQTzT0AAACAgDpw4IBGjx6tI0eOWB0FcA2aewAAAAABVVBQoOPHj6uwsNDqKIBr0NwDAAAAAOBwNPcAbCciIkJ33HGHvF6v1VEAAAAAR+BWeABsp3379lq4cCG3wgMAAACqiTP3AGynsLBQWVlZ/B4eAAAu1b59e73wwgtq2bKl1VEA16C5B2A7qampuvfee7mCLgAALhUREaEBAwYoLCzM6iiAa9DcAwAAAAior7/+WsuXL9c333xjdRTANWjuAQAAAATU6dOn9dprr9HcA7WI5h4AAAAAAIejuQcAAAAAwOG4FR4A2+nRo4c+//xzRUREWB0FAAAAcATO3AOwneDgYNWvX1/BwfwVBQCAG0VEROiOO+6Q1+u1OgrgGvzLGYDtpKena8qUKcrIyLA6CgAA8IP27dtr4cKFatWqldVRANeguQdgO3l5edqzZ48uX75sdRQAAOAHhYWFysrKUmFhodVRANeguQcAAAAQUKmpqbr33nt15MgRq6MArkFzDwAAAACAw9HcAwAAAADgcDT3AGyndevWmjVrlnw+n9VRAAAAAEfgPvcAbCcqKkrDhg2Tx+OxOgoAAADgCJy5B2A7Z8+e1fvvv6/s7GyrowAAAD/o0aOHPv/8c3Xu3NnqKIBr0NwDsJ0TJ05owYIFyszMtDoKAADwg+DgYNWvX1/BwbQjQG3h0wQAAAAgoNLT0zVlyhRlZGRYHQVwDZp7AAAAAAGVl5enPXv26PLly1ZHAVyD5h4AAAAAAIejuQdgOx6PRzfffLMaNWpkdRQAAADAEbgVHgDb6dSpk9544w1uhQcAAABUE2fuAdhOSUmJCgsLVVJSYnUUANWwbds2DRo0SOHh4WrWrFm5/Tk5ORo1apS8Xq+aN2+uRYsWVXm8Tz/9VHFxcWrUqJF69+6tL7/80k/JAVildevWmjVrlnw+n9VRANeguQdgO/v27dNtt92mgwcPWh0FQDWEhoZq4sSJ+p//+Z8K9z/++OO6cuWKTp06pT/+8Y9asGCBkpOTKxx77tw53XfffZo+fbqys7M1duxYxcfH68qVK/6cAoAAi4qK0rBhw9S4cWOrowCuQXMPAACuSZ8+fTR+/Hh16NCh3L5Lly5p3bp1euaZZxQWFqZu3brpkUceUWJiYoXHSkpKUseOHTVhwgSFhITo3//931VSUqJPPvnE39MAEEBnz57V+++/r+zsbKujAK5xXf7OfX5+viQpLS3N4iQAKvLdGftjx44pKCjI4jRAYBw7dkzSv2qUW6Snp6ukpERxcXGl23r06KGkpKQKx6empqpHjx6lz4OCgtS9e3elpqbqZz/7WbnxmZmZyszMLLd93759kqj1gF0dOHBACxYsUHh4eIX/YxBwo6NHj0ryX62/Lpv7vXv3SpLGjRtncRIAVZk+fbrVEYCA27t3r2699VarY9SavLw8hYeHl9kWERGhixcvVjr+h1/TrWr8kiVLNH/+/Ep/PrUesLcZM2ZYHQEIOH/V+uuyub/xxhslSW+//XaZswNOlpaWpnHjxumdd94pnZ/TMSf7c9t8JObkFG6c0759+/SLX/zCdvNJSEjQhg0bKt1vjKny9R6PR7m5uWW2XbhwQV6vt9LxFy5cqPb4yZMnKz4+vtz2nTt36rHHHqPW2xxzcgbmZH9um4/kzjn5u9Zfl839d2cEevTooZtvvtniNLXrxhtvZE4O4LY5uW0+EnNyCjfOyW4Xl1q/fv01vb5Tp04KCgrSV199pa5du0r65z9uvv81/e+Li4vTm2++WfrcGKOUlBT98pe/rHC8z+er8mrb1HpnYE7OwJzsz23zkdw5J3/Vei6oBwAArklJSYkKCgpUWFgoSSooKCi9un1oaKgSEhI0e/ZsXbx4UampqVq6dKkmTpxY4bGGDx+uw4cP65133lFhYaFefvllSdKdd94ZmMkAAOBQNPcAAOCabN++XQ0bNtTgwYOVlZWlhg0bKjY2tnT/4sWLVa9ePfl8Pt11112aOXOmhg4dWrrf4/Hos88+kyRFRkbq/fff18KFCxUeHq7Vq1frD3/4g0JCQgI+LwAAnOS6/Fo+AACoPQMHDqzyd+8jIiK0bt26Svfn5eWVO15qamqt5QMA4HrAmXsAAAAAABzuumzufT6f5s2bV+UFeJyGOTmD2+bktvlIzMkpmBOuxo3vJ3NyBubkDG6bk9vmIzGnHyPIXO0eNgAAAAAAwNauyzP3AAAAAAC4Cc09AAAAAAAOR3MPAAAAAIDD0dwDAAAAAOBwrm3ut23bpkGDBik8PFzNmjUrtz8nJ0ejRo2S1+tV8+bNtWjRoiqP9+mnnyouLk6NGjVS79699eWXX/opefUMHTpUHo+n9BESEqKwsLBKxw8cOFANGjQo8xq7Wb58uerUqVMm4+rVqysdX9M1tMLzzz+vbt26yev1qnXr1po9e7aKi4srHW/XdarJe223z8oPXblyRZMmTVK7du3k9XrVtWtXrVmzptLxQUFBCg0NLV2PoUOHBjBt9Tz00EOqX79+mf9uTpw4Uen41NRU/eQnP1GjRo3UpUsXbd26NYBpq+f7c/F4PKpbt67i4+MrHW/XdXr11Vd1yy23KCQkRGPGjCmzr6br8Oqrr6pFixbyeDwaMWKEsrOz/RndEdxe6yX31XtqvX3XyE21XqLeS/av99T6io91TbXeuNTOnTvNypUrzdKlS01MTEy5/Q888ICJj483Fy5cMCkpKSY6Otps3ry5wmOdPXvWhIeHmxUrVpiCggLz4osvmtatW5uCggJ/T6PaRo0aZX7xi19Uuv/22283r7/+egAT1dyyZctM3759qz2+JmtolYULF5q//vWvprCw0GRkZJju3bubhQsXVjrerutU3ffaCZ+VvLw8M3fuXHP06FFTUlJiPvvsMxMWFmb+/Oc/VzhekklLSwtwypp58MEHzYwZM6o1trCw0LRt29Y888wzpqCgwLz77rsmLCzMZGVl+Tnlj/ftt9+a5s2bm1WrVlU6xq7rtGHDBvP73//eTJ061YwePbp0e03XYcuWLaZJkyZm9+7dJjc314wcOdKMGjUqUNOwreut1hvj/HpPrbfvGrmp1htDvXdavafW106td21z/51t27aVK/h5eXmmfv36Zv/+/aXbZs2aZRISEio8xptvvml69epV+rykpMS0bNnSbNq0yT+ha+jcuXMmJCTEfPHFF5WOsWsh+b6aFPyarqFdPPfcc+aee+6pdL8d16km77XdPyuVGTp0qHnhhRcq3GfXQvJ9NSn2W7ZsMU2bNjXFxcWl2/r162deffVVf8W7Zps2bTJhYWHm8uXLlY6x+zrNmzevTMGv6Tr8/Oc/N0899VTp8/T0dFO3bl2Tk5Pjv9AOcj3UemPcUe+p9fZco+uh1htDvbdzvafW106td+3X8quSnp6ukpISxcXFlW7r0aOHUlNTKxyfmpqqHj16lD4PCgpS9+7dKx0faGvWrFHbtm3Vr1+/KsfNnTtXkZGR6tOnjz744IMApauZlJQURUdHq2PHjpoxY4by8/MrHFfTNbSL777GVhW7rVNN3mu7f1YqcunSJf3tb3+rcl3uuOMOxcTE6Gc/+5m++uqrAKarvjfffFNNmjTRTTfdpMTExErHpaamqlu3bgoO/tdf/3b/7CxbtkxjxoxRw4YNqxznhHX6Tk3X4YefrRtuuEH169fXwYMH/R3VsdxW6yX31Htqvf3WyO21XqLeS/b+/FDra6fWX5fNfV5ensLDw8tsi4iI0MWLFysdHxERUe3xgZaYmKiHH364yjHPPfecjh49qszMTM2cOVNjxozRrl27ApSwegYMGKDU1FRlZWXpww8/1J/+9CdNnz69wrE1XUM7eOWVV7R//3795je/qXSMHdepJu+13T8rP1RSUqKHHnpIvXv31t13313hmD/96U/KyMjQkSNH1LNnT919993Kzc0NcNKq/epXv1J6errOnDmjRYsWafr06dqwYUOFY522RmfPntUHH3ygiRMnVjnOCev0fTVdB6etmx24rdZL7qj31Hp7rpGba71Evf+OXdeJWv/jxlfEkc19QkKCgoKCKn1cjcfjKfcfwoULF+T1eisdf+HChWqPv1Y1md+XX36plJQUTZgwocpj9u3bV2FhYapfv76GDx+uhIQEJSUl+SV/Raozp/bt26t9+/YKDg5WbGysFi5cqHXr1lV4vJquoT/UZJ1WrVqlBQsWaMuWLYqMjKz0mFavU0Vq8l4H+rNyLYwxmjJlik6fPq3f/e53lf7dcfvtt6t+/fryer16+umnVbduXf35z38OcNqq3XzzzYqKilLdunU1aNAgTZ06tcrPjlPWSJJWr16tjh07qm/fvlWOc8I6fV9N18Fp61Yb3F7rJffVe2o9td6OqPf/Ytd1otb/uPEVcWRzv379epl/Xi+gwsfVdOrUSUFBQWW+yrFv375Kv6YTFxenffv2lT43xiglJeWqX7n6sWoyv8TERA0ZMkQ+n69GPyM4OLha71Vt+TFrVlXGmq6hP1R3TqtXr9a0adP08ccfq3PnzjX6GYFep4rU5L0O9GflxzLGaOrUqdq3b5+Sk5NrdKViO6zJ1VSVMS4uTvv371dJSUnptkB/dmpi2bJlVz1TWRG7r1NN1+GHn60jR47oypUrNf47xUncXusl99V7aj213m6o986o99T6f42/5lpf7d/Od5ji4mKTn59v/vjHP5qYmBiTn59f5iqeP//5z819991ncnNzzf79+01MTMxVr6C7atUqc+XKFfPSSy+ZVq1aWX5V0CtXrpjIyEizYcOGKsdlZ2ebzZs3m8uXL5tvv/3WbNy40TRq1Mh8/vnnAUpaPZs3bzanT582xhhz9OhR85Of/MRMnjy50vE1WUOrrFmzxkRFRZk9e/Zcdayd16m677VdPys/9Nhjj5mePXua8+fPVzkuNTXV7N692xQVFZlLly6ZefPmmZiYGJOdnR2YoNX0u9/9zuTm5pri4mLz2WefmaioKLN27doKx3535dZnn33WFBQUmPfee8+2V8/dvXu3qVu3rvn666+rHGfndSoqKjL5+flm9uzZZuTIkSY/P98UFhbWeB22bNliIiMjzZ49e8zFixfN6NGjuVq+uT5qvTHuqvfUevuukdtqvTHUeyfUe2r9v9RGrXdtc79t2zYjqcyjTZs2pfuzs7NNQkKCCQ0NNc2aNTMvvfRSmdeHhoaa7du3lzle165dTYMGDcwtt9xi9u7dG5iJVGH9+vUmKirKFBYWlts3ZMgQ88wzzxhjjDlz5ozp3bu38Xg8JiwszNx8881m/fr1gY57Vb/5zW9MTEyMadSokWndurX5j//4D5OXl1e6f/LkyWX+AXC1NbSDtm3bmrp165rQ0NDSx5AhQ0r3O2WdqnqvnfBZ+b6MjAwjyYSEhJRZl+/W4fvz2bp1q4mNjTWNGjUykZGRZvDgwWbfvn1Wxq9Q//79TXh4uPF4PKZLly7mjTfeKLO/S5cu5p133il9npKSYvr06WMaNGhgOnfubD755JNAR66Wxx9/3Nx3330V7nPKOs2bN69cLXrwwQeNMVWvw/bt201oaGiZY73yyivG5/OZ0NBQc//991/1H6vXg+uh1hvjrnpPrbfvGrmp1htDvTfGGfWeWl+7tT7IGBt/lwEAAAAAAFyVI3/nHgAAAAAA/AvNPQAAAAAADkdzDwAAAACAw9HcAwAAAADgcDT3AAAAAAA4HM09AAAAAAAOR3MPAAAAAIDD0dwDAAAAAOBwNPcAAAAAADgczT3gQgMHDtScOXOsjgEAAPyIeg/g+2juARs6fvy4xo4dq+bNm8vj8ah58+b66U9/qszMTKujWWbPnj0aPny4WrZsqdDQULVo0ULDhw9XSUmJ1dEAAPhRqPflUe+BH4/mHrChn/70p/J6vUpNTVVeXp727t2r0aNHKygoyOpolvjss8/Uv39/DRkyROnp6crNzdXWrVs1ePBgBQfz1xgAwJmo92VR74Frw6cEsJlz587p4MGDmjJlipo0aSJJiomJ0YMPPqhmzZpJktq2baulS5eWeV1QUJA++eST0uc5OTkaPny4vF6vOnbsqJUrV5YZ/+qrr6pDhw7yer2KiYnRQw89VLpv4MCBevzxxyt9/eLFixUXF6ewsDA1a9ZM48eP19mzZ8scPz8/X3PmzFGnTp3k9XrVvn17rVixQpJUUFCgWbNmqUOHDmrcuLEGDBigvXv3VvqevPbaa+rXr58effRRNWrUSHXq1FFsbKwmT55cg3cWAAD7oN6XR70Hrg3NPWAzkZGR6tatmyZPnqxly5YpJSXlR30V7e2339bDDz+s7Oxs/e///q8mTZqkL774QpJ0+PBhTZ8+XRs3btTFixd19OhRTZw4sdqvb9asmZKSkpSTk6OdO3cqPT1dTzzxRJnXP/LII9qyZYs2btyo3Nxcff755+rWrZskacqUKdq1a5c+/fRTffPNNxo1apQGDx6snJycCucSHR2tHTt2aOHChdq3b5+Ki4tr/H4AAGAn1PvyqPfANTIAbOfs2bNm7ty5pnfv3iYkJMQ0btzYPPXUU6agoMAYY0ybNm3MW2+9VeY1kszHH39sjDHm9ttvN8OHDy+zf9SoUWbixInGGGOOHTtmGjRoYN59911z4cKFcj//aq//oaSkJNOkSZPS5998842RZP76179WODdJ5uDBg2W2d+zY0axatarC41+6dMk899xzpnfv3qZOnTomKirKzJ0715SUlBhjjCkuLja33XabiYyMNLNnzy59XWXbAQCwA+p9WVer93/7299Mv379TP/+/U2/fv3Mjh07jDHUe+A7nLkHbCgyMlL/9V//pV27dunChQtKTEzUW2+9pWeffbbax2jXrl255//4xz9K//zuu+9q2bJlat26tXr37q21a9dW+/VJSUnq16+fmjZtqrCwMI0fP17nz58v/T/sx48flyTFxsaWy3XkyBFJUt++fRUREVH6OHXqlE6ePFnhXBo1aqTp06dr165dOnfunKZNm6b//u//1qZNmyRJwcHBWrNmjV544YUyr6tsOwAAdkC9L+tq9b558+ZKTk7W9u3btWTJktJvEVDvgX+iuQdsLiQkRMOGDdOdd96pPXv2SJK8Xq8uXbpUOub06dPlXpeRkVHuecuWLUuf33ffffroo4909uxZTZs2TQ888IDS09Ov+vqTJ09q5MiReuKJJ3TixAnl5uZq1apVkiRjjKR//o6gpDLH+853v0eYkpKinJyc0sfly5c1c+bMq74f4eHhpb8vePHixdLtrVq1qnB8ZdsBALAT6n1ZFdV7n8+nsLAwSVL9+vXLXGSPeg/Q3AO2k52drZkzZyolJUVXrlxRcXGx/u///k/btm3TgAEDJEm33HKL1q5dq5ycHOXm5lZYJDdv3qwPP/xQxcXF+uijj/T73/9eDz/8sCTp0KFD2rx5s/Ly8lS3bl2Fh4dLkurUqXPV1+fl5amkpERRUVFq0KCBDh8+XO4MQ3R0tMaOHaupU6fq0KFDkqTMzEzt2bNHbdq00bBhwzR16lT9/e9/l/TPop2cnFzhrX+effZZJScnKzc3V8YYpaena9KkSerQoYPuvffeWnjHAQAIPOp9WTWp90VFRZo6darmzJnzY99+wJVo7gGbqV+/vs6ePauRI0cqKipKkZGRevLJJzVjxgw99dRTkqSnn35aYWFhatWqlXr16qX777+/3HEmTpyot99+WxEREZo6dareeOMN9e/fX5JUWFioZ555Ri1atFBYWJieeuoprVy5Uh06dLjq6zt37qxnn31WEyZMkNfr1YMPPqhx48aV+/lvvfWWbr/9dg0dOlQej0e33nqrvvrqK0nSmjVr1KtXL911113yer2KjY3VW2+9VXom4Pvy8/M1Y8YMtWrVShEREYqPj1fXrl21Y8cOeb3eWnnPAQAINOp9WdWt98XFxXrggQc0atQo3XPPPde2CIDLBJmKPl0ArmsDBw7UbbfdpqefftrqKDWyfPlyHTlypFzuyrYDAHA9c1q9Lykp0YQJE9SzZ8/S/wHyfdR7XO/qWh0AAGrD2LFjlZKSosuXL2vHjh1KTk5WvXr1Kt0OAACc5b333lNSUpJOnjypDz74QOHh4dq4caOkyv8dAFxPaO4BuMIPr/57te0AAMBZxowZozFjxlS4j3oP8LV8AAAAAAAcjwvqAQAAAADgcDT3AAAAAAA4HM09AAAAAAAOR3MPAAAAAIDD0dwDAAAAAOBwNPcAAAAAADgczT0AAAAAAA5Hcw8AAAAAgMPR3AMAAAAA4HA09wAAAAAAOBzNPQAAAAAADvf/upc00h9IYXEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reported: 27 beats ; Detected : 30 beats\n", + "Analyzing trial number 3\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABcQAAAHSCAYAAADCCcgbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZgdZZn3/63tVJ2t16STzg6EnQQQUAERkEVQQWQGhJhR9BWXd8aR0XnVcfwpeMHr6CzKjK+DOgpeoq8DvuoIiguDiIAiUYEEI2GHhJA96e50n9Onlt8fder0WerUqXrqeZ7qTu7PdXFp0ulzn6VO1VPf53t/b8XzPA8EQRAEQRAEQRAEQRAEQRAEcYCjZv0ECIIgCIIgCIIgCIIgCIIgCEIGJIgTBEEQBEEQBEEQBEEQBEEQBwUkiBMEQRAEQRAEQRAEQRAEQRAHBSSIEwRBEARBEARBEARBEARBEAcFJIgTBEEQBEEQBEEQBEEQBEEQBwUkiBMEQRAEQRAEQRAEQRAEQRAHBSSIEwRBEARBEARBEARBEARBEAcFJIgTBEEQBEEQBEEQBEEQBEEQBwUkiBMEQRAEQRAEQRAEQRAEQRAHBSSIEwRBEARBEATBjde85jW49tprG38ulUq49957M3s+BEEQBEEQBNEMCeIEQRAEQRAEwcBZZ52FXC6HUqmEvr4+HHfccfja174W++cAsH79eqxZswaLFi1CsVjEkiVLcM455+Dmm2+W/XKEMTExgbPOOivrp0EQBEEQBEEQAEgQJwiCIAiCIAhmPvKRj2BiYgJ79uzBxz72Mbz73e9ucUNH/fwXv/gFXvnKV2L+/Pm4//77MT4+jqeffhp///d/jx/84Aexn4PnebBtm+8Li0GtVpNekyAIgiAIgiDSQoI4QRAEQRAEQaRE0zSsXbsWw8PD+N3vfhfr5+9973vx1re+FTfeeCMOPfRQqKoK0zTxute9Dv/1X//VtdZzzz0HRVHwta99DccffzwKhQLWrVuHSqWCj3/84zjssMMwODiI1772tfjDH/7Q8rvf+MY3cMIJJ6C/vx8LFizABz/4wcbPfv3rX+OMM87A4OAgDjnkEHzsYx9DtVpt/HzFihX41Kc+hQsuuADlchn//M//DNu28ZGPfAQLFy7E/Pnz8Xd/93cdz1dRFNx9990AgHvvvReKouC73/0ujjjiCJTLZZx33nnYsmVL499v27YNl1xyCQYGBnDooYfiW9/6FhRFodgVgiAIgiAIggskiBMEQRAEQRBESmzbxje/+U3s3r0bp5xySs+fb9q0CU8++STWrl3LXPPrX/867rzzTkxMTODEE0/E+973Pvz2t7/FL3/5S+zYsQOXX345Xv/612Pv3r0AgP/4j//A3/7t3+Kf/umfsGvXLjz11FO49NJLAQAvvPACzj33XPzZn/0Ztm3bhp/97Ge444478NGPfrSl5pe//GV86lOfwtjYGP76r/8an/vc53DbbbfhnnvuwebNm6HrOh566KGez/373/8+Hn74YWzevBmTk5P4+Mc/3vjZmjVr4DgOnn32Wfzud7/DbbfdxvweEQRBEARBEEQ7JIgTBEEQBEEQBCP/9E//hIGBASxcuBBf+MIXcPPNN+O1r31tz5/v2LEDALB48eLGv12/fj0GBgYwMDAAy7Jw3333Rdb+5Cc/iaVLl0LTNExMTOAb3/gG/s//+T9YsmQJdF3HX/3VX6G/vx933nknAOALX/gCPvrRj+Lcc8+Frusol8s488wzAQDf+ta3cMQRR+Caa65BLpfD4Ycfjuuvvx5f+cpX4Hleo+Y73/lOnHrqqVAUBYVCATfffDM+/OEP45hjjoFpmrj22msxODjY8337zGc+g/7+fvT392PNmjX47W9/CwDYvHkz7rnnHnz2s5/F4OAgBgcHccMNN8T8NAiCIAiCIAiiN3rWT4AgCIIgCIIg5ip/+7d/i+uvvz7xz+fPnw/AF4CPPvpoAMCqVauwd+9e2LYNwzDgum5k7UMOOaTx/5966ikAwKte9aqWfzM9PY3NmzcDAJ599lkceeSRoY/14osv4rDDDmv5u5UrV2Jqago7duzAyMhIR83g+Tf/naZpWLZsWeTzBoBFixY1/n+xWMT4+DgANKJTli9f3vj5ihUrej4eQRAEQRAEQcSFBHGCIAiCIAiCkMwRRxyBlStX4lvf+hbOO+88psdQ1Zlmz4ULFwIAHnvssa6C9IoVK7Bp06bQny1duhS/+c1vWv7u6aefRj6fb4j37TUBYMmSJXjuuecaf3YcBy+++GKi19FM4Jh//vnnccwxxzT+P0EQBEEQBEHwgiJTCIIgCIIgCCIDbrrpJnznO9/BNddcg2effRau66JWq+GXv/xl4sdavnw5LrnkEvzlX/5lQ0AeHx/HXXfdha1btwIAPvjBD+Kzn/0s7rnnHjiOg/Hx8UatNWvW4IknnsC//du/YXp6Gk8//TT+v//v/8O73/1uKIrSte473vEO/PM//zP+9Kc/oVqt4tOf/jR2797N8G74LFmyBGeddRb+7u/+Dnv37sXevXvxiU98gvnxCIIgCIIgCKIdEsQJgiAIgiAIIgPOOeccPPTQQ3j55Zdx2mmnoVQq4ZBDDsENN9yAb37zmzj99NMTPd63v/1tnHTSSTjvvPNQLpdx5JFH4qtf/WojA/w973kPPvOZz+Caa67B4OAgDj/8cPzgBz8A4AvqP/vZz/Cf//mfGBkZwete9zpceOGF+NznPhdZ86Mf/SguvfRSnHnmmViyZAmmp6c7YluS8u1vfxue52H58uU48cQTcfHFFwMALMtK9bgEQRAEQRAEAQCK1zwlhyAIgiAIgiAIYhbxyCOP4MQTT8RLL72E0dHRrJ8OQRAEQRAEMcchQZwgCIIgCIIgiFnDhg0bMD09jRNOOAEvvfQS3v72twMA7rnnnoyfGUEQBEEQBHEgQJEpBEEQBEEQBEHMGvbt24crrrgC5XIZJ510EubNm4dvfetbWT8tgiAIgiAI4gCBHOIEQRAEQRAEQRAEQRAEQRDEQQE5xAmCIAiCIAiCIAiCIAiCIIiDAhLECYIgCIIgCIIgCIIgCIIgiIMCEsQJgiAIgiAIgiAIgiAIgiCIgwI96ycwW9m5cyd++tOfYsWKFcjn81k/HYIgCIIgCIIgCIIgCIIgCCKEqakpPPfcc3j961+PefPmRf5bEsS78NOf/hRr167N+mkQBEEQBEEQBEEQBEEQBEEQMbj11lvxtre9LfLfkCDehRUrVgDw38Sjjz462yeTAU9uG8/6KRCEFA5fUM76KRAEQRAEQRAEQRDEQQdpT2I4WHWOjRs3Yu3atQ1NNwoSxLsQxKQcffTReMUrXpHxs5GPsXlf1k+BIKSwakl/1k+BIAiCIAiCIAiCIA46SHsSw8Guc8SJvqahmgRBEARBEARBEARBEARBEMRBwawUxKvVKt797nfjkEMOQblcxrHHHotvf/vbjZ9v2LABr371q1EoFHDMMcfgnnvuafn97373uzjssMNQKBRwzjnn4Pnnn5f9EgiCIAiCIAiCIAiCIAiCmEVUqhVs3bEd1elq1k+FyJBZGZli2zYWLVqE//7v/8YhhxyCBx54AG984xtxyCGH4OSTT8ZFF12Eq6++Gr/85S/xgx/8AG95y1vw5JNPYmRkBBs3bsRVV12F733vezjjjDPw8Y9/HJdffjkeeuihrF8WQRAEQRAEQRAEQRAEQRCScVwH377jDtz94K/hei5URcW5p52KNRddBE3Vsn56hGRmpUO8WCzi05/+NA499FAoioLXvOY1OP300/Hggw/i3nvvxeTkJD72sY/BNE289a1vxXHHHYfbb78dgD8E84ILLsD555+PfD6PT3/603j00Ufx+OOPZ/yqCIIgCIIgCIIgCIIgCIKQzbfvuAP3r1uH1UsW44zDD8fqJYtx/7p1+L933pn1UyMyYFY6xNvZv38/1q1bhw9+8IPYsGEDVq1aBVWd0fJPOOEEbNiwAYAfp3LKKac0flYul3HYYYdhw4YNOPbYYzsee+vWrdi6dWvH32/cuFHAKyEIgiAIgiAIgiAIgiAIQhaVagV3P/hrrF6yGGXLAgCULQtHjIzg5w88iMsuuABmzsz4WRIymfWCuOu6uOqqq3DKKafg/PPPx29/+1sMDAy0/JuBgYFGTvjExEToz8fHx0Mf/8tf/jKuu+46EU+dIAiCIAiCIAiCIAiCIIgM2TM2BtdzG2J4QNmy4Houdo+NYXTe/IyeHZEFs1oQ9zwP73vf+/DSSy/hpz/9KRRFQalUwr59+1r+3b59+1AulwGg58/bee9734uLL7644+83btyItWvXcnolBEEQBEEQBEEQBEEQBEHIZqi/H6qiYrxSaRHFxysVqIqKob6+DJ8dkQWzVhD3PA9/+Zd/iUceeQR33303SqUSAOC4447DZz/7Wbiu24hNeeSRR3DllVc2fv7II480HmdiYgJPP/00jjvuuNA6o6OjGB0dFftiCIIgCIIgCIIgCIIgCIKQjpkzce5pp+L+detwxMgIypaF8UoFm7Zvx3mnn0ZxKQchs3KoJgD81V/9FX7zm9/gpz/9KfqadmrOOuss5PN5fO5zn0O1WsXtt9+O9evX47LLLgMArF27FnfddRfuvvtuVCoVfOpTn8Lq1atD88MJgiAIgiAIgiAIgiAIgjiwWXPRRTjjlFPw6ObNuG/TJjy2eQvOOOUUXPmmN2X91IgMmJUO8eeffx5f+tKXYJomli5d2vj7j3/84/j4xz+OH/7wh3j3u9+N6667DitWrMD3vvc9jIyMAACOPvpo3HzzzXjPe96Dl19+Ga9+9atx2223ZfVSCIIgCIIgCIIgCIIgCILIEE3VsPbiN+PCI47Ezh07sOioo1CeT7nhByuzUhBfvnw5PM/r+vNVq1bhoYce6vrzyy67rOEYJwiCIAiCIAiCIAiCIAiCMAAsWrAAOSXrZ0JkyawUxAmCIAiCIAiCIAiCIAiCOPCYnJrCjt27UZ02pOd3e7YDra8At1aTWpeYXZAgThAEQRAEQRAEQRCzkEA0GhkeRt6ysn46BNEBHaNEEmzHwRduuQW3/+QncFwXrjUf5552KtZcdBE0VZPzJDwXmmnCqVTk1CNmJSSIEwRBEARBEARBEMQsol000lQVl11wAa656iromiTRiCAioGOUYOELt9yCH/3iFzj10EMxWCjg2UkV969bB0VRsPbiN0t5Dp7jQDVN1MbHpdQjZickiBMEQRAEQRAEQRDELKJdNNozOYkf/eIXUBQFH37Xu7J+egRBxyiRmMmpKdz+k580jhkAKFsWjhgZwc8feBCXXXCBlPgUz/OgmTl4ti28FjF7UbN+AgRBEARBEARBEARB+ASi0fGLFzdEo8FCAccvXozb7roLU9TmT2TMbDlGJ6em8PyWLfSdmCPs2L0bjus2jpmAsmXB9VzsHhuT92R0nQTxgxxyiBMEQRAEQRAEQYCycInZQTfRaLBQgOO62L57N5YvWpTRsyOI7I9RimuZm4wMD0NTVeyZnGw5dsYrFaiKiqG+PmnPRdU0EsQPckgQJwiCIAiCIAjioIbEFWI20U002jM5CU1VMTI0lOGzI4jsj1GKa+GLrM3gvGXhsgsuwI9+8YtGd8F4pYJN27fjvNNPkxKXEqCoGjzPk1avnUq1gj1jYxjq75f6uokZSBAnCIIgCIIgCOKghsQVYjYRJhrtmZzEo1u24PILL6TuBSJzsjxGw3Kom+Na/ueaNQfMd0S0UJ3FZvA1V10FRVHwnz/6ERzPg5cfwXmnn4Yr3/QmIfVmG47r4Nt33IG7H/w1XM+Fqqg497RTseaii6CptAEvExLECYIgCIIgCII4aDmYxBVi7tAQjX78YziuC13TcPmFF+KD73hH1k+NIADMHKO33XUXbMeRdoxmHdciA1lCdRabwbqm4UPvfCf+fOEo9ioKake+4qBySH/7jjtw/7p1WL1kMcqWhfFKBfevWwdFUbD24jdn/fQOKkgQJwiCIAiCIAhi1iA7x/tgEFeIuYeuafjwu96Fy5atwK7JSRx5ztkoFItZPy2CaBAco1e99ky88NhjWHrsMZh35JHC62Yd1yIDGUJ1lpvBXq2GYv8ACo6Dlw8iMbxSreDuB3/dEMMBf6DoESMj+PkDD+KyCy44qDYHskbN+gkQBEEQBEEQBEHYjoN/+trXcPbb344/++u/xll/8Rf4p699DbbjCK3bLK40cyCJK8TcJW8YWL5wAXIK3boTsxNTUbB82TKYUKTUC+JaHt2ypXHePpAihQKhOoiiAVqF6qlKhUudOJvBonBrNahmDkB2Gd5ZsGdsDK7nNsTwgLJlwfVc7B4by+iZHZyQQ5wgCIIgCIIgiMzJKsd7tuQ1y3bGE3MH1bLgVitAIS+9Nh2XRC/cWg16sQh3elpazUZcy49/DNt1oasqLn/DGw6ISCFZXUtZOu3dmg1V1yF2uzsOCjx4UCRt5gz190NVVIxXKi2i+HilAlVRMdTXJ+V5ED4kiBMEQRAEQRBzFhJrDgyyzvHOMq85i6FmxBxCATTThFutSi1LxyURF8+xoReLmN69R1rNIK7lL171Kmzb8hIWLF6EkWOPlVZfJLKE6iw3gz3HhmJkL0cqmgrPdqDocp6LmTNx7mmn4v5163DEyEgjQ3zT9u047/TTKC5FMtkfgQRBEARBEASREBJrDiyyzvFu5DUvX4FdExM48vzzUMjLceNm5Ywn5g6KocOt2VJr0nE598hqg9hzXGj5PNzpbdJqBliqhuVLlsDzDpzoDZlCdVabwZ7jQFG1TBJTPM8F6o5wRdfh2TYgSRAHgDUXXQS3VsN///a3cD0PmqrhvNNPw5VvepO050D4kCBOEARBEARBzDlIrDmwmC1D0vKGgWUjC2CqcvKas3bGE3MD1cjBrcmLo6Djcm6R9QaxZ9vQLEv6pg0AeK4DLZ+HPTYuvbZIGkL1j34Ex/OECdXNm8F7bRuHnHwSysPDXGuE4TkuFE0DFEiNLGnUrl/j1UAQl4imarjy3PPw+mUrsN/QseTYY8gZnhEkiBMEQRAEQRBzChJrDjxmQ4637zBUoOYMeLUaYIq/Qc3aGU/MbgLXq5oz4LQNfRUJHZdzi6w3iD3HgWIYgOsKr9VR23agmRambXlxLTLQNQ0fesc78OeLFmOv4+KIc84Weh3MGwb65s+HKWl4r+fYUDQNqmHAs20ouiGlLuA7xBXNf52KrsGVLIgDgGfXkC+XUNR1EsMzhEZVEwRBEARBEHOKOGINMfe45qqr8MbXvQ4PPv00fvjoo/j1M8/gTa97nbQhaf5NuQbFMODWalJqNjvjm5HtjCe6Mzk1hee3bMFUpSK/uOu7KBXdkDqwkI7LuUOwQRxsJAKtG8QyjlvPcXy3bwZ4jgPVMuFl4E4XjWvbKPUPYFG5JGVTWDUMuLaca5/vEFehGIb8z85xgbpDXNHkO8QBwLUd6JaViRhPzEAOcYIgCIIgCGJOMVviNQi+6JqGD/3FX+CthxyGnWP7cNTrz5ebg1sXH1XDgDstRxSYDc54IpysYygAXxBTVA1qTt4mDUDH5VxiNrj5sxbENfPAFBa9Wq3+3ZezGaboujRx2nMcqLoONZeDa9egQc7MDsCP2QkiUxRdh+c40mo3noNtQ7VMYGJCem1iBhLECYIgCIIgiERkNbgrgMQaOWTxObu1GoqlIixNlf45BqKOKtEhDmQ31IyIJusYCmDGRSn7mATouOSF6PPobNggzlQQtx0ohg548uNaRONO1/woGkn4DnF5grhimlJrNnC9lgzxTCJTHMfP3T8AN3LmErNWEP/iF7+IW265BevXr8db3vIWfOc73wEA/OpXv8KFF17Y8m/379+Pf/7nf8aHPvQhPPfcczjkkENQLBYbP1+7di1uuukmqc+fIAiCIAjiQGM2OCYDrrnqKni2jdt//nMSaziT5efsx5Zkc4viOb5rTDEMeJLaxoG6M/6qq3DZ8hXYNT6Boy6Q64wnOpk1cwpcR3rXQkAwbG/NqtXYuWcPFh12GIYPO1Tqc5jLyDqPzpYNYkVR/AGJnuf/f0l4bnZivGjcWg2qREFc0XW4sqKh3Hpkiq4DFbkObQ8eUD9GFV2Dl0UcludB0Q/M43YuMWsF8UWLFuETn/gE7r77buzcubPx92eccQYmmtoKNm7ciOOOOw5//ud/3vL7O3fuhEULSYIgCIIgCG7MBsdkgK5p+OBbr8DbVh+P7bt24chzzyERkRNZfs6ePSNuSBdWnHpkSs6APS63jdlzHBTyeeQNg47jWcBsiKEAZpy3iqZl5oA1FQXLly6FptL4sSTIPI/OFje/omn+MStxUzNLd7po3No01FwO8OTUUw0D9vi4lFozHVk6XKcqpWYDt1kQ1+E52TjEIWmAKdGdWfsJXHrppbjkkkswb968yH/39a9/Heeccw6WLVsm6ZkRBEEQBEEcfMyGwV3teI6NYrmMxeU+EhE5kfXn7Nq+Iy4QVmTSuEHX5cdTHMiizlxktgyVDDZpssSr2dCLBalDPec6ss+jgZv/u+//n/j6/7ga//0f/4EPv+td0ju3FN2AJ/nc6Zt95W2cAvIG7Xo1G6qhQ9FUKddD1TCkDZj0HAdQNV+Qlhwb4nkuFNU/ZlRdh2dnkCFO1/xZwax1iMfBtm1885vfxOc///mOn61cuRKu6+K1r30t/vEf/xFLly4NfYytW7di69atHX+/ceNG7s+XIAiCIAhirjJbHJPNeLZcJ9rBQNafcxCZEkREqDI/33rrvWLIF3UCZ7yiqgfEjbLo3GTRjz9bYig8x878WHBrNWj5AmqSnKMHAlmdR/OGgb7585FzsukmUA0dbs2GJm8+olRkx4m5tRp0q+RHmdg2NEHnAs/zLeiKrkvbDG6e2SFbEIfnQam7sxUtowxxd0aUJ7JjTt9B/PjHP8b09DTe8pa3NP5u3rx5ePjhh3HCCSdg7969+OhHP4qLLroIv/vd70JPIF/+8pdx3XXXyXzaBEEQBEEQc47ZMLirHc/OXiw60Mj6c/ZsG6quQ83l6jne8pSVIENczWXgEG8S491aTZjwIRrRgpFMQWo2xFDMjs0RD6ppSs8wl4GojZUsz6OaacKdlhxBUScLty+aNEXRMVuy48QakUnB+2qa3GvM1NEbGxoy8FwXqq7Bc3T53WDtkSmZCeL1eDh4UEDieBZwF8Rd18Wf/vQn7N69G0NDQzjqqKOgCsobu/nmm3HllVe2ZIWXSiWcfPLJAHxx/Etf+hLK5TKefPJJHHXUUR2P8d73vhcXX3xxx99v3LgRa9euFfK8CYIgCIIg5hqzxTHZjOfYch3EGSPaFQtk/zm7tgNV131hWLIA18gQNzIQxG2npbY2RyOARAtGMgWpIIbisuUrsNexcchJJ6E8PMy1Ri88xwVmQXa3mpP/fRSJ6I2VLM+jWZw7A7I4dwaIzi/PYtCu5zpQVK0e6yFOtPXfN7nxJUFkiqrLF8Thua1DNWXXBwDXBTQViqo1NiQI+XB713//+9/jX/7lX3DnnXdibGys8fflchlvetOb8OEPfxiveMUreJXD9u3b8aMf/QgPPvhg5L9TFAWKojTaQNoZHR3F6Ogot+dFEARBEARxoNLhmFRVXP6GN0gf3BXg2jZUIwdFU/3/f4CK47LbtLN0xnqOA8U0oeZycGtyM4v9G3Q1m0zTwAmoKHNWeBQtGGUhSAEzMRRmBgPQPMdpnNcagl8GjnHVMOBJ/j6KRMbGSibnUS8QpbP5rDIVxIP8ckHrgCxicPxNWrURmSKKoNtO5oBJ/1ymAjDkR5Z4mBHEM3Jme44LRVH987ptAySIZwKXd/2d73wnfvazn2Ht2rX4/ve/j9WrV6O/vx/79u3D+vXr8ZOf/AQXXXQRzj//fNx8882xHtO27cZ/ruuiUqlA0zQYhgEAuPXWW3H00Uc33OABDz30EPr6+nDkkUdibGwMH/nIR7By5UocccQRPF4qQRAEQRDEQUvgmFxz3CrsrlYxf2gQI8cem9nz8WwHSl7zxVPZedMSkd2m3eyM3bV/EkeeczYKxSL3OqG4viNWNXT5DnF3RpRGuJdGXO16t4PnefWomLmHaMEoy3z7rGIoZkQjX/Bzp6eh5eUHNPtifDa51LyRtbHSfB7dU6li5Rmno9jXl/pxI1F8N7/TNgxWFlnFTwDi88szicFxXSgSNmmDjTeZ176gI0tRFEC6Q9yDknHnjecGmx0ZOdQJAACXo2DVqlV49tln8dnPfhZnn302hoeHoes6hoeHcdZZZ+Ef/uEf8Oyzz2L16tWxH/P6669HPp/HDTfcgNtvvx35fB5XX3114+c333wz3vnOd3b83jPPPIM3vvGNKJfLOOqoo7B7927ceeedczaHjyAIgiAIohuTU1N4fssWTFUqUuuaioJDVqyAKVk0bCe4ifMF8QPHvdhMIN4EbfdAq3gj8rPPGwaWLRiBKXEdPXOTKH/QVuDGy4IgGmMuR1M0C0bN8BKMRD9+FFmdY4JYAf85ZOe+lY3Ia1ucjRWe5A0Dy0YXIicw27qZYONEFn4nvv/aMnGI19chokXjIAbn0S1bGucg0TE4jcGTuths7yCySyaeYzfEfteWnSHuIvPI7vpgTyWLyBiiARcbzYc+9KGe/yaXy+Fv/uZvYj/mtddei2uvvbbrz9evXx/691deeSWuvPLK2HUIgiCIAwsZGbsEkTWyIzTa8WwHWqGA6o4dwmtF4dZq/iCoDIeIiSYrV6znugCUhhAoK9O6kZlqAPbEhJSajdrNcRSSb5YDh7iiaXNW9BSdm5xlLrNq5mDvl++6bT4ms4yjACDlOyHj2paF01fGhkoQESv9OHFdKGo9fsLIbqimjNcdxODcdtddsB1HeGycV++YEu8Qt+Vf+zzMuLS7xBuLq+2L0bOBTDLUiQYHZl8pQRAEMauQIVJnIRCS+E5khewIjXY814FeLMCtZitCB4OgsnJvyjgHZNKmDT9TVDUM6Y7lhktbUfw8WIl4ji/GZ0EjK9Yw4E1NZfIceHDNVVfBq9Vw+89/DsfzuOcmX3PVVQCA2+66S2q+vZoz4e7ZI7RGGF49MgGoC35ztHsgLjKubdI3VjxJgnjgJpbcSRCItgCg6pJrNwmpMuJaghicd5x+OrY89QxGVywTGhvXmC2h63AFdoM1f4ay48IAyN+A9rxGhnhmBOU1DZ5khzwxgzRB/I1vfCN+9KMfySpHEARBRCBLyJUpUssUCEl8J7Ikq8FyzXiO47uyM3ayerYNRdfrQpE8QVzmOSArV6w7XYNi6L4QKNN9H2Sm1gelyiTIEG/82fP8fFMJuLYNPVfwj+U5miEO+ILRX//5Zbj8sMMxYeZw6CtP4XqM6pqGv1mzBlcccSR27N6No15/vpRroprLwa1mEJnSLIjnctI3iTqej8DvhMxrm6yBl77wJuf4CTb0/AGocgXxwG0r3SGeUVyLqWpYvnSJ8IGMwfdfNXTYEwId4k3nGWlkqUe3ZYgritLoTpONGgzVJDJBmiC+bNkyWaUIgiCILsgWcmWJ1LIFQhLf53Y9kch4LVkOlmtGllAYRZB7qZo52BKHiMl26MsSb5px7RrUXE66+74REaFqGTjE3aYBhr6woxiGnOKN7HQdnsCsWBm401X0DQ+hDxByHnRtG8ViEabnSdn8g6JCNbMRxOF5QFMcRSbPoY6iif1OyLy26ZqGD73znf7g4IkJcRsrrts4fuxxwRFQwTlE0+qRV5LwvBmHuGEIzboOq92IaxHsom4pa9vQ8nk4+/eLrePIGaoJt8kxrSjZCOQS8Ty3RfxWdB2u40DLQBBXNG1Ob4LPdaQJ4v/+7/8uqxRBEATRBZkijkyRWuZNFInvc7eeSGS+lqwiNGYjQe6yTNE2C4d+0KZ92bIV2LV/Akeefx4K+TzXGu2409ONyBR7bFxorWaC1m3VEDtELLR2SF6zKkkQd23bz8M3dOnOeN54tg29VML0rl1iHr/pcxLt4vdcF6qu1Y+HjB3ihgRRtb1+UyRFEMUh6jsh+9rmOQ4KloW8YcAyTa6P3ahRF6lVIyf8+PE39OSvnbzmDHFdhydR3GuJazEM2ONyrlWebUMvl1ETHaPk1a+HojPE3ZnNYNXQ690GB7Ag7rZmiCu6Dtg2YOSkPxdF1+BJ2sghOjlwj3KCIAiihUDECVrugVYRZ4rzxTiOSM2L5puoZkTcRMl8XbI/s2bx/aLVq3HqoYfiR7/4BW78xje41smqnkhkvpYgQuPRzZsbx7yswXKzjYZ4KlEQl3kOaCdvGFi2YAFMCTeqjTxaIyfVvdScmeo5GQjiapMgLjU7vel1z3WHuO1Asyxh71/jvdI04cPIPNsGVC07cajuMAYyGqrZlmEusmujcW3bskXKtW3mHCfudTXneov+XnuuM5MDLZMmd7GM72QzLXEtui7t++HaNvRCQXw9z+/GU3TBG6VeNu9jy1OQGV7eliEu/P0NfQ712hoN1cwS7g7xM844o+su/X333ce7HEEQxAGD6KgF2TELMp0+MjN2Zb6uA9n5PhtysHmRxWu55qqrYI+P43v33y91sFwHitri1swCRVGk5vtm7dDXLAtupQJNkKMxIGjVVg25Am3giM0kkqfJbajIzuENBsRmIXpyxnMcKHlx5+9GVFJ900LVxTU9e44DVa+f3zIYNteaIS73mATauiZyOeGbREE81G0//jHserfVW9/wBiHXtsZrUxT/OMrxd4fObHSJn3OR1bXYj5+onzdln7fb4lpkZTF7tg3VMsULmUGKieCN0manvYzhpO0oarCWlBRgUc/2D1CzEMTrZPF+EzNwP+LOPffclj+/9NJLuP322/EuAXmKBEEQBwKyohZkiziyB8HJytgl8X1u1hNJFq9F1zT85RvfhHe85gzsnpjAoa9+VSYbCIEzWxMc39ELmTcUWQ25BOAPZzNNONUqhAd51G+QFckDSwMhPguaM8TVXAbO+IYTOQPllSOebQsdTuY5/jBdxTDq8Qzizj9Zb/i1ZCRnsFniOQ5Q/yxlnAuCeKi/eNWrsGPPXgzlchh95SlCajV3ZfhxJkUBNdz65o34CKjm85dUMsybbo5rkRmzFWzKyTpVq4I7pjzXg2pklAOPmfkEkCqINx2zmgbY2bi0VU2DSw7xzOB+xH3qU5/q+Lsrr7wSX/3qV3mXIgiCOCCQlRGdhYhzzVVXwXMc3P6znwl3sTYydpevwJiiYOkxR6N/4ULudQAS3+diPZFk9Vo820bf8DBMiBlcFwfNnCWCuGRXWhZDLoMsX1mRGp7n1R3isoekudm0/aPV6agautTIlGZ3umhEd6QFbncI+lo2HOI58bE2rp2tIO41tfbLjvEB2jaJJArylqphxZIlqO7YIazGTBeMuNflufIioJojn2R2b3lNLm3pNMe1NDbIxONnbss7LwgflOq6M++j5Bx4v6bcqB3U1zcBmTjEg+ujrgEkiGeGlC2YM888E5dccomMUgRBEFwRfdMoO2pBtoijaxquueIKvO34E7Bt68s46oLzhQt3ecPA4MKF0D1xto1AfF9z3CrsHBvDouXLMXz4SiG1DkTxPYt6Isnqtbi1Gsx5w5jaskXI48dBmlt5lhGcA6446mjsqVQwunw5hg87VGjNmSzanBxRqn7Dn0WWdyZxKUBLrqiiG3AlDrrympzAopDVkTbT+q60RH5we3zXjzHxdPECbeBGBwCo8iOimjsmsugeCARdwI9ssfdP9vgNTnUdB1o+L3QDoOWcKjTvXk4EVMtnVR/Oq8kQxB03s3N28/lFZn65n12e0XVKAC1DNXX5A639dYbc7Pn2yBRb5vW+6TyuahpFpmSIFEH8u9/9Lvr6+mSUIgiC4IKsm0bZUQvNLuq9tRoOeeUrUR4a5Pb4Ybg1G8VCAUuGBqWJnJplwZkSv7AxFQUrli8XuihuiO+rj8fOPXuwaMVyDB9+uJBasjdMrrnqKqCeFZppDjYHZnJP74LtOkJzTwM824ZqWvAcga6hsLqui+BOQuYwy9mIpahYsXx5y3AmUfiuWx2qoUsRpTzXhWIY/vltbid4xKZZfFRzBuzxcXnFJcQOyOpIC3K3A+ct77x7z3agWAbUXA5eTXQus9uWoS25IybDjgmgLUPcyMGd3iunrm1DNU2xMRH1zQ5VYBRMi2tbMJ1579PCZ034hTN0iGeVX57F91LkddjzGu+fIjGLPUC2Q9vzvMYQUQDyXdpNGyqKqjU6AAn5cBfEly5d2nIy2r9/P8bHx/HFL36RdymCIAhhyLppzCpqIW8Y6Js/HxKWyX6WqMCBV2GoZg72pHjByJ2uQS+VML17t/BaJoAVK1YIrSF7w0TXNHzo7W/HWw85FDvHxnDU68V3EIgieO/efuqp2L5jJwZNE4te9UqhNRvfLdkzrII4BPjfNVnDLHuiBDc58t4Qt1aDVijAHhsTXsur2Y1BgjIG6zVns2aG9KGtbfEUModqNrX+i0BmR5pn241IE69WA3gL4nXB3YUn/PzjOXaLQ9qt1aQK4mEOe5nnudZcfXlDPT3XnRlmKqpGfQNMMQx4gtyhzRsqomn+rGRFawF1Z3rTMapI7KRojhTy/0J4yQYHmkO8MZxU16XcQ7WgSRakPQ9oWt9IF+TdtgxzIjO4KxTXX399y5/L5TJOPPFEHHLIIbxLEQRBCEHmTWOWsRGaZcGpindRt7QbS0LRJQlGjg29WEDl5ZfF16rVoJeKUsT3vGGgb3gYloThTF6thkKhiCWaNmfF8GYsVcOKZUtR2bZdeC23ZkM1dOnu3Zk4BN+FZo9PyH0CXfDdi5IccQGeJ80l7zk2VF2HYkhy5TcLcRnd9wc3qTLa/gOUJkFclvgHdAqfvEVPmR1pQTeDP6yQ/3vo2jYUTYeqqLAn9nN//GY6Bq3K3gBsE/yCAcKKISeoqtnhLO3cg5lNFZHXt0ZkimHUh2qKqyEFt62bQdb5qy2PWTEMuXEtGXZQQAnftJpr+BEwTZsp0h3iGjyZQy3brq+yN8ABb84fMwcK3BWKd8zBNmeCIIhmZMeYyBw82YysWBHP9kUcUVmiYchc2KimCbdaFV7HtR3ohQIqW8WL70D9hkbC8K5A1HXFv4VS8HNPC1Leu8Zmk+RcW892Gs49TdLxHwfVzEAQx4xrVDTBcL8gG1Y0zY6xrCJTFKPucpT8mfq1JQ8wbGrBD7JweW4my+xIc22nMaxQhLASdKkoniZeoHXbBHHBES3ttAt+wdpNlSWIu60xQrLWVryP/1DcmXOqMDe16zSOH9HrYM9xoOZyACBU5O+o2zSQsVFbalxL08ah5M3bIPtairgp8rU1O8QziExRNE3q9bb9mFUMA57E+L/2DHMiO+Ra9giCIOYAsmNMdE3DNVdeibetPh7btm2TFhuhmibs/WKdVYDv5FKNnLAs0TBUQ9JAGC9Y+MsZcKfl89LER9Uw4EqYMu/Wao0be9lxFyLwj3fDF7dE4/luVs3MwalOQy/IaeNvHbLm154NSPsuNqPIy1Fv5N3Kque6M9m3GcTRAPLOQ11rS3WMzbjTGw49joKg1I40rz6QVdB7GHSpKKoiXLjxs/RnOmKkn2PQ6hDXLAtutQKgLKe827ZRI8nFGWyqiBSNgjgTUcdpcw3AX5t6tg2lLlrzrzUjvgsV+dtpi3uSOlvEczsy2qVcq+qbxIpWP1dL2aASt6HSPFRTVGdPFP4msOQh1k2RJaqm1+fjSEJwRBoRH2k+fRqqSRAELyrVCrbu2I7qtBhhMLhpfHTLFuypZ6iJjjHxbBuFQgFLBuUNnpTl9PFqvoijSFycq7kcPEkiir8wlWOfFHnTFhAMdlFzcsRFz65BMYxG3MVcR4qrrQ21IZDIoSVrMpebPQ7xjAZ8qrqcDbigC0BaO3PTjXcWLdRAtkNbZZ7b2xElxl9z1VV40+teh18//TR++Oij+PXTT+NNr3udsI40VdBxEwh/isBhiI1aTVEC/nVRdmRKa1axKqm7r1G+fWihLA3HC4RkRZhQ5dp2U2SKmPVOUAMQ33XSfG2WGm/juU0ueLnn7Q6nb727RhayOraCWsKuw81DNSVc79uHSEpfY7RnzwNyL/dZDqIlWpB2x3bTTTfJKkUQxAGK4zr49h134O4Hfw3Xc6EqKs497VSsuegiaJwnuF9z1VXwbBu3//znUmJMZlyycmNF5ORsO1ADV2NtGkBRXC3XhW/ZVOUsiGW3ZiqK+AVb/fhTdAOuoCFTLeXqx76MuIvJqSns2L0bI8PDwjaemgdOykKzLDgVeaK057gzN06a5i/sZwHBMSQVL3gPxDuLPLueyyxrmF77xsf0tLSYhgDpgvjsOJSFiQON4b+vejVefuklLFi4ECOrjuNeJ0AxdCGZ28FAYSmbUSHfgyzRLFN4bnoLGecjC+0urLtihYpxzZE7gjtemvPepXbXNG0aAXKz9j231Q3emCEk2pigBPXkCblKfaaGKqDDoOV6L0PkbzuvqJoudSPDd2jLK9eO57ltazml/nckkstGmiC+Zs0aWaUIgjhA+fYdd+D+deuweslilC0L45UK7l+3DoqiYO3Fb+ZaS9c0fPDyy7Fm1Wrs3LMXR5xztlDnduCilhEr4u/KK1LcxkDdHaOLdeAENHJFqQ2NmaAVXc0ZsMfHxder+REjIoUG23HwhVtuwe0/+Qkc14WmqrjsggtwzVVXQeecu+3VbHkDtOpolinVIT5bnS1qLgd7/2Q2xSUIqf48BnnHlr85Wx8wKckF385sECCzQPT10lRVLF+6VLiQoxqGEPG20S0hYTPK87zG9yCTmQltyxnNyqO6c5e08l7Grf0i5wg0jiOBr695vofo81lH3rukeB/PbV0TqKbEYdvNsy4wI+bKulKK6oIJrSUw21v2UE3f2d80iFXX4coUxBGyjlUADx4UGUp52yBaVQ/mhsy+tfWBjtB33PM8uK7b+I8gCIKVSrWCux/8NY4YGUG5LkyXLQtHjIzg5w88KCQ+xbNtlPr7sahcEh5jEuQOqznxrm0vEKhltfnbTWK/4MV5IOZKQ6abUNL9qGs7MxsYEoQotxZEpog79r9wyy340S9+gVMPPRQXrV6NUw89FD/6xS9w4ze+wb2W59SHyCoSuhTqx4RqSnaIu20DpJTO9lcpz6Otppoz4QqK0poN+K33Ms9vMzdsiqSOonZkOg0BzJohV6IFCbdWg14oCD/Hi3od7YMmhdIsMpqm1HNtGFqxAEfC/JcAWV2L3VB1cW5Vz3EAzh2mUTUUXXB0YNOAyYZTWgK+mJpNhnhzpA8QdL/K27xVNA2uyFz9pmWO0Gzv5rgdGRtgTRuNAPzOSsmRKe1ubFWXODS4PbJF16XNZyBa4X5127VrF972trdh/vz50HUdhmE0/iMIgmBlz9gYXM9tiOEBZcuC67nYPTbGvaZbqwlpSwvDq9XqOdsSXNR1UUVWm79bs+uRKTLEfqclx/CARPScICfI1MzJ6SCoR6YoggahTk5N4faf/KQxRA4ABgsFHL94MW676y5McY6FCdpOpWT012+UNMuUEm/ToE0gySpfGvVulwDZA+9kbwLIjuPpiEypZZDPbso5D802RA+GdqenoRULwt9bcU53T5pI63kzTkaRDs24aKYpd7Bnk8gK+Nn6MqMNRG7G+ZF+4gXxFoe4wPNoh0NcljDc1jUmtbPHbT0XyOp+naknbv0jM2e7eaimDLy2Y0YRuPEVWt91O+6nFEOHJ+vc2j6IVtPgOdleWw5WuB/1f/M3f4NnnnkGX/3qV1EoFPD//t//w8knn4wbb7wx0eN88YtfxMknnwzTNHHFFVe0/GzFihXI5/MolUoolUo49thjW37+y1/+EscddxwKhQJOOeUUPProo6lfF0EQ2TLU3w9VUTHeJvqMVypQFRVDAgb3BkKuDBo5ypJc1Koh0WXo1ltSZYj9riPtMwMws5iS4QZuQqQQFwyFlLGBAQQbNKowAX7H7t1wXLchhgcMFgpwXBfbd+/mXlNRFKk3hKplwZEoiLffyGiSh7w1nofbPshL8sC7tlZt0QJ5cz6snHpN4opggbZRs931L6lTpRuyB7Q16greZPJqNrR8Qfg5XqZLVRRS3eizkHaHuMxhjYB4h7joiLMWkVr0ebTJdapIFNia47UA2RnirUM1ZcQzNiM0MqUjDkbgJofnSY2bbJ5FA0BOTElz/ZDX629YSeyqaN5o1DSpGwLEDNyv7nfffTduu+02XHLJJdA0DZdccgluvfVWfOc730n0OIsWLcInPvEJXH311aE///73v4+JiQlMTEzg8ccfb/z9rl278OY3vxkf+chHsGfPHlx55ZW4+OKLUZWd90YQBymVagVbd2znHmFi5kyce9qp2LR9e0MUH69UsGn7dpx3+mkwcwKyBW0biiThuBErIsGF1zzxXgYNx6wh/rX5DvHgtSliheOmxxZ5wwYEw0J9hAsl9fdQkRWp47p1R7ouRDgZGR6GpqrYM9maLb1nchKaqmJkaIh7TUB8fqffbhnUkitQtAtEWj4PpzIlrX6D9qFMkuM1mgV5KS755pZmSfVmhJycHGGzLVdUemRKG6phwMngHkK0qOPWatAsE54jtktM2HA2mc0ZbaLUbEAxdIkO3NbvpGbm4Mj4TtY/Y6EOcRmfbVP0lOgNvmbxXeosnbDztqyOorboDdXQ4ckaJgqxzuYO0VQX99qkfBdaC2Z7Xg2ZheOvpWVd71sjW7LafCcEDNXcv38/li5dCgAwTRO1Wg2HH3441q9fn+hxLr30UgDAI488gp07d8b+ve9973tYuXIl3v72twPwHeuf//zncffdd+ONb3xjx7/funUrtm7d2vH3GzduTPR8CeJgx3EdfPuOO3D3g7+G67lQFRXnnnYq1lx0ETRO+XxrLroIiqLgZw88ANd1oakazjv9NFz5pjdxefx23FoNeqkIQBGeoSjVIW77DmBZBOKZagjOTsRM3Afg59H5mxpiIruanUUihz7N1PI/syD7XRX2uvzOCEVV65EUgql/t0R1EOQtC5ddcAF+9ItfNGJT9kxO4tEtW3D5hRcKmw8gPM+6/cZXtkDUdLOtWZbcyJY67Tdw0o7ZoH5zK7yhN87jwuo1CfCBYCq6XsNtaOhwxyR0jLQNmsosjqeOallwK1WgrcNENOJfd/19FqyZyfj8gggPURv9XpvgBkX8mrAXeqEAe3IKOQmxfu2vVbWs+hDnfrGFgw1f0YJjsI4TdBw1X6cU0RuLbcK0LDq6CCSuSfwM8Zl7GkXX4Ugcrq1oAs9xHYMXddiTYl6b53Y6psNc1PwKhjy25FE07a506YNolfbNDhLEs4C7IrJs2TI89dRTWLlyJVauXInvf//7GB4eRrFY5FrnHe94B1zXxbHHHosbbrgBp59+OgBgw4YNOOGEExr/TlEUrF69Ghs2bAgVxL/85S/juuuu4/rcCOJg5Nt33IH7163D6iWLUbYsjFcquH/dOiiKgrUXv5lLDU3VsPbiN+O8RYsxoaqYv2gR+hYu5PLYYfi53kYjC1gTJHYCTYMucwacKbFOy2bRWA5eXfAU72J17WaBSqxg1BxfoBoGXIGOlKCDAKi7pewagLyQWm4tww4CQcfHNVddBUVR8J8//jEc14Wuabj8wgvxwXe8Q0g9QLxrW7qbp612u0BiC5jj0Pt5yMsRDq3flg0rfEZCi2O7fuMmUKftqCfDId4+aEumyzGEme6HQal1hb/fXtv/CkLG56fU47Y0Udet9vOdacKtVqHlxVyDOwj5jLR83l8rDggWpdF5vpcdkaUYBjxR6+KmYZDBpjzv46h1I1N8N2Emc3TaN41klnbcFqetappw9+yRVl90rnfLpr/AvPJ2x3bwuoSZitxOh7aiqXAdG6rM4eFNqLmcvM2UNmOJouvkEM8I7kfb+9//fqxfvx4rV67Ehz/8YVx++eXwPA+f+cxnuNW49dZbcdJJJwEAbrnlFlx44YVYv349li9fjomJCQwOti5aBwYGMD4+HvpY733ve3HxxRd3/P3GjRuxdu1abs+ZIGYLlWoFe8bGMNTfzy1mpFKt4O4Hf90QwwF/2OURIyP4+QMP4rILLuAaaZLTNCxauIDb43XDtW2ohj5z8yNSEK+7VOTkbIt3xIQROCiF0vTaRA+/ah5wp+hi3e/Ng59UkVPmkc3gPn/DRBEW0aJrGj78rnfhsmUrsLsyhcPPfC2K5bKQWgFqzoA9PiHs8cMcikLdPK2FWs4ZWt5Cdft28XXbCXkPFF28UzvAc9yWLhHhzqLmrgCBMQINmm6QZUWmtOfBZo2Wl5vPHyA8BkngW+y1DbsVjVr/7mmCun08r9XJp1kmnEpFniAegpaX2JXTNlRTy+cxLVhwbImkE2g4aBkcHAjivI+jlkGXgr/X7WsAT866IHSDXtb9RfvxaYrfsPFjDP2aIjc52l3bqi7wHtFr3cAM4sqEmYqaNqMClMBYkJUgbuQkRqS1DaLVtEzi2QgBgvj//J//s/H/L730Ujz//POYmJjAkUceya3Ga17zmsb/f//734/vfOc7uOuuu/C+970PpVIJ+/bta/n3+/btQ7nLje/o6ChGR0e5PTeC4AVv4VpkpMmesTG4ntsQwwPKlgXXc7F7bAyj8+anqtGOmsvBntjP9THbmXGIi88wDcQtkS7ZRi2nVVQR6qxqQsbud0trqgzhWJPjEG92vivChX4bqiG+DbtBcLOoqsJzH/OGgeVDgzAlCG7Cb3w7Bp2JdfM047luy3wFvVSC3cV4IPp5tIunerEAe/8kclKck83ngJzQc4Bfr128EZ/RqjRHpshoJc44iqIdzcqjtk9+94NqGGLXHYHeKOJU2JZ7KxqtEeEhZpOzY2aCZcGpSBQuQt5K1bIwvXOXlPIdDvG8BXerYDG+efNPoOGgZT0sqE5L9JToGTBdHMWi1wW+uNl63tbyvjDtR08Krt3SseabmMQWnXHEC/1M2z9PiRFimmnCqVbFfX4hGeJB55tmZbPZqOQM4dGeAR0RNZqWaTzcwYzw7ZfFixeLLgFVVRs7yccddxy+8pWvNH7meR4ee+wxvP/97xf+PAiCB6KEa5GRJkP9/VAVFeOVSosoPl6pQFVUDPX1pXr8MFTThLtbrEMlcIgHiwKxxeqCeE5CW3pI270oZ1UzMjIF21v8RToam2+kxNfqjIIRV8uFYs0sUkW7i4IbOFkDZVTThFOpQi+VxNYRvLnlOa03E75IU5HjjG6/AdV14cP54jwPANCKRTiT++VECTjOTCu8hOzJlvNbzpAy9DZAVmRKqNNQCf+sxTyB1j9mlY+vaJqUPHwRXWKy45xUyxQrULe9Hl/ok5dRHEYjMkUG7UM1LUt8tF9TTbExIzPuf1HnuOZoL9Hr4HaRLYi3Eb4uCBlQGByjogVxtHVwqLLNN5omLPvZz0dvWmuJjExpW+aLj/3rjLyTPSC+HdHmphbaI1NIEM8MLquVD3zgA9i1K3qXeseOHfjABz4Q+zFt20alUoFt23BdF5VKBbVaDS+88AJ+9atfYXp6GtPT0/jqV7+Khx9+GOeffz4A35X+5JNP4tZbb8X09DRuvPFGAMC5557L/gIJQiLNwvUZhx+O1UsW4/516/B/77yT+TGDSJMjRkZCI02qKQe/mTkT5552KjZt347x+o3jeKWCTdu347zTT+MalxKg6mIntQNoEqnlZMP6OcpyRJX2FlGxBcU+fAstkQKCsxqdplxvgUOfALTckMuIZ2kZFip4gRZsLMgawhQIxyJoafM2xWeId+TaynIthomTiiI//zBEeAsc4jJoniOg6BIiTFpckxLqNeHXlfAF9UJukk1Tyk2yH43R+ne++ClJeJRJ/XWKiGmTsnnRbKwTeE4HOkUpva8f9pj8jphm/Gx7ORs1HQMTJa1TZTjEm2MihK2HPYldL17nRrnfPSG6bGdXiKxNG79224aeTPONyPV/+3dP9L1GE0FcqDBCOvzUXE5K51s3FEgcBgu0fGdUXYdLGeKZwOXsPDo6isMPPxxXXHEFbr75Zjz88MPYtGkTHn74Ydxyyy248sorcdRRR2HRokWxH/P6669HPp/HDTfcgNtvvx35fB5XX301JiYm8IEPfABDQ0NYuHAhvvGNb+DOO+/EYYcdBgAYHh7GD37wA/zDP/wD+vv78a1vfQs//OEPYQrM/iXYqFQr2Lpje2ox9kBClHAdJ9IkLWsuughnnHIKHt28Gfdt2oTHNm/BGaecgivf9KbUjx2GmhMvBjRE6pwE8R3+olzRNH+RIJBWl2FOeExFC4K7qFvEfonCsWoIruU1u9HFi+9yB+nJHYyomjlxi/ywoYeCCB10JuHGN6jdIUSXirD3i42xCnse7QPE9GIR9oS47PaW+k0Z4jK6e1rObzK6iTIgLAZHmhs2LJNe0zLpfvCLiy8h5Bzf8T4q9cxdMaimYBd/2+sxyiVp55huqLouzJXaQRaDbmUbN9A8sHxu05IDbZlyBqCGbGTKPG9LnzvRvGGjaf5GhADa5xfIjEwRbuoI2ShSZUWzzQbaYoZkdckSnXCJTPn4xz+Od73rXbjpppvwL//yL3j88ccbPzvmmGNw6aWX4vOf/zwWLlwY+zGvvfZaXHvttaE/e+SRRyJ/96yzzsKGDRti1yLkIjLLeq4jKotbRqSJpmpYe/Gbce7CRdivqxhZugzl+XxzwwHAq2/dKqrW4sYUQt05ohi5A0t4aHdRi158NK9TZbg2tJl8dKci8Ka1za0p9BiRGQXTfiM6XQMKwsq1InLQm+MAigLVyAkbdtnSRivaUdsmSvsOcYmOQSVEiN4/CUNARFbEE+lwhumlkvD5Eo3yEqOM/HqyN6van4CEEu25mmiKaBgcFFy7NRpCJrIHUQaI2Lhr3zALBlwrOTGzKUQPPvXcNlEqy02SDAjbAFU01Y8V1MWkr3qeN7OWE3ktbfrKqYYurbtIFpplSXlN3TYyq9u2ia/dtmEDwO9YE9ipIisWqn1+gZTNqDpqzoRbFTinoFs32K7d4mrOIjzPhaLMrF8VXQdIEM8EblexhQsXNkTsSqWCPXv2YHBwEJaEXFpibiEyy3quI0q4DiJN7l+3ruE+FxVpYuo6+kbmQxW1W97Uoi4LWQ5xWbS6qCWLKqKzYFvaGAUPn2wRjuUNShI+LLRlw0RuLIPYbE0Xiq4JddZKyzkOajW5ozXLQm3fXim1Q/NCi0U4WTjEQxy9ortsGrhNGeISBiI3d1PIqZcBIYO2ZMVDdP3+KuJnKYQNolQ0TYjo6Hle41wrwhXbGbHhX7NUUYK4KThDXHIXU0tlCTnyPZ9DyCaVXirB2b8far+gWQ2uK1X8A/xzqlfbJ76QYLG2Gc3Koypj+GrIZmIwVFNG7Q53en2ugF4QM5xR3kwLD5A1oLh9foaE2L+OyBTTFDtMOgaKpsJ1bKia4FGLHlqvk5oKV1bXD9GCkG+yZVkYHR0lMZzoQHSWdXutuRbJIjKLO4g0eaweafLo5s3cI00C97Y/FEOQ4GTbXIc/RVK/TvuZZgeOQ7x9MJtMwTNwiomiVcyVKxwLr9UQ3sS+hy2bCrLz/BRxrfXB5yXSYd8coSEaz23dHNQseRnioVElGUWmhLVKB+5F4fWd1vONyNgkv+DM/5VSrw3Rm3FAl0Gpslrvu4gPwiM5EO44FDZgrKkNX0ZkiqrrQgfAiows6F5UklgdIbwpmiqnxT40IquEmqBOK0D+YFZA/DouQGbclSxROmxNIGv9GNbZo4rOTpckiLev82SimiYcoRniXqcgnkXnWxuKhLlhQOf61e+6zH4D9GBE8NYHQbQiKhKkmbkeybLmoovg1mr474cfhuu60FQN551+WmrhOog0ecMxx2LctmFN7MeCk0/i9Kzr1B1Oai4He1zQwKG6y1MK9euSqsvPNBPqRpMo5LYT1BPlFPNcR577XWbWtmTxvdn5LlLIaCd4HzUBcz+CeAuhA8EkOsQ7RCfhLsm22u2OwWIGgrgT/n7rfX2wx8aRGxIfsaEY/lJa9o1cFjeOmuW7t1TDEFfEDcuilSjqhBxPQX0tL8Zt2KjdLuoEg3ILfDOrOqJ+eEemtHWQSOk0kqwjBAPnNMHmr6gYHzWXg1OtQud8fHQ8h5CsX71cwvTuPeJqSnPgzvxfVbCJolEnl4NbnRayzumoJWmoJkLuWaQ5/EMiU0R3jUjbsPE6RWNhtKfOCM4r97zOTRQlg9iwdlTDgFOdhmaJu94DqH+2YksQ8SBBnJCKjCzruR7JoqkarjjnHLzp+BOwc8tLWHHaq7lGmhgAFi1ahImnnub2mAGu40DRdbGRBC0CiCJl91xqCz4ARfcHayiishkzGFYUILpeh2NTYoyJLOe7aLddSy0jB3tSXqZmw/Uq4kaxySEuMjKlRQhS1RbxSWQt4Z0DEbUb9SU7lsOciwBg9PWhNrZPjiAuKzO+DUVV/RsqiaiWCadSgV4qCqvRdajmpIzhbOHig5bPw56cFHs8hRzLflTMFAC+dTtisTi779s3qng7Rf0uomyVhKBrQbQgHib2Baim6XcQCBbEwzZ69VIJky+8KLCmRCGwjqxrmGZZcCpTMPrKwmspiiJp9oN8R39UbS0vtqtH1oZNaB1FlVJf+IaG63VsAs8GVEkO8bDoQSIb6FMgpCIyEgSQG8kiEq9mI5/PY6Svj6sYDviRI6ohaC/MdoC6A1PUorLDvSpSAMrofkuEY6uZ9vgN4e73FgeOYKdYRsKx6JuOFvFd8AZNc+yH6E2FdkS22DYc4gKFy87sXHEZjGEtyrLyZmVmpbM8j2DAp3Bkvw8Zu4k0U+zwQgBAiBtVlvjf9XgqFIRHtoQNhhPlcvTP8U1rAM4Z4h3dK5xj9MLOfYquSYlJCpAV4xMlNPpOY/H3Ne1DRQFAE/ydkHZ9a3pZMiKhAEAr5OVka0skLGcemJmDILu2agm+VoV0Mgk5PkNjReQcp6LpGnkn+Vzejsyon7ANAY9iU6ST/d0McdARZFk/Ws+yfmzzFm5Z1nEiWeYCDUeh4juguT62bQOCnMeu40DVNDE3WHWkDvxrviZJFCJEDLlqof09FFjLX/DM/Flm3IfoXNFucQ1zvVZHhrjEwX0y3dtCaBOChA4lChHvpN0odWvjVyVl2gZ44cPuZoNYdSCiWqZwAa49bqOBoog/tkLEeEDS8RSanS7I5dhsLMgJiExpEzq4X0dCvvd+vIw8kVFejE/3+Dx5A+g632/xJoDW7k9FE785L6vLR9pMhDpSZmqEDEMGJL3WsEHMlti6Hd2Amibk+tQ1m13aulzcXJ9u3S+aJX5mRxRqzpBzXg2Jw1EFdxsT4XBRxe65555Y/+51r3sdj3KEJKb37oU7PQ1rZITr4wZZ1ueOLsJkzsC8BQvQt3CUy2PLiGSRgec6UHWjKU+XX7u9Z9tQBQ1982wbiq4JzQBrjXMwpOYby0LEDWozLZsKmgZP5FRrz2uJi5DifpcoHEsTwyJyRHmTZaSOoosbFNjsihRFR4yJyAHDIce6HxUyBnN4WEjNltoh76VeLMCenIRRFt8K3ngeIXnWotulW+rPgdkkvNBMC7V9Yo0FntOZTw/IOba8LnmtvqNTsEM8zAkoyJHfsgbQ+RsL2s9NvAWc8FgdC06lCr1U4lYnCi2fR23vPvGFejjE5Qyb7fL3Io0ibZseatCtJnJ+gSS0fB7OS1vl1au7+VXB1+Ww83YgiAs9b3fZTBTpEPfa5qg0YhN5G868kNkSou6jQr7njVkJAuZn+LMJOt8vf5hnRdq5vKN+LiflviesK8yfcTQNVZ/757m5BJdv7bnnntvz3yiKAkema4hIzdRLL6G2ezd3QTzA1HX0jyzguhkfRLLcv25dIzaFZyRLM5VqBXvGxjDU388/1sRxoZhaPYvbhsbx4QP3laKpcB0bqsbv4u05NpTg8USZLJodwKKd1G1rO6GDLptQDbHtWi0uasGvp+PG2DCEZlJLdW23L8IFvpUyhf72TScpWXp1hEamSJg34NdoHSYnNDKl7eYrGCYpWhCPdGbLFsRDHEa+W0vC3IcQYU7WdQJAvYtM3rlBy1viIxo8DwhzjRUKcCYFCytdrh+BKCASmaKO5zYP1RQQLdaxMcj3PBj2OWlWkLcuBy1fgCNhvkbYQMvGczBN1PZJEOW7EESMiBiy277podQj8DTBc+5kINshHsxgkHVdbq0toZMizGkrOg++/RwnyNkbOq9FokM8uAYJEcSd8MgQTVrnSziqLskhHmJ0ymJYOsFJEHclDpsj5OFWp6EKOAE2o+YM2BP7uT7mmosugqIo+NkDD8B1XWiqhvNOP41LJAsAOK6Db99xB+5+8NdwPReqouLc007FmosugsZLbKlfAIWIQ54/xbkRN8JVEBczPK6lRodDXM6FIxAGlVxOWi1RdNxMihRyHae1rVB0JrVE13aYgCFKDJPufK+/BtERN+2ohi4s+7n9uBfyWUmMTAkThfRCHpXtO4TUa6ndJfsxcGlKI+Ms83anfNDWH+ZaF4FY91bnrrZqmsIzxLud60Q7/vzi4WK8lMF0IW3/ojpmWoZPCxByPK/1e+FnXXM8D3YZoidlbkBQzxKT795BxDlOFRnJFQOtntMsRBBvH8x6AAlFsgdQyxbg22tP79krtIYXkuctmo5rv67DFdBt67keVL0zH533Bq3fHdX595pl+cfOoICB0t2ut7kcnAwjbn0zoiSHeNs6Wsnl4Ime60V0IGiyHnFg4E//9eBxj8AIBgaopgl39x6uj90cyVLt60PZ0DF06GHcHv/bd9yB+9etw+olixsO9PvXrYOiKFh78Zu51PCFZdUXDwWdGIOWIM3idyPtOU6LY1HEsdM+NNHez3dDpRtKvUVNlSCIK4Yhtt2//QZL8DBIka3TveoJpT1DUBcohrULAIpYJ2rwuNKcrnWEbgY1d0YI+qw8pzMyRVjERKijVPzwPyDKSWvBHh8XXr/xPHpsgIl2a3d2wPguRhECURgi3Vthx5fISKMGXng8lBxhRXwXSffaIe+3qGO3ySEupEbYdZ+juSPMNa3l86ju3MWtRi+kDXrtEuMDyOlcANDVNKHl8/5aVYTzOCR+zJMw6O5ARCvkMb1rdza1ZcTDeOEb9KJrKu3rfxFr17DNP8vkH9fUJZZRy+fFbUR36zTM5TAteKMvanClompSzu1hGeqamYMj45xOtMBdNXAcB5/5zGdw+OGHo7+/HwDw05/+FF/96ld5lyIkoOhi8oU9x28rVw0xbSme58LUDSxavBgGx+dfqVZw94O/bsSxAP7AziNGRvDzBx5EdZrPSczfedbq0RmcL7D1c68qoJXftZ1GPrmwY6dpEeJHpgjKG3ZdNN8FiBRyO2vJGzwpnPYbY138a2t1v4sb8tfuEBF9jLTUEikcS7yvaHehKoZIR3VTTICgjMCOz0ngYKew77GsQW8IGbIG+K2uwl28zc8iQsBUcxLifkKEP5mijf9+i7l5Cju+AvE0zD3Or26XYytwqokkQnxUdE3sYLqQDPGZp8X3/e74bDmf8702cUV0Jw6QkQtWxrUy4rgQPZOlF/53Usz53mvPEBewvmpfewMQumbsqC9DdMNMlFkWyPpehp1jFE3w+l/gpl+jTohoKmK2RPfOLMFr2LDPTUbnS5faMgnb7FRzkjY5iRa4KyLXXXcdbrvtNlx33XWNk9PKlSvx7//+77xLERLw2xz5fzGDQVSiRAnXtqEaOvfF2p6xMbie2zKwE/BFcddzsZtTi09jw0DgDX2QT84VxwECQVyQYOc7MP1ziyZQOG4XtjTTFLZrG2yABAh3UTtOm2gsbop4xyR2Q7DD0Gt3FQk+RtoyBEUNeW2vJTvKRBhhDluBm1wtcUsChIT2IYsiBeowMVjRNH+hnxGqJXkxH9EqrQoUiwOCmRwBiuRBz6olbnhotxtk4RsNXeN48sIHpUZ1GGkC3+uo2qKEQJFdYqI7tUJzdWW5pVtQhIun3QYYA3WXuvAsn+6olsAYo7b5EIqIa7bndby3vNcgoaI7JG3Y1skyMkVKV1EXVJEbNm2bfkJmMQDhm38i4ppChHegPlB6UpwgHpYhLiMeye8ezC5uDwDghAyHtkw4GcZgHaxwPxK++c1v4oc//CHWrFkDtf4FPuSQQ/Dcc8/xLkVIQLMsOJxczy04LqCp9ZMR/8WcV6tB0XV/yAXHxepQfz9URcV42wJwvFKBqqgY6uvjUqexYWAYwk6MIi44QdSLqMcHgt3yuggkcqHVLtSJvNmSHCvS7u4UufgIG6opeqHT7BQR6qCS6Q4NdaPMfUG8XdgQtQnr12oeJGeI+awkuYaA7rElWSLSsRxGVLeLZllwq4IFVMftPN/IdIgLF6TCHWO2oBtkINwRBwgSxNqJcuOKzozuMjxRK/AXs0TPexF9buoaLyNZG1ZNU7yT0QsXjWYDInP928/tIuZxhDlUuefdh4jugFyR2r8XzmajXHbsXjNCj8+OjHsx923twjsgZp3cbS2lmaa4rsM2Q0GAAhkzOxC6zph5Ego8T/R3pvP1i7wHIrrD/Qo7Pj6OJUuWtPyd4zjQdYorn0s0Mr5zOXgiIk1cR+xiuS3LmhdmzsS5p52KTdu3N0Tx8UoFm7Zvx3mnnwYzZ/IpFGwY5HLCHASKYcDjvbhsanEUJgw4TsMhrhoGXFuQkOs4QJP7UqQg3rnwl+t0Euna9pxW97tsR5NQQdJ1W44Rka7tDuFYQORRZH1Brb1hGyYiopaA4FiciVsS5RBvcQyLvBns5hwU2PHRC9kOda/NRdiMcAETCM25FREDB4Q7DYW3M0tuoQbQVYiXIaxEuXE1Kw+nInAjQOb73REtxvkc30Xo4FYjgyF6Yfh5r4KzbmVG3CVEaGRKR1echE4J8N9IlRlF0c2NLoWor3ZGT0noOTus+1VAd2Po5p+A+QWeGz5vRdHE5WlHrd9E4/XInVcNXcJmZ6dLXVE1f2OekAr3K+yqVavw3e9+t+Xv/uu//gsnnngi71KEQDzbd4+ouZwQh3J7RAT3x3dmsqz9hT6/G/Q1F12EM045BY9u3oz7Nm3CY5u34IxTTsGVb3oTtxrBhoEfwSBGYNMEOEybozhETVFvjiTgPrCzvY7UyJSmhZWmSRW0hLoaZQ65DEFk1nZnrrfIyJQQV78ot2TbWkyU8wWA3OOjOTJFVN5jhKAmolaogGbJzfHOlKiICwE5m+2036xqIiNjQpyGItzDjXKRQo64PNowR5w0Ity4qmnCFbjB0k2QENGyLnomRaiIo/ETjLpmz2qq2Jz3NmTEtHQ7Llr+jaQs6naEuhnbIylERAeFdDLwjtnovtElYDOhS3cNAP6bXgnJorbQyDoJGff1Qg0TmFCy2HjL8lrfY/PI7/gVey3xr2NCSxAx4W6h/Yd/+Aece+65+MEPfoBKpYJ3v/vd+O53v4uf//znvEsRAvFsG4quC3ERA63RGoqqwnVsqBq/w9GzncaJPXBsaW2536xoqoa1F78Z544uQqVQwEC5jIFly7g8dkCwYcC7bah5qrIiwmHa5hC3RYgRkgS0DueqwCEfHZnekhEZv+G5TqbuJn+RKikyxcjBFjW4qCOKQ17+ZHDsayanDpgmZLrfWodqGrAn9vMvEioE+cP4VM5dS10Fy0IBztQU9EKBa73YyBzKGnH8qJYFd88e4fVbvpdWHs7L26TUAuqt8II6KuB1GW5ZKKC27WUxNSPqAjODLXl/lxql3XBnM+CLK7W9e4XUBdBVkNDyBdT28K3rOW5LF2XQ3aTmcnwKhB2rpr8WVw0j9cNHbda4lQrUUil1jeZa3U5qIteFDXpcI4MNaxHX516I7PjrHFoooAMvbDC1ZcLez28d1x6r1aiTL6CyfTu3OkCP66Hpz0DQ8nmuNeMQiMWyj1HNyqO6c5eYB++YISQoJlTWPW+XyK6Zn/femEtes/sGTrC5KepaDw+RGw0iO9AbT6Hbe6r4eo1I0x/RCvdv2Kte9SqsW7cO8+bNw1lnnQXXdXH33XfjlFNO4V2KEIhXPwlpuRwcQYMRGy7fXA4eZ8HKcx0ouv/4mmXBEZAjauo6RhcugCFo11vIibDpwqoIuJH2HKex2ytsqKYkAa0jH840xQ3UythFLXLojazFXDcUQ1yXRWdLr5iWyaBWa3umwBvxtlNPIGSIIDRrVlWFDCprfg9VXUzkTGgLtqiIia6CuLghSLFQxHx+YbR3TjQjxSnfNsRXs8R2EsncXIx0NorMEHfdrjeq/mBLkS7tcPEKEN9x0E0c0Av8M9tFD4QO+wy55vnKjJeJEG3UnASHeA+hSooonwFhxyjv60rYe6tZnI8hicdqtyGFfj1L6OyHqFtW0QOJuyF66DTaNmyEmFS6uKgVXeN7bxOxES3S/d5181tgZGyv2oCkmSVdosVkR2ISAhzitm3jyCOPxI033sj7oQmJuLYNRdeEiZpwHaDu1NNyOTjTVa671n5WrH94q1a9zbWf28M3UE0L7q7d/B9YEMLjRjwPaAzVFCNEhmWOCdlJbV/sCBxK0014ELEjH0YWg/+kvTYjB3t8Qshje20TwkUOQ5XiluqCmjPhihiujG4Znr6oyNvh3O4QF7Nh19kRoeV9gdoolznX6n6jLeqYj0OQq6sXJDjRukQnAPJuwpX2c4AoQbzboMJ6Zjzvjcdu9UTmBgPRoo5a3+TQS0VBxbu3p2t5wcdTl7glVcBw2PahmrwHQoef1/nl+Xpe+Hul1TcPePpQIwf3mjnYY2Mcq4UQMegVaNqw5nt5SYSQ9VwXsYgrYZ0MFl/zS7cNDd51AER2E2iWJWwd1wu1HjmZvjckGZrAOSLt96IK503F1johx49pcuu4CepEDZR2q1XuDv+omiK0oZbaPaJ0RUbWNhOmXQTDmjVec+mInnC/0ixatAj/63/9LzzxxBO8H5qQiGfbUDQdiq6Jceo5MxcSIQ7xpggKYa4eT5IzQ2mNOkmD7+AWmLvtzNzICnOIt+e2CRpkKDsLuL2WSHG1HZHZ12ELdEUTc14JQ6xw3HYsCmqZ9Eu1ie8iHeJtaCLPcyHHhypoqn3zjYUoh32YiCjKId49NqAAR1R0TwxECHjdiBKCZc9iAIJhV4IevMvNo5+TKqYDITynWYO4F4keoo74wZZZHU+eF/66hWwcd3Q3cb52dRlWyO283mXTRLbrVhU4W6alfpRDXOCGdRxErVVlDNwL2+zQTM4iajdBU4DJJiqCQkbefTdEd/Z0Q8TwyQbt51BRtbp8pty73yM23jRLkI4SkSEuQhtqoZdDXGIsZTui55UQnXBXe2666SY8/vjjOPbYY/Ga17wG3/jGNzDFsDj54he/iJNPPhmmaeKKK65o/P2mTZtwySWXYMGCBRgYGMCZZ56JdevWNX7+3HPPQVEUlEqlxn/ve9/7uLy2gwnPdWYyrIU9vu/gDnYBuT6+MxOZ4t+cizmxiBJjW2rwFNncGQe3CHwnhH/MCHtvnDbntqBFnr+pIm7wawtNzv0AmYtXkbVCc29lvjaJwrHoXO9WJ6pMh7jAyJSQzSAtnxciqDZ/p4W9fyHHu14UJFB3FcTFOnh7wV1QiKJHnID4+hJLRWXGC2iFzyruKkrUEe1Oz3LIV7OhQHit9g44zpviYUIjz/iCqO4Y7ptDkbnMEtYyUYMSUd+wFnR9joOw76SE80/48FeNq7DpyXC6B0QOmc7uOFEFRollhbT4zi51eIumUSYwUQKtFzIoPEAzDDgC7908r0fnjWFIHdDcjJbLHXDfl9kO92/ypZdeih//+Md49tlncd555+Haa6/F6Ogo3v/+9yd6nEWLFuETn/gErr766pa/37t3L97whjfg8ccfx65du/Dnf/7nuPDCC7F/f+twrJ07d2JiYgITExO46aabUr+ugw0/cqQu0InY8Gxy0ammKId4kCEubsHKe+hlaA1D5yayeW7b8EZV8Vv8edG08FMUQU45r1U8FpURFyoGCJrSHtpeLFE0Frb7j2CR1Sr2yxTMZA6fFNUyGYYqsAOjo1ZOZC5y58aTf3wIcqME5ydNEzKMMNRxVigIGbba9UZJYARSHGQ7xLMc2tsNWdcJANAFHl9dBSmROfFRWaaCY3AynXkRIZwFg3m5lWqPTOG8cRw+S4HfOiNqqKYQh3g3oUhCzmyvc5zobsJe5zJ/kKmYDbluUYLciJhBwYtuQzWF1Ipw+croZuiGZmaTIR4g7XosIonUDY8j4u4Q9yLy50VtaHR5bQCgmIIzxHtFUUkwPHatLdDISYQj7CqwdOlSfOpTn8K6devw2te+Fl/5ylcS/f6ll16KSy65BPPmzWv5+1e+8pV4z3veg3nz5kHTNHzgAx/A/v378ac//YnpeW7duhW///3vO/7buHEj0+MdKHQIp7wfvynSRDX474Q1O8SFiVSShv/yPCm3i5MiFvOipyL7x85MDc3MiRFXwxxOgvJhw91U8kRjoa670IxGeYtj7q3gUbVUFbIso8La90MckqrATcXQ1vq8mPZaf6M32LAT1f3UJTJF0DCrsNch6+a7G/4mtDxBPvL1ih7wGVJa2HDdbq7YgqAOhC4RHoDYLoTIXFGegxlDi0e7cRVBA3+B6IgI3kKv8IHQIdcRjWcUVhch098o5vzdi8jHFhrJEJSPiGwBJAidPbomVEGGitDuQgEbN8I3VKM2unTOG10RG3qqKU5k6yU4q2Z2jleR12Mpm6fdrvsWb4d49+NUFbSh0TNDXOAx09zRHoaiG2IjWyLQMty8OlgR9k2+55578La3vQ1Lly7F888/jy984QtC6jz88MNwXRcrV65s+fuVK1di0aJFuOKKK/Diiy92/f0vf/nLOOmkkzr+W7t2rZDnO1docYjzdhED/oUkiDQRsAvYLLiLFmihKD2HM6R6eI4L/ObsdkBOSxCv/PPG47UtLoVdqNscVIDA1nSncwNKWPZ9CH6LqKCBoU7IkEHezoYIFEV8F0dmiOje6dKtIHIwUWeGuKQbbBFuHqezI0KGaNL5RMS4ouIg6vNjwXc2yXXLi+q46eZU1QoCM+q7tTMLysUHECnAie4u6unGFdhNFeWM5z0gtj0SjrcbLuzY4RlF4X9Osly3GXehZO0Q7yH8iYxM6dhU4bwR5282hGwqcxyoF2Uw4z74OWoT0xQ38LnXpomsAdfdaouaSSO8gwGBcBsWmcL3WtTtuwAIdIhHRN6JzxBH5Eajomv8ta+YqGYOHgniUuF+hb/hhhuwcuVKXHrppSiVSvjlL3+JRx99FB/4wAd4l8KuXbuwdu1afPrTn0Z/fz8AYN68eXj44Yfx3HPP4bHHHkOxWMRFF10Ep4uj473vfS9+97vfdfx36623cn++c4qmE70IF7E/3LEuWOs6d1E2TMzk+vhNSpT//ohbjHJ1iLfHjQheSKuCduabNzlE7aSG3QToxSLsyf1dfiMFYSKkIJFDNqECq+gcWIKZ7pmagjZMQjPEBQmK7dcFEXpxhHggU6BWc4YYV1QMNIndLb3wsy/lnmtE3fyHxQsBfmSKsIz6bsJ0Pg9nSszg1ighXtE0f30qiF5uXLHxYk5XUUnlfc3syBDna0wRHT0jM9qmW2RBA8G6fFSmPiA+x7ynIC7qet1lvgjXdXGE+5bba4pybXP+Xmc1FLjXMZrFgOsATVCEW+haWRdwz9stHop352bEZoqodVSkK90w4NriBHHP6+5OBySYKSNQVM1/bwhp6Lwf8Mc//jH+/u//Hm9961tRKBR4P3yDffv24fWvfz0uuOACfOQjH2n8falUwsknnwzAF8e/9KUvoVwu48knn8RRRx3V8Tijo6MYHR0V9jznKr5w0CSI2zZ4ysue60KtCxNCTjqu2xjaCczkL6o6p0O+aSdVtUy409PQTIvLQ/tu81YXN7d80I6BlAIdA6jHVVSrUHVDWA3VFDfhvv140Qp52OMTQmqF5Q47+8UIDl2fR0RrMPNjhkamCBqEGiE4inhtYQQt9SI35GaKCRAGZLvhut1UCMlil5AX2u0Gu1iAs38/9FJJaP0AtR5PoBr8z70926MFRUuxILMbJUBY3FWX77qiafAc/mJDlDNWL+RR2zfGvaZfWM65OpQe5z9/M1eUMz7CIZ63uK492sVGxdD5Gl+6ud15XbMi8+0VvtfgGNdEoeuLiM4BAFB1Xcg8jOb6UW58cRuA3eLUOAvIIZtvfqxfFSiX09eIiEzhvpnQIxdZWLdkjwGFWcJ9MzEg5HsZGNh4rru65cIrnM2KkXE7ui5kjQFExFGJntEWEddCHHxwvzN84IEH8M53vlOKGH7KKafgxhtvjPy3iqJAUZTMWofnKs1Z0yJcxFEOIB64ttPy+H4sC7/X4DpOQ3DnffPfnHML8B6q2XrBEz24QaSbKkDY8M6QYZCinHhh3wdR7n2vS2sj72zGBmFiv8AW29DWQomDNYUtvsNqmeacOzeH1msXxGUtUgXkAXcdfFgswpa4waXl8+IGW/Zoj5aZpd8L3jmbsWoKjPyRuVkVdYOs5fNCBnn6dbsLSI1/I2hN38vp6DtUBWand8sQ57yWah5sDwiITHHCxQb/daT/PkZ9F3jHJHle9DVR2NopqB/ROdBA4CWz1waGsDktISIrd4d4l8gGP5qFT52ooZrcv9cRERQiyXIYcc+hr4LiPjyn8xwkZshu+IYY93Vyr82UAw0PvV9vlstYhX/kLNEdIWev//t//y/OO+88rF69GgDwq1/9Cj/4wQ8SPYZt26hUKrBtG67rolKpoFarYWxsDBdccAGOOeYYfOlLX+r4vYceeggbN26E67rYu3cv/uqv/gorV67EEUccweOlHTS0ZHAbBjzeoovdmSvM94vvtbS9qjmDb46oM3Pj4g9+4DnkpTVvTjNNOLze/zaxS7fysAXGcmiFgjRxkHtWeVj2daEgRNRqvzkF5A79A+oOVkk5tKohJs6h202yKjh3thmZjlQRG07djg+emZrt9boJG6I3stWcgLirLm2YelFQrEUXVJ4D7NrwejgWZxNZ5JmLyteOFB1EDHuMciwXxFwvgOgsU0BQW3qjeLQoIDQ7vUeGuMhoBf6bWOGvhdf7FxVto/KOSOg51DIndohw1kJVj/rC1qoh62KVc4dG1/VwPs/vuhHhEOc+A6mXMK0IWlf12CT3awsaSOx5PfLLRZ2zO93N/syvbAYxpqXXZnBWCSLCROEY61hFU+E62UQP+jE1s6PT8mCA+x3Nv/3bv+GjH/0ozj77bDz//PMAgKGhIXzuc59L9DjXX3898vk8brjhBtx+++3I5/O4+uqr8f3vfx+/+c1v8J//+Z8ol8solUoolUr41a9+BQB45pln8MY3vhHlchlHHXUUdu/ejTvvvBOajPb1Awh/kVB3iIsYvOi1RpqouiCHQfD4Ob5OSs+dacdULZPvhoHrAlpbzjen3e32mwjVzAk94QrLNm1DzVtwOS94wifcC8rllZk7HHUDIELsl5r12S1rT0yGYBgy89GFuBUj3kMxud7dBgaJdd0B/majiBphAoFWKMLeL2D+QBe0vCVuSr3rRt841ZkNnXncczbj1CwKiruKdGzzP+9EbVapHId9hxSOji0RlFnsl46+XqkCh8N5ES3cfk60nOF7IuG2oRDlEOe8Ad5z0KqMDO8eXVtBLKSw+plsgHYKVtwd1V2EXJ4bX17E9ZL3uSwqngUQ180Q5xgV5tTusR4Rec7uqJXLweXYjd4TnhscPTdTBG1oRKDomrA4KD9DPPrfiD63R+F3lfKPaCXC4Z4h/sUvfhE/+clPcMwxx+Af//EfAQBHHXUUNm3alOhxrr32Wlx77bWhP3vHO97R9feuvPJKXHnllYlqESE4LhBkiOdysCf4fildx2m5gCm5ugvdyHGtE8DbCeg1OafUXI7rRb7ZnQ/4wxXAabiC57pQmnKxFVXzd9cFoRXyUgRxvVSCPbEfWp5fVFNzbJBoujqb62KOZvHJp4+qpRcKYlrgZQri3cRVmTEmlrwhfiLybLtmYOfz/uvikKnZQjcBvp6hr5km33pNqPWBvOImHMygF8V0l3RDMy1Ud+wU8thxojuCG2+Rn18cVAmxXR01RcZddc30LsCe3A+9VORaL87GhwiiXKcN5xTvcxHQ0+kocmBs5EA8lX80XBY57byidqLjfHjnTEfng4seTh8nUz/I8VZFzKiIE8OhyJmd4ptS+AlknuNCMbsYAHitrSLeP+6bNxHxLMBMNwP363KMY9S/T5uAzjtSt1dXD88BqT0QE5kSVY/fOsvzXChKd1lQM/1ueL2QT10rLmquHnfLa/5bM64X2fkDBB2/VegFfuuquAQxi+aw9NIHJdxVih07duCYY44B0LrYmg1OISI+zbEdqiGgVd7zGg50gHMsSAjcHeKO3ZSxztt9Lk6IbRfbRSNrUrJ/4eDrvuz2Xim6xv374H/fOj9zXUBESzcnh1YQ1+YfKuLUB19xpZuYK8iZEoZm5eVFpgjowOg6ZEpQBIf0DZomRHfItNSS2KXg1xO3MRPHMSjMJZ0Qv8NKomML8uOugOBcwPn8nVX7fQ+EO8QjnI6+MC3oNceJHZjjcI1MiYih4DuosEfHgil2fRFnA1JklE+s+hLXWFyJiNnjdV/XzYUO+M5+eByHFfZyiAtyvHYb/NhMIIjzr90j417AZmI3ZHQ2ttTj2QEXEZHm15K7hgUExN024cUYBJtlbIkIXYPoDveV1xFHHIF777235e9++ctf4uijj+ZdihBIsyir5HLCM7FECxP8HeJNQ0d1nauw183lyiVHy/Mazv8ARVOFtVr6BeqtSQLRS0X+C61uQl25DHucb61un7leLsEeH+daq5cjlzfdY0z430B1q8U9pzECzRKX3dxRS0QkUVNcVkstYbnI4ZtBMrpLNFNgrEgbiqJIHdDD23nWQqybX0mL+R7vqUgXbKQYrNSFEJ71ulwnADEbmj2jIjLKSxU1tBRALKejiM/WL+1Fi/G6uFgMWXCL9okQ/njHJPUaVChaBIvKSw/Qy2XUeK8Vm+v3FMTldeHxpFtuMtfrdQ+hkSe9unr8zRsxxoZer9G/nxEQATGLNhJ5G+R6wTNCKGqoMyB4TdkFoe9njGt9lpEpfhTs3DunzlW4n0E++clP4i1veQv+/u//HtPT07j++utx5ZVX4pOf/CTvUoRglHq4kipomFozermPv/DXBPeTash0aV60D9UE+An6oY/NKV/NF+xDsnNFDqEKauRM7m1q3ZxiQoSeLrWMvn7Uxsa4luoqGotq++1WT8ANlGzxPex4910UnGt1Ed5EOCW7dUboRTGO7W4in1YoChfEfReY3MWuLEet7zwTUyvWze8screolinmGhRxI851KFtzvajIFN5dUj0+ZxnX9tC6AgfUxnHDBhFt3OkxTFTL5/l3ATShiBjM2gYvl2GU8Md9bdErV160aBLnmCyXYY8JuoeKIejKzGnmOkC4iwEAALchgr2ERq702Lzxo+8EHKsxZhLoRQHGJfTeSATEdPaGoZn8Zn7FgauDuYdAnJVDXJQg7nm9v5cy43baCTS4iWeexu516yhPXDDcFb03vOEN+N73vocNGzZg2bJluOeee/CVr3wF559/Pu9ShCQURXy7kZ+vKu7mmfdgBj8rT9COtNM6VBPgdwPmuV5HHAuvHWavLRe+8fjForTWeZ7TqLuJAULiWbq50UtFOJJqKYoiZIp419dWLMKZEuBuDokb0gTcrHWNFtF1/kNguhyLIlzHXTPECwXuxyKArptBoq8JwEyepixkt9OKIq4gLuR4aSfGOcvo70dt3z7upXtGmIiIu+qamyxvwG5rTQECbY9zmihhBeidFw3Uj6cxEcdTdNyBVijwv2Y2oRg54aIRt2tWVGQK58F2PTslcoKHanZxMTdjlEuoiXDfIoj86CEc5fnPM+lai6PBIUqs5rVB1DPSg+NA1Kh4FsDvJBJibIixJlANA66IQcwxztlCro8hCJ8n0Ab/70I28zO6oYpMKPDQs/PG33AQFM8W40JoLVyAqZe2onT4SkxtfVnI8yB8BKTUA2effTbOPvtsEQ9NZIXgze3gpNStfT7143N+AV6bq0BRFG7PPcyhGUSCmEND6R+77QLAzWXalgsfoBcLsMfGYc6fn75ExAUk2EnWcnyGxXR3rhbgbN7CpUajVqRrm7PzPaLtHl795otjzEDU+2gLcL+Hiv2aBs/h3OIuc1hoj4Uqz8+s67Go6/zfQ3R/bbyHZ4WhSW6H5DkoNK7TnPf32X/QeJm2MoeIRuEL4mOwFi7k+rhRIkDQUcFzdFnk0EVN852knOtFiiu84i8SIvTcEOPYNvr6UNm+DViyhHPpaIe4XhDrEFcNHe50jesQb1FEXRN5bxR7rgdVj4oSECyCxVhr+GscMd+JOGKn0d+PiW1PCqnfTsMVy2E4Y2QWfb3TIPWg4p5DHzkORO3h5hcSs1ev22vTBJg5TnnOyYq1YVPfTDT6BAxibkIxDAEz17r/SDUtODt38SnTI5pJZvRko6aRExZrGCtDXNPFzUHzwrvqm8kvWgRr4QJAUbD/6WfFPA8CACdB/Jlnnon17w499FAe5YgDlNzQEKo7d8EaGcn6qfTEcxyoOaPxZ6U+gEWz0k9f9lwXartDvFhCZcdOLo/d7sbUC0VM7kkv8HqOE3px0QtFVF7itLMZccMYZBjyEsS7ZogXCrBlDy+TVCtwsPKdQB++QNeLBVRe5rvjLXNo7GwQqQF/I8ir1aDkclxqST0W0ftmW4igW0cxDO4bTlHoxSLsyf3IDQ2mf7A4jqx6li5vgSuOQKJompCcZRZyQ4PY/8wzKB95BN8HjoowKRZR5XDNjltPBHEiU7i/xgSI2ezpnTuv95VRe1KA+NdDjNfyBVS2b+dft85M9IdY0SiIvEgjinkSc5l7fe+EbLg3EWdgITDjaOYpNtafQKwYId7xft3w46imAIi9jgYdMGkF8V5mKbXuvNU5COK94llEDZnulbMfYPSVURsbQ26Qw2fXKB6jY60gZ4NeyKyYiK8+1y7iHgNZs9gA969JgjYbXTeW2dPzPHjwuBsrEaPzB4AQkyjRCRdBfOXKlR0LyMC9pChKY9HqCM6mI/hRWL684+88r/dglzRYCxZg4smnxAniCrid1Nod4no+D3tqipsgruitX001b/FxBoVkn2u8XEchAzuBuijDcVp7t8W+ms/DnZoC+vs51Qq/sRDmxOu2EOF8kxNVK3CP8BXEw/HzUOVFCvjDXSWJ1Lw3FnpEM9iTk8hxEsS7RcEAgGLocKenofIS34HoDZq6c0rL8zmvtq9+RQ5cDINnV0SsrONCAfb+Sf6Oz5ibJsIEmjrdcvzb0UwTnuPCrdWgGkbPfx+7fkR2afC95EnUdxMA92tFLyFQxGsEEOsmVSvk4eyfTO/eZKlt8p9Z0igfcU4yBvox9qcnhNQF6qYCCRmxQVeiXkzx2Xk9XKEcr/dxIktEdtHG2YAEAHPeMKo7dkjthAlQFAWa5c9NEN1hwHO4X+R6mFckVC/XthUI/BzwomsJW/PEPEaD+DKegnictVBuaAj7Ht+I0qGHcKvbFYnLSn9IKsf7616bKZIj/1RdFzdI2vNiDWPV6zNL9ALftUbcjc4ARVXgOjZUTUi4x0EPF3Xz2WefxTPPPNPy37PPPtv4++B/iblDezSHqhvCp9trlgVnehqeO7Nx4jq2P/ggAd1iNVSerUyu2yL++pmWfHZpw/LJAxE/dUa21zlARlH5OPk8J9y9zXNXNao1jvcQs8hoESV+ZEHaWn6WMj/RoVcOrayYAyFt7xELY+7tfpFxCfzOB0CMTQzOx0e3WkZfH2qcB3dF1eN57IsUZuPCMxe9V3srIG74YK+s4wCjr4yawGHZPQXiJsx5w5jevYfvE4jqWJK94Ye6C45jzV7vr4ic9LjkhoYwvYfz5wnEdvepkoa0tdQ0DCgKhLWQcx3QFgGv4aCRA+AMjuJNTLFP2MDkGA5tADAXjIjp2Ij5+nNDg3y/k13eTi3Pby3Xey5D+uO0p2ub4/cuTnwIwP9YjRM/AdSPkV27+daOkSGul0pwpibldK3JmZvewI9s5fC6ekSkyTaQNOpqKlxHgP7UY/MoQC+Xud/3+OWTdeP6sT/yh5gfLHARxJcvXx7rP2LuonKcnBwl6przhhsXy/3PPot9j67Hnt//IZkQ3OUmVc3l4PFyKtt2q0O8xHHIU7fBgBwWTd0GX6p6+qEuvluui3vbMODwGHLkdg4cDQhc+tyIuFiKECG7iqvlMmyeolKP3Nu5fMGNEnCCTF+etbqK1EW+Aygjjw/OLs2ozZmg3ZUn0TnM/AbYRtURJmS04S+sOb1/MVxRWl6UIB6ddRxgDA5iejffm9/WJxLfYWMMchZr0CPHWFX53xj3uIHzO3zkXAOBmQ7QLMiJOrZi3vObCxagksGQq/zixai8tFXIY8tziAsaxtqEavEbhhbHgcpVgA8h1vm2vx/Te+UPew3IDQk+39fh2pkiQRDved7mNccJnd3LYQQxe1yJGWGkl8uo7Rvje93oEfURYI2MoCowcipA0VThBsJm9FKRyzrPiyMQczaDxUEvlbgajAI8L15kSm5wQNDme+8M8Wa0YgGOgPeB8JEXRkjMaXgO4ojK+bUWjKCybRtqExOobNuOgVecAL2YLCPLc8OFWTWXgyMousOP6+CzoHGd8Lw5vVxKLbp7XRYOGgfhyR/Y2cUtx0kgjBJiVI6uEQCR1ymjzNn5GOEA4i1CxolMkYaicB0EFXUzIHUTo1jiJuQCiL5p4+0CjnpdfX3cB6FG1uO40eg54ZslQc42lxo9bhQURYFmWtxcZ73c0dzPUwExs6ythQtQ2bqNf/06caMEADFiTc/6Crg60noJc34HAqeNecR7fzXLzGQT1RjolyK+dSO/eBGmXnopm7pb+A71DvCH+4l3iPvnJbF50zw7BmN14xTEi/y98Adf2/zdvzE3QHNDQ6ju4DPgLwpeHQZAjw41Tp9pL9c21w2iOAMm83w7iYDeLvgARVFgDPRzNfn4Ge291wH5JUsw+eJmbnW7oUo6jwbofX18NsJ6RKYA2QzWNHibwgJcL1YMsFYocNN32uvH+c4E+DOIZseg+gMREsSJWGi8MqzRQ7Sy8oDnYWzDBgwcvwoKlHrmWPzFs+eGD3dUczl4HLO21CYxguuwhS43obzckmHPVS+V0gvWEQ5xbhESES4EBQKGmXRBL5e4X6C73XDwdoj3bBHlPTA0Au6O9IjXxlscjIy54dxi1zPnUpLz3X8P+QluPesNDKC2dy+fQlFDcnltXvRoOQV8QWtyM4chxnHEymJBjLMmZlSJZppCYyUiY63Cnku1Ki3qCuDvhO01NNgYGERtz16O9XqLK9bChZjaKsaxHIWiqtyjqQDEXkPohYK4YV8RqLkcFCPHfSA14HeC8hCRe33HjIF+1AQ4mZvhLjL2OtdmGB/UjNHfz++aGRBzA1TRNGhmTrho43ff8DmPRw8sz3GZFRBnODG3++uIuRYB/jHC+fuXYMYY13UdEDv6wugr8+s4jDj+eDr+42AtXICxxx/Hrl//JpXBqJthrhmu3fAxEXK8Ini9MTZxeEXWdj6BZJEpFt9YWKIVEsSJWOiFAr8votOav91O/6pVGH71q6HlCwCC3NoEbpIusRpqLgeH08255zgdwodq6FxiQdwuWbd6qQSbsxg189jpL3LdNiIA34HOpaWrx8I8GDohGu4xJhH4N3Zysq9lD03RCpzz0R0nQlzlvKiKFKn5uiiiBEheN20ztbpnbSuaJsSB1rXrwzDg1mwuXQTdXpdWLHITMuKI1NboQkw+/0L671nMQWdqzuC+iE7izFZzhrDM47jZugFaocjX3dTjhsqcPw+Vbdux/7nnMfE0hzk6vTLEyyXO7ei9b9h8x7J8QRwAcvPmYXq3eEdqV1S5rfEBg684AeObnmL+/W7HB7e5Hj1awYPzeroa0T/mOtcnjsgoIE6MhdzgQCIDURzivP6A/OJF/KKEZEQWx7iWpT6fxsxm5nLejuHmN+fP4x4dEidWKCA3MMA12ifJcELN4iRWRwxk5DkkNc7gcKNcxsLXn4/c0BCmUnz3us0Ba6nVz8mNjvjHux/lJWAN6XmxzYxqLsfd9R8373/mORjSh5oeTJAgTsRCtXg6xOO1NwVoCQeRdWvv8x3inE5orgtFbxVXtITRLl1xwlvPVMsUJizoPIRJ1+ua761ZHGMCopwWxaKUtlWe2ca94D3IJEo05rowj4HOOe4jUjjmOVQX0cci9+EzEV01QY4vr8+sl+s1cKBNbt4sRQzKjy7E3kcfw/gTm1J9t7t9Xjyz5eMIxaphoHzUEdj72Pp0tWLmZhaWLMYUB0d6C4miSoaERVskEeYBwOAQO9ZaPzzeLCC/aBH2P/Ms9j/3HCZffDH1xk6vwbCKoiA3NIiKRMe26EGPUfgxOJyzPROcuq2R+ahuE59J245qGECac37U94bDpSvOAGPV0NNdj3s8T6O/D7V9nES3GCJjTsCMAhb0Upm/gzNmZAoA6H184jB6Hdu8xKFeQq5WSN+BF6ejSsvzu0fq7fItwZ7kO2AyzmDLAP+7yXHTJoGwyOt7Gtlpa1kNE5Nbq2H8yafYz3VJNqOWLsHU5hSRMDEMBub8+ahu4xSDF6OjMkBRFd90x5G4MT9A3TTIMY4OiJnZ3oSiatw6Y4hOhAni999/P+67777Gfw7HnFhCPoqiAqrCRQBpz9/uWRsKNDN+TqXXJVaDt0O8vUZuaAjVnendSr6TUe/4ewWKL34JyAVRVC314shzu2eI+9mG6RdfPQXxgpyhE0IGpkXVS3vz2ESvxbkfByOnJU4rFGFPyhk+CczchHuOg8q27alE5J61cjk41SqcahXVXenOC72cBEZfGbV9+1AbG09dq5fYWVi6FGN/3Ihdv34IY3/cmK5WDEqHr0R+8SJAVVO5bLuJNFxz82O6pPKLFsGZqqQSLuLGhVijo9yzjpO4wcz581DdsZNr/QYJBXG9VOIb+RPjHDB0ykkYOuVk/0Yy5fogzvved9yxGHv8j1KdRDwHPSY5Jxu8slMZMefPT3++ZcTPqWVzOkYeRxzWNXE2qnJDQ9j/zLPC3j8uLvQ6sYZqcu7UYkXE+i3J+Z5bpEKvbpg+fzijU62i8vLLqTYbo4RcLvd1Xm+x2I8GTX8ui5N3D/gubZ6xfr26pZpRNM1fK3ErHS/CDfC7irhsYkZ12jYN9B3ftAnVHTsw+eKLTGWSuIj9Tv4UG9MxBFrNNOG5Lh8tKIEgbPT3YZrXBmcTcWN+hAz2TOgQJ8TCTRC/5ZZb8Ja3vKXx5/POOw9nnXUWzjrrLJx99tm47bbbeJUiMiI3PIxpDotXz3ZiX7wCzHnzUI3bGttl8abmDL7D09pq+JEMe9M/dsRgCzVviRnuAEDV1HRxI278nWz2Gr2GivEVWCNRVa4DIaMw+vq4xX30mkLP6ziOg96Ucew5DpfW1OiM3X5M79mDvY+tx74NG1DdviNVrchjsa8Me2wM+9ZvwN5HHkV1F7tLtpfAUFi6FBNPPY3dv30Y+9ZvSHWj0+vmNzc8BGt0IUbfcAEqL78sNCMa8DefrAULUDrs0HQ3pl02YnWeA6NjZmsrqori8qWopGlbjikGq4bhPzfuw2tj3sj09QnbYEsi1AD8Zz/EqW/090MvFpFfNMrFud1LWFF1HX3HHJO6AyEJXAc9JnKNqUIigeJi9AsYMpygNmtER+T3l8eg6xjfi9JhhwKKgr1/eFRYd0FqF3qduOc73l1oLIiIveu1Zmypz9H8EnUMGX39qNXXV/uffQ77n38hdc0w8ksWY/KFF2Hv38+8Po1zncgNDWGag6EKMTvHjMFB1Dh2NCTt1uI6cDrmJgDgdxXxcKdHzvVpiviY3rkbA8evZh42m/R9VVLcl8YV362FC/nMsPC8nkM8A8z58zHN2ViRaLOhxL8rPErrIeTDTb361re+hb/+679u/NmyLNRqNdRqNfzsZz/D1772NV6liIyw5s/nkjuWZHEV4C/+493IdruAKKrmx3pwoj17SoFS30VMefPveV3fH71U4t62E6CVSqmEoV7OBEXTUu8q945MKcDZL2copIgLZDes0YXcXJ69BrPlBuS1/gYDIT3Pw8s/+znGn9iU6vH8RWpEhMHoIl8w3rcPA6tXobqTXRDvJX5aCxdgzx8egee4GDjhBEwxOkQARA6TBYDcvGFo+Tz6Vx2L0sqVqRarvb5jiqKgdOihvsg3OsrXZRSBoqrQUgx963bc+7nofG7MEgnFA4OpNrmSiMFJB1P3JEmGuGHAExStk6RNGwi6AXgOuYzvTPNnocj5ruQXL4I9McG1JT4KNZeDa3PY0ETyNmJr4ULuebhx4XnuSEqq2IGodv9C+mGUcTYG1VwO5SMOR+mwQ7l1F7TDbXM/5iZNbngI1R0pNtk5wD2uDcjEydjrfsLo78P07t2wx8fRv2qVsFguzTSRXzSKfY9twNgf/8j0GN26lpvJDQ+hunNn6nNoXJEtNzjItzsjwUYmwLczL0mGOK/vR9T7HESmBFGGepF9dkmSweFA2o3SeNfePKcYvkSCdLmMGu+5XQkiU/yOLN4bt921nm4oanodhQiHmyD+xBNP4DWveU3L32maBk3TcOaZZ2LTpnRCB5E9mmUBipK+bcV1umZNd0NNMIU78U41R8wFI6jwytcKgeegIN6P3SsKx5+8nVKM6CWIGzlpDh2jXJYmcOSGhjC9aze3oTuRzpuBfkzv3o2xjX/CjvvuT1+vB0ZfH3b/dh3yo6OovJzuu9PrRtwYHIBmmhh65Sn1SffsImGv80xuaAh6sYT+447xs27TiJ8Rue+Av8jvP/YYWAsW+A6YFCKAL/LFOz/LdkjmhoaYX1tcAXnP7/+APb//A1ONJEKxXiqmdvLHzvHmnG+b1JkNCJpLkPB58HZPJvkMFI1D/mOCXzfnz5cqznHLZ0/omjLKZb4xOHOExMPmm4j6/vrzUVJmJicQcaxFo5gSlHlvLVyIKQ5ie9zOn/yiRVzqpUZROOdDx9/4AzgNUu7VgVcuA56H0mGH1Y0w/GbRtFM67FAMvfqVqG7bwXYd83oLf4qqIr94Mcb/9ATjs6wTU9TUyyXYY+P8Zs8knufBUeBMuInq/0rabtTuNf2NUge1fWMw+srp6iQcHJ5qozTGcQoE0SyV9OeYJOsnKFA1LV0XezseEtX3PI9rZG3SoZoAoJo5eDUarCkCbqrhnj17YNRbcwHgV7/6VeP/a5qG3YJ2bwm55JcswfSudG0r/mI52UlAgQJV1+HEORFELaQEDGZohvf07HZE5jundTz7ol33z5WHI8CLuTgQkbPejr/w2Cu8DuALnvnFi7DjF/emzuPtOZhNVZEbHkZ1xw6oho7JF1MMaYlBYfly1PbtRf/xq30HcJrBiT3c74qiYN5rTodeKKRvb/Z6O6nnnX4q9GIRilLP/2dcQCaZu6Dl8+mGRCYRdfv45F7GRS+zZ0BHuXkVTYVr2/WbmH3MrymJUKyoauPGiYkkgvi8YVR38ms37TVMsh0ertPw55GwnVjIsNskbeIc4ihikl+8CJWtHNqaY2IM8hlwyRSDw3uIYAIUnd98jyRoBXYRMOp70zwwfPKFF7Ht7nsSrzmSfC810xSWvc3LSBD39Rh9Zdjj/ERGVngNaGyQUHDUisXUAnUvEV5RFAy98hQUli0V44oPqaf3leEw3iPFeY6lw1emNlTFPX8qiuJ3UPDqHEsQfwEEkYJ8BPEkwxEBPgNZe73PiqpgavNmf/4NZtaYLHUSzUkps2+UAvHXSDw23JNe67Vikd+8HyQXpLUcZ8Ndgs6GAH+zkQRxEXATxPv6+vDcc881/nzcccc1/v/zzz+Pvr4+XqWIDNFLxRZBduKZZ+KJ1E10GxrZC3MkXmRL1AVENU24Ak8miqL605A9MW20Ih3Q/kDKFDeWPbLreMTJxGkHNPrKUiI/csPDqGzdholnnhVeCwDKRx6B4dNOxe5161IdA3EWWAOrV2H+a89A//HHp3I8+QJw9OdlzhvGwvPPg6IosNI6rGTn7SUWbthupnwBMqbQqihQDXYnbKIojhQCNQt6ucycAR0V1RVEaVR37YI5Mt9vz2S4WUsSoQGk24RMNOisUIDDcfZE0jbeNJ9b9BNh6AZT+LnVE58DSindtwnunfwOJnndG9bCBVwy0pMKAKppcmtl9jwvkQsfqM/BEOhO7UYqETAqMqVYbIh+E888i4ETT0ieD5+0c4Pj0PBmGqJf2tiUBIKwXiwK2fxLAvdoqITCEb/oyARrOUMXPkg4N8Rn068bjbWb4PV9gJ+nzWk2kZcsMkUvlrhFTia9Zmj5fOr1UK+aRn8/Jp56Gua8eX5NVjE3qSBeLEg5/1gLF6SbwQQk/o7zji3xPDfRdVTNsw+yDq3PkGag5kypA9MPJrgJ4meddRb+9V//NfRn//qv/4qzzjor0eN98YtfxMknnwzTNHHFFVe0/GzDhg149atfjUKhgGOOOQb33HNPy8+/+93v4rDDDkOhUMA555yD559/PlFtojuqbsBz/AnDTmUKE08+lXgQCItDHAh2JGM4VaLcL5YFO21sRw9aHDabN2N6L98FlKIqbDvNXrQ4qWo63BR5mL1Eu6BFLw1xMs6s0dHUmZRxBBNFVTHyurMw+dzzmHxBzECfdjTLQmHZ0lSCf5KLsJ7W2eklG7TqL7LY82DZBCpGQTJptl+KG/PEQmsa8b2Hy74ZRdN88UMSfqwTq0O8++vSi0U4k/tReXkbrAULYS1gOw6TOqfTCAcs7mhuzsXE3zMxnU0s0S08Y1OSu7cEbQyEoGian60qCb1Q4GM2SOia4uoOZTietEIBzpR8QRzwXYcsG7rRkSkFf4Cg64sFuYH+xBsrSSM2knYPJjmPFZYtS93l5jkJsm77shu02ngOhUK6LrE2Ep/nOMzXSSrCy5jR4M9wEjs3KDc4kE50jxl7AfhuYl7HatL1MNeuMSZBPOX3o0fN/KJR5IYGG52deqHAdOx4MYekBvimPzFDipvh8X1L7NA2Tb4DmJO+t7kc3/fWY3OIkyAuBm6C+Mc+9jHcdNNN+B//43/gnnvuwRNPPIH//u//xrve9S7cdNNN+Lu/+7tEj7do0SJ84hOfwNVXX93y97VaDRdddBEuvvhi7NmzB5/61Kfwlre8BdvrN68bN27EVVddhX//93/Hrl27sHr1alx++eW8XiYBPyd74qmnMPbHP2HwlJMwnbAV2xcmkmWIA/70ckVRejrSIx3iQgYjtGIMDGBqy0uoTUygunMnJp56mmuER27+PEw8/TSmtr6Eyssvx3ajx1mwKJrKHCnjuV5krENawR1ArBvWwKHDOnyvUSeG20FRVQyffiomnn5G2gCz3NAwanv2Mv9+UnE1zTDUxM6NlO3TLAIV86IuaWZiX3JhoaVWgrkL6RxaCZ1ZjK2gLCiqyi7yRbyHWrGI2vgEpnfvQW5oEEYfY74lg5uHeW5D0u9WIc9xiJV8gYTH8wD4DvNKfA4ol9LlpiY89LnfQMZAVjxFCyk6fVpqM2TRpokuSYsv7CQXleJ0Udrj49DLJaaNlcQbg4UC7CSO5gQD/HLDQ5hOPTww/nHhD7WTs+nVDa7nOCD5da3ARxBPtr4S3xHTbHYSRW4o/byPuJuE/nvGL8c7UWyJrsOz+cSHJY7eKKR3UfeKaTHnz8f8154xU7PI1rWRdKNBUZTE6wQWVMOAlzLPO+4Qz0ZN0+Tq0Ab8ON648F5Psaw3yCEuDm6C+KpVq/CjH/0I999/P84991wcc8wxOO+883D//ffjzjvvxKpVqxI93qWXXopLLrkE8+rtJgH33nsvJicn8bGPfQymaeKtb30rjjvuONx+++0AgFtvvRUXXHABzj//fOTzeXz605/Go48+iscffzy0ztatW/H73/++47+NGzeyvREHAfnRhcgNDKCwbCnMoWE409PJBF/XhaInF8QBPzall/s36uKoWuJ3T815w3AmJ7H3D39A39FH8WkfbMJauBC5/n5AUVHdsyd2jpfn9RZC0zhLPMeJnAoP+BlcSSN2Woi5SC4eeigmnnqKuUwSh5Nmmn6cD2NGb1IBwW/bTDGTIeHi0Rz2czhZYHFwAilElYTCcZD5yQJTZApz/nV81zYgToAMr8XuRmeBNeYmajCpOX8eprZsgaprUFSV+TUl71BI5xBPcgPK052cWBAXJSQwiKe+U4vfxkCWGZi9kD30VjXTu+9ZBPHUnUwBCQd6+rX5uHG9BCJvAKsgHvW9CTpJpl7aCmt0FEDySJPkbtFkLvtEw2wVBZplSRMRjJQZvjzgufkJMJzn8lbq+6zEsVx9/cLPdVqe7/sahjE4iJqEyEcA6efoNMG0kcmJqDi8MPzvR8rrhZewJuuxwzB4cc6QoJsByGaDvxnu7ns3WWQLQA5xkSQPco7g7LPPxhNPPIEnn3wSO3bswPz583H44YfzLIENGzZg1apVUJtOvCeccAI2bNjQ+Pkpp5zS+Fm5XMZhhx2GDRs24Nhjj+14vC9/+cu47rrruD7HAx1F1WAtXNj4s1Z3XWuWFev3PcdJvPAPMOePYM/vfw9r4QJoZni9yNZ4y0Ll5ZRDS3qI/4qqoe/oo1Hbtw+aacFauBCVl7fBWJly2nQdVdMb77/RV8b+51+ANbKg9y86LtBDLDT6+zG9azeMUvLnGkdENgYHML1jJ6xFo4l2ZptrxLmAmkNDqG7fjurOnY0Mt6R1kizu8osWYfL5F2CNjCSulcTtBASLAvYLop/hn0A07vedzdaC5K8t6U0NMLNpFfd80lKPwSE++Txb3E3SRXiaqAb/hjSZQ5z1dSWlkTk70C+nXsHPf9RLxUS/F3V+0kwTxRUroJdLANijYNiEYv6D8cIwymXUxidgLez9b3uSOCPYgFfj30XgMQwl0gp5joJ4snOpnta5mfCSGXTAmPPns9dMVM/f9NNMk/1BYg7Obkarb3LopRJ7XbBt4PrOPz6CeGJ3egqHeOS8l0Ie+595BgsveL3/53IZ9sQEcoOD8QokdmzmUXtpb+x/n7xDxZ91YQ4Pxf4dVngdD2lI7LjvQeJ4rjTDohtFkzmO9RJ7nFpcFFUV7r4VOWQ2jGADLHX0FEP8QzDPI3VtpsiU9A7xZDXZXOke05wUf3h3krUJG0qqjZDk80JyUr8b7aS9927HYzCHkkNcHFy38+677z58/vOfx/bt23HaaadxF8MBYGJiAgMDAy1/NzAwgPG686nXz9t573vfi9/97ncd/916663cn/uBSlKXm+s4UBlP1Kquo7h8OSpRwxw8D+gifHDZ4YtxEtcsC9YCX6ROkh2cNFpFKxTgxhwO4ju4eww4nD8P1Z074bDkrDu9b4KshQtR3b6dOdPRS+AALixbigpjHnXSxUQgGjPVcl2oSS+KKZwdUgfiMSyWjDSDEyNcwGGkGq7DkOHMStLjkceCPy56MUVXSYyhqx31CgXYkyzu7eg2/uKK5TCHh2f+QgmeXwIYhAPmDPYM86uTZgSLIuvIlMTtzJrm5xFLIrUzP+mAyQyiEoD6ILGMRGlemfRJu4CA+uYOSxt+j1b18pFHoLBiReOao+WTbSIlPT8wRaYkHmgtZ/gz78gClmsk99keDK39qUsmjN1RdV3auZXbLI5ZgGpZXAZu+zMHMjp3Jt2A4/Cak9c02WI8mTZKLSlOav81paiTMDJFUVRf38kI1eSbIc4SmaLoGreoIaIVbg7xr3/963j3u9+N4eFh7NmzB7fccgvWrl3L6+EblEol7Gubirxv3z6Uy+VYP29ndHQUo/W2QIINvVSEPT4R24nLsivWTG7eMPY9uh7FpUu7PH73GwtF1fyhTSlwE2agK1CgFYuwJ/dDL/RwNSZsoQlc1nEWj57nQtGjv/KKqqF02GHYt8GPGBp8xYnxX2uMnWxV19G/ehX2ProecBwUV6yI99iNEvHfH73gt6d78BK70ZMKkGmcI76Im+z7EDjxckMxHVutFRlyjtPEOiQUN1K6GhN9f9KI1CxxMIzOjaRiiawcQcAX3VinzbMIq6yCZuLBpHUx0eiydgitkSIiKOmxmDiepcg3KiTxQr6eNa/2uAYlgsXRm+fQLt1UX6pQlDRDvMieb+15XmJHulYopIvzAtgEgEIRlW0vp6vLWJvbUE+Wc2E+D4dlgHiP12n096O/f6bjJ+m5I3H3lGXBrcYXixIL7qUyKi9zOD5iotQjZlTDSP9gCQeTiyDJUFFuZBjBEYWaM+DValByOXFFlHTO2yT4cVOT0Av5dA/Eei2emkrXUQSGDgZVRdoFcuLNcMZ7RKaupbrgrxcKyQsmqVOPumI9dpIO1cwaHvpRCyybnQyd9UQ8uJ1tv/CFL+Cb3/wmduzYgZtvvhk33ngjr4du4bjjjsP69evhNu1+P/LIIzjuuOMaP3/kkUcaP5uYmMDTTz/d+DnBH72Y0H1hOz2jO6JQNR1Qla6D3HoNd0yN43Z1oHcj198fa3iJ6zg9Ret2jIF4mYWe7cTKx8wNDGDo5JNhzp+P6s74w4jiLkoUVcPAicejyjDoKOmNltHXh9q+5M5tlqgPxdCZ3A6+QJrQRc069I8BlqFaAUxuP4luLgDMA9nY3KkphqAlvSlmcTgzoKVxoTK6QZmEXYY2+6Q54kwOU8bc5aQOOq6uQZZjX0B+Nsv3gpcrLaifeAMkxfkm6b1Qqtcq8fzWjOd6TJEpPAZbstT2fzG9a5RJ+BAUmdJRp1CPxYr7+II3cJNHUxWkzdQA6hEtnIYVMotGnAbN1p8FwwZostz5jope8u+imssJd8bK6L7jcR6NXyv9gEkgcLsmjC/jlcmexeYJy/eS4WssM0orKanNBSxxMKoCzz1AHNIM5zhCHNw+iRdeeAFr1qwBAKxZswbPP/98qsezbRuVSgW2bcN1XVQqFdRqNZx11lnI5/P43Oc+h2q1ittvvx3r16/HZZddBgBYu3Yt7rrrLtx9992oVCr41Kc+hdWrV4fmhxN8UK1kuUqeYzNHpgQYpRLs/eGiWc/hjilPqFEO9G7ofX2otXUuhGIzCOJ9fajFGNaXVEy2FixANUHkSJKbLAUKFFVL/jkkXITkhoeYBtSwuHiN/hTie8JaqeIPGO7bWQcZsgmeRalDGpkjP1hfG4Nww7JB4zupxS+KVV1nbuFjEoEYb+ASx84UC4lEIL9G8u4nrVBgG+DJcEzwgqnzQ8BgTS9htxbA0dELxg2/Qp7pfJMkLixAdgdM6ox0JOsCC9DyFls7OofaAJ9NFqbNNMZs/sSCctJjlrFTJsnjJ8qetdIPeUyCzklkBNiOC/85yBNVw0j7nfQchvNAMdm11N/ESi7i8sxn71ZDxtoN4DRgEkgcf9GozSmuJXm3ZroNI6YuOZb7KIb3VbUsuByuh71Iu3HD8rmp5oGToc3cBaIkj9clesNtxeI2LSQ1TYPdxb0bl+uvvx75fB433HADbr/9duTzeVx99dUwDAM//OEP8f3vfx8DAwP45Cc/ie9973sYqQ+zO/roo3HzzTfjPe95D4aGhvCHP/wBt912W+rXR3SnEdsR8wvK7MJpwhcEuwjiPVxjWsrFMcuNqR6zddllEGL1UimeOOr2HqrZjGZZiQdIJGnn0culWEJ+C273fPjQGgnz7WfqsAji/fE2PdpIOpgNSPCZc0IvsYlZTAsew4CX8vqRBFYBXqooyHTO4S9A8obZ/cKUm5s0YiT5++fZdmKBVi8W4UyxbcgkPf6C2BIeJBUrRGx0sZw7ATSGeaWGOcOc4SaS+eZJYXOkM6xF/G6ilF0ILMc1r4goRiGXizNe5gZXUkE5l0skvLN0bgQxI3EfP8nnJDNCDODs8GX83geDZrNCSyvKsayvSqVkm9isMUWCNxr8TH05nx2v18PSycCzdvLPMV2OOIsOwPJ62TqHLIkOcfbjtNcsi9CaZi5dbnlKFE3jtoZmGkSLdDPEiO5wC3OsVqv45Cc/2fjz1NRUy58B4NOf/nTsx7v22mtx7bXXhv5s1apVeOihh7r+7mWXXdZwjBNy0PL+4kez4mVJpc1B0sslTL7wYvgPe+TdaZYFe6oCLc+Wr8UScaEoaj3CINrR5tl24ots3KEovpsu2fuu6hr/3Nc6uYEB1PbsQa4pq7IXSQe3qIwT25kc4n39mNj+FGOtpIuCFJPoGb56jTzlvr5Ev8fSTSEbrZisHTyAaRFeLKL20ksMtZIfj0G+nwyY86EZXTYsg3WSfqeZBHHGz8lmGMjLPlByCmpf/Fx0XmjFIqo72LLmu5E0Fz4gcPTyyC5NvinGmoGffNYEMCPO6aVSsnoZZfh6HvvAVpYs/pbfZxwW24hsGRhgrp3GVZ30dXuuC4VHvnXU4yfdGKwLuLmB3utB1mMz7fERF61QQHXHTi6PxTqXQub1P4y0wxrZhusWE80wYBJxCwXUeMwr6FEj9SyGuLV4udEZ4i+yjEwJxGm91GOuF/ealUTXYs91E6+rtXyeS8dUrDppHP4M3z/VlNvt01k/B3e6ykUTYYkZAuob1NVpwBA4x+AghJvKdeqpp+JXv/pV48+vfvWrW/4sYxFCZIfv/pqILYinJXKn1Yveue3WTuRUK1BzuZ6Cq+/kYbkx9dso9WL3i6HnJBfEFShQFKXn8EiWmxSjz88nN4eGEv1eHHJDg5jcvBlJliNJb1ibuxeSbMIwxZiUikxudJa2f9mw5CkDYHY3cR1K1QO9VMTkToabV+b8a7Z4DJb4gkqCyKM0BPnQauINE8Gt9W21RLoiATaBVi/kmQa+sQoGzuR+GBkI4jyHegawbFwCM4NZZQ/z8muzDYBkFWuDmKbEgjjjexu0ojPPcUm46R3AY5MjaS5/AA9HJ4vjEGAb8sc8kyKmoJw0QxxoEnBjCOIs115em2Bx4Ooi9pK7KIH6dYVx2DUPtLzVtYs3DixCoF4sYvLFLkapLjWSi5oMQn/SYciFPJzNcjYzeM3UYB7+yMHtyxZdlm7DiKn71WKIEWLImdZMU4qLOu2xw5Q7b5rSuifC8F9zDeAxrzTFWseZnuYn4BIAOAri9957L6+HIuYgerkEe2wc5rz5UuopSveJzb0W43qxgMq2VqGoNjaGfRs2IL9oEYorVkQXTxg9EmD09WF6774egriTOIMWANQYDn3PdRILjMbgAKZ37xYiiLNNbPYSX0BUMwe3UoVmWfGrsLSLs04RZ2yVDgYIJb7BY3iOeqnIJK6yCp7BBltucDDx7zLVYsr1Tn7Tr5om3IQxRPVqTHmavIcYdoO9g0DehomMSAKW8wZzhAbLjZLEVux2REQhsW4mNtyoKc8vbNn+7JE/TMIYY3QS6/claNdOKsA36rI6YoscNjkYxUetkEeVZVO1uTRjN1UgvqoJBHEmQdn0hUC9EMP0wjQbIh97MCrb7Ik8l02wOKi5HON1vhPWoZq8hiWyollWOpd8is84SY3E5++EznfP8xJ3ZfLMoO8FN7Oil/yxWLv9Okr36AoPQyvkMb1nb4qaDJt+eYttUHvSjnSeA9Sj6qQ9dhi6ClTLgiupeyK0vpnj5lD3r2OMDvEDJEd9NsH17vC+++7D5z//eTzwwAM8H5aYAzBnNaehy3DMXtPJtUKhJX/Z81yM/fGPGFi9GtVdu3qWZYkeAYDcvGFM74x+fM9xoGrJ96nivP8szna91D2rnQeKqsB1xOZFsxybfvQBo1CX8ELF6qbTyyWhn00zMmNFgBSOdAZYhTqWm3KZnVL+jZucmyrmHHZG0c0XNBPW8xiEtoRDkFi+y8zHH0vUUiHeLIu5AmtkCreMX4ZjivV7ySxQM567WSM89GIx1aYL8zWDQ2ZyqniKlLED7BsQbLm0LN1NccVGls9QL8Q/btLERcmA6+Be1i4YiYMZQ+unjUyRYEphWsNpmn/ejwtLLJym+SKvRFLP1Mg0BIAhizqfT5Vxz5QhznDtZxHeWWD+/FN87v5mH4PBjdNmIwuaacLhJEZ7jBvwgUOc4Au3b9nXv/51nHXWWfjf//t/48wzz8Stt97K66GJOYCWS5FpzFozYsEXFY+hajoURYFT808oY396AoVly6CXSv7JrscFyxdLk4vWmpGDa9uhIn6Aa7M5xP24jh43va6baCAlAKi6LnRhppVKwl2sTFnAjsuU1+oP1kyYB8w4GI55sCbDAob5OGB1NTLGz0iFwREDoD5LQIJ7g6FjwV8UM7jRmEU3xmO/j22jLvkgyGSO6lRREQlhEdCSvh7eKDrHgUQA07BZYCYyhQdsrrjkdTzHhsKQW6kX8rBZHOmphLgUgjhrx1TaIX5BbZYhV7kc3FrKG1RWMT5vJf58Pddh6i5JJIgnXD8l2aRiOvdl2B2TBpb4PoCf+5YVvxsureDInqkfu8Ys7BqTTRC7lAmMQ5/TkjrWiLG7IOk1yj9+2MIcEoncrN2aevxhyJ01kwvCqmHAtbMbKKnmTH4Z5q4LlvstXjFHRCvcrgRf+MIX8M1vfhM7duzAzTffjBtvvJHXQxNzCE/iKHfficTmIjUXjKDy0lbsfewxeNPTyC9aBACwFi5AZdu2yN/1F+Ns26JGfx9qUUKO4zDFsfjiaA+HOOuAQyXcic8DVmdpohosDnHGRazR34favn3JajEu/I2B/sS1/ILJfwXwF1dJXQSuzRhpUCwxtfmzouiatKndUluZEzqcwZxTzCY2uDbj96xcZtsMSkgQ3RMX9txlJfEmiR+vlexGyRcpOCzmGc8hOuvGSbenwbihkrV7kgXPZhPEVctiEqZYM619JzH7e8suxDPks7bDKEorisL8nQhgfb+1fPLrCZugnI/v4GaNE4ubeysjTiMlQaxXWuaCoBoG68ZfAGuef6KNsRSCeGzRnXEYcuK1GwKjBYOhgWfmfeLaFpwMhiQqup7KxMeUIc6Q7c3SCejXSiaaMsdbpjAXsESGJJkFJgKuYrTnJTYpcn8ORANugvgLL7yANWvWAADWrFmD559/ntdDE3MENW/B7dEi53lseXhhdM3ijLFOMefPx/ifnkB+dBT9x69u/H1uaAjTu/dE/m6aIYh6qRQpCHi2zRSZohm5notvVqdJ2hvcyMcuseWbJkG15C1CjL5+1MaSOcSZ3ejlMmpjyURBljzDAM002eJgGDoetKLcaAemHHHG95Ep7oORpIMMWR1TqmEkHkAJpHC9lsuoyRDEy8miezybMQeYKcIjea48D+HOfyC2X9MY86y74YsNc++GgiVay63ZiYfMAeyfOXumdTonLuv6SmMZWBZSW2W4XjV+P4Ujl/XcyyRmsbT7F4rxhQ/BcWLMkSksUUWMn2kaoailPuOmHyCgIyfxE2D/VdY4LL1UiH3NZhUB1QRrYeZYL6bhncmHFPq18uk3ExnJSoxPG2vEsunH0rXBvEGcNOueeUOWrQPNL8oWGcIDz2N1Zxtc50OwDdU0SBAXALcj0XVnWg01TYOd5UWYyIRcfz+qPYYdsAqNYaS5AVJ1A/PPfC1y8+e17DgGN2KRTnfPYxL5ACA3OIDKy9vqJ+NO3BRuEEVTGzEwYbDmk2sxXJKsFxetUICTxL3NcG+iQIGqa4narFhvQliiPlgXPIqmJY/eSOGI0YrxbzQCWNv9mBerjHpEnGOcF3pfGXbCjQzmWgkFSNYbxMbvJ17ss90sJnITpiBxd4nnsZ03OEZ49EThkBfKSNINmjiwnCtkZvmH4cc3JHT1MjrEG78v60Y8b2XjEOcQmeLaNnN7elJHXjusWbEswhnLpkMSh7XnOFANcW3+LII48yZYio0KZqGoiTT3TLOhE4b5WsPcoRK/u5C1OzOJ2Mh8L1EoJO6AZhb4U+a9pyFLd3oa0kT6JKqTJroswfvKfv1h//xYBwYrqpp+9hjj5pGiavyiqBgNaoqqAW52cVgHKuyr6zaq1So++clPNv48NTXV8mcA+PSnP82rHDELyQ0PYeLJp4DFi7v+G69mQzEMLvW63gDFPMFolhX6977TfQpavhD6c8+2Ew+CaNQ0LeSGh1DZ+nIjpqX9sVkFcWNoCLU9e6GNjIT+3H/vWQZ2FmMMA3WZnFWqpsN1HHge205pXIz+ftTGxmEODcX69+lyG5P9TpobHtUw4NZqUGN+p9Lc8Bt9fbDHx2AOx3sPgboDmPF4Vs0cnEql6/e0sxabWxSob2QkFakZ1yNGfz8mtj3J9ssJ8Z32CQTxFAN8AmFGL+QT1LOhGrnEtWQJmjIinQBfbLL3T8Kcn+CXWDd/rOSfEy/0YhHV7Tuk1w2lvjGQhTiuFYtwJvcDA/2xf8ezbagxz4XtBGKgZprxf4k1U1TTkKoNgVFoYNog5lQbmBlYm+g9bqvNFNeiafUs0gSl7ORrjiRzRFzGTpm4x6nnOFASvs/snRLs2e5pN2iAoOuIsSO1fp4x+sqpnwcLgZOa5TvBuhbRi0VUtkfHXjZgdGj6955TAHqfv5kFTYYhsMxdJpaF6R5mNlFoeYv7JnlcglijuPdPLTBfH1W4dvxurzQb00nOP2mE99r27Yl/D0gRi1SP/lMLKQwCrsctrYD9ObDpDIQYuAnip556Kn71q181/vzqV7+65c9ZO3II8WimBadHK4kzPQ2NkyCuqJp/UuNMEEXRVRB3XagpTmL5xYuxb/2GUEHcna5BNZMLRABg9JUxvWMn0EUQdxkdZnqxhMnnXoj8N55tM2WfA0GMzCT0Uonp9+PWsMeTCOLsNyFBO7yai/c5pmmJNQb6UNu7D+b8efFqMUaY+LUGMPncc4l+x2McEgsEA0r3JRLEWdvdjXIfpra8xPS7SWEZ8pqm1uSu+Dc6afJKg88rkSBuO1DyjBsmOQNOtcouQMWARWxiQSsUMJ3gc0pVq75JwiqIp3GX845MSYOay8GtVmOfX3jixyYlEwFc24bO6LoNInmSfFdYuzfSkuomMeVyMM2GcTC0MTc0yPT7Um+OU6w5YuGxDruNd5ymWcckhfVzUS2Lyzndcx2mTWOAn0udlWDzlVUQZ4kS9Lv94g9/Zd3siO0QZ41MKeSTHz/M3Qwc5i8wohUKqO7YmU3turuZRRBnPnbqGx1qzE0q1jW5alk9jWwtpDh2WDf+mL8blp87rxeKTHUBv6s9TVyLBy99nrmXfSY6MQM3Qfzee+/l9VDEHEbR/FaWbtEcXm0aSkyhMCv0cskXlhcsCP152lYpVdeh6lq4+9XzmJ3SeqmE/c8+F/Ev2E7gvjMoerhLKiGtXEZtYqKnIJ5mYKteKqHyckzXCNK5tgNh0Jwfz+7J6kYPak3v3RtfEE/Rdm+USwz56OwbC8ZAP2p798Hq8j1sx7WTDxkMYImDYV3HKKqaaCMvjQDpR34kdIgzH4t9mN67D/nRhVLq6eUy7IkJoYJ4gGgnsV4sYvL56E1HnrXs/ftjnzM6SCHcqboOzxYzoDkpQT58JoJ4udxzeHc7rHn7wIx7GQMD8eu5LnM3n6Imc8G11E3R6aNoaqpzShqhVSvkU3WTsLo7ATSG8sb9/VTDfwUOeYx7nPqdZwxRbAyOUPYIHz5REJ7jQrHYY+5qW19O/RxY8QXxqUSdMAHMcSYJBDrPZcsw1gpFVLbFe19Z18B6oYDJF15M9DvMIi2HuClWpMbFtREI4kZfX+LfZRlMDCTv2vAYB8/rhQKmpjbH/vf+LCu2+ELmzRTWzUYzlz7H22GfZ6foWt3sxU1CTY6qMDvsiXCySbMnDlhyQ0ORu5JOtQqNoyCu1E8KPOmVG+vZ7DdsAfmlS7D3kUfgTPPLwVU1HfC89NlaoQ+uRA7n8fPJWYUt373di1TRIpaZaJJ5OpG6D7V98YXjNKJxbmAAtX374tdiXFwBQUs6Qw5tSod4/Frs8SyKovjnkh4bP41aLltmfoBmJjge0wiQhuF3b8QkzSLP/7wYNkzSCOIxB2um+bwSzQVgHTbJ0B7Nin9Dxn4D6tr2AbEINxIcP7xhmjXBOFQT8LvHmDYz08SHMB7Pqc4JSTP/OdZONHSyW+00cVVJ2uOZ3Y15oVnDgcu+F57jsg3rZsi7ZR6UzMl1m+qYzKcXG9NcO1O7R1kiKZIMZ2XNTS4UErjQ02RAJ5wNwBrjYRhwp+PPWOKJH5OUTW29HlXHQrohlElqMm7aJOwOYe6EMQxmkwPr98+fIZT23Oox6zhBd2GWZPm9OVAhQZzgirVwQaQT19k/CY1jNIYaNlgzZdusn2sd0SbvucxttQG5gUGUjzoSe//wCPb84Q+YePppOJUK1Fy6OJncvHnJ2qTiPu7QUGTGnJvCvRY3QiLNjYGCuuDZZZhpZ60UWe79/YnEh1TCQ7HoO6pi12IXVYC6kJvkxjuFAJ/0hiDt0DljYADTe/fGq5WyZTtwv8eBNeqogRLc1PYmzfGhMriMvDSZ9vVoq1h1JG7MsBDcxMsYdpk2toRVjApQdN+lmTV6uYxaRoJ40i4RIOX8B4Zj2BdXWMXhApwpRqGBUQgD0n+mqcT4QkpHcIqBxlohn2gdALDFWLIM+kuCFvM99Bg35VjcqKyCpqLr8GrpzSmsg8kBPqJ8mmtn6P1Z3LppIoTirnlcttem5S241biRKYzHD0tcG6sgfpBG2mqFIvN1Ch6bw1gryjE/JD1+RHb+dK3pumyxSEkMRRG1WY97zbK4mhlZYB4STXSFBHGCK1rOhOe5cO3wG97a+ATXYV5a24LLA9vU3nZUXe/6GlzHYZpO3E5uYBDDr3oVBk88EfbEfux7/HGY8xjb2OtYI/NRZRxwEYXR3wc7SuR1HOYMcUXV4g1rctK1KDXacWOQRlz1B/HFd6mlqaUoCjzPiy2kpRVXjYFkwgrzwBokf21pxHcAMOcNx85sTCPkAkEXQbz3MY0zFJjJz4+DW0vnsgeSibppct/9zpJ437NUwntMMTFt14Bqxc8lTUOjjZ2RNJuFAKAXk+dniyDJ9yIMz3WZh2sD9YHICW5oPJttKDZQb4lP2GKcVhxmdt6l6hqJf04IrZ3mWpzSZZkmis8o9yXuAGBBExxvEHeNxirSsmRqs9biJTKmMUzweA5phOlUsTEpMn7jdqi4jANLkwxolTmLgbXzo/H7jBvyadc+QeSTbJLcE4bBvKk4C9Y/7fjxG3IlQdZzm2paqR3arHFJgH+t99JGtgCpvjIkiPOHBHGCO9aCEUw+93zH3zuVCjQzx7Xd2s8+mzkxpmk7bcboj7jB8DzuLeP9q45F/3HHwlwYLy+5G5ppwa3ZHTEyvjOa/ewb5Hx3w7PZhS0gGFITvUhwU+5gG30J3GMe+82EoqqJuhTctIJnAndYmiGXAJAbGsT07j3xf8FjX3QAQG6gH7U9e+OVSul+N/rii/2e46Y63pN0EaTdxOjVtdOMl3bTqZjsBoN1cBaQLA7GcxyojGKi7+bv/Vl5ts1cA6gf63GPPzdF/mHC81NH7RRxUkDQ1ZL9YM00rb5Aus0cgCFaizGTu+UxEm5WsQtSaZx37NeMJF0joaVTHNtpxcc0jnwjYXQaK1ohL9TdGPcmn3XzmykyJUWkHRfSDlv10nUepYtsyWZYoxGzUyRtp1+c9zXV8aOqsWP8gHSmENVkF9jSuovjdobwJovjU7XidxekLxb/+El17dM1pq4/1m4wHrNoUq1vTBNOxmK0lsuldskTrZAgTnDHWrgQ1V27OoYgTm3ZAnNkhGstvyVv5kKa5qaiGWNgILYQxwNF1aCZFpeJw7nhIVTbYlNYB1wFBC7ubnntbkrXoDV/Pirbd0T+m7QOYKMc35WbFq2QTyC+p7vhMefPR3VnvCntaUXj3NAQpnfxj+TphrlgBNUd0cdFgFuzmYfAAcFgzZiO45THu1YowI4b95FSEDfnzUM15mfmD+5Ls2EyhOrOeJ+XXy+dqKgYeqwbKTfNjaJhwJ2u9rz5TTPUFUjYNZC2vVWJn5ffWTulQ7yULrKFN8yuONtm3swBAHNkfqLBmmndf4lzy1M4lvVSkd2pncY1lXI4XPrvVYrjKcUNeqr3O0mdQjFh/m0y4m4qsK5jfEE/YWRKCqFIzSXrAgkj7cwGfwAdu3DCmqEO8IuNSUrPjtY6aeJo4r6vMmOY0qzv07il03S3AIFrmm1N4J9vGc0BCZz+vJBZM9Hxk8Ih7negJT/HZBHTMlPcZV6vp9k84oXKsLlLREOCOMEdRVGhl0otzm17cj/s8XGYI/O51tLa28wdF+AQZ5J2OFOWWAsWoLJ1K+zJ/Y1NCW96mrndOsAcHurqDk4tVg8NYnpPtPM4tQhZFwTaN2pEUFi2NPGEeFaSxJj4kRjsx4FqGPHibTiRG4zvSHdr08zxLIC/UNVLpVgbGWkE1qCW0d+H6Rg54p5dS7WJkWT4Stp4lvzoQlS2xY9sSvs+FpYsweTmLT3/nb+pkELoHx7uOZshdYZ9gpzn1Bn2SbplwmqnikwpcRHEedxM+Z1J7EPf0mzmmMPDCbtt0rmQk7qI07y/qmkmjmiZKcz2awCPiAgv1WNo+eSCa6NyikgcRVXlzB/IWz0d4qmfR4z8Z+ahoCyDClOsO5MP0Aurn1JsLJdgT6SYGeGyb/RmlU2t9/XHW1ul+Gz92UcxPtsUYrGWMF4jzXoq7iynMNLMfQDqXWNpzptZiaopkHK+TnD8pNnUYI/7S9dBnOZe3rMd5i5LNZdr0bfYnwT7r7IMZieiIUGcEILe1+p2q7y8DfmlS7g4oJvp2KlL6bZtPK6uw03ZkpMVmmUhNzyM/U8/24iucSoVaPl02e3WgpGu0QtpxSBV04EeQ8bSCiAKfMHTSXFzEBdzvpgs9zCMvr7YAxrTCmmAvxiQtTOtWRacmO2F7nQt9VDa/KJFqLy0tee/S3u8A0Bh2TJMvvBCz3/nphBKAtScEau9zp2ehmLkmOskFhy8dK5Xa3QhKltjfF5Ouo2gwrKlmHwxeoMrbaSF2hb/FVkrbXzUwABqMQfI8q6tFwtcIlPcWg2Knu777q9T9jL9btoNWkXT4LmulBtjIPlgTf+8wz7/AZBz099RO8OhrUZfH3Mufdrzh2YlG3jNQnDMRpH+/BBPmGMRW/24qGTHZBqHeNKh56EwDvUM0IvpzD1pMswbjyH5PKDl43WKpIkQ9Icjxsy7Zx2KmnA4cZr1vT9/gTFuKu0xmiJXO+09DY8ujtlaM8nx4zlsAy6BbKJnFF1LF3mXIopKzeVSrzHSGvNUTZdqTjsYIEGcEII1f14j6sDevx/Te/YiNzTEvY6itOahpt2pbnlsVe0aETLbKSxZgr7jjoE9Po5dv3kIU5u3QLOsVI+p5QtwqpV6HnkrzvQ0tJyZ6vHVXK4l/qadtPnGQD2WYDy6lZLH4l1RVRh98RzAqWtpWuzoCD8SI917mF+yOJYrlxd6IV6UiTs9DTWFmAv4cUO9OhUatcyUteb5ruNexxuP7OD84sWYivGZubX0mwqKqsKNme2d1vWqGgYUTe+5GE/dwdLfj9refZGflVurpYrsaYiIMaJM+AjibOemtDegiqZx2Wz2B/am/F6MLkRl68ts9VMeU0CwOdD9hnXXQ7/Fyz+7G9OMmxfNGP19sbLwA9Jv8Jhs8SUpPRNpB2umqt3HnmHuCxLsa9ekGx6s+N/f7uf31IJ4uZxq2C1v0kVeFDg4xFO+nym7XdNmqGcx/C3uhlya1xY35iN1ZEqCzP40G/9GH/tg3jTiIhDMnmF0p6e8DvPo4khck8dGWQySHD9pNr40K4MsdtNMl8XusmtFvu6UUidw06cZqFqCey2iJ3NSEC+VSi3/6bqOiy++uPHzFStWIJ/PN35+7LHHZvhsD040Kw93ugbXsTG1dStKhx3qn0QEkzbLuhm9mH4xmyWKoqJ/1SoMnvwK2OPjMIYGUz+mOTKC8U1Pdvy9N51ODAIAa3QBpl56qevPXduBmvKzNfp6DzJL07rcTFwHMA9iR0ekjEwB4rty3ZQxFQH5pUsx+eLmnv/O4yDmapaF6T17e7YYu9PTUFNuACmKEmtIqVvjsImxaBRTW7p/t2Zq1aDm0gn91oIRVBPEpqQlv2Rxz9fm1qZTvS5FUfzNkt27u9eoVqCZ6Y4Jc6T3LAWAxzyFEvvNr51+yFwvUS3W86jZqSKSAN8hziyepogSCCgsW4Y9v/t9+MNPT8OtTmPolJMw/sSTqWslGUIL1Ddm0gi0fX1s4nDK+8w0cUBpMcrsohKQNhKnn3mTK1GdvmjBOnV0VIpNhTgoRrIOgjRCUSrXbVBf9uyA9vopP8+4TmrexIlxSBOlFnfjJpXQmE92D5rG8Z4m5irttYIlymimdsrOmhRxLaz418YYkT4p8tGBemRKzNeWZv6aZsnPs9ZMM9VQSS+FIM4Dz00XFwMAWqkEez/FpvBiTgriExMTjf/27duHBQsW4PLLL2/5N9///vcb/+bxxx/P6Jke3OTmz8P0jp2o7d0LY6BfWB3V0OHa/gKX55CGMKeR747OJhePFVU3MO81r4GW0j0LAMWlS+FWKtj/7LMtf592aCfgD+SrvLytq0vcz0FPKXgWi6jt3Rt5EXGr1dTCFhDPAezWaqkFasAXqSc2PdlzgeBUp6GldDarug5F0yI3LwD/fVQ5vI/WyHxMvfQS7B5OB2dqCmrKLggAGDr5JEw880zkv3Gn07+PQLxNEx7xLKphQFGVnseHO50urxyodxD0iBfhSRyx361Op94sKa5Yjj2/+33XAaVOpQrVSne8F5YuwVSM9y51Xr6mwesRUdUNP1M23TXWWjDC7MwOcGvprwdpoj14OMStBSP+AOYQAXBy82YUli2BMTCA6Z07UVi+NFUtAICqJhqmmkqgTeE4TINeys5hrPVw/EeScllp9A/Ey01O6Wzzh/92/1z9Qcns1xDRDnG9lKyDIJXDl8csorRdVKYJJ0XerWfbqTpx0sRhpCE30N8zDsu12TdVtUIhlvs2TedYnMz+ZtJ899IcY2mHaiqKAs/zMrkOZ3F89jqHBvhdr+xrnCQzLdIMdU513WNEZRzkGeDyGEyfIkHAc9INSwYAYw7PupuNzElBvJmf/OQnmJiYwJ/92Z9l/VSINqyFCzDx1NMw+vq4Z4c34y/4/N1lf4c8vcAIhC9m0w7SOhDoP3417IkJjD3xBMY3bcL4pk3QUopNgO9oLx91FCaefiY0X8ut1VKLkAoU9B17TKTj2OEk5AYO4MnnuwuebjV99AbgC579x6/G/mefi/x3vETqoVe9MrRToLVWOldugKJpGFi9Cnv/8IfIf+d/N9N/93PzhutDabvfiDhTU1DN9OK7MTiA6o6dkS4OZ2oKmpUu/x/wheqxP26M/kcpW18BPwPWnZ6WJob5sSkqJp56uuu/4eF8N/r7Me/007D3D49i7yNN/z36GJxKBU6lkrprQC+VYE9O9szpdadrqc8bWt7quckURlp3OgDklyzB1JZ0sUvOVCV1DBhQj7mIcXPaTtoM8YDCsqUYazNtuLUa9j/7HPKLF0NRFCx8wwUoLFmSupZRjjc0mAeyIjza4eHKZSUQdrIgbm5y2nO80Rf9ubrVaqpzbSyhMcVbHNed2SiVIlbDzyxn+lVuKIrim4YYY0vSdqj58RDi5/a0Y40u7LlRnsZsEPe7niZ6StG0RNEM/oDJFGvgGANtQ+umjNUB6vEeDC7jtDGQWXQwxO2eShvN6Me+xjt+Ug3RziAWSTVz7IO7gdSRJalz010PSDmbIct4uAOROS+I33zzzbjiiiuQbxsY+I53vAPz58/HWWedhQceeKDr72/duhW///3vO/7buLGHcED0RDNyGDz5FSitPExoHTWfb9wIcHWIF4sdFy3PtoE5ONGaJwoUlI8+GvnFi2EtWgRr0SKUjzmay2ObQ0OAqmJq8xZ48ODaNUxu2QKnUoFbTTfwL8Ao98GemMB0F/eIMzWVegBpQN+xx2DiySdR3bEz9Oe18XEY5TKXWvnRhZh84cXodmAvfZsW4LvENcvC5Avd3az25CT0QiF1LcAfUqqaJvY9/scWEa+6YycmN29hdpeEoSgKBk48AXvW/Q4TzzzbeD/tySn/z9PTsCcmoJeKXGr1rzoOe//wSNdjxJmaglZIfzwWli+HPbEfFQnDXgdPegV2P7wu0o3KY1hXwNArT0Fl+3aMP7EJE888i6m2SB8e+fKAf00YPu3VKKxY0fgvNzTkO8e370COQyeUOX9+Y/5GN3i8HnP+PEzv7B3P0lG7VoOadphlIZ/KtQjw+16Y8+b1fL/D4LExAPgxZIqmYWzjnxqCwMTTz6B8xBENd1ga914zuaFBTO8M73DgjVYs9IyeaofHOdxvpU5+o8zr+qFZJlv7eMryiqL4glaPDgDXTudMMwb6Mb1rd9f3K62hgNex3o247syA1IPIlWyGyzaTG4o3GyWMtLMEjP7+xLN0eLxfwYDbyMdK6b6PM8jWH/6czqgRV6ROe6zGdb131k0fP8G6gZp2tlQSF3WjZsrjU9E0wHV7n6un05uKNDMXK1okzfso+pwdhmamGyKdOgoqnyzfv6O+y+7IbzyHQkF6VM2BDB8rbUbs3LkTd9xxB+67776Wv7/11ltx0kknAQBuueUWXHjhhVi/fj2WL1/e8Rhf/vKXcd1110l5vgcjPJyNvdAtC/ZUBSbqLWMcXKkAoKgatFwOTmXGicZTcJ/LqLoOtVQS8tilww7FxKanAAC1vfugl4oY++NGLq36AX1HH4WxjX9CaeVhqJqtAnJ1x05YCxdwqaMaBoZe9UrsfngdBlavht5XBjyvsatbeekl5Jcs5lJL0TSUD1+JfY+tR2HZMuh9ZbjVamMX3fNcrmk//atXY+8fHoHnutCLneLw9M6dMEfmc6s3cPxqTL20FXseXoe+Y46G57kY2/BHaPUNsbQD9pqxRkYAz0Nl23aMbfwT8qOjGPvTEzDnz8Puh3/n30hxyp/Ljy6EoirYt34D+o47pnXWgqrCraWPIwL8RevQya/AzgcehHL88R0/NwYHuB0ferEIa+FCjD/5FPqOOjL03/DceFINA4MnnoBqXeybePJpeI4Lo68PRl+5fg5P3xkB+C22aNrnyQ30QzV0qFaen2N4wx9hLeh+DnKnp6GnPP8a/f2ovNR7FkBYbS5dLbpWH4zJJq7b4+MoLEsfI2IM9KO6KfkmkWfbXI7fYANuassW7H74d+g7+ihUXnoJ8898berHbscaHcWuX/9GuEkB8F9X4KKMe8PMIx4KqB9bCcUEL8Wx2EwgPrabdGRgDAxgeu9emMPDXf9N2hkpiqoiNzSIysvbkB9d6D+m56G2Zy+M/j64lWrq6DI1Z7Ssu5tJK0YljmRJ6ahXTd+5z3yu4HBNDmaVRF1TuuHa6eYDxe5caCmavlMNmNnstEZGwv9B6piiftT2jfXsVEqzVtTLJfz/7N13fBz1nT/+12zvVdKqd7nJXTI2GIMBx6EEQhJ6nAvcEUouJDl+pFwSMCEkORJS7psCSUicApcc5NJzXMAhYNGMJVfZclPvdbW9z/z+kLVYtmS1Xa1Wej0fDz0s7+zOvHc1Ozv7ns/n/Y56fVCaJh84I0ZnN2tJaRzpvzDdwR4jx5TZHTuVFgvCQ0PQ5uRMc9uz+04+Mrp56j0FRraZgF5M2Q4Eunugu8D3v0TM6B290CCf6D1whjTLJuWCQjGr87npmm0jTykWg2wWf8PRHnMz/evMthEtMNrcc1aroLOkdUL8ueeeQ3l5OTZu3Djm9ksvvTT++/3334/f/OY3ePHFF3Hfffedt4577713TEPOUQ0NDdixY0fig6aEk+t18bquUjQKIQGjxkYpbVaEh4ehzT5z4h+bfWNHujC5Sg3DknIEO7ugtJihy8+HTK2CXKtLWOkdhd4A45IlCA0MICiMHR0gV6uhzshIyHaAkZEqlrVrEezpQfjMzBPVmS+sCoMB6klOVKZDV1wEMRpFsK8X/to6yNUqqM/6EmRZe34idKYUOi0s69bA19yC6DhTYmUqVUJfR5lSCX1RISCJ8VHOlvVrIVer4W1qhnHp+InXmdI4HFBnZMB7uhHBvj7oiwqgKyyE59RpaBKY6B/dlkylQuCcBGWovz+hU+LkWi3Mq1aeN0o85vcDzdK4FzZmyrRsKfpe+Qe0uTmQqdWQKRTxRoqCTIaozwd5Arcn12qhKxgpK6Gy2+BrboH7WAOyrrh8pAFjgi6Ujkdz5vMhEZRGI2RqFfwdnRN+WYoFg5BrZ5d0UprNcNcfm/bjxHCCEod2O8KDg9N+7aRYDGI0iqjXB3kCZqAo9HpEXO5pJW6BkQsDSrNp1tsHzhzbiosBCQj29cG0YnlSLrzLlErIlEpE/QEoLnCeJMViQAKaoMvPTIOf6kwhMQGNkYEzsywGh+IJ2yltOzz7skrAyLEn0NEJbW7ulB8jSVJiEp8WCyIu1wUT4okYdWhYsgQDr78BjWPkwrG/vR2ek6ehLylGLBCAzmab1fq1eXnwt3fAWFF+3rLZjoKVKRSQYlMvCzHbchAKw0iN4kRd/J0JldUK76nTM3qsNMsL8mf3aZjq8VVM0IUxXWEBvKcbJ06IzzKZpLLbEOrtG3kfTGS2TYIt5pE+XFNIiM+6oa3FjPCQc1rHTeBM36VZ7t9Kixm+SXr3jGekqebM358z2T9nW1cfALQF+Rg+eGjMOZ4kSfHSIzKFAlGvb9YzUUcv2kz4HjhjNrXugZELNxG3B2r77I79UyXI5CNlR2ZITMBsitAsZtslYlYFcObicSgIeQJKeC52aZ0Q37VrF+66665J7yeTySYcVZCTk4OcaV6RpPllpEP1yLSR2TRJGY/KYoG/vT2eEBejs5/+RpOTq9TQl5TE/6/NmfqXy6kaGT1qgjk/eQ1fR6ntNqjtNnhOnoIgkyVthJ4gCPEvkTKFEmpHFlQWS1K2BYyMljVXrkja+sejLy4+77ZkxSDI5TAuXTLmtvG+pCeCymqFymodc1ssFJpWE7yp0Dgc540Uk2IxDB8+csHRKtMlyOWwbtgwUrdcAnwtLdDm5kKmViHickGTnZ3QCyZnG90v1ZkZcO4/kPIp69NlWr4Mfa/ugcaRNe7nWcw/+9H1MoUCMpVy2qWNEpFQA0aSXp6TJ6edEB+q3Q+IIvQlxQmZqivIZFBaLYg4h6GyWSd/wBliODElvM6mLylO6PrGM9rId6KZG0Di/sYqqxXhgQEoCgundP9EbVdptSA8MDitxE4sGJx1U1xgZIS468jRye94lpGZhwnof2GzwXX0GAylpRPeJxEXtBQ6LYxLyuGqP4rw4CDkOj0yLt2Mob17IUYiMM2yhJ4mNweDb7w17mdtQvaRM81lp3LRaaRp3yxG+J5p8qrOmPgixcTbTkyfAplKBUkUZzSCM5aAXjCjTfemmtybbRJ+lNJsRsQ9/YudU6XOzIS7/ljS1g+MNMsNdHZOaTbUbGcwKy0W+Jpapv24WCgEpXl236NmXOoqGoNMO/t+KtO6cJuACzYKnQ6CIIwZ+OBva4evqSme01AYjdDmzi4/pTSbzyshOJ5Z7ztmM6Ju95wlxEdJkGY2UC7VJVMS1INGZbcj1D+QkB4zi13a1hDfv38/jh49io985CNjbm9ra0NNTQ3C4TDC4TB+8pOfYN++fdi+fXuKIqVkO3vaSCLqm55NrtchPDT0btPOBI0iosXJuKRiTqarA4Bx6ZKkJsMp+eRqdcLqsF+IIJfDum4t1JmJHfmusphh37QR9os3IvOyLci49BLYN22EbcMGhAeHoM5MTkJ8lCZrJKE82y8Vc02u1cK6bg3699TA29QMAHDuP4D+PTUjo4gSNDVVW1CAwAUaDI8rQdPZlSYjxHB4wtr54wn29gKQYL94Y0KTx4ayUgzV1k7rwkmikrdzTZPtgK+p+YK1J6N+PxT62R93tHm58HdMvXlqopo+q6xWhIeGpvWYiNsFpXH2I/4FQRhpZjaNC5kjIztn/55SGPSIBQLxmTjjSVTJI11REWI+H7R5ebBv3ACFTgvzykooTaZZJzNlCgVkatW4NegTkdBXmoxTbi4721G3M9kXRyXiwucobW4uglNIjJ0rEce56daHTtQIceDMTKRxRnJKsRgwyxGagiDER3Ani9JsQnSKDcpnm9QcSUpPv7dHoo7bgkyY9gCQWdf4B6Cc5ns0UaW9rNVV8DU1oX9PDfr31MDf1o6MzSPnyNrcXEiR6KxnUU6nl8dsLuqM9GaYRrPiBAxSkWnU0y/HdIY4y1I7gjDxQNspbT9BuSR1Zib8rW2Ihd9938aCQQzu2wfXkSOzXv9ikrYJ8V27duG6666D45yRbl6vFw888ABsNhuys7Pxi1/8An/5y19QVjY3SShKDZlSgVgkDGmW037OJUCAccmS+IlkLE2/BBMRpZI2Lzd+AqqyWZF15dY5OZZa16+DcUlF0reTaJrsbGRdsRW+pmb076mBGIlAnZmJ/tf2XLDcxXRoc7KnNHooWSxrVsM7xWnSYiQCZ90BWNasTngcSpMJGocD4cGpfymOhcKQJyCxONcEuRzWqnUYeP2NMUlBKRZD/57X0ffqHgQ6u2Zdox4YubAjRaIXTNCeLTZJKZepkimVkGLilLcLAOHBIahmWepj1HQbN44M5EhMAlBfXIjhg4cm3lYolJDjriAIsF+8acyxVZ2ZCfumjRd41NTpS0vg3L8fwEjyZPTCSmLq6k797yPFZpf8UhgNU06+nysWSFypFW1+HvztU784FSfN/gLotJNlCUyI64sK4TxwEMOHDo+5PVHHb11REfytbeMuExNwoWtaJX5m2SQUmFlSWgwl5iKbym6bdhkKMQH1vLU52Qj29E59mwkqGydTKpF52ZZ3f7Zsjh+bjUuXwH7xxtn/PQUBcrUK0clGM8+2tI/RiMg0yjsmoh+bQqeb/HlNGIA0tl/TDIzmnWZCDIcTsw8pFDBVLsfwgYNwHjgA54EDGD50CIayMsjUavjaxj820fnStvbD9773vXFvX7FiBQ4ePDi3wVDKyfV6RL3ehFwtPpfqTKkLTU7OyDTpWU4NIyIimowgk8Gx7coxt5mWL0vc+uVyyLU6RL3eKSVAJTGxjXkVej3EUBju4ycuWMIjFgph8K29MK9aOWkDs5nSlxRj8O13YL94I5TGyeu1JmqkfCpoHA4I6xUY2rsPijPPVQyFoMnJhsbhQPdf/xe5N7wvMdvKzYH7WAMsq1dNet+o3wdNVmIaWmsL8uA5cQLmysoL3s99/AQiLjdivtnXax2lycmGq74eGVsunVJCYyShlJimv/riYvjbOzG49x2c/WbVFeRBm5uLWCAApXXqpYFSRZOVBX9LKwbf3gspGoW/vQOmyhVQ6HRQGGfZUNhkhr+9HSiaWimf2SSlRhJSIyNv5dP8G0dc7oT1KZBrNJBiIxenpnXxJQHVxlQ2GzzHT0x9k9HEXSBSms3I3r4Ng2+9HX9PqDPtUJrNCelBobJZ4Tp0OF42Jex0wnPyNFRWCzTZjoRc0BipEzz9/WcmlCYTIh4vVJapf88VI4kZKKYrKBj5rn2hmuznSMTsmpH8wdRGUQNnnm8aXQzXFU1eJm2253WCXA6IU+/NIIYjEGY5m1+u0470P0rQhezpUhgMiPl8kFumvy+IkUjC9iGVxQr7xvMvRKtsVgztqz1TP555q8mkbUKc6Gwqux2h3t6RK+SJ/MaOkakxxiUVCHR2IpagqcRERESppi8qgOtoA+wbN1zwfoGuLoT6+mddK/RcGZsvxuBbb8N9bCTBbKgohyCTITQ4iFBfPwAgNDAIY0U5tHmJ7yUxSmkywXZRNZz76mDdUDVuUjzq9yPQ3gFdcdGsp9unmtpuR+Zll45c5DhDplZDEATk3/yhhCWkDOVlGNjzOkL9A+OWSIp6fSPJSQCBzi4Ylyw57z4zoS8pQf9rNQgPD09YOizQ1YWIcxiWdWsS2htGk5UFf1v7lOvSJ6rkwKiMSzZBjETevUGSMPDmWxDk8jM9A1LX4HE6rNVV8SZz9os3YfjQYXhOnUbm5VtmtV6lxYzw4cOT3zFBlFYrIk4n5NPolxAedo2UUNiyOWFxaHNz4WtsOq8vSrLJFApAGrmgOpVGcmI0CmGWTQvPZdt4UXxfGtq7D6HePmjzZt8zRRAEqDLscB06DJlajUBHB2wbN2L40GHE/P6EfF6Oln1J5udffFs2G0L9/dNKiCdiZDow8hkc9Xim1dckESV9RspcCVPvKxAOQ5bg/iHJpHE44Ko/Cn1J8ZiLKt7GJkAYuRCRiB4Wglw25QtuUmT2MzSUJvNIs+AU1c9WGEYupKgs07/AHPP5IdcmN5c0UuGgAq6jx4DyxAw0WMiYEKcFQWk2wXvq1Ky6wV+IKsMOX0sLACS0RjkREVGqqB0OeE6egq+lFSqbFUrT2BGJUiyGYE8vPCdOwLSy8rzGr7MlyOWwXbQB4eFhBDo64TlxEgqjEd6TJ2FaOTK6V52VmbByFheislhgXr0Kzrr9MK9cOaYRXrCvD57jJyBTqRDq70+7uvTjmSiRkKhkODCSbLBuqMLgm2/DOM4INX9LC3SFBZBpNNDk5CSsKbogCLBVr8fQvloYKsYvmeRpaEDGZVuSMvLSUFYKd8Nx2C/eNGmyKBYKJjQGQS6H/JzEjn3TRgzt3QdJEiFL0iyLRBNksjEzQsyrVkJf6pt1Xw1BJoMgVyRk2v5UqO02BHt6p9xAOOLxYHj/AVir1yd0v9CXlaL/tRrIdbqRhs0TvP9joRBC/QOQqZQJS0wrTCPNRaeSIE5UU82znb0v2S6qRsTjgdo+/Uan4zEtX4aw0wlgZHaI0mSEtWoduv74Z+S879pZr19pNiM8OIWEeALGgl2ooe1csK5fB+e+OmRcNtXZNYkZOa+yWs80L5181ogYjkAxy9rec0mQy2GsqIDrSH38GCSGQ2fKxEiAKEFpmsKsuEkojCPv8amcI440JZ/lCHGNBrHwDBqxijFANvs3i0JvgH+ofVqPiQUDAISRWQYJPsaNR2k2p+y9nG6YEKcFQYAAuVqDiGfqdRunu35DeXlCp4sTERGlkiAIsG2oRqCrG0Pv1MJ2UTXO/qAbnRllra46L1meKDKVCpqsLKhsNvjb2iCGQjCvWZ2whMV0qDPsMC1bClf9UZiWL4Vcq4MYDsNdfxSGigpocrIRaO+ANn/2owsXC4VOB8uaVYi4z6+lrC8pSdrIR4XBANOKFYh6x69talmf2ITj2VRWKyABwa5uqB1Z4375lSQJUa8Xod4+mCYp7TJbCr0e1qp1iAWDCRnNmQoypTJhjcJVFjPCw8MXPMZIkpSYkiF2O1xHjsbLalyIGI1i6J19MK9amfCm6IIgwLp+Lfxt7Qj198NQXg5BoRgzY0CMRDB88DCUJiPcDccTNppcZbMhNDg0pYS4GI1CoU7e6Em5Vpuw2uzAyH45UpbgXQqdDgW33JSQCy4qm3Xkb7F82YT7TyKaFAJnNbT1+SZN+sYCAcRCYQjyxM2WUprNUBgN8DU2QZOdPWkZKylBpcsMSyowsKcG2ry8SdcnBoOQqdPjouKo0Vlt4llNU63V6wFJQufv/4jMrZfNehvqjAyE+vqnmBBPTFNJuUqJWCQM+TRG7EfcnllfVAVGSraMd24hRiMQQyOJeplaFR9EGQsG4ao/iqjXB0323IzYFiAk7bx9oWFCnBYMfWkxxMjUmyhNV6JPTomIiFJNrtXCUFYKhV43Mo32LIJcDsvaNXMyklKmUMBQWpr07UxGk50NuU4Pb2MjgDOJpOrq+CgqfUlxCqNLT+rMTKgzM+d8uxpHFjCNmrSJZF2/Fu7jJ+Bvbx+32aT3dCNC/f1QZ2YmZITeZJRmc8JLHqUrld2G8MDghRPikQhkqtnPWBBkMigtZkSGhydNFrmO1MNQVnpegjVRlCYTTJUr4Dl+At7GRoQHBmC/5OJ48tNZWweVzQbDkgroS0umVOJkKjTZDjhr62AoLZn0volsqplKifrMlCmV0Diy4GtsgqG8bNz7jCRpE3Nxb6TmdPsF+5XEgkEMvP4GVBkZMCR4BKp51Uq4jzVg8O29sFavv/B378RcB4BcrYY2Px/Bvn5ocy48kyMWSEzz57kkCAL0E/RMsF9ycUKON5psB/prTk/pIlosGIRcO/uLCgqTCVGXG/KM88uxTcR7emoxTkYQZJDrdGMuHkmQMHzwULw3S8zvh3XdOkR9XriOHoOuIB+AkLDeEJQ46f+JQ3SGQj+7RjtERESLlSY7e8rT+hc6pckI67q1qQ6D0phcq4V13Vq4jh5Fz0svI2PzJfEvzu6G4wj1DyBj88Vp25w1namzsjB86DC0+XnnjYQd2lcLADBUlCdsJLG+uBj+1rYLJsRDg0OI+f3QrV2TkG1ORBCEeLIzPOyCs25/fJnKZosnixI5e0KuVkOQyeFva5u0LIUYCkGmSn4DyXRiqChH78u7ocnJHrO/DrzxJqI+H/RFRQkbCapxODB88BB0RUUTJn4H33wLlvXrkjKLS6ZUwrJm9UjpoIOHIYZC0JeWwFBaAn9bOzwnToz0u5DLEzo6XVdUCGftfngajkOblxt/HwwfPoLw0BCEMyOsBbkiIaOb54uJEuXTJcjlkKvVU6oBH/P7oUzAIEO13Q5fezvUU0iIh10ueBqOQ5OXC6UxUe+VLIT6+qAoKYEkxjBUWwddQQG0OSMl9XytrXAeOABAgLmyMq1K7Sw2TIgTERERERElmLmyEposBwbf3gtNVhYEuXwkGT7FOrmUeDKFAvaNGzHwxpuwb9oIhdGIobf3QoxEINdqIYki+l55Fdb16xKyPaXVgkj9UXhOnoJxyfk17YN9fRg+eBj2izfO6T6hspiRednsmpROlXVDFXpf3g1VRsYFE2YRjxdKIwc4nW10fx3a+867o+elkZkOpspKDO3dC/vFFydkW4JMBlt1NYbe3gtAgmnFckT9fvjb2kdmDEiA2pGV9JJmSqMRmVs2Q4xGMfjGWwh0dEASRWResRUyhQIDb741pZrfU6XQ6UYaTUsS+l+rQbC3FwAgKBTIvPwyCIIAf1sbAl3dCdvmQqMtyEegvWPSEdhRrw8K/ezLligMBsR8PkiQIFygpq0kxuBpaIB51aqEJqVVNht8zS0IDQ1BionQFRZCe9agEn1REfRFRQnbHiUPE+JERERERERJoM7MgOOqK9Ff8wakWAxZCajZSrOjsllh37QRg2++DZlaBXVWJsxn1XIfqq2DZpLyCVMlCAIytmxG/2t7EOzpOW951OdD1hVbxzQRXWhkCgWs69dj4PU3IdeoYVy2FJqsLETcbgwfPAxAgiCXQwwGOGtiHCqbFVlXXjHusuz3bk/ottSZGci6citigQD6a16HTKFA5tbLE1ZCZzpkCgUyLz//ok3GJYm5AHAuQRAmPD7rCgsTmoRfaLQ52eh79TXoCgvGzK6J+v0Y3n8AkigCGKkhnqhjnTozE/7WtgkTz2IsiuGDh6EtyE/4CG1BkMFaXYXev72MrG1XQiZnWjVd8S9HRERERESURBmXXpLqEOgsSpMJjve+Z9xltuqqhG5LEARkXj7xhZDFMFtA48iC4z1XQQyFMPD6GwhmZCA0MADbxougMBjgb2lFxO1OdZh0hlyrheM92wAsjv2TZkeQy2FasQKDe98ZU/s9POSEeVUlVNOo9T1VI6Vu6iBTqeKlSoCRet6+xiZEPB5o83LHjNxOJAECHO99zwVHqNP8x4Q4ERERERFREjGpNP/M5d+Ef/+R10Cu0SBj8yUQIxEYKsrjIzfZsHj+4T5L06HJdpx5P7/b8VRfVgqlMTmNowUIMK9ZDfeRo5BisfjtYigEMRKBsaIC8gSUZ5ksBkpvTIgTERERERERUdLJtdqENS0lovlBEAQoTclJfk9ErlTBtHwZIp53Z5fIVCqo7DaWMaEp4V5CREREREREREREaYMX2Gg25r47AhERERERERERERFRCjAhTkRERERERERERESLAhPiRERERERERERERLQoMCFORERERERERERERIsCE+JEREREREREREREtCgoUh3AfBUIBAAADQ0NKY4kNU71elIdAtGciPQZUx0CERERERER0aLD3FNyLNY8x2gOdzSneyFMiE+gpaUFALBjx47UBkJEREREREREREREk2ppacHmzZsveB9BkiRpjuJJKwMDA/jb3/6G4uJiaLXaVIczpxoaGrBjxw48++yzWL58earDoTTCfYdmgvsNzRT3HZoJ7jc0E9xvaKa479BMcL+hmeK+QzOxUPabQCCAlpYWvPe970VGRsYF78sR4hPIyMjAhz/84VSHkVLLly/H+vXrUx0GpSHuOzQT3G9oprjv0Exwv6GZ4H5DM8V9h2aC+w3NFPcdmomFsN9MNjJ8FJtqEhEREREREREREdGiwIQ4ERERERERERERES0KTIgTERERERERERER0aLAhDgRERERERERERERLQpMiNN5cnJysHPnTuTk5KQ6FEoz3HdoJrjf0Exx36GZ4H5DM8H9hmaK+w7NBPcbminuOzQTi3G/ESRJklIdBBERERERERERERFRsnGEOBEREREREREREREtCkyIExEREREREREREdGiwIQ4ERERERERERERES0KTIgTERERERERERER0aLAhDgRERERERERERERLQpMiBMRERERERERERHRosCEOBEREREREREREREtCkyIExEREREREREREdGiwIQ4ERERERFNS0tLCwRBwOnTp1MdChERERHRtDAhTkRERERpYevWrfjSl76UkHU9+uijuPTSSxOyrrP9/Oc/R35+fsLXS+9K1t9ulCAI2L17d9LWT0RERESpxYQ4ERERERHNe5IkIRqNzvjxkUgkgdEQERERUbpiQpyIiIiI0lJxcTEee+wxXHvttTAajSgrK8Pvf//7+PJDhw7h8ssvh8VigdVqRVVVFU6cOIHnnnsOX/va1/DWW2/BYDDAYDCgpqYGwWAQN998M/Ly8mA0GrF06VL84Ac/mPI2a2pqcN9996Grqyu+3ueeew4AcM8996C4uBgGgwElJSXYuXMnRFGMr3fr1q341Kc+hTvuuANmsxkFBQV46qmnxmx779692Lp1K+x2O4qKivDwww+PSRA3NDTgmmuuQUZGBvLz83HvvffC5XKNif2ZZ54Zs86zR0O3tbXh2muvhc1mg9lsxsqVK1FTU3PBv8Ebb7yBNWvWwGg0YtOmTTh27Fh8WSwWw7e+9S0sX74cZrMZVVVV+Pvf/x5fXl9fj6uuugqZmZkwm83YuHEjXnnllfjy0bIsP/3pT7FmzRrodDo88cQT4/7txlNcXIydO3fi6quvhtFoxLe+9S10d3fjfe97HxwOB4xGI1avXo0XXngh/pjKykoAwPXXXw+DwYBrrrlmSs+FiIiIiNKIRERERESUBi6//HLpi1/8Yvz/RUVFUkFBgVRXVyfFYjHpW9/6lmQ0GiWXyyVJkiRdcskl0pe//GUpEolIkUhEOnDggNTT0yNJkiTt3LlT2rx585j1+/1+6Wc/+5nkdDqlWCwm/eUvf5FUKpX0f//3f1Pe5q5du6S8vLzzYv/JT34i9fT0SKIoSm+99ZZks9mkp59+esxzM5lM0t///ncpFotJv/3tbyWZTCadOnVKkiRJOn78uKTX66Vf//rXUiQSkVpaWqTVq1dLjz/+uCRJkuR2u6Xc3FzpwQcflHw+n9TV1SVddtll0vvf//4xsf/kJz8ZExcA6eWXX5YkSZLuuOMO6e6775YCgYAUi8Wk48ePS01NTeP+LZqbmyUA0lVXXSV1dXVJgUBA+tCHPiRddtll8fvs3LlTWrNmjXT8+HEpFotJv/vd7ySdTiedPn1akiRJOnLkiPTSSy9Jfr9fCgaD0s6dOyWTyST19vaO2cYll1witbW1SdFoNH6/c/924ykqKpIcDof05ptvSqIoSj6fT2pvb5f+53/+R/J4PFI4HJaeeeYZSaFQSPX19eO+JlN9LkRERESUPjhCnIiIiIjS1t13343169dDJpPh3nvvhcfjQUNDAwBApVKhra0Nra2tUCgUWLt2LRwOx4Tr0mq1uOuuu2CxWCCTyXDdddfh6quvxksvvTTlbV4oTofDAUEQsGnTJuzYseO89X7oQx/ClVdeCZlMhg996EOw2Wyoq6sDAPzgBz/A9ddfj9tuuw0KhQJFRUX47Gc/i127dgEA/vKXvyAcDuOJJ56ATqdDTk4Ovvvd7+KPf/wjenp6pvRaqlQq9PT0oLGxEYIgYOnSpSgpKbngYx555BHk5ORAo9Hgrrvuwr59++LLvvOd7+CJJ57A0qVLIZPJ8IEPfACXXHIJfv3rXwMAVq5cife85z3QarVQq9V49NFHIQgC9u7de942CgoKIJfLoVarp/RcRt111124+OKLIQgCdDod8vPz8cEPfhAGgwFKpRL/8i//ghUrVowZmT6eyZ4LEREREaUPJsSJiIiIKG3l5ubGf9fr9QAAj8cDYKTBpSAIuPLKK5Gfn49Pf/rT8Hq9E64rFArhoYcewpIlS2A2m2GxWPDiiy+ir69vytscjyRJ+OpXv4rKykpYrVZYLBb86Ec/uuB6R9c9ut5Tp07h97//PSwWS/zn/vvvjye729vbUVRUBIVCEX98eXk5gJFSKFPx5JNPory8HB/84AfhcDhw1113obe394KPOfe1CAQCiEaj6O3thdvtxs033zwm5jfffBOdnZ3xuG677TYUFhbCZDLBYrHA7Xaf97pMlpS/kHMf63Q68bGPfQwlJSXxbR49evS8bZ5tKs+FiIiIiNIHE+JEREREtCAVFRXhJz/5CVpbW/Hqq6/i5Zdfxte//nUAgEx2/mnwt7/9bfz5z3/Gn//8ZzidTgwPD+Oaa66BJElT3uZ46/3Nb36D7373u/jlL3+JgYEBDA8P4957753WerOzs3HHHXdgeHg4/uN2u+MJ/oKCArS1tY2pKd7Y2AgAKCwsBAAYjUb4fL748q6urjHbsNvt+M53voMTJ07gwIEDaGlpwYMPPjjlGM9msVig0Wjwl7/8ZUzMPp8vXhv9Yx/7GERRxL59++B2u+F0OmEymc57Xc59Tcd7jSdy7n0///nP4/jx43jttdfgcrkwPDyMysrKMdsUBGHaz4WIiIiI0gcT4kRERES0IP385z9HR0cHJEmCyWSCQqGIj6DOzs5GW1sbgsFg/P4ulwtqtRqZmZkQRREvvPDCeWVNJpOdnY2BgQEMDg6OWa9CoUBWVhYEQcA//vEPPPvss9Na78c//nH89re/xQsvvIBwOIxYLIbTp0/j//7v/wAA1113HRQKBb7whS8gEAigp6cH//Zv/4brr78e2dnZAIDq6mr8+te/jifTP//5z4/Zxm9+8xs0NjZCFEUYjUao1eoxI86nQ61W47777sNnP/tZNDQ0QJIkBAIB7NmzBydPnoy/LgaDAVarFT6fD//+7/9+wRH8o8b7202Vy+WCTqeD3W5HJBLB9773PRw9evS89Z84cWJaz4WIiIiI0gcT4kRERES0IP3jH//ARRddBIPBgDVr1uDiiy/G5z73OQDArbfeiqVLlyI3NxcWiwWvv/46HnroIRQUFKCoqAi5ubn4+9//jhtvvHFa27zyyivx/ve/H0uWLIHFYsF//dd/4c4778RVV12FVatWISMjA08//TR27NgxrfVu2LABL7/8Mn7yk58gLy8PdrsdN910E1pbWwEAJpMJL7/8Mg4dOoT8/HxUVVWhvLwcv/jFL+LrePzxx2EymVBQUICqqip84AMfGLONQ4cO4corr4TRaERZWRksFguefPLJacV5tieffBK33357vNRIcXExvv71ryMSiQAA/t//+384dOgQrFYrVqxYgby8POTn50+63vH+dlP1+OOPIxAIwOFwoLi4GL29vdi8efOY+3z961/HE088AYvFgve9731Tei5ERERElD4EaTpzNYmIiIiIiIiIiIiI0hRHiBMRERERERERERHRosCEOBEREREREREREREtCkyIExEREREREREREdGiwIQ4ERERERERERERES0KTIgTERERERERERER0aLAhDgRERERERERERERLQqKVAcwXw0MDOBvf/sbiouLodVqUx0OEREREREREREREY0jEAigpaUF733ve5GRkXHB+zIhPoG//e1v2LFjR6rDICIiIiIiIiIiIqIpePbZZ/HhD3/4gvdhQnwCxcXFAEZexOXLl6c2mBQ41etJdQhEc6LCYUx1CERERERERESLDnNPybFY8xwNDQ3YsWNHPKd7IUyIT2C0TMry5cuxfv36FEcz95QdrlSHQDQnVuWbUx0CERERERER0aLD3FNyLPY8x1RKX7OpJhEREREREREREREtCkyIExEREVHaCofDGBwcRDgcTnUoRERERESUBlgyhYiIiIjSjiiK2L17N2prayGKImQyGaqrq7Ft2zbIZBzzQURERAuPJEnxn4VAksRUh7AgxWKxVIeQNIIgJORcnwlxIiIiIko7u3fvxrFjx7BlyxZYrVY4nU7U1dUBALZv357i6IiIiIgSRxRF9PX1YXh4eMEkwwFAijIhngwnvT2pDiGplEolCgsLoVKpZrwOJsSJiIiIKK2Ew2HU1tbGk+EAYLVaUVVVhT179mDzpZdBr9OkOEoiIiKixGhtbYVMJkNxcTGUSmWqw0mYQCSa6hAWJK1y4aZ7JUnC4OAg2traUF5ePuP1LNxXiIiIiIgWpPbuAcRisXgyfJTVaoUoivj726dQVpyL0jwztGqe7hIREVH6EkURwWAQFRUVUCgW1nmNLLZwRrvPJ3K5PNUhJJXdbsfQ0FC8bOJMpKzA4ve//31UV1dDrVbjtttui99+8uRJ3HjjjXA4HLBYLLj88stRW1s75rG//e1vUVZWBp1Oh6uuugqtra1jlj/88MPIzMyE2WzG3XffjVAoNCfPiYiIiIiSJxoTceT0AJp7gpDJZHA6nWOWO51OyOVyXL6hDIIAvHGoC63d7hRFS0RERDR7oyVSBEFIcSRE88Poe2E25YNSlhDPzc3Fl770JXzsYx8bc/vw8DCuvfZaHD16FIODg7jppptwzTXXwOfzAQAaGhpw55134qmnnsLg4CBWr16NW265Jf74Z555Bs899xz27t2LpqYmHD9+HI888sicPjciIiIiSix/MIK3DncjJoq4vKoYGzZsQF1dXTwpPlpDvLq6GmajDitK7LioMhsdfV4cPNmHaIw1KomIiIiIKIUJ8Q9+8IO48cYbkZGRMeb2iy66CPfccw8yMjIgl8vxwAMPwOfz4fjx4wCAZ599FldffTW2b98OrVaLxx57DIcOHcLRo0cBALt27cKDDz6I0tJS2O127Ny5E7t27Zrz50dEREREieHyhrD3aA/ysgxYuyQLSoUM27Ztw4oVK1BTU4M//OEPqKmpwYoVK7Bt27b440x6FTatzAYAvHO0B+FILFVPgYiIiIho1u65+5/x8Be/kOow0l7KEuJTtW/fPoiiGC+UXl9fj7Vr18aXG41GlJWVob6+ftzla9euRX9/P3p7e8ddf3d3N/bv33/eT0NDQ9KeExERERFNjccfRt3xXiwptKI0zxy/XSaTYfv27XjooYdw//3346GHHsL27dvPqyMol8uwpiITZoMa+471IsSkOBEREVFCbd26FU8//fSs16NXK3HizIDYRFi+pBwv/e1vCVvfYpSov+3Zfv7zn2PTpk0JXed0zetq/IODg9ixYwcee+wxmM0jX4C8Xi8sFsuY+1ksFng8nnGXj/7u8XjgcDjO28aPfvQjfPnLX05K/EREREQ0c/5gBLUNvagosCIv0zDufVQqFex2+wXXIwgCKkvtONY8iLqGXlxUmQ2FfN6PCyEiIiIiSglRFGdUtz4ajaZF89d5+03A5XLhve99L66++mp89rOfjd9uMBjgcrnOu6/RaBx3+ejvo8vPde+996Kuru68n2effTbRT4mIiIiIpigaE1F3vA+FDiMKHOOfx03X8mIbdBoFDp3qhyjOvAkPEREREY3v1VdfRXZ2Nr73ve8hJycHWVlZ+OY3vxlfXltbi40bN8JkMqEoLwd3ffQjAIArL98CALj04o3Islnws2d+AgD46Ed2oLSoADmZdrznyq2orz8SX9c9d/8zPv3AJ3D7LTfDYbfioqp1OHToYPxx7W1tuP2Wm5Bls+DRRx4GAHzuMw9haXkpHHYrLtm4ATV79sTX99WvPIY7br0F/3r/vcjJtGPV8mV45e9/jy93u9345L9+HBWlxSgpzMeDn/okgsFgfPmzv/ol1q1aidysDFzz3veMGe1+7mj1Z378I1z9nqsAjDSH/MLnP4figjxkZ9iwbtVK7HnttQlfY4/bPe5zBoCenh7ceuutcDgcKCgowKOPPgpRHOml09zcjKuuugp2ux0ZGRm4/fbbxzSpLy4uxje+8Q1UVVVBp9PhvvvuQ01NDT796U/DYDDgIx/5yLjxCIKAH/7wh1i2bFl8YPI3v/lNlJeXw2g0Yvny5fif//kfAMCRI0dw3333Yd++fTAYDDAYDPD5fJAkCd/+9rexZMkS2Gw2XHvttejo6JjwNZiteZkQH02Gb9iwAf/5n/85ZtnKlStx8ODB+P+9Xi8aGxuxcuXKcZcfPHgQmZmZ444OB4CcnBysX7/+vJ/ly5cn/HkRERER0dQcOT0Ak16FsnxLwtYpCAJWlWciEhVxst05+QOIiIiIaNoGBgbQ3t6O1tZW/OUvf8EXv/hFnD59GgDwwAMP4IYbbsDw8DBONDbjnnvvAwC88loNAOD1t/aib2gY/3z3xwAAV23bhoNHjqKlowtV1Rtw5zlJ2ef/+zd44FOfQlffAC7fegU+8+C/AQB+8atnUVBYiF8//1v0DQ3j0ce+AgBYt3493nj7HXT29uOOD+/Ajjtug9/vj6/vxf/9K9579TXo6OnDPffdh/vv/Vh82X0fuxvBUBB1Bw/jwOF6nD59Gv/xta8CAPa89ho+99D/hx898wxaOrpwxRVX4kM3vh+hUGjS12v3yy/jty88j7feqUXPwBB+/6c/o6CgYML7T/ScRVHELR/6AMrLy9Ha2oq9e/fij3/8I376058CGEm8f+5zn0NXVxeOHz+O7u5uPPzww2PW/ctf/hIvvPACPB4PfvCDH2DLli347ne/C6/Xi1/96lcTx/T889izZw/6+/sBACUlJXjttdfgcrnwla98BR/5yEfQ0dGBVatW4emnn8aGDRvg9Xrh9Xqh1+vx/e9/H8899xxeeukl9Pb2Yv369bjtttsmfe1mKmUJ8Wg0imAwiGg0ClEUEQwGEYlE4Ha7cfXVV2PFihX44Q9/eN7jduzYgRdffBG7d+9GMBjEzp07sXr1alRWVgIA7rzzTnznO99Bc3MzhoaG8Nhjj+Guu+6a66dHRERERDPU1OmCPxjFytILl0KZCblMwNolmejq96F3yD/5A4iIiIjmIVGUkv4zUzKZDI8//jhUKhUuuugiLFu2LD54VaVSobW1FV1dXdBoNLj4ks0XXNc/ffROmEwmqNVq/PsXv4SGY0cxODgYX/6+G27AJZsvhVwuxx07duDggQMXXN9tt9+BjIwMKBQKfOKTn0I0EsGJ4+/2Edy4aRNueP+NkMvl+PBH/gkd7e0YGBhAX18f/vqXP+Nb3/lPmEwmWCwWfO7fv4AX/vu/AQC/+fVz+PBH/gkXbdwElUqFhz77OQSCAbz5xhuTvl4qlQqhYBANx44hEomguKQEJaWlE95/oue8v64WHR0dePzxx6HRaJCbm4sHH3wQv/71rwEApaWl2L59O9RqNTIyMvBv//ZveO2ckeif+MQnUFpaCqVSOa3SJ5///OeRlZUFrVYLALjpppuQl5cHmUyGm266CUuXLsXevXsnfPxTTz2Fxx9/HMXFxVAqlXj00Uexb98+tLW1TTmG6UhZUZfHH398TO3uF154AR/96EdxxRVX4O2338bhw4fx/PPPx5e/+OKL2LJlC5YvX45du3bhnnvuQU9PDzZt2jTmfnfffTdaW1uxYcMGRCIR3HTTTXjsscfm9LkRERER0cwMe0Jo7nLh4lU5kCepzrdGpcCaigwcPNkPoy4HOo0yKdshIiIiSgZRlPDS3takb2f7xiLIZNOvI22z2aBSqeL/1+l08Hq9AICf/exn2LlzJ9avX4+MjEw88OlP46N3jj+QNRaL4dFHHsbv/+d/MDDQH2+ePjgwEO8h43Bkv7sdrQ4+n++CsX3329/GL3++C93dXRAEAW63GwMD7ybYx6xPpwMA+Lxe9Pf3IRaLYWlZSXy5JEmIxUYatnd1duE927fHl8lkMhQUFKCrq/OC8QDA5Vu34osPP4JHH/kSTp86hfdsfy/+4xvfRE5u7rj3n+g5t7a2YqC/H1arNb5cFMX4aPPe3l586lOfQk1NDTweD0RRPK/EdFFR0aTxjufcx/3yl7/Et7/9bbS0tAAYqfAxMDAw4eNbWlpw6623xv/GwMhr2NHRgcLCwhnFdCEpS4g/+uijePTRR8dd9tGPfvSCj7355ptx8803j7tMEAQ8/vjjePzxx2cbIhERERHNoVhMxJHTA1haZE16ktpu1qIox4QjpwdwUWX2jJoGEREREaWCTCZg+8aZJS6nu51EKysrw7PPPgtJkvC33a/ghuuuwaWXbkFZefl59/3v3/waf/rDH/Dn/30RxSUlcLvdyM3KgCRNbfS6gLHxv/H66/jWN5/A/770MiorV0ImkyHPkTml9eUXFEKhUKClo2tMsn9Ubl4uWlvfvUghiiI6OjqQm5sHANDrDQgE3p2d2NvbO+bx99x3P+657344nU584v778KUv/jt+uusXU3qeowoKCpCXn4/WM0noc33hC1+AKIo4fPgw7HY7/vjHP+Lee+8dc59zz4mneo589v1aW1tx9913Y/fu3di8eTPkcjnWrVsXf53HW2dhYSGefvppbN26dUrbm615WUOciIiIiBaf461O6HVK5GclponmZEpzzRAlCS3d7jnZHhEREVGiyGRC0n+S4Ze//CX6+vogCALMFjMEQYBcLgcAZDkcaG5qit/X6/FApVbBZrcjEAjgsZ2PTGtbWY4sNDc1xv/v8XggVyiQYc9ANBrFN/7j63C7p3YemJ2djauvuRafefDf4HQ6IUkSOtrb440yb73tDjz3q1+idt87iEQi+NaT34RKqcIlm0dKwqxZuwbP/+Y3CIfDaGg4hmd/9cv4uutq92Hv228hHA5Dp9NBq9PGX5PpqKregIyMDHzlK1+Bz+eDKIo4depUvCyKx+OBXq+H2WxGV1cXnnzyyUnX6XA40NjYOOn9zjY6Yj0zMxPAyN+8vr5+zDo7OzvH1Fe///778cUvfjG+LafTOaYiSKIxIU5EREREKTfoCqB3yI/KJNQNn4hMNtJks7HDBY8/PGfbJSIiIlqsXn75ZaxatQoGgwEfuf12fPf/fQ/FJSNlSL708CP4+P33IjcrA7t++gzu2PERlJSUoqKkCOvXrML66uppbeuhz3wO3/n2t5CblYHHHt2J92zfjquvuQbrVq/EsooyKBRK5F+geeW5fvzTn0GpVOLii6qRk2nH+993HU6fOglgpOzJ1574Bu6+6y4U5eXgld0v43/++Eeo1WoAwCM7v4zu7i7kZ2fhwU9/Cnd8eEd8vW63B5/8xL+iIMeB8uJCuF1uPPb416b1XAFALpfjhd/9AadOnUJFRQWsVituueUWdHd3AwB27tyJw4cPw2Kx4Nprr8WNN9446To/9alP4U9/+hOsVuukFT1GrVixAp/5zGewefNmOBwOHDx4EJdcckl8+ZVXXom1a9ciJycHFosFPp8PDzzwAG677Ta8733vg8lkwpo1a/C3MxcbkkGQpjrPYJHZv38/qqqqUFdXh/Xr16c6nDl3pMOV6hCI5sSqfHOqQyAiWvRiMRFvHO5CRYEVORn6Od9+c5cLPYN+bFrJ0ilEREQ0v8RiMZw8eRJLliyZ0ajh+cwfjqY6hAVJp0pZhew5MdF7Yjq5XI4QJyIiIqKUaupyQadRpiQZDgBF2SaIkoSOPm9Ktk9ERERERHOHCXEiIiIiShlvIILWbg9WlNhSFoNMJqCyxI6TbU6EIrGUxUFERERERMnHhDgRERERpcyxpkGU5Jqg0yhTGofFqEa2XY+Trc6UxkFERERERMnFhDgRERERpUT3gA+hSAwlufOjn8OSQgv6h/1weoKpDoWIiIiIiJKECXEiIiIimnOxmIgTbU4sLbJCJpsfjSyVCjnK8i043sJR4kRERERECxUT4kREREQ051q63TBolciy6lIdyhgFWUZEYyK6B3ypDoWIiIiIiJJAkeoAiIiIiGhxCYajaO5yY+PK7FSHch6ZTMDSIisamoeQZdNBPk9GrxMRTUUoEoPTHYQ3EEE4EoMkAUqFDFq1AlajGnqtEoLA4xoRES1uTIgTERER0Zw63T6MnAw9jDpVqkMZV5ZVh5ZuN9p63POmvjkR0UREUULvkB9tPW64fWGYjWoYtSpoVAoIAhCOxDAwHMCp9mEIApCToUd+lhEGbWqbGRMREaUKE+JERERENGfcvjB6h/zYsjYv1aFc0LIiG/Yd60F+lgFKhTzV4RARjWtgOICGliHIZQKKc0xw2HSQyyeujOryhtDV78PbR7qRYdGgPN8Cwzy9OElEdLYsmwVvvP0OKpYsSXUok7rn7n+Gw5GNr3z1a6kOhSbAGuJERERENGdOtjlRkmuGSjm/k8wmvQoZZi2au9ypDoWI6DyxmIj6xgEcaRxAWb4Zl6zORW6m4YLJcAAwG9RYXmLD5evzoNcq8XZ9D060DiEWE+cociJaiLZu3QqNRgODwQC73Y6rr74aJ0+enPD+r776KmQyGbJsFjjsVlQuXYLvfvvbF9xG39DwlJPhy5eU46W//W1az4EWFybEiYiIiGhODLmD8PjDKMo2pjqUKSkrsKCtx4NQJJbqUIiI4oLhKN4+2oNQJIbNq3ORm2GY9jqUCjkqCqzYvCYXvkAUbxzugssbSkK0RLRYfPe734XX60V7ezsyMzPxz//8zxe8f1ZWFvqGhtE76MTPf/UrfPUrX8Yrf//7HEV7YdFoNNUhUJJNKyHudrvxwgsv4LOf/SzuvvtufPazn8Xzzz8Pl8uVrPiIiIiIaIE41eZEWZ550hGM84VBq4TDpkNzJ891iWh+8AUieLu+B5kWLaqWOWY920arVmD9siyU5Jqx71gvWns4K4ZoIQqHwxgcHEQ4HE76tnQ6HW677TYcOHBgyo/ZcNFGLFu+HIcOHpzwPnq1EieOHwcwUpLk0w98ArffcjMcdisuqlqHQ4dGHvvRj+xAe1sbbr/lJmTZLHj0kYcBAKdPncKN178PhbnZWLlsKX789FPxdX/1K4/h9ltuxn333I3crAx84z++jjxHJupq98XvEwqFkJ+dhdp978S3U1pUgJxMO95z5VbU1x8ZN+7BwUHc8qEPIs+RiTxHJi6/9BIMDAxM+bWh5JjStxGn04lPfvKTyMvLw0MPPYSGhgYEg0E0NDTgs5/9LPLz8/HJT34SQ0NDyY6XiIiIiNJQvzOAYDiG/Kz0GB0+qizfjI4+D4IhjhQiotQKhKLYd6wHRdlGLCm0JnTdBQ4jNq3MRmu3G0ebBiGKUkLXT0SpIYoiXnrpJTz55JN46qmn8OSTT+Kll16CKCavTJLH48Fzzz2H8vLyKd1fkiS89eYbaDh2DGXlZVPezvP//Rs88KlPoatvAJdvvQKfefDfAAC/+NWzKCgsxK+f/y36hobx6GNfgd/vx3XXvBfXve99aGxtx+/++Cd868lv4u+7d8fX979//Quu2vYedPT04d/+v4fwgQ9+CL/59a/jy//2fy8iIyMT1RsuAgBcddU21B2sx8nmDqxdV42P7tiBQCiKYCgGMSZBFCVIIvCf3/k2RFHEqeZWtHX14Lv/73vQaDRTfp6UHFNKiK9evRpKpRLvvPMOWltb8ec//xnPPvss/vznP6OlpQXvvPMOFAoF1q1bl+x4iYiIiCjNSJKEU+1OlBdYIJMJqQ5nWnQaJXIyDGjkKHEiSoHRUZ1eXwC1x3qR7zCiJNeclG0ZdCpsWpkDrz+M/Sf6EI2JczqqlIgSb/fu3Th27Bi2bNmCG2+8EVu2bMGxY8ew+6xEcKI8+OCDMJvNMJlMeOedd/Dss89e8P59fX3IzcqA3WzEtiu24v5//QSuv+H9U97e+264AZdsvhRyuRx37NiBgxcYkf7i//4V2dnZ+Ni990GpVGLJ0qW465//BS88/5v4fdatX4+bb7kVMpkMWq0Wt93xYfz2hecRi42UzvvvX/8at95+O2IxCcFwDB+69cPQ6PRQq1X4/Be+iOMNx+BxDUOpkAGCAEkC/KEoBJkCg4ODaGw8DblcjnXrq2DQ6yHGYoDEi4+popjKnd5++23k5eVNuHz58uX49re/jYceeihhgRERERHRwtA75EdMlJCboU91KDNSlmfG64c6UZpnhlY9pdNnIqJZEUURu3fvRm1t7ZmRnAJKl6zE5jXXJ3W7KqUc1SuycehkL5777z+io7kBkiRCJpOhuroa27Ztg0yWHmWviBa7cDiM2tpabNmyBVbryKwSq9WKqqoq1NTUYOvWrVCpVAnb3re//W3cd999OH36NK699lqcOnUKq1atwnPPPYd7770XAFBUVISjR48CGKkh3tTWgUgkgm8/+U3871//gkgkMuWYHI7s+O86rQ4+n2/C+7a2tOLQwYPIzcqI3xaLxXDJ5kvj/y8sLBrzmM2XXgqNRoN/vPIKNlx0Ef7vxf/Flx59HKFIDDJBwn88vhO//5//wcBAf/y4OOwcRFZWBmQyQC4XoNcq8OD/9xCCwQBuv+UWBPx+3HTzTXjooYegVCgAQYBao4VWZwDSa8xI2pvSJ9mFkuFny83NnVUwRERERLSwjIwOH0ZFgQWCkJ5n+hq1ArmZBjRxlDgRzZFzR3Vefvll6OtqTsqoznPJZQL6Ww9hsLcFl12W/FGlRJQcHo8HoijGk+GjrFYrRFGEx+NJynbLy8vxn//5n/jEJz6BQCCAD3/4w/B6vfB6vfFk+NmUSiU+9+9fgCAI+MmPnk5IDMI52eWCwgJsuvhidPUNxH96B534/Z/+/O5jzjlPFQQBt9x6G37zX8/hhedfwKrVa1BRUQadRoHf/fa/8ac//AF//t8X0d0/iIZTjQBGznvPZTYb8cQ3voFD9Q34wx//jP/961/xlz//GVarFUaDAZFwCAG/NyHPm6Zu2pd2f/CDH+DgmSL3+/fvR0FBAUpKSlBXV5fo2IiIiIgozXUN+CCXCXDYdKkOZVZKcs3oHvAiGGYtcSJKrtFRnVVVVeeN6qytrU16+ZJwOIy6ujpsqK5OyfaJKDGMRiNkMhmcTueY251OJ2QyGYzG5PV1ueaaa+BwOPCjH/1oyo956DOfw7ee/CYCgcCst5/lyEJzU+O78Vx7HVpbW/GLXT9DKBRCNBpFff2RMU0zx3PTLbfjT3/6I5795c9xx4c/DMWZxvBejwcqtQo2ux2BQACP7XxkwnW8+Ne/4tTJkxAgQqdTP7d+ZAAAa79JREFUQ6VSQalUAgAUCgX0Oh1CwQDLp8yxaSfEv/Wtb8VHgj/88MO45ZZb8E//9E8sl0JEREREY4iihNPtw6gosKbt6PBRWrUC2XY9WrrcqQ6FiBa4VI3qnC/bJ6LEUKlUqK6uRl1dXTwp7nQ6UVdXh+rq6oSWSxnP5z73OTzxxBNTTnBfd/31sFqs+OlPfjzrbT/0mc/hO9/+FnKzMvDYozthMBjw57++iL/+5S9YUlaCorwcPPDx++F2T3A8k4BgKIbyiqUoLy/HwQP78aGbb4kvvmPHR1BSUoqKkiKsX7MK66urJ4ylsfE0brz+fXBk2LDtqquwbds23HHHHfHlCoUCkKSkNjql8wnSeOP5L8BsNsPlciEajSIjIwNdXV1QqVRwOBwYHBxMVpxzbv/+/aiqqkJdXR3Wr1+f6nDm3JEOTgmmxWFVfnKaEhEREdDW40b3gA8bV+akOpSE8AcjePNwFy5blw+VUp7qcIhogQqHw3jyySfH1P0FRhJZNTU1eOihh5KayEr19olorFgshpMnT2LJkiWQy6d3/nFuP4L51g/APw9n3oniSNNMuUyAWilPXG1vScLw0ACMBsNIEvyMaDQKj9cLiy0DSNAAEp1qYfe8meg9MZ1c7rRfIZ1OB6fTifr6eixbtgw6nQ6RSASRSGT6z4CIiIiIFqRYTERjpwtrKzJTHUrC6DRKZNl0aOl2Y0mhdfIHEBHNgEqlwvLKNdi3rxYbNoyULZnLUZ1njyodLdvidDqxb18tSpesZDKcKI3IZDJs374dW7duhcfjgdFo5Hv4AmKxkWS4WimDQpHgCwZnGmj6/H7odTooFApEo1H4/H6oNdqEJcNpaqadEP/ABz6Abdu2wev1xrvEHj58GEVFRZM8koiIiIgWi7ZeD4w6FawmTapDSajSXDPeru9BSa4JSgVHiRNR4sViIix5q1AqADU1NeeN6pwLo9s5e/vr1ldBk7Ec7b0eFDiSV3uYiBJPpVLBbrenOox5LRqTEArHoFHJIZcnJzmt1RkAAB6vd6Rm+Jkk+ejtNHemnRD/z//8T/ziF7+ASqXCjh07AAButxtf+tKXEh4cEREREaWfSFREc5cLVcscqQ4l4Qw6FTIsGrT2eFCeb0l1OES0ADV3u2HUq3HFDdfh2qvfk5JRnRONKnX7wth3rAd6rRK2BXbBk4gWr2hURDgqQquWQyZL4khtAdDqDdDq9PGLjRwZnhrTTogrlUrcfffdY2674oorEhYQEREREaW3lm4XrEYNzAZ1qkNJitI8C/Yd60FxjgkKeerrbxLRwhEIRdHS5camVSO9F1I9qvPc7Zv0Kqwsy8DBk33YtDIHOo0yZbERESXCaDJco1JgzsqqCwJk06wHT4k17YS4JEl4/vnn8c4775zXXfrHP559J1giIiIiSl/hSAyt3R5sWpmd6lCSxqRXwWxQo7lzCDa9wHqcRJQwJ1udyHcYYNDO30Szw6aDx2fCoVMD2FiZndzRlEQE4cwIYkmSUhzJAiFJ8dHZ0Zh0Jhkun7tkOCWMMIvR9dNOiN9///347//+b2zZsgV6vX7GGyYiIiKihaepywWHTQeDbuEmiEVRROfpWvzfoYMApDG1fWX8NkVEM+T2hTHgCuCydfmpDmVSZflmOD1BnGh1YnmJLdXhEC1oMpkMcrkcwWAQBgNrTc+YBAT8XoSCgZH63RAgV6qhNxp5YS/NRCIRCIIwtwnx559/HrW1tSgrK5vxRomIiIho4QmGoujo9eKS1TmpDiWpdu/ejebGU7j88stgtVrhdDpRV1cHANi+fXuKoyOidHWq3YmSXDOUivl/YU0QBKyuyMSbh7tgNamRbedgOaJkyszMRGdnJ/Ly8qDRaGaVCJxPRDE2Z9sK+HyIhEPQ63RQKBSIRqPw+f0I+ADtAhvwG4stjP1jPJIkobe3FxaLZW4T4iaTCYWFhTPe4Kjvf//7+PnPf44jR47gAx/4AH7zm9/El91zzz147bXXcOrUKfzwhz/EfffdN+axv/3tb/G5z30O3d3duPjii/Gzn/0MRUVF8eUPP/wwnn76aYTDYdx88834wQ9+ALV6YdawJCIiIpovGjtdyMnQL+iasuFwGLW1tdiyZQusVisAwGq1oqqqCjU1Ndi6dSvLpxDRtDndQbi8YaytyEx1KFOmVsqxpiITB070waRXLehjP1GqjZ5zdHV1IRabuyRysoWj4hxtSULA54VarR4zm08URYRCIWj1BgALJ4msSoMLq7Oh0WiQlZU1q3VMOyH+mc98Bo888gi+9rWvzSoTn5ubiy996UvYvXs3BgYGxixbs2YNbr31Vnzxi18873ENDQ2488478bvf/Q5btmzBF77wBdxyyy3Yu3cvAOCZZ57Bc889h71798JsNuP9738/HnnkETzxxBMzjpWIiIiILswfjKB7wIdL1+amOpSk8ng8EEUx/sV0lNVqhSiK8Hg8KW2AR3PHH4zA6QnB6w/DF4wiHIkhFpMgkwFKhRx6jRImgwoZFi3USjbOogs71T6Msjwz5GnWqNdm0qAo24TDp0fqiS+UUatE85HVao2fbyyUeuJHu9xzsh2vaxivvvInXH/99WNul8lkePHFF3HFDbdDb7bMSSxzYUmuKdUhJI0gCAkpUTjthPiNN96Iq666Ct///veRmTn26nVTU9OU1/PBD34QAHDw4MHzEuL/+q//CgD4yle+ct7jnn32WVx99dXx6aiPPfYYMjMzcfToUVRWVmLXrl148MEHUVpaCgDYuXMnPvzhD0+YEO/u7kZ3d/d5tzc0NEz5uRAREREtdqc7hlHgMECjmvbpZVoxGo2QyWRwOp1jkuJOpxMymQxGozGF0dFshcNheDyeCRulurwhdPR50T8cQDQqwmpSw6hTIdumg0oph1wmQJQkRKIivIGRi0THmgZhMapRkmtGhkWbgmdF892gKwB/KIp8R3oeP0rzzOgfDqC5y43SPHOqwyFa8BZSvxJBmJvnotUbIUoShoeHzzt/EyUJGr1xzmKZC3I5L8RPZtrfWG6//XZkZmbi4x//eEqaatbX12PDhg3x/xuNRpSVlaG+vh6VlZWor6/H2rVr48vXrl2L/v5+9Pb2wuFwnLe+H/3oR/jyl788F6ETERERLUgefxh9QwFcti4v1aEknUqlQnV1Nerq6lBVVRWvIV5bW4fq6mqWS0lToihi9+7dqK2thSiKYxqlhqMiugd86Oz3IhIVkZdpwLolmTDpVVMaDRuJiuge8OJY8yDUSjlWlNphXMBNZ2n6GjtdKM01QZ6mTd1kMgGryzPw1pFu2M0amA0sV0pE84tMoYA5twLv7KvFRRuq4+dv+2prUbp8NRRKlnxabKadEN+/fz/6+vqg0+mSEc+kvF4vLBbLmNssFgs8Hs+4y0d/93g84ybE7733Xtxwww3n3d7Q0IAdO3YkLG4iIiKihepU+zCKc01QLZKyENu2bQMA1NTUQBRFCIKAovLK+O2Ufnbv3o1jx47Fa8OPXOSoRe+QH9kl65Bl1WFZkQ128/QbmSkVMhRmm5CfZURrjxt763tQXmBBcc7Cnc5MUzfsCcHrjyBvWXqODh+l1yqxpNCCI40DuHhVbtom94loYWrrdcNWvA4wafHanj2QRBGCTIbS5atRWX1pqsOjFJh2QrysrAyBQCBlCXGDwQCXyzXmNpfLFZ+eeu7y0d8nmr6ak5ODnJycJEVLREREtLANe0IY9gSxujwj1aHMGZlMhu3bt2Pr1q3weDzQaHV4q74fgVAMeu3CmW67WEzUKLW6uhp79uzBB2+4GnqdZtbbkckElOSakWnV4cCJPri8Iawqy4CMicNFranThZI0Hh1+tsJsE/qcAZxud2JpkS3V4RARAQD6hv0YHA5gZXkG1BWXYcX6ixH0e6HRGTgyfBGb9hn7pz/9aXz4wx/Gm2++iaampjE/c2HlypU4ePBg/P9erxeNjY1YuXLluMsPHjyIzMzMcUeHExEREdHsnGp3oiTXDEWaNYJLBJVKBbvdDr1Oi/wsA1q656YxFCXWwKATsVhs3EapkiQhGPAldHsGrRIXr8pBOBLDgZN9iMXEhK6f0ofHH4bTE0R+VnqPDj9bZakd7b1euLyhVIdCRASPP4zmTjeWFtmgVoyMCVYolTCYrUyGL3LT/ubyL//yL3jppZdw6aWXoqKiAhUVFSgvL0dFRcW01hONRhEMBhGNRiGKIoLBICKRCICRURrBYBCiKMbvF4vFAAA7duzAiy++iN27dyMYDGLnzp1YvXo1KisrAQB33nknvvOd76C5uRlDQ0N47LHHcNddd033aRIRERHRBMLhMAYHB9Ez4IIvEEFhmjaCS6SiHBO6B7wIhqOpDoWmIBYT0TXgRW1DLw43eSCcaZR6tmQ2SlXIZVi/bGTAzsFT/RBFKf6+CofDCd8ezU9NnS4UZhuhVCycC4patQIVhRYcbRqEKEqpDocWOB436UIi0RhOtA2hNM8Eg5a9O2isaZdMaW5uTsiGH3/88THNLF944QV89KMfxc9//nNs374dr732GoCR2owPPPAAdu3ahTvvvBPLly/Hrl27cM8996CnpwebNm3C888/H1/P3XffjdbWVmzYsAGRSAQ33XQTHnvssYTETERERLSYndt4EBCwfOUaCIugmeZktGoFHDY92no8WFJonfwBlBJOTxCdfV70DPph1CmRm2nAmopMyHwbzmuUWleX3EapcpmAtRWZeOdoN37z2z+h5fTR8xp6ymQLJ1FKY/mDEfQ7/bhsXX6qQ0m4QocR3QM+tPa4UZJrTnU4NM8EQlEMuYPw+MPwBSIIR2KIREWIEiATALlMBrVKDo1KDr1WCYNWBaNeCY3q3fTVhRoh87hJACBBwqmOYViNGmRaUlPymeY3QZIkXrYdx/79+1FVVYW6ujqsX78+1eHMuSMdrsnvRLQArMrnSToR0VS99NJLOHbs2HlJwxUrVmD79u2pDi/lPP4w9tb34PL1+QtqxGe6C4aj6Ozzoqvfh5gkIS9Tj9wMA/Tad6dKpzK58uKL/4eGhgZs2FDN99UicrxlCDFRQmWpPdWhJIXXH8bb9T24ZHUOdBqWJVjsguEouvp96BrwIhiKwmrSwKhTwaBTQq2UQ6mQQyYAMVGCKEoIhmMIhqPwBSLw+CPw+sNQKmSwmTWwGjU4XPc6Tp08wfORBSBZuafOAS8GhgNYWZYB+TSbYS8EizXPMZ1c7pRGiNfW1qK6ujph9yMiIiKi9DJR48GqqirU1NRg69atSRtJmy6MOhWsJjU6+jwcFZlikiRh0BVEe68HA8MBZNl0WFFqg82kgTDOF+NzG6UajcY52Z/D4TAOHNjP99UiE4mK6Ojz4uJVOakOJWkMOhWKc0w42jSIDSuyUx0OpYg/GEFjpws9Az5k2XRYVjRyHJ5uM2FJkuDxRzDkDqK7340D+/fj8ssv43GTxuXxh9HR68Wq8sWZDKepmVJC/J//+Z9RXl6Oe++9F1u3boVarY4vC4fD+Mc//oGnn34ajY2NOHz4cNKCJSIiIqLU8Hg8EEVx3MaDoijC4/HAbl+YIx2nozTXjIOn+lGYbYJ8ml/4afZGEo0etPV4IBME5DsMqCy1Q6WUT+nxo41S5wrfV4tTV78XVpN6zCyFhagkz4yuQ170DPqQbdenOhyaQzFRQnOnCy3dbuRlGrBlXd6YkifTJQgCTHoVTHoVjKoIAGnc42YsFoNz2AVHVuYsnwGlq2hMxMk2J0ryTNCpZ77P0cI3pb1j//79+OEPf4j7778f3d3dKC0thdlshsvlQlNTE3JycvCpT30KL7zwQrLjJSIiIqIUMBqNkJ1pPHj2l9BkNh5MR1aTBlq1At0DXuRn8TWZK4FQFK09bnT0emEzabCyzA67WZvqsCbF99XiI0kSWnvcWFGy8C90yGUClhfbcbRpABkWLRRylpJaiMLh8JiZNR5/GIdO9UOllCelZM6FjpuCIMOBUy5kOSXk2PXIsmoh5363qDR2DMNsUCOLdcNpElNKiCsUCnzyk5/EAw88gLq6OtTV1WFoaAg2mw1VVVWoqqoad+ohERERES0MKpUK1dXV2Fdbiw3V1XPWeDAdleSacbLNibxMA8+RkywQiqKxYxg9gz7kZBiwaVUODGk06nb0fXVuQ8/aWr6vFqp+ZwAymYAMy/y/YJMImVYtTHo1mjpdbDi8wIzXe2FZ5WoYHSuxpNiGomxTUrY70XGzrq4OF120AZdfVIKeQR/aetw42jSIvEwDCrONC35GBgE9g174Q1GsLs9IdSiUBqY1f0AQBFRXV7NOOBEREdEidNHFl6Gtx4M9e/ZAkqQxjQfpXVlWLU62OdHnDMBh4wilZAhFYmjudKGjz4PcTAMuXTu76fipNPr+qampgSiKEAQB+SXLcdVVV6U4MkqGlh530hKF89WyYivePNyNvEwDk5ILyO7du3Hs2LF4DwSn04l9+2pRIZejaNM1Sd32ucfNcxshF2WbUJRtgjcQQXuPB28d6YbFqEZZnhlWkyapsVFq+IIRtPZ4sbLMDnmSm2HTwpCeZ41ERERENOdOtDpx1bZtyMu4fk4bD6YbQRBQkmtCc5eLCfEEE0UJ7b0enO4YRpZVh0tW5yZ8Ov5cO7ehp15vQN2JQfQOBZCbaUh1eJRAHn8YXn8YuUuzUh3KnNJplCjOMaGhZQjVyx2pDocSYKJG2xs2VKOmpgbv3X5VUs8PptoI2aBVYnmJDRWFFnT0eXHgZD9MehXK8y2wGNXjrJnSUUwcqRtelG2APs3PCWju8LIJEREREU2qq9+LcFREUbYp3niQyfCJ5WYYEAxF4XQHUx3KguF0B/HWkW50DfhQvdyBVeUZaZ8MP9vo+0qjUWNpkRUn25yIxcRUh0UJ1NLtRn6WcVHWNC7JNcEXiKBvyJ/qUCgBptIQeC5M9XxEIZehOMeEy9flwW7WYP+JXhxpHEAoEpuTOCm5mrvc0KkVyLbzIjJN3eL7JCYiIiKiaYlERZxoc2JFiQ0yGWtiT4VMJqAox4SmLleqQ0l7MVHC8ZYhHDjZh6IcIzatzIbZsLBH9mVYtDDqVdx/FpBwJIbeQR8KHYuzUapcLsPSIitOtDkhilKqw6FZOrux5dnme0NguVyGklwzLl2TBwHA6wc70dnvTXVYNAv9w364vCGU5VtSHQqlGSbEiYiIiOiCGjuGYTWqYTcvjiZwiZKfZYTTHYLHH051KGklHA5jcHAQ4XAYLm8Ibx3pgjcQwSWrc5GfZVw0jUqXFtnQ2u1BmCMYF4TOfi9sZi006sVbtTTbrodSIUN739yMHqbkUalUWF65Gvv21caT4unUaFullGNlWQbWL8tCY8cwDp7s47E2DflDUTR1urGk0ArFIpx5Q7OzeD+NiYiIiGhSXn8YHX1ebF6Tm+pQ0o5SIUNhthHNXS6sLs9MdTjzniiK2L17N2pra+PNJbMKlmL7e96DohxzqsObcwatEg6bDk1dLiwrsqU6HJoFSZLQ0evF8hL+HZcWWXHgRB9yMwxQKpjASlcefxgGx0qUy2XjNrZMF1ajBpeszsXxliG8eaQb65ZkLvgZSAtFTJJwqt2JfIcBRt38vgBD89OUEuIFBQVTGonR1tY264CIiIiIaH6QJAn1TYMozTNDu4hHNc5GUY4JNQc6EAhF+RpOYvfu3Th27Fi8SZvT6URtbR1OHNmLopztqQ4vJcryzXjzcBeKc0zQqLj/pKshdxASJNjNmlSHknJWowY2kwbNXS4sKbRO/gCadyLRGA6c6MPSYhsKN12Lq7dvS+tG2wq5DCvLMtDZ78W+Y72oLLUjJ0Of6rBoEi1dLigVMuTyb0UzNKWzqscffzzZcRARERHRPNPe60FMlFCcY0p1KGlLrZQjJ8OAli43R4deQDgcRm1tbTwZDow0Z6uurkJNTQ22bt2alomW2dJplMi269HU6cKKEnuqw6EZau/1oMCxeMr9TGZJoRVvHu5GgcPIC4Vp6PDpAVhNGhRmj5wbjDa2THd5mQboNAocPNmPYDiKktzFNzMpXQy6AnB6glhTngkBPK7SzEzp0+ejH/1osuMgIiIionkkGIriVPswqpc72EhzlkpyTXjzcBfK8s1QKeWpDmde8ng8iIliPBk+ymq1QhRFeDyeBZFwmYmyfAveONSJ0lzzoq4/na6C4Sj6nQFe0DiLTqNEvsOAk21OrKlgOal00trjRiAUxdoF+nezGjXYWJmNfcd6EY2JqCjgLIb5JhiOorHThaWFFigVPKeimZtx0S6fz4fm5mY0NTXFf4iIiIhoYTjWPIS8LANraSaATqNEhkWLtl42kpuIKKggQIg3ZxvldDohk8lgNBpTFFnqadUKZNv1aOlxpzoUmoGOPi+ybDpeDDtHWZ4ZA8MBuLyhVIdCU+T1h3GqbRhrKjIhX8ANDHUaJTZWZqNn0I8TrUOpDofOIkoSTrYNI9uug9nAElQ0O9M+irW0tOCSSy6ByWRCeXk5Kioq4j9ERERElP56Bn3w+MOoyLekOpQFoyTXjLYeN2IxMdWhzDtD7iAONzpRuWoN6urq4klxp9OJuro6VFdXL8pyKWcryTWjo9eLSDSW6lBoGiRJQkefF4WOxXtBZyJKhRwluWac7hhOdSg0BTFRwqFTAygvsCyKBoYatQIbVjjQO+RHU6cr1eHQGe29bshlQH4Wj6k0e9NOiH/qU59CZmYmamtrYTAYUFdXh2uuuQa7du1KRnxERERENIci0RgaWoZQWWpf0CPA5prZoIZJr0Z7nzfVocwrg64ADpzow6qyDLz/+muxYsUK1NTU4A9/+ANqamqwYsUKbNu2LdVhppxeq0SGRYPWHs4ySCf9zgCUchmsJo5kHE9RthEubxhOTzDVodAkTrc7oVbJUZS9eBKRGpUC1csdaO1xo50zvFLO6QmizxlAeYEFMvZjoASYdhG6t956C8ePH4fNZoMgCFi7di1+/OMf47rrrsM//dM/JSNGIiIiIpojx1ucsJs1yLBoUx3KglOWZ8bBU/0oyDLwYgNGk+H9WF2RgSyrDgCwfft2bN26FR6PB0ajcdGPDD9bSa4Zdcd7UZJj4v6TJtr7PMh3GFIdxrwll8tQlmfGqbZhXFSZnepwaAIubwgdfV5sXp276BrD6jRKVC934J2jPdBpFLCbeW6UCqFoFKc7hlGWb4FayV4alBjTPpOKRqOw2WwAAJ1OB7/fj9zcXDQ2NiY8OCIiIiKaOz2DPgy6AlhebEt1KAuS1aSBXqtEB0eJx5Phayoy48nwUSqVCna7ncnwc4zOMuD+kx78wQic7iByM5gQv5B8hxH+UBQDw4FUh0LjEEUJ9Y2DqCiwLNqmvkadCqvKM3DoVD/8wUiqw1l0JEg43T6MTKsWNiNn21DiTDshXlpaiiNHjgAAVqxYgaeffho/+9nPFm3XdyIiIqKFIBiO4ljzIFaVZ0CpYPO3ZCnPt6Cpy4WYKKU6lJQZ9oRw8ORIMjzTytF201GSa0JztxviIt5/0kVHnxfZdj2UCo7mvxC5TEB5vhmn2p2T35nmXHOXC0qFDAWLvA5+llWH4hwz9p/ogz8QxODgIMLhcKrDWhQ6+ryIxSQUOkypDoUWmGlf4vv85z+P7u5urFq1Cg8//DCuv/56BINBPPPMM8mIj4iIiIjmQH3jIHLsBk4HTjLb6CjxXg+KchbflztvIIL9J3qxvMTGZPgM2M1aKBUy9Dn9yLbrUx0OTUAUR5ppVi3LSnUoaSE3w4DmTjd6h/xw2HSTP4DmhDcQQXOXGxevyll0pVLGU5xjxJs1/8CrfzkKSBJkMhmqq6uxbds2yGS88JUMLm8Q3QM+rC7PYN1wSrhpJ8Rvuumm+O+XX355/MqYXs8TMiIiIqJ01NbjRjAcxbolmakOZVEoz7fg0Kl+5DuMkMsWzxe8QCiK2oZelOVbWEZiFopzTGjtdjMhPo/1DvmhVStgNqhTHUpakMkElBdYcKrdiSyrlsnXeUCSJBxtHEBpnhl6rTLV4cwLu3fvxkBPCy6/7DJYrVY4nU7U1dUBGOl/QYkVjsZw6kzdcI1qcZbroeSa9mWsT3/60zh69Gj8/0qlkslwIiIiojTlDURwsm0Yq8oy2KhvjthMGug1SnT0eVIdypwJR2KobehFfqYBRdmLb2R8ImXb9fAFI3B5Q6kOhSbQ3udBAZtpTku2XQcBAnqH/KkOhQB09nsRjUkoXoQzmcYTDodRW1uLqqoqWK1WAIDVakVVVRVqa2tZPiXBJEg43TEMu0kLu4l1wyk5pv2tp6mpCWvXrsWmTZvw05/+FD6fLxlxEREREVGSiaKEI6f7UZpn5kjGOVaWb0Zz5+KoJR6Niag73gu7WYPyAkuqw0l7cpmAAocRrT3uVIdC4/AGIvD4wsjhCP5pEQQBZflmNHa4IEkL/7g4n0WiMZxsG8byEhtki2gW04V4PB6IohhPho+yWq0QRREez+K5wD0XOvu8iERFFPKCDCXRtBPif/rTn9Da2orrr78eX//615GTk4O7774bb7/9djLiIyIiIqIkaewchkwQUJLLLxxzzW7WQqdVom2BJzVjooQDJ/qg0yixvNiW6nAWjAKHEX1DfgTD0VSHQudo7/EgN8PAGTcz4LDpIEoSOntdbFqYQqfah2E3a2DjyNw4o9EImUwGp3Ns81en0wmZTAajcXE3HU0kly+ErgEflhZaIWf5JEqiGX1K5+bm4otf/CJOnz6NP/zhD+jo6MDmzZsTHRsRERERJcmwJ4S2Hg9WlWewXmuKLC20ornLhUhUTHUoSSFJIzMQBEHAqjLuZ4mkUSmQZdOhvZejEueTWExE14AXBdlMjs2EJEnobz2Anz/zAzz11FN48skn8dJLL0EUF+Yxcj5y+8Lo6vdhaZF18jsvIiqVCtXV1airq4snxZ1OJ/btq8XadeuhUqlSHOHCEInGcKrdibI8M+uGU9LNag97+eWX8cwzz+DVV1/F2rVrExQSERERESVTNCbi8Ol+LCu2Qadhs6xUMRvUsJk0aO5yYUnhwks+HGseQjAcw4blDk67T4KibBPqjvehNM+yqJqzzmc9Q34YdSoY2IRwRnbv3o225tO4/HI2LUyVhuZBlOUzGTmebdu2AQBqamogiiJkMhlKK1Yiu2RtagNbIERJwsl2J2wmDexmbarDoUVg2ke59vZ27Nq1C7t27cLw8DDuuOMOvPXWW1i3bl0y4iMiIiKiBDvR6oRRp0JeJpu+pVpFgRVvHelGYbZxQSUgTrY54fQEsbEym6UjksRsUEOvUaBn0Mf38jzR1uNBUQ5Hh8/EaNPCLVu2nNe0sKamBlu3buUo3CTr6vciEhPZ+HgCMpkM27dvx9atW+HxeEbKqMgVqDnYiYHhADIsTOLORluvG5IIFOeYUx0KLRLTPjstKSnBK6+8gsceewzd3d34wQ9+wGQ4ERERUZroG/Kjz+lHZak91aEQAL1WiZwMPRo7XKkOJWFaut3oHvChepkDSoU81eEsaEU5JrR2L+w69OnC7QsjEIrAYWMzzZlg08LUikRFnGhzYnkxG2lORqVSwW63Q6VSQSGXYWmRFQ0tQxAXQZPsZBkYDmBgOICKIgtkLK9Gc2RaCfFYLIZ//OMfeOmll/CRj3wEGs3Mmyx8//vfR3V1NdRqNW677bYxy+rr67Fp0ybodDqsWLECr7zyypjlv/3tb1FWVgadToerrroKra2tY5Y//PDDyMzMhNlsxt13341QKDTjOImIiIgWilAkhvqmQawszYBKyUTlfFGWb0b3gA9ef/o3kOvq96Kp04Xq5Q5o1AtnxPt8lWXVIRyJwekOpjqURa+914O8TAPL18wQmxamVmPHMGxGlqqYidwMA1QKGVoXeJPsRAuHwxgcHITL60dj50jpOLWC5w00d6aVEJfL5bj66quhVM6+Jlpubi6+9KUv4WMf+9iY2yORCK6//nrccMMNcDqd2LlzJz7wgQ+gr68PANDQ0IA777wTTz31FAYHB7F69Wrccsst8cc/88wzeO6557B37140NTXh+PHjeOSRR2YdLxEREVG6O9o4iGy7DplWfuGdTzQqBYpzTWhoGUp1KLPSN+RHQ8sQqpZlQc8aynNCJhNQmG1CWw9Hz6ZSNCaie8CHAgeTtjM1UdPC2tpaVFdXs1xKEnn8YXT0edlIcxZWlNrR2OFCMBxNdSjzniiKeOmll/Dkk0/iqaeewj9++zNIA0dhYE8bmmPTLplSUVGB7u7uWW/4gx/8IG688UZkZGSMuf3VV1+F3+/H5z//eajVatx6661YuXIlXnjhBQDAs88+i6uvvhrbt2+HVqvFY489hkOHDuHo0aMAgF27duHBBx9EaWkp7HY7du7ciV27ds06XiIiIqJ01t7rgS8YwdIF2LxxISjJNSMQiqJn0JfqUGZkyB3EkcYBrFuaBbNBnepwFpX8LAP6h/0IhpiISZXuAR/MBhWbFM/Stm3bsGLFCtTU1OAPf/gD9uzZA3t2cbyZISVHQ/PQSCNNzuqZMaNOhdxMPU62OSe/8yK3e/duHDt2DFu2bMGNN96IrZdfBk9fK47Wvp7q0GiRmfYR75Of/CRuvfVW7Ny5E8XFxZDJ3s2pl5aWzjqg+vp6rFq1asx6165di/r6+vjyDRs2xJcZjUaUlZWhvr4elZWVqK+vx9q1a8c8tr+/H729vXA4HOdtr7u7e9wEf0NDw6yfCxEREdF84A9GcKLViQ0rHGxwOE/JZQKWFdlwrGUImRZtWv2dXN4QDpzow6qyDNhMMy+pSDOjUsrhsOvR1uvBEl7wSon2Xg9K89gIbrbObVqo0xvw9tE+uLxhWHlsSYquAS9CkRgbaSZARYEFNQc7MewJwWLkheHxTNQ8d0N1NV7bswfL110MRQIqUhBNxbQT4nfffTcAYPv27RDOFLuXJAmCICAWi806IK/XC4vFMuY2i8USrxM+0fLRJhvnLh/93ePxjJsQ/9GPfoQvf/nLs46biIiIaD4SRQmHTg2gONfEkbvzXJZNh7ZeD5q6XKgoSI/Epi8QQd3xPiwvtiHLpkt1OItWocOIuuO9KMu3sIb1HHN5QwhFYsiycv9PlNGmhcDI7JnGTheqmRBPuGhMxIlWJ1aVZbCRZgIoFXKU5VlwonUIG1fmpDqceelCzXMlUUTQ74XBnB7nP5T+pp0Qb25uTkYccQaDAS6Xa8xtLpcr3kRjustHf5+oCce9996LG2644bzbGxoasGPHjpk/ESIiIqJ5oKnLBUEASnM5ejEdLC+24a0j3cjJMMAwz+twB0JR7GvoRVmeGbmZhlSHs6iZDWroNUr0DPqQx7/FnBptpsmEYnIUZBnQ1DkMlzfEi7oJ1tgxDItBjQwL+4okSoHDiNYeN3oGfci261MdzrxjNBohCAKcTueYpLjT6YQgk0Gj4+cXzZ1pJ8SLioqSEUfcypUr8cQTT0AUxXjZlIMHD+L222+PLz948GD8/l6vF42NjVi5cuWY5Zs3b44/NjMzc9zR4QCQk5ODnBxevSMiIqKFx+UNoaXLjUtW5zBZkyb0WiVK88w4cnoAm1Zmx2dkzjfBUBT7jvUgP9OAohxOtZ8PinJMaOp0MSE+hyJRET2DPlyyOjfVoSxYcrkMxTkjo8TXL81KdTgLhjcQQXuvF5vXcN9NJJlMwNIiG060DiHLquO51zl8QRFZBUtRW1uH6uoqWK1WOJ1O7KutReny1SyXQnNqRsUJf/3rX+M973kPVq9eDQDxphfTEY1GEQwGEY1GIYoigsEgIpEItm7dCq1Wi2984xsIhUJ44YUXcOTIEdx8880AgB07duDFF1/E7t27EQwGsXPnTqxevRqVlZUAgDvvvBPf+c530NzcjKGhITz22GO46667ZvI0iYiIiNJWLCbi8OkBLC2ystFbminOMQGQ0NLtTnUo4xpJhvci265HeYEl1eHQGVlWHcKRGJyeYKpDWTS6BrywGDU8xiZZgcMIpzsIjz+c6lAWjOMtQyjONUHLRpoJ57DpoFbK0dbrSXUo84rbF8aBk3247pr3orLy3ea5r+3Zg+yiclRWX5rqEGmRmXZC/Hvf+x4+//nP44orrojX9bbZbPjGN74xrfU8/vjj0Gq1+OpXv4oXXngBWq0WH/vYx6BUKvGnP/0Jv//972GxWPDII4/gd7/7HbKyRq4GL1++HLt27cI999wDm82GAwcO4Pnnn4+v9+6778Ztt92GDRs2oKSkBBUVFXjsscem+zSJiIiI0trxVif0GiUKHOOXjaP5SyYTsLIsA40dLngDkVSHM0YwPJIMd9h1bOA4z8hkAgocRrR1MwkzVzp6vSjkMTbplAoZCrONaOpwTX5nmlTvkB/+YAQlLKWWNMuKbWjsGEYkOvs+ewuBPxhB3fFeVBRYkZtpxPbt2/HQQw/h/vvvx3V33ItVF10WrxBBNFcESZKk6Txg6dKl+P3vf48VK1bEpzfEYjE4HA4MDAwkK845t3//flRVVaGurg7r169PdThz7ghPNmiRWJXPE0EiWnj6nQEcaRzA5jW5UCvlqQ6HZqi5y4WuAR82rcyZF40Sg2dqhmdZtVhaZEt1ODSOcCSGPQc6cOmaPGg48jOpnO4gDp3qx2Xr8lkWYQ6M7Nud2LQqZ973V5jPYjERNYe6sIKNkJPu0Kl+qJVyLCte3J+XwXAUe+t7UJhtHPciDHNPybFY8xzTyeVO+xJMf38/VqxYAQBjahpOM69OREQpFA6HMTg4iHCYU08p9bg/JlYkGkN90wBWltmZDE9zxTkmqJVyHG8ZAjD375Wzt+cNRPD20R5k23VMhs9jKqUcDpse7X0cJZ5sbT0eFDiMTIbPEZVSjgKHAc2dTJ7NRlOXCwatksnwObCk0IqOPi/8wfk102sujc4qy8nQc0YCzTvTHjawZMkSvPrqq9i6dWv8ttdeew3Lly9PZFxERJQEoihi9+7dqK2tjTcvrq6uxrZt2zhNjeYc98fkaGgZQoZFiywrv+ymO0EQsLo8A28c7MCJI2/h+NHDc/JeOfe9KQgCHIXLcNWVV6Ekz5Lw7VFiFWYbUXe8F6V5lnkxs2AhCoaj6HP6sawkP9WhLCpFOSa8frATZUEz67bPgD8YQWu3Bxevykl1KIuCVq1AYbYRJ1qdWLcIG8KOJsMzrVqWWKN5adoJ8UceeQQf+MAH8PGPfxzhcBiPP/44vve97+FXv/pVMuIjIqIE2r17N44dO4YtW7bEy17V1dUBALZv357i6Gix4f6YeH1Dfgy5gti8Ji/VoVCCqJRyeHqPoqXx1Jy9V8Z7b9bW1uLU0XdQksf35nxnNqih1yjRM+hDXqYh1eEsSB29XjjsOs7CmWMalQJ5mUY0d7lRWWpPdThp53iLE4XZRuhZcmbOlOSaUXOwE0PuIGwmTarDmTOjyXCWWKP5bNpDSq699lr87ne/Q319PQoLC/HKK6/gxz/+Mb+4EhHNc+FwGLW1taiqqoLVOnKV3mq1oqqqCvv27UPvoBveQASRqJjiSGkxmGx/dLp8EEWWY5uOSDSGo82DqCzNgFLBEfYLRTgcRv3hg9iwofq890ptbW3Cy6dM9N6srq5OyvYoOYpyTGjtdqc6jAVJFCW093lQlG1KdSiLUnGuCd0DXgTD0VSHklZ6h/xw+8MozWPZirmkVMhQUWDB8ZahRVNmOBiOYt9RJsNp/ptRp5UrrrgCV1xxRaJjISKiJBBFCS5fCM1t3YjFYvEExyir1QpRFHH4RCeUagNCkRjkMhkMOiWMOhWMOiUsRg2MOuWY3hFEMxUTJTS29V5wf3zrYDNUWiMsRg0cNh0cNh1UHIl3QceaR0qlZFq1qQ6FEsjj8UAUxQnfKx6PB3Z74kZKzvX2KDmyrDocbxmC0xOE1bh4RiXOhZ4hHzQqBcwGdapDWZS0agWy7Xq0dLkXfbPCqYpERTQ0D2JFqR0KOS+Yz7X8LAPaejzoGlj4s3b8wQhqG3qRbdezTArNe9NOiJtMJrjd5482sNlsGBoaSkhQREQ0O6IoYcgdRPeAD71DfqiUMph1WshkMjidzjGJDqfTCblcjsury6BSqSBJEoLhGLz+CLyBMJzuEJo6XYjGJFiMathMGlhNapj16ik3kgqHw/B4PDAajVCpVMl62nO+LZqecCSGlm432ns9UCtxwf1x28VLEJNkcLqD6B704XjLELLtepTkmmDQ8e86anR/D0TlcLpZKmUhMhqNE75XZDIZjEZjQrcnCioAwpxtj5JDJhNQ4DCirdvDhHiCtfV4UJTN90EqleaZ8ebhLpTmmXmxfApOtw/DYlSzt0iKCIKApUVWHGkcQLZNB/kCvSjh9oVRd7wXxTkmNtCktDDthPhimeZBRJSOgqEo2no96OjzQKWUI8euxyWrc+KNh3o3bEBdXV18KvxoHdrq6up48lgQBGjVCmjVijEjTQOhKJzuIIbcQXT0eRAKx2A1aWA782PSq85LkM9l08RUNGhk8n1qYqKExo5htPV4kGXTYmNlNgw6Ffx9k++P2kwDcjMNCIajaOvx4O36HmTZRprzaFQzmui2IJy7vwMCVq1eC/k6JsQXGpVKherq6vPeK/v21WLFyjUJO/bEYiJOdwyjvdeLFSvXTPrepPmvwGHEngMdCIai0KgX7/EykVzeEPzBKBx2fapDWdR0GiWybDq0dLs5CnUSLm8IXQNebF6Tm+pQFrUMixYmvQrNXW6UF1hSHU7CDbmDOHCiD0uLrMjP4gVDSg9TPjN65JFHAACRSCT++6iTJ0+iqKgosZEREdGUOT1BtHa7MTAcQLZdj+rl2TDpz09abNu2DQBQU1NzXtJ4Mlq1Ip6cBEaS70PuIAbPJMjDkfMT5HPZNHEut5WK5Hu6cnqCqG8chFatwMWrcsY0cprO/qhRKbCk0IriHBNOdwzj9YNdKC+woCjbuChL+Uy0v+/erWRflwVovPfKytVroc+qxNGmQSwptM64brwkSege9OFk2zBMehU2r8mFujofu3fvntFnBc0fKqUcDpse7X0eVBQwaZgIbT0eFDgMkE9xhhwlT2muGW/X96Ak1wSlgqPExyOKEuqbBlFRYFnUgwjmi6VFNrx9pBv5WYYFdZGyd8iPI6cHsKo8Aw4bZyFQ+pjyu7CmpgYAEI1G478DI9Ods7Oz8dOf/jTx0RER0YREUULPkA+t3W4EwzEUOoxYUWK/4NRRmUyG7du3Y+vWrbMe2axRK5B7VoI8cCZBPuQKorXHg1AwhH3v7MPll192XiO4mpoabN26dcbbjsZERKIiwpEYojERgUAI+/btw2WXnb+t1/bsgSWvEnK5ApI0kvwRBAGCMDIaXhb/V4BMJkAhFyCXy6CQyyCXCVAqZJDLZFAqZFApR/595e+70dDQMCfJ93QVi4k41T6Mzn4vlhXbxq2ZOJP9UaWUY0WJHQUOIw6fHkCf04+Vpfb4LIjFYLTp4ej+ByTuvUXz00TvlXAkhobmIbx+qBOleWbkZxmnnKiLxUT0DPnR1OmCTBCwosQ2Zjp9oj4rKLUKs42oO96L0jwLk7izFAxH0Tvkw6UsTTUvGHQqZFg0aO3xoDzfkupw5qWWbjdkwkj5JEo9g1aJvEwDTrUPY1V5RqrDSYiWbjeaOoexflkWbCaW56L0MuWE+D/+8Q8AwP3334+nnnoqaQEREdGFhSMxtPV60N7rgUalQFGOCdk2/ZTreQMjU/AT3RRNq1YgL9MQT3x2dPXgHWn8xmyxWAz7jrTCYrVBLhcgAPEktShKiIlS/N9YTEIkGkM4OpIEj0RFABKUipGktVIhQ9DvnrAJnCSKMKpEWKyGeBJckqR4clw887sojWwzGhMRjYoIhqIjv8ckxM78G47GEAiEsH9f7biJ/j179qBseRWMei3UKvnIj1K+6EYwD7mDqG8cgEE7Mtp0slFJM9kfjToVLl6Zg9Mdw3i7vhuryjIXTTNJNj1cvM59r6iUcqxZkokhdxCnO4Zxun0Y2XY9Mq1aWAzqMRdIJUlCIBTFsCeEQVcQvUN+mAwqVBRY4LDpxj1OJeOzguaW2aCGXqNEz+DCb+aWbG09Hjhs+gU1sjPdleZZUNvQg+IcE5tFnsPjD6Op04VNq3IW3XnofFaWb0bNwU64vKG0bswrihIaWoYw6ArgosocGLSLZ2AKLRzT/jRnMpyIKDkmq0ft8obQ1utB76APmRYd1i3JgsU4f0+ksjJskMvlEzZmy3HYAUF+JiF9JiktSpDJBCgVcshlIyO25XIBSrk8Pjp7NBF+9sl9OJyBt/4+/rbkcjnKihwJG904ODiI/a9KEyYje/qGMKg1IhSKIRiOQpQkqJVyaNUK6LRK6DVK6DQK6LVK6NSKKTfWSYd65dGYiJNtTvQM+rCs2IbcjOQmX2QyAUsKrbCZNDh8uh9F2SaU5pkX/Be/uW6ySPOfzaTBRSuy4fWH0TXgQ1OnCy5vGDIBUCrlkCQJ4YgIhVyA2aCG3axBWX7OoppZsZgV5ZjQ1OliQnyGwuEwhoddaOl04+I1BakOh85i0qtgNqjR3uthEz+8e66o1xtw5PQgygssTFTOMyqlHGX5FhxvGcLGlTmpDmdGIlERh071IxYTsWllDhvbUtqadkK8u7sbX/jCF/DOO+/A4/GMWdbW1pawwIiIFosL1aMGBPQ5/WjtdsMXjCA/y4hL1+SlxeikiRrB1dXVYcOGDSjNt83JthLdBO5CyUi5XI4Nq4rGbC8SFREKR+EPReEPRuELRDDoCsAXjCIUjkGvVcCoU8GkV8W/2J09yild6pUPugKobxyESa/CJasnHxWeSBkWLTatzMGBk/3wBiJYVZYxrRkT6UalUmF55Wrs21eLDRuq2fSQ4gw6FZYUjvz9RXFkVks0Kp4pByXjl9ZFKsuqw/GWITg9QViNnNI+VWd//sZiMQiCDPBsmHefv4tdWZ4F+0/0odBhnPIgg4Xm3HNFQRBQULICG2+9IdWh0TgKHUZ09HnQ2e9NuwuV/mAE+0/0waxXY8XSLJbiorQ27W+rH/3oR+H3+/Gv//qv0OvZXZuIaLbGa45XW1sHpyeIrOJ1UCvlI2VR7Pq0O+mYTRPP+bqt6SbfR0a1q2DQnZ+kjMZEeHxhuP1huH0jIzt9gQiMOhWsJjVsJg3q9tbgxPH5W688Eh0ZFd475MeKEhuy7ak5N9BplNhYmY0DJ/qw/0Qf1i7JXLDTp8ORGEw5q1Amk7HpIU1IJhNGLkzx+siiJ5ON1BBu6/YwIT4Nc9msm2bOYlTDqFOio8+LohxTqsNJiXG/S9TV4e9//zv31XlIJhOwosSOgyf7kGXVpk1T2H5nAEcaR2ZklrFuPy0A006I7927Fx0dHZyOS0SUABM1x6uuHmkGeeUVVyDTlr7H20Q28ZxP20pU8l0hl8Fq0sB6VhOaSFSE0xOE0x3EiZYB1NWOX698PjRPHBgOoL5pEFaDGpeuyU356FOFXIaqZQ4caRzAO0d7UL3ckfKYkuFY8yCyMwyovOhaXPPebfO+lA4RpV6+w4iaAx0IhqJpMcss1di8OL2U5plx5PQAChzGBT1DbDwTfpfgvjqv2UwaZFp1ONHqxMqy+d1gU5IkNHa60NbjXlQ9e2jhm/bZUHZ29oKvzUlElGzhSAzeQATtHT2IxWLj1qOGJEEmhVMUYWLNZWO2udhWMpPvSoUMWVYdsqw6ZBgkvIaJ65WnqnliOBLDiVYnBlwBrCixw2HTzXkME5HJBKwuz8Cx5iHsO9aLDSsWVlK8Z9CHYW8Yl67JBcCmh0Q0NWqlHA6bHu19HlQUWCd/wCLH5sXpxW7WQqtWoLPfiwJH+g4kmQnuq+lraaEVrx/qhNMdHDM4Zj6JREUcOT2AQDiKTSvZe4QWlmnPJf7a176G+++/H52dnRBFccwPERGNiMVEeP3heP3v4y1D2H+iD28c6sLLe1vx6v4ONDQPQZKr4/Woz8bmeOlhNBmZrJE3Z9crP9vI/wWc6gqgs9+LaCyxn8HhcBiDg4MIh8+/INM14MXrhzohCMCla3LnVTJ8lCAIqCy1w2JUY9+xXoQjsVSHlBDhSAzHmoewqsy+YMvBEFHyFGYb0d7rQUyUUh3KvHehz1+en81PpXkWNHe5IC6y/Zv7avpSKeVYUmjF0ebBeXlc9vrDePtINxQKAZsqs5kMpwVn2iPEb775ZgDAf/3Xf523LBZbGF84iYhGjXZrn2gEcCAUhdsXhscfRiAYhT8YgT8URTgSg1oph1atgE6jhFatQLZNB61aAa1GAbVSHp9t07dhw5w0g6T0M1m98nyHGZ39XhxrGkSmVYtsux6ZFu2Mm0pdqIGn2xfBidYhhCMi1lRkwm6e/9MlK0vtONo0iH3HenFRpQOSGEvr8iLHmgfhsOnS4rUnovnHbFBDp1GivccJo1pK22PhXBj9/GXz4vSRadXiVLsMPYM+5KZZo8LZUKlUWLFyDffVNJWfZUTPoB+n251YWmRLWRznfuftGvDiWNMQKgosi7Y2Py18006I/+Mf/0hGHERE88pEicGNl1yGIXcIg64gXN4QJAkwGVQwaJUw6VVw2HXxBPhUG2DOZeNJSj8X2j9kMhnys4wIhqLoGfKjucuN+saRpGm2XQ+7WTOtWpoTNXjtc/qRW7YeZXmWtKvPWVlqx+FTffiv5/+EjuYGSNL5r2E6OLdUChHRdImiiO7GOuz+wyEAUloeC+fSug2b0d7n5flZGinLt+BkqxPZdn1anavMhtcfhsFRiXJB4L6aplaW2vHmkS5kWnWwzXHplHO/8wqCDCUVlcgpXYeq5VlsxEwL2rQT4pdffnky4iAimlfGSwzu21eL9l4PNlx8GXIy9FhRYoNWrZh1X4W5bAZJ6Wcq+4dGrUBxjgnFOSb4gxF0D/hwss2JQCgCm0mLDIsGNrMWes3E++uFGrzu2bMHH7j+auh16XlS3N10AIM9Lbjssi1jRk4BwPbt21Mc3eRCkRiONQ9iTUUmS6UQ0Yzt3r0brc2n442a0+1YONeauzx4z7ZtyLa9j+dnacJh06Gp04WOPg8Ksxf+qNZgOIq6431YUmRD4cZrcTUbbacljVqBZcU2HDk9gEtW50KpmLtzvYm+89pMGlirC+csDqJUmFJCfM+ePbjssssAAK+88sqE97vyyisTExURUQpNlBjcsKEaNTU1WHbr9Uk5yWRzPLqQqe4fOo0SZfkWlOVbEAhFMTAcwKArgNMdw4jFJBj1Kug1SqhVcqiUcggAREnCwMDAhA1eJUlCMOBLy4R4OBxGXV3dee/nqqoq1NTUYOvWrfP+S+OxpkE4bHqWSiGiGZvo3CadjoVzacgdhD8YQV6WEXKZwPOzNLKsyIoDJ/uRm2lY0BeRI9EY6hr64LDr4sl/fpdIX7kZBvQ7A6hvHMC6pVlzss3JvvNeeeUV/FygBW1KCfHrrrsOHo8HACacdiMIAmuIE9GC0NbVP2FikN3aKZ1o1QoUOIwocIw0VAqGR2reB4JRhCIxeP3vNs00GN5tynT2vp/uTZk8Hg9EUUzb93P3gA9uXxibWSqFiGYh3Y+Fc+10+zBKcs1TLn9H84fVpIHFqEZzlwsVBdbJH5CGojERtQ19MBtUWJbCutOUWCtL7Xi7vgfNXS6U5JqTvj1+LtBiN6WE+GgyHBipMUREtBB5AxEcbxmCyx1akIlBIo1KAY1q4o/+DQuwwavRmL6J/mA4ioaWQaxdkrWgR7kRUfKl87FwrvU7AwiEosh38DVJV0sKrXj7SDcKHMYLnveko2hMxP4TfdCq5agsZbJyIZHLZVi7JBNv13fDoFUh06o9r9llIsUEJQCBnwu0aC2sTwciohkQRQnNXS40d7lRnGvCuiWZiLkWXmKQaDILscGrSqVCdXX1ee/nfftqsbxyzbx+Px9tGkRuhmHOGywR0cIz0bGwtraW5zZnkSQJJ9ucqCiwcHR4GjNolcjJ0ONU+zBWlWWkOpyEiURjqG3og06twKryjFn3MaL5R69VYk1FJg4c70Vg4BjqDx8875x8tk2QRVHC6Y5htPd6sGLlGn7npUWLCXEiWtTcvjCOnB6AQi5g06ocGLRKAAszMUg0mYXa4HW89/Oq1eugyViOQVdgXtbmbu/1wB+MYm1FZqpDIaIF4txjoSAIyCtejquuuirFkc0f3QM+AEBOhj7FkdBsVRRY8PqhTgx7QrAY1akOZ9aC4SjqzpRJqSy1Mxm+gGVYtPD21qO58dSYZpeJaII87AnhaPMglHIZLl6VA01VPnbv3s3vvLQoMSFORItW96AXvV0uVBRaUOgwjjmxXKiJQaKpWGhNmSZ6P/c5/Th4sh8XVWbDqJs/729/MIITrU5UL3dAzlIpRJQg5x4LDQYDao8PomcogLxMQ6rDS7mYKOFU+zBWlDDZuBColHKU51twrHkQF6/KSeu/qdsXxv4Tfci261gzfBEIh8NoOHo4oU2QI9EYTrYNo2fQh4oCCwrO+u7L77y0WPFbFhEtOpFoDMdbh9A75MfGldkoyjZNeJI8mhjkiQFR+jv3/Zxl1WFJoRV1Db0IhKIpjm6EJEmobxxEYbZxQYxoI6L5Z/RYqFarsaTQilPtw4iJUqrDSrm2Hje0agUyrfNv1hDNzEjSD2jr9Ux+53mqd8iPfcd6UJZnZjJ8kZhKs8upisZEnO4Yxp4DnYiJIi5dm4fCcb778jsvLUYJS4hHo/PjiyQR0YV4A2EcPj0ApVyGVWUZ82pUKBHNvQKHEflZRtQd70UkGkt1OGjscCEmSijPt6Q6FCJaBDKtWug0CrT1uFMdSkqFIjE0dbqwrJgJx4VEEASsKLHjdPswguH0yleI4kg9+6NNA1i3NAsFbPK6aJzdBPlsTqcTgiBAr598Ro83EMHxliG8tr8Dbm8YF1VmY3V5JtRKebLCJko7CUmI/9d//ReWLl2aiFURESXNwHAAR5uGkO8woCzfAvksG5IQ0cJQXmCBxaDG/uN9KR0lOegKoLXHjTUVGZCxmRsRzZGlhVY0dboQjqT+omCqnGx1Ituuh0nPgRILjdmgRm6GAceahlIdypQFQlG8c6wHTncQl6zKZXPtRebsJsijSfHRJsj5JcvxZn0vjjQOoL3Xg4HhAJyeIAZdAbT3enCseRA1Bzqxt74bkgRsrMzG+mVZHARGNI4p1xB3Op146KGHsG/fPqxYsQLf//730d3djbvuugtNTU148MEHkxknEdGMSZDQ1uNB/7Afy0usMOlYhoCIxlpRYseBk304crofayoy57zWaDgSw+HTA6gstUOnUc7ptolocTMb1Miy6nCqfRiVpQunf8RUDXtC6B/249I1eakOhZJkSaEFbx7uRme/d97Xy+/o8+BEqxOF2UaU5Vl4gfz/b+/eg9uqz/yPfyTZlmVJthRfYufmXEmCLwmJDeGSEH6wKR264dcL3UIzJduhsEC329t0Zgtshk65dMvssgvbHbJdoP0xLFAKXbYl0xJYcumFxg65OFfn4thJHMd2ZFvyTZbO9/dHahVjJ3EcO0ey368Zz1jnSOc8x/PkGeXR0fOdoIZaEL5/scvOnpha2rrV0tatnmhcccuSy+lUZoZL/qwMlczJVcDnJneACxj27ZHf+ta39Ic//EGf+MQntGPHDt111136i7/4C9166606evSoHn744VENrLa2VqtWrVIgEFBxcbH+8z//M7GvpqZGy5YtU1ZWlq688kq99957A177+uuva86cOcrKytLNN9+sY8eOjWpsAFJH3LK0v+6M2iO9KpuTRzMcwJCcTocWz8tXd29M++tCF37BKLIso521zSoIZqkw13tZzw0AknRFcVCnWjvVHum1O5TLyhijfXWtmjstoAxGCYxbLpdTZXPztL/uTNKsGfJxXT192rb3lI6e7NCS+QWaNz1IQ3MC618E+dvf/rbuv/9+ffvb39aqVavkdDrlz8rQrCk5ump+ga4tK9INi6bq2rIiXTW/QHOnBzQpO5PcAYZh2A3xd955R2+//bZ++MMf6n/+53+0ceNG/fjHP9b3v/995eTkjGpQsVhMq1ev1vLly9XS0qI33nhD3/rWt7Rp0yb19fXpL//yL7V69WqFQiGtW7dOn/70p3X69GlJ0r59+7R27Vr9+7//u1pbW1VeXq7Pf/7zoxofgNTQG4up5kirnE6HSmbnyp0+7C/FAJiAXC6nliyYrOa2Lh092X7ZznuwPiTLMlrI7FoANnGnuzR3ekB7j7bKmImzwGb9qbCMEfOZJ4CA363pk/3aWdssK4kWkY3HLR0+3qbf7WpUwO/WdeVTFGRECv6ExS6BseMww3zHk52drY6OPy+24vV61dnZOSZB7dmzRxUVFYpEInK5zn5S/9d//deyLEtr1qzRmjVr1NjYKOef5v9ef/31uuuuu/Tggw/qoYce0oEDB/T6669LOrtCb35+vqqrq1VSUjLoXI2NjWpsbBy0fd++fVqzZo2qq6u1ZMmSMbnOZLb7+OVrBABjoas3pn1HW5UbyFRxYbYcGvpT8rJpo/uBHoDU19XTpz/UnNKCmUFNyRvbr1YfPx3WoePturasiIWOANjKGKPf7W7UjMn+CdEg7u6N6bc7T+rqkkJmh08QlmVUtb9JPk+6rpyVq2g0qnA4LL/fb0vDsbGlUwfqQ/J50rWgOCgfc54xAdF7GhsTtc+xfft2LV26dFi93BHfLul2j93YAWPMoDsTjDHatWuXampqVFZWlmiGS9LixYtVU1Mj6ew4lcrKysQ+v9+vOXPmqKamZsiG+HPPPadHH310jK4EgB06unp14FhI0/J9KhrjZhaA8ScrM11LFxSoal+T3Oku5eZ4xuQ8LW3dOnAspIqFk2mGA7Cdw+FQyaxcVe9vUl7AI497fH+zbs+RVs0o9NMMn0D6x6P9ducJ7dv5ex3Yu2vQfOaP9hlGw1BN99b2bh2sb1MsbunKWZNUEMwa1XMCAC5s2O9yOjs7NWPGjMTj9vb2AY8lqb6+flSCmj9/vqZNm6bvfe97euihh/Thhx/qzTffVGFhoSKRiAKBwIDnBwKBxJzwc+0Ph8NDnuu+++7T6tWrB23vv0McQGpp7ejRoYY2zZ2WM2ZNLADjX47PrfK5+dpx8Owim3mB0a0nbeFe7aw9e+wcH2sbAEgOAb9b0wp82nOkVRULJ9sdzpg50RxRd29MV80vsDsUXGYZ6S5FTtXo2JFaLV++XMFgUKFQSNXV1ZKkVatWjcp5LMvSxo0bVVVVlWi6l5QtUkHxYvXGjOZMzdHUfB+zngHAJsNuiD///PNjGccA6enp+u///m997Wtf05QpUzR//nytXbtWNTU18vl8am8f+JWK9vZ2+f1nv9Z3of0fV1RUpKKiorG5EACXVWNrRMdPR7RwZlDZXhpMAC5NftCjRfPytbO2WSWzc0dtwcv2SK+2H2jSlbNyR73RDgCXau70oH6366QamsLjcnTK2cWTz2jJ/AK5aEZOONFoVLt37Ug0wyUpGAxq6dKl2rJli1auXDkq41M2btyovXv3Dmi6b9tWpVjM6P/efhu5BwA2G3ZD/O677x7LOAYpKSnRu+++m3j8hS98QcuWLVNpaal+8IMfJD5llaQdO3bozjvvlCSVlpZqx44diddFIhEdPnxYpaWllzV+AJePkVH9qQ61tPWoZHaessb5V3wBXD55AY+WLpis7Qea1N0b06wplzaP70xHjz48cFoLZ05SUd7oNNgBYDS5nA6VzclT9f4m5eZkKisz3e6QRo1lGe2qbdaMQj8LF05Q4XBYlmUlmuH9gsGgLMtSOBxWbm7uJZ0jGo2qqqpqUNO9srJCW7ZsUfy2VXKxSCIA2OqSBmTddtttoxXHILt27VJXV5d6e3v14osv6t1339U3v/lNrVy5Uh6PR//4j/+o3t5e/exnP9Pu3bt1xx13SJLWrFmjDRs2aOPGjerp6dG6detUXl4+5PxwAKkp1hdVuD2kWF+fLGNU29CmtkhUpXNzaYYDGHUBv1vXlBTpRHNEOw6eVixunfO50WhUra2tikajg/YdPx3W9v2nVTYnT1PyWd8AQPIK+N0qLszWztoWWZa58AtSxJGT7bKMNGdqwO5QYBO/3y+n06lQKDRgeygUksPhPOc3y4crHrd08OgpxePx8zbdAQD2uqTO0ZYtW0YrjkH+67/+S88995yi0agqKir0zjvvJD6pfeutt3TPPffo0Ucf1cyZM/XGG2+ooODs/LeFCxfqhRde0L333qtTp05p2bJleu2118YsTgCXj2VZ2rNtq47s3yVjWXI4ncqZMk/5c5aodHauXKO8CA4A9PN60rWstEh7jrRq686TgxbBGmpWaP8CXXHLaH9dSGc6elR55WRmhgNICXOm5ehMuEcHG0JaUDzJ7nAuWaijR8caO3RtWRFzmyewjIwMVVRUqLq6WkuXLh0wzqSoeIFaO/pUlHfxd293dEZ1/HRYJ5s7leV2JJruH22Kh0IhOZ2X3nQHAFy6S2qIGzN2dws88cQTeuKJJ4bcV1ZWpg8++OCcr73jjjsSd4wDGD/2bNuqU/WHdOOKFYk3r3/cVqV4s0eu2SvsDg/AOJfmcmrRvHw1nenSniOtqs8Ka87UHAWzM4ecFVpdXa2OzqgmTV+k/IBH15UXKT3NZfdlAMCwOBwOlc/N0+92NWqSP1MFk7Iu/KIk1dMb04cHz64HMZ5GwGBkbrnlFklnb/D76IfY5UuvU21Dmw41tGnaZJ/yg1nyeYbOl76YpY7OXjW3dav5TLf64nFNyfdpWVmRfJ50RZoqBzXdq6urVVFRMSozygEAl+aSGuLLly8frTgA4LxifVEd2b8r0QyXzn7t8OrKCm3avFlXLrlWaen8BwfA2Js8KUt5OZlqOB3RztpmWVZMf9y2bVB9Wrp0qTZt2qx7V6xQQW62zVEDwMXLzEjTonl52nGwWVdnFsqflXqNvLhl9OHBZk0r8I3a4shIbU6nU6tWrdLKlSsVDofl9/sTTerJk7xqbe/RidMRHT3ZLknyuNOVnuaUwyHFYpZ6onH1ROPyZ6VrUnamSubkKuBzD/jmwbma7v3bAQD2uqSG+Ntvvy3p7MIUP/jBD/T9739/VIICgI/r7uqUOccCOMay1NMVkS8neI5XA8DocrmcmlmUreJCv47WN+q356hPkpFLffYECQCjIDfHo3nTA9q+/7SuLStSRnpqfdNl75FWpac5NW96wO5QkGQyMjIGLaDpcDiUF/AoL+CRMUbdvTF19cQUi1uyjFG6y6VMt0tZ7jS5XOce13i+pjsAwH4XNXB3y5Yt+qd/+idt2LBB0tl5mc8884xmz56tn//852MSIABIkifLJ4fjHAvgOJ3KzGKBOgCXn8Ph0LSiPLlcriHrE7NCAYwHMwqzVRDM0ocHTit+noWFk01tQ0jtnb1aNC9PDgdzw3FxHA6HsjLTlRfwqDDXqyl5PuUHPfJnZZy3Gf5R/U13muEAkFyG3RBfv369Vq5cqSeeeEKf+tSn9NRTT+nWW2/V008/raeeekp79uwZyzgBTHAtHb3yTp6jbduqEk2nUCikbVVVmr2wnHEpAGzz0QW6PlqfmBUKYDyZXxxUeppLO2qbZVljt5bUaGloCuvE6YgqFkxm/QYAADDAsEemPPPMM3rllVd0xx136OWXX9batWu1du1a/fKXv+Q/egDGjJHRscYOtbb3aNmN/0dHaz7Qps2bZSxLDqdTsxeWq6TiBrvDBDDBMSsUwHjndDq06Ip8bd/fpF2HmlU+N3/AzORkcrIlotqGkCqvLFSm+5KmhAIAgHHIYYwZ1sf7gUBAbW1tkqR4PK7MzEy1tbXJ6x2fC5Ns375dS5cuVXV1tZYsWWJ3OJfd7uPtdocAKG5Zqq1vUzRmaf7MgNxpZ/9DE+vrU09XRJlZvku+M7xsWs5ohAoAkqRoNMqsUADjWjxuqWpfkzIz0lQ2Ny/pmuInmyPaf+yMli6YrByf2+5wAADnQe9pbEzUPsfF9HKHPTLFsv48K87lcsnv94/bZjgA+/X2xVRzpFUOp1Qye1KiGS5Jaenp8uUEGZMCIOkwKxTAeOdyObV04WRFY3FtP3BasSSaKd7QFKYZDgAALmjY3x/r7e3VP/zDPyQe9/T0DHgsSd/73vdGLzIAE1akO6r9x86oIJil6ZP9cii57jwCAACYyNJcTi1ZMFm7DzVr295TuuqKAltHkxhjVNvQppPNEVVeWSh/Fh9KAgCAcxv2u5Zrr71WW7ZsSTy+5pprBjxm1W4km1hfVN1dnfKMwlgNXD6tHT061NCmWVOzVRDIsjscAAAADMHldGjRvHzVNrTp9zWNWjwvX8HsTEljPz7qo8d3ONO050iLunpiWlZaxMxwAABwQcN+t/D++++PYRjA6LEsS3u2bdWR/bv+vPDignKVVN4gp3PYU4JggxPNEZ1siWjBzKByvHzNFQAAIJk5HA5dMSOobG+Gth84remTfTq6b5uqq6sHLTA8Gu/DLcvSxo0bVVVVJcuy5HA4VFS8QFdV3KCrSwqV5uK9PgAAuDA+Pse4s2fbVp2qP6QbV6xQMBhUKBTStqoqySGVXb3C7vAwhLhl6fCJdnV296lsTp4yMyhNAAAAqaIw16tsb4Z+9sYv1XqqTsuXL0+8D6+urpYkrVq16pLPs3HjRu3du3fA8auqqtRcv1NpCy79+AAAYGLgI3SMK7G+qI7s36XKigoFg0FJUjAYVGVFhY7s26VYX5/NEeLj+hfPtCyj8rk0wwEAAFJRmtPoRN0+VVYOfB++dOlSVVVVKRqNXtLxo9GoqqqqtHTp0gHHr6ioGJXjAwCAiYOGOMaV7q5OGctKvEnuFwwGZVmWjjY0qbOHpniyaI/0aNehFk3yZ2p+cVAuRtoAAACkpHA4LOs878PD4fCIj21ZRnUNpxWPx8fk+AAAYGLhVkyMK54snxxOp0Kh0IA3y6FQSE6HU8bp1t6jrXI6HMrxuZXty1B2VsaI7kpm0c5L09gaUUNTRHOmBZT7pwWYAAAAkJr8fr+c53gfLjl04ESXpscylB/wDGvhS2OM2iK9ag5162RzRE5Z5zy+0+mU3+8fi8sCAADjEA1xjCtp6emavaBc26qqEmNT+meIz76yXFfMzJeRUaSrTx1dUbW2devoiQ45nZLXk66szDR5M9PlcacpMyNtyIV5WLTz0sSN0dET7ero7FXp7FxlZfJhAgAAQKrLyMhQRUWFqqurE2NN+meIV1RUaGZRUI2tndpfd0YZ6S5lezOUlZkmd0aanI6zC3RG++KK9lkKd0fVEYkqPc2p/KBHi67IV9CfqZ7WynMePyMjw+4/AQAASBE0xDHulFTeIDmkTZs3/7lhvbBcJRU3SJIccsiflSF/Voam5vlkZNTdG1dXd586e/rU0tat7t6YevviSnM55U5PU6bbJXe6S5kZLjXs/UChxjoW7RyBnmhMB+pDSk9zqnxuntJcLrtDAgAAwCi55ZZbJElbtmyRZZ29o7uiokK33HKLnE6npuT7ZFlG4a6oOjqj6u6NKdwVlTFGxkjpaU5lpLtUnJMtf1b6oBsnznd8AACA4aIhjnHH6XSq7OoVWnjVterpiijzAiNNHHIoy52mLHea8uRJbLeMUbQvrp5oTD29MfX0xdXaFtHxQ3u18sYVgxbtfH/TZuXOKpfXkyl3Rpoy0l1yOhxjfr2p4ky4R4ePt6kw16tpBT45xN8GAABgPHE6nVq1apVWrlypcDgsv98/6M5tp/Ps6MIcn3tMjg8AAHAhNMQxbqWlp8uXE7zwE8/B6XAoM+Ps6BT5zm4Lt1s6aIZeLEjGUktLm5rTvYr2xRWLW8pIO3tXeWZGmnxZ6X8ay5I+oRrlljFqaArrdKhL86YHFPAxLxwAAGA8y8jIUG5ubsoeHwAAjG80xIGLcL5FOx1Op66cOzVxN3rcstQTjau3L67u3pjaIr06fjqivpglnyf97J0x/gz5PBlDNshTddHOj8Yddzh0qKFNliWVz82TO52SAwAAAAAAAPvQnQIuwnkX7VxYPqBx7XI65c10ypuZLn1k0fu+WFwdXX1qC/foUEOb+mJGk3Lcys3xKOBzS8ak5KKdgxYbdTjlnTxHc8qXqXhKYELdFQ8AAAAAAIDkREMcuEgXWrTzQtLTXMrNdik3++zokJ5oTK3tPWpoCutQQ5uip3aru7Uh5Rbt3LNtq07VHxoY97YqRU7slnNq8sYNAAAAAACAiYOGOHCRLnbRzgvJzEjT1Hyfpub71BHp0nt/PDDkop2bNm/WwquuTcrxKbG+qI7s35Vohkt/irsyueMGAAAAAADAxJK88xeAJNe/aOdoNnod8V7pHIt2GstST1dk1M41mrq7OmWs1IsbAAAAAAAAEwsNcSCJfHTRzo8KhUKSw6mYM8OmyM4tbllqbItJDseQcTucTmVm+WyKDgAAAAAAAPgzGuJAEvnoop39zeX+GeKFsxaq9nhYBxtC6onGbI70rPbOXu2sbZYll2bNLxsy7o8vNgoAAAAAAADYhRniQJI536KdljE63hzRztoWFeZ6NDXfrzTX5f9cK25Zqj8VVkt7t2YWZSs/kCVr+grtcTlHvNgoAAAAAAAAMNZoiANJ5nyLdjolzSzMUeEkr+pPhfXhwdOaku9T4aQsuZyXpzHe2t6tusYOeT3pKp+XJ3da2gXjBgAAAAAAAJIBDXEgSfUv2jmUzIw0XTEjqEh3VMdOdehUS0TTCvzKD2bJ6XCMSTxdPX062tiu3mhcs6bkaFJ25kXHDQAAAAAAANgpaWeI19XV6bbbbtOkSZNUUFCgL33pSwqHw5KkhoYGrVq1Sl6vV7NmzdIrr7wy4LWbNm1SaWmpsrKyVFlZqZ07d9pxCcCY83kyVDIrT3OnBdR0pls7Dp7W6bYuWcac8zWxvqjC7SHF+vqGdY7u3pgONoS0+3Crsr1uLbqi4JzNcAAAAAAAACCZJW1D/N5779WkSZN04sQJHThwQMePH9cjjzwiSbrzzjs1d+5ctbS06IUXXtBXvvIV1dTUSJJaW1t1++236zvf+Y5CoZDuvPNOrV69Wr29vXZeDjCmcnyZKp+bp+KiHJ1q6dL2A006fjqsaCyeeI5lWdr9wWb96uX1eveN/6dfvfycdn+wWZZlDXnM9kiPDhw7o12HWuROd2nJ/HxNL/DLNUZ3oAMAAAAAAABjLWkb4kePHtWdd94pj8ejYDCoz372s9q9e7dqa2v1wQcf6LHHHpPH49HKlSu1evVq/eQnP5EkvfHGG5o7d66+9KUvye126xvf+IYsy9LGjRttviJg7OVmn22MXzEjqM6ePn24/7T21rWqKdSpnX/YrFP1h3TjihX69Kc/rRtXrNCp+kPaU7VV0tmFMts7e1V3ql3bDzTp8Il2+bwZWjI/X8WF2UpPc9l8dQAAAAAAAMClSdoZ4l//+tf18ssva8WKFerp6dHPfvYzfepTn1JNTY2Ki4sVDP55RvHixYv13nvvSZJqamq0ePHixD6Hw6Hy8nLV1NTotttuG3SexsZGNTY2Dtq+b9++0b8o4DLJznIre4ZbsXhcrR09amkN69jB3Vp5442JfzvBYFCVFRV6f9NmxXLmqadPysxwKZjt1txpAfm9GXKIu8EBAAAAAAAwfiRtQ3zlypV64YUXlJOTI8uytGrVKn3ta1/Tq6++qkAgMOC5gUAgMV88EokMaJZ/fP/HPffcc3r00UfH5BoAu6W5XJoc9CrLGVWtMYP+bQSDQclYKsx2KL+gQGmupP3SCAAAAAAAAHDJkrL7FY/Hdeutt+q2225TZ2en2tvbNXXqVK1Zs0Y+n0/t7e0Dnt/e3i6/3y9JF9z/cffdd5+qq6sH/bz00ktjc3GADTxZPjmcToVCoQHbQ6GQHE6n8vNyaYYDAAAAAABg3EvKO8RDoZCOHz+uv/3bv1VmZqYyMzN1//3366abbtJjjz2mY8eOqa2tLXGn+I4dO1RaWipJKi0t1fr16xPHMsZo165duv/++4c8V1FRkYqKisb8mgA7paWna/aCcm2rqlJlRYWCwaBCoZC2VVVp9sJypaWn2x0iAAAAAAAAMOaS8pbQvLw8zZ49Wz/60Y8UjUbV2dmp9evXa9GiRZo3b54qKyv18MMPq7u7W5s3b9Zbb72lu+++W5L0mc98RrW1tXrppZcUjUb1L//yL5KkW265xc5LAmxXUnmDCovnatPmzXrzzTe1afNmFRbPVUnFDXaHBgAAAAAAAFwWSXmHuCS9+eab+sY3vqGnn35aDodDy5Yt009/+lNJ0iuvvKIvf/nLys3NVUFBgZ577rnEHeK5ubn6xS9+oa9+9av6yle+otLSUr311ltyu912Xg5gO6fTqbKrV2jhVdeqpyuizCwfd4YDAAAAAABgQknahnh5ebnefffdIfdNnz5d77zzzjlfu3LlStXU1IxVaEBKS0tPly8neOEnAgAAAAAAAONMUo5MAQAAAAAAAABgtCXtHeJ26+7uliTt27fP5kjsUdsUtjsE4LLoO+23OwQAAAAAACYcek9jY6L2Ofp7uP093fOhIX4OdXV1kqQ1a9bYGwgAAAAAAAAA4ILq6up0/fXXn/c5DmOMuUzxpJSWlhb9+te/1syZM+XxeOwO57Lat2+f1qxZo5deekkLFy60OxykEHIHI0HeYKTIHYwEeYORIG8wUuQORoK8wUiROxiJ8ZI33d3dqqur0yc+8Qnl5eWd97ncIX4OeXl5+uIXv2h3GLZauHChlixZYncYSEHkDkaCvMFIkTsYCfIGI0HeYKTIHYwEeYORIncwEuMhby50Z3g/FtUEAAAAAAAAAEwINMQBAAAAAAAAABMCDXEAAAAAAAAAwIRAQxwAAAAAAAAAMCHQEMcgRUVFWrdunYqKiuwOBSmG3MFIkDcYKXIHI0HeYCTIG4wUuYORIG8wUuQORmIi5o3DGGPsDgIAAAAAAAAAgLHGHeIAAAAAAAAAgAmBhjgAAAAAAAAAYEKgIQ4AAAAAAAAAmBBoiAMAAAAAAAAAJgQa4imora1Nn//85+X3+zVlyhQ9/fTTiX01NTVatmyZsrKydOWVV+q9994777Fef/11zZkzR1lZWbr55pt17NixAfsfeeQR5efnKycnR/fcc496e3tHFNdIYsPoStW8mTlzpjwej3w+n3w+n0pKSi762nFpkjV3nn32WVVUVMjtdusLX/jCoP3UHHulat5Qc+yXjLnT29ure+65R7NmzZLf71dJSYlefvnlAc+h5tgrVfOGmmOvZMwbSbr33ns1depUZWdna+bMmXr88ccH7Kfe2C9Vc4eaY69kzZt+LS0tysvL07JlywZsp+bYK1XzJunrjUHK+eIXv2hWr15t2tvbza5du0x+fr55++23TTQaNTNnzjSPPfaY6enpMa+88orJzs42TU1NQx5n7969xuv1ml//+temq6vLfP3rXzdXX311Yv9//Md/mFmzZpnDhw+blpYWc/3115vvfOc7Fx2XMeaiY8PoS8W8McaY4uJis2HDhtH7Q+CiJWvu/PznPzdvvvmmefDBB81f/dVfDdhHzbFfKuaNMdScZJCMuROJRMwjjzxiDh8+bCzLMlu2bDHZ2dnmd7/7nTGGmpMMUjFvjKHm2C0Z88YYY/bs2WO6urqMMcbU19ebhQsXmldffdUYQ71JFqmYO8ZQc+yWrHnTb+3atWb58uXmmmuuSWyj5tgvFfPGmOSvNzTEU0wkEjEZGRlm9+7diW3f/e53zec+9znzm9/8xhQUFJh4PJ7Yd91115lnn312yGN997vfNZ/97GcTjzs6Oozb7TY1NTWJ1z7zzDOJ/b/5zW9Mfn7+RcfV/9qLiQ2jK1XzxpjkL6LjXbLmzketW7duUGOTmmOvVM0bY6g5dkuF3On3yU9+0jz11FOJ11Jz7JOqeWMMNcdOqZI39fX1pqSkxDz22GOJ11Jv7JWquWMMNcdOyZ4377//vrn++uvN888/P6CxSc2xV6rmjTHJX28YmZJiDh48KMuyVFpamti2ePFi1dTUqKamRmVlZXI6nYP2SVJ9fb0CgYDq6+slnf1qxeLFixPP9fv9mjNnTuL5H9+/ePFiNTc3q6mpSZL0wAMP6IEHHrhgXP3HOl9sGFupmjf97r77buXn52vlypX67W9/Owp/EQxXsubOhVBz7JWqedOPmmOfVMmdzs5OVVVVJeKk5tgrVfOmHzXHHsmeN3//938vr9erGTNmqLOzU2vWrEkci3pjr1TNnX7UHHskc95Eo1F99atf1b/927/J4XAMiJuaY69UzZt+yVxv0uwOABcnEokoJydnwLZAIKBwOKxIJKJAIDBoX/9MoBkzZqitrW3AsYZ6fjgcHnJ//+/hcFiTJ0/Wj370o2HFdb5zfXxeEcZGquaNJL300ktaunSpJOnFF1/UJz/5Se3evVvFxcXDvn6MXLLmznDipubYJ1XzRqLm2C0VcseyLK1du1aVlZVatWrVec9Fzbk8UjVvJGqOnZI9b5544gk9/vjjqqqq0i9+8QsFg8Hznot6c/mkau5I1Bw7JXPePPnkk7rlllu0aNEiffjhh4PipubYJ1XzRkr+esMd4inG5/Opo6NjwLb29nb5/X75fD61t7cPue9cxzrf8z++v//3oY53vriGcy6MrVTNG0m64YYb5PF45PF4dP/99+uqq67Shg0bLnTJGCXJmjvDiZuaY59UzRuJmmO3ZM8dY4z+5m/+RidPntSrr76auBuGmmOvVM0biZpjp2TPG0lyOByqrKxUZmam1q1bN6xzYeylau5I1Bw7JWveHDp0SC+++KIeffTREZ0LYytV80ZK/npDQzzFXHHFFXI4HNqzZ09i244dO1RaWqrS0lLt3r1blmUN2jeU0tJS7dixI/E4Eono8OHDied/fP+OHTuUn5+vyZMnX1Rc/ce6mNgwulI1b4bidDpljLngNWN0JGvuXAg1x16pmjdDoeZcXsmcO8YYPfjgg9qxY4c2bNggn8834FzUHPukat4MhZpz+SRz3nxcLBbT4cOHE8ei3tgrVXNnKNScyydZ82br1q06deqUrrjiChUWFurv/u7vtH37dhUWFqqjo4OaY7NUzZuhJF29sW16OUbsrrvuMrfffrvp6Ogwu3fvNpMnTx6wwuwTTzxhenp6zGuvvTasFWbfeecd093dbb75zW8OWGF2/fr1Zs6cOebIkSOmtbXVLF++/LwrzJ4rLmPMRceG0ZeKeXPs2DGzefNm09vba3p7e8369euN1+s1hw4dGt0/Ds4rWXOnr6/PdHd3m4ceesjccccdpru720SjUWMMNScZpGLeUHOSQ7LmzgMPPGCuuuoqc+bMmUH7qDn2S8W8oebYLxnz5syZM+anP/2paW9vN/F43GzdutXk5+ebf/3XfzXGUG+SRSrmDjXHfsmYN11dXaaxsTHx8/TTT5slS5aYxsZGY1kWNScJpGLepEK9oSGegkKhkPnc5z5nvF6vKSwsNP/8z/+c2Ldr1y5z9dVXm8zMTLNgwQKzcePGxL5jx44Zr9drjh07ltj22muvmVmzZhmPx2NuuukmU1dXl9hnWZZ56KGHTG5ursnOzjZf/vKXTU9PT2L/fffdZ+67775hxXWh2DD2UjFv9uzZYxYtWmS8Xq8JBoPm+uuvN//7v/87un8YXFCy5s66deuMpAE/d99997Biw9hLxbyh5iSHZMyduro6I8m43W7j9XoTP4899tiwYsPYS8W8oebYLxnzJhQKmZtuuskEAgHj8/nM/PnzzZNPPmksyxpWbLg8UjF3qDn2S8a8+bgXXnjBXHPNNQO2UXPslYp5kwr1xmFMMt2vDgAAAAAAAADA2GCGOAAAAAAAAABgQqAhDgAAAAAAAACYEGiIAwAAAAAAAAAmBBriAAAAAAAAAIAJgYY4AAAAAAAAAGBCoCEOAAAAAAAAAJgQaIgDAAAAAAAAACYEGuIAAADAOFNSUqKf/OQndocBAAAAJJ00uwMAAAAAMHw+ny/xezQaVTwel8fjSWzbsGGD9uzZY0doAAAAQNJzGGOM3UEAAAAAuHgPP/ywtm7dqvfff9/uUAAAAICUwMgUAAAAYJyZOXOmfvzjH0uS6urq5HA49Pzzz6u8vFxer1c33HCDjh8/rmeffVbFxcUKBAK67777FI/HE8c4ceKE7rrrLk2dOlUFBQW688471dzcbNclAQAAAKOChjgAAAAwAbzyyivauHGjmpqaJEk333yzGhoadPDgQVVVVenVV1/Va6+9Jknq7e3VzTffrClTpujgwYM6cuSI0tLSdNddd9l5CQAAAMAloyEOAAAATACPPPKICgoK5PP5dMcdd+j48eN6/PHH5Xa7NXfuXC1fvlx//OMfJUm/+tWvFA6H9cMf/lBer1c+n09PPvmkNm7cqOPHj9t8JQAAAMDIsagmAAAAMAEUFRUlfvd6vcrPz5fL5RqwLRwOS5Jqa2vV1NSkYDA44Bhut1v19fWaNm3a5QkaAAAAGGU0xAEAAAAMUFhYqOLiYh0+fNjuUAAAAIBRxcgUAAAAAAN85jOfUV9fnx555BG1t7dLkk6fPq1XX33V5sgAAACAS0NDHAAAAMAAfr9fv//971VfX6+ysjJlZ2fruuuu0+bNm+0ODQAAALgkDmOMsTsIAAAAAAAAAADGGneIAwAAAAAAAAAmBBriAAAAAAAAAIAJgYY4AAAAAAAAAGBCoCEOAAAAAAAAAJgQaIgDAAAAAAAAACYEGuIAAAAAAAAAgAmBhjgAAAAAAAAAYEKgIQ4AAAAAAAAAmBBoiAMAAAAAAAAAJgQa4gAAAAAAAACACYGGOAAAAAAAAABgQqAhDgAAAAAAAACYEP4/KNG45iISeR0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/cAAAIyCAYAAACO1Dp8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACtlUlEQVR4nOzdeXRT1f428CdJk05pk6bz3NIJCoUyiYoMIgJFRWRQEZRRAQG5irMMFpEriCiKCuoFBBUU0HsRGRRBRQFBoNDSAqXQgTYtndukQ9rkvH/4Nj9CCzKkOW3zfNbqWuTsk5MnKbDPN3uffSSCIAggIiIiIiIiolZLKnYAIiIiIiIiIro1LO6JiIiIiIiIWjkW90REREREREStHIt7IiIiIiIiolaOxT0RERERERFRK8finoiIiIiIiKiVY3FPRERERERE1MqxuCciIiIiIiJq5VjcExEREREREbVyLO6J7ET//v0xd+5csWMQERFRM2FfT2TfWNwTtQIXLlzAmDFjEBAQAKVSiYCAAAwdOhRarVbsaKLZtGkT+vTpA3d3d0gkEtTX14sdiYiI6Kaxr2/s5ZdfRlxcHNzd3eHv748xY8YgJydH7FhELRaLe6JWYOjQoXBzc0NKSgp0Oh2OHz+ORx55BBKJROxoovHw8MDTTz+N9957T+woREREt4x9fWMSiQTr1q1DUVER0tLSIJFI8MADD4gdi6jFYnFP1MIVFxfj9OnTmDZtGjQaDQDA19cX48ePh5+fHwBg3bp1CAoKsnje66+/jrvuustiW1lZGUaMGAE3NzdERkZi/fr15rbs7GwMHToUGo0GKpUKnTp1wv79+y2Ov2LFCgQFBcHT0xOTJk2CTqczP3/+/PmIjo6Gm5sbgoODMWvWLFRVVZnb6+vrsXz5csTGxsLNzQ1BQUFYsmSJuf3PP/9E//794enpidDQUMybN++ao/GDBw/GmDFj0K5duxv9SImIiFoU9vVN+/e//43u3btDoVBArVbjxRdfxIkTJ1BaWnqjHzGRXWBxT9TCeXp6Ii4uDlOnTsXatWtx8uRJmEymmzrWf/7zH0ycOBGlpaV4//33MWXKFPzxxx8AgFdeeQWBgYHIy8tDaWkptm7danESkZ+fj6SkJJw5cwYnT55EcnIynn32WXN7VFQU9uzZg4qKCuzatQs7d+7EG2+8YW5//fXX8dFHH2HdunUoLy/HyZMn0bdvXwDAmTNncM8992DatGkoKCjAb7/9hm3btlmcEBAREbVV7Ouvz48//ojQ0FB4eHjc1GdD1OYJRNTiFRUVCfPmzRN69uwpODo6Ch4eHsKcOXOEmpoaQRAEYe3atUJgYKDFcxYsWCD07t3b/Lhfv37CiBEjLPZ5+OGHhUmTJgmCIAgTJkwQ7r//fiElJUUwmUwW+61du1aQSqVCWVmZeduOHTsEuVwu1NfXN5l5+fLlQrdu3QRBEASTySQolUph8+bNTe47a9Ys4dFHH7XY9sUXXwgRERFX/Uwa7Nu3TwAg1NXV/eO+RERELRX7+mv76aefBBcXF2Hnzp3XtT+RPeLIPVEr4OnpiYULF+Lw4cMoLy/HmjVr8Omnn+Lf//73DR0nPDy80eOGhWmWLVuGyMhIjBgxAr6+vpg4cSIKCgrM+3p4eEClUlk8t66uzrzP6tWr0a1bN3h6ekKlUuG1117DpUuXAABFRUXQ6XSIiYlpMld6ejq+++47qNVq88/06dORn59/Q++PiIiotWJff3Xbt2/HqFGj8MUXX2DIkCE39HkQ2RMW90StjKOjI4YPH46BAwfi2LFjAAA3Nzfo9XqL/fLy8ho9NzMzs9Hjhul4np6eePfdd3HmzBkcP34cmZmZeO6558z7lpaWory83OK5crkcvr6+OHjwIGbOnIl33nkH+fn5KC8vx5tvvglBEAAAXl5eUCqVOHv2bJPvyc/PD4899hjKysrMPxUVFRbX+REREdkL9vX/58svv8TYsWPx9ddf46GHHrrmvkT2jsU9UQtXWlqKl19+GSdPnkRtbS2MRiN+/vln7Nu3z3wdW9euXVFZWYmvv/4aJpMJv/zyCzZv3tzoWDt27MAPP/wAo9GIXbt24bvvvsPEiRMB/H1ruYyMDJhMJri5ucHR0REODg7m50okEsyZMwd6vR55eXlYsGABHn/8cchkMpSXl0Mmk8Hb2xtyuRzHjh3DypUrLZ47a9YsvPLKK/jrr78gCAJKSkpw8OBBAMDTTz+NLVu2YPPmzTAYDDAajTh37hx27dp11c/FaDSipqYGBoMBAFBbW4uampqbvkaRiIhILOzrm7Zy5UrMnDkT27dvx+DBg63yWRO1aeJeFUBE/0Sn0wmTJ08WoqOjBaVSKahUKqFjx47CW2+9ZXG93McffywEBQUJbm5uwqOPPio8++yzja7DmzFjhvDQQw8JSqVSaNeunbBmzRpz+8svvyyEhIQILi4ugpeXl/DII48Ily5dEgTh/67ze++994SAgADBw8NDGD9+vFBRUSEIgiAYjUZh9uzZgqenp+Du7i4MHjxYSExMtLg2sK6uTliyZIkQHR0tuLq6CoGBgcKSJUvM7YcOHRLuvfdewcvLS1CpVEKXLl2EVatWXfVzWbt2rQCg0c++fftu+TMnIiKyJfb1TQMgODg4CK6urhY/v/32261/6ERtkEQQ/v9cGiKiq1i3bh3mzp2Lixcvih2FiIiImgH7eqLWj9PyiYiIiIiIiFo5FvdERERERERErRyn5RMRERERERG1chy5JyIiIiIiImrlWNyT3SsrK0NYWBhycnLEjnJNixcvxqBBg27quZmZmZBIJDh37pyVUzW/oKAgrFu3TuwYjdzK76Mper0eoaGhV70/MBFRW3ZlX/zLL79AIpGgvr5e5GTWN3fuXPTv3/+mnjthwgSMGzfOuoFa0evfrM8++wxhYWFix2iSUqnEL7/8YrXjvfPOO5gwYYLVjketC4t7snsLFy7E8OHDERwcbJXjNVfH9+qrr+LHH3+0+nGtpaV8gRAWFobPPvus2Y9p7d+Hq6srnnvuOcyZM8dqxyQiai2s3RfTjWlJX6a0hC8Q1q1bh6CgIJscU6fT3fSXPU2ZOXMmfvzxR/z1119WOya1Hizuya5VVFTg008/xVNPPSV2FCI88cQT2LNnD0fviciusC8WV11dndgRyIocHR0xbtw4vPvuu2JHIRGwuCe79uOPP0KtViM2NtZi+59//on+/fvD09MToaGhmDdvnsW32RcvXsTYsWMRFBQEd3d3xMfH49ixY1i8eDG+/PJLfP3111AqlVAqlcjOzgYA/PDDD+jevTtUKhWio6OxbNkymEwm8zElEgmWL1+Onj17QqlU4rbbbrP41vX111/HXXfdZX5cXV2NuXPnIjo6Gm5ubmjXrh0+//zza77fffv2ITY2Fu7u7rjnnnuQkZFhbjMajXjnnXfQoUMHqFQqdO/eHT///LO5PSUlBffccw+8vb2hUqnQq1cv7N2719zesWNHAECXLl2gVCoxbdo0AMDKlSsREREBNzc3+Pr6XnOqmE6nw+TJk+Hp6YnAwECsWLGi0T6nT5/G/fffD19fXwQGBuLpp5+GXq8HACQkJCA7OxszZ86EUqk0ZwKA9evXo0uXLlCpVOjYsSM2bdpkcdyDBw9iwIAB8PLygkajwd13343q6uqrHvPK30dZWRmeeuopBAUFwcvLCwkJCThz5oy5vWH/xMRE+Pv7Q6PRYOrUqRZ/rzw8PNCzZ0989913V/2MiIjamqv1xZczGo14++23ER0dDZVKhR49emDnzp3m9oaR5y1btpj7xXvvvRe5ubnmfQoKCjB8+HCo1Wq0a9cOX375JSQSyTWnRD/11FMICwuDUqlEeHg4FixYYNF39+/fH7Nnz8Zjjz0GlUqF4OBgfPzxxxbH2LBhA6KiouDm5oYRI0agrKzsmp/Hvn370KNHD6hUKnh6eqJ3794oLS01t9fX12PmzJnw9PSEr68v5s2bZ/H8gwcPok+fPvDw8EB4eDhefvll1NbWmtvDwsKwYMECDBkyBG5ubvj3v/+NhIQEAIBarYZSqcTixYuvms9gMGDKlClQq9UICQnB0qVLLdqv1U8DwPz5882/o+DgYMyaNQtVVVUAcNXzqOzsbAwdOhQajQYqlQqdOnXC/v37r5px9+7diIuLg1KpxIABAxpdenmtc579+/dj2rRpyMvLM2f48ssvAQC5ubl47LHHEBgYCB8fH4wZMwaFhYXm417t3Oxax5RIJNizZ4/5GNdzvvjBBx+gd+/eUCqViIuLw++//27x/oYMGYLvv/++RczEIBsTiOzYSy+9JAwZMsRi2+nTpwVXV1dh48aNQl1dnZCZmSl07txZWLRokSAIglBVVSVERUUJEyZMEAoLCwWj0SicOnVKyMzMFARBEMaPHy+MHTvW4piHDx8W5HK58PXXXwt1dXXCX3/9Jfj7+wvvvvuueR8AQkREhHDq1CmhpqZGWLBggeDl5SWUlZUJgiAICxYsEHr37m3ef+zYsULPnj2F1NRUwWQyCbm5ucLRo0ebfJ8XLlwQAAg9e/YUsrOzBb1eL0yePFno0KGDUFdXZz5+ly5dhNOnTwtGo1H49ttvBRcXF+HcuXOCIAhCcnKy8OOPPwpVVVXmfO7u7kJBQYHFa6Snp5tf9+zZs4Kzs7OQnJwsCIIgVFZWCr/++utVfx9PPvmk0LVrVyEnJ0fQ6XTChAkTBJlMJqxdu1YQBEEoLCwUvLy8hOXLlws1NTVCYWGhcM899whTpkwxHyM0NFT49NNPLY67du1aITg4WDhy5IhgNBqF/fv3C25ubsL+/fsFQRCElJQUwcnJSVi5cqWg1+uF2tpaYd++fUJNTc1Vj3nl7+P+++8X+vfvL2i1WkGv1wuzZ88WgoKChMrKSvP+Dg4Owttvvy3U1tYKZ86cETw8PIQ1a9ZYHHfGjBnCyJEjr/oZERG1NU31xfv27RMAmPuoZcuWCYGBgcLRo0eFuro6YePGjYJcLjf3ew37P/bYY0JZWZlQVlYm3HnnncITTzxhPuaAAQOE+++/XygpKRFKSkqEYcOGCQCEffv2XTXbp59+KuTn5wsmk0k4ePCgoNFohFWrVpnb+/XrJ7i7uws///yzYDQahS1btghSqdTcF/7xxx+Cg4ODsG3bNqGurk7Ytm2b4OTkJPTr1++qrxkQECCsWbNGMJlMQm1trXDgwAFBp9MJgvD3OYZCoRA2btwo1NfXCwcOHBAcHByEvXv3CoIgCFlZWYKLi4vw7rvvCrW1tcLZs2eF2NhYYfbs2ebjh4aGCr6+vsKBAwcEk8kk6PX6Rp/31YwfP15wcHAQVq1aJRgMBuHgwYOCh4eH8MUXXwiCcH399Pr164WsrCzBZDIJKSkpQkREhPDyyy9bvMaV51GPPfaYMGXKFKG6ulowGo3C6dOnhfPnzzeZ8fz584JCoRBWr14tGAwG4Y8//hC8vLyE0NBQ8z7/dM6zdu1aITAw0OK4NTU1QkxMjDBnzhxBp9MJlZWVwrhx44SBAwea97nWuVlTxxSEv8//fvrpJ0EQrv98sXPnzkJ6erpQV1cnzJ49WwgJCbE4ZmFhoQDAfP5F9oPFPdm1J598UnjkkUcsts2aNUt49NFHLbZ98cUXQkREhCAIgrB582ZBo9GYC78rNdUpPfXUU8Lw4cMtti1fvlyIiYkxPwYgvP/+++bHRqNR8PPzE9avXy8IgmUx2fCf9pEjR67rfTYU3tu2bTNvq6ioEGQymfDbb78JgiAI7u7uwq5duyyeN3DgQOGNN9646nFVKpX5mE0V9+fPnxecnJyETZs2CeXl5dfMaDQaBUdHR4uMZWVlgkQiMRf377zzjnD77bdbPO/3338XFAqFUF9fLwhC04V4XFycxcmYIAjClClThMmTJwuC8HdBfd9991012z8V93l5eQIAISkpydxuMBgET09PYePGjeb9w8PDLY4xatQoYdq0aRbbXn31VeHuu+++ahYioramqb74ymIzOjpaeO+99yz2GTZsmDB16lSL/bOyssztK1euFNq3by8IgiDk5OQIAIRTp06Z25OTk/+xuL/SM888I4wYMcL8uF+/fsLEiRMt9vHy8hI2bdokCMLffc3l+wuCIIwYMeKaxX1YWJjw2muvCRcvXmzUNn78+EZ9RI8ePYS33npLEARBWLx4sRAfH2/R/u233wrOzs6CyWQSBOHvPu3yYloQGn/eVzN+/HihW7duFttefPFFYcCAAYIgXF8/faXly5dbHLOp86gJEyYI999/v5CSkmJ+H1ezaNGiRhmfe+45i+L+n855mirEt27dKgQEBFi8/sWLFwUAQk5Ozj+em11PcX+954uff/65+XFKSooAQMjPzzdvMxgMAoBrDqhQ28Rp+WTXNBoNysvLLbalp6fju+++g1qtNv9Mnz4d+fn5AIALFy4gLCwMjo6O1/06OTk5iIiIsNgWGRlpnrLfIDw83PxnqVSK0NDQJlfxv3DhAgAgJibmujNceXw3Nzd4eXkhJycHBQUFqKiowOjRoy3e94EDB8xTGrOzs/Hoo48iJCQE7u7uUKvVqKiowKVLl675eps2bcLatWsREhKCnj17YuPGjU3uW1hYiNraWouMKpUKGo3G/Dg9PR1Hjx61yDh06FBIJBLz76cp6enpmDNnjsXzNm7ciLy8PAB/f543+lleruF3dPnvWC6XIzQ01OJ3HBAQYPE8V1dXVFZWWmwrLy+3eM9ERG1dU33xla63H738/9nL/49t6MtCQ0PN7f+0erogCHjzzTfRsWNHeHh4QK1WY/Xq1Y36vWv9337x4kWLfg1Ao8dX2rZtG86fP4/u3bsjMjISCxYssJhefa3Xu9rnVF1dbTF9/J8yXEtT76ehH7yefnr16tXo1q0bPD09oVKp8Nprr13zXAIAli1bhsjISIwYMQK+vr6YOHEiCgoKmtz3nz7z6znnaUp6ejoKCgrMfxfUajU6duwIR0dHZGdn3/S52eVu9u85AIvziYZ/TzyfsD8s7smude/eHadOnbLY5ufnh8ceewxlZWXmn4qKCuh0OgB/nwxkZmbCYDA0eUyptPE/q+DgYIvr2wEgIyMDISEhFtsyMzPNfzaZTMjOzm5yZdWGE5IbXXjt8uPrdDoUFRUhKCgIarUaTk5O2L59u8X71uv15msHn3zySZhMJhw5cgQVFRUoLS2Fu7s7BEG46vsGgAcffBC7du1CUVERXnjhBYwdO7bJ3N7e3nB0dLTIWF5ebnGdoZ+fH+666y6LjOXl5aipqUFgYOBVc/j5+eGjjz6yeJ5Op8OOHTsA/P15XuuzvNp7a9CwuvPlv+P6+npkZ2c3+h3/k+TkZPTo0eOGnkNE1Jo11Rdf6Xr70atp6COysrLM2y7/c1M2bdqE9957D+vXr0dRURHKysowdepUc793PYKCgiz6NQCNHl8pLi4OX331FfLz87FlyxasWrUKa9euva7XCw4Oxvnz5y22ZWRkwNnZGd7e3uZtV/Zr/9TPXa6p99NwrvJP/fTBgwcxc+ZMvPPOO8jPz0d5eTnefPNNi8+0qSyenp549913cebMGRw/fhyZmZl47rnnmsz3T5/59ZzzXO1cIjQ01OI5ZWVlqKmpwZ133vmP52bX8xnf6t/zBsnJyVAqlWjfvv0NPY9aPxb3ZNcGDRqEkpISpKWlmbc9/fTT2LJlCzZv3gyDwQCj0Yhz585h165dAID7778fHh4eePrpp1FUVARBEJCammo+SfDz80NGRgaMRqP5mJMmTcIPP/yArVu3wmg04vjx43j77bcbrQy8YsUKpKWlwWAw4M0334TBYMCwYcMa5fb29saYMWMwY8YM86JtWq0Wx44du+b7XbRoES5evIiqqirMmTMHkZGRuPPOO+Ho6Ihp06bhxRdfRFpaGgRBQHV1NX777TdzJ1VeXg6lUgkPDw/o9Xq88sor5i88GjJJpVKLReTOnDmDHTt2QKfTwcHBASqVCgAgk8kaZZNKpRg3bhxef/115ObmQq/XY86cOZBIJOZ9Jk6ciOPHj+Ojjz5CVVUVBEFATk4O/vvf/5r38fPzs8gAAP/617/wxhtv4MiRIzCZTKitrcWRI0dw9OhRAMD06dPx008/YdWqVaiurkZdXR1+/fVX8wJETR3zcv7+/hg6dCjmzJmDgoICVFdX46WXXoJCocB99913zd/J5crKynD48GEMHz78up9DRNTaNdUXX2nKlClYtmwZkpKSUF9fj2+++QY7duzAlClTrus1goKC0L9/f7zyyivmomzu3LnXfE55eTkcHBzg4+MDiUSCffv24Ysvvrih9zZ+/Hhs27YNP/zwA4xGI3744QfzF8tNMRgMWLt2rXmUXaVSQSaTwcHB4bpe77HHHsOZM2fwwQcfwGAwICMjA/PmzcOUKVMs+tMr+fn5AcA1+7oGJ06cwGeffYb6+nocPnwYn376KSZOnAjgn/vp8vJyyGQyeHt7Qy6X49ixY1i5cmWjLFeeR23atAkZGRkwmUxwc3ODo6PjVT+TMWPGIDk52Zzx0KFDWL9+vbn9es55/Pz8UFRUhOLiYvPzRowYgbq6OsybN888Mn7p0iV8/fXXAP753KypY17pes8X/8muXbtw//33X/ffG2o7WNyTXVOpVJgyZQpWr15t3tazZ0/89NNP+PTTTxEYGAhPT0+MGjXKXLw7Oztj79690Ol0iIuLg0qlwtixY1FSUgIA5v+Avby8oFarkZ2djV69emHLli1488034eHhgdGjR+OZZ57B7NmzLfJMnz4djz/+ODQaDbZt24YdO3ZArVY3mf3TTz9Fv379kJCQAKVSid69e//jyMfkyZNx7733wtfXF2fPnsX3339v/o9/2bJlGDNmjHmaWlhYGP7973+bb5Hz/vvv48SJE/Dw8EBsbCwCAwMtZhU4Oztj8eLF5hV0n376afOXFIGBgXB3d8ecOXOwfv36RlPOGrz77ruIi4tDXFwcoqOjERcXZz7hAICQkBAcPHgQP/30EyIiIqBWqzF48GAkJyeb95k/fz7+97//Qa1Wo3PnzgCA2bNn4/XXX8e0adOg0WgQGBiIF154wbx6b6dOnbBnzx5s3LgRAQEB8PX1xcKFC82r0zZ1zCtt2LABYWFh6NatG4KCgnDq1Cns2bMHbm5u1/ydXG79+vW45557+E07EdmVpvriKz333HOYMWMGRo0aBY1GgyVLluDbb7+9oZlOX331FQRBQGhoKLp27Wr+8tzJyanJ/SdMmIB77rkHcXFx8PLywqpVq274/ut33XUXPvnkE8yePRtqtRr/+c9/MGnSpGs+Z8uWLejYsSNcXV3Rr18/TJgwAePHj7+u1wsNDcWPP/6Ir7/+Gj4+PhgwYAASEhIarWh/pejoaMyaNQt333031Go13nrrravu+9BDD+HQoUPw8vLCyJEj8fzzz5s/l3/qpwcNGoRp06ahf//+UKlUePXVVxu9t6bOo06cOIEBAwbAzc3NfNxly5Y1ma9du3b47rvv8N5770GtVuPVV1/F9OnTLfb5p3OeAQMG4MEHH0R0dDTUajW++uoruLm54eDBg8jOzkZcXBzc3d1x55134rfffjMf91rnZk0d80rXe754LQaDARs2bLjqzAZq2yTCjcwtImqDSktLER8fj/3799/wtCdrkkgk+OmnnzBw4EDRMpB49Ho9OnbsiN27d9/S9XpERK2RGH1xUlISunbtiry8PPj7+9vkNYma2/Lly3HixIl/vD0ytU0s7olaCBb3REREzSclJQUGgwHx8fHIy8vDE088AQDYu3evyMmIiKyD0/KJiIiIqM0rLy/Ho48+Cjc3N3Tv3h1eXl748ssvxY5FRGQ1HLknIiIiIiIiauU4ck9ERES3bOXKlejRowccHR3x6KOPWrSlpKTg9ttvh4uLC2JjY/9xGvTKlSsRGBgIpVKJkSNHWtwSk4iIiJrG4p6IiIhuWUBAAObOnYsnn3zSYntdXR0eeOABDBs2DKWlpViwYAEeeughXLp0qcnj/PTTT1iwYAG+//57aLVayGQyTJs2zRZvgYiIqFXjtHwiIiKymtdffx2nT5/Gpk2bAPxdrI8bNw5arRZS6d9jCr1798Zjjz2GGTNmNHr+2LFj4e/vb77NVXp6OmJjY1FUVASVSmW7N0JERNTKOIgdQAxFRUXYvXs3wsLC4OzsLHYcIiIiVFdXIzMzE4MHD4aXl5fYcawmJSUFcXFx5sIeAOLj45GSknLV/RMSEsyPo6KioFAocPr0afTq1avR/lqtFlqtttH20tJSpKWloWvXruzriYioRWjuvt4ui/vdu3dj3LhxYscgIiJq5IsvvsDYsWPFjmE1Op0OarXaYptarUZWVtYN7V9ZWdnk/qtXr0ZiYqI1ohIREdlEc/X1dlnch4WFAQCWLl2KiIgIccMQ2UhGRgZefPFFbNiwAbGxsWLHIaIrpKWlYdy4ceY+qq1QKpUoLy+32FZeXg43Nzer7D916lQMGzas0fakpCRMnjwZS5YsYV9PdiUjIwMvvfQS+3uiFqi5+3q7LO4bpue1a9cOHTt2FDkNkW00LK/Rvn17dOvWTeQ0RHQ1bW0KeadOnbBkyRKYTCbz1PykpCSMGTPmqvsnJSWZRzTOnTuH2tpatG/fvsn9/f394e/vf9XXj4iIQKdOnW7xXRC1Hv7+/nj11VcxaNAg+Pj4iB2HiJrQXH09V8snIiKiW1ZfX4+amhrU19fDZDKhpqYGdXV16N+/P5ydnbF06VLU1tZi8+bNSE5OxujRo5s8zoQJE7B27VocP34cOp0Oc+fOxYgRI7iYHtF18vDwwPDhw9vU2h1EdH1Y3BPZifbt2+P3339HfHy82FGIqA1atGgRnJ2d8eabb2Lz5s1wdnbGk08+Cblcjm3btuG7776DWq3G/Pnz8e2335pHFPfv3w+lUmk+zr333ovXX38d9913H/z8/GAwGLBq1Sqx3hZRq1NaWor//ve/KCoqEjsKEdmYXU7LJ7JHUqkUCoXCYsVqomsRBMH8Q7dOIpGYf9qi119/Ha+//nqTbXFxcfjzzz+bbOvTpw90Op3FtpkzZ2LmzJnWjkhkF7RaLRYvXoyHHnqI0/LpH7Gvtz6JRCLa+TaLeyI7kZmZiblz5+LLL7+86rWrRABgMplw6dIllJWVsbO3MolEArVaDR8fH37RRkREomFf37zkcjlCQkKgUChs+ros7onsRFVVFY4dO9ZohIzoSllZWZBKpQgLC4NcLhc7TptSV1eHgoICZGVlITw8XOw4RERkp9jXNx9BEFBcXIzs7GxERkba9LVZ3BMRkVnDQmhRUVFwcGAXYW0ymQyBgYFIT0+3WD2eiIjIVtjXNz9PT0+UlJTYvK/nWQUREZk1TM1rq9eFtwQNny2nQRJRc3BxcUG3bt0sFqokuhz7+uYnVl/P4p6IiIiIqI0ICwvDqlWrEB0dLXYUIrIxFvdEdsLf3x+vvvoqQkJCxI5C1Ob179+ft28jIlGYTCYYDAaYTCaxoxC1aS2xr2dxT2QnPDw8MHz4cHh5eYkdheiW9e/fHw4ODjh79qx52+nTpznFkIjs3unTp3HXXXchKSlJ7ChEt4R9/Y1jcU9kJ0pLS/Hf//4XRUVFYkchsgqVSoV58+bd8nHq6+utkIaIiIisjX39jWFxT2QntFotFi9ejOzsbLGjEFnFrFmzsGPHDhw/frxRW0VFBSZPngw/Pz8EBQXhueeeQ21tLQAgMzMTEokE69atQ3h4ODp37oxffvkFfn5+WLFiBfz9/eHp6YnPPvsMR48eRXx8PFQqFR5//HHzyUFFRQUeeOAB+Pj4wMPDA0OHDuW/LSIiIitjX39jWNwTEZHVGAwGZGdnIzU1FdnZ2TAYDM32Wn5+fnjmmWfw6quvNmp75plnkJubi9OnT+Ovv/7CH3/8gYULF1rss2vXLpw4cQJHjx4FABQVFZnvQb9u3TrMnDkTiYmJ2LlzJ86dO4f9+/fjm2++AfD3Na3jx49HZmYmcnJy4O7ujqeffrrZ3isREVFLYqv+nn39jWFxT0REVmEwGJCUlAStVguTyQStVoukpKRmLfBfeOEFHD58GL/99pt5m9FoxMaNG7FkyRKo1Wr4+fkhMTER69evt3ju66+/Dnd3dzg7OwMApFIpEhMToVAo8MADD0ChUOCxxx6Dv78/vL29MWjQIBw7dgwAoFarMWrUKLi4uECpVOKVV17Br7/+2mzvk4iIqKWwdX/Pvv76sbgnIiKryM/PhyAICA4OhkajQXBwMARBQEFBQbO9plqtxksvvYRXXnnFvK2oqAgGgwFhYWHmbWFhYdBqtRb3mw0NDbU4lkajgVwuNz92cXGBn5+fxWOdTgcAqKqqwtSpUxEaGgp3d3f06dMHOp3OPB2QiEgskZGR+P7779GpUyexo1AbZev+nn399WNxT2QnXFxc0K1bNyiVSrGjUBul0+ng6upqsc3V1RWVlZXN+rqzZs1CZmYmtm/fDgDw8vKCQqFAZmameZ/MzEz4+/tbrLB7K6vtvvPOO0hNTcWhQ4dQUVGB/fv3A4DFCQURkRgUCgV8fX2hUCjEjkJtlBj9Pfv668PinshOhIWFYdWqVYiOjhY7CrVRSqUSer3eYpter4ebm1uzvq6zszPmz5+Pt956CwAgk8nw6KOP4pVXXkFZWRkKCgqQmJiIxx9/3GqvWVlZCWdnZ6jVapSWluKNN96w2rGJiG5FTk4OXn75ZZw/f17sKNRGidHfs6+/PizuieyEyWSCwWCAyWQSOwq1UX5+fpBIJMjJyUFJSQlycnIgkUjg6+vb7K89efJkeHh4mB+///778PX1RUxMDLp27YrbbrsN8+fPt9rr/etf/4LBYIC3tzd69eqFe++912rHJiK6FZWVldi7dy/KysrEjkJtlFj9Pfv6fyYRWvK8gmZy7NgxdO/eHVu2bOH1SGQ3UlJSMGrUKBw5cgQ9evQQOw61UEajEWfPnkV0dDRkMtkNP99gMKCgoACVlZVwc3Pj1NAmXO0zbuibjh49im7duomYsG1gX0/2iv09/ZNb7esB9vf/RKy+3sHqRyQiIrulUCgQHBwsdgwiIiJqRuzvWyZOyyciIiIiIiJq5VjcExERERG1Ed7e3nj66acREBAgdhQisjEW90REREREbYS3tzcmTJhgce9uIrIPLO6J7ERkZCS+//57LixF19RwP1g7XGvVZho+21u59y4R0dVUVFTgt99+42r5dFXs623H1n09i3siO6FQKLiSKf0jqVQKmUyGmpoasaO0WTU1NZDJZJBK2QUTkfVdvHgRzz//PO9zT1fFvr751dXVQSKR2Ly452r5RHYiJycHS5YswerVqxEZGSl2HGrBvL29kZubi8DAQDg5OXGE2UoEQUBNTQ1yc3Ph4+MjdhwiIrJj7OubjyAIKCgogFqtZnFPRM2jsrISe/fu5TQ9+kceHh4AgLy8PBiNRpHTtC0ymQw+Pj7mz5iIiEgM7Oubl5OTkyhf5LO4JyKiRjw8PODh4QGTycRr8qxEIpFwKj4REbUY7Oubh5j9PYt7IiK6KhajRESti0KhQHh4OJycnMSOQq0E+/q2g79JIiIiIqI2IjIyEl9//TViY2PFjkJENsbinshOeHt74+mnn0ZAQIDYUYiIiIiIyMpY3BPZCW9vb0yYMAF+fn5iRyEiIqJmkpaWhrvvvhtJSUliRyEiG2NxT2QnKioq8Ntvv3G1fCIiojZMEATo9XqYTCaxoxCRjbG4J7ITFy9exPPPP4/z58+LHYWIiIiIiKyMxT0RERERERFRK8finoiIiIiIiKiVY3FPRERERNRGhIeHY/369Wjfvr3YUYjIxljcE9kJhUKB8PBwODk5iR2FiIiImomzszPat28PFxcXsaMQkY2xuCeyE5GRkfj6668RGxsrdhQiIiJqJnl5eVi6dCmys7PFjkJENsbinoiIiIiojSgrK8OWLVtQVFQkdhQisrFWW9wXFRXBy8sLt99+u9hRiFqFtLQ03H333UhKShI7ChERERERWVmrLe5feOEFTi8mugGCIECv18NkMokdhYiIiIiIrMxB7AA349dff0V6ejomT56M1atXX3U/rVYLrVbbaHtaWlpzxiMiIiIiIiKyqVZX3BsMBsycORNffPEFjh8/fs19V69ejcTERBslIyIiIiISl0ajwZgxY+Dj4yN2FCKysVZX3L/11lsYOHAgunTp8o/F/dSpUzFs2LBG29PS0jBu3LjmikhEREREJAo/Pz88++yzCAoKEjsKEdlYqyruz507h3Xr1l33gmD+/v7w9/dv3lBErUR4eDjWr1+P9u3bix2FiIiImoler8fJkycRExMDd3d3seMQkQ21quL+999/R35+PqKjowEA1dXVqK6uhp+fH86ePcv/wIiuwdnZGe3bt4eLi4vYUYiIiKiZZGVlYcqUKejSpQt69OghdhwisqFWtVr+I488gvPnzyMpKQlJSUlYuHAh4uLikJSUBDc3N7HjEbVoeXl5WLp0KbKzs8WOQkREREREVtaqintnZ2f4+fmZf1QqFeRyOfz8/CCRSMSOR9SilZWVYcuWLSgqKhI7ChERERERWVmrKu6vNGHCBBw6dEjsGERERERERESiatXFPRERERER/R+ZTAa1Wg0Hh1a1tBYRWQGLeyIiImpWSqXS4sfBwaHJW9U2kEgkcHV1Ne+fkJBgw7RErVtMTAx+/PFHdO7cWewoRGRj/EqPyE5oNBqMGTMGPj4+YkchIjuj0+nMfzYajQgJCcHDDz98zeccPXqUt+4kIiK6ARy5J7ITfn5+ePbZZxEUFCR2FCKyY7t27YJOp8PIkSPFjkLUJqWnp2PEiBE4deqU2FGIyMY4ck9kJ/R6PU6ePImYmBi4u7uLHYeI7NTatWvx6KOPwtnZ+Zr7DRgwAEajET169MDSpUvRsWPHJvfTarXQarWNtqelpVklL1FrU1dXh4sXL6K2tlbsKERkYyzuiexEVlYWpkyZgi5duqBHjx5ixyEiO1RUVITvv/8ev/322zX3++WXX3DHHXegtrYWS5YswaBBg5CWltbkF5OrV69GYmJic0UmIiJqNTgtn4iIiGziyy+/RGRkJHr16nXN/fr16weFQgE3NzcsWrQIDg4OOHDgQJP7Tp06FUePHm3088UXXzTHWyAiImqxOHJPRERENrF27VpMnDjxhp8nlUohCEKTbf7+/vD397/VaERERK0ei3siIiJqdseOHcOpU6fw+OOPX3O/U6dOoba2Fp07d4bBYMDSpUtRXV2NO+64w0ZJiVq3kJAQrFixApGRkWJHISIb47R8Ijshk8mgVqvh4MDv9IjI9tauXYv77rsPvr6+jdqUSiX2798PALh06RIee+wxqFQqhISE4NChQ9i9ezfUarWNExO1TkqlEnfccQcXzyWyQzzLJ7ITMTEx+PHHH9G5c2exoxCRHfrggw+u2qbT6cx/vvvuu3H69GlbRCJqkwoLC7Fhwwa8/vrrCAwMFDsOEdkQR+6JiIiIiNqIwsJCfPbZZ03eIpKI2jYW90R2Ij09HSNGjMCpU6fEjkJERERERFbG4p7ITtTV1eHixYuora0VOwoREREREVkZi3siIiIiIiKiVo7FPRERERFRG+Hu7o4hQ4bAw8ND7ChEZGMs7omIiIiI2oigoCAsXLgQ4eHhYkchIhtjcU9kJ0JCQrBixQpERkaKHYWIiIiaSW1tLXJyclBTUyN2FCKyMRb3RHZCqVTijjvugLu7u9hRiIiIqJlkZGRg5MiRSE1NFTsKEdkYi3siO1FYWIhPPvmE970lIiIiImqDWNwT2YnCwkJ89tlnLO6JiIiIiNogFvdERERERERErRyLeyIiIiIiIqJWjsU9EREREVEbERsbi8OHD6Nbt25iRyEiG2NxT2Qn3N3dMWTIEHh4eIgdhYiIiIiIrIzFPZGdCAoKwsKFCxEeHi52FCIiImomFy5cwKRJk3DmzBmxoxCRjbG4J7ITtbW1yMnJQU1NjdhRiIiIqJlUV1cjJSUFer1e7ChEZGMs7onsREZGBkaOHInU1FSxoxARERERkZWxuCciIiIiIiJq5VjcExEREREREbVyLO6JiIiIiNqIgIAAJCYmIiwsTOwoRGRjLO6JiIiIiNoItVqNhIQEaDQasaMQkY2xuCeyE7GxsTh8+DC6desmdhQiIiJqJiUlJdi8eTMKCwvFjkJENsbinoiIiIiojcjPz8fbb7+NnJwcsaMQkY2xuCeyExcuXMCkSZNw5swZsaMQEREREZGVsbgnshPV1dVISUmBXq8XOwoREREREVkZi3siIiIiIiKiVo7FPRERERFRG+Hi4oJevXrBzc1N7ChEZGMs7omIiIiI2oiwsDB88MEHiIqKEjsKEdkYi3siOxEQEIDExESEhYWJHYWIiIiaidFohE6ng9FoFDsKEdkYi3siO6FWq5GQkACNRiN2FCIiImomZ86cwYABA3DixAmxoxCRjbG4J7ITJSUl2Lx5MwoLC8WOQkREREREVsbinshO5Ofn4+2330ZOTo7YUYiIiIiIyMpY3BMRERERERG1cizuiYiIiIiIiFo5FvdERERERG1EVFQUdu/ejbi4OLGjEJGNsbgnshMuLi7o1asX3NzcxI5CREREzUQul8PDwwNyuVzsKERkYyzuiexEWFgYPvjgA0RFRYkdhYiIiJpJdnY25syZg4yMDLGjEJGNsbgnshNGoxE6nQ5Go1HsKERERNRMdDod9u/fj/LycrGjEJGNsbgnshNnzpzBgAEDcOLECbGjEBERERGRlbG4JyIiIiIiImrlWNwTERERERERtXIs7omIiIiI2ggfHx/Mnj0bgYGBYkchIhtjcU9ERERE1EZ4eXlh7Nix8PX1FTsKEdkYi3siOxEVFYXdu3cjLi5O7ChERETUTMrLy7Fnzx6UlpaKHYWIbIzFPZGdkMvl8PDwgFwuFzsKERERNZPc3Fy8+uqruHDhgthRiMjGWNwT2Yns7GzMmTMHGRkZYkchIiIiIiIrY3FPZCd0Oh3279+P8vJysaMQEREREZGVsbgnIiIiIiIiauVY3BMREVGzmjBhAhQKBZRKpfknOzv7qvunpKTg9ttvh4uLC2JjY7F3714bpiVq3RwdHRETEwNnZ2exoxCRjbG4JyIiomb33HPPQafTmX9CQkKa3K+urg4PPPAAhg0bhtLSUixYsAAPPfQQLl26ZOPERK1TREQENmzYgA4dOogdhYhszEHsAERkGz4+Ppg9ezYCAwPFjkJEdFW//PILqqqq8PLLL0MqleKRRx7B+++/j82bN2PGjBmN9tdqtdBqtY22p6Wl2SIuERFRi8GReyI74eXlhbFjx8LX11fsKERkhz755BNoNBp06dIFa9asuep+KSkpiIuLg1T6f6co8fHxSElJaXL/1atXo3v37o1+xo0bZ/X3QNQapKamonfv3jh+/LjYUYjIxjhyT2QnysvLsW/fPrRr1w6enp5ixyEiO/LMM89g2bJlUKvV2L9/P0aPHg2VSoWRI0c22len00GtVltsU6vVyMrKavLYU6dOxbBhwxptT0tLY4FPdquurg6CIIgdg4hsjMU9kZ3Izc3Fq6++invvvZfFPRHZVLdu3cx/vvvuuzFjxgxs3ry5yeJeqVQ2umVneXk53Nzcmjy2v78//P39rRuYiIioFeK0fCIiIrIpqVR61VHFTp06ITk5GSaTybwtKSkJnTp1slU8IiKiVonFPRERETWrb775BpWVlTCZTPj999+xcuVKPPTQQ03u279/fzg7O2Pp0qWora3F5s2bkZycjNGjR9s4NRERUevC4p6IiIia1cqVKxEcHAyVSoWpU6di0aJFePTRR83tHTt2xJdffgkAkMvl2LZtG7777juo1WrMnz8f3377LXx8fMSKT9SqtGvXDhs3buSt8IjsEK+5J7ITjo6OiImJgbOzs9hRiMjO/Pbbb9dsP3XqlMXjuLg4/Pnnn80ZiajNcnJyQkREBPt7IjvEkXsiOxEREYENGzbwm3wiIqI2LDc3F4sWLbrqHSaIqO1icU9ERERE1EaUl5dj27ZtKC4uFjsKEdkYi3siO5GamorevXvj+PHjYkchIiIiIiIrY3FPZEfq6uquevspIiIiIiJqvVjcExEREREREbVyLO6JiIiIiNoIT09PjB8/Hr6+vmJHISIbY3FPRERERNRG+Pr6YsaMGQgMDBQ7ChHZGIt7IjvRrl07bNy4kbfCIyIiasP0ej2OHj2KyspKsaMQkY2xuCeyE05OToiIiICzs7PYUYiIiKiZZGVlYfr06UhPTxc7ChHZGIt7IjuRm5uLRYsWISsrS+woRERERERkZSzuiexEeXk5tm3bhuLiYrGjEBERERGRlbG4JyIiIiIiImrlWNwTEREREbURDg4O8PHxgVwuFzsKEdlYqyvua2trMWXKFISHh8PNzQ0dO3bEV199JXYsIiIiIiLRRUdHY/v27YiLixM7ChHZmIPYAW5UfX09AgIC8PPPPyM8PBx//PEH7rvvPoSHh+OOO+4QOx5Ri+Xp6Ynx48fD19dX7ChERERERGRlrW7k3tXVFQsXLkS7du0gkUhw1113oXfv3jhw4IDY0YhaNF9fX8yYMQOBgYFiRyEiIqJmcvbsWdx///1ITk4WOwoR2VirG7m/kl6vx19//YXZs2c3atNqtdBqtY22p6Wl2SIaUYui1+tx9OhRREdHQ6VSiR2HiIiImkF9fT0uXbqEuro6saMQkY216uLeZDJhwoQJ6NmzJwYNGtSoffXq1UhMTBQhGVHLk5WVhenTp6NHjx7o0aOH2HGIiIiIiMiKWm1xLwgCpk2bhry8POzevRsSiaTRPlOnTsWwYcMabU9LS8O4ceNsEZOIiIiIiIio2bXK4l4QBMyYMQNJSUnYs2cPlEplk/v5+/vD39/fxumIiIiIiIiIbKtVFvczZ87EoUOH8PPPP8Pd3V3sOERERERELUJoaCg+/vhjREVFiR2FiGys1a2Wn5WVhY8++gipqakIDg6GUqmEUqnE4sWLxY5G1KI5ODjAx8cHcrlc7ChERETUTFxdXdG9e3e4ubmJHYWIbKzVjdyHhoZCEASxYxC1OtHR0di+fTvi4uLEjkJERETNpKCgAOvWrcMbb7yB4OBgseMQkQ21upF7IiIiIiJqWnFxMT7//HMUFBSIHYWIbIzFPZGdOHv2LO6//34kJyeLHYWIiIiIiKyMxT2Rnaivr8elS5dQV1cndhQiIiIiIrIyFvdERERERERErRyLeyIiIiKiNkKlUmHYsGHw9PQUOwoR2RiLeyIiIiKiNiIwMBBz585FaGio2FGIyMZY3BPZidDQUHz88ceIiooSOwoRERE1k5qaGmRkZKC6ulrsKERkYyzuieyEq6srunfvDjc3N7GjEBERUTM5f/48xowZg7S0NLGjEJGNsbgnshMFBQX48MMPkZubK3YUIiIiIiKyMhb3RHaiuLgYn3/+OQoKCsSOQkREREREVsbinoiIiIiIiKiVY3FPRERERNSGyOVySCQSsWMQkY2xuCciIiIiaiNiY2Pxxx9/oGvXrmJHISIbY3FPZCdUKhWGDRsGT09PsaMQEREREZGVsbgnshOBgYGYO3cuQkNDxY5CREREzSQjIwOPP/44b4VHZIdY3BPZiZqaGmRkZKC6ulrsKERERNRMamtrcebMGfb3RHaIxT2RnTh//jzGjBnDb/KJiIiIiNoguy7uc3NzodPpxI5BREREREREdEvsurhfsWIFevXqhXHjxuGTTz7B6dOnIQiC2LGIiIiIiIiIbohdF/eLFy/GwoUL4erqio8//hjDhw/H3r17YTQakZOTg4qKCrEjEhERERFdt8DAQCxevBjh4eFiRyEiG3MQO4CYoqKi8Mgjj+CVV15BeXk5fv75Z8TExKCqqgqJiYk4ePAgOnfujL59+6Jv377o0KEDpFK7/j6EWjm5XA6JRCJ2DCIiImomKpUKAwcOhIeHh9hRiMjGWKkCkEgkUKvVGDlyJDp16oSuXbti1apVePPNN6FWq/Hpp59i5MiR+Pbbb2E0GqHValFWViZ2bKIbEhsbiz/++ANdu3YVOwoRERE1k6KiInz55ZcoKCgQOwoR2Zhdj9xfjUwmQ8eOHdGxY0e8+OKLqKysxL59+xAUFISqqiosX74cP/zwA+Li4syj+h07duSoPhERERGJ6tKlS1ixYgXGjRsHf39/seMQkQ2xGv0HEokE7u7uePDBB9G9e3d07doVS5cuxVtvvQUvLy+sWbMGo0ePxpo1a2A0GlFUVITS0lKxYxM1kpGRgccff5y3wiMiIiIiaoM4cn+DZDIZ2rdvj/bt2+P555+HTqfDL7/8Ao1Gg+rqanzyySfYsGEDOnbsiH79+qFv377o1KkTZDKZ2NHJztXW1uLMmTOorq4WOwoREREREVkZR+5vgUQigZubGx544AH07t0b8fHxmDt3LpYtW4aAgAB8/vnneOSRR/Duu++ivr4eZWVlKC4uFjs2ERGRTdXW1mLKlCkIDw+Hm5sbOnbsiK+++uqq+0skEri6ukKpVEKpVCIhIcGGaYmIiFonjtxbkUwmQ1RUFJ577jk899xz0Ov1+O233+Do6Iiamhps3LgRK1asQGxsrPla/S5dunBUn4iI2rT6+noEBATg559/Rnh4OP744w/cd999CA8Pxx133NHkc44ePYr27dvbOClR66dUKtGnTx+oVCqxoxCRjbG4b0aurq7m0Qaj0QgPDw+Eh4dj9+7d+Oqrr7Bq1SqMGjUKr7/+Ompra1FVVQVvb2+RUxMREVmXq6srFi5caH581113oXfv3jhw4MBVi/vrpdVqodVqG23n+iJkr0JCQvDOO+8gIiJC7ChEZGMs7m1EJpOhXbt2mD17NmbPno2qqirs378fJpMJNTU1+P7775GYmIj27dubR/Xj4+Ph4MBfEVlHYGAgFi9ejPDwcLGjEJGd0+v1+OuvvzB79uyr7jNgwAAYjUb06NEDS5cuRceOHZvcb/Xq1UhMTGyuqEStTl1dHUpLS1FXVwdHR0ex4xCRDbFyFImLiwsGDx4MADCZTPDy8oK3tzd27tyJb775Bp988gnuuecerFixAiaTCaWlpfD19RU5NbVmKpUKAwcOhIeHh9hRiMiOmUwmTJgwAT179sSgQYOa3OeXX37BHXfcgdraWixZsgSDBg1CWloa3N3dG+07depUDBs2rNH2tLQ0jBs3zur5iVq69PR0jBo1CkeOHEGPHj3EjkNENsTivgWQSqUIDQ3FjBkzMGPGDFRVVeHAgQPQ6XSora3F77//jtmzZyM6Oto8qt+1a1fI5XKxo1MrUlRUhK1btyIoKIj3vSUiUQiCgGnTpiEvLw+7d++GRCJpcr9+/foBABQKBRYtWoQNGzbgwIEDGDJkSKN9/f39+X8aERERWNy3SC4uLhg4cCCAv0c4fHx8IJfLsWvXLnz77bf47LPP0KNHD6xduxYymQwFBQU8saF/dOnSJaxYsQLjxo3j3xcisjlBEDBjxgwkJSVhz549UCqV1/1cqVQKQRCaMR0REVHrx+K+hZNKpQgKCsL06dMxffp01NTU4ODBg7h06RIMBgNSUlIwfvx4REREoG/fvujXrx+6desGhUIhdnQiIiKzmTNn4tChQ/j555+bnF7f4NSpU6itrUXnzp1hMBiwdOlSVFdX3/LCe0RERG0d73Pfyjg5OeHuu+/GI488gvj4eAwaNAirV69G586d8f3332PChAkYMWIE6urqAAAFBQUiJyYiInuXlZWFjz76CKmpqQgODjbfv37x4sUA/r511/79+wH8Pcvoscceg0qlQkhICA4dOoTdu3dDrVaL+A6IiIhaPo7ct2JSqRR+fn546qmn8NRTT6G2thZ//vknLly4gLq6Oly4cAHDhg1DeHi4+Vr9Hj16cOVUIiKyqdDQ0GtOq9fpdOY/33333Th9+rQtYhG1STExMdi7dy+6dOkidhQisjEW922Io6OjuYg3mUwICgrCZ599hl27dmHnzp34/PPP4e3tjT179sDR0RGFhYXw9vYWOzbZiFKpRJ8+faBSqcSOQkRERM1EJpNBqVRCJpOJHYWIbIzFfRsllUrh7e2NyZMnY/LkyTAYDDhy5AhOnToFo9GI3NxcDB48GIGBgeYvBHr27AknJyexo1MzCQkJwTvvvIOIiAixoxAREVEzyczMRGJiIj7//HPExMSIHYeIbIjFvZ1QKBTo3bs3evfuDUEQUFpaik8//RQ7d+7Ejz/+iA0bNsDV1RW//vorlEolSkpKoNFoxI5NVlRXV4fS0lLU1dXx0gwiIqI2qqqqCn/++ScqKyvFjkJENsbi3g5JJBJoNBpMmDABEyZMgMFgwLFjx3D48GHIZDIUFxcjISEBKpUKffr0Qd++fdGrVy84OzuLHZ1uQXp6OkaNGoUjR46gR48eYschIiIiIiIrYnFPUCgUuP3223H77bdDEARUVlZi5cqV2LFjB/bt24evvvoKCoUCP/74I3x9fVFWVga1Wg2JRCJ2dCIiIiIiIgKLe7qCRCKBu7s7Hn/8cTz++OMwGAw4efIk9u3bB5VKhYqKCowePRomk8l8rX6vXr3g6uoqdnQiIiIiIiK7xeKerkmhUKBHjx7o0aMHBEFAVVUV3nrrLezcuRO//vorNm3aBLlcji1btiA6OhoVFRVwd3fnqD4RERGRCPz8/PDCCy8gODhY7ChEZGMs7um6SSQSuLq6YuzYsRg7dizq6+tx8uRJ7NixA8HBwSgvL8dTTz2FS5cuoU+fPujXrx9uv/12KJVKsaMTERER2QWNRoPRo0fzdsdEdkh6qwc4fPgwevXqhTvvvBM7d+40b3/ooYdu9dDUwjk4OKBbt26YO3cu4uPj0blzZ7z22mu499578eeff2LmzJno1asXjhw5Yr6WXxAEsWPbrZiYGOzduxddunQROwoR2QD7ZyL7VFZWhp07d6KkpETsKERkY7c8cj9nzhysWbMGcrkcM2fOhFarxaRJk1BWVmaFeNRaSCQSODs74+GHH8bDDz+M+vp6nDp1Ct9//z2ioqJQUVGBF154AadPnzavwH/nnXfCzc1N7Oh2QyaTQalUQiaTiR2FiGyA/TORfcrLy8OCBQswdOhQeHl5iR2HiGzolot7mUyGjh07AgB++OEHjBs3DuXl5bzm2s45ODigS5cu6NKlCwRBQE1NDZ599lls27YNv/zyC7Zu3QqZTIb33nsPAwcORFVVFVxcXPj3phllZmYiMTERn3/+OWJiYsSOQ0TNjP0zERGRfbnl4r6+vh46nQ5KpRJyuRwbN27EE088gcOHD1sjH7UBDaP6w4cPx/Dhw1FfX4+0tDT88MMP6NixIyoqKvDmm2/iwIEDFqP6KpVK7OhtSlVVFf78809UVlaKHYWIbID9MxERkX255eL+/fffh16vNy+aJpVKsWHDBnzzzTe3HI7aJgcHB8TFxSEuLs48qv/UU0/B29sb+/btw3fffQeZTIbExESMHDkSNTU1cHR0hFR6y0tEEBHZDfbPRERE9uWWi/tu3bo12iaRSDBq1KhbPTTZgYZR/fvuuw/33XcfjEYjTp8+bTGq//HHH2Pbtm2466670LdvX/Tu3RseHh5iRyciatGu1j8/8sgjIqQhIltxdnZGp06d4OrqKnYUIrKxZhsKTUhIaK5DUxvWcI3oiy++iKFDh6Jz584YO3YsRo0ahbS0NDz//PPo3bs31qxZA0EQUFtbC5PJJHZsIqIW58iRI1wtn8gOhYeHY82aNVxfh8gO3fLI/fz58xttEwQBGRkZt3posnMSiQROTk4YOHAgBg4cCKPRiHPnzuH7779HeHg4KioqsGnTJqxduxa9e/dG//790bt3b2g0GrGjt0h+fn544YUXEBwcLHYUIrKB5557jqvlExER2ZFbLu4//vhjvPPOO43uX+7i4nKrhyayIJPJEBMTg5iYGPOofW1tLWpqarB371788MMPkEgkmDp1KmbPno36+npIpVLe+u3/02g0GD16NLy9vcWOQkQ2wNXyiexTamoqRo0ahSNHjqBHjx5ixyEiG7rl4r5Dhw645557EBgYaLF99+7dt3pooqtqGNXv06cP+vTpA6PRiPPnz2P79u3w9vZGRUUFdu3aheXLl+POO+9Ev379cNddd9n1/V7Lysrw008/ITw83Gqfg8FgQH5+vnlFbj8/PygUihveh4isj6vlExER2ZdbLu5//fXXJkcBvvrqq1s9NNF1k8lkiIqKwrPPPgsA5mvxCwsLsXfvXrz88ssAgDFjxmD+/PkwmUwQBAEODrf8T6DVyMvLw4IFCzB06FCrFPcGgwFJSUkQBAGurq7QarXIz89HfHy8uXi/nn2IqHlwtXwiIiL7csuVDaf3UUvk6OiI22+/HbfffjuMRiOysrKwfft2ODo6oqKiAocPH8arr76KO++8E3379kWfPn3g4+MjduxWJT8/H4IgmK/h12g0yMnJQUFBgXnb9exDRM2Dq+UTERHZlxteLX/UqFH49NNPLbb98MMP2LRpE/R6vdWCEVmLTCZDu3bt8Mwzz2Dq1Kno0qULevfujYkTJyI3Nxdz585F37598dxzz5lH9Ovq6sSO3eLpdLpGt9lxdXVFZWXlDe1DRNbB/pmIiMi+3XBxf+jQIfTv39/8eMGCBXjggQfw2GOPoVu3bigpKbFmPiKrc3R0RNeuXbFixQqcOHEC58+fx8qVK3HvvfeisrISf/31F26//XbMnDkTmzdvRn5+vtiRWySlUtmoYNDr9XBzc7uhfYjIOtg/ExEAREREYOvWrYiNjRU7ChHZ2A0X9+Xl5YiMjAQAmEwmfPzxx1i6dCkKCgrQvn17vPPOO1YPSdRcpFIpwsLCMGPGDPzrX/9Cly5d0LVrVzz11FO4dOkSFixYgP79+2PKlCkwmUwA/l6kqjVydnZGp06dGo2k3yw/Pz9IJBLk5OSgpKQEOTk5qK+vR21tLVJTU5GdnQ2NRgOJRILz588jLS0Nf/zxBy5dugQPDw+rZCCi/8P+mYiAvwcxgoOD4eTkJHYUIrKxGy7u1Wo1amtrAQDJyckoKyvD1KlT4e3tjbfffhvfffed1UMS2YqjoyM6duyI5cuX4/jx47hw4QI+/vhjJCQkQKfT4dy5c+jVqxemT5+OTZs2IS8vT+zI1y08PBxr1qxBTEyMVY6nUCgQHx+PgIAASKVS8yJ9xcXFMJlM0Gq1SE1NRWRkJEpLS1FUVAS1Wg0PDw+kpqbCYDBYJQcR/Y39MxEBwMWLFzF//nxcuHBB7ChEZGM3vKDebbfdhi+//BKTJ0/Grl270K1bN/MU2+joaGi1WquHJBKDVCpFSEgIpk2bBuDvld+zsrIwbdo0/Pzzz3jjjTdgNBrRuXNnbNy4ETKZDEajETKZTOTktqNQKMwL42VnZ8PBwaHR4nlnz56Fj4+PxQJ6XFSPyPrYPxMRAPPtgEtLS8WOQkQ2dsPF/WuvvYa+ffvim2++waFDhzBv3jxzGxfJorZMoVAgKioKy5YtM49M79y5E1lZWdDr9dDr9Rg+fDji4+PRr18/9O3bF0FBQWLHNktNTcWoUaNw5MgR9OjRw+rHv9rieZmZmQgLC2u0nf9fEFkX+2ciIiL7dsPT8rt164adO3fC09MTEyZMwMyZM81tf/zxB0JDQ60akKglkkqlCAwMxJQpU/DGG2+gS5cuCA8Px9SpU6HT6fDmm29i4MCBGDp0qHmabMM1+22NwWBAdnY2tFotMjIyoNPpkJubi/T0dGRkZEClUkGv16Ourg75+fm4cOECMjMz4ejoKHZ0ojaF/TMREZF9u6n73Pfp0wd9+vRptD0pKQkPPvjgLYciam0UCgVCQ0OxZMkSmEwm5OfnY/fu3UhOTkZtbS30ej1GjBiBqKgo86h+SEiI2LFvSUNRf+zYMbi4uMDX1xfZ2dnYuHEjoqKiIJfLUVNTA7Vajerqavz2229wcnKCIAioqKhAbW0tdDodPDw84OfnB4VCIfZbImr12D83JggCsrKyGs1e8Pb2hre3NyoqKnDx4kWLNoVCYV6cMC0tDYIgWLSHh4fD2dkZeXl5KCsrs2jTaDTw8/ODXq9HVlaWRZtMJjOve5Kent7otqshISFQKpUoLCxEYWGhRZu7uzuCgoJQW1uLjIyMRu+zYWX0CxcuoLq62qItICAAarUaJSUlje4A4+LigrCwMBiNRpw5c6bRcRv+P8/OzoZOp7No8/HxgZeXF8rLy5Gbm2vR5ujoiIiICAB/zxy7Urt27eDk5ITc3FyUl5dbtHl6esLX17fJz9DBwQHR0dEAgLNnzzZa5DY0NBSurq4oKChAcXGxRZtKpUJgYCBqampw/vz5RpkaPsOMjAzzF/MNAgMDoVKpUFRUhEuXLlm0KZVKhISEoK6uDunp6Y2OGxMTA5lMhszMTFRVVVm0+fn5QaPRoKysrNE6Ps7OzggPDwfQ9GcYEREBR0dHXLx4ERUVFebtTf39ICL7cFPF/dW8/PLL1jwcUasklUoREBCAiRMnAgDq6upQVFSEiRMnYs+ePXjrrbewaNEiBAcHY/PmzVCr1TCZTJBKb3gijWgMBgOSkpLM1/AqFAqUlZUhOjoaOp0OTk5OCA8Ph0ajQX5+PgwGA1QqFVQqFeRyOYqKilBWVobi4mLU1NQgPz8f8fHxLPCJmok998/V1dX4+OOPsXfvXovtTz/9NCZMmIDff/8dzz//vEVbeHg4vv76awDAE0880eiWnuvXr0f79u2xatUqbNmyxaJtzJgxePbZZ3Hy5ElMmTLFok2tVuPHH38EAMyYMaPRlworVqzAHXfcgQ0bNuCzzz6zaBsyZAgWLlyInJwcjBo1qtH7PHz4MADgpZdeQkpKikVbYmIiEhIS8L///Q9vv/22RVuvXr3wwQcfQKfTNXnc3bt3w8PDA2+++Sb2799v0TZ79myMHTsW+/btw6uvvmrRFhMTgw0bNpg/kyu/yNi4cSMiIiLwwQcfYNu2bRZt48ePx4wZM3D06FFMnz7dos3Hxwfbt28HAPOdbS738ccfo3v37li3bh0+//xzi7Zhw4Zh7ty5yMjIwJgxYyza5HI5/vjjDwDA888/3+iLjsWLF2PgwIHYunUrVqxYYdHWp08fvPPOOygtLW3yM9y7dy+USiUSExPx559/WrS98MILGD16NH766ScsWLDAoq1Tp05Ys2YNADR53K1btyI4OBjLly/Hrl27LNp69OiBgICARs8horZNIlz5dbQdOHbsGLp3746jR4+iW7duYschOyIIAgoKCrB7924cPHgQkydPhiAIePzxx+Ht7Y1+/fqhT58+CAsLg0Qiseprp6SkWO2a+4Zp+DU1NRAEAR4eHigoKEB1dTWkUinc3d0RFRUFACgpKTFfd6/RaJCbm4uioiIolUpIpVKEh4cjJycHAQEBXGCP7Br7Jutq+DyPHDkCtVrdaIQ9ICAAfn5+KCsrazSK6+TkZB7FTUpKanRZVfv27eHi4oLs7GwUFRVZtPn4+CAoKAg6nQ5nz561aHNwcEDnzp0BAKdOnWo0OhwZGQl3d3dotdpGCyB6eHggPDwcNTU1TY7iNvydOXPmTKMvIxr+/y0sLEROTo5Fm5ubG6KiomA0GnHixIlGx42Li4NcLkdGRkajEfbAwED4+vqitLS00crszs7O6NChAwDg+PHjjWY/dOjQAc7OzsjKymo0wu7r64vAwEBUVlY2GgmXy+WIi4sD8PddIa780iAqKgpubm7Izc1FQUGBRZunpydCQ0NRXV2NtLQ0izaJRIKuXbsC+Hu2xpWzH8LDw8193ZWzFFQqFSIiIlBXV4fk5GRcqUuXLpDJZEhPT280gyQ4OBje3t7mvvJyrq6u5pkex44da3Tc2NhYODk54cKFC40WzwsICGBxT9QCNXdfz+KeJ1Akorq6OlRUVOC9997DTz/9hGPHjqGurg6BgYH4/PPPERQUBEEQrFLoV1dX4/z58xgyZAhcXFxu6VipqakwmUyorq5GUVERAgICUFFRgeLiYlRUVKBDhw4IDAwE8PfK+A3vITg4GOnp6RAEAQaDAd7e3vD19UVJSQmkUqn5ZJrIHrFvsi5+nkRE1NI0d9/UeuYBE7VBcrkcnp6eeOONN3Dw4EHk5uZiw4YNGDhwIFxdXVFeXo7x48dj4sSJWLt2LTIyMhqNflwvR0dHBAcHw8nJ6ZZzK5VK6PV6eHt7QxAE5OXlma/jNJlMqK2tRUlJCXJyciCRSNCpUydIJBLk5OSYr9WXSCTQaDQAAL1eb75lFxERERER3bhbKu4rKirw1VdfYenSpQCAgoKCRgu1ENH1kUgk8Pb2xrhx47Bu3Tp0794dMTExuP/++yGRSPDuu+/ivvvuw4ABA3D69GkAuKFC/+LFi5g/f36jqZM3w8/PDxKJBAUFBfD390ddXR0EQUBcXBxGjRqF0NBQ89oD8fHxUCqViI+PR0BAALy9vaHRaODs7IzKykrzFwC+vr63nIuI/sb+mYiIyP7c9IJ6SUlJGDx4MFQqFfLy8vDiiy/i+PHj+OyzzxotLkNEN04ul0OlUmHevHmYO3cuiouL8dNPP2Hnzp3w8PBAeXk55s2bh7KyMvTt2xd9+/ZFVFTUVafwV1RUYNeuXY2uy7sZCoUC8fHxyMnJwYULF6BUKhEbG4vg4GAoFAoolcomnxMcHIzg4GDExsaioKAAlZWVCAgIgK+vLxfTI7IS9s9ERET26aZH7v/1r39hwYIFOHv2LORyOQCgd+/eOHTokNXCEdHfJBIJvLy8MGbMGKxfvx533nknYmJiMHDgQCgUCnzwwQcYNmwY+vfvjyNHjgC4sVH9m1VcXAw3Nzf4+PiguLgYSUlJMBgM//i8hkL/8i8EiMg62D8TERHZp5seuU9OTjbfVqZhpNDNza3RKqBEZH0ODg5QqVR44YUX8Pzzz6OsrAw//fQTduzYAU9PT5SXl2PZsmW4cOGCeVTf2sV+wy3uXFxcUF5eDgcHB+Tl5aGyshJRUVHme9cbDAbk5+dDp9NBqVTynvZEzYz9MxHdKvbdRK3TTRf3DbcD8ff3N2/Lzs6Gn5+fVYIR0fWRSCTw8PDAww8/jIcffhj19fXQ6/Xo27cvLl26hI8++gjLly+HWq226uuWlpYiPz8f7u7ukMvlSElJQVVVFUJDQ6HVapGfn4/Y2FikpqZCEAS4urqat/Oe9kTNh/0zEd0Kg8GApKQk9t1ErdBNT8t/+OGHMX78ePP9Ry9evIhZs2Zh7NixVgtHRDeuYVR/5syZ2LdvH7RaLTZv3ozBgwdjzJgxVrvvbVVVFaqqquDr6wuj0QhPT084OTnB2dkZwcHBEAQBKSkpEAQBwcHB0Gg05u1X3nuYiKyH/TMR3YiGu9ikpqYiOzsb2dnZ5r5bqVSivr4eR44cwdatW3Hu3DnodDqL/a/ncjwiso2bLu4XLFiAgIAAxMTEoKysDKGhoXBwcMBLL71kzXxEdAskEgnUajVGjRqFTZs24auvvrJace/s7AxHR0fk5eWhoKAAZWVlkMvlcHZ2BgC4urqiqKgIrq6uFs9zdXXl9GCiZsT+mYiuV8MovVarhclkglarxbFjx8yX1Z08edI8il9cXIxffvkFmzZtQnZ2tnn/611vh4ia300X946Ojli3bh2Kiopw6NAhXLhwAVu3boWjo6M18xFRC6XRaBAYGAgvLy8oFAooFAr4+/vDxcUF+fn5SEtLQ319PcrKyiyex3vaEzUv9s9EdL3y8/MbzbBzcXFBTk4OCgsLUV5eDl9fXwQEBKBjx47m29g6OjpyRh5RC3TTxf2GDRuQlJQEjUaD2267DSEhITh+/Di+/PJLa+YjohaqYXEdk8mEyMhImEwmXLp0CefPn0dKSgpMJhNUKhXOnTuH8+fPo6SkhPe0J7IB9s9EdL10Ol2jGXaBgYGoqanB+fPnUV1djaqqKkgkEri7u0Mmk8HJyQlVVVXm/Tkjj6jluOniPjExsdHiPP7+/liwYMEthyKilq/hXvcBAQFwdHREnz59EBkZCYlEgg4dOqBXr16IiYlBZGQk5HI5pFIpAgICuCAPUTNj/0xE13L5NfZFRUU4ffo00tPTkZubC4PBAIPBgO7duyM0NBSCIMDR0REhISFwcHCA0WhETU0NXFxczMfjjDyiluOmV8u/dOlSo5MHPz8/TsshsiMN96tvUFtbCw8PD2g0GvM2tVoNqVSK2NhYMSIS2R32z0R0NQ3X2BsMBlRUVODYsWOorKxEXFwcFAoFTp06haioKAQHByM4OBhGoxHnz5/H+fPnIQgCqqur4ebmhtraWpSUlECv13NGHlELctPFvb+/P86ePYvo6GjztrNnz8LHx8cqwYio9VEqldBqtRbFvV6vt9oifkT0z9g/E9HV5Ofnmwv7wsJC+Pn5wcvLC3q9HkFBQSgrK4PJZMK5c+egVCrRpUsX+Pn5ISsrC4IgoHv37vD19UVpaSkqKysREBAAX19fzsgjaiFuelr+6NGj8cQTT+D48ePQ6/U4fvw4JkyYgIcfftia+YioFfHz84NEIkFOTg6vsScSCftnIroanU6H6upqSCQSqFQqeHt7Izg4GM7OznBxcUF9fT3y8vLMK+GnpqbC19cXkZGR8Pf3h1wuN8/ai42NRXBwMAt7ohbkpkfu586di8zMTHTv3h0SiQQAMGbMGMyfP99q4YiodWm4Dr+goIDf6BOJhP0zEV2NUqlESUkJfH19IZFIUFZWBoVCAZVKBa1Wi6qqKnTo0AEajQYajQanTp3C6tWroVAo4OvrCx8fH+Tn53P9HKIW6qaLeycnJ3zxxRdYsWIFLly4gLCwMHh5eVkzGxG1cAaDAfn5+dDpdFAqleYV9C+/Dp+IbIv9MxFdjZ+fH5ydnZGdnY2goCAUFRXBwcEBKpUKFRUVUKvV8Pb2BgBUV1fj119/RU1NDXr27Iny8nKUlpYiJiYGOTk5kMvljfp/IhLXTU/Lb+Dp6YkePXrY9MShrKwMDz/8MNzc3BAQEID33nvPZq9NRH8zGAw4cuQITp48iQsXLuDkyZM4cuQIDAaD2NGICOL0z9dyI333r7/+ik6dOsHFxQU9e/bEiRMnbBeUqA1TKBQYMGAANBoNiouLERUVBY1Gg7KyMsjlcpSWluLcuXPIzc1FWloa9Ho92rdvDycnJ3h4eKCqqgrZ2dk4evQotFqtefr+kSNHcO7cOaSmpiI7O5vnAkQiuemR+8sJggBBEMyPpdJb/s7gmmbOnIna2lrk5uYiKysL99xzD2JiYpCQkNCsr0tE/yc7Oxtnz56Fi4sLJBIJBEEwL84THBzc5Ig+EdmWrfvna7nevru4uBgPPvgg3n//fTzyyCP48MMPMWzYMJw9exaOjo4ipSdqGwwGA0pKShAUFISamho4ODjAYDCgffv2yM3NRUFBAU6cOAF/f38kJSVBJpMhLS0NycnJkEgkkEqlSE1NxX333QdfX18UFhZCp9Ph5MmTCAkJQUxMDLRaLafuE4nkpnv54uJijB07Ft7e3nBwcIBcLjf/NCe9Xo/NmzfjzTffhLu7O+Li4vDkk09izZo1zfq6RPR/dDodtm3bhkOHDiEjIwMSiQRyuRxlZWVIS0tDUlKSxTf6DbfdIaLmJ1b/fC030nd/++23iIyMxBNPPAFHR0c8++yzMJlM2LNnjwjJidqOhtvgabVaODg4oL6+HidOnEBFRQV0Oh3c3d0xaNAgBAUFwdXVFV5eXsjMzER6ejoqKytRU1OD9PR0nD9/HnV1dTh58iTOnj2Lc+fOobKyEpcuXYJSqURwcDAEQeDtN4lEcNPF/bPPPovz58/j008/hYuLC7Zu3YoePXpgxYoV1szXyNmzZ2EymdCpUyfztvj4eKSkpDTaV6vV4tixY41+0tLSmjUjUVum0+mwZcsWZGVlwWAwICMjAzt27IDBYEBxcTH+/PNP8322NRoNO3kiGxOrf76WG+m7U1JSEB8fb34skUjQuXPnJvcF2NcTXa/8/HwIgoDg4GAolUpUVFSgrKwM9fX10Gq1KCwsBAAEBATAy8sL/v7+KCwshIuLC9zd3WEymeDg4AA3NzccPHgQeXl5cHZ2hqOjI5ycnFBRUQGtVgsAcHV1RWVlpZhvl8gu3fS0/D179uDPP/9EcHAwZDIZhg8fjo4dO2LixImYOXOmNTNa0Ol0UKlUFtvUanWT/4GsXr0aiYmJzZaFyB4lJyejrq4OCoUCrq6u8Pb2xrlz57B27Vq0b98evr6+qK6uNt9nWy6Xs5MnsiGx+udruZG+W6fTwcPD47r2BdjXE10vnU4HV1dXAEBhYSEkEgkiIyNRVlaGkJAQnD9/HqWlpTCZTPD29jZvd3JygrOzMzQaDcLCwnDmzBlcvHgRQUFBkMvlqK+vh4ODA9zd3aHVahEaGgq9Xo+AgACR3zGR/bnp4l6v15tXxHZ0dERdXR2ioqKQnJxstXBNafim8XLl5eVwc3NrtO/UqVMxbNiwRtvT0tIwbty4ZstI1JYVFxejqqoKGo0GMpkMMpkMKpUKlZWVUCqV6NSpE+RyOQRBMN9uh508ke2I1T9fy4303UqlEuXl5de1L8C+nuh6KZVKaLVaaDQaVFVVwdnZGYIgwMnJCUajEbW1tTh+/DjCw8Ph4uICV1dXqNVqODk5ISQkBDKZDJmZmXBwcEBoaKh5zZ2goCCUlpYiNzcXDg4OyMnJgUQiga+vr9hvmcju3HRxHxISgnPnziEyMhKRkZH47rvv4Onpaf5GsLlER0dDIpHg1KlT6NixIwAgKSnJYqpfA39/f/j7+zdrHiJ74+npiQMHDiAiIgKCIKCmpgbV1dXw9fWFu7s7OnTogPT0dJSVlaGurg4Gg4GdPJENidU/X8uN9N2dOnXCJ598Yn4sCAJOnjyJ6dOnN3ls9vVE18fPzw/5+fnIycmBwWCAVquFv78/evTogYqKClRUVMDV1RWhoaHQaDSIjY1FQUEBTp06hfr6ehiNRpSXl0OpVCI6Ohp6vd785YCrqyukUin8/f0REBAAX19fLqZHJIKbvuZ++vTp5lGAOXPm4LHHHsOgQYPwr3/9y1rZmuTq6opRo0bhtddeQ2VlJVJSUvDZZ59h0qRJzfq6RPbOYDAgOzsbcrkcer0eycnJMBqNKC0thZOTE1QqFTp16gRXV1fExsaap/EFBARwxVwiGxKrf76WG+m7R4wYgfT0dHzxxRcwGAzmtQIGDhxo69hEbYpCoUB8fDwCAgLg7e0NjUYDZ2dnVFdXw2AwICIiAkOGDEGXLl0QHBwMjUaDqVOn4s4774REIoFCoYC/vz/i4+PRpUsXKJVKZGRkoKSkBADQrVs3REREoLKyEvn5+VxIl0gENz1y//TTT5v/PGLECGRlZUGn0yEmJsYqwa7lww8/xJNPPgl/f3+4ubnh5Zdf5m3wiJpRwwq7giDA1dUVCQkJ+Pbbb3H27FkEBgaiY8eOKCwshKurK0pKSqDX6+Hn58einkgEYvbP13KtvlupVGLnzp3o06cPPD098d///hczZ87Ek08+iU6dOmHbtm28DR6RFSgUCgQHByM4ONg8Ml9ZWXnV0XaNRoMpU6agoKAAZ86cQU1NDeLi4iCXy+Hj44OTJ09CqVQiNDQU+fn5KC4uhqurK2+HRySSW7rP/cGDB7FmzRrk5OQgKCjIZqPnarUamzdvtslrEZHlCrvA3519w8q4UqkU3t7eiIqKgl6vv+ZJAhHZhlj987Vcq+/W6XQWj/v373/V1fGJyDoaCv1rMRgMyM/PN/8bDQwMNN9WU6FQoF27dpBKpZDL5XBwcLA4T8jJyUFBQcE/vgYRWc9NT8vfsGED+vfvj8rKSnTt2hV6vR733HMP1q9fb818RNQCXL7CbgMvLy9ERkbi/vvvR69evcy3vYuNjUVwcDALeyKRsH8mImtomLWn1WphMplQWVmJvXv3IjU1Fbm5uTAYDNDr9XBzc7M4T6irq0N+fj6Kiopw9uxZTs8nsqGbHrl/44038N///tdiOvyuXbswa9YsPPHEE1YJR0Qtw+Ur7BoMBhQWFuL8+fMIDQ2FwWBgIU/UgrB/JiJruHzWnsFggEwmg8FgwPnz56FWq3Hq1ClERUXB19cXgiBAq9XCzc0NZ8+ehSAIKC8vh1arRXFxMbp164aQkBCeLxA1s5seuc/Pz8fgwYMttg0aNAgFBQW3HIqIWhY/Pz9IJBKcP38ef/75J9LS0iCTyVBfX4+kpCR+K0/UgrB/JiJruHw0vrCwEHK5HLfffjt8fX0RGBgILy8v+Pn5QaFQmM8TkpOTUVZWhpqaGhQWFsLHxwcSiQSnT5/m+QKRDdx0cX/vvfdi165dFtt2796Ne++995ZDEVHL0rDCroODA6RSKeLi4tCzZ0+0a9cOgiCwaCBqQdg/E5E1KJVK6PV6GAwGZGZmoqSkBPn5+fD390d4eDjCwsJQW1sL4P/OE5ydneHo6AiJRILw8HCEhobCz88PHh4ePF8gsoGbnpYfEBCA0aNHY+jQoQgPD0dmZiZ27NiBSZMmYf78+eb9Fi5caJWgRGRbly+io1Qq4efnZ76PvUajMe/n6uqKyspKEZMS0eXYPxORNfj5+SEnJwe//PIL9Ho9ampqoFKpUFxcDF9fX+j1egQEBFg8x8XFBUVFRZBKpeZzherqanh7e0Mul/N8gaiZ3XRxn5KSgttuuw1FRUUoKioCAPTs2dN8b10AkEgkt56QiGzuylvfNdzSRqPRoLi42KK4b6pzJyLxsH8mImtQKBTw9fVFaWkpwsLCcPHiRahUKpSVleGXX36Bs7MzPD09zVPtk5KSYDQaIZPJkJ2djczMTHTs2BFyuRwajQb5+fk8XyBqZjdd3O/bt8+aOYioBWnq1nc5OTmQSCSQSCTIycmBq6sr9Ho9JBIJfH19RU5MRA3YPxORtRgMBoSFhUGj0SAsLAxarRbnz5+Hg4MDOnfujOLiYpSUlECj0UAQBLRr1w7BwcEICQnBvn37UFRUhLi4OOTn5/N8gcgGbuk+95c7d+4cZDIZwsPDrXVIIrKRK6fgl5aWNrr1naurK2praxEfH4+CgoJmvZ/9//73P6xduxYJCQkYMmQIQkNDrXp8InvC/pmIbtbld8tRKBRwdHSEh4cHOnToYC7Uc3JykJWVZX4sl8sRFBSEQYMGoaSkBI6OjvDy8mqW8wUisnTTC+pNmjQJv//+OwBg06ZNiImJQVRUFDZu3Gi1cETU/K68j61Wq0VWVhbKysos9mu4l61CoWj2+9mXlZXh8OHDePrppxEWFoYOHTrg008/tfrrELVF7J+JyFoaVsHPyclBSUkJMjIy4OjoCG9vb/M+DYMBer3e4rkGgwHR0dHNer5ARJZueuR+586dWLlyJQDg3XffxaZNm+Du7o4XXngBY8aMsVpAImpel0/Br6urg8FggF6vR3FxMQBArVajrKwMpaWlcHR0hCAI5lvfNJeOHTtCq9Xik08+QXFxMQ4ePIiCggLk5OQgJSUFH374IYYOHYohQ4agXbt2zZaDqDVi/0xE1tKwCn7DjL3g4GDU19dbnAPo9XqEhYWhuLiYl+0Rieymi/uqqiq4uLigsrISZ8+exciRIyGVSvHII49YMx8RNbOG+9jW1dXh7NmzEAQBSqUSJpMJpaWlcHJyQmlpKTw8PODg4GBeXC8+Pr7Zv4XXaDTo27cvhg8fjrq6OuTn5+PChQvQarWYPXs26uvrERUVhenTp+PZZ59t1ixErQX7ZyKypoYZe8D/zfa7sogPDg5GcHBws1+2R0TXdtPFvbe3N9LS0pCSkoLbb78dUqnU/A+ciFqPhuvpDAYDBEGAr68v8vLyEB0dDZPJhPr6evj4+DRaXK+goMC8rblJJBIoFAooFArcc8896N+/v3lE/8CBA8jNzUV2dja0Wi1ef/11DB06FAkJCYiMjLRJPqKWhP0zETWXK0fyryzibXVeQERNu+ni/l//+hd69OgB4O9r+gDgt99+Q8eOHa2TjIhsws/PD/n5+cjIyIBMJoNWq0VtbS3c3d3h4uKC3NxchIWFWTxH7Hvby2Qy+Pj44MEHH8SwYcNQV1eHgoICpKWloaioCHPmzMEzzzyDiIgIjB8/HvPmzRMtK5GtsX8mouZ0+Ug+EbUsN13cz5w5E0OGDIGDg4P5xD8iIgKrVq2yVjYisoGGb+Fra2vx+++/IygoCBEREaioqEB6ejoiIiKg1+ttem97Dw8PDBkyBO7u7v+47+Wj+nfccQd69eqFkpISHDx4EAcPHkR2djays7NRXV2NZ555BgkJCUhISEB0dDRHMqlNYv9MRERkn27pVnhXTnmNjo6+pTBEJA6FQgF/f38EBQWZp9cZjUbIZDJ4eXmhsrLSpovkhIeHY+HChVAqlTf8XKlUCi8vLzzwwAO4//77UVdXh0uXLuHcuXMoLy/Hiy++iGeffRZhYWEYPXo0li5d2gzvgEhc7J+JiIjszy0V9wcPHsSaNWuQk5ODoKAgTJo0CXfeeae1shGRDRkMBnTq1AkAUF5eDkEQ4O7ujry8PPTq1QulpaUW19cBQHZ2NnQ6HZRKpVVX0K+pqUFOTg7atWsHZ2fnmz7O5aP6Xbt2xdq1a1FWVtZoVN/BwQGTJk3Cvffei4SEBHTo0IGj+tSqsX8mIiKyPzdd3G/YsAFTpkzBQw89hK5duyIzMxP33HMPVq9ejSeeeMKaGYnIBpRKJSorK+Hn54eioiJIJBLU1tZCIpEgNTUV8fHxjVbLFQQBrq6uVl9BPzU1FSNHjsSWLVvMXzhYg1QqhUajwX333Yf77rvPPKqfl5eHiooKvPbaa3j++ecRHByM+++/Hx9++CGLfGp12D8TUWuRl5eHvLw8i20eHh4IDw9HTU0NUlNTGz2nW7duAIAzZ85Ar9dbtIWFhUGj0aCwsBA5OTkWbW5uboiKioLRaMSJEycaHTcuLg5yuRwZGRkoLy+3aAsMDISvry9KS0tx4cIFizZnZ2d06NABAHD8+HEIgmDR3qFDBzg7OyMrK8t8m+EGvr6+CAwMRGVlJdLT0y3a5HI54uLiAADJycmoq6uzaI+KioKbmxtyc3NRUFBg0ebp6YnQ0FBUV1cjLS3Nok0ikaBr164AgLS0NFRXV1u0h4eHw8PDAwUFBcjNzbVoU6lUiIiIQF1dHZKTk3GlLl26QCaTIT09vdHaTMHBwfD29kZJSQkyMzMt2lxdXRETEwMAOHbsWKPjxsbGwsnJCRcuXEBpaalFm7+/P/z9/VFRUYFz585ZtDk6OprXmzl58iTq6+st2qOjo6FUKnHx4kVcunTJos3LywshISGoqqrC6dOnLdqkUini4+MB/H3OWlNTY9Herl07qNVq5OfnN/r7feVnam03Xdy/8cYb+O9//4uEhATztl27dmHWrFk8eSBqhRoW1ktOTkZ1dTWcnJxgMBjg4+ODS5cuIScnBxEREQCA/Px8CIIg6gr61iCXyyGXyxETE4P//Oc/KC8vx6FDh3Dw4EFkZmYiOzsbbm5umDhxIu666y4MGTIEnTp1YsFPLRr7ZyJqDfLy8vDggw/ir7/+stg+ZMgQLFy4EDk5ORg5cmSj5x0+fBgAMGnSJKSkpFi0JSYmIiEhAZs3b8bbb79t0darVy988MEH0Ol0GDBgQKPj7t69Gx4eHpgzZw72799v0TZ79myMHTsWe/bswauvvmrRFhMTgw0bNgAAevfu3agI37hxIyIiIrBo0SJs27bNom38+PGYMWMGjh49iunTp1u0+fj4YPv27QCA+++/v1Hx+fHHH6N79+748MMP8fnnn1u0DRs2DHPnzkVGRgbGjBlj0SaXy/HHH38AAB5//HGcOXPGon3x4sUYOHAgvvzyS6xYscKirU+fPnjnnXdQWlqKwYMH40p79+6FUqnErFmz8Oeff1q0vfDCCxg9ejR27tyJBQsWWLR16tQJa9asAQDcdtttjY67detWBAcHY/78+di1a5dF25QpU/DUU0/h4MGDmD17tkVbUFAQvv32WwDAoEGDUFZWZtH+2WefoXPnznj33XexceNGi7ZRo0bhxRdfxOnTpxv1na6urti3bx8A4JFHHmn0hc+yZcvQt29frFu3Dh999JFFW8+ePRu9P2uSCFd+vXSd3N3dUVZWBqlUat5mMpmgVqtRUVFhtYDN4dixY+jevTuOHj1q/vaPiP4ekd+/fz/Ky8tRXV0NtVoNd3d3czE/fPhwKBQKpKamwmQyWSyyV1JSAqlUitjY2FvO8ddff6Fnz55WH7m/EXV1daipqUFpaSkSExNx9OhR1NTUIDAwEEOGDMHKlSvh5OQkSjZqm6zVN7Xm/tma2NcTtWwNff2SJUvMgwfA3/+HBQUFoba2FhkZGY2e13CeceHChUajzgEBAVCr1SgpKUF+fr5Fm4uLC8LCwmA0GhsVtMDfI+Fyudx8yeHlfHx84OXlhfLy8kYjr46Ojub8Tc00aNeuHZycnJCbm9toRoCnpyd8fX2h1+uRlZVl0ebg4GBeL+Xs2bONRp1DQ0Ph6uqKgoKCRjMCVCoVAgMDUVNTg/PnzzfK1PAZZmRkoLa21qItMDAQKpUKRUVFjb5QUCqVCAkJQV1dXaOZBsDfX3TIZDJkZmaiqqrKos3Pzw8ajQZlZWWNRrOdnZ0RHh4OoOnPMCIiAo6Ojrh48WKjfszb2xve3t7Q6XTIzs62aJPL5YiKigLw90wPo9Fo0d7wGebn56OkpMSiTa1WIyAgANXV1Y2Kd4lEYp6tce7cORgMBov2oKAguLu7o7CwEIWFhRZtWq0Ws2bNara+6aZH7u+9917s2rULQ4cONW/bvXs37r33XqsEIyLbUygUiIqKwsmTJ6FUKuHp6YnS0lJUVFRAEATz6L1SqUR2djYMBgOqq6vh7OyMqqoqhIaGiv0WrKZhVN/NzQ2ffvopKioq8Oeff+LgwYNIS0tDfn4+VCoVnnnmGXTs2BEJCQno3LkzR/VJdOyfiag1iYiIaPKLfGdn52t+wX/5FwJX8vLygpeXV5NtUqn0mse98va/l/Pw8ICHh8dV26913ODg4KvObnRzc7vmc9u3b3/VtoZp6U1xcXG55nEbCt+m+Pj4wMfHp8k2R0fHax63Xbt2V23TaDQWg0NXutZxQ0JCrtrm7u5+zec2FONNCQgIuOpdoFxdXa953GstWOvr69usC1A35YaK+/nz55v/HBAQgNGjR2Po0KEIDw9HZmYmduzYgUmTJlk9JBHZjp+fHw4dOoSKigrk5OSgtrYWMpkMbm5uOHr0KIKDg6HRaLB3715IpVJ4eHigtLQUJpPJfP1RWyOVSqFWqzF48GAMHjwYdXV1KC4uRk5ODrKzs7F161a88sor8PPzw5AhQ7B8+fJrdv5E1sb+mYiIiG6ouL/y+pPbbrsNRUVFKCoqAvD3NQRXXvtCRK2LQqFAt27d8Msvv8BkMiEiIgKenp4oKSmBwWBAQUEBBEFAZGQkHB0dUVVVBT8/P9TW1qK0tPSmbl93pW7duuHw4cNWOVZzaBjVVyqVWLVqFXQ6HQ4fPowDBw7g+PHj5ulx8+bNg7+/PxISEhAfH28xTZrImtg/ExER0Q0V9w0LBxBR2xYSEgJ3d3dIJBK4uLigpKQEEonEvKIr8Pe1SFdec3/lyqj2QCqVwt3dHQMHDsTAgQNRV1eH8vJyFBcX48yZM1i3bh3mzp0LHx8fDB48GG+99dZVp34R3Sz2z0TU2nh4eGDIkCFwd3cXOwpRm3HT19zv3bu3ye0SiQR33333TQciIvE1jN6fPn0aUqkU3t7e0Gg0yM/Ph5eXFwRBgFartSju9Xq91YrWM2fOYNKkSY0W2WkNGkb1AeD999+HXq/HkSNHcPDgQRw5cgRFRUVwcnLCsmXL4OTkhISEBHTv3p2j+mQ17J+JqDUIDw/HwoULW+wsPaLW6KaL+4EDBzba1rCQ1JUrERJR6xMSEoKSkhIIggC5XI78/HxIJBLzwiD5+fnIycmBq6sr9Hq9Rdut0uv1SElJabQKbmsjlUrh5uaGAQMGYMCAAaivr0dNTQ3S09Nx6tQp7N27FwsWLICnpycGDx6MxMREREZGih2bWjn2z0TUGtTU1CAnJwft2rWDs7Oz2HGI2oSbLu5NJpPF47y8PLzyyisYMWLELYciIvEpFArEx8ejoKAAlZWVCAgIgK+vLxQKBQBcs42a5uDgYB6heOutt6DX63Hs2DEcOHAAhw4dQn5+PjQaDT777DNUVVVhyJAh6NmzJ2QymcjJqTVh/0xErUFqaipGjhwp6m1vidqamy7urxQQEIAPPvgAPXv2xIMPPmitwxKRiBQKxVVv23KtNvpnDaP6/fr1Q79+/cyj+ufOnUNSUhK2b9+OxMREaDQaDBo0CK+88go6d+4sdmxqhdg/ExER2QerFfcAzNfhEhHRjbl8VH/+/PmYM2cOjh8/bh7Vz8zMRFBQEDZv3oyLFy8iISEBt912GxwcrPrfOLVR7J+JiIjavps+K1yzZo3FY71ej40bN+LOO++85VBEZN/CwsKQmJhot6vKSyQSKJVK9OnTB3369EF9fT1qa2tx7tw5HD16FN988w0WLVoEtVqNe++9F3PmzEGvXr3Ejk0tBPtnIiIi+3TTxf0bb7xh8djNzQ09evTAokWLbjkUEdk3jUaDhIQErqD7/zk4OJhH6J977jlMnz4dx48fx8GDB3Hw4EGcPn0akZGR2L17N5KTkzF06FDcfvvt5lX7yb6wfyYiIrJPN13cX7hwwZo5iIjMCgsLsXnzZjz44IPw8vISO06LIpFI4OLigt69e6N3797mUf2MjAwcPnwY69evx1tvvQWVSoV77rkHs2bNQv/+/cWOTTbE/pmIWoNu3brh8OHD/CKfyIpu+MbKBQUFuHTpkvlxXV0dFi5ciOHDh+Pdd9+1ajgisk85OTl4++23kZ+fL3aUFs/BwQGurq5QqVSYNm0a9u7di3Xr1uHhhx9Geno6jh07huLiYuzYsQMvvvgifvnlFxgMBrFjUzNg/0xERGTfbri4nzx5Mnbv3m1+/Oqrr2L58uVwcHDAokWLsGzZMqsGJCKi6yORSODs7Izbb78dc+bMwaZNm9C/f39kZGTgwIED+M9//oO7774bXl5eGD58OHbs2CF2ZLIi9s9E1JqcOXMGkyZN4mwjIiu64eI+KSkJQ4YMAfD36rtr1qzB+vXrsWXLFnzzzTdYv3691UMSEdGNk8lk5lH9cePG4eeff8aGDRswduxYZGVl4eDBgygqKsLvv/+OOXPm4Oeff0Ztba3YsekmsX8motZEr9cjJSUF1dXVYkchajNu+Jr7iooKeHt7A4D5H2RCQgIA4O6778bFixetm5CIiG5Zw6h+z5490bNnTxiNRtTU1CAjIwP79+/Hhg0bsHz5cri6uuLuu+/GhAkTMHLkSLFj0w1g/0xERGTfbnjk3s3NDeXl5QCAo0ePonPnzuYVmevr62E0Gq2bkIjsjpubG3r16gUXFxexo7RZDaP6arUaDz30EPbs2YMvv/wS48ePR25uLvbu3YvCwkIkJyfj2WefxY8//oiamhqxY9M1sH8mIiKybzdc3Pfr1w8vv/wykpKS8PHHH5unAAJ/Xztjr/elJiLriYqKwgcffICwsDCxo9gFiUQCR0dHdO/eHc888wy++OILTJ48GRcuXMC+ffvw1VdfYfDgwfD09MR9992HL774QuzI1AT2z0RERPbthov7xYsX49dff0W3bt1QW1uL2bNnm9u++uor3HXXXVYNSET2x2g0QqfTcaRRJJdfqz9o0CD89NNP+OqrrzBp0iRcunQJ27dvR2FhIbKysvDMM89g586dvGayBWD/TEStSVhYGBITE/nFI5EV3fA192FhYUhNTUVJSQk0Go1F20svvQSFQmG1cERkn06cOIEBAwZgy5Yt6NSpk9hx7FrDqH63bt3QrVs3TJ8+HTU1Nbhw4QKSk5OxZcsWfPDBB3ByckK/fv0wcuRIPPnkk2LHtkvsn4moNdFoNEhISOB97oms6IZH7htceeIAAGq1mtfIEhG1YZeP6vfu3Ru7du3Cpk2b8NRTT6GkpARbtmzBpUuXUFJSglmzZuGHH35AVVWV2LHtCvtnImoNCgsLsXnzZpSUlIgdhajNuOGReyIiIuD/RvXj4+MRHx+PadOmoaamBpmZmcjMzMR3332HlStXwtHREX369MEDDzyAWbNmQSKRiB2diIhElpOTg7fffhu9evWCl5eX2HGI2oSbHrknIiK6nFQqhYuLC1QqFTp37owdO3Zg8+bNmD59OiorK/HFF1+gsLAQOp0Oc+bMwbZt26DT6cSOTURERNQmcOSeiIisrmFUPy4uDnFxcXjqqafMo/oNUzGXL18OuVyOu+66C0OHDsW//vUvODiwWyIiIiK6GRy5J6IWJy4uDrt370ZUVJTYUchKLh/Vj4yMxI4dO/Dtt9/imWeeQW1tLVavXo2ioiLo9XrMmzcP3333HSoqKsSOTURERNRqcIiEiFocuVwODw8PyOVysaNQM5HL5YiNjUVsbCwmT56M6upqZGdnQ6/XY8OGDVi0aBEcHBxw5513YujQoZg5cyZcXV3Fjk1ERFbi5uaGXr16cbFPIiviyD0RtTgZGRmYM2cOsrOzxY5CNiCVSs0r8AcEBGD79u347rvv8Oyzz8JkMuHdd99FWVkZ9Ho9li5dii1btqCsrEzs2EREdAuioqLwwQcfICwsTOwoRG0GR+6JqMUpLy/H/v37udianZLL5ejQoQM6dOiAiRMnoqqqCrm5ucjOzsZ//vMfnD17FjKZDHfccQcSEhIwffp0eHh4iB2biIhugNFohE6ng7OzM6RSjjcSWQP/JRERUYsllUqhVCqhUqmg0WiwdetWfP/993j++echlUqxZMkSFBcXQ6/X48MPP8TXX3+N0tJSsWMTEdE/OHHiBAYMGIAzZ86IHYWozWBxT0RErYZcLkdUVBQmTpyIVatWYd++fSgtLcWpU6ewZs0aPProo/Dy8sKdd96JRYsWoaCgQOzIdu/tt99GXFwc3NzcEBISgtdeew1Go/Gq+/fv3x9OTk5QKpXmHyIiIvpnLO6JiKhVarhW393dHSqVCuvXr8f27dvx8ssvw8nJCUuWLEF2djZ0Oh3Wr1+PjRs3ori4WOzYdsdkMmHt2rUoKSnB/v37sX37dixbtuyaz3nvvfeg0+nMP0RERPTPeM09EbU4gYGBmD17Nnx8fMSOQq2Ig4MDIiMjERkZiXHjxqGqqgpGoxGpqalYs2YNfv31V0gkEvTs2RNDhw7FxIkTERISInbsNu+ll14y/zk0NBRjx47F/v37LbYTERHRrWNxT0Qtjq+vL8aOHcvpuHTTGq7Vb/Dhhx8iJycHv//+Ow4dOoR33nkHvXr1gkajwY8//oiqqioMHjwY3t7eIqa2D7/++is6d+58zX3mzZuH1157DREREZg3bx4eeOCBq+6r1Wqh1WobbU9LS7vlrERERK0Ji3sianFKS0uxZ88e3H333VwFnazCwcEB4eHhCA8Px9ixY1FVVYX6+nqkpqbi888/x7Zt2yCRSNC9e3ckJCTgiSeeQGRkpNix25wPPvgAycnJWL9+/VX3WbJkCTp06AAnJyds374djz76KPbt24fbbrutyf1Xr16NxMTE5opMRM0kLi4Ou3fvhp+fn9hRiNoMFvdE1OJcuHABr776KrZs2cLinqzuylH9xYsX4+mnn8aBAwdw4MABrFixAtHR0fD19cXBgweh1WoxZMgQ+Pr6ipi6ZRo1ahS2bt161XZBEMx/3rBhAxYvXox9+/bB09Pzqs/p1auX+c8jRozA//73P3z77bdXLe6nTp2KYcOGNdqelpaGcePGXc/bICIRyOVyeHh4QC6Xix2FqM1gcU9ERHbNwcEBYWFhCAsLw5gxY1BVVYXa2lqkpaVhw4YN+OKLLwAAXbt2RUJCAsaOHYvY2FiRU7cMW7Zsua79vvzyS7zwwgvYs2cP2rdvf0OvIZVKLb4kuJK/vz/8/f1v6JhEJL6MjAzMmTMHr732GsLCwsSOQ9QmsLgnIiL6/yQSCVxdXeHq6goAePnllzF+/Hj8v/buParKOt/j+AdQAdlcFBFREQMTTTSttFk6mnUqZaasFG+TaTmVlnXqnMbL0hyP55jZsk51ysoyNa9NKZNl0VjplJXpjJeQRPGGjkqaCgIKgvA7f8yKibgIyd7Pxfdrrb0W+3l+e/P57Z+bL1+fzfN89dVX2rRpk1555RVFRUUpNjZWO3fu1O7duzVw4EC1bt3a4uT2tXLlSj3++ONat26dkpKSah2bl5enTZs2qX///mrSpIk+/PBDvfPOO1q3bp2P0gLwlTNnzmjjxo1cEQNoQDT3AADUoFGjRoqNjdWIESM0fPhwFRUVqaioSJmZmVq2bJlee+01GWPUrVs3DRw4UCNHjlT37t2tjm0rU6dOVV5envr27VuxrW/fvkpLS5MkJScnq2/fvpo6dapKS0s1Y8YMZWZmyt/fXx06dNCSJUvUp08fq+IDAOAYNPcAbCc4OFiJiYkKDAy0OgpQwc/PT02bNlXTpk0lSY888oiGDBmir7/+Wps2bdIbb7yhxo0bKz4+XtnZ2dqyZYsGDhyotm3bWpzcWgcPHqx1/49NviRFRUVpy5Yt3o4EAIAr0dwDsJ3OnTtr6dKlXAoPthYQEKC2bdtq2LBhGjp0qIqLi1VYWKjdu3crNTVVc+fOVXl5ubp06aLk5GQNHTq0xpPCAQAAXCqaewAALpGfn5+Cg4MVHBwsSRo9erQGDBigTZs26euvv9bixYtVWFioTp066eTJk/rkk080cOBAxcXFWZwcAKzRpk0bPfbYY2rZsqXVUQDXoLkHYDvbt29Xnz59tHLlyouegAuwo4CAALVu3VpDhgzR4MGDKx3V/+yzzzR9+nSVlZWpU6dOSk5O1uDBgys+7g8Al4Po6GjdfffdfEoPaED+VgcAgJ8zxqi0tNTqGECD+PGoflRUlMLDw3XHHXfos88+0+zZs3XllVdq2bJlevHFFzljNIDLSm5urj799FOdOXPG6iiAa3DkHgAAHwoICFCrVq00ePBg3XXXXSopKVFubq6ys7OtjgYAPnPw4EFNnTpVq1atUrNmzayOA7gCR+4BALCIn5+fAgMD1apVK4WEhFgdBwAAOBjNPQAAAAAADkdzD8B2OnfurJUrVyo+Pt7qKAAAAIAj0NwDsJ3g4GAlJCQoKCjI6igAAMALgoODlZiYqMDAQKujAK5Bcw/Adg4dOqRZs2bp6NGjVkcBAABe0LlzZy1dulQJCQlWRwFcg+YegO2cOnVK77//PpfHAQAAAOqI5h4AAACAT23fvl19+vTRrl27rI4CuAbNPQAAAACfMsaotLTU6hiAq9DcAwAAAADgcDT3AGwnOjpaY8aMUWRkpNVRAAAAAEdoZHUAAPi5Nm3aaMKECfJ4PFZHAQAAAByBI/cAbKegoEBbt27V2bNnrY4CAAC8oHPnzlq5cqXi4+OtjgK4Bs09ANvZu3evHnroIR06dMjqKAAAwAuCg4OVkJCgoKAgq6MArkFzDwAAAMCnDh06pFmzZuno0aNWRwFcg+YeAAAAgE+dOnVK77//vs6cOWN1FMA1aO4BAAAAAHA4mnsAttO4cWO1bNlSjRpxQQ8AAACgLvjNGYDtdO3aVWvXruVSeAAAAEAdceQeAAAAgE9FR0drzJgxioyMtDoK4Bo09wBsZ+fOnbrtttuUlZVldRQAAOAFbdq00YQJExQdHW11FMA1HNXcz507V127dlVoaKjatWunadOmqayszOpYABpYaWmpTpw4oQsXLlgdBQAAeEFBQYG2bt2qs2fPWh0FcA1HNffl5eVatGiRTp8+rY0bN2rt2rV69tlnrY4FAAAAoB727t2rhx56SIcOHbI6CuAajjqh3uTJkyu+jouL0913362NGzdW2v5TOTk5ysnJqbI9MzPTaxkBAAAAAPA1RzX3P/f555+rW7duNe6fP3++Zs6c6cNEAAAAAAD4nmOb+5deekk7d+7UkiVLahwzbtw4DRo0qMr2zMxMjRo1ypvxAFyCK6+8Uq+++qri4uKsjgIAAAA4gm2a+5SUFK1evbrG/caYiq+XLl2q2bNna8OGDbVePiMmJkYxMTENmhOA94WGhuraa69VSEiI1VEAAIAXNG7cWC1btlSjRrZpRwDHs80J9VatWiVjTI23Hy1fvlwTJ07UJ598ok6dOlmYGIC3HD16VPPmzdPx48etjgIAALyga9euWrt2rTp27Gh1FMA1bNPc18XKlSv1+OOPKy0tTUlJSVbHAeAlx48f11tvvaVTp05ZHQUAAABwBEc191OnTlVeXp769u0rj8cjj8ej5ORkq2MBAAAAqIedO3fqtttuU1ZWltVRANdw1B+5HDx40OoIAAAAAC5RaWmpTpw4oQsXLlgdBXANRx25BwAAAAAAVdHcA7CdyMhIDRo0SOHh4VZHAQAAABzBUR/LB3B5iIuL05NPPimPx2N1FAAAAMAROHIPwHaKioq0f/9+FRcXWx0FAAB4wZVXXqlXX31VcXFxVkcBXIPmHoDtZGZmauTIkTpw4IDVUQAAgBeEhobq2muvVUhIiNVRANeguQcAAADgU0ePHtW8efN0/Phxq6MArkFzDwAAAMCnjh8/rrfeekunTp2yOgrgGjT3AAAAAAA4HM09ANvx8/NT48aNrY4BAAAAOAaXwgNgOz169NBXX33FpfAAAACAOuLIPQAAAACfioyM1KBBgxQeHm51FMA1aO4B2E5mZqbuuece7d+/3+ooAADAC+Li4vTkk0+qTZs2VkcBXIPmHoDtFBUVac+ePTp//rzVUQAAgBcUFRVp//79Ki4utjoK4Bo09wAAwGsWL16sgIAAeTyeitvy5ctrHJ+Xl6dhw4YpNDRUrVu31gsvvOC7sAB8JjMzUyNHjtSBAwesjgK4BifUAwAAXtWzZ0998803dRr7yCOP6Pz58zp69KgOHTqkf/u3f1NiYqKSk5O9nBIAAGejuQcAALZw9uxZvfvuu9q6davCwsLUtWtXPfDAA1q4cGGNzX1OTo5ycnKqbM/MzPR2XAAAbIXmHoDtXHHFFZo9ezYn2QFcIj09XVFRUQoPD9eQIUP0X//1XwoODq4yLisrS+Xl5UpKSqrY1r17d6Wmptb43PPnz9fMmTO9khsAACehuQdgO82aNdPNN9/Mde4BF+jXr58yMjLUvn177d27V6NHj9akSZP00ksvVRlbWFhY5bJYERERKigoqPH5x40bp0GDBlXZnpmZqVGjRl36BAB4hZ+fnxo3bmx1DMBVaO4B2M7x48e1fPlyDRkyRC1btrQ6DoAapKSkaPXq1TXuN8YoPj6+4n5iYqLmzJmjkSNHVtvcezwe5efnV9p25swZhYaG1vg9YmJiFBMT8wvSA7BSjx499NVXX/Ef+UAD4mz5AGzn6NGjevHFF3XixAmrowCoxapVq2SMqfFWHX9//xr3dezYUX5+fvruu+8qtu3YsaPSx/QBAED1aO4BAIDXpKWlVZzw7sCBA5oyZYruuuuuaseGhIQoJSVF06ZNU0FBgTIyMrRgwQKNHTvWl5EB+EBmZqbuuece7d+/3+oogGvQ3AMAAK9Zv369evTooZCQEN14443q3bu3nnvuuYr948eP1/jx4yvuz5s3T40bN1ZMTIxuueUWTZkyhcvgAS5UVFSkPXv26Pz581ZHAVyDv7kHAABeM3fuXM2dO7fG/a+99lql+xEREXr33Xe9HQsAANfhyD0A2wkPD1ffvn05yQ4AAABQRxy5B2A7CQkJeu6552juAQAAgDriyD0A2yktLVVubq5KS0utjgIAALzgiiuu0OzZs9WmTRurowCuQXMPwHZ27typAQMGaO/evVZHAQAAXtCsWTPdfPPNCg8PtzoK4Bo09wAAAAB86vjx41q+fLlOnjxpdRTANWjuAQAAAPjU0aNH9eKLL+rEiRNWRwFcg+YeAAAAAACHo7kHAAAAAMDhuBQeANu5+uqrtX79ekVFRVkdBQAAAHAEjtwDsJ2AgAB5PB4FBARYHQUAAHhBeHi4+vbtK4/HY3UUwDVo7gHYzt69e/Xoo48qOzvb6igAAMALEhIS9Nxzz6ldu3ZWRwFcg+YegO0UFBRo8+bNOnfunNVRAACAF5SWlio3N1elpaVWRwFcg+YeAAAAgE/t3LlTAwYM0N69e62OArgGzT0AAAAAAA5Hcw8AAAAAgMPR3AOwndjYWE2cOFGtWrWyOgoAAADgCFznHoDtREVFaejQoVweBwAAAKgjjtwDsJ3Tp08rLS1NeXl5VkcBAABecPXVV2v9+vVKTEy0OgrgGjT3AGwnOztbM2bM0LFjx6yOAgAAvCAgIEAej0cBAQFWRwFcg+YeAAAAgE/t3btXjz76qLKzs62OArgGzT0AAAAAnyooKNDmzZt17tw5q6MArkFzDwAAAACAw9HcA7CdkJAQJSUlKTg42OooAAAAgCNwKTwAtpOYmKiFCxdyKTwAAACgjjhyDwAAAMCnYmNjNXHiRLVq1crqKIBr0NwDsJ1t27apV69e2rVrl9VRAACAF0RFRWno0KFq3ry51VEA16C5BwAAAOBTp0+fVlpamvLy8qyOArgGzT0AAAAAn8rOztaMGTN07Ngxq6MArkFzDwAAAACAw9HcAwAAAADgcFwKD4DtXHXVVVq9erXi4+OtjgIAAAA4AkfuAdhOUFCQYmNjFRgYaHUUAADgBSEhIUpKSlJwcLDVUQDXoLkHYDsHDx7UH//4Rx05csTqKAAAwAsSExO1cOFCXXHFFVZHAVyD5h6A7eTm5urjjz9Wfn6+1VEAAAAAR6C5BwAAAOBT27ZtU69evbRr1y6rowCuQXMPAAAAAIDD0dwDAAAAAOBwNPcAbCcmJkb333+/oqKirI4CAAAAOALXuQdgOzExMXrwwQfl8XisjgIAAAA4AkfuAdhOfn6+Nm3apMLCQqujAAAAL7jqqqu0evVqJSQkWB0FcA2aewC2s2/fPj322GM6fPiw1VEAAIAXBAUFKTY2VoGBgVZHAVyD5h4AAACATx08eFB//OMfdeTIEaujAK5Bcw8AAADAp3Jzc/Xxxx8rPz/f6iiAa9DcAwAAAADgcDT3AGwnMDBQbdu2VePGja2OAgAAADgCl8IDYDtdunRRamoql8IDAAAA6ogj9wAAAAB8KiYmRvfff7+ioqKsjgK4Bs09ANtJT0/Xrbfeqj179lgdBQAAeEFMTIwefPBBmnugAdHcA7CdCxcuKC8vT2VlZVZHAXCJkpOT5fF4Km6BgYEKCwurcXz//v0VFBRU6TEA3Cc/P1+bNm1SYWGh1VEA16C5BwAAXpOWlqbCwsKK25133qlhw4bV+pgXXnih0mMAuM++ffv02GOP6fDhw1ZHAVyDE+oBAACfOH36tNasWaP169c32HPm5OQoJyenyvbMzMwG+x4AADgBzT0AAPCJFStWqH379urdu3et46ZPn65p06YpISFB06dP1+23317j2Pnz52vmzJkNHRUAAMehuQdgOx07dtSCBQsUFxdndRQADWjhwoW67777ah3zzDPPqHPnzgoKCtLatWs1YsQIbdiwQb169ap2/Lhx4zRo0KAq2zMzMzVq1KgGyQ0AgBPQ3AOwHY/Ho27duikkJMTqKABqkZKSotWrV9e43xhT8fW3336r9PR0ffjhh7U+5/XXX1/x9eDBg7VmzRqlpqbW2NzHxMQoJiamnskBWC0wMFBt27ZV48aNrY4CuAYn1ANgO0eOHNHzzz+v77//3uooAGqxatUqGWNqvP3UwoULNXDgwHo34v7+/lWeC4DzdenSRampqbryyiutjgK4Bs09ANs5ceKEVq5cqdOnT1sdBUADKCkp0fLlyzV27Nhax+Xl5SktLU1FRUUqKyvT+++/r3feeafaj90DAIDKaO4BAIBXffDBB/Lz86v2xHjJycmaPXu2JKm0tFQzZsxQy5Yt1bx5c82cOVNLlixRnz59fB0ZgJelp6fr1ltv1Z49e6yOArgGf3MPAAC8asiQIRoyZEi1+9LS0iq+joqK0pYtW3wVC4CFLly4oLy8PJWVlVkdBXANjtwDAAAAAOBwjm3ub7zxRvn5+am4uNjqKAAaWIsWLZSSkqKIiAirowAAAACO4MiP5b/11lt8hAdwsXbt2mnSpEnyeDxWRwEAAAAcwXFH7k+dOqVZs2Zp7ty5VkcB4CXnzp3T7t27VVRUZHUUAADgBR07dtSCBQsUFxdndRTANRx35H7ixIl6/PHHFR0dfdGxOTk5ysnJqbI9MzPTG9EANJDdu3dr9OjRWrVqlZKSkqyOAwAAGpjH41G3bt0UEhJidRTANRzV3H/xxRfauXOnFixYoMOHD190/Pz58zVz5kwfJAMAAABQV0eOHNHzzz+vBx54QK1bt7Y6DuAKtvlYfkpKivz8/Gq8lZaW6uGHH9a8efPk71+32OPGjdPWrVur3JYtW+bl2QAAAACoyYkTJ7Ry5UqdPn3a6iiAa9jmyP2qVatq3Z+dna3du3dr0KBBklRxQr327dtr8eLFGjhwYJXHxMTEKCYmpuHDAgAAAABgI7Zp7i8mNjZWR44cqbj/j3/8Q7169dLmzZvVqlUrC5MBaGj+/v4KCQmRn5+f1VEAAAAAR3BMcx8QEFCpif/x+vbR0dEKDAy0KhYAL+jevbs2bNjApfAAAACAOnJMc/9z7du3lzHG6hgAAAAA6qlFixZKSUlRRESE1VEA17DNCfUA4Ee7du3S8OHDtW/fPqujAAAAL2jXrp0mTZrEmfKBBkRzD8B2iouLdfDgQZWUlFgdBQAAeMG5c+e0e/duFRUVWR0FcA2aewAAAAA+tXv3bo0ePVoHDx60OgrgGjT3AAAAAAA4HM09AAAAAAAOR3MPwHbi4+P17LPPqm3btlZHAQAAABzBsZfCA+BeERER6tevH9e5BwDApfz9/RUSEiI/Pz+rowCuwZF7ALbz/fffa/Hixfrhhx+sjgIAALyge/fu2rBhgzp37mx1FMA1aO4B2M6xY8f0yiuv0NwDAAAAdURzDwAAAMCndu3apeHDh2vfvn1WRwFcg+YeAAAAgE8VFxfr4MGDKikpsToK4Bo09wAAAAAAOBzNPQDbiYiI0E033aTQ0FCrowAAAACOwKXwANhOfHy85syZw6XwAAAAgDriyD0A2ykpKdHx48f5OzwAAFwqPj5ezz77rNq2bWt1FMA1aO4B2E5GRoZuv/12zqALAIBLRUREqF+/fgoLC7M6CuAaNPcAAAAAfOr777/X4sWL9cMPP1gdBXANmnsAAAAAPnXs2DG98sorNPdAA6K5BwAAAADA4WjuAQAAAABwOC6FB8B2unfvri+//FIRERFWRwEAAAAcgSP3AGzH399fTZo0kb8/P6IAAHCjiIgI3XTTTQoNDbU6CuAa/OYMwHaysrI0fvx4ZWdnWx0FAAB4QXx8vObMmaPY2FirowCuQXMPwHYKCwu1bds2nTt3zuooAADAC0pKSnT8+HGVlJRYHQVwDZp7AAAAAD6VkZGh22+/Xfv27bM6CuAaNPcAAAAAADgczT0AAAAAAA5Hcw/Adtq1a6epU6cqJibG6igAAACAI3CdewC206JFC915553yeDxWRwEAAAAcgSP3AGzn5MmTeu+995Sbm2t1FAAA4AXdu3fXl19+qU6dOlkdBXANmnsAtnP48GHNnj1bOTk5VkcBAABe4O/vryZNmsjfn3YEaCi8mwAAAAD4VFZWlsaPH6/s7GyrowCuQXMPAAAAwKcKCwu1bds2nTt3zuoogGvQ3AMAAAAA4HA09wBsx+Px6JprrlHTpk2tjgIAAAA4ApfCA2A7HTt21Guvvcal8AAAAIA64sg9ANspLy9XSUmJysvLrY4CoA42bNigG2+8UeHh4WrVqlWV/Xl5eRo2bJhCQ0PVunVrvfDCC7U+3+eff66kpCQ1bdpUPXv21Lfffuul5ACs0q5dO02dOlUxMTFWRwFcg+YegO3s2LFDv/71r7V7926rowCog5CQEI0dO1b/+7//W+3+Rx55ROfPn9fRo0f1l7/8RbNnz1ZaWlq1Y0+dOqU77rhDkyZNUm5urkaOHKlBgwbp/Pnz3pwCAB9r0aKF7rzzTjVr1szqKIBr0NwDAIBL0qtXL91zzz1KSEiosu/s2bN699139dRTTyksLExdu3bVAw88oIULF1b7XKmpqerQoYNGjx6twMBA/cd//IfKy8v16aefensaAHzo5MmTeu+995Sbm2t1FMA1Lsu/uS8qKpIkZWZmWpwEQHV+PGJ/4MAB+fn5WZwG8I0DBw5I+leNcousrCyVl5crKSmpYlv37t2Vmppa7fiMjAx179694r6fn5+6deumjIwM/fa3v60yPicnRzk5OVW279ixQxK1HrCrXbt2afbs2QoPD6/2PwYBN9q/f78k79X6y7K53759uyRp1KhRFicBUJtJkyZZHQHwue3bt6tPnz5Wx2gwhYWFCg8Pr7QtIiJCBQUFNY7/+cd0axs/f/58zZw5s8bvT60H7G3y5MlWRwB8zlu1/rJs7jt37ixJevPNNysdHXCyzMxMjRo1SsuWLauYn9MxJ/tz23wk5uQUbpzTjh079Pvf/95280lJSdHq1atr3G+MqfXxHo9H+fn5lbadOXNGoaGhNY4/c+ZMncePGzdOgwYNqrJ98+bNevjhh6n1NsecnIE52Z/b5iO5c07ervWXZXP/4xGB7t2765prrrE4TcPq3Lkzc3IAt83JbfORmJNTuHFOdju51KpVqy7p8R07dpSfn5++++47denSRdI/f7n56cf0fyopKUmvv/56xX1jjNLT0/XQQw9VOz4mJqbWs21T652BOTkDc7I/t81HcuecvFXrOaEeAAC4JOXl5SouLlZJSYkkqbi4uOLs9iEhIUpJSdG0adNUUFCgjIwMLViwQGPHjq32uQYPHqy9e/dq2bJlKikp0YsvvihJuvnmm30zGQAAHIrmHgAAXJIvvvhCwcHBGjBggI4fP67g4GAlJiZW7J83b54aN26smJgY3XLLLZoyZYqSk5Mr9ns8Hm3cuFGSFBkZqffee09z5sxReHi4li9frvfff1+BgYE+nxcAAE5yWX4sHwAANJz+/fvX+rf3ERERevfdd2vcX1hYWOX5MjIyGiwfAACXA47cAwAAAADgcJdlcx8TE6MZM2bUegIep2FOzuC2ObltPhJzcgrmhItx4+vJnJyBOTmD2+bktvlIzOmX8DMXu4YNAAAAAACwtcvyyD0AAAAAAG5Ccw8AAAAAgMPR3AMAAAAA4HA09wAAAAAAOJxrm/sNGzboxhtvVHh4uFq1alVlf15enoYNG6bQ0FC1bt1aL7zwQq3P9/nnnyspKUlNmzZVz5499e2333oped0kJyfL4/FU3AIDAxUWFlbj+P79+ysoKKjSY+xm8eLFCggIqJRx+fLlNY6v7xpaYe7cueratatCQ0PVrl07TZs2TWVlZTWOt+s61ee1ttt75efOnz+v+++/X1dccYVCQ0PVpUsXrVixosbxfn5+CgkJqViP5ORkH6atm3vvvVdNmjSp9O/m8OHDNY7PyMjQr371KzVt2lRXXXWV1q9f78O0dfPTuXg8HjVq1EiDBg2qcbxd1+nll1/Wddddp8DAQI0YMaLSvvquw8svv6w2bdrI4/FoyJAhys3N9WZ0R3B7rZfcV++p9fZdIzfVeol6L9m/3lPrq3+uS6r1xqU2b95slixZYhYsWGCio6Or7L/77rvNoEGDzJkzZ0x6erqJiooyH330UbXPdfLkSRMeHm7eeustU1xcbJ577jnTrl07U1xc7O1p1NmwYcPM73//+xr333DDDebVV1/1YaL6W7Rokbn++uvrPL4+a2iVOXPmmL/97W+mpKTEZGdnm27dupk5c+bUON6u61TX19oJ75XCwkIzffp0s3//flNeXm42btxowsLCzNdff13teEkmMzPTxynrZ8yYMWby5Ml1GltSUmLat29vnnrqKVNcXGzefvttExYWZo4fP+7llL/chQsXTOvWrc3SpUtrHGPXdVq9erX585//bCZMmGCGDx9esb2+67Bu3TrTvHlzs3XrVpOfn2+GDh1qhg0b5qtp2NblVuuNcX69p9bbd43cVOuNod47rd5T6xum1ru2uf/Rhg0bqhT8wsJC06RJE7Nz586KbVOnTjUpKSnVPsfrr79urr322or75eXlpm3btmbt2rXeCV1Pp06dMoGBgearr76qcYxdC8lP1afg13cN7eKZZ54xt912W4377bhO9Xmt7f5eqUlycrJ59tlnq91n10LyU/Up9uvWrTMtW7Y0ZWVlFdt69+5tXn75ZW/Fu2Rr1641YWFh5ty5czWOsfs6zZgxo1LBr+86/O53vzNPPPFExf2srCzTqFEjk5eX573QDnI51Hpj3FHvqfX2XKPLodYbQ723c72n1jdMrXftx/Jrk5WVpfLyciUlJVVs6969uzIyMqodn5GRoe7du1fc9/PzU7du3Woc72srVqxQ+/bt1bt371rHTZ8+XZGRkerVq5c++OADH6Wrn/T0dEVFRalDhw6aPHmyioqKqh1X3zW0ix8/xlYbu61TfV5ru79XqnP27Fn9/e9/r3VdbrrpJkVHR+u3v/2tvvvuOx+mq7vXX39dzZs319VXX62FCxfWOC4jI0Ndu3aVv/+/fvzb/b2zaNEijRgxQsHBwbWOc8I6/ai+6/Dz99aVV16pJk2aaPfu3d6O6lhuq/WSe+o9td5+a+T2Wi9R7yV7v3+o9Q1T6y/L5r6wsFDh4eGVtkVERKigoKDG8REREXUe72sLFy7UfffdV+uYZ555Rvv371dOTo6mTJmiESNGaMuWLT5KWDf9+vVTRkaGjh8/rg8//FB//etfNWnSpGrH1ncN7eCll17Szp079Yc//KHGMXZcp/q81nZ/r/xceXm57r33XvXs2VO33nprtWP++te/Kjs7W/v27VOPHj106623Kj8/38dJa/fv//7vysrK0okTJ/TCCy9o0qRJWr16dbVjnbZGJ0+e1AcffKCxY8fWOs4J6/RT9V0Hp62bHbit1kvuqPfUenuukZtrvUS9/5Fd14la/8vGV8eRzX1KSor8/PxqvF2Mx+Op8g/hzJkzCg0NrXH8mTNn6jz+UtVnft9++63S09M1evToWp/z+uuvV1hYmJo0aaLBgwcrJSVFqampXslfnbrMKT4+XvHx8fL391diYqLmzJmjd999t9rnq+8aekN91mnp0qWaPXu21q1bp8jIyBqf0+p1qk59Xmtfv1cuhTFG48eP17Fjx/SnP/2pxp8dN9xwg5o0aaLQ0FDNmjVLjRo10tdff+3jtLW75ppr1KJFCzVq1Eg33nijJkyYUOt7xylrJEnLly9Xhw4ddP3119c6zgnr9FP1XQenrVtDcHutl9xX76n11Ho7ot7/i13XiVr/y8ZXx5HN/apVq2T+eb6Aam8X07FjR/n5+VX6KMeOHTtq/JhOUlKSduzYUXHfGKP09PSLfuTql6rP/BYuXKiBAwcqJiamXt/D39+/Tq9VQ/kla1ZbxvquoTfUdU7Lly/XxIkT9cknn6hTp071+h6+Xqfq1Oe19vV75ZcyxmjChAnasWOH0tLS6nWmYjusycXUljEpKUk7d+5UeXl5xTZfv3fqY9GiRRc9Ulkdu69Tfdfh5++tffv26fz58/X+meIkbq/1kvvqPbWeWm831Htn1Htq/b/GX3Ktr/Nf5ztMWVmZKSoqMn/5y19MdHS0KSoqqnQWz9/97nfmjjvuMPn5+Wbnzp0mOjr6omfQXbp0qTl//rx5/vnnTWxsrOVnBT1//ryJjIw0q1evrnVcbm6u+eijj8y5c+fMhQsXzJo1a0zTpk3Nl19+6aOkdfPRRx+ZY8eOGWOM2b9/v/nVr35lxo0bV+P4+qyhVVasWGFatGhhtm3bdtGxdl6nur7Wdn2v/NzDDz9sevToYU6fPl3ruIyMDLN161ZTWlpqzp49a2bMmGGio6NNbm6ub4LW0Z/+9CeTn59vysrKzMaNG02LFi3MypUrqx3745lbn376aVNcXGzeeecd2549d+vWraZRo0bm+++/r3WcndeptLTUFBUVmWnTppmhQ4eaoqIiU1JSUu91WLdunYmMjDTbtm0zBQUFZvjw4Zwt31wetd4Yd9V7ar1918httd4Y6r0T6j21/l8aota7trnfsGGDkVTpFhcXV7E/NzfXpKSkmJCQENOqVSvz/PPPV3p8SEiI+eKLLyo9X5cuXUxQUJC57rrrzPbt230zkVqsWrXKtGjRwpSUlFTZN3DgQPPUU08ZY4w5ceKE6dmzp/F4PCYsLMxcc801ZtWqVb6Oe1F/+MMfTHR0tGnatKlp166d+c///E9TWFhYsX/cuHGVfgG42BraQfv27U2jRo1MSEhIxW3gwIEV+52yTrW91k54r/xUdna2kWQCAwMrrcuP6/DT+axfv94kJiaapk2bmsjISDNgwACzY8cOK+NXq2/fviY8PNx4PB5z1VVXmddee63S/quuusosW7as4n56errp1auXCQoKMp06dTKffvqpryPXySOPPGLuuOOOavc5ZZ1mzJhRpRaNGTPGGFP7OnzxxRcmJCSk0nO99NJLJiYmxoSEhJi77rrror+sXg4uh1pvjLvqPbXevmvkplpvDPXeGGfUe2p9w9Z6P2Ns/FkGAAAAAABwUY78m3sAAAAAAPAvNPcAAAAAADgczT0AAAAAAA5Hcw8AAAAAgMPR3AMAAAAA4HA09wAAAAAAOBzNPQAAAAAADkdzDwAAAACAw9HcAwAAAADgcDT3gAv1799fTz75pNUxAACAF1HvAfwUzT1gQwcPHtTIkSPVunVreTwetW7dWr/5zW+Uk5NjdTTLbNu2TYMHD1bbtm0VEhKiNm3aaPDgwSovL7c6GgAAvwj1virqPfDL0dwDNvSb3/xGoaGhysjIUGFhobZv367hw4fLz8/P6miW2Lhxo/r27auBAwcqKytL+fn5Wr9+vQYMGCB/f36MAQCciXpfGfUeuDS8SwCbOXXqlHbv3q3x48erefPmkqTo6GiNGTNGrVq1kiS1b99eCxYsqPQ4Pz8/ffrppxX38/LyNHjwYIWGhqpDhw5asmRJpfEvv/yyEhISFBoaqujoaN17770V+/r3769HHnmkxsfPmzdPSUlJCgsLU6tWrXTPPffo5MmTlZ6/qKhITz75pDp27KjQ0FDFx8frrbfekiQVFxdr6tSpSkhIULNmzdSvXz9t3769xtfklVdeUe/evfXggw+qadOmCggIUGJiosaNG1ePVxYAAPug3ldFvQcuDc09YDORkZHq2rWrxo0bp0WLFik9Pf0XfRTtzTff1H333afc3Fz93//9n+6//3599dVXkqS9e/dq0qRJWrNmjQoKCrR//36NHTu2zo9v1aqVUlNTlZeXp82bNysrK0uPPvpopcc/8MADWrdundasWaP8/Hx9+eWX6tq1qyRp/Pjx2rJliz7//HP98MMPGjZsmAYMGKC8vLxq5xIVFaVvvvlGc+bM0Y4dO1RWVlbv1wMAADuh3ldFvQcukQFgOydPnjTTp083PXv2NIGBgaZZs2bmiSeeMMXFxcYYY+Li4swbb7xR6TGSzCeffGKMMeaGG24wgwcPrrR/2LBhZuzYscYYYw4cOGCCgoLM22+/bc6cOVPl+1/s8T+XmppqmjdvXnH/hx9+MJLM3/72t2rnJsns3r270vYOHTqYpUuXVvv8Z8+eNc8884zp2bOnCQgIMC1atDDTp0835eXlxhhjysrKzK9//WsTGRlppk2bVvG4mrYDAGAH1PvKLlbv//73v5vevXubvn37mt69e5tvvvnGGEO9B37EkXvAhiIjI/Xf//3f2rJli86cOaOFCxfqjTfe0NNPP13n57jiiiuq3P/HP/5R8fXbb7+tRYsWqV27durZs6dWrlxZ58enpqaqd+/eatmypcLCwnTPPffo9OnTFf/DfvDgQUlSYmJilVz79u2TJF1//fWKiIiouB09elRHjhypdi5NmzbVpEmTtGXLFp06dUoTJ07U//zP/2jt2rWSJH9/f61YsULPPvtspcfVtB0AADug3ld2sXrfunVrpaWl6YsvvtD8+fMrPkVAvQf+ieYesLnAwEDdeeeduvnmm7Vt2zZJUmhoqM6ePVsx5tixY1Uel52dXeV+27ZtK+7fcccd+vjjj3Xy5ElNnDhRd999t7Kysi76+CNHjmjo0KF69NFHdfjwYeXn52vp0qWSJGOMpH/+jaCkSs/3ox//jjA9PV15eXkVt3PnzmnKlCkXfT3Cw8Mr/l6woKCgYntsbGy142vaDgCAnVDvK6uu3sfExCgsLEyS1KRJk0on2aPeAzT3gO3k5uZqypQpSk9P1/nz51VWVqbPPvtMGzZsUL9+/SRJ1113nVauXKm8vDzl5+dXWyQ/+ugjffjhhyorK9PHH3+sP//5z7rvvvskSXv27NFHH32kwsJCNWrUSOHh4ZKkgICAiz6+sLBQ5eXlatGihYKCgrR3794qRxiioqI0cuRITZgwQXv27JEk5eTkaNu2bYqLi9Odd96pCRMm6NChQ5L+WbTT0tKqvfTP008/rbS0NOXn58sYo6ysLN1///1KSEjQ7bff3gCvOAAAvke9r6w+9b60tFQTJkzQk08++UtffsCVaO4Bm2nSpIlOnjypoUOHqkWLFoqMjNRjjz2myZMn64knnpAkzZo1S2FhYYqNjdW1116ru+66q8rzjB07Vm+++aYiIiI0YcIEvfbaa+rbt68kqaSkRE899ZTatGmjsLAwPfHEE1qyZIkSEhIu+vhOnTrp6aef1ujRoxUaGqoxY8Zo1KhRVb7/G2+8oRtuuEHJycnyeDzq06ePvvvuO0nSihUrdO211+qWW25RaGioEhMT9cYbb1QcCfipoqIiTZ48WbGxsYqIiNCgQYPUpUsXffPNNwoNDW2Q1xwAAF+j3ldW13pfVlamu+++W8OGDdNtt912aYsAuIyfqe7dBeCy1r9/f/3617/WrFmzrI5SL4sXL9a+ffuq5K5pOwAAlzOn1fvy8nKNHj1aPXr0qPgPkJ+i3uNy18jqAADQEEaOHKn09HSdO3dO33zzjdLS0tS4ceMatwMAAGd55513lJqaqiNHjuiDDz5QeHi41qxZI6nm3wOAywnNPQBX+PnZfy+2HQAAOMuIESM0YsSIavdR7wE+lg8AAAAAgONxQj0AAAAAAByO5h4AAAAAAIejuQcAAAAAwOFo7gEAAAAAcDiaewAAAAAAHI7mHgAAAAAAh6O5BwAAAADA4WjuAQAAAABwOJp7AAAAAAAcjuYeAAAAAACHo7kHAAAAAMDh/h8/676zJubjZgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reported: 29 beats ; Detected : 36 beats\n", + "Analyzing trial number 4\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABcQAAAHSCAYAAADCCcgbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebglVX0uAL817enMPc/dzDOCiIATDQJiFKLkotKitn4O8RqVxNxoMFfRR2PiYxJNzE3Uq+gHeBPwU6MiagiDOBFBGRqRmWZqoOfTp8+4q+r7o3btU7t2Ve01/H51zule7/P4SPc5vdbeNa71/t7f+1phGIYwMDAwMDAwMDAwMDAwMDAwMDAwMDAwOMBhz/UHMDAwMDAwMDAwMDAwMDAwMDAwMDAwMCgDhhA3MDAwMDAwMDAwMDAwMDAwMDAwMDA4KGAIcQMDAwMDAwMDAwMDAwMDAwMDAwMDg4MChhA3MDAwMDAwMDAwMDAwMDAwMDAwMDA4KGAIcQMDAwMDAwMDAwMDAwMDAwMDAwMDg4MChhA3MDAwMDAwMDAwMDAwMDAwMDAwMDA4KGAIcQMDAwMDAwMDAwMDAwMDAwMDAwMDg4MChhA3MDAwMDAwMDAwMDAwMDAwMDAwMDA4KGAIcQMDAwMDAwMDAwMDAwMDAwMDAwMDg4MChhA3MDAwMDAwMDAwMCDDy172MlxxxRXtP/f39+OWW26Zs89jYGBgYGBgYGBgkIQhxA0MDAwMDAwMDAwUsHHjRlQqFfT392NwcBDHH388vvrVrwr/HADuvfdebNq0CatWrUJfXx/WrFmDV77ylbjyyivL/jpsGBsbw8aNG+f6YxgYGBgYGBgYGBgAMIS4gYGBgYGBgYGBgTL+4i/+AmNjY9i9ezc+8pGP4J3vfGeHGrro5zfffDNe/OIXY+nSpfjZz36Gffv24ZFHHsFHP/pRfPe73xX+DGEYotls0n4xAczMzJQ+p4GBgYGBgYGBgYEuDCFuYGBgYGBgYGBgoAnHcXDppZdi8eLFuPPOO4V+/p73vAdvfOMb8YUvfAGHHnoobNtGtVrF2Wefjf/4j//Inevxxx+HZVn46le/ihe84AVoNBq44447MDk5icsvvxyHHXYYRkZG8IpXvAK//e1vO/7tN77xDZx00kkYGhrC8uXL8cEPfrD9s1/+8pd4+ctfjpGRERxyyCH4yEc+gqmpqfbPN2zYgI9//OM4//zzMTAwgL/7u79Ds9nEX/zFX2DFihVYunQp/vIv/7Lr81qWhRtvvBEAcMstt8CyLHzrW9/CkUceiYGBAZx77rl4+umn27//3HPP4XWvex2Gh4dx6KGH4pprroFlWcZ2xcDAwMDAwMDAgASGEDcwMDAwMDAwMDDQRLPZxFVXXYVdu3bh1FNP7fnzBx98EA899BAuvfRS5Tm/9rWv4Qc/+AHGxsZw8skn44//+I/x3//937j11luxfft2vOENb8CrXvUq7NmzBwDwf//v/8Wf//mf43Of+xx27tyJhx9+GBdddBEA4IknnsA555yDP/qjP8Jzzz2Hn/zkJ/j+97+PD3/4wx1zfulLX8LHP/5xjI6O4gMf+AA++9nP4tprr8VNN92Ep556Cq7r4vbbb+/52b/zne/g17/+NZ566imMj4/j8ssvb/9s06ZN8H0fjz32GO68805ce+21ysfIwMDAwMDAwMDAIA1DiBsYGBgYGBgYGBgo4nOf+xyGh4exYsUKfP7zn8eVV16JV7ziFT1/vn37dgDA6tWr27977733Ynh4GMPDw6jVavjpT39aOPfHPvYxrF27Fo7jYGxsDN/4xjfwz//8z1izZg1c18Wf/MmfYGhoCD/4wQ8AAJ///Ofx4Q9/GOeccw5c18XAwADOPPNMAMA111yDI488EpdddhkqlQqOOOIIfOpTn8KXv/xlhGHYnvPtb387zjjjDFiWhUajgSuvvBIf+tCHcOyxx6JareKKK67AyMhIz+P2mc98BkNDQxgaGsKmTZvw3//93wCAp556CjfddBP+9m//FiMjIxgZGcGnP/1pwbNhYGBgYGBgYGBg0BvuXH8AAwMDAwMDAwMDg4WKP//zP8enPvUp6Z8vXboUQEQAH3PMMQCAE044AXv27EGz2YTneQiCoHDuQw45pP3fDz/8MADgtNNO6/id6elpPPXUUwCAxx57DEcddVTmWE8++SQOO+ywjr87/PDDMTExge3bt2PZsmVdc8afP/l3juNg3bp1hZ8bAFatWtX+776+Puzbtw8A2tYp69evb/98w4YNPcczMDAwMDAwMDAwEIUhxA0MDAwMDAwMDAxKxpFHHonDDz8c11xzDc4991ylMWx7ttlzxYoVAIB77rknl5DesGEDHnzwwcyfrV27Fr/61a86/u6RRx5BvV5vk/fpOQFgzZo1ePzxx9t/9n0fTz75pNT3SCJWzG/duhXHHnts+78NDAwMDAwMDAwMqGAsUwwMDAwMDAwMDAzmAP/6r/+Kf/u3f8Nll12Gxx57DEEQYGZmBrfeeqv0WOvXr8frXvc6vO9972sTyPv27cMNN9yAbdu2AQA++MEP4m//9m9x0003wfd97Nu3rz3Xpk2b8MADD+Cf/umfMD09jUceeQT/+3//b7zzne+EZVm5877tbW/D3/3d3+H3v/89pqam8MlPfhK7du1SOBoR1qxZg40bN+Iv//IvsWfPHuzZswd/9Vd/pTyegYGBgYGBgYGBQRqGEDcwMDAwMDAwMDCYA7zyla/E7bffjmeffRYveclL0N/fj0MOOQSf/vSncdVVV+GlL32p1Hjf/OY3ccopp+Dcc8/FwMAAjjrqKHzlK19pe4C/+93vxmc+8xlcdtllGBkZwRFHHIHvfve7ACJC/Sc/+Qn+/d//HcuWLcPZZ5+NV7/61fjsZz9bOOeHP/xhXHTRRTjzzDOxZs0aTE9Pd9m2yOKb3/wmwjDE+vXrcfLJJ+PCCy8EANRqNa1xDQwMDAwMDAwMDADACpMpOQYGBgYGBgYGBgYGBvMId911F04++WQ888wzWLly5Vx/HAMDAwMDAwMDgwUOQ4gbGBgYGBgYGBgYGMwbbNmyBdPT0zjppJPwzDPP4K1vfSsA4KabbprjT2ZgYGBgYGBgYHAgwFimGBgYGBgYGBgYGBjMG+zduxdvetObMDAwgFNOOQVLlizBNddcM9cfy8DAwMDAwMDA4ACBUYgbGBgYGBgYGBgYGBgYGBgYGBgYGBgcFDAKcQMDAwMDAwMDAwMDAwMDAwMDAwMDg4MChhA3MDAwMDAwMDAwMDAwMDAwMDAwMDA4KGAIcQMDAwMDAwMDAwMDAwMDAwMDAwMDg4MC7lx/gPmKHTt24Mc//jE2bNiAer0+1x/HwMDAwMDAwMDAwMDAwMDAwMDAwMAgAxMTE3j88cfxqle9CkuWLCn8XUOI5+DHP/4xLr300rn+GAYGBgYGBgYGBgYGBgYGBgYGBgYGBgK4+uqr8eY3v7nwdwwhnoMNGzYAiA7iMcccM7cfZg7w0HP75vojGBzAOGL5wFx/BAMDAwMDAwMDAwMDAwMDgwUMw11l42DlXO6//35ceumlbU63CIYQz0Fsk3LMMcfghS984Rx/mvLhPbV3rj+CwQGME9YMzfVHMDAwMDAwMDAwMDAwMDAwWMAw3FU2DnbORcT62oRqGhgYGBgYGBgYGBgYGBgYGBgYGBgYHBQwhLiBgYGBgYGBEsYnJrD16acxMTk51x9FGQfCdzAwMDAwMDAwMDAwMDAQh7FMMTAwMDAwOMAwPjGB7bt2YdnixajXauTjN30fn//613Hdj34EPwjg2DYuPv98XLZ5M1zHIZuH83uU9R0MDAwMDAwMDAwMDAwM5hcMIW5gYGBgYHCAoCyS9/Nf/zquv/lmnHHooRhpNLB7fBzX33wzLMvCh97xDu3xy/ge3N/BwMDAwMDAwMDAwMDAYH7CWKYYGBgYGBgcIEiSvBeceCLOOPRQXH/zzfjCN75BNsf4xASu+9GP8ILVqzHSaAAARhoNvGD1alx7ww0k1iPc36OM75Ccy1iyGBgYGBgYGBgYGBgYzB8YQtzAwMDAwOAAQFkk7/Zdu+AHQXuOGCONBvwgwPO7dmmNX8b34P4OQKRy/9xXv4qz3vpW/NEHPoCNb3kLPvfVr6Lp+9pjGxgYGBgYGBgYGBgYGKjDEOIGBgYGBgYHAMogeQFg2eLFcGwbu8fHO/5+9/g4HNvGskWLtMYv43twfwegHLW+gYGBgYGBgYGBgYGBgTwMIW5gYGBgYHAAoAySFwDqtRouPv983P300+25do+P4+6nn8YbXv1q7fDLMr4H93co05LFwMDAwMDAwMBgbmCs8QwMFi5MqKaBgYGBgcEBgJjkvf7mm9tELCXJm8Rlmzcj9H1c9+Mfww9DuI6DN7z61fjg296mPXZZ3+OyzZthWRb+/Yc/hB8EpN9BROW+ftUq7XlijE9MYPuuXVi2eDHpeTYwMDAwMDAwMOhGWUH2BgYGfDCEuIGBgYGBwQECTpI3CddxcNkll+DiVauxf2gIh576InLC3bIsXHvDDWj6Psv3cB0HH3rHO3Dxug3YuX8MR7/qPLLvkFS5J0lxarW+2YwZGBgYGBgYGJSPpDVeLN64/uabYVkWPvSOd8z1xzMwMBCAIcQNDAwWDIwK0uBAAOd1HJO8bzryKDz7zDM49sIL2O6V0A/Q6O/H8NAQ2/d4+8az8Ngdd2DDKS/E4sMOI50jRt3zsGZkhPQ7lKVyN5sxAwMDAwMDA4NyEVvjxesvoNMa739u2mT2qgYGCwCGEDcwMJj3MCrIhQNTtMhHmddx1baxdslS1KpV0nE7EARwqlWEzSbbFDXXxboVK1CzF959zq3WN5sxAwMDAwMDA4PyUbY1noGBAQ8MIW5gYDDvYVSQ8x9lkb0LmXAv8zoOm03YLbLa8jzSsdtz+H57Di5Ec9QQzMywzQGLZ9hY5X7pi07Fk7+7D0edcy4GliwmG7/MzRj3fbeQ72sDAwMDAwODgwtlWeMZGBjwwhDiBgYG8xpGBbkwwE32LvQugbm4ju2Kh2CmCZuLEA982JUKZiYnWcYHgKDZhFNnJsRDsJHiAFBzbKxbsRJV2yYdt4zNGPd9t9DvawMDAwMDA4ODD2UG2RsYGPDBEOIGBgbzGqYlbf6jDLK3LHU1l1J1Lq5jy3URNmcA1EnHjREGAexKhVUhHtuy+BMTfHMAgGUj9H1YDCRs6Adw6nUE01Ok45axGeO+70z3j4GBgYGBgcFCRBkB8AYGBrwwhLiBgQEZJqcmsXt0FIuGhlCt0HgXm5a0+Q9usrcMwp1bqToX17HtRQpxLoS+D8t1IoU14xxOXx9m9u3jm8QCbM+N1OgchHizCadaRdD0yce+bPNmIAxx7Q03wA9D0s0Y931nun8MDAwMDChgbLcM5gKxNd7/57zz8MjPf4F1J56IpcccPdcfy8DAQAKGEDcwMNCGH/j45ve/jxt/8UsEYQDbsnHOS87ApgsugKMZhmda0uY/uMneMtTV3ErVubiOZxXiPAj9AJZts9qNhEEAp1pByGSZEgYBgNax8ukJ63gOp15nGd91HFy26c24aNFiTC5fhkNOOYXsWuK+70z3j4GBgYGBDkx+jcF8QNW2sW7lStSM1ZuBwYKDIcQNDAy08c3vfx8/u+MOnLhmNQZqNeybnMTP7rgDlmXh0gv/UHv8uCXt36+/nlwFaaAPbrKXm3AvS6la9nXMrRBHELBYjCQRBgEsz2NRV7fHdxxYjoOQa45mE3a1gtDnORdhcwZ9Q0NYPDxMulHnvu8OlO6fsogSQ8gYGBgYdMLk1/SGeXfwI/QD2NUar4WgwZyCowveYH7AEOIGBgZamJyaxI2/+GWbDAeAgVoNRy5bhv/8+S9w8fnna7844pa0/7FyNfYEPo585dlmUTfP0CZ7f/hD+EFASvZyE+5lKVVdx8Gfvf3t+B8rVmIPgCPPPov1OuZXiEehmpyWKRHp7gJhwDJ86Puw7BYhzkVY+5HXur9/nGf8pg+nVkNIXPzgvu8WevdPWUTJgUDIGBgYGFDjQMqv4YB5d0QooyAQ+j6caoU3AN5gTsDZBW8wPzAvCfGpqSm8733vw3/9139hx44dWLduHT760Y9i06ZNAIAtW7bgne98J+655x5s2LABX/ziF3H22We3//23vvUtfPjDH8a2bdtwxhln4Gtf+xrWr18/V1/HwOCAxu7RUQRh0CbDYwzUagjCALtGR7FyyVKSuer1Ohq2Pe+JkoMRcdHi4nUbsHNsDEeffx7peeIMrilTqRr6Phr9A+izLfbr2HZdNMd5SFgg+i6wbbbxgZaCm3GO0A9gOTZs12VT9kQbpSqaozw+6KHvw65WETB8fu6uBs5CGjfKIkoWMiFjYGBgAPCQkgdCfg0nDvZ3R5kFgTDwYddq8PfvJx3XoBjJ5woXuLvgDeYe85IQbzabWLVqFf7rv/4LhxxyCH7+85/jNa95DQ455BC86EUvwgUXXIB3vetduPXWW/Hd734Xr3/96/HQQw9h2bJluP/++7F582Z8+9vfxstf/nJcfvnleMMb3oDbb799rr+WgcG8AHXLz6KhIdiWjX2Tkx2k+L7JSdiWjUWDg9pzxLBsCwg55agGuqh7HtaMjJBvEmLCffOZZ+LRX96OIzaeieE1q0nGLlOpGqmqPQTT02RjZk/E64sNxHYjC5sQR+C3LVO4bFmAEJbrshDWQGsjVqnAZyh+tLtz1q7HrvFxHP2qc0nvh3Yhbf0G7BwdxdGvPp+FYKAmY8oiShY6IWNgYHBwg5OUPBDyawCeYsFCfXdQHosyCwJRp14VM3v3ko5rkI2s58qZG19LrtouowveYO4xLwnxvr4+fPKTn2z/+WUvexle+tKX4he/+AXGxsYwPj6Oj3zkI7BtG2984xvxj//4j7juuuvwvve9D1dffTXOP/98nHfeeQCAT37yk1i6dCnuu+8+HHfccXP1lQwM5hxcLT/VShXnvOQM/OyOO3DksmXt6umDzz+Pc1/6EtoXxUHIhS9U778wDGFZ9GmLNcfB+lUrUSUeu61A/+EP0WRUqoa+z+67HcNy+WxAgIiItRwHsG2+7xWGrCr0toe467IeK8vhV6DP7B1lGR8AGtUKGpUK2zOo7nlYs4j+GcdFxpRFlJjgUQMDg4UMTlJyoefXcBYLFtq7g/pYlF0QiDr1+tkC4A06kfVc4VBtl9kFbzB3mJeEeBr79+/HHXfcgQ9+8IPYsmULTjjhBNiJDfJJJ52ELVu2AIjsVE499dT2zwYGBnDYYYdhy5YtmYT4tm3bsG3btq6/v//++xm+iYHB3IGz5WfTBRcg9H3c+KtfIQxD2LaDc1/6Elzy2tcSffqIuIJ18CjEF7L3n+XYQBAADJ8zmGnC6euDPzVFOm6sVH3raadj69334MhzzsbgsmWkcwCIPLGZbUYAAFaLhGUM1Qz96LtYDh8hHinE6Qsr7fFbti+R3zqfmj4qTjAGg3pudM9xgfux2xqfupDGRcaUZbN0oASPGhgYHHwog5RcyPk1nMWChfbuoD4WZRcEwsCH7VUQ+ozrMAMA+c+VI5f1k6u2y+yCN5g7zHtCPAgCbN68GaeeeirOO+88/Pd//zeGh4c7fmd4eBhbt24FAIyNjWX+fN++bO/OL33pS/jEJz7B8dENDOYNuFt+HNvBJeeei7MGBhGsW4cVh2wgbyEKfT8ileZ5gjeVoptrocyuOG8RsUGzCYeDIG024dTrbCqMqm1j/erV5Ar0GGUqxG1GEhZAK/DSiYh3rnlK8hC3HAcBcZElCctx2Aj3qDDBd02VUoy0WsfI92G5NEtTTjKmLJulsoNHF2pHkoGBgTq47vsySMlYzPDmk0/GU79/AEef/yr0j4xojZkEF+HOXSxYSKHVHMei7IJAvJYEn37DoIW85wqHarvULniDOcO8JsTDMMQf//Ef45lnnsGPf/xjWJaF/v5+7E35M+3duxcDAwMA0PPnabznPe/BhRde2PX3999/Py699FKib2JgMLcoo+UnmGmi0T+AxuAgywsibDZZbQd0Qano5lgclqk4t7zWeaoyXAdBAKdaRdDkIcTDZhNOow5/isfjO/QD/iDKFnEZ+VYzeoj7PizbZiXew4D3eEXfwYHtOvD38z1bbE4Pcd+HTUQiZ47f8ornVNADgOV6UaGL6LtwkzFdQb+2jTf8wR+Q2yxdtnkzEIa49oYbEIQhHAY7p4XckWRgcKCDi7Dmvu/LJCVrtoP1q1ajSrxe4Mq5KKNYsFBCqzmORekFgSAALPugtPYsG3nPFS7V9qYLLoBlWfjJz3+OIAjgMHTBG8wt5i0hHoYh3ve+9+Guu+7CjTfeiP7+fgDA8ccfj7/9279FEARt25S77roLl1xySfvnd911V3ucsbExPPLIIzj++OMz51m5ciVWrlzJ+2UMDOYYZbT8hM0Z2LUaM+njIOATcWqBUtHNsTgsM1wmUsMyXgeNBvyJCbbxnXqdLfQy9qwG+HzWZ5XbvB0VYcvfO1b2sswRhLwK8SC2feENIIVt81maJK4pDsRFgxCMxycEbM+NLJHqNENykzExUfLO17wGD996G9YeczSWnZC91tSd57JLLsHrh0cwvWYNNpz0AvLNfJnvBwMDAzFwE9bc933ZgeVOXwP+1BQ8slFnUXc9rFm8GDUioUcZxYIOMn9sDEe/6rx5pQyPwXUsLtu8GeHMDK77z/+EH4asBYEwDFnt/QxmkfdcefD5cRbVtmM7uPTCP8Q5K1dh7/5xbHjJ6UYZfoChBCNTNfzJn/wJfvWrX+HHP/4xBhNk3caNG1Gv1/HZz34WU1NTuO6663Dvvffi4osvBgBceumluOGGG3DjjTdicnISH//4x3HiiSeaQE2Dgxpxy8+Dzz+PfZOTAEDe8hMRGTWAixiLrSYsm5e4UkCs6I5fzECnonuidcxFkVwcJqG6OKT+fHkIgwCA1VLD8llo2NUKX+ElCGBXq6yEvsVNIsdzuMwkbxDAsqzIboTrfIctuw7MKt/Jx7dtWK7Ddk0B4Cl8tBA9G/ltZbgR+bjTnYN403T300+3n6UcZEzNcbFuxXI2myUACKam0T8ygtVDQyw2KWW8HwwMDOSQJKwvOPFEnHHoobj+5pvxhW98Q3vssu77yzZvxmvPPhu/eOQRfO/uu/HLRx/Fa88+myWw3KnX2MQMAG04dlnvJ6AVWj0yMi/JcCBxLJ56ivRYuI6DD77hjbjune/G//fPPoRbrroKH3rHO3i6nsKwvVY1iDA+MYGtTz/NsoaInyu/TDxXXn7qqayq7arjYtngICqVCtsck1OT2Lb9eUxNz1P13wGKeakQ37p1K/7P//k/qFarWLt2bfvvL7/8clx++eX43ve+h3e+8534xCc+gQ0bNuDb3/42lrXCz4455hhceeWVePe7341nn30Wp59+Oq699tq5+ioGBvMG3C0/YbMJh1EhHjQjb9nYnoFSEanbjkqt6KZW1ZQVLhM2m7A9l5zY6pgjCGBXGAnrIIBdqcDfv59p/OjabZPVDFYXsc1IRMLy9W8mFeIIGAMpW6Q7R1BrGISt8ZmLBwCbt2TIrBBHbFtjWawe+LbnISDOBrhs82aE09O47sYb2RRiod969zHlGgBA0JyB29fHQvaUHT5mYGDQG9we02Xd97FK+Q2HHIodu3fjqFefj0adqA0ogdD3WdeGAGbXbR6NBr3LdmueWpqUgcs2b4Y/Po7/3y23kFqDBc0Z9A0OYJihmJxEGASwrHmrMy0VZViwxc+Vt57xEjz14INYd+wxeKa+jGTsIkRZZnRZNzH8wMc3v/993PiLXyIIA9iWjXNecgY2XXABHMaMIIMI85IQX79+faES7IQTTsDtt9+e+/OLL764rRg3MCgTk1OT2D06ikVDQ/OunSZu+XnVIYdi+zPP4NCNZ6JWJVwchGHkHc2kJgv9ZtsGImj6sAkKtFQvbY52v6RvrC6RU5aPY9BMkr28hDWrJUulgplUFgXl+G07kxk+n3VOm5E22mQyo0K8Bct2eIJawxCwrXICe5lqE6Hvt33WOWx44iKO7bmshDhHIc11HHzgDW/AxevWY2LRImw4+STyTXHo+5FdGKOSOvQDNiunssPHDAwOFHCG0HIT1mXf9zXHwdrly1EjIpPTiPJlKmz5L0Bk60X5jopJvc1nbsTjd9yBDS96ERYfdijZ+AsJruPg/a+/CG9Yfwhm1q3B2qOPJrmnYrEW//ouWkvCsspbg89TlGnBVnNdrF+1CpWSSGPL8xA26bJuYnzz+9/Hz+64AyeuWd0O7vzZHXfAsixceuEfks5l0I15SYgbGHCDmrjmquxxEOwVACsWL0aVelEahrA9j2/R0WpHoyRbqV7aHD6JsW/sHy1ZhvEli3Hoi05RXhyW5uPYsp+wORXifhBtShj9mB1GyxS0FsrcIYusiuF4npadCWcBJIbFFdwZhrCsloUNM6nPhVghbjk2k4o+aFvwBM0mbKZ20Yhwp7+OwpkZ9A0MYBFTy3jYjHIHmvvGyMduz+H7cGo1NMfoO1dKDx8zMGAGJ1ENlKOA5Cas5+K+tz3a4OQkQj8SSzTHefJlALSK//TvqJrrYt2q1ay2WwsCgY++wQH0jSwiu/7CZhN2rQY/ZUFJjbjbMC6aWIy2GvMZ3J0taXTkPnHrEC3Abj0DKFfZk1OTuPEXv2yT4QAwUKvhyGXL8J8//wUuPv/8eSeyPNBgCHGDgwpcxDV1ZY+zdSZIWJs4FbpHehgGsDyP0du5pUYl8kWmfmlzpLkHM030DQ1iEUGrXylp82FSMcxFKPOSvbFCnM/fO/JjZiWRy1KnhGHLD91G6DMVKFrg8lwPW4U2uwRSn80ypRV6Gdu+UN8f7a4GpkJXGLQKK47LYjsSNH1WhVjo+3CqfF0rAIAgfi7xzNF+P1x/PXv4mIEBF8ogqoFyFJBlENZlW3ZYnkcanNyB1h6E3TJlhuEdyOh/PttxP/+Vy0HTh1OtRUUTIoQtkUtzdJRszJyJWnk00TqGSzgw31G2BVtsWddkLnjE4BD+7R4dRRAGbTI8xkCthiAMsGt0FCuXLCWd06AThhA3OKjA0ZLCUdljbZ0JE63plBXHIIRlO0DA5QsQtP2KKZSc1C/tuPXxjUccie07duLIV56FvkQgsArCmWk4jT4Skij+fG859cV4+qEHcchpp2N4Na0vbBi0VPyc1jmxnzHbZRbArvBtqkLfh+V5vD7rJYX7tM+34yKY4WtTBvgIcYStDaJt83UdMGM2RJXOTqoDsUKcSUUfh4JarsPz3Ah81qDcoNmEW2n0/kWtOXzYDKrKGPH74Y+Wr8Re28KRZ200ynADMnArtmOUQVSXqYC8bPNmhEGA6370I1Jf5Rjxff+2l70cT9xzDzac8kIsOuQQkrGzEOVEMFqacBVtW6QyV+GcNRA07iCz7fZaYb6ifRyICXG7UkHAUMjonChWiPMWZeY7yrZiCps+7KEaQiabyy4wFMUWDQ3Btmzsm5zsIMX3TU7Ctmws0uQSDHpj/j4VDQxAm7YbE9dHLluWSVyrziFS2ZsPnzOJaNFIS2yEACybj4Rrt6MRLUiTL+0kdF/aNcfBuhUrUCUgL4KZGbiNOunisGrbWLdyNaocpyqctQPhtEzhXtBHCg8+D3TLcVjuwTaCktLuY8uUMhTiTJYpEalvk/tul4qg1XXgOGyb9chD3EPQpFdwR6q1lq8+B5nhB7CrVcaulQCWy2tRVIYNUhgEaPQ1sHpw0JDhBiRo+j4+99Wv4qy3vhV/9IEPYONb3oLPffWraDI8y2OiOlZTA51E9QRRsU1ETEEF13Fw2RvfiP/3xktw9V9ejluuugofesc7SNXuAFC1LKxfzW/Z0bZMYYLlMFnRxUHlHt/4XIGgsx1kDj8prIl2HgclIe7HoeN8AfNAQiDCaIe4EBB3ttz99NPt/TWnFdOsZQrfcyUJDrvLaqWKc15yBh58/nnsa72n9k1O4sHnn8e5L32JsUspAUYhbjAvwWEZwtWSQl3ZK6N1huWFzZ6w3Qq/A41KkasdNWz6cPpp2vNDP4Bdo618RwtOpoV3mFAMsy0IQ35C3LbBtXjuVPNyKcQ7iwYcQYsxrNb55lbEWDaTx3dJavr2dAwty/GGj8pOqmv8mAywLJ7xYxshpuuoHcTLRAYEzWbUHcWJVtGDdYqZGTjVGnu3R1lqYYO5R5nhamW16petgPQnJzGwZDHqBNZ5uQhaob2MgZQAIkKZkZS1PL53IPc7yq3XMbN7N/3Y7Q6sEmzhNBH6Pty+Pvj7CbMy4q5SboSzWSucRR9KcL2LL9u8GaHv47of/5jdgi1sNsm7CjLnCfy2vWKToZNx0wUXwLIs/OTnP0cQBHBsB+e+9CW45LWvJZ/LoBuGEDeYl+CwDOFqSYkrez+74462qlunssfeOmPFlim0L4/YB5YNQRR+BwdkRCKLb2oYkrXnhUEQKWoI1bdxOBvLpiShkGBvGVyggt4wmPVjZtt8JhTils0TtJgEW+BlxxxutCAlRhgErOrwWf9OzHp8UxPibQ9uLkuTmIy1eEjlIA7jZeoCaG2yWUNsDwSFeLMJy3MBJkK8LH9ng/mBssPVyiKqyw6jDGeacPv74TPZ0AEJlSUnqRQCtuuxzsHWZZQIQ+fwKo6ya3gymLgL5pSI9ie03Vxl+aaHQRitYxiztKjA/S52HQeXvekSvGH9BuyrVHDYGaezFfNCP7aT4+8AsFpdIhijP7+O7eDSC/8Q565dh907d+KQV7zcKMNLBDkhHgQBfv/732PXrl1YtGgRjj76aNjz2K/KgBaTU5PYPTqKRUNDyjcyV9ouNXGdBGVlj/NzxuBaGFm2xRccF6uPbZtssRH7J160aAnG+ho4/OUv039ptwsOFApxet/Y0G/56TJsSsK2QoKfII3m41M+c6FTDcsTApNUiMdqfYeTEOfy9+6Yw+ZTiDNaPUUK9Na5cB0en/KkVRGHZUrsId7yIKUfv1UkYuosCWNLk5DH1iciq3n1JaHvA8wqdG47qjLVwgZzj7LD1cokqssMoQ19H05fA/4EMyHeqMOfmGCbA1ZLwT2lb/uYOwXXWiQIIms1ri4s329ZpnC+Xx22LikqtPcnC5AQB6L9SCmCIE2U8S4OAx/9g0MY8FzWTrAyxAJA6z6ybVjMRb2KZWHZyIghw0sG2Qr+N7/5Df7+7/8eP/jBDzCa8EweGBjAa1/7WnzoQx/CC1/4QqrpDOYZKC1OOC1DNl1wAcIgwI2//GUUUEPUkhJX9l591NHY9tBDOPzcc1Crqr8AYoL9P3/+81b1lrZ1xnYc+FO0L2z2IL8k2Uq4oA7DEPVGA4ODRO2oIWGwD0OrX9hswqlVMT3BQMa2lMmcHuIx4o2PxRg0x4KE0ohNRZK4F0tRb5dCiDOpm7iLKmHYzlZoq9eqtAvdWJnEGXppuy4s14E/xaCOC3gLabGHKhfilnRYfJvv5KaPqxDISRyUrRY2EAOnfU3Z1iJAea36sZji4nUbsHP/GI5+1XmsCkinVkdzdB/L+PEcnDkLcacUl4I7Bte7PGy9x7nIztm1LL3KNSqm8hXMKREVBiq064AgKIUwjcHVRUCFst7FYTMqsjUp7W+y5inr/LY6bW3XQcC53wlC2I7TIuBN51xZIGES3v72t+MnP/kJLr30UnznO9/BiSeeiKGhIezduxf33nsvfvSjH+GCCy7AeeedhyuvvJJiSoN5BkqLE07LEMd28ObzX41zly3HeK2KNSecQFqF8wCsXLIEFU21WEywv+b4E/Dc449j1bHHYnDFCpoPGU1Av6gLAnD6WIRBmAiOo10sObUqqYUMlUc7x4s+CpirsShF2grxEsJ72huTBUaIhy3FMJfXJTAbQAvEx+lAIMQdBAzKsrCl/OJC0kqK7zjFyiSeUM14Q8nmn+onFGwc1yq3h2hKPchCiMcetq3nnuV59HMwKq3KVgsbFKMM+5qyrUWA2Vb9Nx1xJHZPT+OIM1/BWmipVzys8UbYFZB2rcq6puLOWUAYArDYLVPY0BZ7MFqyMGVEJC1TAuL3K3VBjeMdFCbe/2V0lVre/FaIl/UuDv1mpPYnzMCaS4R+0Fpn8wYDA2ir0J2qIcTLAgmTcMIJJ+BLX/oSKpVKx98vXrwYGzduxMaNG/HJT34S//zP/0wxncE8A7XFCbdlSBj4qPX1oa9WI29JCWdmohBEIqKuYttYuXQZKpQv8JCJmAlDIPaZDRkCNhOBjZSkT9BsRp7f00S+qS3LFAryrk2uUJ5+v0nu0Tc7eHyO+BPd2cgzbsSKYYtRKRXObgC4FVmzc5RAujNds1bCMoV8wxSG7Wchd+HAclwWsiFWmLG1AgeJMCoOyxfmltowjIq1thdtYmxGsrrdfcMwB2fhYC7Uwgb5KMu+JrYWufaGG9D0fTi2jTf+wR+wWIvECJtNDIyMoL5/Py9R3RaBMHvXluCRG/o+HEaFOJgV1tyYFXvwWaZwvaM6C840x56roBY2eQjxWKjDnacD8Pvk66Ksd3FZViYdcyKExSTMC8O4sFRGZlJrT2VcU0oDCSH+Z3/2Zz1/p1Kp4E//9E8ppjOYZ+CwOOFM240UsrQeZTGCZhNOrUb2sAwDH3a1Qv5ytTkWdWHUrhgHo1kufXBctKCmJd84Xtq255KkpLO0goWIgjo5iLNW6Eg8DydYLUda4FCTxIphm5OoDmdbh8toky1nDiY7jXBWIc4RQBomPMq5CweW6yBkCF6bDRRjOgctIpat3Z3bQzTg9w5tkxqui2CmCafOMEfsNdvyiqd897TVwjfdhBesWVOKWtggG2Xa18TWIm976Uvx7DPbsLivDytffCrJ2HkI/UjkECbsO3nmicJ0uX2Zy7AECH0/6jrhylmIn/ELlBCPCP3I1otaZQ2A1dZj1vvYIQty5yqosZCoiYJ7MDPDmqcD0GVIcaGszh2O4kYRog5GPhvNWKDGRbgnEQWzzt+iyoGIhdVrbjAvwWFxEluGnLNyFfbuH8f6M07T8uROIgwCOJUKZvYx+PGFYYscoiLEQ3o/NatlP0BMbLTVMnYr/M4lVrDFVhM2LSnD8dKOF166SLbfU5KzMalCjnDWHoINLaKduy2RgxwFMHsdMxL6YRh0kLAsG7gkbJsnLDIBPg9xJCxNGAJIg6C04gSvip7vmuUmrNvt6ExFunaRi+u5is62dzbSPZhVQXIE8V62eTOCyUl866abogwXxiBCg3zMhX1N1XZwyIYNmHz2OdJxsxCURMTEYbphs8lqxXAgBOqGQdQ1antM75CQWaUfzHY/stmGMR3/+N1huy78/fre1qwFtTAkPw5tD3XPK4Wotj2+dQAV2qHAP/wh/CBgyVqIOltK9G6veKw2mqV5lWP+F1UORJRGiL/mNa/B9ddfX9Z0BiWC0+Kk6rhYvmhE25M7idBvRhVEpgWU5boIqEiPIIDluWRV/TBskdauA5ArxFsKbi5bgHbLJTEhHtBXlMm8dmPfWIfQN9Zqkb0c4T1JhTgXL94a13Y9Ut/3rmlcHlKo3enAqRYOEjYdHr96m9uTEQAsx2ZTJ7dDLxkU0JFCvHVP2DZCn69wwNbO3Sqw8FmmJAKZGV7LbbLHsngUaGHC8oVTId7a1HMph9oq9LjYSBz+6joOPvA//gfesG4DJlcsx/oTjjfK8DnAnNjXBAHsWg3BDJE1XQHaa3zueZotwieIOu6slG0o3TzNchTinHO0OqU4cyJ4u4CioiebrRdnzkXCbpKiGMFaUGNYSibzN7i7SoGFQWbGnTuXHHc8nn/+eRzy4lMxtHw56RxxQGpZYC94BCUIvlooI/vJoBOMb49OrFu3rqypDOYAmy64AC8/9VTc/dRT+OmDD+Kep57Gy089lcTixKK2dwhCvoUHEClKiR5kYRBED3kqkiMmlW16cilsKS0t10UYMLXVg35BHSnEaa8HKmsBljZTTiFNyEtsJcGtfLZcl6cVOlYaMRUlgBYJm1A9l7I45yAyE0VLqs1cxiSzlikcm/VEwCm3Qpwr8CsusNhMG73Yn5UNLSsQmynINlYPxh7iPJhV6XNZNMSFA8out+45fDQGBrB6eNiQ4XOEuGX+7qefxu7xSDHKbV8TNJulqQXLatUP/WargOQhmOYrzodB0D52fEpoemVux+ixrRSXGCPxHo9yjGjnaHuIMxJivJZhdGKiZEEtifmaBzFr+eayhyECC4MQj1GFhfWrV6PGEQTespSCxSNmScPyPN6CR6KblBuRJaixTCkTpSnE/+Vf/qWsqQzmAB0WJ+Pj2HDG6WSBlY7nwZ+ehlOnMc0MfR8242LZdunsSOIKK6UFSxwuQm5x0CLhbG6FuOOQEu7RpsZtTaHX9hofU6o0dxbvXs73eTirtuUGx6IzuYniUmKyk39AW7EKtAoHkwt0YZUkq12HR12dCNXkUH+FCRsh/lBNLp/1lg86lzVOUiHOgGRhMQ5RJp6BXSEeg8tyAMBsRxKn9UvTh1OvLRjC4EBFGS3zScT2ImUg9KPsHQ4v/CSCZqREt227pXzvY5kntkyJO4DKUL+TIxH0zaID6HiPO3QdlTGY31Gzx8SitxBr5aRQvZ9K86CmsiGKrcC4CdMWyuiYJEMQwKnVWAp6QbMJy3baaxZu73bb8xCOM+51ws5nAGeAJ1cekEE+FuBb1WA+o+q6WDY4hArhQsQiVitx+5VajotgmqgtNAxb1hB0IZ2wLJ6HuIVo3NhDnBhx+B016dNuEyfwjI49xqLPqL/wSvrGlrGQ00WklEzaQ/BtRi3XRUC9YOggYJmUmCHzxgqtwler6yEKeF2grXdh2D5UVPdU1xSJNkibo00x4YlpOQ78qSna8RNg65po+aCzKdgSZAbL+IlAStbcAY5nUtYcRBZqaUTBei6fFz2iNUi0Aee3zjDIR9wyf/H6Ddg5Noajzj0HjZQFAiWie5DPx797Lhd2tQp/agou0/eKleiW4zB2hsweO9tzEUzPwF6AhHgZORFdXXGE+9BShAyYtW2jnCsMQtiuRdot2C6oXX89/DAkL6hRFn/ignhZCvGFhDAIYFerLM+vWCFuVyoIpqfhEFuwpWFXPASjfOvrMCH4irtJqYuTYesFGV3/83/PfyCB/K368pe/PHfT9NOf/pR6OoP5hhCwvdYL3SV4oVvRBpDS7zrwfbiUyoEULNdBOEGlEI88xMkU0dx2MWBUQcZWE5ZFuqma3dToV7GjhaxDZ72QSIfnapMnRYL8s5k8uGPYrgOf3Ad/lpizmYoQYcAXvjU7SadlSimtdxzej9x2JtEks37rDKR7GCRsXxg8ypNg8zftaEdnQJJsYLo1LObQSyBSKDU5wrrTc4ztZxm7XdBl9UKPFGksoeYG0qh7HtatWIEq87qwrRBnLpTHc9kJIgZchHjLq9yyLF7LlFgY4cW5KTTdsrnzcQSEJoUAHM/4xDuKxRqLW8jQLvzTk/mxfztlp2lcUPujZcsx6nk44sxXkFotxSp/qoBEy7JI87gOFESEeAX+BH0hP37mc9q8JWF7FQQzY3wTdGQztZ7F1MXJ2O/feIiXDnJC/Jxzzun48zPPPIPrrrsO73jHO6inMpiviG9kl+aFHqneCB+mQRQQBvC0vFCqq2Y9xIna1EtQObB5iCdVhISnLN48kZBVcXAQkU9iTFDYrsdGdFFufKIKevRa4Qhm6/CUduktTTpURtTZBbOTsBeluoIiy1hYcbdBs3qPRv9NZXXUOcHs+eYKvYzBWjTgVHAnOhpYWsbjkUtQiHNbgZQT3MmnTgqbTTj1GqZ37WIZ30AeTrUKf3IKDqOne6xydqoV+FPTcBt8pG4UQhkpxAPGjpxYTGG7DqvyNC4g2BXGjILWq5U0wD05PLMQILKDnFVvUosZOgLjGUFqj9hCGASwWt211OubRqOB/lqNPHeAtFuvdW3bngd//3jx7x5sCAM41Sqao/QF6nZnS6VSSpiy5dGKJ9NIZjPZrXuJuqwb3avR+Cz2hAa5ICfEP/7xj3f93SWXXIKvfOUr1FMZzFPYxCo723VJ28zbVUubp+XFJiU9Qli2AyoiKEn4ccGybfhTDIv2IJhVKVIqxFskLkVFlnrRHPqd3rc0g0b/ZzmOtkVMFxIVdJYAvii5FQCTpUnY+fm5bGrKVYjzqpLb4FCIl5HqnniucFhFJIkAy+ENF7Jsu3WP0IL9PCSvV4aW8fYzj5mwZvX3jufgJMSDIOpwcglt3zLmiFq0F0DH00ECu1ZDMDUJYIhtjtj+wK5WW6ptRkI82arPqAgN297EFfgTo2zzAGGrw4UxvDNRFCZXKAP8QoBkVgeL9VkJaxEw2Z6FUWew5TjR96AaNghguR7L+4ijqGG5nKHX/BifmMD2XbuwbPFiWjU+Vxh4nIHFHDocIyLeeT3E2x3Q7W4d6jkQPSddPts6g2yUYkR25pln4nWve10ZUxnMIUJESjvyFxk1SdHa3Lfb44kJcct1yUI1qRGG/CoHy3WAcWaFOOW4/qx6QruQQ75ojjZCHMrPKDhthtTSpB2+F4/PQIjPWpowKGmSn9/zEE5MkI6fNydHe3I8JrdNxCw4wqBK8FtPhXHREyiJa4rQw7NUMFumdHQ0xAVlSkKmdQlxE9alKMQZg8HaXuuOi3CGR0kXNpuwXI+lcGOgBqcWKcQ5ETZb3QeVCqtqG2iFuTlOpHwc51OEhkEA23Uj5XYJtmRsXWsJtAPwiMftXBvwrBWSdn3UZBW3B3oMi6M7h2nvFMzMtMhO+qITh/2b7bnlEeKWRWYN1fR9fP7rX8d1P/oR/CCAY9u4+PzzcdnmzXAJxreZihphqxBjcxHuKdgub2hqGAawrNbxZlrrRXPY7UBog/JQCiH+rW99C4ODg2VMZTCXiIlmohDM2XABWkI8DKP2bC4/V8t1gHnq/RSRv9wKcYfFMoXNg7Dtr0egKmEqOJCGtcXkEMcLPZi9vjjIoTCp5mUg3JP3B6dCPEas3iYPZkkdpzLCWeyWRY5VqdANylEsSCPo9FsPm8QEStJ30F2YbZDJdnSeCRL+r4zKGM5ASgClbPxYg8ES4WPcpPt8BZUKj0vNR4nQ9wHLhl2toTnKqXBG9Cx3HHYbEyBpMVJBsGcP40SttWNpCkge8jEJtqJe4j0be3xTB0cmFeLkKusgWZxntPViKJpzdXhF1jouwEWIU53DdvcDD/GbhbgTxqnrd8J8/utfx/U334wzDj0UI40Gdo+P4/qbb4ZlWfgQgR2xxVUoiMPYSxIX2RUP4Dy/ITqKbixCo6RgcwHuFRYyyAnxtWvXdmxg9+/fj3379uGLX/wi9VQG8wxha+NPpWZt+1lSK67DyDecirhPI6rszVMVYJgM1bTa1UiasVujMoVBxD54ybloBo5IbIrOhjDgUbTaroMmdfsgA3mTDN+LyCE+pQvLxi3p9+zxL57b34EhmCWdhs6NuEBhExLiYcfzigdhIleBp+sg0crNYMlSCjo21PRkQKdCnKFlvAXbdVk9RMs4vxZjx0eUWWED4PO6jzM75huoVHjcaj5KROfChVOrYmo7L0kdk1Lcqm0As6363B7iZVsCMAbqJudgUz7aCTHDTBM2aXBkQozBYX2W6iQjt/VqgdQ7u4WOvRMhgplm9E4lH5nnHJapEI+zEnQJ8fGJCVz3ox+1yXAAGGk08ILVq3HtDTfgf27apFdwDfnI3TBoKcQ5sw8SYOlKTiBZWLJdF00qkVrHJK0cMq50eYNckBPin/rUpzr+PDAwgJNPPhmHHHII9VQG8wxhGLSU1zSKxLafJbVCvPVQs5kIcdh2R/jffEI3+RPAcmkXSrZj81U2OSxTOjobdAlxHgW+xRCqyeXx3UlYcxDujN7YqbbbUtSeTJvPtkKcyVc6DZYCBXMQF4CouJZQiPPY/CQ8yrnbIDm83DvIDA6P7051H1dBmSOIt2N826Yt1ubOwTNJ2xPZsliDO2E7LNepDqhUeBxqPi61edBsRl7b1RpdB1oPOI06pnbsYJ0jjDsdqrwe4nH+hF2pICwjNM7lt0xhI5XS70EGwhpJwp26EJJcU3HYerXAZTXIsnfym1F3I8OznCPYuQxLsxhUuQzbd+2CHwRtMjzGSKMBPwjw/K5dWL9qldYc1N7ybbSKVFy2OgA6uBb29VcYznYbeC4wxvucNCgX5IT42972NuohDRYK/Ljd1kFzgmDR5gdRpYyYuG77aDMpJ+d1ZS9pO2LbtOrU+GtzqeSSZLNF6L3cClIkUbYzBQdRBUh2LB44LEcSVh2269IrwZJWIJZFvvjpaLv1SvAD5lLDMnUqFIFF2VRGkFVSWcahEA+YizhlIPHesBnUfUkFG2dHA0sQ71yA65ZodfhYNvhU6H6sQqeDLmFMpcKjVvNxq81jaxGnWmH3EI/f1W5/P5r7eVXOcZBx1AVXQqhmSe3tZSgtuSyZkupK7uK57Trw99OHY9tuIr+G7R1Fn2PCpRBvrzNJO3aj/7Mcl/zeZRdXJOAQdacsW7wYjm1j9/h4Bym+e3wcjm1j2aJFehNwOuHFhUmObuEYJXn7A+iw9uMqHBqblLlDKR7iBgcJYhWZ4wAUm/4wiAKeqEmK1ubeXmDt6yFCfbK9BHLGsiPlOTU6FCC2HZGjFJvCoFV4cRztBUzYoWilsxYgs3JIEtYcAU1ppSdH2yoxmdI5QcpDnJk84yLduwJoWVTDnbugaIFIfT2BnRCP2zoBkBdfWxPM3hMlFymokHyusSi4U2G8XArxMnIBFjJir3hO65fQj9rsKUBFGFOp8KjVfNzesUgQuuxdRO1gW4+/KNUSJvB3FzFnK6RQRkaB5bk8as4OD3H6Tp14HQ/EnUAc76hkpxffO4rc1otLIR7vbygFSi1YroNwYgGKB1qwqxU0Cc5jvVbDxeefj+tvvhkvWL26/R64++mn8YZXv1q/Y4j7sR97iDMVJpM2ndGERFxJ9mSdHcQsezcYhfgcoTRCfHBwEKPcoS0Gc4rQb/npEbWdx8o68gdbELW9UHhGsyOulrcShy1H95ZNEZYM4ZdRcByP6nXWIzC6xhwiQtxqdTZoq0o6iB06awGqanSnDyK9AqPDC3gBWmiEqU0PSxthAlHrLU/bHTgUQUkkiisA0/kO0xZEHGFWyecKQyt3UH4LJPXmtMNbnykstxSFeAldHwsahPZheYhVYxT3MhVhTKXCo1TzsXvHotOC7EBD+/nHSPjMXsvlgEXEkJ6DKWch7SHOs1ZI2HpxvKOSa2c2hTgPmT/7nCVcQ4VxQa0VqE7RNRYXzrgsTZmQFojY1SqCnbtIxr5s82aEQRAVfsMQruPgDa9+NT64QBwZogIS014qVZSM7VmcSpV+qiCYtUxxXZ4Az5LfKQazKO2o/+u//mtZUxnMEcJYlUG0GCHf1M+OHH3OhdC+Hj98iVoyk0o/m0shztSD1RlOZ9O9YOM2cYpCTnJRTpgWT0bUpRXc1EqtDgU6gyULt4VGGZ7VCbCp0EtQrqVV6DYD2ZgO1eSwNEmCZRNWMunE1vnTUTRgOEZ2oh2d/BygNbYhxIsQk1bcz8DIV1TvXMSEcayaAzoJ4wkJT+xYhXf3009jd8vmS0WFRzUOIKY210UsYgHQVnmWAct1Sgu3A/i+F5sVRQ64rFk6rfSYchaCTnUlfXAkc/dr0q6PUSHOVXCeXffTHZu4IEQ1Zsd16JQXgEmClEDEqdbgE/nYu46DP920Cde96934xvv+BLdcdRU+9I530IQ0l7A0ZRUxBZ17wsi7ncf+K2zZqwKMlildIiCDslCaQnzTpk1lTWUwR4gW1xbdYoTJjzlexFquS2PtEo8b9feTjdcBxwGaPqBbgE+SM4xKPBYkQ3koFWwxsUewqEsuyimJHSorh+QGjqVttUOB7jGFdvJtQKOiXonkJYOSCeheJLKo5FJEr+UytFoHKVsWxjArAFGuAoNlCmdxosu6Jn7/UmVDpMDSKhp2dv/4U/QKRQDR+S3Bo5GvmM88R4nFm3hDaVcqSv+e2p7kss2bYVkW/v36H8IPA2UVXnucH/4QfqA+Drt3LNChRnNqNfgTk3Abdf1xs5B4TLl9fWjuH0dlWC9wTmQuuxKpqi3F66wQKTVfGfc9CxKKYdvjyVlIe4iTk50JBTqH0CDdXUmdaxXD5lK3p4U6BGuotlc/1V4yWXRgVIhz3KddAhHiQN/Q99E3OIiBSoU0WLljDs7nF9djMdXtYMfe7QMMcyU7wEGfYdWeo52VZiEMfFg2QeHDoCdYCfEwDDsf9KYN4IBG1IbltF64VOQdjw8UrJZKhXLhEQRse0kyNXdyUecwkD+M6FCA2HQK8XihTqLMSLaFEgYmkt0HSUsQDoV4MnzPcxFMU/tEpggby2oHg5EgmFUAlAHLdckDlAAAYQnfIzUHR6t1mCqAWI7NWsTjeN9E1yyn733n+O3nWJW+ZbQ9PrE6LuzYCDMUidr7C36yqm2VxVSQAECaoZFEWGKHjO77lpowdh0Hf7Z5My5evwE7x8Zw9KvOUyIeXMfBn7397dE4+8Zw9Plq47S9Y2+6CS9Ys4beOxadNhZOXx/8/WN8hHgC7sAAmvv28RHiCTj1OprjE6gwEOIdJKnDf99zIUwRkSxWkon8F8t1EU5MEA+fzgLhW9uSd0mFs2IqFjuWZAeWR0g0t465TXS8k+s9LrFI/N4hsXdJIkMgQvn5w6YfFS0lOp9kEItN2J5fTM1H6S5S1oDoMoQOyU4ax0Xg+3AMIV4KyHdpO3fuxJvf/GYsXboUruvC87z2/wwOcLSJRSIPaaZAtbgKSm0ZkiY+QsI3gOU4CEgWHAlLC4e4As/dbRt2KkyoFrztjgGC49GxKPeIF+UExzfpg8ih9OxQojD5RHa0x1Vo/RbZLVlS4LJwCNMhSgzK5/QcbEFWyfPN6G3MhjBkvaSS9zTAZ5nSHp/lvk5uhBk6S0oEy/HJmIOHtCrPv1JXxUlpTxIj9H30NRpYMzKiRTiHvo9GrYY1i/TGuWzzZrz6jDPwi0cewffuvhu/fPRRvPbss+m8YxPqOre/H839+2nG7YHq0iWY2r69lLmcRgP+ONP36lBW8/t7syGtfuZQiCf3HhxkZ0fGEH33a0d3JfXnTx9/jhyTxLGhItzjtQcZiZ/0aWfqYHaqVRYRSto+iVyB7jfh1Gpsa4vovmd8flng6c5LCSftKqNlSrrz1mo91yiRnMN1SF0MDIpBXgr60z/9Uzz66KP4yle+gre85S246qqr8JnPfAZvectbqKcymGcIgwCW45B5SCfVKwDokoNj0pI8QC2xqY8VXBqVvehBm1Sf0HiIxx/Jchz4XC9AJnKcZcHbVjkQXA+p4M95Z0mTVNlztMYmW8qY1LYd7XFxgAqVGpbZkiUNy6vQ24wA3YvEiodgZoYkhDZvDhZFT+odQLmZKwuRJ6Cb+jtCpUlamcRshWU5DoJJequlWQWbx+sdyly45ShyhWHYaQMRk28MXQALRSEO0NmTxAhmmpFCTvP6i8K09QtTruPg/X/0R3jzC0/B7okJHPbSl5C2yydDId2+Pkw++yzZ2F1IXFaxZUoZcPv55kqGktqV6F3u1PkV9tTo+B5c3rh+AKvKp0JP2t1FawbiB31ybUts65W8D1n8yTtCsQnXae1QTbrcsOR1yCF+sCsV+FNTcPv7aAdOKZWpETR5u09sLypQO0yPL7tajZ6PxHYv6a5hp1ol827vmivdFVuJbHFov9PsdWQvNFvbBQ7yu+vGG2/E7bffjrVr18JxHLzuda/Dcccdh7e//e34kz/5E+rpDOYTqJKrE+OlW9SoXggWCL3OWwhbVixArOjWbHVJKgsdokphUtVJNWaMEq0To3AhKpVD2Pa+1yXbooVtsogxv5SOYdpnkVGJwoI0+ed5pKR+WgHQboMmtiaIERPV1Ei3EUaFgxnShVvXHEzKpvT5ANF9XxoyvgNla2pamcStorc9F80x+jDedtgz0z3BhS4Pdw5CP8uvfwGr6AEaQtx1HHzoHe/AphNfgG2PP44jNm7EwJLFyuOFzSbJfRnd3w4wo1/8Cps+BhcvRm3XbnLv2OT72u3vQ3NsjHT8PETPcX4vfyCyZ5l89jmWsZOhpHa1Cn9yCh63C4xlt5S5tHutpNUfqFWPQCehzNFFw2x3lzzm5B7iyc5KJpvQDqEOZXet45J17CbvJ64A2YiYpSdM431kByw68UPoN6N3ChNsj7czL7Z7oSbE06IZau/2zrmyyXfSfVViLXwgrPMWEsjfHvv378fatWsBANVqFTMzMzjiiCNw7733Uk9lMM8QUrfbJixTqCrQSZC/cP0EmUZANictWKjsXTpSkgmPaVLNHg1OaxmTRqRyoFKIt6x+KDYCYbKtknjRT7FOTvkgkm9KuVvu04sfavIpRV7angefa3GFWVUZOVKFCbtSQTBDH3hppYoT9JYpaRX6wlsgpsOWyC1B0tY1zCp6yg11jGRxJS7ekI7NiYT/K8Bkg5Tw3wX4bA06YbEGkNoe3b1cs22sW7UKVc13T9hswm4R4jrXTdiMiqgUNhphswmnXqN/fgMdoZA2k5UAkHMsSxJQuH2MRH9ivcPp75tEpOSkzmYpwSopQQxyhV7yepMl9mPU9jhpiztihEHi/eoSdq62OjbJutIY9g/pZ087dJEaGXaLlCRz9E6h1bAmjw1L0G0CcWgzNdLCHMuyW2syBgSd96ldY7Bn6ejiXtj2gQsN5G/AdevW4eGHHwYAHH744fjOd76D//qv/0JfH3F7isG8A3UIZphSLVD7olJZu8wi4R9N4tkbdnx/Cg/xjtBDyoJAyifXspnD76hVDkSLsI7gz3lo75C2HKGfIKWGsGgJqbRimJroTds0sRHW8fjE5F+MtBc6xzxdc7gMIaqpHIkF6dOaCr2kJjTSXRksgWIJsJCxKY9T0kJdIjAumoCYJM8gqzmyGbru5ybvfUAavpYBSpVo2GzCbTS0lX9BcwaW62p/tjBoEeIE7dtBrFpn2ON3rLE5ycScNRZ7sQot+wyuQLekh3ithoCBEI/W6MzvwFLC4jqDOzlsQboUuqTDJ/ytmd/h5AiTqlO6ztW4I9Z2ifbnHNdhev1VYVIQZ9gtRl0jNM8Elk7VVAYCJyEekccMz0eflncqnozfniUpoLFdZ8EJgBYyyJmR9773vW01+Ic+9CFs2rQJ5513Hi677DLqqQzmG6hDMBMWJFy+dqRIKiAIPL+jBWT031Qe4sljarmRrQsF0oGilJYmWbAcm+Z4AF0vOd2xZsNxqIs4BIq9tIqBeu2ZobCmVdKkvLGpfdDTn79aRcihzGsh2qxzMB1hF7FP/j0yvKvJW61T16vl0SvLMqelJkztFGFN+R1SqipuD3GyzW8CWWFFZGOnj79Dq+DOIqupCauuwK4SFOIWg4ozCUolfej7cBoN7eJlbJmiWwiN7P2c1jj6CnE279iuZ5PDY+GVLkqBudicfn5YFk9xJ/EOdGp05Fd6jo6CGwNxlV63caDLcoTFXo1X7NEWE3ke7bORubMyqRC3HMK9dGudSVUEZulUSD3juDyms+4hSvuOqHspIsSp1qddRSpuyxQGhXhmd4Vl0YddoiWYSq7DKhV6hXiii992F5Z94EIH+Srrf/7P/9n+74suughbt27F2NgYjjrqKOqpDOYZOpS2lhWpZLQ9tHk82ziQ3BhbrqtPCCfVxlRpw8lqOamHeMo/jdqfPIWI1KAJtaFUTScD9KiJl5hg1/msXWp4ai42R2FtVyo0w6fb47wK/IlRkrHj8dOfn9MyhQthkOFrTLxZZ1c1ofvetL0Kmvt4fW7bgchEapxMdS9xu3U63JTNQxFMtjUhsSdux9jd/tthswl4Hs3wGWQ1OdGX2vSVIRDg3iBbLp3KPWj6cOp17c1p2GzC9lxtS4fQb0beurZNQtLbrgdKP9r22EEAy5vdBjr1OvyJSdhE90bHPKn7O5prgi4QuwBOPbIzcYk7lZOex5FlCgfRxvz+iCbhDxNnDlwnFbZkDZ94zkdFT8JnPHuYe6IDy3URTkzQjBrEdpM07wqONWXX/VNlKsSF3Uplu0JnzxIpxF3SDJowpRBvjvMFHcfPYHKEQRfPZFc8hrBLdAgKgai4Qk2IR778re9DxfsYCIH5DQisXr3akOEHC5KKbsfVVh8nPckt16V7MHC1T4aJhR6JZUjSgoVIzZ1sxyH1EE8pax0HAZWCOwOkKsUM7zdldBQx9Io4Xd53FIo9ZiVQlqUJKaGc9samtg5Itd1GViOUliwleammFEcsQYXcfvFA1wKUu60TiO2YCBeh6WR64u/QHTzKTGQyKNA5FYpdoaOE3tXRBCmymkH52mWL4/GeY6D1zGC0iyJVuQdByz5L774KmpGIQ7ejJm5vp7gWYsuUKAyO+rrqJEJjkpocGSo+NsVgBmKinx4J1TCTN3H384vD/iwlNCCxfEzNkfoe1EhamrT/jrjTq03oE+dPdXVIMYJy/REdc4euG5ZjTZlef3GoetF9DwGtZxyRTUisnifNoEko8rnXFA6bpVT32pGtCyAtmKrqd4AVzVHGfsdgFiRPnve///3YuXNn4e9s374d73//+4XH/OIXv4gXvehFqFareNOb3tTxsw0bNqBer6O/vx/9/f047rjjOn5+66234vjjj0ej0cCpp56Ku+++W/zLGKgj+UJwHUBz0xwGYZsLifyY57tlSuLl4hAsKDuSwWnI647wS9vuUpIqw09ZGzh0PnVZIG37A51iJUy0t9qu5jlLed9R+C6mPbLpydhuQpxSSRMVyZLje6Rq2HTbLbmaJHVOOdEVqslM0rGgazPD7yFuEfv2pa9Z8qCcdFcGg6VJEjwe5alNDWXROk32ECufu7oYSig+ldFKa1eq2p7cheMTq9xJjntLnaVrS9EO1SQoKkSWKU60yacmdVNWJlwqviKFeBlw6nX4kzxztdfojPZnnV1xHkLi/IC0Dy+LnU0GYUg+ftq2kfA9yLne6RrbstkCjUnXUOQKcfpOhTAdOk4ZKppExvVBapkSBLAcmzSDptOvmndNYXHlJWVk13H5lXd1G3IEeCaKYzYxz2FQDJInz8qVK3HEEUfgTW96E6688kr8+te/xoMPPohf//rX+PrXv45LLrkERx99NFatWiU85qpVq/BXf/VXeNe73pX58+985zsYGxvD2NgY7rvvvvbf79y5E3/4h3+Iv/iLv8Du3btxySWX4MILL8QUR6qwQQc6WspcVz8EMvEii5SgRA8Gq/MPIdHuO/lgthx9y5QOCxYqRUJi827BIiREU4t2hhDUJMpQyCkhfQ3oHIMs72Hd75x+oTMogVg3VkGKIKVWzaU7Hag/f+qcRiDwhu8BHqVBhncfaFVZ6c4TDv/UNMgV0Olr1iUO5OrycuddRHORAh0KaIqCcgsRYc0YMJsOl2UpPqWtqPgLQ9yBwtTvcArv9liFp3uNhL4P23VIigpttTnDJr80hXiWiq9MQrxENTo10srnqPBDbVlVRpcLb+hl13qZeg/C2RHXVfCk696Nxp/9T8ul6/yJBUA2laVp13NCf22cLvawFTVSwgeA2FKjtbek7qyySlKIs4lnMu5LFlECEOk2WFp6k3MkOlE8F5iPPMcBCpKn++WXX47f/e53OProo/H3f//3OO2003D00UfjtNNOw+c+9zkcccQRuO+++/CXf/mXwmNedNFFeN3rXoclS5ZIfZZvf/vbOPzww/HWt74V1WoVf/qnf4ogCHDjjTfKfi0DWSQDGwlIhWTriOW5LOF2pOREIlQ0Iho1X+QJCxYqD/EQyCSx9AdO+9gyVeFb4GslsrQIvTChUtFVmqbbKEnuqZSakcUPOAFqy5Quax5icqtr8+nRbgyzWmPZFm8dczCQWymiF2DwHU5b2Lgui8okCWoFdJdCiXrjkbZMod5MzwEsSquiLMKa0f81asnmDbC1mVqCk2D5HsnxiZ8VFMWy+Pmvu76I/V4pjmFMWkehjQx+pSUQ4lnKTzYv3wyURr4zCAy6gr4JfYnbSPnwctjzlOHx3ZUVQRp8yefz3WWJxbguJ11vtklamq66dAcriRVLGdZ+QOZ6mPI93VGsJeoQSYaYLlR7jqwMMMv1eELHsx5fFshElQA6njPc+3ODTpCFaq5YsQJXXHEFrrjiCkxOTmL37t0YGRlBjdrUvoW3ve1tCIIAxx13HD796U/jpS99KQBgy5YtOOmkk9q/Z1kWTjzxRGzZsgWvec1rusbZtm0btm3b1vX3999/P8vnPpARpm5k7c1OMGvvweGbB8RE+wzg6Yf+JV/mNJYpCQsW26bxEA8Clgpn2nqFWgWZBoUaLAuxNY2lGiqVIFS1Cey0XQTFyzFv08AUbGVXPIR7qT2+O70uSVvWUm23HJYpXYvmFlnNGS7GEZAXZnjvx4tqqlC2tLrXchyetvQE6BXiqXZ0ag/xtGWKx6Ag5EbqlMbfwakTDJ1WVzMU0TJDOwmRJky4yer2HJyEJYFooA2LKmMjulasiq313ooIcZvm/dEmxGuY2UsXIA2gy8aCy+c1K7SRa02fJWhw6uUoxN2+Bpr7x+ENDpCNmX6+c9jasGe/oLODmAUZ62XSwjanzzezrVdyy0epnG/7WlOtmdKFX4oAbOIg4txpssQuhPvU+P6hLPQk1xXk66LMvCSr3fFEOFHGcS+PSI7X8w4BhwSgw9aWXY1u0AEyQjyJWq2GlStXcgwNALj66qtxyimnAAC+/vWv49WvfjXuvfderF+/HmNjYxgZGen4/eHhYezbty9zrC996Uv4xCc+wfZZDyok/AhJPK8TiwTL46n4kZITHRYn+i1kHR7qNg0RlFbYkhU2U+oJy3MRcirYbB6PvbYiQXEBFpGEiaKQxoKcQ1maSZ4R+1EmQU2qhMGsRzsLOGxqOobvthnhIgaSYNkQZCim2t+lQTYJT0dLAcg30ukiC3UxL4PM4OimKhPRe5lKIZ5WV1fQHB+nGRsZ6j6L0oqsPQnSoXfchSGHQcGb3CRTP5OiYplmV16C4NFXiDskz/a2MrBWg//c81pjZY1tpfINuHxe0ypNDi9sAB02ADGiwMsyCPE+NPePkRLi6e/D4SWf9uEtw0M8zoWyXRoaojtfhjbwrttD3KLzvE6vyxm7Bi3LItv3dZC0BGumPKW8Dn2aFboYK9qprr3WRN1KZcrw1Q6FOEOopuO0RIhEyMyNqMGfmoLbINsgZFox2ZTBoz1guS7CaRpRJZCheOdd5hkkUE66FzFe9rKXoV6vo16v473vfS9OPvlk3HDDDQCA/v5+7N27t+P39+7di4GB7AXKe97zHtx5551d/7v66qvZv8eBhjAM2+8dkgpdMvCBibgjJdqTlikuwYuQI4Qm08OYYNiUh7jtVXgDOpgq/rau1Uti8aX9GVOblKjIoquAS9srELeVpkCuNMpquyW8FLrUntTXWVYAzAIlMLM2GuTfJaMNlVs0EW3UKb1Hw47PTO2D3tVm7Dh0ytuykDqn0XVEpaxKqauJbZAyW7KJNzFZbcHcYCPFOG5gSoInJh10CPGYWLdtkg9nWVZEhBJbpqRJC5ZiDrLIRFqlaudcnUGhQFxAIp+qC25/P5pj+0nH7M6I0C/8dE+S8rCuVMhtWbrs6Cj9lYGWV3TndyC1lUofI0Lrs/S6k/wdxYXWHpVsnZwu/FJ4k2d1pxBfe0CG2IwYsV97tGcjVJ0zCYyynsMsWQ5hxvPe493XJhF1blN2QZcvAjKIwKIQLxu2bbeVJ8cffzy+/OUvt38WhiHuuecevPe97838tytXrmRVsx9U6PD89hCO63n2ldE6QqoQT35/2yZX81Ig66UdItQ+vqEfdIywUP3Iok2anqqbquAQpgoitutqKxvTn4/EhqUA9Arx7GCmkKgtkrutN31OAXolU2nIsEyhJ3vLXxyS+FYmkL6myH3QmTdicwHLIzxGXWQPrUK/FLKas10/BxwBthwb8DBVcNJCghDXuUbIlKMJsJA4GcptFmQpxLnC7RiOvSicvj5Mbd9OOmboZ3wfjoJbqouGI3MkM3y4r49mfO5g0LDzmo2fj3aFwG5zDiyxKEAdlNqVceQ42sRm7pp7ivDaAzKDg0nREtPYnodmjuOBNELG/U7GXthmsOQKgxC2163ML8syJep0orVmSr8bKTgag96YtwrxZrOJyclJNJtNBEGAyclJzMzM4IknnsBtt92G6elpTE9P4ytf+Qp+/etf47zzzgMQhXE+9NBDuPrqqzE9PY0vfOELAIBzzjlnLr/OQYEk2WoThGKVsdGkJG6jimj035ZNEQbCIGlJ+LIDLfKHyvst1XrL4fHNjahFT0ch3l2tVh8rK6hUt+sipQijPk+pS5ZczZSynwCIbU24CdgspRxlgGCJyFL9kZP7qedVNDHd8FmgDwZNPRuJfdCzzgP72tliCI9LgLLDqKsNm9oWIqdrRSecuXuKDFLMAottWHt4wtb6NjiKN4Sq87ayW3ddyEDKUqnNk2D3dU7OUxZJnfcOL4FPcGoMYbc534fy+ZLuRuXoDunyQqcu8IQlkPoJkB6jdNG2ytthSwbqPXra3owiADtjfeRUqwimqRXivM+4MGip8QnXp1kFUarnSlYhIspyIA43zlhTRO+0crxGOMJ7O7tFePPYDGYxbwnxT33qU6jX6/j0pz+N6667DvV6He9617swNjaG97///Vi0aBFWrFiBb3zjG/jBD36Aww47DACwePFifPe738Xf/M3fYGhoCNdccw2+973vocoYWGbQgj+rYrJdAp+rEtSB7VBNCiRCXSyXwI+Lo+LMRlx3WhuQEe0lQ9f7nlYhnmqjJPAVjGwuyvMQJ0fG8Y02VjQbkzyCgG6RmBG8w+gX2QFqEjPLD53hu6TPN0lgcQtZ55U89DKLsKZElmUH5fAZhKNdIfSxzAAt2ZChHCQ9v363dyhHUSWr+LTANkocxCil6jz+fLr3a5poICMvqff4OQpxUrIVyLQt4ELuNVYCP8Ki7A2DKEMoOU+NmkxO2Zkw2SVZjKR72qLBrlZpv0OGrRfV+GnxV2SZwpzBRLCGIg8aZbgO097yQFRwoA6N5VaIhwmFOKWIryv7i4ps97uVzk69zhAITNulIAvbdREQZw51idYWYgfxAgSJZcpNN90k9Htnn3228JhXXHEFrrjiisyf3XXXXYX/duPGjdiyZYvwXAZUSIZgEhDNGTYI1K0jpC+XZAiobSPQXnBweIgjVX1sJSTX63rDpr2pS2rvobLKiKEdDpMOGtTZhKU3EBS+gmmvwkoFzbExvTGTYD7tmUnuLa9It5+g/TGD5I3JLUsn6T4xfpefIcfmMwMxWe1QJbxntFvaLq3aPet8x4p63WdWNEFWxwF11wQzYZ1DuJM9G7NCi+JzwCQ0ILWHSBFK0TEhVldmkdVT07ApnhnI6cZoHSOuc8CCdAeVRXCdJjf1raKfpfiMy7SnUBkn8ZnigHWLIsDNsrS+XxqxL20SdqsFnOR9F89TljULkE9M2XrXhgi4VPzp7+PU6/DHJ+DUaoRzdNp6UXcAhX5q7VmtoLmfLtw4LZbg8EFPgrT4kaWMZrRMIVsLEhe6ugQ7lQqao6N6g2bk0NhehVypXCSGIlmLhXGoJmGxPfWsjLs2SNYtGete8q4QgLYrWwGW5yKkvJZSXbFOtdrqkiC09zHIBAkhLmJHYlkWfMYWW4N5gMRDnyLYqytoxG29xDXSfMPUYpUyVDMMAtitBYZl67fFZ3lJ6SJMkVgRIU6w8MpQvnIjDmUi2Wi2oBuqSamYSBcZKLxvuzzEF0prZowwY3FLGeSYsXClJLfygijLOAd2yyqCbhOd9V2oyeSszYyHYKYJh4APz/Q5pFa5ExftssbvKuIQPhvDjKKBTW07kgK1+o5XuZVT5KLcxJSwucxUBVsWqao7reamKDYmyVZtooeKuE0cs9i6wSa4F93+PjTHx+ENDGiPBSAz5DkuOFIVc4CiLhna6yuaK3s88oJwScg6dm6jgeb4OCqLRsjmsF1ua7L0eraKYPduutGzSGVGoYFTrZKRql2Bo8xdg+2CtuZakLrQFQZBx3OSYm2c1ZVpeS6CUeLjmxHuCNAKaizLimw9CTmL5PvYrlZb4qJ+mrHTnXMM68a0orpsWA5xDlcYAsk1UsVbEHkCBwJIrqIgCHr+z5DhBz6SZCCFQjhMkSF2tYJQ98GQav8mtYxIExO6C8r0Rt6yEAYEvuSJIaOFF8HDPMMvjBvkSk7MEknKSJNHOrdBaiFHEnKWVgKV4V9NaNWR1f5oeUTXMLIX+ORekWkSuSQPcRI/xiQyyGSLoouhY4qc40X0PfI6Dmi/QzYhS2ejkKHUp9x4ZBYNCItQGXAo/V9D+sJyenz2ayhjcxlvXukmybDGofbhTfv8Eqg4kwUJ3Y4/Kh/YTpKe7hi6fX1oju0nGQsoeN9Rk3E5xBlL+HrOOWQp4pVhU5tVDGvUaRWuJa3fuzy+KYmeElTuSdCvC9N2MoyEeJVufNJ3a5e9GcHauKSuzLyin024PwEIupgTSK8ryK3qMtfu9O+WbGW+1SWA5ACpYh/oWiM5lSr8BZgxtRAxbz3EDRYeqO0ruuwdqlX4U5r+U6nNvQW64CjqSmWITv9c23G1bVjS54jqBZUX7Eb1Qsr2+iWuzCLyPtcZs9vPzFIOPutKXCe4t7oU4iWk2ZOqXbLaHyt0BGmWInm2ZY1g+CzVBLXfcA6oCYFM5TBVga09CTLJRo7ch/b4hAqc9hxd55wgdDkePqfrgIqwzret4duwU3SYxcgKd6JEJllN/VzNOsfUhFJuPgOhCj2jRVvbyzVpT6IbcJU6l6pFq+Q1QWnd4PT1kVqcZXY3MBRo8+wEyDuKkK9aJS8I58KiDdTNeL44jQb8cTq7kUwfXkt97SoC6mdklv0PJyIfapr7uiv42bZBG0bf+Ue7Qh8qSSF8SWf4UFwjmesjlkJcduZZZEFFNxdtASLDd5/ymk6vezkspXKU+dE6nr/z1mpZjFEhvd62Kh5CQ4iXAvK3h+/7+MxnPoMjjjgCQ0NDAIAf//jH+MpXvkI9lcF8A/XGM/WCoQjPY22fTnk/aSOt/HPsKLhUa8zOcxSprCksU8Kur25TEn0lte1bjuZnTnup6xBfOcpSLaQDO0ogY0ntD7KCHAmvg6zxLY+wZS3j+cOqXk2AXNWble7uOGTqFSB7o255hC2jOXYj2oHIyTnyNmSMCm5Swjqv8LFAwnizwp0solAxANlkNXHLexahSO2Ry94dgwxFWlWfmEluIHVJz+Qx0Ho3Jr6nU6vCn6Q5T25/P/z9dArx/O4GDhVfhp0AAzFVqNQsIZyMRNWaRMbzxakTK8QzfHgpr9sskBco2MOrO/9IH/xcIpnPoJC2KYr8mQHYugrx7GccRyEuLa4A4vXq/Fwrpd/HDmWRPc8+lDwYOmef7DqAhv2pKGxHT0SXRlq06FQqRiFeEsifwJ/4xCdw7bXX4hOf+ET7pB5++OH4l3/5F+qpDOYbwpRViq5COKUOtKoE7bUZ7eVkyKkQKw+XJlcpyKbUOSLbJGQoLSN/dt62fepFnaXZZpluudYqChAH1kRD+h0bnzLIWNINdobnKUnYaNH4pNfZ3PndUat6M8lqhgJOdyGMcCPNkNPQhUwPS6JCJLIVMpRkQ9Z5tj3+zhIyZBXRiIt07C3ZGefYqVYZ7Ey4bVk6SXcKRVqHGpuAYI2fBzpjJYl1SvLS7e9Dk5IQR/cz26Zct7WQq+LjIKkLFOKUBeE8FbhNINzpmCerA4Wh26urO4SadE+BIx+pzBwjynVtpkKfEmmxEkNnqOU4CHQJyBQZaFn6HdyZSmUO9XCeQpzB2pMMqWND+b6nsh/rPU92Z4jteQgIxTnRZN1/ZdlORMqTzZESLXoVoxAvCeRX61VXXYXvfe972LRpE+zWST3kkEPw+OOPU09lMN/QpRDW9HNMVVwdiod1hpIZoLP26HgBaBcEsghx2hZGq0LT7pPVlm67LnzCBWN3yzh9YrXtOnrHI33ONAh2lm4G5oC5LEQbB6pFVrZalUrlnnUdO4TBo9wBf0XgCItkT3fPKoR5mrYIHcOX750KEFvLZCkIKb2f8+w65usmL40sj3Vi/1fuYm2mtQUxWZ3ZfUNsy5LpWUpgmdL26yZ8NuiSjvE9T0ks6oZ+i8DisEzxC3y9Gcj3fDU6IUFSZM1C7O3fVXimth7IKurVaggmNS0qy0SWNRllJ1DaUYbS1iRDoU8KTnV7CxTe1tQhndGgJXVl5ljGUnY0UiM63p22tGTProw1CwtyRC0sliklbd06RIuuS877GGSD/Grdt28f1qxZ0/F3vu/DJUhYN1hYsDxXrzKa2miSPKyDbgLEch2STUYUeJkisDXG7fJ7dl39imeGrQnFyzoMgq53hUXu9csc+IWWZYqOQjztBajTTpUZBqfn65jp5cn8kqduLc22h+BTDFse4QaXO+CvAPSq1WxfWEqEGTZUtOe7jFS0blCq3LPuaYtQwZ1FMJH7DGcpbzTzHNpD53iskynEg6wiHfG9lhf+SklWZ1jLUHuIp4srFCKHMAzaCjHLoyvUUHW4cSttqUFeOAVy1ZOkXYQxcuxZqK1M8nzRSYQ7HfMwk6WIBSdpy5QabXdI3txEfut5z3ntjIISkPkOJ7JiCDNEYKQF8xZI7BczupR0wa6+T8yT7WXN8DwlQrdlCqWHeE7HhkV3z8/Ok3HNOOVYphgcOCB/y55wwgn41re+1fF3//Ef/4GTTz6ZeiqDeQ5dsjUM0dle6xBUyrKqxVTt62mLE92whTQZ5DgAcWq6ZdmtA62JvLZ0QtKHg9SIXsydnt9ai9BUS7hOsSVTda+7Wc1cPJQQnsTZKUDpIc5NnuUqknnPARDfj7SWKWVIJjLtOsi+R76KhXLRngZpy3vGPU3ub8pMxmaB7Dvk2G2RESV5ZDUz+RYpFClVohke4tTkXpeHOMFxCoKobRmx4pjmuGutXxKnxSYO3QJKeDZx+OvmkdTkCvHsLiy7Ql3cyflOxFZGeep6UmR2YBIr3TNAmmGT5RVNbSvFBab9DQD+9UELugIwoFX8yRDsaD3vSigoRfNkryWpQxdbo9LsF9KZUo5Dtw/J6dQht+TKC2z2Ssy5mRuNkwExyGXbf/M3f4NzzjkH3/3udzE5OYl3vvOd+Na3voX//M//pJ7KYJ5DX/0RdnqSEyDMUGjangd/egZOXXNsoMPLynZdBM0mHOUBO8kzm7rlkxBhlv+o56I5RuR3maVgoVjsptQDFIu6ToW4RhthRkhQOwymWlUaMtvvNtqUOopj9gKpMivDpoO0fThjEUdtP5HZ3sd8DgAOVW/2QjRuU7Yc5Sff7BSZBRC6Vsg8C5s4DNdi6myzPI+sHT3T/5Xwms0KqaNoj+4csPuv2tYDjYbW0NE7v/M8UoZq5an7yFr1Af6WeiCnC4uYRExnbJAEpSdCNUktUwhb3RVfT1lFx5jMYntfc/h655HUDOrJPAKZWhWbT7xX0BwbI5unKJsoHcCmPkXGO6RWg89smRLPYXseyXiZ+S/MpD7FOQgTRb0YbdJa+/2X01VJfN/ZFGuCIGsfqfe8C4MQtluCQjyLzAdPgTEeU/cdkM6UokSe+CfOMrIrFdZ5bNdBc4JQAIRO8VzWz6n5qjaseB07N/lTBwvIj+5pp52GO+64A0uWLMHGjRsRBAFuvPFGnHrqqdRTGcxzRBU6egJX15c7q/2bZHMcBN3eTzoVyizLFIbjSYI8hQMj6UCx2E23W1ETPToEe9YCy/Y8PWVj7nHU3yjmhkwRKnojL12+xW0WQUqpmshdNDOk3qdBqsZCfis3pW1BZqgmZUhrjoUNCymUHJ9SGZmrLqM7Rl02Y4S2P+kunRhk6r4s/23KIl2GUpQ+MK4Me6KM64ghvK+jyE/wTEqqjymJHq2w5qycGhWVY0ZgmF2rsno7R4pGaoW430X4AdF9SP7eywu3o+7ayPNFZwm7zX5HkR27rODOahXBJC+ZTB1A2j0+vRI6CcshWlNl2JqQdWHleWgTN5lYrqsdqpn2tAYIOhXK6srMIPOBuEhL+4yzPJrrjrP7JMuCDaDtHC+ax6IOMw2C3Pgn0qyCDHAUVQy6QS5/ajabOOqoo/CFL3yBemiDBQbb89AkXrjHBKOqci/beoOGuO9SM7p6aqUw7FQHWS79izUamKD6mGWZorOhTCOLqKR4SaSIBmoiQ0s1kaWW0NzUZYeT0lkTZHroeS4tOcfqwc0cepmzaLZcumOUR7yQe5fnqKsjsnEGTq2mPUWkTu78O8txWnZS+ihSsUSkkGbbUA5IF7gZ3TkWoXVElkKcFDken6SFuq4iIJ0VSFbQb/QDkuHjSQqtfUjOT0Z3DHV4X+bmVfOjJzf1lAQ+FekAzBK/lqQqLstqJFLVTsEbIvloXSDvbkA+8cKhVM2zZyG1A4gmylYmkgfqFs9DobTMDiunJa6ywK1Ctyu8xSOnFhH6ugr3rGuWqrASBuUoS0meGxnvMqdW0yLE8zzE7dbzXfaZnDtPXk4Cg5CNKvsrr3hIsqbIK0xSi01ynsPkAqCMrJiuuRyejtJY4OJU+DqIDRgU4qtWrcL/+l//Cw888AD10AYLDNqWKVlBWxVN9UquCopm4WelLU4IPyuFmioLJEr+nEJDSLYxyEiQJ2oVJU81T0BnMZRZvKlW9PzuM/0EqwimCcihPAsNSsVZATFEBU7yr6jNmmzzmUfQESNPtRqpn+nue877s9DChlMhTlgszOo6IL2GC1r2aYbPKaRVKjSkdUZQLmlHRlnhsjmFNKo1Afe7sDUJ/bWUIAwpO7woiU3VYM0sMpTbF5nl/VcWOQKgLM/gQl90YkI8U3lardLlIGTZapQQ/k1uyZQCR3hkEnatCn+KgHDP8/mmODbM7+8YUV6SfrdP13HQzbHIWV+QF+My1hkAcSdHC1RhxJmFGKrPm+chTpxllLcntF0XAWlhN3+dR02+p8Hh+W/QDfJVw7/+67/ivvvuw3HHHYeXvexl+MY3voGJBZSwbkAHDgJXdwGd5SFO+XJJE9haoaLo9CS3XDrv3CQs19UmrrMW7ZbtRFVVAuR5/WojZxFDBS1iLexWNtieXhhcpvUM0aY0L1WcUnFWdB1wBo2RIUfhTkrAlkDQAcj1NY7IXqpWbl51cq6FjUtJ6nfDomyjzek6IENB9xDJPZdzvZJkRCBnk01IWuX6cOqGgSWR82wltQTg7gRADolo6bUbJ3MxKK0AtLo4Up9BmRDPUFZTE65lIFe1TZ1FUDBX9EPKifJ80V1ahX2eR26lQiNkQP7ajRvsCnHiUOA0nGoN/oT+5+fMASnq8KJcM5PYx2TtT6oVPeuePOEGuYVgDvFOpeZOwK5UaAIjczoTKO6ZvCI+dYEgPweItqM+T8wEgDZvJGv8SoVQXGiQB/Jd1EUXXYQf/vCHeOyxx3DuuefiiiuuwMqVK/He976XeiqDeQ5L1yohK2hLV80dIrMiSkI0B50+cJauh3jKk5yyhTeJqGJLoRCn+TzZ4/MQ13ntqFTQ8THLatHSrhRndUgQWqZk2oGQqlXz/OJ4K/RUfoN5m5PIZ52KoCtvc5uX7q7VxZBAyG2Rk+f7yOzpThmQnNeqS4W8DQfVxibveiV9LnGGijEfH6CoG4MyPDW7OETqtZqh3nVqmhvw9Kae6FZwajUyuwWnrkicZREWC1EtlkMmcHgZ592P1CiLeM+1fKDymAbyQ3tDXqFBZDnCR1hzK9Btqs+fmwNCcX7zCiq0xKTt6gtfsrqUnGpN6/2QK9ShJjELQuapH3JU3QN5XcgkVnWF3ZfUHTRZe0KGYPOcxQVZlkAO7EoF/kJ75y9AsDFBa9euxcc//nHccccdeMUrXoEvf/nLXFMZzFNoW4ZkjVmpaNl7ZHook5EfqcAoTdVn+rOSeyC2QLHwCnPIUCrkt3Nrbtap/FdzoKcyy7NM0eyQyNpgUy2uygh+K8G3s3t8KgItL/CLWCGec01Thr/kbzRov0t21wHN98gj3Em/QwYs246+GwUKulxoFNwFra+c2QNkz6VusoeSiAszgg8B4mdSntqKco6cTgBKFXquJ7aGyrKLyCc6r1rrrdTtqGWZ0rVe5SX5OFBIHnPMlXE/AhFJQubnWxLxnnvvE1rn5D3DuEQ4MexqlVchTtn9mEGGOVUahXumdUVFrxu0jVxiknbNTOKVnWVvplvUyNmbRl2AlEplPvFGeh1Hlq+S2YFE9H7JEZuRW9XkeYhTK/RC5O5vbc8zlikHANhWKDfddBPe/OY3Y+3atdi6dSs+//nPc01lME9h2U60aFRFxj/VV4h3v7SoQi/StiGRN7PeQ6wj8JFJgh1Zu2g+bAvI0JBih1pUbdYhiJk3NTqtVFnKINvz9BbJeYozCqVnTto3LfIU1nSK2yyQqbFyQzUJLRwKWvssyqDbvI0GWfEgniN7M0eyWczzH1xAqe5FrboUi/Qi33uKcxAGRepnqs6tjPuB6lGVp1AiLKqEedcpoUo0txOAlNjPKPJqKrFZyVYicl2HEM+0TGF/NhF2BQD5CmQOFBSEqTsq8oh3yqV6vlc5kcc0kLu+1g007AXuzj4ydW5ehw6pQpynEySv6E+2hmrBcvStgjIV4prHOM8Wj7zYw5ndk3oGkD3HMkhrh8oyJe+eodyDtFBG3kGeOAeg45DyYAjxckB+937605/G4Ycfjosuugj9/f249dZbcffdd+P9738/9VQGByEsTzOoMUQ3IQ4itVjKNkS3ZaeI2KKEVakgJLBMySYqqUiZHK9fXUIgR/1Ihaj7QPHzMSySs0gPMlIlp1JfBij9NDPHr9JYmuSp6EnbVwsW5pRkSv53oQvN4e4IyCcBFw4hnrtZJ9s05ROlJNY4eSp9IhV93saMCnkFicgDneiZVIJlSt670CG0Hcj0yq3V9ILpMixTVDojWK0hFAnxLMKijM0xdUGwkDwmRpENXhkdFQC0ffE758nLWCC2S8qxrfJ1/Jt7oBQiiwB5fshUHuhZ4hfLcaJ3o/bg+cVUnfd3+nlJEaqZVZjRVhTn2eKRK8T51hnp648sXyWrY5jqfZ/b1baA1tYJZOXPxeAP1Vx4uSELES71gD/84Q/x0Y9+FG984xvRaDSohzeYz8jaT+i8HzL+rVOpwNdSBPMRoGkVl7aiO2eRGiJUHztLdU9hmVJonzAN2/W0xs9d1GhuCjKtWFqbGctxlMdtw7YR+oqL2izvW+1FcgYh7hEFCBbaz1is9x5Va2z++HSKjPz2VToSOW9hTu07mqvWJ1u85RTaqMjGPPUUg4olc3oCy6a8du72c72vT2/8EixTWO0UCtSpFMcfRR6/zISVU62gOTpKM0dBeB+ZkjDTMqWK5r59ykOmCdB4c2p5kmuOjOskDjK3ZcdKrbOiYGn593YWkUwV2lhUAGgXaKtV7Xlak+WTCQ7hegvdnZpJ0HZU9CbenXpdf56CDh3+YhgR4bsQAs+LkOcPTUWEMXaq5hb9dQsqqeel5TgIm7oK8YwObor1UaZC3EOoUqTMA2d2T2qNRGZjlhOqSWJVl9fZwrxXY0PBOpWb5Nd2WzAQAjkh/vOf/5x6SIOFDOJ72NINquIMf6RWdGdsUONkbEuVYM74eLarGX6KmFjII01mAM3aWH7bn2Y7XYbNR7zhpNig6SzmuDzpuhQYtk3TVVqwqI891qxKRX+irPG5QxCpPPvy/JKpihJALskLEJN0BQQa57kAwB/8QzR+EeKWXWniLo0ipT6nQrxaQXP/uPbw3LZVuXYjraKHo0n65d0HlueRhTKW4iGeey/QKd2zlJa2psoy2njPvqtjdbMsiZ11nTj16LPJjEX63g47vxspwhB5i2Fqn9dC8rjVou9SCagK56IsUuWT/LF6m4QQz/D5BWjPUW4nFqMlSOePObN89MUYeUUJqs+cV3SmGTzfMkXn/Z1+Xkb7JoJOY+rjkPf+J7a5KD6HetdgmtSPC7W6yHouO1VKO8Ks/B+izgchWC1lt/41VdSxb3se+37BgB8sT+D/9//+H84991yceOKJAIDbbrsN3/3udzmmMpgnCJFDNFsWwoAu6Vc7Obgg/JHC6zpLua08bsYi0SJVX0awKwThp9wqlpxFjbbfWQaZFAUvEaZTq4I5qLQDFOv6ggWh5ekXXYrA3VIWWaYQfP6iJHqq4mHBpoKyzTpPsUC1WC8CaaAjp/KrAGRFlqLQLKIiTqYCmqq1tqAVVdX+onP8vM/P2/VBamlQYJlCpd5msyXrnCTbMkWncJD2V1VVoGWp11WsTnICClXA2tFYYGNCb5nSw9eb0Ke6yCKJPOi2JGuWzIIbYTBwXieWU6XxEM+yBImxIALRuUNhC8g23fdf1DGYVUzVtN1In1Pb1s4dCP2cYmKofhyKupdJhRs9CFOd9WT6PUBZPOoShFGGmc+RhWYM0m7VIsEXoU2kwdyB/Gr9p3/6J3z4wx/GWWedha1btwIAFi1ahM9+9rPUUxnMJ+SoTWyPtgqra0OSq+Zy9du9sqDTRhYG3ceU0lohBkk7TpBdEKFSvua2/ekqWDIUWFF7My8ZJoI8gmK+omcFXbfoUgDSsMgMRGpSmo0hd7hYWHAv0yrEc5RrJfiCkhbasgIpS/oOFOFFeYQJ3THi9ZbOeycDNIWJIn9cGh9OXp97AJF6m32ObCUVWeED2Ztk3XPcpZ5TJDoy1XIKgZ+5JLZCcadIWa2NohZw6rb2AnLEJvLDbaOAvKTy3gWKFaGkNkNF6mnm15RdrZJYphSRhSr3mAwonl9F76j2z3XGz3m+Ww5BYZ5JrJQ+JjRrphwlvs47Iq97mZibKCr6WZ6mSCTn+tBGxmUbKbgJslt8GmW2DsiETECxh7hFE94bhtn2h61JSMWlBt0gv1q/+MUv4kc/+hEuv/xy2K0b+Oijj8aDDz5IPZXBPEKeAsByXf3ARkKEQZAtZKeuFregFfYXdh9T7vBAdeQUGioezfnPafvTVZdlEe1lqEOFkOObThrYFINCadSjgs5racLr4UYXPMpo2dSeo2ijTpMgH81TTuhvFnStkmKUFVycBTJyJocwcYg2A9EzMpsopbiWsmyrYpCQ7rl2I1ThUdnHn7JIl2cZRtl+nB8wS6hCz9gk6ypd0wS0avE106+7VoM/IU+IZ4su5NcVeXYZcQu+DoqsXSzPQ0hcwGa9xxMoKjqTqtELiHfy/ABGMrYIDpFlSqGve7XKGtxJ9Q7J7XCgeI/n2ZpQFG1zM0D01LNF720dUFvY5XqIU3MTRUU/z0OgMReXfSYrcrovy4RdqSCgeraE4D8HYZg7RXS/GhU6J8gJ8e3bt+PYY48F0PlgW/ChGgbFyHlYzLtE4Ty/VeIW0fa4Gg+xLFWCjkKcwhImd+ycBa9DRArktv1Vq1ovvDBjoUsRDtM5IJQ2r2GuNzDDtWrrk+xFiimLwKe+COxtt1Rq0oKNIRUKlfqkG3VO389i0Kqf5+g7kF1TOaoqj4j8yfNPpSocFmycKMjYIrsRqns6L/CSVL3N3X6cc5xIvwfHJjntZUtqmSJfcM8jsZWKqkXBZJprgHyyvXXOS/JEdRoNkiyCGEU2MyoFjvx5ClTPdTrVc6HdDHNnHJlPeQGp79RqCKYYFeK1qvY5LzzX1SrJuc4PW9d8/+V0DGqLPEq0xHBqNfiK10iupRzDnj//PtXNPst6pukXRTnFOcV2XwSfXQCU3UciPv+6HEtelgMQ27IYn3JOkD/NjjzySNxyyy0df3frrbfimGOOoZ7KYB4hL7jA8iosShPV1pHc8EfKULvkuJo+bWmLGK0FEnMKdtbL1aLydubyKM9Y1JGEwyTHU/WPy1GlcNjmkHhw9wjVZFVwMyeXk41fQAhZrkPmU557HkjJrTlUrpGSyTnfwbLoOzESIPXgZrTTyO3+ogwOLFJ0Mj2XyEi/POsgx4k8UQnAHTwKxCr07O9BFoKVZ/9gqW+Q0wpaHcuULkJcpQMtt0Ai31GRpw6mUo7mbr51fd0l4A0NYmZ0lG7AgnesduZMcpoia5ZGA81xIpK/4DxREu9ZoAuNLPB1rzErxOsN+RyANIq67mo1ts9P8v7Lez/ZtpY1Bme+QRpaa6U8D37N7y+D6BrXC47uFscR7Knyvj5Rdstc7Qfb81AX8wtAIaQrCgDlFn0ZMBDiH/vYx/D6178eH/3oRzE9PY1PfepTuOSSS/Cxj32MeiqD+YQ8n07FVqGiSpulQwgWqd0YrF2ow/50xitKcrdsPX+qvLF1W8VmJ+AhZbLUA5brkoZqqqpsIqUvfatjFihCQYo9NXkXQNG8fItbsvEL7sFIKUXRnpzvN0htBzRnyjXHoVGY9CoeaN8T/H7ueWSpU63QbNRznkNUKCJ7afxf8woGRJYvBaoeOpRg7VMG6Z5L8KoLB9JKZ9XNdibpoHD95RFF0XdUGItNOVrstV0WIa7b5ZeGCFFHUqwtIt7rdfjjmiRsArnv2RILF1ooVFjzfge3oRCMm0JR111kK8Pz+SnsXths4Uq0m3N0bHUKshLKglI4cwJZzzTSsOsUKNbvhZ06lER1Adw6YWGyxzqPxI6rQLTIIYQz6AT5U+IP/uAP8O1vfxtbtmzBunXrcNNNN+HLX/4yzjvvPOqpDOYTQmTbO7iKYRK9HgyqqvMcP7HId5KDEKf1TtZSnIfIJ8p0FbB5YaVUYRNFSk6tgbs/d6TsoyPElavhua3+8hvrXiDxJyvcNOhvSnrPzzs8BfKKHABhO3fBedD16xWFjuejMCg4jRz1M0ClzsoOmyYbP54j11+aqIiTZ3NBcS0VFdJIlLBM3UWzExSG3lF1SuQWsx2HZO0ShmGXhzY1cq3VdBR0qbWiMiGeYSGi8rwsJMQVLFPyA1s139eFhAWtr3cR4uuarKOoR2EnIqf037NFhE9Z6lOH0AKmCNqhkYUKa+JQ1RRILHkKi7a8CnHt/AamQudCUYiX0V3VC1GBTOMazPgOJAKaPL9qivV7UZYDkc1QL9g1ymKrwHtlUrcTBQX2gfRCOINOuByDnnXWWTjrrLM4hjaYr8hry/JcxfbVnEBBtEh2nQdDjte5v3+/+pg5sL0KXYgdIlsF1bacvGAuYLYg4Oh8NlZDsgJSxipWvxeP202IWa6jtBgIc8gvVf+4PG9ajtYpCpK9yOvSqZezcZv3KLiOVfxqs+fgCTuSgdvXB398P7zBAdZ5lO/72QFyF+0kYVxF55uQdOI834Xhe25Extqu+lKyUH1XrWFq+w7lsYH851IZRZt4I+/UamxzxOoze0DzXisIjgMi+yDL0VkhIFdV69TUrR+6QjUrin6tVARPAYndlLQGyQr6jMbS3xxnZdTEiAhdreGl4LRUvG6joT1WL6LOGxpEc3Qv3EZdb6ICwqcsOPUapnfvYZ0jXr9alYr6ID26EXTJscJOLFXLwo7xs+9DICrmTW3frjV+HuxKBcGePVpj9PI+Vl5DZRLNFgtRrhPumtdlUyZ0i3CZCnFNG5YiUAgR8t5dAOA2CGyMBGDBIiu09rqO3L4+NMf2o7p4ic4kxUXqXbvVxzboCRJC/NFHHxX6vUMPPZRiOoN5iNzgDmWvqALPuUoFoWqwZI5CyXZ5LB2sikdqxaJFOgcBCtWK8ziwIfLWyn5cxe1dTrUqP27GpsZyXIRNhWp+nteuqvq+wDKluW9MfrwCkHhkF3mSVvnaStuweBbjlCgiF51ajSRcrKciphWgqk1uFcDt78fMvjHUVrBN0S4Mqdz3bRQWKOpojk9AY/TM50sM7a6c9kAFP/KiDi3b89THz8ndAFqFj/37YQ8NqY9fcL26A/36z7o8D1Fi+6AsxJskTkI8PgeeJiFedK22Ccv+fs05csKxdXx4U5tIZYuyvOA/S04NmUcEONUqpqjsVyoV7XdFUahm2fAGBzGzZw8JIV5EKkRzDWBmdB9qK/ReTr2uibhoYesQyT3gDQ5i/+Nb2cYHEgU3je9RVPQkyVoQsPXSKp4XCbSqNFZ3WXAI7F4K1e2tQqRTly8OZT3n4v2+1posA1oq/4J9ieXwr4WBWOmvcY1kPNOcao3ODiQFu0IkBikQSE3v2as3viBs19UWbQDo2Wnh9vdj8rnntKbI49GA1r1VUtfWwQoSQvzwww/vuvDjqoxlWe0Xkc8YUGUwtwhzfLosxep80QIq2gwoqrnz2ss9l8WfKVJezxPfp4J2nMhDnetzWoVhEUIo8iBsBQupEeIhbDcVXOq6SpYp+Z7fasWGiDwoSSFerWgTT0UK8TI23rHCWmtTXSAmsCiI5CLLlGoN/o6d6mO35yjeqLt90eaCU73tDvRj8vnn2cYHAKevEZGNGpuvwgJFXwPTuuejgHAvQ7XktjaSlWF1wjoMs23GgNnCh6dBiBe20xOo+4DsY13G8feGhjCzZw+qSxazzUFiCQAUXqtufz+aY2PahDhyutScWlVZ6ZomsqMOQppQTWCW8BIljcLAh2V3vyOUVHe5hHgVwW5NtViPkPU45FmrmCaI6vLl2P/oo6ivWqU9Vm5howVveBjjTz6lPU9h1yKAyuLFmHz+eTTWrNGfKwdU9i9FoHjGi9h2aBHWPc5F3KGo2hVQuE6oVtjOgbbVBuK9efZn9wai57oKIZ4Vht3uziEmxHXXAbke/C1LGu1uEcH5Va/xzHyLGsE7IAcU4cNFz2Gn0YC/7Vmt8UXh9vehOTaGyvCw1jghUPiMsWtV+BMTCBEqCxfzeDQgEpVp2ycZFIKEpXjsscfw6KOPdvzvsccea/99/P8GBzByqrCRh7jCi8wvWIDUa8pV87zFARdxbYHBs9dCYehoLuYo9Zli7MKUep0AqIwW7tgGQBo5CnHl8JMc8oCFEPcIOgQKQqbKgK6fZlTQyP85hZ9jXpEDaBV2KEL+QhQrGfr61AuKgnD7+si7GLrm6O+Hv19XPVysftZV4PQMtCL0mM6C0xdtBrRQoI5zWxtq3fF7kiUUAap5YzMe/9qK5Zh45hm28YHZDZ8uIku1gnuBpHulgHTWaP9OkgzK3vk5pJe0lVWBqlt2HRDmrasJPMR7WSm4/f3s74kY3uAAyTUco7C1nahdvxfxXl+zGhNP8977QMvukdGPt7JkCaY0i9tFliOA/jOsiLAGooLLxJNPKo9fJDKIAr59lvcIiXVR0XO9VexQGzaDpGUO/qM+xipBx7no8dF0ildZ702HMVDX1rCoiVFsoUkbOlwEkjUqUHgfARHXE+1JNN6ZRd0Mrc2pEvdjIAQSQnz9+vVC/zM4cJHnr6Qeqpjvb2hr+E3m+f5ZthNtzBcAVO1dwgJvYcvTtHYpOHR2xVO2uJkdP19ZWxkZxrSit1amN5uq53cO+aVcbc+pFvN4iBP46fbqArBs0rDSNJxGQ09N06PtNgrI1T9G+UqjKlGoZvHm0B0clPaylUW0SeQjMQEakq4oV8Gp1+HrkoA9rikKBVgRasuXY3LbNq0xwoJClzswoH0tFRU7AaCyZJG2j3geKDZ+heN7HuxKBROa56AI3uAgZvYS3M9F1jVEpHteUX4+ZExEFgDdym5Z4iGPKLVcF6Evt8bKszUhCdjqYfnhDvSjObpPbw5BlO1ZTrGGyrNfjFGWT25jzWoaxXsOvKFB/eJ2j2NVXboUk89q2A0UFLYBoLF2DfZvfQIz+9Su516FbW9oCDN7mSwgLL2CcBEx6Q6qv7+zxo3uK573aXX5Muz671+Tjkmy7xFEZVjjGskL1WQixF0KIUWRhSZR558IoqKP/nssDMKeum93YEDrWdnLp9xp1DH1HG/n7cGM+WEgZ7DwEdLaIhQ9GGzHLfRaKhw3DOckcJqyqmdVPIQqi/midhwGkjU5tk+gPs4jTSqLF6sTJlke4qrevjnFFtVjm+cFreX3nXMZ2hUCFX8vjzUKP8QCaG9KehBzJPdIQcskFYmc59MbwxsaxAwzIQ4AdqvlnguVkWFM6VqaFFyz8THU3owWXFO15cswydg66g0OoLl/v14hquBdHPms6xYNipU39dVrMPH003pz5CAienlVsEMnnoDxJ/gIKyqFYmEIVn8/mlSbypKKvLLIU6/Ldh7lHUe14LocQtzztImcXgrnyvAIppla8rNgVyusSuckoneg5vXc4/gBNNYDvVBbuRJTmt61RbAsC5broKmh6Oy1NqytWomxhx5WXi8UFW2B6F0+csrJ2P+IYqd6j8/fd8ghGN1yn9rYPeAND+vdhwXHxhsYwMTTz6gd94zrnywXJQODRx8Fp1bD2MOPkI1JER7ZRo/Huzc0qLw/yXo3kXjv5yDODdBF0TsvDAPW7rwY2kKpGAId0G5/P2Z0Cgk9unsHjjwCY488Mn9seA8wGELcgATFLWuRh7TcgL3bqJVQQArr5FUWwXIchE0FQiLnXeFUKooK8QIfbt32qx5WEySbtwK7FwDKxyRNWKlavOTa8aguunIU/ZGairh1kCRUs5j884bVlfwi0FlwAr3bbh0Cq5FeG8NIJa65EO1h/eLU66W0wtdWrmRVrtmVCizb1gqy6aVOrq1YjtHf3a88fi+1fm3lSow/8QRra31j3Trsve93yv8+LxsBiDY81cWLtYLdihRsQOu+3rOXZfPkDeg9M0Tg1OtsSq4YsVe5FgqKdbbnIQwC/QJXzv1A7ufeCliWQh4hXpdU4hUpryUv4Vy1uaotTMfYAoVT5nujc74hmk4HkbkG9IvCvd4dQMtuhFnRF9k98uZz9R9+GMYeflh9gB72PLbrYuDoIzHxlFrhM/SLlZUAUFm0CNOKz8he9kKV4SFYnseyrqotX6alni/qZLAcByOnnIztt/5UumiedUwohDVFGDr+OEw8Q9dtFe1Nywkq9IaGMKOYk1HIWzCgjI4diq6K6B1ffN9bsGDZjjwHlZ5L4By4/X3wNa2fCp+TjovGunX62UYGmTCEuAENCjb+dlXFO7F4k2Q5aj7Pha1vTC+A6PsrvHRzPqZVUVQHFaWNu64aaS8Ap6+h9ZIA0LMlcuCoI/H8TTdjavt26XHTxyR6Ic1eDMIb65zjGwWWKlyrQb5tkDLyrinHie5hDRR50AJAZWQE07t2ac1RBG2v+h7XWGVkRF+R3GNjVVu5HBO6iuEe1jWWZUWkOLMytrF+Hca3bmVVgYy88CSMqaq+gNyujhj9Rx6ByeeeUydPeiyibc/D4jNOx/gTGv6mPdB3yAZM79S4bnsQPwPHHI3R++9XV0L2UvdZFiqLRtQ3kwWorViO8SeeYL1Gk4FaXKivXqXtVd5LMVxbuZKkmyG/Q8aOQqkIbLVUitB5399WsEyhIi8KbTl0awg9PmdsH8NJcCVB5/UqMBeFbZjAea4tX46pHTx2T0lwZgABQHXZMkzv3Kn8DIsU3MXHqrFmDcYVCfEie4YYltUixlSeLz2KR0DrGcxQ2K4uXYrpnbswppPDVlj0XxF1GciuEbLsJpk7fait+NyGfk6MKJx6Hf6Uuoc4dT5Tr3vZrlRYO3qrS5foW+EJFCUBhaJ2zly9Xrq24yLQUe33ENAAQHXJklLeKQcjDCFuQIOCBU/UNij5MOqVFD80iJk9CmrTooqibSEM6EnhOJwoaM7IjZ+rEK/CV7HgKPAQ54Tb10/j9dvDemDRaadJL6ijzWu3b2jy2G+7/gahcfNUJOrHvEA5qRrGx1n176F+9oaHtFo/Rb6v29+vvCnp1XbrDQ6gObpPLXA1nqPHMaqv0t9U9ZoDiDw1x5/iU28DUZHNGxpi9St36nWEzaZWq3XRgtqyLAwdd6z6NSVwLuKNEhdhallWyxNSrQDSq3PCdl0MHHGEshKylxcvANRXr2axTbErFdRXrcKohoJeBE5fQy9sqQcqixZpFwx6nYfGmtWsz4z+Iw7H7t/ehe23/Vx7LKcq7w2fZ3USWaaIEwNFhQXpwG4BWw5V9LqvgRahKysyUITbP0BiyyNSKPAG1MMEY/QMTAbg9jVIwmh7wRuOumi4YFmWlj+uiILbrlSAQNFGoaC7JQnVoovIua4tX67ng54Dy7ax+IzTMPG0ojK6hy8xENnPyXZnZK1tkoR4GIYsdkEk+QktuAP97OHvSdiuqybkyyu+2Rq5TD3EILWVK1g7PKtLlmgrncMe3yFG1BWr+RwWLEpYtoIjQgyBwqFTq7EG1x7MYCPEf/azn+GnP/1p+38+Y5iawdyjqO3ZVtmc9CBvq0uXYPLZ5+QJ7DAEcnwyVcMqo2HziXa3vw8zo6PYdfuvSfzP1D3EUbios1xH3+s7A7brIpiZ1mtZCorVu0CLsJRd3PRY6MaL86nnBcieEtva7Kp8xVtkA6yDMAxzPWiBaGHvDgyoe3f2CCgEgMGjj1ZXGQlsHPoOPUSTPCu+3uxKJfooOgt+AdUE1+ata56VK/QV7z1QXbJEvdAisNGtLl2qTgoJFiHdvj5ef/2REeV28V4bp2j8YS0Vfa+NRmXRCKaZCJ/+I4/Q7/zogcrwsPrxF0C00dZcY/cgX9vFJ6YwrNry5VjykjPg1Kraqj074d0srDov8uuW6PDKC8IEWve5RGGkyNddGwLrFQqvbVGCkyy4VQCW47TEMeooOs+U84igMqzxfBdEdfFivfesiJJTMWdGpPAMtAKIVa7nIOi5prI9j9zKsHPsQIn8LLI8ixEVO+SOSxZJm+xUGN+6Fduuv4GcFKcMMC0z3BFoieNUhAk5azCnVlW2Ou3VyVRfvQqT255ls/OLbFon9IQggntup15TVud3QOAZo2OR18s+sON3y0yhPkhAttL6+te/jte//vXtP5977rnYuHEjNm7ciLPOOgvXXnst1VQG8xEFZJs70C/vDdjjQef29cOuVjH26GPy4+YR9xVPydpidtzsH7n9Axh/7DHU16yWIw1yxtNSiBep7kdGMMMUolRZtEjLS7GXehdQ89YO8xa6rb/yJyZQXbZUaBEjsigPpqdJWlvdhkKYnQBRqrU4ESCUa8uWYWqHKrnY+/O7/X3wJ9TIFKG23vXrtG1feh0j3dZbkQ2Q5TiwdNQlgqgMD7P70Gp5z/awyQFiOyG1e0NEWQaobUhlEBUL1cYX8crVCl0UUPdxEktlWJq4re4STugG+ImcZyrblCJUly7VVo7Z1SqCySmEQYDtt96GPXfd3fPfFBEElmXBn5oSI2wLxnH75ZTJhZ9J8/ndyyIHILIWEWg1B1q2fUwhcZlQ7bKLIWDT0f5V5vA4b1g9Q0C8YNGP5pjqM753FxDQIqxV1gs99jaz4w8oFW572QHGsCseW4iqNzio1tUg8v7uUyhGZezJkgrxqR070Vi3lrxzwRsY0O7u6IBllWgLNaB0DxUGPk9OYeLpZ7Dj57+QHLT4urA9DyOnnIyJbXSe7Wm4AwNagZeiVjLxekAHIp2MgKYaXVC0Zteq7Lk0ByPICPFrrrkGH/jAB9p/rtVqmJmZwczMDH7yk5/gq1/9qtR4X/ziF/GiF70I1WoVb3rTmzp+tmXLFpx++uloNBo49thjcdNNN3X8/Fvf+hYOO+wwNBoNvPKVr8TWreqBTwZiCIHcBUlc0fUnZdpOexMJ/UccLr0IDIP8xXkUTqOoEA/ySSjbdTF88kmor14Np1qDP633YI4ehgpj9CBnaksWY+p5Hm+q+to12K9zHwqQrQCiMC2ZTWKu+tFCGIaY2b0HlUWLxIj2Av8vy3MRTE9jxy9+hd13/kb88+Ug2qjKKzqKFvW6yeIiRGy0cVNbIIsq3JWJIYHqfNt/e5xPzVtbsQKTz2u0qQuSsN7gALsiz67VlBeioht1bTJA0INQ6d4QVa7pdE4IQItwF7F9qVaV2zhF215hgdQ/NAlXUZkoPn6DdXyAwINZxBN52VJ2/0oKL+m4YDwzug+1FcuFCJQw8HMJTnegH9tvuRU7fvGrns+lIqI5atGXuA+LCHFPz683VwyQAMW7jlXlnjmh2K/Z1Rr8CXVSQdQr3q7Jd8jKwmk04KueJ1HbgUZd+XiJ5uE4fX3wFcgk0cKzo/ocFnyPkxSQcsdWe4eLvF9VQhSzrn/LdduKa3//OGrLlpIHjVLfT/VVKzHJSPom4TTqSvdp3rPGrtUQTE1i/IknpdePIgVR1ftRFFHHhvr9Iqqodqo1/UJVGArZcTk19bkiHk2so5QjwPdgB9kq5YEHHsDLXvayjr9zHAeO4+DMM8/Egw8+KDXeqlWr8Fd/9Vd417ve1fH3MzMzuOCCC3DhhRdi9+7d+PjHP47Xv/71eL5laXD//fdj8+bN+Jd/+Rfs3LkTJ554It7whjfofbmDEFO7JVWQBYSlBQv9hx+O0ft/Lz6eQLiABSuqSMuQ2GH+JsDyPPVNfQ+FQnXJUtiuq9wSmIRl2QgDHxPPPovmuMRDsceizqk34E9NqrVg9VhMOV4lIgUULVlEyFagteGUaUnOqZLbnotwZgYzo6PwBgcjor0HGVO0QaoMD2Nq+w5Ytq0WiJpCbBkkg14buEjlqUFEiCpJVckOATUvAGWvy1DgmQMA3vAwmqN8qmfdAJhQsHjkDg6qK6sFoZVZIHjP65IBosdKZaPb673QHp9ZIR4VuxTJDMHvEP2uov+rCFnSaGipiYrASWQA8sGMKtAuaIoUPsog9gmCzmIRxvSuXfBGRqIwth6F8iILjIGjj8bgccehtmxpT6/2MPCzc0kQvTtkOowKyfWGpi+qAKFLkjkjSFbO/no5reBuX0O5mwyA8PfSyW+I5un9KzrnKRR9/tbUCwiiaxKnrvacFLGvAdS/g0j3DKBhySIAT3WNIHr/CexxOpBBtKfPsSNhESV63zvE79L6mtUYf5I+nyQLTr2utobJEW64jQZmRvfBn5qCN9AvpXQXKehxZ455Q5p7EMEuHbta0d53h4L7TxWL4DYEVehuo8EqyjpYQUaI7969G57ntf982223tf/bcRzskmwzv+iii/C6170OS5Ys6fj7W265BePj4/jIRz6CarWKN77xjTj++ONx3XXXAQCuvvpqnH/++TjvvPNQr9fxyU9+EnfffTfuu+8+jW938GF86xNSXpG9Wlcqw8OwPU9cJS5gXwDEvoNyBGjeuJHXtWLrlGD1UPRh2csfauDII4AwkCwy9F4Y9a1fr6fkLoA2GSpSOZUldXMWBXFxpLlvH9yBfrGFegGh4I0MY+99v0N99Sq9IJQW3EYDwcy0nPdtr9DIoUFlpS0grkSJujQUxhdU86q2xYoSc+QtmyloL0IFj5Pb19AmnkQQd0dIQ/Ce1yUDhJRr9braJkxUWdbX0CNNekC/MCHSlqqmWO0VmByD877jvqdt10Wo6/HdA1EXA6/itQzPVadeUy9wtceoI5icwtRzz6G6dGkr3LDH/VVkddKoo7FmdWQZ82yxZUwROedUqwj9QGqdmXfvepp2VCIKQSASB+gFSYsX1FSfISpwGnUt9aMoCVuaN7qqBYxApwCgaVsleK0pk52C73Hl7yCooo8IPrl7UtiyZmAAM4oKcZHzK0vkFd3Xoe/DcuyoGCS6xhQUQFDYXyTh1Gql+YirChPyjrU3Moyxhx5CfeWKlh2LzN5XbF1n6fAiPaArchB9t1iWvJ1q92SC3aQa1nWioiyrUkHI3HV0MIKMEB8cHMTjjz/e/vPxxx/f/u+tW7dicHCQZJ4tW7bghBNOgJ24CU466SRs2bKl/fOTTjqp/bOBgQEcdthh7Z+nsW3bNvzmN7/p+t/9999P8nkXKqpLlmB6pzjZJlI9qy1fjklBH2nRVhi3Ib/YtHKYa6viIVR98Au+XJxaFb5IpbKHPYQ3MIj6ylXRw1dwAdkrqBQAKksWq6kQBPgW5UARSNhlSFob5LVaxl54/sQknHpdSH1XpKSsDA9jeudO1NesjjZIBO1OI6e8EHvvuVd4Qd3rnqouW4bJ5zSCFkWLQqop8aJqXkUljWgwE7eaF4Be0UTAkxlodYQwqz0B9fteKgRWVt0UQ7TlUllZJrhgdxz9BXvPSdQsR4TbUmvqtjJi3ox6nRNFiDy+ebslRJ6NOtBViMt4InOC6l4IAx/+1DTcRj0Ks+yx8Y6sPbKV3TG84aHexdYe5F999SqScHXdcDkZT1StAoUEIa78DFGAvo2RuEJclfQJBddUgLoyUbQorINegesxlN+zgS8eaK/wHBZViCt1A3ATwaKddrIBjQXHpDk2BqevT+6aFDzGdqWCQLHTOA+WY7OFRSeR9FiXQk5Bxm00sPj009F32KHS+xJRMllZYCQA/TWLXPeRFgT3VXZVnawOA8FunWoFfkm+9wcTyN6CGzduxD/+4z9m/uwf//EfsXHjRpJ5xsbGMDw83PF3w8PD2Nd6EPT6eRpf+tKXcMopp3T979JLLyX5vAsVUbq8xENQgLxwhwbFH9ii/nyEm2S3rhBUGENwUSmsEBd8+LqDg+IhHQKEnwWLvCUthrR/ZhLCi7q6VJp0nsonWrhE5yn2je754i64Zp16HasueA2calXbNy2G29eHypLF4gFkPTbqtuvC9iqY3qUWrCq6wFImSEW7RpRbS8UIWG41L6DeOgyIezIr+2JLIlJXK8wj2KII6JABEoU2VeWaMKkvP7wMlFs5BYnSSJWr1o4uFIzEaDui6slYlr2DCPQ3l/wt0tQoOv6W48AbHAAQe2H3JsR7Xed2pXfrda/3YN+G9Zh4+hn9LrH+Pm2LM6H7utGAL2PNl55GUB0M6Fk7ycJpCHQNFEHwftG6L2WKCYrziCrdAajnOAiKGXQU3MLfQSUgW1SJ6jjSx0dUwW1ZltoaQZBojgMahYfNua8t18X07j3wBgak3ieiAgjLsoRshGSgI9YC4uuJr5ux6J1SXboEtuu2utzoCXEtS8IeiIKUdYKhxQhkAC3RjGYItcj1aTvq60LRbkyjEGeBSzXQRz7yEZx22mnYu3cv3vzmN2P16tV46qmncM011+Df/u3fcPvtt5PM09/fj70pVcTevXsxMDAg9PM03vOe9+DCCy/s+vv777//oCbFpTe3ApvaiGQUq2oJh6RQhCW0YGssXEXU10Bc5Rc4roL2DW5/H5qj+1BdsrT3kMgPPu0Ys9V65dRqvT+nBLQC9gKJRZ3MhiqH7HFqVTTHJ9qqFqde6+nX2Wvj5/b3R/8/0C9OYvdAY80ajD/5JKpLl/T8XRG16vALT8Ku23+Npa94WeHvZUK0rbSVtF5ZNCI5vmCF3nUR+opK2Hmi5o06P6bg9vUp/XshpU0J9gfA7HeRhShRCszaRTj1uuwkYoVX0ed2eniFjToXKRnbvkgfI4ht5JQJa1F/WUb1qPA5SkNwIxzPEbWSF6uQu6cQm0PLu1ICcQu1nbBIpJ/DQdBswnZ7bFEK7q8lL31Jew3pNBqY0bA6aX8ugeu01z1vOQ4aa9dgYtuzaKxZ3WOwgs9i24AFseOU9zkFVLtRQKmeio+b1J2dSvy9rO2HL6rc1ijkCQcOI3HsRmTXVTKWNjUEU1PS7xCZoogKZFTulhcFP1oSzy+Zz2+LPrvag0sUzRXWCBFBL/b+DmTERDkdJk6thqnt29FYt7b1i6IDigsgqBHbeVaGh9QGECxqqEJkHekO9KP56KMygwoKHXrvfbWgsZUKffHOELtWRTA9Dacmv/4FxFwQtNHDejiGFulukAuys3vCCSfg+uuvx89+9jOcc845OPbYY3HuuefiZz/7GX7wgx/ghBNOIJnn+OOPx7333osgUYW966672hYtxx9/PO666672z8bGxvDII490WLgksXLlSrzwhS/s+t8xxxxD8nkXKqJNjwRZIrDozbMqyRxOcJNM6TlowYoIdpWgHYnKnogfl2hBILKMEaxsC5L2smrIXn7nMWTOf/ckYtVZuyZHXOWmd1drmN6xo01iC1mmCBKqbqOPjNhxByV84wSuKadaBQCl9kFhxUFfQ2mBJarmVcZ8UvPW1DtfZDbR1EqbLNg1RaJO8B0AaKjjBP3sZYq5HRC04QGidy5ngUJbQdxrfI3AMrHun1ophK8UBK0AAM2CgaiCUOd+FnymcV9H7TkESNgiospynPb7SMirVLQrsVIpFmEIEM2VJYsxs1ugE6vHOamvWYOxBx/qPU4WhBWCfVrhkzLWV9pdS1LEJb+vv/Y8gupeQN3aRv78qFqaiBcCZcme0JdYKyg8h0XthQD5DkWZonlM5ktBWCEuKVzIudeqS5di7OFH2nsnUTs7GQFE+/eJ4PTpe1mLrrmVPLlFBIeEHvBJlPG+Vz6XMt1H1YqSMKcN2XBo1cWYRHHMgBak5Y6zzjoLDzzwAB544AHcdttteOCBB/Dggw/i7LPPlh6r2WxicnISzWYTQRBgcnISMzMz2LhxI+r1Oj772c9iamoK1113He69915cfPHFAIBLL70UN9xwA2688UZMTk7i4x//OE488UQcd9xxlF/1gIcseRmGYlVoy3HEyDbRkBTLJn0w1Neswp577oUv6VEmmtQufFx9CQJY8LOKLnyllWayXr+hQkukqH+XrDo45yXnDfRj4pltUoS46HGgtKqQ2WwJe8YNDymn2YstvBUXWBJKMyUPbkG/ZwCApR+MWgSnVpOy/umAhO9o9OvyD1BR1SqgHpQlo/pSPl6CKhmtVldBwtRRLRwIQpWwFh9f1ZJFMDy1FXQsN7TMtS3vQy9FJqneBzIFrhJQCiEuaNMhvKkX8McVVYH2CkkUGSeyTdPPoeg7ZAMmn39eLRtAUF2nHT4p0dauars0O5f48xYAe2FbF/J2MyrrKn5bFkhcA7ZKlpNMIUTFi1ti/ChYU8ISUbAgDKgdf1FxlV2VE2Hk+arXVq5AffVqOI1Ga1zBdYGEAEKpMFAAp65HiMsVruT3fyLvOemC+DwhxJV91SFXTLIr1bYNqhICiTwH11MKIg0Df866JAyICfGf/vSn+Id/+Ac8//zzeMlLXoIjjjhCeaxPfepTqNfr+PSnP43rrrsO9Xod73rXu+B5Hr73ve/hO9/5DoaHh/Gxj30M3/72t7Fs2TIAwDHHHIMrr7wS7373u7Fo0SL89re/xbXXXkv1FQ8uWOJVLtFFb6ToFvDQlmk1J0RleASNdesw9fx2uX8ooQQUg2BBABIvwRAsNjQyLXx2tbcHZ+YcAU/wT16btNPXB1gWaqtWAoi9Q4uPiXDitYLPIAkEr1FvUHJB34IogalKnImGXgItNYDkdSY1vmg4riJ0yEsZNZPS5hOQahF1VK2SBC1yojkUA6fA7JscSpwLSQ9PQNIiQNXLXRC2ciCahHeo9ODihRuVbjOZe035nuYuBErCbfAT4m6jIWTTEfq9gzCBlr1Ij1tFpsOpSIkrMg6VXZVlWXD7+5XIHFGyVTtTRkqBrGmZIr1vsNjvlxhKhWeZd6BylxQ/6R4KWgEAEYGq8h6UCm6VLJ7LjO8OyGUEidpBAooe+6KZMrWqnP1oXnet62LpK17Wvm6duth+UloAIfBMEr3n3L6Gen5YPI/ofapi1UTOL4jf99xWbKpdJ4AsIS6/J0zNJlF0qyBUmUvmPNt6nugG3SBjmL72ta9h48aN+Ou//muceeaZuPrqq7XGu+KKKxCGYcf/vv71rwOI7Fluv/12TExM4P7778crX/nKjn978cUX49FHH8X4+DhuuukmrF+/XuuzHKywPU98gyjY7hQtRsSqxcLtU5phCWlEQYU7pP6NqIc4EG1ien1eUcsYGYgmpUuT1oJEO9DyE1ZQcnIcj9bImZ/dsiys/sML4LZUDpQb6nhaKsR+qz2nFFQCqYZSiratWp5a9VzUNgeQ90OMxxcv7FTlx5eAss0IIPwsBtQ2n9EU4qqm6HyrFMEkzneVL3CxDcHW3ySkyIZaTZ6wllGXMSvEIzswhU2AxHdQGVtcoS9fkJBSJiraIEl76TPfB2UEHwpZnAByYXq9IPh+7KkmlPhMFG3/qiHdkZqapphQOE8ortq2HEcp/6MNyevBaZQT4qlceBbsYAIULC/aU5QQ3Ckzh8raTaJAr6oQFx3fG5RcP0usa1VyNMT3fZKWG8I5X4I2lhJ7POE9qmAxwPY8hDIWsYrzAK37VPKZI3z/WOIFPmEBl4IVm1QHab2OQFWoIdUZUkGoY68rJfzr3ZGWPYWEBZ+qjaNBLsh2IZ///Odx1VVXYfv27bjyyivxhS98gWpogzmCjOJLyvNb5EUmUZGPwxKo4HgV+UW51Oet9T4GMn5VopVCwXCVyIZG/A0oSrQCGtVmiY2BKEHc/n0qol1C4QCLZjMMSChwuVvkZOwnFL66VOu1ik8kg0JFFVrkpcTCTWnzGc8huEFU9jaWauXm95dWeXbJKPyUNuoS50E2X0EWeve1TPFb/N0sa2kiey+Ikg3x+ErFYBl/XA21lSgir2LGkC2IE+Jh4EusCxS8WzPQS00orLxu0BzHiIATzBFJoqwuTIkuCl3Ihje6jYa6P7rEs85WDASW8pe2bbkPFUPS0kYpYFVGyamw9pEuPMs+52WIN8+T8oxnL0gIqk5VLDeEyGbBQrNogQ5odTELKsTLeMbJrgPk15Giezfx7m6VgG9hyHSQ6irERQUPlSp8DZ5I6j6tSnZbJOcQ3S9oWM0YZIPsSfHEE09g06ZNAIBNmzZh69atVEMbzBGkNojCPmVim3KpjaxuWEIGLNtC4IuTqnJ2Dr1V0jIv8oioESsysCS9S5EO6lYTrMSS0Aco/nEoq1IhIvBEN1ui16iI32r2BMyLT5m2RBULjZIsOkRgex5CiedPEjLqbVtDVcZtwCrThkpFdhVBSX1bxkZd1BJENl+hLEgp5OSuVyn7oKq8ckumxVW5yCVDFJTg761K7slA9B0kRaIQEdAiBQGh8PJGsfWKKFwdhbiMyEDx+SpNvGiIBWQtU5xGXSngWxaRXZVqoK7EmkqpICmnQlcpoMuJDeTJJDkFuvzaTaawDSC6hkULtzLrWoXrSEawJDWuIBkp/Cz3xYubwh2UEnsyLZGSxDpA6f0pKDaSev/LPFskrdhKyT6ApGVKtYJQY88tVRRTDYCX5X10PNENukD2lAwSlQ3HcdAkDDwwmBvItBCLEriilTNpQphY+eb09ck9pGXsHEQIW2mCXew8SSnxRMMvJRa73H5kAF/buOX0IN0k20KLri85b2DB7yu4MFZtkZYpYiktPqU6EVQU4jI+lyVYdKhCRp2h+j0kbBwAqJ1viWcgqw94C6pdB+LKIZWNumSInAqkcinlbWWku6tkzoGM3YiCTZHUhkxRoS+jgla+nyWgWliRuf9F30F5GSBZEPUl7wVZBWju59H0rY0REfQK6mNfgrRQ8b1VmAfQXCNKE+Lq30umHlyGv3f0meQ90WVUicprQ4n7VDbcEYCUZYWSTZxs50F/P5pjvUOBAcnOR4VARqluY4g/p0XffaLnU06BK+EhXoLiVqboIGwbm4JQkVWmq9+XUFdLqrilslV0ivhSHTROJArTgCVqA6NQ1ANaRSHR4+Z5rDlWByNcqoGmpqbwsY99rP3niYmJjj8DwCc/+Umq6QxKgF2rIdi1S+yXBZVqdlWwcibzQK3W0NwvtvgQhdNowB/bD69/QOwfSJHClZ6LJWm1sdCCw4dUwNjUNJxaTWBcSe9lbo/TGk94XEyY2J6X+XN5v+CC+0DGg61WE1I5SW+uJCGzsI8Xn061KjW+lEJcdkEiFZCnav3D9LvJfybzLKpVEezerTKJFAltewrnm0nZpAq1rgM5OymVjfp8OkYxmeXU68L/RtbWREZFL0dY1+A/97zw2K0JxMd3XaUwZRkVtF2riq/ZyoYEaSU+pi9ORIj6kpcEp9HA9M78cyVKTKkXA8Wf4W6jgeb+cXiDg/KzSCrEY4JfZO3ZNZeCZcr4E09KzxNNJv6rTq2GaYX7Ulrx3rJMiLNvBCdhXRcCUOgi5QvVVOm+k12LRL7+e+ENCuwfZcRUCmG8Mup2y3MRNpuwcvY4HRC18RA9n7LvOdEsMomMlWBqSmqNmpxHau8ju3cQfNbIZA+FQQDLE6MAY9La7e8T+yAyHSG6CnGRa7VkKJ1jIDpuonkb1QrCvfKdYQb5ICPEzzjjDNx2223tP59++ukdfy5DwWVACynrBMEb2XIdIXWNVCq5DHEvCLevgeld4kSRVBp8tVa4EWqNKFEQqIoVBBRsXYQ2JbJEKLO1QdT6Tk+Ix/YSbn9/5s+jzYvogq7YjkjKG61Wx9SOnT1/T6rts6X0lGvXlfTrnZyUW3zKhF6qqHml2x7LCXGUJTxl1FiOaIEyPYek/VK8UJc63zKJ64nPxbXWsGsiz+3U55FRrqls1GWLXK3WVy7vyHjNIEWIy1yvsved7DtPVqHPZUOWnMOXIH0V1WcqkL3XZP1cLc9FMD0Nu1LJH1PSMmVmzx7h+Ys/nDxZmYbb6CsmY2UKCBbvs8/R8NqWOUdAkiAZUZxLhkAuJ1RTWSGuUkyYmJAixKW7jBTeIdKhmgoKceHuV0BebCB5r7v9fZgRJKtklLpKkApmjdbNeaKfzmHFxhUlB2WvEWEPcdGQwlYQolLRT2IdphtSXASnVsfM3r1CvytzD8s+v2QEfZbjKAkF2vNwd0gqwLKdaO0pCSllfaWCqZLWegcLyAjxW265hWoog3kC25VoDRVcjIu2nMhZpggGdUrAqdXhTzwj/g/CULiFUqSKK6OaEy0IhBC3TJFpWw1lAi+hGLAnAadeo9v4Jsft1aYnqYKZ3r0n/xekfAUFSSIZ+4CWDYuU0ghyPu/+5BS8IfGxpZTPCu2PYRDAdsVeiVFhR+GZI7Fns6stVbWsUk7SV08pf0HSUzPewMhsNmRVWSpdBzJwlEI1eRXc0grCagX+1DTchjhhLQMZm7U2JJ91ze07JIbmDXyWCbxUhgzpq0ImKaD9bJIqaEqEp2LW4qTSgxAXfSdQWaYACeKxT1AxlzlGrdDqRM4ftVVwVFBVi8Bp1DGzTYxoSSMM/MKiRtdc2i304kSt5Tit7lY5hBLrfUAjOE72+a5SqJcMPW2vDWWufYnnsOU40pZMZXQ/yozvNBqY2Pas4Ni+1DULyBe/pPOXBsQ6o4X2/ML2V3IByUJKealcoJpyLhA7MSt4qmW6GOXCXGtoju4T+xCAlEgu+jDiv9o5j9zz0bItpfutLMg6A4TTvOLCgw2kd/BPf/pT/MM//AN+/vOfUw5rsAAg6x/cEzKEsOeRq47jDZ8oZAh8y3UR9HqZS9tDCHxWqfYx8fBLGcsUANxZfEpevyLoVciQWRT18tVT2Qz3AnuavQRUfN5lNkmWpVB4kVF5lOFZXa0qeRpKhb8ohneGEt0AgGLQraSiNG555YJK14G01zqzcq1XZ0omZIo4iuOLb9glz4HMe9m2W1ZVEpAkYizJcCpA7rmtQiapQOX9ILVGRGxx0sNaTkI9r3Rt5iAK6NR7P1qOU3i9SXWJ1XnDIZ16Q3n8SAErTkBEhQvVucSvBx3IKqRVrC6ieeSeL2r3pSTZ26OQkz0HN2EtWXiWzrqQFADI2DPJvsM9DyFTl61KsLcQBA6d1HtOcH0vJyxT830GIF2IA8QtsWQgY7sXPSslFOIS6y7Zd70qZO97qyrIlVBAJocthoToK+KRDCFOCbI31Ne+9jVs3LgRf/3Xf40zzzwTV199NdXQBnMJCwgF3jwyFWvLdnoTwjIPBgaG1bIk25okVBZCn1f2wSiwQJI5R1JquRByLyWF4B8ZcKnkeinEZZPuCxdfEsULYSInlCiIMBPiqsFJXFYPgHxrt8r4MuyiariYvNWN9BQKZLWCL6ikZUrc8soF1a4DuY06pDbqskSDii2IDJQUilLjy90T3Bsz2fOrZOUkoZwDoF5wlvFEViHeJKxxgJhU6jEHA4kiArfRp2whIgqpwNA+3s/j1NWLCTLECwA4fQ34iuR70JS3g7Ic+SJVWdkNsspT6dBhyD/DnLpaECmraEYyn0AruFVkfNcV7q4uo+ghCinhAjWfy6Gylgm7VNmTtKeR7Wb0lAM8C8eVKbxJZ17JCBEkiWqVZzDk10ZOpQJ/uhybEbviKZHvonwWB+91sIPs6fP5z38eV111FbZv344rr7wSX/jCF6iGNphD2J5gOIBkqKSIZYhMG58Iomodz0OEWgERSvglCz8YJVqWZcIvZUmHyH+Zj2zlUsn1tLqRsvmhU5uLQsrnXrXFVxBqBKmCn7aECqOU8WU2t9WKmmKlhDBKWbLaqdXlNxuSKnSdllcRKHUFqGzUZTqTVAgTDgVYC8phs4KwPA+BRJuotF+65CkOA0mPX6VsA8l3gQJRIa3eViFlJAuOIkphqvekrFrPadAosi23QBwi5Y+uTiKLQKeYIO2DrdgZ1Z7LlSPEHQVFutJ6X+H1IV1MUOi8k+nGjebgFUsA0RpeputXmtTXUQMTQ8Vjn8r6qWtsJoW45fQWbSmJB3o8t0MJOzYdhbjs88Bm7mYUgcxzWbaApHI8VPab0grxCr29bh6iHDae8FQDHpDtmp944gls2rQJALBp0yZs3bqVamiDOYRTE1eUiRKzTrXa239XMiTFcsRU51IiBZEx46FlH8yWhaDIqkDWg0sAUosDmfBL2QU1U+glN3pZMsiQCj03mLIBWQKLQylFQAkKcdkFkIoKQ6q1VHp8ScWwpKrarpTU3iepSgYgTVarbDZCyWegLRMCXRLkN+qSHtySrboy73MVKNnKSMCyLCliSZaME9m464yvYh0kq6xWUVupBx/KzCGp5urrbTsQNn1AxjO6FdTZBcnCVRQyqf9+LLJWkDlebp+6zQg3ontEfi2rYikQ+k1Yjlw0lpS9RXseFSW63LMFUHh/VKtq6yrpIFLe9bu0/ZmKvRr3WkHQHkteoc93/GU8qKU89EVzs6SsY3qvv2XsmhwJEVj3PHJWTdyddCLgsKiZHVv+flQqxChk6HAo87PALT6JIeLgYCAGMsYtSPgIO46DpoJfmsH8A8dNbVUqPV+6MgF6gKjqXN4rT/gFGQRSXrF2rYaw4MEcSL5ghch7CcsGqfBL6XO1MAnxXtY0ssRFEWQVuCIhM6FEhwC7h7iKklSStJHx0wMU2u8kF7Uq9hZlqEhkVcmAXLcBoLjZkC60qXh8y/26NCSDBB3J9610kUiyLVja5kfBVoYT0jYdskUVaTJJTcEpU/RQtWWRI2UUC5oyz28BNVfo+7AlFMF5wZpRoLLcOFkkqiyJ6zbyvbmlMz+YCXHLkyd0AShZnYms57MQ+oG0QtxVUPurdJMpdd3JZhT08KXPhCyZXOft8ATkFaOh7P6L2ToMiK4rkeMk/+zltUzhOC62QCFe9l3ds2MXACQ6uCzHkReGtOeRFz6wkaWC/visQaCB3DVtKxTyAIU9VU3OC10HMjlsbUh2EQk7OBgIQa6UXoCpqSl87GMfa/95YmKi488A8MlPfpJqOoOS4NRqaO4vDjaSHrNaQbPXwy+U80iKKoxThcnnoaSVQOxJ6/b39/7lMJRT6rXaaZx6I3u4IIBVqQiPF4WATsF2C25p2YA3QcgkIwMtKwjm6nhMXtueRzdmL3JOoY02z9ddtRW/8PtKqOC4PRZVAuxUCOto0TkgNr6y/cSQ2Pi+XPisrdJyp4DYV9qp1cT/kSTJoWJjJE2gqRRZJB+Hlm0jaDaLn7MJSKueZIs4shsCSUJW9p4oI2wWyH9udv2erF1DvWXtMyD4zPAlCfFqDTN7R4V/P5rDhyXxHovv56K1UPcckt9DQeEmS/yInN+g2YTlShybRiPy2h7ufGaHzaac0jzneSZ9vcWfJwMy6sbIO5YvlwWYLQLYQ2Lvuxiyth8A4A4MoLlvn9w7CdF5lJ3LafRh5rlnpf6Niod4TGR6g2LPFkBNiS4L+c67ipRtlQqU3lOShU/Z57AsnFaxq+f+UbY7R5BoV4FqyHovCIkVZI+DQBdBaSG7ChYhzVGe6y/uAnQb9cLfkxZwWeL3mWyWQ5RRwZ+XZNdrCEpS5tvVKoI9e1nniJ+TTlXuPWmQDTJC/IwzzsBtt93W/vPpp5/e8eeyNkoGtHBqNUzv2kU6pl2hf1AIKdkl1W4yi7LQ9+UUvb1U8r4PyG5Qp6bgNgoKArJJ2LYVEbO9/o2swqRagz+xQ/xzKCBW+lES4gAKFaWyBRfLi1TdWWSHcit+AZEj3SI3zyAfYCdPLrK2PUqTo707aSggS+wD8gUbFYSBD9sTLwpyB0YCs96P4oS4pJJecqMuraqSVXCXFB4ng7ijwalWe/+yAtnQHJ+AwMgAFMhqma6zeI4yfOIl72fLcVrrKXGokntFxQ9Zz2inUc/02pYtCORBhRCfeWZP9g8lVXbciLyLx+GpEOKSx9YbGMDMvn2oLl0qP5e0h3j2NVE8j7z4oaj4kTuPyvO3FVoveh2GgS9lF1TG2jASYkkcK2l7tRr8555X+GTicAUsnwAVlevc223IQkSsIN/tVum53lMJ2VVBGASwPXE6zW3UMfmsZBFOEO33fw9CXPadb1ejta9T7zEuFN6D1Rpm9spzQtLrX89T63JSgErAsdIcE5MyWzeDApAR4rfccgvVUAbzCByeoBxt1Xa1gmYvIiEMpUhmu1rDzOg+od8Nw1BSKVYtVN7Lktdi7cWyoX6Rh3GvF2AYSgbH1arwd/O3XPYiiJVgFWzQlfyCs0l76QWFgAeb9OaK205COsBO1i+uJuerqqAympYo7KkpsfjtJ1R8pWXV+ioI/QBWTbZdnD5MNwm7UpFT36qEC8ls1BWyK6S8IH05j+b2v5PNQJBA7JMrQohHhRsZBX1DSgCgUriUvtekfeIVLVO4iQMFcs9ueX7mneuw2ZQM6uzD+K7d3eMEvnCRa/bD2V3HLWw2YUmMU+T9LR8IK0eEyiLydJdft8ko3WO4g4MYf/xx+bmaCh7iSveLeJdQDLe/D5Pb5EgwlcJzfE15ol0uTfkiAjecRgNT28VFM9IdlVX+vBGn3sDk88/1/D3pzhnZYuQ8sBh2avWehX7pjAmR9b3s/WN1P9NFEPoBrKpkBgWTxVVknzUBjIwU/p5sISZ+rggT4jKFahU7KUC+kK+SbAwo+XTbkgHwKnDqNTQFOSqD3pg/8gODeQnbdclbMe2K1zssTvK5JbLACRM+90JjSqi5VMYu+rzSqjAhz8UQlkxwlKBlg+x3t1x3XrRcqoQ2FQW5qNgj5CmApSvfAh5sSgs9hWMkCumQKWYLDXn7CbnWVZXg3TIg6ysNKCoqBUOmZufgJelk/bGBVpvutMQ1Jdk1Iqtyl71mZaHiM2l7FbkwW0nIKKBllZzc97RKS7p8YJdacKf0dSQS5Kw5h9NoFKp3Qwn7omi8HIV4U77A5w30Y2bfWOc4vhyxXmRNFkiS65GVgvh6VfbZ5zb6lOwTlUjd/j40x8Z6/2J6LklPeSC2b5ObJ2j6UucGANw++eOnkkvj9vejOSY+j1JAaI88HV3kefTnQbZAbwvYbejC6St+dsWQtYbjh5gHtQyEQjUZPMTlrcAUfJ8BeeGDhMVVGIZSzyfRZ6eSvZdg14asTVa07pInxJU6AKyWiE9qIjmOI5qGf//m1svzRD8YYAhxg9Jh2QrBLz0g4nksm3ws5ZUn6yFeryMo2HhLb4Kr9As8WzAIT/a4lvGiiNoKexAbKoq1HoswsqKIbKu/iAebbJGl4rEqlGWDNaU9xCVDFmU3JlELtIRijpm8VEW0CZBXiEt7tcrOw2zXoUIEFBWxsieRC8eV9e5XaqmHOJGpQsjYssGUkogUnWLHSH7TJ0uIK2zIZJc+0u8CeY9ZtXtBPqBVtrgShWAWEOK+HDEZKfQzQjUVFL/e0FBXm3cwI6dYL+rYCCU3+9GxEiNCQ9+XavEHAHegH8198mo0lW4i23URKAhxdCwSpIo7zaa0qlopl0VhzRARseKEeDAjf+1zB2uq+JRLiXIkO6VUINx5oGqLI0paywb1iYasSxw/odBE2fecwPpetsMtukfVwh3Z1qrSSu5+scJbKHfPFHUzdQ0tqRBXsWCLJlIJbK72FmR2TRPOs6JVBLuETpeDCfNvd24w/2CptYyUCdtxe4a2SbemSawkpD3EbQdhkH9MZck5S0ghLgdRhXgU1ji/PKedRl9PhYmKMoPSv69oQadkmSKwOJRTWPOqaGzJY6niIS71+VXUnjPiak8VQshyohBHTigpxBXuHVkyWcmuwxJXoaucD1lSX5ZQlg6bVdiIxdkFIlDZ6KlYEMiNL1aoBeQLN7Idcare03LKaslCoAohrkDsy7Y5K4Ur9vcVkrCyBKhlWXBq3aoqf2oKtognfQLe8BBmdnfar4S+nKq7/e8yrgdZsj9qwxc778GM/OeM/FfV3kUq3U6WLa9UVT3+0teyZGcCoHYMlIpI/f1S6nqVYyYtBpiPkOxwkR5esPNApWCkYnM3l2Nbbu81B8f6Xm0fpRjuKEuYCnZMhpIZXW5fQ8x/X7YLvyFeaIuOO5kjMymicyy/PlLhOLj3b5btAAU8koEcDCFu0BO2J0C2LoB7Mgzk2xwBwWKApD95T8i2AGpsVvIgkuINIPrusqSMRMulUnuvwKIgbDalCbdC7zfJe6BoQSftfStALkf2CpKLQ8bwHhHf8ySkF8yy5BZ3gGAoGWoLNXJLFo5AOFEaKkFp0udbQbUqQ1iXoYptyXCk5pB51KlYpkgR1orjixY+VJ7tMrkm7OGvSoUhuWwAWVLMchwFIlGFEOe1lwGA6tKlmNq+vWhQ6TEri0YwnSKyg6lp2FXxAF8A8IaHuzIkZElsIP96iEhXCYW4YIhfPLbKWthyHCnbKx2UZTECRGr/5qh4HoisnU0bEgVbQO2ekT1usp0IgNy9r/KMB6J/Qm3dkYRdLSecshfprlSYr9eFAlpVCH9HwJIsDEOpUypSDJK2vXHdnveS7LGNulZVvKwV7lPRbjRZq0VRtbXkpRF1IAne875cpxQQCTVKyUxSsWcJQkBhHenU6+LiDchZ4xjQwxDiBj3Rq2Ksoh63XIe+ctZLye7LK5lFU4kjH21Zr1UXQTN77Ghhzx8WUQRhhW0YwrIlvXhlWi4lA0uB2KOthyLBD6T9Jt1+NR/NLBQRU5HfKm3LmSyJKbIw1oG0/YTCxkEGqkGRwvYTKmrbEpRYURilrImqSneFpEJcxb9a4ppSIgGrFWmPSWlloEzopaKCW0phLUv4ithVxeMrkwGiGzOFZ4aEclC26wyI7mkZj99gppkZvFz8wSR/XeE4SRPiKl7FjgOEtMRYbcVyTDz9TMff+ZMTcGq9w8I6PptlRWu4xPownJmRD1vsy/Z8jUhX8fPu9LCXSUI2jDRG5JsuaZuiuMl3Bwd7BvF1QdGPWXYu1YKCNziAmVGJeVSevxL+xK1Z5J9h9ZpwN4KsfcLsHLxiALdfzlpGBXbF65mnwbouVLKFFHh/hyEgud/tVeAIZmbk33M9IB96ra4QV8nHENlLqubEUHc/yNiahH4gfc+rFEBV3i0qdk+h34StQojLvJMVREZA9IyRERoZ5MMQ4gY9YfcKlwwCeUK0oG0lCjyQJ3h7kddKbf6i7dkqx6Bez30BqBAFAK21TaTi7l20CBUsU2SIPpXxxcZVCHvK2bwCkG9Bi9PAsz6bSqBgj/lVQmuEQ7pUlCgCwacdc6gsDC1LSpElS15GXpdiBKnSfaKavs4MFfsDW8XTXUX9LBG4KL1ZVPGBlYRUYJniZlp046GmUBTfBCht2CsVcQ9IlfElugBUbH3c/t52Xh1zNBWIAkl1pVImgCxhpbim8YYGu7y6dRCpgfdh8rnn0RyfQDA9DX//OJxGQ3qsyqJFHQp2X0VpnuFFDkDap7poPZFGoHJNoWUTs4fuXBShMjyMmb17SplL9hqL1Psqx29Ybh4NkpDTDsQbGBAujKjaJ7h9cs9JlfFF3lORHaYaVSLyrlVZh4iuC1XWzG5/P5r7ii13lNZmPd4XqkWmIshbpojbsXXMo9zJIXb9SRerRQJdVbbUguuKsNmUt0cTPB66cGri78kYqtkUTqMu3rWlWsyVtMgyyIchxA16old4hUr7oF2vI8h5oav6cvYMgVRRHAq2f4cKtiHu4CBmRvMWlaG84rzikZI1oqpzWY8zQL7lUvZYAOhJhiqFPSkEcuShyC9YtVpcBCU/PdHriWGBnIbSxqGhll4uPL7IwrMFtY0Pv2UKEHndSbVyq/heSioz1CxTJOw6VBSrtg3uvkZhD0gobnglNh5K3tIyXpOSNk6AXNFK5Ry7jbpEa7BaUKQcIa7iMSundFPzEO/24i6eQ03pVl2+HJPbnpX+d0VYdPqLMf7EExjdsgXP33IrZkb3wanXpMdprF2L0ft+1ybWgqkp2FW5cfJIZtlr17Jt4SKIssI5h7zPnScI1IgXxB7te9T+sSRk2+gDhVBNoHX8JAoK0fNFgYjpaygFoIpCdF8ERM8v2U5MICaTeQlxkfdU6Kt9fqBFVvWaQ0VdXBcj2pSI2v4C0U88rkJnlAhxJ++zX5wzIJ0hIrPn6ZpHgbQWLMjIPgN6PadVi2Wi5GsYyCvEHcH7URd2TTA0NgElgRoAt9En3g3YVLP0VeqkMsiEIcQNeqKXl7TK4tqt19HMIUfCQF6tBMQb8fwXTOD70sSqW6uhKbjpk7Ut8QYH0SR8kEWLL/4KaxpKiwEZ5atCsQGI7U3yj4eKd2Lhgk2RJ8sM1FIgKHorS+UKF3LWBGrkpbQHrYqin3GRJVWdV934SB4jFTWTTGtfPI+a7yizh7jM8VL1l2b2+ZPZGETWB7IbMYnxVVT0bu+A69nx1Qp/oip6FQV31L0koepRIAZkbSdkiYLoHMsE6ykGzEqFIqvdb7XlyzDxzDOk3tVuo4FFp74Ii158Kha96EXoO3SDUuih29+HweOOxY6f/QLTu3ajuX8cTl3OeiXvHaIS3Ji2cMlDRFKqWH7IKan9ySk4NflCA9Cy/ghC8awZyWD7JCzLAiwI2zgqFxQG+uXIC8ViQm3FCkw+97zaPxaAZVkIw1CIWFPxEwbkPPFV4PT1Y6aHEhpQJ8MAUbW1/L0YPTME3uEqQpVqFcF0D5sXBRucnt0lCuuqXnkcssRs1H2mICpTESYIFnxU9qmV4SFM79lTMKbi80uwQ0jFkkukEEOBmKeR6qZXyAYBWl3WgtdToPicqYwMY3rXLlJ3gIMVhhA36Am7R7heqFDZKmwlUfCfAuIWuPxFgpJlSi+7GA0UtvereGMVtOepPiwtp7fXuzo5xuczCwhUyRUWokB2crRqxT03UGseqIm5/ZgjhbzEPwjlLUe4N1UynqrKbaYS7X0qxSmgR1hs3jwMvv4dUDlefRJ2IKobXatYlaQLV/I7yLbuy1gVqfq/AmLPRNUQPNHNk5KCu19c1RP68htL2XtNBd7QUFfgYxGiDazc95BRJAPq59qybTTWrsWeu+/BxLZnMbHtWUxt3678rEujsmgE/Yceqvzv66tWYfFpp2L3nXeiObpXWmkeHcew61iqdF56w8NdgaFZUA2FtBwHlm0Lb/KbY/vg9PVJzxOjvmolJrdtE/rdmdFReIMDynPVVq4U7kRQKVYArePnulKdFSqoLl2C6R07WOdwBDOG1O0GxN+DKnAE93ZahPhAf0+lvrpPvKCdJUNQvMqe3xvqDiHWhdvjGpHuslEsqKl0EdiCGU0q9lbe8DCmd+W/BwKFrAugtacWyEBQ6WwRLvLEc2hYQtmVilSeUdCcUXoGWLBa7/fexXzVXA/LsuH292Pi6WcwtWMHmhJCCINOGELcoCd6pTkHCovDaFNY4J+sQurUavDHiy1TIOnz3dOGRROW42Q/LBXey25/vvJP+ZjW873e2/B96QRmKUJccUHdkxBXDFHMbFFSaBEDYk/y7nOm1upP22IqZ02g1toLyC1spJWSDQmFuML6SkYhrkKIy5LIqgSm25Ak3hX97mSgFFTUo3jbMb5qO3qDOexLoqshaDZheZJEpmUJX+vhzIxUsF8MUSuhYGYGdkXOcxmIiYbe953K2kTWk1H2mRQToCJQ3fRVhuWsLYJpee9roLV+EVVuazwz+o84HN7wEJr79qG5bx/23nc/xp98Ssn3mwPe0BAWvfhUDJ14ghKpUlu2FFPPdyp6VdY9ERG6s+fv6fj11tes7golzcLU9h3Y/9jjqC5ZojRPPNfYw4/2vA+mtu/AvgceRG3VSuW5GmtWY+yRR4TuuWBmBpait7fo8QOg3I3kVMWViaqoLF7cdc1mQaVoCBTvETvHV/P4ju/TXudb51wLdcVpCDt7fXaVNScQB/X16AqX3vPld4Sqvud67vGaNEXTXlAp+liWJbQOUC2YWBY6zmHo+xh/4klMbNsWretUMiQE7TlUukJkuk4AKO+5gbh7XHyNFyhkg8TwhgaFigjB9LTSWhgA+jZsQOj7aI6PY+9992Py2Wfhz8wK7ab39C6SGxhC3IACCoSohdbDL2M1oNo6YteqCGYK2qcUwl2ioE4JVaMkKsPDmN65i2SsIpJZL7ChVyiM/KLDdt3IG1UAqi2XUVBS/otIlWjPIhsCxepuRBzlEOKyrf69rBAILV26fkfxHNkVT9rPTQYyfswqRSgpL03F55rMZkG1Fd5pFHfXdM2jrK7mLYAU+fKnoewLmFPE6hpfcZPnSISJqSoVAbHPFyiGukUK5T29P4NiuJ8waR0qdC/1sF6jgDfQL6SW88fH4TTkLDiA+F0g/h3Uz7O4f6WqKhmI7uv+Qw/FwJFHYODII7D4jNOw81e3wxseVhqPA97QEGrLlyv92/qaNRh/8qnOv1TIZhG976LNtyKhu2pVT0J3evdu7N2yBfWVK1Bdqk6IO7UaKosXYezhR3J/J5iZwZ577kF91UpUly5Vn6teh9vf35PkDcMQYRAqq0nrq1YKEeK6OTLe4GDPbgGdLovGurXd12zmHGp7D1HCWrWDFOjd/QyoPxsBBZJPAiKZLMprnB7v19CXX3dYltUigWc7YaZ27sTYI49iesdOpedRLwsP1WKM9PlSWGcArcJVD8FdpMaXH7uxbi323nMvmuMT2P/449j9m99iascO7H/0cex76GElKysZgY7K81G0awNorScUrHUBeTV69L6sKs0VBRALiDdmppWfM06thr5169C3bh2Gjj0G/sQE9t33O4w/9RT2P/44Jp4SLMAe5DCEuIEYLCAMs9tjVVRYQJzo3E0mhTPTsBQqZRaKlW8q1XJZX3BZ1FauwNjjjyMMAwR+E/uffFKovSYLlhW1MGfaoygGNjh9AgErzGpRVeI6Kmbke+GpeppGwUh7OsfSIdcyCXHFVn/iFlNbsC029NVaM2XIPxWItiWqQkpFr0gIifrCAhqFGUkSUHUjbVf5LKiSECviqBEOIm3Qs+MrPLekioVqXS4iRACgTgZUhocxs3eP0PiyCncAqIyMYIqokJxGm4gRUT4r8hyNdesw/sQTuT9v7t+P0ft/j71b7lMiFGU9kYMpNXVSL6/SJELFNu0sONUqVpx/HvrWryMZb67hDQ6gOTaGqe16NhdONXpf97KyCaam4FTVNvh2pQLLtgoC4YG9W36HkRedgsa6ddoKzaHjj8P41q0Ye/TRzJ/ve+BB9B96aDSXIkkdY/DoozF63+9yicbxp57C3nu3oDI8pDyH7XmwHKdnB8fM6CjcAXULmL4NGzD6u98X/o4/OQlb0ePdqVYjj/cegoYoaFbtWnMH+nseJxW7pxje0CCao8XjB9PqhDggn50iCm9kpNAWA1AnU6tLl2Dy2edyf65qg+MND7WLQc3xCez57V2wqxXs/NXtcBXsjjiCOi3XlbP200Bl8aKegjiV4gMA1FevRnXJEmy/+WZMPb8d9dWrMHzSC7Do1FMw9tDDyt1VdsXr3SGpuC6qLl6Mqe3bhX7XHx9XCsIGoutQxFpsZnQU+598Es3xceUsDHd4CNM7Bbq2pmeUVegd8/X3o3HIBtTXrYVdqcBpNNB/1BHa4x4MMIS4gRDcAmJUlRB3BwbQHOteVPuT6ot12FY+oazYPhbx7DyBBU61hsrQEEZ/dz9G792C6R07MPq7+5UXqVGIS/cxVfUMc/v64Aso8VQKB5bnCqmDVb2+gVZ7eg6xoapccQcGuhbpqv5feSFVYVO+pa2Xn56SDY+gDYuKzx3Qqp4XbKx1IWMPoTyH6wgGmakR4lK2LKrtybXeSpXOeRTvnUYdTVFrFsXzJtp1oNoK7Q0K+igq2o20/72gSkmFBIqUvQLhSDMzGsotkTbRGWkPdCAilRAGvQlf1Y3Z0iWY6uHBGwXYqhFwlSWLMb1jZ+453vf7B+DU6+g7ZAMa69RIX2lPZJV7YXi4qzich2BGXSGehcrwMLttU5lYdOqp2HPXXdh77xYE09PKqtLa8uU9Vc7+5KQySQkAwye9ADt/dXumQnhq5y5YtgVPg8xNwnIcLHnpSzC9Yyd2/+a3HTYAUzt3YWr7djSICiNufx8GjjoKO37xS0w+23nvTO3Yif2PPIba8uUYPO5YrXmGTz4JO2//NUbv/33meR5/4gnsvVetGBbDGxkGLGDP3ffkPif9iUllogeIbGbGn3q68Hf8iQm4Cl0uANBYuxbjTzxZPP7UNBxlO4Ohnh0uKmvxJKKO0j3ZYweBcnBqdcninj7xUeem/DO3umxZ4TNE1XJj8NhjMPq732HPPfdi169ux9Dxx6GxZg2WnvkKDBx5pPR4cQ4RZeCyU6upBWsqoLJ4EaZ6kKXBjNo5tBwHfYdswOIzzsDIKS9EfdUqWLYNu1LBqgtfi8aa1Uqfub52LfZvzS/m63RDVJctEy4KT+/eo9whZrseLKDDViSNoDmD0d/9Dv7+/WiOjSlzEI5XgWVZXXuGECH2P/449j38MMafeioK5K6pPSfTsGChumgxasuWobZsGRxPn2g/GGAIcQMhVBYVVDKbTUChCu0NDna0DU8++yxGf/97jG99Qrl66fb35wdLKiqZZQMYZNF/xOForFuLvsMPx/DJJ2Fqx05UhtQUKNVlSzH1fHeFNZiZVlrA2K6LwOcJkKssWtSTdAAilYNqMIw3mN+upKrgtGwb7sBAx7Xb3D8OVyE8yqnX4Wd1Saj4xlUqCIvsfVSCWgVDKUNFsiMizvbIfzAZFBRFYkSKOrWdicimCmgVDlV9+wSLBqrdFCoBp8rhnRO8dhTu4ACaAscralFU8K8WDHQMFMlkQEwZp4PKohHMCChkVBWEtuchmJ7quTnyJybg1NU2AdWlS9mC42orVhQq5ID4s6uRSZZlobJoBNO7utdUE9uexczoKPo2rEdt2TJlhW199WpMPJVvadAcn8Du3/wWe+65N7f7rxeiArygF6eCBcjBBLe/D4tf+lI4fQ1s/+ltyirkxrq12L81m0Tc9+BD2H3nb6IWcA2Sz+3rw+IzTsPYww9j952/we7f3oVgehrTe/Zi9513YujEE5THzoJTr2PklBfCGx7Czp//Mprzzt9g9513YtGpp5JeV/XVq7Do1Bdh75b7sPvO32Bq+w6Evo+999yDkRe9ELXly7SOHRAVhpe85HQE09PY+ctfYfT3D7R/NrVzJ8YefRxDJx6P2kp1T3TLsrDoxafCqdex8xe/bN3n0fO4OTaG3Xf+Bnu33AdPca8BtDzeH3ooc301tXMXdt/5G4w/8QTcwUGl8StLFvdUV/oT48r7xeqSxQLPeb2iQZGth456Pg5OLHrHqlroZe1xklBd29ieh6WveDkaa9dg5EWnoLZiBYBon6Z6T3kjBWGdCnseu1rN3JNxoDI8XGj5AqjnArXnWDTStSdw+/qUi8n1lSsw/sQTHZ1ho/f/fvaZfMed6oK+gX4he5Hxp57G2MOPoLZ8mdI8AFBdsQJTz+UXffb9/gH0HXIIBo46EotefKryPEDE8Yz+7ndojo1h/KmnMPr732O0VfiuLV+G6Z270BzbB7umXqQ20AedXMPggEZl0Qj2b92Kvg0bun7mT02hqvBS94aHMPb/Z+++4+O4y8SPf2a2r7Zq1WVJ7r1LTnOKUzA1lANCGgeBkEIL5HJHSUggBDggcNyPXkNJDi7JcbQ7jsQksZXmWHLvVbJldWm1u9L2nfn9IUuxbElWW+1Ket6vl15xtsw8W2Z25pnv93mOHgUg0txMpKEB19IlJLq6MOaMIyEe6sbkPP8ATB9j4r5vhOZQB0XjHT2uKOqAePOvvHzMCWCzx0PPsdenlmrJJOH6egw225gPvBSDipZKoo5xWuJQLHl5RJubsZWUDPu4sU4Zg94LBNHm5kFPLsdTozFnzmwCu/dgdOT0ngj6/XjXrhnTslSziVT0/IPu8U7/nQhGu30Uyd4xJMRH2KQFGPNoT5PLSSIYxOz1Dr3oMcYPveUb4p2dWPJ8wz6ud4T42GYknDtabSipaHTMSTqUsTdhGimD3U5yBKOrx8Pk9hDv6rrg6Do9MbbPfKQXD8ZzIt03UsacphrJZq+X0MHDF3yclhjHvjcvj1hbG9aCgSctyXCEwJ49/c26x5oQN+d66amr7z+pht7RSV07d6FFY1iLCsc8ItnkdhF5tRH3iuXnbQ+hQ4eJ+/2kotExj94GsM+uILBrD/lXXdF/W/DAQSKnG3uPAcbJaO+dqp8IBAZNegX27MVWWtw70GGMo7r63pt07zdmCqPdhmPuXKyFhWPeLowOB6lI5LyL6sGDh0gEAriXLR3X6PA+JqeTvMvXo8VixNraaat+ET2ZJPfiiydsdPjZFIOh/73p+766TKaxzyYdhsnlIv/KK0hFInS8uhXVYsVWVjamQQ9DMTocuFeuIHWmPFL7y6+gqCqJQIC89esxOsa/LtVoxLFgPraSEnrq62ivfhHVbCYRDOFesRyn04FhHK9JNZmwV1TQ/uLLeCvX9scc7/Tjr63Fd/FFuJYuGfNnpChK/yzKc/dhuq7TtX0HWjKFvXzWmONXzWaiLS0D6v93Hz/RO0JaUdCTSWxjHE0LvQMmek7UnXd75HQjoSNHx5zUUxQFk9dDwt+FOXfwY1ttjMecADkVFYRPnsTsOf/ilhaPY3Q4xrRcg8025n3bYPou7lt8uUDvxZ7eUmP5YxrjYrBaSUXT1zT9bIrB0FvmVB+6J8FYZ32mi2IwkHfZZbS/9BImt/vMQEMj7mVLAOg+emzI7+MFl60oKKo6bKm+cMNpQgcPkX/F+nF9jyx5eQT27ME+6/x9R09dHeh6/z7BMMb64X2M9hxcy5cR2LsXg92Oc8F8AFSbDQUF94plvb3z0lyiVwwve7YykdUU1YDBaiXa2oo510tw34H+OoWpnh6cC0dfo0hBweTx0FlbC7qOd+0aFNWA75JLxhynyeEgfPo0g+0mx3pyb3Q6SQaDWPIGT7CMdVTmUMbaKAJ6k+uGM3WpVauFrl27SfX0oKgKnjWrx7RMs693evdYG0YNxeR2ETp06IKP0+KJMV9xthYWEjp8BNfiRecvNxYbc6MMi8+HYlBRTSZcy5bS+eprQ34/LqRvWuiAbWiMyV/FMPjBhK7rYzs4tOcQaWy64OP0ZHJMJ9l9B4QXXP44Ll70daIfLiGeio59pI7Zl3vBab0w9lqUJpeT0OELJy+ht66eOTd31OuA1xvNmMZQy3GkLHk+uo8ew7loBNNjx3hsaPZ4CI7gAkIqFkcZ41RC1WwmdYE6vKlIeByjn/Po2r4Dzhw4D2as9eLh9Tq2g12IA4g0NtJ99DjqOEYm2SsqCB06NCAhHmlqJrBrN541q0kEAoQOHca7rmpMy7cWFhI8cOhMwyMzyZ4eOrfVYC0owLV0Ca3PPY9j/tDv33AUgwF7RdmAC7Z6KkXnthrQwbN2NcCY6m73MXs8vaOBN1f3l15RTSYKrr5qwo4nci+qov3FlwcZQaljsNmwz5qFrbQURrAPHkrvjIn07jdmmvEmXm2lJbRtrib3koswWCy931sg96KJHU2tmkyoJhNGhwNrSXHvlPxxjp6+kIlMSg9HNZtRzWYKrr0GPZUa17Y+FEVRMDoceCvX9pddm+j3sHcdObiWLu0vJTaR63AuWoglP4/2F1/q38+kwmHyrrxizKVSzmafPZuOrdvwrFxO6PDR/tv1ZBKT20XPiRN416wa8/I9a1bR9sKWAftIXUvhu/QSksEgrS9swXfp2M9JexOsA0ccp2IxggcPkuzuxjOO2RT2sjLCp04NmYDUU8kxzYKD3tH5Xbt29V8s6Nq9h2Qo1P9dHevst4lmyc+n9bkXyJkzG1SVjle34lmzhq6dO8c0+8GYM7JBQH3G2zDV5DwziG+I38/e/EJ2peqMjhwKrrm6/9xNNZv7E/qe1WPfFqF31klw3/5Bl9M7mGIvhdddM+79l2o0oppM9Jw6RU5ZGQA9p04Rb29HNRpxLV82ruWfy+Rw4q2qQjGoKMrA32BFNWAYR95HTIzs2spEVnMuWoS/tpaeujpyZle83tFdUcZ8Zcsxf17vaI9xLONsw5d40M/bEY2E0ekgOkxXeC0eS8vB8ljZiosI7NkLBhVbSQm20pLe6cpjeO0A1sICQgcODZoQ751qPbbPrbfp5YWbl2jxOCb32KZcKgYDJqeT8MlTvVOJ6+rpqavHuWB+b0JrHFOUfJdd2n8QcPYov9GylRTTVv0SxpwcQkeO9p5EjHF0uKWggGhL63n14XoTymOoLW23jahkynhGjKhm0wiSi2MvrWDyuAnX1Q/7mPFMXTVYrQPqmg5lrCM9VLN5RDWxgf5SC2PRO7XXP7LE1ljre5tM6KnUsCNi4ExNyDHurww59hF1kNdi0TFv/yZP70UWQ8H5o7uSPT34a7aTikbIW79+TMs3WHprug/2PumpFB2vvoYWi2EtLhpiCRdmLx/kQhy9I4ejLa3kb7hyXIlZk8tJKhIhfPIkye4eYu3tpKJRCq69GtVkwlpYgGPB/HHNhHHMnUPblureCxTRKN41azDn+VAUhaI3vXHMywXImTOH9uoX6T56DOidJp5TUUHOvLkTNnvHW7l24OhsRZnQmUFGh4PCN75h8BHgZ9ajKAqM43O2FBYQbW4edr8xnlq5YvQc8+dh9rhpf/FlFINKzuzZ5Mydk9ZZZ+kYqZ0NVKMR0jxCU1HVtL9/iqKkZR2KomDx+SjceN3ZN07Yd83iy8WzeiWdr75G/oarBoycV1QVz9o141qXwWo9fx95Jn5Dfj6z3vMP434tiqIMmEUTrj+Jc9FCbKWl41q22ZdL186dhE81YC/rHekaPtVAz/ET5F5UhRYb+3G5oijkX3UlbS9sJmQ+jCHHjmPBfDpf24ZqsUzoKO/xMFgsOBctpPWFzSiq2ttM0pdLwTVXj2l5Roejv/HnSIy3/JS1qIhoU1P/76eu63S+tg2j3Y57xfLewUbjGJiQLum68OmYO4f2l1+hbUv1efelojFyL6qasHW7li8jsGsP/v7Se0pvIn6C8lHnmqim4iI95NMRI6YajfguvnhCl6mgjDn5N+jyziRRBm30OcYkjsFkHrZpnhbPnqvlAGaPF98l53xO4zlgNFvQNe289zRw4ACpnp4x1++D3oT1hZqyavGxj+QEcK9cQXv1i/TU1aGnUuRdvp6WTc/1jvAex4WMiTrgVwwGzB43wYMHyb/yCgK794w50WUpyCdcV39+QjyRGFN5CNVovHDjOnoTymNNLlry84m1tAxbfiAZHvtoW5Pb3V9rcajPLNnTM+YyTQDqmcaawx6o6WP/zvRePBp++Z2vbUNPJMb8PlmLigns2n3BMhC9I5PHPsrQ5OqdcTPc6J1EqBuTc+wncsCQn3ekqZnQwYMoqmHMoyVNbheJrsB55UAAOrfV4l6xDItv+BI6F2ItKqLn2PHei8ZnhI4cJXLqFPbZs3HMnTOu5dtKiml9fjM9J070jvA5kxQ12O0UXnfNuJbdJ+/y9bRteRGDxUL+ledfNBzvPtReXoa9vGzQ+8a7bKPdTtEbN45rGReiKBN7/JOJdVgLC+l4ZeugswST4QidW7eia9qEzzATQ1MUBUt+PkVnJymFSKN0lkyyFhRQ8va3Db7eCdi3DbePnIjlm7we4h2d/WXcok3N+NZfOiGJ9oKrN9C2eQs9J04AvRcfXUsW49++A2NOzrjqn6smE4VvGLgP6TlRT7y9bULKLk0Ux9w55x0PjfW9NdjtJHtG3ucmGerGOI4SUdaiQlpfOIh9dgWq2Uznq1sx+3xEW1qJtbWRGsdgnakq77JLJ2U9CgqeVSsnZV0i+0lCXEw7lvx8Ym1t2IqL0ZJJunbu7E2OjOeATekdDX3uKGv/jp2oFnPaar1mC0tBHrG2VmzFvdPHgwcPoppMGLzecf1YW4sKiTY3D1rHq08qMo66yJyZhn7OaAHv2jX01NVlTd3Ts6eHeSvXjnk5Q9XkTsXiY07+G2w2kuHIsNNfx3PQZi8vw19TO2QitmvnLoIHDo55FP7rDexerzPYJxWN0vHyK+i6Tu66sTdOsRYXE2lsIqdi7DWFh2PyuIn7/YMmYAF6TtShGI3kjaP5i9FuIxWLDdvQNdzQQOjQ4WG31wux5OcTbW0bNCGeCATorKlFUVTcK5aPeR1mr6e3rvs5SWktkaBr504Kr71mXBfDLPn5dB87MSAJGG5ooPvwEaxFReNOhgM4Fy+ivfpFIo2vj1ZSjEbyr94wMUkAg4HC666h5dlN5F95xYSW/epfh6pSsOHKCV+uyB6qyQS6PugFqMDu3biXL0dLxMfVvE8IIaYqe3kZPcdPYMnPIxWJoJpNEzZaVDEYBh0N3X3sOPHOTlxLl0zIevo45s8jGI9nRY+jdFBUdURlHAG6du8h3t6OZ/Xqsa/PYMC1dCkdL70CqoqtuAjnwgXYZs3qzV0ksquGuBDTlWxlYtqxFBYQ3LcfW3ExoQMHyJk9Gy2RGLQT+kj1XTU2nTX9LNLUhKKqpMJhTGMsUzBVWAsL6dq1h/Cp06BrmHNzcY6xPuvZbKWlBHbtGjTB1rVrN9GWVtC1CZ/qaS0sGFeH6mylqCqc1ZQkFYvRtrmaVE8P7jHWKjTn5pLw+4dNiGvjqMFtsFhA1wctm9K1cxe6pmEvm4VliGTwSOTMnUPnthoKr3195KuWSNC25UU8q1aMe/SibVYp/prtgybEoy2ttL/08qCNXUcqp6KCzppaLPn5552IJMMRQocPU3jdtWNefh9bcRHR5pbeMkvniDQ20n34CPlXXTmukzlrUSEdr7za31imT7K7m46tr+G79JJxN2Xrrct/ckBiOtbWjn/HDjyrV4+7xJVqMmFyu+isqSWnooKunTtRLRbyrrh8wqZzKooy6KjqiXbuCDAhRqu3TFH3gO023NAAinLB5rZCCDGdmdxukt09JAIBoq1t2MYxoGCkHPPn0XPs+ISX87T4csm/Ymyl4KYK1WS84IxMPZUi3ukfc2mWs9mKi7CdMyvYaLehJ5Noiel78UGIbCIJcTHtGExmTA4H/h07MDocY252eDaLL5d4e3t/QlxLJgg3NOBds2ZG1IVSjSZyK9cSbmjAYLG8Xj9+nHpHpcYHlE3RUykC+/ajJRJ4K9cSaWiYkHXNFPayUnrq6rGXl9H63AvkVq0lfPIU1uLiMS3P7PUSaWw8L0mq6zptm6tRVAWjyzmug7acefPo2r5jQIO94N59aMkkuVWVY15uH5PLhb2s7EwDuzM36uBesWxCpvL3JfIjTc0DDmx1TSOwdy/eNavHVbbA6HBg9niIt3dg8nr6b9fiCdo2byb3oosmZISvvaKc9pdexlKQPyDeWFs7wf29o/THu7/ra+iYDIdRzWaizc2EDhxENVvwXXzRuJPh0DtFObF3H/GuLoJ79/WP+Mm7fD3GcZR4Optn5Qq6du8heOAAvvWXTdhyhZhqHPPnEdi1m7zL16PrOlo0SmD33oF1hYUQYgZSFAXP6pV07diFYjSSe/HYZ/KNlLWgYMgZhWJ4F5qRCfQOHBlHD5eRcCxYQLK7O63rEEL0mv6ZPDEjOSZg9PLZzLm59NSfImf2bKB31KetpGRGJMPPNp5SCUNxzJuLv3Y7npUrSEWidL62DUtBfn8i9NwyF2J4tlmz8NfUEmttxbt2DZb8/HFdwDD7cunatWtAUyBd18+UhyjEtXjR+GMuLiLe3k7n1tf6bzPY7eMqH3Mu58IFg9a5nSjeqrW0Pvc8JtcV/e9T8MBBcubMIWfO7HEv3zF/Hl279nBuM4TcdesmbBsxWK04Fy6k87VtA25XVJW8K9ZP2Ohnx4L5dO3Y+fqyr7xiQmeB9J2ABvbsxVpUNKAO90TyjHHWhRDTidnjwWC3EzpylGQoRLK7h9x1lTPu+EgIIQZjcrnGXPZPTC5bSQk9dfXDJsTDp06Nq6zfiOJIc8JdCPE6OVoVYgQU1YDBYiYVjYJBJXK6Ee/aNZkOa1qwl80i2d1NYM9eAHyXXdrfcVuMnmo0nt9UdRwURcFeXk5g9x5yzjSuiTY1E2trw3fpJRO2nnQfXKabwWLBu3Ytgb37+wdXG+z2cTc/7GN0OMhbn/5mM/ayWdjL0juldzJGL5lcLvLWX5bWdQghenlWraRr125Uk4n8Ky/PdDhCCCHEqJk8HhL+XUM2ZtdTKVLRGMacnAxEJ4RIhymZEP/gBz/If/zHf2A+qzbW/v37KT/TlO3UqVN8+MMf5qWXXqKgoICvfe1r3HjjjZkKV0wTloICwidPkopEcMybI6OfJpBryeJMhyCG4Zg3l+CBA3QfOw70jurNveTitDTim8qma216IYQYjmIwyCABIYQQU5qiKJhzvYM2ZgeItrTIcb4Q08yUzejde++9/Ou//uug9910002sXLmSP/7xj2zdupXrr7+e5cuXs3z51B6BKDLLkucjFQ5jdDqw+KRRlJg5FFXFvWxZpsMQQgghhBBCiLSwlZXRffgw2uwEJrcbo93Wf1/4VIOcDwkxzaiZDmCiHTlyhK1bt/KVr3wFm83Ghg0bePvb386vfvWrTIcmpjhFNZAzeza24pILP1gIIYQQQgghhBBTgjnXi7W4mGQwSOfWrYRPniIVixHr6CQViWB0SLkUIaaTKTtC/Cc/+Qk/+clPKCsr45577uFDH/oQAHv37qWiogKv19v/2NWrV/Pcc88NupympiaamprOu/3AgQPpCVwIIYQQQgghhBBCZA1FUciZXQGAyeshEQjS8cpW9GSC3IvWZTg6IcREm5IJ8U9+8pM8+uijeDweqquree9734vb7ebd73433d3deDyeAY/3eDyEQqFBl/XjH/+YL33pS5MQtRBCCCGEEEIIIYTIZn1N4M0eN6rVisnpzHRIQogJNiUT4mvXru3/99VXX83HPvYxnnrqKd797nfjcDgIBAIDHh8IBHAOsQO78847efvb337e7QcOHODWW2+d2MCFEEIIIYQQQgghRNaz5OdnOgQhRJpMyYT4uVRVRdd1AJYvX059fT1dXV39I8V37tw5ZEPN4uJiiouLJytUIYQQQgghhBBCCCGEEBkyJZtqPvnkk4RCITRN48UXX+R73/se73rXuwBYsGAB69at44EHHiASibBlyxb+9Kc/8YEPfCDDUQshhBBCCCGEEEIIIYTIpCk5Qvx73/sed9xxB6lUivLych555BFuvPHG/vt/97vf8aEPfQifz0dBQQE//vGPhxwhLoQQQgghhBBCCCGEEGJmmJIJ8S1btgx7f1lZGc8+++wkRSOEEEIIIYQQQgghhBBiKpiSJVOEEEIIIYQQQgghhBBCiNGakiPEJ0MkEgHgwIEDGY4kM460hDIdgpjGEq3OTIcghBBCCCGEEEKIKUxyV4ObqTmXvhxuX053OJIQH0JdXR0At956a2YDEUIIIYQQQgghhBBCCHFBdXV1rF+/ftjHKLqu65MUz5TS3t7O3/72N2bPno3NZst0OJPqwIED3HrrrTz++OMsWbIk0+EIIc4h26gQ2U22USGyl2yfQmQ32UaFyG6yjYpsFolEqKur441vfCN5eXnDPlZGiA8hLy+PW265JdNhZNSSJUtYu3ZtpsMQQgxBtlEhsptso0JkL9k+hchuso0Kkd1kGxXZ6kIjw/tIU00hhBBCCCGEEEIIIYQQM4IkxIUQQgghhBBCCCGEEELMCJIQF0IIIYQQQgghhBBCCDEjSEJcCCGEEEIIIYQQQgghxIwgCXFxnuLiYh566CGKi4szHYoQYhCyjQqR3WQbFSJ7yfYpRHaTbVSI7CbbqJguFF3X9UwHIYQQQgghhBBCCCGEEEKkm4wQF0IIIYQQQgghhBBCCDEjSEJcCCGEEEIIIYQQQgghxIwgCXEhhBBCCCGEEEIIIYQQM4IkxIUQQgghhBBCCCGEEELMCJIQF0IIIYQQQgghhBBCCDEjSEJcCCGEEEIIIYQQQgghxIwgCXEhhBBCCCGEEEIIIYQQM4IkxIUQQgghhBBCCCGEEELMCJIQF0IIIYQQQoxKXV0diqJw9OjRTIcihBBCCCHEqEhCXAghhBBCTAkbNmzggQcemJBlffGLX+Tyyy+fkGWd7Ze//CWzZs2a8OWK16Xrs+ujKAqbNm1K2/KFEEIIIURmSUJcCCGEEEIIkfV0XSeZTI75+YlEYgKjEUIIIYQQU5UkxIUQQgghxJQ0e/ZsHn74Yd7ylrfgdDqZN28e//3f/91//65du7jqqqvweDx4vV4qKys5dOgQTzzxBF/96ld55ZVXcDgcOBwOqquriUajvPe976W0tBSn08miRYv4/ve/P+J1VldXc9ddd9HY2Ni/3CeeeAKAO+64g9mzZ+NwOJgzZw4PPfQQmqb1L3fDhg3cc8893HzzzbjdbsrKyvjhD384YN1bt25lw4YN+Hw+Kioq+MIXvjAgQXzgwAHe/OY3k5eXx6xZs7jzzjsJBAIDYv/Zz342YJlnj4Y+efIkb3nLW8jNzcXtdrN8+XKqq6uH/QxeeuklVq1ahdPp5JJLLmH//v3996VSKb71rW+xZMkS3G43lZWV/P3vf++/f+/evVx77bXk5+fjdru5+OKLee655/rv7yvL8vOf/5xVq1Zht9v5+te/PuhnN5jZs2fz0EMP8aY3vQmn08m3vvUtmpqaeNvb3kZhYSFOp5OVK1fy1FNP9T9n2bJlAFx//fU4HA7e/OY3j+i1CCGEEEKIKUQXQgghhBBiCrjqqqv0+++/v///Kyoq9LKyMr22tlZPpVL6t771Ld3pdOqBQEDXdV2/7LLL9C996Ut6IpHQE4mEvmPHDr25uVnXdV1/6KGH9PXr1w9Yfjgc1n/xi1/ofr9fT6VS+l/+8hfdbDbr//d//zfidT722GN6aWnpebH/9Kc/1Zubm3VN0/RXXnlFz83N1X/0ox8NeG0ul0v/+9//rqdSKf3pp5/WVVXVjxw5ouu6rh88eFDPycnRf/vb3+qJREKvq6vTV65cqT/yyCO6rut6MBjUS0pK9HvvvVfv6enRGxsb9SuvvFJ/xzveMSD2n/70pwPiAvRnn31W13Vdv/nmm/Xbb79dj0QieiqV0g8ePKgfP3580M/ixIkTOqBfe+21emNjox6JRPR3v/vd+pVXXtn/mIceekhftWqVfvDgQT2VSum///3vdbvdrh89elTXdV3fs2eP/swzz+jhcFiPRqP6Qw89pLtcLr2lpWXAOi677DL95MmTejKZ7H/cuZ/dYCoqKvTCwkL95Zdf1jVN03t6evRTp07p//Vf/6WHQiE9Ho/rP/vZz3Sj0ajv3bt30PdkpK9FCCGEEEJMHTJCXAghhBBCTFm33347a9euRVVV7rzzTkKhEAcOHADAbDZz8uRJ6uvrMRqNrF69msLCwiGXZbPZuO222/B4PKiqylvf+lbe9KY38cwzz4x4ncPFWVhYiKIoXHLJJdx6663nLffd734311xzDaqq8u53v5vc3Fxqa2sB+P73v8/111/PjTfeiNFopKKign/5l3/hscceA+Avf/kL8Xicr3/969jtdoqLi/nOd77DH//4R5qbm0f0XprNZpqbmzl27BiKorBo0SLmzJkz7HMefPBBiouLsVqt3HbbbWzbtq3/vn/7t3/j61//OosWLUJVVd71rndx2WWX8dvf/haA5cuX84Y3vAGbzYbFYuGLX/wiiqKwdevW89ZRVlaGwWDAYrGM6LX0ue2227j00ktRFAW73c6sWbP4h3/4BxwOByaTiQ9/+MMsXbp0wMj0wVzotQghhBBCiKlDEuJCCCGEEGLKKikp6f93Tk4OAKFQCOhtcKkoCtdccw2zZs3iU5/6FN3d3UMuKxaLcd9997Fw4ULcbjcej4e//vWvtLa2jnidg9F1na985SssW7YMr9eLx+Phxz/+8bDL7Vt233KPHDnCf//3f+PxePr/7r777v5k96lTp6ioqMBoNPY/f/78+UBvKZSRePTRR5k/fz7/8A//QGFhIbfddhstLS3DPufc9yISiZBMJmlpaSEYDPLe9753QMwvv/wyp0+f7o/rxhtvpLy8HJfLhcfjIRgMnve+XCgpP5xzn+v3+/nIRz7CnDlz+te5b9++89Z5tpG8FiGEEEIIMXVIQlwIIYQQQkxLFRUV/PSnP6W+vp4XXniBZ599lq997WsAqOr5h8Hf/va3+fOf/8yf//xn/H4/XV1dvPnNb0bX9RGvc7Dl/u53v+M73/kOv/71r2lvb6erq4s777xzVMstKiri5ptvpqurq/8vGAz2J/jLyso4efLkgJrix44dA6C8vBwAp9NJT09P//2NjY0D1uHz+fi3f/s3Dh06xI4dO6irq+Pee+8dcYxn83g8WK1W/vKXvwyIuaenp782+kc+8hE0TWPbtm0Eg0H8fj8ul+u89+Xc93Sw93go5z72s5/9LAcPHmTz5s0EAgG6urpYtmzZgHUqijLq1yKEEEIIIaYOSYgLIYQQQohp6Ze//CUNDQ3ouo7L5cJoNPaPoC4qKuLkyZNEo9H+xwcCASwWC/n5+WiaxlNPPXVeWZMLKSoqor29nY6OjgHLNRqNFBQUoCgKzz//PI8//violvvRj36Up59+mqeeeop4PE4qleLo0aP83//9HwBvfetbMRqNfP7znycSidDc3MynP/1prr/+eoqKigCoqqrit7/9bX8y/bOf/eyAdfzud7/j2LFjaJqG0+nEYrEMGHE+GhaLhbvuuot/+Zd/4cCBA+i6TiQSYcuWLRw+fLj/fXE4HHi9Xnp6evjc5z437Aj+PoN9diMVCASw2+34fD4SiQTf/e532bdv33nLP3To0KheixBCCCGEmDokIS6EEEIIIaal559/nosuugiHw8GqVau49NJL+cxnPgPA+973PhYtWkRJSQkej4cXX3yR++67j7KyMioqKigpKeHvf/8773znO0e1zmuuuYZ3vOMdLFy4EI/Hw3/8x3/wwQ9+kGuvvZYVK1aQl5fHj370I2699dZRLXfdunU8++yz/PSnP6W0tBSfz8d73vMe6uvrAXC5XDz77LPs2rWLWbNmUVlZyfz58/nVr37Vv4xHHnkEl8tFWVkZlZWVvOtd7xqwjl27dnHNNdfgdDqZN28eHo+HRx99dFRxnu3RRx/lpptu6i81Mnv2bL72ta+RSCQA+H//7/+xa9cuvF4vS5cupbS0lFmzZl1wuYN9diP1yCOPEIlEKCwsZPbs2bS0tLB+/foBj/na177G17/+dTweD29729tG9FqEEEIIIcTUoeijmasphBBCCCGEEEIIIYQQQkxRMkJcCCGEEEIIIYQQQgghxIwgCXEhhBBCCCGEEEIIIYQQM4IkxIUQQgghhBBCCCGEEELMCJIQF0IIIYQQQgghhBBCCDEjSEJcCCGEEEIIIYQQQgghxIwgCXEhhBBCCCGEEEIIIYQQM4Ix0wFkq/b2dv72t78xe/ZsbDZbpsMRQgghhBBCCCGEEEIIMYhIJEJdXR1vfOMbycvLG/axkhAfwt/+9jduvfXWTIchhBBCCCGEEEIIIYQQYgQef/xxbrnllmEfIwnxIcyePRvofROXLFmS2WAy4EhLKNMhiGlsQaEz0yEIIYQQQgghhBBiCpPc1eBmas7lwIED3Hrrrf053eFIQnwIfWVSlixZwtq1azMczeQzNQQyHYKYxlbMcmc6BCGEEEIIIYQQQkxhkrsa3EzPuYyk9LU01RRCCCGEEEIIIYQQQggxI0hCXAghhBBCCCHElBePx+no6CAej2c6FCGEEEJkMSmZIoQQQgghhBBiytI0jU2bNlFTU4OmaaiqSlVVFddddx2qKmPAhBDTh67r/X8CdF3LdAhZKZVKZTqEtFEUZUJ+2yUhLoQQQgghhBBiytq0aRP79+/niiuuwOv14vf7qa2tBWDjxo0Zjk4IIcZP0zRaW1vp6uqSZPhZ9KQkxAdzuLs50yGklclkory8HLPZPOZlSEJcCCGEEEIIIcSUkEhqdAajdIfjRGJJEvE4r23bxlVXXonX6wXA6/VSWVlJdXU1GzZsGNcJsxBCZIP6+npUVWX27NmYTKZMh5M1IolkpkPISjbT9E336rpOR0cHJ0+eZP78+WNezvR9h4QQQgghhBBCTHmaptPqD9PQ2k1nMIorx4w7x0KOzUQo0YOuaf3J8D5erxdN0wiFQvh8vgxFLoQQ46dpGtFolAULFmA0ShrvbGpKRssPxmAwZDqEtPL5fHR2dvaXSRsL2ZKEEEIIIYQQQmQdXddpau/haEMXRoNKWaGTVQvyMRlfP/mN59n4i8GA3+8fkBT3+/0oioLdnpOJ0IUQYsL0lUhRFCXDkQiRHfq2hfGUD5IOI0IIIYQQQgghskqwJ86re5s40Rhk8excLltZQlmhc0AyHMBsNlNVVUVtbS1+vx/oTYbX1NRSPm8ZNQc76ArFMvEShBBCCJGlZIS4EEIIIYQQQoisoGk6x053Ud8UYkGZh/Ii5wVHRV533XUAVFdX90+frqqq4rrrrqOpI0ztwRbmlLiZW+qejJcghBBCpM0dt3+IwsIivvyVr2Y6lClNRogLIYQQQgghhMi4aDzJtv3NdAaiXLaymIpi14hKBKiqysaNG7nvvvu4++67ue+++9i4cSOqqlKa7+DSFcU0tnez63AbqZQ2Ca9ECCFmlg0bNvCjH/1o3MtRFIWDBw9OQES9liyczzN/+9uELW8mmqjP9my//OUvueSSSyZ0maMlCXEhhBBCCCGEEBnVEYjw8u4mPE4L65YWYbeaRr0Ms9mMz+fDbDYPuN1uNXHJ8mJSus5r+5uJJ1ITFbYQQggxLWmaNqYa3clkMg3RTDxJiAshhBBCCCGEyJjTbd3sONTGsrk+FlXkoqoT3zjOaFBZszAft8PC1n3NRGJT44RdCCGmmhdeeIGioiK++93vUlxcTEFBAd/85jf776+pqeHiiy/G5XKRn5/PLbfcAsBll10GQGVlJQ6Hg5/85CcA3HTTTRQXF+N2u7niiivYs2dP/7LuuP1DfOoTH+emG95Loc/LRZVr2LVrJwAfeP+tnDp5kptueA8FuR6++OAXAPjMP9/HovlzKfR5uezidVRv2dK/vK98+WFuft8NfOzuOynO97FiyWKe+/vf++8PBoN88mMfZcHc2cwpn8W993ySaDTaf//jv/k1a1Ysp6Qgjze/8Q0cOmu0+7mj1X/2kx/zpjdcC/Q2h/z8Zz/D7LJSivJyWbNiOVs2bx7yPQ4Fg4O+ZoDm5mbe9773UVhYSFlZGV/84hfRtN7ZUSdOnODaa6/F5/ORl5fHTTfd1N9/A2D27Nl84xvfoLKyErvdzl133UV1dTWf+tSncDgcvP/97x80HkVR+MEPfsDixYvxeDwAfPOb32T+/Pk4nU6WLFnCf/3XfwGwZ88e7rrrLrZt24bD4cDhcNDT04Ou63z7299m4cKF5Obm8pa3vIWGhoYh34PxkoS4EEIIIYQQQoiMONrQxeGTftYtLaQw157WdSmKwtI5Porzcti6t4nucDyt6xNCiJmqvb2dU6dOUV9fz1/+8hfuv/9+jh49CsAnPvEJ3v72t9PV1cWpU6f46Ec/CsDLL78MQG1tLd3d3dxxxx0AbNy4kUOHDtHa2spFF13ETTfdNGBdT/7n7/jEPffQ2NrOVRuu5p/v/TQAv/rN45SVl/PbJ5+mtbOLLz78ZQDWrF3LS6++xumWNm6+5VZuvflGwuFw//L++r//wxvf9GYamlu54667uPuO2+HMSOm7PnI70ViU2p272bF7L0ePHuVfv/oVALZs3sxn7vsnfvyzn1HX0MjVV1/Du9/5DmKxCzd23vTsszz91JO88loNze2d/Pef/kxZWdmQjx/qNWuaxg3vfhfz58+nvr6erVu38sc//pGf//znQG/i/TOf+QyNjY0cPHiQpqYmvvCFLwxY9q9//WueeuopQqEQ3//+97niiiv4zne+Q3d3N7/5zW+GjunJJ9myZQttbW0AzJkzh82bNxMIBPjyl7/M+9//fhoaGlixYgU/+tGPWLduHd3d3XR3d5OTk8P3vvc9nnjiCZ555hlaWlpYu3YtN9544wXfu7GShLgQQgghhBBCiEml6zp7j7XT1N7DJcuLcTssk7bu+bM8zC1189r+FkKSFBdCTFGapqf9b6xUVeWRRx7BbDZz0UUXsXjxYnbu3An0lreqr6+nsbERq9XK+vXrh13WbbfdhsvlwmKx8OCDD7Jv3z46Ojr673/b29/OZesvx2AwcPOtt7Jzx45hl3fjTTeTl5eH0Wjk45+8h2QiwaGDB/rvv/iSS3j7299JPBrhbW/tHaV8/MghTtad4H/+8me+9W//jsvlwuPx8JnPfZ6n/vM/Afjdb5/glvf/IxddfAlms5n7/uUzRKIRXn7ppQu+X2azmVg0yoH9+0kkEsyeM4c5c+cO+fihXvP22hoaGhp45JFHsFqtlJSUcO+99/Lb3/4WgLlz57Jx40YsFgt5eXl8+tOfZvM5I9E//vGPM3fuXEwmE0aj8YKx9/nsZz9LQUEBNpsNgPe85z2Ulpaiqirvec97WLRoEVu3bh3y+T/84Q955JFHmD17NiaTiS9+8Yts27aNkydPjjiG0Rj5KxNCCCGEEEIIIcZJ03T2HGsnHE1yyfIiTEbDpMdQXtTbsHPb/maqlhThyjFf+ElCCJElNE3nma31aV/PxosrxlTGKjc3d0A/B7vdTnd3NwC/+MUveOihh1i7di35+fn80z/9Ex/60IcGXU4qleL+++/nqaeeoq2tDVXtHdfb3t6Oz+cDoLCw6PX12Oz09PQMG9t3vv1tfv3Lx2hqakRRFILBIO3tryfYCwuLiIS7ScRjFOTn999+4thRUqkUi+bN6b9N13VSqd6+FI2nG3nDxo3996mqSllZGY2Np4d/s4CrNmzg/i88yBcffICjR47who1v5F+/8U2KS0oGffxQr7m+vp72tja8Xm///Zqm9Y82b2lp4Z577qG6uppQKISmaTidzgHLrqiouGC8gzn3eb/+9a/59re/TV1dHQDd3d20t7cP+fy6ujre97739X/G0PseNjQ0UF5ePqaYhiMJcSGEEEIIIYQQk0LTdHYfbSMWT1G1pBCTMXOTlssKnaiqQs2BZioXF07qKHUhhBgPVVXYePHYEpejXc9EmzdvHo8//ji6rrN582Y2btzIlVdeyfz588977H/8x3/w+9//nmeffZY5c+YQDAbxeDwjbvaoMDD+l158kW998+v87zPPsmzZclRV0bkwjwAAgAdJREFUpbQwH13TSaV0UlrvXywSwel09DeINBqNLFiwAKPRSN2p05gt5/9elJSWUF//+kUKTdNoaGigpKQUgJwcB5HI66VZWlpaBjz/jrvu5o677sbv9/Pxu+/igfs/x88f+9WIXmefsrIySmfNov5MEvpcn//859E0jd27d+Pz+fjjH//InXfeOeAxiqIM+/9DOftx9fX13H777WzatIn169djMBhYs2ZN/+c22DLLy8v50Y9+xIYNG0a0vvGSkilCCCGEEEIIIdIupensPNxGPKlRmeFkeJ/SfAeLK3KpPdhCoPvCdV6FECJbqKqS9r90+PWvf01rayuKouDxeFAUBYOhd6ZQYWEhx44d639sKBTCYrHg8/mIRCI88MADo1pXQWEBJ44PXJ7BaCTPl0csluCrX/kKwWCQWDJFIqn1Jmx1HdDPKxdSWlrKtddey333fhq/34+u6zScOtXfKPN9N97ME7/5NTXbXiORSPCtR7+J2WTmsjMlYVatXsWTv/sd8XicAwf28/hvft2/7NqabWx99RXi8Th2ux2b3db/noxGZdU68vLy+PKXv0xPTw+apnHkyJH+siihUIicnBzcbjeNjY08+uijF1zmuZ/JSPSNWM8/M8L+17/+NXv37h2wzNOnTw+or3733Xdz//3396/L7/fz5JNPjmq9o5H5IxAhhBBCCCGEENNOPB6no6ODeDxOStPZcagVTdepXFSA0ZA9p6Il+Q4Wz+5NineFJCkuhBDp9Oyzz7JixQocDgfvfe97+cEPfsCcOb1lSL70pS9x++234/F4+OlPf8o//uM/MnfuXEpLS1myZAnr1q0b1bru++fP8G/f/hYlBXk8/MWHeMPGjbzxjW9m9crlLF00H7PJxKxZZVhMBqwWA0aDisGggKL0jw7vk0wm+c53/h3VYOTSdVUU5/t4x9veytEjh4Hesidf/fo3uP2226goLea5Tc/yX3/8I5Yzo8kffOhLNDU1MquogHs/dQ8333Jr/7KDwRCf/PjHKCsuZP7scoKBIA8/8tVRv7cGg4Gnfv8Hjhw5woIFC/B6vdxwww00NTUB8NBDD7F79248Hg9vectbeOc733nBZd5zzz386U9/wuv18oEPfGBEcSxdupR//ud/Zv369RQWFrJz504uu+yy/vuvueYaVq9eTXFxMR6Ph56eHj7xiU9w44038ra3vQ2Xy8WqVav425mLDemg6COdZzDDbN++ncrKSmpra1m7dm2mw5l0exoCmQ5BTGMrZrkzHYIQQgghhEgTTdPYtGkTNTU1aJqGqqqUz13KwhUXU7mkCEOaRh2OV1N7D/tPdLB2UQFelzXT4QghBNBbR/vw4cMsXLhwTKOGp7NwPHnhB52RSunEEikUBcxGQ2/iewiRnt4a4jl2O0ajkWQySU84jMlswWSxE09qqIqCxWxghBVFJpXdPL0rZA+1TYwmlzu93yEhhBBCCCGEEJNq06ZN7N+/nyuuuAKv14vf72fbthryvTYMy4ozHd6QivNyUFWF7YdaWbUgnzyPLdMhCSGEGC8dYokUKU3HbDJgHCYR3sdmdwAQ6u7uLaGiKFistt7bFTAaVOJJjXA0icWsZtWsJzEy8okJIYQQQgghhJgQ8XicmpoaKisr8Xq9AHi9Xtatq6K2tpZ4PJ7hCIdXmGtn1YJ8dh5uo6UzfOEnCCGEyFopTScc6x1FbrcYR5QMB0ABW44DT24eLq8PT24etpzeZHjf/WaTis1iIJ7QiMVT6XkBIm0kIS6EEEIIIYQQYkKEQiE0TetPhvfxer1omkYoFMpQZCOX57FRubiAvcfaaWzvznQ4QgghxiCZ1IjGUphNBixmw+vJ7NFQFFSDgaHqoqiqgs1iRNd1orEUSFHqKUMS4kIIIYQQQgghJoTT6URVVfx+/4Db/X4/qqridDozFNnoeF1WqpYUcrDOz9GGrgH3nd0sVAghRPaJJ1LEkxo2y8hKpIyHooDVYkRRIBJPSlJ8ipAa4kIIIYQQQgghJoTZbGbewuVs21bDunVV/TXEa2trqaqqwmw2ZzrEEXM7LFyyvIgdh9roiSRYOieX55/7+4BmoVVVVVx33XWoqow1E0KIbBCNp9B1HduZJPVksZgNxOIpIvEkNrNxbCPSxaSRhLgQQgghhBBCiAlR1xSkYPZqnDlmqqurz0scTzV2q4mLlhWx+2gbT/znH/G3nhzQLLS2thaAjRs3ZjhSIYQQ0XgKdD1jCWlJik8dkhAXQgghhBBCCDFuje3dHD8d4OJlxeTYyrnu2msIhUI4nc4pNTL8XCajyvI5Hv7vvw5w5ZVXDmgWWllZSXV1NRs2bJjSr1EIIaa6aKy3saU1w4loi9lANJYilkj11i4XWUnmdQkhhBBCCCGEGJf2rggHTnRSubiAHJsJ6C2f4vP5pkWiuLu7G13Xp3SzUCGEmK5i8RSgY7WMsXnmBLOaDWiaTiKhZToUMQRJiAshhBBCCCGEGLPuSIJdR9pYtSAft8OS6XDSYrhmoYqiYLHaMxSZEELMDA6Hg8OHD593ezyRQtP03pHhWeKOj3yIr375QRIpjVRKumxmI0mICyGEEEIIIYQYk0QyxfaDLcyf5SHPY8t0OGljNpupqqqitra2Pynu9/upqamhfN4yXtnbymv7mzl6qouOQIR4IjXudcbjcTo6OojH4+NelhBi4sk2+roNGzZgtVpxOBz4fD7e9KY3DZq87vPCCy+gqioOhwOn08ncuXN59NFHh11Hd3c3CxcuRNM0kskkmqaRSGokUzpWy8AyKUsWzueZv/1tol7emFlMBmKJFLrkxLNO9lw+EUIIIYQQQggxZWiazq4j7eS6rFQUuzIdTtr1NQUdrFloSoOOQITOYJSD9X56IgkMqkKOzYTVbMBqNmIxG3r/TAZsFiNWsxFVPX9uv6ZpbNq0iZqamvPWo6oypk2ITJNtdHDf+c53uOuuuwiHw9x555186EMf4sUXXxzy8QUFBTQ3NwOwdetWrrnmGlavXj1kA2Zd1wkGg4TDYXRdR1EUFKMFh9OJMsFlUpLJJEbj+FOmBoOCUVOJxpPYLJKCzSaj+jSCwSB/+9vf2LZtG52dneTm5lJVVcUb3/hG3G53umIUQgghhBBCCJFljjZ0kUxpLJ1TkOlQJoWqqmzcuJENGzac1yxUVaHIl0ORLwfoTdxEYkl6Ikmi8SSxRIpwNIk/GCMa770tkdSwmI3YrUZcOWY8Dgseh4Utm59j//79XHHFFXi9Xvx+P7W1tQBs3LgxY69fCNFr06ZN522j27bV0OaP8JY3vxGvy5rpEM8Tj8cnrcmx3W7nxhtv5IYbbhjxcy6++GKWLl3Kjh07hkyIq6pKdXU1q1at4qMf/SgWi4XGxia2VG9h9uzZ/PQXj7Fq1Wo+8P5bOXXyJDfd8B4MBgMf/fgn+OLDX+bokSPcd++n2V5bg8vl5pOf+hR33HU3AF/58sPs3bMHt8fNn/7wBz7+yXv4/nf/H3/6n/+lsmodALFYjHkVZfzhz3+hat1FfOD9t1K9ZTORcJjlK1bwb//vuyxfvuK8uENBP3fcfjuvvPwiCjB/wQL+6w9/Ii8vb/RvrpgwI7p05ff7+eQnP0lpaSn33XcfBw4cIBqNcuDAAf7lX/6FWbNm8clPfpLOzs4Rr/h73/seVVVVWCwWbrzxxgH33XHHHSxatAhVVfnRj3503nOffvpp5s2bh91u59prr6W+vn7A/V/4whfIz8/H7XZz++23E4vFRhyXEEIIIYQQQojhdQQiNLSGWLUgf9BRztPZSJqFKoqC3Woi32ujrNDJ/Fkels31sXZxAZetLOGaqnKuXVdO5eICKopcqIpCQ2s3m2vreO21bVRWVvY38PR6vVRWVlJTUyOlGYTIsHg8Tk1NzXnb6Lp1VdQd3UvN/kYOn/RfYCmTR9M0nnnmGR599FF++MMf8uijj/LMM8+gaelr9hgKhXjiiSeYP3/+iB6v6zovvfQS+/btG/I5ffHabLb+kdtPP/00n/rUPRw4cICrNlzNP9/7aQB+9ZvHKSsv57dPPk1rZxdffPjLhMNh3vrmN/LWt72NY/Wn+P0f/8S3Hv0mf9+0qX8d//s/f+Ha695AQ3Mrn/6n+3jXP7yb3/32t/33/+3//kpeXj5V6y4C4NrrrmPnnn3UNTRSWbWOD77//YPG/u//9m0UdHbtP0ZdQxPf+X/fxWrNvosmM82IEuIrV67EZDLx2muvUV9fz5///Gcef/xx/vznP1NXV8drr72G0WhkzZo1I15xSUkJDzzwAB/5yEfOu2/VqlX84Ac/4KKLLjrvvgMHDvDBD36QH/7wh3R0dLBy5coBV51+9rOf8cQTT7B161aOHz/OwYMHefDBB0cclxBCCCGEEEKIocUSKXYfbWfZ3DyZAj4ORoOK026mMNfOwnIvVUsKWbPAg65r/Ym2Pl6vF03TCIVCGYpWCAG9yV5NG3wb1XWdZRUOWjrDWZMUP3s0+zvf+U6uuOIK9u/fz6azEsET5d5778XtduNyuXjttdd4/PHHh318a2srHo8Hm83G5Zdfzic/+Une+c53DvrYvoS4wWDov+3666/niiuuwKCq3HTTzezcsWPIdf31f/+HoqIiPnLnXZhMJhYuWsRtH/owTz35u/7HrFm7lvfe8D5UVcVms3Hjzbfw9FNPkkr19oT4z9/+lvfddFP/4//xAx/E5XJhsVj43P0PcGD/Pjo6Os5bt9lsprOzg4aTJ0hqsGZtJQ6HY9j3RqTfiBLir776Kt/61rdYsmTJoPcvWbKEb3/727zyyisjXvE//MM/8M53vnPQKQIf+9jHuPbaawe9YvL444/zpje9iY0bN2Kz2Xj44YfZtWsX+/btA+Cxxx7j3nvvZe7cufh8Ph566CEee+yxEcclhBBCiJGRRkJCCDEz7T3WTmGuncJce6ZDmXY8bhcGg6G/cWcfv9+Poig4nc4MRSaEAHA6naiqOug2qqoqeT4P65YUcrqtm5bOcIai7DXUaPZ0zTj59re/TSAQ4MiRI6iqypEjRwB44okncDgcOBwOli1b1v/4goICurq6CIVCfPnLX+b5558nkUgMuuy+2ux9yWmAwsJCkskkKAo5jhx6enqGjK2+rp5dO3dSUpDX//dv33qUluaW/seUl1cMeM76yy/HarXy/HPPEQgE+L+//i833nRzfxxfuP/zLF+8iKK8XJYsmAdAR3v7eev+1L3/xKWXrecDt9zIsoVz+NxnPjPk6xSTZ0SX80tLS0e0sJKSknEFMxJ79+5l3bp1/f/vdDqZN28ee/fuZdmyZezdu5fVq1f337969Wra2tpoaWmhsLDwvOU1NTXR1NR03u0HDhxIS/xCCCFEuo20RmAimSKe0IgnU2hab+tzRVEwGlTMRhWTyYBBmn0JIYQ4S2NbN+FIktUL8jMdyrRkNpupqqqitra2P4nl9/vZVlNDYdlimjqilBeZUCa6g5wQYkTMZjOLl65k27Ya1q2rGlDnv6qqqv/Ye+X8PHYdacPjLMViMlxgqekx3Gj2vhknPp9vwtc7f/58/v3f/50Pf/jDvPnNb+aWW27hlltuGfLxJpOJBx54gL/85S/88Ic/5J577jnvMX3nGOFwpDcJTu85SU84jMVqAwbuE5Vz/r+svIxLLr2U/3v270PGce5+VVEUbnjfjfzut09wuuEUq1avZs7cuQD85+9+y5/+8Af+/L9/ZfacOQSDQUoK8tB1/bzlOhwOvvK1f+UrX/tXjh49xrve/jYWLVrEBz/0oSFjEek36vlt3//+91m/fj2rV69m+/btvOMd78BoNPL0009TWVmZjhgH6O7uxuPxDLjN4/H0Tx079/6+f4dCoUET4j/+8Y/50pe+lK5whRBCiEkzVKL62muvJRxL4Q9GCXTH6Y7E6YkkSGlgNqmYjQb68ti6DsmURjyhkUxpWC1GHDYTDpsJj9OCx2lhywvS7EsIIWaiWCLFwfpOVi8swGCQC6Dp0tdQrrq6esDv+UWXXsmBuk4a27tZMT8fh82U4UiFmHlSmo531koMZxo8njs4pI/PbaMwN4fD9X5WzM9M88SzR7OfnRTvG82ezhknb37zmyksLOTHP/4xn/rUp0b0nM997nPcdddd3HHHHdhstgH39SWaTWYz3d3dxGIx4vE4JrMFm/388iMFhQWcOH7s9Xje8lYefOB+fvXYL7jx5lswGAwcPHiAWDTa3zRzMDfefDMbLl/PsaNHuenm15P63aEQZouZXJ+PSCTCww8NXar5r//zP8xfsIB58+fjdrswm0xoyEXNTBt1Qvxb3/oW733ve4He5pU33HADDoeD++67j+eff37CAzyXw+EgEAgMuC0QCPRvyOfe3/fvoTb0O++8k7e//e3n3X7gwAFuvfXWiQpbCCGESLtBO97X1HCqJcTcpRfhdVrwOK0U5+XgsJmwXqDuayqlEY4l6YkkCIXjnGwJsfNgEzWvbeOqq648b+pldXU1GzZsSHvneiGEEJlx4EQHhbk55LqkGVg6qarKxo0b2bBhw3kzvi5ZXkxdU5BX9zSxqMJLWaGUUBFiMp1uDWG3mrj67W/hzW+6bthZmQvKPLy46zRdoRgep2XSYx1qxsm5o9nT5TOf+Qyf/vSnufPOO89LcA/m7W9/O5/73OcGTaLHE72lUtwuJ4WFhVitVnJycrDlDF6L+75//gz3/dOn+dJDD3LXRz/Gg1/8En/+n7/y+c9+hge/8ADJRIKFixbx4BcfHjamJUuWMm/+fHZs387T//3H/ttvvvX9bHr2WRbMqSDX5+MLD31xyGUcO3aU++79NK2tLThdLt7z3ht47/tuJpXSMRgkMZ4po06Id3R0UFBQQDKZ5KWXXuKpp57CbDYPOvo6HZYvX87OnTv7/7+7u5tjx46xfPnyAfevX78egJ07d5Kfnz9kfMXFxRQXF6c9biGEECKd+moE9iXD4UzH+6oqtmzZwvvfd/2oD3oNZ5p9Oe1minw5ALS1tbPtOX3Sp14KIYTIrI5ABH8oxuWrRlZOU4yf2Ww+7zdVURTmlLjJdVnZfaSd9q4Iy+f5MBkzU5JBiJlE13Xqm0Isnp0LDL6Nns1sMjCnxM3Rhi6qlkxOzuxcQ804OXs0+0R44YUXzrvtxhtv5MYbbxz08Rs2bKC5uXnAbYqisH///vMem0ppxBIpkqkUhjPTWn/9618DEI73lk9ZtHgxPbHX63K/7e1v523nDH6dv2ABT/7X7weN5/4vDD3C++Wt2867zeFwnLesW259f/+/f/KzX/T/++OfvIePf3JgGZjeGbkpbAZpTJ0po37n7XY7fr+fvXv3snjxYux2O4lEYtQF4ZPJZP+fpmlEo1EMBgMmk4l4PI6maWiaRjKZJBqNYjKZMBgM3Hrrraxbt45NmzZx+eWX89BDD7Fy5cr+wvwf/OAH+frXv85b3vIW3G43Dz/8MLfddttoX6YQQggxpTQ2d5BKpYbseD9RiWq324XBMPjUS1AIxVQ8mj5o7XEhxNSWSmm0B6K0d0UI9sSIxJJomo7RoOLMMVPgtVOSlyOlNKYhTdM5WOdnYbkXk1E+32zgdli4dGUxB+o6eWlXI6sW5OOVkftCpFV7VxSAPM/It7XyQid1TUH8wWhGttHhZpxMBbquE4klsZgM/cnw6cBoUEkkNZJJDaP8rmbEqN/1d73rXVx33XXcfvvt3HDDDQDs3r2bioqKCzxzoEceeQSbzcZXvvIVnnrqKWw2Gx/5yEeA3vqjNpuN6upqPvGJT2Cz2fjNb34DwJIlS3jssce44447yM3NZceOHTz55JP9y7399tu58cYbWbduHXPmzGHBggU8/PDwUyCEEEKIqSrQHaP2YAtHGsPDdryfqBqBZ0+97FtX39TLZStX09IZZfP2Bo42dBFLpC6wNCHESMTjcTo6OojH4xlZR3ckwYETnTxf28Dx0wEsZgMLy71csryYy1eXUrmkkMJcO80dPWzZeZrG9u60xSkyo6E1hKoqlOTlZDoUcRajQWXFvDwWVeSy/VArR091DdrQTQgxMeqbg5QXOUfV1NZgUJl7ZpR4JvWNZp9KyXB4vVSKOUONSdPJbDQQT2rouo6WSvU2cxKTRtFH+YuZSCT41a9+hdls5tZbb0VVVZ5//nlaW1t53/vel644J9327duprKyktraWtWvXZjqcSbenIXDhBwkxRitmuTMdghBTXjSW5PApP+1dEeaUuCkrdPLc33triJ9bI3Dp0qUT2uxyqOad1113HaqqEuiOUdcUpM0fpjjPwdxSN7YL1CsXQpzvQttaOtdxzTXX0h6IcrIlRLA7Tmm+g7Ii5wWb+HUEIuw51kG+x8bSObmjShqI7JRIalTvbGDtosKM1MAVIxOOJth1pB2DqrByft4F+4QIIUYnGktSvfM0GyrLRj1TJpXSeGF7A+uWFuHKGX1COpVKcfjwYRYuXIjBMP0Sw0NJpTR6oglybKYhR4f3lUyZknQIhYKk4rHe/1EULFZbb5PQcR4+2c3T+zdgqG1iNLncUb9DJpOJ22+/fcBtV1999WgXI4QQQogxSGk6dY0BTjQGKc13cMXq0v66oZNVI/BCUy/dDgurFuQTiSU50RjgpV2nKfTlMLfETc4FkmlCiNcN1ii3pqaGQHeMFZXr0TVQFDAYFMwmAxaTAZvFiMNmGnHZkqHWcaolxJJVl1JW6KRyUcGIl+dz21i/spjag63sPtrOyvl5khSf4uqaAuS6rJIMz3J2q4mLlxVxtKGLl/c0snxuHgW59kyHJcS00dTRQ4HXPqayUQaDSlmhk/qmICvm56UhuulH13Ui8elXKuVskXA3eiqB0+nAaDSSTCbpCYcBhmwWKibOqBPiuq7z5JNP8tprrxEKhQbc95Of/GTCAhNCCCHEQP5glL3HOrBaDFy8vAinfeAIk8muEXihRkI2i5Glc3zMLXVT1xTklT1N5HttzC11nxe7EGKgoRrlVlVVsXnLFpavvhiz2YxO7wiqQHeMWDxFOJokeuYEMsdmwm41YbcasVmMWM1GLGYDBlVBVRXCkSjbtm3jyiuvPG8dY23GC2AyGqhaUsi2/c0cOdXFwnLvhZ8kslI8kaK+KcQly4syHYoYAVVVWFjuJddlZc+xdjoCURZWeKWvhxAToLGthwXlnjE/v7zQyYu7TrMg7sE6ytG7fReWZ1JJpERSA316lkoBQNeJRSM4Hb3JcACj0UiO3U6ouxubPad31IMY1ngGXYw6IX733Xfzn//5n1xxxRXk5EgNOSGEECLdkimNwyf9NHf0sKgil9L84UcMXChRPdmsZiOLK3KZW+KmvjnI1r3N5LqtzCt143bIiEMhBtPW4R+yUS66ToHbgM/nGfS5KU0nHE3QE0kQjiYJR5N0BKJEYkniiRQpTUfTdOKRIJqmpaUZr9GgsmZhAa/sbcLtsFAoI1WnpLqmIPleGw65iDml5HlsXLayhD1H23l1bxOrFuRfsNyREGJooXCcWCJJnts25mVYLUbyvXYaWruZP8szqueqqorBYCAajeJwTP+Rw5qmE40nsVtN03aWmaZpoOv9yfA+RqMRdL13tu8MKo8zWolEAkVRJjch/uSTT1JTU8O8efPGvFIhhBBCjEx7V4S9xzvwOMysX1WKZQqPkjCbDCwo8zK72M3J5iC1B1tx2E3MKXaT7z3/BCMej0/KSHchsomm6dQ3Bzlc141yplHu2QnrkTTKNagKTrv5gjMx4vE4e1/9y5jWMRJWi5EV8/LYfbSdXJcFXUvJNj2FxBIpTjaHuHRFcaZDEWNgMRmoXFxAXVOQV/c0sajCy6wCx4DkgfzOCjEyjW3dFPlyUMc526K80Mmuo+3MK3WPOpGXn5/P6dOnKS0txWq1TttEMUAklsSggIJOKpUa9rGaNvz92UzTdeLx+ICkeDKZRDszE2A8ry2Vmr7fD13XaWlpwePxTG5C3OVyUV5ePuYVCiGEEOLCUprOkZN+Gtt7WDonlyLf9JmVZTKqzJvlYXaxi9Nt3Ryo6+DwKZU5JS6KcnMAPe2NBIXIRtFYkl1H2tB0uGx1GUr3Ompra89rlFtVVTUhySuz2UxVVVVa15HnseFzW3jq93+h7ug+2aankJPNvaPDpffD1KUoCnNK3HidVvYeb+d0WzdL5/hw2IyT9jsrSXcxHbR0hlkxb/y1v70uKwZVoSMQJc8zutHmfReuGxsbL5gknso0TSeeSGExG0aU7IwntUmIKj0S8Sink0nMZjOqqqJpGvF4HIPRSEdn17iWbR5DrfupxGq1UlBQMK5ljDoh/s///M88+OCDfPWrX53WV6SEEEKITOkOx9l1pB2L2cBlK4tHXWdwqjAYVMqLXJQVOmnpDHP8dIDDJ7toPbGdxlPHBzT5q62tBWDjxo0ZjlqI9GjvirD7aBuzCpzMn+VBVZVJaZQ7GetoPLqd5gbZpqeSVErjVEuIqiVSO3w68DgtXLaihJMtIbbtb6blxA5aGk+kdZvUNE0ubotpoTscJ5nSJqyx8KwCB6daQqNOiENvUtzr9aJp2rSsJ65pOlv3NVFR7KYkb2SDgfY1BtMcVfoYNY0j21+h7tBedE1DUVVmL1rOkrWXooxzP7mwxDVBUWYfRVEm5Hdk1GfY73znO7n22mv53ve+R35+/oD7jh8/Pu6AhBBCiJmsvjnIkZNdLCjzUF7knBEXnxVFociXQ5Evh+b2IC/+dQ9XndPkr7KykurqajZs2CAjzMS0U98c5FhDFyvm5Q8oHzQZjXLTvY54PM6OHdvPaw4q23R2O93WjSvHgitHPpvpQlUVZhe78LlM/Psze9P+O7tp0yb2798vF8LElNfSGSbfa5+wY/LSfAdHT3URS6TGXApxul5UOtkSwGQ0UlY48mSuokzd98JgUFm+7goWr76EaLgbq92B0TQxs7IMUn/8gkadEL/pppvIz8/nox/9qDTVFEIIISZILJFi77F2IrEkFy8vumDt3+nKpCRA1wdt8pdKpfB3BSgsyB/i2UJMLbquc6jeT3NnmIuWFg3ZuHAyGuWmax2hUGjIxp2apo2rcadID13XqWsKsnSOfC7TUTwaHvZ39kRDG8WF+RgNCkZDb6JJ0/TeWrcJjXgiRezMX6Lv/5O9/44lUiSSGslEnB2vbeOqq85Pum/ZsoXLr7gSu8066a9diLFo9YeZV+qZsOWZTQbyvTYa27qZU+KesOVOdbFEimMNAS5aNvNmJhlNJhxu74UfKCbUqBPi27dvp7W1FbtdOsULIYQQE6EjEGH30XYKc+2sXpCPwTB1RzqMl9PpRB2ikaCiqGw/EsDTksDntpHrsuJ2mDEZZQSEmHo0TWf30TYisSSXLC+atqWRhtumJ6Jxp5h4rf4IBlUd03R+kf2G/Z1VVTq6NVoCrSRTGslUb0kGVVFQVQWTUcViNmAxGjCbDJhNKg67qf/fZmPvfzs7O9mxefCku6ZpPPvKEYoL8ynItVPks0/b/Z+Y+iKxJN3hBD73xF7AKcl3cORklyTEz3L0VBeFPrvMTBKTZtS/PPPmzSMSiUhCXAghxKSbDo2Zzn4NRqOJow1dNLSGWD43j4Jc+W0drsnfRRet45pL5tIZjNIZjHL4pJ9QOIHdYsTtNON2WHDnWHDmmDGoI5vWOt2+U1P1Ncw0mqaz60gbiaTGuqVF/aMwp6PJaNwpJtaplhBlhY5MhyHSZNjf2XXruGxl2bjX4fW4h0y6GwwGrrtkPqGIRlN7D0dO+vG6rJQVOinw2mZEqTgxdbT6w+R5bBM+WCXPbWNvop1QOD5jZ4WeLRSO09Tew+WrSzIdiphBRp0Q/9SnPsUtt9zCgw8+SFHRwKkMc+fOnbDAhBBCiD7ToTHTua9BURRmzVnKwuUXcemKEmwWGR3VZ7gmf6qqUuC1U+DtvXiQ0nRCPXEC3TG6QjFONoUIx5I47Sbcjt76t26HBYfNhHpWknw6fqem4muYiTRNZ+eRNpIpjcrFBTNiRsjZ23QqlUJRVS5at25CG3eKiRGOJugKRVm1QEpTTWfpbqZ7oQthOXYbOXYo8uWQSGo0d/Rw5JSfg3WdVBS7mFXgmNYXCsXU0d4VoTANA1ZUVaHY56CxrZtFFbkTvvyp5lC9nzklLpktIibVqL9tH/7whwF45pln+q/e6rqOoiikUqmJjU4IIYRgejRmGuw11NTUEPTlYFtZmunwsspomvwZVAWP04LHaaHizG2JZIpgT5xAd5yOQIRjpwPEEymcdjNuR2+CfMdr1Rw9cmjafaem2muYaVKazq7DbaQ0jcpFMyMZDgO36ZY2P/vru7n24jly4SYLNbR2U+TLwWSUz2Y6m4yGvSNNupuMKmWFTsoKnXQEItQ1BTl+uovZxW7Ki5ySGBcZo2k6/mA0bf0UivNy2Hm4lYXl3hk9M6LNH6E7kmDNQrkQKybXqBPiJ06cSEccQgghBImkRltXmM5AlGBPnGg8RTQaZfsQjZmqq6vZsGFD1k+5j8fj1NTU9Ccuofc1VFVVUV1dzdVXZ/9ryISxNvkzGQ343DZ87tfr38YTKQLdcQI9MU43B9i5Y/uU/E4lUxqhnjjB7jDbtm3jyisHb1i27uL1uJ32AaPiRWalNJ2dh1vRdVg7g5LhZzObzZSVFtLUpdPcGaY0X8pyZBNN02lo7aZycUGmQxGTJJ0Ne8eSdO/77Q50xzja0EVdU4A5JW7Ki1wjLoUmxEQJ9sQxmwxpm8XpcVowqCqdweiAY9aZRNN0DtZ3srDcMyOPi0RmjXrLrqiouPCDhBBCiFEIheMcPx2gtTOM22khz22jOC8Hm8VIMOBn+wuDN2ZKpVKcPN3G/DnZPcI6FAqR0rQhm0uFQqG0nZCKXmaTgXyvjXyvjQ5bChj6O3XiVCtzK0qyYoRkIpmiIxClvStCoDtOdyRBjs2IFu9BG+Y79fLOE5itTtxOC16nhVyXFa/TKgnyDElpOjsOtQKwZlHBjE/szCp0cKo5JAnxLNPqD2OzGHA7LJkORUwjY0m6ux0WKhcX0hWKceSUn/rmEAvLPZTkyT5DTJ6OQIRc18Q20zxXcX4Oje09MzYhfqo1hNGgyrYtMmJECfGamhqqqqom7HFCCDEW0jhu+onGkxyq99PeFaG8yMkVa0rPqx1nVD1DNmZSVZVT7XFago3MKXVRlJuTlQm/UExFQRnyNTidzgxGN/M4nc5hv1PtIY362lN4HJbeJLrHhmOMDY9Gu9/SdZ1gT5z2rkhvErwnjsdhIc9joyTfgSvHjNGgEo/HefFZw5ANy95w6UI0VLpCMTqDUQ7UdRKNJcl1976efK9txHUa073vne779lRKY8fhNhQFVi+UZDhAYW4OB0500h1J4LCZMh2OOKOxrUcuUois4nFaWLe0iFZ/mEP1fuqbQiyu8OI9K0k53X9DROZ0BKOUFaT3GL0kL4eXdzexdLY240ZIJ5IpjjV0sWaRzEoSmTGiM6EPfehDzJ8/nzvvvJMNGzZgsbw+aiAej/P888/zox/9iGPHjrF79+60BSuEmJmkcdz01NjezYETnRT5crhyzawhR+MO15hp3bp1bKiaTUtnmOOnAxxrCLCw3JuW5jdjEU+k2Hu8g+5wnJWr1wzZXEpO4CbXhb5T61eXk0imaO/qHZl9ojGAqqr9iWSfy3rBk5bR7LeSKY32rghtZ5LgCpDnsVFR7MLntg26bVyoYVnfd6rIZ6TIlwNAJJakzR+m1R/mYF0nOTYTeZ7eBLnbYTnvYlK6970zYd/elwxXFYVVC/MlGX6GQVUozLXT3N7D/DJPpsMR9P5edQQiLJ8ns5VE9inw2slz22hoDbHjcBtep4UFZW5efnHztP4NEZmT0nS6QrG0Nxi2W0047CbauiL9x2szxbHTAXwuG15nekfhCzGUESXEt2/fzg9+8APuvvtumpqamDt3Lm63m0AgwPHjxykuLuaee+7hqaeeSne8QogZSBrHTS8pTedgXSdtXRHWLi4Y0UHQcI2ZFEWhyJdDkS+H5o4eDtV3cqIxwKIKb0YPsFr9YfYd76DAa2fVyhKUVSVs2mS8YHMpMTku1OzLZDRQnJdDcV4Ouq4T6I7T1hXm6KkudkUSeF1W8r02cl1Wcqym85LJw+23rr3uDQS7Y/hDMToCEfyhGK4cM/keG1VLCnGOcDT6SBuW9bFZjJQXuSgvcpFKaXQGY7R3RdhzrJ14QiPPYyXP0/ua7FbThO17NU0npWmAgqKAqiioqjLt9+2plEbtoVaMBpXVC/KzcvZKJhXn5bD/eKckxLNEc0cPuW4rZpMh06EIMShVVSgvclGc5+BEY4DfPv1nQh2npu1viMisrlCUHKsJyyTsE4vzcmhs65lRCfFwNEFDSzfrV5VkOhQxgym6rusjfbCu69TW1lJbW0tnZye5ublUVlZSWVk57bribt++ncrKSmpra1m7dm2mw5l0exoCmQ5BTGMrZrlH/Nh4PM43v/nNAY3joLcsQHV1Nffdd5+Mrp1CkimN7YdaUYBVC/JHfeI9kmmxmqZzqjXEsYYAHqeFheXeSZ2SH0ukOFTfSUcgyvK5eeR7B9YElKm92WUsn0c0nuwvadIVihFPajjtJhw2MxazAYOS4ne//vGg+63Nm7dQefX7cOTYemt7u63kuW3jSkJNxHcqHE30j1D3B2PoWoKtm343oPFo32vYsmULt9/1CVTVRErTiCdSxBIp4onef8cTKeJJjWRKI5nUSGn6meNEnb6jToOSGnL502HfnkxpbD/YismoskqS4YPSdZ0XtjewdlGB1KzOAq/ubaKiyEVx3sxJyIipS84PRLodPuknldJZMic37euKJ1Js3t7AhspZmIwz46Lk9kOtOGwmFpZ7L/zgC5Dc1eBGk3OZTkaTyx1VU01FUaiqqpI64UKISdETSbBjX92wjeOkGeHUEU+kqDnQQo7NxIp5eWNKEI2kMZOqKlQUuSjN7x1B9OqeJorzcphf5knrKA9d12lo7ebIKT+FuTlcvqp0yFIX8p3NHmP5PKxmI7MKnMw6U1cynkgR7InTE00Qi6dobvUPud/SdZ01890UFU7cFNyJ+E7ZrSYqikxUFLkAOHW6mVf1ofe9uw+dxuXyYDCoWEwGTCYVu9WIx2nBbDRgMqqYjCpGo4rRoA4oFZLSdJqaW3hVH6qx6dTetyeSGtsPtmA1G1kxf2z7uplAURSKfTk0dfRIQjzDwtEE3eEEBd6Z2dRNTD2hUAh9iN8QOT8QE6EzGGVuyeQkFM0mA7luK80dYcoKp39foY5A74CSlfPzMh2KmOFGlRAXQojJcrqtt750iW/ohoooCvYcaf40FSRTGrUHW3A7LCydkzsps4qMBpUFZV7KCp0cPdVF9Y7TzC5xMafYNWT957GOtO0IRDhU70fXYc2ikZWBEdOH2WQgz2Mjj95k0uyiHDb/baiGlyq53uwfsVGYn4vBMHTTzquq5o159J1BVSjIy8VgGHzfrigK++q6mZM0U5rvyOqE8rn7jEQyRc2BVnJsRpbPlWT4hRT5cth5uJVF5d5pN9t0Kmlq76Ew1z7jGrqJqWu45tigoBrlOEyMXSKpEeyJD2jemm7FeTmcag5N+4S4ruscqvezoMyDUX5zRIZJQlwIkXWOnw5Q3xxk3dJC3A4LDevWDdo4rmLeMvbXdbFmYYEkHbJYStPZfqgVu9U0acnws1nNRpbPy2N2cZxDJ/1s2XmaeaVuSvMd/Sf/Y23u1xGIcKIxSHc4zvwyD6X5DknqiBE3vMxm6X4NF2psunhOPscbAxw7HWBOiYtZZ22v2WCwfcaq1WtxFC3D57axbK5P9gUj4HFaQFEI9sRllHgGtXSGpZa7mFKG+w1ZuGQltYc6KM2PMb/MPWNKUIiJ4w9FcdrNg870TJdCr539xzuIxJLYLNM3TdfY3oMOzCqQQW0i86bvliaEmJJONAY41RLi4mVF2K29dZ+Hahx39TXXsutIO7uPtrF6YUEmwxbD2H+8A1VRWDEvL6MJIofdTOXiQjoCEY6dDnC0oetM2QsHL255fsTN/RLJFM0dYU61hIgnNWYXu1izMD+rknUi80bb8DIbpfs1DLd8VVUpyLX3b68nGoMsKPNQkpeTFYnmwRqCbttWw6xIgqvefX2mw5tSCr12WjrDkhDPkHA0QTiawOeWciliahnuNySe0Dh8yk/1ztPMK/VQVuiUwTNixDoDUXzuyZ1lYDCo5HvtNLX3MLc0+2cSjkUypXH4pJ+V8zN7TihEn1E11ZxJpKmmNCYQ6TNUg4fmjh72n+jgkuXF/cnwsw1WziKZ0ti6t5nivJxpe/AwldU3BTnZHOKSFcWTOspiJII9ceqbgjS2drHtuf8csrnfxz/5KZKaSlcoRmcwij8YxeuyMqvAQYHXLidYYljToYlqul/DSJbf3hXh0Ek/6LCw3Htes9rJFI/HefTRR/uT4X2kmdvYdAQi7D/RyRWrSzMdyoxU1xQkEIqxauHE9TUQYjIN9xsS6I5xsK6TWCLFvFkein05ctwmLuil3Y0srvBO+oXCNn+Ewyf9rF9VMqnrnSxHTvkJ9SRYu3hiB7JJ7mpw0lRzgptqCiFEuoTCcfYe66ByccGgyXAYvHGc0aCyZlE+r+xpwuu0TGqtNzE8fzDK0YYuLl5WlHXJcABXjpkV8/ModOm89vfBmwemUileeO0YPp8Pt8NMSV4OK+bnpbU5p5hepkMT1XS/hpEsP89jw+e20tTew74THdibjCws8/aW3JhkoVBImj1PIK/TSjyRojuSwGEb/PdfpE9LRw8Vxa5MhyHEmA33G+J2WLh4eTGt/jDHGro41tDF3FI3JXnZ3Z9CZE48kaInksCTgVlLPreVWCJJKBzHaZ9eF9YjsST1TSEuXVGc6VCE6DeihHhZWdmIpjScPHly3AEJIWaeVEpj15E2FpR5xpTQtltNLJmdy95jHVy2slhKV2SBRFJj19F2lszJxZHlB3Qej3vI5oGqauBNly+S0Z5CZAFFUSjJd1Doy+FUS4jth1rwOq0sKPdOaiLV6XSiKMoQ+wwVp3N6N8SaaKqqUOC10+YP47DNzNFMmRKNJwn2xMnzSLkUMb0VeO1n9jMRjjZ0cawhQEWxi9J8R1YO2hCZ0xmM4nFaMnI+qaoKRb4cGtu6WVSRO+nrT6cjp/yU5jvIkQvfIouMKCH+yCOPpDsOIcQMdrDej81iHNcIpZJ8B80dYY6c6mLx7Ol1ADGV9E1brW+L4XVaKMnL/oYpwzf3mxoNEIWYSQyqwuwziYy6pgCv7mmiyGdn/iwP1kEaUU1kyRdN02nqiFJQtoiamhqqqqqmZNPUbFOQa+dEY4A5JZIQnyzxeJyjJ5px5xgxykACMUPke23ke210BCLUNQU5eqqL0nwHZUXOIS+sprNs2HQoqzbddASi5GZwxnFJnoOdR9pYWO6dNnW2u0Ix2rsiUhpNZJ0RJcQ/8IEPpDsOIcQM1RGI0NIZ5vIJqJW2dE4uL+5qpLTAMe2mmWU7TdPYtGkTNTU1pFIpFEWlsqqKFfPegKpm/4n2dGiAKMRMYzKqLCjzUlbo5FhDgBd3NTKr0EFFkQubxThgvzRY087RavNHOHSyE4Oq8p53vpVtr1bLPmOC5Lmt7D7SRjSexGqWio7pdO7vtaqqdDWuG/N2IcRU5HPb8LlthKMJ6ptCvLqniRybiZL8HIp9OZhNhgn/DTlbOpctxqczEGX5/MyVPfM4LagK+EOxjCbmJ9Kh+k7mlXowGaXkpMguYz7i7OnpobW1lbN7cs6dO3dCghJCzAyplMa+4x0smZ2LeQJqMlstRuaWujlY18m6pUUTEKEYqU2bNrF///7+JnN9oyUNqsLGjRszHd4FqarKxo0b2bBhg4zUEWKKsZqNLJvrY06Ji+OnA7y06zT5XjsnD23j2NHD5+2XgBHvlzRNp9Uf5vjpAPGkxsLy3qZsiqLIPmMCGQwqXpeVjkCU0vzsn1k0lQ31ew0j3y6EmC7sVhNL5uSysMJLmz9MY1sPh+v9uB0W6g5t43T9sbRsK7IdZqdILEkskcSdM/n1w89WnNdbNmU6JMSbO3qIJzTKCqWcnMg+o778WFdXx2WXXYbL5WL+/PksWLCg/08IIUbj2OkAdquJ4rycCVtmRbGLSCxJS2d4wpYphhePx6mpqekvNwK9zeUqKyupqakhHo9nOMKR62vMJIktIaYeu9XE8nl5XLFmFiaDxq6dO8a0X0qlNDoCEfaf6OCF7ac4fjrA7BIXV64upSTPMWAKs+wzJk6+x0a7P5LpMKa16fR7LcREMpyp3bx2cQEbKssozrVw+MBuqqrO31a2bduGv6ubaDxJStOHXKau6yRTGrFEinA0QXc4TqA7RnN7kG3btg26HW7bto2jpzo41RLidFs3bf4Ige4Y0VhywEBEkR6dwShelzXjDVeL8xy0dIaH/X5NBSlN51C9n0UV3oy/p0IMZtQjxO+55x7y8/Opqalhw4YNbN68mQceeIAbbrghHfEJIaapUDjOyeYQ6yegVMrZDKrCwnIvh0/6KfDapk3ttWwWCoXQNG1AcznoPbjXNI1QKITPl7mph0KImcViMlDoNgL6oPulVCrF/qONeHNzURUFTdNJpDQi0STdkQShcJwcq4l8r411S4ukBNckyfPYONrQhabpcuKcJvJ7LcSFmYwqdrMG+uC/IZqm8cquOkxWJylNR1EUXi/D37vv0nQd7Uwy06AqGAwKqqpiUBWiPYFht8O2Nj92p5uUppNIpIgnNGKJJLoOOTYTDrsJj8NCrstKjs0k5zoTqDPD9cP7OGwmbBYj7V0RCnPtmQ5nzOqbgtitRgqm8GsQ09uoE+KvvPIKBw8eJDc3F0VRWL16NT/5yU9461vfyj/+4z+mI0YhxDR0sK6TuaVubIM0QBuvwlw7x04HaGrvoUSmXqed0+lEVVX8fv+Ag3u/34+qqjidMkVOCDG5LrRfUo1Wgt3x3uSrQcFkUHHlmCnOy8GVY56QMl5idHJsJkxGlUBPDK8z8wmJ6Uh+r4UYmeG2FYPBwHWXLsRsNqNpvaPAtbNHb+ugqgoGVUFVlfMS1vF4Pts2G4ZcduXy8kFnHcUSKbrDcbrDCTqDUY42BIDe854in51cl3WQdUnTztHoCESoKHZlOgwASvIdNLV3T8mEeDwep6OziyP1IS5bXZbpcIQY0qhLpiSTSXJzcwGw2+2Ew2FKSko4duzYqJbzve99j6qqKiwWCzfeeOOA+/bu3csll1yC3W5n6dKlPPfccwPuf/rpp5k3bx52u51rr72W+vr6Afd/4QtfID8/H7fbze23304sFhvtyxRCpFGrP0xPNJm2Aw5FUVgwy9M/0kykl9lsZvGylWzbVoPf7wfor4VYVVUlB+BCiElnNpupqqqitrb2vP3SunXrWLmwiBXz81i1MJ8V8/JYPDuXimIXeR6bJMMzKM9jo71LyqakS992UTPIdiG/10K8brjfkLO3FVVVMJsMWM3G1/8sRswmAwaDOujo7ZEu+1wWkwGf20ZFsYvVCwu4pqqMdUsLMZtU9p/oZPOO05xoDJBIptA0jWeeeYZHH32UH/7whzz66KM888wzaJqWpnds6uuJJEhpOk67KdOhAFDks9Pmj9ATjtLR0TElSlqd/b372U9/zLbnf8crL74g3zuRtUY9NHPu3Lns2bOHFStWsHTpUn70ox/h8XhGPb2upKSEBx54gE2bNtHe3t5/eyKR4Prrr+cjH/kImzdv5g9/+APvete7OHLkCAUFBRw4cIAPfvCD/P73v+eKK67g85//PDfccANbt24F4Gc/+xlPPPEEW7duxe128453vIMHH3yQr3/966N9qUKINND03lpiC8s9GNI4JbrgzCjx023d0sQjzVKajrd0JQZFpbq6Gk3TUFWVqqoqrrvuukyHJ4SYofr2P7JfmjryPXaOnPKzoMx74QeLMbnuuusI9sTZvGUL6LpsF0IMIZ2/IRO1bKfdjNNuZkGZl85glPqmIMcaAnSc2knTqePStHMUOgKRQUfZZ4rZqNJ0fDvf2bQf/Zx9taqOelzrpJBmsWKqUfRRdmd4+umncblcbNy4kc2bN3P99dcTjUb52c9+NqaSKV/84hc5ePAgv/vd7wB49tlnufXWW2lqaurf0NevX8/NN9/Mxz72Me6//34OHTrE008/DfTWwsvPz6e2tpZly5axfv16brrpJj7+8Y/3L++WW26htbV10PU3NTXR1NR03u0HDhzg1ltvpba2lrVr1476dU11e85MwRJiojV3dONQFS5ZXpz2A45Wf5hDdX4uX12SNQc309GJxgDtXRHWLS2SqZlCiKwj+6WpI5XSeK7mFFesKcVqnviSaqJX7cEWcp0mXFZdtgshLiCdvyHpWHZnoIcffPc7XHXVleeVZKmurua+++6TbX4QOw+3kuuyUl6UHSVTnnnmGfbt20dVVdWA5PLSpUuzMrkcj8d59NFH+5PhfSbjeye5q8GtmOXOdAgZsX37diorK0eUyx31keZ73vOe/n9fddVV/dM3cnJyRh/pIPbu3cuKFSsGXPVavXo1e/fu7b9/3bp1/fc5nU7mzZvH3r17WbZsGXv37mX16tUDntvW1kZLSwuFhYXnre/HP/4xX/rSlyYkdiHE8JIpjVOt3bzr4opJSVDne2wcVv20+qd2Q5JsFk+kOH46QNWS3v2r2WyWhlxCiKwi+6Wpw2BQ8bqsdASilEoPkLTQNJ3OQJRlc3xY09DHRYjpJp2/IelYtp6MMlRTaWmeOzhd1+kMRpmfJbOT4vE4NTU1A5LLXq+XyspKqqur2bBhQ9Zd1JCmzWIqGvVci0996lPs27ev//9NJtOEJcMBuru78Xg8A27zeDyEQqEx3d/37777z3XnnXdSW1t73t/jjz8+Ia9HCPG6023duOxmvJPUvVtRFOaUuDl+Wq4ap8uJxgD5XhtuhyXToQghhJgG8j022v1SRzxdgj1xLGaDJMOFmKbObgh6NmmeO7RQOIGqKDhs2VE/fCTJ5WzjdDpR5HsnpphRJ8SPHz/O6tWrueSSS/j5z39OT0/PhAbkcDgIBAYmrwKBQP8GNNr7+/491AZYXFzM2rVrz/tbsmTJhL0mIQTEEkmaO3omvXN3sS+HWDxJZzA6qeudCWKJFKdaupk/y5PpUIQQQkwTPo+NjmCEUVZ1FCPkD0UnbWCCEGLyDdW0c9u2GubMX4bBmB1J32zSEYiQ686e/eJUvKhhNptZuHgF27bVSNNmMWWMOiH+pz/9ifr6eq6//nq+9rWvUVxczO23386rr746IQEtX76cPXv2DOhEu3PnTpYvX95//86dO/vv6+7u5tixY0Pev3PnTvLz8wctlyKEmDwnW0IUeO2TXhNUVRUqil2caJRR4hOtrjFAYa4du1UOrIUQQkwMh82EqiiEwolMhzItdQaj5EpCXIhp7brrrmPp0qVUV1fzhz/8gerqapYuXcq8ZRexbX8zsUQq0yFmlc5gFJ/blukw+g11USObk8vxRApv6QoWLFx83vdOmjaLbDWmzFRJSQn3338/999/P8899xzf+MY3WL9+PanUyHesyWSy/0/TNKLRKAaDgQ0bNmCz2fjGN77Bpz/9af70pz+xZ88efv/73wNw6623sm7dOjZt2sTll1/OQw89xMqVK1m2bBkAH/zgB/n617/OW97yFtxuNw8//DC33XbbWF6mEGKCdEfi+IMx1i7Kz8j6ywqdHGsI0BNJkJMlU+Gmur7R4ZetLM50KEIIIaYZn9tGRyCCKyf7TvqnMl3X8QdjLJmdm+lQhBBppKoqGzduZMOGDQOadmqazqF6P6/uaaJycQEOu+xjNU3HH4yydE521bfuSyJXV1eTSqVQFJWLLlqXtcnlI6e6KMpzsPziN/PGjddKM3MxJYxrqOazzz7Lz372M1544YUBjSxH4pFHHhnQzPKpp57iAx/4AL/85S/505/+xO23386XvvQlZs+eze9//3sKCgoAWLJkCY899hh33HEHzc3NXHLJJTz55JP9y7n99tupr69n3bp1JBIJ3vOe9/Dwww+P52UKIcapvilIaYEDo8GQkfUbDSol+TmcbA6xZI6cBE4EGR0uhBAiXXxuK43tPcwpcWc6lGklFE5gNCjy2y3EDHFu005VVVgyJxe7zchr+5tZs6gAr3NmzxgJ9MSwmIzYsqyvwtkXNboCAXYcCbJ+TTmqOuoiD2kXCsdpau/h8tUlgDQzF1OHoo+yQN+pU6d47LHHeOyxx+jq6uLmm2/m9ttvZ82aNemKMSO2b99OZWUltbW1rF27NtPhTLo9DVJeYijJlEYwHCeZ0rAYVRw5FgyKkumwslZHMEp9U4BVCwv636cVsyb/BLc7kuDVPU1sqJyF0ZB9BxJTSSyRonrHaS5bWSwn1UIIISZcNJ6kesdprllXjkGVY6yJUt8UpKs7xqoFmZmxJ4TIHs0dPew91sGaRflZVS5ksh1t6CIWT7FsbnYncA/WdZLS9KyLU9d1XtvXTEGuPWMXsSV3NbhM5FyywWhyuaO+DDZnzhwuv/xyHn74Yd773vditc7sK4pi5oglkzQ0d9PeFcFmNWE2qcQSKaKxLmYVOCjOy0FLJoiEe7DZHRhNkijUdJ2TTUEqilwZv2jgsJnwOC00tnVTXjS5jT2nm/qmoIwOF0IIkTZWsxG71URXKLvquk51ncEoeR55P4UQUOTLwaCq7DjUxor5eRTm2jMdUkZ0BqOUF2Zfk8pzVRS7eGnXaRaUeTCbMjPrejCN7T0kUhoVcn4tpqBRJcRTqRTPP/88F198sdQCEjNKZyjKsYYucl1WVi/Ox2J8fdPpiSY4fsrPkZ0vEWg8gq5pKKrK3MUrWbbu8qyc1jRZWjp6MBrVrDmZLS90cviUXxLi45BIapxsDnHJCqkdLoQQIn18bisdAUmITyR/KMqCcm+mwxBCZIl8r421iwvYcagVmHlJ8VRKoysUY/UUmDVjsxjJ99qpbw6yoCw79uOJZIpD9X5WL8xHldlcYgoaVabOYDDwpje9CZOMfBUzSIu/h2MNXSwo8zCv1DMgGQ6QYzWhdx4g7j/NVVdeybve9S6uuvJKmk8eZV/NixmKOvOSqRQNbd3MLs6e5HO+10YqpdMRiGQ6lCmroTVErsuKQ5qTCiGESKPcMwlxMTG6w3FAkd9vIcQAuS4raxcVsOdoO63+cKbDmVRd3TFyrKasGnE9nDklbk61hEiltEyHAsDhk13keazkuqRqhJiaRj10dcGCBTQ1NaUjFiGyTou/h5PNIZbO8eFxDL6jTybinDi4h4vWVeH19l6t9Xq9rKuq4viB3SQTickMOWs0tHXjdlhwZlH3ckVRKC9ycrI5lOlQpiRN06lvCjK7JHsucgghhJiecl1WQuE4iWQq06FMC53BKLkuS6bDEEJkIa/LyppF+ew+0j6jBg71zkKaOslcV44Zp91MQ2t3pkMh0B2juaOHhTLrSExho06If/KTn+R973sfmzZt4ujRoxw/frz/T4jpJNAdpb6pNxmeM0yt5Ei4B13T+pPhfbxeL7qmEQ1n/gdrskXjSVo6IlQUZV89ttJ8B+1dEaLxZKZDmXKaO3qwmI0yCkAIIUTaGQ0q7hyzjBKfIP5gDK/8fgshhuBz21i1IJ8dh9roDM6M/W5HIEruFEqIA8yf5eHY6UBGR4lrms7e4x0sKPNgNY+6LaEQWWPU397bb78dgI0bN6KcaZKn6zqKopBKyQgOMT1E40kOn+pifpln2GQ4gM3uQFFV/H7/gKS43+9HUVWsdke6w8069U1Binx2LKbs+4E0mwwUeO00tvUwt3Rmdl4eqxONQebN0G7VQgghJp/PY6MjEKXIl5PpUKa8zlCUufIbLoQYRr7Xxsr5eew41ErVkkLcjuk7qySR1AiF43idUysh7nVZceWYOdkSYk5JZvbpxxsDmAwqZVOgGakQwxl1turEiRPpiEOIrKHpOkdOdVGUm0PuCH4gjSYTcxevZFtNDeuqesum+P1+XttWw9wlKzHOoJr7yUSctnY/XaEElbNKMh3OkGYVOth3vIM5Ja7+C3tieO1dEZIpbcY12xFCCJE5PreVvUc7Mh3GlBeOJtA0XeqHCyEuqCDXzuJULtsPtXLxsiLsFxgcNlV1BqO4csyYjKMumpBxC8o81B5sYVaBc9LjD4Xj1DUGuWxlsZxHiylv1AnxioqKdMQhRNZoaA2hAKUFIx/ZvWzd5aDA5i1b0DUNRVWxF8xj/qpL0hdoFtE0jX3bXuT4wd1omoaqqBzoWcmydZejqtl3kNFX8qMzGMXntmU4mqmh7kztcDnwEUIIMVncORZiiSSRWBKbJftmnU0VncEoXqdVfsOFECNSmu8gnkhRc6CFi5cXY5kiTSdHoyMQmVL1w8/mdljwOq2caAxMag1vTdPZe6yd+WWeaXuhRMwsYzqy/O1vf8svfvELWlpa2L17N9XV1XR0dPDOd75zgsMTYnJ1R+I0d4RZtSAPdRQnDaqqsuKiK1my5lKi4W6sdgen2sI0toWZNyt7mkqmy75tL9J88ihXXXll/wj5bTU1oMCKi67MdHjnURSFWQVOTrWEJCE+AsGeOMGeGGsW5mc6FCGEEDOIqirkumy0d0VkavY49NYPn76lD4QQE29OiZtYIkXtgRbWLS2akiOph9MRiLJ8ri/TYYzZogovL+9uYlaBY9KS08dOd6EqSlb2CRNiLEa9V/vud7/LZz/7Wa6++mrq6+sByM3N5Rvf+MaEByfEZNJ0nWOnA5QXOsZc+9poMuFwezGaTJQU5NAemP7NG5OJOMcP7u4vFwO9DUXXVVVx/MBukolEhiMcXGmBgzZ/hHhCeh9cSF1TgLJCJwbD9DoQFkIIkf18buuMafCWLp3BqDTEFkKM2qJyLzk2EzsOt5LS9EyHM2GisSTRWHJK10i3W01UFDs5UNc5KevrDEY52Rxi5YJ8mW0kpo1RZze+973v8de//pXPf/7z/aUQFi9ezOHDhyc8OCEmU3NHDwoKhRPUuMliNFLgtXO6rXtClpetIuEedE0b0FAUepPiuqYRDWfn67eYDOR5bNP+8xmvSCxJa2eY8iJXpkMRQggxA/ncVjoCEXR9+iRjJlMkliSRTOG0T/8Zi0KIiaUoCivm9c6c3nO0bdrshzuCUXLdVlR1aid255a4CYUTtHSG07qeeCLF7iNtLJvrk/JlYloZdUK8ra2NpUuXAgy4MjRddo5iZoolkpxq6WbeLDcKE/fDWJyXQ3tXhERy+o5CttkdKIqK3+8fcLvf70dRVaz2kddin2xlhU4aWrqJx+N0dHQQj8czHVLWqW8OUpznmJa1A4UQQmQ/h92Moih0R7Jzxlm284eieJxTP/EjhMgMVVVYvTCfSCzJwbre872pfu7UWz986pfNNBhUls3xse94R9pmPeu6zu6j7eR5bBRN0MBBIbLFqC/vLFy4kBdeeIENGzb037Z582aWLFkykXEJMakaWrop8NrImeD6W1azEY/TQktnmFkF07PWVgoFe+E8tm2rYd26qgE1xOcuWYnRlL0NN7xOM0f2vcqW/z2IruuoqkpVVRXXXXddVjYDnWyJpEZDSzeXrCjOdChCCCFmMJ/bSntXREY5j0FnQMqlCCHGx2hQqVxcyMu7T7Nnx0scPbgHTdOm7LlTRyDKnBJ3psOYEPleG4W5dvYd72DNooIJX/6hk34SSS0tyxYi00adEH/wwQd517vexUc/+lHi8TiPPPII3/3ud/nNb36TjviESLtwLEl7IMqaRelpGFiS5+DQyU6K8x0YpmG9rWOnAyxYdQmhhj1s3rIFXdNQVJW5S1ayrOryTIc3rL///e8E2k5y5VnNQGtrawHYuHFjhqPLvIbWELluKw5b9l7UEEIIMf353DaaO3qmTQJjMvlDMUrzs3e2nhBiajCbDPS07KOh7ihXXHHFlD136g7H0XWm1QXW3gabjZxsDk5omcvTbd00t/dwyYpiDDLLSExDo76M95a3vIXf//737N27l/Lycp577jl+8pOfTJkdoBDnamgJUeSzYzampySE027GbDTSGYikZfmZ1NTeTSKhUVbsYcVFV/LWm+/kun94P2+9+U5WXHRlVo8UiMfj1NTUUHVOM9DKykpqamqm7BTAiaJpOnVNQeYUS+1wIYQQmeVzWekMRNGmUVO3yRBLpIjGkrimcOM4IUR2iMfj7Nq5o39GMEzNc6f2QBSfe3rNmjEaVNYsKuDIqa4Ja0Ld0hnmYF0naxYVYDVL3XAxPY3pm3311Vdz9dVXT3QsQky6nmiCru4Ya9M0OrxPUZ6dlo4w+R57WtczmULhOCdbulkxz9c/8t1oMuFwey/wzOwQCoXQhmgGqmkaoVAIn8+Xoegyr6mjB6vZiFemWQshhMgwq8WI1WIk0B2T36VR8AejuJ0WGdknhBi36XLu1N4VoSRv+tXCdtrNLJ+Xx87DrVy0tAjHOEbAt3dF2HO0nbWLC3DLBVUxjY16+KbLNfhowdzc3HEHI8RkSSbihAJ+6k53UJrvwGhIb8NAn8tKOJYkHJ0eDaESyRSHT/qZW+rCPsF11yeL0+lEVQdvBqqqKk7n9Kz5PlJ1jUHmlMjocCGEENnB57bSPg1n26VTZzBKrlMuIAghxm86nDulUhqdwSg+z9RvqDmYwlw7C8q8bDvQMmwj6uGaoja2d7PrSBurF+ZL/wkx7Y16hLiuy1RFMXVpmsa+bS9y/OBudE0DRWHu4pUU+65Ia3kPg6qS77HR0hme8vUvdXSONHThcVqm9Ih3s9lMVVUVtbW1VFZWDqiDV1VVhdk8ferKjVabP0JK0yjMnbqfrxBCiOnF57ZR1xiAskxHMnX4gzEWz54aM/eEENltqHOnbdtqWL1m7ZQ4d+oIRHHazVhM6R0Ml0llhU50Xee1fU2snJ9P3lnJf03T2LRpEzU1Nec1RQWFow1dNLR2U7m4EI9TRoaL6W/ECfEHH3wQgEQi0f/vPocPH6aiomJiIxMiDfZte5Hmk0e56qwmittqalBUhRUXXZnWdRf6cthztJ3yIieGLK6tfSHHTwdIJnUWVUztxD5w5scfqqurSaVSKKrKRevW9d8+U51oCjC72IUyDZvACiGEmJpyXVZ2HWkjkdQwGafucdRkSSRT9EQTeGS6uxBigpx97tSXUJ27cDmu4uVTYt/c1hUh3zs9R4efrbzIhc1iYteRNkrzHcwv82A0qGzatIn9+/ef1xQ1Fk+RV7EaVYFLVxRjs0jNcDEzjPibXl1dDUAymez/N4CqqhQVFfHzn/984qMTYgIlE3GOH9zdnwyH3ppn66qq2LxlC0vWXIrRlL7yH3aLEYfNSEcwSsEUHVl9qjVEsCfO8rmv1w2fylRVZePGjWzYsIG2dj9760JcfdHcrG4Gmm6B7hjd4TiliwoyHYoQQgjRz2RUcdrN+ENRCrxT8zhqMvmDMVw5ZgyGmXtMI4SYWGefO4VCIZxOJyaTid1H29l5uJXKxYWoWdyzoK0rwpqF6e0dli3yvTbWryzhQF0nW3Y0UOi1sG3bNq48JxdSWVnJ5s1buHHlRcydlZvVn58QE23ECfHnn38egLvvvpsf/vCHaQtIiHSJhHvQh2gEomsa0XB32htCFuTaaWoPT8mEeEtnD62dPSyfl4fJOL2mmZnNZkpLCmkKQHNHD2WF2V8DL13qmoKUF7rkBFoIIUTW8bmtdHRJQnwkOkNRqf8qhEgLs9k8oIHminl5bD/Uyp5j7aycn5eVs0xD4TiapuPKyf7SLhPFajGyZlEBwZ44+4+cHLIpKuh4c5BkuJhxRp3xkGS4mKpsdgfKEI1AFFXFanekPYZct41oPEnPFGuu2RGMcrIlxOLZPiym6TuFalaBg4bWUKbDyJhwNEGbP0x50cy9ICCEECJ7+dxWOoPRTIcxJfiDUbzSUFMIMQlUVWH1wnx6IgkOnfRf+AkZ0OaPkO+xZWWyPt1cOWbWLi3HYDBM6aaoQky0USfEm5qauO2221i2bBnl5eUD/oTIZkaTiTmLV/Datpr+H4K+GuJzl6xMa7mUPgZFocBro7UznPZ1TZRgT4yjp7pYVO4lx5r+9yiTCrx2IrEkwZ7zO27PBPVNIYrzHJincaMZIYQQU5fHaSUcTRCNJzMdSlZLJDWCPQm8LqkfLoSYHEaDSuWSQlo7w5xoDGQ6nPO0dPZQkDtzZxed3RT17FxIbW0tVVVVU6IpqhATbdRDPT/wgQ8QDof52Mc+Rk5OTjpiEiJtChdU0t4VZfOWLeiahqKqzF2ykmVVl09aDAVeO3uPd0yJ5po90d6r/PPLPLhypv9JlaoqlOQ7ONUSYtlc34WfMI3EEylOt4W4bGVJpkMRQgghBmVQFbyu3lHiJXnpn9k3VXWFYrhyTBil/JkQYhJZTAaqlhTy6t5mLCYDJfnZsZ+OxJL0RBLkuWf2rJnBmqJWVVX13y7ETDPqhPjWrVtpaGiQKRViytF0nYbWHlZfdhUu6zVEw91Y7Y5JGRl+NrvVhN1ipDMYJT+La4nHEkkO1nVQXujEN4NqUM4qcPLqniYWV3hnVB3tky0h8jw27NN8FoAQQoipra+OuCTEh+YPRfHOoGM3IUT2sFtNVC4uoOZAC2aTgTyPLdMh0dIZJs9jm1HndoMZrCmqjAwXM9mo9whFRUUzsu6SmPpaO3uwmAzkOq0YTSYcbu+kJ8P7FPjsWV02JZFMsf9EJwW5ORTmzqyZIA6bCVeOmeYs/nwmWkrTOdkcYk6JO9OhCCGEEMPKdVnpkDriw+oMRsmV+uFCiAxxOyysWpDPriNtdIVimQ6Hlo4einwz65x2OH1NUSUZLma6USfEv/rVr3L33Xdz+vRpNE0b8CdEtkppGg1t3ZRlSbNAn8tKdyRJOJZ9NTBTmsaBOj+uHDNlBdnxfk22WQUOGlpmTnPNxrZuHDYTbsf0L4sjhBBianPlmEmlNHoiU6tB+WRJpTSCPXGpHy6EyKg8j41lc31sP9SS0f5M0Xhvf6hsGKkuhMguo06Iv/e97+WJJ56gvLwck8k04E+IbNXcGcZuNeHOkjrYBlUl32ul1d+T6VAG0HSdwyf9WEwqc0tn7mjhwlw73ZEE3TPgZFvXdeoag8wucWU6FCGEEOKCFEXpLZsSiGQ6lKzU1R0jx2rCZJQG2UKIzCry5bCoIpeaAy10hyc/KR6Pxzl0tAGv0yg9FYQQ5xl1DfHnn38+HXEIkTbJlMbp1m6WzsnNdCgDFObmsP9EB2WFLgxZUobo+OkAmqazcE4uCtkRUyYYDCrFeTk0tIZYXJFd35uJ1uqPoKi9zV6FEEKIqcDnttHWFaG8SC7mnssfjMnocCFE1ijNd5BKaWw70MJFS4vIsaV/IKWmaWzatImamhpSqRSqqtLZsI7rrrsOVZXEuBCi16gT4ldddVU64hAibRrbu3HnmHHYsqtGVo7VhMVkpCsYxefO/BSu+uYgPZEEy+b6siZBn0llhU627W9mQZkXgzp934//397dR7dZ3/f/f0m2ZcuWLMnyfW6c4ITgxAkhtrkPDd9kHm0YPZQGRpoB26EwYGMda7sOSjlwxk1XzmnPSjmDbUA7BgE6YPQMfoVACc7owA6ExElIQoLj3DhObCuyZNmWrevz+yNYxbl1Eju6ez7O0TnW9ZGu662cvCVdb32u92fHniC9wwEAKcXvydOWnQEZY1jb6DA9oQFNLcvMlncAktPU8kJZRmre3KkL5pTLmXvSZaiTsmrVKm3atEkLFy6Uz+dTIBDQ2rVrJUmNjY0TemwAqWNMP4+999578b/feeedY97G07Zt29TY2Civ16uqqir9+7//e3ystbVVF154ofLz8zV79uwjjv3rX/9a1dXVys/P1+LFi7Vz585xjQ2pY2g4po6uiKYk6YlBWZFT+3oS3zZlb1dYXQf7dc50H5eTfcGd75AzNyepFz89Xd3Bfg0OxVTBIjMAgBSSn5ejnGx7QvvSJqOYZRQMDcpXyIKaAJLLtIpCTSl1qXnTPg1M4Dpa0WhULS0tqqurk8/nkyT5fD7V1dWppaVF0SifGwAOGdNPc0uXLlUodGiBuSVLlhz1MTabTbFYbFyCGh4e1lVXXaXly5fr9ddf1yeffKLFixdrxowZuvjii/Unf/In+va3v63Vq1fr1Vdf1dVXX61t27aptLRUmzdv1k033aSXX35ZCxcu1N13361rr71WH3zwwbjEhtSypyssvydP+XnJ2eO+2OtUW0dIA9Fh5Tkm9pfyY+kO9mvPgbDmnFWs3OzExJCsJpe6tHt/SBXF6Vkw3r47qLMqC2VP4xnwAID0dKiP+AALQn9Jb3hQebnZys2hfziA5FM92auYZdS8qVMNs8uUNwEzxUOhkCzLihfDR/h8PlmWpVAoJL/fP+7HBZB6xjQVdKQYLh3qx3S023gVwyVpy5Ytamtr0913363s7GzV1dXp6quv1lNPPaV3331XkUhEP/jBD5Sbm6vrrrtOtbW1eumllyRJzz77rK644go1NjbK6XTqgQce0CeffKKNGzeOW3xIDYNDw+rsjmhyqSvRoRxTlt2uYm+eOs/gLOThoahCwYCGh4YU7o/qs91BzZrqU/4EX7qWiiqKCxQMRxUZSL/FNXt6B9Q3MKRJpcl59QQAAMfj9zjVxcKao/T0DqiI2eEAktjZU30qL87XBxv3Tcg5ltvtlt1uVyAQGLU9EAjIbrfL7ebcB8AhSVkBM8bIGHPEtvXr16u1tVVz584dtRjC/Pnz1draKulQO5WGhob4mNvtVnV1tVpbWzVnzpwjjtXR0aGOjo4jtm/evHm8Xg4SZFdnWCU+Z8JmXo9VWVG+Nrf1aEqZW/YJ7INpWZY2Nq/Rjk/Xy1iWbHa7XKXVmnP+pSosYHbV0WRn2VXuz9fu/WGdPdV34iekgGg0qlAopK17Ijqr0pPW/dEBAOmryJOndVs6tH//AXm9HjkcybVWTCIEQoOqLEnPq9oApI+ZU3yy22z6cFOnzp9dpvy8nPg5itvtPq33c4fDobq6OjU3t6ihoX5UD/H6+no+KwDEJWWlcNasWZo8ebIeeOAB3XPPPfr444/1yiuvqLy8XOFwWF6vd9TjvV5vvE/4sca/PMv9y5544gndf//9E/EykECRwWF1Bwd03qySRIdyQi6nQ46cLAVCg/JP4Kyejc1rtK/9M33lssviXww+bG7Rge0fq9x/2YQdN9VNKXProy37NWOyN6Vbi4xebd2SzWZTfX29ppT9EautAwBSimVZWv27t7X2w2a1vGOUlWVXfX29lixZkrGfaZZldDA0oDln0QoAQPKr/uLc6v827FVk/yat/+RjWZYlu/3038/PmXeh9nVH1NTUdMQ+AWBEUhbEc3Jy9N///d+68847VVlZqVmzZummm25Sa2urXC6XgsHgqMcHg8H4pS8nGj/crbfeqquuuuqI7Zs3b9aKFSvG6RXhTGvf16uK4nw5slOjh2KZz6nOnr4JK4gPD0W149P18WK4dKiP2vkN9Vr93nuqOe8iZeckZ5/1RPO4cuXIydL+QETlKbz45LFWW7fbbay2DgBIKSOfaV/5ymWjPtMkZexnWigSVU52lpy0wAOQIqZXerT2g/fU/vlnR5yjSKf2fh6LWfp8b6+uXHqF3M6l4zLrHEB6StopFHPmzNHbb7+trq4u/e///q86Ozt14YUXqra2Vhs2bJBlWfHHrlu3TrW1tZKk2tparVu3Lj4WDoe1ffv2+PjhKioqtGDBgiNuNTU1E/r6MHFCkahCkagqi5O3d/jhir35CvVFNTg0MStu90f6ZI6xuIixLA1EwhNy3HRRVe5W+76jX2WSClhtHQCQLvhMOzr6hwNINdFoVFs3b4i3NpFO//388729cuU75Pc45XA45Pf7KYYDOKpxK4gPD49vIW/9+vWKRCIaHBzUM888o7ffflt33XWXFi1aJKfTqX/6p3/S4OCgXnrpJW3YsEHLli2TJK1YsUJvvPGGVq1apYGBAd13332aN2/eUfuHIz217+vV5BKXsrOS9veeI2Rn2eX3OCdscU1nvku2YywuYrPblZefOj8eJEJFsUvh/qh6+1LzJHssq60DAJAK+Ew7up7eARV5KIgDSB3j/X4e7h9SW0evZk8vGs8wAaSpcakYPvfcc5o1a9Z47Cru+eef1+TJk+X3+/XMM8/orbfekt/vV05Ojl577TW98sor8nq9+tGPfqSXX35ZpaWlkqSamho9/fTTuuWWW1RUVKSPP/5YL7744rjGhuTV3TuggWhMpSnY2qKsKF/7AxHFDltQdjxk5+Roysxaffhhc7woHggE1NzSorNq5tEu5QSy7DZNLnVr577eRIdySlhtHQCQLvhMO5IxRoHeQfncLJIOIHWM5/t5LGbpk20HVD3Zo/w8zm0BnNiYm8wFAgF997vfVXNzs2bPnq3HHntMHR0d+vM//3Pt2LFDd91117gG9vDDD+vhhx8+6tjcuXP1wQcfHPO5y5Yti88YR+aIGaO2vUFNq/Qoy5Z6ix+68x3Ky8lWVyCisqLxLehHh2OyfLPkGY5p9XvvyViWbHa7zqqZpzn1l47rsdLV1DK31nyyR7Om+uTISY3e9CNYbR0AkC4cDofq6+u1du3aeNuUTP9M6+2LKjvbThEIQEo51vt5c3OLplbPls0+tnKVZRlt2N4lZ262plUUTnDUANLFmAvif/d3f6cPPvhAX/va1/Sb3/xGy5cv1/r163XzzTfre9/7njwez0TGCZxQx4GwnHnZE7Yw5ZkwqdSlz/cGVVqUL5vGp6gfM0Zbdgbk9+Rres1iDV90mQYiYeXlu5gZfhLycrNV7HVqV2dI1ZO9iQ7npM057yJ1dPWx2joAIOWNfHaNfKZJNjU0NGTsZ1pP70BKf/8FkLkOfz+32+2qq6tT2fT5en/9XtVML1KpL/+Yz4/FLG3Y3qXBaEx1NWWypeDEOACJMeaC+FtvvaU1a9aoqqpKt9xyi2bNmqXXXntNV1555UTGB4zJ4NCw9hzo09xqf6JDOS0+d57as0LqPjigYq9zXPb5+Z6gsrJsqvri1/LsnBy5PL4TPAtHU1VeqE+2HdD0So/s9tT5shWLWfpsd6++9rUr5C24ktXWAQApzW63q7GxUYsWLVIoFNLGtrBmV5fKbk+d9WPGU0/vgMqKjl0wAoBkdfj7+ZfPUfZ192nTjm6154c0raJQRYV58XMwyzI6cLBfW9sDKnDmqK6mLKXWEAOQeGMuiAeDQVVVVUmSZs6cKafTSTEcSePzPb0q8zvT4lLRySUu7dofUpEnT/bT/IV7T1dYoUhUc6uLT3tfkHyFeXLkZKmzJ6KK4tTpU//53l65nDnx2RV+f2r/cAQAgHTocnu/36/yPrsOBPrHbTJBKhnpH14zjUXkAKSukffzLyv3F6jY69Se/WFtbuvRYHRYBc4cSTb19Q8pLzdL1ZM9qix2JSZoACltzAXxw+XmsmgLkkPXwX5FBoc0c6o30aGMiyJPnvYcCOvAafYS7w72a++BsOZWF/Nr+TiaXunRjr3BlCmI9w8Oq62jVxfOrUh0KAAATIgSr1MbtnepRplXFKZ/OIB0lp1lV1VFoaoqCtU/OKzIwJCMkfLzsnnfA3BaxlwQ7+vr09SpU+P3g8HgqPuS1N7ePn6RAWMwNBzT5x1BnT3Fq6w0uUzWJpumVRRqS3tAnvwsDQ32y3mS/b5Dkag+2x1UzTSf8hyn/LsXjqKsKF/bdgV0INCvEl/yz0TbsrNHk8tccjn5wggASE8eV66Ghi319Q99MXswcwRCgyoqZKISgPTnzM2WM5dzWwDjY8zvJk899dRExgGcNCOjz3YfVFFhnjyu9FpIyOXMUf+e9fr/PtgqGUs2u11nnTNPcxouPWF/zL6BIX26s0fVkzwqLOAEabzZ7bZDs8T3HEz6gnh3sF89vYNaOL840aEAADBh7Habir1O7Q9ENN3pSXQ4Z1RPcCDpv48AAAAkmzEXxG+88caJjAM4aXu7+hQdtnT21PRbIHJj8xoNBnZr0Vcuk8/nUyAQUHNLi2ST5p5/2TGfFxkY0qbPuzW1zJ2RfTTPlMoSlz7bfVCB3gH5CpPzx5hYzNLGHd2qmVaknOz0uHoCAIBjKSvK186OXk2vzJyCuDFGgdCAzpmWft+FAQAAJtJpVUmWLl06XnEAJ+VgeEB79od19hRf2rRKGTE8FNWOT9erob5ePt+hExyfz6eG+nrt2Lxew0NDR31eMDygjV8Uw0+n9zhOLMt+qK3Njr3BRIdyTJ/tPqgCZ07K9DoHAOB0FHud6u2LaiA6nOhQzpjevqiysugfDgAAcLJOq5LY1NQ0XnEARzU8FFUoGBhVBA73R7W1/aDOnupNyx5i/ZE+GcuKF8NH+Hw+GcvSQCQ8artljHbvD2lL+0FVT/JSDD9DppS5FQwPKhgeTHQoRwiGB7WrM6zZ0/0nfjAAAGkgO8suv8ep/T2RRIdyxnQHB+T3JOeVagAAAMnstKqJxpjxigMYxbIsbWxeox2frpex/tBDe+qc87V110FNqyyUN836ho9w5rtks9sVCARGFcUDgYBks8vKzpNljIaGYzoYGtTerj5lZ9k1t7o4LX8gSFbZWXZNr/Roa3tADbPLEx1OXMwyat3erZlp+oMRAADHUubPV0dXn6aWFyY6lDOiK9ivKaXuRIcBAACQck6rWrJw4cLxigMYZWPzGu1r/0xfuexLPbSbW7SvJ6LzLvpKWvfHzs7J0VnnzFNzS0u8bcpID3H/lFna0h7U0HBAWTab3C6HppYXqqgwVzbZEh16xpla5tbOjl51B/vl9yTH/8lt7QHlOrI0tYwTZABAZin1ObVpR7eGhmPKyc5KdDgTKhazdDA0qPkzSxIdCgAAQMo5rYL466+/LkkKhUL68Y9/rH/8x38cl6CQ2UZ6aI8Uw6Uvemg31Gv1e+/JW7A4wRFOvDkNl0o2afV77/1hhnzNPM2pv1R2u10xY5RlowCeaFlZdlVP9mpr+0FdNDfxBfGug/3a2xXWxfMqZeP/BwAgw+RkZ8lXmKf9gX5NKnElOpwJFQgNyuXMkSMnvQv/AAAAE+GkCuJNTU1qbm5WTU2NvvrVr8qyLP3iF7/QAw88oOLiYgriGBdj6aHt8viO8ez0YLfbNff8y1Rz3kUaiISVl+9Sds4fFkyiGJ48JpW41La3V/u6+1TuT1z/9sGhmDZs71LtWcXKc9AqBQCQmcqK8tXZHUn7gnhXsJ/+4QAAAKdozFWTJ598UrfddpuKiorU09OjH//4x3rzzTe1fft2Pfroo/qzP/uziYwTGeR4PbRtdrvy8tP7BOfLsnNy0r74n+rsdptmTfNp045uFXudys46rbWKT4llGa3bsl/lRQUqLco/48cHACBZlBbl69O2Hg0NW8rJPvOfyWdK98EBnTON74gAAACnYszfEn/+859r5cqVOnDggP7jP/5Dd999t6ZNm6bNmzfrxhtvlN2evl84cWZ9uYd2IBCQpHgP7bNq5o2aKQ0kg1JfvgpdudqxJ6hoNKru7m5Fo9EzdvxPd/bIZrdpVhUnxgCAzJabkyWvO1f7A5FEhzJhBodiigwMyetmhjgAAMCpGPMM8V27dmnZsmWSpOuuu0433nijfvrTn8rhcExYcMhcx+uhDSSjs6d49Pyvf6OXdm2RMUZ2u1319fVasmTJhP5guKszpP2Bfl08t0J2O610AACoLHFp74Fw2rZN6Q72y1eYpyw+9wEAAE7JmAvilmXF/87KypLb7VZBQeL65SK9naiHNpBs3l+zWuHuXbrsi8VgA4GA1q5dK0lqbGyckGN29kS0tT2g8+eUs6gWAABfKPXla9OObg1Eh9NyXY0DPf0q8SZ+MW8AAIBUNeZviIODg/rRj34Uvz8wMDDqviQ98MAD4xcZIHpoIzVEo1G1tLRo4cKF8b73Pp9PdXV1ampq0qJFi8b9appA74A2fNalBeeUyp3PlToAAIzIybarxOdUR1efpld6Eh3OuLIsowMH+zVzqjfRoQAAAKSsMRfEL7roIjU1NcXvX3DBBaPu22xcsgcgM4VCIVmWNWoRWOlQUdyyLIVCIfn9/nE7XnewX+u2HtDcGcUqKqR/KAAAh6ssdumz3QfTriB+MDyoXEeW8vO4chIAAOBUjbkg/u67705gGACQutxut+x2uwKBwKiieCAQkN1ul9vtPuV9R6NRhUIhud1uORwOHQj065NtBzRvZrFKffnjET4AAGmn2OvUhu1dCkeicqXRlVT7AxGV+GiXAgAAcDrSr6keAJxhDodD9fX1Wrt2rerq6uI9xJubWzT/vAWn1C7FsiytWrVKLS0tsixLdrtdZ9fMlbdyrs47p0x+DyfDAAAci91uU0VxgXYfCOucqqJEhzNuDgT6Nees8bvqDAAAIBNREAeAcbBkyRJJUlNTU7yAPeOcuXKWzFZkYOikL21etWqVNm3aFO9LPlJgz8vNkd8zbQJeAQAA6WVKmVvNm/Zp5hSfsuyp394xMjCkwWhMXlduokMBAABIaRTEAWAc2O12NTY2atGiRaNanHy+N6j/a+3QuTNLxjyr+1iLdDY01KupqUmNS/7fuC/SCQBAunHnO5Sfl6POnj5VFrsSHc5p6+w51C7FngbFfQAAgESyJzoAAEgnDodDfr8/XrCeXulRbXWxPtl2QBt3dGtoOHbCfYRCIcVix1+kEwAAnNiUMrd2d4YTHca46OjqU4W/INFhAAAApDwK4gAwwUp9+brk3EmKWZZWf7RHmz7vVnewXzHLxB9jjFFkYEi7OkPasicim82mQCAwaj/jsUgnAACZpLwoX719UYX7hxIdymmJDAwpMjAsv5c1RAAAAE4XLVMA4AzIzcnSvBkl8aL3ps97FBkYkiMnSzZJQ8OWbDabijx5mlruPeoinWvXrlV9fT3tUgAAGKOsLLsmlbjUvq9Xs6en7mKU+7ojKivKT4te6AAAAIlGQRwAzqD8vBzNqirSrCopFrPUHz3UQiU7y6Y8xx/ekisb/0h2u23UIp319fXxxTsBAMDYVFW49f76vZox2StHTlaiwzklHd19mjnFm+gwAAAA0gIFcQBIkKwsu1zOo3euOtYinQAA4OTk5+Wo2OvUrs6Qqid7Ex3OSQtFohqMDqt4jItzAwAA4PjoIQ4ASezwRToBAMDJm17p0c59oVHrd6SK3Z1hVRa7ZKddCgAAwLigIA4AAAAgrXlcuXI5c7RnfyjRoZyUmGXU0R3WpFJXokMBAABIGxTEAQAAAKS9GVO82r4nqFjMSnQoYxKNRrVtx27lZBm587lSDAAAYLwkbUG8ra1NS5cuVVFRkUpLS3XDDTcoFDo0o2PXrl1qbGxUQUGBpk+frpUrV4567urVq1VbW6v8/Hw1NDTok08+ScRLAAAAAJAkigrz5M53qL0zuWeJW5alN998U48++qheev4Zvff6s3rzzTdlWalRyAcAAEh2SVsQv+WWW1RUVKQ9e/Zoy5Yt2r17t+69915J0vXXX68ZM2aoq6tLTz/9tL797W+rtbVVktTd3a2vf/3r+v73v69AIKDrr79eV111lQYHBxP5cgAAAAAk2MwpXn2+N6ih4ViiQzmmVatWadOmTVq4cKGuvvpqXXbZZdq0aZNWrVqV6NAAAADSQtIWxD///HNdf/31cjqd8vl8uuaaa7RhwwZt27ZNH3zwgR588EE5nU4tWrRIV111lX75y19Kkl5++WXNmDFDN9xwg3Jzc/W3f/u3sizrmF8gOzo69NFHHx1x27x585l8uQAAAAAmmMeVK7/Hqa3tBxMdylFFo1G1tLSorq5OPp9PkuTz+VRXV6eWlhZFo9EERwgAAJD6shMdwLF85zvf0XPPPafLLrtMAwMDeumll3TllVeqtbVVVVVV8S+IkjR//ny98847kqTW1lbNnz8/Pmaz2TRv3jy1trZq6dKlRxzniSee0P333z/hrwcAAABA4p0zrUhr1u3RpBKXvO7cRIczSigUkmVZo851pENFccuyFAqF5Pf7ExQdAABAekjaGeKLFi3Sp59+Ko/Ho5KSEuXm5urOO+9UOByW1+sd9Viv1xvvL36i8cPdeuutWrt27RG3Z599diJeFgAAAIAEys3J0swpXm3c0a2YZRIdzihut1t2u12BQGDU9kAgILvdLrfbnaDIAAAA0kdSFsRjsZiuuOIKLV26VH19fQoGg5o0aZJWrFghl8ulYDA46vHBYDD+5fBE44erqKjQggULjrjV1NRMzIsDAAAAkFBTytzKdWTp07YeSYdalXR3d592S5LT3Y/D4dDZNXPV3NwSL4oHAgGtXbtW9fX1cjgcpxUfAAAAkrRlSiAQ0O7du/XXf/3XysvLU15enm677TZdfvnlevDBB7Vz504dPHgwPhN83bp1qq2tlSTV1tbqySefjO/LGKP169frtttuS8RLAQAAAJBkbDab5s0o1pp1u7Vl/e/16ab1sixLdrtd9fX1WrJkiez2sc8dGlmzqKWl5bT2E4pE5amYq7Md2WpqajpiXwAAADh9SVkQLy4u1llnnaXHH39cP/jBDzQ0NKQnn3xS5557rmbOnKmGhgb98Ic/1E9+8hM1Nzfrtdde0/vvvy9J+sY3vqHvfe97evbZZ3Xttdfq8ccflyS+QAIAAACIc+Rkqa9zo9p2bNPChQvl8/nis7ElqbGxccz7WrVqlTZt2nRa+xkYHNbaT/frnOl+Tbnwq2r8o8UKhUJyu93MDAcAABhHSdkyRZJeeeUVrV69WuXl5Zo6dar27t2rX/3qV5KklStXasuWLfL7/brhhhv0xBNPxGeI+/1+vfrqq3rkkUfk8Xj0n//5n3rttdeUm5tcC+YAAAAASJxoNKoN69epoaE+voilz+dTXV2dWlpaxtz2pDccUXNzs+rq6k55P719Uf3fxn2aXOLSlLJDrR4dDof8fj/FcAAAgHGWlDPEJWnevHl6++23jzo2ZcoUvfXWW8d87qJFi9Ta2jpRoQEAAABIcaFQSJZlxYvYI3w+nyzLUigUkt/vHzU2NGypt29QwXBUwfCggn1R9R7sOeZ+YrGYPljfpqmTyuVx5aqwwCG73RZ/TLh/SLv2hbTnQFizqnzxYjgAAAAmTtIWxAEAAABgorjdbtntdgUCgVHF7EOLWdq0Y9+A9gW7ZYxRdMhSuD+q/sGYXPk58hQ4VOx1qnqyV46sErX+X9ZR92O321VZ5lewb1A79/VqIBqTIydL2Vk2RYdiMkYq9xfo4nkVys/LScC/AgAAQOahIA4AAAAg4zgcDtXX12vt2rXxdicjvb/nn7dAFSWFGhq2ZLPZ5Mi2q8DpkcuZo6ysI7tOHms/DQ0Nqp7yh1nmQ8MxDURjisWMHDl2OXOzZbPZjtgfAAAAJg4FcQAAAAAZacmSJZKkpqYmWZYlu92u+vp6LVmyRHb72JdbOt5+viwnO0s52Vnj9wIAAABw0iiIAwAAAMhIdrtdjY2NWrRokUKhkNxu9yktYjle+wEAAMDEoyAOAAAAIKM5HI4jFtBM5H4AAAAwccZ+HSAAAAAAAAAAACmMgjgAAAAAAAAAICNQEAcAAAAAAAAAZAR6iB9Df3+/JGnz5s0JjiQxtnWGEh0C0tjQfneiQwAAAAAAACmM2tXRZWrNZaSGO1LTPR4K4sfQ1tYmSVqxYkViAwEAAAAAAAAAnFBbW5suueSS4z7GZowxZyielNLV1aXf/va3mjZtmpxOZ6LDOaM2b96sFStW6Nlnn1VNTU2iwwFwGHIUSG7kKJC8yE8guZGjQHIjR5HM+vv71dbWpj/+4z9WcXHxcR/LDPFjKC4u1re+9a1Eh5FQNTU1WrBgQaLDAHAM5CiQ3MhRIHmRn0ByI0eB5EaOIlmdaGb4CBbVBAAAAAAAAABkBAriAAAAAAAAAICMQEEcAAAAAAAAAJARKIgDAAAAAAAAADICBXEcoaKiQvfdd58qKioSHQqAoyBHgeRGjgLJi/wEkhs5CiQ3chTpwmaMMYkOAgAAAAAAAACAicYMcQAAAAAAAABARqAgDgAAAAAAAADICBTEAQAAAAAAAAAZgYI4AAAAAAAAACAjUBBPQQcPHtS1114rt9utyspK/exnP4uPtba26sILL1R+fr5mz56td95557j7+vWvf63q6mrl5+dr8eLF2rlz56jxe++9VyUlJfJ4PLr55ps1ODh4SnGdSmxAqkrWHH3sscdUX1+v3Nxc/emf/ukR4+QoMkEy5ufg4KBuvvlmTZ8+XW63W3PmzNFzzz036jHkJzJFMuaoJN1yyy2aNGmSCgsLNW3aND300EOjxslRZIJkzc8RXV1dKi4u1oUXXjhqO/mJTJGsOXrTTTfJ4XDI5XLFb+3t7fHxXbt2qbGxUQUFBZo+fbpWrlx5av8AwMkwSDnf+ta3zFVXXWWCwaBZv369KSkpMa+//rqJRqNm2rRp5sEHHzQDAwNm5cqVprCw0HR2dh51P5s2bTIFBQXmt7/9rYlEIuY73/mOOf/88+Pj//qv/2qmT59utm/fbrq6uswll1xivv/97590XMaYk44NSGXJmqP/9V//ZV555RVzxx13mOuuu27UGDmKTJGM+RkOh829995rtm/fbizLMk1NTaawsNC8//77xhjyE5klGXPUGGM2btxoIpGIMcaY9vZ2U1NTY1544QVjDDmKzJGs+TnipptuMgsXLjQXXHBBfBv5iUySrDl64403mr//+78/5vgll1xibrvtNhOJRMzvfvc743K5zIYNG079HwIYAwriKSYcDhuHwzHqzeHuu+823/zmN82bb75pSktLTSwWi49dfPHF5rHHHjvqvu6++25zzTXXxO/39vaa3Nxc09raGn/uz3/+8/j4m2++aUpKSk46rpHnnkxsQKpK1hz9svvuu++Igjg5ikyQCvk54qtf/ap59NFH488lP5EJUiVH29vbzZw5c8yDDz4Yfy45inSX7Pn57rvvmksuucQ89dRTowri5CcyRTLn6PEK4lu3bjXZ2dmmp6cnvm358uXmu9/97gleMXB6aJmSYrZu3SrLslRbWxvfNn/+fLW2tqq1tVVz586V3W4/YkyS2tvb5fV645emtLa2av78+fHHut1uVVdXxx9/+Pj8+fN14MABdXZ2SpJuv/123X777SeMa2Rfx4sNSBfJmqMnQo4iE6RKfvb19amlpSUeJ/mJTJHsOfoP//APKigo0NSpU9XX16cVK1bE90WOIt0lc35Go1H91V/9lX7xi1/IZrONipv8RKZI5hyVpCeffFJFRUU699xz9dRTT8W3t7a2qqqqSj6f76ixARMlO9EB4OSEw2F5PJ5R27xer0KhkMLhsLxe7xFjI72epk6dqoMHD47a19EeHwqFjjo+8ncoFFJZWZkef/zxMcV1vGMd3ocKSHXJmqNjiZscRbpLhfy0LEs33XSTGhoa1NjYeNxjkZ9IN8meow8//LAeeughtbS06NVXX42fvJOjyATJnJ+PPPKIlixZonPPPVcff/zxEXGTn8gEyZyjd955px599FF5vV41NTVp2bJl8ng8uuaaa054LGCiMEM8xbhcLvX29o7aFgwG5Xa75XK5FAwGjzp2rH0d7/GHj4/8fbT9HS+usRwLSBfJmqNjiZscRbpL9vw0xugv//IvtXfvXr3wwgvxWW7kJzJFsueoJNlsNjU0NCgvL0/33XffmI4FpINkzc/PPvtMzzzzjO6///5TOhaQLpI1RyVpwYIFKi4uVnZ2ti6//HLdcccdeumll8Z0LGCiUBBPMWeffbZsNps2btwY37Zu3TrV1taqtrZWGzZskGVZR4wdTW1trdatWxe/Hw6HtX379vjjDx9ft26dSkpKVFZWdlJxjezrZGIDUlWy5uiJkKPIBMmcn8YY3XHHHVq3bp3eeOMNuVyuUcciP5EJkjlHDzc8PKzt27fH90WOIt0la36uWbNG+/bt09lnn63y8nL9zd/8jT766COVl5ert7eX/ETGSNYcPRq73S5jTHxfO3fuHDVDnRzFGZHgHuY4BcuXLzdf//rXTW9vr9mwYYMpKysbtXLwww8/bAYGBsyLL744ppWD33rrLdPf32/uuuuuUSsHP/nkk6a6utrs2LHDdHd3m4ULFx535eBjxWWMOenYgFSWrDk6NDRk+vv7zT333GOWLVtm+vv7TTQaNcaQo8gcyZqft99+uznvvPNGLSg0gvxEJknGHO3p6TG/+tWvTDAYNLFYzKxZs8aUlJSYf/7nfzbGkKPIHMmYn5FIxHR0dMRvP/vZz8yCBQtMR0eHsSyL/ERGScYcNcaYF154wfT29ppYLGaamppMcXGxef755+PjF198sbnjjjtMJBIxq1evNm63e9TioMBEoCCeggKBgPnmN79pCgoKTHl5ufnpT38aH1u/fr05//zzTV5enjnnnHPMqlWr4mM7d+40BQUFZufOnfFtL774opk+fbpxOp3m8ssvN21tbfExy7LMPffcY/x+vyksLDR/8Rd/YQYGBuLjt956q7n11lvHFNeJYgPSSbLm6H333WckjbrdeOONY4oNSBfJmJ9tbW1GksnNzTUFBQXx24MPPjim2IB0kow5GggEzOWXX268Xq9xuVxm1qxZ5pFHHjGWZY0pNiBdJGN+Hu7pp582F1xwwaht5CcyRbLm6MKFC43H4zEul8vMnj3b/Mu//MuouNvb282SJUuM0+k0VVVV5rnnnhvPfxbgqGzGfHGdAgAAAAAAAAAAaYwe4gAAAAAAAACAjEBBHAAAAAAAAACQESiIAwAAAAAAAAAyAgVxAAAAAAAAAEBGoCAOAAAAAAAAAMgIFMQBAAAAAAAAABmBgjgAAAAAAAAAICNQEAcAAADSzJw5c/TLX/4y0WEAAAAASSc70QEAAAAAGDuXyxX/OxqNKhaLyel0xre98cYb2rhxYyJCAwAAAJKezRhjEh0EAAAAgJP3wx/+UGvWrNG7776b6FAAAACAlEDLFAAAACDNTJs2Tf/2b/8mSWpra5PNZtNTTz2lefPmqaCgQJdeeql2796txx57TFVVVfJ6vbr11lsVi8Xi+9izZ4+WL1+uSZMmqbS0VNdff70OHDiQqJcEAAAAjAsK4gAAAEAGWLlypVatWqXOzk5J0uLFi7Vr1y5t3bpVLS0teuGFF/Tiiy9KkgYHB7V48WJVVlZq69at2rFjh7Kzs7V8+fJEvgQAAADgtFEQBwAAADLAvffeq9LSUrlcLi1btky7d+/WQw89pNzcXM2YMUMLFy7Uhx9+KEn6n//5H4VCIf3kJz9RQUGBXC6XHnnkEa1atUq7d+9O8CsBAAAATh2LagIAAAAZoKKiIv53QUGBSkpKlJWVNWpbKBSSJG3btk2dnZ3y+Xyj9pGbm6v29nZNnjz5zAQNAAAAjDMK4gAAAABGKS8vV1VVlbZv357oUAAAAIBxRcsUAAAAAKN84xvf0NDQkO69914Fg0FJ0v79+/XCCy8kODIAAADg9FAQBwAAADCK2+3W73//e7W3t2vu3LkqLCzUxRdfrPfeey/RoQEAAACnxWaMMYkOAgAAAAAAAACAicYMcQAAAAAAAABARqAgDgAAAAAAAADICBTEAQAAAAAAAAAZgYI4AAAAAAAAACAjUBAHAAAAAAAAAGQECuIAAAAAAAAAgIxAQRwAAAAAAAAAkBEoiAMAAAAAAAAAMgIFcQAAAAAAAABARqAgDgAAAAAAAADICBTEAQAAAAAAAAAZgYI4AAAAAAAAACAj/P/UiwdMJ8LUOgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/cAAAIyCAYAAACO1Dp8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACwQ0lEQVR4nOzdeXwT1fo/8E/aJl2StGm6pXtLNyiUHVERWUQ2FZFFRVBWBQTkKup1YRFEFEQU9SpcvYCggoJ6v4gsiqCiFIpAkdICpdCmdIPuTbqkTeb3h7/mElqgS5ppm8/79epLM2dy5kkKPPPMOXNGIgiCACIiIiIiIiJqsxzEDoCIiIiIiIiImofFPREREREREVEbx+KeiIiIiIiIqI1jcU9ERERERETUxrG4JyIiIiIiImrjWNwTERERERERtXEs7omIiIiIiIjaOBb3RERERERERG0ci3siIiIiIiKiNo7FPZGdGDhwIBYuXCh2GERERNRCmOuJ7BuLe6I24NKlS5gwYQICAgKgUCgQEBCAkSNHIicnR+zQRLNt2zb0798f7u7ukEgkqKmpETskIiKiJmOur+ull15CXFwc3N3d4e/vjwkTJiAzM1PssIhaLRb3RG3AyJEjoVQqkZSUBJ1Oh5MnT+KRRx6BRCIROzTReHp64umnn8Z7770ndihERETNxlxfl0QiwaZNm5Cfn4+UlBRIJBI88MADYodF1GqxuCdq5QoKCnD27FnMmjULarUaAODn54fJkydDo9EAADZt2oSgoCCL97322mu46667LLYVFxdjzJgxUCqViIyMxObNm81tWq0WI0eOhFqthoeHB7p06YJDhw5Z9L927VoEBQXBy8sL06ZNg06nM79/8eLFiI6OhlKpRHBwMObNm4fy8nJze01NDdasWYPY2FgolUoEBQVh5cqV5vajR49i4MCB8PLyQmhoKBYtWnTT0fhhw4ZhwoQJ6NChQ2O/UiIiolaFub5+b775Jnr16gWZTAaVSoUXX3wRp06dQlFRUWO/YiK7wOKeqJXz8vJCXFwcZs6ciY0bN+Kvv/6CyWRqUl//+c9/MHXqVBQVFeH999/HjBkz8McffwAAXn75ZQQGBiI7OxtFRUX45ptvLE4icnNzkZiYiHPnzuGvv/7C6dOn8eyzz5rbo6KisH//fpSWlmLv3r3Ys2cPXn/9dXP7a6+9ho8++gibNm1CSUkJ/vrrL9x9990AgHPnzuGee+7BrFmzkJeXh99++w07d+60OCEgIiJqr5jrG+bHH39EaGgoPD09m/TdELV7AhG1evn5+cKiRYuEPn36CM7OzoKnp6ewYMECobKyUhAEQdi4caMQGBho8Z4lS5YI/fr1M78eMGCAMGbMGIt9Hn74YWHatGmCIAjClClThPvvv19ISkoSTCaTxX4bN24UHBwchOLiYvO23bt3C1KpVKipqak35jVr1gg9e/YUBEEQTCaToFAohO3bt9e777x584RHH33UYtvnn38uRERE3PA7qXXw4EEBgFBdXX3LfYmIiFor5vqb++mnnwQ3Nzdhz549DdqfyB5x5J6oDfDy8sKyZcuQkJCAkpISbNiwAZ988gnefPPNRvUTHh5e53XtwjSrV69GZGQkxowZAz8/P0ydOhV5eXnmfT09PeHh4WHx3urqavM+69evR8+ePeHl5QUPDw+8+uqruHLlCgAgPz8fOp0OMTEx9caVmpqK7777DiqVyvwze/Zs5ObmNurzERERtVXM9Te2a9cujBs3Dp9//jmGDx/eqO+DyJ6wuCdqY5ydnTF69GgMGTIEJ06cAAAolUro9XqL/bKzs+u8Nz09vc7r2ul4Xl5eePfdd3Hu3DmcPHkS6enpeO6558z7FhUVoaSkxOK9UqkUfn5+iI+Px9y5c/HOO+8gNzcXJSUleOONNyAIAgDA29sbCoUC58+fr/czaTQaPPbYYyguLjb/lJaWWtznR0REZC+Y6//niy++wMSJE/HVV1/hoYceuum+RPaOxT1RK1dUVISXXnoJf/31F6qqqmA0GvHzzz/j4MGD5vvYevTogbKyMnz11VcwmUz45ZdfsH379jp97d69Gz/88AOMRiP27t2L7777DlOnTgXw96Pl0tLSYDKZoFQq4ezsDCcnJ/N7JRIJFixYAL1ej+zsbCxZsgSPP/44HB0dUVJSAkdHR/j4+EAqleLEiRP48MMPLd47b948vPzyy/jzzz8hCAIKCwsRHx8PAHj66aexY8cObN++HQaDAUajERcuXMDevXtv+L0YjUZUVlbCYDAAAKqqqlBZWdnkexSJiIjEwlxfvw8//BBz587Frl27MGzYMKt810Ttmrh3BRDRreh0OmH69OlCdHS0oFAoBA8PD6Fz587CW2+9ZXG/3McffywEBQUJSqVSePTRR4Vnn322zn14c+bMER566CFBoVAIHTp0EDZs2GBuf+mll4SQkBDBzc1N8Pb2Fh555BHhypUrgiD87z6/9957TwgICBA8PT2FyZMnC6WlpYIgCILRaBTmz58veHl5Ce7u7sKwYcOEpUuXWtwbWF1dLaxcuVKIjo4W5HK5EBgYKKxcudLcfuTIEeHee+8VvL29BQ8PD6Fbt27CunXrbvi9bNy4UQBQ5+fgwYPN/s6JiIhsibm+fgAEJycnQS6XW/z89ttvzf/SidohiSD8/7k0REQ3sGnTJixcuBCXL18WOxQiIiJqAcz1RG0fp+UTERERERERtXEs7omIiIiIiIjaOE7LJyIiIiIiImrjOHJPRERERERE1MaxuCe7V1xcjLCwMGRmZoodyk2tWLECQ4cObdJ709PTIZFIcOHCBStH1fKCgoKwadMmscOoozm/j/ro9XqEhobe8PnARETt2fW5+JdffoFEIkFNTY3IkVnfwoULMXDgwCa9d8qUKZg0aZJ1A2pDx2+qTz/9FGFhYWKHUS+FQoFffvnFav298847mDJlitX6o7aFxT3ZvWXLlmH06NEIDg62Sn8tlfheeeUV/Pjjj1bv11paywWEsLAwfPrppy3ep7V/H3K5HM899xwWLFhgtT6JiNoKa+diapzWdDGlNVxA2LRpE4KCgmzSp06na/LFnvrMnTsXP/74I/7880+r9UltB4t7smulpaX45JNP8NRTT4kdChGeeOIJ7N+/n6P3RGRXmIvFVV1dLXYIZEXOzs6YNGkS3n33XbFDIRGwuCe79uOPP0KlUiE2NtZi+9GjRzFw4EB4eXkhNDQUixYtsriaffnyZUycOBFBQUFwd3dH9+7dceLECaxYsQJffPEFvvrqKygUCigUCmi1WgDADz/8gF69esHDwwPR0dFYvXo1TCaTuU+JRII1a9agT58+UCgUuO222yyuur722mu46667zK8rKiqwcOFCREdHQ6lUokOHDvjss89u+nkPHjyI2NhYuLu745577kFaWpq5zWg04p133kGnTp3g4eGBXr164eeffza3JyUl4Z577oGPjw88PDzQt29fHDhwwNzeuXNnAEC3bt2gUCgwa9YsAMCHH36IiIgIKJVK+Pn53XSqmE6nw/Tp0+Hl5YXAwECsXbu2zj5nz57F/fffDz8/PwQGBuLpp5+GXq8HAIwYMQJarRZz586FQqEwxwQAmzdvRrdu3eDh4YHOnTtj27ZtFv3Gx8dj8ODB8Pb2hlqtxqBBg1BRUXHDPq//fRQXF+Opp55CUFAQvL29MWLECJw7d87cXrv/0qVL4e/vD7VajZkzZ1r8ufL09ESfPn3w3Xff3fA7IiJqb26Ui69lNBrx9ttvIzo6Gh4eHujduzf27Nljbq8ded6xY4c5L957773Iysoy75OXl4fRo0dDpVKhQ4cO+OKLLyCRSG46Jfqpp55CWFgYFAoFwsPDsWTJEovcPXDgQMyfPx+PPfYYPDw8EBwcjI8//tiijy1btiAqKgpKpRJjxoxBcXHxTb+PgwcPonfv3vDw8ICXlxf69euHoqIic3tNTQ3mzp0LLy8v+Pn5YdGiRRbvj4+PR//+/eHp6Ynw8HC89NJLqKqqMreHhYVhyZIlGD58OJRKJd58802MGDECAKBSqaBQKLBixYobxmcwGDBjxgyoVCqEhIRg1apVFu03y9MAsHjxYvPvKDg4GPPmzUN5eTkA3PA8SqvVYuTIkVCr1fDw8ECXLl1w6NChG8a4b98+xMXFQaFQYPDgwXVuvbzZOc+hQ4cwa9YsZGdnm2P44osvAABZWVl47LHHEBgYCF9fX0yYMAFXr14193ujc7Ob9SmRSLB//35zHw05X/zggw/Qr18/KBQKxMXF4ffff7f4fMOHD8f333/fKmZikI0JRHbsn//8pzB8+HCLbWfPnhXkcrmwdetWobq6WkhPTxe6du0qLF++XBAEQSgvLxeioqKEKVOmCFevXhWMRqNw5swZIT09XRAEQZg8ebIwceJEiz4TEhIEqVQqfPXVV0J1dbXw559/Cv7+/sK7775r3geAEBERIZw5c0aorKwUlixZInh7ewvFxcWCIAjCkiVLhH79+pn3nzhxotCnTx8hOTlZMJlMQlZWlnD8+PF6P+elS5cEAEKfPn0ErVYr6PV6Yfr06UKnTp2E6upqc//dunUTzp49KxiNRuHbb78V3NzchAsXLgiCIAinT58WfvzxR6G8vNwcn7u7u5CXl2dxjNTUVPNxz58/L7i6ugqnT58WBEEQysrKhF9//fWGv48nn3xS6NGjh5CZmSnodDphypQpgqOjo7Bx40ZBEATh6tWrgre3t7BmzRqhsrJSuHr1qnDPPfcIM2bMMPcRGhoqfPLJJxb9bty4UQgODhaOHTsmGI1G4dChQ4JSqRQOHTokCIIgJCUlCS4uLsKHH34o6PV6oaqqSjh48KBQWVl5wz6v/33cf//9wsCBA4WcnBxBr9cL8+fPF4KCgoSysjLz/k5OTsLbb78tVFVVCefOnRM8PT2FDRs2WPQ7Z84cYezYsTf8joiI2pv6cvHBgwcFAOYctXr1aiEwMFA4fvy4UF1dLWzdulWQSqXmvFe7/2OPPSYUFxcLxcXFwp133ik88cQT5j4HDx4s3H///UJhYaFQWFgojBo1SgAgHDx48IaxffLJJ0Jubq5gMpmE+Ph4Qa1WC+vWrTO3DxgwQHB3dxd+/vlnwWg0Cjt27BAcHBzMufCPP/4QnJychJ07dwrV1dXCzp07BRcXF2HAgAE3PGZAQICwYcMGwWQyCVVVVcLhw4cFnU4nCMLf5xgymUzYunWrUFNTIxw+fFhwcnISDhw4IAiCIGRkZAhubm7Cu+++K1RVVQnnz58XYmNjhfnz55v7Dw0NFfz8/ITDhw8LJpNJ0Ov1db7vG5k8ebLg5OQkrFu3TjAYDEJ8fLzg6ekpfP7554IgNCxPb968WcjIyBBMJpOQlJQkRERECC+99JLFMa4/j3rssceEGTNmCBUVFYLRaBTOnj0rXLx4sd4YL168KMhkMmH9+vWCwWAQ/vjjD8Hb21sIDQ0173Orc56NGzcKgYGBFv1WVlYKMTExwoIFCwSdTieUlZUJkyZNEoYMGWLe52bnZvX1KQh/n//99NNPgiA0/Hyxa9euQmpqqlBdXS3Mnz9fCAkJsejz6tWrAgDz+RfZDxb3ZNeefPJJ4ZFHHrHYNm/ePOHRRx+12Pb5558LERERgiAIwvbt2wW1Wm0u/K5XX1J66qmnhNGjR1tsW7NmjRATE2N+DUB4//33za+NRqOg0WiEzZs3C4JgWUzW/qN97NixBn3O2sJ7586d5m2lpaWCo6Oj8NtvvwmCIAju7u7C3r17Ld43ZMgQ4fXXX79hvx4eHuY+6yvuL168KLi4uAjbtm0TSkpKbhqj0WgUnJ2dLWIsLi4WJBKJubh/5513hNtvv93ifb///rsgk8mEmpoaQRDqL8Tj4uIsTsYEQRBmzJghTJ8+XRCEvwvq++6774ax3aq4z87OFgAIiYmJ5naDwSB4eXkJW7duNe8fHh5u0ce4ceOEWbNmWWx75ZVXhEGDBt0wFiKi9qa+XHx9sRkdHS289957FvuMGjVKmDlzpsX+GRkZ5vYPP/xQ6NixoyAIgpCZmSkAEM6cOWNuP3369C2L++s988wzwpgxY8yvBwwYIEydOtViH29vb2Hbtm2CIPyda67dXxAEYcyYMTct7sPCwoRXX31VuHz5cp22yZMn18kRvXv3Ft566y1BEARhxYoVQvfu3S3av/32W8HV1VUwmUyCIPyd064tpgWh7vd9I5MnTxZ69uxpse3FF18UBg8eLAhCw/L09dasWWPRZ33nUVOmTBHuv/9+ISkpyfw5bmT58uV1YnzuuecsivtbnfPUV4h/8803QkBAgMXxL1++LAAQMjMzb3lu1pDivqHni5999pn5dVJSkgBAyM3NNW8zGAwCgJsOqFD7xGn5ZNfUajVKSkostqWmpuK7776DSqUy/8yePRu5ubkAgEuXLiEsLAzOzs4NPk5mZiYiIiIstkVGRpqn7NcKDw83/7+DgwNCQ0PrXcX/0qVLAICYmJgGx3B9/0qlEt7e3sjMzEReXh5KS0sxfvx4i899+PBh85RGrVaLRx99FCEhIXB3d4dKpUJpaSmuXLly0+Nt27YNGzduREhICPr06YOtW7fWu+/Vq1dRVVVlEaOHhwfUarX5dWpqKo4fP24R48iRIyGRSMy/n/qkpqZiwYIFFu/bunUrsrOzAfz9fTb2u7xW7e/o2t+xVCpFaGioxe84ICDA4n1yuRxlZWUW20pKSiw+MxFRe1dfLr5eQ/Potf/OXvtvbG0uCw0NNbffavV0QRDwxhtvoHPnzvD09IRKpcL69evr5L2b/dt++fJli7wGoM7r6+3cuRMXL15Er169EBkZiSVLllhMr77Z8W70PVVUVFhMH79VDDdT3+epzYMNydPr169Hz5494eXlBQ8PD7z66qs3PZcAgNWrVyMyMhJjxoyBn58fpk6diry8vHr3vdV33pBznvqkpqYiLy/P/GdBpVKhc+fOcHZ2hlarbfK52bWa+uccgMX5RO3fJ55P2B8W92TXevXqhTNnzlhs02g0eOyxx1BcXGz+KS0thU6nA/D3yUB6ejoMBkO9fTo41P1rFRwcbHF/OwCkpaUhJCTEYlt6err5/00mE7Rabb0rq9aekDR24bVr+9fpdMjPz0dQUBBUKhVcXFywa9cui8+t1+vN9w4++eSTMJlMOHbsGEpLS1FUVAR3d3cIgnDDzw0ADz74IPbu3Yv8/Hy88MILmDhxYr1x+/j4wNnZ2SLGkpISi/sMNRoN7rrrLosYS0pKUFlZicDAwBvGodFo8NFHH1m8T6fTYffu3QD+/j5v9l3e6LPVql3d+drfcU1NDbRabZ3f8a2cPn0avXv3btR7iIjasvpy8fUamkdvpDZHZGRkmLdd+//12bZtG9577z1s3rwZ+fn5KC4uxsyZM815ryGCgoIs8hqAOq+vFxcXhy+//BK5ubnYsWMH1q1bh40bNzboeMHBwbh48aLFtrS0NLi6usLHx8e87fq8dqs8d636Pk/tucqt8nR8fDzmzp2Ld955B7m5uSgpKcEbb7xh8Z3WF4uXlxfeffddnDt3DidPnkR6ejqee+65euO71XfekHOeG51LhIaGWrynuLgYlZWVuPPOO295btaQ77i5f85rnT59GgqFAh07dmzU+6jtY3FPdm3o0KEoLCxESkqKedvTTz+NHTt2YPv27TAYDDAajbhw4QL27t0LALj//vvh6emJp59+Gvn5+RAEAcnJyeaTBI1Gg7S0NBiNRnOf06ZNww8//IBvvvkGRqMRJ0+exNtvv11nZeC1a9ciJSUFBoMBb7zxBgwGA0aNGlUnbh8fH0yYMAFz5swxL9qWk5ODEydO3PTzLl++HJcvX0Z5eTkWLFiAyMhI3HnnnXB2dsasWbPw4osvIiUlBYIgoKKiAr/99ps5SZWUlEChUMDT0xN6vR4vv/yy+YJHbUwODg4Wi8idO3cOu3fvhk6ng5OTEzw8PAAAjo6OdWJzcHDApEmT8NprryErKwt6vR4LFiyARCIx7zN16lScPHkSH330EcrLyyEIAjIzM/Hf//7XvI9Go7GIAQD+8Y9/4PXXX8exY8dgMplQVVWFY8eO4fjx4wCA2bNn46effsK6detQUVGB6upq/Prrr+YFiOrr81r+/v4YOXIkFixYgLy8PFRUVOCf//wnZDIZ7rvvvpv+Tq5VXFyMhIQEjB49usHvISJq6+rLxdebMWMGVq9ejcTERNTU1ODrr7/G7t27MWPGjAYdIygoCAMHDsTLL79sLsoWLlx40/eUlJTAyckJvr6+kEgkOHjwID7//PNGfbbJkydj586d+OGHH2A0GvHDDz+YLyzXx2AwYOPGjeZRdg8PDzg6OsLJyalBx3vsscdw7tw5fPDBBzAYDEhLS8OiRYswY8YMi3x6PY1GAwA3zXW1Tp06hU8//RQ1NTVISEjAJ598gqlTpwK4dZ4uKSmBo6MjfHx8IJVKceLECXz44Yd1Yrn+PGrbtm1IS0uDyWSCUqmEs7PzDb+TCRMm4PTp0+YYjxw5gs2bN5vbG3LOo9FokJ+fj4KCAvP7xowZg+rqaixatMg8Mn7lyhV89dVXAG59blZfn9dr6Pnirezduxf3339/g//cUPvB4p7smoeHB2bMmIH169ebt/Xp0wc//fQTPvnkEwQGBsLLywvjxo0zF++urq44cOAAdDod4uLi4OHhgYkTJ6KwsBAAzP8Ae3t7Q6VSQavVom/fvtixYwfeeOMNeHp6Yvz48XjmmWcwf/58i3hmz56Nxx9/HGq1Gjt37sTu3buhUqnqjf2TTz7BgAEDMGLECCgUCvTr1++WIx/Tp0/HvffeCz8/P5w/fx7ff/+9+R/+1atXY8KECeZpamFhYXjzzTfNj8h5//33cerUKXh6eiI2NhaBgYEWswpcXV2xYsUK8wq6Tz/9tPkiRWBgINzd3bFgwQJs3ry5zpSzWu+++y7i4uIQFxeH6OhoxMXFmU84ACAkJATx8fH46aefEBERAZVKhWHDhuH06dPmfRYvXoz/+7//g0qlQteuXQEA8+fPx2uvvYZZs2ZBrVYjMDAQL7zwgnn13i5dumD//v3YunUrAgIC4Ofnh2XLlplXp62vz+tt2bIFYWFh6NmzJ4KCgnDmzBns378fSqXypr+Ta23evBn33HMPr7QTkV2pLxdf77nnnsOcOXMwbtw4qNVqrFy5Et9++22jZjp9+eWXEAQBoaGh6NGjh/niuYuLS737T5kyBffccw/i4uLg7e2NdevWNfr563fddRf+/e9/Y/78+VCpVPjPf/6DadOm3fQ9O3bsQOfOnSGXyzFgwABMmTIFkydPbtDxQkND8eOPP+Krr76Cr68vBg8ejBEjRtRZ0f560dHRmDdvHgYNGgSVSoW33nrrhvs+9NBDOHLkCLy9vTF27Fg8//zz5u/lVnl66NChmDVrFgYOHAgPDw+88sordT5bfedRp06dwuDBg6FUKs39rl69ut74OnTogO+++w7vvfceVCoVXnnlFcyePdtin1ud8wwePBgPPvggoqOjoVKp8OWXX0KpVCI+Ph5arRZxcXFwd3fHnXfeid9++83c783Ozerr83oNPV+8GYPBgC1bttxwZgO1bxKhMXOLiNqhoqIidO/eHYcOHWr0tCdrkkgk+OmnnzBkyBDRYiDx6PV6dO7cGfv27WvW/XpERG2RGLk4MTERPXr0QHZ2Nvz9/W1yTKKWtmbNGpw6deqWj0em9onFPVErweKeiIio5SQlJcFgMKB79+7Izs7GE088AQA4cOCAyJEREVkHp+UTERERUbtXUlKCRx99FEqlEr169YK3tze++OILscMiIrIajtwTERERERERtXEcuSciIqJm+/DDD9G7d284Ozvj0UcftWhLSkrC7bffDjc3N8TGxt5yGvSHH36IwMBAKBQKjB071uKRmERERFQ/FvdERETUbAEBAVi4cCGefPJJi+3V1dV44IEHMGrUKBQVFWHJkiV46KGHcOXKlXr7+emnn7BkyRJ8//33yMnJgaOjI2bNmmWLj0BERNSmcVo+ERERWc1rr72Gs2fPYtu2bQD+LtYnTZqEnJwcODj8PabQr18/PPbYY5gzZ06d90+cOBH+/v7mx1ylpqYiNjYW+fn58PDwsN0HISIiamOcxA5ADPn5+di3bx/CwsLg6uoqdjhERESoqKhAeno6hg0bBm9vb7HDsZqkpCTExcWZC3sA6N69O5KSkm64/4gRI8yvo6KiIJPJcPbsWfTt27fO/jk5OcjJyamzvaioCCkpKejRowdzPRERtQotnevtsrjft28fJk2aJHYYREREdXz++eeYOHGi2GFYjU6ng0qlstimUqmQkZHRqP3Lysrq3X/9+vVYunSpNUIlIiKyiZbK9XZZ3IeFhQEAVq1ahYiICHGDIbKRtLQ0vPjii9iyZQtiY2PFDoeIrpOSkoJJkyaZc1R7oVAoUFJSYrGtpKQESqXSKvvPnDkTo0aNqrM9MTER06dPx8qVK5nrya6kpaXhn//8J/M9USvU0rneLov72ul5HTp0QOfOnUWOhsg2apfX6NixI3r27ClyNER0I+1tCnmXLl2wcuVKmEwm89T8xMRETJgw4Yb7JyYmmkc0Lly4gKqqKnTs2LHe/f39/eHv73/D40dERKBLly7N/BREbYe/vz9eeeUVDB06FL6+vmKHQ0T1aKlcz9XyiYiIqNlqampQWVmJmpoamEwmVFZWorq6GgMHDoSrqytWrVqFqqoqbN++HadPn8b48ePr7WfKlCnYuHEjTp48CZ1Oh4ULF2LMmDFcTI+ogTw9PTF69Oh2tXYHETUMi3siO9GxY0f8/vvv6N69u9ihEFE7tHz5cri6uuKNN97A9u3b4erqiieffBJSqRQ7d+7Ed999B5VKhcWLF+Pbb781jygeOnQICoXC3M+9996L1157Dffddx80Gg0MBgPWrVsn1scianOKiorw3//+F/n5+WKHQkQ2ZpfT8onskYODA2QymcWK1UQ3IwiC+YeaTyKRmH/ao9deew2vvfZavW1xcXE4evRovW39+/eHTqez2DZ37lzMnTvX2iES2YWcnBysWLECDz30EKfl0y0x11ufRCIR7XybxT2RnUhPT8fChQvxxRdf3PDeVSIAMJlMuHLlCoqLi5nsrUwikUClUsHX15cX2oiISDTM9S1LKpUiJCQEMpnMpsdlcU9kJ8rLy3HixIk6I2RE18vIyICDgwPCwsIglUrFDqddqa6uRl5eHjIyMhAeHi52OEREZKeY61uOIAgoKCiAVqtFZGSkTY/N4p6IiMxqF0KLioqCkxNThLU5OjoiMDAQqampFqvHExER2Qpzfcvz8vJCYWGhzXM9zyqIiMisdmpee70vvDWo/W45DZKIWoKbmxt69uxpsVAl0bWY61ueWLmexT0RERERUTsRFhaGdevWITo6WuxQiMjGWNwT2Ql/f3+88sorCAkJETsUonZv4MCBfHwbEYnCZDLBYDDAZDKJHQpRu9Yacz2LeyI74enpidGjR8Pb21vsUIiabeDAgXBycsL58+fN286ePcsphkRk986ePYu77roLiYmJYodC1CzM9Y3H4p7IThQVFeG///0v8vPzxQ6FyCo8PDywaNGiZvdTU1NjhWiIiIjI2pjrG4fFPZGdyMnJwYoVK6DVasUOhcgq5s2bh927d+PkyZN12kpLSzF9+nRoNBoEBQXhueeeQ1VVFQAgPT0dEokEmzZtQnh4OLp27YpffvkFGo0Ga9euhb+/P7y8vPDpp5/i+PHj6N69Ozw8PPD444+bTw5KS0vxwAMPwNfXF56enhg5ciT/bhEREVkZc33jsLgnIiKrMRgM0Gq1SE5OhlarhcFgaLFjaTQaPPPMM3jllVfqtD3zzDPIysrC2bNn8eeff+KPP/7AsmXLLPbZu3cvTp06hePHjwMA8vPzzc+g37RpE+bOnYulS5diz549uHDhAg4dOoSvv/4awN/3tE6ePBnp6enIzMyEu7s7nn766Rb7rERERK2JrfI9c33jsLgnIiKrMBgMSExMRE5ODkwmE3JycpCYmNiiBf4LL7yAhIQE/Pbbb+ZtRqMRW7duxcqVK6FSqaDRaLB06VJs3rzZ4r2vvfYa3N3d4erqCgBwcHDA0qVLIZPJ8MADD0Amk+Gxxx6Dv78/fHx8MHToUJw4cQIAoFKpMG7cOLi5uUGhUODll1/Gr7/+2mKfk4iIqLWwdb5nrm84FvdERGQVubm5EAQBwcHBUKvVCA4OhiAIyMvLa7FjqlQq/POf/8TLL79s3pafnw+DwYCwsDDztrCwMOTk5Fg8bzY0NNSiL7VaDalUan7t5uYGjUZj8Vqn0wEAysvLMXPmTISGhsLd3R39+/eHTqczTwckIhJLZGQkvv/+e3Tp0kXsUKidsnW+Z65vOBb3RHbCzc0NPXv2hEKhEDsUaqd0Oh3kcrnFNrlcjrKyshY97rx585Ceno5du3YBALy9vSGTyZCenm7eJz09Hf7+/hYr7DZntd133nkHycnJOHLkCEpLS3Ho0CEAsDihICISg0wmg5+fH2QymdihUDslRr5nrm8YFvdEdiIsLAzr1q1DdHS02KFQO6VQKKDX6y226fV6KJXKFj2uq6srFi9ejLfeegsA4OjoiEcffRQvv/wyiouLkZeXh6VLl+Lxxx+32jHLysrg6uoKlUqFoqIivP7661brm4ioOTIzM/HSSy/h4sWLYodC7ZQY+Z65vmFY3BPZCZPJBIPBAJPJJHYo1E5pNBpIJBJkZmaisLAQmZmZkEgk8PPza/FjT58+HZ6enubX77//Pvz8/BATE4MePXrgtttuw+LFi612vH/84x8wGAzw8fFB3759ce+991qtbyKi5igrK8OBAwdQXFwsdijUTomV75nrb00itOZ5BS3kxIkT6NWrF3bs2MH7kchuJCUlYdy4cTh27Bh69+4tdjjUShmNRpw/fx7R0dFwdHRs9PsNBgPy8vJQVlYGpVLJqaH1uNF3XJubjh8/jp49e4oYYfvAXE/2ivmebqW5uR5gvr8VsXK9k9V7JCIiuyWTyRAcHCx2GERERNSCmO9bJ07LJyIiIiIiImrjWNwTEREREbUTPj4+ePrppxEQECB2KERkYyzuiYiIiIjaCR8fH0yZMsXi2d1EZB9Y3BPZicjISHz//fdcWIpuqvZ5sHa41qrN1H63zXn2LhHRjZSWluK3337javl0Q8z1tmPrXM/inshOyGQyrmRKt+Tg4ABHR0dUVlaKHUq7VVlZCUdHRzg4MAUTkfVdvnwZzz//PJ9zTzfEXN/yqqurIZFIbF7cc7V8IjuRmZmJlStXYv369YiMjBQ7HGrFfHx8kJWVhcDAQLi4uHCE2UoEQUBlZSWysrLg6+srdjhERGTHmOtbjiAIyMvLg0qlYnFPRC2jrKwMBw4c4DQ9uiVPT08AQHZ2NoxGo8jRtC+Ojo7w9fU1f8dERERiYK5vWS4uLqJcyGdxT0REdXh6esLT0xMmk4n35FmJRCLhVHwiImo1mOtbhpj5nsU9ERHdEItRIqK2RSaTITw8HC4uLmKHQm0Ec337wd8kEREREVE7ERkZia+++gqxsbFih0JENsbinshO+Pj44Omnn0ZAQIDYoRARERERkZWxuCeyEz4+PpgyZQo0Go3YoRAREVELSUlJwaBBg5CYmCh2KERkYyzuiexEaWkpfvvtN66WT0RE1I4JggC9Xg+TySR2KERkYyzuiezE5cuX8fzzz+PixYtih0JERERERFbG4p6IiIiIiIiojWNxT0RERERERNTGsbgnIiIiImonwsPDsXnzZnTs2FHsUIjIxljcE9kJmUyG8PBwuLi4iB0KERERtRBXV1d07NgRbm5uYodCRDbG4p7ITkRGRuKrr75CbGys2KEQERFRC8nOzsaqVaug1WrFDoWIbIzFPRERERFRO1FcXIwdO3YgPz9f7FCIyMbabHGfn58Pb29v3H777WKHQtQmpKSkYNCgQUhMTBQ7FCIiIiIisrI2W9y/8MILnF5M1AiCIECv18NkMokdChERERERWZmT2AE0xa+//orU1FRMnz4d69evv+F+OTk5yMnJqbM9JSWlJcMjIiIiIiIisqk2V9wbDAbMnTsXn3/+OU6ePHnTfdevX4+lS5faKDIiIiIiInGp1WpMmDABvr6+YodCRDbW5or7t956C0OGDEG3bt1uWdzPnDkTo0aNqrM9JSUFkyZNaqkQiYiIiIhEodFo8OyzzyIoKEjsUIjIxtpUcX/hwgVs2rSpwQuC+fv7w9/fv2WDImojwsPDsXnzZnTs2FHsUIiIiKiF6PV6/PXXX4iJiYG7u7vY4RCRDbWp4v73339Hbm4uoqOjAQAVFRWoqKiARqPB+fPn+Q8Y0U24urqiY8eOcHNzEzsUIiIiaiEZGRmYMWMGunXrht69e4sdDhHZUJtaLf+RRx7BxYsXkZiYiMTERCxbtgxxcXFITEyEUqkUOzyiVi07OxurVq2CVqsVOxQiIiIiIrKyNlXcu7q6QqPRmH88PDwglUqh0WggkUjEDo+oVSsuLsaOHTuQn58vdihERERERGRlbaq4v96UKVNw5MgRscMgIiIiIiIiElWbLu6JiIiIiOh/HB0doVKp4OTUppbWIiIrYHFPRERELUqhUFj8ODk51fuo2loSiQRyudy8/4gRI2wYLVHbFhMTgx9//BFdu3YVOxQisjFe0iOyE2q1GhMmTICvr6/YoRCRndHpdOb/NxqNCAkJwcMPP3zT9xw/fpyP7iQiImoEjtwT2QmNRoNnn30WQUFBYodCRHZs79690Ol0GDt2rNihELVLqampGDNmDM6cOSN2KERkYxy5J7ITer0ef/31F2JiYuDu7i52OERkpzZu3IhHH30Urq6uN91v8ODBMBqN6N27N1atWoXOnTvXu19OTg5ycnLqbE9JSbFKvERtTXV1NS5fvoyqqiqxQyEiG2NxT2QnMjIyMGPGDHTr1g29e/cWOxwiskP5+fn4/vvv8dtvv910v19++QV33HEHqqqqsHLlSgwdOhQpKSn1Xphcv349li5d2lIhExERtRmclk9EREQ28cUXXyAyMhJ9+/a96X4DBgyATCaDUqnE8uXL4eTkhMOHD9e778yZM3H8+PE6P59//nlLfAQiIqJWiyP3REREZBMbN27E1KlTG/0+BwcHCIJQb5u/vz/8/f2bGxoREVGbx+KeiIiIWtyJEydw5swZPP744zfd78yZM6iqqkLXrl1hMBiwatUqVFRU4I477rBRpERtW0hICNauXYvIyEixQyEiG+O0fCI74ejoCJVKBScnXtMjItvbuHEj7rvvPvj5+dVpUygUOHToEADgypUreOyxx+Dh4YGQkBAcOXIE+/btg0qlsnHERG2TQqHAHXfcwcVziewQz/KJ7ERMTAx+/PFHdO3aVexQiMgOffDBBzds0+l05v8fNGgQzp49a4uQiNqlq1evYsuWLXjttdcQGBgodjhEZEMcuSciIiIiaieuXr2KTz/9tN5HRBJR+8binshOpKamYsyYMThz5ozYoRARERERkZWxuCeyE9XV1bh8+TKqqqrEDoWIiIiIiKyMxT0RERERERFRG8finoiIiIionXB3d8fw4cPh6ekpdihEZGMs7omIiIiI2omgoCAsW7YM4eHhYodCRDbG4p7IToSEhGDt2rWIjIwUOxQiIiJqIVVVVcjMzERlZaXYoRCRjbG4J7ITCoUCd9xxB9zd3cUOhYiIiFpIWloaxo4di+TkZLFDISIbY3FPZCeuXr2Kf//733zuLRERERFRO8TinshOXL16FZ9++imLeyIiIiKidojFPREREREREVEbx+KeiIiIiIiIqI1jcU9ERERE1E7ExsYiISEBPXv2FDsUIrIxFvdEdsLd3R3Dhw+Hp6en2KEQEREREZGVsbgnshNBQUFYtmwZwsPDxQ6FiIiIWsilS5cwbdo0nDt3TuxQiMjGWNwT2YmqqipkZmaisrJS7FCIiIiohVRUVCApKQl6vV7sUIjIxljcE9mJtLQ0jB07FsnJyWKHQkREREREVsbinoiIiIiIiKiNY3FPRERERERE1MaxuCciIiIiaicCAgKwdOlShIWFiR0KEdkYi3siIiIionZCpVJhxIgRUKvVYodCRDbG4p7ITsTGxiIhIQE9e/YUOxQiIiJqIYWFhdi+fTuuXr0qdihEZGMs7omIiIiI2onc3Fy8/fbbyMzMFDsUIrIxFvdEduLSpUuYNm0azp07J3YoRERERERkZSzuiexERUUFkpKSoNfrxQ6FiIiIiIisjMU9ERERERERURvH4p6IiIiIqJ1wc3ND3759oVQqxQ6FiGyMxT0RERERUTsRFhaGDz74AFFRUWKHQkQ2xuKeyE4EBARg6dKlCAsLEzsUIiIiaiFGoxE6nQ5Go1HsUIjIxljcE9kJlUqFESNGQK1Wix0KERERtZBz585h8ODBOHXqlNihEJGNsbgnshOFhYXYvn07rl69KnYoRERERERkZSzuiexEbm4u3n77bWRmZoodChERERERWRmLeyIiIiIiIqI2jsU9ERERERERURvH4p6IiIiIqJ2IiorCvn37EBcXJ3YoRGRjLO6J7ISbmxv69u0LpVIpdihERETUQqRSKTw9PSGVSsUOhYhsjMU9kZ0ICwvDBx98gKioKLFDISIiohai1WqxYMECpKWliR0KEdkYi3siO2E0GqHT6WA0GsUOhYiIiFqITqfDoUOHUFJSInYoRGRjLO6J7MS5c+cwePBgnDp1SuxQiIiIiIjIyljcExEREREREbVxLO6JiIiIiIiI2jgW90RERERE7YSvry/mz5+PwMBAsUMhIhtjcU9ERERE1E54e3tj4sSJ8PPzEzsUIrIxFvdEdiIqKgr79u1DXFyc2KEQERFRCykpKcH+/ftRVFQkdihEZGMs7onshFQqhaenJ6RSqdihEBERUQvJysrCK6+8gkuXLokdChHZGIt7Ijuh1WqxYMECpKWliR0KERERERFZGYt7Ijuh0+lw6NAhlJSUiB0KERERERFZGYt7IiIiIiIiojaOxT0RERG1qClTpkAmk0GhUJh/tFrtDfdPSkrC7bffDjc3N8TGxuLAgQM2jJaobXN2dkZMTAxcXV3FDoWIbIzFPREREbW45557DjqdzvwTEhJS737V1dV44IEHMGrUKBQVFWHJkiV46KGHcOXKFRtHTNQ2RUREYMuWLejUqZPYoRCRjTmJHQAR2Yavry/mz5+PwMBAsUMhIrqhX375BeXl5XjppZfg4OCARx55BO+//z62b9+OOXPm1Nk/JycHOTk5dbanpKTYIlwiIqJWgyP3RHbC29sbEydOhJ+fn9ihEJEd+ve//w21Wo1u3bphw4YNN9wvKSkJcXFxcHD43ylK9+7dkZSUVO/+69evR69ever8TJo0yeqfgagtSE5ORr9+/XDy5EmxQyEiG+PIPZGdKCkpwcGDB9GhQwd4eXmJHQ4R2ZFnnnkGq1evhkqlwqFDhzB+/Hh4eHhg7NixdfbV6XRQqVQW21QqFTIyMurte+bMmRg1alSd7SkpKSzwyW5VV1dDEASxwyAiG2NxT2QnsrKy8Morr+Dee+9lcU9ENtWzZ0/z/w8aNAhz5szB9u3b6y3uFQpFnUd2lpSUQKlU1tu3v78//P39rRswERFRG8Rp+URERGRTDg4ONxxV7NKlC06fPg2TyWTelpiYiC5dutgqPCIiojaJxT0RERG1qK+//hplZWUwmUz4/fff8eGHH+Khhx6qd9+BAwfC1dUVq1atQlVVFbZv347Tp09j/PjxNo6aiIiobWFxT0RERC3qww8/RHBwMDw8PDBz5kwsX74cjz76qLm9c+fO+OKLLwAAUqkUO3fuxHfffQeVSoXFixfj22+/ha+vr1jhE7UpHTp0wNatW/koPCI7xHvuieyEs7MzYmJi4OrqKnYoRGRnfvvtt5u2nzlzxuJ1XFwcjh492pIhEbVbLi4uiIiIYL4nskMcuSeyExEREdiyZQuv5BMREbVjWVlZWL58+Q2fMEFE7ReLeyIiIiKidqKkpAQ7d+5EQUGB2KEQkY2xuCeyE8nJyejXrx9OnjwpdihERERERGRlLO6J7Eh1dfUNHz9FRERERERtF4t7IiIiIiIiojaOxT0RERERUTvh5eWFyZMnw8/PT+xQiMjGWNwTEREREbUTfn5+mDNnDgIDA8UOhYhsjMU9kZ3o0KEDtm7dykfhERERtWN6vR7Hjx9HWVmZ2KEQkY2xuCeyEy4uLoiIiICrq6vYoRAREVELycjIwOzZs5Gamip2KERkYyzuiexEVlYWli9fjoyMDLFDISIiIiIiK2NxT2QnSkpKsHPnThQUFIgdChERERERWRmLeyIiIiIiIqI2jsU9EREREVE74eTkBF9fX0ilUrFDISIba3PFfVVVFWbMmIHw8HAolUp07twZX375pdhhERERERGJLjo6Grt27UJcXJzYoRCRjTmJHUBj1dTUICAgAD///DPCw8Pxxx9/4L777kN4eDjuuOMOscMjarW8vLwwefJk+Pn5iR0KERERERFZWZsbuZfL5Vi2bBk6dOgAiUSCu+66C/369cPhw4fFDo2oVfPz88OcOXMQGBgodihERETUQs6fP4/7778fp0+fFjsUIrKxNjdyfz29Xo8///wT8+fPr9OWk5ODnJycOttTUlJsERpRq6LX63H8+HFER0fDw8ND7HCIiIioBdTU1ODKlSuorq4WOxQisrE2XdybTCZMmTIFffr0wdChQ+u0r1+/HkuXLhUhMqLWJyMjA7Nnz0bv3r3Ru3dvscMhIiIiIiIrarPFvSAImDVrFrKzs7Fv3z5IJJI6+8ycOROjRo2qsz0lJQWTJk2yRZhERERERERELa5NFveCIGDOnDlITEzE/v37oVAo6t3P398f/v7+No6OiIiIiIiIyLbaZHE/d+5cHDlyBD///DPc3d3FDoeIiIiIqFUIDQ3Fxx9/jKioKLFDISIba3Or5WdkZOCjjz5CcnIygoODoVAooFAosGLFCrFDI2rVnJyc4OvrC6lUKnYoRERE1ELkcjl69eoFpVIpdihEZGNtbuQ+NDQUgiCIHQZRmxMdHY1du3YhLi5O7FCIiIioheTl5WHTpk14/fXXERwcLHY4RGRDbW7knoiIiIiI6ldQUIDPPvsMeXl5YodCRDbG4p7ITpw/fx73338/Tp8+LXYoRERERERkZSzuiexETU0Nrly5gurqarFDISIiIiIiK2NxT0RERERERNTGsbgnIiIiImonPDw8MGrUKHh5eYkdChHZGIt7IiIiIqJ2IjAwEAsXLkRoaKjYoRCRjbG4J7IToaGh+PjjjxEVFSV2KERERNRCKisrkZaWhoqKCrFDISIbY3FPZCfkcjl69eoFpVIpdihERETUQi5evIgJEyYgJSVF7FCIyMZY3BPZiby8PPzrX/9CVlaW2KEQEREREZGVsbgnshMFBQX47LPPkJeXJ3YoRERERERkZSzuiYiIiIiIiNo4FvdERERERO2IVCqFRCIROwwisjEW90RERERE7URsbCz++OMP9OjRQ+xQiMjGnMQOgIhsw8PDA6NGjYKXl1eL9G8wGJCbmwudTgeFQgGNRgOZTNYixyIiIiIiIkscuSeyE4GBgVi4cCFCQ0Ot3rfBYEBiYiK0Wi1ycnJw9OhR7Nu3DzqdrtH9aLVaJCcnQ6vVwmAwWD1WIiKi9iwtLQ2PP/44H4VHZIdY3BPZicrKSqSlpaGiosLqfefm5sJgMKCiogJGoxEajQZFRUU4ePBggwv02gsEOTk5MJlMyMnJQWJiIgt8IiKiRqiqqsK5c+daJN8TUevG4p7ITly8eBETJkxokSv5Op0OVVVVEAQBfn5+cHd3R0hICMrLyxv86L3c3FwIgoDg4GCo1WoEBwdDEAQ+uo+IiIiIqAHsurjPyspq9LRhIqpLoVCgsLAQrq6u5m0VFRVQq9UoKytrUB86nQ5yudxim1wub/D7iYiIiIjsmV0X92vXrkXfvn0xadIk/Pvf/8bZs2chCILYYRG1ORqNBi4uLrh06RKKioqQnZ0NQRDg6uoKpVLZoD4UCgX0er3FNr1e3+D3ExERERHZM7su7lesWIFly5ZBLpfj448/xujRo3HgwAEYjUZkZmaitLRU7BCJ2gSZTIZBgwbB09MTeXl5cHJygru7O2QyGfz8/BrUh0ajgUQiQWZmJgoLC5GZmQmJRNLg9xMREdHfC+iuWLEC4eHhYodCRDZm14/Ci4qKwiOPPIKXX34ZJSUl+PnnnxETE4Py8nIsXboU8fHx6Nq1K+6++27cfffd6NSpExwc7Pp6CLVxUqkUEomkRfpWKBQYNmwY8vLyUFZWBqVSCT8/vwY/Dk8mk6F79+7m9wcEBDTq/URERPT3o2+HDBkCT09PsUMhIhuz6+K+lkQigUqlwtixYwEARqMR69atw65du7Bv3z588sknWLt2LZYvX46HHnoIV65cgaurK1QqlbiBEzVCbGws/vjjD/To0aPFjiGTyRAcHCza+4mIiOxdfn4+vvnmGwQFBcHf31/scIjIhljc18PR0RGdO3dG586d8eKLL6KsrAwHDx5EUFAQysvLsWbNGvzwww+Ii4szj+p37tyZo/pEREREJKorV65g7dq1mDRpEot7IjvDavQWJBIJ3N3d8eCDD6JXr17o0aMHVq1ahbfeegve3t7YsGEDxo8fjw0bNsBoNCI/Px9FRUVih01UR1paGh5//PEWeRQeERERERGJiyP3jeTo6IiOHTuiY8eOeP7556HT6fDLL79ArVajoqIC//73v7FlyxZ07twZAwYMwN13340uXbrA0dFR7NDJzlVVVeHcuXOoqKgQOxQiIiIiIrIyjtw3g0QigVKpxAMPPIB+/fqhe/fuWLhwIVavXo2AgAB89tlneOSRR/Duu++ipqYGxcXFKCgoEDtsIiIim6qqqsKMGTMQHh4OpVKJzp0748svv7zh/hKJBHK5HAqFAgqFAiNGjLBhtERERG0TR+6tyNHREVFRUXjuuefw3HPPQa/X47fffoOzszMqKyuxdetWrF27FrGxseZ79bt168ZRfSIiatdqamoQEBCAn3/+GeHh4fjjjz9w3333ITw8HHfccUe97zl+/Dg6duxo40iJ2j6FQoH+/fvDw8ND7FCIyMZY3LcguVxuHm0wGo3w9PREeHg49u3bhy+//BLr1q3DuHHj8Nprr6Gqqgrl5eXw8fEROWoiIiLrksvlWLZsmfn1XXfdhX79+uHw4cM3LO4bKicnBzk5OXW2c30RslchISF45513EBERIXYoRGRjLO5txNHRER06dMD8+fMxf/58lJeX49ChQzCZTKisrMT333+PpUuXomPHjuZR/e7du8PJib8iso7AwECsWLEC4eHhYodCRHZOr9fjzz//xPz582+4z+DBg2E0GtG7d2+sWrUKnTt3rne/9evXY+nSpS0VKlGbU11djaKiIlRXV8PZ2VnscIjIhlg5isTNzQ3Dhg0DAJhMJnh7e8PHxwd79uzB119/jX//+9+45557sHbtWphMJhQVFcHPz0/kqKkt8/DwwJAhQ+Dp6Sl2KERkx0wmE6ZMmYI+ffpg6NCh9e7zyy+/4I477kBVVRVWrlyJoUOHIiUlBe7u7nX2nTlzJkaNGlVne0pKCiZNmmT1+Ilau9TUVIwbNw7Hjh1D7969xQ6HiGyIxX0r4ODggNDQUMyZMwdz5sxBeXk5Dh8+DJ1Oh6qqKvz++++YP38+oqOjzaP6PXr0gFQqFTt0akPy8/PxzTffICgoiM+9JSJRCIKAWbNmITs7G/v27YNEIql3vwEDBgAAZDIZli9fji1btuDw4cMYPnx4nX39/f35bxoRERFY3LdKbm5uGDJkCIC/Rzh8fX0hlUqxd+9efPvtt/j000/Ru3dvbNy4EY6OjsjLy+OJDd3SlStXsHbtWkyaNIl/XojI5gRBwJw5c5CYmIj9+/dDoVA0+L0ODg4QBKEFoyMiImr7WNy3cg4ODggKCsLs2bMxe/ZsVFZWIj4+HleuXIHBYEBSUhImT56MiIgI3H333RgwYAB69uwJmUwmduhERERmc+fOxZEjR/Dzzz/XO72+1pkzZ1BVVYWuXbvCYDBg1apVqKioaPbCe0RERO0dn3Pfxri4uGDQoEF45JFH0L17dwwdOhTr169H165d8f3332PKlCkYM2YMqqurAQB5eXkiR0xERPYuIyMDH330EZKTkxEcHGx+fv2KFSsA/P3orkOHDgH4e5bRY489Bg8PD4SEhODIkSPYt28fVCqViJ+AiIio9ePIfRvm4OAAjUaDp556Ck899RSqqqpw9OhRXLp0CdXV1bh06RJGjRqF8PBw8736vXv35sqpRERkU6GhoTedVq/T6cz/P2jQIJw9e9YWYRG1SzExMThw4AC6desmdihEZGMs7tsRZ2dncxFvMpkQFBSETz/9FHv37sWePXvw2WefwcfHB/v374ezszOuXr0KHx8fscMmG1EoFOjfvz88PDzEDoWIiIhaiKOjIxQKBRwdHcUOhYhsjMV9O+Xg4AAfHx9Mnz4d06dPh8FgwLFjx3DmzBkYjUZkZWVh2LBhCAwMNF8Q6NOnD1xcXMQOnVpISEgI3nnnHURERIgdChEREbWQ9PR0LF26FJ999hliYmLEDoeIbIjFvZ2QyWTo168f+vXrB0EQUFRUhE8++QR79uzBjz/+iC1btkAul+PXX3+FQqFAYWEh1Gq12GGTFVVXV6OoqAjV1dW8NYOIiKidKi8vx9GjR1FWViZ2KERkYyzu7ZBEIoFarcaUKVMwZcoUGAwGnDhxAgkJCXB0dERBQQFGjBgBDw8P9O/fH3fffTf69u0LV1dXsUOnZkhNTcW4ceNw7Ngx9O7du0WOYTAYkJubC51OB4VCAY1G02JPbrDlsYiIiIiIWjsW9wSZTIbbb78dt99+OwRBQFlZGT788EPs3r0bBw8exJdffgmZTIYff/wRfn5+KC4uhkqlgkQiETt0akVqb/0oKiqCRCKBIAi4dOkSAgMDYTAYrFqAGwwGJCYmQhAEyOVy5OTkIDc3F927d2eBT0RERER2icU9WZBIJHB3d8fjjz+Oxx9/HAaDAX/99RcOHjwIDw8PlJaWYvz48TCZTOZ79fv27Qu5XC526CQyrVaLixcvws/PD66urigrK8Pvv/+Ojh07IiYmxqoFeG5uLgRBQHBwMABArVYjMzMTeXl55m1ERERERPaExT3dlEwmQ+/evdG7d28IgoDy8nK89dZb2LNnD3799Vds27YNUqkUO3bsQHR0NEpLS+Hu7s5RfTuUkZEBFxcX+Pn5Afj7Hn9XV1eYTCao1WqrFuA6na7OBSW5XM77C4mIyO5pNBq88MILvNhNZIdY3FODSSQSyOVyTJw4ERMnTkRNTQ3++usv7N69G8HBwSgpKcFTTz2FK1euoH///hgwYABuv/12KBQKsUMnGxAEweI51lVVVXBysvwnxloFuEKhQE5OjsWij3q9HgEBAc3um4iIqC1Tq9UYP348H3dMZIccmttBQkIC+vbtizvvvBN79uwxb3/ooYea2zW1ck5OTujZsycWLlyI7t27o2vXrnj11Vdx77334ujRo5g7dy769u2LY8eOme/lv7b4I9uKiYnBgQMH0K1btxbpPywsDOXl5cjOzkZRUREKCwtRXFyMwMBA8z56vR5KpbLZx9JoNJBIJMjMzERhYSEyMzMhkUjMswaIiPmZyF4VFxdjz549KCwsFDsUIrKxZo/cL1iwABs2bIBUKsXcuXORk5ODadOmobi42ArhUVshkUjg6uqKhx9+GA8//DBqampw5swZfP/994iKikJpaSleeOEFnD171rwC/5133mmVQo8axtHREQqFAo6Oji3Sf0hICKKiolBQUIDq6mq4uLggICAAJpMJhYWF0Ov1VivAZTIZunfvjry8PJSVlSEgIAB+fn5cTI/oGszPRPYpOzsbS5YswciRI+Ht7S12OERkQ80u7h0dHdG5c2cAwA8//IBJkyahpKSE91zbOScnJ3Tr1g3dunWDIAiorKzEs88+i507d+KXX37BN998A0dHR7z33nsYMmQIysvL4ebmxj83LSg9PR1Lly7FZ599hpiYGKv3L5PJ0KdPH3PBrVQq4enpiaKiohYpwGUyGe8nJLoJ5mciIiL70uzivqamxvycaalUiq1bt+KJJ55AQkKCNeKjdqB2VH/06NEYPXo0ampqkJKSgh9++AGdO3dGaWkp3njjDRw+fNhiVN/Dw0Ps0NuV8vJyHD16tEUXnauv4OaaC0TiYH4mIiKyL80u7t9//33o9XrzCbyDgwO2bNmCr7/+utnBUfvk5OSEuLg4xMXFmUf1n3rqKfj4+ODgwYP47rvv4OjoiKVLl2Ls2LGorKyEs7MzHByavUQEEZHdYH4mIiKyL80u7nv27Flnm0Qiwbhx45rbNdmB2lH9++67D/fddx+MRiPOnj1rMar/8ccfY+fOnbjrrrtw9913o1+/fvD09BQ7dGokg8GA3Nxc80iiRqPhPfJELehG+fmRRx4RIRoishVXV1d06dKlziNjb+T6/KxWq1FYWMh8TdQGtdhQ6IgRI1qqa2rHau8RffHFFzFy5Eh07doVEydOxLhx45CSkoLnn38e/fr1w4YNGyAIAqqqqmAymcQOm27BYDAgMTEROTk5MJlMyMnJQWJiIgwGg9ihEbVbx44d42r5RHYoPDwcGzZsaND6OtfnZ61Wix07dkCr1TJfE7VBzR65X7x4cZ1tgiAgLS2tuV2TnZNIJHBxccGQIUMwZMgQGI1GXLhwAd9//z3Cw8NRWlqKbdu2YePGjejXrx8GDhyIfv36WTz7nP5Ho9HghRdeEGURutzcXAiCYD62Wq1GZmYm8vLyuCgeUQt57rnnuFo+Ed3U9fnZYDDAwcEBzs7OUKvVzNdEbUyzi/uPP/4Y77zzTp3nl7u5uTW3ayILjo6OiImJQUxMjHnUvqqqCpWVlThw4AB++OEHSCQSzJw5E/Pnz0dNTQ0cHBxa7NFvbY1arcb48ePh4+Nj82PrdLo60wPlcnmLLu5HZO+4Wj6RfUpOTsa4ceNw7Ngx9O7d+6b7Xp+fKyoq4OnpifLycvM25muitqPZxX2nTp1wzz33IDAw0GL7vn37mts10Q3Vjur3798f/fv3h9FoxMWLF7Fr1y74+PigtLQUe/fuxZo1a3DnnXdiwIABuOuuu+z6ea/FxcX46aefEB4ebvPvQaFQICcnx2JWhV6vR0BAgE3jILInXC2fiG7l+vzs6uqKoqIiaDQa8z7M10RtR7OL+19//bXeUYAvv/yyuV0TNZijoyOioqLw7LPPAoD5XvyrV6/iwIEDeOmllwAAEyZMwOLFi2EymSAIApycmv1XoM3Izs7GkiVLMHLkSJsX9xqNBrm5ucjMzIRcLoder4dEIoGfn59N4yCyJ1wtn4hu5fr8XF5eDpPJhKqqKhQWFjJfE7Uxza5sOL2PWiNnZ2fcfvvtuP3222E0GpGRkYFdu3bB2dkZpaWlSEhIwCuvvII777wTd999N/r37w9fX1+xw263ZDIZunfvjry8PJSVlSEgIAB+fn5cfZeoBXG1fCK6levzc2hoKLp3746ioiLma6I2qNHF/bhx4zBs2DA8+eST5m0//PADysrK8MADDzT4sRtEtuLo6IgOHTrgmWeeAfD3qL5UKsXUqVNx4MABLFy4EIIgYOTIkVi9ejUkEglqamoglUpFjrx9kclkXIyHqAUxPxNRU9SXn2tn/BBR29Lo4v7IkSN48803za+XLFmC119/HQAQFRWF+Ph4rlZOrZqzszN69OiBHj16mB/78sMPP6C6uhplZWU4f/48Zs2ahTvuuAMDBgxA//79Le49IyJqjZifiQgAIiIi8M033yA2NlbsUIjIxhr9nPuSkhJERkYCAEwmEz7++GOsWrUKeXl56NixI9555x2rB0nUUhwcHBAWFoY5c+bgH//4B7p164YePXrgqaeewpUrV7BkyRIMHDgQM2bMgMlkAvD3IlVtkaurK7p06cLRO6J2ivmZiIC/BzGCg4Ph4uIidihEZGONLu5VKhWqqqoAAKdPn0ZxcTFmzpwJHx8fvP322/juu++sHiSRrTg7O6Nz585Ys2YNTp48iUuXLuHjjz/GiBEjoNPpcOHCBfTt2xezZ8/Gtm3bkJ2dLXbIDRYeHo4NGzYgJiZG7FCIqAUwPxMRAFy+fBmLFy/GpUuXxA6FiGys0cX9bbfdhi+++AIAsHfvXvTs2RNKpRIAEB0djZycHOtGSCQSBwcHhISEYNasWXjllVfQrVs3REdHY9asWSgqKsLrr7+OwYMH4+GHH4bRaAQA83+JiGyN+ZmIAJgfB1xUVCR2KERkY42+5/7VV1/F3Xffja+//hpHjhzBokWLzG1lZWVWDY6oNZHJZIiKisLq1athMpmQk5ODPXv2ICMjA3q9Hnq9HqNHj0b37t0xYMAA3H333QgKChI7bLPk5GSMGzcOx44dQ+/evcUOh4isjPmZiGzBYDAgNzcXOp0OCoUCGo2Gq+kTtRKNHrnv2bMn9uzZAy8vL0yZMgVz5841t/3xxx8IDQ21aoBErZGDgwMCAwMxY8YMvP766+jWrRvCw8Mxc+ZM6HQ6vPHGGxgyZAhGjhxpniZbe88+EVFLYH4mopZmMBiQmJiInJwc80BHYmIiDAaD2KEREZr4nPv+/fujf//+dbYnJibiwQcfbHZQRG2NTCZDaGgoVq5cCZPJhNzcXOzbtw+nT59GVVUV9Ho9xowZg6ioKPOofkhIiNhhE1E7w/xclyAIyMjIqDN7wcfHBz4+PigtLcXly5ct2mQymXlxwpSUFAiCYNEeHh4OV1dXZGdno7i42KJNrVZDo9FAr9cjIyPDos3R0dG87klqaiqqq6st2kNCQqBQKHD16lVcvXrVos3d3R1BQUGoqqpCWlpanc9ZuzL6pUuXUFFRYdEWEBAAlUqFwsJC5ObmWrS5ubkhLCwMRqMR586dq9NvVFQUpFIptFotdDqdRZuvry+8vb1RUlKCrKwsizZnZ2dEREQA+Hvm2PU6dOgAFxcXZGVloaSkxKLNy8sLfn5+9X6HTk5OiI6OBgCcP3++ziK3oaGhkMvlyMvLQ0FBgUWbh4cHAgMDUVlZiYsXL9aJqfY7TEtLM1+YrxUYGAgPDw/k5+fjypUrFm0KhQIhISGorq5GampqnX5jYmLg6OiI9PR0lJeXW7RpNBqo1WoUFxfXWcfH1dUV4eHhAOr/DiMiIuDs7IzLly+jtLTUvL2+Px/WkpubC0EQzI/OU6vVyMzMRF5eHh93S9QaCHbo+PHjAgDh+PHjYodCdsBgMAjZ2dnCyy+/LPTp00dwcnISAAjBwcHCkSNHhLNnzwrJycnC2bNnW/Rnx44dAgDh2LFjYn8lRFQP5ibrqv0+N2/eLAwePFgAYPHz9NNPCwkJCcLq1avrtIWHhwsJCQlCQkKCIJfL67Rv3rxZSEhIEMaNG1enbcKECUJCQoLw6aef1mlTqVTmfoOCguq0r127VkhISBBmzJhRp2348OFCQkKC8M0339RpA2Dut0uXLnXali5dKiQkJAgvvPBCnba+ffsKCQkJwoEDB+rtd9++fUJCQoLQv3//Om3z588XEhIShBUrVtRpi4mJMccklUrrtG/dulVISEgQRo0aVadt8uTJQkJCgvDxxx/XafP19TX36+vrW6f9448/FhISEoTJkyfXaRs1apSQkJAgbN26tU6bVCo19xsTE1OnfcWKFUJCQoIwf/78Om39+/cXEhIShH379tX7HR44cEBISEgQ+vbtW6fthRdeEBISEoSlS5fWaevSpYs5pvr6/eabb4SEhARh+PDhddp69+4tZGVlWf3v1ZkzZ4TTp08LWVlZ5p/Tp08LZ86csfqxiNqjls71EkG47nK0HThx4gR69eqF48ePo2fPnmKHQ3ZEEATk5eVh3759iI+Px/Tp0yEIAh5//HH4+PhgwIAB6N+/P8LCwiCRSKx67KSkJKvfc2/t++54Hx/ZM+Ym66r9Po8dOwaVSlVnhD0gIAAajQbFxcV1RnFdXFzMo7iJiYl1bqvq2LEj3NzcoNVqkZ+fb9Hm6+uLoKAg6HQ6nD9/3qLNyckJXbt2BQCcOXOmzuhwZGQk3N3dkZOTU2cBRE9PT4SHh6OysrLeUdzaPzPnzp2DXq+3aAsLC4NarcbVq1eRmZlp0aZUKhEVFQWj0YhTp07V6TcuLg5SqRRpaWl1RtgDAwPh5+eHoqKiOiuzu7q6olOnTgCAkydP1pn90KlTJ7i6uiIjI6POCLufnx8CAwNRVlZWZyRcKpUiLi4OwN9Phbh+9kNUVBSUSiWysrKQl5dn0ebl5YXQ0FBUVFQgJSXFok0ikaBHjx4A/p6tcf3sh/DwcHh6eiIvL6/OLAUPDw9ERESguroap0+fxvW6desGR0dHpKam1plBEhwcDB8fHxQWFiI9Pd2iTS6Xm2d6nDhxok6/sbGxcHFxwaVLl+osnhcQEICAgIA672kurVaLnJwci1H6zMxMBAQEcOSeqAFaOtezuOcJFImouroapaWleO+99/DTTz/hxIkTqK6uRmBgID777DMEBQVBEASrFPoVFRW4ePEihg8fDjc3t2b3V3vfnSAIkMvl0Ov1kEgk6N69e5MKcmv3R9TWMDdZF79Pohtr6sV05mqi5mnp3NToBfWIyHqkUim8vLzw+uuvIz4+HllZWdiyZQuGDBkCuVyOkpISTJ48GVOnTsXGjRuRlpZWZ/SjoZydnREcHAwXFxerxH7tfXdqtRrBwcHmmQmtoT8iIiKqqzmL4slkMnTv3h0BAQFwcHBAQEAAC3uiVqRZxX1paSm+/PJLrFq1CgCQl5dXZ6EWImoYiUQCHx8fTJo0CZs2bUKvXr0QExOD+++/HxKJBO+++y7uu+8+DB48GGfPngWARhX6ly9fxuLFi+tMnWwqnU4HuVxusU0ulzf5kVvW7o/InjE/E9GNNPdiukwmQ3BwMGJjYxEcHMzCnqgVaXJxn5iYiKioKLz22mtYtmwZgL/vqbr20TtE1HRSqRQeHh5YtGgRfv/9d2RlZeHLL7/EkCFD4OnpiZKSEsyfPx9PPPEEPv30U5w/f/6mxX5paSn27t1b5768plIoFHXu69Tr9VAqla2iPyJ7xfxMRDfDi+lE7VeTi/t//OMfWLJkCc6fPw+pVAoA6NevH44cOWK14IjobxKJBN7e3pgwYQI2b96MO++8EzExMRgyZAhkMhk++OADjBo1CgMHDsSxY8cANG5Uvyk0Gg0kEgkuXryIM2fO4ODBgzh9+jTy8vKg1Wob/czb2v4yMzNRWFiIzMxMSCQS+Pn5tdAnIGqfmJ+J6GZ4MZ2o/WrSc+6Bv1coPXDgAACYF/tSKpW86kdkA05OTvDw8MALL7yA559/HsXFxfjpp5+we/dueHl5oaSkBKtXr8alS5dw99134+6777Z6sS+TyRAbG4uffvoJOTk55tWOS0tLER4eDl9fX/Tp06fB0/Vq7+PLy8tDWVkZAgIC4Ofnx+l+RI3E/ExEN1swT6PRIDc3F5mZmRaL4vFiOlHb1+TivvZxIP7+/uZtWq0WGo3GKoERUcNIJBJ4enri4YcfxsMPP4yamhro9XrcfffduHLlCj766COsWbMGKpXK6seuPXFQKpXQ6/Vwc3NDSUkJSktLodPpoNFoEBER0eD+au/jI6KmY34msm/Xr2ifk5OD3Nxc88J3vJhO1H41eVr+ww8/jMmTJ5ufP3r58mXMmzcPEydOtFpwRNR4taP6c+fOxcGDB5GTk4Pt27dj2LBhmDBhglWfe5uRkQEXFxdIJBK4u7sjNDQUKpUKRqMRLi4uyMjIsNqxiKhhmJ+J7FtDFszjonhE7VOTi/slS5YgICAAMTExKC4uRmhoKJycnPDPf/7TmvERUTNIJBKoVCqMGzcO27Ztw5dffmnV4l4QBPN0f5PJBACoqamBRCKxaCMi22F+JrJvXDCPyH41ubh3dnbGpk2bkJ+fjyNHjuDSpUv45ptv4OzsbM34iKgVCwsLQ3l5OUwmEwoKCpCcnGy+9768vBxhYWHiBkhkh5ifiezbtQvmVVdXIzc3FykpKSgtLW30YrfA39P8tVotkpOTm7RgLhHZTpOL+y1btiAxMRFqtRq33XYbQkJCcPLkSXzxxRfWjI+IWrGQkBBERUVBLpfD1dXVPFrg6uoKpVIJnU7HEwEiG2N+JrJv1z7N5tixY0hKSoLJZEJNTQ0SExMblZNr79/PycmByWRCTk5Oo/sgIttp8oJ6S5cuxe+//26xzd/fH+PHj+d9fUTtVH2r7/bp0wd5eXmIjIxEZWUlHBwccPnyZUgkEly+fBmZmZnIzMxs1Mr5zYmH9w2SvWN+JrJvtQvmnThxAkajEZ06dYKPjw9kMhkyMzORl5d3w8Vra/NqUVERysvLUVJSgqqqKnTr1g0ymQxqtfqWfRCReJpc3F+5cqXOyrsajcZisQ4iaj9utvpucHCwOclfuHABZ8+ehZ+fH1xdXVFRUYGLFy82euX85sTDAp/sGfMzEclkMri7u6Nz585Qq9Xm7Te79742r9YW+OXl5SgsLISvry+Sk5MRGxsLmUzG+/eJWrEmT8v39/fH+fPnLbadP38evr6+zQ6KiFqfhqy+C/xvBX0/Pz+4u7vDz8+vRVbOb2g8RPaG+ZmIAMt77w0GA7KysnDmzJkb3ntfm1fd3Nzg7u6Obt26wcfHByaTCRKJBFevXgUA6PV6KJVK8/ta8p583u9P1DhNLu7Hjx+PJ554AidPnoRer8fJkycxZcoUPPzww9aMj4haiYauvlvfKvktsXI+VwMmqh/zMxEBlvfeHz16FCkpKXB0dERNTQ2OHTuGCxcuWBTNtXm1oqICrq6uAABvb29kZ2fj3LlzOHXqFC5evAiJRAI/Pz8ALXtPPu/3J2q8Jhf3CxcuRGRkJHr16gV3d3f07t0bHTp0wOLFi60ZHxG1EteOANS6/uo98L8V9LOzs1FUVITs7OwWWTm/ofEQ2RvmZyIC/nfvvZOTExwcHBAXF4c+ffogKCgIqampOHv2rEXRLJPJoNfrzbfU1dTU4MKFC/D29oZcLofRaERxcbF5ej7QsrPoOEOPqPGafM+9i4sLPv/8c6xduxaXLl1CWFgYvL29rRkbEbUiGo0Gubm5yMzMhFwuh16vt7h6X6t2Bf2CggJUV1cDAKKioqy+8E5D4yGyN8zPRFSr9t77Tp06me+9z8rKgpubGzw9PaFWq82L5EkkEkgkEpSXl6O0tBQpKSmoqKhAWFgYZDIZoqOjzYvtKRQKAC07i44z9Igar8kj97W8vLzQu3dvm544FBcX4+GHH4ZSqURAQADee+89mx2byF7VjgAEBATAwcEBAQEB9S5eJ5PJ0KdPH/To0QORkZHo0aNHi6yU39B4iOyVGPn5ZhqTu3/99Vd06dIFbm5u6NOnD06dOmW7QInametnupWXl0MikcDNzc28TS6Xo6qqCt27d0doaCiioqLg5+eHjh07IiAgANHR0ZBKpZBIJDh06BB27dqF+Ph4AGixWXScoUfUeE0eub/W9ffTOjg0+5rBTc2dOxdVVVXIyspCRkYG7rnnHsTExGDEiBEtelwieyeTySxG4GsXurn+UXTX73cjzX2UXUOPQ2SvbJ2fb6ahubugoAAPPvgg3n//fTzyyCP417/+hVGjRuH8+fNwdnYWKXqitslgMMBgMCAjIwNXr15FYGAgiouLUVlZabGKvl6vR0BAgDmvyuVyHD16FH/++SeOHz8OlUoFNzc3nD17FqGhoVAqlUhNTUV1dTUiIiIsZtHV1NSgqqoKycnJUCgUUKvVKCwsbHSu5ww9osZrcpYvKCjAxIkT4ePjAycnJ0ilUvNPS9Lr9di+fTveeOMNuLu7Iy4uDk8++SQ2bNjQosclsnfXr1hbWFiIvXv3Ij4+HllZWdBqtY1a6IYL5RC1DLHy8800Jnd/++23iIyMxBNPPAFnZ2c8++yzMJlM2L9/vwiRE7VdtXm2oKAAUVFRMJlMSE1NRXR0NDp06IDc3FwUFhaap+R7enriwoUL+PrrrzF79mz8+eefyMnJQVJSEn777Tf88ccfyMzMhFqtRkBAALp16wapVApHR0fzLLramUIFBQUwmUzQarXYsWMHtFpto3M9Z+gRNV6TR+6fffZZXLx4EZ988gkef/xxbNmyBW+++SYef/xxa8ZXx/nz52EymdClSxfztu7du+Pbb7+ts29OTg5ycnLqbE9JSWnRGInam+ufKa/VahEfHw8HBwfzlXUPDw+o1Wrk5eU1aDT92oVyAJjv+Wvo+4mofmLl55tpTO5OSkpC9+7dza8lEgm6du2KpKQk3HfffXX2Z64nqt/1edbPzw+ZmZlQKBSIiIhAXl4eysrKEBAQAE9PT5w6dQrnz5/HH3/8YS7anZ2d4enpiYqKChgMBkRGRqKgoABFRUXw8fGBp6cnSkpKzMfQarVwcnIyv66oqICDgwPkcrnF/f0NzfWcoUfUOE0u7vfv34+jR48iODgYjo6OGD16NDp37oypU6di7ty51ozRgk6ng4eHh8U2lUpV7+Ia69evx9KlS1ssFiJ7cf0Jgl6vx9WrV6HRaODu7o6qqipkZmZCKpU2eKEbLpRD1DLEys8305jcrdPp4Onp2aB9AeZ6ohu5WZ4NDg62KJq1Wi2Kiorg4uICmUwGpVJpcUuPIAhwcHCAg4OD+Za68vJynDx5EhEREdBqtdBoNHWOWV5eDk9PT5SXl5u3yWQynD9/HmVlZU26JY+IbqzJxb1erzf/o+Ds7Izq6mpERUXh9OnTVguuPgqFAqWlpRbbSkpK6l1cY+bMmRg1alSd7SkpKZg0aVKLxUjU3lyfrHNzc+Hl5QWpVAp3d3cAQGlpKS5dumQxMnczCoUCOTk59d7zR0RNJ1Z+vpnG5G6FQoGSkpIG7Qsw15N9asiaNY3Js0VFRSgsLERRUZH5nnkvLy/U1NTA3d0deXl5cHV1RUFBAXJzc1FdXY2ioiKYTCZERkZCq9UiNzcXarUaBQUF5mO6ubkhIyMDQUFBAIDq6mokJSXBw8PDPE0/NzeX0+2JrKTJxX1ISAguXLiAyMhIREZG4rvvvoOXl1edK4TWFh0dDYlEgjNnzqBz584AgMTExHoLCn9/f/j7+7doPET2QKFQQKvVwmAwoKKiAgUFBTAajSgvL8fhw4fh5OSEwsJC+Pv7N3ihGy6UQ9QyxMrPN9OY3N2lSxf8+9//Nr8WBAF//fUXZs+eXW/fzPVkb66/Ve5GBXJD82ztgnu1F9XkcjlSU1NRVVUFZ2dnXLlyBWVlZXBycjIX/VKpFKGhoYiIiEBhYaF5Vfvax+nVHrOqqgomkwl6vR6FhYVIT0+H0WhE165dIZPJeEsekZU1eUG92bNnm0cBFixYgMceewxDhw7FP/7xD2vFVi+5XI5x48bh1VdfRVlZGZKSkvDpp59i2rRpLXpcInumVqtx4cIFJCYmIikpCUePHsVPP/2Ec+fOoby8HEVFReb77xqKC+UQtQyx8vPNNCZ3jxkzBqmpqfj8889hMBiwdu1aAMCQIUNsHTZRq3TtrXJqtRrBwcEQBAF5eXkW+zU0z9aOuIeGhsLJyQmOjo5wdXVFdXU1qqur4eHhgaCgIHh6eqJTp06466674OHhAVdXV1RVVcHFxQV5eXnmmQTXHjM0NBTjxo1DaGgoHBwc4Orqim7dulnEwFvyiKynySP3Tz/9tPn/x4wZg4yMDOh0OsTExFglsJv517/+hSeffBL+/v5QKpV46aWX+Bg8ohZiMBhw4sQJFBQUIC8vD3q9Hi4uLnB3d0dZWRkEQUBISAiCgoLg6uraqKvvXCiHyPrEzM83c7PcrVAosGfPHvTv3x9eXl7473//i7lz5+LJJ59Ely5dsHPnTj4Gj+j/a8yaNQ3JszqdDiqVCkFBQRaL5Mnlctx1110oLy9HaWkpQkJC4OTkBEEQkJKSAp1OhzvuuAMAEBwcjMzMTFRWVtZ7TIVCYf6vVqtFVlYWysvL4ebmhqqqKoSGhjbnKyGi/69Zz7mPj4/Hhg0bkJmZiaCgIJuNnqtUKmzfvt0mxyKyZwaDAceOHUN8fLx5pdyamhp4enoiJibGfFVfqVQiICAA5eXlvPpO1AqIlZ9v5ma5W6fTWbweOHAgkpKSbBEWUZtj7TVrru0vNDQUoaGh8Pf3N0+hN5lMUKvVcHJyQmhoKH755RcYjUYIgoCkpCQ4OjpCKpXC2dn5lhfh1Go1Dhw4AAcHB3h6eiIjIwMmk8niCRlE1HRNnpa/ZcsWDBw4EGVlZejRowf0ej3uuecebN682ZrxEZGIcnNzkZ+fj6CgIPM9u15eXuaFrWofa2M0GlFdXQ1BEG646BUR2QbzM1H7ptFozPe1X/uc+qauWVNff3K5HOPHj8edd96J4OBgKBQKxMbGory8HCEhIQgLC0NoaCi6du0KjUYDqVSKwMBAeHl53fRYhYWFiIyMRFxcHNRqNeLi4hAZGYmioqImxU5Elpo8cv/666/jv//9r8V0+L1792LevHl44oknrBIcEYlLp9NBIpFAo9FAr9ejuLgYcrkclZWVMJlMyM7OhslkQmFhIYxGI6Kjo7kgHpHImJ+J2rfae+mvfU69n59fk9esuVl/CoUCfn5+SExMRF5eHvLy8lBVVWWedu/o6AhnZ2eUl5fDz8/vlucAtbcAXDvroLCwkLP+iKykycV9bm4uhg0bZrFt6NChdRbzIKK2S6FQQBAEGAwGdO3aFVlZWUhOToa3tzdkMhlqampQVlYGf39/eHh41Fkkh4hsj/mZqP2z9po1N+vv+uLfwcEBsbGxAP4uzC9cuICwsLAGLYrLx+AStawmT8u/9957sXfvXott+/btw7333tvsoIioddBoNPD29kZeXh60Wi28vb3h7OyMqqoq1NTUwM/PDzExMbj33nsRGBjIaXVErQDzMxFZk8FgQG5uLsrKyhAWFgZPT0/za4PBgNDQUPTo0aNBF/etfUsBEVlq8sh9QEAAxo8fj5EjRyI8PBzp6enYvXs3pk2bhsWLF5v3W7ZsmVUCJSLbk8lk6NOnDzQaDdLT06HX6/HQQw8hJSUFwN9J2mg04uzZs+jZsyen1RG1AszPRGQtBoMBiYmJEAQBcrkcBQUFAABvb29UVVU1+pYAa99SQESWmlzcJyUl4bbbbkN+fj7y8/MBAH369DE/WxcAJBJJ8yMkIlHJZDJEREQgIiICFy5cwC+//AJXV1colUqEh4ejpKQElZWVyMzMRI8ePcQOl8juMT8TkbXk5uZCEATzlH21Wo3MzEzzuUFT8DG4RC2nycX9wYMHrRkHEbVyBoMBeXl5KCgogKurK4qKivD7778jJCQELi4uqKys5LQ6olaA+ZmIrEWn00Eul1tsk8vlnKlH1Eo1+Z776124cAGXLl2yVndE1Mrk5ubCyckJ/fv3h7e3N2JjYxEQEAB3d3colUr06tXLatPq/u///g+jR4/G+vXrkZGRYZU+iewV8zMRNZbBYIBWq0V2djbS09NRXV1tbtPr9XzsLVEr1eTiftq0afj9998BANu2bUNMTAyioqKwdetWqwVHRK1H7dX7gIAAqFQqODk5QaPRwGQywdfX16pT7IqLi5GQkICnn34aYWFh6NSpEz755BOr9U/UnjE/E1Fz1N5nn5OTAy8vL+Tn5+O3335DXl4eF8AjauWaXNzv2bMHPXv2BAC8++672LZtG3744Qe8+eabVguOiGyv9mp9cnIytFotDAYDgL8fX6PX6yGTyRAbGwtvb2+Ul5cjJCSkQY+/aYzOnTsjJycH69atw5tvvono6GjzScWePXtw//3346OPPsLFixetdkyi9oL5mYia49r77P38/NCvXz/U1NSYF9aLjY3lAnhErVST77kvLy+Hm5sbysrKcP78eYwdOxYODg545JFHrBkfEdnQ9avi5uTkIDc3F927d4dGo0Fubi4yMzMhl8thMpkQHh5u9cL+Wmq1GnfffTdGjx6N6upq5Obm4tKlS8jJycH8+fNRU1ODqKgozJ49G88++2yLxEDU1jA/E1FzXHuffXV1NdLT06FQKODs7AyJRILk5OQWzf1E1HRNLu59fHyQkpKCpKQk3H777XBwcIBer+cKvERt2I1Wxc3Ly0NwcLBoj6+RSCSQyWSQyWS45557MHDgQBQUFCA+Ph6HDx9GVlYWtFotcnJy8Nprr2HkyJEYMWIEIiMjWzw2otaG+ZmImkOhUCAnJwdqtRoFBQUQBAEKhQLe3t7w8fHBqVOnoNPpEBkZCY1G0+LnAQaDAbm5udDpdFAoFDY5JlFb1eTi/h//+Ad69+4N4O97+gDgt99+Q+fOna0TGRHZ3K1WxW0tj69xdHSEr68vHnzwQYwaNQrV1dXIy8tDSkoK8vPzsWDBAjzzzDOIiIjA5MmTsWjRIrFDJrIZ5mciao5rZ+rl5+dDr9dDoVDAw8MDycnJqKqqgpOTk8XsvpYqtm82o5AFPlFdTS7u586di+HDh8PJyQlhYWEAgIiICKxbt85asRFRC7jZFfBrr9bX0uv1CAgIsGmMnp6eGD58ONzd3W+577Wj+nfccQf69u2LwsJCxMfHIz4+HlqtFlqtFhUVFXjmmWcwYsQIjBgxAtHR0RzJpHaJ+ZmImkMmk5ln6ul0OhiNRsTGxuLq1auQSCRQqVTw8fGBn5+fxey+lnCrGYVEZKnJxT2AOlNeo6OjmxUMEbWsW10Bv/ZqvUwmg1arRVVVFby8vGAwGGx2lTw8PBzLli2DQqFo9HsdHBzg7e2NBx54APfffz+qq6tx5coVXLhwASUlJXjxxRfx7LPPIiwsDOPHj8eqVata4BMQiYv5mYiao3amnp+fHxITE5GXl4e8vDxUVVVBpVKZBwFa+pn3t5pRSESWmvWc+/j4eDz55JMYPnw4ZsyYgcOHD1srLiJqAddeAVer1QgODoYgCMjLywPwv6v13t7eSE1NhaOjI6KiolBQUIDExETzyvktrbKyEpmZmaiqqmpWP7Wj+kqlEj169MDGjRvx66+/4p133kHv3r3No/rZ2dkYPnw43nnnHSQnJ0MQBCt9EiJxMD8TkTXUnhcEBATAzc0Nrq6uiI6OhlQqBdDyz7yvfVLPtVr6mERtWZNH7rds2YIZM2bgoYceQo8ePZCeno577rkH69evxxNPPGHNGInIShpyBVwmk0EqlSI0NNRiypstp8ElJydj7Nix2LFjB7p06WK1fh0cHKBWq3HffffhvvvuM4/qZ2dno7S0FK+++iqef/55BAcH4/7778e//vUvTt2nNof5mYis6fpR/NzcXMjlcvNCnc155n12djays7Mttnl6eiI8PByVlZXIyspCamoqUlNT4ebmhvLyckRGRpoXDr2+8A8LC4NarcbVq1eRmZlp0aZUKhEVFQWj0YhTp07ViSUuLg5SqRRpaWkoKSmxaAsMDISfnx+Kiopw6dIlizZXV1d06tQJAHDy5Mk6AwSdOnWCq6srMjIyUFBQYNHm5+eHwMBAlJWVITU11aJNKpUiLi4OAHD69GlUV1dbtEdFRUGpVCIrK8s8SFPLy8sLoaGhqKioQEpKikWbRCJBjx49AAApKSmoqKiwaA8PD4enpyfy8vKQlZVl0ebh4YGIiAhUV1fj9OnTuF63bt3g6OiI1NTUOrMrgoOD4ePjg8LCQqSnp1u0yeVyxMTEAABOnDhRp9/Y2Fi4uLjg0qVLKCoqsmjz9/eHv78/SktLceHCBYs2Z2dn83ozf/31F2pqaizao6OjoVAocPnyZVy5csWizdvbGyEhISgvL8fZs2ct2hwcHNC9e3cAf5+zVlZWWrR36NABKpUKubm5df58X/+dWluTi/vXX38d//3vfzFixAjztr1792LevHk8eSBqpRp6T729TIOTSqWQSqWIiYnBf/7zH5SUlODIkSOIj49Heno6tFotlEolpk6dirvuugvDhw9Hly5dWPBTq8b8TEQt4dp78a3x1Jzs7Gw8+OCD+PPPPy22Dx8+HMuWLUNmZibGjh1r3u7o6Aij0Yg//vgDp0+fxrRp05CUlGTx3qVLl2LEiBHYvn073n77bYu2vn374oMPPoBOp8PgwYPrxLNv3z54enpiwYIFOHTokEXb/PnzMXHiROzfvx+vvPKKRVtMTAy2bNkCAOjXr1+dInzr1q2IiIjA8uXLsXPnTou2yZMnY86cOTh+/Dhmz55t0ebr64tdu3YBAO6///46xefHH3+MXr164V//+hc+++wzi7ZRo0Zh4cKFSEtLw4QJEyzapFIp/vjjDwDA448/jnPnzlm0r1ixAkOGDMEXX3yBtWvXWrT1798f77zzDoqKijBs2DBc78CBA1AoFJg3bx6OHj1q0fbCCy9g/Pjx2LNnD5YsWWLR1qVLF2zYsAEAcNttt9Xp95tvvkFwcDAWL16MvXv3WrTNmDEDTz31FOLj4zF//nyLtqCgIHz77bcAgKFDh6K4uNii/dNPP0XXrl3x7rvvYuvWrRZt48aNw4svvoizZ8/WyZ1yuRwHDx4EADzyyCN1LvisXr0ad999NzZt2oSPPvrIoq1Pnz51Pp81SYQmzj91d3dHcXExHBz+N7PfZDJBpVKhtLTUagG2hBMnTqBXr144fvw4evbsKXY4RDZz/T33tVfdr191tvaxcteP3AcEBNhk5P7PP/9Enz59rD5y3xjV1dWorKxEUVERli5diuPHj6OyshKBgYEYPnw4PvzwQ7i4uIgSG7VP1spNbTk/WxNzPVHrVpvrV65ciYiICPN2d3d3BAUFoaqqCmlpaXXeFxsbCwC4dOlSnVHngIAAqFQqFBYWIjc316LNzc0NYWFhMBqNdQpa4O+RcKlUCq1WC51OZ9Hm6+sLb29vlJSU1Bl5dXZ2NsefnJxcp98OHTrAxcUFWVlZdWYEeHl5wc/PD3q9HhkZGRZtTk5O5vVSzp8/X2fUOTQ0FHK5HHl5eXVmBHh4eCAwMBCVlZW4ePFinZhqv8O0tLQ6t0AGBgbCw8MD+fn5dS4oKBQKhISEoLq6us5MA+DvCx2Ojo5IT09HeXm5RZtGo4FarUZxcXGd0WxXV1eEh4cDqP87jIiIgLOzMy5fvlwnj/n4+MDHxwc6nQ5ardaiTSqVIioqCgBw7tw5GI1Gi/ba7zA3NxeFhYUWbSqVCgEBAaioqKhTvEskEvNsjQsXLtS5bTUoKAju7u64evUqrl69atGWk5ODefPmtVhuavLI/b333ou9e/di5MiR5m379u3Dvffea5XAiMj6GnrV/dqF9aw19a6tqR3VVyqV+OSTT1BaWoqjR48iPj4eKSkpyM3NhYeHB5555hl07twZI0aMQNeuXTmqT6JjfiaitiQiIqLeC/murq43vcB/7QWB63l7e8Pb27veNgcHh5v2W/uUkfp4enrC09Pzhu036zc4OPiGAyRKpfKm7+3YseMN22qnpdfHzc3tpv3WFr718fX1ha+vb71tzs7ON+23Q4cON2xTq9UWM0ivd7N+Q0JCbtjm7u5+0/fWFuP1CQgIuOGToeRy+U37vdmCtX5+fjY/d25Ucb948WLz/wcEBGD8+PEYOXIkwsPDkZ6ejt27d2PatGlWD5KIrKchz6q39tS7ts7BwQEqlQrDhg3DsGHDUF1djYKCAmRmZkKr1eKbb77Byy+/DI1Gg+HDh2PNmjU3Tf5E1sb8TEQt6WaP0SWi1qNRxf3195/cdtttyM/PR35+PoC/7yG4/t4XImqbGnIRoKX07NkTCQkJTXoUni3UjuorFAqsW7cOOp0OCQkJOHz4ME6ePGmeHrdo0SL4+/tjxIgR6N69u8U0aSJrYn4mopZyq8foElHr0ajivnbhACIi+puDgwPc3d0xZMgQDBkyBNXV1SgpKUFBQQHOnTuHTZs2YeHChfD19cWwYcPw1ltv3XDqF1FTMT8TUUu59jG6wN/Tqq3xBB1PT08MHz4c7u7u1gqVyO41+Z77AwcO1LtdIpFg0KBBTQ6IiJqnJafO2Wpa3rlz5zBt2rQ6i+y0BbWj+gDw/vvvQ6/X49ixY4iPj8exY8eQn58PFxcXrF69Gi4uLhgxYgR69erFUX2yGuZnIrKmlnqCTnh4OJYtW9ZqZ+kRtUVNLu6HDBlSZ1vtQlLXr0RIRLbRklPnbDktT6/XIykpqc4quG2Ng4MDlEolBg8ejMGDB6OmpgaVlZVITU3FmTNncODAASxZsgReXl4YNmwYli5disjISLHDpjaO+ZmIrKmhj9FtrMrKSmRmZqJDhw5wdXVtbphEhGYU9yaTyeJ1dnY2Xn75ZYwZM6bZQRFR07TU1LmW7tteODk5mUco3nrrLej1epw4cQKHDx/GkSNHkJubC7VajU8//RTl5eUYPnw4+vTpA0dHR5Ejp7aE+ZmIrKmlnqCTnJyMsWPHivrYW6L2psnF/fUCAgLwwQcfoE+fPnjwwQet1S0RNUJjps41dop9S03Ls1e1o/oDBgzAgAEDzKP6Fy5cQGJiInbt2oWlS5dCrVZj6NChePnll9G1a1exw6Y2iPmZiJqDT9AhajusVtwDgCAIyMnJsWaXRNQIDZ06ZzAYcOzYMRQVFUEikUAQBGRmZqJPnz43TNYtNS2P/nbtqP7ixYuxYMECnDx50jyqn56ejqCgIGzfvh2XL1/GiBEjcNttt8HJyar/jFM7xfxMRM0h5hN0iKjhmnxWuGHDBovXer0eW7duxZ133tnsoIioaRo6dU6r1eLixYvw8/ODq6srKioqcPHiRWg0mhsuYNdS0/LqExYWhqVLl9rthQOJRAKFQoH+/fujf//+qKmpQVVVFS5cuIDjx4/j66+/xvLly6FSqXDvvfdiwYIF6Nu3r9hhUyvB/ExERGSfmlzcv/766xavlUolevfujeXLlzc7KCJqmoZOncvIyICLi4u5MHd3d0dJSQkyMjJuWNzbclqeWq3GiBEjuILu/+fk5GQeoX/uuecwe/ZsnDx5EvHx8YiPj8fZs2cRGRmJffv24fTp0xg5ciRuv/1286r9ZF+Yn4mIiOxTk4v7S5cuWTMOIrKShkydEwQBgiDccltT+raGq1evYvv27XjwwQfh7e3d4sdrSyQSCdzc3NCvXz/069fPPKqflpaGhIQEbN68GW+99RY8PDxwzz33YN68eRg4cKDYYZMNMT8TUVvQs2dPJCQk8EI+kRU1+sHKeXl5uHLlivl1dXU1li1bhtGjR+Pdd9+1anBE1DLCwsJQXl6O7OxsFBUVITs7G+Xl5QgLCxM7NABAZmYm3n77beTm5oodSqvn5OQEuVwODw8PzJo1CwcOHMCmTZvw8MMPIzU1FSdOnEBBQQF2796NF198Eb/88gsMBoPYYVMLYH4mIiKyb40u7qdPn459+/aZX7/yyitYs2YNnJycsHz5cqxevdqqARKR9YWEhCAqKgrV1dUoLS1FdXU1oqKiEBwcDIPBAK1Wi+TkZGi1WhaCbYhEIoGrqytuv/12LFiwANu2bcPAgQORlpaGw4cP4z//+Q8GDRoEb29vjB49Grt37xY7ZLIi5mciakvOnTuHadOmcbYRkRU1urhPTEzE8OHDAfw9jXfDhg3YvHkzduzYga+//hqbN2+2epBEZF0ymQx9+vRBjx49EBkZiR49eqBPnz4A/v47npOTA5PJhJycHCQmJrLAb6McHR3No/qTJk3Czz//jC1btmDixInIyMhAfHw88vPz8fvvv2PBggX4+eefUVVVJXbY1ETMz0TUluj1eiQlJaGiokLsUIjajUbfc19aWgofHx8AMP+FHDFiBABg0KBBuHz5snUjJKIWUd/981qtFoIgmLer1WpkZmYiLy+Pj8Bp42pH9fv06YM+ffrAaDSisrISaWlpOHToELZs2YI1a9ZALpdj0KBBmDJlCsaOHSt22NQIzM9ERET2rdEj90qlEiUlJQCA48ePo2vXruYVmWtqamA0Gq0bIRHZjE6ng1wut9gml8tRVlZm0ziUSiX69u0LNzc3mx7XntSO6qtUKjz00EPYv38/vvjiC0yePBlZWVk4cOAArl69itOnT+PZZ5/Fjz/+iMrKSrHDpptgfiYiIrJvjS7uBwwYgJdeegmJiYn4+OOPzVMAgb/vnbHX51ITtQcKhQJ6vd5im16vh1KptGkcUVFR+OCDD1rNAn/tnUQigbOzM3r16oVnnnkGn3/+OaZPn45Lly7h4MGD+PLLLzFs2DB4eXnhvvvuw+effy52yFQP5mciIiL71ujifsWKFfj111/Rs2dPVFVVYf78+ea2L7/8EnfddZdVAyQi29FoNJBIJMjMzERhYSEyMzMhkUjg5+dn0ziMRiN0Oh1HGkVy7b36Q4cOxU8//YQvv/wS06ZNw5UrV7Br1y5cvXoVGRkZeOaZZ7Bnzx7eM9kKMD8TUVsSFhaGpUuX8sIjkRU1+p77sLAwJCcno7CwEGq12qLtn//8J2QymdWCIyLbkslk6N69O/Ly8lBWVoaAgAD4+fnZ/O/1qVOnMHjwYOzYsQNdunSx6bHJUu2ofs+ePdGzZ0/Mnj0blZWVuHTpEk6fPo0dO3bggw8+gIuLCwYMGICxY8fiySefFDtsu8T8TERtiVqtxogRI/iceyIravTIfa3rTxwAQKVS8R5ZojaudqG92NhYBAcHsyAgC9eO6vfr1w979+7Ftm3b8NRTT6GwsBA7duzAlStXUFhYiHnz5uGHH35AeXm52GHbFeZnImoLrl69iu3bt6OwsFDsUIjajUaP3BMREQH/G9Xv3r07unfvjlmzZqGyshLp6elIT0/Hd999hw8//BDOzs7o378/HnjgAcybNw8SiUTs0ImISGSZmZl4++230bdvX3h7e4sdDlG70OSReyIioms5ODjAzc0NHh4e6Nq1K3bv3o3t27dj9uzZKCsrw+eff46rV69Cp9NhwYIF2LlzJ3Q6ndhhExEREbULHLknIiKrqx3Vj4uLQ1xcHJ566inzqH7tVMw1a9ZAKpXirrvuwsiRI/GPf/wDTk5MS0RERERNwZF7Imp14uLisG/fPkRFRYkdClnJtaP6kZGR2L17N7799ls888wzqKqqwvr165Gfnw+9Xo9Fixbhu+++Q2lpqdhhExEREbUZHCIholZHKpXC09MTUqlU7FCohUilUsTGxiI2NhbTp09HRUUFtFot9Ho9tmzZguXLl8PJyQl33nknRo4ciblz50Iul4sdNhERWYlSqUTfvn252CeRFXHknohanbS0NCxYsABarVbsUMgGHBwczCvwBwQEYNeuXfjuu+/w7LPPwmQy4d1330VxcTH0ej1WrVqFHTt2oLi4WOywiYioGaKiovDBBx8gLCxM7FCI2g2O3BNRq1NSUoJDhw5xsTU7JZVK0alTJ3Tq1AlTp05FeXk5srKyoNVq8Z///Afnz5+Ho6Mj7rjjDowYMQKzZ8+Gp6en2GETEVEjGI1G6HQ6uLq6wsGB441E1sC/SURE1Go5ODhAoVDAw8MDarUa33zzDb7//ns8//zzcHBwwMqVK1FQUAC9Xo9//etf+Oqrr1BUVCR22EREdAunTp3C4MGDce7cObFDIWo3WNwTEVGbIZVKERUVhalTp2LdunU4ePAgioqKcObMGWzYsAGPPvoovL29ceedd2L58uXIy8sTO2S79/bbbyMuLg5KpRIhISF49dVXYTQab7j/wIED4eLiAoVCYf4hIiKiW+O0fCI7ZzAYkJubC51OB4VCAY1GA5lM1ux9iVpa7b36tTZv3oz09HQcPnwY8fHxWLlyJYYNGwa5XI5vv/0WUqkUQ4cOhZeXl4hR2x+TyYSNGzeiW7duyM7OxqhRo+Du7o5//vOfN3zPe++9h1mzZtkwSiIioraPxT2RHTMYDEhMTIQgCJDL5cjJyUFubi66d+9ep2hvzL7NFRgYiPnz58PX19eq/VL75uTkhMjISERGRmLSpEkoLy+H0WhEcnIyNmzYgF9//RUSiQR9+vTByJEjMXXqVISEhIgddrt3bREfGhqKiRMn4tChQzct7omIiKjxWNwT2bHc3FwIgoDg4GAAgFqtRmZmJvLy8szbmrJvc/n5+WHixImcjktNVnuvfq1//etfyMzMxO+//44jR47gnXfeQd++faFWq/Hjjz+ivLwcw4YNg4+Pj4hR24dff/0VXbt2vek+ixYtwquvvoqIiAgsWrQIDzzwwA33zcnJQU5OTp3tKSkpzY6ViIioLWFxT2THdDpdnWeHy+VylJWVNWvf5ioqKsL+/fsxaNAgroJOVuHk5ITw8HCEh4dj4sSJKC8vR01NDZKTk/HZZ59h586dkEgk6NWrF0aMGIEnnngCkZGRYofd7nzwwQc4ffo0Nm/efMN9Vq5ciU6dOsHFxQW7du3Co48+ioMHD+K2226rd//169dj6dKlLRUyEbWQuLg47Nu3DxqNRuxQiNoNLqhHZMcUCgX0er3FNr1eD6VS2ax9m+vSpUt45ZVXkJWVZfW+iWpH9VUqFTw8PLBixQrs3bsXixYtgkqlwtq1a3HkyBGUlZXhxx9/xGeffcaF+W5g3LhxkEgkN/y51pYtW7BixQr8+OOPN133oG/fvnB3d4dMJsOYMWMwbtw4fPvttzfcf+bMmTh+/Hidn88//9xqn5OIrE8qlcLT0xNSqVTsUIjaDY7cE9kxjUaD3NxcZGZmQi6XQ6/XQyKRwM/Pr1n7ErUlTk5OCAsLQ1hYGCZMmIDy8nJUVVUhJSUFW7ZsMReJPXr0wIgRIzBx4kTExsaKHHXrsGPHjgbt98UXX+CFF17A/v370bFjx0Ydw8HBAYIg3LDd398f/v7+jeqTiMSXlpaGBQsW4NVX/1979x5VZZ3vcfwDKIhsLoqIqKiBiSYaVtosHc06lTJTVoq3ybScSss6dU7jZWmOx3PMbFmnOmVlmZrXppTJsmisdMrKdMZLSKJ4Q0clTAUBBUH4nT9mxURchHTv5+L7tdZey/08v735/PbP7Zevz97PM00dOnSwOg7gCjT3wGUsMDBQSUlJys3NVWFhoVq3bq3o6OgaT5DXkLGAU/n5+SkkJKTyKyhTpkzRmDFj9NVXX2nTpk165ZVXFBUVpdjYWO3cuVO7d+/WwIED1bp1a4uT29fKlSv1+OOPa926dUpMTKxzbH5+vjZt2qT+/fsrMDBQH374od555x2tW7fOR2kB+Mrp06e1ceNGFRUVWR0FcA2ae+AyFxgYWO8T4jVkLOAGjRo1UmxsrEaMGKHhw4eruLhYxcXFyszM1LJly/Taa6/JGKPu3btr4MCBGjlypJKSkqyObStTp05Vfn6++vbtW7mtb9++SktLkyQlJyerb9++mjp1qsrKyjRjxgxlZmbK399fHTt21JIlS9SnTx+r4gMA4Bg09wBsJzg4WAkJCQoKCrI6ClDJz89PTZs2VdOmTSVJjzzyiIYMGaKvv/5amzZt0htvvKHGjRsrLi5O2dnZ2rJliwYOHKi2bdtanNxaBw8erHP/j02+JEVFRWnLli3ejgQAgCvR3AOwnS5dumjp0qVcCg+2FhAQoLZt22rYsGEaOnSoSkpKVFRUpN27dys1NVVz585VRUWFunbtquTkZA0dOrTWM74DAABcLJp7AAAukp+fn4KDgxUcHCxJGj16tAYMGKBNmzbp66+/1uLFi1VUVKTOnTvrxIkT+uSTTzRw4EC1b9/e4uQAYI02bdroscceU8uWLa2OArgGzT0A29m+fbv69OmjlStXXvAEXIAdBQQEqHXr1hoyZIgGDx5c5aj+Z599punTp6u8vFydO3dWcnKyBg8eXPlxfwC4HERHR+vuu+/mU3rAJcR17gHYjjFGZWVlVscALokfj+pHRUUpPDxcd9xxhz777DPNnj1bV155pZYtW6YXX3yRM0YDuKzk5eXp008/1enTp62OArgGR+4BAPChgIAAtWrVSoMHD9Zdd92l0tJS5eXlKTs72+poAOAzBw8e1NSpU7Vq1So1a9bM6jiAK3DkHgAAi/j5+SkoKEitWrVSSEiI1XEAAICD0dwDAAAAAOBwNPcAbKdLly5auXKl4uLirI4CAAAAOALNPQDbCQ4OVnx8vJo0aWJ1FAAA4AXBwcFKSEhQUFCQ1VEA16C5B2A7hw4d0qxZs3T06FGrowAAAC/o0qWLli5dqvj4eKujAK5Bcw/Adk6ePKn333+fy+MAAAAA9URzDwAAAMCntm/frj59+mjXrl1WRwFcg+YeAAAAgE8ZY1RWVmZ1DMBVaO4BAAAAAHA4mnsAthMdHa0xY8YoMjLS6igAAACAIzSyOgAA/FybNm00YcIEeTweq6MAAAAAjsCRewC2U1hYqK1bt+rMmTNWRwEAAF7QpUsXrVy5UnFxcVZHAVyD5h6A7ezdu1cPPfSQDh06ZHUUAADgBcHBwYqPj1eTJk2sjgK4Bs09AAAAAJ86dOiQZs2apaNHj1odBXANmnsAAAAAPnXy5Em9//77On36tNVRANeguQcAAAAAwOFo7gHYTuPGjdWyZUs1asQFPQAAAID64DdnALbTrVs3rV27lkvhAQAAAPXEkXsAAAAAPhUdHa0xY8YoMjLS6iiAa9DcA7CdnTt36rbbblNWVpbVUQAAgBe0adNGEyZMUHR0tNVRANdwVHM/d+5cdevWTaGhoWrXrp2mTZum8vJyq2MBuMTKysp0/PhxnT9/3uooAADACwoLC7V161adOXPG6iiAaziqua+oqNCiRYt06tQpbdy4UWvXrtWzzz5rdSwAAAAADbB371499NBDOnTokNVRANdw1An1Jk+eXPnn9u3b6+6779bGjRurbP+pnJwc5eTkVNuemZnptYwAAAAAAPiao5r7n/v888/VvXv3WvfPnz9fM2fO9GEiAAAAAAB8z7HN/UsvvaSdO3dqyZIltY4ZN26cBg0aVG17ZmamRo0a5c14AC7ClVdeqVdffVXt27e3OgoAAADgCLZp7lNSUrR69epa9xtjKv+8dOlSzZ49Wxs2bKjz8hkxMTGKiYm5pDkBeF9oaKiuvfZahYSEWB0FAAB4QePGjdWyZUs1amSbdgRwPNucUG/VqlUyxtR6+9Hy5cs1ceJEffLJJ+rcubOFiQF4y9GjRzVv3jzl5uZaHQUAAHhBt27dtHbtWnXq1MnqKIBr2Ka5r4+VK1fq8ccfV1pamhITE62OA8BLcnNz9dZbb+nkyZNWRwEAAAAcwVHN/dSpU5Wfn6++ffvK4/HI4/EoOTnZ6lgAAAAAGmDnzp267bbblJWVZXUUwDUc9SWXgwcPWh0BAAAAwEUqKyvT8ePHdf78eaujAK7hqCP3AAAAAACgOpp7ALYTGRmpQYMGKTw83OooAAAAgCM46mP5AC4P7du315NPPimPx2N1FAAAAMAROHIPwHaKi4u1f/9+lZSUWB0FAAB4wZVXXqlXX31V7du3tzoK4Bo09wBsJzMzUyNHjtSBAwesjgIAALwgNDRU1157rUJCQqyOArgGzT0AAAAAnzp69KjmzZun3Nxcq6MArkFzDwAAAMCncnNz9dZbb+nkyZNWRwFcg+YeAAAAAACHo7kHYDt+fn5q3Lix1TEAAAAAx+BSeABsp0ePHvrqq6+4FB4AAABQTxy5BwAAAOBTkZGRGjRokMLDw62OArgGzT0A28nMzNQ999yj/fv3Wx0FAAB4Qfv27fXkk0+qTZs2VkcBXIPmHoDtFBcXa8+ePTp37pzVUQAAgBcUFxdr//79KikpsToK4Bo09wAAwGsWL16sgIAAeTyeytvy5ctrHZ+fn69hw4YpNDRUrVu31gsvvOC7sAB8JjMzUyNHjtSBAwesjgK4BifUAwAAXtWzZ09988039Rr7yCOP6Ny5czp69KgOHTqkf/u3f1NCQoKSk5O9nBIAAGejuQcAALZw5swZvfvuu9q6davCwsLUrVs3PfDAA1q4cGGtzX1OTo5ycnKqbc/MzPR2XAAAbIXmHoDtXHHFFZo9ezYn2QFcIj09XVFRUQoPD9eQIUP0X//1XwoODq42LisrSxUVFUpMTKzclpSUpNTU1Fqfe/78+Zo5c6ZXcgMA4CQ09wBsp1mzZrr55pu5zj3gAv369VNGRoY6dOigvXv3avTo0Zo0aZJeeumlamOLioqqXRYrIiJChYWFtT7/uHHjNGjQoGrbMzMzNWrUqIufAACv8PPzU+PGja2OAbgKzT0A28nNzdXy5cs1ZMgQtWzZ0uo4AGqRkpKi1atX17rfGKO4uLjK+wkJCZozZ45GjhxZY3Pv8XhUUFBQZdvp06cVGhpa68+IiYlRTEzML0gPwEo9evTQV199xX/kA5cQZ8sHYDtHjx7Viy++qOPHj1sdBUAdVq1aJWNMrbea+Pv717qvU6dO8vPz03fffVe5bceOHVU+pg8AAGpGcw8AALwmLS2t8oR3Bw4c0JQpU3TXXXfVODYkJEQpKSmaNm2aCgsLlZGRoQULFmjs2LG+jAzABzIzM3XPPfdo//79VkcBXIPmHgAAeM369evVo0cPhYSE6MYbb1Tv3r313HPPVe4fP368xo8fX3l/3rx5aty4sWJiYnTLLbdoypQpXAYPcKHi4mLt2bNH586dszoK4Bp85x4AAHjN3LlzNXfu3Fr3v/baa1XuR0RE6N133/V2LAAAXIcj9wBsJzw8XH379uUkOwAAAEA9ceQegO3Ex8frueeeo7kHAAAA6okj9wBsp6ysTHl5eSorK7M6CgAA8IIrrrhCs2fPVps2bayOArgGzT0A29m5c6cGDBigvXv3Wh0FAAB4QbNmzXTzzTcrPDzc6iiAa9DcAwAAAPCp3NxcLV++XCdOnLA6CuAaNPcAAAAAfOro0aN68cUXdfz4caujAK5Bcw8AAAAAgMPR3AMAAAAA4HBcCg+A7Vx99dVav369oqKirI4CAAAAOAJH7gHYTkBAgDwejwICAqyOAgAAvCA8PFx9+/aVx+OxOgrgGjT3AGxn7969evTRR5WdnW11FAAA4AXx8fF67rnn1K5dO6ujAK5Bcw/AdgoLC7V582adPXvW6igAAMALysrKlJeXp7KyMqujAK5Bcw8AAADAp3bu3KkBAwZo7969VkcBXIPmHgAAAAAAh6O5BwAAAADA4WjuAdhObGysJk6cqFatWlkdBQAAAHAErnMPwHaioqI0dOhQLo8DAAAA1BNH7gHYzqlTp5SWlqb8/HyrowAAAC+4+uqrtX79eiUkJFgdBXANmnsAtpOdna0ZM2bo2LFjVkcBAABeEBAQII/Ho4CAAKujAK5Bcw8AAADAp/bu3atHH31U2dnZVkcBXIPmHgAAAIBPFRYWavPmzTp79qzVUQDXoLkHAAAAAMDhaO4B2E5ISIgSExMVHBxsdRQAAADAEbgUHgDbSUhI0MKFC7kUHgAAAFBPHLkHAAAA4FOxsbGaOHGiWrVqZXUUwDVo7gHYzrZt29SrVy/t2rXL6igAAMALoqKiNHToUDVv3tzqKIBr0NwDAAAA8KlTp04pLS1N+fn5VkcBXIPmHgAAAIBPZWdna8aMGTp27JjVUQDXoLkHAAAAAMDhaO4BAAAAAHA4LoUHwHauuuoqrV69WnFxcVZHAQAAAByBI/cAbKdJkyaKjY1VUFCQ1VEAAIAXhISEKDExUcHBwVZHAVyD5h6A7Rw8eFB//OMfdeTIEaujAAAAL0hISNDChQt1xRVXWB0FcA2aewC2k5eXp48//lgFBQVWRwEAAAAcgeYeAAAAgE9t27ZNvXr10q5du6yOArgGzT0AAAAAAA5Hcw8AAAAAgMPR3AOwnZiYGN1///2KioqyOgoAAADgCFznHoDtxMTE6MEHH5TH47E6CgAAAOAIHLkHYDsFBQXatGmTioqKrI4CAAC84KqrrtLq1asVHx9vdRTANWjuAdjOvn379Nhjj+nw4cNWRwEAAF7QpEkTxcbGKigoyOoogGvQ3AMAAADwqYMHD+qPf/yjjhw5YnUUwDVo7gEAAAD4VF5enj7++GMVFBRYHQVwDZp7AAAAAAAcjuYegO0EBQWpbdu2aty4sdVRAAAAAEfgUngAbKdr165KTU3lUngAAABAPXHkHgAAAIBPxcTE6P7771dUVJTVUQDXoLkHYDvp6em69dZbtWfPHqujAAAAL4iJidGDDz5Icw9cQjT3AGzn/Pnzys/PV3l5udVRAFyk5ORkeTyeyltQUJDCwsJqHd+/f381adKkymMAuE9BQYE2bdqkoqIiq6MArkFzDwAAvCYtLU1FRUWVtzvvvFPDhg2r8zEvvPBClccAcJ99+/bpscce0+HDh62OArgGJ9QDAAA+cerUKa1Zs0br16+/ZM+Zk5OjnJycatszMzMv2c8AAMAJaO4BAIBPrFixQh06dFDv3r3rHDd9+nRNmzZN8fHxmj59um6//fZax86fP18zZ8681FEBAHAcmnsAttOpUyctWLBA7du3tzoKgEto4cKFuu++++oc88wzz6hLly5q0qSJ1q5dqxEjRmjDhg3q1atXjePHjRunQYMGVduemZmpUaNGXZLcAAA4Ac09ANvxeDzq3r27QkJCrI4CoA4pKSlavXp1rfuNMZV//vbbb5Wenq4PP/ywzue8/vrrK/88ePBgrVmzRqmpqbU29zExMYqJiWlgcgBWCwoKUtu2bdW4cWOrowCuwQn1ANjOkSNH9Pzzz+v777+3OgqAOqxatUrGmFpvP7Vw4UINHDiwwY24v79/tecC4Hxdu3ZVamqqrrzySqujAK5Bcw/Ado4fP66VK1fq1KlTVkcBcAmUlpZq+fLlGjt2bJ3j8vPzlZaWpuLiYpWXl+v999/XO++8U+PH7gEAQFU09wAAwKs++OAD+fn51XhivOTkZM2ePVuSVFZWphkzZqhly5Zq3ry5Zs6cqSVLlqhPnz6+jgzAy9LT03Xrrbdqz549VkcBXIPv3AMAAK8aMmSIhgwZUuO+tLS0yj9HRUVpy5YtvooFwELnz59Xfn6+ysvLrY4CuAZH7gEAAAAAcDjHNvc33nij/Pz8VFJSYnUUAJdYixYtlJKSooiICKujAAAAAI7gyI/lv/XWW3yEB3Cxdu3aadKkSfJ4PFZHAQAAABzBcUfuT548qVmzZmnu3LlWRwHgJWfPntXu3btVXFxsdRQAAOAFnTp10oIFC9S+fXurowCu4bgj9xMnTtTjjz+u6OjoC47NyclRTk5Ote2ZmZneiAbgEtm9e7dGjx6tVatWKTEx0eo4AADgEvN4POrevbtCQkKsjgK4hqOa+y+++EI7d+7UggULdPjw4QuOnz9/vmbOnOmDZAAAAADq68iRI3r++ef1wAMPqHXr1lbHAVzBNh/LT0lJkZ+fX623srIyPfzww5o3b578/esXe9y4cdq6dWu127Jly7w8GwAAAAC1OX78uFauXKlTp05ZHQVwDdscuV+1alWd+7Ozs7V7924NGjRIkipPqNehQwctXrxYAwcOrPaYmJgYxcTEXPqwAAAAAADYiG2a+wuJjY3VkSNHKu//4x//UK9evbR582a1atXKwmQALjV/f3+FhITIz8/P6igAAACAIzimuQ8ICKjSxP94ffvo6GgFBQVZFQuAFyQlJWnDhg1cCg8AAACoJ8c09z/XoUMHGWOsjgEAAACggVq0aKGUlBRFRERYHQVwDducUA8AfrRr1y4NHz5c+/btszoKAADwgnbt2mnSpEmcKR+4hGjuAdhOSUmJDh48qNLSUqujAAAALzh79qx2796t4uJiq6MArkFzDwAAAMCndu/erdGjR+vgwYNWRwFcg+YeAAAAAACHo7kHAAAAAMDhaO4B2E5cXJyeffZZtW3b1uooAAAAgCM49lJ4ANwrIiJC/fr14zr3AAC4lL+/v0JCQuTn52d1FMA1OHIPwHa+//57LV68WD/88IPVUQAAgBckJSVpw4YN6tKli9VRANeguQdgO8eOHdMrr7xCcw8AAADUE809AAAAAJ/atWuXhg8frn379lkdBXANmnsAAAAAPlVSUqKDBw+qtLTU6iiAa9DcAwAAAADgcDT3AGwnIiJCN910k0JDQ62OAgAAADgCl8IDYDtxcXGaM2cOl8IDAAAA6okj9wBsp7S0VLm5uXwPDwAAl4qLi9Ozzz6rtm3bWh0FcA2aewC2k5GRodtvv50z6AIA4FIRERHq16+fwsLCrI4CuAbNPQAAAACf+v7777V48WL98MMPVkcBXIPmHgAAAIBPHTt2TK+88grNPXAJ0dwDAAAAAOBwNPcAAAAAADgcl8IDYDtJSUn68ssvFRERYXUUAAAAwBE4cg/Advz9/RUYGCh/f/6JAgDAjSIiInTTTTcpNDTU6iiAa/CbMwDbycrK0vjx45WdnW11FAAA4AVxcXGaM2eOYmNjrY4CuAbNPQDbKSoq0rZt23T27FmrowAAAC8oLS1Vbm6uSktLrY4CuAbNPQAAAACfysjI0O233659+/ZZHQVwDZp7AAAAAAAcjuYeAAAAAACHo7kHYDvt2rXT1KlTFRMTY3UUAAAAwBG4zj0A22nRooXuvPNOeTweq6MAAAAAjsCRewC2c+LECb333nvKy8uzOgoAAPCCpKQkffnll+rcubPVUQDXoLkHYDuHDx/W7NmzlZOTY3UUAADgBf7+/goMDJS/P+0IcKnwbgIAAADgU1lZWRo/fryys7OtjgK4Bs09AAAAAJ8qKirStm3bdPbsWaujAK5Bcw8AAAAAgMPR3AOwHY/Ho2uuuUZNmza1OgoAAADgCFwKD4DtdOrUSa+99hqXwgMAAADqiSP3AGynoqJCpaWlqqiosDoKgHrYsGGDbrzxRoWHh6tVq1bV9ufn52vYsGEKDQ1V69at9cILL9T5fJ9//rkSExPVtGlT9ezZU99++62XkgOwSrt27TR16lTFxMRYHQVwDZp7ALazY8cO/frXv9bu3butjgKgHkJCQjR27Fj97//+b437H3nkEZ07d05Hjx7VX/7yF82ePVtpaWk1jj158qTuuOMOTZo0SXl5eRo5cqQGDRqkc+fOeXMKAHysRYsWuvPOO9WsWTOrowCuQXMPAAAuSq9evXTPPfcoPj6+2r4zZ87o3Xff1VNPPaWwsDB169ZNDzzwgBYuXFjjc6Wmpqpjx44aPXq0goKC9B//8R+qqKjQp59+6u1pAPChEydO6L333lNeXp7VUQDXuCy/c19cXCxJyszMtDgJgJr8eMT+wIED8vPzszgN4BsHDhyQ9K8a5RZZWVmqqKhQYmJi5bakpCSlpqbWOD4jI0NJSUmV9/38/NS9e3dlZGTot7/9bbXxOTk5ysnJqbZ9x44dkqj1gF3t2rVLs2fPVnh4eI3/MQi40f79+yV5r9Zfls399u3bJUmjRo2yOAmAukyaNMnqCIDPbd++XX369LE6xiVTVFSk8PDwKtsiIiJUWFhY6/iff0y3rvHz58/XzJkza/351HrA3iZPnmx1BMDnvFXrL8vmvkuXLpKkN998s8rRASfLzMzUqFGjtGzZssr5OR1zsj+3zUdiTk7hxjnt2LFDv//97203n5SUFK1evbrW/caYOh/v8XhUUFBQZdvp06cVGhpa6/jTp0/Xe/y4ceM0aNCgats3b96shx9+mFpvc8zJGZiT/bltPpI75+TtWn9ZNvc/HhFISkrSNddcY3GaS6tLly7MyQHcNie3zUdiTk7hxjnZ7eRSq1atuqjHd+rUSX5+fvruu+/UtWtXSf/85eanH9P/qcTERL3++uuV940xSk9P10MPPVTj+JiYmDrPtk2tdwbm5AzMyf7cNh/JnXPyVq3nhHoAAOCiVFRUqKSkRKWlpZKkkpKSyrPbh4SEKCUlRdOmTVNhYaEyMjK0YMECjR07tsbnGjx4sPbu3atly5aptLRUL774oiTp5ptv9s1kAABwKJp7AABwUb744gsFBwdrwIABys3NVXBwsBISEir3z5s3T40bN1ZMTIxuueUWTZkyRcnJyZX7PR6PNm7cKEmKjIzUe++9pzlz5ig8PFzLly/X+++/r6CgIJ/PCwAAJ7ksP5YPAAAunf79+9f53fuIiAi9++67te4vKiqq9nwZGRmXLB8AAJcDjtwDAAAAAOBwl2VzHxMToxkzZtR5Ah6nYU7O4LY5uW0+EnNyCuaEC3Hj68mcnIE5OYPb5uS2+UjM6ZfwMxe6hg0AAAAAALC1y/LIPQAAAAAAbkJzDwAAAACAw9HcAwAAAADgcDT3AAAAAAA4nGub+w0bNujGG29UeHi4WrVqVW1/fn6+hg0bptDQULVu3VovvPBCnc/3+eefKzExUU2bNlXPnj317bffeil5/SQnJ8vj8VTegoKCFBYWVuv4/v37q0mTJlUeYzeLFy9WQEBAlYzLly+vdXxD19AKc+fOVbdu3RQaGqp27dpp2rRpKi8vr3W8XdepIa+13d4rP3fu3Dndf//9uuKKKxQaGqquXbtqxYoVtY738/NTSEhI5XokJyf7MG393HvvvQoMDKzy9+bw4cO1js/IyNCvfvUrNW3aVFdddZXWr1/vw7T189O5eDweNWrUSIMGDap1vF3X6eWXX9Z1112noKAgjRgxosq+hq7Dyy+/rDZt2sjj8WjIkCHKy8vzZnRHcHutl9xX76n19l0jN9V6iXov2b/eU+trfq6LqvXGpTZv3myWLFliFixYYKKjo6vtv/vuu82gQYPM6dOnTXp6uomKijIfffRRjc914sQJEx4ebt566y1TUlJinnvuOdOuXTtTUlLi7WnU27Bhw8zvf//7WvffcMMN5tVXX/VhooZbtGiRuf766+s9viFraJU5c+aYv/3tb6a0tNRkZ2eb7t27mzlz5tQ63q7rVN/X2gnvlaKiIjN9+nSzf/9+U1FRYTZu3GjCwsLM119/XeN4SSYzM9PHKRtmzJgxZvLkyfUaW1paajp06GCeeuopU1JSYt5++20TFhZmcnNzvZzylzt//rxp3bq1Wbp0aa1j7LpOq1evNn/+85/NhAkTzPDhwyu3N3Qd1q1bZ5o3b262bt1qCgoKzNChQ82wYcN8NQ3butxqvTHOr/fUevuukZtqvTHUe6fVe2r9pan1rm3uf7Rhw4ZqBb+oqMgEBgaanTt3Vm6bOnWqSUlJqfE5Xn/9dXPttddW3q+oqDBt27Y1a9eu9U7oBjp58qQJCgoyX331Va1j7FpIfqohBb+ha2gXzzzzjLnttttq3W/HdWrIa23390ptkpOTzbPPPlvjPrsWkp9qSLFft26dadmypSkvL6/c1rt3b/Pyyy97K95FW7t2rQkLCzNnz56tdYzd12nGjBlVCn5D1+F3v/udeeKJJyrvZ2VlmUaNGpn8/HzvhXaQy6HWG+OOek+tt+caXQ613hjqvZ3rPbX+0tR6134svy5ZWVmqqKhQYmJi5bakpCRlZGTUOD4jI0NJSUmV9/38/NS9e/dax/vaihUr1KFDB/Xu3bvOcdOnT1dkZKR69eqlDz74wEfpGiY9PV1RUVHq2LGjJk+erOLi4hrHNXQN7eLHj7HVxW7r1JDX2u7vlZqcOXNGf//73+tcl5tuuknR0dH67W9/q++++86H6erv9ddfV/PmzXX11Vdr4cKFtY7LyMhQt27d5O//r3/+7f7eWbRokUaMGKHg4OA6xzlhnX7U0HX4+XvryiuvVGBgoHbv3u3tqI7ltlovuafeU+vtt0Zur/US9V6y9/uHWn9pav1l2dwXFRUpPDy8yraIiAgVFhbWOj4iIqLe431t4cKFuu++++oc88wzz2j//v3KycnRlClTNGLECG3ZssVHCeunX79+ysjIUG5urj788EP99a9/1aRJk2oc29A1tIOXXnpJO3fu1B/+8Idax9hxnRryWtv9vfJzFRUVuvfee9WzZ0/deuutNY7561//quzsbO3bt089evTQrbfeqoKCAh8nrdu///u/KysrS8ePH9cLL7ygSZMmafXq1TWOddoanThxQh988IHGjh1b5zgnrNNPNXQdnLZuduC2Wi+5o95T6+25Rm6u9RL1/kd2XSdq/S8bXxNHNvcpKSny8/Or9XYhHo+n2l+E06dPKzQ0tNbxp0+frvf4i9WQ+X377bdKT0/X6NGj63zO66+/XmFhYQoMDNTgwYOVkpKi1NRUr+SvSX3mFBcXp7i4OPn7+yshIUFz5szRu+++W+PzNXQNvaEh67R06VLNnj1b69atU2RkZK3PafU61aQhr7Wv3ysXwxij8ePH69ixY/rTn/5U678dN9xwgwIDAxUaGqpZs2apUaNG+vrrr32ctm7XXHONWrRooUaNGunGG2/UhAkT6nzvOGWNJGn58uXq2LGjrr/++jrHOWGdfqqh6+C0dbsU3F7rJffVe2o9td6OqPf/Ytd1otb/svE1cWRzv2rVKpl/ni+gxtuFdOrUSX5+flU+yrFjx45aP6aTmJioHTt2VN43xig9Pf2CH7n6pRoyv4ULF2rgwIGKiYlp0M/w9/ev12t1qfySNasrY0PX0BvqO6fly5dr4sSJ+uSTT9S5c+cG/Qxfr1NNGvJa+/q98ksZYzRhwgTt2LFDaWlpDTpTsR3W5ELqypiYmKidO3eqoqKicpuv3zsNsWjRogseqayJ3depoevw8/fWvn37dO7cuQb/m+Ikbq/1kvvqPbWeWm831Htn1Htq/b/GX3Str/e38x2mvLzcFBcXm7/85S8mOjraFBcXVzmL5+9+9ztzxx13mIKCArNz504THR19wTPoLl261Jw7d848//zzJjY21vKzgp47d85ERkaa1atX1zkuLy/PfPTRR+bs2bPm/PnzZs2aNaZp06bmyy+/9FHS+vnoo4/MsWPHjDHG7N+/3/zqV78y48aNq3V8Q9bQKitWrDAtWrQw27Ztu+BYO69TfV9ru75Xfu7hhx82PXr0MKdOnapzXEZGhtm6daspKyszZ86cMTNmzDDR0dEmLy/PN0Hr6U9/+pMpKCgw5eXlZuPGjaZFixZm5cqVNY798cytTz/9tCkpKTHvvPOObc+eu3XrVtOoUSPz/fff1znOzutUVlZmiouLzbRp08zQoUNNcXGxKS0tbfA6rFu3zkRGRppt27aZwsJCM3z4cM6Wby6PWm+Mu+o9td6+a+S2Wm8M9d4J9Z5a/y+Xota7trnfsGGDkVTl1r59+8r9eXl5JiUlxYSEhJhWrVqZ559/vsrjQ0JCzBdffFHl+bp27WqaNGlirrvuOrN9+3bfTKQOq1atMi1atDClpaXV9g0cONA89dRTxhhjjh8/bnr27Gk8Ho8JCwsz11xzjVm1apWv417QH/7wBxMdHW2aNm1q2rVrZ/7zP//TFBUVVe4fN25clV8ALrSGdtChQwfTqFEjExISUnkbOHBg5X6nrFNdr7UT3is/lZ2dbSSZoKCgKuvy4zr8dD7r1683CQkJpmnTpiYyMtIMGDDA7Nixw8r4Nerbt68JDw83Ho/HXHXVVea1116rsv+qq64yy5Ytq7yfnp5uevXqZZo0aWI6d+5sPv30U19HrpdHHnnE3HHHHTXuc8o6zZgxo1otGjNmjDGm7nX44osvTEhISJXneumll0xMTIwJCQkxd9111wV/Wb0cXA613hh31XtqvX3XyE213hjqvTHOqPfU+ktb6/2MsfFnGQAAAAAAwAU58jv3AAAAAADgX2juAQAAAABwOJp7AAAAAAAcjuYeAAAAAACHo7kHAAAAAMDhaO4BAAAAAHA4mnsAAAAAAByO5h4AAAAAAIejuQcAAAAAwOFo7gEX6t+/v5588kmrYwAAAC+i3gP4KZp7wIYOHjyokSNHqnXr1vJ4PGrdurV+85vfKCcnx+poltm2bZsGDx6stm3bKiQkRG3atNHgwYNVUVFhdTQAAH4R6n111Hvgl6O5B2zoN7/5jUJDQ5WRkaGioiJt375dw4cPl5+fn9XRLLFx40b17dtXAwcOVFZWlgoKCrR+/XoNGDBA/v78MwYAcCbqfVXUe+Di8C4BbObkyZPavXu3xo8fr+bNm0uSoqOjNWbMGLVq1UqS1KFDBy1YsKDK4/z8/PTpp59W3s/Pz9fgwYMVGhqqjh07asmSJVXGv/zyy4qPj1doaKiio6N17733Vu7r37+/HnnkkVofP2/ePCUmJiosLEytWrXSPffcoxMnTlR5/uLiYj355JPq1KmTQkNDFRcXp7feekuSVFJSoqlTpyo+Pl7NmjVTv379tH379lpfk1deeUW9e/fWgw8+qKZNmyogIEAJCQkaN25cA15ZAADsg3pfHfUeuDg094DNREZGqlu3bho3bpwWLVqk9PT0X/RRtDfffFP33Xef8vLy9H//93+6//779dVXX0mS9u7dq0mTJmnNmjUqLCzU/v37NXbs2Ho/vlWrVkpNTVV+fr42b96srKwsPfroo1Ue/8ADD2jdunVas2aNCgoK9OWXX6pbt26SpPHjx2vLli36/PPP9cMPP2jYsGEaMGCA8vPza5xLVFSUvvnmG82ZM0c7duxQeXl5g18PAADshHpfHfUeuEgGgO2cOHHCTJ8+3fTs2dMEBQWZZs2amSeeeMKUlJQYY4xp3769eeONN6o8RpL55JNPjDHG3HDDDWbw4MFV9g8bNsyMHTvWGGPMgQMHTJMmTczbb79tTp8+Xe3nX+jxP5eammqaN29eef+HH34wkszf/va3GucmyezevbvK9o4dO5qlS5fW+PxnzpwxzzzzjOnZs6cJCAgwLVq0MNOnTzcVFRXGGGPKy8vNr3/9axMZGWmmTZtW+bjatgMAYAfU+6ouVO///ve/m969e5u+ffua3r17m2+++cYYQ70HfsSRe8CGIiMj9d///d/asmWLTp8+rYULF+qNN97Q008/Xe/nuOKKK6rd/8c//lH557fffluLFi1Su3bt1LNnT61cubLej09NTVXv3r3VsmVLhYWF6Z577tGpU6cq/4f94MGDkqSEhIRqufbt2ydJuv766xUREVF5O3r0qI4cOVLjXJo2bapJkyZpy5YtOnnypCZOnKj/+Z//0dq1ayVJ/v7+WrFihZ599tkqj6ttOwAAdkC9r+pC9b5169ZKS0vTF198ofnz51d+ioB6D/wTzT1gc0FBQbrzzjt18803a9u2bZKk0NBQnTlzpnLMsWPHqj0uOzu72v22bdtW3r/jjjv08ccf68SJE5o4caLuvvtuZWVlXfDxR44c0dChQ/Xoo4/q8OHDKigo0NKlSyVJxhhJ//yOoKQqz/ejH79HmJ6ervz8/Mrb2bNnNWXKlAu+HuHh4ZXfFywsLKzcHhsbW+P42rYDAGAn1Puqaqr3MTExCgsLkyQFBgZWOcke9R6guQdsJy8vT1OmTFF6errOnTun8vJyffbZZ9qwYYP69esnSbruuuu0cuVK5efnq6CgoMYi+dFHH+nDDz9UeXm5Pv74Y/35z3/WfffdJ0nas2ePPvroIxUVFalRo0YKDw+XJAUEBFzw8UVFRaqoqFCLFi3UpEkT7d27t9oRhqioKI0cOVITJkzQnj17JEk5OTnatm2b2rdvrzvvvFMTJkzQoUOHJP2zaKelpdV46Z+nn35aaWlpKigokDFGWVlZuv/++xUfH6/bb7/9ErziAAD4HvW+qobU+7KyMk2YMEFPPvnkL335AVeiuQdsJjAwUCdOnNDQoUPVokULRUZG6rHHHtPkyZP1xBNPSJJmzZqlsLAwxcbG6tprr9Vdd91V7XnGjh2rN998UxEREZowYYJee+019e3bV5JUWlqqp556Sm3atFFYWJieeOIJLVmyRPHx8Rd8fOfOnfX0009r9OjRCg0N1ZgxYzRq1KhqP/+NN97QDTfcoOTkZHk8HvXp00ffffedJGnFihW69tprdcsttyg0NFQJCQl64403Ko8E/FRxcbEmT56s2NhYRUREaNCgQeratau++eYbhYaGXpLXHAAAX6PeV1Xfel9eXq67775bw4YN02233XZxiwC4jJ+p6d0F4LLWv39//frXv9asWbOsjtIgixcv1r59+6rlrm07AACXM6fV+4qKCo0ePVo9evSo/A+Qn6Le43LXyOoAAHApjBw5Uunp6Tp79qy++eYbpaWlqXHjxrVuBwAAzvLOO+8oNTVVR44c0QcffKDw8HCtWbNGUu2/BwCXE5p7AK7w87P/Xmg7AABwlhEjRmjEiBE17qPeA3wsHwAAAAAAx+OEegAAAAAAOBzNPQAAAAAADkdzDwAAAACAw9HcAwAAAADgcDT3AAAAAAA4HM09AAAAAAAOR3MPAAAAAIDD0dwDAAAAAOBwNPcAAAAAADgczT0AAAAAAA5Hcw8AAAAAgMP9PwVyJs9GxUkEAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reported: 39 beats ; Detected : 46 beats\n", + "Analyzing trial number 5\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABcQAAAHSCAYAAADCCcgbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebgcZZn3/62tq9ez5CQnOdkTQtjCDiogEFZxCSozgMSo4Oior8sw44w66ivID8d3fJ1xGUdlHEUv0HcGvNxAcckgyCYSFSQYtgBhC9mTc05y+pzuqvr9UV19qqurup+nnrtOTsj9ua5zQc7ydHV3ddXzfJ/v/b01z/M8MAzDMAzDMAzDMAzDMAzDMMzLHH1/HwDDMAzDMAzDMAzDMAzDMAzDTAUsiDMMwzAMwzAMwzAMwzAMwzAHBSyIMwzDMAzDMAzDMAzDMAzDMAcFLIgzDMMwDMMwDMMwDMMwDMMwBwUsiDMMwzAMwzAMwzAMwzAMwzAHBSyIMwzDMAzDMAzDMAzDMAzDMAcFLIgzDMMwDMMwDMMwDMMwDMMwBwUsiDMMwzAMwzAMwzAMwzAMwzAHBSyIMwzDMAzDMAzDMAzDMAzDMAcFLIgzDMMwDMMwDEPGq1/9alx99dXNf5fLZdxxxx377XgYhmEYhmEYJgwL4gzDMAzDMAyTgpUrVyKXy6FcLqOnpwcrVqzAN7/5TeGfA8DDDz+M1atXY+7cuSiVSpg/fz7OOeccXH/99VP9dDJjdHQUK1eu3N+HwTAMwzAMwzAAWBBnGIZhGIZhmNR85CMfwejoKHbt2oWPfexjeNe73tXihu7081//+td4xStegVmzZuHuu+/GyMgINm7ciE984hP40Y9+JHwMnuehXq/TPjEBarXalD8mwzAMwzAMw6jCgjjDMAzDMAzDKGIYBtasWYOBgQH8/ve/F/r5e97zHlx66aX40pe+hKVLl0LXddi2jbPPPhs//vGPEx/rmWeegaZp+OY3v4ljjz0WxWIR69atQ7Vaxcc//nEccsgh6O/vxxlnnIE//vGPLX/7ne98B8cddxx6e3sxe/Zs/M3f/E3zZ/fddx9OP/109Pf3Y8mSJfjYxz6G8fHx5s8XL16Mq666ChdccAEqlQr+5V/+BfV6HR/5yEcwZ84czJo1C//4j//YdryapmHt2rUAgDvuuAOapuH73/8+li9fjkqlgvPOOw8vvPBC8/e3bNmCN73pTejr68PSpUvx3e9+F5qmcewKwzAMwzAMQwIL4gzDMAzDMAyjSL1exw033ICdO3fi5JNP7vrzxx9/HE888QTWrFmT+jG/9a1v4dZbb8Xo6CiOP/54vPe978Xvfvc73Hnnndi2bRsuueQSvOY1r8Hu3bsBAP/5n/+Jv//7v8fnP/957NixA08++SQuuugiAMCzzz6Lc889F3/xF3+BLVu24Je//CVuueUWfPSjH215zOuuuw5XXXUVhoeH8aEPfQif+9zncNNNN+H222/H888/D9M0cf/993c99h/+8Id44IEH8Pzzz2Pfvn34+Mc/3vzZ6tWr4TgOnn76afz+97/HTTfdlPo1YhiGYRiGYZgoLIgzDMMwDMMwTEo+//nPo6+vD3PmzMEXv/hFXH/99TjjjDO6/nzbtm0AgHnz5jV/9+GHH0ZfXx/6+vqQz+fxm9/8puNjf+pTn8KCBQtgGAZGR0fxne98B//+7/+O+fPnwzRNfOADH0Bvby9uvfVWAMAXv/hFfPSjH8W5554L0zRRqVRw5plnAgC++93vYvny5bjyyiuRy+Vw6KGH4tprr8V//Md/wPO85mNeccUVOOWUU6BpGorFIq6//np8+MMfxpFHHgnbtnH11Vejv7+/6+v22c9+Fr29vejt7cXq1avxu9/9DgDw/PPP4/bbb8c///M/o7+/H/39/fjMZz4j+G4wDMMwDMMwTHfM/X0ADMMwDMMwDHOg8vd///e49tprpX8+a9YsAL4AfMQRRwAAjj76aOzevRv1eh2WZcF13Y6PvWTJkub/P/nkkwCAV77ylS2/MzExgeeffx4A8PTTT+Owww6LHeu5557DIYcc0vK9ZcuWYWxsDNu2bcPg4GDbYwbHH/6eYRhYuHBhx+MGgLlz5zb/v1QqYWRkBACa0SmLFi1q/nzx4sVdx2MYhmEYhmEYUVgQZxiGYRiGYZgpZvny5Vi2bBm++93v4rzzzks1hq5PFnvOmTMHAPCnP/0pUZBevHgxHn/88difLViwAL/97W9bvrdx40YUCoWmeB99TACYP38+nnnmmea/HcfBc889J/U8wgSO+U2bNuHII49s/j/DMAzDMAzDUMGRKQzDMAzDMAyzH/j617+O//qv/8KVV16Jp59+Gq7rolar4c4775Qea9GiRXjTm96E97///U0BeWRkBLfddhs2b94MAPibv/kb/PM//zNuv/12OI6DkZGR5mOtXr0ajz32GP7t3/4NExMT2LhxI/73//7feNe73gVN0xIf9x3veAf+5V/+BY8++ijGx8dxzTXXYOfOnSleDZ/58+dj5cqV+Md//Efs3r0bu3fvxic/+cnU4zEMwzAMwzBMFBbEGYZhGIZhGGY/cM455+D+++/HSy+9hFNPPRXlchlLlizBZz7zGdxwww047bTTpMb73ve+hxNPPBHnnXceKpUKDjvsMHzjG99oZoD/9V//NT772c/iyiuvRH9/Pw499FD86Ec/AuAL6r/85S/x3//93xgcHMTZZ5+N1772tfjc5z7X8TE/+tGP4qKLLsKZZ56J+fPnY2Jioi22RZbvfe978DwPixYtwvHHH48LL7wQAJDP55XGZRiGYRiGYRgA0LxwlxyGYRiGYRiGYZhpxIMPPojjjz8eL774IoaGhvb34TAMwzAMwzAHOCyIMwzDMAzDMAwzbVi/fj0mJiZw3HHH4cUXX8Tb3/52AMDtt9++n4+MYRiGYRiGeTnAkSkMwzAMwzAMw0wb9uzZg7e85S2oVCo48cQTMXPmTHz3u9/d34fFMAzDMAzDvExghzjDMAzDMAzDMAzDMAzDMAxzUMAOcYZhGIZhGIZhGIZhGIZhGOaggAVxhmEYhmEYhmEYhmEYhmEY5qCABXGGYRiGYRiGYRiGYRiGYRjmoMDc3wcwXdm+fTt+8YtfYPHixSgUCvv7cBiGYRiGYRiGYRiGYRiGYZgYxsbG8Mwzz+A1r3kNZs6c2fF3WRBP4Be/+AXWrFmzvw+DYRiGYRiGYRiGYRiGYRiGEeDGG2/EW9/61o6/w4J4AosXLwbgv4hHHHHE/j2Y/cATW0b29yEwBzCHzq7s70NgGIZhGIZhGIZhGOYg5GDXtA5WTWbDhg1Ys2ZNU9PtBAviCQQxKUcccQROOOGE/Xw0U4/1/J79fQjMAczR83v39yEwDMMwDMMwDMMwDHMQcrBrWge7JiMSfc1NNRmGYRiGYRiGYRiGYRiGYZiDAhbEGYaI6ngVm7dtxfjE+P4+FIZhGIZhGIZhGIZhGIZhYuDIFIZRxHEdfO+WW7D23vvgei50Tce5p56C1atWwdCN/X14DMMwDMMwDMMwDMMwDMM0YEGcYRT53i234O5163DM/Hmo5PMYqVZx97p10DQNay584/4+PIZhGIZhGIZhGIZhGIZhGnBkCsMoUB2vYu2992H54CAq+TwAoJLPY/ngIH51z70cn8IwDMMwDMMwDMMwDMMw0wgWxBlGgV3Dw3A9tymGB1Tyebiei53Dw/vpyBiGYRiGYRiGYRiGYRiGicKCOMMoMKO3F7qmY6Rabfn+SLUKXdMxo6dnPx0ZwzAMwzAMwzAMwzAMwzBRpqUgPj4+jne9611YsmQJKpUKjjrqKHzve99r/nz9+vV41atehWKxiCOPPBK33357y99///vfxyGHHIJisYhzzjkHmzZtmuqnwBwk2Dkb5556Ch7furUpio9Uq3h861acd9qpsHP2fj5ChmEYhmEYhmEYhmEYhmECpqUgXq/XMXfuXPzP//wPhoeHcd111+F973sf7rvvPtRqNaxatQoXXnghdu3ahauuugpvfvObsXXrVgDAhg0bcPnll+NrX/saduzYgWOOOQaXXHLJfn5GzMuZ1atW4fSTT8ZDzz2Hux5/HH96/gWcfvLJuOwNb9jfh8YwDMMwDMMwDMMwDMMwTAhzfx9AHKVSCddcc03z369+9atx2mmn4d5778Xo6Cj27duHj33sY9B1HZdeeim+/OUv4+abb8b73/9+3Hjjjbjgggtw/vnnAwCuueYazJo1C4888giOOuqo/fWUmJcxhm5gzYVvxOlmDt7iRRhadgg7wxmGYRiGYRiGYRiGYRhmGjItBfEoe/fuxbp16/A3f/M3WL9+PY4++mjo+qS5/bjjjsP69esB+HEqJ598cvNnlUoFhxxyCNavXx8riG/evBmbN29u+/6GDRsyeCbMyxXPc2GbJiqVCovhDMMwDMMwDMMwDMMwDDNNmfaCuOu6uPzyy3HyySfj/PPPx+9+9zv09fW1/E5fX18zJ3x0dDT25yMjI7HjX3fddfj0pz+dxaEzXaiOV7FreBgzensPeBHZcxzotg04zv4+FIZhGIZhGIZhGIZhGIZhEpjWgrjneXjve9+LF198Eb/4xS+gaRrK5TL27NnT8nt79uxBpVIBgK4/j/Ke97wHF154Ydv3N2zYgDVr1hA9kwMfDx40aCRjOa6D791yC9beex9cz4Wu6Tj31FOwetUqGLpB8hhTjVd3YNg5uPX6/j4UhmEYhmEYhmEYhmEYhmESmLaCuOd5eP/7348HH3wQa9euRblcBgCsWLEC//zP/wzXdZuxKQ8++CAuu+yy5s8ffPDB5jijo6PYuHEjVqxYEfs4Q0NDGBoayvbJvAzY8otfYfZrziMRxb93yy24e906HDN/Hir5PEaqVdy9bh00TcOaC99IcLRTj+c40KwcPHaIMwzDMAzDMAzDMAzDMMy0Re/+K/uHD3zgA/jtb3+LX/ziF+jp6Wl+f+XKlSgUCvjc5z6H8fFx3HzzzXj44Ydx8cUXAwDWrFmD2267DWvXrkW1WsVVV12FY445hhtqKuDBAwC41XHlsarjVay99z4sHxxEJZ8HAFTyeSwfHMSv7rkX4xPqj7E/8FzfIe657v4+FIZhGIZhGIZhGIZhGIZhEpiWgvimTZvw1a9+FX/+85+xYMEClMtllMtl/NM//RMsy8JPfvIT/PCHP0RfXx8+9alP4Qc/+AEGBwcBAEcccQSuv/56/PVf/zVmzJiBP/7xj7jpppv28zM6sPHqTuO/6nEgu4aH4XpuUwwPqOTzcD0XO4eHlR9jf+A5LjTL4gxxhmEYhmEYhmEYhmEYhpnGTMvIlEWLFsHzvMSfH3300bj//vsTf37xxRc3HeOMOoEQTpGPPaO3F7qmY6RabRHFR6pV6JqOGaFqgAMJz6lDtyzUq9X9fSgMwzAMwzAMwzAMwzAM/KSCXcPDmNHbCztn7+/DYaYJ01IQZ6YXnuNAM3R49ZryWHbOxrmnnoK7161rxqaMVKt4fOtWnHfaqakuTtPi4uYBmmlyZArDMAzDMAzDMAzDMMx+xnEdfO+WW7D23vvgei50Tce5p56C1atWwdCN/X14zH6GBXGmK57jQLfzcOs0cSCrV62Cpmn45d13w/U8GLqB8047FZe94Q1S40yri5vnAZoGJBc2MAzDMAzDMAzDMAzDMFPA9265BXevW4dj5s9rmjHvXrcOmqZhzYVv3N+Hx+xnWBBnuuI6dei2Dbem7hAHAEM3sObCN+KcwdkYrtex+BUnp3J2T6eLm+d50DRtSh+TYRiGYRiGYRiGYRiGaaU6XsXae+9r6kWA37tu+eAgfnXPvbj4ggs4PuUgZ1o21WSmGa4LI0ffMDKfszFYKqWOSVl7733N2BWg9eI2PjFOeqxdCRzirIkzDMMwDMMwDMMwDMPsN3YND8P13JbedYCvG7mei53Dw/vpyJjpAgviTHc8QLMsMod4EwXxeNpd3DwPms6RKQzDMAzDMAzDMAzDMDLsGxvDphdewFi1SjLejN5e6JqOkch4I9UqdE3HjJ4eksdhDlw4MoURwINuWfCIHeLwkFoUD1/cwqL4/rq4eZ7Ck2EYhmEYhmEYhmEYhjnIqDsOvvjtb+Pmn/8cjuvC0HVcfMEFuPLyy2Ea6XvD2Tkb5556Cu5et66ZLDBSreLxrVtx3mmnclwKw4I40x3P9aCZJtx9Y7QDK+jH0+/i5kHTuOCCYRiGYRiGYRiGYRhGhC9++9v46a9/jVOWLkV/sYhd+/bhp7/+NTRNw4ff+U6lsVevWgVN0/DLe+6B67owdAPnnXYqLnvDG4iOno7qeBW7hocxo7eXxfopggVxpjueL4iTO8QBpYiR4OL2q3vuheM4MIz9d3HzNw3YIc4wDMMwDMMwDMMwDNONfWNjuPnnP2+K4QDQXyzi2HnzcNNtt+F/rV6NQiQmVwZDN7DmwjfitUcehc2PPopl556DfL5AdfgkOK6D791yC9beex9cz4Wu6Tj31FOwetUqGHp6hzzTHRbEme54HnTThOdmIIgrEFzc3viqV+GZe+7F0rNWotTXv38OJmiqyTAMwzAMwzAMwzAMw3Rk286dcFy3KYYH9BeLcFwXW3fuxKK5c5Ufx9Y1DA3MhKU8Ej3fu+UW3L1uHY6ZP6+ZfHD3unXQNA1rLnzj/j68lzWc8cB0xfM8QM/oVCHQkHO6gcG+Plj7MbLE8zxomgZoGjzP3W/HwTAMwzAMwzAMwzDMJNQNGxkaBgcGYOg6du3b1/L9Xfv2wdB1DM6YQfI4nuNCz+fhTtRIxqOiOl7F2nvva8YAA0Aln8fywUH86p57MT4xvp+P8OUNO8SZ7gRibyb4ArJK/rbnOjCsHDynTnhcKdA0aLoOz3WhGbzXxDAMwzAMwzAMwzD7i6waNjI0FPJ5XHzBBfjp7bfj2PnzmxniD73wAi557WuV4lLCeI4D3c7B3d+aUYRdw8NwPbcphgdU8nm4noudw8MYmjlrPx3dyx8WxJmueJ4LLaPsIk3X4TkuNFNBEHdc6HkbXj39xU25gYHrAhqagjj43sowDMMwzBSyb2wM23buxODAANkCkmEYhmEOZLJs2HgwksVc48rLL4dbHcf3b/8fuJ4HwzBwyWtfi795xztIxgcAz3Wh53JAFn3xFJjR2wtd0zFSrbaI4iPVKnRNx4yenv14dC9/WBBnuuPBd3ArNMBMQjP0RjZ5+lPRcx3ouRy8uvzFjayBQZAhrmuA42JahlMxDMMwDPOyg91vDMMwzIFOFkJr1g0bDyaynGuYhoEPXfyXuHj+AkzMm4uFK46if19c1++Ll0IzyhI7Z+PcU0/B3evWNWNTRqpVPL51K8477dR0Zk1GGBbEma54GTSM9AJ13TB8d7XKWI6/2+em2O0jbWCgadAMA+AMcYZhGIZhpgh2vzEMwzAHKlkKrVPVsHG6QrnJkPVcw3MclCoVzJrRn80mhef5mpFCqkBWrF61Cpqm4Zd33+075HUD5512Ki57wxv296G97GFBnOlOIw6EogFmeEwtyNxWLVtxXeiWJV3+EjQwCMRwoLWBwcUXXCC+I+d50DR9MjKFYRiGYRgmY9j9xjAMwxzIZCm0hhs2hkVx6oaN0w3qTYapmGt4dQdGIQ+vlo1g7TU0o3qkeed0wNANrLnwjTir0oNquYz5xx7DzvApgjv/Md3xPEDTETTAJBnS9cfUDENZQPbqdWiWJT2OSAMD4WPwGpsGLIgzDMMwDDNFiLjfKNg3NoZNL7yAsWqVZDyGYRjmwITyfhAIrcfOmxcrtKo+RtCw8aEXXsCuhhCaRcPG6UZ4k2HVMcfglKVL8dNf/xpf+s53Uo03FXMNv+mlDbdWUx4rdnzX8zWjadZUM8CDh3yhgJmlEovhU8i0FcS/8pWv4KSTToJt23jLW97S/P5dd92Fcrnc8qVpGv71X/8VAPDMM89A07SWn7/3ve/dX0/jZYOma9BNQ93N3cBv1Kk3m2oqjdXY7ZMVosMNDMKkamDgegA0aLqm/HwYhmEYhmFECLvfwlC53+qOg89/85s46+1vx1986ENY+ba34fPf/Cbq06wpFcMwDDNJFpuYWdwPpkJovfLyy/GGs8/GvU8+iZ889BDue+opvOHss0kbNk4nsthkyHquATT6wmUoiAMetGmYIR7g1R3oOTszhzwTz7SNTJk7dy4++clPYu3atdi+fXvz+6effjpGR0eb/96wYQNWrFiBv/zLv2z5++3btyP/Mt3xm2p8oVkDDMO/gJgEHSMbueR+xIjaRckXxE3pLHLKBgYe/E0DTVd3vDMMwzAM8/KEumlY4H776a9/3Vz8UrrfOJ+cYRgmG7JoIpllHncW94OpiDQxDQN/d8UV+IvB2Rg2TRy68sxp6wynOCeyyE3Peq4B+H3hjHwezt69ymMloZtGqr5zU4HnOtBzFtyJrDYEmDjIBXHXdfHoo49i586dmDFjBg4//HDourwR/aKLLgIAPPjggy2CeJRvfetbOOecc7Bw4cLUx8x0IRCvDTqHOFwPMHS/qSaBQ1wzzVQXt9WrVgGeh1/dey88z4OetoFBECuj68pNQhmGYRiGeXmRpUhx5eWXQ9M0/PfPfgbHdWEaBi557WuV3W+cT84wDEPPgSZaA9ndD6ZCaAX8iNVSTy/KhjEt71uU50RWmwxZzTWauC70Qh5ulg5pwwCmqUMcjgPNNIHMHPJMHGSC+B/+8Af867/+K2699VYMh7KXK5UK3vCGN+DDH/4wTjjhBKqHAwDU63XccMMN+MIXvtD2s2XLlsF1XZxxxhn4v//3/2LBggWxY2zevBmbN29u+/6GDRtIj/VAxvM8PzKFUhD3KJtqetBSCuuGbmD161+PMwtFuPPnY+jQZekymzwPmgZuqskwDMMwTBtZOq1Nw8CH3/lOXLxwMXbsHcXhrzmfZMGfhcuMYRjmYOdAE62BbO8HgdB60223oe44MHUDl7yOUGgF4E5MwCgW4EzDhooA7TmR1SZDc66xaDF2jNLNNQI814Wey2Wa8a0bBtxpmiHuBoI4M6WQZIhfccUVWLVqFebNm4cf/vCH2LZtGyYmJrBt2zb8+Mc/xoIFC7Bq1SpcccUVFA/X5Gc/+xkmJibw5je/ufm9mTNn4oEHHsAzzzyDP/3pTyiVSli1ahWcBNH1uuuuw4knntj2tWbNGtJjPaBpuJ99FzbNBcRzXUBriOzKAnJDEE/b8NNxUCiWMKtSSd3AIIiV0dghzjAMwzBMiKybhgUULAvz+/vJFqhTkRnKMAxzMJHl/SDLPO4s7weB0Przf/kXfOOy1bj1//v/8OF3vlPZLR/Gc5yGXkA2JBlZnBPN3PSNG8lz06nnGgGem/17pOlGo/fb9MOrO9AJz3lGDJItiKOPPhrXXXcdcrlcy/cHBgawcuVKrFy5Etdccw3+/d//neLhmlx//fW47LLLWrLCy+UyTjrpJAC+OP7Vr34VlUoFTzzxBA4//PC2Md7znvfgwgsvbPv+hg0bWBQPaLif/XgTqqaavpsaug6vriiye1CKc/EcF3rOUj4OP0NczSFeHa9i1/AwZvT2cndhhmEYhnkZcKA6raeilD2LDF2GYZjpSpb3gyzzuKfifmDrBhYODcHOQBT0XA+appGPS0EW50TWbu4s8BzX14cOUjyn7sfvMlMKiSD+d3/3d11/J5fL4W//9m8pHg4AsHXrVvz0pz/Fvffe2/H3NE2DpmnwvPidoKGhIQwNDZEd18uRFjc3VeaS24hMMdQjUzzPhWaYie9x1793Gx19FQRxr5Gznlbgd1wH37vlFqy99z64ngtd03Huqadg9apVMHTeKWQYhmGYA5WpaBrmz0NA7qxqZob+9KdwPI8sMzTLDF2GYZjpyoEsWl95+eXwXNe/bhPeDwK8eh16Pq9ulovDdTMTG1U3djM9JzJyc2eCe3AL4vDgn6Oa5rvlWQOaEqZtSE29Xm9+ua6LarUKwzBgWRYA4MYbb8QRRxzRdIMH3H///ejp6cFhhx2G4eFhfOQjH8GyZcuwfPny/fE0XjZomg7NMOAS3aC8xk1JMwz1iJFGxnnqP3dc6JapFt3ieQgiU9KM871bbsHd69bhmPnzUMnnMVKt4u5166BpGtZc+Mb0x8UwDMMwTCqo3MtT0jQstJBsloYTYBoG/u6KK/CXQ3Ox2/Ww/JyzSI43y0x1hmGY6cpUiNZZNT40DQNXXnopLlm8BCO6jkNOO5VUaHVrNRiFAtwMmgp6Hr3YSrWxO1WNRanxPFrXPeXc5UDEaxhGddOE6zhsipwipkwQf/3rX4+f/vSnwr9/7bXX4tOf/nTz3zfffDPe8Y534Nvf/jYAPy7lr/7qr9r+7qmnnsInPvEJbNmyBZVKBa9+9atx6623wjiIP1yqBO5nzTDgjY8TjenflDTdgKvsEFezQ3muA82y1JzqgTMrRYZ4dbyKtffe1xTDAaCSz2P54CB+dc+9uPiCCzg+hWEYhplyDtY4iyzcy1k5rQPceh2aYQK65osKxNmrpUoFRdcli0nJqvEbwzDMdCfaRNLQdVz6uteRidYffuc7cdmRR+HFZ57GkatWoVgqERy1j1uro9Lbi4qu02dI1+swCgXUdu0iHReAnxutaf56nQjKjd0sNzIAjUy89hzH7y3XqIrXGmZVCrwMXfwtTM/knIaepPmNNet1wMp1/xtGmSkTxBcuXCj1+1dffTWuvvrqxJ8//PDDsd+/7LLLcNlll0k9FtMF1wU0QDPpMsTRELFJmlB6ntrF03GhWxYcld3oxjH4DnG512jX8DBcz22K4QGVfB6u52Ln8DCGZs5Kf2wMwzAMI8HBHmeRhXu5mee5sJHneQFtnqfnONBMw6/mm6jBoB7bsshMEQdqpjrDMAwFwf3girPOwnMbHsXsoTmYc/zxpI9haxoWzZ0H2ySWe1wHum2jvncv7bjw7zVG3sZ4BpEpYYe4RxDNQb2xG97I2PLiC1i2ciUqRI2rNdMgE6+D104zTT/ahlgQ1wwD0Ojd5wcEjdQDzTTh1ut4+c+2pwdTFtLzta99baoeiqEmEHsNdTd3y5gN1znFmJrCVl9zoeeoRKZgMhNdsnPxjN5e6JqOkUgH6ZFqFbqmY0ZPT/rjYhiGYRhJwoLwqmOOwSlLl+Knv/41vvSd75A+zr6xMWx64QWMRe5/+5NgkRuULQOti1zVYy3kssnz9Op+qbGey8GtTdCOXatDJxRVwnmpYSgz1RmGYajI6l6VNwwsmjcPeY1eknEnajCKRbgTxPcD14Vuq/Xe6ji2lYOXQWRKECumGaZy/zJAbGM3DXnTxILZQ8gT3nN1y6KLofE8aLoO3TLJonSbQztO4z0ySN6jRBoZ3dMNz3MBTfcjU7LI0WdiOYhT6xlhmmKvQXfzC5oG6BqgIkRTHIrrO8RVLoye56KZIS55AbdzNs499RQ8vnVrUxQfqVbx+NatOO+0UzkuhWEYhpkyshaEAd+B/vlvfhNnvf3t+IsPfQgr3/Y2fP6b30Q9ywWQIFktcoFGOXBGtbqBa0u3LLgTtGKCH8dC51UK8lIfeuGFpih+IOSlMgxzcJH1vcqtOzDyeXLRGgDguZmM3XTxEjdw9gf31E1qiUNPxlFQ6BmZbey6LvScBbemfoxBrCzVcwaCWJPG60hwjC1E3efUNM5Z3TDpTJ6EeK7vivcjU6bf8b1cIY9MOf300xPLG37zm99QPxwzBTTFXsrduuACbZiAt38FcddxYFqW2o3d76npl1+lyDRfvWoVNE3DL++5B67rwtANnHfaqbjsDW9QOCiGYRiGkWMq4iymc0PF8CI3/BpQuJe9et13VWXhfvP87E09R++u80utaZcMV15+ObxaDTf/6leZZKozDMOokvm9ynWh5/Nwt+9QHyuGLDZIAxdvFvgbu7Q5303cVmez6hZvVo0wPc+DYdvw6gTvW3ijnGheEIi2umXBpTjGlrEb8xjLIhfEPXiT51UQA6yY9lIdr2LX8DBm9PbSGBhDmzbsEJ86yAXxc889t+XfL774Im6++Wa8kzvGH7g08owAmhIjf8jGDpiuEcawpPy7xk6n0s3X87sCe5q8QxwADN3AmgvfiHOH5mLP3n1YfOqr2BnOMAzDTDlZCsLA9G+omNUiFwgWewaAOkmGaevY/mJfs0y448SOQMeBphvNKjgKt7hpGPibSy/FJYsWY7RSwdKTTmRnOMMw04apuFd5rgsjZ8FzshG//A1SYve560IzMgoZaMRxZOE+bzqbCQ1+mTTLdt1G9BmBQ7zh5id1XDc237NycQcOaXLjgOv6TVUB6IYBT8GB7bgOvnfLLVh7731wPRe6puPcU0/B6lWrYOjp50dekCGuG6iPTZ8owZc75IL4VVdd1fa9yy67DN/4xjeoH4qZIiZLjNKJvQmDNhzVRipHNSmep1z65XnwL7KG7nexToltmhjs6SERw8l3LRmGYZhpx76xMWzbuRODAwMkgmKWgjBwYDRUzGSRi0n3m18OXYNhE96bG4s93cqhPjJKNy7gb/rrOjQrB3diAkahQDOs46JYrqCvt5fFcIZhSKC6J07JvSrjxoHZbJA2BPEMDtsLiZYZDA5N00mjPoJGmH85bz521Wo47NxzCDZJPOh2jkRsDl5P3TRJBPZgTE3XScecHNz/j56B2B5u0qmZBlyFTajv3XIL7l63DsfMn4dKPo+RahV3r1sHTdOw5sI3pj/IxvulGQ0HOzMlkAvicZx55pl405veNBUPxWRBIIhT3vk8Dxp1AxHNL4eRPU6aTM/Ga6Tr+71JQ1a7lgzDMMz0oe44+OK3v42bf/5zOK4LQ9dx8QUX4MrLL4ep6OBtCsI/+xkc1yWNs8jagU5Bc5G7YBF27tuLw19zPo1gG7i4DcOPNSEUxL2GaB2I7ZQEZcyGnfOFfDJB3PHH5NJghmEUob4nTsW9Kri2ZoVu5VAf3Us6pue6zQgtj1rQd/2mglngud6kOEx8zynmCygWCiTzhKCxqDs+rn5gjddTsyyaCBZgUhfKYLMlkGMyiQwJzIvwI3vTCu7V8SrW3ntfUwwHgEo+j+WDg/jVPffi4gsuSG9E9Dz//eLIlCllSgTx73//++jp6ZmKh2IyglQMR2MDkHgHWNO0RvyJ5KSncWFXfYoaNEDX/RvufiSrXUt2nDMMw0wfssw2DQThtyw/DFt37sKyU09BZeYAyXFn7UCnwnMcFPN5FO0c2TE13VoZ5LoGpeZ6w8VNOnTQ6In4uD3X8fNzCRq1AvTVEgzDHDhQ3xOn4l7luS69QSyEf6/JIEIrFMOhWYpBzOGxPS9T97lumv5xU0fUUB6v5zfVrO9V38gIXk/dNFGPNP9MPWaQIW6acPbSjBklk4admDRjqsTm7Boehuu5TTE8oJLPw/Vc7BwextDMWSkP0Y9M0Y2Mes0wsZAL4gsWLGjZKdy7dy9GRkbwla98hfqhmAMZj34HWDOMRhmPnCDuNTPSCY5B06EcfJbS6Q5ks2vJjnOGYZjpxVTlcNu6jsUL5iNHvDjN0oFOhVur+W5rCpdWQNPFnYNLnOvaFNtzFnlTTbiTDTspj9t3iNuoj6pFvFA7Q1lYZ5gDi6zuiVdefjngebjpttuyaf6bsUNcszKInmiJzKhBJxTE4boNHUkj77MBz/MzxInjOCYrzekMcWSifbCZbdLlpjczxAkbdUbJwsXveV6LAz3t6zGjtxe6pmOkWm0RxUeqVeiajhkKJmDPa0SmWBnM45hEyAXxa6+9tuXflUoFxx9/PJYsWUL9UMyBjJdBRFjQ0NKUvDFnWJ6VhsmmVfIfzyx2LTPLyWIYhjmIoBTZpiqH26vXYZZKtKIwQg70w4/AS88/jyNe/zoUSyXSx1CFqnlky5huaCFJ7RB3veZCijrXc7LRE7FD3HFJslKpnKFZxhAxzP7m5bzRk9U90TQM/O2aNbj0kEOxY+8oSUZ0mElTlkYfPwI0NjHpN0g13WjEcFCL7Y1YE8sk77MRuPE1UydzSwONuYJpkL4WmkHjkA42yik3AZobIhkK4pplwSOqHGsSbqppGqiPpTt2O2fj3FNPwd3r1mH54GBTG3l861acd9qpSlX0vvtep93AYLpCLoi/Yxq5e5jpi+e50DTaxYVmGqkaWvoTEMIDUTWIN5zuSPHyUO9aZpqTxTAMcxCQhcg2ZTncHqDbNnnJdUBe17FwaC7sDB1yafEcYncaQgvJXAZl7J7f6MwXVIij2xpVfbplok5YIu05jrK7kNIZmmUMEcPIQCleHwgbParPN8t7oue6KJVLyOs6/UZCU1w04dVq0HI50uF10yTffPUcx68YykIQbTZwbojt1I2ndR2arpGKjcHmOaUgris4mFvwJt38ZMcXbL5n0PgyIKg+IMXDZDWGYtPK1atWQdM0/Oqee+G4DgzdwHmnnYrL3vAGxWNsVDFkkRnEJDIlGeIM00aosQEVqRtaesR2ddWhgot0ijUi9a5lpjlZDV7OjhWGYZgsRLYpy+HWfIdZfXiYZrwInuPALBbgTkyQNWqkwnMnHeJkzj13MuebutEZMsyi9Zt8mdCtHLzaHrpxHQdaXk3woHKGTlUMEcN0Igvxejpv9FA930zvidTRHSG8UNNDP6aLVhDXDMPf0CTEcxubrxkIokEVFamAG4wdVDpRR6bU6avJNNMgiQzxPM/fBCCMIGk28M7UIZ6B2B6ax+mG2uth6AbWXPhGrDr5ZLy4/hHMPeII9M6fT3qMzNQxZYJ4T08PhjNaUDFTidZwd6tNDChzu5tGKF1v5HilOBZNBzSa56aKbhjw6uq7lr+85x64rqu0a5llTtaB4FhhGCY7DobNsCxFtqnK4TZsG+PEkSkBnuPAKBTI3NKU51SzcZhB1zgsnPOdReNL+iy6BkEZO/Vxu66ykEDlDKWOXDgYrm9TxcH0WlKL19N9o4fy+WZ1TwxE2qwaPWYhLk7mWtPjOQ403chMEPUbOJvk0V+BAY5abJ/cPKfLPdcUtYDmsTluI0OcsEllo4F31g5x+g2RSY2IytFv6wbmzJwJi0rSCsW6MFPHlAniX//616fqoZgM0U3Dv7iaihd7z0P4Rp22iWQYP3s7xS544wYZ/L3yc0uJ11D2NV2Hq1DGE+xanjtnLvaM7cPiU16VOtYky5ys6exYYRgmOw6mzbAss76DHO6LFy3GjtFRHP6a8zMRNvRcLrPIFAAkedqZnFMNsVbPWXSNw5rOqhx9wyTPI3epNYcOHIEWbR5tIKyoQOUMpRLWD6brW0BWgvWB9FpSvAZZiNdT1W8iDdTPN7gnXnrIodi6bSuOeMPrSc7HpshJnETlD+5HJOjETfSy6IHRHLsl5iUrQdSCVyeOegmyzxXdwW3jNhziQe4ziSBO1VQzOL+oxkMol1zTsvlMAKSO9iYNIR9oCOIEkTSe60LP5cg+B17oGAEafYzpzpQJ4qtXr56qh2KyJNhRMxVPnXCnX01r5HqlvHEH46R0iMNt5DU1I1f2U5KQG9rFTRP9EsG2TAxaPcoZ31nkZE13xwrDMJNQix0H02bYVGR9FywL8/v7M7tm6na2gjhF068szqlgYUspVDTLwTNxiLvQrGD+QudU8wf3y3j9455+og2FM5RKWD+Yrm9ZC9YHwmtJ+RpkIV5PWb+JFGQl1tuahoVz5sCmEoQbUVfQdXKhObhOaxk4xDUjI4NXkMVtmnDG6XpKhNHMDBzigZBLHMfhOQ500/SryRwHINg8J4vN8IJNACOdRhJHuBotI602kziekHivEWW0e44Dw7bpxPuQYTSowDAs2hglpp1MlT/P8/zsogb6NGyaxMihNSYDyoRyu4OLtKpLCIbh3+zkD8Y/ltR/Hzei/I6eF5QOKzZ6oCack/X8gw9hwfHHo2fOHKUxp7NjhWEYnyzEjoNtMyzrrO9mWbSXkU0H2SxMwqg2aszqnPKcxqKfsHQ7K/GjOXYj8q25kCJqSNbMuTUMMpcZEAji/jGr5LQHztC3Hn88Nj/9NJae9mr0zh6UHqcprP/0p3A8T1pYP9iub1kK1gfKa0n5GmQhXk9Zv4kUZCfWe9DzBbjjEySVPf5GptasliLtdxHEURFUSoXJoil0c+yG2E7tag+jZ5AhHcS1kkemOHW/msykbaxJQRYRHEGGeJZQRca04LnNppqBm199SBeabcPdS9QTpnGtAXyziDc+AbAgnjnkZ/OOHTvw1re+FbNmzYJpmrAsq/nFHPhQ7aj5gzUu0LpOctFL3TW6kSGuaVq6yJW240h3EW+WIBG9HtTYuoGhWbNAcVkOT4LDTAfHCsMciOwbG8OmF17AWLVKNmZ4ob/qmGNwytKl+Omvf40vfec7qccU2Qx7uXHl5ZfjDWefjfueego/eegh3PfUU3jD2WeTZH17jgPNNPweGFTun5YHIHQqJaBbag70rM4pLxRv4taI3NwNp2Emr2mjeRbQcPWP0znQm0I+9cK6YQSg2nTJGyYWzB5CPuWGXSCs3/xX78K33v3XuOOGG/Dhd75TeAPwYLq+BYJ1ILICrYK16r3oQHgtqV+DQLx+6IUXmvNjCvE6uAfdu3Ej+T1IhayeL7zGpiBR5Ibn+tFORgbVUllliAcubgCARmRmC2hsXvou7oyaKmYRmRFUTaWtKE+guXluGHCn2frdczNo0uh62QviGcyRPNdrWhXJYkhcF4Zl0W2EeGi+tnouByfD6kxmEnKH+N/+7d/iqaeewje+8Q287W1vww033IDPfvazeNvb3iY1zle+8hV8+9vfxsMPP4w3v/nN+K//+q/mzxYvXowtW7bAaExQFy1ahEceeaT58zvvvBPvf//78dRTT+Goo47Cf/7nf+LYY4+leYIHOWQTjKCRJeg6YGt6unIgvxFVYzeS4jgCB5VsrEzgEiAsa9I0rTmRU8VzHd8dQXDRn86OFYY5kMiqZD0rd17W5duU8S5UYwUi29tPORXPP/EkFhx+GGYuP1Tp2AK8eh2aYfoLsYkJGAfgtVPPqbnMMjunAhFY12kjUzLaYPCFFX9so1CAMzYGq6dCNLjXdC1R4jmOHyFj0eS0e47jbwYovF+e56FQLKJomNKf++kcT0EdfZV1pd90fi0DsngNsmgMGdyD3rL8MGx5aQsOu+B8lMrl1ONRolqVkQRp74tAtLZtOOPjILX4BRuvOQveHkKHeMjFq1u+uGwQRb14rte8bmfWVDED93mz0ikLx7Sh0+V+UxJyRdMNeYA2fsxgHuM5DrRcjsRQCQSNPxsOcTsHjwXxKYFcEF+7di3uv/9+LFiwAIZh4E1vehOOOuooXHHFFfjABz4gPM7cuXPxyU9+EmvXrsX27dvbfv7DH/4QF1xwQdv3d+zYgTe+8Y348pe/jEsvvRT//u//jgsvvBCPP/44bKLS0YMZ3bLgEZR0tXT61XW4jgvV27Sm66nEes9rZHcTxcFopkJ0S2OH2SGaBGimCdfxc79V8ZxG4wgil8GVl18OALjpZz8jnQQzzHQli8ZjWZWsZyV2ZLUZRrkxkNUmg61pWLJwgfK9LoyfXennQ7rj4wekIK4aH5LVORUs+jVDp3NbZ9j4MhxFZxTycAirRUjzyGPGpXKIe44DI59XGstznIbQIz/XmY6b/Vldz7IWrKfjaxkli9cgEK8vWbwE2/fsweGvvYDsudoAFi2YD3saiVmmYeDvrrgCFw3Mwmghj2VnnE7yfCkjSJq9H0wzE4c4sojRCt0P/KZ/NYBKBwnWzRlEfwVk11Sxce5Tpsy5jUpz05x2Fd6Z3Ls9L5RPT9yvJAz5ZWrSjEk2ouP4m1kEvd8ANDbfggzxHOr7ssnoZ1ohF8T37t2LBQsWAABs20atVsOhhx6Khx9+WGqciy66CADw4IMPxgriSfzgBz/AsmXL8Pa3vx2A71j/whe+gLVr1+L1r3992+9v3rwZmzdvbvv+hg0bpI73YEG3LNQpFlkeJjPEqYRoQ4c3keIO500K0RTObM0wfBE6xXFoQZY5keismSZQd0BhZ2he9Il2v03DwN+uWYOL+gcwNmsmlp580rRY4DAMNQeaixvIVuzIwhFGuTGQ1SaDV6/DLJfhjI2lHiOKW3egmaZfWkntXANCCxKNvJkYgMnSdkXhIgtXpee60E3Tn/eM0uRDtja+pCXci8UoFDCxazfd4A1nXfOxFPK+W8cN5ecSCCu+Q9xWc4g3zvO081LKc5FiEzWr69lUCNZZfK4pyfI1yJsmFgwOwpatNu2A57owC362NkolsnGVcV2Ueiqo2DbZOkC18iiM14iIIHWdh9AIr4EBXijWQjNN2nzyYIOAOPc8jGaa9A7x0CYB6bhB5Clxjw0SXPrn7BsJ/etSkPWu5TLIudZom9h6WbwWxJsBnofW6Lvdu8nGZpIhn5UvXLgQTz75JJYtW4Zly5bhhz/8IQYGBlAivvG+4x3vgOu6OOqoo/CZz3wGp512GgBg/fr1OO6445q/p2kajjnmGKxfvz5WEL/uuuvw6U9/mvTYXs5olgVvZER5nPBiSjNNmp01XU8tJGvQ/IskiSCeLgPcc73Jv6cSxA0DrlOncSS6LvScDYdwt9Kr1VHqqWCgr49sEpyFC5c5eGAXt0+WC/3AEfaX8xZgV20Ch517jtJ4lBsDWW4yeI4DPZ9Hbc+eVH8fP2YdmmlkslBvaYreiKGgKrkOQ1FmHLgqL160GDtGRnH4Beerf36bi36617Z18UTsrAqVMRuFApwX280eafFCzrpALNYIhLrJnHaa0nvPcWDYtpI73qvX/eeWsiqgeS4uXIwdo+nORapN1KwbU2YtWGfyuSbmyssvBzwPN912G3m1Y3Bd1wlFcUrhlWq+5DXWF2TxG5q/XnWqozTjNa6tup1DfZRozAjkESGh+wF5PjkaGc9adg29/YhW4qaaWTUabVR+6Rk4xFU3n/17N+1mtue40OzGZkvjfdIzEMR9o8cEzCJRE1uvPerFg6eUJ+45NLG04SMKjke3cnDHxwnHZpIgF8Tf97734eGHH8ayZcvw4Q9/GJdccgk8z8NnP/tZsse48cYbceKJJwIAvv3tb+O1r30tHn74YSxatAijo6Po7+9v+f2+vj6MJIi473nPe3DhhRe2fX/Dhg1Ys2YN2TG/XPB3gwkWhuEcJ00DUmYveaGap7QZ4s2/Nwx/J1URzUi5uG/ctPy/p7mhUnbSdh0HVqmI2gjdzd6t12Hk8ySTnqxcuBSwSD/9YRd3O1defjk8x8HNv/gF+ULfcxyUyiUUnbzyZ4JyYyDLTQbPdWEUCqTCdZAhTt1EEUCLM8ewbfJIFt+tRds8qWBZmN/fT3KdDURgzaK7jyIkgOs5X6QwiMrYw6K1kc/DJYxMaTnuhiuQRKQLIlMsmuZsnuNCz9tKopVXr0M3TajOdFTORapN1KxzvlsE69FRHP6abARrys81NaZh4MrVq3HJ4qXY7dZx6Bln0LmcG9ddRN4/pTFz6k2CqedLfnNdHR6hlkjZDLnZ+DJnZyZQUcePtGSI59T6KuwPqGK0WojkaVNVOvmvtQkN6SuL4iDZfA6dB2Sb2SENRyd08nuRzZVmE1syQRwtgrhuNuZgloKY73qAkcEmCybniEz2kAvi/+t//a/m/1900UXYtGkTRkdHcdhhh5E9xqtf/erm/7/vfe/Df/3Xf+G2227De9/7XpTLZeyJuK/27NmDSiW+sdDQ0BCGhobIju3ljpYjaqDhTe6A+VElKW8goR1wTbVrtKYRRbcYqZoreJhsqulS3VAJd6v9yBSbLM4FaCw883mSm2lWLlwVprNIfyDDLm6frEvWTcPAlW+5DJcsWoyRXA6HnPIqstdbNZYgDOXGQKabDK7rT/BJy6Jd35mUy6E+QuxccyMLaupS8UgMx7SjKYLQOsSD5xyMSyWIh98vjbiU3WvLo50AoL5IbTZnMy14NYq5pass/rj1yY0gJcEkiKqVHINyE3WqGlMWTAsLBgaQV2yKGkdUJJmOeLUayn29KI6Pk4r2WURS6Jap/Fmjni9l4dzVc7QZ4nojmiyLyBSgsTFMnGvd4hDPqjlfRnH0VPPDFqLV6VSVTo7rZ1ObgKO4YRK+3jU3BRSO0Z8jmpPjOY7SeI2DnHwdKa9RkTlhc0OQikhkjmaZfl88BUHcj4/JZh6r6UZmFRhMK5mvRObNm0cqhseh63rzArJixQo8+OCDzZ95noc//elPWLFiRabHcLCgmyZcgkVL4AwDGhEhCs7s5kXZ0JUiTzTDaGn2qTROmpt4MHkx0ke/RNENg2yH3S9ppO0o7tVrMArqDvFgARmIgkDrAnKM0iknQXjRsOqYY3DK0qX46a9/jS995zv75Ximkn1jY9j0wgukr33dcfD5b34TZ7397fiLD30IK9/2Nnz+m99EXfHzkuX5ExYkwlC6uN9w9tm4d+NG/OShh3DfU0/hDWefTVay7tXrKPf2Ym6lQrrQb8YSEBBsDDz0wgvN1zntxgDlWFH83E3ajTB/IaY1Hdy0YzvN4w1KV0nHz6oRE1FfktZGakQLvlD5sm7n4Fbp3rOw2E7pugeQ4eaIR96cTbUyzo8hMhUapE+SxuUosokqSpbXsxY0X7xQFYPiCKpgqD7XWdBsOk8cl5BJ1IViBFQm8yWXMCe4oQeQbiY07gWGTX8fzIoWh3ieWliMPha9aEe+QYDJezpAnFHe7EVG4GoP38cNQ/2aEsqS993cBBpO6HU08nk44zTrvHCVG9CYIxGet9HNacO21atIQk0wmQMXktXoBz/4QVx99dUYGBhI/J1t27bhmmuuwb/9278JjVmv15tfruuiWq3CMAxs3rwZmzZtwitf+UoAwHe+8x088MAD+M///E8Aviv9H/7hH3DjjTfikksuwVe/+lUAwLnnnqv4LBkAjV0wgjtUaJdO0w249XQ3pXCDBOXIFF2DO0HUVDPFZNMLunbr6RzmscdiGnST6cZOOuXEx63XYdh5TNR3KY2TlQtXxYmcdXbndCVLVzy7uNsJStZXrzgamzdtwvJzz0E5EhumgufUYRSLqBP0jmgd1yGJJQgIsmxvuu021B1HKd6FcqwwQVk4KYFom4EYFT5e3bbhTmQwfgaCeDOKRPF647m+80cz6Fw6/kIyyPkukjZYRWQxCY2wJDy8AC4UaI8btMKfppg9G7hVNdNUO4+8xubB+AR0Cec0tau77Xqm67jkda8jb0yp27a/wUMY7wEAbq3uu5o9ZNbHQJVMru2gbQzZHFPxs5bFfCl8fVG+ZjUERX+Dgi7KQTMa9wKCXlNJaKbh5zETxlEBgJGnv2YHBD02yCqdMsRzJ88t3fINfgZFGkcQr2aqu9rDmd+6aSobxrxQvIlGMB4wOTcCfEG8TtVbLOLgNgoF2srHqEM8ZylHDXqRGBbmwIREEB8aGsKhhx6K888/H695zWuwYsUK9Pb2Ys+ePXjkkUfwi1/8Ar/85S/x93//98JjXnvttS3NLm+++Wa84x3vwEc+8hF88IMfxJNPPolcLocjjzwSt956Kw455BAAwMDAAH70ox/hAx/4AN797ndjxYoV+MlPfgL7ALhQH2yEnd3eRNrFpjdZqqKrRZ74grr6gj91U8zGRVUzFSJkmkMFDToNeGNEDt1IYw6SIet1aJYF1U0W6gUkhag7HUX6qRgvK9H6QM/izkJgDWPrOhbOm4cccemeW/eb1NWIO517zVgCjUS0CzYGrlh5Fp75wx+x8OgVmHnYcqWxLj/9dGx66E9YfMIJmLF0idLxAWhZoFIRLJ4C4Y10bKfVFUzeTCzcS4SgwaS/Ia41BR/lvHO3NW+UgvBzNIsF1PYM043dcKkFBDniRoFgxR/6jBqFPOlxA7RuPeVM01BlgKrbb9JNXxL+G+pN1OB69s5zz8OmP/0Jc+bOxZwTjpd8Jt2hdAq20HAP64ZB3seACurGaoHxRLNycMZoP2uqubRZzJeC62JQUaEpRO80x6KM3HDdyTlKhtpXsNmoJ8S8yhCOuTIKeaVGw22EXoPAfX4gCOLhDHHKTVivEd9K5RBvRp8RNBwPn7tk99lwhnjehrtLzdTWHNZtjR8xCkWMb9lKMrb/AK2mAcOmEPMDHUrLJD5F0zR4LnXjTiYKiSD+8Y9/HO985zvx9a9/Hf/6r/+KRx55pPmzI488EhdddBG+8IUvYM6cOcJjXn311bj66qtjfxaORIlj5cqVWL9+vfBjMcl41PVKwbjhXTrdSB0R0hq9otgUU1eLXAlI21QzKG/TQFAmFtycCZuShN34VHh1B3pePXOSegFJIepOR5E+y/GAbEXrl4OL+/LTz8Cmh/6ERccfi4HGJi4VXr0Os1jMIDajDs0ibzfSjCXQLd8BpxF1qLd1HYsXLoBJ4Oi1dQOL5s1Hjug+6IsmjYkzlTjecCZquk6fNRguuc4ikoW4wWTg0qQqlY+W75IQdu0Vixh7cTPZ0EF8ToBRKqK+dx+JIB5kfQO+aFN9aYvymGF0i8a55g+m1k/G8xqfKQU3nR83pPsl2SkqK4JN1P/+2c/guC7JJmreMLB44cLMmgIaeZs0AiigGV2UYX6zKs1rGdXlotm/gD4yRfX6mMV8KegpErzHMhUVbWNlsfEc3hzNMNI3EMQtAkE8nCGuEUVlxGHkfbHd6umhH7wRk0QVpwOEzHiWRVdB4LrQdAM6hUM8VEVGsYYPR6kZRJWEUYc42WZLi0nCNw1QVjb4mlEoo5xQzPfNkC40k1gQt22/AiNP1FiUiYVslTtnzpymiF2tVrFr1y709/cjPw138hkJQk0rSfFrTAAEzTAVmmpSjNP8ewJB3DTTRZ4QihmB41IPGmiQjOkquzjbxmw0hKOAqiyYStSdjiJ9luMB2YrWU+XiphQgotiGgUXz5sHO4JrqOQ6MYlE9Dy86bpDfSkzQuC5ofKUTCeJurQajVCQRTrx63R+LyHk9Keyoi7/hMbPYsAjGDkQAsyGukhIWxBsbI1B5TQJnINVCNythRZsUlmkjU1od7WaxBGffXgDJcYbiQ0/e/41ika5EukHz/VfFI8hPbyz2/WNKJ0YEsQe6nU7EDTZRL160GDvHxnDoGaejpCg4eU4dZrmEMWJ3f7Myw85jQiLfXGb8oApm2uY3B9dKjyamqHmvyCRDXP36SD5fCjcwVn2+kUoZCqbKoWkUi3CIrq3hGB/ynhIhgkqkTMZuZLabRXoxkDRjvmHy8zdRVQXxyWpskgzxcAQL1aZi6DNm5PNwiCrRw5E2AH1zcESuzZRGDy3o2UbUGynAsCw44yyIZ00mq6h8Po+hoaEshmammPiJnQYPnu9kTosbcnabCpnZHiZ3ExUFbSpBXE8bmULpwG7cADWD0HWVySSTrhlFsID86wvfiEd//gssOv5YDB51lPQ4lKIu1aKB2nmdlZM7S9F6qlzcbz32ODy3YQOOfNMbUSqXlcaMQi2wtoztODDyeXIXEFUVR9u4Th2aaTSa6clFCnQct16HWSxhgsD14TkOzGKRNCpE07RmvAmZIB66LlNlRvtjh/M2aRsqB+Mj5NZSXfi0bDhQOMQjkSkkr214cWpZpE34oueCns/TZf9HSs2pzwWNqGE7hUM3eN99cSPleRRyNatsJBVMC4vm9iNH8MTcet3feCRoHh8mEN4M6sZ9wfiN6Ca94ZSjgjIuLnCxaqahHPkBhDYBqAUhgCRKJLxhs2NkFIdfcL5yw2nNMKBrmvJ7nEWeezg+jDTnO4JZKqG65SWawaLxDVo27nk9b5PlPEd7VOn5PNzxKpCFIG7bZEJ+sJb1P1sUTTVDOecUDvEg3sS2Ud+7V+340Lp2J83Vj2zqk5vwPLdlY4vy+qoZ6nG3sePaNjxioxPTTja2IublQ0yzAN30dyw1pcnApLiqaQqd48PNORUXDFrKyBQ/Vib02MEuYYqRqARnL7RbTblwVX2N28hgcmabBhbOmYN8SjcHpagbLBouPeRQbB8ZxiGnnoJKClGY2nmdlZM7a9F6SlzcmoZF8+fDziAo0q3VYJZK5A0qAzTLIm+c5De/9D9LpGJrw3nuO1boFvxurYbcjH64W9QjHTzX9UsqiV2PaV2jsURiRyjjZ7LI0A7TGpmi7gxsikgmjasyXBZMkW0bjAnqGJbm4JGGVLaN8W3byIbP0mXonwcZZhFI4LkudMtUihloxvfkbLi7dqc/GK3hwByvAlCLUfBqdejEDS8BTLp7KUvnI+M3NxcINieziItrEbBrdaXIDyC0CZDLkYkhzVxyws9xwbQwv7+fZEMhyO1Xng+E876pCBmCAldpNoJ4EfVRKod4e4NCZ2wMZonGfNAc185jfNt2msEia0Ijg6i25tj5PGp7dtMMFs6tV3WIh6LqNMNUrvoMz2PIHNEeoYEvMm6W8wy/giwkuBOu8zTCivwwgUOcyRYWxJmOxDYIoCgLCa17/F21dLuLlDEempHSIe66LfeFtI2YoqVCSjhBhjhhU5kQyhUCwTih3WAqsc2r1WEU8qkFkSxEXVvXsWjuXORTLraonddZOrmpomviCDYY3nL4Edi6bTuWnXYKKjNnKo8bxp2YgFkuwxkfh1mmXTh49TqMYhHj23eQjusPrt4sK3bYINuz4QpVFQQnx3Wh22bjmOkme4FTnsJt6o9VoM9wzaXLFY4jLoKDKn4mvDADAhdvTVnsaeK2uo6Vz4NQ7i7JxlD4+BqfLWWhy42+pnRuw3CpNUC88dIGYQ7+NMNzXGh2Q5xLmyEejoBQeQ88X8SgyH1163VopkUW6xHgi5lGZhnfzdeS6HzOIi7Ocx3oVi4UR6LoaA2qFBTWR3FjNj+vVHtPVEWtoQ0F1eikcGWPRpRB3bZ5OzEBEAvLQMMRTZjHHH7eZrmM+uheckGc8pjbMp5tG04GfQkA2p4HwXGTbOy2NNU04O1TnMuGN3OIrtHR5pdUxPUqI50jhfrOUaMbCmkHHdDsHDzimDOmHRbEmc7EXDzSCr6tw4YupoZCM0vKXcqUTnUvcgyabrSVfQkORHih9m+A5I5uNJ6fcoWAj98EbLIbPMWYbr0Go1BQOkfJncie6+/MpxTpqEX6LJ3cgWj9jtNOwwsbn8LQwoUYXCEfXdMJ2/OweOEC2BlkOroTNdh9fdks7Ot1mET51nFkkTfajA+wLOVmV9Fx/QUwrUPcbzJpksQCeK7ru66JNxUNO0eaS95cqAfNrXp7ScaOurXMcgn1vXuR6+sjGT4suFOUrracqxQO8VBTzebxqRpso669RmasTtGQzGvt+ZJFI9QAo5iN23Ba0BAQNF2Dl1boaUTjUIi4VKX9Xt2PqQpEEYrIJmDSDZ+Vs49scwHZxcU1N1EI45ooGwkGY2ZV8aO8wdKsqLBQ26O2mRm+J2pW41xXbSwciojIsrkr5Wco2l/ELJVI4jKiBDnfJERiNI28jVpGYiCp2E4Y/+mFBWwC13E43oTsvYpcS8jMEl77Jnuz0S5FRUao7xw5uk4eJQfAXyMRr+uYdlgQZzrTYbdOiVDKSLCDn3Yc9UzPxn8NHakaW8bEyqQ7Dm9yk0DXlJq4hBtgUdPMSKO6OTWyOqmaUfgO8QJqw+ljKajzEQF1ByS1SJ91/IitG1i8cCHJWFG8ugOjUCBz2bYO7vnOkQwWPM0MVyrHV4Qs8kab2Z4Uza7ChEpMKRdpQek11VhZOGD1XI5ukRdamBiFApx9dJE50c1es1RCfXSUTBBvcUJZFjxFV3fLJgvFuRo6PqNQgFsdA6C22RB1VZvFIup798KiEMTROh+ibKodxWwI+dNWENfSO0ObebB6evNHS1NEFQFC82MDanv2pB8jOKaGy84o+I5OUkGc2nkcJhSZonpfzqzxd3CMlHFNmfTsoe83QREn5TmNTRWCa3c477vZwFpREA9vJmQZ40FJ1MVrlsvY9/zz5I+jGQaJAQFoFYMBQM8X4LykHn8XB2WkaPS4lcZy2jd01AYMRcsSvVdhswAAGAXfjKFcQRdjcmxu7FPEfXlee2Sdot4SkFVFvk6huTFdIRHEb7/9dqHfO/vssykejplS2i/ymmGqN40IRZ0oRaYQ5m77WeZpjsMjKR0K3wh0w4TrODDSXqCzyvcC7UV/MvOVbmLi1usw8nlM7FRvqlewLMyfoZ6PCEC5FLRFpB8dxeGvURPpw/nmO0ZHsfSVJ5PGj3iNvGyK5oZxUGdPN9H8Hfn6PpocxzBNgSYrg0Iu1yjXJqSluRdhtElYQCAel6yhlusCGVQh6DmaCASgsTBpPN9cfx9Gn9yI0pLFNGM7EfG2XMLEbnVhrjl+TCSJ0nhB7q5FkEMbOT6jkEedYrMh4oAySiXUR+lde5OPl82wej4PZ4w4L1pBxAbQUpkXxJ0YacYKNussM/U5GZyLFCX0OlGzSq9xPcu6koQyjgWYvKZTbPBkFRfXdMkTRH4A2WzGRhtDUlVlNh2cKoJ4w83sO+zVo7OoxevWSiwbdQXDTVc0os9QRPwzSkU4Cg1+Oz8W0TgRM1cgtGYBqWmM0oQWbqqZs0iaarZcSyjeq4hZslnFVFHrcxFnwiSvyGjri9fYNLMVBXHDzKappklzT2E6QyKIn3vuuV1/R9M0OBk5VZgMibkp+7uqqk0jQNMM0/XUtaXAqZ4yQ5wsk8oL5X+ahp8DnnJ+6XleJs5GgLhxRGOXWVPI6mwb0nFglIrqmzYBiov05jCWSRKTULD8JkZ5IneXretYNH8eefyIW6shNzAANwt3h9aYJGU0UdZzObi7d9MPnGXmroZm9BAlreXqdJOywJERNIKkG5fuNQ5ca9SQTvBDCzE/I1S96VyTyILaLJcx9sKLdMOH+mYY+bx67nfISUqxMdRyfIUCalvVG1RGYwuMQgG1jDYNs8TI26gTiytBObdZTOnm9CZLDzWrscme4j45uVmnsFHvujSmBI9Y1DP0Rq8Bunun54Qymy2a5rMt4xNe07OKiwvfz0jisMLXCarM95YNSLoYAt00lXt2NHuVUDRXDkdxUW3chfozmKUSqptfUh8TrZt4AWSRRpF1YJZRL1RE748HwjEDtHFE7VFyBBtEYdMeSUF7ZGO/kCeJn4mOCzTOAcqIQS06vuU3z1b8uOmGgXqVXrjOynnOtEIiiLsZlX8z+x/PjblZk4iXNA5mzyNadCDoPJxi6zQhk0q28aSfq+6LknoQS5KWmF1WKnRC0S1cVuwRNMED0MgipBN3dUvBadYyTg71ERqxiqJEtUkz35z2Ru7WajCK9A0JA/SchfpINi6drJrRZZnhmRVBBAlFs6vWcQMXJnHMS0g8URURsmoaSHl+RRuIUTqCo8/fKBRoRdCwk49AuAiOl2xjyAs7xIs0jTrR6kwziBomdoLasQs0HGEEVVhtY45XgZSCeLg6REWka55HBE01KSC7RjaOya+g26k+XoPw6x58jska7wLkc7pmXNxPfwbHo4mLCzZPdcsiqfhoycEmcnO3uJwJeiJ4jbWPnsvBU2yIHK4WVT7Xw1FXRBt34fusn8VNdB+MuU4YeZpIIy+yKZdVjCZA2PgwIuJrmpZZlZP/AHRufLK5Ystnn6JnW2u8CUlD7OjcMJ+n+UzEaBeGbdNV7Mb1xbMsuBSVtYYBZCBcZ9ELjmmHM8SZzsRc5DXDSN9oKDwOyTYlaIXfNDdeD22ZVJqRovFk2DVvGHAVXPjhJhqAJi3Od6Tx3CigWHi2jUlUauo13GaaaTZ2j9Ump5QNDwMXDdWiUzXfPA7PcRvHl81sVs9llOPoTUXTJI1UpErVxFd07GaGuHqzqxbCGbvEDnHoNI16owIrlSjTvKYQELewITu3vFZnkZ8/SXeuhYU0irGz2MCYdIjnSfPZA3TCBqux4zcqMLRcjnTcLHJ0jbyiyyyclWqpursbm4BEgnjqz6RGJ2QFx0QdQxDOX/WrVEZg9SiWzreM705u/hNcfprxcwsXY8de9fg5AJMxO0Tl7VHx2qvVlHvstIxJIWI37okkTYxD91rVjOOWKC47D2f7DrVjQ+AsDeUwExkBvah7F0Fz7HFYiolGcW7YrLS1QMTXy2WlcbwMzVz+A7T+k8qNT3nc4Txykg0BN1Ip0Lh3q+TqR5+vkS9gnOJzluQQJ6rY9bz2iFuqDWfNUOiH18DLdPeH6QS59clxHHz2s5/FoYceit5GPt0vfvELfOMb36B+KGYK8GKc3H5kxvQI+I+7eMoPonwU7a+RZUmXbId3cdUdbpMXfd2kE7CBQOyncnN7TUGcrLlJMBlWfF/9yb5OVBGhuECPQOKiCY+XQTNGuNk0JAygyBxOHDuL1yMyPmkmXJZRLM08XdpNgqbYTJCxG0XTNJr30AuJ9oTPnTq7Mryg1hsLUwqycsiHHoCk/0aTDCswqDcDmuNmPJ/KanNPz8DZ7kd5pN90aBH8TPk5WNs4Kg3fw5UbhkLMXHDKUexvNaJNSOKJwoRed6u3h65hcIPWjTN10SEYs5DLYX4/TY+YZrUj1bwkfP5QbRpHIlMcxY24ySbG6vdavxKNZsM5fB0wCnmajTuv/d5CYUSIu8caeZtmwyqugSABsTEveZsmMiMui1vTMouMMIjmS63HraXuiwY0qk0oezBEKumNPMW9O5Ihnrdp5p2xTTUJ5zAxnwkqQ5iucp8PoIpaY6QhXzl8+tOfxk033YRPf/rTzQ/0smXL8LWvfY36oZipIK7BAUGGOBnRG7Om+Rd/0T9HpHwmzXUoxvnjl+BILnJD0SuaaSqV3rSUylEK2PAjU1zKyBRNI22qGThalcdxfNeTpuASC0OSs9g436kaNwVQ5zgDIHXUtg+eoYtbo3UAxeE3jqJ3RWfBZIY4vZM7S7E1zaZk7Dialtm5RragDuWcm+UiYTl3jOtJo6tIaDtvFRe+pA1Vp4gsy9iBQPiir6ShrHIIMEpFOAql0S1NAy2CyBTVuKUgvoVoQa/+ufNC1zPa+Kvgc2z19dE30o44m1WFXMCfn+gWXZF0MwObSLwOz2Op5gst5yTBnC8cE6Oc+03cDLspiNs0Qq2v/4UEQIrmn0C8QGcTirTRCm+VTb6AGFe7YRNVncRsPNAIuA2icRlk50doA0s185l6Ph8Tb0KRq98W/UayIRKjp1BWo3nt1fIaUWSrZqprI4mVZGwczxzylcMNN9yAn/zkJ1i9ejX0xgdwyZIleOaZZ6gfipkC/Fzrdoc4lSCqTGTB7t/sJYQsgt242N1y05SfIIYmRpqq6Bx6XSjFZoAm0yygufC0MohMUdUZGhP0VO9lDCQCXVDKncvRZJ410Cz1RkZRss7LzqKB5FShEUfUtOSNEr8uzQxxalE44/ODctPBf7+Ixb8CzaIkuuj1803VM2ybY0dECp2wUqAto7xYUFpUZ77JQnQvmEp0285kM4dCyI/Oncyi4mZOSJTwHeIKkSnKlYetIm6a9yBsbKASyQJ00yA7l1syxBvnG2WMVzTqg+J8dmt15UzuMGG3NHVkimHTuJzD0TYkr2PIFa8srrtu89hUaemrkZG5wSiVyLPim2NTCcBxcSwElT3tmdR0lWme2x7TSt0EuGXsfN7vW0HAZKSOmlPYo8wjR3u8iU74nAPIKuhiNkQoK3ajufoAYbWxYQCqZtGk917S7MnIQ75yGBkZwfz581u+5zgOTMKJBzOFxGR0a6YJEAqskw+VMsA73IBD1+Uc4hk100jtngqJ2EoX6HAGmWHAJSzJ9ku8iQS3IJKAUrRvTjAJytYMgyzqRCPIXvdcF7ppQLdMWoc4cSQEgBZHTRYZ11k7K7MkC4deOG+UwkEXhiyCJETWbl7dpM7sVy8vDy9Orb4+msZ2kfuPWSrBIRLEY6ufKDOvozmUqjndYXFBo4lWCGMqOpg7kVUfAD2Xy6bXAgURMUh1od6yMWiln0N5nqd8bWoTcVN8ZsLXSLNYQJ0wwz43MICJHeqZr0C7qJfr68MEYcNVz3VCmdA0bkGvHgjiavPEJuF+EwTjhXvh6FQRGi1RImrxREAgsAeNsQnyyCOZ++mPK4ON0ch00ywT3WfjqrCpHOJxwjXF5ycm1sLI5+FQiKxxgiVhDFwU3aapOGkZ01Ssym7pAQa16C4AQOsc0SCKt8mCOIe43yyebn7U9pkgWiv48aqKG4Mxn63JsadHVPHLFfLV6NFHH43vf//7Ld/78Y9/jOOPP576oZgpIC6j2+8mTbvQTC0WRsrYpLv8EjTl9GLGSCNohxugaJbapkPY2U/p6AaIHeeN94/Seee7QwzlsjXPbZTAqjjNEEzsNRpHXSNnUTNpxclM8rgbT5f6/PPCXcKJNSQvFFuUJf7rnY3bmqJZVhzUWd+ti1YiUSIE5eugW5ayCNwmGvX3o7Znj+qh+RVRYVGZ2CHeVhpN6C6KbooYhaJyhnTzc0BYdRRgFGhFyQDNoL1GhvEFkOyadqrgX8tDhgbVBmIeUWVcJMc2jTgX/uyk3pQIC5jFIpwxus0Ye3AWqlu3kYwVxMsF5OfMxvjWrSRj++OHNheo4mfqddqIE+qIuNC1zMgX4FTVrzvh66NRLCrfJ5oNt9NEREZpuXYrOs6jLmOKmJAIVJVYsQ5xO0cU4xEjthNUBsQ16zTyNlyKyIwYzYG6CXAY6soboFFJprh+Dxv9qNdnVLnpmeC1mhybEC3L4gRnTcFg5hswG1qLpt67LCm1QFUTYrpDLoj/n//zf/DOd74Tb33rW1GtVvGud70L73rXu3DttddKjfOVr3wFJ510Emzbxlve8pbm9x9//HG86U1vwuzZs9HX14czzzwT69ata/78mWeegaZpKJfLza/3vve9ZM/voCNmIeDnLxE3QUuZ0+w3i5j8ty4ZF+BRNPXy2i9gqVzFIaFPU92xDE0IlfPMImQRmUMawxJuhqkQcxBERag4zcLHQ4FXd8gyG8Nk2USS+ljjykCpaFnUZrCICvBjJ7LJ46Z2n2dGyzHTb8hQxpyQHF80HoTMyR11/9A1zItbrJNlbsaMT9pUkbpxLYKYG3pBnNR1Hx07q14LgPo1MuqEU6TVIZ7+M9sSuZBybhIWcY2UMQXhRoPK1RMRcv39qO3eTTNYJGLG6u1FbZiwsWbofTXLZZKx3XoNumWR9U+hjohriaEhyvxtuz6qViw6QX8RIpHVCH12FeYw0ffCLBH21WhgFNTivZrEmc6I4ifixXYih3h0XpAnEq1jI2SINoRiXlPSfPIGumImtd9UMyyI097Dyd6rKBqBscVLmBNQSU4Ng1oYvxlmyuOOqcJQImFDQCPoQcZ0hlxVeOUrX4l169Zh5syZWLlyJVzXxdq1a3HyySdLjTN37lx88pOfxLvf/e6W7+/evRuve93r8Mgjj2DHjh34y7/8S7z2ta/F3sjCcvv27RgdHcXo6Ci+/vWvKz+vg5a4ploZoKdt/Oh6rYK2bIZ42G2alpghNFN+ku3HtwT5l6o7zCGnlEHbBJU0MqfxwlE0nAyYzCVXdHYHDYNUxXrSbMSGa51YQPQn4Nnkk2UatUHY4C86dpZCEnUT0zYhKCsBjJAWN28uRy5eUsYAUeRmRxfpWbme/PJSosFiG37RNjgKzy/MomIZf9vngFoQL2TirEormIqNnU1TTUB9o8iLW/xpSL2obnESK9y3o2J2Wnd3042bcqOnRRQt0sb1UF4nopUefvQN3TkXvnbm+vtRI2jaGUSmkF0notWqqsO1xJsQOTqpo0Qa81EKQ0vLZ1cxosyLbLT5bu5RpeOLflaoXLaJGykUp1Jshrh6REj09QWC6636OjPOwUu1IZSUqU7uEFftERS5L1LHnmW1tqFpruvFG56o1npu+5xWhWg+u/qA8TG+FHEsTGfIg73r9ToOO+wwfOlLX1Ia56KLLgIAPPjgg9i+fXvz+694xSvwile8ovnvD37wg/joRz+KRx99FCeeeKLSYzJxJJSvEJO2xMgD2h3irsRN2VV/fn55U0xkShqHeNBUM20GeWisSYe4qbyQCue7+5E5tDuVpLEaQXMjxRiWoAxYUywHDZzmFAQOZrLGTRnl1oahFjvDLu7gddByOaKx3cmxG2KPUSiQjB2GsjEhgEYD2FCzrAwiU7IgmPhlUaFAuWmk2+rncFQ0Uo6HmALiG37lUduzm2j81qgFP5Ik/b2qNTKFvuogK2eV3/gyI9E6o6aawOTn1sjnU/2974SLyc8dH0933Q3NodQqZUKGAtuGMz4Bsyw5QkvcSUpBPCQSWpUKasMj0mN0RIv/jMsSbYhIfW2LOpvdel25/49fbWf4Gx7U98tG/wKlCJW2RtkEueQR8TWYy+spe3wF45HEAUbfY5X5QLTRdLlM0gAzjEoFSpi4JpL+D5SHjs8Qz9lwVTeUsjTKxTbVJKqQiHs9TAV3cAK6pVidHK2ca9yDqCC5Psf8fdPoY9sK48Z/HujWegnnbsrTmSRlIDxewmfLj3Vhh3iWkCudc+fOxT/8wz/gscceox46lgceeACu62LZsmUt31+2bBnmzp2Lt7zlLXjuuecS/37z5s34wx/+0Pa1YcOGrA/9gCCuwUEWpBZEvciOr65L7lJHLz4pOvl6aLsgpo1M0YIsKuX8a7dFXJfKVY8jlGulZZCx7DfqpHOIQ9eVRfZmPqKp1sAycJo3/63SLKixiKOajLcsHDIS55TdEhHCC01yN7TrtLqUMosxoBXrom7rLDODs9hE8cWrLMpWiQRxgkal0aZhAMgrHFrGJWoUF+cwozq/woIf0IhOU1pITgrsWWwMUcbRhCF13UdQ3lxHcC7FuJZU70NeuzvSUGggGH7/Ve87zc26lNemFoEv5fvrRURReB5pjBdFY0Ug4dpGSUQgsnp6UFeMTQmq7cgc4uFWRgQxDEEvnPD4qtf0qNCm2oCZNDc9dC1Q7VPRFplC0QAzcvkj2/RJygw2CCL7YsRlivt3XM43FeG1a4BmGP7rpDz4FFW8W4oGiogDP9PYM0IorqVxBkOA8DXwvHgBO+1nOfr51TU5U2b0MJIc4gY31cwa8iva17/+dTzyyCM46qij8OpXvxrf+c53MJbBAgIAduzYgTVr1uCaa65Bb28vAGDmzJl44IEH8Mwzz+BPf/oTSqUSVq1aBSfhxnLdddfhxBNPbPtas2ZNJsd84EEQKSJA2vJWz/VaDk+TdYhHLj6abOQKGhfwmKaass/HIxSdPa81Q1z1QupFo2mIod50CRp1qkWmhBZMBMI64E9yVSZ2k40+aSJm/OdIXijUGNz/D3lkSrS0lnRsp9VpndEklFrI91qE/AwapDbIIpcZoCnjjUIZmeELWooOpQS3NUkpcITAZatKkkOczCUdiWRRvQ+0XBsycNRQ5O7GYWSYIU5yb03IyVRuXBvjBvPPr5TnbkjwoJpTpN6sCOeQpxXPotnc/X2o7aHL5qZqDBg9ToBI0GsQFTjtWbMwvm17h78QG9PPvyZucI0gTkNdEA8bKSjeq+gGpFEqKTmnKaoLwgSfWVVHcJvDtlRCfVQxMiUjksRlnSBGy4sR20kMEwkuXroM6ezE9kw37hoo952KNtXMYsNc1YwRc3slMSEkaA16jib6zXdgx/wgrZDtoWUOqxp3G2cSAFKaLBkpyK8MF110EX72s5/h6aefxnnnnYerr74aQ0NDeN/73kf6OHv27MFrXvMaXHDBBfjIRz7S/H65XMZJJ50E0zQxc+ZMfPWrX8Wf//xnPPHEE7HjvOc978Hvf//7tq8bb7yR9HgPWDoIoR6hpTR1V+boglqytDBanqIZeiqHeBRNN1LdbMiaM4QcXTQ7i8SNI+IfghTdUnze7mRzTiWHeEisVHV2N0V6oszvloafGblV6d3QUdE6m6xSw6YVxL1QM5csNwlImiYlkEUuM0DnVAxDGZlBkbcblxVK11izFbJ88hghlLQBcsICNfV1KCxCUscSBWRwG9Tz+cxyvilIyrklaX4XzYtVyEvOQvBIKyB5ntfaTDvF/TXqwDXLRAJ2A6NUIsklj4q3QOOcJtrsa3M2VyrKAmezR4xFtBkVemt1gkqSqOve7OlR3wxpc06XlV7HlupHwqmj8nwgcr5kEYvhD0zh4k4WxNWbX8Y0xSYQLZNiHXSCOXNihjQI1icxFW8AaIT8EKpzz7ammsRrESCD2EY01nrKDvH4jG+y6DevPaYNUFiTRT5jmrJeEO8QT9OXjpEjs62yBQsW4KqrrsK6detwxhln4D/+4z/Ixg7E8JNPPrlrVrmmadA0LfFCOjQ0hBNOOKHt64gjjiA73gMZP6M7rpzLIG/UmMohHil/kXalRMtTdB2QnTjFOMTTENdMRGGwyYmvaShHpsQtXKc76g7xRi6mritNllpcxxTHRFWiGhlPM4h3oIOGqTnafFzPcaCZYUGcWFg2MhLUQqKBP4EiXEGGI1Oy6iCP7PLJyUr3Q/d5X8RWiCci3hyKE43IHJoRqFzccUIoaTVPjBjgL6rSnWMtuc0EsQXxD0I/pJ5TFz/CG27UeG58TqZyU824kn6FczfqgKV4r1I3PI2KcikqjtqcrgXaxpp+PA1VJUnrvIR0k7Mt6qOoft1scYjTCg1WpYzaiGLee+Q55/r6lHs3tG0sqG6whMcjNFQYxSJZLwkyYp4aSTROXGNh0Bgb4oRrkvt3wnqQ5pjjBUs/Q1ldbI2tdCI2kShHpmTcVBMA9Dy9cUa3KBziCYI1URSkP01KEMRTphS0jJOz1Kq3E3QgI6dWqc50JzNB/Pbbb8db3/pWLFiwAJs2bcIXv/hFqb+v1+uoVquo1+twXRfVahW1Wg3Dw8O44IILcOSRR+KrX/1q29/df//92LBhA1zXxe7du/GBD3wAy5Ytw/Lly4me2UFGwm6aL4jTfThTC4WRi4emy2Vve5Gmob6IksIhTjXJiCxoU7vwQzd+3SBoghmdWGlqOVlTgV/ert4MU3kCGY5MUXYO1GkF8Ra3NfHCMIhMIY4DCJqdAmriWfexiR3i0ZxV6qZjDbHVd0Nl89nMKkPZKBTg7CMYNyqwKnx02/JRVd1gMaIRibATA9X7lNhDhOjcjdsE9oU0dYdwVnE0mkKz5iTByI9MUVycRnJHW9A0tXM3QbRRdpnFOcRVzt2ouyztZzbs9k3pzouaCIxiEc5eOZGvTcBM2ZwzCd1O78YPE5chTlalgnaBkyK6aLJBOdF9PnTamSQZ55G4nL5e1HbvUR6z9XwqqkWmOE4z55wyTk2170FcpYhmmeSOWIp7TFxjYYAqRi4h2kR11AxjXpLuNUahoH49SXDjU16rAILIlMi93MigMba/eTFNHeJxm+8UcyT/EeIF8bRmn0h8kKa4GZL02cqs4pFpQn6l/MxnPoNly5bhoosuQrlcxp133omHHnoIH/zgB6XGufbaa1EoFPCZz3wGN998MwqFAt797nfjhz/8IX7729/iv//7v1GpVFAul1Eul3HXXXcBAJ566im8/vWvR6VSweGHH46dO3fi1ltvhUEoIh1MJHa8JWyC6I+XUrT1WvOgNFOy+UY0gzxFhnjSBVaatvgX2Qah4aFCeeS64QvaysfWuiAhj04gNrf5MTyKkxKC60Z4sUhSSmfQXbYD0R+gfU/DYgB1hEfY1e5PYrKJYyGPTMnCtRQaeyqyEc1KBfUR+ixO1c2rgLbXWOWy1+bOpM019ccsZrfBQCEGJ52zRG7ANkcvgmNP6Q6MVEqoXHcSxWuVxXPCYs/vfaLeMC+p1Fy31a6T0QV6c1xVh7jXfj8zFN63Nkc1wTWcoiEm0KgG2ScnPkY35VScs3HnM1kVRVwcFHEMFnWfmeBeoefoS9Eprr/R88efO6oaW1rfp6BRa1rCG/Fkjd5B8F7H3msVz8e4zOQ8wYZS0mZjhtF3yhvanSJTVBt2JtxrSDYfEo7bsGkqZQKUP6tRkVUyClYEks2L6JgUom1ivxK6TYG4Hm1po06iee+GrZh1ntRk15QzezLykHdT+9nPfoZPfOITuPTSS1EsFlOPc/XVV+Pqq6+O/dk73vGOxL+77LLLcNlll6V+XCZCQvmG7zre/5Ep0QWmphtwZRzi0Y7GKeIxEl10skSc5louB69eA0z5jyl1E0wvUimg53Jw6zUYyJM9hv84RK8lGk5ZFZdJOF9bAc8J5dqSHNPkAln19WqJTCF0+LQtlKgbX4abalKL7XpGxx3ZYAnc7Xoupz54NI7Do/ksRUUUq1LB2AsvKI3Z7fGUzufIQjiI0EqzsRV2vwGTQq1ZLqU7ttDm0+SY2biYVXKYw3RygrkTEzBsW/EBYoS0YvpNgpbrjqYpiT3JbjJfWLEqlXTHl1UvjqRGZ5jclDTyKe/XSQKI6vU3Zp6idN2NnK9+I64JGIWC3DjhKaFppjImtDUwLBblXcNRAVNl/hAbT0Rz/4yLgzIKBYxv3aY8dhKaacCt1aBbVqq/b2maTjHvCV1qOsV0ChPncjaM1PczIP59CjY309x3WyrqCAXx5vhpjytpg6ZahdXbm+o44qBwFidvNtpwx3cojZ0ofDcys9OaKBLnBTlbfd6RsLFL4uJOOu58Xr1peohUleYhsjTPBPiVT8SCOEHFbtLGPrVBKUrazf2o/qPnbLX+FgmJAxpSNuZmhCH/xN1zzz244oorlMRwZvqQlLlF7RBXyVbWoq5qqQxxtGaQp8mLTsr+lowV8UVnIhd2xHWgqcamRLI+/WOjvTkFk32y8RS7PYfdwiqEhXV1h/jkAoSiuV1LvjlhPnTLcVJnz7uTGeKp8107jZ3B6wG0l5UbRbq4jLaScqrywsiGo1EskGbYhqEYO5qxr5RHHBEP/AZkCuXlMWKEZkhWNAlCliOfJArbNomQH++aTx+fQ1kpkbgwU3EFZljJ4V8D4q+1qvFPSQKIn1Wv4MKPcUOpboihpRlZhi7LbkQbGKboF9C2waf62kQFVoJmwUBCpUdG8VoB/uupljOtUUTiJaA6N4mrUDRL6tna8e+TekQVZWQK4AtUaee3yc8z5fnYaXO0qniOJ11bKWIyEk5t5SaNneYFBJnqSfcaVbE9Ma89o3i1tMTG6BBfpgzbhkvoigeC+626Qzy++iCjnjDB+LmUr0fkeP3PgMJrQNlLjpEik5n5//t//w/nnXcejjnmGADAXXfdhR/96EdZPBSTNQmNmijEuJbxdCOVo8KL5G7Llh57kYaYviAuKcomuBh005Ryq0fjX1REZ78xyeS/VXfXvUgsDFk5bDirk9iRq+7GJopMcV1ohu/yV29CFmkoqVyeGBKAKTc5sowHCS2+/ZJV6jiWsMOUbOiYxmBqC/ow0QWg1dODmmKGKdAu4vvXR4+84SRAdMxtkQnpS2GjIo9ZVmyUNkWxNkB6V2uUpBJjMkdVnHChkpPcliGvpY4iSRLXdRUBqctiR+Vz1alSLXBKpybhtVDe0EkQg1IPF/nM7k9BvC2+JcV5TbUpH3c8lMSNrWeQexvGKJXgKGwohzftSYh89KzeHtT2pM/89pz2zSKzVFLalI37HPsbvenua2FDBXVFnVEopJ8fJUampBf+sxJSkzZe9bydWXN01RjDpPsYyfU2KTIjr77mTMprNzJoMKlETOUcNVkIzCQmrYSKCWrNKUpaw0vULKBqRsq0ipDpCPkn7t/+7d/w0Y9+FGeddRY2bdoEAJgxYwY+97nPUT8UMxVEmxQ10DJs3CZFRESGYQDSInRYOZZf4HlAcs66hPgZLQ9UykeO7LLrhQJclclEZLFtlOQbREWJLv6py9Z0VYd4y4JJRVgJOcRztlKZWnt+tqIgHnKvG3m6HL22rHPVpm4tY09GWWSVK9pEQ+r3vdvYqgv6FiJuMrOHJus7TugwyyXlz34cfiMyBcEZ/metxSmv4Cpq32RQe00TBSmiPO5sSHJr0Vwr4gR3Vcdiy2dM5TgT5j4qm8FxTtoAXbEZU6dFtC9OKgogWTRno86oj7xnVBVE0pWHQJvYn2aTKu580Qw93bymgyCufP2JOffIN5QjmGV5x30LhJv2UWMOQHE/a7/2+vNutSql6HNWqnwK92wgjkzxjyvd/TY+MiW9Qzzp3k3iWk64J1Btaseh3DDeTZgXEETAea6THJmi6uJOuKerbHJnQWxTWNUq7wgqmxdJ9wua6NiEPisZu6ZT6wVu1FSp2LPNS4671XS51AFGDvIZ7le+8hX8/Oc/x8c//nHojQ/04Ycfjscff5z6oZipYIoyxNPiRS4eflNMieOKLMj9C45sZEpCl3DZCU1s48qUDvHI+2YW8qirOMQj5dh+WbuiKBZXakTo9vUbBinkuEWaYaYu34yK2ApOvbbMRtWO3o7bHM8oFsniMKLONtVS35axYzI0yURrJ3rcio6slrFbNwlyM/oxvkMxIzIYO84hruBOaxKzsLR6e1EbJhg7glWpqDmwEePKLBTSN6GLnAuqjT+TxD/dpsn7nkrojrl9Ye3/O/2CQiOqZEoUQZSaanYSrdWaMXVyACtXE3Xpk5JWUE1ytadtztXWiJDI+ZdGMIn9vMuu6ROykNN89pKuP1TOu6wFiyj+vVlhg5KwQXlcHJbVUyGp0gpjlstKmwDxG9xqwnPT7EGc8atkGPDaz8cgQzwVHSpklJsdJoi0WaIrrrWS4rlINkUSxHZlER9obFK2V4WoR4rFV9IrDBhfcUPo6FZaP3Zo4K38MiRUCPg/Uxy7yxhGzoIjaxxIyPxOSyfzgZbLkVbhMK2QC+Lbtm3DkUceCaD1hjR9HVBMR5J2q0xJJ3ZWRCYTspEpQFQQ9yMBpA4hoazcz7CWu3iFux8rOcQju5ZGXtEhDq9lIqEbpvTr1DZiZBFB7RBXpqUxpJn6vWgRsRUXDS155AQLkLDoRxaDg/aFl2r+ctvYofPG6u/DxK5dNGNHyqjtwUFUt2yhGdttHTvIiKS4N0YbNpoVmsV4/EK/B7U9amPHPecsMsSt3h75RnYBCQJSavEvwQmm4nzqdCyamf6a1Q1TJdZkClGpEEgSQVQWzx1Fa9X8zQ5xLMqRaR3zyRWyg5MyXdM2hY0ICYZNk6Wf9vVTbmocc/1N62ZMdrlmFxeQ6TWoVFK6X7S8HlqKCoAwcUIz4WZ6y5iKrvh413nKTePQeIZKv46Y+5hSBUBcSyeFCMUsmxx2izLKQjsxS4r9ayL9rsKoNpT1kqrSCUTHuJ4VJGPHxFxIm/NCxMUlUURkhlExHiT1lgv/PC1J7xEA0krjOHIDA5iQNCklfX69tK+t6ybuKfgVb9NII3mZQX6FX758Oe64446W791555044ogjqB+KmQL8jO327+uGWhwFGZ7XIiJrktuTUYeSlmZiHI1tCcay1Jw3SnnTUbe5YoOjpE2GtBd9AO15vwRl+JQ79S3ObgUXVUvjSkVXd8sxWbSRKb4Dli7WJCxMGopurpaxI8Jyfs5sVF96iW7s0HHnZw9ifOtWkrHjFqNWj4JgGyKu+RqFWydusqeajQog9rUgafAWl9OeUpSIy+9V2oRKmDibxSLq+9KXrCctpklKjBMwy2XUFONtOqIqUDVQc4jHi7VKURCd3i/VXNcEZx2g1qi0MXhi3rJfhaHiwk9ooJViLhAtt08trEegEtYBObEgeq8DFM7pxEx82sq8MMqxJh1Qdee2NhRXb3aOyPvkVyjSipl+40raKiWlDb6woUIldiLGcWoWi2Q9VgD1hrSZidYdNjKVozwSDsssV9SqKzpsECgbG9z4imvAf50z7bOhEK/X9rlSiuuKiUtKed2Pi3NSptPGfsrqriYdIkPMilqFDICOL0VuxgxM7NgpN16M/qOZRnrtp0PFSBabrMwk5IL4pz71Kbz5zW/GJz7xCUxMTODaa6/FZZddhk996lPUD8VMBW78xYk6L85H8wV4CTruJgoNEHGISzvMG38X9xoZJlyFyatmWvDS3lgiNxXdNNVK+2Jc8HrehqswWYuWBpGU4cc4qtISFsQ0K/0GUFh09kU/lU2E0CLOzqk3lIxkT1MRFcRzM2Zg3zPPEI3d+h7bAwOY2C45iREcW8/l4NUdEnEubtJsz5qF8W3blcdOEttVXeJxrmYjnydo5ppQvp82H7c5bqtTXtN1hTiHGNdfpZw6F9ZL+KxZvb2pNxg6LkwLBThVRRd3wkuXhdgTJtffh4md6lUfKs5or8PCPC2dmmqqblpHq8JaxqaI+0lynxeLcMZSCiAJTTWNlNVi0etVGtE0bv6nVGkQHkdSfIy9/qY8pxMbAxKK/VFUY01ESC+QTYpO6ptRCfNOBZdoFsRm0qtc40L3SKVM4oTMZKWGvUmPleZ86SAAqhqf4ja9AnIz+jGxk2ZuG0ZVtO4kLJuVCuoK0Xed5jRmuaTWG6dDZJk9exaqW1KaX2JEXOqIk9QboRlEkHScx6g2lewgCFNUp3aMTMnn4YyPSxn9POJ4m7jxAlTirZjukAvir3vd6/CDH/wA69evx8KFC3H77bfjP/7jP3D++edTPxQzBXhAfPmSpSDWJqCnbNSp1JE3erPQNfmmmgk3B9VsRs1M74DxF7CpHzpmwHa3XK6vDxO7d6cfMtLx2yjklRtghXO/VfGcUMMgU6EsnFB0Dj8/s1RSzuWORoRolkmTAxl16hYLfpMpgt3tqNiuGYYvpFJs0MUsfHIDM0gWJXGZpbn+fqXPUHPspKxvAid30gJCtSwy1i1NsJhqE5BSZjPHZdWrOKuiYn2A1deL2u70gniiK5hCxOtwDyH7zMVgD85ClaAyQykGqlOZfEqhq1NTTdUNLC9BXKago/u8WFSowohvoJW6uoEijzdmQaoaOdMcR/YzGSO0Gik3TpJEW6qc9TjMMpGjLeFWo+fzJH1PlPKlkfy5tioKAkbiZqTKpnHy5zjN/Twc1aZi9kjcUCDGKKXrk9Nx41nVxZ0QuQkA9swBTGxXMEwkJU+oVuN1FC0ratVjHRzC+TlzlKpBO82XCvPmYe/Gjek+BzGRYqqbbFH8SkLac1czjXRzuA4Z4v4GueLGfsKJS9KXocv0wCyV5CKkvPbXwo82SV9JmnSQFLGSTDKZ3IHOOuss/PjHP8af//xn3H777XjjG9+YxcMwU4HrxsaQqDiOE3ffUpSZdNqpFPv71ouZZqQQ5RMEdFXngGz8S5i4XUaVDsVeTONQ1Y73UcFBz+UIOpS7baWrCqM1n7OfIa7gEA+/FyrZcqHXjKKxaVT0I9mBR+tmQkBhaIgm2sRtL9+3Z88myfqOE0HtQRoXd6xYW0ovJnUb23cXqblskxaqyg4jJ8ktrRbHEidMmD2VdK7uONe9QuPPJNHEr7ZKeZ/otDAhOreSsPrVz68k7IEBTOzYid0PPqQ0jopY0Umk8eO90gq2HdxvKu6fDqI1oLD4BRqLvgTRZtZMTGxP2Rw4wXlultN9zrpFG4iO0dbIUiEfOYxsFEzssaQVb2Pum0DGDnGi+UQSflya+n3fKOSVIoU6bfBSR0spNZtMQCmXnsDskXRv1EyDNJozbbPxrnFUCpVYne4zlqLpqCOK65BOG7vqDvH4e01+9mB6FzfQcfPBsG1YfX2pIgzjzg+/STZhk9mUc26/0i1hzpGyD4PneYnnrGrUUcexe3pSV2iKIivox1VLKEUrdths0nRDuXcbkwyJIP7UU08JfTEHHqqCcywJiyDdTBFL0SUzevixx7D32WeT/9z1Wv5aM/RUkSmxHbfTPB8qYt43pZLsmBu+6k5wXO6xpmnpXv/wmOGbqZby/Yyg5xRKoCL5kn5Dm7Ql5pMlrmkawMYdW0v8yKyZGN+2TWnMyXGjovUg4dit52J+cBbGt9KMHd1QyfX3Y2LXbuWxY3OzNc3fqFIsq44trSfIm0sq5027sGzixldy2DNnqm0+xCzQ04rYcY5+s1JOX7LbKXcxpVjZafFg9fSkFu9FUHVrdUIzDMw8/TT5ZrmRy6FK46hOudm5/n75rEkEn6cEt5aia69bfFxmlQgKWalJ52/qRn9x11jJz1bsxiVVZIqkazBOcExbjp30HpI4xJM8LsUi3PHxzMq8C0NzUN28WXkc5YbiCS7MXL9C5EXCR5nKtNA6ZvrKrBYxKK3ImiCsp+59kHA++hvuKV67TpFRipspcRUpAZqm+dfXDDaszHIJNYW5TCeHcOpx0XnzQbcswHXTC/ldmkH6lWkp1hEx5wd1ZErqptsdBFYjpeu8U8572iqMybGT43hU5hpNusyxzGIBdZl7QZzWklOIjelwPQAaFa8T2VR0HeyQCOLLli3DoYce2vK1bNmy5veD/zIHIF1uIOmGjL/gpWpc6HYuka3t2t15xzdys9D0FM0QOkWmKGSIN4dPuUqOOsz9Sb9CF/ioQ9zKKWWkx+WHmiolpkDbgli3TJKyfj9bLOVrFxHWzHIZ9b00C0SjUFBqMhJdcNszZ2JcpUQzPG5bdIVCGVl47Bj3uR+1of6axomgVP0S4sR2gOg1j1mQNxtrKkTgJDm3corCdVIZZ5CRlz73uz2WxKykizmJbZSkkMXcqXQ1NzCQ7hzoJLLbdmZNNQG/AiGtwCqCpmn7NTOxk8CcejOgi4NZz1npF3xdIlNyfQrxTN3c52k3shMW1mlzjWPnKfm83OI0Ic+YYmPdyMst6OMi4NI2dU3MEFfNru9CedlSjL3wYuq/9xKa1gONHh+OiwnF65CqIB5nAAAAq79PflOvC1m4hn0nu7rIbhbTNv5LihOjff2svnS9KTptCKa+d4fG7rSRac8eJDF7tI07a1bqhvGdco41XYdumenvY11ej9zAjPQGlS73SP81kX+t4+LKVExUcQT3RNm5cce893IplePa6+C0N8tltQqBDtVogOIcSQAjX4Ar4xCPi1hrVJQ5E+PYeuedkpnknZugmuX0fYyYzpAI4k8//XSbG/zpp59ufj/4L3Pg0dEhrsk3wfQHBWI/8Kkyt5OPz4MHrYuY5UXyylItfBIyzzTThOeoCeKaYcCr0zTlUclJ7NRgLK1gH5t73NeHmlIueesCUjnfrzmOnbqBZbg5J6DWmC9KYWiOUslwVKQNjlO1siH6nMPjZzF20DxRJdfaHzvBRUcwCUsqjc3PmYPqZjWnbVLpsj1zAOMpnKxNkpxvM/pR27MHW9b+T8oS5A5ZjnPnYtsdd2LPI4+QjBtM0D3HwYu3/kx8rASRA5BflCQdW0Bx4QIMP7KBdExN01I7z0UgaTjZ5WXMzx5M59hqIZ1Y2+m1NcslONVx6QqMbhV3Kve/aJPqtrH7+1BLKS6JuM/TiBTU+aZxG3iycRCdjkkV3bblM8QJe6KQRzYFdLgU2IODGHvhhfT35i6vQe+xx2Bkg/y1M4yyIJ5wjJqmITdjBrbefgdGN9KsgXN9vRjfto20+tSeNRN7Nz6lvOljFIupDBpJr19+cBBjz7+AF2+5VW4ek3A+GrYNtzYh/Tw73wvUNm27xTz5Bhr66DOl+BHX7WiUy8+ejfGUY3frheEbHNI3Nk9ytgP++ZHK8BAniobczNvvuRejT26UHzd6fMUCdv/hj9h+9z3if9ThfmbPmpWuarfDexQ876yu97n+fiWNoFsSrV6Q7EsR068tqGyZ2LEDmq7LHW+HzQaAwDTIJEIy01q0aJHQF3MA0iGSJL1zMt517rsZJceLdZv7Qr1Xd6CbRudFd3SBauiAZDZ60qYAhatIyyk0c4xgpHRvAEgsu1LJqY3NPe7rU3L7RBezyqWwDXSVsvCIsGbPnEkg8vj4GZoKTWZi4kfsWbPUGvkg3mkNALn+PtQU40eS8qeVO9AjWQQtzB1C9UW10uykhY/V34fanmFsWXt76hiSxAXlnNkY2bABW9benrohT9z7qGkaZp1xOnqPXpHK/ddJbK4cthyzVp6J8W3yucSxglhD8Bl9ciPcalU4az5xc8ROVw7ZqaGiWSr51yrJcbu7y2arZW52QTNpKnCSMIolOGNqfRLS3vc6vV8AUFq6BGMvyp373cbM9feldr9Fm1RHMQoF1NOW9nepFMzPmZ3ObdihgVoqoSk2c1suIztRoJJd38f8vqwpIfE6mcaR3zGuRy2qrhO6acLq7VVoRtx5gyLX1wvPcZSuQ5qRvoE9kLwhDQB9xxyNWWeejrHnX0g9fhjNMFA+5BBsv/tekvEAX8QqLz8UO+//ndI4aeMAO83pnOoYSkuXYuy555SOLcCeNQt7n3pa7o86bdxpGoxCuo2A5tgdRFqzVMpEEFeJH4n23opiD85K75rvEhlhqkQBdhEb0xI3DwvmiZ7jwHMcjCmuHwCgMG8uJnbthifxvnXacNEtC54jfw5023zPqWzsu13GVpgjiaAbppyYH/NaaLoBeB4mtu9EZflyqXi9TjGIQCOjPcOKroOZbGwQzMuHDpEkabMHvQSR3Ugxnp+h3DqWZuj+Rb5eg5bLdTuYlj/XDUPe1e0hPjJFoSlmgGFZcBQiD1rGyqcXh5NK5EyVBj8xZdjhjL/qlq3Yue73cscZEfD8nHP1rsxaquqF0N+Hzg/VHLwwei4Hr+6kz9SLWYjkZxM0qkoSaGcPEjS/jC8BLMybKy1QxY4dd9xDQ9jx2/uxZe3/pHdmJTQ10zQNs848Hf0nHo/dDz2cbuyEMkOrtxeDZ5+FyuHL0wvXHZrUpo576eICafYTkHWZJCxcrd4ejG3ejDkXnI99zz0vNFTScy/Mm4cd9/4WW++4U+5z16UBWarmrV2iLFQ3zLqh1A8B6OrWMQrqFT5mMWWmZbdFX3+f/AZWVxe3QuZwl7FTf6bQEEC6uvbSxhLFnwSFuUMY/rOc8zfOXRg0jRx5/AnsuO/+7oMkuX0JNn9kK9aSY07kmnN2GgtIHyUhiqWwES7SKDU3cyYmdqRs7EpAXLRNGM0wAE0jc3WXFi+CUcjLb3J3+OiXly6B57pKlXBGMV2Tvk6bNbPPORs9Rx5Blpvec/hh0nMhz0tufAk07rOpHdGdBbC0Oeoi1/nczBnpImS6bOyqiNae03mTX6X5dLfXGgC0NDGbcU01LQte3UFteBhWby/JhmNh7lzMPvdsPzZGdJ7QLUpt5gyMSzbF7rb5rtbsODniBfDXNEr9i4hJalqq6RrqY2Ow+vvkdBfP66gd6fl86mp1pjMsiDNd6JAVlbabcEImoGHnUZeN9PDaS7c03Re13YmaLz7qmp9Rl3gsoY9BikaF3Rp1qKBZdA5xP6M9pQjrxuda5fr7MfbiZuz43QOobpW7AcbtqvtOHf8Y9z7zDMa3bZObSEREx6hDfN+zz2HPevkohmhuZ33vXmy+7eephejczAHpSYh/IHFjzcB4ysVg3ELO6lfPqHTrdWiG2fZ9P28xm4VrvlGavfXXd5BnzBm2jRknn4TCvHnY8/D6VGP48TSdSwFVJs0dJ6iD6XIou4kRmuFX4Eg7TARiCXwxVG4hmORo7z/+OAyuPBNGqSTerC/hGIsL5mPw7JX+xpHEa9rV6ZiiFLTbmFalotxYtRNZZ3xTRF75zcPS5GR2Lgs3ikVpoaLrmLYtXyU3OXjXeYiesjmkvwDuINqkzKHudH2xZ82CW6vLbzq1Nf8uoLZnD8aefx5urdZV7Ehyv0kbNmLeCr9xqtz8MrbfTor3sWNk0/z5GP7zn6XGC4/bbWdLRcToJr4BflPImmwMXfRtSNsQEujoIA6wZw4Ii/YiYmZ+9qB8LEWXZUp+zhyMKxgWjNCacN9zzwvHnnW7j5HEcwVjGYYfxyRjNEoQvQL89yLl69YhjhJId80Ixu3k4gaC+UGK+3eHRo1AMC9MG1/YeZM/dXNJoOtrDaTbQO+0sVvbvQdWby9pfJ3fD0Tsetrts5WfMyRvmujy/tuzZmW2zpt2gnCCnmUNDMAemOE32JSY03U6lwD41yHFaFAmHhbEmc5Ql7QCiWVLaUrRvRh3tmYagOvCrU1AtyzoZodol4iYncrVHRXVCdFzuUxL0oVJWCSapRI8p47S4kXSJWFJOdNGIY/x7Tvgjo+jMDQk1eynLUM84jAce/FF7CMovay+tAWarqe+6ReGhlDdvBme52Hr7XcoNT4sDM1ViPNon3xqmgbNMJUc7Eml3pquwyyXsPXXdwg7dUXRDAOzzzkblcMPx+4HHyIdGwDKyw5B5fDDUjuVPKcR4dQB3/lH3wjRrySQd6d1ijYJCCJfpMbt4pYGALOnp3ND5NhxOzvaZRbW3Z67PTgolb/YPStUvjTa6+CsC9D0dK5gEQyVCiEBNMNobMZ2J6n5nj17NkafeFI+x1egikG6b4GA2zW8KSxDt3xUoOHoz8At74s28sN2E23sWQNSm71xzb6s3l6MPvEkiosXweqpdBU7ktxvslnkJCS8pn70iuRmTAdhOTejH7qVS1W9lbQJGSa18AYIic1WT49SIzcAyM3oa7ouh/+8AfueF5+fJM1lW8YfkHDjCnyW7cHZqKZsipg85iylOD+jMLlRs2/TJoy9IDYvFZkPUDbTs2fOlLyudD4HjXw+dW5yt4iI5u9JN1Psfq8xSinX8LFRpRHSNlrugsrmiMg9MlXMphdf/QlNw9jmzbAHB/0NdKK5vUwMXKemmoB/7ZduXOt13iCSmbfJQrk5lvgYunivq6Tq+dKCBSgfcoi0phTta5f4eyl7tzHJTFtB/Ctf+QpOOukk2LaNt7zlLS0/W79+PV71qlehWCziyCOPxO23397y8+9///s45JBDUCwWcc4552DTpk1TeegvK/wFRvzP/MzelJPQuJJU3QBcD854FRO7RS/Q7QsgTdfhOg7cWh16zoKes+AlNA2K7egre731vI5/onLh8nPVaSJTgCArMoXQ2cEFP+Okk5AfHPRjaiSarCYt0PKzZ2Pn7x5A+dBD/exJGUE8miGez7e4+JzqOOyZM9NNAjWtKVSMb9uG3hUrUN2cTogOXNhjzz0Ht17H7j+ljMoAjaO7bczeHrUsd8fxN6ZimHHSiZh1xunY8/B6ktiYKIWhOXDGxjIRAf3NgvSCVddFc3+KySkgLEaliSDpJnbk+nqlz79uJeZAOtefiJsQGoQWat0WlFZPRe7+16V01W+4J7ngF1n0phTyRM6VNCJ+ZiS8FoZtAwB6jzlaKsdXqIpB0jXcLXsVCGJo0jSm6+ysAxqu9pRVfSJVcNKiTZe82PzsOZIu2JgNXl1H79ErUBga8h2s3TYEEt53U+RvWw8lFj/ST+2+lypKqMv53LPiyHQ51wLXIFmXXBghYS9NM8fI6Wz1Tm7s7nvuOex7Vtw4IXKMZkX8fiE0XrFA7pQ0SykjTxo0NwkdB57j+htQAsKdyHxANJZJ6L7V0yPV2F7oHCwU01XfCLiWU8WTClyz/fiRdE1Qu90bs54bpJrfC7wmel6u5wQQvxEL+M2m6yMjMIsFGCmrs+IwZFzsAtUXupWT0hmENnEE59mpSFnN42sx3ecxup2DVxN8PQQ2WSYfW4AujdcBf3OQUhdifDITxO+++2785je/aX45kifv3Llz8clPfhLvfve7W75fq9WwatUqXHjhhdi1axeuuuoqvPnNb8bWxk75hg0bcPnll+NrX/saduzYgWOOOQaXXHIJ2fM66PCSb9Z+4wCgJtvxucuNbOTRx7Hr938UHi66A6c1okHcmh+ZoltW8m4fQZMNr8MFLH3j0cbfEzvE07qcujVvAxr53zKOzgRXTX5oDpxqFfasmTArcqJY1K0ULt1zxsdh2DlfdOwi9sZNtsLdnZ1qFfm5Q6lFY03TYJbLGN7wKGafcxbqo6OpBVxN02DYeVS3bMXWO35DklOZnz0bu37/e2y9485U2Yjd3LWaYaC0ZDG5wymAwjGWPHZF7jxv4EemCLit02StClzCjJK8GCay8LHSNNARWGBaPZLXk8a4XUVMwaiLbs7HoFknFWmcL92aGwEKLm4hUSZ9U2UAYhs5mtjit9O5Ouc158OeOSB3aCLnaG+vVHWEyIZN6so7gYVUWoe4yP0/VRxLF4HC6lFwFofoXXEUjEJBaEMg6X23B2cJl5Z3er2kxNuEl8bIp3CId6tQSdm8T+Qe0fzdVA5agaoKyQqFOKdoMH+t79sHq7cX7sSE8PGKfK5956nY50PkOTd/V6oBXOcfaykiI+PGGN+2DbmZM/x7uMg8TOReUy6LzelErtuVilSMltB1u5iyaXGX/gxAus9mp3VpgL9RJS+sJeUmh0nltBbEN7nJr4vFNrnl18hJmxqFuXNRmDcPAG2Fkcz7FtdXI4q/thU/v0Q2cbJqBgvIN8pu4rpCco9fjSL6+navltBMQzyutkPfvoAsP1sHM2SC+Le//W28+c1vbv77vPPOw8qVK7Fy5UqcddZZuOmmm6TGu+iii/CmN70JM2fObPn+HXfcgX379uFjH/sYbNvGpZdeihUrVuDmm28GANx444244IILcP7556NQKOCaa67BQw89hEcEs8yYVjwPHW8gpUOWSjdP8DqI7EaxAE3XkOvvlxozjGYY8Op1eOPj0KxcxxxuD+i4IBt54gnU93W5qHdY1KXN7Gz+fU5NUI9iSk4EA7o5uQAg19srJ1478YKTYduYf9GboJumvPjYYTI8sX0HcgMDsHoFohjiFkyN184ZH4eeyyk1KQN8p/Sc15wPzTCEmpN2yuosLJiHHb+9H0ahgNHHn0h1PGHyswcx5/zzMHDKqzC6caP034tEbRTmDqG6OZuGf3bajHaBt9IXgOU3Qry6091t3d+fWQd1//xNEUHSLdokRQMloYVJyizHbq+xP1EXcJoJLIJVPv8JA0q5aoQW6hkKXSpZoSIiK9BY/Am440QW6VKvr3B5tYxrWGCxUxQXzlqG7pJP7o9dTLU54iU0BA5jluV7ynQ7BzTLSp+pHoOIyztJjDRLJThjVWy/597u7rQOzdvys2cr3/fMShm13SliqjKIvRG51wPpIhFlxtcMXbzMPcaR7N/HRlHd/BIKc4f8ng6i92KB+47UhqfgJkOaPhvdSFsBF2CWSxjd+BTyc+Y0RGyBe63wfbv79UVsblGQm1uIbDwXi3L3ghBC4qLsHEtw/pIKkfsYoSM6ShoXNyAq5KcYO2FTw545gN4VR02OS/RZlb2WCM0Ru+kcYUQ2cVRisrpgpH7/xeJt9ZwtvlEkUnUgOIcNxhMzH0yjHPWXCWSC+He/+1186EMfav47n8+jVquhVqvhl7/8Jb75zW+SPM769etx9NFHQw99GI877jisX7+++fPjjjuu+bNKpYJDDjmk+fMomzdvxh/+8Ie2rw0b5Lrbv3zp3PHWLJfgyF70Onzgew4/HL1HHw3dMuGIlqxE8B3idTi1GoxcDrrZoWt0l0Xv3qee7pr75wsiCYJ4mjL4EJplwSMsjbEHBrD3qaew9+mn5f5QZCJRLEgttkUmrnoulxh3kzRmW8m0acKdmMD49u2wZ86E2dPTtcFT3AQ9N3MA49u2oz48Aqu3F0CKiXUC9qyZXQXcTgvD4vz5mPfGVZjxipNIXdd+k7cJ6dI3X/wVyIgWWCylIZVrWZA0ESGAmLisWlHSCdkyYUBwUZVCFE3aDGsZN4VAI1RqXi6LCcQi7xdxrrB/PZFYNAmIyiqCeCYuxck/Eorh8POSu7/GIueUzOsrViYvJ16Lj5li4Szo6E87dibnmUBOe5q2LkkIRY10WOwPrjwDuRkzuuYsd3qf83NmY3TjU0qio2HbcKpj2CcTcSIisqYoRRe9TpgVMXG0DYGoMX98yUiSyLUicEdXX3oJ+Tlz/OoPQTMGtWgvIhADks85ocdC25jlklI0idXXi/Gt25Dr74cpGCvmOQIidklsgzyrioLusT2FdHFUAshkRjcREC0BCFdgtQ4tch/LrudC6mbbGQn5Qq9HShFXFWHzicS52y2XHEi3iSNK+mbrYnNOmUgST6CHnGHbcAX1LK9LPjsAGLkcHI5MIYdMEH/sscfw6le/uuV7hmHAMAyceeaZePzxx0keZ3R0FH19fS3f6+vrw0jjptvt51Guu+46nHjiiW1fa9asITnelzu6YUqX2Pl6eJcdsEIh9e6ybhhwHQfexAS0nAXNShbE/XKXhOOEB6NUFNvlTBgkbR5ogG6Y/mSRCCOfx8Apr8LE7t1S0RoiE3RR4aI5puAiAhCfsMVNrP1S2BHU9uyB1dfbEHk7i45xx+aXx+/BxO7dsHp7AMgtSDohIuCKvAd+HhytqJqbMUM611rkvSV314ZIHTsgsmBM+Z4LO+nMFA4tEWd7iqgX4c+oZF6gqIiiddrMjBvXEWjWKThRF83JdATc5qLIiooiufRZRqYADednyrJrMRekoBgg8n5JvL7ii365DYysBHFRR3+a+YTXwfEcEDhsZcfNoqFcErrdPYu32/ueH5rTNTqlk/NdMwyUli7B3k3Pdj/gDgyuPBOjT4pXbwm5cAXF0BYErxOyMRUBIhvJQHBfFjv2pPuaWS7BHZ+Ansu1ROR1w63XoRlm92MUnJeIbzKIP2fRrFvfLSogjiWMV1qyBHPfdGGjgbrE8+12HxPdfBR8nlJCsEj1TSHlZqMAWYm0QMrYFIGoUT2fXaxD2sgMoc2SNOsnkf4dohv7HQx2YTTBzUsh8bpYkItSExHZBTew0pC28l4kRgjwHeLCkTyO2/Xt0nI5cWOkwLVGy9EaJRkfMkF8165dsCyr+e+77rqr+f+GYWBno3u3KuVyGXsi7s49e/agUqkI/TzKe97zHvz+979v+7rxxhtJjveARzTjU8rKJ1B+puC800zTb+riutANs+kYjz+U5AukW6sh19vb/abuJl8Qrd50btIs0TQduYEBTEh8JkV2QYOmqMJjOk7XMmxAtqN2+8Q619+PiR072pqOdZoMxy2YNE2Dkc9j36ZnYc+aBaB74z/P88TEykp3sdKr1aGHrrFJ5GbMkHpvu5GfM1s4O3WS7hNEwJ/Ypspd7ELg9sqksaZCzqZIqaNZLqOWgXNeNDu7BdGFuaw7VMJVKNVYUyTiRdQBJ9LoqyyXvdgN0TiXgCydWsKCdYpom2D8rhEnEBeIhaoDZF5fkUWf7CawQFNNw7YVIlPENpilEWxsKC2AiDSUsyUWvwIZyV1/qVsz3cbGeMfD6FJZU1l+qFTTxjg0w4BuGsLijWj1jOy9R2QTElDbSBa5DkltdiUI4v0nnoBZK8/wxxOM+wAgFJkCwHdMi9zPhDcZysKbDKICqahbNGm8IEoQAHRT0NAjIlRqmlAlmqi7XiqHWehekJ0DONUmqaD4J1vl5A8tOO/I6vVIG8ci8Jr455nksCI9NgQ2YwEICaKARHWiSCW2ZASHWNPf7ATx1OeWIxrTZ8ERjvcS0LNsW9jR7e+HdNl8y9mZVRIfzJAJ4j09PXjmmWea/16xYkXz/zdt2oSenh6Sx1mxYgUefvhhuCE32oMPPth8vBUrVuDBBx9s/mx0dBQbN25sOZ4wQ0NDOOGEE9q+jjjiCJLjPeARaUBgSXa8FRCTfEE8nVAWFcB1M3nH13eIRz4GmgbPdXyniG13vzl2cDnpRiO+ZZo1QLAHJEVTx+1aahYgujki5YIRdbbGjGkPzsLI409ANycXQN2iTpKOLT80BGdsHwzbBtC98Z/nONDM7otFzTC6iqxuvQZNRBAfmJEuPzsBe2AAEzvoBPb2scWPtVOOehQzRRNJUbLI7gzwRVZJ4UDgJUnjyBdpBArIix2iYqtsUz0REVs4hsmDgIBE2zhIVmAXeb5pKzGEBZSCZMxLgKjgLrjwE8q7l3h9PYFIF8005SK9MoogAiAsogEZlcjn89Lnged2X0ymblaXkm7RO77gp3d+Dbuc25qui30uu/xYKqdVqNmgfGWVaBVR2qotYcFdShDvIOY2vh/ExYmQhUNcaBNA5nomvLkt1nhXVHgWQeQ+JjyW6H1LwnQlMmbaBpUipOmlIOIMBlKutffz65HWfS66CS8/sMBcQVBol6qcE3Sck79XIs+XuP9HmPRNJcUq0mQc4iLnlFwVpcCmjWXBFWz6yYhDdmVYuXIlvvzlL8f+7Mtf/jJWrlwpNV69Xke1WkW9XofruqhWq6jVali5ciUKhQI+97nPYXx8HDfffDMefvhhXHzxxQCANWvW4LbbbsPatWtRrVZx1VVX4ZhjjsFRRx2l+hSZBGTd3J2aagbo+XyqBjxAo6NvqJRIs8zkDr8xO8a6YcBzXbjjVV8Q7zan6HKTKy1ZjLHNm7sM0XkQOQd+d6TdXAI3VQDQ87bwzr3oQsovtZUohY0cp25ZMIoF9B13bPN73QS8pAVTceECDL3utc1/d3NHerUaNLO7iA00dpE7nPNerSbhEO8ecSIqigRifRZu69zMmRjfvl349716HbrVfeEJBA0qxaNeZMT2XF9fZpUfUmXQaIjWgpN8OeeD+KI3zTGLiSgVqc0B0cUEFWliIjphyG7iCD5fTU8hiosKKAKNCuMQEZwBCYe4gNgs9fqKuhZlEMgwTYvoue/Ph8RFfNGxU/USEHCISy1+hV7azo1VhXqbdGkQKSSgpYwaCmP19EjlZmfRCE000kS3rOR5eKfxBe8VRkF8Q0Ymrk9sPFfI+CAaGyN639UMw78HiCB6LxeM2BK53gIQilPzz02Bc0gg21f0uKSuK8IOdrHhZEnV/FKiMat8HEs2TmtRUjuEBSO6ZHspeKJ57SJjCRsRBDcyRCI4JM8voflA2oatAvg9NFLoQ57YJpFmGuKRsqJNNSWOt1PfPqBReeOm70HCxEO2cvzYxz6Gr3/96/irv/or3H777XjsscfwP//zP3jnO9+Jr3/96/jHf/xHqfGuvfZaFAoFfOYzn8HNN9+MQqGAd7/73bAsCz/5yU/wwx/+EH19ffjUpz6FH/zgBxgcHAQAHHHEEbj++uvx13/915gxYwb++Mc/4qabbqJ6mkwMuuwNVaAkRLdMsd3FmBtutImmbprw6klNNWMazRgGvLoDd6LhEEc3QTrGZR7C7OnpvsjokjmZZiHRCU3TpSYrnusIlRpJiSOCE3SZiatbr0Mz2wXT2eecDbNcbv67m8ietGDSNK3l+93iM9yauIBr9fV2zBF3a7XY5xZFDyKDuogTXsJrFYeflUzfIMXq7UFtj3iuddL7G4c9OAvj2zo3Pwsjs0j2M987l82nxW8+JicCizq1rF65xpqii0uZ0m1ApjpEvhGb0IRXpLmZSHWUbZM6NWSdOlmUh4fHFotMya4JJCAR+SKQQ0tdJg9AqumjcKNSyUx+mbHTxNEJi1+yCAgJqc+vBLqVrotH73SqMBOtVuhybetybpmVzpFtrcckGHsjWVUlGmnS/H3pTRMx97DUhoxgo07NMoWuF55TF9sUEI0mkIk/ErxWiF7P/GukwNrLFXvfdTvfVbwSvY8ZBYGsY8H3VmZd4Ynmkk8jRGJNAPnYr8bo2dwPBEnrPvcE40iMfGdzUtu4jqDzXGRzSLAiRrRJJ6VY3xxTohotC6Q2AkOIRl12E6TbxuymZ+Vy4hEnGW0iMd0hO6OPPvpo/PSnP8Xdd9+Nc889F0ceeSTOO+883H333bj11ltx9NFHS4139dVXw/O8lq9vf/vbzce6//77MTY2hg0bNuCcc85p+duLL74YTz31FPbt24fbb78dixYtonqaTAwy+UiA2I1atyy4SSJ2F/RcDvXR0aabVtONDpPw9h1jv/FUvdlcR++UQY7ggph8PIaVg9ulrNrrsHOp5SzxBg9o3ADFMhSEdxmj+dtJ+FEkEpNMIde5RGmj44iVrnYRHWXEYsPOJU6eXEFXN9BdZHUFM8SBQMDuvHCQObZcf7+Q61wWv0RZE3Zj+A5xwddA0rUsu3kh22hUFNlMR0+wXBsArJ5eqcaaUrmjkk15hBs+ZVAamDb3Ogq1C0beqSPah0H++Ypf89NniAs5mgUXP56AQCPz+go3fjUk3ETCjUpTVMiJLvYLBThV+RJ5kQ1xWWcd0P09SV8enTRel/mESIO/bpVhAhsI3Zr7igjHUpunWVQ8QFzAAeTmcq3jCy5VhcVh8ZgXkepEry42nujrKyM4ifYGod7U8hwHusAc2SwV4Yx1vj+IRqYYpVLXe41MRYFwNauo6SDF9U8Y2bFF7zUK8aRd0cTn9nLDpnSfC4iXQIpcdUHnudB9XXhjW6JyTkSslzm/BDeIpJzWU4FgpbvkoF1fX9+AKHjCZmesZ7pAemacddZZeOyxx/DYY4/hrrvuwmOPPYbHH38cZ599NuXDMNMMPWfDk1m8CVwXZBs0Rv/W2TcGI58XOJZ2IVo3Tbj1OpzxcRh2DuiWEyoQAdN1ItzBNW9YltSGg0gJDyCbg9z9og8ARrH7hLU5okwpbJcJdcuYAqWr3Raj0kJ2gjjqCeZ+A0Cur3MDVtHIFMDP5h7vks0tNd6sWahu3Sr0u7KIRrwAvmgtulERfOZEHWky75WfL5pNPl7zuEU3CSQEA2khX9BdoumyFSeCDr2Myi6lm4B2gTROSGJhIlUenlFD1bSbFqIZp+LjibqvO0dmNJFwXMvEhIlEA6RphCqePZpubFI3vwRUm1fN8bpsCIiIc11L9kXiSbpVXYk4uiXuQ8IVULJxATKVVT3yjTWlxu/tFarcEnW1i/ewEBdatEgFq8rxAZIxLKJikMA54DkSTZe7VR0IOuLNYrFjZQYgvtkh5RAXvs9m2VhTMppUVPxNsUklilHISzmts0Z03inbtFPYeS5wfsjcx4WOUVCsl3HFy1WjZdf/Q7raSNItTxpVm8FShjpK92CHVBD/zW9+gy984QvYunUrTj31VBx66KGUwzPTFD2XkxRsBd1GIheQhN9xx8ehF7oL4n4JTesgvkPc8cew813d6iJdgf2d0k5jJO/iarmcnENcdCIkmyMugJ/jSCuI+y5iQ2iR5rtlxZpYdtqx9eo16DlBIXtGPyZ27Y79mYyw3m2C7tZq0ETzswdmdG1W6dbqwuPJONFkGyTlZ8/umrHfHLsuFhsTYJZLwi5xtyb+ngMpmglLkJs5o+uGRoBouTYg37QRkBClpYRc8QW/iIAgi9FlQ0wGPd85ggEIXIuCzWBlIiIoS80jeIKu4NSitkTeu2aICTTCG6wCsQVyFUwSwkqG7xe1gC89NrGbG6BvztYtf1Tkfe/2PEVEOaPUOTKFPOdauFGj3Gah/1zFPsd+xIt4hRIQzCfEXofcwIBQTxLhRp2SPSxEEIkB8+p1Ifc1INGsVOJ6K3IPEu4DItCkU3Q+4FegEo0lExWS4WajKNJiu2Bkim5Z8JxsXLxZiu1ZxopJu+YFncciMSeiEVG6YI62eEyMxHsl+nwLBem5hijpYgA9YV1aNy3ydQelgK1b9Md3sEMmiH/rW9/CypUr8U//9E8488wzceONN1INzUxzpJsDCQjIzd9LiWbo0EViBLz2m4XWiEjx6r7b2M8k7zRh6C5Ad518ecmxK/4CTrJpqVAztALqxJMV3TCFc7pkHCtWX69Q1rRoGSeAjhMqd0LC2T1jBsa3x4uXnkQMBwAYdh71BCenOz4OPZcTGkckW9St1aALNvzUNE144eU0ooZEyc0cQPWlLUKldW5NfKEIAPbgIMaef17odz2J18MfexaqL20RG1vSyVAYmovqi4KbBBIl60EGfhYTKbMs3mBS5rOfJke865iEmfhirjXx98iQcK8Li1wpNj9lcyLTuHVkYgG6Z8cKlt0LLnblRGCJ0vuM3i/xEvkUorWgsyoLh6RUebzA73XbwBL5rHY7h4Tyuru8VjJNUoWu557Y5pVZLgvnkgNy959cXx9qe+R6b8hsDNgzB7oaAWTGzOLeI+LolumV0q1BfIBMrxFDoFm0sBNboMJDOENcZCzBTcfA+CSC8HPNp4ijEkR27KluMB6HnmLzVXjsNLFigmY82fuYaMa8yNxDtBrB/x2BG57EJoBMhJBIc/A0EVmipGkGK9PUXLNMeIRVwNQGKj2Xg5dBnOTBDNnV8otf/CJuuOEGbNu2Dddffz2+9KUvUQ3NTHOk8pGAhvgrmKWXUhWfeeYZsGcPCh1K9Fj8zHB/oqRB8y+MXfLMu3YF7naz6eDqtvp6UUtwIMePJeZG9MvoBV1okm+DiDji1cWdxN3iRJpjSjhPO8UmuOPjMGyByB34Nzq4bsvkeu+mZzHyxJPYu+lZWL29QuMAQH5oDsaeey72Z/W9e2GWSkLjaJoG3TI7Z5TWxEX/4Nj2PLKh6yLCnRhvNqMVPdbigvkYXv8IaSNQACjMn4exF18Umtz6jnnx16Mwbx5GN24U+l13YgK6Jb5JYPX3CUebuHXxKgQAsAfEI2pk6NaotgUZQbxcpnfpibrqRMaqdB9LpmpCJs5FPOM9hQgqsaDWJftcBOMLC+IC9yrxUmPB10IqJkTUIS4orJTSZL5n62IUEVNFG33tT4xuTTUFPqt6vrMYIyISdxP6RTfRRDbkZLAErmdhZBzcRqkoX5kjI+TmxSIaRF3tei5Hfj6LCNiBGUdoPMHXVLTfBOBHxXTbFBHeVBDdMCZq+ClzPooiFZmSpUNcMjIlq8g5UWQrhmQq6dJuvmZyHxOsphPaPJcwT4ggGhMi83rKRahls0Gkp5preMLXBqlGmCLj2Ta5IC6VzMB0hUwQf/bZZ7F69WoAwOrVq7Fp0yaqoZmXGZ5A5jYgViadhGHlWiJItKQGkjHivGYacEOP65fOqJWUGZYFp+NuXnLOl2HnUR/bJ96cwgMgWJbtZnCzMooFsXgNzxPPhuzrQ01AEAfES/jNnp42t9L4tm1+fny1Cj0vLuras2ZizyN/xujGpzDy2OPYt2kTDNtGdfNmmD09wuMUFy7A2AsvYHTjU21f7vi4lPDZu+Io7Pzd7xJv6s7YGIxCQXi8wrx50DRgz/pHsHfTs4nitTs+ISWIA0Bl+aGojYxiZMOjGN34FKpb4p3Xzr59MEtF4XE1TUPPUUdi1+//0NVhKhNvA/gVFkY+j/EdO7v+ricZx6JpmpgrFn41g8xx5wRddLKYPRVh959bE495kRLaBdFN089ATUDG7SwkcEjkvHfrb9A2rmB5raybSspRWCgkVrYkji/h/DRL3RvHCbsMBRfpwtFjMqX3glnDpkDzuLaRRc8F4giSMKKNvmTRzO5VLV6HKrswXRfSos0nO10iBKsVOlWpSTUaFNlAE9TG/JgQSUFcpkJJ06Sur7LRMYYtEEsgWGmmaVqzpxAVVm/7vDOKTGSKZhikPREAwOrp6RptI1oZINIUmbIpqaibu/n7IueicCRGNte/VGNLRZJl0/xQPubFk9v8yiqvXTZDXPC4RVzNss7+riYiwaaaUueXTPWc5OsoSpo4HtHqdYB+nqTncnAFIm5kxvNYECeFTBB33UmR0zAM1KdTZ1lmShB2cwsuNDXDjy6hQDOtxBt+1N2tmaZ/oWmU1miWKe9+iz5GtxzwmOaeYYrz52Pv00+LPZjohoNuiN8gJIwGVm8vJnZ2FwllxqR0dAbkZ8/Gvk3PNv9dfeklbFl7O4bXP+KLxSJNWRuUD12G3IwZ0G0bRqmEGa98BYoLF2DBWy6Rcmlouo7+k06EbtttX/0nnST1/KzeXhTmzcOuPzyIvU8/0/Y1tnkzrJ6K+LFpGvpOOB65gQFUN2/GyIZHY8fd+9TTUq54wJ+QD7zyZJg9PdBtG8OPbMDoU083xwyE4dqeYakNBgDIz5mD4sKF2Pnb3/ljJYiNfpNRcfc5APQddyx2//HBrhM52RgZACgMzcHep5/p+nsyzUCBRsSPgIgviz0wgImE6KA2JDbDRBzYadAMPVlkk3Wwd9sAlFjkGCWBJmShcYWFBNliK8lIE9HGx83hBZuy+eOXUN/XWfSTajAqtPCjywWVxS+vlZ1ziB1vlq7BrBySos46kbL1bgtdX5BQc+gJu/WLyRs9ouezbOZ312OSrE7wBWvxpaTvEpcT3GXej9zM7jnibr0GTTAezezpkW4E2gk/+7XzukYmMgUAdLO7oOkKis5AsMnSPaubTngWb0oKTetolJLZfNYtwf5MgpdMeRe3uCNaNn7C8zyh7Gggm94PgPy9UbRvSXPsjNz4wptMAa7YmlvE1SwTVSdkdBBtqinpEBeOiJHcEMm0QkDi/NJzFtwace8Swgazes6CwxnipMit/jswPj6OT33qU81/j42NtfwbAK655hqqh2OmGbppNeIMBDOJBW7UflRJHZAzm8aPZRrwanUgFxks5jB0K4f6yEjT5ap3ENNFMXI5THRchHVWK/JDc7DzgXVCZY+izrasMMsl1PbQRjJoug7P9fxJHtFzMytlAMDokxuhmQb2Pv0Mhl53AYYffQwTu3ZL5efqloXi/Hntx53iWK2eHliSom8S5WWHYOzFzX52XoTKYYcJR7AE6KaJ4vx5yA/OQvWll2J/p7BgPvJzZksfq57LNV9Dq7cHtUZkiFt3sPO3v0N52VI4Y/tgSLrPg0gWzTThjO3DznXrUF66BGZPL3J9k8K9MzYGe7bccRuFAnIDMzD85w0oLVoIs1yO/T2vlkIQnzcPI7f/GpXDlnd0i7kTtea5LIJums2IH8rSTM0wAF0Xc9pLfCx0285ksWbPno3qS1tQXDC/7Wf+ayM2PTJsu3sZt4RrTcaZ4rniEVGyyCzM/GZn2TnEjaLAJoFEGS9lrmka9/3LlaxeC1+w2ddxA9cTdHGKRZWIuLu1xHPYc1zodvfrh9nYSDLL7fdh8aaFJeFeFiJIb55JlvjnZvSjtmsXrIrYZrwr2YclPzgLoxufQnF++3U9wKuJC85Wby8mdu1Grr8/fizHERKHwgR5sklzAtloOL/acRj2wIzE3/Ec8RgWISe240C3xeY0up3zYwglTCZJBBtASXNkqftKwe/Zk5OcmyXhX//kBGBxR7TktVVmQztwRAt+JkWRFa2l5hyFPOrbujfQnQqEG3CH4lgTx5KI1wsE506fK9ENS5n3SjjiSHY+ILOJkyafXnBzAGhEkhBGkel5G3XCqErNysHbLdePg+kMmSB+yimn4K677mr++1WvelXLv/d3lhWTLcGER6QpnSe4C6hb3ZpZiqNbFtwuOeDN383bqA2PoDCv0jwOVae61q3xaJfFnKbpsGfMQG14BLm+vo6PJSMaa7oG16mLNSAVxCyVUNtGH5mU6+vFvmefQ2nRQpLxNE1D/wnHN+M5Zpx8MsxyCf3HH0fquNqfaIYRK/ipoudyKC6keR/isCqVlgWzkffz13qPPSb1mIWhOf5YhSLcahW71q1D5fDDmj+f2LkTPSuOkh63d8VR2Pfc89j5uwdQXn4o7IGBtigaZ3xCePEYoBkGKocdht0PPoTeo45MjLdxaxNSzUABwJ49iH3PPY/S4kWJv5NmoZ8fnIXxrdtQmDdX6u86oWlas9msWUyO+JFxWwFAYWgIw3/+c+znw3fTyT33Ttdd2VgB4ccUdJECfuWTTCyQv1gX3BQoFOX6XDTHFxQu8t0bS4uOp9s2HMLS1SzntpQbwC10EHOVhhVt9CWJIdJk1G1vkJ4G4aiSgp9XbRbbI7zEs/39fGV7VswPCZsWSqPrwueHbGZzbsYARh57XHj+4DlpxOHOQoFbFxfZ84OzsOP+B1BeuiR+rA7CdhL2zAFUX3op8TXw6nXhay8QNCvd3UUQr0v1MQmatSbdL2SuH1ZvL2q7d8OYM0f48ZMIGsZ3FMSFM+1LcPbtBfq6VDSKFtJKbk7LHKumy/Xq8hxX+HOTVfNDkbicMDLzmXQZ0hJ44vdfzxWLJRFCppoweN/6Ohyb4OdU6r0SFJZl5y5ym1nyVQ1Smw12HmOE55dBnCFu2Dl2iBNDpoLdcccdVEMxByB6LgdnfAKmiOFU1MnTcJ1ToJniorZumHDGxiZzkE3Td5cr4JdJJl+8RBpfWP1+jnY3QRyCTTSAyeZQerHLpUBijavpBuB55Avu8vLl2HHvvdAMo02sMgpF3+0ruRY3CgWUFi9u+Z6ey5E5RhgaCnPpBNZAGDfL5ZaczMoRhwvndobRLQvlpUv8HOWREex8al0zQidwszt798KeNVP+WOfNhTM2hp3r/oDeo1e0ONoDvFpdKp8cAMpLl2Dbnb9BceGCxGuxK5FjGpAfmoPRJ54kFcQBID93CNWXNqO8dGni73j1ulwGfMNpFrfokRVh9IZ7K8mpI3ts4oKleKm5WSmjPjKK3Ix4p2PbyI4LzRYcu5giQ9x1hIWkoEKo43iCDZWFhQV6XVeKoFJAtiJGhE5i7nTEKOS7xjHJZK8GmeSxn0mZfNSxsfjXUHAMs1TEeILLUTTiQsR1KItZKnZ04YZxazVoEg5uq7cH9dERKSFZKnau0X9josNcWcYhbhQKMPI2qi+9hHyMoOt/RuXmi6WlS7D9rnsSBXEZwR7we+yMPvlkx9/x6g60gsz75IvY9qy43Ro5MdeeOYDq1q2xr58sVqWMiU7OSImNVv88J95MkkEyL1oGWXFRKhYoq3ujxNo1y8gUYLJCXSSO0N98oFnryrrku4nCWWx8ezKbzxLnitQ9PEWsnOeJXxsCkycVvhGji6lD4sXSczl4XJlICumV+De/+Q2+8IUv4J577qEcljkAkOmg63liOU661bmZjczFQ0shagdlrL67XNEh3sW5KNIR3CyVUBdqBiaWZwZk15gk15gAJyHr5gR80aX/pJPgjI2hPrq35Wvn/ff7zyOjySXz8sOeNRPlQ5Y2vwpDQ0rjFYbmoLL8UJSWLkFt9x7s/N06VLds8b9e2iKdqw4ELvHlKC1agF0PPIDqSy+15dC5ExPQJJxfgD+ZKixYgOENGxI36vzFgJwgblYqqO0ZTt0MOYn8nNmobu4cCyArzACNZr0xbkJ3oibl+rMaz7vjscm4HEsCjlhJrEoF9VGJRa9EObe/sSrZ4EiwKVuA0WVBIeuq7NrASeL2lEVTMqOYZYO2bMUEmeZYIpgCDnHPldgc6tC0VDj/O58sRoiKEEYhuXEyuZAh8ZZYjQgOEVzBBpUBmqahtHgxxjbHR65R4FdW/Sm58bfkZm/fscdg95/WN+/n7sQEnPFxVLds9RuwS25a6ZYFs1xCdUv8HFm0yWSAWS51zWX3G3VKOPn7+zDRocTfc8UjWKze3s7nk8S5aVY6N32VybQ3iRvSAo3NW8H5j0xkSnAcotnWUk55AWE1ehwyiN4PpPKzLQuek12vOqG+FQESkXhBpV4SUpVzhUL3Jp2S8yyh90rifYKmyZ2zMpWUsuehhDai6Ybf744IofEkMs413SCfZx3skKlH3/rWt7By5Ur80z/9E84880zceOONVEMz+wmp3SqZ3TQPNE01ZRokdBHXowyecxashrvEF7MzvvB43XO/ddsWy8zyxEv3gpLdzofmSt94yssOwciGRzG+bVvs5FDaMdkg19eLyqHL2r56jjoSO+9/AEZBPaOQYVQozp+PniMOR3H+PNR270Ft9x6Uly+TLqtuGXPhQvSdcDwmdu3Gzt/+DuPbtjW+tqO+b5+0Qw0AyocshVerY/dDf8L4tm3tQrtEvEaApmkoLlqIkcefSPydNJthhm3DrdU6LjT9rFm54y3MHcK+Z59rP8bahNRY9uBgM3op9tgm5F5LoyTYKE9GSCiXURsRb2bnSgjMaZp2ykYtWP19mOgQyyIjclE3fzRL3QUpWbJqdAYEJfIZjZ1BjrjQayHTkK1Y7Pj5Elk0dxJMhEX1Qr5DU02JzGeBpooydLuetSDhugvID83B2AsvpDgyMXJ9vTBLxdhrOwDp3HOjUEDv0StQ270H49u2Y9fv/+A36X7mGexa93upHh4BPUcdiV1/+COqW7a2XzsEq2gD/Aoat6PQJnM9B4Bcfz8mdu9O/LmM0OZXu9CU9xvFYmJjdP+4xPtqdLsOpEHmPisTEQJIGs8kRNqsjFGAXE8UKaE1Y/zXROweKRXF0aUZpMxYQk06ZURmwXhYmT5lftyd2HxA9vMgPed0PekoRFK0zrqazKa+/wcEx8Q0ITszvvjFL+KGG27Atm3bcP311+NLX/oS1dDM/kJmgZETXwSJdr/udnH2XdWiJbJy8Su6aXV1dUvTqZGTQAMUTdOFLoAynbrNUrGrQ0J2hxnwBazy8uXY9+xzvuC2Y2fLV310r3SmcicK8+ZhfNs26SaRDJMVpSWLUTlsOSqHLe/Y4EsUe2DAF9oXLsD4tu0Y37YdI48/jtqePamchLplofeYo2H19KC6dRt23PfblggZZ6xzs54kiosWYuz55zG+Y0esMySN0A4A9qyBjiKKl2Jce+ZMVF96qc0lLpsLm5vR39FNJ/uczVIJdZFFtcQtyqyUpUTbNBUCMo4VWQdsrr8ftU4CjcTxmpWKXIl4t/F6KmLvlwTSgrjU5kiyQ1qVLMQVzTDgOZ1dZn7DcXFnqGpUQqf3R9TlpxlGYnyPlMOzS464zJwQCOKV6D4fbeMXi9B0PbExNwW9xxyNkUcfRXXLFpKKpcLQHFQOW47eFUfBnj2I4sIF6D/xBJSXL09VXWaWShh45SswsWMHdvz2fozv2IHxHTvbNqZFKS1ZgpFHH0v8ub/BIn49NwoFOPv2JV7TvXpdakPTsHOxnxfZc1PTNGh6suvUlTDb6JYlFjck7WAX++zIOKIBuXuCv24TFFYlNjFlXakyTaxlIjNSIXHoWR1312aQaTLEOx+dXMW4gFFAyskv0fxS9vMAiWoMAFKaFgBohk6WUgB0NzWK6EBMdpC98s8++yxWr14NAFi9ejU2baJvqsdMLX62qqDg3K1pZOvAEGuq2Tl3289PFXSIm3IO8SwIGljGInGh7noRFoykAcQmWJ5TTyW4FefPQ9/xx8EoFFDdvLn5te/ZZ7HtrrtgEnY01zQNQ6tej8ryQ8nGZJjpSGnJYvQceQR6jjwCA696JeZc8JrUY2m6jsryQ9F71JEoLV7kx7y89BImdu/GxI4dMEryGcO6aaLv+OMx+vgTGN7wKCZ272lZRDljYzA6NMdMorRkKUYee7xFtA/j1mtCeY9hNMNA/4knYOcD6zC+bRsmdu/2I5n2yR2jpuvQLStRzJAVl3MDAxjfHp8tnBZ/Mi4utsgK1kaxICWyypS2A40S/l0dSvgdR9ghTi34WcQCO5BCEJfZHJF1tMsICRKLaunSs07jSQh+hmhUQqcxOpzvMi6/JGQ+f2aXihKZMnzAn0/550h2zcV7VxyF3X96uGMDTJWScMO2MXDKq7Dv2eew5+H1mNi9uymeqJaal5cuRWnJYuimicqhy1JH2+Rm9KPnyCPQd+yxqG5+CdUXX8S2O3+TysVYXDAf1S1bkwVsiYqDAKu3FxM7d8b+zK3VpEwt+TlzYmNy/M1nufu2WU7e3E2zMU4ZPRD06hB6XNl7rERlT1aNvGVd3FIivmRUkEw8jSyysWLConOX10M6NoZQ1xB+r2Sy3gsFOae9VOVOXm4DMUVlUMfNfdmN5mJyRBoAwJEbD5rmV/AzJJAJ4m4om8cwDNT3s/jIEOBBXHDuKl6Hx/WE1kHdRGxPIGZk8vjEm2pmhWbb8JJeI8EYGT1ndd94cMU6QANBA8wuZTwKWZaarqPniMPRu+Ko5lffcceicthhKC5ckGrMJAzbJm8ewjDTGc0wyJrulRYvxoxXnozq1m1+qbnnIT97dqqx7JkD6D/5JMDzMLx+PUaf3Ija8DBqw8MY37YdZlm+xNwsFtB3wgnY+bsHGmXmrWKNvxCWb4pqDwxgxsknYWzzS9j37HPY9pu7UNszDLMkd4z5ObNRfXFz7M+kHeLFLhPxFEgteiGfyW31dY40aUNycRKUXncSfETve1algloHAVtWIPHL5KkF8eQ4DVU6ZWirIuqsk55XdMnPlRFTKJrp+a7K+LmYlBiVEHciI2BavT2odfjsyW4+Ab6AmaWD2yyX0X/88dj5wLrELG3ZSp0oVk8P+k84HpplYuSxx7Hn4fVwxselsrSnAnvWTH9+fPQKVJYfip6jjpQeQ9N12DMHsPfpp2N/7tXkjS3lZcsw/MifY3/mjsvFihXmz8PejRvbBEx/g1xu493q68V4QpNd2YpWobhPmc3GcgW1YcF7gaQj2q8EkYnxoD/P/WuJRKVBNxGwZWy5bH89w14Yej6byLJux5xm44qKbnEuTTyZDQCJ90j28yAZ/eZXo8h+3jpVXombRifH63C8nid37bIE9CBGGPnVYwLj4+P41Kc+1fz32NhYy78B4JprrqF6OGYKEG1+CXRvGhkZWOiipJkWQJQhDlNVEPd34mQuflH0RldkIx/jPBTMDPSbl43DyCWLYLJlR3ohD3esCqMQ74iULbXshqZp6Dn8MLLxGIahwapU0HfM0SRj6aaJ3hVHwa3VMPznDRjd+BQA//NfSfn5twdmoP+kk7D36acxvm07+hsVKJpl+hniKTcHrN7e5vMeLZex8/7fYeCVJ0uNUZg/D9vuvAv2rFkwSsWWBUMa11rg4k2zeZCEnvNd7CKbKJ7jSG0w5Pr6/Nzh+fOEfj+NizZwYls9PbE/F12k+Q7DDo7ael3qnueXBXcWVTzHkVuMyTT1kkQkgiTAX0SKj20US6hu6S6kyjaU0+08nOo4zITKDZnMXCkDRwKdzjWZ8ydYdOuRc1pG0MoNDGD0iSeTj6cm1yQY8Df4dv7uAZSXHSL1dzLYs2ZixitfgV2//wPc8XHkh+b4rkfPg7NvHyZ27krVjDqMZhjoPeooeI6DPQ+vx/a77oY9OEj0DOgpLV6c+m97jjwCW+/4DcxyGfnIc5QVGwHA6vGrOJ2xsZj1gVzerW5ZKC1Zgj2P/BnlpUub36+P7oUpKYgX5s3Dtjt/g9KSxdIbvVGs3l7Udu+GMWdO8i9lFrUh2zy1jL3btomNLRGZAgDQdKGNPNnNNbNUwr7nkyu7wriyzWRLJdT37YVZFozKlLmPiYrDkhiFPMa3xm8AAo1NQIsuTlQGI58XbqYsPmahYxVQGNnPg6yLX3bOYRTyneeJntx4ZrGIfZ2qHCUd53rOglurw6DxRB30kKlcp5xyCu66667mv1/1qle1/Fv1psXsB4hLWpuIZoh3axTkiTuhddMXTNISNOU0FG5U/iIswVEkuOjUcw03Q4e0EU+yIU8gvHQSxHV2XjMMkwLdstB37DFk4+X6epE7/jjU9uzB6JMbAQDjO3YiN6O/ZaGdltKSxbBnzZT+O8O20bviSOxctw6lRYtgz54NTWs4gsbHpcX6oMS8cuiy2J+nKfO2BwdRfWkLSosWdv1dV9JRaPX1YuSx5AzbKL6jW7IZ35w5qG5+KV4Ql3g5fEG4Q4NWSWeqyPzWz7YVn3Jrup6YLx1FVmyXQXZD3KyUUX+ie2SArJPTLBbgjO1LFsRly+0NQ6oRa+wYlhl7rngS41q9Pajt3tN2Tss4Bf1qyk4Nh2vSpgY9l4Nu2xjftg32rFnJ4yrODa1KBQOveiWG/7wBe5/ZhP6TTkT1xRcx9sKLGHvxRcw643Sl8QM0w0Dfccdi+M8byKsTpwt6LoeBU16JXet+D3diAvnZs5sbsZ6TLp+5cvhh2PHb+zHrjNOV3+vS0iXY8/D65n3CqVYxvn0HZrziJKlxDNuGPWsWJrbvSHWvDmPPnInqli3IJwjiaTLORZE1L1m9PeKCpSt33bZ6KqgNDyPX39/x96RjLUpFOILVOLLuaKvHfz2imz+xY0vqGVLNQCXw+8MkVxC4tZpUhJBmGqn78kTR8wU4Lwk0U5bZWJAQrWXPLZl88ub4EvMks1jE+LYO0YWS1wY/Zq1TXI7k88/l4E6MA6AzzRzMkAnid9xxB9VQXSlHHFPVahWve93r8JOf/AQAsHjxYmzZsgXG/8/enYe3VV75A//ee7Xvi+V9t7NvTuwkQEgIS1OghUJb9rQFytpOoWXaaacsoZROf3ToMlNaoKUN7UBhSFdg2gIuhRgCIXb2xFlsx1u8y7J2WdK99/eHsIhjy9aVZcuSzud5/BC0vHolW3c597znfPiHVVZWhiNHjszZ/DKGCEDSMsv4sqjFOGuIT5t1LsbfLCIyp/Enl1IaIjAyWaTcyQwD4mKsoHycQWxOqZy2ZpbUALbCYoG/uzvmSY8Y5gEKiBNC5hG50Qhz7RoAgL+3F6MDg5CbTTMel2EYyBPsb6AuLITCaoXz0GGMDg4i7PNDXVT4YdaPtBMWVV4u7Lv3xA6IS8xiBgBVQT6chw7HFRBPJANwqqDchNGlZrABUOba4Gltg37RQknPmwynViHs9U7aiDmRUg2MTDbliWkiqwTiPfGUUj89OjTHxnUiLbV0DqdUxhdIkJoNNl3tVYkZsMocK4J2+7iyUFIvMo2V3lFarePnIqEckMJkhq+7e0KQVnLgSamIufpDCCYWMDEsWQz77g9g23j+xKA/zyPocCSlkTmnUsG8ZjXcx0/AdfgwwLKwnrsefCCQ1BUyQCSLOpPJ9XpYzz0HzsNH4DraDNvG86O9NRJJTFPl5iLs8WJ4TyNMq2vAyuUJ18dnWHbcxXGR5zFy4CAUFovksXRVVbDveg+2CzaCVSg++q5IfItyowHukydj3i9KvJAJxB+kFEPS9uFjvz8xjnNfqSuw5CYTQiPOpAfEpQSWRT4sKTtabjTA3zt5mboJY0vMDmYYRtJF9nhNd5wkdVsdXWEUayWNxNUNyc6Kl9qcVFp9etWUjdYnjC8xWZBVKqcuySKhPC0wVqJW/LAB+MTvkNQL9KxSASE4s5Vu5CNp2c7U4/FEf5xOJ/Ly8nDttdeOe8yf/vSn6GMoGJ4gCQFnIM761h+OK6lxQKxhhBnurc6oez+dSHb3zGqQswo5+BjLdCPlaeIomRJPN3AJmfMAINNN3WArWVefCSFkNqgLCmBatXJerETjlEpY6mphWbcWORvORcjhgLoovjIiZxoLQAVjHPBLyUIdI/vw5CmZTcTOxKmmOYE4QyJL+Fm5HJxGPXnNYYm/enVhIfyxar4nEECU6XUxG74CH2bTShyTVariqr8qhMOS644qrFYEh6dfyh4Jtku/ID7d35jUgM202VUSL7Aoc3MROLvJn8S69jK9Pu4GerHEyvqUGnhSWCwI2ievq5zoMZxMp4O2ohwDb72N0cFBCKFQ9Gfw7QZ4205BW1EuedxY9IsWwrJuLSx1tWAVCsgNhhk3J81GnEoFS10tjCtWYOTAQfT+318lN648k66yAjK9Ho6mvXDs3RdZkZKEXQjDcTCvWZ1QHxS5QQ9TzUqM7D+I4Q8aIYRCCe3XIgHb2EElIYELz/FuF4Sw9O9lvI0PRYn1mOVGY1ylLaSu7JGUMR+WliEeaY4sIftcak31WWrayU0VaBWlfb5ygyH+mvXTiKxAT25WvKTybBL34dM2vTwbLwBx9sUDIgFsURBiJk8KCayel5uMCI7E+J5JTD5k5XH0PyBxS15h4BT5+9//Do/Hg8985jMJPb+3txe9k1xhbG5ununU0t5UDYwmw36YGcQpVVOPKzHQPuU4CRwsixDBgIkE1ONtPimTQQzPsOakTA4xNPkJsyiIca0e51RK8NPssKReZWXAgNNqEfZ6xjWSE0UBEEWEvV4oc2a2LJEQQrINK5fDsk5aLfIzGZYshq+jEwqTacJ9iZyoA5ET37DLNePavJNR5edFSrLEESSTkkV7JsPixRjc2QDbBRvBqVQf7cMlxkJU+Xmwv//BpBn4QjAIVimx5nKuDaMDgxOyhaNjJhCUVNqsCA4NQVY6dUZ/IqsF5KZI7VxV3tTLzaXWdQU+alTHqWIfC0oumaLVIjDFcm4hHIZMEX8tYoXFDOeBgxPGkBYQ18VspBuvWOV7pK5SUOXnwdPaBnVh4YT7xLD0izFjdJWVUNpscB46PO52bUV5UoPhJPnUBflQF+TD294BLkapoXgZP2z0ObL/AAb++TZkWml1v2eDKj8fqvx8OI8cxfAHeyJJXAnsE1mFHHwgMOn2KpGVPQqzGcHhSBm3qYihMFiJ9dMVFjOC9uHp665LaHwIAPJpLuhGh5XaDBmRQGusz3cmYzMMA1EU48uYD4XBSMz0l+sjzbInO/4aP7ikYaEuKoD7+AmYalZJe+Ik5EZjpPlxSfGMx0p5QonUGt9KpbQ+KxKbVgJj/WY8kOsmrhoVE0xEGO3vh3KSVTGRsnrxb2tYhQJCHBnyoigtlpet0v7S+/bt23H99ddDfVb94y984Quw2WzYvHkz3n333ZjPf/rpp1FbWzvhZ+vWrbM99XkvkeUlcV1dFEVJV+lijyO9Jp4IEUPvvIvRoaFIeZd4a5DHKHcipezKWFPNyScWX3A+WkN8KhIzA4BIttyZTZlEUcDw7g8wcvAQhEAg2lyHEELI3Iic/Nrh6z494T5hVHpZDyBSNsV/dmZskqjy8qYMWo6TYIahTKeFZW0dHHv3Y+jd9+Bo2hs5MZF4ssvK5YAoIjhJkyMhJL2xldJmmzxz/UNSl8cDY4GV6bO4hVACDfOMptiZSmcQ+cQyJKcLrkgNfkybdZnAkni52QRfZ+dHc5L4OxormTJTnFI5IdNN6kUOmcEQM8NTCEkv+3AmuV6PnPPOHfdDwfD0oS0vi6vOcjxMNaugKsiDunjmAbhkMS5bipwN54FVqWKWGJuKtqwMzsOTryQXEthuK3OsGB2aovZwdGzpF6qUNltcY0vFcFxcq66l1jkGAEWcn4fU8lzAWG+J6TPmE8nGV+XnTVxFlATqkpJJjzsASD4uUphNCNqHJ70vcoE3gaTBJK8gHCshNO3rSuwrw3Dch73u4iMKvOTqBEqrJebnK/LS/17lRgOC9mHwwYlxnEjJFInliOLIEB9qiB0DJR9J64D40NAQXnnlFdx6663jbn/uuefQ3t6Ozs5OXHfddbjsssvQ0dEx6Rh33nknmpqaJvw899xzc/EW5jXJNQwVimnrWwMfZobFu1FimMhGbNJxREmrpFmZHII/AFYmi1xR5eNviMDIZJM3+JTQVIFRxK4hLsbbaJTlInWrpiA1QxwAFEYjOI0Gjn37Ij9790NTXg5zTQ2My5dLX2pGCCFkRhiWhXXDefCcPAnXsfENK0Mu1+TNJaehtEUymWcDp1aDHw3MWkmWMUpbDmwbN8C26XwIwSAce/clVMvYVLMKw3saoxcIfJ2d6Hn5VXjb2iVnVDIcB1Yui3kMlEiGeGQ5dDxZe9KDNpxaFd/S+wQyxJU5OVM3o8KHJ6eS6m+yAIOYS9iFBIIphqVL4Glpjf69Ss3Knq7cQrzGsj7HkZjhyTAMOI0WYa93wn0J1a8nJAbjsmXQJCEjNdksdbUxeyFNRV1UiLDbPel+S0igIXaklMP058KRfYK0C6+SGmtKFFePqrC07TYQ2V8HhyYv5zRubJ6XfOFObjYj5BiZfuyEVmhNf6wkiqLkcm0Mw0CVnw/H3n0AAP/pHvS9Xo/+f7wpfSyOAyPjJv29CcGQ5KQJbpoLDIkc28n0+inLskbHTmD1gZQ5iYL0DHG5yRzz4kUi82XAQL9kEdzHJmlAL7GBeaSG+DQVAyAmvQ9HpkrrgPjzzz+P6upqrF+/ftzt559/PtRqNdRqNe6++26sXr0af/vb3yYdo6CgAGvWrJnws2RJZjdeiYfkjrdKJcQ4a4hLycyeaVb1GE6jhq+7G6rCwsjOQ8LyGUYugzhJQFxK+ZdIM40Y70Vit+IpJRAQBwD9woUwr14N8+rVsNSugTpG13VCCCFzg1MqYdu0EcHhYQy8+U+EnE6c/vPLCPT0QG6UHhBnZTIwHDtlwFIIhSQHF8eoi4rgaWmd8jGiIEg+8YvFun4deH8A2vIyyc+VG/SwXbAJnpMtGNzZAG97J2wXbATDsgldbNCUlsJ15Oik9/F+PziVtMBKJGtPmPaEL5Ga5wzDRJacT5NhlUg5FmWOddoASCInk0qbDaODkwcoRF5a/Vkg8t3SlJVhaOc76HvtdQT6+yHTSbuwwnDxZb9NRV1SAvcZK/QSpauuxOBbOyf8TsM+Hzj1zEpmEJLJ1MXFsO96f8Lt/Oj0pT4mE08/jUiQVmLDToYBM0u1reUmI0KxMpc/lNCFXeMUdZPPHFtiySog0jthtrLxGY4Dq1AgMBB75VekYbr0lXqGJYsBAIM7G+BpbYPtgo3QlJZClcB5tyo/f9KVecJoQPLFHLlh6gsuiey35Xp9XHXOE0nm47SauOvI48NyuVKwMhkgiJMmZoq8kFCJJoXJDIZl4W1vH3e71DKIDMNOv6JAkFY3PZuldUB8+/btuOWWW6Z9HMuys56xlJF4aaU3xrrcTydyMhxnQFyphBCaPMgupeQJEKn36GtvhzLHCk6jQdjrlRaYn+ykR0Jwn8EUXatFMe7PBJi6VIvUZiqEEELmL4bjkHPeuVCXlMCx70Ck9iTDQJZA0BYATKtr4Ni7F+EYTQoD/QNQ2hLrG6GrrICnpWXKIGE89UTjxXAccjdvSrgmeuSCw/mwbdoI26bzITcakXvR5oQyatXFRQi5XPC2j1+R6D7ZAk9LCxQJ9OKIp2yKEAiATeDzlOl1CHsmZhSfKZHmpwzHgeHYKf8GEinjoSooiNkINdHsMl1VJWwXbIRl/ToE+vslByQ0pSXjyi2IPC/pWA6ILPtX2nLQ93o9el55NfK9TOAcVmm1wrhiGQZ3voPBnQ3RH94fACexVjEh2US/oBoyvQ4Db741Ll7Ae30J1V9XFxXB1XxsyscIoXBCtf1VeblJuYA2Ydz8vGnLqSXSX4NhGLAK+fT7mkTqtVsi9dqnk2jZKOPK5ZNn846Nm8DnMca8ZnX0uINTKqFfUA39wgWSx1EXFcJ15Gi0AffQO+9i8O0GDDW8Kzk7WGbQIzzFqrRE9rMygx7hOEqLJdRnJcca8yJ5sihzbfCeap9wu5hAU80xhqVLEHI6MdzYGI3niOGw5PEYlpm8esHYHIXEeu1lo7Rtqrl3714cOXIEn/vc58bd3tnZiY6OjmjW+G9+8xvs2bMHzzzzTCqmmdZEgZfWnFEeZ4diCVesol2PJythLfEih9xshsJmA6fRQKbVIjgyEvfVOFYmn3SjE1kuJeHMJdZDpWTNKyLBeS7GVWlJJWkIIYSkBf2C6miN1EQyosfINBqYa2sx/P77UBUURLOVRJ7HwJv/BCOXw7JuXUJjMxwH06qVGHjzn8jZsGFCxq1j7z6EXC7oF0g/8ZvvGIZBzobzYN/1PnwdnQj09UGZawPvD0CZmyc5sAyMZX/1QWmd2IRpTNjjgWaK+2MZO5mcqkeIEAondMKvzM1FoH8AmuKiSe8XQyHJQfxIuYDJMw3FUAiMLPGyIAqTCbmbL5D8PE1pCQJ9fRjc2QBhdBSmNWvAJfB5GZctRcjphHpBNQb+8Q8oc/MkjxGZTyk00zRhJYRMZFq5Au6TLRh8uyFawlIUBOgXL5I8lrq4CJ6WlilXEUdWYiVwEa+6CgNvvQ1dVeWkAcRI0FJ6EExuMiE0cmDKxyTSXwOI1Gn3nz4N/aKFsccOJpDFzTCQ6fXwn+6BumhiQ+ExiexvgEgzZ4XVisGdDWBYFjnnbxg/59HEA+LJwqlUsKxfi+EP9oBhWChzbTAsWYyhd96FKl/afkSuN8B/uifm/Qk18Nbr4T5+YtrHJdILRpWXh5H9B2e1p4W6uAiuQ4fh2BcpcSMEgzAuWxapGpDghWaG5WBatQrejg6M7N0PURTAchwYiSVuIt/ZEShjJFtITRzNZmkbEN++fTs+8YlPIC9v/Jfd4/HgK1/5ClpaWqBQKLB06VK8+uqrqKqqStFM05fIC9JKpshkMet9jx84/uAvp5iiRpIgLRjNyRUw19QAiHQO9rS2xp0NxMhkECfLdpJQhxxAzAxxKUvII81LR2MHxCU2QyWEEJJdlDlW2C7cDPu7uzC4swGjg0OQ6fUwLF4ETWnJjMZWFxaClStg370b6sLCaMDd/t5uMHJZQoHHdMHK5bBdsBEA0P+PN2HbfMGMLlArc6xwNO2FfuGCCcEPURQx+PZOMJwsoQx5ZV4eHI17oauqjPkYPuBPaGx1YSHs770HdVHhpO9fCIUg00tr1s0wDGQ6HUJuN+RnPVcIBhMKRM8UwzCwro9cPBodHMLI/v3QVcb+PKeSc965AD4MlNExHCFz7syLzjPBMAxUBQUYfOtt2C7YNO77HPZ6YX/vfShzchLaNzAcB21FBVzNx2BauWLC/WGPB1wCPTUYhoHcYICvuxuaGE1TE82YV+ba4Dp2DLrqqphxBSklSM9kXL4M9l3vQ1VYMOXFB6n7m+j4y5YCAJxHjmDw7YbouboQDEFuNCRUtz7ZlFbrhOOqs4P38eC0minrfSfSwJtVKGL2Txs/tvQM8TP71kz7t5NgoQgGDIwrPvqehdwuuE+ehNxgSOiC1pm0ZWXQlpXB29GBkMMBVmpTWZ0OYa83ZkAcvADMcI7ZIm0D4j/96U8nvX3p0qXYv3//3E4mQ4kCD1Zqxk0cGxxRUiNKBfgYy3cS6XY9RqbTIuQYgbYkvhN/RsbFqNkmrY45GCZyxe6sJbWRjXm8GeIKCIFRQBdj585TzShCCCFTYxgmetI08M+3YD3vXHASa07GorTlIPeiC2Hf9R4GdzYAiNSnNNWsSsr46SDv4otmPAbDcTCuXAH7rveRs+n8cSd9w+9/AHVBwZRZd1PhlEqAAUJOZ8ygd6IBEJlOC2VuLryn2qGrrJhwf6JLzTWlpXAdPgrrueN7B4mCtASO2aC05STld57IsnlCyPxiWLwIDMdFVkttjJTFEHkeQw3vwrSmBqrc3ITH1laUw77rfTj27Yd5dU309pDTid6//h3Wc89JbM7Ll8H+7ntQFxVNGmAM+/wJ9SNg5fLItvvY8WiAeUxwZASOxiaoC2NneE+FU6mgKsjH8AeNsK5fO+ljeL8fnHpmZdqMy5ZNGHOw4V0Yzno/6YxhGLDySPnbyY4FhdHEyrOBYaYtt5Jo82fFh1nSCrM55mP44ChYRXIaS8v1BjAMA94fSGjV32S0ZWVAmfRVnzKdbtL68WNEgaeKAXFK24A4mX0iL4BRSjzBiBHwHTeuhJpGnFKB0Rh1ySMdgxPLouEUSkAUwca5Y4/ViEFqeRJWLouUO1GctaORUPebU6nAjwZiP0Bis1FCCCHZLffCzUkfc6yECJkZTXERwh4Phna+AzAAw8kgjAYgN5kSDoaPMSxZjKFd7yH3ogvHnQC7T5xEoLcPjIyDLMFlwYalSzDU8C783d2QG41gZDKMDg5CXVSEsNstub4pEKmf6z11KnqRRRREqPJyIQrUJ4gQMr/oF1RDptXA/u6uyEpjQYBuYfWMguHA2L71XNh378HAm2/BuuFcBIeH4Tx0GKxCIblUxhhOqYSqsAADb/4Ttk0bowFKx779CLvdkBv0CQfYdNVVGGp4F4M7G8AqFLCesx7+0z1wHjkCy7p1UJgS6wMCRPZjw41NGHjzLVjOWRfdZwmhEIbeeReiIECWQNb8VDi1GvlbLknqmPOBpqQIriNHYV6zesJ9iTQHByIXiwMDg1AXxF6VL7UqwRhVQT4CvX1TBsTDHm9CxxuxKHJy4DraDMPSxUkbMxGsSjllPGg+JAqkCwqIk9gEAZAYcObUKgiBADj1VCdQErKhPywPMukofFh6BvsZdAuqINfPcAMpsYY4q1BADIaAswLikQzx+MbgtBqEpmh8EgnSU0CcEEIIyQSGxYuAD2vZDrz5FoyrVkJptc54XIXZDOPy5bC/uwtyoxHm2jXw9/bC39MTWeo/g+wiVi5H7kWbAUTK5Yh8GLZNGzH41tsQBSHh7CrrOeOzw/v+/jpEUUh4noQQMlvUhYUJZz9Px7p+LQJ9fRh6511AFGHbtHHGDasNixdBptVGAtcfBsQ5jQa2TRtnNC7DMLBtOh8AMHLgIAbfboAQCsF2waakrEyz1NVidHAI9l3vQ6bXwbh8GYbefQ+GpYtjloAhE2lKS+FpaUXI5Y72FxkdssN58BBEgZ+w/42HuqgQjsa9UwbEE6XMyYHz8BHoFlRPmmE+OjgEz4kTSc3kV+bkRC4OsakNNjNgwCmV4AN+cKqJCZ5iOPFKCtmGAuIkJpGX1lQTiFwxDXt9UwfEJSTysDI5hBi1p2aSIQ4AusqZ15WXWq+bVSjAh4ITv3hS6qqr1eC9sbt1R64IUkCcEEIIyTRjQeZk0ZQUQ1NSjOE9jZHmkMHgjIPhZzuzxIm2qgr+06eTNrblnPUIORxJG48QQtKFKj8/7n5Y8RrbJ8wW06qVszKu0paDvEsuwsjBQ7Dveg+mmpUzzsbPRsZVKzG8ezfYDy9U8IFR5Jx3TsJZ1nKDATKDHr6u7gl/V/7ePriPH4fcYEhobIbjoKusnLSsHBC5+GJatSqhUj+xcCoVrOckVpYo2RQ5ORi126Epmvh9FfkwBcTjRAFxElOk3pPEAv9aDcI+H5JThTSCYRiIEMGAwejwMHwdnTCtXgXwPJDiq3NSu3kzclkkQ3yScRBv1jwnm3p5sIR65IQQQgghlrV1c/I62rJSaMtKkzaewmSc0XJ7QgghmSPSbHRiw1ESH6XViryPJbccjHHFcgy+3QDvqVPjbucDgRmvbNBWlCPkdMJ54OC4PjVhjxcyvT6pwfD5RmG1wN18LEZAnDLE40UBcRKTKAhgJDZn5NQajA7ZkzoPmU6LsMcDmU4Hz4kTkQxpny/SLGAOa2UzLAchPL7DssgLkpbMsHIFhGBw4h2CKLk8zdhFAkIIIYQQQgghhJD5hFMqZ7XmuqlmFYbefQ/DexqjF/edR45AU1oK8LP2sinHyRUQQuFJ+/eJPA8mSY0/Mx2lkZKYxLD0pRacWgXeP0XDRwBSY7gKqwXBITvcx09EloYV5GN0yA4xzCetw288WKUCQvCseuYCD0j4jFilEkJg4ucj8mGwksZRQAhMXludEEIIIYQQQgghJNPlbDgXjEyGgbfexuDOBog8Pyt1y+cbpdWCQN/E3nJCmJcUW8pmdNmAxCSEw5M2KJgKw3IQheQ2N1KYzfCcaIFMr4N20SII4TBchw+Dkcvn9MoXp1KBHx2FTPNRp2pR4saGUyrBT9IkVBRFQEK2u0yrRdjnnbDESBR4SU0+CSGEEEIIIYQQQtKVeXVNqqcw5zRlpbDveh9KW+74RFFeWtJmNqMMcRKbICbUQZdTyMGHJikLkiCG5WA5Zx0My5cBAFiZDAIvRLrnzmWGuEIBcXT8+4qUlZHQVFOpgDBJDXEAksqfcBoNwl7fhNuFYEjyRQxCCCGEEEIIIYQQkh4YhoW2shzu5maI+KjHXCKVHrIVBcRJ0sn0eoTdnqSOyTDsuIAxy7EQQkEwsrn7orNKxYTsbiEclhSUZxgWEKdoiBknmVYD3jc+IB50OuE62gyZMbFOzYQQQgghhBBCCCFk/lMXFIJRKBDo64/eJvA82DmMk6UzCoiTSY0ODUXKbyRAptMi7PUmeUZnvYZBj5DTNadNJVmlCsJZAXExHAIjn/vKQ5xaDf6MDHERIrxtbdAvXABNycROw4QQQgghhBBCCCEkc+iqquBtO4VAfyQoHskQp+rY8aCAOJmUt6MDppqahJ4r0+kRdjqTO6GzKCxWQExurfLpsEoFhLNKpgihMFiZxBIlLJPwxYYxDMuBYRkI4Uj5leDgEDi1GjKdbk4vEhBCCCGEEEIIIYSQucfKZLCsWwtvZyfcJ05AGA2CVVAZ3XhQQJxMyrhi+fjC/BKMNZ88s47RODOvGAKFyYTciy6c+UASsHJ5NAA9RgyGwEjc2LBKJYTgzGusK3JyEByyQ+DD8LS2QltVOeMxCSGEEEIIIYQQQkh6YGUymFfXgOE4BB2OhHoBZiPKoyeT4hTKGT1fptUi7PFCrtONuz1mkDwBc/0lZ8CMC+YHRxwIezySm1hySgX4wCg4lXpG81Hm5GBk/wGMDg5BlZ8PTq6Y0XiEEEIIIYQQQgghJL2wMjm0lRVQFxeleippgwLiZFYoc3IQHBqaGBDneTBcGi9MYABRFMAwLDytbTDVrJJcokSm0UYaYppMM5oKp1LBuHI5REGETKuZ0ViEEEIIIYQQQgghJD0xDAtOqUr1NNJGGkcmyXwmN5sQ6OuHeFadbzEcBpNgKZb5gFOrwft8CHs94BQKcGrpWd6cToewxxP9/5lkzcs0Wsh1OjAMfZUJIYQQQgghhBBCCJlOWkbRbr75ZigUCuh0uuhPZ2dn9P6uri5s2bIFWq0WFRUVePHFF1M42+zEcjIoLGYEHSMAAIEPw9fdDSGU3gFxmV6PsNsD76l26KqrEhtDo0bY643+vxAKSS67QgghhBBCCCGEEEIIkS4tA+IAcN9998Hj8UR/SktLo/fdcMMNqK6uxtDQELZv347bb78dhw8fTuFss5OqsBC+9g6EPB64T5yE91Q7/N3d4JQzq0+eSnKjEf6eXvCBADh1YmVKxmqfiwKPQF8f/J1dYBVU/5sQQgghhBBCCCGEkNmWtgHxWE6ePIndu3fje9/7HtRqNTZv3owrr7wSv/nNb1I9tawj02mhKSuBo7EJ4HlYz10PX0cnZFptqqeWMLlOB01FGYzLls5oHIXZDPeJk/Cd7kGgfwCchmqAE0IIIYQQQgghhBAy29K2dsUvfvEL/OIXv0BJSQnuvfde3HrrrQCAw4cPo6ysDGazOfrYmpoavPnmm5OO09vbi97e3gm3Nzc3z87EswgDBkprDkyrV4HTaMDK5LBuODetA+IAoDRbZjyGuqQYQfswtBXlYNM4Y54QQgghhBBCCCGEkHSSlgHxe+65B48//jhMJhMaGhpwzTXXwGg04jOf+Qw8Hg9MJtO4x5tMJrjd7knHevrpp/Gd73xnDmadvRRGU/Tfcp0+dROZR1hOBlVubqqnQQghhBBCCCGEEEJIVknLgPiaNWui/77wwgvx5S9/GTt27MBnPvMZ6HQ6OJ3OcY93Op3Q6ycPxN5555248sorJ9ze3NyMrVu3JnfihBBCCCGEEEIIIYQQQlImLQPiZ2NZFqIoAgCWL1+Ojo4OjIyMRDPF9+/fj+XLl0/63IKCAhQUFMzVVAkhhBBCCCGEEEIIIYSkSFo21XzppZfgdrshCALeeecdPPHEE7j66qsBAAsWLMDatWvxwAMPwO/3Y+fOnXj55ZfxhS98IcWzJoQQQgghhBBCCCGEEJJKaZkh/sQTT+COO+4Az/MoLS3Fo48+iuuvvz56/4svvohbb70VVqsVubm5ePrpp2NmiBNCCCGEEEIIIYQQQgjJDmkZEN+5c+eU95eUlOCNN96Yo9kQQgghhBBCCCGEEEIISQdpGRCfC36/H0CkuWY2OtnvTvUUSBoLDUzexJYQQgghhBBCCCFkNmV7TCtbYzJjMdyxmO5UKCAeQ3t7OwBg69atqZ0IIYQQQgghhBBCCCGEkGm1t7djw4YNUz6GEUVRnKP5pJWhoSG89tprKC8vh1qtTvV05lRzczO2bt2K5557DkuWLEn1dAhJe/SdIiR56PtESPLQ94mQ5KHvEyHJQ98nQpInm75Pfr8f7e3t+PjHP46cnJwpH0sZ4jHk5OTgpptuSvU0UmrJkiVYs2ZNqqdBSMag7xQhyUPfJ0KSh75PhCQPfZ8ISR76PhGSPNnyfZouM3wMO8vzIIQQQgghhBBCCCGEEELmBQqIE0IIIYQQQgghhBBCCMkKFBAnhBBCCCGEEEIIIYQQkhUoIE4IIYQQQgghhBBCCCEkK1BAnExQUFCAbdu2oaCgINVTISQj0HeKkOSh7xMhyUPfJ0KSh75PhCQPfZ8ISR76Pk2OEUVRTPUkCCGEEEIIIYQQQgghhJDZRhnihBBCCCGEEEIIIYQQQrICBcQJIYQQQgghhBBCCCGEZAUKiBNCCCGEEEIIIYQQQgjJChQQJ4QQQgghhBBCCCGEEJIVKCBOCCGEEEIIIYQQQgghJCtQQJwQQgghhBBCCCGEEEJIVqCAOCGEEEIIIYQQQgghhJCsQAFxQgghhBBCCCGEEEIIIVmBAuKEEEIIIYQQSdrb28EwDFpaWlI9FUIIIYQQQiShgDghhBBCCEkLmzdvxgMPPJCUsR5++GGcf/75SRnrTM8++yyKi4uTPi75yGz97sYwDIP6+vpZG58QQgghhKQWBcQJIYQQQggh854oigiHwwk/PxQKJXE2hBBCCCEkXVFAnBBCCCGEpKXy8nI88sgjuPzyy6HX61FVVYU//elP0fsPHDiACy64ACaTCWazGbW1tTh+/Dief/55/Md//Afee+896HQ66HQ6NDQ0IBAI4JprrkFRURH0ej0WLVqEn/3sZ3G/ZkNDA+666y709PREx33++ecBAHfccQfKy8uh0+lQUVGBbdu2QRCE6LibN2/GvffeixtvvBFGoxElJSV48sknx7327t27sXnzZlitVpSVleHBBx8cFyBubm7GZZddhpycHBQXF+POO++E0+kcN/dnnnlm3JhnZkN3dnbi8ssvh8VigdFoxPLly9HQ0DDl7+Ddd9/FqlWroNfrcc455+Do0aPR+3iexw9/+EMsWbIERqMRtbW1+Mc//hG9//Dhw7j44oths9lgNBqxfv16vPnmm9H7x8qy/OpXv8KqVaug0Wjw2GOPTfq7m0x5eTm2bduGSy+9FHq9Hj/84Q/R29uLT37yk8jLy4Ner8fKlSuxY8eO6HOWLVsGALjiiiug0+lw2WWXxfVeCCGEEEJIGhEJIYQQQghJAxdccIF4//33R/+/rKxMLCkpEZuamkSe58Uf/vCHol6vF51OpyiKonjeeeeJ3/nOd8RQKCSGQiFx3759Yl9fnyiKorht2zZxw4YN48b3+Xzir3/9a9HhcIg8z4uvvvqqqFAoxL///e9xv+b27dvFoqKiCXP/5S9/Kfb19YmCIIjvvfeeaLFYxKeeemrcezMYDOI//vEPked58fe//73Isqx48uRJURRF8dixY6JWqxVfeOEFMRQKie3t7eLKlSvFRx99VBRFUXS5XGJhYaF43333iV6vV+zp6RE3bdokfupTnxo391/+8pfj5gVAfOONN0RRFMUbb7xRvO2220S/3y/yPC8eO3ZMbGtrm/R3cerUKRGAePHFF4s9PT2i3+8XP/OZz4ibNm2KPmbbtm3iqlWrxGPHjok8z4t//OMfRY1GI7a0tIiiKIqHDh0SX3/9ddHn84mBQEDctm2baDAYxP7+/nGvcd5554mdnZ1iOByOPu7s391kysrKxLy8PHHXrl2iIAii1+sVu7q6xD/84Q+i2+0Wg8Gg+Mwzz4gymUw8fPjwpJ9JvO+FEEIIIYSkD8oQJ4QQQgghaeu2227DmjVrwLIs7rzzTrjdbjQ3NwMAFAoFOjs70dHRAZlMhpqaGuTl5cUcS61W45ZbboHJZALLsvjEJz6BSy+9FK+//nrcrznVPPPy8sAwDM455xxs3bp1wrif+cxncNFFF4FlWXzmM5+BxWJBU1MTAOBnP/sZrrjiClx//fWQyWQoKyvDv/3bv2H79u0AgFdffRXBYBCPPfYYNBoNCgoK8JOf/AR/+ctf0NfXF9dnqVAo0NfXh9bWVjAMg0WLFqGiomLK5zz00EMoKCiASqXCLbfcgj179kTv+/GPf4zHHnsMixYtAsuyuPrqq3HeeefhhRdeAAAsX74cH/vYx6BWq6FUKvHwww+DYRjs3r17wmuUlJSA4zgolcq43suYW265Beeeey4YhoFGo0FxcTE+/elPQ6fTQS6X44tf/CKWLl06LjN9MtO9F0IIIYQQkj4oIE4IIYQQQtJWYWFh9N9arRYA4Ha7AUQaXDIMg4suugjFxcX46le/Co/HE3Os0dFRfP3rX8fChQthNBphMpnwt7/9DQMDA3G/5mREUcT3vvc9LFu2DGazGSaTCU8//fSU446NPTbuyZMn8ac//Qkmkyn6c/fdd0eD3V1dXSgrK4NMJos+v7q6GkCkFEo8Hn/8cVRXV+PTn/408vLycMstt6C/v3/K55z9Wfj9foTDYfT398PlcuGaa64ZN+ddu3bh9OnT0Xldf/31KC0thcFggMlkgsvlmvC5TBeUn8rZz3U4HLj99ttRUVERfc0jR45MeM0zxfNeCCGEEEJI+qCAOCGEEEIIyUhlZWX45S9/iY6ODrz11lt444038P3vfx8AwLITD4N/9KMf4ZVXXsErr7wCh8OBkZERXHbZZRBFMe7XnGzcF198ET/5yU/w29/+FkNDQxgZGcGdd94padz8/HzceOONGBkZif64XK5ogL+kpASdnZ3jaoq3trYCAEpLSwEAer0eXq83en9PT8+417Barfjxj3+M48ePY9++fWhvb8d9990X9xzPZDKZoFKp8Oqrr46bs9frjdZGv/322yEIAvbs2QOXywWHwwGDwTDhczn7M53sM47l7Md+61vfwrFjx/D222/D6XRiZGQEy5YtG/eaDMNIfi+EEEIIISR9UECcEEIIIYRkpGeffRbd3d0QRREGgwEymSyaQZ2fn4/Ozk4EAoHo451OJ5RKJWw2GwRBwI4dOyaUNZlOfn4+hoaGYLfbx40rk8mQm5sLhmHwz3/+E88995ykcb/0pS/h97//PXbs2IFgMAie59HS0oK///3vAIBPfOITkMlk+Pa3vw2/34++vj587WtfwxVXXIH8/HwAQF1dHV544YVoMP1b3/rWuNd48cUX0draCkEQoNfroVQqx2WcS6FUKnHXXXfh3/7t39Dc3AxRFOH3+7Fz506cOHEi+rnodDqYzWZ4vV78+7//+5QZ/GMm+93Fy+l0QqPRwGq1IhQK4ac//SmOHDkyYfzjx49Lei+EEEIIISR9UECcEEIIIYRkpH/+859Yt24ddDodVq1ahXPPPRff/OY3AQDXXXcdFi1ahMLCQphMJrzzzjv4+te/jpKSEpSVlaGwsBD/+Mc/cNVVV0l6zYsuugif+tSnsHDhQphMJvzud7/DzTffjIsvvhgrVqxATk4OnnrqKWzdulXSuGvXrsUbb7yBX/7ylygqKoLVasVnP/tZdHR0AAAMBgPeeOMNHDhwAMXFxaitrUV1dTV+85vfRMd49NFHYTAYUFJSgtraWlx99dXjXuPAgQO46KKLoNfrUVVVBZPJhMcff1zSPM/0+OOP44YbboiWGikvL8f3v/99hEIhAMB///d/48CBAzCbzVi6dCmKiopQXFw87biT/e7i9eijj8Lv9yMvLw/l5eXo7+/Hhg0bxj3m+9//Ph577DGYTCZ88pOfjOu9EEIIIYSQ9MGIUtZqEkIIIYQQQgghhBBCCCFpijLECSGEEEIIIYQQQgghhGQFCogTQgghhBBCCCGEEEIIyQoUECeEEEIIIYQQQgghhBCSFSggTgghhBBCCCGEEEIIISQrUECcEEIIIYQQQgghhBBCSFaggDghhBBCCCGEEEIIIYSQrCBL9QTmq6GhIbz22msoLy+HWq1O9XQIIYQQQgghhBBCCCGETMLv96O9vR0f//jHkZOTM+VjKSAew2uvvYatW7emehqEEEIIIYQQQgghhBBC4vDcc8/hpptumvIxFBCPoby8HEDkQ1yyZElqJ5MCJ/vdqZ4CSWML8vSpngIhhBBCCCGEEEKyULbHtLI1JtPc3IytW7dGY7pToYB4DGNlUpYsWYI1a9akeDZzT97tTPUUSBpbUWxM9RQIIYQQQgghhBCShbI9ppXtMZl4Sl9TU01CCCGEEEIIIYQQQgghWYEC4oQQQgghhBBCCCGEEEKyApVMIYQQQgghhBBCCCFknhNFMfpDYhNFIdVTSCme51M9hVnDMAxYdub53RQQJ4QQQgghhBBCCCFknhIEAQMDAxgZGaFgeBzEcHYHxE94+lI9hVkll8tRWloKhUKR8BgUECeEEEIIIUnDCyIGhn0YdgUgiiLMBhXyrVpwLJPqqRFCCCGEpKWOjg6wLIvy8nLI5fJUT2fe84fCqZ5CSqnlmRvuFUURdrsdnZ2dqK6uTniczP2ECCGEEELInHK4AzjcYodMxiDXrAHLMujud6O1ewSrF+VCr0k8i4MQQgghJBsJgoBAIIAFCxZAJqMwXjxYPruz6DmOS/UUZpXVasXw8DAEQUi4fAp9kwghhBBCyIz12b040mbHknILCm266O0VhUZ09rmw52gf1i7Np6A4IYQQQogEYyVSGIZW2xECfPRdmEn5oJlXISeEEEIIIVltYNiHo6fsqF2cNy4YPqY034DqYhP2HR9AKMtrOhJCCCGEEEJSiwLihBBCCCEkYU7PKA61DqFmYS5MemXMx5XmG2DQKnCyyzGHsyOEEEIIISRz3HHbrXjw/m+nehppjwLihBBCCCEkIWFewIGTg1hYaobFoJr28YvLLegd8sLlDc7B7AghhBBCyFzYvHkznnrqqRmPwzAMjh07loQZRSxZWI3XX3staeNlo2T9bs/07LPP4pxzzknqmFJRQJwQQgghhCSkuX0YBq0CJXn6uB6vUshQVmBAS/fI7E6MEEIIIYQQkjBBEBKq0R0Oh2dhNslHAXFCCCGEECLZgMMH+4gfyyqtkp5Xlm+AwxWA20dZ4oQQQgghmeatt95Cfn4+fvrTn6KgoAC5ubn4z//8z+j9jY2NWL9+PQwGA2w2G2666SYAwHnnnQcAqK2thU6nwy9+8QsAwA033ICCggIYjUZs3LgRhw4dio51880340tf+hI+/elPQ6/XY+XKldi/fz8A4Auf24quzk7ccO1nkWsx4eGHHgQAfPMbX8ei6krkWc04b/1aNOzcGR3ve999BDdedy2+fPedKLBZsWLJYrz5j39E73e5XLjny1/CgspyVJQW475770EgEIje/9z//BarVyxHYW4OLvv4x3D8jGz3s7PVn/nF07j0YxcDiDSH/Pa3vonykiLk51iwesVy7Hz77Zifsdvlwg3XXoM8qxnralfjwIH90fv6+vpw3XXXIS8vDyUlJXj44YchCJEePqdOncLFF18Mq9WKnJwc3HDDDXA4PipnWF5ejh/84Aeora2FRqPBXXfdhYaGBnz1q1+FTqfD5z73uUnnwzAMfv7zn2Px4sUwmUwAgP/8z/9EdXU19Ho9lixZgj/84Q8AgEOHDuGuu+7Cnj17oNPpoNPp4PV6IYoifvSjH2HhwoWwWCy4/PLL0d3dHfMzmCkKiBNCCCGEEEl4XkDzqWEsLrdALuMkPVcuY1GSp0dblx12ux3BIAXGCSFAMMRjaMSPYVcAPB85cQ8Gg7SdIISQNDQ0NISuri50dHTg1Vdfxf3334+WlhYAwFe+8hVceeWVGBkZQVdXF770pS8BAHbt2gUAaGpqgsfjwR133AEA2LJlC44fP46BgQGsW7cON9xww7jX+t3vfof77rsPIyMjuOiii3DPPfcAAH7zP8+hpLQUL7z0ewwMj+DhR74LAFi9Zg3eff8DnO4fxI03bcXWG6+Hz+eLjve3v/4fPn7pZejuG8Add92Fu++8PXrfXbffhsBoAE37D2LfwcNoaWnB//uP7wEAdr79Nr759X/F0888g/buHlx44UX4zFWfwujo6LSfV/0bb+D3O17Cex80om9oGH96+RWUlJTEfPxL//sivnLvvegZGMIFmy/EN+77GoBIVve1n7ka1dXV6OjowO7du/GXv/wFv/rVrwBEAu/f/OY30dPTg2PHjqG3txcPPvjguLF/+9vfYseOHXC73fjZz36GjRs34ic/+Qk8Hg/+53/+J/acXnoJO3fuxODgIACgoqICb7/9NpxOJ7773e/ic5/7HLq7u7FixQo89dRTWLt2LTweDzweD7RaLZ544gk8//zzeP3119Hf3481a9bg+uuvn/azSxQFxAkhhBBCiCStp53QaeTIt2olP1cQBJw8/D5e2fFrPPnkk3j88cfx+uuvRzNXCCHZJRjicbh1CG/v7cbJLgeaTw3jn42d+P2fXsHjjz9O2wlCCIlBEMRZ/0kUy7J49NFHoVAosG7dOixevDiaua1QKNDR0YGenh6oVCps2LBhyrFuueUWGAwGKJVKPPTQQzhy5Ajsdnv0/quuugrnn38+OI7D5z//eezdu3fK8a6/4Ubk5ORAJpPhX+65F+FQCMePNUfvX3/OObjyU1eB4zjc9LnPo7urC0NDQxgYGMD/vfoKfvjj/4LBYIDJZMI3//3b2PG//wsAePGF53HT5z6PdevPgUKhwNf/7ZvwB/zY9e67035eCoUCo4EAmo8eRSgUQnlFBSoqK2M+/pNXXonzNkTe841bt2L/vn0AgL1Njeju7sajjz4KlUqFwsJC3HfffXjhhRcAAJWVldiyZQuUSiVycnLwta99DW+flYn+L//yL6isrIRcLodMJpt27mO+9a1vITc3F2q1GgDw2c9+FkVFRWBZFp/97GexaNEi7N69O+bzn3zySTz66KMoLy+HXC7Hww8/jD179qCzszPuOUgR/zsjhBBCCCFZz+sPobPPjfNWFiT0/Pr6epw8cRwXXLAJZrMZDocDTU1NACIZQISQ7OHxh7D3WD/MehU2rSmGUh5ZcfLKq39F56kWbNy4kbYThBAyCUEQ8frujll/nS3ry8CyjOTnWSwWKBSK6P9rNBp4PB4AwK9//Wts27YNa9asgc1mw7/+67/i1ltvnXQcnudx//33Y8eOHRgcHATLRvJ6h4aGYLVGyvbl5+ePex2v1zvl3H7yox/ht89uR29vDxiGgcvlwtDQRwH2vLzx4wGA1+PB4OAAeJ7HoqqK6P2iKILneQBAz+kefOyMfRTLsigpKUFPz+kp5wMAF2zejPsffAgPP/QAWk6exMe2fBz/7wf/iYLCwkkfP26O6o/ec0dHB4YGB2E2m6P3C4IQzTbv7+/Hvffei4aGBrjdbgiCAL1+fC+gsrKyaec7mbOf99vf/hY/+tGP0N7eDgDweDwYGhqK+fz29nZcd9110d8xEPkMu7u7UVpamtCcpkIBcUIIIYQQErfjnQ6UFeihUcklPzcYDKKxsTEa5AIAs9mM2tpaNDQ0YPPmzeNOngghmcsXCGHP0T5UFhpRVmCI3h4MBnHo4H7aThBCyBRYlsGW9YkFLqW+TrJVVVXhueeegyiKePvtt7FlyxZs2rQJ1dXVEx77u9/9Dn/84x/xxhtvoKKiAi6XCyaTKWazR+Gs2xmMn/+777yDH/7nY/jr629g2bLlYFkWRXm2uJpHFpeUQiaTob27Z9L9UGFRITo6PrpIIQgCuru7UVhYBADQanXw+z8qzdLf3z/u+XfcdTfuuOtuOBwO/Mvdd+GB+/8dv9r+m2nndaaSkhIUFRej48Mg9Nm+/e1vQxAEHDx4EFarFX/5y19w5513jnsMwzBT/n8sZz6uo6MDt912G+rr67FhwwZwHIfVq1dHP+fJxiwtLcVTTz2FzZs3x/V6M0UlUwghhBBCSFwc7gBG3AGUFxgTev5YJsqZWStAJNglCALcbncypkkImefCvICmYwMozdOPC4YDtJ0ghJB4sSwz6z+z4be//S0GBgbAMAxMJhMYhgHHRVYI5eXlobW1NfpYt9sNpVIJq9UKv9+PBx54YMJ4oigiEAzD7Q3C6wsBAAKjPARBRG5eLk61jR+Pk8mQY81BOBzGD/7f9+FyueKad35+Pi697HJ8476vweFwQBRFdHd1RRtlXnf9jXj+f36Lxj0fIBQK4YeP/ycUcgXO+7AkzKqaVXjpxRcRDAbR3HwUz/3Pb6NjNzXuwe7330MwGIRGo4Fao45+JlLU1q1FTk4Ovvvd78Lr9UZKFZ48GS2L4na7odVqYTQa0dPTg8cff3zaMc/+ncRjLGPdZrMBiPzODx8+PG7M06dPj6uvfvfdd+P++++PvpbD4cBLL70k6XWloIA4IYQQQgiJy4kOB6qKTJDLEjuE1Ov1YFl2XDd7IHLAy7LshCWbhJDM1HxqGHqNHFXFpgn30XaCEEIy2xtvvIEVK1ZAp9Phmmuuwc9//nNUVETKkHznO9/BbbfdBpPJhF/+8pf4/Oc/j8rKShQVFWHJkiVYu3btuLFEUUQoLIDnRahVMug0kRWMHMfAP8rjvn/9N/z4hz9EYW4OHtn2ED62ZQsuvewyrF65HIsXVEEmk6N4iuaVZ/vFr34NuVyOc9fVocBmxac++Qm0nDwBIFL25D8e+wFuu+UWlBUV4M36N/CHv/wFSqUSAPDQtu+gt7cHxfm5uO+r9+LGm7ZGx3W53LjnX76MkoI8VJeXwuV04ZFH/0PyZ8txHHb88c84efIkFixYALPZjGuvvRa9vb0AgG3btuHgwYMwmUy4/PLLcdVVV0075r333ouXX34ZZrMZX/jCF+Kax9KlS/GNb3wDGzZsQF5eHvbv34/zzjsvev9FF12EmpoaFBQUwGQywev14itf+Qquv/56fPKTn4TBYMCqVavw2ocXG2YDI8azLiAL7d27F7W1tWhqasKaNWtSPZ05d6jbmeopkDS2ojixzEFCCCHz18CwD8c6hnH+qqIZZQy9/vrrOHr0KGpra8fVBl66dCnVBiYkC/TZvTjW4cCGlQWQyybPfptsO9HY2Ihly5bRdoIQknV4nseJEyewcOHChLKGMxUvCPD6w1DIWagU4ytC+4Jh8LwIr8cNITQKQAQYBkqVGmqNDpid5Pd5Q6PI7ArZsb4TUmK5mf0JEUIIIYSQGRMEEcc7HVhQYp7x8tlLLrkEANDQ0ABBEAAwqKuri95OCMlcYV5Ac/swVlTlxAyGAxO3EwzDoKBsCS666OK5miohhJB5TBBE+PxhKOUclIrJ9yfBgBfgQ9DrdZDJZAiHw/D6IjW81VrdXE6XzEMUECeEEEIIIVM6PegBxzLIt2pmPBbLstiyZQs2b94Mt9uN490+VBZbxnWUJ4RkptbuEZh0SuSY1FM+7uzthF6vR9NxO/qGfSjOpZIphBCSzURRhG80BJmMjRkMhyhiNOCHXhcJhgOATCaDVqOB2+OBWqMF4mwWSTITnXkQQgghhJCYeEFEa/cIFpWZ4+4yHw+FQgGr1YoCmwGDDn/SxiWEzE9efwhd/R4sLrfE/Zyx7YRCoUBVkRGneuJrfEYIISRzjYZ4QARUsYLhQGQVoihGg+FjZDIZIIofrlIk2YwC4oQQQgghZIJgMAi73Y627mFo1HJYjVNndCbKZlJjcMQHamtDSGZr6RpBab4eamVii5RtZjVEUYTdSRfQCCEkW4V5AcEQD7VKNmWiBsuyAMMgHA6Pf344DDAMrUwkVDKFEEIIIYR8RBAE1NfXo7GxMVrje2XNagiLL52VkwedRgGWYeDyBmHUKZM+PiEk9dy+IIacfmyqLEp4DIZhUJKnR0efe9Yu0BFCMlMwGIyWX1IoFKmeDkmQKIoIjIahVMjATXdM+mEDTa/PB61GM66GuFKlpnIphALihBBCCCHkI/X19Th69Cg2btwIs9kMh8OBpqYm1NfLsGXLlll5TYtRhWFXgALihGSok10jKCswTNlIMx7FuTq0do/APxpOONOcEJI9zr7Iz7JstJE3ZQinn2A4UuZEIYvvd6fWRBpnuj0eQBQBMJApVNHbSXajLQAhhBBCCAEQyaBqbGxEbW0tzGYzAMBsNqO2thaNjY0IBoOz8roWQyQgTgjJPE7PKEbcAZTlG2Y8llzGIdeiQc+gJwkzI4RkujMv8l911VXYuHEjjh49ivr6+lRPjUgkCCJGg2GolFOXShmHAdRaHUyWHBjMVhgsOWDktMKIRKQsIP7EE0+grq4OSqUS119//bj77rjjDixatAgsy+Kpp56a8Nzf//73qKqqgkajwcUXX4yOjo5x9z/44IOw2WwwGo247bbbMDo6OqvvhRBCCCEkE7jdbgiCEA2GjzGbzRAEAW63e1Ze12JQweEahSBQHXFCMk17DezqCQAAg8FJREFUjwul+QbI48zom06RTYeeQW9SxiKEZK5gMIg9e/ZMepH/gz170N0/QscdaWQ0xEPOsZBxCexLGAYsx4FlGXAsgzBPDTVJCgPihYWFeOCBB3D77bdPuG/VqlX4+c9/jnXr1k24r7m5GTfffDOefPJJ2O12rFy5Etdee230/meeeQbPP/88du/ejba2Nhw7dgwPPfTQrL4XQgghhJBMoNfrwbIsHA7HuNsdDgdYloVer5+V19Wo5JDLWLh9s5OBTghJDV8ghMERH0rzkrftsBhU4AUBI25KeiKETCSKIrr63fjnBy0xL/KLgoDm1l7s3H8ap2nFybwnCCJCYR62HDNOnDgxo7FksrkJiN9x26148P5vz/rrkMSlLCD+6U9/GldddRVycnIm3PflL38ZF198MVQq1YT7nnvuOVx66aXYsmUL1Go1HnnkERw4cABHjhwBAGzfvh333XcfKisrYbVasW3bNmzfvj3mPHp7e7F3794JP83Nzcl7s4QQQrJeMBiE3W6ftZIThCSDQqFAXV0d9jQ2RoPiYzXE6+rqZrUR1VgdcUJI5ujodaMgRweFfGa1w8/EMAwKbToKYhFCJhh2BbDrYC+6+t1YvrAQHMdNepGf4zhcUFeF5ZVWnOpxoulYP0ZDfIpmnRk2b94MlUoFnU4Hq9WKSy+9dMrg9VtvvQWWZaHT6aDX61FZWYnHH3980seOBsOQyzh4PB4sXLgwrvksWViN1197bcLtMpYFL4iRkuIkq6VdJ5LDhw9j7dq10f/X6/WoqqrC4cOHsWzZMhw+fBg1NTXR+2tqajA4OIj+/n7k5eVNGO/pp5/Gd77znbmYOiGEkCxEzXxIujnv/AvQ2efCzp07IYriuL/Z2WQ1qNAz5EVFoXFWX4cQMjdCYR6nB904b2Vh0scutOmw+3AvlpRbwLJx1pIlhGQsXhBxssuBnkEPFpVZUJijBcMwqKurQ1NTU7RsytkX+XMUwLn6AhzrcGD34V7ULs6DVi1P9dtJWz/5yU9w1113wefz4c4778Stt96Kd955J+bjc3Nz0dfXBwDYvXs3LrroItTU1Iw75uQFASFegE6dpKQMBpBxLMJhAXJ57HOxcDgMmSztQqZEAkm/XZfLhddeew179uzB8PAwLBYL6urq8PGPfxxG49ycvHg8HphMpnG3mUymaE3Ls+8f+7fb7Z40IH7nnXfiyiuvnHB7c3Mztm7dmrR5E0IIyU5nNvM580AcALZs2ZLi2REyUetpF86/4CJUFlwJt9sNvV4/q5nhY8wGFY6eGoYoivE3SyKEzFudfW7kmNTQqJIfXNKp5VApZBh2BZBjogZphGQzrz+E/ScGoVRwOG9lIVSKj8JcY4HVhoaGCYkpYziOxbJKK9p7Xdh9pA/rl+VnZFA8GAzO2XGdRqPB9ddfP6688XTWr1+PpUuXYt++feN+P6NBHnJZpP43wzBobm7G4sWLcfPNN0Oj0aCvrw9vvPEGKioq8Nvf/hY1NTW44YYb0NXZiRuu/Sw4jsOX/uUrePiR76Ll5El8/b6voampEQa9Afd+7Wu44667AQDf++4jOHzoEIwmI17+85/xL/fci5/99L/x8v/9FbV1kaTc0dFRVJWV4M+vvIq6tevwhc9tRcPOt+H3+bB8xQr8+L9/iuXLV0x4b3a7HXffcTvefacBAFC9YAH+8OeXJ62YQeZOXAFxh8MRLT1isViwcuVKGI1GNDc346WXXsIXv/hF3HLLLXj44YdhsVhmdcI6nQ5Op3PcbU6nM1rT8uz7x/4dq+ZlQUEBCgoKZmm2hBBCstlYM59NmzZNaObz9s6dKK6qgVajglLBQa2UQaeWg0ukUQwhSeL0jMLu9GNjTRHkMg5Wq3XOXlutlIHjGHj8Ieg1sx+AJ4TMHkEQ0dnvRs1C26y9Rp5Vgz67lwLihGSxoRE/DrYMoqLQOOkKM5ZlsWXLFmzevHnaYHB5gQEAsKe5H+csy4dKmRnZwalYrep2u/H888+juro6rseLoohdu3bhyJEj457DCwLCU2SH/+53v8Orr76KHTt24F//9V9xzz33YOfOnXjhhRew67338F8//Rm2fPzjAACfz4dPXPZxfP0b/4Ydf/wTjjafxLVXfxJV1Qtw8YcB+L/+36t4Zvuz+PlTv8Do6Ch6Tp/Giy+8EA2Iv/b3vyEnx4a6tZF+hxdfcgl++rOfQ6lUYtuDD+Dmz30Ojfv2T5jnf/34RxAEASdPdUCpVOLggf2Tlogmcyuuv/6VK1dCLpfjgw8+QEdHB1555RU899xzeOWVV9De3o4PPvgAMpkMq1evnu35Yvny5di/f3/0/z0eD1pbW7F8+fJJ79+/fz9sNtuk2eGEEEJIsvlHw+jqd2Pf8QG8vuvElM18/D4vXN4gugc8OHByEPV7OrFzXzcOtgyiq98NXyCUondBstXxDgcqi0yQy5JX71cKs15JjfJmgSCI8AVCGHGPYsQ9Co8/BF6g4plk9gw4fFDKOZj1s3fCn2/Von/YB4H+lgnJSqd6nDjYMoiV1bZpy60pFApYrdZpM6PLCwwozNFi34nBjNlPnrla9aqrrsLGjRtx9OhR1NfXJ/217rvvPhiNRhgMBnzwwQd47rnnpnz8wMAATCYT1Go1zj//fNxzzz246qqrovePBnkoPswOn8xVV12F888/HxzH4fOf/zz27t0b87X+9tf/Q35+Pm6/8y7I5XIsXrwIn7/lVux46cXoY1avWYNrrr0OLMtCrVbj+htvwu93vASej9SX/98XXsB1N9wQffznv3AzDAYDlEol/v3+B9B89AjsdvuE11YoFBgetqO1tQUcx2H1mlrodLopPxsy++K65PX++++jqKgo5v1LlizBj370I3z961+P+4XD4XD0RxAEBAIBcBwHuVyOYDAIQRAgCALC4TACgQDkcjk4jsPWrVuxdu1a1NfX4/zzz8e2bduwcuVKLFu2DABw880347HHHsPll18Oo9GIRx55BLfcckvc8yKEEDK/zeZyv0TG5nkBw65IVu3giB+jwTAsBjVyTCqU51fg4K5IM58zg+JjzXxWLCoa9zo8L8DtC8HhDmDQ4ceJTgcUMg65FjXyLFoYdYpJS0nM5RJIkrkGhn0IBMMoyZt8Vd1cMOlVGHGPpnQO6ers7UCYF9A75EWv3QunexQcx0LxYa3MUFhAMCRAo5LBYlAhx6RGjlEVc4UKbWOIVJ397ln/HuvUcigVHJVNIWkp1nbVPxpGMMSD41holDKqkT8JXhBxpG0ITk8Q65cVJL28yYISE1zeARxrH8ayyrlbKTcbgsEgGhsbo6UbgY9WqzY0NGDz5s1J3a//6Ec/wl133YWWlhZcfvnlOHnyJFasWIHnn38ed955JwCgrKwMR44cAfBRDfFQKITHHnsMr7zyCkKhEBQKBXh+6uxwAMjPz4/+W6PRwOv1xnxsR3sHDuzfj8Lcj8qUhHkeGzacH/3/0tKycc/ZcP75UKlU+Oebb2LtunX4+9/+ikf/4/sAAJ7n8fBDD+JPf/gDhoYGo9n29qGhCSssv3rfv8Lv9+Om666D1+fF9TfciIcf+S7k8swrzZNO4gqITxUMP1NhYfwNUx599NFxzSx37NiBL3zhC3j22WexZcsWvP322wAitZ6+8pWvYPv27bj55puxZMkSbN++HXfccQf6+vpwzjnn4KWXXoqOc9ttt6GjowNr165FKBTCZz/7WTzyyCNxz4sQQsj8NJvL/aSO7fEFMTjih90ZgMMVgFYtR45JjaUVFpj1qnEnL9M18zkTx7Ew6ZUw6ZWoKIxkdY54RtFv92H/yUEAQJFNiyKbDhqVnBp2kqQRBBHHOx1YWGoGl8KTb5NOic4+V8pePx1Nth1YuGQFzEUrYNSrUWzTYdUCG5Ty8Vn/YV6A2xuE3RVA22knDrUMIs+iRaFNC4tBBYZhaBtDEuLxh+DyBFG7KHfWXyvfEskSp4A4SReTbVdXr1mDisVr0Wf3IcyLUCo4hHkB4bAAi1GFIpsOuWYNBccBBEM89h0fAMexOGd5AeSy5O+LGIbByuocvHuwBzaHGrlmTdJfY6643e6Yq1UFQYDb7Z6V8njV1dX4r//6L3zxi1/EZZddhptuugk33XRTzMfL5XI88MADePXVV/Hkk0/i3nvvxWiIh0IeOzt8OgzGP6+ktATnnHsu/v7GPyI3iIA3EBrX5+LsxCOGYXDtddfjxReex+nuLqyqqUFFZSUA4H9ffAEv//nPeOWvf0N5RQVcLhcKc3MgihNXFuh0Onzv+/8P3/v+/0NbayuuvvIKLFy4EF+45daE3htJDslFkX72s59hw4YNqKmpwd69e/GpT30KMpkMv//971FbWxv3OA8//DAefvjhSe976623pnzuNddcg2uuuWbS+xiGwaOPPopHH3007rkQQgiZ/2azOeV0YweCYQy7ArCPBGB3+iGIIqxGNQpztFheZR3XvOds8TTziYVlGVgMKlgMKiypsMDhCuD0oAe7DvbCoFWgu6URnadaqGEnmbHuATdkHIt8qzal8zBoFRgN8hgN8RMCuGRyk22/9uxphFIuw8XrLov5PBnHwmxQwWxQobrYBP9oGKcHPTjSFlnqW5Knx7ED7+H48WO0jSGSdPW5UWTTzUlPjHyrBh8c7cPSCgs14yVpIdY2e9g5ik9+4lIYdcroYwPBMAYdfrSeduJk5wiqS0woyEntfjqVPP4Qmpr7YTOrsbjMMqsXCBRyDssqrDjSZod5lWpWAu9zQa/Xg2XZSVersiwbs9deMlx22WXIy8vD008/ja9+9atxPeff//3fcdddd+GLX7wNAiODTpl49npuXi5OtbV+NJ/LP4GHHrgfv9n+a1x/403gOA7Hjx1FKDiK9evXxRzn+htvxObzN6C1pQU33PhRUN/jdkOhVMBitcLv9+ORbQ/FHONv//d/qF6wAFXV1dAbDJDL5WA5Os5NNcnf6h/+8IfRTPAHH3wQ1157LT7/+c9LKpdCCCGESDG23G8syxr4aLnfB3v24IPDp7HnaB8++PCn6Vg/DpwcxJE2O050OtB22omufjf67F4Mjfjh9IzCFwghGOIRCIxOOfY/95xCw77T6Bn0QqeRY/WiXFxYW4JVC2wotOmmDIYDHzXz+frXv467774bX//617Fly5aEsivNBhWWV+Xgwtpi5JoVOHrowKTzbmxsRDAYlDw+yU6hsICWbicWl5mnf/AsY1kGRh3VEY9XrG3j2rV1OHRwn6TtgFopQ3WxCZtWF2NZpRV2h2fc6paxsWkbQ6bC8wJOD3pQkj83ZY90GgVkHEvbDJIWptpmd7QegVoxPsCrUshQkqfHhpWFWFhmRkv3CBqb+7Oyx4zd6ccHR3pRXmjA0grrnGTL51o0sBhUONHpmPXXmi0KhSK6WtXhiLyPqVarJts3v/lNPPbYY/D7/XE9/sorr4TZbMbPn3wqkh0+gwudX//GN/HjH/0Qhbk5eOThbdDpdHjl//6G/3v1VSysqkBZUQHuu+fLGHE6pxxnyZKlqKquxr69e/GZa66N3n7j1s+hoqISCyrKsGbVCqypq4s5RmtrC6664pPIs5qxvm4NLrrkEtx409aE3xtJDskZ4na7Hbm5uQiHw3j33XexY8cOKBQKalpJCCFk1ow4XeB5PmZzSr1KgMViji6MCwsCeF5EmBcQCgvwj4bh9kX+HQoL0dtDYQE+z8iUY1fkq1BSlD/jMhJjzXySgeNY6JUiAHHOl0CSzHOqxwmTXgmzYX50uzfplXC4A8izpO8S5bkyW0uhrUY1EFaBtjFEqp4hLww6BXRJruk7lVyLBgMO37zZhhESy0y22XkWDXJMarSdHsGug72oLjGhLF+fFSsjOvpcaOkawYrqnDkvX7K43IJ39p9GSZ4eBm169tCYyWpVKSar9HD99dfj+uuvn/TxmzdvRl9f37jbGIbBwUOH4QuEoJhkpeCZ5UieffbZcfctXrx43P2fvPJKfPLKK8c9pnrBArz0hz+eMR6iF5jufzB2hveu3Xsm3KbT6caNBQA3bf1c9N+/eObX0X//yz334l/uuTfm+CQ1JAfENRoNHA4HDh8+jMWLF0Oj0SAUCiEUyr6rlIQQQmZXIBhGe68LXb1OMMzky/04jkNVaV7CGQ5+fx6OfhC78WVhnjWlNZVjmWoJJBgGIpueB+1kbvkCIXT2uXHeyoJUTyXKpFei7fTU2TokQq+PBENmYyn0dNsYhlNO8WySrbr63agsMs7pa+aaNTjSZseisukfS0gqzbR8BccyWFBiRr5Vi0MtQ+i3e7GiOmdcDeR0NVmTUZ4XcOSUHSPuUaxblg+9Zu6PbZVyDpVFRhzrGMa6pfnTP2EeGlutunnz5rRokD0ajJTNm0l2eLwYBmAZBjwvguPm3/kemV2S12tfffXVuOSSS3Dbbbfh2msjywUOHjyIsjI6AiGEEJIcoyEezaeG8c7+0wiHBZyzsgTr1q2dleV+arUKa1O4lDBRUy2BXLhkJQ62OtDY3I9hVyDFMyXz2bF2B0rz9fPqZNqkU8LlDUIQJjYlIuNxMjmKypegsbEx6duvWNuYxsYmVC9agX0nh7H7cC96hjzg6XdFAIy4RzEa4uc8g9OkUyIY4uH1U4IWmd8UCgVqa2uxZ8/Mttl6jQLnLC+A1aTGroO96Oh1jcuMDQaDsNvts1LaKtljC4KA119/HY8//jiefPJJPP7443j99dfh9ATw/uE+hHkR564oTEkwfExpvgGB0TAGhn0pm0MyjK1Wna/nNoIgYHQ0CJ7nJ80Ony0cx9BxTJaSnCH+X//1X/jNb34DhUKBrVsjNW9cLhceeOCBpE+OEEJIdhFFEZ39brR0jSDXosF5KwujgbrZXO43V0sJk22qeYsi0DXgwcGTg5HawCWmSBkEQj406PDD5R3FqgU5qZ7KOAo5B6Wcg9sXHNdcjEzUfMqOpTXnYuS0bs63jaII9A370NHrxrF2ByqLjCjJ08/LFTVkbnT1u1Gcq5uT2r5nYlkGOSY1Bhw+VKjnNjudEKkWrliPXrt3xttslmVQXWxCnkWDQy1D6LN7sazSgl3vvI3GxsYJYyfSu+ZMgiCgvr4+6WNP1mS0sbERnX1uXPKxj6G8wDCjeScDxzKoLjHhZHfk/IQklyiKcLlc8Pl8EEURDMNA5DUwGAxzUhKIY1kEQzwgT8/GqSRxjHjmpUQStXfvXtTW1qKpqQlr1qxJ9XTm3KFuWqpMEreimE5GiHQefwiHWgYhisCySmvMQNhkSyqTZTbHnk1TzZsXRJwecKPttBMatRwLik1UZ5VAEES8e6AH1SUmFORoUz2dCQ6cGITZoERpfupPhOerniEPTnSO4LwVBVDIuZRuG0fcozjR5YAvEMbisshyfpJdgiEeb+/txsaaIqiUknOuZqx3yIuufjfWLUvPkgYkOwSCYbyzvwdrl+ZBrWCSts0WBBFtPU788816eOxdqKuriwaXm5qasHTpUmzZsmVGr/H666/j6NGj0YagyRg7GAzi8ccfjwbDxzgcDuzcuRPf+MY35s3xuCiKeOdADxaWmlPS44TneZw4cQILFy4Ex81d9vRccDqdCAQC0Gg0kMlkCIfD8Pl8UKlUMBoTjyv4guG4H+v1h6BRyZFJJfk1irnfF8+lWN8JKbFcyZ+QKIp46aWX8MEHH8Dtdo+77xe/+IXU4QghhBB09btxvMOBqmIjygumzgZIZnPKuRx7Nk01b45lUJpvQFGuHt0Dbuw/OQidWo7qEhPMegqMZ6uOPheUCm5eBsMBwKBTwOlN/lLvTBEIhnGsfRg1C3Ojy4pTuW006ZVYtzQfAw4fmk8No3fIiyUVFqgy/GSMfOT0oAc5JnVKguEAkGNS41DrEEJhHnJZZgWLSOZo6RpBQY42mvSRrG02yzIozdVgoOs4Nm3aFA0um81m1NbWoqGhAZs3b044uOzx+rFnz55Jx965cyfWrt8AnVYFGcdKyuh1u93gYzQZFUVxXjVvZhgGVcVGtHSPpCQgPva5Zlo+qyAI8Pl80Ol0kMki+w+ZTAaNRgOPxxOtuz/bOJYFzwuQyShLPN3MZBWB5COWu+++G//7v/+LjRs3QqudnydRhBBC0gPPCzjUOgS3L4S1S/OoPMIs4lgGZfkGFNt06BrwYN/xQRi0ClQXm2DS0+eeTQLBMFq7nfM6k9KkU6Jn0JvqacxbR08No8Cqg2WerfbINWtgMahwotOB9w71omaBjVakZAFRFNHV78ayytQFruQyFma9EoMjfhTm6FI2D0Ji8fiC6LP7sHF10ayM73a7IYripMFlnhfgdDphs9liPn80xMPnD8HjD8EXCMEbCMPrD8E/Gobf64QQI3AtCALe238KnFIPQIRcxkEhZ6GQcZDLWCjkH/2XZYAwLyIYjtT8H3H5wGB2GkPPhgKrFi1dIxh0+GEzz20ZQpZlwXEcAoEAdLrM2cYJggBRFKPB8DEymQyiKEbL88y2sTridBk/fYRCITAMM7cB8ZdeegmNjY2oqqpK+EUJIYQQ/2gYe48PQK2U4dwVBZBxdEV+LnAci/ICA0pydejsd2Pv8X6YdCpUFRvpgkSWONkZyVAzaOfHMuTJGLQKePwhhHmBtg1n6R3ywuMLYlX1/Kr9PkbGsVhaYYXFoMLe4wNYWGpGSd78CmqQ5AkGg+joHoTAh1PepyLXrMHAsI8C4mReOtE5gvICA5Sz1CxwLJN2suAywzDYc9wJbdcoFHIWHMdCFEQIYiQQPhrkwTCAViWHRiWDVi1HnkUT/X+IBTjy/quTjs1xHC45dyEUCgVCYQGhMI9gSEAwzCMUFhAMRf7r8QXBCyLkMhZyGYsCqxbVxSaEHZHmzWeXYpmPje0ZhkFZgQEdfa45D4gDgM1mw+nTp1FUVASVSjUn9bVnmyiKEEURwWBwXFA8HA5H7+N5PqGxBSH+5zHAhyuMEnqpeYnn0//vIxZRFNHf3w+TyTS3AXGDwYDS0tKEX5AQQggZcY9i7/EBlObpUVVszIgDunTDcSwqCiNN8Dp6XWhs7ofZoEJ1sWlcoDRd66qTyTlcAQyO+HD+qtnJUEsWjmOhU8vh8gbnXRZ0KoXCAo51DGNldQ64eX6hIN+qhVYtR2NzP8K8gIpC6i+SSc5ssMfzPFiWRXB4bVKa9yXKZlbjZNcIBEGc88aehEzF6RnFiCeAlbPYxFqhUKCubvLg8rp1a3HhOZXwj4YRCvPg+UjjQpaNNLJWKbhpSg1xMcc+M3A9FuzWSNhtf+xjHwPDMGnT2L7IpsPJzhF4fEHoNHN7XDx2MaKnpyfhIPF85PP5EQ53Q6FQgGVZCIKAYDAIuVwOl8uV8LjBsCDt8SEecpm0sj/zmSLDy7+oVCrk5ubOaAzJAfFvfOMbeOihh/Af//EfGfOHQgghZO7YnX7sPzGIJRUWyuKaB2Qci6piE0rzIxkve472wWJQobLIgN27dqKxsXHCCUqqgh1kZgRBxJFTdiwsNUfrTs9nRp0CTs8oBcTP0Hp6BCadMuWZuPHSaxRYvywfe472QxBEVBWbUj0lkiT19fU4evRotBneWHAMwIyb9yVKo5JDpeTgcAfS5jtCssOpHidK8w2zvuJpLIg8WXCZZVnIZYkHcKcaeyZYlsWWLVuwefPmtEjAkHEsivN06OhLTZkos9kcLVWTCfXEBUHEroM9cAwcxvGjh6J/W6tXr8aFF144o3OOIz3SgumdXQ4YNHLkWTPj/HRhYeY2po9c0Jv59lRyQPyqq67CxRdfjCeeeGJCDaq2trYZT4gQQkjm6rN7cbjVjlULbClZakhik8tYVBebUPZhYHzHH1+Fy941r4IdZGbae11QyDgU56ZH+QqjTgm705/qacwbHn8I3f0ebFhVmOqpSKJRybF2aR52H+mDUpE+f38ktmAwiMbGxuj+AUhe876ZyjVrMOjwU0CczBsefwhDI4E5CZ7OZnB5tgPX6dTYvizfgHcPnMbCUjPkKcrCzZTklO5BFxQKOa664nIEP35JUv+2GEbaZ2TQKuH0BJGfkxmfLcfN/+SXVJMcEL/hhhtgs9nwpS99iZpqEkIIiVvPkAfH2odRuziXmqzNY3IZi9JcDfq7TmDTpvkX7CCJ8QVCaDvtxDkrClI9lbgZdUq0nnamehrzxrH2YZQXGqBWpl+BS41KjtrFedhztA9qpYyClWnO7XZP2WDP7XanLLBlM6lxqHUIi8stKXl9Qs52qseJkjzdNCVJkms2g8vpFLieLWqlDGaDCr1DHpTmZ24W7mwLhXm0do9gzaI8AKn/2zLqVOjs90CECAZUDSMbSD6i3rt3LwYGBqDRaGZjPoQQQjJQn92L5lPDqFuSR40b04Db7YYoTh7s4JMU7JiuNrkvEILdGYDTM4rAh82eVAoZrEYVcs0aqg8r0dFTwyjN10Onlqd6KnHTqeUIhXiMhvhZa0KWLgYcPnj9IaxeNLNaialk0CqwojoHB04O4bwVBVClYWCfREzVvI9lWej1qVsFYNIrEeYFePyhtNrekcwUCIbRb/fi/Jr53beDSFdk06HttJMC4jPQetoJq1ENk35+nBuqlTJwLOALhKFV0f4jG0g+Eq2qqoLf76eAOCGEkJjODHaOeMM40mbHmkW5FAxPE1MFOxgwaOn1A7LElqSf2Yjt7BqUIhj0D3vR1eeG2xeCxaiCWR+plyxChC8QxqkeJ461D2NxuQX5VlqpFo8+uxe+QAirF9qmf/A8wrIMDNpIHfFcc/Yed4qiiBOdDiwoNYFL8wtBuWYNinNHsf/kINYtzUc4HEqLmrFkvLHmfXv2NGLt2rqYDfZSgWEY2EwaDDp80KmpkStJre4BD3ItGqgUdAEw0+SaNTh6ahhDDg8YYZT2YxJ552kZOINOiRHPKAXEs4TkLfNXv/pV3HTTTXjooYeQn58/7r7KysqkTYwQQkj6OTvYyTAMcksW4aorLqMyKWlkLNjR1NSE2traCcGOPKsBh1vtkHEsSvJ0yLdq427SOFkjtsbGJgy7Asgtr4FGJUdpnh55Fg24SZpPVRebMDTix+E2OxyuUSwuN1OT7ymEwgKa24exoipn0s9zvjPqlFkfEO8Z8oJlGBRkyAWg6mIT3j/cg9//+VW0HDtETXvTVN36jejqdye9wV4y2MxqdPS6UFFIAXGSOoIgorvfjVVpdjGaxEvEQPtePPXaYUAUaT8m0fFOB0rz9fOuDJxRp4R9xI+inMxorEmmJvmv74tf/CIA4PXXX4+egIqiCIZhwPN8cmdHCCEkrUwe7GzEvj3vUiPGNDMW1Jgs2MGyLMry9Rhw+HF6wIPjHQ5YPixlYjWqoImRVRGrEVtdXS3e3rkTWy65CBbT9AegOSY1zl1RgL3H+nGkzY7lVTnJe+MZ5mSXAxa9Cjmm9KzZbNQpcXrQk+pppAwviDjZNYLlldaMufDDsgyGuw6iu72Fmvamse5BDy7YfDFK866Yd1n+VqMaB1uGEAzxcV+sJSTZBkf8kMs4mPWUEJKJ6uvr0dt1Chds2kT7MYkGHD64PKNYWT3/jt+NWgVOnXZCEEWwGXLcRWKTHBA/derUbMyDEEJImosd7KyjRoxpiGVZbNmyBZs3b5402MEwDPIsGuRZNAiGePQP+zDo8ON4hwNyGQu9RgGdRg6FnIOMYyCKwLDdDp7nJ61NDlGEyI8CiC8jQynnULckD+8f7sOpHidlAk7C4Qqgz+7FeSvn13JUKYw6BY6eGk31NFKms88FjUqWthc0JhMMBnHwwL4J+wpq2ps+giEe/XYfNq4ugkIhm3cN9uQyFma9EkNOPwopy4+kSFe/GyV59PeXiWKd89B+bHo8L+DoqWEsqbBCNg9XLirlMsg4Fr5ACDo1/Q4zneSAeFlZ2WzMgxBCSJpzu90QhMkbMQpJasRI5l48Hd8Vcg4leXqU5OkhCCLcviC8/hA8/hA8viDCfKR8DjhVUhuxyWUcahfnYtfBXlgMKqpRfwaeF3C41Y7FZZa0rl06ttrAFwjFXHmQqUJhAad6nKhdnJfqqSQV7SvSX/eABzazel5vW3LNGgwOU0CcpIYvEMKIO4BVC6hcSiai/VjiWk87YdAokGeZv6XwjDolnN4gBcSzQFyXZBobG+MaLN7HEUIIyTxnNmI8U6LBTpKeWJaBUadEoU2HhaVmLK/KQc3CXKxaYMOqRflYu3Ytmpqaon8nM23EplHJsajMjEOtQxAEMdlvJ22d7B6BRi1DoS39g0HGDxscZZtTPc6MvNBD+4r0JooiOvvdKM03pHoqU7KZ1Rgc8dN+gaRE94AHBTk6yGXzLwOWzBztxxLj8QXR2efGkgpLqqcyJb1GDrc3mOppkDkQ1xb61ltvxac//Wm89tprGB0df0ISDAbx2muv4eqrr8att946K5MkhBAy/ykUClQtWo49exqTFuwkmeeSSy7B0qVL0dDQgD//+c9oaGjA0qVLZ9SIrSRPD45l0XbaDrvdjmAwuw9iR9yjOD3gwbKKzMhOMuoUcHmy63caCIbR2efGghLz9A9OM2c27aV9RfoZcPgh51hY5nmjbI1KDqWCg8MdSPVUSJbhBRHdA24U56b/BWkyOdqPSSeKIo602VFVbJx3jTTPZtAq4fIGIYIuqGa6uP4S9+7di5///Oe4++670dvbi8rKShiNRjidTrS1taGgoAD33nsvduzYMdvzJYQQMk/1D/uQU7IKeo1i0kaMhADT1yZPhCAIGOzYh3/8ZR8AcUID0GzCCyIOtw1hYakZqnl+whEvo06JttPOVE9jTrV2O1GQo4VWnZllYs5s2ssLAhgwqKV9RVpIp7rIuWY1Bh1+WI2ZU4OfzH8Dwz6olfKMW91Dxhu3H+N5MAyLdevW0n4sho4+N3hBRNk8X10EAGqlDCwL+AJhaLOsXF+2ietMSSaT4Z577sFXvvIVNDU1oampCcPDw7BYLKitrUVtbW2kNighhJCs5PEFcbh1CDWLcmE1luGSiy9KWrCTZKZ4apPHq76+Hm0tJ3DBBZtgNpujWToAsGXLlqS8RrpoOz0C5Yc13TOFURfJ1BEEESyb+cebXn8IvUNenF+Tvs1Qp3P2hbGOwVFo1aqsu4CVbrz+EEbco6hZmB51kXPNmkgvhfJUz4Rkk65+N0rzM2cfTCZ35n7M7nDiQIsTF66vpP3YJLz+EFq6RrB+eX7aHMfpNQq4vaMUEM9wklKHGIZBXV0d6urqZms+hBBC0kyYF7Dv+CCqi03RLKxkBjsJmUowGERjYyM2btwYbW5kNptRW1uLhoYGbN68OWsuyjg9o+jodeO8lQWpnkpSKeUcFHIOHn8IBm3m/y5bukZQmq+f1w0Lk2VsX6HShPDeoV6UFxqhlHOpnhaJobPPjSKbDjIuPQI+Rp0SwTAPjz8EXYautiDzi8cXhNsXRP48bhhIkkuhUKAgz4auIR5DI34U5GhTPaV5RRRFHGodQkWhAXpN+hzDGbQKuLwh5NPpbEZLj6MZQggh89aRNjsMWgXKCub/EjiSedxuNwRBiAbDx5jNZgiCALfbnaKZzS1BEHG4zY4FJSZoMjCbxaRTwJkFjTVd3iCGnH5UFGbX9lSrliPPosGpnuwqjZNOeF7A6UEPStIo85VlmUhzTYcv1VMhWaKr34Mimw5cmlw0IsmTZ9Ggf9ib6mnMO+29LoiiiIpCY6qnIolBq4TLl/nHndmOttSEEEIS1j3ghtMziqWVdPmcpIZerwfLstGmRmMcDgdYloVenz7Bm0QEg0HY7XYcOzUIuYzN2GXaRp0yKwLiJ7scqCg0Qi7LvizpyiIjuvs9CIX5VE+FTKJnyAujTpF2mdY2kwaDDn+qp0GywNhFo+IMKllG4pdr0WBoxA9eoEaMY1zeIFq7nVhRlZM2pVLGaFQyCEKkyTnJXJm/FpMQQsis8PhDONbuwNqleZDL6PoqSQ2FQoG6ujo0NTWhtrY2WkO8sbEJdXV1GVsuRRAE1NfXo7GxETwvgGEYrF5TC3Hxlozs62LUKdEzmNmZVw5XAC5vEDUL0qM+c7Jp1XJYjCp09XtQWZRemWTZoLPPjeoSU6qnIVmOSY1DrUMIhfmsvNBE5k6v3QtDGl40IsmhVsqgUclhd/qRa6aSOWFewIGTg1hYaoIujUqljGHAwKBVwOkdzYoSdtmKfrOEEEIk43kBB04MoqrYCKNOmerpkCx3ySWXAAAaGhogCJHgcOWC5dHbM1F9fT2OHj0arZ0+1khULmMzspGoQauAxx9CmBfSpn6xVCc6HagsMmb1UvuKQgP2nxhEWYEBXJplk2UyhyuAEC/AZlKneiqSyWUsTHolBkf8KMzRpXo6JIN19bvTriwESa5ciwYDwz4KiANoPjUMnVqO0vz0LQGn1yrg9oaQZ57+sSQ9UUCcEEKIZCc6R6BScnTgT+YFlo0EgTdv3gy32w1OrkLjMTtEZGZALRsbico4Fjq1HC5vEBaDKtXTSboBhw+BII+S3Oxeam/Wq6BWytA75EFxln8W80lnnxslubq0W/I+JtccKZtCAXEyW5yeUfhHeQqEZrk8iwZ7jvZBFMWMXK0Xr54hD+yuADakeZN3o1aBvqHMXp2Y7eIKiJeUlMT1he7s7JzxhAghZEwwxGP4wyXko0EeLMtAp5HDZlJnZNO4dGF3+tFr9+C8lYWpngoh4ygUClitkXr2WrUTgw4f8q3aFM8q+eJpJDr2OWQSw4eNNTMtIC6KIk52jWBBiSltA47JVFFoxMkuBwXE54lAMIwBhw+LK4pTPZWE5ZrVaOkagSCI9B0js6Kr343iNL5oRJJDr1FAxrEYcY/CnGHHKvHy+ENoPjWMNYtz075MlUYlR5gXMBoKQymnXOJMFNdv9dFHH53teRBCslQwGITb7YZer49mNDpcAXT0uTDo8MOoV8KkU8KgVYAXRIy4RnGycwQWowpLyi1QK2nnNJdCYQGHWu1YWmGlempkXivI0aHP7s3IgLherwfDMHA4HOOC4pneSNSkU8LuzLzmeL12L0RRREFO5v2tJiLXrMax9mHYnX5YjelXoiPTdA94kGvRQClP38CGRiWHUsFhJAMvqMVrsuNtkhyhsIA+u5cSRQiASJZ4/7AvKwPiobCAfccHUFVsglmf/u+fZRjotQq4vEHYTHTem4ni+q1+4QtfSPoLP/HEE3j22Wdx6NAhXH311XjxxRej9x0+fBi33XYbDh48iPLycjzxxBO46KKLovf//ve/xze/+U309vbi3HPPxa9//WuUlZVF73/wwQfx1FNPIRgM4pprrsHPfvYzKJVU45aQ+eTMhnCCIIBlWaxctRr5Favh9odQlm/A0gorFJOcgIXCAk71OLHrYA9WVOfQ8sQ5dLxjGGa9MiODjCSz5Fs1ONnpQCgsZFzTV4VCgbKqZdjT2Ii1dXXjaohnciNRg1aB1tPOVE8jqXhewInOESyrsGb18uozMQyD0nw9OvvcFBBPMUEQ0dXvRs3C9G/0ajOrMeDwZV1AfLLj7bq6OlxyySVg2czaN6ZKz5AHZoOKVq8SAJE64odahrC43JLqqcwpURRxqHUIBq0C5QXpWzf8bAbNWECc4g2ZKOG9oNfrxalTp9DW1hb9kaKwsBAPPPAAbr/99nG3h0IhXHHFFbjyyivhcDiwbds2XH311RgYGAAANDc34+abb8aTTz4Ju92OlStX4tprr40+/5lnnsHzzz+P3bt3o62tDceOHcNDDz2U6NskhMySMxvCXXXVVdi4cSNOHD+GtuY92FhThMoi46TBcCDSIGlhqRk1C2041DKEPjvV9poLAw4fBkf8WFqRXQd4JD2pFDIY9UoMOHypnkrSdQ+4UbKgFsuWLkVDQwP+/Oc/o6GhAUuXLs3oRqJ6jQLBEI/REJ/qqSRNe68LOrUcNjMFfs9UZNNhaMSPwGg41VPJagMOH5RyLiMy/XLNkWZ32Way4+2jR4+ivr4+1VPLGN39HpTkZebKLCKdSadEmBfh9gVTPZU51XraCf9oGMsrM6tkn+HDDHGSmSTn/be3t+PGG2/E7t27J9zH8/GfoHz6058GAOzfvx9DQ0PR29966y34fD5861vfAsuyuO666/Df//3f2LFjB7785S/jueeew6WXXootW7YAAB555BHYbDYcOXIEy5Ytw/bt23HfffehsrISALBt2zbcdNNNeOyxxyadR29vL3p7eyfc3tzcHPd7IYRIE6sh3Nq1dWhoaIDAfxzgps9wtBrVWLM4F03NA1DIuazL+plLoTCPI212LKu0pn09OJI9Cqxa9Nt9KLJlTiM1XyCE4x0O1C7Og6m2BBdeeGHWLINnWQYGbaSOeCasDBoN8TjV48L65fmpnsq8o5BzyLdq0T3gQXWJKdXTyVqd/e6MCfSZ9UrwgginZxRGXXasHB4e8WDPnj3YtGlT1jRgnmsOVwAhXoDNRBc1SQTDMMg1q9E/7INekx3fr4FhHzr7XDhneQE4LrNWnmg1CowGeQTDPBR0DpxxJP+13nvvvbDZbGhsbIROp0NTUxMuu+wybN++PSkTOnz4MFasWDFuCVdNTQ0OHz4cvb+mpiZ6n16vR1VVVcz7a2pqMDg4iP7+/klf7+mnn0Ztbe2En61btybl/RBCJoqnIVy8zHoVlldZceDkIIIZlDU43xzvcCDHqM6IIBTJHjazGnanHzwvpHoqSSGKIg61DKE0Xw+TPhLQGWskmi1BDaNWCadnNNXTSIqWrhEU5Giz5oRZqpI8PboG3BAEMdVTyUoeXxBubxCFGVLbnmEY5Fu0Gb+qcKzMTcO+09i1/1TSjrfJ5Dr73SjJ1VHJKzJOrkWDwQxcoTgZp2cUB1uGsGqBLSPLBnEMA71GDjdliWckyQHx9957D9u3b8fq1avBMAxqamrwi1/8Aj/+8Y+TMiGPxwOTyTTuNpPJFN1hS71/7N+xdvh33nknmpqaJvw899xzSXk/hJCJBEYBINIQ7kyJNoTLt2qRa9bgcJs9ibMkY4ZdAQw4fFhUZp7+wYTMIyqFDHqtAoMjmdGI8VSPC4IooqrIlOqppIxRr4DTk/4nJS5vEL1DXsp+noJJr4RSzmVk2aN00NHnRlGuLqOy/QpytOi1+yCKmXmRxekZxa5DPege8GBxuQUfO3chOI6b9HibYZiMbcA8V0ZDPAaGfSjKzZxVaCQ5rAYVPL5Qxpf98gVC2Ht8AEsrLBnd80NPZVMyluSSKeFwGBZLpH6sRqOBz+dDYWEhWltbkzIhnU4Hp3N8wySn0xndYUu9f+zfsXb4BQUFKCgoSMrcCSFTEwQRradH0NnnxpLlq9DU1ITa2tqkNIRbXGZGw4EenO4fgUrGZ0X5gLnACyKOtNmxuMwSs6Y7IfNZnkWDAYcv7RvBOj2jaDvtxDkrCsCy2ZuJZtIp0XxqONXTSFgwGITL5UJzlw8LSkxQ0nZ1SiV5enQPeNL++5tuwryA3iEvzluZWedIYytrBobdkCGUUceKHb0unOwawaIy87gyN3V1dROOtxsbm5BfuhidAz5UF2fG+0+F7n43cs0aqBSSQyokw3EcC6sp0si3ND9zGkwCkeMYt9sNlVqLvSfsKMnTozCDShNOxqhVoL2XVtRkIslb78rKShw6dAgrVqzA0qVL8dRTT8FkMsFqTU7x/OXLl+Oxxx6LdsEGInXGb7jhhuj9+/fvjz7e4/GgtbUVy5cvH3f/hg0bos+12WzIy8tLyvwIIYnx+kM42DIElgHOXVEAVW0x6uvrIzXDz+p6nwiGARxd+7H9rwcAiOPGO7MEE5Gm7fQI1EpZxh/okMyVa9agtdsJQRDTNpDM8wIOtQ5hYakJOnXmLUeVYmw5ri8QSquluYIgoL6+Ho2NjeB5HgzDYu3aOpTkfYz2UVMoyNHieMcw/KNhqJUUdJorPYMemPTKtPqOxUMQBPS37cU7fzsEiJlxrCgIIprbh2F3+nHOioIJ+4ix4+qzj7c3bNyMpmMDYABUFZvmfuJpThRFdA14sKo6J9VTIfNUnkWD3iFvxgTEzzyOEQQBAIPKhcuxYeUVqZ7arNNpFPCPhhEK89RLK8NIPrL81re+hd7eXqxYsQIPPvggrrjiCgQCATzzzDOSxgmHw9EfQRAQCATAcRw2b94MtVqNH/zgB/ja176Gl19+GYcOHcIf//hHAMDWrVuxdu1a1NfX4/zzz8e2bduwcuVKLFu2DABw880347HHHsPll18Oo9GIRx55BLfccovUt0kISaKufjeOdzhQUWhAZZExWmdvy5Yt2Lx5c1IawtXX16PjVAsuuGDTuIzzsdch0nl8QXT0ujMuQ4xkF61aDpWSg8MdSNvlnCc6IxemMuWkaqaMOiVGPKNpFayrr6/H0aNHo82kx/ZRDMPQPmoKMo5FnkWL04MeVFPQbs509XuwIAPL+dTX16Onqw0XbMqMY0VBiPSV8AfDOGd5waQr+ViWjXm8XbckDx8c7YdCzmVM89S5MujwQ86xMBtUqZ4KmadsJjWOttkRCguQy9LzgtuZYh3H1NfXp+X2UwqOZaHXyOHyBtP2XIJMTvI387Of/Wz0D/6CCy6A3W6Hw+HA5z//eUnjPProo1Cr1fje976HHTt2QK1W4/bbb4dcLsfLL7+MP/3pTzCZTHjooYfwxz/+Ebm5uQCAJUuWYPv27bjjjjtgsViwb98+vPTSS9Fxb7vtNlx//fVYu3YtKioqsGDBAjzyyCNS3yYhJAmCIR57jw+gvceFtUvzUFVsmtB0JhkN4YLBIBobG6PLQYFIw6Da2lo0NjYiGKSaX4k40mZHVbExrYJOhEwm16xBnz096xAPjfjRa/dgWWVyVuJlAqNOAVca1RGnfdTMFOfqcHrAk7F1n+cbhyuAEC/AZs6sk/6x72FdXWZ8D8eC4YFgGHVL8qYtazfZ8bZGJceaRbk43uGAwxWY7SlnlM5+N0ryaPUkiU0h52DUKTGUAX1s6DiG6ohnKskB8a9+9as4cuRI9P/lcjm0Wul1/R5++GGIojju59lnnwUArFixArt374bf70dzczMuvvjicc+95ppr0NbWBp/PhzfffBNlZWXR+xiGwaOPPoqhoSE4nU786le/glKplDw/QsjMONwB7DrUC4WMxXkrC2DUzd730O12QxCE6A56jNlshiAIMZvqkth6Bj0IhgWUUUYqyQC5Zk1aNtYMhXkcah3CssocqlF6BqM2kiGeLmgfNTNmgwoME2nwTGZfZ58bJbm6CQkM6S7TvodH2uwIBMOoXZIH2Qwanxq0CiyvsmLfiUGMhvgkzjBzef0hjLhHqZwgmVauRYOB4fRMyDhTpm0/E2GkgHhGkrz3bGtrQ01NDc455xz86le/gtfrnY15EULSWHuvC03NA1hYasLyqhxwMzhQj4derwfLsnA4HONudzgcYFk2ZlNdMrkwL+B4pwNLKyxpW3OZkDMZdQoIggi3L70OZI+02WEzqZFn0aR6KvOKSa+EyxsEL6RHxrBerwfDMLSPmoHi3EhzTTK7AsEwBhw+FGdg+YxMOlY80emAyxvEmsUzC4aPybdqUWDV4nDrUBJml/nae10oztMl5bMnmS3XrMbgiB9CmhyvxKLV6oAsP445s444yRySt+Ivv/wyOjo6cMUVV+D73/8+CgoKcNttt+H999+fjfkRQtJImBdwvGMY3QNunLOiAIU5c5M5oVAoUFdXh6ampuiO2uFwoLGxCXV1dTMqx5KNWrtHYNIpqUYayRgMw8BmUmPQkT5Z4qcHPXB5g1hcbkn1VOYdhZyDWimDK02yxDlOhqLyJWhsbBy3j2pqon1UvApztBgY9iEUFlI9lYzWPeBBrkUD5TTlN9JRrGPFdPsedvW70TPoQe3i3KTWJV5YaoJ/NIzOPlfSxsxEwRCP3iEPraAkcdGo5FArZWm9wkkQRBzvdKGkYmnabz9n4sw64iRzJLT+trCwEPfffz/uv/9+vPnmm/jBD36ADRs2gOfpagkh2co3Gsaxdjv0WgXOXV4w61nhZ7vkkksAAA0NDRAEAQzDoKx6WfR2Eh+PP4Sufg82rCpM9VQISSqbWY2OXhcqi4ypnsq0/KNhHGsfxprFuZSBFoNZr4TDPZoWDc0Ot9mxfM15GO7SRfdRLMuirq6O9lFxUillsBhV6B3yUHPZWSIIIrr73Vi1wJbqqcyaM48VeT5yrLh27dq0+R4OOvw40enAumX5UCmTW0aL41isrLbhgyN9yDGpqX9MDJ19btjMGqiT/PmTzJVrUaN/2IccU/olGomiiMNtkca9N1xzBd7655tZfRwzVkecksYyx4y25G+88QaeeeYZvPXWW6ipqUnSlAgh6cbhDuBk1whKcnUoyNHNeTAcAFiWxZYtW7B582a43W4oVRq8d3gAIV6EkuJJcTvWPozyQgMd6JOMYzWqcbBlCKEwD7lsfmc/Hm4dQkmeHmb9/A/2porZoEKf3Qtgfl/gaO91weUJ4pwVBZAv+WgfpdfrsyKjKpmKbDqc6nFRQHyWDI74IZdxaXGRKVFnHyse7fCgujQHLDv/DxSdnlEcbBlEzUIb9JrZ2XYYtAqU5utx9NQw6pbkzcprpDOeF9DZ70LtYvpsSPxyzRrsOz4AIL2ao4uiiMOtdnj9kca9ctn47Wc2HscYtQq092Z+vfRsInnv39XVhUceeQQVFRW49tprkZOTg/feew9NTU2zMT9CyDx3esiDlu4RLCw1oWCOSqRMRaFQwGq1QqdVI8ekRu8Q9TmIV/+wD15/CBUFFGwgmUcuY2HSKzE0Mr+XrXb2uRAMCagqNqV6KvOaWa+EwzUKUZy/dTn77F60nR7B6jNKG4zto7LtJDIZbGYNvP4QvP5QqqeSkbr63SjNz/w6sMBH38OqUitO9ThTPZ1p+UfD2Ht8AIvLLbOemVhVZIQvEKLj50l0D3qg0yhg1ClTPRWSRsb+XpxpUuYNiATDj7TZ4fEHo8HwMdl8HEN1xDOP5IB4RUUF3nzzTTzyyCPo7e3Fz372M6xevXo25kYImccEUURL9wgGhn1YXpkDk27+ZRQV2XQ4TU244iIIIo53DGNxuSUlGf6EzAWbSY3BEV+qpxGTLxDCic4RLK+ygqOGtlPSqOTgOAaeeRocHXYFcLjVjtULc6FTU+mBZOBYBvlWDXqGaL+ebL5ACCPuAApytKmeypzKt2gRDAuwO+dvf4lQWEDTsX6U5OlRZJv9xBOOY7Gs0opjHcNUs/9DwWAQAwODONkxhGq6WE0SYDNrMOCYv8efZzt6ahgu78RgeLajOuKZR9KaeJ7n8c9//hPr16/PyitChGSzcCgIv88LtUYHhuNwvNMBURSxoipn3ta4zTGpcbjNDqdnlLI5YggGg3C73Rj2Ako5hzyLJtVTImTW2MwanOpxQhRFMMz8CzgfabOjNF9P26s4WfQqOFyBWSsfkCinZxT7jg9gRXVORpefSIVCmw6HW4ewoMSc6qlklO4BD/Kt2nl7PDdbWJZBRYEBraed86om7NixmVarw6E2B4xa5ZwGYq1GNSwGFVq7R7K6sbMgCKivr0djYyN4ngfDsBCckZrz6VBmh8wfeRYNjnc40mLfdfSUHSPuUaxdmjfvSwymwmzWET8z3iKTUzLFXJAUEOc4Dpdeeik8HsrMICRbCIKAI3veQduxgxAFAQzLQp+/AEWL6lBdbgU3D4NKY1iWQaFNi55BLwWYznLmQb4gCAAYrKxZDWFpHh3kk4ylU8vBsSxGPKPzrj43lUqRzmSIlE0pzU/1TD5id/qx/8QgllRY6ALjLDDrlRDESO+S+fYdTleCIOL0oAdrFuWmeiopUZynx6keJ+xOf8qD4hOOzRgGpZVLceM1V875XBaWmvHugR4U5+mzdpVLfX09jh49io0bN8JsNsPhcETLxG7ZsiXFsyPpxGJQwT8ahi8QmtcNa4+1D2PYFcC6pflQyCkYPpnZqCM+WbylcvFKLFt7Pp2XzzLJn+6CBQvQ29s7G3MhhMxDR/a8g77OFlywaROuvvpqXLBpE8LO0wgOHJnXwfAxhTk69Nq987rObCqceZB/1VVX4YILNqGt5QTq6+tTPTVCZpXNrMagY34tj6dSKYkx61VwuOdPTfj+YR/2HR/EiuocFM6DnhqZiGEYFOZELnST5Bga8UMh47I2cYBjGVQVm3CicyTVU5l4bLZpE4b7O/Dmm/+Y87molTKUFxhwvGN4zl97PggGg2hsbERtbS3M5khWr9lsRm1tLRobGxEMUskEEj+WZWAzqTEwz44/z3S8YxiDI36spWD4lGajjvhk8Za+zhYcaXwnaa9BJic5IH7PPffguuuuQ319PVpaWtDW1hb9IYRklnAoiLZjB7G2rm7cweC6tXVoaz6IcGh+1m49k0GrgJxjMeyaP0GTVKODfJLNbCYNBkfm1wnJ0VPDVColAXqNHLwgzosmi6cHPTjcOoQ1i3ORa6bM8NlUmKNFn90LQaAL3cnQPeBBcW52X8ApsukQDgspbSQ5H4/NKgoNcHuDGJpn+8y54Ha7IQhC9Hcxxmw2QxAEuN3JzRAlmS/XosHA8PysI36yy4GBYT/WLs2DkoLhU+JYFnqtHE5PcrbJseIta+vSJ96SziQHxG+77Ta8++672LJlCxYtWoQFCxaguroaCxYsmI35EUJSyO/zQoxxMCgKAgK+9CiflJ+jQZ99fh6ApAId5JNsZjGq4POHEBgNp3oqAIDeIS98gRCqioypnkraYRgGVqMKQyluiNfR68LxDgfqluTBQjXDZ51Oo4BaKcvKIF2yBUbDsDv9KLRlVzPNs7EsgyUVlpQ2kpyPx2Ycx2JhmRnN7cNZdwFKr9eDZVk4HI5xtzscDrAsC71en6KZkXSVY1LD6RlFMJS8zOJkaDvtRM+gF2uX5kGlkFRROWuZdCqMeEaTMlamxFvSleSA+KlTp6I/Y5nhY/8mhGQWtUYHJsbBIMOyUGnSI6Mo36pF/zBlk42hg3ySzTiWgdWonhdZ4qGwgGMdw1hWaQWXZc3sksVqVMPuTN0KoJauEZzqdWHdsnzK8J9DhTYdeoboJHGmTg96kGvRUOM0RIJVFr0KJ7sc0z94Fuj1ejAMM++OzQpzdJBxLLoGsitZQqFQYPHSldizpzH6OxmrIV5XVweFYn41cybzn1zGwmxQzYvjzzHtvS509rsjwXAlBcPjZdIrMex0w+10zDiDO1PiLelK8l99WVnZbMyDEDIPBXlAm1uFPXsasXZtXbShzJ7GRlQuWZk23Y/1GgXkMg4OdyDlDZPmA4VCgbq6ugm/VzrIJ9lirI54SV5qL/6c6HTAYlDRdmkGrEYVjnc4IAgi2Dmsvy6KIo61OzA04sf6ZflQ04nknMq3anCy04FQWIBcRheTEiGKIroHPFheZU31VOaNReVm7DrYg1yzBjmmud0u9w4HkFe6GI2NTairq51Xx2aLy83Yd3wAhTm6rPm++UfDMBQsR7WMRUNDAwRBAMuyqKurwyWXXJLq6ZE0lWtWY2DYhyJb6oOcnX0unOpxYt3S/Hnd6HO+EQQBrQd2oaf5IHo+EGfcAFMml6Ny8cq0j7ekq4SO3l944QX8+te/Rn9/Pw4ePIiGhgbY7XZcddVVSZ4eISRVAsEwmtvtWFa3AUOn9uPtnTs/6nq8ZCWW1Z2f6ilKUmDVonfIS4GnD62q3YCuAQ92NjRApIN8kmVsJjWOtQ+D54WUZWY73AH0D3uxYVVRSl4/U2hUcijlHJyeUZjnqFyJIIg43DYEjy+Edcvzqd5mCqgUMpgNKvTZvSm/sJWuhl0BMAzouOgMKoUMyytzcKh1COetLJyz73ZL1wi6B9y49tOfxPvvvj3vArBmvQpWgxptp0ewqMyS0rnMBZ4XsP/EAMoKjViw/nJcuuUSuN1u6PV6ShohM5Jr1uB4hyOlx58A0DPkQUv3CNYtzYdWTQFXKY7seQf9na3YfMEF44LXYIAV6zYlNOaytefD4w/hrbd3AmL6xlvSkeSA+E9/+lM8/vjjuPPOO/HYY48BACwWC775zW9SQJyQDBEM8zh6yo5cixYFNj0KbJuwZPW5CPg8UGl0aXmlMt+qwQdH++Y8i3A+EkURLd1OXPbxLcgxfpIO8knWUSll0GnksLsCKWmAKAgijrYNY0GJmYKpSWAxqmB3BuYkIM4LIg6cGESYF7B2aX7WZEvOR4U5WnQPeCggnqBIM0367M6Wa9HA7gxg//EB1C3NBzeLx4w8L+Bwqx0efwjrlxdArZRhy5Yt2Lx587w7NltQasKug70oydNnfDbpkVN2KOQcqotNACIrK61WWklBZi7Vx58AYHf60XxqGLWL86DTzI/tS7oYa4B5waZNExpgvr1zJ5asPjehOAnLsrBWrkHpkjUwqpC28ZZ0JPko/oknnsDf/vY3fPvb344uCVi8eDFOnDiR9MkRQuZemBfQ3D4Mi0GFkjNOlGRyOXRGc9punHUaBRRyDsOu1NWanS96h7wAgIIcbfQgf76ccBEyV2xmDQaGU9Nst2vADZZlUJyb+iWzmcBmUmNwZPZ/l2FeQNOxfogQUbs4l4LhKZZr0cDlHYV/njTITSehsICBYR8Kc7K7mWYsi8rM4DgWh1oGIYqz03/G6w9h95E+8KKI9cvHl12aj8dmGpUcJXk6nOhMTY31uXKsYxhubwgrq21gmOxOoCGzI5XHny5vEPtPDGJltQ0mPfU9kWo2G2B6AyHo9Zq0jrekI8lH8oODg1i6dCkAjNtJzNbBAiFk7giiiBNdDmhUMpQVGFI9naTLt2jRZ/emehopxQsiTnaNYEGpiQ70SVbLNWswOOKf8+OXUFhAa/cIlpRb6DuYJFajCh5fCIFZDIyGwgIam/uhkLFYvTCXmqDOAzKOhc2siV7kJfHrH/bCbFBRE7UYWJZBzUIb/KM8Dp4cSnpT9q5+N9471It8qxarF9ogS5PtSWWRCcOuABzuzEwuOdHpwOCwH3VL8+iCJ5k1eRYNBhxzf/zpC4TQdKwfi8rM+P/t3Xl0W/WZP/73vdqszZIs2ZYdx07ibI4dk0UOYXFIgF+mA234UZrSUqbQDgMT6HS6znRoKYeeAdqBM+WULgPT0o2hLC0t9NvyBZyExJm2wTKExNnjYDt2vFuWJcta7+f7h2sRJXbiRbYk6/06x+fY90pXjyR/rq6e+7nPk29jqazpmK0GmDFFQTAcg3GeX32Tjqa8p1++fDneeuuthGV79uxBRUVFsmIiohRp6fRCiQksWWCFhPmXqHHaDejxBJL+xSaTtHf7oNepU3aZHlG6yDVqIUkShobDc/J44XAY/f39ON7SC3uunjNzkkilkuGw6tHeM4j+/n6Ew8l5T8feM//wCBqOdMGYo8Fly/KzvuxWOilyGJkQn4azvcOcHX4JapWMmlWFCEdjcB/rRjA88Qm3sX3FpfY9Xn8I+5s60do1hJpVhViywJJRJ0Y1ahlLS6w41uKZ9HPOBIoicPBUL3o9I6hZVchSZjSrzAYtNGp5Tq5aHhungZEg3jneg4WFZpbKmoF4A0y3O54UT0YDzEAwihyNCqppNOWkmZnytIBvfvObuPnmm3HvvfciHA7j3//93/Hkk0/il7/85WzER0RzpKvfD89QCNVLHVBl0MH5VJgMWmjUKnh8waxsIhWJKmjuGMS6FYWpDoUoLRTY9OjxBGAxzV5yWlEU1NXVwe12I6YokCBh7bp1WL30b6bVjZ4upCgK3j/2No4ceg+ASGhEN53X+Nz3TFEUABKWLK/Crbd8OKOSV9nAYdGjKdIHXyAMM2uhTspIKIqh4RAK8gpSHUraU6tkrF9ZiBNtHvzpYCdWLrKhyG6M7wfO31dMtO/xBcI43eFFr2cE5SUWlDlzM/bEWrHDiJ0767Dr1aMQYub721QLBCM4eKoPapWMDZXsC0Fzo9hhREevf9a+j453HLN4WSWu3L5tVh4vm1TWXA1IwJ69eyEUBZBklK+aWQNMXyAMs5HHMKkw5YT4DTfcgJdffhlPPPEESktLsWvXLjz99NPYunXrbMRHRHPA6w+irduPqiV2aNTze1aE025AV38gKxPiLZ1eWM05nJlK9FcFNgOOt3qwbKHt0jeeprq6Ohw5cgS1tbXxbvSNjY3QqFU8dkqSuro6tL1/CtdcsynhNQYwrdd4ovds586dfM/SjCxLcNqNONvrx4qyvFSHkxHO9vpRmGfMmDIdqSbLElYuyoPDqsex1gG0nB3CwkIznHYjdu8af18BAJs2X4tezwg6+4bhC4RR6jRj09oF0Gb47ONdu3ZisKcVmzYlZ3+bSmd7/TjaMoAyZy6WLLBk7EkKyjzF+Sb873sdiMaUWdkXT3QcU1dXl3HjNN3IsozVGzahYu0VGAn4cLQ9gCXlhTM6IegLhGFhQjwlpvWubdmyBa+88gqOHDmCXbt24aabbkp2XEQ0R0LRKE6cGUR5iXXed40HAKfdiO6BQNb1PQhFYmjt9GF56ewl/ogyjS03ByOhyKw15QuHw3C73Vi/fn1CN/r169fD7XbPi0vNUy3ZrzHfs8xT7DChs2846z7Xp+ts7zCK81kuZaocVj2uXF2MJQss6OofRt3+03j77YZx9xVvv92Atxpa0OMJoKTAhGvWlWDZQlvGJ8PH9o8ulyuj94++QBhvH+5Cc4cX61YUYOlCK5PhNKf0OjVyTTp0z0JzTR7HzA21RgOzJQ92qwkD3pmVv/EHIjDxKreUmHJCPDd3/EZ7eXmclUGUaRQhcKptEPk2Pey5OakOZ06YDVpoVHNTty2dNLcPwmk3wKSf/yc9iCZLJUtwWEfLpswGn88HZYJu9IqiwOfzzcrjZpNkv8Z8zzKP1ayDLEtZ97k+HYO+EGKKgrwsOeZLtrErEmpWObFumQVCiHH3FUIIrF9uxfqVhSjON82b2fiZvn+MRBUcax3A/qYu5Nv0uKq6GDaOBUqRYsfo1U3JlunjNNPYLTkYmEGj4VA0imhUyYqJieloyp/OnH1BNH+c6fZBCKC0cPwTXfNV4V/LpmSLQDCCs73DWFpiTXUoRGmnwGZAzyzM0AEAs9kMeYJu9LIsw2xmY6OZSvZrbDabIUkS37MMU+Qw4kynZ940+ZstZ/v8KM43sRZ+EtisFqhU4+97VCoZFsv8O7bO1M80IQTOdPtQf6ADwVAUV11WjMXFLJFCqVWYZ4TXH0IgGEnqdkePYzJvnGaqXKMOwVDsoo2XL8Y/HIHJoIHMz+WUmHQN8W9+85sAgEgkEv99zIkTJ1BWVpbcyIhoVg36g+jxBFC91JF1O+DCPAPeOd6DVSIvK74UnjwziIWFJuToptw2gmjey7cZcPh0P0KRGHRJvpxdq9Vi3br1aGhwo6bGlVDH0eVyQavl5ZEzpdVq4XK50NjYGL88eCavca83jMLSlXA3NsKVhO3R7FMUBccP/gUH3n0HyWiqOh+Fw2F4vUPo6PZiY/XCVIczLyR735MJJnrObnf6POdwOAyfzwez2QytVguPL4ij7w9AAFizPJ9XR1Da0KhlFDlMaO/xJ7WkpVarxeJllTz2nCOyJMGWq0P/UBALHKYp33/QH0Kukf29UmXS2ZH6+noAQDQajf8OjBaVdzqd+MlPfpL86IhoVkRjMTS3D2LJAit0muxLklpMOqhkCYO+0Ly/VNLrD6FvcASb1i5IdShEaUmjlmG36NHdP4xSZ/Jn9C2t3IDewRHU19dDUZSEZB0lx9hrOfYaAxLWrls/5de4xxPAsZYB3HLTDWj4Sz3fswxRV1eHUyePJ62p6nyiKArq6urgdrsRiymQJAliqIYnC5Lk/H1PNuwrzn/OkiShtLwy5c/53P/10bhklC+vhKP0MqxYZEdJAa+MoPRT6jSj4UgXyheMXnGSDGd7/ShashZ5uTlZtW9KJYdVjzNdvmklxIeGwyhfYJmFqGgyJp0J2717NwBgx44d+NGPfjRrARHR7Dt9dggWU07W1A0fj9NuRFd/YN4nxI+1DGBpiRUadWY3ciKaTU6HAe3d/qQnxEORGFo6ffj/t90AnfqGhFlrlDyyLGPr1q3YvHkzfD4fOj1RxIQ8pYSfZyiIgyf7sHZFPmy5+oTt8T1LX2PNw2pray9oHlZfX4/Nmzdn9XtXV1eHI0eOxF8fnixIrvP3Pdmwrzj/ORsMRuw/0ouBoRAcVn3K4hrvf72hwY1ckw4LL/9QyuIiuhizQQuTXovO/mGUFMy8lIk/EMaR9wfgqiiE1VWKa6/dkjX7plSymnRojg5iOBiBcQq1wEORKMLhGBtqptCUT0MxGU6U2fq9I/ANh7GoaP7VNpyKwjwDugaG53VfhK7+YYQjChYWslYc0cUU2Azw+kMIhqZX/28ip84MoshhhNmghVarhd1u5xeSWTT2Gq9Y5EC/N4h+78ik7uf1h/DuiR5Uldtht3yQ0OF7lv7YPGxiYycLxkpbAB+cLHC73ay1nkTZuK8Ye856fQ6Wl9pwvNWTsmPqif7Xa2pcOPDuO/xfp7RW6jSjtdM34/ETjSl490Qvli20wmoeLcGRjfumVJAlCQ6LHn2DU+tJ5B0Ow2zSZl352nQy5YR4Z2cnPvOZz6CyshKlpaUJP0SU3iLRGE6f9WJpiWXedLyfLotJB1kaLZsyH8UUgeOtHqwos7FpENElqFUy8m16dCWxuaYvEEZn3zCWLrQmbZs0ORq1CivLbGhq7kc4ErvobT1DQbiPdmNFWR6cduMcRUjJkqlN/uYCTxbQXClyGCFJQHuPPyWPz/91ymSFeQYoQqB7hsegh5v7YdJrUJblk95SJd+mR+/gCJQpnNgY8AaRZ2b98FSacvHgO+64A4FAAPfddx+MRn5xIMokrV0+5JlzYDHN7zIhk+W0G9A9MD/LprR2DsGQo0ZBniHVoRBlBKfdiPfPepN29cyxlgEsWWBJeqNOmpzifBMGhoI4cKIX61YWjHsS+Ey3D8dbPagqtzMZnqGysbHhZJ17suDcRCFPFlCySZKElYvycOBEL4ocxjmfdGM2myFJEv/XKSNJkoSlJVY0t3thM6nh9/unXOKkuX0Q/pEILq9yzmKkdDEmvRYatQqeoWDC1YYTiSkKvL4QFi/gCYxUmnJCfP/+/Whvb+cHC1GG8fqD8PiCWLs8P9WhpI3CPCMOnOjBijLbvGq0EwxHcbrDy4MioinItxlw5P1+DA2HkWucWRKteyCAQDCKdSt5kJtKqxbbcai5D39p6sSK0jw4rDkQAvD4gjjd4cVIKIqaVYWwmDg7J5ON11R13fqpN1Wdb3iygOZSXm4OrGYdmtsHsaIsb04fe8AXQeHCFXC7G+Fy8X+dMk+BLQevv/463vo/RyGESGiCeal+KN0DAbR2DWFjVVHWXwGeak67AZ19w5NKiA/6QjDqNdCpp5ySpSSa8qvvdDrnVeKIKBvEhMDpjiEsKsqFWsXZimOsZh0gSfD6w/Faa/PB8VYPivNH6xYT0eSoZAnF+Sa09/iwarF92tsZLVc0gBVlNqhYriilZFlC9VIHOnr9ONYygMBfa8QbdGqUFJpQ6szlezQPnN/kr6UnhDyLcUpNVeer66+/HiOhKPbs2QsgMclClGwVi/Lwv++dhdNunLMTjT0DARw+3Y+bb7oBjfv3xU+M8X+dMsnOnTvh6WnDpk2bptQAud87gkOn+rBuZQEMU2jmSLPDYTWgrcsH/0gYJv3Fv4d3ewJwWOffVeqZZspHio888gh27NiBjo4OKIqS8JNMJ0+exNatW2G1WlFWVoaf/OQn8XVNTU3YuHEjDAYDVq1ahV27diXc99e//jXKy8thMBhw3XXXobW1NamxEWWajh4fdDoV8q0sn3E+p320ueZ80Tc4goGhIJYttF36xkSUYGGBGWd7hxGLTf+Ypq1rCDlaNUtwpAlJklBSYEbt2gW41rUQ17oWonbtAiwutjAZPs+MNQ9b6LTibO/8+VyfCVmWUb5qAz72qbuxY8cOfOUrX8HWrVt5soBmhV6nxvJSK5qa+6Eos99gs9czgoOn+rB2RQHsFgO2bt2Kr3zlK/xfp4wy1hR27OoGYHINkD1/LQtXvcyBvHlY/jMTqSQJTrsR7d0X76cQDEfhGw7DwdxMyk35E2L79u34n//5H5SWlkKj0ST8JEs0GsW2bdtQW1uLvr4+vPzyy/jyl7+MPXv2IBKJ4CMf+Qi2bdsGj8eDBx98EDfffDN6enoAAEePHsWdd96JH/3oR+jv70d1dTU+/vGPJy02okwTikTR2RfA4iJLqkNJS4V5BnT1J6+RXirFFIGj74/OTNWo+QWAaKqMeg1yTVqc7ZteMi0QjKC53YuKxXN7uThNjkYtc9+YBRwWPUKRKHyB8ZMI2URRRhu1lTitsNvtLB1Bs25hoRkajYzmjsFZfZx+7wjeO9mLtSvyE5KBYyfG+L9OmWI6TWG7+ofReKwHlUvsKLAxqZpOih1G+EbCGBoOTXibzr5hOKx6lrhJA1MumbJ79+7ZiCPB8ePH0dLSgvvvvx8qlQrr16/HzTffjGeeeQbhcBiBQABf+9rXIMsybr31Vnzve9/DSy+9hPvuuw/PPvssPvShD8UvLfnWt76F/Px8HD58GJWVlbMeO1G6iEbCGAkMo2MggkK7Hnod61ONx2rSAULA6w9lfB3Z0x2DyNGpUOwwpToUooy1yJmL420eFFi1U25sdPh0P8qKzCxXRJRCsjw6Q6uzbxjm0uweiwNDQeRo1TDpeSk9zQ1JklC1xI4/HeyEw6qHzZz8matjDZMvW5Y/qVq9ROnsYg2QJSmxKWw4EsPJM4Po8QSwfmUBbJwZnnZUsoyFBSa83zmE1eUOyOeVmw5FoujxBLCGfd3SwpQzZNdcc81sxJFACAEhxAXLDh48iKamJqxevTrh8qc1a9agqakJwGg5lZqamvg6s9mM8vJyNDU1jZsQ7+zsRGdn5wXLjx49mqynQzSnFEXB4YZ9OH3sIISiAJKExSuroRTU8rLBcUiShMI8I7r6hzM6Ie71h9Da6cOV1UWpDoUoo9ktOjQf3o+9f5haY6P2Hh+C4RiWLLDOXbBENK5ihwkHTvZi2UJrVvc+6uofRqGdswdpbhlyNFi1JA/vnezDVdVF0KiT17/I4wvi3eM9WF3uQL6NyXDKfBM1QG5ocMNZugIn233QamQMj0TQNxhEYZ4BV1UXQ6thX7B0VWg3on8oiLbuISxyJl6l39zhRaHdAJ2GkxXTwaTehb1792LTpk0AcEG97nNde+21SQlqxYoVKCkpwbe+9S18/etfx7vvvovf/va3cDqd8Pv9sFqtCbe3Wq3xOuETrR/vUhMAeOqpp/DQQw8lJW6idHC4YR+62k7hmnOacjS43TgsS1i9YVOqw0tLTrsBB0/1YUVZZpY5iMWUv8ZvY0MVohkabWzUOqXGRv6RCI61eFCzqpB1qYnSgNWsgywBHl8oa2urjpVLubyKJ8pp7hU7TBjwBnHwVB/WrShIyompQV8I74yVicjjiR6aP8aav57fFLZmYy0GhkKIxBTYcnOwvJTf9TKBBAlLS0b7KUiQsLBwdJb/+2e9iEQVLCwwX2ILNFcmlRC/8cYb4wnliTo1S5KEWCyWlKA0Gg1eeeUVfP7zn0dxcTFWrFiBO++8E01NTTCZTPB6vQm393q98UtJLrX+fPfccw+2bdt2wfKjR4/i9ttvT8rzIZor0UgYp48djCfDgdH6YzUuF/bs3YuKtVdAncR6//OF1ayDksFlU060DUKvU8c/bIloesYaG9XW1l7Q2Ki+vh6bN2++oHxKNKbgvRO9KC+xZOT+g2i+KnIYcbbXn7UJcZZLoVSrWJSHvxzuwskzg1heOrNm74O+EBqPdWPVYjubVtO8I8sytm7dis2bN8Pn8yWU67Pl8kqITKTTqFG5xI5TZwbhPtoNADDq1ahYlAcVr9pPG5NKiJ87u1pRlFkL5lyVlZXYuXNn/O9PfOIT2LhxI6qqqvCd73wnfuYMAA4cOIBPfvKTAICqqiocOHAgfj+/34/m5mZUVVWN+zhFRUUoKuLMCZofRgLDEBM05RCKgmDAD5NlZgek89Fo2RQDugcCGZfQ6uofRtfAMK5Yzf0Y0UxNprGR3W6PL1cUgQMnemEyaLCoKHeuwyWiiyh2mPDnQ52oWCyy8sqNTpZLoRRTqWSsX1mAvzR1IUerQqlzep+TnqEg3jneg1WL7ShyMBlO89dYU1iaH3K0alSVOzASikKSRv+m9JK2pyYOHjyIQCCAUCiEn/3sZ9i5cye+9KUvYfPmzdDr9fiP//gPhEIhvPTSSzh06BC2b98OALj99tvx2muvoa6uDsFgEA8++CCqq6vZUJOygt5ggvTXphzn8ng8kGQZOQY2W5yI0z5aRzzdhcNh9Pf3IxwOwz8SweHT/VizLJ8fsERJcG5jo3N5PB7IcmJjo2hMwTvHeyCEQFW5I6vrFBOlI6NeA6NejV5PINWhzDlFEegZCHAmLaVcjlYN18oCnGofxJnu8UuYnntse76u/mE0/rVMCpPhRJSJ9Do1v6unqbR9V371q1/hqaeeQjgchsvlwptvvhk/W/bqq6/irrvuwkMPPYRFixbh5ZdfRkFBAQCgoqICP/3pT3H33Xejq6sLGzduxIsvvpjKp0I0Z9QaDRavXI23G9zYUONKqCG+pKKa5VIuwmbWQVEEPL4gbOb0u7xaURTU1dXB7XZDURRIkoSispXYvOU6dhgnSpKLNTaqWr0GGo0GQgj0ekZwrHUAFqMOVUsdWTn7lCgTFDtM6OwbzrrEMMulUDoxGbSoWeWE+2g3wpEYliywQJKkC45tz21iDUho7hhNoq+vKEjLY3MiIspsaZsQf/TRR/Hoo4+Ou2716tXYv3//hPfdvn17fMY4UbZxLluPvsEg9uzdC6EokGQZSyqqUem6OtWhpTVJklBSYEZ7tz8tD7rr6upw5MiReG3jsRMdpw6/jSULxm/0R0RTN15jo5WV1TAXVWFnQxuEAHJ0aixdaEWxg1fdEKUzp8OIE20eRKIKNOq0vTA26VguhdKN2aDF5ZVOvHuiF4P+EFYttqN+z64Ljm0bGxsRCsfgKFsDWQKuWF0MvS5tUxZERJTB+OlCNI8ICHT0BXDZFdfAor8WwYAfOQYTZ4ZPUkmBCfUHOrBykQ0atSrV4cRN1OivxuWasNEfEU3PxRobBUNRSLIEnSZ99g9ENDGdRgVbbg66+oezpvH0WLmUy6vYW4TSiyFHg41VRTh5xoO9ja1oaGjANZs2XdDEes+evbi1egPKS/Ig8wosIiKaJUmbKhGNRpO1KSKapr7BEciyBHtuDtQaDUwWG5PhU5CjU8Nu0eNsb3rVEp9Moz8iSq6xxkbnnmzK0amZDCfKMMX5RnT0+lMdxpzp97JcCqUvlSxhZVkeKhcZISY4tgUE8oxgMpyIiGZVUhLizz33HFasWJGMTRHRNAkItPf4UVKQHTOgZktJoQlt3T4IIVIdSpzBYIQkSZNq9EdEREQfKMwzYngkAl/gwoZ981HXAMulUPorcORBpVLx2JaIiFJm0glxj8eDv//7v0d1dTU+8YlPoK+vD4cOHYLL5cLnPvc5fOYzn5nNOIkmFI2E4fN6EI1EUh1KSp07O5ymL9+qBwD0eEZSHAkQicbw/lkv9h/tQ+mSVXC7G+NfHMbqLLpcLpZLISIimoBKlrAg34T27vk/S3ysXEq2NRGlzHNuE2se2xIRUSpMuob4l7/8Zezfvx833HADfv/73+O2227DwYMHcdddd+GrX/0qLBbLbMZJdAFFUXC4YR9OHzv4QfPIldWorLkaspw9jZMAQBEC7d1+lBblpjqUjCdJEpYssOB0hxc2k/qCGsLTEQ6HJ7WdYDgKf2B0Flvv4AgGfSE4rHqsLrdj05qbUFdXl9Doz+VyxRsAEhER0fhKCs3Y39SJ5aVWqFTz9xiR5VIok4zXxJrHtkRENFcmnRB/8803sW/fPpSVleHuu+/GihUr8Oqrr+LDH/7wbMZHNKHDDfvQ1XYq3ozF4/Ggwe0GJGD1hk2pDm9O9XtHIKs4OzxZCm16/N/XX8euV49BCJFwgD6Vky2KoqCurg5utzvhQH/LtddheCQKXyA8mgAfCcMfCCMWEzAZNDAbtFhYYMba5fkJzT0navRHREREEzPpRz9buwYCWJBvSnU4s6arfxhOlkuhDHGxJtZERESzbdIJca/Xi7KyMgDAsmXLoNfrmQynlIlGwjh97OAFnclrXC7s2bsXFWuvyJpmkmOzw8s4Ozxpdu3aiaHeNmw652RLY2MjgNGk9GTV1dXhyJEjqK2t/eCkTYMbrV1DWLn6CpiNGpgMWpRZcmE2aKDXqSFJF28gNNboj4iIiCavpNCEM12+eZsQVxSB7oEArlhdlOpQiKaEx7ZERJQK075mUKfTJTMOoikZCQxP2JlcKAqCgflfJ3LM2OzwPM4OT4pwOAy32w2Xy5VwsmX9+vVwu90IhyfXlGtsO+vXr088aVPjQs+Z47i8Mh9rlhdgaYkVhXkGGHI0l0yGExER0fQU5hnhH4nAP0+ba/Z5R6DPUcPIcilERERElzTpGeLDw8MoLS2N/+31ehP+BoC2trbkRUZ0EXqDCZIsw+PxJCTFPR4PJFlGjmF+zv45nyIEznT7sKiINfyTxefzQZngZIuiKPD5fJOaxTI46EUsFhv/pI0Qk94OERERzZxKlrCgwITWLh8ql8y/z9/u/gCceSyXQkRERDQZk06IP/PMM7MZB9GUqDUaLFlZjQa3GzV/nck7VkN8SUV11pRL6fOOQKWSOTs8icxmM+QJTrbIsgyz2XzR+wsh0Nk/jKMtfkjS9LdDREREyVXmzMX/vteBZQut0GpUl75DhoixXAoRERHRlEw6IX7HHXfMZhxEU1ZZczUgAXv27oVQFECSUb6qGpWuq1Md2pwYrR3uw6Jizg5PJq1WC5fLhcbGxni5k7Ha32vXrb9os59+7wiOt3qgCIHqZU7EBmsu2E5jYyNcLhebBhEREc0xvU4Nh1WPM90+lJdYUx1O0vR7R2BguRQiIiKiSZt0Qnw8N954I/7whz8kKxaiKZFlGas3bELF2ivQ2dUPbxioKnemOqw50zsYgFolI8/M2eHJdv311wMA6uvroSgKZFnG4mVVyLGvxNlePwrzDFCpRlswRKIKegcDONPlQyAUxdISKxbkmyDL0rjbcblc8eVEREQ0t8qKcnHgRC8WFVugkudH746u/mE47cZUh0FERESUMWaUEK+vr09WHETTptZo4ChwoOt0X6pDmTOjs8P9WLKAs8NngyzL2Lp1KzZv3gyfzwez2QytVoseTwDN7V4cPt2PHJ0aQggEwzFYjFqUFJrhtBsTvlxPtB0iIiJKDZs5BzlaNbr6h7EgP/N7zsRiCnoGAlhabU11KEREREQZY0YJcSFEsuIgmpEcnQqKIhCKRKHTzOjfOiP0egLQalSwcXb4rNJqtQmNLwtsBhTYDAhFYhgJRiHLEvQ6NTRqeUrbISIiotRZXJyLU+2DKHYYIUmZPUu82xNArlEHQw7LpRARERFN1sWzOJdQW1ubrDiIZkSCBJNeA/9INNWhzDpFCLT3+FFamPmzmjKVTqOC1axDrlF7yWQ4ERERpZfCPAMAoHsgkOJIZu5s7zCKHCyXQkRERDQVM8rk/PGPfwQA+Hw+fOMb30hKQETTZdRr4A+EUx3GrOsZGIZOo4LFxNnhRERERFMlSRKWllhxqn0wo694DUVi8AwF4bQbUh0KERERUUaZUkK8vr4e//mf/4nXXnsNAKAoCp588kksWbIEv/nNb2YlQKLJMhu08I/M74R4TFHQ0evHQs4OJyIiIpq2wjwDJEgZPUu8q28YDqseGrUq1aEQERERZZRJF1t++umnsWPHDuTl5WFgYADf+c538MYbb6C5uRmPP/44/u7v/m424yS6JJNRA/+ZCBQhIGd4PciJdPUHoM/RcHY4ERER0QxIkoTyEgtOtHlQYDNAljPv2LGj14/yEmuqwyAiIiLKOJOeIf7kk0/i+eefR29vL375y1/i/vvvx6JFi3D06FHccccdkGXW0aXU0qnVUKtlBIKRVIcyKyLRGNp7/Chz5qY6FCIiIqKM57QbkaNVo7VrKNWhTJkvEEYwHIXDqk91KEREREQZZ9JZ7DNnzmD79u0AgFtvvRVCCHz3u9+FVqudteCIpsps1MI3PD/Lppzp8cFuyYExR5PqUIiIiIjmhYrFeWhu9yIYzqzG7Ge6fSjON0GVgTPbiYiIiFJt0glxRVHiv6tUKpjNZhiN7GhO6SXXoIEvMP9miAdCUfR6gqwdTkRERJREZoMWxflGHGsZAACEw2H09/cjHE7fCRaxmIKzvcMoKTCnOhQiIiKijDTpGuKhUAjf/OY3438Hg8GEvwHgW9/6VvIiI5oGs1GHjt7hVIeRdO+fHUSxwwidZtJDloiIiIgmYXmpDfsOtOPlV/4Pjh0+CEVRIMsyXC4Xrr/++rQrDdk1EECuUQuTnlcNEhEREU3HpLNrV1xxBerr6+N/X3755Ql/S/O0iSFlFkOOGtGYQDAcRY52fiSPewcDCIcVFC/i7HAiIiKiZFOrZAydbUJL80nU1tbCZrPB4/GgsbERALB169YUR5joTLcPpU7ODiciIiKarklnDN96661ZDIMoOSRIsJi08PpDyMnL/IR4NKagtWsIy0qsUPGkExEREVHShcNhNB06EE+GA4DNZsP69etRX1+PzZs3p03fJK8/hEAwgsI8lq4kIiIimq70uv6PKAksJi0G/aFUh5EU73d6YTHpYDHlpDoUIiIionnJ5/NBUZR4MnyMzWaDoijw+XwpiuxCLZ1DKC3MZTNNIiIiohlgQpzmHYspB0PDYQiIVIcyZdFIGD6vB9FIBH2DIxjyh7G4yJLqsIiIiIjmLbPZDFmW4fF4EpZ7PB7IsgyzeWrlSWarMedIKIpeT4DlUoiIiIhmKPNrShCdx6BTQ5YkDI9EYNKnx+Wtl6IoCg437MPpYwchFAWSLMNQUA7X1ZuhVvG8FREREdFs0Wq1cLlcaGxsxPr16+M1xBsa3Fi0tBLhKDCZiimKoqCurg5ut3tWGnO2dg2hyGGCVqOa8baIiIiIshkT4jQvWUw6eP3hjEmIH27Yh662U7hm06b4l7C3G9xoP9oA24ZNqQ6PiIiIaF67/vrrAQD19fXxZPbadetRtmI93j7SBa1GBZs5B2aDBjqtGlqNDJ1GBY1aBY16NNldV1eHI0eOzEpjzmA4ivZuP66sLprZEyUiIiIiJsRpfrKZdejsG8aCfFOqQ7mkaCSM08cOxpPhwGjNyg01LuzZuxcVa6+AWqNJcZRERERE85csy9i6dSs2b94Mn88Hs9kcb6S5skzA4wvC6w9j0B9CKBxAKBJDOKIgEo0BkKCSYnj77QZcc82mWWnMebrDC6fdAEMOjwmJiIiIZooJcZqXrGYdTp0ZRDgag1ad3peVjgSGISZo5CQUBcGAHyaLbYJ7ExEREVGyaLVa2O32hGWyLMFu0cNu0V9weyEEojEFnd29+LMQF23Mef52JysQjOBsrx9XXbZgWvcnIiIiokQsTkzzkkqWYTHp4BkKpjqUS9IbTJCk8Rs5SbKMHEP6z3InIiIiykaSJEGjVsGZnweVaoLjOUmaUWPOoy0DKHXmQq/jXCYiIiKiZEjbhHhLSwtuvPFG5OXloaCgAJ/+9Kfh8/kAAGfOnMHWrVthNBqxePFiPP/88wn33bNnD6qqqmAwGFBTU4P33nsvFU+BUsxm0aF/DhPi0UgYPq8H0UhkUrcPR2PoHhjG4dZBmJxL0dDgjn+J8ng8aHC7saSimuVSiIiIiNLcuY05zz2ec7vdKFy4Eh19IxBCXHI7iqLgjTfewOOPP44f/ehHeOyxx/Ceex8WF00toU5EREREE0vbaQZ33303CgsL0dHRgWAwiFtuuQUPPPAAnnjiCXzyk59EdXU1XnnlFezfvx8f+chHUFVVhaqqKvT39+Omm27C9773Pdx66634wQ9+gG3btuHEiRPQ6XSpflo0h/LMOWjpGEIkGoNmFsumKIqCww37cPrYQQhFgSTLWLKyGpU1VyOmCATDMYQjMQQjMYTCUYTDCoKRKEKhGMwmLUryTahc/P/haOP/Ys/evR9so6Iala6rZy1uIiIiIkqe8RpzulwubLxyEw6/P4DugQBWlztg1E882WG8xpxutxu7d++acWNOIiIiIhqVtgnx999/H1/4wheg1+uh1+txyy234OWXX8bJkyexf/9+/P73v4der8fmzZuxbds2/PznP8djjz2Gl19+GUuXLsWnP/1pAMAXv/hFfPe730VdXR1uvPHGFD8rmksatQoWkw59gyMocsxe2ZHDDfvQ1XYq3hTT4/Hg7QY3ugYCMC+8DDqtavRHM/pjNmih06hg1Gugkj+4SGP1hk2oWHsFggE/cgwmzgwnIiIiyiAXa8x5eWUR3j/rxZ8PdWLpQivKnGZIkpRw/3A4DLfbHU+GA6M1yF0uV1IacxIRERHRqLRNiH/hC1/Ac889h02bNiEYDOKll17Chz/8YTQ1NaGsrCyhYc2aNWuwa9cuAEBTUxPWrFkTXydJEqqrq9HU1DRuQryzsxOdnZ0XLD969GjynxTNufw8A9p7fLOWEI9Gwjh97GA8GQ6MfnHZUOPCnr17sfn6a6HRTP6Li1qjYQNNIiIiogw2UWPO8hIrCvIMOHSqD519w1heak1o1Onz+aBM0Gh9po05iYiIiOgDaZsQ37x5M37605/CYrFAURRs3boVn//85/HCCy/AarUm3NZqtcbri/v9/gsOIs9df76nnnoKDz300Kw8B0o9m1mH0x2DGA5GYMxJ/ozrkcAwxARfXISiIBQYhsbCmTxEREREBJgNWmysKkJ7jw+HTvVBq1GhIM8Ak16DYEgGJAkejyfh2NLj8UCW5Sk35iQiIiKi8aVlU81YLIYPfehDuPHGGzE8PAyv14sFCxbg9ttvh8lkgtfrTbi91+uNHyBeav357rnnHjQ2Nl7w8+yzz87Ok6M5JUsSCmx6dPUNJ33bMUVB+0AYkOR486QxHo8HkiwjxzB7pVqIiIiIKPPIsoRSZy5q15ZgaYkVoXAM7T1+DPgiWL5y9QWNORsbG+FyuVguhYiIiChJ0nKGuMfjQXt7O/7pn/4JOTk5yMnJwY4dO7BlyxY8/PDDaG1txeDgYHym+IEDB1BVVQUAqKqqwtNPPx3flhACBw8exI4dO8Z9rKKiIhQVFc36c6LUcdqNOHCiFyVOE3Tq5PzLh6JRHG/xQKvRYMnK1Whwu1HjcsVriDe43VhSUc064EREREQ0LpUsoSDPgII8Q3zZmmUfRl1d3QWNOccadhIRERHRzKVlQtzhcGDJkiX44Q9/iK997WuIRCJ4+umncdlll2HZsmWoqanBN77xDTz22GNoaGjAq6++ij/96U8AgI9+9KP46le/imeffRYf//jH8cMf/hAAeBCZxXQaNeyW0VniZU7LjLc3HIzgWMsA7NYclDlzIRbWQpIl7Nm7F0JRIMkyllRUo9J1dRKiJyIiIqJscbHGnERERESUHGmZEAeA3/72t/jiF7+IJ554ApIkYePGjfjFL34BAHj++efx2c9+Fna7HQUFBXjqqafiM8Ttdjt+97vf4XOf+xz+4R/+AVVVVXj11Veh0+lS+XQoxRbkm3DwVB+cdiN0mun/2w/6gzjRNogypxmFeUYAgCRLWL1hEyrWXoFgwI8cg4kzw4mIiIho2sZrzElEREREyZG2CfHq6mrs3Llz3HULFy7Em2++OeF9N2/ejKamptkKjTKQXqdGgU2P1i4fli+0XfoO4+gZDKDl7BCWLbTCZs65YL1ao4HJMr1tExERERERERER0exLy6aaRLNhYaEJQ8MhDPiCU77vmR4f2rqGsGpx3rjJcCIiIiIiIiIiIkp/TIhT1lCrVChfYEVz+yBCkWjCumgkDJ/Xg2gkkrA8pig43jaAfu8IVpc7YNKzhiMREREREREREVGmStuSKUSzwWbOgdNuxJHTA1hVngeNLONwwz6cPnbwg4aYK6tRWXM1hoNRnGofhDFHg9XlDqhknj8iIiIiIiIiIiLKZEyIU9ZZWGCGoggcOtUH0XsEg10tuGbTJthsNng8HjS43fAOh6B1rk5onklERERERERERESZjVNeKSuVOXNRWmBER/MR1LhcsNlGm2HabDbUuFzoazuOysUWJsOJiIiIiIiIiIjmESbEKWvpVVFAKPFk+BibzQYIBSI89eabRERERERERERElL6YEKespTeYIMkyPB5PwnKPxwNJlpFjMKUoMiIiIiIiIiIiIpoNTIhT1lJrNFiyshoNbnc8KT5WQ3xJRTXUGk2KIyQiIiIiIiIiIqJkYlNNymqVNVcDErBn714IRYEky1hSUY1K19WpDo2IiIiIiIiIiIiSjAlxymqyLGP1hk2oWHsFggE/cgwmzgwnIiIiIiIiIiKap5gQJ8Jo+RSTxXbpGxIREREREREREVHGYg1xIiIiIiIiIiIiIsoKnCE+gZGREQDA0aNHUxxJapzs9qU6BMpgkR5zqkMgIiIiIiIioiyU7TmtbM3JjOVwx3K6F8OE+ARaWloAALfffntqAyEiIiIiIiIiIiKiS2ppacFVV1110dtIQggxR/FklL6+Prz++utYtGgR9Hp9qsOZU0ePHsXtt9+OZ599FhUVFakOhyjjcUwRJQ/HE1HycDwRJQ/HE1HycDwRJU82jaeRkRG0tLTgb/7mb+BwOC56W84Qn4DD4cCnPvWpVIeRUhUVFVi3bl2qwyCaNzimiJKH44koeTieiJKH44koeTieiJInW8bTpWaGj2FTTSIiIiIiIiIiIiLKCkyIExEREREREREREVFWYEKciIiIiIiIiIiIiLICE+JERERERERERERElBWYEKcLFBUV4cEHH0RRUVGqQyGaFzimiJKH44koeTieiJKH44koeTieiJKH42l8khBCpDoIIiIiIiIiIiIiIqLZxhniRERERERERERERJQVmBAnIiIiIiIiIiIioqzAhDgRERERERERERERZQUmxImIiIiIiIiIiIgoKzAhnoEGBwfx8Y9/HGazGcXFxXjiiSfi65qamrBx40YYDAasWrUKu3btuui2fv3rX6O8vBwGgwHXXXcdWltbE9Y/8MADyM/Ph8ViwV133YVQKDStuKYTG9FcSNfx9P3vfx8ulws6nQ6f+MQnLljP8UTpKB3HUygUwl133YXFixfDbDajsrISzz33XMJtOJ4oHaXjeAKAu+++GwsWLEBubi4WLVqERx55JGE9xxOlq3QdU2P6+vrgcDiwcePGhOUcU5SO0nU83XnnndBqtTCZTPGftra2+PozZ85g69atMBqNWLx4MZ5//vnpvQBESTRX42n37t3YsmULLBYLnE7njOKaTmxpR1DG+dSnPiW2bdsmvF6vOHjwoMjPzxd//OMfRTgcFosWLRIPP/ywCAaD4vnnnxe5ubmiu7t73O0cOXJEGI1G8frrr4tAICC+8IUviA0bNsTX//d//7dYvHixaG5uFn19feKqq64S//Iv/zLluIQQU46NaK6k63j6zW9+I37729+K++67T9x6660J6zieKF2l43jy+/3igQceEM3NzUJRFFFfXy9yc3PFn/70JyEExxOlr3QcT0IIcfjwYREIBIQQQrS1tYmKigrxwgsvCCE4nii9peuYGnPnnXeK2tpacfnll8eXcUxRukrX8XTHHXeIf/3Xf51w/VVXXSV27NghAoGA2L17tzCZTOLQoUPTfyGIkmCuxtP+/fvFL37xC/HjH/9YFBYWTjsuIebH5xMT4hnG7/cLrVabsNO+//77xcc+9jHxxhtviIKCAhGLxeLrrrzySvH9739/3G3df//94pZbbon/PTQ0JHQ6nWhqaorf98knn4yvf+ONN0R+fv6U4xq771RiI5oL6TqezvXggw9ekBDneKJ0lAnjaczf/u3fiscffzx+X44nSjeZMp7a2tpEZWWlePjhh+P35XiidJTuY+qtt94SV111lXjmmWcSEuIcU5SO0nk8XSwhfuLECaFWq8XAwEB82W233Sa+8pWvXOIZE82euRxPY3bv3n3JhHg25PhYMiXDnDhxAoqioKqqKr5szZo1aGpqQlNTE1avXg1Zli9YBwBtbW2wWq3xS4aampqwZs2a+G3NZjPKy8vjtz9//Zo1a9Db24vu7m4AwL333ot77733knGNbetisRGlQrqOp0vheKJ0lCnjaXh4GG63Ox4nxxOlo3QfT//2b/8Go9GI0tJSDA8P4/bbb49vi+OJ0lE6j6lwOIzPfe5z+MEPfgBJkhLi5piidJTO4wkAnn76aeTl5eGyyy7DM888E1/e1NSEsrIy2Gy2cWMjSoW5HE+Xkm05PnWqA6Cp8fv9sFgsCcusVit8Ph/8fj+sVusF68ZqBpWWlmJwcDBhW+Pd3ufzjbt+7Hefz4fCwkL88Ic/nFRcF3us8+uDEc2ldB1Pk4mb44nSTSaMJ0VRcOedd6KmpgZbt2696GNxPFEqpft4evTRR/HII4/A7Xbjd7/7XTy5wPFE6Sqdx9S3v/1tXH/99bjsssvw7rvvXhA3xxSlm3QeT5///Ofx+OOPw2q1or6+Htu3b4fFYsEtt9xyycciSoW5HE+Xkm05Ps4QzzAmkwlDQ0MJy7xeL8xmM0wmE7xe77jrJtrWxW5//vqx38fb3sXimsxjEaVCuo6nycTN8UTpJt3HkxAC//iP/4izZ8/ihRdeiM/C43iidJTu4wkAJElCTU0NcnJy8OCDD07qsYhSJV3H1KlTp/Czn/0MDz300LQeiygV0nU8AcC6devgcDigVquxZcsW3HfffXjppZcm9VhEqTCX4ylZcSX7sVKFCfEMs3z5ckiShMOHD8eXHThwAFVVVaiqqsKhQ4egKMoF68ZTVVWFAwcOxP/2+/1obm6O3/789QcOHEB+fj4KCwunFNfYtqYSG9FcSNfxdCkcT5SO0nk8CSFw33334cCBA3jttddgMpkSHovjidJNOo+n80WjUTQ3N8e3xfFE6Shdx9S+ffvQ1dWF5cuXw+l04p//+Z/xzjvvwOl0YmhoiGOK0lK6jqfxyLIMIUR8W62trQkzajmeKNXmcjwlK66xx8r4z6cU1zCnabjtttvETTfdJIaGhsShQ4dEYWFhQgfaRx99VASDQfHiiy9OqgPtm2++KUZGRsSXvvSlhA60Tz/9tCgvLxenT58W/f39ora29qIdnSeKSwgx5diI5kq6jqdIJCJGRkbE17/+dbF9+3YxMjIiwuGwEILjidJXuo6ne++9V6xduzahidIYjidKV+k4ngYGBsQvfvEL4fV6RSwWE/v27RP5+fnie9/7nhCC44nSWzqOqUAgIDo7O+M/TzzxhFi3bp3o7OwUiqJwTFHaSsfxJIQQL7zwghgaGhKxWEzU19cLh8MhfvWrX8XXX3nlleK+++4TgUBA7NmzR5jN5oSmgUSpMFfjKRaLiZGREfH666+LwsJCMTIyIoLB4JTjEmJ+HPMxIZ6BPB6P+NjHPiaMRqNwOp3iu9/9bnzdwYMHxYYNG0ROTo5YuXKlqKuri69rbW0VRqNRtLa2xpe9+OKLYvHixUKv14stW7aIlpaW+DpFUcTXv/51YbfbRW5urvjsZz+bMFjuuececc8990wqrkvFRpQq6TqeHnzwQQEg4eeOO+6YVGxEqZKO46mlpUUAEDqdThiNxvjPww8/PKnYiFIlHceTx+MRW7ZsEVarVZhMJrFixQrx7W9/WyiKMqnYiFIpHcfU+X7605+Kyy+/PGEZxxSlo3QdT7W1tcJisQiTySRWrVol/uu//ish7ra2NnH99dcLvV4vysrKxHPPPZfMl4VoWuZqPO3evfuCHENZWVl8fbbl+CQh/nr9CBERERERERERERHRPMYa4kRERERERERERESUFZgQJyIiIiIiIiIiIqKswIQ4EREREREREREREWUFJsSJiIiIiIiIiIiIKCswIU5EREREREREREREWYEJcSIiIiIiIiIiIiLKCkyIExEREREREREREVFWYEKciIiIiGieqaysxM9//vNUh0FERERElHbUqQ6AiIiIiIgmz2QyxX8Ph8OIxWLQ6/XxZa+99hoOHz6citCIiIiIiNKeJIQQqQ6CiIiIiIim7hvf+Ab27duHt956K9WhEBERERFlBJZMISIiIiKaZxYtWoQf//jHAICWlhZIkoRnnnkG1dXVMBqNuPrqq9He3o7vf//7KCsrg9VqxT333INYLBbfRkdHB2677TYsWLAABQUF+OQnP4ne3t5UPSUiIiIioqRgQpyIiIiIKAs8//zzqKurQ3d3NwDguuuuw5kzZ3DixAm43W688MILePHFFwEAoVAI1113HYqLi3HixAmcPn0aarUat912WyqfAhERERHRjDEhTkRERESUBR544AEUFBTAZDJh+/btaG9vxyOPPAKdToelS5eitrYWb7/9NgDgD3/4A3w+Hx577DEYjUaYTCZ8+9vfRl1dHdrb21P8TIiIiIiIpo9NNYmIiIiIskBRUVH8d6PRiPz8fKhUqoRlPp8PAHDy5El0d3fDZrMlbEOn06GtrQ0lJSVzEzQRERERUZIxIU5ERERERAmcTifKysrQ3Nyc6lCIiIiIiJKKJVOIiIiIiCjBRz/6UUQiETzwwAPwer0AgJ6eHrzwwgspjoyIiIiIaGaYECciIiIiogRmsxl//vOf0dbWhtWrVyM3NxdXXnkl9u7dm+rQiIiIiIhmRBJCiFQHQUREREREREREREQ02zhDnIiIiIiIiIiIiIiyAhPiRERERERERERERJQVmBAnIiIiIiIiIiIioqzAhDgRERERERERERERZQUmxImIiIiIiIiIiIgoKzAhTkRERERERERERERZgQlxIiIiIiIiIiIiIsoKTIgTERERERERERERUVZgQpyIiIiIiIiIiIiIsgIT4kRERERERERERESUFZgQJyIiIiIiIiIiIqKswIQ4EREREREREREREWWF/wfT93QegOo6cAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/cAAAIyCAYAAACO1Dp8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACw+UlEQVR4nOzdeXwT1f4//le6pFvSLN33lm5QKJQCoiCLiEAREVlUBGVVQECu4i6CIKIioqhX4eoFBBUU1PtBZHEBFaUIAkVKC5RCF2i6r0nbJE3m94e/5kto2dNM27yej0cfkjmTyTtT5D3vOWfOkQiCIICIiIiIiIiI2iwnsQMgIiIiIiIiopvD4p6IiIiIiIiojWNxT0RERERERNTGsbgnIiIiIiIiauNY3BMRERERERG1cSzuiYiIiIiIiNo4FvdEREREREREbRyLeyIiIiIiIqI2jsU9ERERERERURvH4p7IQQwcOBALFiwQOwwiIiJqIcz1RI6NxT1RG3Du3DmMHz8ewcHBkMlkCA4OxvDhw6HRaMQOTTSbN29Gv3794O3tDYlEgoaGBrFDIiIiumHM9U09//zzSExMhLe3N4KCgjB+/Hjk5+eLHRZRq8XinqgNGD58OORyOdLT06HVanH06FE88MADkEgkYocmGpVKhccffxzvvvuu2KEQERHdNOb6piQSCdavX4/S0lJkZmZCIpHgnnvuETssolaLxT1RK1dWVoaTJ09i5syZUKvVAICAgABMmjQJgYGBAID169cjNDTU6n2vvPIKbr/9dqttlZWVGD16NORyOWJiYrBhwwZLW15eHoYPHw61Wg2FQoEuXbpg3759VsdftWoVQkND4ePjg6lTp0Kr1Vrev3DhQsTFxUEulyMsLAxz585FbW2tpb2hoQErV65EQkIC5HI5QkND8eabb1ra//zzTwwcOBA+Pj6IiIjAyy+/fMXe+KFDh2L8+PHo0KHD9Z5SIiKiVoW5vnmvv/46evToAalUCqVSiWeffRbHjh1DRUXF9Z5iIofA4p6olfPx8UFiYiJmzJiBdevW4e+//4bZbL6hY/33v//FlClTUFFRgffeew/Tp0/HH3/8AQB44YUXEBISgoKCAlRUVODrr7+2uogoLCxEWloaTp06hb///hvHjx/Hk08+aWmPjY3FTz/9hOrqauzatQs7d+7Eq6++aml/5ZVX8OGHH2L9+vWoqqrC33//jf79+wMATp06hTvvvBMzZ85EUVERfvvtN2zbts3qgoCIiKi9Yq6/Nj/88AMiIiKgUqlu6NwQtXsCEbV6paWlwssvvyz06tVLcHNzE1QqlTB//nyhvr5eEARBWLdunRASEmL1nkWLFgl9+/a1vB4wYIAwevRoq33uv/9+YerUqYIgCMLkyZOFESNGCOnp6YLZbLbab926dYKTk5NQWVlp2bZjxw7B1dVVaGhoaDbmlStXCsnJyYIgCILZbBZkMpmwZcuWZvedO3eu8OCDD1pt++yzz4To6OjLnpNGe/fuFQAIRqPxqvsSERG1Vsz1V/bjjz8Knp6ews6dO69pfyJHxJ57ojbAx8cHS5YswcGDB1FVVYW1a9fi448/xuuvv35dx4mKimryunFimhUrViAmJgajR49GQEAApkyZgqKiIsu+KpUKCoXC6r1Go9Gyz5o1a5CcnAwfHx8oFAq89NJLKC4uBgCUlpZCq9UiPj6+2biysrLw7bffQqlUWn5mzZqFwsLC6/p+REREbRVz/eVt374dY8eOxWeffYZhw4Zd1/kgciQs7onaGDc3N4waNQqDBw/GkSNHAAByuRw6nc5qv4KCgibvzcnJafK6cTiej48P3nnnHZw6dQpHjx5FTk4OnnrqKcu+FRUVqKqqsnqvq6srAgICkJqaijlz5uDtt99GYWEhqqqq8Nprr0EQBACAr68vZDIZTp8+3ex3CgwMxEMPPYTKykrLT3V1tdVzfkRERI6Cuf7/+fzzzzFhwgR8+eWXuO+++664L5GjY3FP1MpVVFTg+eefx99//w29Xg+TyYSff/4Ze/futTzH1r17d9TU1ODLL7+E2WzGL7/8gi1btjQ51o4dO/D999/DZDJh165d+PbbbzFlyhQA/ywtl52dDbPZDLlcDjc3N7i4uFjeK5FIMH/+fOh0OhQUFGDRokV4+OGH4ezsjKqqKjg7O8PPzw+urq44cuQIPvjgA6v3zp07Fy+88AL++usvCIKA8vJypKamAgAef/xxbN26FVu2bIHBYIDJZMKZM2ewa9euy54Xk8mE+vp6GAwGAIBer0d9ff0NP6NIREQkFub65n3wwQeYM2cOtm/fjqFDh9rkXBO1a+I+FUBEV6PVaoVp06YJcXFxgkwmExQKhdC5c2fhjTfesHpe7qOPPhJCQ0MFuVwuPPjgg8KTTz7Z5Dm82bNnC/fdd58gk8mEDh06CGvXrrW0P//880J4eLjg6ekp+Pr6Cg888IBQXFwsCML/e87v3XffFYKDgwWVSiVMmjRJqK6uFgRBEEwmkzBv3jzBx8dH8Pb2FoYOHSosXrzY6tlAo9EovPnmm0JcXJzg5eUlhISECG+++aal/cCBA8Jdd90l+Pr6CgqFQujWrZuwevXqy56XdevWCQCa/Ozdu/emzzkREZE9Mdc3D4Dg4uIieHl5Wf389ttvN3/SidohiSD8/2NpiIguY/369ViwYAHOnz8vdihERETUApjrido+DssnIiIiIiIiauNY3BMRERERERG1cRyWT0RERERERNTGseeeiIiIiIiIqI1jcU8Or7KyEpGRkcjPzxc7lCtatmwZhgwZckPvzcnJgUQiwZkzZ2wcVcsLDQ3F+vXrxQ6jiZv5fTRHp9MhIiLisusDExG1Z5fm4l9++QUSiQQNDQ0iR2Z7CxYswMCBA2/ovZMnT8bEiRNtG1Ab+vwb9cknnyAyMlLsMJolk8nwyy+/2Ox4b7/9NiZPnmyz41HbwuKeHN6SJUswatQohIWF2eR4LZX4XnzxRfzwww82P66ttJYbCJGRkfjkk09a/Ji2/n14eXnhqaeewvz58212TCKitsLWuZiuT2u6mdIabiCsX78eoaGhdjmmVqu94Zs9zZkzZw5++OEH/PXXXzY7JrUdLO7JoVVXV+Pjjz/GY489JnYoRHjkkUfw008/sfeeiBwKc7G4jEaj2CGQDbm5uWHixIl45513xA6FRMDinhzaDz/8AKVSiYSEBKvtf/75JwYOHAgfHx9ERETg5Zdftrqbff78eUyYMAGhoaHw9vZGUlISjhw5gmXLluHzzz/Hl19+CZlMBplMhry8PADA999/jx49ekChUCAuLg4rVqyA2Wy2HFMikWDlypXo1asXZDIZbrnlFqu7rq+88gpuv/12y+u6ujosWLAAcXFxkMvl6NChAz799NMrft+9e/ciISEB3t7euPPOO5GdnW1pM5lMePvtt9GpUycoFAr06NEDP//8s6U9PT0dd955J/z8/KBQKNC7d2/s2bPH0t65c2cAQLdu3SCTyTBz5kwAwAcffIDo6GjI5XIEBARccaiYVqvFtGnT4OPjg5CQEKxatarJPidPnsSIESMQEBCAkJAQPP7449DpdACAlJQU5OXlYc6cOZDJZJaYAGDDhg3o1q0bFAoFOnfujM2bN1sdNzU1FYMGDYKvry/UajXuuOMO1NXVXfaYl/4+Kisr8dhjjyE0NBS+vr5ISUnBqVOnLO2N+y9evBhBQUFQq9WYMWOG1d8rlUqFXr164dtvv73sOSIiam8ul4svZjKZ8NZbbyEuLg4KhQI9e/bEzp07Le2NPc9bt2615MW77roLFy5csOxTVFSEUaNGQalUokOHDvj8888hkUiuOCT6scceQ2RkJGQyGaKiorBo0SKr3D1w4EDMmzcPDz30EBQKBcLCwvDRRx9ZHWPjxo2IjY2FXC7H6NGjUVlZecXzsXfvXvTs2RMKhQI+Pj7o27cvKioqLO0NDQ2YM2cOfHx8EBAQgJdfftnq/ampqejXrx9UKhWioqLw/PPPQ6/XW9ojIyOxaNEiDBs2DHK5HK+//jpSUlIAAEqlEjKZDMuWLbtsfAaDAdOnT4dSqUR4eDiWL19u1X6lPA0ACxcutPyOwsLCMHfuXNTW1gLAZa+j8vLyMHz4cKjVaigUCnTp0gX79u27bIy7d+9GYmIiZDIZBg0a1OTRyytd8+zbtw8zZ85EQUGBJYbPP/8cAHDhwgU89NBDCAkJgb+/P8aPH4+SkhLLcS93bXalY0okEvz000+WY1zL9eL777+Pvn37QiaTITExEb///rvV9xs2bBi+++67VjESg+xMIHJgzz33nDBs2DCrbSdPnhS8vLyETZs2CUajUcjJyRG6du0qLF26VBAEQaitrRViY2OFyZMnCyUlJYLJZBJOnDgh5OTkCIIgCJMmTRImTJhgdcyDBw8Krq6uwpdffikYjUbhr7/+EoKCgoR33nnHsg8AITo6Wjhx4oRQX18vLFq0SPD19RUqKysFQRCERYsWCX379rXsP2HCBKFXr15CRkaGYDabhQsXLgiHDx9u9nueO3dOACD06tVLyMvLE3Q6nTBt2jShU6dOgtFotBy/W7duwsmTJwWTySR88803gqenp3DmzBlBEATh+PHjwg8//CDU1tZa4vP29haKioqsPiMrK8vyuadPnxY8PDyE48ePC4IgCDU1NcKvv/562d/Ho48+KnTv3l3Iz88XtFqtMHnyZMHZ2VlYt26dIAiCUFJSIvj6+gorV64U6uvrhZKSEuHOO+8Upk+fbjlGRESE8PHHH1sdd926dUJYWJhw6NAhwWQyCfv27RPkcrmwb98+QRAEIT09XXB3dxc++OADQafTCXq9Xti7d69QX19/2WNe+vsYMWKEMHDgQEGj0Qg6nU6YN2+eEBoaKtTU1Fj2d3FxEd566y1Br9cLp06dElQqlbB27Vqr486ePVsYM2bMZc8REVF701wu3rt3rwDAkqNWrFghhISECIcPHxaMRqOwadMmwdXV1ZL3Gvd/6KGHhMrKSqGyslLo06eP8Mgjj1iOOWjQIGHEiBFCeXm5UF5eLowcOVIAIOzdu/eysX388cdCYWGhYDabhdTUVEGtVgurV6+2tA8YMEDw9vYWfv75Z8FkMglbt24VnJycLLnwjz/+EFxcXIRt27YJRqNR2LZtm+Du7i4MGDDgsp8ZHBwsrF27VjCbzYJerxf2798vaLVaQRD+ucaQSqXCpk2bhIaGBmH//v2Ci4uLsGfPHkEQBCE3N1fw9PQU3nnnHUGv1wunT58WEhIShHnz5lmOHxERIQQEBAj79+8XzGazoNPpmpzvy5k0aZLg4uIirF69WjAYDEJqaqqgUqmEzz77TBCEa8vTGzZsEHJzcwWz2Sykp6cL0dHRwvPPP2/1GZdeRz300EPC9OnThbq6OsFkMgknT54Uzp4922yMZ8+eFaRSqbBmzRrBYDAIf/zxh+Dr6ytERERY9rnaNc+6deuEkJAQq+PW19cL8fHxwvz58wWtVivU1NQIEydOFAYPHmzZ50rXZs0dUxD+uf778ccfBUG49uvFrl27CllZWYLRaBTmzZsnhIeHWx2zpKREAGC5/iLHweKeHNqjjz4qPPDAA1bb5s6dKzz44INW2z777DMhOjpaEARB2LJli6BWqy2F36WaS0qPPfaYMGrUKKttK1euFOLj4y2vAQjvvfee5bXJZBICAwOFDRs2CIJgXUw2/qN96NCha/qejYX3tm3bLNuqq6sFZ2dn4bfffhMEQRC8vb2FXbt2Wb1v8ODBwquvvnrZ4yoUCssxmyvuz549K7i7uwubN28WqqqqrhijyWQS3NzcrGKsrKwUJBKJpbh/++23hVtvvdXqfb///rsglUqFhoYGQRCaL8QTExOtLsYEQRCmT58uTJs2TRCEfwrqu++++7KxXa24LygoEAAIaWlplnaDwSD4+PgImzZtsuwfFRVldYyxY8cKM2fOtNr24osvCnfcccdlYyEiam+ay8WXFptxcXHCu+++a7XPyJEjhRkzZljtn5uba2n/4IMPhI4dOwqCIAj5+fkCAOHEiROW9uPHj1+1uL/UE088IYwePdryesCAAcKUKVOs9vH19RU2b94sCMI/uebi/QVBEEaPHn3F4j4yMlJ46aWXhPPnzzdpmzRpUpMc0bNnT+GNN94QBEEQli1bJiQlJVm1f/PNN4KHh4dgNpsFQfgnp11cTAtC0/N9OZMmTRKSk5Ottj377LPCoEGDBEG4tjx9qZUrV1ods7nrqMmTJwsjRowQ0tPTLd/jcpYuXdokxqeeesqquL/aNU9zhfjXX38tBAcHW33++fPnBQBCfn7+Va/NrqW4v9brxU8//dTyOj09XQAgFBYWWrYZDAYBwBU7VKh94rB8cmhqtRpVVVVW27KysvDtt99CqVRafmbNmoXCwkIAwLlz5xAZGQk3N7dr/pz8/HxER0dbbYuJibEM2W8UFRVl+bOTkxMiIiKancX/3LlzAID4+PhrjuHS48vlcvj6+iI/Px9FRUWorq7GuHHjrL73/v37LUMa8/Ly8OCDDyI8PBze3t5QKpWorq5GcXHxFT9v8+bNWLduHcLDw9GrVy9s2rSp2X1LSkqg1+utYlQoFFCr1ZbXWVlZOHz4sFWMw4cPh0Qisfx+mpOVlYX58+dbvW/Tpk0oKCgA8M/5vN5zebHG39HFv2NXV1dERERY/Y6Dg4Ot3ufl5YWamhqrbVVVVVbfmYiovWsuF1/qWvPoxf/OXvxvbGMui4iIsLRfbfZ0QRDw2muvoXPnzlCpVFAqlVizZk2TvHelf9vPnz9vldcANHl9qW3btuHs2bPo0aMHYmJisGjRIqvh1Vf6vMudp7q6Oqvh41eL4Uqa+z6NefBa8vSaNWuQnJwMHx8fKBQKvPTSS1e8lgCAFStWICYmBqNHj0ZAQACmTJmCoqKiZve92jm/lmue5mRlZaGoqMjyd0GpVKJz585wc3NDXl7eDV+bXexG/54DsLqeaPz/idcTjofFPTm0Hj164MSJE1bbAgMD8dBDD6GystLyU11dDa1WC+Cfi4GcnBwYDIZmj+nk1PR/q7CwMKvn2wEgOzsb4eHhVttycnIsfzabzcjLy2t2ZtXGC5LrnXjt4uNrtVqUlpYiNDQUSqUS7u7u2L59u9X31ul0lmcHH330UZjNZhw6dAjV1dWoqKiAt7c3BEG47PcGgHvvvRe7du1CaWkpnnnmGUyYMKHZuP38/ODm5mYVY1VVldVzhoGBgbj99tutYqyqqkJ9fT1CQkIuG0dgYCA+/PBDq/dptVrs2LEDwD/n80rn8nLfrVHj7M4X/44bGhqQl5fX5Hd8NcePH0fPnj2v6z1ERG1Zc7n4UteaRy+nMUfk5uZatl385+Zs3rwZ7777LjZs2IDS0lJUVlZixowZlrx3LUJDQ63yGoAmry+VmJiIL774AoWFhdi6dStWr16NdevWXdPnhYWF4ezZs1bbsrOz4eHhAT8/P8u2S/Pa1fLcxZr7Po3XKlfL06mpqZgzZw7efvttFBYWoqqqCq+99prVOW0uFh8fH7zzzjs4deoUjh49ipycHDz11FPNxne1c34t1zyXu5aIiIiwek9lZSXq6+vRp0+fq16bXcs5vtm/542OHz8OmUyGjh07Xtf7qO1jcU8ObciQISgvL0dmZqZl2+OPP46tW7diy5YtMBgMMJlMOHPmDHbt2gUAGDFiBFQqFR5//HGUlpZCEARkZGRYLhICAwORnZ0Nk8lkOebUqVPx/fff4+uvv4bJZMLRo0fx1ltvNZkZeNWqVcjMzITBYMBrr70Gg8GAkSNHNonbz88P48ePx+zZsy2Ttmk0Ghw5cuSK33fp0qU4f/48amtrMX/+fMTExKBPnz5wc3PDzJkz8eyzzyIzMxOCIKCurg6//fabJUlVVVVBJpNBpVJBp9PhhRdesNzwaIzJycnJahK5U6dOYceOHdBqtXBxcYFCoQAAODs7N4nNyckJEydOxCuvvIILFy5Ap9Nh/vz5kEgkln2mTJmCo0eP4sMPP0RtbS0EQUB+fj7+97//WfYJDAy0igEA/vWvf+HVV1/FoUOHYDabodfrcejQIRw+fBgAMGvWLPz4449YvXo16urqYDQa8euvv1omIGrumBcLCgrC8OHDMX/+fBQVFaGurg7PPfccpFIp7r777iv+Ti5WWVmJgwcPYtSoUdf8HiKitq65XHyp6dOnY8WKFUhLS0NDQwO++uor7NixA9OnT7+mzwgNDcXAgQPxwgsvWIqyBQsWXPE9VVVVcHFxgb+/PyQSCfbu3YvPPvvsur7bpEmTsG3bNnz//fcwmUz4/vvvLTeWm2MwGLBu3TpLL7tCoYCzszNcXFyu6fMeeughnDp1Cu+//z4MBgOys7Px8ssvY/r06Vb59FKBgYEAcMVc1+jYsWP45JNP0NDQgIMHD+Ljjz/GlClTAFw9T1dVVcHZ2Rl+fn5wdXXFkSNH8MEHHzSJ5dLrqM2bNyM7OxtmsxlyuRxubm6XPSfjx4/H8ePHLTEeOHAAGzZssLRfyzVPYGAgSktLUVZWZnnf6NGjYTQa8fLLL1t6xouLi/Hll18CuPq1WXPHvNS1Xi9eza5duzBixIhr/ntD7QeLe3JoCoUC06dPx5o1ayzbevXqhR9//BEff/wxQkJC4OPjg7Fjx1qKdw8PD+zZswdarRaJiYlQKBSYMGECysvLAcDyD7Cvry+USiXy8vLQu3dvbN26Fa+99hpUKhXGjRuHJ554AvPmzbOKZ9asWXj44YehVquxbds27NixA0qlstnYP/74YwwYMAApKSmQyWTo27fvVXs+pk2bhrvuugsBAQE4ffo0vvvuO8s//CtWrMD48eMtw9QiIyPx+uuvW5bIee+993Ds2DGoVCokJCQgJCTEalSBh4cHli1bZplB9/HHH7fcpAgJCYG3tzfmz5+PDRs2NBly1uidd95BYmIiEhMTERcXh8TERMsFBwCEh4cjNTUVP/74I6Kjo6FUKjF06FAcP37css/ChQvxf//3f1AqlejatSsAYN68eXjllVcwc+ZMqNVqhISE4JlnnrHM3tulSxf89NNP2LRpE4KDgxEQEIAlS5ZYZqdt7piX2rhxIyIjI5GcnIzQ0FCcOHECP/30E+Ry+RV/JxfbsGED7rzzTt5pJyKH0lwuvtRTTz2F2bNnY+zYsVCr1XjzzTfxzTffXNdIpy+++AKCICAiIgLdu3e33Dx3d3dvdv/JkyfjzjvvRGJiInx9fbF69errXn/99ttvx3/+8x/MmzcPSqUS//3vfzF16tQrvmfr1q3o3LkzvLy8MGDAAEyePBmTJk26ps+LiIjADz/8gC+//BL+/v4YNGgQUlJSmsxof6m4uDjMnTsXd9xxB5RKJd54443L7nvffffhwIED8PX1xZgxY/D0009bzsvV8vSQIUMwc+ZMDBw4EAqFAi+++GKT79bcddSxY8cwaNAgyOVyy3FXrFjRbHwdOnTAt99+i3fffRdKpRIvvvgiZs2aZbXP1a55Bg0ahHvvvRdxcXFQKpX44osvIJfLkZqairy8PCQmJsLb2xt9+vTBb7/9Zjnula7Nmjvmpa71evFKDAYDNm7ceNmRDdS+SYTrGVtE1A5VVFQgKSkJ+/btu+5hT7YkkUjw448/YvDgwaLFQOLR6XTo3Lkzdu/efVPP6xERtUVi5OK0tDR0794dBQUFCAoKsstnErW0lStX4tixY1ddHpnaJxb3RK0Ei3siIqKWk56eDoPBgKSkJBQUFOCRRx4BAOzZs0fkyIiIbIPD8omIiIio3auqqsKDDz4IuVyOHj16wNfXF59//rnYYRER2Qx77omIiIiIiIjaOPbcExER0U374IMP0LNnT7i5ueHBBx+0aktPT8ett94KT09PJCQkXHUY9AcffICQkBDIZDKMGTPGaklMIiIiah6LeyIiIrppwcHBWLBgAR599FGr7UajEffccw9GjhyJiooKLFq0CPfddx+Ki4ubPc6PP/6IRYsW4bvvvoNGo4GzszNmzpxpj69ARETUpnFYPhEREdnMK6+8gpMnT2Lz5s0A/inWJ06cCI1GAyenf/oU+vbti4ceegizZ89u8v4JEyYgKCjIssxVVlYWEhISUFpaCoVCYb8vQkRE1Ma4iB2AGEpLS7F7925ERkbCw8ND7HCIiIhQV1eHnJwcDB06FL6+vmKHYzPp6elITEy0FPYAkJSUhPT09Mvun5KSYnkdGxsLqVSKkydPonfv3k3212g00Gg0TbZXVFQgMzMT3bt3Z64nIqJWoaVzvUMW97t378bEiRPFDoOIiKiJzz77DBMmTBA7DJvRarVQKpVW25RKJXJzc69r/5qammb3X7NmDRYvXmyLUImIiOyipXK9Qxb3kZGRAIDly5cjOjpa3GCI7CQ7OxvPPvssNm7ciISEBLHDIaJLZGZmYuLEiZYc1V7IZDJUVVVZbauqqoJcLrfJ/jNmzMDIkSObbE9LS8O0adPw5ptvMteTQ8nOzsZzzz3HfE/UCrV0rnfI4r5xeF6HDh3QuXNnkaMhso/G6TU6duyI5ORkkaMhostpb0PIu3TpgjfffBNms9kyND8tLQ3jx4+/7P5paWmWHo0zZ85Ar9ejY8eOze4fFBSEoKCgy35+dHQ0unTpcpPfgqjtCAoKwosvvoghQ4bA399f7HCIqBktles5Wz4RERHdtIaGBtTX16OhoQFmsxn19fUwGo0YOHAgPDw8sHz5cuj1emzZsgXHjx/HuHHjmj3O5MmTsW7dOhw9ehRarRYLFizA6NGjOZke0TVSqVQYNWpUu5q7g4iuDYt7IgfRsWNH/P7770hKShI7FCJqh5YuXQoPDw+89tpr2LJlCzw8PPDoo4/C1dUV27Ztw7fffgulUomFCxfim2++sfQo7tu3DzKZzHKcu+66C6+88gruvvtuBAYGwmAwYPXq1WJ9LaI2p6KiAv/73/9QWloqdihEZGcOOSyfyBE5OTlBKpVazVhNdCWCIFh+6OZJJBLLT3v0yiuv4JVXXmm2LTExEX/++Wezbf369YNWq7XaNmfOHMyZM8fWIRI5BI1Gg2XLluG+++7jsHy6KuZ625NIJKJdb7O4J3IQOTk5WLBgAT7//PPLPrtKBABmsxnFxcWorKxksrcxiUQCpVIJf39/3mgjIiLRMNe3LFdXV4SHh0Mqldr1c1ncEzmI2tpaHDlypEkPGdGlcnNz4eTkhMjISLi6uoodTrtiNBpRVFSE3NxcREVFiR0OERE5KOb6liMIAsrKypCXl4eYmBi7fjaLeyIismicCC02NhYuLkwRtubs7IyQkBBkZWVZzR5PRERkL8z1Lc/Hxwfl5eV2z/W8qiAiIovGoXnt9bnw1qDx3HIYJBG1BE9PTyQnJ1tNVEl0Meb6lidWrmdxT0RERETUTkRGRmL16tWIi4sTOxQisjMW90QOIigoCC+++CLCw8PFDoWo3Rs4cCCXbyMiUZjNZhgMBpjNZrFDIWrXWmOuZ3FP5CBUKhVGjRoFX19fsUMhumkDBw6Ei4sLTp8+bdl28uRJDjEkIod38uRJ3H777UhLSxM7FKKbwlx//VjcEzmIiooK/O9//0NpaanYoRDZhEKhwMsvv3zTx2loaLBBNERERGRrzPXXh8U9kYPQaDRYtmwZ8vLyxA6FyCbmzp2LHTt24OjRo03aqqurMW3aNAQGBiI0NBRPPfUU9Ho9ACAnJwcSiQTr169HVFQUunbtil9++QWBgYFYtWoVgoKC4OPjg08++QSHDx9GUlISFAoFHn74YcvFQXV1Ne655x74+/tDpVJh+PDh/H+LiIjIxpjrrw+LeyIishmDwYC8vDxkZGQgLy8PBoOhxT4rMDAQTzzxBF588cUmbU888QQuXLiAkydP4q+//sIff/yBJUuWWO2za9cuHDt2DIcPHwYAlJaWWtagX79+PebMmYPFixdj586dOHPmDPbt24evvvoKwD/PtE6aNAk5OTnIz8+Ht7c3Hn/88Rb7rkRERK2JvfI9c/31YXFPREQ2YTAYkJaWBo1GA7PZDI1Gg7S0tBYt8J955hkcPHgQv/32m2WbyWTCpk2b8Oabb0KpVCIwMBCLFy/Ghg0brN77yiuvwNvbGx4eHgAAJycnLF68GFKpFPfccw+kUikeeughBAUFwc/PD0OGDMGRI0cAAEqlEmPHjoWnpydkMhleeOEF/Prrry32PYmIiFoLe+d75vprx+KeiIhsorCwEIIgICwsDGq1GmFhYRAEAUVFRS32mUqlEs899xxeeOEFy7bS0lIYDAZERkZatkVGRkKj0VitNxsREWF1LLVaDVdXV8trT09PBAYGWr3WarUAgNraWsyYMQMRERHw9vZGv379oNVqLcMBiYjEEhMTg++++w5dunQROxRqp+yd75nrrx2LeyIH4enpieTkZMhkMrFDoXZKq9XCy8vLapuXlxdqampa9HPnzp2LnJwcbN++HQDg6+sLqVSKnJwcyz45OTkICgqymmH3Zmbbffvtt5GRkYEDBw6guroa+/btAwCrCwoiIjFIpVIEBARAKpWKHQq1U2Lke+b6a8PinshBREZGYvXq1YiLixM7FGqnZDIZdDqd1TadTge5XN6in+vh4YGFCxfijTfeAAA4OzvjwQcfxAsvvIDKykoUFRVh8eLFePjhh232mTU1NfDw8IBSqURFRQVeffVVmx2biOhm5Ofn4/nnn8fZs2fFDoXaKTHyPXP9tWFxT+QgzGYzDAYDzGaz2KFQOxUYGAiJRIL8/HyUl5cjPz8fEokEAQEBLf7Z06ZNg0qlsrx+7733EBAQgPj4eHTv3h233HILFi5caLPP+9e//gWDwQA/Pz/07t0bd911l82OTUR0M2pqarBnzx5UVlaKHQq1U2Lle+b6q5MIrXlcQQs5cuQIevToga1bt/J5JHIY6enpGDt2LA4dOoSePXuKHQ61UiaTCadPn0ZcXBycnZ2v+/0GgwFFRUWoqamBXC7n0NBmXO4cN+amw4cPIzk5WcQI2wfmenJUzPd0NTeb6wHm+6sRK9e72PyIRETksKRSKcLCwsQOg4iIiFoQ833rxGH5RERERERERG0ci3siIiIionbCz88Pjz/+OIKDg8UOhYjsjMU9EREREVE74efnh8mTJ1ut3U1EjoHFPZGDiImJwXfffceJpeiKGteDdcC5Vu2m8dzezNq7RESXU11djd9++42z5dNlMdfbj71zPYt7IgchlUo5kyldlZOTE5ydnVFfXy92KO1WfX09nJ2d4eTEFExEtnf+/Hk8/fTTXOeeLou5vuUZjUZIJBK7F/ecLZ/IQeTn5+PNN9/EmjVrEBMTI3Y41Ir5+fnhwoULCAkJgbu7O3uYbUQQBNTX1+PChQvw9/cXOxwiInJgzPUtRxAEFBUVQalUsrgnopZRU1ODPXv2cJgeXZVKpQIAFBQUwGQyiRxN++Ls7Ax/f3/LOSYiIhIDc33Lcnd3F+VGPot7IiJqQqVSQaVSwWw285k8G5FIJByKT0RErQZzfcsQM9+zuCciostiMUpE1LZIpVJERUXB3d1d7FCojWCubz/4myQiIiIiaidiYmLw5ZdfIiEhQexQiMjOWNwTOQg/Pz88/vjjCA4OFjsUIiIiIiKyMRb3RA7Cz88PkydPRmBgoNihEBERUQvJzMzEHXfcgbS0NLFDISI7Y3FP5CCqq6vx22+/cbZ8IiKidkwQBOh0OpjNZrFDISI7Y3FP5CDOnz+Pp59+GmfPnhU7FCIiIiIisjEW90RERERERERtHIt7IiIiIiIiojaOxT0RERERUTsRFRWFDRs2oGPHjmKHQkR2xuKeyEFIpVJERUXB3d1d7FCIiIiohXh4eKBjx47w9PQUOxQisjMW90QOIiYmBl9++SUSEhLEDoWIiIhaSEFBAZYvX468vDyxQyEiO2NxT0RERETUTlRWVmLr1q0oLS0VOxQisrM2W9yXlpbC19cXt956q9ihELUJmZmZuOOOO5CWliZ2KEREREREZGNttrh/5plnOLyY6DoIggCdTgez2Sx2KEREREREZGMuYgdwI3799VdkZWVh2rRpWLNmzWX302g00Gg0TbZnZma2ZHhEREREREREdtXminuDwYA5c+bgs88+w9GjR6+475o1a7B48WI7RUZEREREJC61Wo3x48fD399f7FCIyM7aXHH/xhtvYPDgwejWrdtVi/sZM2Zg5MiRTbZnZmZi4sSJLRUiEREREZEoAgMD8eSTTyI0NFTsUIjIztpUcX/mzBmsX7/+micECwoKQlBQUMsGRdRGREVFYcOGDejYsaPYoRAREVEL0el0+PvvvxEfHw9vb2+xwyEiO2pTxf3vv/+OwsJCxMXFAQDq6upQV1eHwMBAnD59mv+AEV2Bh4cHOnbsCE9PT7FDISIiohaSm5uL6dOno1u3bujZs6fY4RCRHbWp2fIfeOABnD17FmlpaUhLS8OSJUuQmJiItLQ0yOVyscMjatUKCgqwfPly5OXliR0KERERERHZWJsq7j08PBAYGGj5USgUcHV1RWBgICQSidjhEbVqlZWV2Lp1K0pLS8UOhYiIiIiIbKxNFfeXmjx5Mg4cOCB2GERERERERESiatPFPRERERER/T/Ozs5QKpVwcWlTU2sRkQ2wuCciIqIWJZPJrH5cXFyaXaq2kUQigZeXl2X/lJQUO0ZL1LbFx8fjhx9+QNeuXcUOhYjsjLf0iByEWq3G+PHj4e/vL3YoRORgtFqt5c8mkwnh4eG4//77r/iew4cPc+lOIiKi68CeeyIHERgYiCeffBKhoaFih0JEDmzXrl3QarUYM2aM2KEQtUtZWVkYPXo0Tpw4IXYoRGRn7LknchA6nQ5///034uPj4e3tLXY4ROSg1q1bhwcffBAeHh5X3G/QoEEwmUzo2bMnli9fjs6dOze7n0ajgUajabI9MzPTJvEStTVGoxHnz5+HXq8XOxQisjMW90QOIjc3F9OnT0e3bt3Qs2dPscMhIgdUWlqK7777Dr/99tsV9/vll19w2223Qa/X480338SQIUOQmZnZ7I3JNWvWYPHixS0VMhERUZvBYflERERkF59//jliYmLQu3fvK+43YMAASKVSyOVyLF26FC4uLti/f3+z+86YMQOHDx9u8vPZZ5+1xFcgIiJqtdhzT0RERHaxbt06TJky5brf5+TkBEEQmm0LCgpCUFDQzYZGRETU5rG4JyIiohZ35MgRnDhxAg8//PAV9ztx4gT0ej26du0Kg8GA5cuXo66uDrfddpudIiVq28LDw7Fq1SrExMSIHQoR2RmH5RM5CGdnZyiVSri48J4eEdnfunXrcPfddyMgIKBJm0wmw759+wAAxcXFeOihh6BQKBAeHo4DBw5g9+7dUCqVdo6YqG2SyWS47bbbOHkukQPiVT6Rg4iPj8cPP/yArl27ih0KETmg999//7JtWq3W8uc77rgDJ0+etEdIRO1SSUkJNm7ciFdeeQUhISFih0NEdsSeeyIiIiKidqKkpASffPJJs0tEElH7xuKeyEFkZWVh9OjROHHihNihEBERERGRjbG4J3IQRqMR58+fh16vFzsUIiIiIiKyMRb3RERERERERG0ci3siIiIionbC29sbw4YNg0qlEjsUIrIzFvdERERERO1EaGgolixZgqioKLFDISI7Y3FP5CDCw8OxatUqxMTEiB0KERERtRC9Xo/8/HzU19eLHQoR2RmLeyIHIZPJcNttt8Hb21vsUIiIiKiFZGdnY8yYMcjIyBA7FCKyMxb3RA6ipKQE//nPf7juLRERERFRO8TinshBlJSU4JNPPmFxT0RERETUDrG4JyIiIiIiImrjWNwTERERERERtXEs7omIiIiI2omEhAQcPHgQycnJYodCRHbG4p7IQXh7e2PYsGFQqVRih0JERERERDbG4p7IQYSGhmLJkiWIiooSOxQiIiJqIefOncPUqVNx6tQpsUMhIjtjcU/kIPR6PfLz81FfXy92KERERNRC6urqkJ6eDp1OJ3YoRGRnLO6JHER2djbGjBmDjIwMsUMhIiIiIiIbY3FPRERERERE1MaxuCciIiIiIiJq41jcExERERG1E8HBwVi8eDEiIyPFDoWI7IzFPRERERFRO6FUKpGSkgK1Wi12KERkZyzuiRxEQkICDh48iOTkZLFDISIiohZSXl6OLVu2oKSkROxQiMjOWNwTEREREbUThYWFeOutt5Cfny92KERkZyzuiRzEuXPnMHXqVJw6dUrsUIiIiIiIyMZY3BM5iLq6OqSnp0On04kdChERERER2RiLeyIiIiIiIqI2jsU9EREREVE74enpid69e0Mul4sdChHZGYt7IiIiIqJ2IjIyEu+//z5iY2PFDoWI7IzFPZGDCA4OxuLFixEZGSl2KERERNRCTCYTtFotTCaT2KEQkZ2xuCdyEEqlEikpKVCr1WKHQkRERC3k1KlTGDRoEI4dOyZ2KERkZyzuiRxEeXk5tmzZgpKSErFDISIiIiIiG2NxT+QgCgsL8dZbbyE/P1/sUIiIiIiIyMZY3BMRERERERG1cSzuiYiIiIiIiNo4FvdERERERO1EbGwsdu/ejcTERLFDISI7Y3FP5CA8PT3Ru3dvyOVysUMhIiKiFuLq6gqVSgVXV1exQyEiO2NxT+QgIiMj8f777yM2NlbsUIiIiKiF5OXlYf78+cjOzhY7FCKyMxb3RA7CZDJBq9XCZDKJHQoRERG1EK1Wi3379qGqqkrsUIjIzljcEzmIU6dOYdCgQTh27JjYoRARERERkY2xuCciIiIiIiJq41jcExEREREREbVxLO6JiIiIiNoJf39/zJs3DyEhIWKHQkR2xuKeiIiIiKid8PX1xYQJExAQECB2KERkZyzuiRxEbGwsdu/ejcTERLFDISIiohZSVVWFn376CRUVFWKHQkR2xuKeyEG4urpCpVLB1dVV7FCIiIiohVy4cAEvvvgizp07J3YoRGRnLO6JHEReXh7mz5+P7OxssUMhIiIiIiIbY3FP5CC0Wi327duHqqoqsUMhIiIiIiIbY3FPRERERERE1MaxuCciIqIWNXnyZEilUshkMstPXl7eZfdPT0/HrbfeCk9PTyQkJGDPnj12jJaobXNzc0N8fDw8PDzEDoWI7IzFPREREbW4p556Clqt1vITHh7e7H5GoxH33HMPRo4ciYqKCixatAj33XcfiouL7RwxUdsUHR2NjRs3olOnTmKHQkR25iJ2AERkH/7+/pg3bx5CQkLEDoWI6LJ++eUX1NbW4vnnn4eTkxMeeOABvPfee9iyZQtmz57dZH+NRgONRtNke2Zmpj3CJSIiajXYc0/kIHx9fTFhwgQEBASIHQoROaD//Oc/UKvV6NatG9auXXvZ/dLT05GYmAgnp/93iZKUlIT09PRm91+zZg169OjR5GfixIk2/w5EbUFGRgb69u2Lo0ePih0KEdkZe+6JHERVVRX27t2LDh06wMfHR+xwiMiBPPHEE1ixYgWUSiX27duHcePGQaFQYMyYMU321Wq1UCqVVtuUSiVyc3ObPfaMGTMwcuTIJtszMzNZ4JPDMhqNEARB7DCIyM5Y3BM5iAsXLuDFF1/EXXfdxeKeiOwqOTnZ8uc77rgDs2fPxpYtW5ot7mUyWZMlO6uqqiCXy5s9dlBQEIKCgmwbMBERURvEYflERERkV05OTpftVezSpQuOHz8Os9ls2ZaWloYuXbrYKzwiIqI2icU9ERERtaivvvoKNTU1MJvN+P333/HBBx/gvvvua3bfgQMHwsPDA8uXL4der8eWLVtw/PhxjBs3zs5RExERtS0s7omIiKhFffDBBwgLC4NCocCMGTOwdOlSPPjgg5b2zp074/PPPwcAuLq6Ytu2bfj222+hVCqxcOFCfPPNN/D39xcrfKI2pUOHDti0aROXwiNyQHzmnshBuLm5IT4+Hh4eHmKHQkQO5rfffrti+4kTJ6xeJyYm4s8//2zJkIjaLXd3d0RHRzPfEzkg9twTOYjo6Ghs3LiRd/KJiIjasQsXLmDp0qWXXWGCiNovFvdERERERO1EVVUVtm3bhrKyMrFDISI7Y3FP5CAyMjLQt29fHD16VOxQiIiIiIjIxljcEzkQo9F42eWniIiIiIio7WJxT0RERERERNTGsbgnIiIiImonfHx8MGnSJAQEBIgdChHZGYt7IiIiIqJ2IiAgALNnz0ZISIjYoRCRnbG4J3IQHTp0wKZNm7gUHhERUTum0+lw+PBh1NTUiB0KEdkZi3siB+Hu7o7o6Gh4eHiIHQoRERG1kNzcXMyaNQtZWVlih0JEdsbinshBXLhwAUuXLkVubq7YoRARERERkY2xuCdyEFVVVdi2bRvKysrEDoWIiIiIiGyMxT0RERERERFRG8finoiIiIionXBxcYG/vz9cXV3FDoWI7KzNFfd6vR7Tp09HVFQU5HI5OnfujC+++ELssIiIiIiIRBcXF4ft27cjMTFR7FCIyM5cxA7gejU0NCA4OBg///wzoqKi8Mcff+Duu+9GVFQUbrvtNrHDI2q1fHx8MGnSJAQEBIgdChERERER2Vib67n38vLCkiVL0KFDB0gkEtx+++3o27cv9u/fL3ZoRK1aQEAAZs+ejZCQELFDISIiohZy+vRpjBgxAsePHxc7FCKyszbXc38pnU6Hv/76C/PmzWvSptFooNFommzPzMy0R2hErYpOp8Phw4cRFxcHhUIhdjhERETUAhoaGlBcXAyj0Sh2KERkZ226uDebzZg8eTJ69eqFIUOGNGlfs2YNFi9eLEJkRK1Pbm4uZs2ahZ49e6Jnz55ih0NERERERDbUZot7QRAwc+ZMFBQUYPfu3ZBIJE32mTFjBkaOHNlke2ZmJiZOnGiPMImIiIiIiIhaXJss7gVBwOzZs5GWloaffvoJMpms2f2CgoIQFBRk5+iIiIiIiIiI7KtNFvdz5szBgQMH8PPPP8Pb21vscIiIiIiIWoWIiAh89NFHiI2NFTsUIrKzNjdbfm5uLj788ENkZGQgLCwMMpkMMpkMy5YtEzs0olbNxcUF/v7+cHV1FTsUIiIiaiFeXl7o0aMH5HK52KEQkZ21uZ77iIgICIIgdhhEbU5cXBy2b9+OxMREsUMhIiKiFlJUVIT169fj1VdfRVhYmNjhEJEdtbmeeyIiIiIial5ZWRk+/fRTFBUViR0KEdkZi3siB3H69GmMGDECx48fFzsUIiIiIiKyMRb3RA6ioaEBxcXFMBqNYodCREREREQ2xuKeiIiIiIiIqI1jcU9ERERE1E4oFAqMHDkSPj4+YodCRHbG4p6IiIiIqJ0ICQnBggULEBERIXYoRGRnLO6JHERERAQ++ugjxMbGih0KERERtZD6+npkZ2ejrq5O7FCIyM5Y3BM5CC8vL/To0QNyuVzsUIiIiKiFnD17FuPHj0dmZqbYoRCRnbG4J3IQRUVF+Pe//40LFy6IHQoREREREdkYi3siB1FWVoZPP/0URUVFYodCREREREQ2xuKeiIiIiIiIqI1jcU9ERERE1I64urpCIpGIHQYR2RmLeyIiIiKidiIhIQF//PEHunfvLnYoRGRnLO6JHIRCocDIkSPh4+MjdihERERERGRjLO6JHERISAgWLFiAiIgIsUMhIiKiFpKdnY2HH36YS+EROSAW90QOor6+HtnZ2airqxM7FCIiImoher0ep06dYr4nckAs7okcxNmzZzF+/HjeySciIiIiaoccuri/cOECtFqt2GEQERERERER3RSHLu5XrVqF3r17Y+LEifjPf/6DkydPQhAEscMiIiIiIiIiui4OXdwvW7YMS5YsgZeXFz766COMGjUKe/bsgclkQn5+Pqqrq8UOkYiIiIjomoWEhGDZsmWIiooSOxQisjMXsQMQU2xsLB544AG88MILqKqqws8//4z4+HjU1tZi8eLFSE1NRdeuXdG/f3/0798fnTp1gpOTQ98PoTbO1dUVEolE7DCIiIiohSgUCgwePBgqlUrsUIjIzlipApBIJFAqlRgzZgy6dOmC7t27Y/Xq1XjttdegVCrx8ccfY8yYMfjmm29gMpmg0WhQWVkpdthE1yUhIQF//PEHunfvLnYoRERE1EJKS0vx+eefo6ioSOxQiMjOHLrn/nKcnZ3RuXNndO7cGc8++yxqamqwd+9ehIaGora2FitXrsT333+PxMRES69+586d2atPRERERKIqLi7GqlWrMHHiRAQFBYkdDhHZEavRq5BIJPD29sa9996LHj16oHv37li+fDneeOMN+Pr6Yu3atRg3bhzWrl0Lk8mE0tJSVFRUiB02URPZ2dl4+OGHuRQeEREREVE7xJ776+Ts7IyOHTuiY8eOePrpp6HVavHLL79ArVajrq4O//nPf7Bx40Z07twZAwYMQP/+/dGlSxc4OzuLHTo5OL1ej1OnTqGurk7sUIiIiIiIyMbYc38TJBIJ5HI57rnnHvTt2xdJSUlYsGABVqxYgeDgYHz66ad44IEH8M4776ChoQGVlZUoKysTO2wiIiK70uv1mD59OqKioiCXy9G5c2d88cUXl91fIpHAy8sLMpkMMpkMKSkpdoyWiIiobWLPvQ05OzsjNjYWTz31FJ566inodDr89ttvcHNzQ319PTZt2oRVq1YhISHB8qx+t27d2KtPRETtWkNDA4KDg/Hzzz8jKioKf/zxB+6++25ERUXhtttua/Y9hw8fRseOHe0cKVHbJ5PJ0K9fPygUCrFDISI7Y3Hfgry8vCy9DSaTCSqVClFRUdi9eze++OILrF69GmPHjsUrr7wCvV6P2tpa+Pn5iRw1ERGRbXl5eWHJkiWW17fffjv69u2L/fv3X7a4v1YajQYajabJds4vQo4qPDwcb7/9NqKjo8UOhYjsjMW9nTg7O6NDhw6YN28e5s2bh9raWuzbtw9msxn19fX47rvvsHjxYnTs2NHSq5+UlAQXF/6KyDZCQkKwbNkyREVFiR0KETk4nU6Hv/76C/PmzbvsPoMGDYLJZELPnj2xfPlydO7cudn91qxZg8WLF7dUqERtjtFoREVFBYxGI9zc3MQOh4jsiJWjSDw9PTF06FAAgNlshq+vL/z8/LBz50589dVX+M9//oM777wTq1atgtlsRkVFBQICAkSOmtoyhUKBwYMHQ6VSiR0KETkws9mMyZMno1evXhgyZEiz+/zyyy+47bbboNfr8eabb2LIkCHIzMyEt7d3k31nzJiBkSNHNtmemZmJiRMn2jx+otYuKysLY8eOxaFDh9CzZ0+xwyEiO2Jx3wo4OTkhIiICs2fPxuzZs1FbW4v9+/dDq9VCr9fj999/x7x58xAXF2fp1e/evTtcXV3FDp3akNLSUnz99dcIDQ3lurdEJApBEDBz5kwUFBRg9+7dkEgkze43YMAAAIBUKsXSpUuxceNG7N+/H8OGDWuyb1BQEP9NIyIiAov7VsnT0xODBw8G8E8Ph7+/P1xdXbFr1y588803+OSTT9CzZ0+sW7cOzs7OKCoq4oUNXVVxcTFWrVqFiRMn8u8LEdmdIAiYPXs20tLS8NNPP0Emk13ze52cnCAIQgtGR0RE1PaxuG/lnJycEBoailmzZmHWrFmor69HamoqiouLYTAYkJ6ejkmTJiE6Ohr9+/fHgAEDkJycDKlUKnboREREFnPmzMGBAwfw888/Nzu8vtGJEyeg1+vRtWtXGAwGLF++HHV1dTc98R4REVF7x3Xu2xh3d3fccccdeOCBB5CUlIQhQ4ZgzZo16Nq1K7777jtMnjwZo0ePhtFoBAAUFRWJHDERETm63NxcfPjhh8jIyEBYWJhl/fply5YB+Gfprn379gH4Z5TRQw89BIVCgfDwcBw4cAC7d++GUqkU8RsQERG1fuy5b8OcnJwQGBiIxx57DI899hj0ej3+/PNPnDt3DkajEefOncPIkSMRFRVleVa/Z8+enDmViIjsKiIi4orD6rVareXPd9xxB06ePGmPsIjapfj4eOzZswfdunUTOxQisjMW9+2Im5ubpYg3m80IDQ3FJ598gl27dmHnzp349NNP4efnh59++glubm4oKSmBn5+f2GGTnchkMvTr1w8KhULsUIiIiKiFODs7QyaTwdnZWexQiMjOWNy3U05OTvDz88O0adMwbdo0GAwGHDp0CCdOnIDJZMKFCxcwdOhQhISEWG4I9OrVC+7u7mKHTi0kPDwcb7/9NqKjo8UOhYiIiFpITk4OFi9ejE8//RTx8fFih0NEdsTi3kFIpVL07dsXffv2hSAIqKiowMcff4ydO3fihx9+wMaNG+Hl5YVff/0VMpkM5eXlUKvVYodNNmQ0GlFRUQGj0chHM4iIiNqp2tpa/Pnnn6ipqRE7FCKyMxb3DkgikUCtVmPy5MmYPHkyDAYDjhw5goMHD8LZ2RllZWVISUmBQqFAv3790L9/f/Tu3RseHh5ih043ISsrC2PHjsWhQ4fQs2dPscMhIiIiIiIbYnFPkEqluPXWW3HrrbdCEATU1NTggw8+wI4dO7B371588cUXkEql+OGHHxAQEIDKykoolUpIJBKxQyciIiIiIiKwuKdLSCQSeHt74+GHH8bDDz8Mg8GAv//+G3v37oVCoUB1dTXGjRsHs9lseVa/d+/e8PLyEjt0IiIiIiIih8Xinq5IKpWiZ8+e6NmzJwRBQG1tLd544w3s3LkTv/76KzZv3gxXV1ds3boVcXFxqK6uhre3N3v1iYiIiEQQGBiIZ555BmFhYWKHQkR2xuKerplEIoGXlxcmTJiACRMmoKGhAX///Td27NiBsLAwVFVV4bHHHkNxcTH69euHAQMG4NZbb4VMJhM7dCIiIiKHoFarMW7cOC53TOSAnG72AAcPHkTv3r3Rp08f7Ny507L9vvvuu9lDUyvn4uKC5ORkLFiwAElJSejatSteeukl3HXXXfjzzz8xZ84c9O7dG4cOHbI8yy8IgthhO6z4+Hjs2bMH3bp1EzsUIrID5mcix1RZWYmdO3eivLxc7FCIyM5uuud+/vz5WLt2LVxdXTFnzhxoNBpMnToVlZWVNgiP2gqJRAIPDw/cf//9uP/++9HQ0IATJ07gu+++Q2xsLKqrq/HMM8/g5MmTlhn4+/TpA7lcLnboDsPZ2RkymQzOzs5ih0JEdsD8TOSYCgoKsGjRIgwfPhy+vr5ih0NEdnTTxb2zszM6d+4MAPj+++8xceJEVFVV8ZlrB+fi4oJu3bqhW7duEAQB9fX1ePLJJ7Ft2zb88ssv+Prrr+Hs7Ix3330XgwcPRm1tLTw9Pfn3pgXl5ORg8eLF+PTTTxEfHy92OETUwpifiYiIHMtNF/cNDQ3QarWQyWRwdXXFpk2b8Mgjj+DgwYO2iI/agcZe/VGjRmHUqFFoaGhAZmYmvv/+e3Tu3BnV1dV47bXXsH//fqtefYVCIXbo7UptbS3+/PNP1NTUiB0KEdkB8zMREZFjueni/r333oNOp7NMmubk5ISNGzfiq6++uungqH1ycXFBYmIiEhMTLb36jz32GPz8/LB37158++23cHZ2xuLFizFmzBjU19fDzc0NTk43PUUE2ZHBYEBhYaGluAgMDASAJtukUqnIkRK1T8zPREREjuWmi/vk5OQm2yQSCcaOHXuzhyYH0Nirf/fdd+Puu++GyWTCyZMnrXr1P/roI2zbtg233347+vfvj759+0KlUokdOl2BwWBAWloaBEGAl5cXNBoN8vPzAfxzc6dxW2FhIZKSkljgE7WAy+XnBx54QIRoiMhePDw80KVLF3h5eYkdChHZWYt1haakpLTUoakda3xG9Nlnn8Xw4cPRtWtXTJgwAWPHjkVmZiaefvpp9O3bF2vXroUgCNDr9TCbzWKHTZcoLCyEIAgICwuDWq1GWFgYKioqUFZWZrVNEAQUFRWJHS5Ru3To0CHOlk/kgKKiorB27VrOr0PkgG66537hwoVNtgmCgOzs7Js9NDk4iUQCd3d3DB48GIMHD4bJZMKZM2fw3XffISoqCtXV1di8eTPWrVuHvn37YuDAgejbty/UarXYobdKgYGBeOaZZxAWFtbin6XVapv0GDQ3iZeXlxfnACBqIU899RRnyyciInIgN13cf/TRR3j77bebrF/u6el5s4cmsuLs7Iz4+HjEx8dbeu31ej3q6+uxZ88efP/995BIJJgxYwbmzZuHhoYGODk5cem3/59arca4cePg5+fX4p8lk8mg0WisbrRc+m8EAOh0OgQHB7d4PESOiLPlEzmmjIwMjB07FocOHULPnj3FDoeI7Oimi/tOnTrhzjvvREhIiNX23bt33+yhiS6rsVe/X79+6NevH0wmE86ePYvt27fDz88P1dXV2LVrF1auXIk+ffpgwIABuP322x16vdfKykr8+OOPiIqKavHzEBgYiMLCQuTn58PLyws6nc4yT8LF2yQSCQICAlo0FiJHxdnyiYiIHMtNF/e//vprs70AX3zxxc0emuiaOTs7IzY2Fk8++SQAWJ7FLykpwZ49e/D8888DAMaPH4+FCxfCbDZDEAS4uNz0/wJtRkFBARYtWoThw4e3eHEvlUqRlJSEoqIi1NTUIDg42FLEX7qNk+kRtQzOlk9ERORYbrqy4fA+ao3c3Nxw66234tZbb4XJZEJubi62b98ONzc3VFdX4+DBg3jxxRfRp08f9O/fH/369YO/v7/YYbcrUqm02ef77fHMPxFxtnwiIiJHc92z5Y8dOxYff/yx1bbvv/8emzdvhk6ns1lgRLbi7OyMDh064IknnsCMGTPQrVs39O3bF1OmTMGFCxewYMEC9O/fH0899ZSlR99oNIodNhHRdWF+JiIicmzX3XN/4MABvP7665bXixYtwquvvgoAiI2NRWpqKmcrp1bNzc0N3bt3R/fu3WE2m5GXl4fvv/8eRqMRNTU1OH36NGbOnInbbrsNAwYMQL9+/RAYGCh22O2SwWBAYWGh5bngwMBADtMnukHMz0QEANHR0fj666+RkJAgdihEZGfX3XNfVVWFmJgYAIDZbMZHH32E5cuXo6ioCB07dsTbb79t8yCJWoqTkxMiIyMxe/Zs/Otf/0K3bt3QvXt3PPbYYyguLsaiRYswcOBATJ8+HWazGcA/k1S1RR4eHujSpUuTJepagsFgQF5eHjIyMpCXlweDwdDsPmlpadBoNDCbzdBoNEhLS2t2XyK6OuZnIgL+6cQICwuDu7u72KEQkZ1dd3GvVCqh1+sBAMePH0dlZSVmzJgBPz8/vPXWW/j2229tHiSRvbi5uaFz585YuXIljh49inPnzuGjjz5CSkoKtFotzpw5g969e2PWrFnYvHkzCgoKxA75mkVFRWHt2rWIj4+3+bEvLubPnDmDQ4cOIS8vDxqNBn/++Sd2794NrVZr9Z7CwkIIgoCwsDCo1WqEhYVBEAQUFRXZPD4iR8D8TEQAcP78eSxcuBDnzp0TOxQisrPrLu5vueUWfP755wCAXbt2ITk5GXK5HAAQFxcHjUZj2wiJROLk5ITw8HDMnDkTL774Irp164a4uDjMnDkTFRUVePXVVzFo0CDcf//9MJlMAGD5ryO5tAf+xIkTyMzMRE5ODs6fPw8XFxeUlJRg7969Vr3yWq22ySgCLy8v1NTU2PsrELULzM9EBMCyHHBFRYXYoRCRnV33M/cvvfQS+vfvj6+++goHDhzAyy+/bGnjRTm1Z1KpFLGxsVixYoVlGPnOnTuRm5sLnU4HnU6HUaNGISkpCQMGDED//v0RGhoqdtgWGRkZGDt2LA4dOoSePXva7LiNPfABAQEoKSlBWVkZTp06BX9/f8TFxVm21dTUID8/H9HR0QAAmUwGjUZj9QywTqdDcHCwzWIjciTMz0RERI7tunvuk5OTsXPnTvj4+GDy5MmYM2eOpe2PP/5ARESETQMkao2cnJwQEhKC6dOn49VXX0W3bt0QFRWFGTNmQKvV4rXXXsPgwYMxfPhwyzDZxmf22xutVgupVIqMjAyUlpairq4OtbW1MBqNKC8vh5ubGwwGA2pqanD48GFL731gYCAkEgny8/NRXl6O/Px8SCQSBAQEiPyNiNom5mciIiLHdkPr3Pfr1w/9+vVrsj0tLQ333nvvTQdF1NZIpVJERETgzTffhNlsRmFhIXbv3o3jx49Dr9dDp9Nh9OjRiI2NtfTqh4eHix22TchkMmRlZUEqlSI4OBharRZ5eXkoKiqCs7MzfH194eXlBU9PT3h6eqKoqAhhYWGQSqVISkpCUVERampqEBwcjICAAM6WT3QTmJ+bEgQBubm5TUYv+Pn5wc/PD9XV1Th//rxVm1QqtUxOmJmZCUEQrNqjoqLg4eGBgoICVFZWWrWp1WoEBgZCp9MhNzfXqs3Z2dky70lWVlaTZVfDw8Mhk8lQUlKCkpISqzZvb2+EhoZCr9cjOzu7yfdsnBn93LlzqKurs2oLDg6GUqlEeXk5CgsLrdo8PT0RGRkJk8mEU6dONTlubGwsXF1dkZeX12TuFH9/f/j6+qKqqgoXLlywanNzc7OM1MrIyGhy3A4dOsDd3R0XLlxAVVWVVZuPjw8CAgKaPYcuLi6Ii4sDAJw+fbrJJLcRERHw8vJCUVERysrKrNoUCgVCQkJQX1+Ps2fPNomp8RxmZ2dbbsw3CgkJgUKhQGlpKYqLi63aZDIZwsPDYTQakZWV1eS48fHxcHZ2Rk5ODmpra63aAgMDoVarUVlZ2WQeHw8PD0RFRQFo/hxGR0fDzc0N58+fR3V1tWV7c38/iMgx3FBxfznPP/+8LQ9H1CY5OTkhODgYU6ZMAQAYjUaUlpZiypQp+Omnn/DGG29g6dKlCAsLw5YtW6BUKmE2m+HkdN0DaVqFwMBA6PV6GAwGVFdXQ6/XIyQkBBqNBjk5OTCbzTAYDPDx8UFISIjVBbZUKkVYWJiI0RM5BkfOz3V1dfjoo4+wZ88eq+2PP/44Jk+ejN9//x1PP/20VVtUVBS+/PJLAMAjjzwCnU5n1b5hwwZ07NgRq1evxtatW63axo8fjyeffBJ///03pk+fbtWmVCrxww8/AABmz57d5KbCqlWrcNttt2Hjxo345JNPrNqGDRuGJUuWID8/H2PHjm3yPQ8ePAgAeO6555Cenm7VtnjxYqSkpOD//u//8NZbb1m19e7dG++//z60Wm2zx929ezdUKhVee+017Nu3z6pt3rx5mDBhAvbu3YsXX3zRqi0+Ph4bN260nJNLb2Rs2rQJ0dHReP/997Ft2zartkmTJmH27Nk4fPgwZs2aZdXm7++P7du3A4BlZZuLffTRR+jRowfWr1+PTz/91Kpt5MiRWLBgAbKzszF+/HirNldXV/zxxx8AgKeffrrJjY5ly5Zh8ODB+Prrr7Fq1Sqrtn79+uHtt99GRUVFs+dwz549kMlkWLx4Mf7880+rtmeeeQbjxo3Djz/+iEWLFlm1denSBWvXrgWAZo/79ddfIywsDCtXrsSuXbus2nr27MnH3IgckES49Ha0Azhy5Ah69OiBw4cPIzk5WexwyIE0zga/e/dupKamYtq0aRAEAQ8//DD8/PwwYMAA9OvXD5GRkZBIJDb97PT09BZ55h4Azpw5g5MnT0KlUsHV1RX5+flITU2Fs7Mz/P39YTQaERsbi4CAAERERLCgJ2oGc5NtNZ7PQ4cOQalUNulhDw4ORmBgICorK5v04rq7u1t6cdPS0po8VtWxY0d4enoiLy8PpaWlVm3+/v4IDQ2FVqvF6dOnrdpcXFzQtWtXAMCJEyea9A7HxMTA29sbGo2myQSIKpUKUVFRqK+vb7YXt/HvzKlTp5rcjIiMjIRarUZJSQny8/Ot2uRyOWJjY2EymXDs2LEmx01MTISrqyuys7Ob9LCHhIQgICAAFRUVTWZm9/DwQKdOnQAAR48ebTL6oVOnTvDw8EBubm6THvaAgADLzeBLe8JdXV2RmJgI4J9VIS69aRAbGwu5XI4LFy40WX3Fx8cHERERqKurQ2ZmplWbRCJB9+7dAfwzWuPS0Q9RUVFQqVQoKipqMkpBoVAgOjoaRqMRx48fx6W6desGZ2dnZGVlNRlBEhYWBj8/P5SXlyMnJ8eqzcvLyzLS48iRI02Om5CQAHd3d5w7d67J5HnBwcEs7olaoZbO9SzueQFFIjIajaiursa7776LH3/8EUeOHIHRaERISAg+/fRThIaGQhAEmxT6dXV1OHv2LIYNGwZPT08bRP//NM6YLwgCpFIpDh06hNzcXPj6+sLPzw8BAQHIyMiAq6srhgwZgvDwcA6/J7oEc5Nt8XwS3TyDwYDCwkJotVrIZDIEBgYyfxPdhJbOTW1zHDBRO+Hq6gofHx+8+uqrSE1NxYULF7Bx40YMHjwYXl5eqKqqwqRJkzBlyhSsW7cO2dnZTXo/rpWbmxvCwsLg7u5u42/xz/D6hIQEGAwG/PLLLygtLUX37t0RHx9vmTTP3d0dUqkUR48ebXbdeyIiImo9Ll3qVqPRIC0tzWpZWyJqXW6quK+ursYXX3yB5cuXAwCKioqaTNRCRNdGIpHAz88PEydOxPr169GjRw/Ex8djxIgRkEgkeOedd3D33Xdj0KBBOHnyJABcV6F//vx5LFy4sMnQyZtlMBhw5swZ7NixA6dOnUJAQADCw8NRWlqKgIAAODk5wd3dHYIgwN3dHYGBgaioqGiy7j0R2Q7zMxHdrMalbsPCwqBWqxEWFmZ5vJCIWqcbLu7T0tIQGxuLV155BUuWLAHwzzNVFy+9Q0Q3ztXVFQqFAi+//DJ+//13XLhwAV988QUGDx4MlUqFqqoqzJs3D4888gg++eQTnD59+orFfnV1NXbt2tXkubyb0XhX/+TJkzCZTKisrERWVhY8PT1RX1+PU6dOoaamBrm5uWhoaEB0dDR0Oh0EQUBeXl6TZz+J6OYxPxORLWi1Wnh5eVlt8/LyajJvABG1Hjdc3P/rX//CokWLcPr0abi6ugIA+vbtiwMHDtgsOCL6h0Qiga+vL8aPH48NGzagT58+iI+Px+DBgyGVSvH+++9j5MiRGDhwIA4dOgTg+nr1b1ReXh6Ki4tRVVWF4uJiyOVyODk5oaCgAO7u7nBxcYHRaERDQwMUCgX279+Ps2fPQq/Xw9nZ2WrdeyKyDeZnIrIFqVSKnJwcnDt3DoWFhTAajdDpdJDL5WKHRkSXccNL4R0/ftyyrEzjZF9yuZx384jswMXFBQqFAs888wyefvppVFZW4scff8SOHTvg4+ODqqoqrFixAufOnUP//v3Rv39/mxf7BoMBR44cgUQigV6vh1arhUKhgEKhgMlkgl6vh5ubGzp37oxDhw7h77//hq+vL4xGI+rq6hAbGwsnJyfLuvdEZBvMz0R0swwGA4qKilBaWora2lpIJBKcOHECHTp0QEBAgNjhEdFl3HBx37gcSFBQkGVbXl4eAgMDbRIYEV0biUQClUqF+++/H/fffz8aGhqg0+nQv39/FBcX48MPP8TKlSuhVCpt+rmFhYVwc3ODVCqFVCq1fG5DQwOkUimcnZ0RHByM0NBQAP9vGR9fX1/U1NSgrq4OcXFxLDiIbIz5mYhuVmFhIVxcXDBw4ECUlJSgtrYWVVVVnC2fqJW74WH5999/PyZNmmRZf/T8+fOYO3cuJkyYYLPgiOj6Nfbqz5kzB3v37oVGo8GWLVswdOhQjB8/3mbr3mq1WoSHh0MQBFRXV0MikaChoQF6vR633HILkpKSLDPo+/r64tZbb0VgYCDUajWCgoIQGBgIg8HA4X1ENsb8TEQ3q/F5e6lUipCQEMTGxqJDhw7Q6/Vih0ZEV3DDxf2iRYsQHByM+Ph4VFZWIiIiAi4uLnjuuedsGR8R3QSJRAKlUomxY8di8+bN+OKLL2xW3MtkMhgMBiQkJCA6OhqCIMBsNiM5Odmy3n1AQABkMhl0Oh2Cg4MtowcMBgNqamogkUg4vI/IxpifiehmNebui/F5e6LW74aH5bu5uWH9+vVYuXIlzpw5g8DAQISHh9syNiJqxQIDA1FYWIiioiJ4e3sjISEBFRUVlt75gIAASKVSq/2CgoKQn58PQRDQqVMnhIWFcXgfkY0xPxPRpQwGAwoLC6HVaiGTya46vL4xd+fn58PLyws6nc7qhvyVjne9n0VEtnPDxf3GjRuRmJiIpKQk3HLLLQD+WWonIyODQ/+IHIBUKkVSUhKKiopQVlYGFxcXhIeHQ6VSWQr7S/erqalB9+7drdqJyLaYn4noYgaDAYcOHUJpaSkkEgkEQYCvry969epllYsvLcoTEhJQVFSEnJwcAEBQUBBOnjyJY8eO4fTp0wgLC0NSUhJqampQWFiIpKQkAP8sxykIAry8vKDRaCxtzPtELe+Gh+UvXry4yeQ8QUFBWLRo0U0HRURtQ+PQe4PBAIlEAmdnZ2g0GqSlpVktcSeVShEWFoaEhAT21hO1MOZnIsdjMBiQl5eHjIwM5OXlWeXgvLw8ZGVlQSqVwtvbG1KpFFlZWcjPz7d6f1paGjQaDcxmMzQaDY4dO2aZPFev12PLli147733cPr0aQiCgHPnziE1NRVqtRqCIKCoqAiFhYUQBAFhYWFQq9UICwuztBFRy7vhnvvi4uImFw+BgYH8n5fIwTSudS+TyVBaWgp3d3dotVr4+PggOjpa7PCIHA7zM5FjaSzML9dbnpOTA09PT8ucOyqVCjU1NcjJybHk6YuLcuCf5TN/+eUXVFVVQaFQwGg0wmw2Q6VSwdPTE+Hh4aivr0dhYSHOnDmDsLAwy+o3Xl5eVvF5eXlxZRwiO7nhnvugoCCcPn3aatvp06fh7+9/00ERUdvQuNZ9SUkJdu3ahV27dmHv3r0oKyvD4cOHrXoOiMg+mJ+JHMvVesslEgkkEonVey7d1jg7PgAYjUacPn0aWq0WNTU10Ol00Gq1cHV1RUhICJycnFBZWQl3d3e4ubmhoqLCMtkeJ+IjEtcNF/fjxo3DI488gqNHj0Kn0+Ho0aOYPHky7r//flvGR0StWGFhIUwmEw4ePAiz2Yzo6GiYTCYcPXoUANhTSCQC5mcix3JxYd7o4t7yiIgI1NfXo6ioCOXl5Th58iRyc3Ph6upquQkvlUpx5swZHDp0CD///DMKCwshl8stBX3j0Pyqqir4+PigoaEBRUVFqKyshE6nsxzbYDCgoaEB+fn5KC8vR35+PlfGIbKjGx6Wv2DBAuTk5KBHjx6WO3/jx4/HwoULbRYcEbVuWq0WOp0OJpMJKpUKbm5uCA4ORk5ODurr6zkMj0gEzM9EjkUmk0Gj0UCtVlu2NS5BC/zzWI6XlxfOnDmDiooKeHh4IDAwEBKJBGlpaUhISMD58+dx/PhxeHp6oq6uDpWVlfD394darUZBQQG8vb1x/vx5FBcXo7a2FjKZDNXV1fDw8IDJZIJOp0NpaallmVtfX1/o9XoEBwdzEl0iO7rh4t7d3R2fffYZVq1ahXPnziEyMhK+vr62jI2IWjmpVIqMjAzLHfna2lro9XpERkaitLSUw/CIRMD8TORYrrRsncFgQEZGBvz9/aHX61FdXQ0fHx/ccsstkMlkyM/PR3p6OioqKhAaGgqTyQQAMJlM8PX1RXBwMPbv348jR44gJCQE3bt3R3FxMfz8/NC3b18UFxfDYDAgNDQUdXV1qKurg4eHB6RSKefdIRLBDQ/Lb+Tj44OePXva9cKhsrIS999/P+RyOYKDg/Huu+/a7bOJ2porzaBrC15eXhAEAZ6enlYz5iuVSg7DIxKRGPn5Sq4nd//666/o0qULPD090atXLxw7dsx+gRK1MY1LzgYHB8PJyQnBwcGWyfQan8fv0KEDwsPD0bdvX/j7+6OqqgoALBPw5ebmwmw2w8/PzzIhZ0FBAX788Ue4uroiJiYGnp6eqKysxPDhw9G3b19Lr314eDi8vb0REBAAo9GIgoICHDt2rEWuOYjoym645/5igiBAEATLayenm75ncEVz5syBXq/HhQsXkJubizvvvBPx8fFISUlp0c8lamuuNoPuzdLpdEhOTsbvv/8OjUYDlUqFyspKAMCoUaMglUqbrJsbGBjI4XlEdmLv/Hwl15q7y8rKcO+99+K9997DAw88gH//+98YOXIkTp8+DTc3N5GiJ2rdGpecvdTFz+N7eHigtLTUMoN+bW0tKisrYTKZ4OzsDJVKBaVSCaVSibKyMmRlZcHHxwe33347vL29AQA//PADDh8+jN69e+P8+fMoLS1FXV0dFAoFampqoNFoUFdXhz59+nCNeyIR3HCWLysrw4QJE+Dn5wcXFxe4urpaflqSTqfDli1b8Nprr8Hb2xuJiYl49NFHsXbt2hb9XKK2qCXXmzUYDMjNzUVNTQ2GDBmCoKAgNDQ0IDIyEo888gjUanWz6+ampaXxTj5RCxIrP1/J9eTub775BjExMXjkkUfg5uaGJ598EmazGT/99JMIkRO1bRfPXu/j4wOTyYQDBw6gpKQExcXFqK6uhk6ng1qtRnl5OXJzcy3z5tTX1wMA0tPTkZ2djeLiYnh7e8PV1RVqtRpBQUE4c+YM/vzzT+zevRuHDx/GuXPn4ObmBo1GYyn28/PzxTwFRA7lhnvun3zySZw9exYff/wxHn74YWzcuBGvv/46Hn74YVvG18Tp06dhNpvRpUsXy7akpCR88803TfbVaDTQaDRNtmdmZrZojEStxdVm0L2Z4/744484c+YMnJyc4OXlhW7duiEvLw9qtfqy6+aq1Wrk5+ejqKio2R4GIrp5YuXnK7me3J2eno6kpCTLa4lEgq5duyI9PR133313k/2Z64ku79Ln8fV6Pdzd3eHn5wepVIrw8HDk5+fDxcUFsbGx0Gg0aGhoQGFhIWpqaiyz5p84cQJVVVXQ6/Xo0KEDysvLkZ6ejvr6eri7u8PV1RUNDQ1wc3ODt7c39Ho9ysvLAQCHDx9GWFgYe++J7OCGi/uffvoJf/75J8LCwuDs7IxRo0ahc+fOmDJlCubMmWPLGK1otVooFAqrbUqlstliZc2aNVi8eHGLxULU2l1tBt1G1zN0XqvVYuvWrSgrK4NSqURtbS3S09Nxyy23ICgoyHLB0LhvS9xcIKLLEys/X8n15G6tVguVSnVN+wLM9URX0vg8flFREWpqauDh4YHg4GAoFAp4eHigqqoKRqMRBoMBgiAgOjraMmS/W7dulp73mpoalJWVAQBiY2OxZcsWODs7IzIyElKpFF5eXjAajTh//jxqa2uRkJBgmY/HYDDwpj6Rndxwca/T6Sz/k7q5ucFoNCI2NhbHjx+3WXDNaVx642JVVVXNzso9Y8YMjBw5ssn2zMxMTJw4scViJGotrjSDbqPrfS7/yJEjqKmpQUBAAMrKyuDn54fa2lrU19cjODgYPj4+ln2v9eYCEdmOWPn5Sq4nd8tkMstkX1fbF2CuJ7qai5/Hr6qqQlFRkeU6wNvbG4WFhejQoQOCg4MtNwDUajW0Wi3i4+Nx+vRpVFZWwsXFBTExMYiMjMSBAwdQXV2N8PBwhISEoK6uDmq1GufOnYPBYEBpaSnc3Nzg5eWFkJAQ3tQnspMbLu7Dw8Nx5swZxMTEICYmBt9++y18fHya9NLZWlxcHCQSCU6cOIHOnTsDANLS0qyG+jUKCgpCUFBQi8ZD1Jpdese+ufVmr2fovMFgwMGDB6HX66HVai3r3Dc0NGDfvn0YM2aM1Y2Da7m5QES2JVZ+vpLryd1dunTBf/7zH8trQRDw999/Y9asWc0em7me6Np5eHjAzc0NBQUF8PDwQF1dHdzc3CCTySw5XyaT4ciRI9Dr9YiIiEBDQwP8/f1RXFyM4OBgqFQq+Pj4oKGhAR4eHjCbzaiqqkJubi6cnZ0tE3fGxcUhICAAhYWFrWbVDqL27oYn1Js1a5alF2D+/Pl46KGHMGTIEPzrX/+yVWzN8vLywtixY/HSSy+hpqYG6enp+OSTTzB16tQW/Vyitqrxjn1CQkKzz7yVl5ejuroaWVlZuHDhAgwGw2WHzufl5aGyshIlJSUA/hkqW19fD61Wi+Dg4CbD+a+0PA8RtQyx8vOVXE/uHj16NLKysvDZZ5/BYDBg1apVAIDBgwfbO2yidketViMkJAS+vr6QSCTw9fVFSEiI1ai7wMBA+Pv7Q6/X4++//0Z2djb+/vtvmM1mqNVqqNVq+Pn5ISEhAXK5HNXV1TCbzZBIJIiPj0dAQAA8PT1RU1OD/Px83tQnsqMb7rl//PHHLX8ePXo0cnNzLcN3Wtq///1vPProowgKCoJcLsfzzz/PZfCIboDBYEB+fj4qKioQHh6O0tJSlJSUwNvbGxEREU32z8nJQYcOHbBnzx4YjUYEBASgqKgIer0e9957L/R6fZP3XG55HiJqGWLm5yu5Uu6WyWTYuXMn+vXrBx8fH/zvf//DnDlz8Oijj6JLly7Ytm0bl8EjsoHGEXVmsxk+Pj7Q6XSQSqVWxbdUKkXfvn0hlUpx+vRpyOVyuLi4wGAwIDU1Fb///jtMJhPuvfdehIWFobS0FBKJBMHBwSgrK4MgCKirq0NpaSk8PT1xxx138KY+kZ3c1Dr3qampWLt2LfLz8xEaGmq33nOlUoktW7bY5bOI2rPCwkKoVCq4u7vDYDBAJpPh3LlzMJlMuOWWW5rsL5FIUF9fj6SkJJSXl0MQBKjVavj6+lpuEBCR+MTKz1dypdyt1WqtXg8cOBDp6en2CIvIoVzL43rAP4/3ZGRkICoqClFRUSgpKUFqaipyc3MRGhqK0NBQHDlyBIWFhXjwwQchk8mQl5eHqqoqqxv6jR0IMpnM3l+VyCHd8LD8jRs3YuDAgaipqUH37t2h0+lw5513YsOGDbaMj4hakFarhVKpRFxcHPz8/ODk5ITQ0FCEh4c3e5c9IiICNTU1UCqV8Pf3h7e3N1QqFTw9PVFbW8thd0StAPMzEV3J1R7Xa9wnIiICoaGhcHJygru7O4KDg9GjRw/06dMHPXr0QFxcHGpqanDixAkAXCGHqDW44Z77V199Ff/73/+shsPv2rULc+fOxSOPPGKT4IioZV08m31jYZ6fn281u/3FwsPDERMTg4KCAvj7+6OiogJeXl7w8fHhs/RErQTzMxHZgkqlQn19PcLCwpCVlQVBEODu7m7J9R4eHnB3d7fMw8MVcojEd8PFfWFhIYYOHWq1bciQISgqKrrpoIjIPq53NnupVIqhQ4fil19+QV1dHTp16gSpVMrn6olaEeZnIrKFi68RDAYDdDodnJycLL3zdXV1qK+vh5+fX5P9uUIOkThuuLi/6667sGvXLgwfPtyybffu3bjrrrtsEhgRtbxrffbuYjKZzFIo1NTUQC6XX/U9RGQ/zM9EdCMMBgMKCwuh1Wohk8kQGBhouUZwc3NDfHw8Tp06hWPHjsHFxQWVlZUIDg62LG95I9cURGRbN1zcBwcHY9y4cRg+fDiioqKQk5ODHTt2YOrUqVi4cKFlvyVLltgkUCKyrUuTeExMTLMJuLlk3zizriAIqKmpgSAITZbBIyJxMD8T0fUyGAxIS0uDIAjw8vKCRqNBYWEhkpKSEBYWZnlG/+zZszh27Bhqa2uRnJyMpKQkq8nyOJKPSFw3XNynp6fjlltuQWlpKUpLSwEAvXr1sqytC/wzszYRtT4XJ3GpVIqsrCzo9XokJydbTabXuJ/BYEBdXR3Ky8vh4eGB22+/HWfOnGn2IoAFPpG4mJ+J6HoVFhZCEARLYa5Wq5Gfn4+ioiIEBARY3eS/7777mOuJWqkbLu737t1ryziIyI4ak3hAQAAyMjIglUphMBhw8uRJlJeXW4r0wsJCGAwGVFdXW56by8vLw//93/8hNjYWHTp0AGB9EcA79kTiYn4mout1uZnuy8vLodFortoZQEStww0vhXepM2fO4Ny5c7Y6HBG1oMYkXlJSAolEguDgYAQGBkKlUkEQBMvEW1qtFnV1dZZ9VCoVoqKiLNsvZsvlbv7v//4Po0aNwpo1a5Cbm2uTYxI5KuZnIroamUwGnU5ntU2n06Gurs7SGaDRaCCVSiGRSHDy5EnLyD4iaj1uuLifOnUqfv/9dwDA5s2bER8fj9jYWGzatMlmwRFRy2hM4rW1tfDw8ADwz6y3np6eVkW6TCazDMVvVFdXh4CAAJSXl1sdU6fTQS6X2yS+yspKHDx4EI8//jgiIyPRqVMnfPzxxzY5NlF7x/xMRNcrMDAQEokE+fn5KC8vR35+PiQSCdzd3a/aGWAwGJCXl4eMjAzk5eU1Kfiv1k5EtnPDxf3OnTuRnJwMAHjnnXewefNmfP/993j99ddtFhwRtYzGJF5ZWYni4mIUFRVBIpFArVZbFemBgYHw8PBAXl4eqqurLfv5+/vD09OzyUWArZa76dy5MzQaDVavXo3XX38dcXFxKCoqQn5+Pnbu3IkRI0bgww8/xNmzZ23yeUTtCfMzEV2vxpnug4OD4eTkhODgYCQlJVmuCy7XGVBeXo60tDRoNBqYzWZoNBqrHv3GuXsu105EtnXDz9zX1tbC09MTNTU1OH36NMaMGQMnJyc88MADtoyPiFpAYxL38fHB4cOHYTAYEBISgsLCQqsiXSqVYtCgQfjll19QWFgIHx8fy7r2PXv2REVFRYsud6NWq9G/f3+MGjUKRqMRhYWFOHfuHDQaDebNm4eGhgbExsZi1qxZePLJJ2362URtFfMzEd2I5ma6b1y7vrKyEnq9HgaDwdIZ0Dh/j0QiaXYivrCwsCtO1Mc5eohs74aLez8/P2RmZiI9PR233nornJycoNPpOAMvURshlUoRHR2NsLAwy5q0vr6+TYr0K61rf/HyNy1JIpFYbirceeedGDhwIMrKypCamor9+/fjwoULyMvLg0ajwSuvvILhw4cjJSUFMTExdomPqDVhfiYiW7laZ4CbmxtcXKzLiYsf77vcRH22mqOHiKzdcHH/r3/9Cz179gTwzzN9APDbb7+hc+fOtomMiOziWtakbW3r1jo7O8Pf3x/33nsvRo4cCaPRiKKiImRmZqK0tBTz58/HE088gejoaEyaNAkvv/yy2CET2Q3zMxHZ0pU6AwoLC6HRaKBWqy3763Q6BAcHA/ing+BK7URkWzdc3M+ZMwfDhg2Di4sLIiMjAQDR0dFYvXq1rWIjIgelUqkwbNgweHt7X3Xfi3v1b7vtNvTu3Rvl5eVITU1Famoq8vLykJeXh7q6OjzxxBNISUlBSkoK4uLi2JNJ7RLzMxG1hCsN28/Pz4eXl5dllFDj431Xayci27rh4h5AkyGvcXFxNxUMEREAREVFYcmSJTc07N/JyQm+vr645557MGLECBiNRhQXF+PMmTOoqqrCs88+iyeffBKRkZEYN24cli9f3gLfgEhczM9EZA+Nw/Ybe/QvnYPnau1EZFs3VdynpqZi7dq1yM/PR2hoKKZOnYo+ffrYKjYiclD19fXIz89Hhw4drJbhu14X9+p3794d69atQ2VlZZNefRcXF0ydOhV33XUXUlJS0KlTJ/bqU5vG/ExE9nK1R/da26N9RO3ZDRf3GzduxPTp03Hfffehe/fuyMnJwZ133ok1a9bgkUcesWWMRGQHBoMBhYWF0Gq1kMlkCAwMtNxZv1JbS8jIyMCYMWOwdetWdOnSxWbHdXJyglqtxt133427777b0qtfUFCA6upqvPTSS3j66acRFhaGESNG4N///jeLfGpzmJ+JqKXY+lqhoKAABQUFVttUKhWioqJQX1+PjIyMJu9pXOrz1KlT0Ol0Vm2RkZFQq9UoKSlBfn6+VZtcLkdsbCxMJhOOHTvW5LiJiYlwdXVFdnY2qqqqrNpCQkIQEBCAiooKnDt3zqrNw8MDnTp1AgAcPXoUgiBYtXfq1AkeHh7Izc1FWVmZVVtAQABCQkJQU1ODrKwsqzZXV1ckJiYCAI4fPw6j0WjVHhsbC7lcjgsXLqCoqMiqzcfHBxEREairq0NmZqZVm0QiQffu3QEAmZmZqKurs2qPioqCSqVCUVERLly4YNWmUCgQHR0No9GI48eP41LdunWDs7MzsrKymkyaGBYWBj8/P5SXlyMnJ8eqzcvLC/Hx8QCAI0eONDluQkIC3N3dce7cOVRUVFi1BQUFISgoCNXV1Thz5oxVm5ubm2W+mb///hsNDQ1W7XFxcZDJZDh//jyKi4ut2nx9fREeHo7a2lqcPHnSqs3JyQlJSUkA/rlmra+vt2rv0KEDlEolCgsLm/z9vvSc2toNF/evvvoq/ve//yElJcWybdeuXZg7dy4vHojamMZ1aAVBgJeXFzQaDQoLCy3/cF2ura0Pq3N1dYWrqyvi4+Px3//+F1VVVThw4ABSU1ORk5ODvLw8yOVyTJkyBbfffjuGDRuGLl26sOCnVo35mYhagq2vFQoKCnDvvffir7/+sto+bNgwLFmyBPn5+RgzZkyT9x08eBAAMHXqVKSnp1u1LV68GCkpKdiyZQveeustq7bevXvj/fffh1arxaBBg5ocd/fu3VCpVJg/fz727dtn1TZv3jxMmDABP/30E1588UWrtvj4eGzcuBEA0Ldv3yZF+KZNmxAdHY2lS5di27ZtVm2TJk3C7NmzcfjwYcyaNcuqzd/fH9u3bwcAjBgxoknx+dFHH6FHjx7497//jU8//dSqbeTIkViwYAGys7Mxfvx4qzZXV1f88ccfAICHH34Yp06dsmpftmwZBg8ejM8//xyrVq2yauvXrx/efvttVFRUYOjQobjUnj17IJPJMHfuXPz5559Wbc888wzGjRuHnTt3YtGiRVZtXbp0wdq1awEAt9xyS5Pjfv311wgLC8PChQuxa9cuq7bp06fjscceQ2pqKubNm2fVFhoaim+++QYAMGTIEFRWVlq1f/LJJ+jatSveeecdbNq0yapt7NixePbZZ3Hy5MkmudPLywt79+4FADzwwANNbvisWLEC/fv3x/r16/Hhhx9atfXq1avJ97MliXDp7aVr5O3tjcrKSjg5OVm2mc1mKJVKVFdX2yzAlnDkyBH06NEDhw8fttz9I3JkjcvIBQYGoqysDHV1daioqECnTp3g6uoKjUZjNaTu7NmzcHFxgbe3d4v05P/111/o1auXzXvur4fRaER9fT0qKiqwePFiHD58GPX19QgJCcGwYcPwwQcfwN3dXZTYqH2yVW5qy/nZlpjriWyr8Vrh4uuB/Px8BAcHQxCEy7Zdbkh+Y65/8803ER0dbdnu7e2N0NBQ6PV6ZGdnN3lfQkICAODcuXNNep2Dg4OhVCpRXl6OwsJCqzZPT09ERkbCZDI1KWiBf3rCXV1dkZeXB61Wa9Xm7+8PX19fVFVVNel5dXNzs8Tf3EiDDh06wN3dHRcuXGgyIsDHxwcBAQHQ6XTIzc21anNxcbHMl3L69Okmvc4RERHw8vJCUVFRkxEBCoUCISEhqK+vx9mzZ5vE1HgOs7OzodfrrdpCQkKgUChQWlra5IaCTCZDeHg4jEZjk5EGwD83OpydnZGTk4Pa2lqrtsDAQKjValRWVjbpzfbw8EBUVBSA5s9hdHQ03NzccP78+SZ5zM/PD35+ftBqtcjLy7Nqc3V1RWxsLIB/RnqYTCar9sZzWFhYiPLycqs2pVKJ4OBg1NXVNSneJRKJZbTGmTNnYDAYrNpDQ0Ph7e2NkpISlJSUWLVpNBrMnTu3xXLTDffc33XXXdi1axeGDx9u2bZ7927cddddNgmMiOxHq9VCKpXi9OnTEAQBHh4eqKurw+HDhxEXF2e1Rq3BYEBOTg6qq6shk8lQV1cHPz8/DBkyxG7r3ttDY6++XC7Hxx9/jOrqavz5559ITU1FZmYmCgsLoVAo8MQTT6Bz585ISUlB165d2atPomN+JqKWcLU16290Pfvo6Ohmb+R7eHhc8Qb/xTcELuXr6wtfX99m25ycnK543MZVRpqjUqmgUqku236l44aFhV32RodcLr/iezt27HjZtsZh6c3x9PS84nEbC9/m+Pv7w9/fv9k2Nze3Kx63Q4cOl21Tq9VWSyNe6krHDQ8Pv2ybt7f3Fd/bWIw3Jzg4+LLLM3p5eV3xuFeasDYgIMDuK0NcV3G/cOFCy5+Dg4Mxbtw4DB8+HFFRUcjJycGOHTswdepUmwdJRC1LJpPh7NmzkEqlln+EtFqtpfdaIpFY/iEuKChATk4OpFIpvLy84OHhYbkDPmLEiDY/VL85Tk5OUCqVGDp0KIYOHQqj0YiysjLk5+cjLy8PX3/9NV544QUEBgZi2LBhWLly5RWTP5GtMT8TUUu70pr1jT33XM+eSFzXVdxf+vzJLbfcgtLSUpSWlgL45xmCS599IaLWLzAwEAcOHEBtbS2kUinq6uogCALCwsLg5OQEvV5vWaO2cUKSmJgYy51is9mM4uJiFBUV2WRG3OTkZBw8eLDVjgRo7NWXyWRYvXo1tFotDh48iP379+Po0aOW4XEvv/wygoKCkJKSgqSkJKth0kS2xPxMRC3tamvWcz17IvFdV3HfOHEAEbUvUqkUycnJyMjIgEQiga+vL/z8/FBUVARfX194eXkhLy8PNTU18PT0hLe3t9XwO5PJBHd392saftfeODk5wdvbG4MHD8bgwYNhNBpRVVWFsrIynDp1CuvXr8eCBQvg7++PoUOH4o033mBPBtkc8zMRtbSrrVl/vevZq1QqDBs2DN7e3vb6CkTt3g0/c79nz55mt0skEtxxxx03HBARiSM8PBzl5eWWZ+6LiorQ0NCAwsJCuLi4wN/fHzqdDu7u7igtLUVNTQ3Cw8Ph6uqKuro6hISEQC6X2ySWU6dOYerUqU0m2WkLGnv1AeC9996DTqfDoUOHkJqaikOHDqG0tBTu7u5YsWIF3N3dkZKSgh49erBXn2yG+ZmIWsqV1qy/3vXso6KisGTJklY7So+oLbrh4n7w4MFNtjVOJHXpTIRE1Po1d0der9ejrKzMkqzlcjkyMjKgUChQU1ODzMxMODs7o0OHDvD397fZ8DudTof09PQms+C2NU5OTpDL5Rg0aBAGDRqEhoYG1NfXIysrCydOnMCePXuwaNEi+Pj4YOjQoVi8eDFiYmLEDpvaOOZnImoL6uvrkZ+fjw4dOsDDw0PscIjahRsu7s1ms9XrgoICvPDCCxg9evRNB0VE4rj0rntGRobV8PuysjLLMihyuRwajQZFRUXo2LEjevXq1S4n07MlFxcXSw/FG2+8AZ1OhyNHjmD//v04cOAACgsLoVar8cknn6C2thbDhg1Dr1694OzsLHLk1JYwPxNRW5CRkYExY8aIuuwtUXtzw8X9pYKDg/H++++jV69euPfee211WCISkUwmQ15eHgwGA+rq6lBSUgKj0Qhvb2+EhIQgNDQU5eXlcHJyYmF/nRp79QcMGIABAwZYevXPnDmDtLQ0bN++HYsXL4ZarcaQIUPwwgsvoGvXrmKHTW0Q8zMREZFjsFlxD8CyDAYRtQ9qtRp79uyBk5MTVCoV8vPzUV5ejp49e1r24VI3tnFxr/7ChQsxf/58HD161NKrn5OTg9DQUGzZsgXnz59HSkoKbrnlFri42PSfcWqnmJ+JiIjavxu+Kly7dq3Va51Oh02bNqFPnz43HRQRtQ7l5eWIiYmBm5sbamtr0bNnT5w8eRInT55Ehw4dWmypm8jISCxevNhhbxpIJBLIZDL069cP/fr1Q0NDA/R6Pc6cOYPDhw/jq6++wtKlS6FUKnHXXXdh/vz56N27t9hhUyvB/ExEROSYbri4f/XVV61ey+Vy9OzZE0uXLr3poIioddBqtVAqlVCr1ZZt7u7uqKiogJOT0zUtdXMj1Go1UlJSOIPu/8/FxcXSQ//UU09h1qxZOHr0KFJTU5GamoqTJ08iJiYGu3fvxvHjxzF8+HDceuutlln7ybEwPxMRETmmGy7uz507Z8s4iKgVkslk0Gg0VsW9wWBAbGzsdS13c71KSkqwZcsW3HvvvfD19W2xz2mLJBIJPD090bdvX/Tt29fSq5+dnY2DBw9iw4YNeOONN6BQKHDnnXdi7ty5GDhwoNhhkx0xPxNRW5CcnIyDBw/yRj6RDV33wspFRUUoLi62vDYajViyZAlGjRqFd955x6bBEZG4AgMDIZFILM/a5+fnt8gw/Evl5+fjrbfeQmFhYYt+Tnvg4uICLy8vKBQKzJw5E3v27MH69etx//33IysrC0eOHEFZWRl27NiBZ599Fr/88gsMBoPYYVMLYH4mIiJybNdd3E+bNg27d++2vH7xxRexcuVKuLi4YOnSpVixYoVNAyQi8UilUiQlJSE4ONgyDD8pKYkz47dSEokEHh4euPXWWzF//nxs3rwZAwcORHZ2Nvbv34///ve/uOOOO+Dr64tRo0Zhx44dYodMNsT8TERtyalTpzB16lSONiKyoesu7tPS0jBs2DAA/8y+u3btWmzYsAFbt27FV199hQ0bNtg8SCISj1QqRVhYGBISEhAWFsbCvg1xdna29OpPnDgRP//8MzZu3IgJEyYgNzcXqampKC0txe+//4758+fj559/hl6vFztsukHMz0TUluh0OqSnp6Ourk7sUIjajet+5r66uhp+fn4AYPkfMiUlBQBwxx134Pz587aNkIiIblpjr36vXr3Qq1cvmEwm1NfXIzs7G/v27cPGjRuxcuVKeHl54Y477sDkyZMxZswYscOm68D8TERE5Niuu+deLpejqqoKAHD48GF07drVMiNzQ0MDTCaTbSMkIocjl8vRu3dveHp6ih1Ku9XYq69UKnHffffhp59+wueff45JkybhwoUL2LNnD0pKSnD8+HE8+eST+OGHH1BfXy922HQFzM9ERESO7bqL+wEDBuD5559HWloaPvroI8sQQOCfZ2ccdV1qIrKd2NhYvP/++4iMjBQ7FIcgkUjg5uaGHj164IknnsBnn32GadOm4dy5c9i7dy+++OILDB06FD4+Prj77rvx2WefiR0yNYP5mYiIyLFdd3G/bNky/Prrr0hOToZer8e8efMsbV988QVuv/12mwZIRI7HZDJBq9Wyp1EkFz+rP2TIEPz444/44osvMHXqVBQXF2P79u0oKSlBbm4unnjiCezcuZPPTLYCzM9E1JZERkZi8eLFvPFIZEPX/cx9ZGQkMjIyUF5ebrX2NQA899xznGyLiG7asWPHMGjQIGzduhVdunQROxyH1tirn5ycjOTkZMyaNQv19fU4d+4cjh8/jq1bt+L999+Hu7s7BgwYgDFjxuDRRx8VO2yHxPxMRG2JWq1GSkoK17knsqHr7rlvdOmFAwAolUo+I0tE1I5d3Kvft29f7Nq1C5s3b8Zjjz2G8vJybN26FcXFxSgvL8fcuXPx/fffo7a2VuywHQrzMxG1BSUlJdiyZQvKy8vFDoWo3bjunnsiIiLg//XqJyUlISkpCTNnzkR9fT1ycnKQk5ODb7/9Fh988AHc3NzQr18/3HPPPZg7dy4kEonYoRMRkcjy8/Px1ltvoXfv3vD19RU7HKJ24YZ77omIiC7m5OQET09PKBQKdO3aFTt27MCWLVswa9Ys1NTU4LPPPkNJSQm0Wi3mz5+Pbdu2QavVih02ERERUbvAnnsiIrK5xl79xMREJCYm4rHHHrP06jcOxVy5ciVcXV1x++23Y/jw4fjXv/4FFxemJSIiIqIbwZ57Imp1EhMTsXv3bsTGxoodCtnIxb36MTEx2LFjB7755hs88cQT0Ov1WLNmDUpLS6HT6fDyyy/j22+/RXV1tdhhExEREbUZ7CIholbH1dUVKpUKrq6uYodCLcTV1RUJCQlISEjAtGnTUFdXh7y8POh0OmzcuBFLly6Fi4sL+vTpg+HDh2POnDnw8vISO2wiIrIRuVyO3r17c7JPIhtizz0RtTrZ2dmYP38+8vLyxA6F7MDJyckyA39wcDC2b9+Ob7/9Fk8++STMZjPeeecdVFZWQqfTYfny5di6dSsqKyvFDpuIiG5CbGws3n//fURGRoodClG7wZ57Imp1qqqqsG/fPk625qBcXV3RqVMndOrUCVOmTEFtbS0uXLiAvLw8/Pe//8Xp06fh7OyM2267DSkpKZg1axZUKpXYYRMR0XUwmUzQarXw8PCAkxP7G4lsgf8nERFRq+Xk5ASZTAaFQgG1Wo2vv/4a3333HZ5++mk4OTnhzTffRFlZGXQ6Hf7973/jyy+/REVFhdhhExHRVRw7dgyDBg3CqVOnxA6FqN1gcU9ERG2Gq6srYmNjMWXKFKxevRp79+5FRUUFTpw4gbVr1+LBBx+Er68v+vTpg6VLl6KoqEjskB3eW2+9hcTERMjlcoSHh+Oll16CyWS67P4DBw6Eu7s7ZDKZ5YeIiIiujsU9ERG1SY3P6nt7e0OhUGDDhg3Yvn07nn/+ebi7u+PNN99EXl4etFotNmzYgE2bNqGsrEzssB2O2WzGunXrUF5ejn379mH79u1YsWLFFd/z7rvvQqvVWn6IiIjo6vjMPRG1OiEhIZg3bx78/f3FDoXaEBcXF8TExCAmJgYTJ05EbW0tTCYTMjIysHbtWvz666+QSCTo1asXhg8fjilTpiA8PFzssNu95557zvLniIgITJgw4f9r797jqqrz/Y+/ARWRzUURERUvYOIFTTN1HjqadiplpqwUb6NpOZWWdeqcxstDczyeY2YP61SnrCzzfmlKmSyLMtMpy9uMl5BE8YamkqaCiIAgfH9/zE8m4iIke6+1l6/n47EfD/Za3715f/fX7cePa++1tHnz5lLbAQDA9aO5B2A7ERERGjlyJB/Hxa929bv6V82bN08//PCDvvnmG23btk0vvfSSevTooQYNGmj9+vXKzc1V//79FR4ebmHqG8NXX32lTp06VTpm+vTpmjZtmmJiYjR9+nTdc889FY7NyMhQRkZGme2pqanXnRUAAG9Ccw/AdjIzM7Vhwwb169ePs6CjRtSqVUutWrVSq1atNHLkSOXm5urKlSvat2+flixZoo8++kg+Pj7q2rWr4uPjNXr0aLVu3drq2I7z2muvae/evVq6dGmFY1544QW1a9dOdevW1bp16zR8+HBt2rRJ3bt3L3f8/PnzNXPmTHdFBuAmHTt21Oeff67GjRtbHQVwDJp7ALZz9OhRTZ06VatXr6a5R4375VH92bNn6/HHH9eWLVu0ZcsWvfrqq2rTpo0iIiK0detWZWRkaMCAAYqIiLAwtT0lJCRozZo1Fe43xpT8vGzZMs2ePVubNm1SWFhYhY/p0aNHyc+DBg3S2rVrlZiYWGFzP27cOA0cOLDM9tTUVI0aNaoq0wBggdq1a6t+/fqqXbu21VEAx6C5BwDc0GrVqqWWLVuqZcuWGjFihHJzc3X58mWlpqZq2bJlWr58uSSpS5cuio+P18iRI9W+fXuLU9vD6tWrqzRuxYoVmjhxojZs2KC2bdtW63f4+vqW+k+CX4qMjFRkZGS1nhOA9Q4fPqxnnnlG06ZNU8uWLa2OAzgCzT0AAP+fj4+PAgMDFRgYKEmaMmWKxowZo2+//VZbt27VG2+8ofDwcEVFRWnv3r3av3+/BgwYoCZNmlic3L5WrVqlp59+WuvXr1dcXFylY7OysrR161b17dtXderU0SeffKL3339f69ev91BaAJ5y4cIFbd68mStiADWI5h4AgArUqlVLUVFRGj58uIYNG6a8vDzl5eUpNTVVy5cv11tvvSVjjDp16qQBAwZoxIgR6ty5s9WxbWXq1KnKyspS7969S7b17t1bSUlJkqT4+Hj17t1bU6dOVWFhoWbMmKHU1FT5+vqqdevWWrp0qXr16mVVfAAAvAbNPQDbCQgIUGxsrPz9/a2OApTw8fFRvXr1VK9ePUnSE088ocGDB2vLli3aunWr3nnnHdWuXVvR0dFKT0/Xjh07NGDAADVr1szi5NY6evRopfuvNvmSFB4erh07drg7EgAAjkRzD8B22rVrp2XLlnEpPNian5+fmjVrpqFDh2rIkCHKz89XTk6O9u/fr8TERM2dO1fFxcXq0KGD4uPjNWTIkApPCgcAAHC9aO4BALhOPj4+CggIUEBAgCRp9OjR6t+/v7Zu3aotW7Zo8eLFysnJUdu2bXX27Fl98cUXGjBggFq0aGFxcgCwRtOmTfXUU0+pUaNGVkcBHIPmHoDt7N69W7169dKqVauueQIuwI78/PzUpEkTDR48WIMGDSp1VP/LL7/U9OnTVVRUpLZt2yo+Pl6DBg0q+bg/ANwIIiIiNHLkSD6lB9QgX6sDAMAvGWNUWFhodQygRlw9qh8eHq6QkBDde++9+vLLLzV79mzddNNNWr58uV599VXOGA3ghpKZmakNGzbowoULVkcBHIMj9wAAeJCfn58aN26sQYMG6f7771dBQYEyMzOVnp5udTQA8JijR49q6tSpWr16terXr291HMAROHIPAIBFfHx85O/vr8aNGyswMNDqOAAAwIvR3AMAAAAA4OVo7gHYTrt27bRq1SpFR0dbHQUAAADwCjT3AGwnICBAMTExqlu3rtVRAACAGwQEBCg2Nlb+/v5WRwEcg+YegO0cO3ZMs2bN0smTJ62OAgAA3KBdu3ZatmyZYmJirI4COAbNPQDbOXfunD766CMujwMAAABUEc09AAAAAI/avXu3evXqpX379lkdBXAMmnsAAAAAHmWMUWFhodUxAEehuQcAAAAAwMvR3AOwnYiICI0ZM0ZhYWFWRwEAAAC8Qi2rAwDALzVt2lQTJkyQy+WyOgoAAADgFThyD8B2Ll68qJ07d+rSpUtWRwEAAG7Qrl07rVq1StHR0VZHARyD5h6A7Rw8eFCPPfaYjh07ZnUUAADgBgEBAYqJiVHdunWtjgI4Bs09AAAAAI86duyYZs2apZMnT1odBXAMmnsAAAAAHnXu3Dl99NFHunDhgtVRAMeguQcAAAAAwMvR3AOwndq1a6tRo0aqVYsLegAAAABVwb+cAdhOx44dtW7dOi6FBwAAAFQRR+4BAAAAeFRERITGjBmjsLAwq6MAjkFzD8B29u7dq7vvvltpaWlWRwEAAG7QtGlTTZgwQREREVZHARzDq5r7uXPnqmPHjgoKClLz5s01bdo0FRUVWR0LQA0rLCzUmTNndOXKFaujAAAAN7h48aJ27typS5cuWR0FcAyvau6Li4u1aNEinT9/Xps3b9a6dev04osvWh0LAAAAQDUcPHhQjz32mI4dO2Z1FMAxvOqEepMnTy75uUWLFho5cqQ2b95cavvPZWRkKCMjo8z21NRUt2UEAAAAAMDTvKq5/6WvvvpKnTp1qnD//PnzNXPmTA8mAgAAAADA87y2uX/ttde0d+9eLV26tMIx48aN08CBA8tsT01N1ahRo9wZD8B1uOmmm/Tmm2+qRYsWVkcBAAAAvIJtmvuEhAStWbOmwv3GmJKfly1bptmzZ2vTpk2VXj4jMjJSkZGRNZoTgPsFBQWpa9euCgwMtDoKAABwg9q1a6tRo0aqVcs27Qjg9WxzQr3Vq1fLGFPh7aoVK1Zo4sSJ+uKLL9S2bVsLEwNwl5MnT2revHk6ffq01VEAAIAbdOzYUevWrVObNm2sjgI4hm2a+6pYtWqVnn76aSUlJSkuLs7qOADc5PTp01qyZInOnTtndRQAAADAK3hVcz916lRlZWWpd+/ecrlccrlcio+PtzoWAAAAgGrYu3ev7r77bqWlpVkdBXAMr/qSy9GjR62OAAAAAOA6FRYW6syZM7py5YrVUQDH8Koj9wAAAAAAoCyaewC2ExYWpoEDByokJMTqKAAAAIBX8KqP5QO4MbRo0ULPPvusXC6X1VEAAAAAr8CRewC2k5eXp8OHDys/P9/qKAAAwA1uuukmvfnmm2rRooXVUQDHoLkHYDupqakaMWKEjhw5YnUUAADgBkFBQeratasCAwOtjgI4Bs09AAAAAI86efKk5s2bp9OnT1sdBXAMmnsAAAAAHnX69GktWbJE586dszoK4Bg09wAAAAAAeDmaewC24+Pjo9q1a1sdAwAAAPAaXAoPgO106dJF3377LZfCAwAAAKqII/cAAAAAPCosLEwDBw5USEiI1VEAx6C5B2A7qampeuCBB3T48GGrowAAADdo0aKFnn32WTVt2tTqKIBj0NwDsJ28vDwdOHBAly9ftjoKAABwg7y8PB0+fFj5+flWRwEcg+YeAAC4zeLFi+Xn5yeXy1VyW7FiRYXjs7KyNHToUAUFBalJkyZ65ZVXPBcWgMekpqZqxIgROnLkiNVRAMfghHoAAMCtunXrpm3btlVp7BNPPKHLly/r5MmTOnbsmP7t3/5NsbGxio+Pd3NKAAC8G809AACwhUuXLumDDz7Qzp07FRwcrI4dO+qRRx7RwoULK2zuMzIylJGRUWZ7amqqu+MCAGArNPcAbKdVq1aaPXs2J9kBHCI5OVnh4eEKCQnR4MGD9V//9V8KCAgoMy4tLU3FxcWKi4sr2da5c2clJiZW+Nzz58/XzJkz3ZIbAABvQnMPwHbq16+vO+64g+vcAw7Qp08fpaSkqGXLljp48KBGjx6tSZMm6bXXXiszNicnp8xlsUJDQ3Xx4sUKn3/cuHEaOHBgme2pqakaNWrU9U8AgFv4+Piodu3aVscAHIXmHoDtnD59WitWrNDgwYPVqFEjq+MAqEBCQoLWrFlT4X5jjKKjo0vux8bGas6cORoxYkS5zb3L5VJ2dnapbRcuXFBQUFCFvyMyMlKRkZG/Ij0AK3Xp0kXffvst/5EP1CDOlg/Adk6ePKlXX31VZ86csToKgEqsXr1axpgKb+Xx9fWtcF+bNm3k4+Oj77//vmTbnj17Sn1MHwAAlI/mHgAAuE1SUlLJCe+OHDmiKVOm6P777y93bGBgoBISEjRt2jRdvHhRKSkpWrBggcaOHevJyAA8IDU1VQ888IAOHz5sdRTAMWjuAQCA22zcuFFdunRRYGCg+vXrp549e+qll14q2T9+/HiNHz++5P68efNUu3ZtRUZG6s4779SUKVO4DB7gQHl5eTpw4IAuX75sdRTAMfjOPQAAcJu5c+dq7ty5Fe5/6623St0PDQ3VBx984O5YAAA4DkfuAdhOSEiIevfuzUl2AAAAgCriyD0A24mJidFLL71Ecw8AAABUEUfuAdhOYWGhMjMzVVhYaHUUAADgBq1atdLs2bPVtGlTq6MAjkFzD8B29u7dq/79++vgwYNWRwEAAG5Qv3593XHHHQoJCbE6CuAYNPcAAAAAPOr06dNasWKFzp49a3UUwDFo7gEAAAB41MmTJ/Xqq6/qzJkzVkcBHIPmHgAAAAAAL0dzDwAAAACAl+NSeABs5+abb9bGjRsVHh5udRQAAADAK3DkHoDt+Pn5yeVyyc/Pz+ooAADADUJCQtS7d2+5XC6rowCOQXMPwHYOHjyoJ598Uunp6VZHAQAAbhATE6OXXnpJzZs3tzoK4Bg09wBs5+LFi9q+fbtyc3OtjgIAANygsLBQmZmZKiwstDoK4Bg09wAAAAA8au/everfv78OHjxodRTAMWjuAQAAAADwcjT3AAAAAAB4OZp7ALYTFRWliRMnqnHjxlZHAQAAALwC17kHYDvh4eEaMmQIl8cBAAAAqogj9wBs5/z580pKSlJWVpbVUQAAgBvcfPPN2rhxo2JjY62OAjgGzT0A20lPT9eMGTN06tQpq6MAAAA38PPzk8vlkp+fn9VRAMeguQcAAADgUQcPHtSTTz6p9PR0q6MAjkFzDwAAAMCjLl68qO3btys3N9fqKIBj0NwDAAAAAODlaO4B2E5gYKDi4uIUEBBgdRQAAADAK3ApPAC2Exsbq4ULF3IpPAAAAKCKOHIPAAAAwKOioqI0ceJENW7c2OoogGPQ3AOwnV27dql79+7at2+f1VEAAIAbhIeHa8iQIWrQoIHVUQDHoLkHAAAA4FHnz59XUlKSsrKyrI4COAbNPQAAAACPSk9P14wZM3Tq1CmrowCOQXMPAAAAAICXo7kHAAAAAMDLcSk8ALbTvn17rVmzRtHR0VZHAQAAALwCR+4B2E7dunUVFRUlf39/q6MAAAA3CAwMVFxcnAICAqyOAjgGzT0A2zl69Kj+/Oc/68SJE1ZHAQAAbhAbG6uFCxeqVatWVkcBHIPmHoDtZGZm6rPPPlN2drbVUQAAAACvQHMPAAAAwKN27dql7t27a9++fVZHARyD5h4AAAAAAC9Hcw8AAAAAgJejuQdgO5GRkXr44YcVHh5udRQAAADAK3CdewC2ExkZqUcffVQul8vqKAAAAIBX4Mg9ANvJzs7W1q1blZOTY3UUAADgBu3bt9eaNWsUExNjdRTAMWjuAdjOoUOH9NRTT+n48eNWRwEAAG5Qt25dRUVFyd/f3+oogGPQ3AMAAADwqKNHj+rPf/6zTpw4YXUUwDFo7gEAAAB4VGZmpj777DNlZ2dbHQVwDJp7AAAAAAC8HM09ANvx9/dXs2bNVLt2baujAAAAAF6BS+EBsJ0OHTooMTGRS+EBAAAAVcSRewAAAAAeFRkZqYcffljh4eFWRwEcg+YegO0kJyfrrrvu0oEDB6yOAgAA3CAyMlKPPvoozT1Qg2juAdjOlStXlJWVpaKiIqujALhO8fHxcrlcJTd/f38FBwdXOL5v376qW7duqccAcJ7s7Gxt3bpVOTk5VkcBHIPmHgAAuE1SUpJycnJKbvfdd5+GDh1a6WNeeeWVUo8B4DyHDh3SU089pePHj1sdBXAMTqgHAAA84vz581q7dq02btxYY8+ZkZGhjIyMMttTU1Nr7HcAAOANaO4BAIBHrFy5Ui1btlTPnj0rHTd9+nRNmzZNMTExmj59uu65554Kx86fP18zZ86s6agAAHgdmnsAttOmTRstWLBALVq0sDoKgBq0cOFCPfTQQ5WOeeGFF9SuXTvVrVtX69at0/Dhw7Vp0yZ179693PHjxo3TwIEDy2xPTU3VqFGjaiQ3AADegOYegO24XC516tRJgYGBVkcBUImEhAStWbOmwv3GmJKfv/vuOyUnJ+uTTz6p9Dl79OhR8vOgQYO0du1aJSYmVtjcR0ZGKjIysprJAVjN399fzZo1U+3ata2OAjgGJ9QDYDsnTpzQyy+/rB9//NHqKAAqsXr1ahljKrz93MKFCzVgwIBqN+K+vr5lnguA9+vQoYMSExN10003WR0FcAyaewC2c+bMGa1atUrnz5+3OgqAGlBQUKAVK1Zo7NixlY7LyspSUlKS8vLyVFRUpI8++kjvv/9+uR+7BwAApdHcAwAAt/r444/l4+NT7onx4uPjNXv2bElSYWGhZsyYoUaNGqlBgwaaOXOmli5dql69enk6MgA3S05O1l133aUDBw5YHQVwDL5zDwAA3Grw4MEaPHhwufuSkpJKfg4PD9eOHTs8FQuAha5cuaKsrCwVFRVZHQVwDI7cAwAAAADg5by2ue/Xr598fHyUn59vdRQANaxhw4ZKSEhQaGio1VEAAAAAr+CVH8tfsmQJH+EBHKx58+aaNGmSXC6X1VEAAAAAr+B1R+7PnTunWbNmae7cuVZHAeAmubm52r9/v/Ly8qyOAgAA3KBNmzZasGCBWrRoYXUUwDG87sj9xIkT9fTTTysiIuKaYzMyMpSRkVFme2pqqjuiAagh+/fv1+jRo7V69WrFxcVZHQcAANQwl8ulTp06KTAw0OoogGN4VXP/9ddfa+/evVqwYIGOHz9+zfHz58/XzJkzPZAMAAAAQFWdOHFCL7/8sh555BE1adLE6jiAI9jmY/kJCQny8fGp8FZYWKjHH39c8+bNk69v1WKPGzdOO3fuLHNbvny5m2cDAAAAoCJnzpzRqlWrdP78eaujAI5hmyP3q1evrnR/enq69u/fr4EDB0pSyQn1WrZsqcWLF2vAgAFlHhMZGanIyMiaDwsAAAAAgI3Yprm/lqioKJ04caLk/g8//KDu3btr+/btaty4sYXJANQ0X19fBQYGysfHx+ooAAAAgFfwmubez8+vVBN/9fr2ERER8vf3tyoWADfo3LmzNm3axKXwAAAAgCrymub+l1q2bCljjNUxAAAAAFRTw4YNlZCQoNDQUKujAI5hmxPqAcBV+/bt07Bhw3To0CGrowAAADdo3ry5Jk2axJnygRpEcw/AdvLz83X06FEVFBRYHQUAALhBbm6u9u/fr7y8PKujAI5Bcw8AAADAo/bv36/Ro0fr6NGjVkcBHIPmHgAAAAAAL0dzDwAAAACAl6O5B2A70dHRevHFF9WsWTOrowAAAABewWsvhQfAuUJDQ9WnTx+ucw8AgEP5+voqMDBQPj4+VkcBHIMj9wBs58cff9TixYv1008/WR0FAAC4QefOnbVp0ya1a9fO6iiAY9DcA7CdU6dO6Y033qC5BwAAAKqI5h4AAACAR+3bt0/Dhg3ToUOHrI4COAbNPQAAAACPys/P19GjR1VQUGB1FMAxaO4BAAAAAPByNPcAbCc0NFS33367goKCrI4CAAAAeAUuhQfAdqKjozVnzhwuhQcAAABUEUfuAdhOQUGBTp8+zffwAABwqOjoaL344otq1qyZ1VEAx6C5B2A7KSkpuueeeziDLgAADhUaGqo+ffooODjY6iiAY9DcAwAAAPCoH3/8UYsXL9ZPP/1kdRTAMWjuAQAAAHjUqVOn9MYbb9DcAzWI5h4AAAAAAC9Hcw8AAAAAgJfjUngAbKdz58765ptvFBoaanUUAAAAwCtw5B6A7fj6+qpOnTry9eWvKAAAnCg0NFS33367goKCrI4COAb/cgZgO2lpaRo/frzS09OtjgIAANwgOjpac+bMUVRUlNVRAMeguQdgOzk5Odq1a5dyc3OtjgIAANygoKBAp0+fVkFBgdVRAMeguQcAAADgUSkpKbrnnnt06NAhq6MAjkFzDwAAAACAl6O5BwAAAADAy9HcA7Cd5s2ba+rUqYqMjLQ6CgAAAOAVuM49ANtp2LCh7rvvPrlcLqujAAAAAF6BI/cAbOfs2bP68MMPlZmZaXUUAADgBp07d9Y333yjtm3bWh0FcAyaewC2c/z4cc2ePVsZGRlWRwEAAG7g6+urOnXqyNeXdgSoKbybAAAAAHhUWlqaxo8fr/T0dKujAI5Bcw8AAADAo3JycrRr1y7l5uZaHQVwDJp7AAAAAAC8HM09ANtxuVy65ZZbVK9ePaujAAAAAF6BS+EBsJ02bdrorbfe4lJ4AAAAQBVx5B6A7RQXF6ugoEDFxcVWRwFQBZs2bVK/fv0UEhKixo0bl9mflZWloUOHKigoSE2aNNErr7xS6fN99dVXiouLU7169dStWzd99913bkoOwCrNmzfX1KlTFRkZaXUUwDFo7gHYzp49e/Tb3/5W+/fvtzoKgCoIDAzU2LFj9b//+7/l7n/iiSd0+fJlnTx5Up9//rlmz56tpKSkcseeO3dO9957ryZNmqTMzEyNGDFCAwcO1OXLl905BQAe1rBhQ913332qX7++1VEAx6C5BwAA16V79+564IEHFBMTU2bfpUuX9MEHH+i5555TcHCwOnbsqEceeUQLFy4s97kSExPVunVrjR49Wv7+/vqP//gPFRcXa8OGDe6eBgAPOnv2rD788ENlZmZaHQVwjBvyO/d5eXmSpNTUVIuTACjP1SP2R44ckY+Pj8VpAM84cuSIpH/VKKdIS0tTcXGx4uLiSrZ17txZiYmJ5Y5PSUlR586dS+77+PioU6dOSklJ0e9///sy4zMyMpSRkVFm+549eyRR6wG72rdvn2bPnq2QkJBy/2MQcKLDhw9Lcl+tvyGb+927d0uSRo0aZXESAJWZNGmS1REAj9u9e7d69epldYwak5OTo5CQkFLbQkNDdfHixQrH//JjupWNnz9/vmbOnFnh76fWA/Y2efJkqyMAHueuWn9DNvft2rWTJL377ruljg54s9TUVI0aNUrLly8vmZ+3Y07257T5SMzJWzhxTnv27NEf//hH280nISFBa9asqXC/MabSx7tcLmVnZ5faduHCBQUFBVU4/sKFC1UeP27cOA0cOLDM9u3bt+vxxx+n1tscc/IOzMn+nDYfyZlzcnetvyGb+6tHBDp37qxbbrnF4jQ1q127dszJCzhtTk6bj8ScvIUT52S3k0utXr36uh7fpk0b+fj46Pvvv1eHDh0k/fMfNz//mP7PxcXF6e233y65b4xRcnKyHnvssXLHR0ZGVnq2bWq9d2BO3oE52Z/T5iM5c07uqvWcUA8AAFyX4uJi5efnq6CgQJKUn59fcnb7wMBAJSQkaNq0abp48aJSUlK0YMECjR07ttznGjRokA4ePKjly5eroKBAr776qiTpjjvu8MxkAADwUjT3AADgunz99dcKCAhQ//79dfr0aQUEBCg2NrZk/7x581S7dm1FRkbqzjvv1JQpUxQfH1+y3+VyafPmzZKksLAwffjhh5ozZ45CQkK0YsUKffTRR/L39/f4vAAA8CY35MfyAQBAzenbt2+l370PDQ3VBx98UOH+nJycMs+XkpJSY/kAALgRcOQeAAAAAAAvd0M295GRkZoxY0alJ+DxNszJOzhtTk6bj8ScvAVzwrU48fVkTt6BOXkHp83JafORmNOv4WOudQ0bAAAAAABgazfkkXsAAAAAAJyE5h4AAAAAAC9Hcw8AAAAAgJejuQcAAAAAwMs5trnftGmT+vXrp5CQEDVu3LjM/qysLA0dOlRBQUFq0qSJXnnllUqf76uvvlJcXJzq1aunbt266bvvvnNT8qqJj4+Xy+Uqufn7+ys4OLjC8X379lXdunVLPcZuFi9eLD8/v1IZV6xYUeH46q6hFebOnauOHTsqKChIzZs317Rp01RUVFTheLuuU3Vea7u9V37p8uXLevjhh9WqVSsFBQWpQ4cOWrlyZYXjfXx8FBgYWLIe8fHxHkxbNQ8++KDq1KlT6s/N8ePHKxyfkpKi3/zmN6pXr57at2+vjRs3ejBt1fx8Li6XS7Vq1dLAgQMrHG/XdXr99dd16623yt/fX8OHDy+1r7rr8Prrr6tp06ZyuVwaPHiwMjMz3RndKzi91kvOq/fUevuukZNqvUS9l+xf76n15T/XddV641Dbt283S5cuNQsWLDARERFl9o8cOdIMHDjQXLhwwSQnJ5vw8HDz6aeflvtcZ8+eNSEhIWbJkiUmPz/fvPTSS6Z58+YmPz/f3dOosqFDh5o//vGPFe6/7bbbzJtvvunBRNW3aNEi06NHjyqPr84aWmXOnDnm73//uykoKDDp6emmU6dOZs6cORWOt+s6VfW19ob3Sk5Ojpk+fbo5fPiwKS4uNps3bzbBwcFmy5Yt5Y6XZFJTUz2csnrGjBljJk+eXKWxBQUFpmXLlua5554z+fn55r333jPBwcHm9OnTbk756125csU0adLELFu2rMIxdl2nNWvWmL/+9a9mwoQJZtiwYSXbq7sO69evNw0aNDA7d+402dnZZsiQIWbo0KGemoZt3Wi13hjvr/fUevuukZNqvTHUe2+r99T6mqn1jm3ur9q0aVOZgp+Tk2Pq1Klj9u7dW7Jt6tSpJiEhodznePvtt03Xrl1L7hcXF5tmzZqZdevWuSd0NZ07d874+/ubb7/9tsIxdi0kP1edgl/dNbSLF154wdx9990V7rfjOlXntbb7e6Ui8fHx5sUXXyx3n10Lyc9Vp9ivX7/eNGrUyBQVFZVs69mzp3n99dfdFe+6rVu3zgQHB5vc3NwKx9h9nWbMmFGq4Fd3Hf7whz+YZ555puR+WlqaqVWrlsnKynJfaC9yI9R6Y5xR76n19lyjG6HWG0O9t3O9p9bXTK137MfyK5OWlqbi4mLFxcWVbOvcubNSUlLKHZ+SkqLOnTuX3Pfx8VGnTp0qHO9pK1euVMuWLdWzZ89Kx02fPl1hYWHq3r27Pv74Yw+lq57k5GSFh4erdevWmjx5svLy8sodV901tIurH2OrjN3WqTqvtd3fK+W5dOmS/vGPf1S6LrfffrsiIiL0+9//Xt9//70H01Xd22+/rQYNGujmm2/WwoULKxyXkpKijh07ytf3X3/92/29s2jRIg0fPlwBAQGVjvOGdbqquuvwy/fWTTfdpDp16mj//v3ujuq1nFbrJefUe2q9/dbI6bVeot5L9n7/UOtrptbfkM19Tk6OQkJCSm0LDQ3VxYsXKxwfGhpa5fGetnDhQj300EOVjnnhhRd0+PBhZWRkaMqUKRo+fLh27NjhoYRV06dPH6WkpOj06dP65JNP9Le//U2TJk0qd2x119AOXnvtNe3du1d/+tOfKhxjx3Wqzmtt9/fKLxUXF+vBBx9Ut27ddNddd5U75m9/+5vS09N16NAhdenSRXfddZeys7M9nLRy//7v/660tDSdOXNGr7zyiiZNmqQ1a9aUO9bb1ujs2bP6+OOPNXbs2ErHecM6/Vx118Hb1s0OnFbrJWfUe2q9PdfIybVeot5fZdd1otb/uvHl8crmPiEhQT4+PhXersXlcpX5g3DhwgUFBQVVOP7ChQtVHn+9qjO/7777TsnJyRo9enSlz9mjRw8FBwerTp06GjRokBISEpSYmOiW/OWpypyio6MVHR0tX19fxcbGas6cOfrggw/Kfb7qrqE7VGedli1bptmzZ2v9+vUKCwur8DmtXqfyVOe19vR75XoYYzR+/HidOnVKf/nLXyr8u+O2225TnTp1FBQUpFmzZqlWrVrasmWLh9NW7pZbblHDhg1Vq1Yt9evXTxMmTKj0veMtayRJK1asUOvWrdWjR49Kx3nDOv1cddfB29atJji91kvOq/fUemq9HVHv/8Wu60St/3Xjy+OVzf3q1atl/nm+gHJv19KmTRv5+PiU+ijHnj17KvyYTlxcnPbs2VNy3xij5OTka37k6teqzvwWLlyoAQMGKDIyslq/w9fXt0qvVU35NWtWWcbqrqE7VHVOK1as0MSJE/XFF1+obdu21fodnl6n8lTntfb0e+XXMsZowoQJ2rNnj5KSkqp1pmI7rMm1VJYxLi5Oe/fuVXFxcck2T793qmPRokXXPFJZHruvU3XX4ZfvrUOHDuny5cvV/jvFmzi91kvOq/fUemq93VDvvaPeU+v/Nf66a32Vv53vZYqKikxeXp75/PPPTUREhMnLyyt1Fs8//OEP5t577zXZ2dlm7969JiIi4ppn0F22bJm5fPmyefnll01UVJTlZwW9fPmyCQsLM2vWrKl0XGZmpvn0009Nbm6uuXLlilm7dq2pV6+e+eabbzyUtGo+/fRTc+rUKWOMMYcPHza/+c1vzLhx4yocX501tMrKlStNw4YNza5du6451s7rVNXX2q7vlV96/PHHTZcuXcz58+crHZeSkmJ27txpCgsLzaVLl8yMGTNMRESEyczM9EzQKvrLX/5isrOzTVFRkdm8ebNp2LChWbVqVbljr5659fnnnzf5+fnm/ffft+3Zc3fu3Glq1aplfvzxx0rH2XmdCgsLTV5enpk2bZoZMmSIycvLMwUFBdVeh/Xr15uwsDCza9cuc/HiRTNs2DDOlm9ujFpvjLPqPbXevmvktFpvDPXeG+o9tf5faqLWO7a537Rpk5FU6taiRYuS/ZmZmSYhIcEEBgaaxo0bm5dffrnU4wMDA83XX39d6vk6dOhg6tata2699Vaze/duz0ykEqtXrzYNGzY0BQUFZfYNGDDAPPfcc8YYY86cOWO6detmXC6XCQ4ONrfccotZvXq1p+Ne05/+9CcTERFh6tWrZ5o3b27+8z//0+Tk5JTsHzduXKl/AFxrDe2gZcuWplatWiYwMLDkNmDAgJL93rJOlb3W3vBe+bn09HQjyfj7+5dal6vr8PP5bNy40cTGxpp69eqZsLAw079/f7Nnzx4r45erd+/eJiQkxLhcLtO+fXvz1ltvldrfvn17s3z58pL7ycnJpnv37qZu3bqmbdu2ZsOGDZ6OXCVPPPGEuffee8vd5y3rNGPGjDK1aMyYMcaYytfh66+/NoGBgaWe67XXXjORkZEmMDDQ3H///df8x+qN4Eao9cY4q95T6+27Rk6q9cZQ743xjnpPra/ZWu9jjI0/ywAAAAAAAK7JK79zDwAAAAAA/oXmHgAAAAAAL0dzDwAAAACAl6O5BwAAAADAy9HcAwAAAADg5WjuAQAAAADwcjT3AAAAAAB4OZp7AAAAAAC8HM09AAAAAABejuYecKC+ffvq2WeftToGAABwI+o9gJ+juQds6OjRoxoxYoSaNGkil8ulJk2a6He/+50yMjKsjmaZXbt2adCgQWrWrJkCAwPVtGlTDRo0SMXFxVZHAwDgV6Hel0W9B349mnvAhn73u98pKChIKSkpysnJ0e7duzVs2DD5+PhYHc0SmzdvVu/evTVgwAClpaUpOztbGzduVP/+/eXry19jAADvRL0vjXoPXB/eJYDNnDt3Tvv379f48ePVoEEDSVJERITGjBmjxo0bS5JatmypBQsWlHqcj4+PNmzYUHI/KytLgwYNUlBQkFq3bq2lS5eWGv/6668rJiZGQUFBioiI0IMPPliyr2/fvnriiScqfPy8efMUFxen4OBgNW7cWA888IDOnj1b6vnz8vL07LPPqk2bNgoKClJ0dLSWLFkiScrPz9fUqVMVExOj+vXrq0+fPtq9e3eFr8kbb7yhnj176tFHH1W9evXk5+en2NhYjRs3rhqvLAAA9kG9L4t6D1wfmnvAZsLCwtSxY0eNGzdOixYtUnJy8q/6KNq7776rhx56SJmZmfq///s/Pfzww/r2228lSQcPHtSkSZO0du1aXbx4UYcPH9bYsWOr/PjGjRsrMTFRWVlZ2r59u9LS0vTkk0+Wevwjjzyi9evXa+3atcrOztY333yjjh07SpLGjx+vHTt26KuvvtJPP/2koUOHqn///srKyip3LuHh4dq2bZvmzJmjPXv2qKioqNqvBwAAdkK9L4t6D1wnA8B2zp49a6ZPn266detm/P39Tf369c0zzzxj8vPzjTHGtGjRwrzzzjulHiPJfPHFF8YYY2677TYzaNCgUvuHDh1qxo4da4wx5siRI6Zu3brmvffeMxcuXCjz+6/1+F9KTEw0DRo0KLn/008/GUnm73//e7lzk2T2799fanvr1q3NsmXLyn3+S5cumRdeeMF069bN+Pn5mYYNG5rp06eb4uJiY4wxRUVF5re//a0JCwsz06ZNK3lcRdsBALAD6n1p16r3//jHP0zPnj1N7969Tc+ePc22bduMMdR74CqO3AM2FBYWpv/+7//Wjh07dOHCBS1cuFDvvPOOnn/++So/R6tWrcrc/+GHH0p+fu+997Ro0SI1b95c3bp106pVq6r8+MTERPXs2VONGjVScHCwHnjgAZ0/f77kf9iPHj0qSYqNjS2T69ChQ5KkHj16KDQ0tOR28uRJnThxoty51KtXT5MmTdKOHTt07tw5TZw4Uf/zP/+jdevWSZJ8fX21cuVKvfjii6UeV9F2AADsgHpf2rXqfZMmTZSUlKSvv/5a8+fPL/kUAfUe+Ceae8Dm/P39dd999+mOO+7Qrl27JElBQUG6dOlSyZhTp06VeVx6enqZ+82aNSu5f++99+qzzz7T2bNnNXHiRI0cOVJpaWnXfPyJEyc0ZMgQPfnkkzp+/Liys7O1bNkySZIxRtI/vyMoqdTzXXX1e4TJycnKysoqueXm5mrKlCnXfD1CQkJKvi948eLFku1RUVHljq9oOwAAdkK9L628eh8ZGang4GBJUp06dUqdZI96D9DcA7aTmZmpKVOmKDk5WZcvX1ZRUZG+/PJLbdq0SX369JEk3XrrrVq1apWysrKUnZ1dbpH89NNP9cknn6ioqEifffaZ/vrXv+qhhx6SJB04cECffvqpcnJyVKtWLYWEhEiS/Pz8rvn4nJwcFRcXq2HDhqpbt64OHjxY5ghDeHi4RowYoQkTJujAgQOSpIyMDO3atUstWrTQfffdpwkTJujYsWOS/lm0k5KSyr30z/PPP6+kpCRlZ2fLGKO0tDQ9/PDDiomJ0T333FMDrzgAAJ5HvS+tOvW+sLBQEyZM0LPPPvtrX37AkWjuAZupU6eOzp49qyFDhqhhw4YKCwvTU089pcmTJ+uZZ56RJM2aNUvBwcGKiopS165ddf/995d5nrFjx+rdd99VaGioJkyYoLfeeku9e/eWJBUUFOi5555T06ZNFRwcrGeeeUZLly5VTEzMNR/ftm1bPf/88xo9erSCgoI0ZswYjRo1qszvf+edd3TbbbcpPj5eLpdLvXr10vfffy9JWrlypbp27ao777xTQUFBio2N1TvvvFNyJODn8vLyNHnyZEVFRSk0NFQDBw5Uhw4dtG3bNgUFBdXIaw4AgKdR70urar0vKirSyJEjNXToUN19993XtwiAw/iY8t5dAG5offv21W9/+1vNmjXL6ijVsnjxYh06dKhM7oq2AwBwI/O2el9cXKzRo0erS5cuJf8B8nPUe9zoalkdAABqwogRI5ScnKzc3Fxt27ZNSUlJql27doXbAQCAd3n//feVmJioEydO6OOPP1ZISIjWrl0rqeJ/BwA3Epp7AI7wy7P/Xms7AADwLsOHD9fw4cPL3Ue9B/hYPgAAAAAAXo8T6gEAAAAA4OVo7gEAAAAA8HI09wAAAAAAeDmaewAAAAAAvBzNPQAAAAAAXo7mHgAAAAAAL0dzDwAAAACAl6O5BwAAAADAy9HcAwAAAADg5WjuAQAAAADwcjT3AAAAAAB4uf8Hxx676FI6Rc4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reported: 47 beats ; Detected : 51 beats\n", + "Analyzing trial number 6\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABcQAAAHSCAYAAADCCcgbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZgkVZnv/40919q7eqdXmq3ZQWWTVgEbFVRmQGF6hpbRQWdc8Do/dRyvog+OM84izngdHa+Cj+i9A151RAQZBJFFkUaBBpudbqBp6KWquqq6KpdYfn9ERnYukZmRGefEOdX1fp6nH6WWPKcyI06c833f9/sqnud5IAiCIAiCIAiCIAiCIAiCIIhDHFX0BAiCIAiCIAiCIAiCIAiCIAgiCUgQJwiCIAiCIAiCIAiCIAiCIOYFJIgTBEEQBEEQBEEQBEEQBEEQ8wISxAmCIAiCIAiCIAiCIAiCIIh5AQniBEEQBEEQBEEQBEEQBEEQxLyABHGCIAiCIAiCIAiCIAiCIAhiXkCCOEEQBEEQBEEQBEEQBEEQBDEvIEGcIAiCIAiCIAiCIAiCIAiCmBeQIE4QBEEQBEEQBEEQBEEQBEHMC0gQJwiCIAiCIAiCGWeeeSauvvrq6n/ncjn88pe/FDYfgiAIgiAIgqiFBHGCIAiCIAiC6IENGzbANE3kcjn09fVh/fr1+Na3vhX5+wCwdetWXHbZZViyZAmy2SyWLVuGN73pTbjuuuuS/nO4MT09jQ0bNoieBkEQBEEQBEEAIEGcIAiCIAiCIHrm4x//OKanpzE+Po5PfvKTeO9731uXDd3u+3fddRde85rXYMGCBbj33nsxNTWFZ599Fn/7t3+LH//4x5Hn4HkebNtm+4dFoFwuJz4mQRAEQRAEQcSFBHGCIAiCIAiCiImmadi0aROGh4fx0EMPRfr+lVdeiXe96134yle+gtWrV0NVVViWhTe+8Y34r//6r5Zjbd++HYqi4Fvf+haOP/54ZDIZbNmyBYVCAZ/61KewZs0aDA4O4vWvfz1+//vf1/3ud77zHZxwwgno7+/HwoUL8ZGPfKT6vV//+tc466yzMDg4iFWrVuGTn/wkisVi9fsrV67EZz/7WWzcuBH5fB7//M//DNu28fGPfxyLFi3CggUL8Dd/8zdN81UUBXfccQcA4Je//CUURcEPfvADrFu3Dvl8Hueeey527txZ/flXX30V73jHOzAwMIDVq1fje9/7HhRFIdsVgiAIgiAIggkkiBMEQRAEQRBETGzbxne/+12MjY3h1FNP7fj9p556Ck8//TQ2bdrU85jf/va38dOf/hTT09M48cQT8f73vx+//e1vcffdd2PPnj245JJL8OY3vxkTExMAgP/9v/83/vqv/xr/9E//hH379uGZZ57BRRddBAB44YUXcM455+CP/uiP8Oqrr+L222/HzTffjE984hN1Y37jG9/AZz/7WUxOTuLDH/4wvvSlL+HGG2/EnXfeiZdeegm6ruOBBx7oOPcf/ehHePDBB/HSSy9hZmYGn/rUp6rfu+yyy+A4Dp5//nk89NBDuPHGG3t+jwiCIAiCIAiiERLECYIgCIIgCKJH/umf/gkDAwNYtGgRrr32Wlx33XV4/etf3/H7e/bsAQAsXbq0+rNbt27FwMAABgYGkEql8Ktf/art2J/5zGewfPlyaJqG6elpfOc738H/+l//C8uWLYOu6/jgBz+I/v5+/PSnPwUAXHvttfjEJz6Bc845B7quI5/P4+yzzwYAfO9738O6detw1VVXwTRNHH744bjmmmvwH//xH/A8rzrme97zHpx22mlQFAWZTAbXXXcdPvaxj+Hoo4+GZVm4+uqrMTg42PF9++IXv4j+/n709/fjsssuw29/+1sAwEsvvYQ777wT//AP/4DBwUEMDg7iC1/4QsRPgyAIgiAIgiA6o4ueAEEQBEEQBEHMVf76r/8a11xzTdffX7BgAQBfAD7qqKMAAMceeywmJiZg2zYMw4Drum3HXrVqVfX/P/PMMwCA1772tXU/UyqV8NJLLwEAnn/+eRxxxBGhr/Xiiy9izZo1dV9bu3YtZmdnsWfPHoyOjjaNGcy/9muapuGwww5rO28AWLJkSfX/Z7NZTE1NAUDVOmXFihXV769cubLj6xEEQRAEQRBEVEgQJwiCIAiCIIiEWbduHdauXYvvfe97OPfcc3t6DVU9WOy5aNEiAMCjjz7aUpBeuXIlnnrqqdDvLV++HL/5zW/qvvbss88inU5XxfvGMQFg2bJl2L59e/W/HcfBiy++2NXfUUuQMb9jxw4cffTR1f9PEARBEARBEKwgyxSCIAiCIAiCEMDXv/51/N//+39x1VVX4fnnn4fruiiXy7j77ru7fq0VK1bgHe94B/7qr/6qKiBPTU3h1ltvxa5duwAAH/nIR/AP//APuPPOO+E4DqampqpjXXbZZXjyySfxb//2byiVSnj22WfxP//n/8R73/teKIrSctzLL78c//zP/4wnnngCxWIRn//85zE2NtbDu+GzbNkybNiwAX/zN3+DiYkJTExM4NOf/nTPr0cQBEEQBEEQjZAgThAEQRAEQRACeNOb3oQHHngAr7zyCk4//XTkcjmsWrUKX/jCF/Dd734XZ5xxRlev9/3vfx8nn3wyzj33XOTzeRxxxBH45je/WfUA/4u/+At88YtfxFVXXYXBwUEcfvjh+PGPfwzAF9Rvv/12/Od//idGR0fxxje+Eeeffz6+9KUvtR3zE5/4BC666CKcffbZWLZsGUqlUpNtS7d8//vfh+d5WLFiBU488URceOGFAIBUKhXrdQmCIAiCIAgCABSvtksOQRAEQRAEQRCERDz88MM48cQT8fLLL2Px4sWip0MQBEEQBEHMcUgQJwiCIAiCIAhCGh577DGUSiWccMIJePnll/Fnf/ZnAIA777xT8MwIgiAIgiCIQwGyTCEIgiAIgiAIQhr279+Pd7/73cjn8zj55JMxMjKC733ve6KnRRAEQRAEQRwiUIY4QRAEQRAEQRAEQRAEQRAEMS+gDHGCIAiCIAiCIAiCIAiCIAhiXkCCOEEQBEEQBEEQBEEQBEEQBDEvIEGcIAiCIAiCIAiCIAiCIAiCmBfooicgK3v37sXPf/5zrFy5Eul0WvR0CIIgCIIgCIIgCIIgCIIgiBBmZ2exfft2vPnNb8bIyEjbnyVBvAU///nPsWnTJtHTIAiCIAiCIAiCIAiCIAiCICJwww034E/+5E/a/gwJ4i1YuXIlAP9NPOqoo8RORgBPvzolegoEQcTg8IV50VMgCIIgCIIgCIIg5jCkDc1N5qsesG3bNmzatKmq6baDBPEWBDYpRx11FE466STBs0ke46X9oqdAEEQMjl3WL3oKBEEQBEEQBEEQxByGtKG5yXzXA6JYX1NTTYIgCIIgCIIgCIIgCIIgCGJeQII4QRAEQRAEQRAEQRAEQRAEBwrFAnbt2Y1iqSh6KkQFskwhCIIgCIIgCIIgCIIgCIJgiOM6+P7NN+OO+38N13OhKirOOf00XHbBBdBUTfT05jUkiBMEQRAEQRAEQRAE0TMzs7PYMzaG0eFhpFMp0dMhCIKQgu/ffDPu3bIFxy1binwqhalCAfdu2QJFUbDpwreLnt68hgRxgiAIgiAIgiAIgpAQ2YVm23Fw7fXX46bbboPjutBUFRdv3IirNm+GrlH2I0EQ85dCsYA77v91VQwHgHwqhXWjo/jv++7HxRs3wjItwbOcv5AgThAEQRAEQRAEQRASMVeE5muvvx633HUXTlu9GoOZDMZnZnDLXXdBURR87IorRE+PIAhCGOOTk3A9tyqGB+RTKbiei7HJSSweWSBodgQ11SQIgiAIgiAIgiAIiagVmi847jictno1brnrLnzlO98RPbUqM7OzuOm223D80qUYzGQAAIOZDI5fuhQ33norZgsFwTMkCIIQx1B/P1RFxVTDWjhVKEBVVAz19QmaGQGQIE4QBEEQBEEQBEEQ0jBXhOY9Y2NwXLc6x4DBTAaO62L32JigmREEQYjHMi2cc/ppeOrVV6ui+FShgKd278a5Z5xOdimCIcsUgiAIgiAIgiAIgpCEKELziiVLBM3uIKPDw9BUFeMzM3VzHZ+ZgaaqGB0aEjg7giAI8Vx2wQUojY/jV9uegOM60FQN555xOi5929tET23eQ4I4QRAEQRAEQRAEQUjCXBGa06kULt64EbfceSeOX7as6iH+yM6duOT886VsAkoQBJEkmqrhj095Dd79znfipUe2YuXrXkOZ4ZJAgjhBEARBEARBEAQxr5iZncWesTGMDg9LJ9xWhea77qrapsgqNF+1eTOc2Vn8v1/+Eo7rQtc0XHL++fjI5ZeLnhpBEIQUeI6NdC6H0VyOxHCJIEGcIAiCIAiCIAiCmBfYjoNrr78eN912GxzXhaaquHjjRly1eTN0TRM9vSpXbd4Mz3Fw0+23Sy0065qGD15wIf783HPx4rYnceTG86QS7AmCIETjuS4UiZ4vhA8J4gRBEARBEARBEMS84Nrrr8ctd92F01avrmZe33LXXVAUBR+74grR06uiaxo+cskl2HTiSXhl58tSC82ebSOTzWHZ4KC0cyQI4tCiUCxgfHISQ/39cyLrWoEiegpEA6roCYRRLBbx3ve+F6tWrUI+n8cxxxyD73//+9XvP/bYY3jd616HTCaDo48+GnfeeWfd7//gBz/AmjVrkMlk8KY3vQk7duxI+k8gCIIgCIIgCOIQZWZ2Fjt27sRsoSB6KkQXzMzO4qbbbqvakAB+o8rjly7FjbfeKt3n6ZXLyGQyWD4yjJRhiJ5OSzzbhmr4uXae5wmeTTh0zxLEoYHjOvjuf/0YV37ms/j4P/4j/uJ/fgbf/a8fw3Ed0VOLhAc518j5iJQZ4rZtY8mSJfjFL36BVatW4b777sNb3/pWrFq1CqeccgouuOACvO9978Pdd9+NH//4x3jnO9+Jp59+GqOjo9i2bRs2b96MH/7whzjrrLPwqU99CpdccgkeeOAB0X8WQRAEQRAEQRBzmLlit0GEs2dsDI7r1jWqBHxR3HFd7B4bw4olSwTNrhnXtqEaBlTThFsqQUunRU8pFNcuQ9F1KIYOz7ahSCTe0z1LEIcW37/5Zty7ZQuOW7YU+VQKU4UC7t2yBYqiYNOFbxc9vbYomgbPdqDoUkqx8w4pP4VsNovPf/7z1f8+88wzccYZZ+D+++/H9PQ0ZmZm8MlPfhKqquJd73oX/vVf/xU33XQT/uqv/go33HADNm7ciPPOOw8A8PnPfx4LFizA448/jmOOOaZprF27dmHXrl1NX9+2bRu/P5AgCIIgCIIgiDnHXLHbIMIZHR6GpqoYn5mpE8XHZ2agqSpGh4YEzq4Zr+wLzbIL4l7ZhlozT1UiQZzuWYI4dCgUC7jj/l9XxXAAyKdSWDc6iv++735cvHGj1PYpimnAK5cBEsSlQErLlEYOHDiALVu2YP369Xjsscdw7LHHQlUPTv2EE07AY489BsC3UznhhBOq38vn81izZk31+4184xvfwMknn9z0b9OmTVz/JoIgCIIgCIIg5g5zzW6DaCadSuHijRvxyM6dGJ+ZAeCL4Y/s3IlLzj9fOv/raoa4ZcEtlURPpyWubfvCvWHALZdFT6cK3bMEcWgxPjkJ13OrYnhAPpWC67kYm5wUNLNoyLZGznekD0u4rovNmzfj1FNPxXnnnYff/va3GBgYqPuZgYGBqk/49PR06PenpqZCX//KK6/EhRde2PT1bdu2kShOEARBEARBEASAuWe3QYRz1ebNUBQF//mzn8FxXeiahkvOPx8fufxy0VNrwivbUNIZqKYJpyivIO4FgnglQ1wW6J4liEOLof5+qIqKqUKhThSfKhSgKiqG+voEzq4zqmFItUbOd6QWxD3Pw/vf/368/PLL+PnPfw5FUZDL5bB///66n9u/fz/y+TwAdPx+I4sXL8bixYv5/AEEQRAEQRAEQRwSzDW7DSIcXdPwsSuuwMWHrcR02sKipcswtHKF6GmF4tplqIYBT3IRxbMrlimGAbckT/Yj3bMEcWhhmRbOOf003LtlC9aNjlY9xJ/avRvnnnG6lHYpnucCUAAAqmnAtW2xEyKqSGuZ4nke/uqv/goPP/wwbr31VuRyOQDA+vXrsXXrVriuW/3Zhx9+GOvXr69+/+GHH65+b3p6Gs8++2z1+wRBEARBEARBEN0y1+w2iPakDQMrli6DfPLJQbxyJfPakivzuhHPdaFoGtTAH1cS6J4liEOPyy64AGeecgoeeekl/Oqpp/DoSztx1qmn4tK3vU301ELxHBeK5kuvZJkiF9JmiH/wgx/Eb37zG/ziF79AX03Zw4YNG5BOp/GlL30JH/3oR/GTn/wEW7duxQ9/+EMAwKZNm3DqqafijjvuwJlnnonPfvazOO6440IbahIEQRAEQRAEQUTlqs2b4ZZK+MEvfiG93QbRAQXQUhbK++X1nPU9xHXAk1sQD1AME86sXO9nk0WOquKSt7yF7lmCmKNoqobLNm7Em1esxPjEfqw47bVIWfIGtzzPhVLpgajoBryyXGvkfEZKQXzHjh342te+BsuysHz58urXP/WpT+FTn/oUfvKTn+C9730vPve5z2HlypX44Q9/iNHRUQDAUUcdheuuuw5/8Rd/gVdeeQWve93rcOONN4r6UwiCIAiCIAiCOETQNQ0ffuc7sfnMs7Dz2edw5MbzKMt0DuJ5HgBAtSw4EjdWrGaIA3NCEFdN+bIfA4ucS48+BpOaigFNx6KTThQ9LYKYMxSKBYxPTmKov18aSxK3WEI6l4OpqjA1KWXNgzgOoGkAIJ2t1HxHyitnxYoV1U1KGMceeyweeOCBlt+/+OKLcfHFF/OYGkEQBEEQBEEQ8xinWEI2n8OyoUESw+cqgcWHlYJbLIqeTUvcchmqrsNTVbgSN9UMUA15M9ktRcGq1Wtw4PnnRU+FIOYEtuPg2uuvx/fvfBCu50JVVJxz+mm47IILoKma0Lm5dmVtNE145RKgSyltAqhYpgQZ4oYOjzzEpUHeq4YgCIIgCIIgCEIy3FIJeiYDtM7fISTHtW0omgbNMuHILDR7HhRNA1QVniO/iCJjhniAZzvQM2lpBXuCkI1rr78et9x1F45bdkS1eeW9W7ZAURRsuvDtQufm2TYUQ4fqGnCKJWjpTOdfEoTn+QFYIPAQl38tny9I21STIAiCIAiCIAhCNjzbhmoaFZHSET0dogc8x4Gi675I4bqip9MRRVFETyESMtsBeI4NNZWi7EyCiMDM7Cxuuu02HL90KfKVSqh8KoV1o6P47/vuR7EktrLGLdtQNR2KYUrVyDcMz3agqP4arigq0MYNg0gWEsQJgiAIgiAIgiAi4pbLUAxD/uxiCZiZncWOnTsxK5lPt2c71Yw9gh2KpgGevAGGuRJYIOY3Mqybe8bG4LguBjP1mdf5VAqu52JsUmxjyCBDXDMMOJJXfXiuC0WwxQwRDlmmEARBEARBEAQhDTOzs9gzNobR4WEpPbq9chmqbkBNpeAWC0AmLXpK0hF4z950221wXBeaquLijRtx1ebN0CUQoj3HJkGcIAQh+xovCpnWzdHhYWiqivGZGSB1UBSfKhSgKiqG+voSnU8jnu03HIaqwtsvVpzviOtWm2oSckGCOEEQBEEQBMEdGQ/AMs5pPiOTGNAOP0Nch2ZZcAryNmQUSeA9e9rq1RjMZDA+M4Nb7roLiqLgY1dcIXp68GwHatCETQE8z5sT2cNzZZ6E/Ih4/s2VNV4UMq2b6VQKF2/ciFvuugsrluaqHuJP7d6Nc884HZZpJTqfRlzbhqobgOehJH2G+EHLFEIuSBAnCIIgCIIguCHjAVjGOYlGhuCATGJAO9yyDVXXD2aIE3UE3rPB5wgAg5kMjl+6FDfeeiv+8rLLhAegajPEVcOEWypBs8QKPKHUaCiyztNr9MMle1ypEfn8mytrvAhkXDev2rwZUBR87xcPwHVdaKqGc884HZe+7W2JziMMz600qlQV6Rvlek69ZYqiKhWRfH7uN2WCBHGCIAiCIEKRQSAjekOmz07GA7CMcxKFLMEBGcWAlnj+QVxLWSiNT4ieTROi7/9W3rODmQwc18XusTGsWLIk8XnV4tp+U00AUE3Db8ommdDciGrJKYjDdaGoNa3JZM+4V9SKp+/8bKcm6vkn6xover0MkHHd1DUNH7v8cpwwtAIThQIOO+lEpDPZROfQEscBNBWqrsOVvamm60A1jOp/K5Xmw1qKBHHRkCBOEARBEEQdsghkRPfI9tnJeACWcU4ikSU4IKMY0AnVsuBK1CxSlvu/1nu29vMcn5mBpqoYHRpKbC6t8JyDTTVV02+OqucET6qBxszrQBCXjWqmZgVF1ysN74w2vyUO1fAFNOkCCwkg8vkn2xovy3oZIOu66ZbLSKXSWJzLwWisBhGIn3WtQlFU6atSPNerywZXDQOubYNOVOKZn2FRgiAIgiBaUiuQXXDccTht9Wrcctdd+Mp3viN6akQHZPvsohyAaU7iCMSR45cuDRVHZhMUe+saeNUgWgxoh2paUgmUstz/gffsIzt3Vj/P8ZkZPLJzJy45/3wpAk6eY0PRDwriMn2OVRqymFXTgluUz7PecxygVuyR8P2sDS7IOL+kEPn8k22Nl2W9DJB13XTLZSi6Bi2VglOU575pDMRJjeMAdWu5Cbcsz3s5nyFBnCAIgiCIKjIJZHOFmdlZ7Ni5U/h7I+NnJ9sBWNY5iUKm4ICsYkA7NMuURiCQ7f6/avNmvO2Nb8T9zz6LnzzyCH797LN42xvfiI9cfnmi82iFZztQtIplisSZ100iiozzdBwoWs08DUM6CwPPtg9+3hW7gvmIyOefTGu8bOtlQLBu/rqybt4vwbrpBT0zLFOygJwHBZLaMjXgufVrpKLr8Mq2wBkRAWSZQhAEQRBEFdlKWhuRxesRkK/cVsbPLjgA33LXXdWDp2iRU8Y5iUK2Eu2ggdeNP/sZHNeFrmm45PzzpRFRG1E0DXBd0dMAIN/9r2saPnbFFbh4xUoUhocwoBsYXX9MYuN3wnMcqDUZ4vaBmQ6/kTy1ti5AZZ6TkwJnFI7nuE3zlE249xynriLAs8UL4iL2M6Kff1dt3gxFUXDjrbfCdhxoqop3veUtia/xsq2XAcG6+aenvgZjhVnkCkUsO+vMxOdRi58hrvvrz9S00Lm0RAE8iQVyz/Xq18g54Hs+XyBBnCAIgiCIKrIJZAGyic+APN7LAbJ+dldt3gyvVMJNv/iFNCJncCj/zzkivPJCtDjSiK5p+Oif/AneveZwTLgOlh91JPoXLUp0DnMVWe//tGFg0WErMPPSS0LGb0V9xrAJtzQhdkIhNDZ+1CwLJcmEZiDIfpRcELf9LFfgYEM7UYjez4h8/gWC7+Wnn4F901NIT0zisHPeyH3cRmRdLwNMz8Oq1Wsw+fgfhM4DOCiIa1YKpX1yWsqpul+Vohmm6KmE4tm273VeQTENeJNUcSsDzAVx13XxxBNPYGxsDENDQzjyyCOhztMOzgRBEAQx15BNIAuQTXyWsTFj9bO7804cv2yZNJ+drmn40EV/hD87/Qy8vH07jnzzecKzsGuzV8eLRaw543Tk+vuFzkkUV23eDM9xcNPtt0sRHHBLJWTzOfRns9Alb5QlE7Ku3QCgpuTzvq7LGJbVMiUkQ9yR7H0EWlimSGZJ4tq1TVQNoZ+36P1M7fNvOp3GosWLMLRqFfdxazEBrFi+HFOzzzRd50kg83oJ+M9Bv+mr+IegZ5eh6joUwfdNOxRDh1cqA7IK4l5DhnilqSYhHmaC+O9+9zv8y7/8C376059isqaUK5/P421vexs+9rGP4aSTTmI1HEEQBEEQnJAte1ZG8VnWcturNm+GMzOD/3f33VJ8dgFuuYRsLodlg4PCD5oBnusibZjoGx6GJXoyAtE1DR/544ux6aST8equXVj3xjcgk80Km49n2342WjoFdy70LFAqh11FfKm2rJYzmmXBKcgl5Lq2XSOQyimINzXVlFm4r2uqacCZnRU4o2aCdQXwxSh7+oCQeci0n0nrBkaWLRMizLnFIlTLqt57Wjqd+Byu2rwZbrGIH9x5p1TrJVC5Xg1dBj0cbtlvQCxjb4AA1ZR3bgD8ppqS91mYrzARxN/znvfg9ttvx6ZNm/CjH/0Ixx13HPr7+7F//35s3boVt912Gy644AKcd955uO6661gMSRAEQRAEJ3RNw/+4/HJcvHIVxmcLWHOm2OxZGcVnWcttdU3DBy+4AH9+3nl48YknpcjGBvxsJ9U0AShNNgBC52SZUC0LTqEAY55miAOAU5hFrr8fFvzMPZF4tlNp4JVCKcGmnlHxXBeo8SlVNL0iXhjiJlVB1zT8jz/9U7xr9RrsndiPIzeKvf89z1dzZPJaD/AzxGuaLErSHLUWz6lvqqno/rUmG40e4oohn3DvObWCuLj5ybKfCe5NNWXB3pd8cMAtl6HqBjRLnCCuaxo+9I53YPPrz8bOZ54Vvl7W4vc4kMPd2CuXoehp3/JDAoE+DMUw4cksMHtevWWKbsg933kEk9PIsccei+effx7/8A//gDe84Q0YHh6GrusYHh7Ghg0b8Pd///d4/vnncdxxx7EYjiAIgiAOGWZmZ7Fj505hHe1b4RRLyOVyOGzJYliCMx9rxedaRIrPQbntIy/trM5LlnJbt1RGtq8fywbkycZ2iyWopgHVksc6wS2VoRoGtHRKuuzVpAkCFqppChcGg8xdTUKbDSDExsIS/57V4hQKyPX1YfnIMFKCRfrarFzZ8GosNBRNAzz5lJ7Ga02GKoQwGuepWaZ02Y9u2a6zTBElRsmynwlsbrRUCo6A/WeQAa1allAbIKdQRK4vL1X1GuB/PlBVQFH8/y+QwENcZjTJM679RJCaQLquCf9cCR8mgvj/+B//A6bZPp/ENE189KMfjfyaX/3qV3HKKafAsiy8+93vrn79nnvuQS6Xq/unKAr+5V/+BQCwfft2KIpS9/33v//9vf1hBEEQBMEJ23HwT9/6Ft7wZ3+GP/rwh7HhT/8U//Stb8GWZIPk2ZUmOoIOS7VUxeedconPV23ejI2nvQ73P/ssfvLII/j1c8/hbW98o/ByW1/cFJ+tWotbLkM1zYr4LEfwJxDrVGuOWHNwJMjK1lIpOEWx70VVKEml4MzK97l4rlvvlyyZ3YZXDq5rsUIT4IuQsmQ5NuI5dr1vsYRasyzVNB1x6z3EFRkz7l1HiqaasuxngqoW1bLgCggIB2uD6ICiV9mbKLomnaezoij+5yP4+eKWy1A1OdfxAJn9zQHAc736ah8ZHzjzFGmv7CVLluDTn/407rjjDuzdu7f69bPOOgvT09PV/962bRvWr1+PP/7jP677/b179yIlUZSPYE+hWMD45CSG+vthmfPZ/ZMgiLmI6KZKnXDLNlSBh6VGZPM1BwJ7kgvx5+ecixeflNCeRJHMnsQwpPISdu1KhnjKQnGPHHMShWvb0HVNivvdFyp1X2guy3fArbXaACr+2BJlsgfXNTzPFwgarBmSpNZKRtFUIc3z2lGXcS1fgrg063cnGi1TZPTH9dyD9jOi5xfsZ2689VbYjgNNVfGut7wl0f1M1ZpK1Drr+teMaoqtBHLtcl1gQM3JJY9plgmnKMZSJsAr20ClATFUBZ5b3zNABuRvUuk1i+ASPnPmI4nd8W9961txyy23RP75iy66CADw8MMP1wnijXz729/Gm970Jhx22GE9zWvXrl3YtWtX09e3bdvW0+sR/HFcB9+/+Wbccf+v4XouVEXFOaefhssuuACaZIszQRBEGDI1VWpFNUPcsmA3lPaKQNc0/I/3vAcXr1iJKdPE0lUrMbBsmehpwS2VkO3Ly2VPUrW/8A/9miU+aByIiDJZpgTinCZpJnKSBP66WgoojU8InYtbtqFnMr5YKeGB0W8gKG+jw2qGuKIIv9fcckWch59J7xRL0DPihJ05h1vvIe4jT6AzwHOcSo8IH39uct28nutCNSoZ4oLnp2saPnbFFdh81lnYMz6BzOQUDjvnjYnOIaiQEL3OapYJe3JS2PheJfkjqF7Tc+IaStdR+Uxk2DO59sFKH7VSXaGlxGouXsNFK7IvADG3SUwQ71Wwbodt2/jud7+LL3/5y03fW7t2LVzXxetf/3r84z/+I5YvXx76Gt/4xjfwuc99jvncCH58/+abce+WLThu2VLkUylMFQq4d8sWKIqCTRe+XfT0CIIgOiJLU6V2VDPEUxbc8XGhcwnwHAeZVApDixdDleSs7ZaKUAcHRU+jjqAZU2DlIIUgXrUnMWFPJ9/AK4xaawnRB07R+H7KOhRNF24fU+c7LWFVcbOHuAV7arrNbySLa9tQDR2epgm/roPAKlBjLSOpIC5jBnujPQ9wMACjSRKABQ76UcuM57hQLLnmaKkaDluyGAcEBGRd25FinRVt7eT7YxvQLHns3GqRYn/iudWGkKppwrXL0CB4/XHdugofxdDnXJNKRVPhOrb0djSHOok9Ff793/+d+Wv+7Gc/Q6lUwjvf+c7q10ZGRvDggw9i+/btePTRR5HNZnHBBRfAaeHJeuWVV+Khhx5q+nfDDTcwny8Rn0KxgDvu/zXWjY4iX9kI5lMprBsdxX/fdz+Kpfl9oCUIYm4gS1OldgSilCbDZryCP6fAdkOOg4vfLNIEVFWaBjlBMyaZMlcDocnP4pHjevKznjTh2YIy4FXeCxn8sP1qgoooKeHHUjc/SOghXrN2O4J9nGsbV/peuHLc+2EEGewyEZYJLtv1BtTbkUiLhHOsraBImiYPfUGI9sj2PwPdT/6QZK9bi2oacG15hF4/Q1z8+tPoya1qur8OzSFUy4InwXs535nT4YjrrrsOl156aZ1XeC6XwymnnALAF8e/9rWvIZ/P4+mnn8aRRx7Z9BqLFy/G4sWLE5szEY/xyUm4nlsVwwPyqRRcz8XY5CQWjywQNDuCIIhoBE2VbrnrLhy/dGnVQ1x0k8ha3HIZeibjZ+9I4vnsVTIfZcpad0slqFalWeSsPOW2iqL43pwSbbb9OYlrZtaI5zhQUuKz52UgyBaU4bDr1ZRnS5m169T7p8oUNAQqa3cu62f7T4hdJ4NqFUA+a5lGVNOEVy4BkCiD3WshiEsp3Mtzj4Yhm80M4Dd0VHRfEPc8r97TnvfYdb0QBNjwVP5UVXAD1oMBxBTK+8VZt7RCNeSpqgOCgJz4PZwXsjbKGEBvh2oaFX94cX0+CA6C+FlnndVyMf/Vr37FbJzdu3fjlltuwf3339/25xRFgaIo8Lw5docQoQz190NVVEwVCnWi+FShAFVRMdTXJ3B2BEEQ0ZGxSWQtVYsLw4DnyNGoxi9t1aUqbXVLZTn9JyGncCLLYQposOaY51T9ZDUNniM2y8qt+VyCcnpdYGPIRposUyTL2D24dou//2utNGRcj2qR7XMEAsuU+jVKE5xRG4rrAo3nf0WVSoRunot4L/YgQ1zRtaZmvbypq94wxPUbUVQVEKnTeL5epKVTwu3CwvCTCOS531XTlKKvUOiaM8eQLWllvsJ81T3nnHPq/vvll1/GTTfdhCuuuKKr17Ftu/rPdV0UCgVomgajUlZ0ww034Kijjqpmgwc88MAD6OvrwxFHHIHJyUl8/OMfx9q1a7Fu3bp4fxghBZZp4ZzTT8O9W7ZUbVOmCgU8tXs3zj3jdFgmZXoRBNGemdlZ7Bkbw+jwsNBM7KCp0sWHrcR0Jo1FSxZjaOVKYfNppK6UV5KYcpA5KldpqwdFVSsbW1nm5KOaJuypKdHTqEM1jEoWpng8224Sm0Qhel3y7GTFmHZ4DYK4WywCsgniNZYpSkVMkoVg7VYt8QJ0bbNFfz2Sx2u9ESktU0J8r/15yvWs8Tyv2eu8IuRJ43XeYJkiUgSuTqlcqXqrBGPUJAVxx7fJAmp86RN6L2RMVJSqGrJiewf4GeIyeWMrhiGHzYdXb5kCAFD8ZpuKjM1HQpAt2DFfYb7qfvazn2362qWXXopvfvObXb3ONddcU9fs8qabbsLll1+O66+/HoBvl/Lnf/7nTb/33HPP4W//9m/x6quvIp/P48wzz8RPf/pTaBKVWhLxuOyCC6AoCm6/7z64rgtN1XDuGafj0re9TfTUCIKQGNtxcO311+Om226D47rQVBUXb9yIqzZvhi7wGZE2DIwsWwbXliMLO0DGxnZB5qiq69L4dQfImF0o45wUTZPG5zFoPgjAz2YUYM0hz7qUbLl+O2otU2TMhvWcensIWd63gGqGuGnCFRx8qs8QlymQ2YyUHuchvteqJUmGZi0hmdZaRWCURRBvFO1V0/CFRoGCuGeXoRhGxaqqDCQY9/NsB2q6EqwyErYyc11AqbleRC6hNdYtniT7cN9qqhKskMhmDgA004QjgUDvNTTVBGqCXIYpaFbdoZoW7Gl5g8TzhUTCkGeffTbe8Y53dPU7V199Na6++uqW39+6dWvo1y+99FJceumlXY1FzC00VcOmC9+OcxYtQbEvjz7TxODq1aKnRRCE5Fx7/fW45a67cNrq1VXP7lvuuguKouBjXVYxsaLa/DBlwd4nj0cgcDBzSSa8srwWF6ppwp6Uy39Sk8mzV76EsPpMZLNykEpYEJdxXRKN5xwUAX2bDblESs+xoUp84K7aMEgg1Ls1VRgyBuhq0VIplCVbw+dSU82meaZScIsFAP1iJtVIwxyVpEXgEALbkoP+9QmOXVPpkvQ15VsByWVfIxNujZ2NbBVIfoa4BPNxvZb9FeaKIK5Z8lUlzUcSWXV+8IMfoI+8nQnGWIaOxYsXwZCw7IogCLmYmZ3FTbfdVm1gCQCDmQyOX7oUN956K2YF+Qa6lUxILSWPJ3ZArVioaJoUGex+Rq9cNi4BMooUUomJ4rW5Jpo8VBM+5Mm6LkFRhFdgBGKuKuGB0XMaxRy58K2A5KiMrRXdpArQhaCl03BmZ0VPox4vRPSx5PM69kIy2WVrNtsouMpQQQGl0u9MwPOnMViVpCDfaFcWBKQJH8+p2X8rCmTa8AZ+96LxvJDqGdOUr8qnDapka+R8hXma1fLly+syEg4cOICpqSl89atfZT0UQfjleBJvrgmCkIM9Y2NwXLcqOgUMZjJwXBe7x8awYsmSxOflOQ4UwxfEXUm8CwPqs2eT97dsOad02v8PpVICLUEWJCCn2CNVZpE857kqbo01hwhxRNZ1SbVMIdnyVWpuadWy4I6Ni5lHC3wbkPq1UFHFWO6E4kGaTMva90SGhq3t0NIpOLMyCs31zzgtZckXQHdC7AtSllSe8Y2ivUxWFCKeP40Z4kkGgxqDioEwKMTPvXZvosiRqS7NsyQEWfy5/c+pYc2x5GnaHgVF1QBXws3xPIP5yfaaa66p++98Po8TTzwRq1atYj0UQfgRbYqsEQTRgdHhYWiqivGZmTrxaXxmBpqqYnRoSMi8gkw+X7iUS0wFarI0g+xnwY3tar2F/eaMZSimHKWRsmSIe45T9eaUJVjgeV5ThrgUwQzPrcsQT7pxlazrUpAtL8z7t+Z8KKeHeLNYoWUysGdmYOTzgmYlJzILO40omuZ7G0tEmDinqKp8AcaQbE3NSqG4Z6+gCTXje//XNtWUIEO8gogG2LWVJKppoLx/f3Jju/XrQlAlaQh2FFArzxvRvvd+k+u5sW4Kw/PqenkA/j1tH5DLfpKQH+aC+OWXX876JQmiCc91/BIzVYNHkTWCIDqQTqVw8caNuOWuu6r2BOMzM3hk505ccv75SAva/LplX+AVLgx2IPDlE41bLkMxGrLWBQrinuNUD9iyZGPXNmOShsZSdVmCGTXbB/96Svbzk3VdUkVXO9RmiMtk+1Oh9r4P0NJpODOz8gnigprFBjSNLcmjzmts6icrEmSrRiHUQ1z0OtJIk2WKIY145merC8gQr1S6KEbCHuJ2/brgZ4gnf600Bus1y5SiEazn2E1VSLLhwROaLe6v4c1VKe64XBVlnVBUxde1VMn27fMIue80gmiBWy5D0Q3R0yAIYg5x1ebN8BwHN91+OxzXha5puOT88/ERgYHcWp9A6TK+apDlYFuXIW5ZcIpF6LmcuPnUHiglCWq4tiNd49HGUvXAL1VkMKMRxTCECK9Xbd4MuC5u/PnPpVmXVNOSxodTlkBTHZ7XnA2bycCZmRE0odaIahYb0CSIS/Kca2mLIJkVV5g3NwAohl5tnioFIe+nbwUnj7VLo4CmJiwCN83H86r3g4i5ePbB4HniTTUb1gXNsmCLWD8bgySSNIJtDBiIbDrquS4aI5mKrlWy2AXuNd2Q53AqJV8fCPjBg1bRYLVSHaFnsslOiqiS2FXc19eHSck6dxNzF1GlRIViAeOTkxjq74dlCvA5Iw4J6DoSg65p+MgfX4xNJ52MV3a+jCPOfRMyEliAVDeUkh3E67M05Wj84ob4movEc5xQsUIkfmaRXJkmjYffg36p8hwAVMNIvGQd8Nelqy69FJetPxavvrobR248L/HM8MaMZxnurQBFUaQRUQPChAk9k0Fh925BM2qgdu0WbX/T8F4pmiRe6y3EpaAiQXSGaEArEUzPZGAfmIE5IFa4CwgT7mXzjG9uqpm8TVYdNe+ZiKaStXuFpMdvtEwRldnbJMynLDgS9PNp3jNVApsCPNY9121ar4PmlSL7CnluSN8C3YBni2/42USI33mARoK4cBK7ir/+9a8nNRQxD/DcmqhkAqUmjuvg+zffjDvu/zVcz4WqqDjn9NNw2QUXQKMSFyIidB2JxykWkOvrwwrXhQy5qbUZz4qu+wK5LBlfdT6+yftbhlHX6FOC7uz+QUE2Qbwxa0d8k6gmIcKQpJlZXdBHXCayUywhm89juevBEiAUNjaJVE1DqmZ40hGWDZtJy5OZ1mgFJFD0a25kaMIplqBn0sLmBIQ3qwQqXvAHZqQRxFsJ935FwgFAEkEckKdKqiVe87Uo8jlU+1wU8Uz0nBpBXtf9AH9iYzdmiKeENIr1kxpqrVtSsCVI4GwKGFSC1EKajobZIQUNaUXmFM0ROykAvr1vi/XRz2qXp5JmPpKYIH7ZZZclNRQxD/AcF6pWX+alpfhtrr9/8824d8sWHLdsKfKpFKYKBdy7ZQsURcGmC9/ObVyCL0lnastyHc3MzmLP2BhGh4cTzUQUNW4tbtH3nNbSaTizBeiCM8Rd26mWPGsVgVeaEugaZPHxrS0jVU1T+MGlsUkXID7Lv8mbU2BmUZWGDKODGeLyILJ8PvDC11Ji1gDXduoCOzJliMtIWDaslkrBmZFEEK/B9+sX+1nWrocHGzSLF8RDM69zOTgHpoFhMQ1tG2llmeIL4vJdb01IVvlWOw/Rdky1AXVF03zBPmFEfS5NQfKUmAQHz6lPatBSFop7JNjrui5UoyZILTCJIKwSUjFMsdUVALyQRr6A78ntOjZUiTzYPa+1eK+mUrDH9iU8I6IWrleK53m+P1YFdY5EcQj58Ry7pszMrJSD8tlcF4oF3HH/r6siJgDkUymsGx3Ff993Py7euJFsL+YYIjK1ZbiObMfBtddfj5tuuw2O60JTVVy8cSOu2rwZOsesRFHjhuGWy9AzGd+zTYJsPs+2oaT968H3xC5BF2eJXU9DYztHgqaawMEDnGZZKEqRIV4j9ErQLNJz7LoyVqGZRdU5OXJmiNcgsnzeF8QNqJVy7cR98UOyeEUJ4rXnhiqqJDYbFcIqQ3xBSxJvl8ampBLda6oliT99K0E8m0VpbEzAhMJpKdxnM5iRaJ6tUC3fR1xLiw2AhOHvJcTds2EB9flCoxCt6roQq4um/ZKVkiP5w3GhWPXPZFGBzbDnnWYYcERbFrpuaAN5NZ2GWyhAzcpymALgNDcADaAMcfEwF8T37duHD3/4w7j99tsx1vCgdhIsxSEObfwHaSVL0DC4ZpqNT07C9dyqiBmQT6Xgei7GJiexeGQBt/EJ9ojI1JbhOrr2+utxy1134bTVqzGYyWB8Zga33HUXFEXBx6644pAbNwyvXIZqGtC8tBTNnuqaRFY8+WREmozRJqFHvId4s/ey2GaRbtluEulFC2JNtgmWKUVAqhY/W9AWMrZXLkNLp6FZjpiy8bAMflEBsDA7EksOm40qEpdqNwYUFEMX91mGIMO6DbTOvNZzWcy88IKAGbWgnWXKAfmauDaiZzOwZ2akFMSF0+IaTAyRSfuS2M3V2sYAlWeNBB7ijdeGIjJDPGQNUiwT3n7BFZqu18ZOaha6TII4mhuABqiWHM/E+QzzleijH/0onnvuOXzzm99EJpPB//t//w+nnHIKvvKVr7AeipjH1GYK+eXg/A6xQ/39UBUVUw2H1KlCAaqiYqivj9vY841CsYBde3ajyFEUDDK1142OhmZq8xpb9HU0MzuLm267DccvXYrBik3IYCaD45cuxY233opZTiKMqHFb4ZZKUAwDWlqODHFXMk/sgCZRRVA5bztUS6BoFxAmJMog0uv1cxJtmdCUDSbQniTA87y65ECR2YL+OqBBTaWEBOr8PiwNGfwCs9EaD47SZBVX8NzwbC9FU+HaYoIqVZqqVsTfa7XIsEYCrTOvfTs18XuDgFbXmizvYyfminAvgkaf6OQnEPKlhKpcGr27RdFYeaRomi9GC6YxK1tkj5PQILUMz5UWa6OezcA+cEDAhFoT1gA0QFFU6RqHzzeYZ4jfcccdeOCBB7B8+XJomoZ3vOMdOOaYY/Ce97wHH/zgB1kPR8xTPMeBavoem6phwp7ht9myTAvnnH4a7t2ypSqiThUKeGr3bpx7xulkl8KAJC1MRGVqi76O9oyNwXHdqigdMJjJwHFd7B4bw4olSw6ZcVvh2rbvz2uaQjIxG/Fsu9rMTrNMlAVnXFRxXUBpEAsk27AFTUhF4rn13ooyZPl7jlNXAiwysyigsfG10MNdgNe6yVHSeI4fGNM0HeX9EwLGrxdRFVXcAS3MGkWmYCHQ2upAy2ZhTx+AKbDRYXPVigT3Wg2qacKeFt+wtdVnKPLab0XoPCVZuzqhZzMojU+InoaUhAVlRPqtJ2n5FtqQXGkdqOI2jwbLlGAeomnaMxmmsEbXjVn0AKCYhnhB3AvPutYzWRR2vSJgQm1okc1eRYJrbj7DXBA/cOAAli9fDgCwLAvlchmHH344tm7dynooYh7jb/h9QVMx+Pt+XnbBBVAUBbffd1/1YX3eGWfg0re9jeu484UkLUxqM7VrRfEkMrVrryPXdaGpGs494/RErqPR4WFoqorxmZk6cXp8ZgaaqmJ0iE8DKVHjtsItlaAaBhRNk0Jg8WozxE0LjgRzApI/lPSCDIJAk9WEDKWPTX7QhvBM+kbxyRfpRc9JIk/qcuVQrqpiPquGDHEAwg5oYWuPbFm7QPjh1ujrgz01JVYQb7z/RWfyNYjL0gQ32tlVCBDmekHRNbjlspSNuAO0dAbOzpdFT6MNirDPujk7Wa9UeCXUDLBhjQ+C50lYvvnn+JDAZ6kErSFhie88QtYBCQJijXsm1TKFBTbDgheqQIu5gFb3rd+gVa7qmVYNQOt+Bh4UUsaFwHzFPeyww/DMM89g7dq1WLt2LX70ox9heHgY2WyW9VDEfMZ1qxsGLYHsF03VsOnCt+P8I47EAcOAuW8fFp56Ci1cDEi62aTITO3gOjpn8RIUslkMZDMYWLGS23i1pFMpXLxxI265804cv2xZ1cv7kZ07ccn55yPNaQNaHfeuu6q2KUmM2wrP9g8biqr6woFg/Gzeiv2TDGJqhVbZO9IheE5hHuK24PLwxkO2yMyiKk0inQxZ6/IIXm6lUkQxdCFrQCs/ZSGEfC56Jo3inr2CJhQdPZ9Dae8+oXNo9oM34AkWLmqRxeqj3f2vZTJwZmehS3521XM52AcOwBwYED2VlmiZNByOVbxxCSoohDSdbrgGVUP3BemkBPEGDt6b/K/70MCn5TeVTlYQbw6MB9ZXoj4HAC32TKJszJqDF77Nh+DIQYs1XEZtxr/eW89LrVS8Krq8wc1DGeZ3+gc+8AFs3boVa9euxcc+9jFccskl8DwPX/ziF1kPRcxjXMepijVKgtkvpqKgb3QUMzMz/gbKENc47VBBhIVJkKn93/fdD8d1oCac8W/pOgYXL4KdsD3GVZs3o7hnD/5ryxY4rgtd03DJ+efjI5dfzn1cRVHwnz/7GRzXhaaqeNdb3sJ93HBqMvskyAJxy5J6iIeUkyuaJv6QIBtNPo8WXMHl4Y0HTRksExoDLL4tgfjDVLMILCZb0HMcKIYOVdeFZF01iqjVrwso3w+bi5bOcLXGY4XR14cDzz0vdA6NQTq/WaxMliniq0OA9oK4ns3Cnp6WXxDP52BPTUstiKu67mfhSkogAosQxJuqOar9PsQ0IFVNM7HeEWFCdLUSKMEKm9qklOo8KgExNZ9PbB6NNO/jTO7V8C2RKHmgFq+FZQog4XnF85qCCrUohgG3WIRKgrgQmF8lf/mXf1n9/xdddBF27NiB6elpHHHEEayHIuYxtaVWiq7Bs51ExnUdB6qm+Q+mYgkgQTw2IixMgkzttx53HCYLRViTU1j0mlOZjxOG5zqAokBPpVB8dXciYwbomoYrzzobf3nppXh5+3asfu1rE8nQ1jUNH7viCrxrzeEoLFyA9Ng4lp5+GvdxQ5FABK/DOyjQ+wfHZNayjoQ1tqscHKXZYAKAogq1vmhqFilB9mNjoy7hlgkIL48WTeNnBwRlwMlnC3qVg5uo5rWNIirgHygTLd+vmUvj2uM3QRbf86ETaiXDUSgN4oXIZrFhSCOQtqmK0PM52NMHgIUJz6lL9GwWpbFx0dOY02hBI2MB4meTZYpgGwrVTLBReUgVopbNJF5N4Aej60VILZ2GMzMLQ7QgXptEoOviLFPCbGUgPpO+XaNKLe3f12oul/CswmnVHDlAS6XglErQ5Y7BHrJwD/csXbq0JzH8q1/9Kk455RRYloV3v/vddd9buXIl0uk0crkccrkcjjnmmLrv33333Vi/fj0ymQxOPfVUPPLII7H+BkI+ajcRCpTkyuZtB9B9QdyRIMPlUCCwMHnq1VcxVWlymJSFiQkFixaOwjIMX6hOALfk+z36B+fkD/iebSM/MoLF2VzidiWWAqw5/HBYEliVAPB9QkVnqcpX2QcgPEtTBrG3EdFz8jO85PIQb/KeNPn32ehEaDamaLubkDmJspcIE4ETJcwjVNC9Ffa5KJrmC5iSI0tfA2nsbwDh93krQm3BKui5HOypqYRn1D1aOi1Fc/BOKJoqT7C/AZH9CZqygA0juQztkL1vktVkYeuUnsnCPnAgkfGr8wjLVM9k4MwKrkgKC2yKanTdYq3U0mk/mCQKr3WjSlFn7Ja47Zu4K4bhJ1oSQmCyY/rQhz6Effvae+bt2bMHH/rQhyK/5pIlS/DpT38a73vf+0K//6Mf/QjT09OYnp7G448/Xv36vn378Pa3vx0f//jHMT4+jksvvRQXXnghipKUoROMcFygxUaWJ65j+xniEogehxKXXXABXrvuCDz60kv41VNP4dGXduKsU0/lbmESRLbVlJXY5xlsvhRV8x+QAtBS4rLtFE0T691dsx+RIXNWVryQJnuJZg+FEHaA0ywTjsg51dh3AZUDrehNbWNmkQSWCTI1sAwIC/ooCQoSjYgUU8MskoQFm1rYt8wVNEtsc+SwygeimY6WKQkLc70gX7PZcLSMvJZHIqtPmivMEuytITjpIdQaK5uBk3APFs91myxT9IyfIS6SVlnZIvDXyuZnsppKwSmIe5/aZV1rqZRUgngnKz7NsijRUiBMahwWL16Mww8/HOeddx7e/OY3Y/369ejv78f+/fvx+OOP4+c//zluv/12/PVf/3Xk17zooosAAA8//DD27o3eSOeHP/wh1q5diz/7sz8DAHz0ox/Fl7/8Zdxxxx1461vf2vTzu3btwq5du5q+vm3btshjznc8eH6UTklu4fYqwnTiVDygVMNMZLNcKBYwPjmJof5+rpnSosYL0FQNf/ya1+CSt74FL297Aitec2oi43u2DUXTqg3etBR/3766EnRB+oeosnyJqrYBBJ3Ii2KaKUlOqEAmOhAYltFrWXBLAsWnhoOCPz+xF3pj5pXIzKIqEvl1B4TZhIiuOBCF57pQjPojgbAM8ZDPBRBfnh2VwNdZ1HMlrAGaKFpWYCli730AoVURAaphJGbFGAd/nvI0TG2FlvGtMERaULRCS6dReOVVMYM39iAxzMQCB6Kff6LHr51Hs0VXRnigSfj6WEuLILWeTsOeLUDYCcptnRypplJyVfl0sExRTRPuxERy8yHqYLKr/NSnPoUrrrgCX//61/Ev//IvdRnbRx99NC666CJ8+ctfxqJFi1gMBwC4/PLL4boujjnmGHzhC1/AGWecAQB47LHHcMIJJ1R/TlEUHHfccXjsscdCBfFvfOMb+NznPsdsXvOR6aefQXlyEkMnn5zYmJ7b0EhBURI9BKgW34XLcR18/+abccf9v4bruVAVFeecfhouu+ACaBz+xqTHC8MtlZDrH8CCbDYxMd6z/azFJDdhrlN/oPfgiemILVIgEy3OVdAkamIZoGi6HKJPq+wh4dnYDXOyJJiTLIeWCtJmYzcefgX5dVcJEellWROSbmYpk0VSK8sPPZ+HPS13A0EA0DLpig/usJgJhAopggRo1wVCkmW0lO+1rmfENA8EwoNAcxIJ9lOdrOf0TAZ2wpm/jbSao59lLyhDvOEaVE0D3mQyAY6wdVZNsposrEJLQJVUeHPPFGzRGeJh67UqpmdOmM864N87xbGxROdSR5tkzOAZIwteG3sXIDhfyTPf+QazncCiRYtw9dVX4+qrr0ahUMD4+DgGBweR4uBRe8MNN+Dkivh6/fXX4/zzz8fWrVuxYsUKTE9PY3BwsO7nBwYGMNUiSnTllVfiwgsvbPr6tm3bsGnTJuZzPxSxpw8AAnx4a0XEgxm+CQninK0Wvn/zzbh3yxYct2wp8qkUpgoF3LtlCxRFwaYL3z7nxwvDz5xO+iFvQ9H1RDurw3GAwP9e8xvCJtW0rDETIknRpfYwEvhJChHtapYqVXBpexi+wFsULoh7bkjWjGXBnpoWNKMWBzjBIr2M9g5SZRZVaGz0CdR4mwvLpA0RgVNir3HgYNZn2AGUFy2z9QTcW62uX6OvD/bkpPSCuJ7JoLx/Utj4YaX2wprFtvGedWZnxQvibdZJRdfglv2eL0QHOtkBZDMo73olwQmF0CI4oxiGsKqg0KaaAi1LklzzWyYTJFw9Im3PirCAfcqCUywlvm5W1/GGohktI9ayyf/sws+wfvWoRNV+HQVx8daG8xkuq00qlcLixYu5iOEAcOaZZyKdTiOdTuMDH/gATjzxRNx6660AgFwuh/3799f9/P79+5FvUaa1ePFinHTSSU3/jjrqKC5zPyTxPH+z7SRYttew/qmmCddOYCHxgvEMeJwW2kKxgDvu/zXWjY4iX7mH8qkU1o2O4r/vux9FxvYASY/XjqQzpYMNoWroifn2ebZTtfvxM/CSe3/dchmqaVTGTrbRnmfbVeFflcTbTXR2cRjCBd4K4Q0HxWYwtD7AifTrFdwMMQwZBfEWHtVCvZZDffLFZ4gLEWhCPEL9hn3JH3ZbeWDrfXmhQnNURPslh4nQwprFtliLpPC+7iTizpWGlYYuXEjxWojNAVpaggzxFp+30N4NoU01EzqLhAjSiq7DS+gs36oSKHGRtdU6oHSufOCK0nxtqpYFt5j8mtTKQ1xRNT8AK4gmt4AahFRet6FTs2tF1YQklxI+cp2YekRV1eqitX79ejz88MPV73meh0cffRTr168XNLv5gZZOw02y5KxhzQgyxJNCUTV/IebA+OQkXM+titMB+VQKrudibJLtgTDp8aLgJVgDqkBJNJLsOnZV1PMF8eSuW7d0MNsp6ezoWkFcs+QoZdMsOYT5WkQ3ZAvwRSk5LBQCwg5wmuAskDDxSdE0uAJ9XUOrLxTFF+9FESbSif7sQkR6PwNL7P3nVywlK3CF+6imxDQWa5MhXp6UyBO0BVo6sEwRQ5h4IapZbNg9BsghiHcSKGSYYxT8JumC59kh+1FLp4QIebW0zToWpZ013KuqaSaXqBKWGZ1wcCBsPN9eJ7mGtq2F+YzQdTwMv1GkgP1Jm3tHURV4InpSAYAoy9Ee6GSZQohF2k/Gtm0UCgXYtg3XdVEoFFAul/HCCy/gnnvuQalUQqlUwje/+U08+OCDOO+88wD4zTiffvpp3HDDDSiVSvjKV74CADjnnHNE/jmHLL64p0IVlEkUoBj8MrYDPHiJbJqG+vuhKiqmGoS6qUIBqqJiqK9vTo/XiUQ97IIx9QTLFO2DYpXfpDDhDPGqIJ5sJrLnONVO7mpKzOGosSO5KolfcC3CG1cGhGbPmnBE25NINqeWmfSCRfpmaxmx5ZihcxJ9/4XZuAiYU2N2pSogQzys+sIX2gSt0yEHx7nSQFB0Q0ZZmtUBaNFMVw6xuVXWY4CWFnP9d4tID+yAjtmP0jZ29hEVxG4MRCp6ctn+nT4zUei5rG/FmhAtLbryebmaMsIP2As5O7WphFRTKbiSJRYFKLqWjHtAFFwXaGHvUkX0GjmPkW8lrHDNNdcgnU7jC1/4Am666Sak02m8733vw/T0ND70oQ9haGgIixYtwne+8x389Kc/xZo1awAAw8PD+PGPf4y///u/R39/P773ve/hJz/5CSxRTZsOcbxSGYppQhfcgEIzTTi8NxGuWx/N5iSOW6aFc04/DU/t3l0VqacKBTy1ezfOPeN05g0nkx6vE0kENxpJUizyvdIrmdKmlWiGuGeXq760SWdH12ataoKsShpFHyktU0SLhBXCDkuifRVDvXFFi88SZtIDLUpthWfSNwiuohuihon0up64mOnZdjVYCCRf8Qa0KJ/XxJTwduovIbSMfS4Q5j0rSDRtaZmSEZtFDyCaZYpo0T7Cte4L9xIEF0Jsjpp+TuC9226Ooj7rxjkl2ki5hTWVaPRKr4jEaNEHRs/nUBbZTyTkVlEtMRni7e4dGRrmtkIWC0oAHatoAPHVpfMZadtrBw06w6i1RAljw4YNeOyxx9hPimjCKRahmabfaXhfgp2GG/YMimHAm+L7AHVrLB8CPM9t2eE4DpddcAEURcHt990H13WhqRrOPeN0XPq2tzEfK2w8VVVx3hlncBuvHVqS5eKVDUeS3l21B0TFNOAmuPGrz063ks1Orxs7hZKAzuS+0FKTiZlkM9Ww+YRcc76H8T4Bs6nHc12oplxbhDBR1RftBDY/apFJL80mvIJvU1SAkXDFT0Bo1qpgeyDPdaEa4q9xt6GxctL9HQC5GrG2m4uWzcA5MAM9l014VgeJJOop4t7TVtn+Qp65IVUYQBD4FbtGRrJMeXlXgjMKoYM3N+DPszQ+kcx8WhHhWg8CxUk3dg1ou66k03BmZmG06DfGbU6O07ZKgevYbouxvYq9gyBvdSOfhz2dnBDd6rrQ83kUXnk1sXlEQUtZ4gI3qgagea+tZ/2eGTKmnWqWVTnjidsvBHiug06ZlEHVuKqL35fON5i843feeWekn3vjG9/IYjhCItxSCaplVTzExWUoJJJR5TQcWg0Drm1DM0zmQ2mqhk0Xvh3nLF6CYi6HvlQKg6tWMR+ncbxzD1uB8uAAjLFxLDzxRG7jtUMxDTEHpaQSV2o2X5ppwUkwa7M28061zGQ3nU5NU01BWdCNmYcimykBCD1EivbEDmjl/QpFESf0hIiqoglt9CmL7U0NakqwABVmLSO4GsJzXCgpCa6nBtFQMUw4swn37miVAVbxnm+Xsc1lLi3uc6OvD+WpSaGCeCSRstI4Ws9kEprUQUJ7LYjKgG3xHBH+7EXngIUsGeKdnnmaBJYFjXZ0YWhZ35NZlCDebl3Rs9lEfasDhAYiWzUZ1XW/50+lmjRpFC3ZRo2t7ED0bLLWLU2E3E6+r7mIdTx4pjR/Llomg+Je8Uk8YQhpUN4Cz+28llf7iiW/bZj3MBHEo/hzK4oCR2RDJ4ILbqkE1TS4NpmMgmIa8Mp8y0waN/aqacIrlgAOgniApekYWrIYpYQeNiaA0eXLMTE2nsh4AZ7rVDfTqpGMmOR5DRv4hM5nbo24oJjJ2sPU+ngHB/bkxq4JBFimkMzQxIWdDoTNRxX03jTRqtQ95TdE1TPpxKcUJj6LpqWNi2QZ4qopJrMoIOxa10TbA7USI5RkM+QaBUwRfu9h1zFQsWMoFKBnkxOgfYEi/D7X83m/nH7x4sTm00gUEcsX/2bFCOJhgVZRfthtsrBV0/CrTCUUSIGKMMj5XNGRKNeaDMJ9BLEnsFYwBwcTmlU97SoC9FwOMy+9lPCM0DoQmQCt1vwgoK8KEsRFEPasV1RViGVYO4T10Wi3jluW8IBcK1Qzefu5lkTw7PcFcQnOf/MQJquw67od/5EYfmjiC+LJbmb9bsYN/qiGwb1xgtt0aDXhJGC3kKjXs+dV7EOSGa46rOtBDTKXE/LfrRWHq19L4g93DjbWUDXd36QnRK3QkHR2ZnOGuAAP8VZZz4LwD2gNFiCV7BzRtAoeiDx8t8wQ90R6kzYLpzJ4iDeipVJCN9qtPOmTzARrpHXzxmQ/v0ZhIunxgdbBJj2bTdzrua1fqaBMzloiCeJpcR7ZoYFWQUJKe/ubLByB3rORGkEKxovQiE0R0Ii+iTkg3Le7Fv1Gjsn7RYeL0koi54JW66wqwfWkaKocXsqq6p+b5jntnsn+OVauwEGAaspRcQtU3sNOVTSWBUeyZJr5gjzKADEnCTLEAUBRlYpHEl/CRC0FCXQw99yGsmYdHu/IoxJE6yWJcHLCc+xqCbJqJNNl3bNtoNYCJ6Fmar6nZk1xToL7iDrLlIRFu9oGPv79K0ezNkXghrfR0xyoHMIl2Fu2EguEHmpbzEkx5AgiBPg+8AKzPEKuHy1lwRXQjKmKJ4fAVEuroI9vL5NgsLCx2a+ZfJlvq2CTlskkLkC3FVElacbYKdNLS6cTrcCqI8L8kqJdVY+eExvciNoIUiRRgi8yrKudgguAeEEcbbLYVdMUUg0Q9vkmJUgf9IWuR4YKt0StQdrst0WvUaEoyQRMapGpx0g3qDJZpkRpqplw1ThxEOZXt+M4+OIXv4jDDz8c/f39AICf//zn+OY3v8l6KEICan3GlIS8bz1PzCa20WeMt/9zkK2sKAmWbQXDKAllSwe4LpRKtrZiJNNQzLOdalb6wXETuH5dF0qHjB+eYwdZ8UkLr55j1wcCRBDS4EtkYz/ZMtZraSVkCM0Qb9WgzTTFCtANyJghrlq+1Q1xkFaHvKStXJosUwwDbuLiTPhhTURGdrtGc6quC60qACoH2w57ULHrZOs9ctKVNO36Pvgevcln5VaJIjZrgjNE54gQ5YU0l25EFex1HkW0T5rQao4ELECrY4dVSAluNg9UBPFZwYFP+DY/wgOwDWiZ5J8tUc4qiWoGEUnCTjcynte5z4JpCq/OmK8wfzJ87nOfw4033ojPfe5z1aj12rVr8e///u+shyIkwHMOioqaYSRT6tHC94y7B7Tr1Y3LW0D1bHHdx1U92ZK52odtUmJAkwWOrsNJIhO/4TqColRsgPjj2XZLb1b+YzvVoIcowj27xWXOthLkhB/C0S5jVLDQ00LAlKnMUBPdVDPkWSjciqfV87nStFEILa4nNZVs8KAx0KNomp/lKwFCbC0kFK7qiGIPkUpJt076QlvCh+12vs3ZnPgM8QgirhDv9QpRRVyRlW4AIt4TYoOynT5vJaHq1HqaA5G+BU4C+4dWlmESBPQDv/lEaKMdCOu90AYhIr3Xfh0S0fckCknY6UbGdYEOgXRFgF0e4cN8x/nd734XP/nJT3DZZZdBrdw8q1atwvbt21kPRUhA7WZNsaxkNtte6671PC1bQhtfcRRQPds+KCAmYEdT22Qy6bKdWnE6qYx4z3WqntZAcpnpUCoWPxWSLOlqEoQTTFRvyvpTkj/Ahfk1akIzxOXz6a7SSnwW6iHewvNSggNcLYqmJV7S2gkZyurD0DLirCXa3n8JHjj961quZrEBIgSBjlYWgsW/SEJqQhWTYbTK5hOxdne2vxHZ6Fd+m48ozSqBuSHcC29S2OG+1XM5sRULFfwzQUKWKYL2n50qVbQkRd82UxF1/7d7f7RMOrlgQQ3t9pAy2OyEkYidblQ8z9c32qDomvBkqPkKc0F8amoKy5Ytq/ua4zjQdcGl8gQ3AnFPS0jYa7XZV1MprmXOnufWWWzwbtZQ14TQ5O8jXvu+Jp5x6bl14nQiOG5d+ZJqmkKauKgpK7HIeq1lCpBsVpHn1GeIa5aZeFZvywxxUXYbbXy6bcFlmmENPwHx71fo2i9yTq2QZRMuOSIzsFqJOHo2m+z9F8FuQBSKoiRvs9FBuPKvGbHN+TqKfyJ7QUhkd9XOQ1y4QBrSELkRLZ1gU/sw3Pp9aitkuCdkXcMCOt23ei4He0oCQTwh24R2fSO4VwV1WuMlsSoRFhBrG0jMiE+YacCvtJUrk76KJLkgUexSFVkmOw9h/vQ69thj8YMf/KDua//1X/+FE088kfVQhGQoCWXptWz2xjnTszGbRNE1rk0YXduBWieI831v/bLtSpa2kWyGuGc7HQ+YzMdsKFMX1XxDNYzELDsaLVOS9M/27HoPcV/ETDrz0KkLCBychyjLlBYZqpm08DLNsIafgFihp2UTREsuD3GRtBUvRdqTtCDpbOxaWlrwJHwYb1X5IAtJ2zF08itNPGDRgOe40lZcAP5zJTzQKiDbv42HePVnhIri7dFSYgXxqI0/hTZxBdo2rKxDgbDqqU6ivSwNFNWk+ii1rALkf813Ck4kGohqs5Srgqyv2r0/ekaO67QWTUBFVGTPckkeL57b2UOcEAfzHfjf//3f44orrsCf/MmfoFAo4L3vfS/e+9734pprrmE9FCEZSZWtt/RH5Nw0rHFjzzuS5zch9MWfRN5bxwUCP/iEs6XDGvLwbtDRWKauGHpClj/1/6laVmINbBqFlyTF4MaDnca5oiN0Dk5z1rOWEmiZ0i6TT4IM8ZaHR0GWBS0zeiXMmFE0VUjFiZ9R2MaiQJRo0mI519ICP7sW95+q61yD3Y2EVmMo8giFej5hK4EOfqXC18eoHuei1sk2VZSJ32sd3is1JXFmIQAtJdoyJVovIZGe9UB0r3PxFWatz21+hvhUghMKR0kqOafF8y+JpIeOfu4iK2xqUHVdSACnrdWUhL7mSSVE1uFGC0wrmgrXkaGxZmfLFEIczD+Z1772tdiyZQtGRkawYcMGuK6LO+64A6eeeirroQjJ8D21BQrivDfWntfcEIGjJu57iPsZtVpCGeKBJUxiG7Lq2F5TUzHegkSjCC+qu7NqGol5rzVmJGucg0h1YzdliJNlSqvsOT0rQQZImw25kc+hLKC0uFWGuCzen7WIKmudawcpsZ70cliVhFVjqBI1V/Lvr2TXo3YHXT2bEes9HdEewm8iKOJ+C8/WFZFFHC0rV7w1QiuEr5lRrzXBGeKR7wmB8+yclSw4y75CYsllTvvKXJ4BWZn7ZjQhQJhv9/7I1HQ7IAmNohHP9aI1HDbN5JtJx4FzPzwiHOamvbZt44gjjsBXvvIV1i9NSI5qJNRluI1lSrG4l9uwrQ7PHjwu2eJejWWKYppwJieZj1E3Xo0lTNL2IZ5jQ9WN6n8rpgHPLgMcfcU9x4Vi1WaIJ9QUpOFS8b3o9/EfF82CYqIZ4k69f7lqpWBzvqab59AsPGlCBfHwcmgZ/BPblmz29cGenIQ50J/4nEIbKmuav35JRCD0Gvl8ouO2K7EXmu3Y4hEpo4c44GcVtQrAMJ9HY8Nh+IFSr1wGLIv7+J3QsxmpREstnRFrmdKl+KdnswnMqjMiMus7CuLZLOzpaVgjwwnOKjqi+1N4XjTRR3SGeGThXqAFzVzJSk6q0Xu7vUIgymu8nj9Rrhc1uWdwJzyvc78BpswBT/5aFEuAIO5Fe4+CJrVaKp3ArOKj6r6Wplnir/v5BPO7bcmSJfj//r//D08++STrlyYko9HSQlHURDYTYfYagC+w8fRiDrM34BkEcEVmiJsGvHKClikN0fBEuqw3iCF+aVzyUdmkKisCajd1yQridnN2euKWKc2ba6FiaiuBV01mLe1EqwOA0deH8lSywQwgXDis+37Szf/ajKelU0KyWNv5LwtvEBdCUtlwrWh1jWuZ5ETgsL2FksQzMCJaJgtHdMVKDcKzdjtYugQIFykbUHU9+Wddm6aagC+Iiw7+tsNfS8U9jKP61asCLOhq8YOLUZp/CgzKRhEZJeiz4fdEEVdtDQBalm9SRhSLHeHrfAXF0P3+SwnSqg9EgKJrYiz5WpBYQmQtERsOi95jdouasP5C+DAXxL/+9a/j8ccfxzHHHIMzzzwT3/nOdzAr0YaQYIigCKZvrxEiiOs6141MWIa4mkrxs2lxnKognkT0tbaxpWoYcO0EH26uW2dH4z9cOf+9LZoGch0z5GAlZCNRIUn/7MYNsJpKPvNKlmyTAL9ktVVZpCrsuuiEns/BnhTgtdnmECXk8NTOr1uUN3bb90isH24YsjYn9IW6ZETg0L2FaSbWW6ITsmWIiy4Z76rRoQSCjkg62TKIzvaXnoje3KLX0eg2QnJWBAXoWfH9SFTDSESAbRc81zkHhFslttWSWHPPDhXeIqoaOt1PfrWPPHs53j3VQolYPSPTXioKqmnCmUPzPVRgrgZddNFF+NnPfobnn38e5557Lq6++mosXrwYH/jAB1gPRQjGDROXFAWex/mg4rpCGhP4D6gQ/2FOWel+hnilqWYCommtv3TSD7dGQcDvss53Q+iLo/wsWUIJiWgnVVkRRtLlwLWHNhFWJe0yjEU0sGvVVBMA9HxeOl/sAL+jfPJifSuLGaDyfiXcEKudMOaLiMln1Tb2CahFy2SEZPpGOXTKRpIZ4gi5jpLsLdGJpASaOUM3limSBaBU00y0MquzsCNHFmgnRDW4jSo0C8cL961vRGjPiAgNSrXMPArQtNl/cs8Qj+AhnoTFW5TgJs9zfivaBSuAwFZRnqotEXgRm2qqhi5NtV0UFF2fW57nhwjcnrLLly/HZz/7WWzZsgWvf/3r8R//8R+8hiJE4bhAo4VIAlmfbaP8KsdmBA1ZzACgp1KwOUWOXduGWhFsFSTR9dsTlj3bKE6rhgGHewCgueO8wrmZhee6VVsaGRDpny3CqqTV5lcVlLXUrqmfCIG3WxK3KGkjDohorNm25FiQD3zbOYkKZHSwTVAMXbqS1iQb24basSXY5FmU2NeSKNNR5BcpRT1X2qHnk10nO/o2S9ggrhGhjbe7EsSVSvAxeTpZPARoaY5VtR3oJDICYnz2Q0kgfty2Twzv/UuE6zoRizdZ5tFIJ6upTAa2RBniAWFV0NxwowXhVMuSbn/ZDt9GlQTxpOEmiN955534kz/5Eyxfvhw7duzAtdde29Xvf/WrX8Upp5wCy7Lw7ne/u/r1p556Cu94xzuwcOFCDAwM4Oyzz8aWLVuq39++fTsURUEul6v+e//738/qzyJqCBNzNMuCwzmS2k5E0jj66Plefg1ZXDw3yo4D6MmJp55jC8tE8YXig2MrhsE9QhqWLaxwfnB6jtPSYiHRjUQFGZsR8qSVZYqeEyhettj0Gn19KIuwJYmIlhHQoK2N5Y2ezyWfId4my0mUD3yUQ3/StHtmA5VghkQe1QD/DLlawmwlVCNB38suGpzJQqLvTwNeG6ukWrSUBbcomSCey8GeSjBwGNFeRmZENoKMapkCVCzwEs5kDYj63FE0TZhoH+W91LOZxKwoOgX0eAf82p6luVumRPAQTyhDvOM8LDGWKW2tpgQlXLRD1ZP1Wvci9vJQ9WT7dMVFoYo8ITDfpXzhC1/A2rVrcdFFFyGXy+Huu+/GI488gg996ENdvc6SJUvw6U9/Gu973/vqvj4xMYG3vOUtePzxx7Fv3z788R//Mc4//3wcaDhM7d27F9PT05iensbXv/712H8X0UxYaXYiG0fPa8rUrh3f5vQADcsuVVMWt2yHps2Kwlc0bRZ3ErC/qY5dLxSrhs4/O85tvo403uXEIWMCfoMUz5ZHbDhUaSmIJ5gN2jSfFhs6o78P5f3JN66MihjBvnVGiJDPsJMPpggRsY1lCiAoG7vD4U7U/dcO1UymsRkQvi6pZnK9JTpl8AMVC6CkDuARsiNFWm1EFv8kaY5cix98SjBD3IkgWkjQyLAdQm0+vPCeSWFw7WnUiW4y2QXdE1Gy7RP1tG8zHzWBpKB2+yneNlnRPgv+a3yUeQjpd9Rhb5mkIB41MKMYydq8hVV5h5HkXooFmsBg/3yGuYHuz372M/zt3/4t3vWudyGTyfT8OhdddBEA4OGHH8bevXurX3/Na16D17zmNdX//tCHPoRPfOITeOKJJ3DyySd3Pc6uXbuwa9eupq9v27ath1nPLzyn2f5BTVncm621e1Dw3bh6zRnipsmttKXxkBpEXxXd4DJeeGPLMjTT4jNe3dhe1S8dABTTTCBD3G6+fi2L6wPdc5xQyxT/OipC1RP2NAfEWvsqyXpkthIytEwGpb37EplDHW2y50Q2W42C3peHPTkJLF4keioAggNcsqJKJyFRz2VhT0/D6O9PdE5txedcDuWpaVjDQ8nNqY33O+CLraWJ/YnNJwpJNqkLWwOTzIDu1PgQOOg/b+TzicypE9W93kBy91aVLrJ2ZbPO17MZ2NPJZRZGEr4yfvNRPZdNaFbdIbIRZDdC88HzzyDfOYUQtWqi+vOel3wj0Ag+51o6lVyGeJt1RLX8hveqaSYyl6TpVDUGBOexBCxTOnqZC8gQ7+QhnrKSm1OE9wioWPKVSwCSWcfD+rqFoaian4w2R1DMuZXRfqjAXH257777WL9kWx588EG4rou1a9fWfX3t2rVwXRevf/3r8Y//+I9Yvnx56O9/4xvfwOc+97kkpnrI4dl208NcS6VQ3L2H77htfKO0TBrlV5PLWlSgwPM8ePC4NKKsfc0g+qpyEsQbLURU04BXKgMJCOKNdi2qrsPl3VTTbe5Q7QvTHAXxFhvgamCl9xhiLIQcTnDQJ1ezEgi6AIAXvrHTc3nMbN+RzBzqptOhLDKdhj0zAz1GcJkXRr4PsztfFj2NJpK8ljsJiUY+j/LUVOKCeLuDlNHnN2tNVBDvMCc9l5PyWlJ0v1JJNTgFoSuEHX5VK0FBPILopmezUjWbE+pF3IOvsyw2RmoqlaiNS7RMUF/ITVIQ78aOQkunYO/Z2/kHOdDNtSPE67hCN/NUTT/7WUlY7I1ij6Foml+FnNB8WgmNfiPHAiAyAFmpcOPSWyqCyJpEhU0UYV4TUXnR4VpNsvooynsEVITcJBuBuy4g4NzKmyT7xxAH4bJD+z//5//g3HPPxXHHHQcAuOeee/DjH/+Y+Tj79u3Dpk2b8PnPfx79lQPnyMgIHnzwQWzfvh2PPvoostksLrjgAjgtyvGuvPJKPPTQQ03/brjhBubzPdRoZZnC+8HR1vcs7WcxJYmWUAdqLZWqRF/50LjxUU0TDsfx6sb26sVpPxOf89NeQVMQI8jU5oXnts8Q50mrAyDvIEA7hGw0w+YhqPy+02HDWjAsJnM9Alo2A4ejx2Qv+JmGyZW2t2rSGuD7mifc6LPDNaXn8rCnE/Za72DjoqXTXP1KeyWxzy/EC1NJ0I8ziuihZTKwp+WxtRFqY9GN+CewIWMYisK/QXsdEXxe/QZxCd//nhc5o1kV6CEetVklkIzncku85gSTVvjNZpOfZ6fnddK0P8sK/Cwr6Bz3U1GCE0kQNUiStO+9TEHUqJ+VZlpwkjxLdrHmyFap1Q4FCT+jCQAcBPF/+7d/wyc+8Qm84Q1vwI4dfsbd0NAQvvSlLzEdZ//+/Xjzm9+MjRs34uMf/3j167lcDqeccgp0XcfIyAi+9rWv4Q9/+AOefvrp0NdZvHgxTjrppKZ/Rx11FNP5Hop4jgulweJBUTU/85bnuG3KZFRd59cksMWfpedzsKc5HJobxuPtz9Xc2FL3M8QTgkeGfbdolgWHs2VK2AOc97gAWmZkJHFgbynGV8pCRRNkFPNuYtRIJ8sNa3gYxb1iMtM6IaKioBNGX59v45IQYY15a9Hz+cQbfXYqsRcj0refk9BGa20ILG+SoPF+SlS4jJIhnssm4lnqXwcRfEEFiWoAujqIJx1sjfoMS+xZ53V+VohoENdd5rXA4IvjNlk1tkJ4hnhEsVlLp8XMM+Jnrmgq3CSCkW32f3rFRkgkPBtrRr7/FHDdG8gkPNcSpa+HoiXToybqe5R08Ndz3S7OIcn1RCPmJsxXga9+9au47bbb8KlPfQpq5QY68sgj8dRTTzEbIxDDTz31VHzlK19p+7OKokBRlMSFjvlA1DIa5kQok+HZfLIRPZ9P5NCsWSbX6Ktn14u1qiG4bIf3Rxjy+qplwuPdVLOFhzXvygbXtkPFOy0JYaGlGG8mUl1Rpc01pfflE29i2WkN1fv6Ehcvu0FIg8Y26H35ZBt9djgo+EJKwt6THbJ5kmwWWSVqFpZkjfX0bE66Zp88iJIBltR1E1VYE54h3o34l+Q8IzWJk6MyKyDpyh4AXXlz+4k2gtamLjJp54zXuaB5RhX2/AAN/+uxU4a4aIsqPcsvUBVVP1CtFByeZ4So123CElIkK5ekni0RPcQTP8+1sc9tRDV0oXpGt5qUoip+dRCRGMzVzD179uDoo48GUJ8V0K0gbds2CoUCbNuG67ooFAool8uYnJzExo0bcfTRR+NrX/ta0+898MAD2LZtG1zXxcTEBD74wQ9i7dq1WLduXbw/jGjCL7MNuYR438gNDRibhjc5LcotNHg9n0OZR1Ziw3iKwVes9cvaD2b8Bz5/wlCSDWwAlQoHjsGzVk01E+mm3qKxnZ7NcrcraCvGS3IwtxaMoLiHb/+DJjpsxkVlYUfN0jT6+lBOOgO6DUa+j89a3ALP6eDzKODz69TAUsicOlimAICRzyV6LUVZ5/21cR4I4h2uGSC566ZT1UUA12rATkjs6xwluKHn+GV+9oIuKENcBsuGTnSTwapomi+gC2AuZNx7TjTPYS2TgTObUDVMy35YGeGWKVomC3uG0/MvcuCTb/Cum3Ug0cTKCPNKKmgSPXhhcbV1bcSLYMcVoJpmohXvTXSVzQ4olpV84so8h/luYN26dfjlL39Z97W77767awuSa665Bul0Gl/4whdw0003IZ1O433vex9+9KMf4Te/+Q3+8z//E/l8HrlcDrlcDvfccw8A4LnnnsNb3/pW5PN5HHnkkRgbG8NPf/pTaDyaQsx3XLdOQA3gHf333A5ZlTlOzZ9aPAs1w+TeABKoZIhzFKj9De3BBVs1jGT9wBpQdeOQayzR6tCgqAk08nGdJosjANCyWe7Z6b69UlgzS052Q61osx+xRkYS9+uOmpmZtK1M1AxIoy8PO8mM7A4k7WseqaxV1xJdx6IIE0GzyKSIMidjoD/ZCg3X7eghrGXSiQt1tSRVuu/vqSLskTmXrwPoKiNWFF4Xzby0dCbRoEqkBqkZuQI9fnWIAI9eifykWyGrpUMjUcVmQGB1hxcto1TPJNPTot01qBoGvATOle3wK1f5WaZE8qXmfK1E2cMBySeIRWpGnJCtTtTPKmnv624sU1STb4V9J7wW1eGt0FMpOAk2vyaAZnUkJp/5zGfwzne+E3/5l3+JUqmEa665Bv/2b/+G7373u129ztVXX42rr7469HuXX355y9+79NJLcemll3Y1FtEbbosMcd8fbhZ6lk/H+E6Lc/UQOzTEZfwwFE2F69hQQwIEPdPwYFFNznYenld3KFZMU2iGuGIa8EolwODUib7Fc1RRNbi2DTVEPI6L6zjQDSP8m5XKikjCRC9j2+GBJD3L/8DuOXbopjOJ7PSoaKmUED/zThs6o9/3xdYWLEhoRqhkQHa+DvW+PszseCGBCUUj6eznKJkzQdDHHBxMZlJRBLGKj7g5lMycojRtNPr6MfPSS4nMB4gmiCmqKrS5kZpKwS0WuTyLaunk8R4QeP/qmQy/uXQhVAaBHbXVM5UT3YiURl8eU08kWPngdBZ4tGwGpX1jyUxIvlYTPl0KzYom5lrrOkCk+JmsyVcCRbcv0LNyNehtRMtkUX71Fe7jRK2GEQXP6pZ2vcCSmgMQ/dkX9DtSTU7n0QYiCeLpDEpj/NdxWYNyXjeWKabp6wmC8Lzu3kPVspK1nyHYZ4i/5S1vwQ9/+EM89thjOOyww3DnnXfiP/7jP3DeeeexHooQTKuHeRL2D+0aMOoZTs2f2uwvDcaZrmFWIbztPBpRdT2RzPdWaFbCHauDcXluwFwXUMMvJC2d5upb2EqUUhMozWo1tsgS3zBk8G1sRJS3eZRDuJ7LJevZHYEks5+jZBf5jTWTq4KIIj77Ir08XuuAf50n2YBUlqZe7dAsi69/akDUbL0Eel1EFSiASjWggEznbuaoGkay+6gOFZSAfBniAABFSdSnu1uRR1TDym4z2X2vf7mFFEVLoCIydOBoP6bnssk8syNcgyL7n/Fs7BzVhkNLca4miLBeAhV/7CQtLCLtLXPJ7JkiZtED4G+ZW0sXlVqqaHvOiDaUAaqVfGXwfIdL2skb3vAGvOENb+Dx0oREtDp4a+m0UJFETaeYC+J+d+I2InyfL3qY/QNsBmwlnCa4N1IUVcymNRjfMOBx2oC08yZX02m4s7NALsd+4HZd5bO+X5/OY1ygpWVKEplEnuO09v1PMqOpw+Xs+4jvhb7iMP5ziYjR14/p3c8kOmbUQ3jQbExMRlo4Rl8e5clJWMPD3MfyHAeKZbWfTz6Hwu7kvOmjlLfKOCdV1/3GzgkRVdTUs36Andu63AbVsuCW+B+KopaNBxU9FsdilW6ESj2b9asvBgb4TSiMCJ74tag6v6qzRqJ8ln4VpVh/4ka0TKX6gFNlaSPdeogH1g1GPs9xVs10K9wb/b71lJZKcZwVA1Q1UvBWBGpCgchOPUhUy4RbKkHrsMfgDZf9XWTLFM4Z4hHnoZpWooGmKEkpSTVtjxq8AA4mWGnpNOdZwdcnou4V0ikUd+/mPKE2uB7QRWBTs1LJVXERABgJ4s8991ykn1u9ejWL4QhZcNzQG9zPdBWXZalquu/XxJBOh2cj34fp7dvZjee6oc0XffHQ9cXqQ4RW4rRmmbB5PezbeI/plSxhHltQt02JpJ7LojQ2DoxyGBitLVOAgz7HvMqBPbv13x34FOo5vgdhz/M6BujNwQHMvPAiIJEgrueyyfqso7tDuDnQj/L+/dxFKT9TKkKjz/4+lPcnI4hHaQyl5/Own422R2JBJA/hXA72c88nNCP/+alaEbablSzRRESSiAdhvc+/nkQI4loqmbLZqAdePZ/H7M6dfCfThVCp57KJV88A3Yup/jW0P5kgXYS5+VZAAr2AQggaayYmiDvdNTnzgy8HuO3PWtK1IO5fa6mFSU+0O4ImyokHsyIQXBe8A/2dEg+CvTEPQTzqfko1+YjyUZMu+Pckc6EanfcmmmUl6ukcqRdMUo2uu3jeaRVrmSQE8W7OKX6QS1yGeDd+5wCgppINwBCMBPG1a9c2fdBBmY+iKNWHipNgORzBH8+xQ0VbVTcSzfRqhQevrbVKV6/ltX94+1np7DJuPDs8OqymUnALyTxsAPgCBUdfawAtN/yKYcKb2M9nSMcJbQgL+BkJxX2cmiu2eYDruTxmtu/gMy7aWymYw8Mo7t2H9OJFnMa2Q7PTAcDo60N5cj93QTzKwdKoiF8yIcLHuBtLAGt0AYqv7uYviLfoWdGIOTyM/Y/9AbnVq7jOB4iY+ZzwRjyKoKxyPmQ2EvXgYvTlYU9Pw+jvT2ZOEYR3oy+P0tg40kuXcJ9TI6qVSswjNEr2sjnQj8nH/8B9LlEDIlo2i9mdL3OdTxjdrI8AYI0Mo7R3X3JVKxHnJlNlj57Pozw1BSupXhldZvnr+RxmXkyux0GA53qRbQEAwBgYwOxLnINWDDAGBlAen5BSEAf8c4BbKHA9a3Xy0dYzGdgzM3x6fUQVpLN+oIqLIB6lUSNnW0XPcaFY0ezCyq/w95UPiPz+JNBHoxvhWUv5900idDEvRdX8LG1BeJ7X1fNGEWxZOx9hIog//3xymUaEPHgdylVYCtINL9wR1TTglsvQWDVk7FDaFvydzP5mL/xQ6G+QDiQmiKspy88OSPEbz21lvWOZcHh5ATutvbxVjg/0Vn8rUPFsd1x+943b2rbEHBzwRR9ugnhrkcMY6Edp7z6kl/AVnLw2QZAARdOE+QW3g3cGfxNdiFLWggU48NzzyB+xjv+cojT6zGbhzCZToeRFEFUURan4CCf0+UXMLFISzMaOOk6QjZ2MIB5NODT6+nDgue385tEmUzcp3+Io1j/AwfWRp5DajaCrZzKCmjJHb+YFANbICA48vwP5IzhOKSDi2s0r87NXjL48Djy/PbHxus7yz+dhT4oIlnd3rfl9UOSywwnDWjCCycf/gOyqlaKnEoqfqDHJVxB3nLaBSC2b4eZlHrkqqLLGMm8KLkujxqiVYtmEnzURAxZ63u/jYw0PCZ8L4Nv8JNUwt5MGJROe43S1Z+KiARBtYSKIr1ixgsXLEHOQVjetmk7BneUbXW9HYNui9bMRxKMcnrVKV2AW3n1uiwwkXxCfhZWAGwBwsKkXT0G8VbCBZ3OgdkKWqulweVU4tBHiAX/T5Uzz8RFvL0oP8BV9HLv12P39OJCApUTUDGPVNOCWSol1k4+CMdCP8sREYtlz3YgFgchrz8xCz/A9PEYu20z7mVV6JsNtPv6coh3qeFdg1M0p4mdnDA6gNDGRnLVMlDn196GwK5ksrKifnZZOw3Ns2NMHoBi6H7xjmS3uukALC7TAt5g73diUZNJcrS26yUaTNYDZiGqacMulrv2geyHqGFqWnx1DL+i5HMpJNh/u8rNQdX9fKFNWfRiKokCR2J87wO+ZI1cD81rMoSGU9u1DauFCfoN0CF5p6QyKr/LxPfb3CZ2vD16ifCf/9Kaf53TfRe6Xk0rBTdIyJeL7Y/T1wZ6a5CqI+2fHqBniaRT37OU2l1q6tSFRtOR6eTTRg3ivmgaccoldYifRlrkRWiHmHH7zpWR9b2vRMmybTXhu53IXPcdug9cqeq9l0nAOJBN9BSoNMjhnqLUKNvAscfLc9lk3qqHDKXNo6Nki8z/AHBxEaWKC/bgAXLu1KK1ZfiUAL9qJ8b7nHP/u7e3mUIs1PMzPMqdHrJGRZJsgdpGlCQD5I47A+EO/g8urogPRDy4AkFq4IJkGOhFFFb9ZazKfX1TLidToAhQTuqaiivTmwACKu/e0zZpmRhcicN/6Y7DvgQew79cPYOLRR/3gDCPaXdeKrsNLoGy2m3vLHBlBcS/H9bGL6hTgYMNK2UktWoTZl3dxHydq4NDI+82Huc6li/uYtzVCI70IxmYlMC075vCQdHuYMLR0Jtn+KF08VszhIe57rk73qp7NcAsaRE0QCbz9mY/fxTofVLPwIKolqKIoiVoXRg3Y6fk8ypNT3OcSPRklQTs+r8vqmWwGdoL6SS1RKxJr0bPZRPWe+Q4J4gQX/EZwnG7kCAFBLc32IR5FINIy7JqJeq4T6rnMq6u05zqhPoVair//baeNUaumm7HGbJOxDARRd/abDLfDdWQM+r6KXOgkeihgKvTU4tk21BZ2LYAfgOAppgKdP/MAc2QksQyHqFgLFqD46quJZUN2mz1nLRhBduUK7PvNb/ldQ1349qYWL8bMC/z9XqOKKuYAx/u6gajBDGvBAsy8+BL2b30M+x9/nG8wI+L7pGgaUosXYfzBLdj/2ONcS2+7OZCbAwMYfu1rMXTqycitWcO0sWS7ey25plnR+4SkRkdR2MVP2O2mEgQ4aLMjO5lly1B4mb/fedS12xwZRnEv5+dcl8GNwBosEXrI1rcSDCJW6WH7m2QANg651asw/cyzoqcRiqrr0LMZlPfz6WMEdL5XVcPgFhCNXEmS4SMiduVLzVFk7bYfRCLBenSxjg/0o8yp11a3cwEqiWwJvkfd9FfQs1k4M4IEZrf7DHEtm0nMfoYgQZzghJ7hKIhHQEun2AriEbxi9UyW3cahRbmUovIpEW6VMe1n+vP9HD27daYCL9uUTtnCei7Hx7uvQ9mUZlpwSpxsYjp4aBsDA9yy0zsJYoGlBE+iliCaPIMSPaKoKtLLl2PmhRcSGa+X7Ln0sqVILVqIqaee5jOnbprtWRb0XBYTj27FDMcGY1EzZxRNg6KpKLy6G4VXd/MNbHTRrGrk9NOQWrIEejbLtVliNweq/JFHILfucFgLFmD8d7/nOKfuMnb0XBZ6NovsqpU4sONFdvOQwNqgG1FAz2XhlsocM/a6EyjMgQGU909wmQtL9Jy/l+ItqEQtb9dzOe7Zud1WGplDQ9z3AQHdeogDlcA07yACA6yRERRfTajSJgbmyDBK4+PJVXh0GV/MHX44t/0M0N2eJmB21ytM9oFR13y//wmHz8frRhDnaB3WjT1gkg0jvS72lqrC7ewGoPvApqrAdRK4p10XiFjZBgR6hhibpl7s0oy+Pu7BDuIgJIgTXFBTFhweQmbEdAnVsuCWGGaaOJ0jkX6GOJuHdrvDuqqpzB82nmOHZoipqRScAh+Btjp2m2Z5ejbDZyPUYRPETRBH52YZqmFwsWtpZ5kC8LVQ6CTGJ5HRFDlLVVW5ZstX5+N56OaEll21EtPPPoepp5/hXure7QYY8LNZc2vXoLDrFS7vXbfiysAJxyO9eBEOPL+dW0lpN2Lm4MknYf/Wrdj3m99g6smnuMwH6E7o0XNZWMNDyK5cifL+SS7PbCD47KK9T4qiwBwYQGrhKPRsBqXxcU5z6s3PWTUMwHWZBTU6XUOKzr96ppumWQCQXb0S479/mFNwvrsAgTkykpjvfFzM4WH+Vk4Rmw8rigItncbkticw9fQzXCw2uhWdM8uXY2b7dubzCKMbm6CAoDlyokJzD0UiiqrC6O/jtodlhaIoSC1ahJKk9i7mQD/cYpFbk9JIexoF1XXWKRYx9eSTmH5ue/xndRd7PEVVuO+H26Fxsm0BuhMqE22s6UWvEBs85WSMP/Q7zLzwIpe1qdu9t5bNcvu86vA8KC36r4ShZTNwkrRoqqUHQVxLpeEUZrlUyRPNcBPE7733XvzqV7+q/nMELqZE8gSiH+sbOerCzLpDb5RIPsvs7baey7kcHNYPZdeFEmJpwetzrB/bAVr9rek0n3K9Dv55vAI6UTDyeT6ZWx0OgDyztDu930lYSnQjtCThwRnVwzFA1XUMnXoK9EwGEw8/wnFmwXvV/fZAURRkVq7AgR0cMtm7zlJRYS1YgP5j12PqiSfYzwfdlv2mMXLG6Vi08c0ojY1zraDqxWojd/gafs1te8jGBID0smX8xM4e5wT4gQRmB74O15BfLs63sWa3mYrppUuhZ7OY5nC9dBuo0DNpeI4rVLCJSmb5MhQ4NckL6MZyZvCkE2EM9EPPZbH/Ebbe+ED315Wey8LzvESqS3sNiFnDwyi++iqHGbHFWjiKwlyYZxLWPTHIH7EO009xCmBHCMro2YPV1oWXdyG7cgUyy5bGTl7pZp0Q7UlvDg7yC4x3JYgLtNxog5ZKYejUU1DYvRuzO9nbcnUb2DRHhrk/54BAD4q+11U1Ha5tCxGYvYgZ/42YQ0MoJVQ1Nd9hJohff/31eOc731n973PPPRcbNmzAhg0b8IY3vAE33ngjq6EICYiyoGiWBZdxdnG7bOJGmJbtRC1DVxV/4YtJO7GMR8PSdocDLZOGy/FA7tmtgxw6D/EfvuCntslYVqBAUVXfW53pwJ1/RM/zyU7vlKWtGgY8x+GSYeBnp7d5vyuHZp5WEt1k82aWH4apJ57EzAsv+FkXPMSWLtayAKOvD+mlS6ClUny9LSPay4SRXryIS7Z/t5mjAeZAP9xSiYuo2K2ooqXT0CwL6aVLpPN4TS1ciOK+MS6vHdXGoRGeYkkv5eoBej6PMqMeE53utSTKfH1xpItgk6Kg7+ijMPsih7Wxh8xda2RYuvspDD2fh827kWU3zeoMA+nFi/1/y5YxF1O6zSwEgPy6dZjiJUDW0kPGHgBkVq7gasPFCmvBgjlxTxiDgyiNTXAfx99bdh8othYsQGliPxeLqChCozEwUN3rFXbvgTU6yqSispv9VHrpMszwSHKICE8v5W72Jr6fekIZ4l1eqkZfHwaOO5ZLUkPXNmaDgyhPTLA/PzfgdbAgDUPP5WBzbkIahue6PSWqpJcuwYHt27lUjRP1MBPEv/e97+HDH/5w9b9TqRTK5TLK5TJuv/12fOtb32I1FCEDERZIY5BDR3bHBSJGBPV8npmwGLkBSTrNxGOsrY0Ih4albhux0MjnuTat8jwXaqsM8UyaywbEtTtvBo3+PH9rihB4eXtGyUj2G7RM8Bm7TVNNAND78lwamR6cQ/SNr9GXR/6II+C5LspTk9jPwV+52+ZxteTWruWSnRkQRyzk1vg3xvuVXr4cszwaAfaYZWyNjEiXFadomv/3cKAX/0SgMiePj31Rtx7itfjCJitBvP2zSMtm4DRUSZUmJph6hnZbrQLU9DV4kW3z2l481TMrV+DA89uZzoMHqq77ARCO9PJZAn4PCNZrZKdeLWFYI8MoT05x86gP6MVDHAj2Z/JliTaiWRbcUikRe5c4Y/j3BJ9EjDo8r6f7AgAyhy1D4RX2lUpRnotGzZ7cmZ2Bnsn4jYRjnk26ayrdD6dQxMwLLwg5EymKws+2pRuLuXyem/0eC1TThGLocBj7nHf7TFagwFq4MJEGxN26AWRXHIaZHTs4zaY1ntvb+qNZKWQOOwzTHG0WCR9mgviTTz6JM888s+5rmqZB0zScffbZeCqJiD+RGG4ET1BzYLDu0Oa5DopjY/Gihl70h7jRH3/TcHDYaOMyiyC3aRbBo+t3u2wBY6Cf6yaoXYZcq47VTrmE0sRE76VPjtOxGYcxMFhn4+HBQ3F8LF4DoAjPbjXFp0Q+yqbG4uQjHmVsc3AAJY62Kd34GANAauEositXou/oo1EaG2Pu49tr1iwAGIMDXDfm3b5XjSiqyr78vgdxJcDPluNTdthL1oeWpBdlF/Dyq+5VEAcAc2iQy7rQq2UC4AfMmGWId8jU03O5uue957oY3/I7TPzuYWYH317fi+yKwzC7k222bC9CpZ7JwHNd2En4lsalxhOYB36gp/t1Us9k2Fd09pAhDgC5Nau5BnyB3gIvQEWc07TkGkHG0In9CssExHvPA7rw8m3E4FQVWUucZ5A1sgDFPewD2FH2NEZfH8r798OemYGWSgEIBGI1VhCh23tz6NST4ZbKGN/yEPdgVRjGwACXxpHdZMonYV8WF7/xL+O9bg/3TmpkGEVONjdx0NIZAH5wKVHczn3oWpEaHYVbLifTqHQew0wQHx8fh2EY1f++5557qv9f0zSMjfEpxSUE4bhAh4xP/9B/cDM288KLKLz8cqyu3d0c3PS+PmblqX52YufFzG/GGP+g7NnhTS4B3wfLcxy2PlhtROlaDzsedMpoCjt8TD72B8y++CKKPfqURTk0Gv19KFVKFT14OPDMs5h94UUceC7GQS3CR6ZAgcrhwBVJEG/IXHWKRSabUM92oOitLVOASgCiZiz7wAFmohPQu+WGoijILF+OAuvsuRhZ2IqiQNU1bs32ehUyAlgKhgG9ChiAfAcZRVGgGgk0S+wSY4BTV/se/ROBSkk9j4NVDA9xLZNhZuXV6bpufP6WxidgjS5Abu0aZtnZvd5bqmnCLSf/nAoju3IlZhlnq/OgMcDBmjiBViBetm8TPT5z00uXoLBrF9es4dhBujlwpk2qEinOewnU24LwwoshSOm5LJ97NkKVUtDIdfqZZ5Fdtar69diNJru0ptJSKeTWrkH+iCMw9fQzvY/bI9aCBT2f99rRjaagKAoUReEa0IyLOdDP/F7q1lINANR0Gs6BA3xtU3p8PKQWLUIhgez1Onqwd6nF6OebmEgwFMT7+vqwvaY7+Pr166v/f8eOHejr62M1FCEBUQQTBQpU3W9i4No2inv3om/9MXBmC3BKvWWidJM9pJl+Y0TXZiA6RBSvgmh+XDy3tY0IULFmYWhL0K6JXtDFmYU3eiiu29Zf2reIOZg94hRmoRo68kcd2bNI6TnhTURr8QMPLjzXwezOl+GUy+g//jiUJyd7D0ZE3I8bAwMHyySLBSaZgFHunUDgCIS6sQcexNS2J3CgZm3vcfSOmbRGXx6lsXF4ngfPcbDv1w9g/KHfoTTGRgyL8pm3wvcyZpt1EceyAfCboJZ4NTqKIdYDvojJuklqr40+gZqDTALl41Hh+vn1iJHvQ3mKz6a7l0x6wF8XuFhI9eBVHdDr3xI6jw4CpmoY8GqCo6W9e2EtGIG1cJShR7DX81qkpSymJdq9imvmyHAijd/iriEs7XZCiSFOsg4c9pyFrarQ+/r4ZjfHyhgeSa7RWYylxt9H8hWaAVTey94nquf52ATWEqciSFHVWJn6rYiaFGEODaHwyquwRhdUvxbXWrHX9yO1ZLEQb/rUwlEUXnmVwx6uu2efMdDPrcEnC4z+fub3fC9BVgUKrOFhLln9NYP0hH8+SfYzjJtkZI0uQOEV+Zskz2WYCeIbNmzAv/7rv4Z+71//9V+xYcOGrl7vq1/9Kk455RRYloV3v/vddd977LHH8LrXvQ6ZTAZHH3007rzzzrrv/+AHP8CaNWuQyWTwpje9CTsE+AUd6kTNtjSGhlB45RUceO45ZFesgAIF6aWLe+5A3O1hKbtiBaafeTb2gc1znEglgaquw3Xc2NnbnTZKfpYRuw2k/8BrLUrzLPF3OzwoGjd+pbFxmMPDUHUDnuv1JNRHfThZw0OYfXkXCrt2oe+IdVCg1InVXY3ZxTVhLRhB4ZVXYR84gIlHtmLi0a1MmmpEEXJyq1fiwHPPY3bXK9CzGQy95lTMvPBi7LE7zk1VYfT3wZ6awoEdLyC7cgUGTzyBgRjvE8cGxPdslCfjGahYzHA67PbqQxvg29+w3XDGOdACQWMmvofubrBGRriUYcfBr6riINbFKfvnVKHUq7VEgMKoQqNTs+NGinv3whoZqXgEi68wMPrZZqT1uk4HnsnciWsPwcD/tx1xm8Wy7OMRpzkz7/UxzvtkcMjC5IGRz6HM2YoE6N2PPUDPJeDNHHOOqmkwX1+i3h/5I9Zh8MTj6/bvfjVyDEHcdbvO+gWC6jYzcdsURVX9ZqKvihUFs5L3q/CTmhjbO/a4VhpDg8wSmljCSqfpBs/rPekAAIxcHs7MDL/ERIKdIP7JT34SX//61/Hnf/7nuPPOO/Hkk0/iF7/4Ba644gp8/etfx9/8zd909XpLlizBpz/9abzvfe+r+3q5XMYFF1yACy+8EOPj4/jsZz+Ld77zndi92xdYt23bhs2bN+Pf//3fsW/fPhx33HG45JJLWP2ZRAXPaZ/BHJBatBD2gQNQLQvmghEAfnTO7jFq2G1WpTkyDC2VwuS2bbGaonTzQNAy6XilbPAtJtpZtOiMu253EojN/n6U908wG6+ODpl6jfYLpfFxmIMDAJqzx6MSVYxML18GZ2YG2dWrq4f01KKFPQV0PDv6QV/P5uDaZYw/9Dv0H3M0cmtWJdblPb1sGaafeRb7t25F3/pjqu8Tl4Y2DVijo5h9aSdmtm9HdtVKpkJ0HAG66tnI8D2IK4izFqJqiX/AZe8JGjuAkEBZdjfIKKokJaB0A69mn3EDLKyaH0epfAjEd8/z4JbLUCv2hDy8+ruFeRZqHCsbTv03amFiJ8W1J0v35e0BBuPAb5w121owwjUTNU6T5qSCUb41Q++Z1zwbJdcS1zJFS6fgMm4E2EjcOep9eZT3s75vO1dOAv66Zi1YUPc1I2ZWfZykB3N4CMV9yVsG5Q5fG8tylQVGfz+cAzPS2d3VwroBaa/PPL9inqPNRww9O+790zWuW6227xUjn+dqtzbfYSaIH3vssbjllltw77334pxzzsHRRx+Nc889F/feey9++tOf4thjj+3q9S666CK84x3vwMjISN3Xf/nLX2JmZgaf/OQnYVkW3vWud2H9+vW46aabAAA33HADNm7ciPPOOw/pdBqf//zn8cgjj+Dxxx8PHWfXrl343e9+1/Rv27Ztvb0R8wTPsSNtJjXDRN8RR1Szw4OvOb1Gl10X6LLbcXblSvQfdyxmXnqp54ig10VJoDkQv2TJPyS3sRHJsu103+mB54s3fB5snRq0qumDAQYPHpzZWWipNADAHOyt4VrUrDxV05Fftw7W0FD1a74Q0v177zl2V4fD/vXHYPCUk6BnszCHh1GemEikkZOiqliw4fVY8PqzoFkWAH4NbRpJL10Ct1RCbt3hUDSNqVd27KxnxtkOcQVeNZVi3gQtIE72HIBYB8+WuG6sjF69j7NVQZeoum/JJBNJCSi9wLxUOm7QJ8/mGezZndcBPZuFfWAG9tQU9Fyufg6CD0hGPxubuIA4HtjmMHtrq0biCms8120g3nOOeYZ4jx7iQMUjmaEtYCNxP0eAw5rUPECsPQsAKJrKf98Y871kaUHVitg+531yefjGtkyJsZ+yRkaE2L1pqRQUXYdTZLh+9nALZ1f5VbSyomezjBtM95bdrCgqFFWVshmkMTDApVl7K+JY9AVwq+AkADAUxAHgDW94A5588kk8+eSTuOeee/Dkk0/iqaeewhvf+EZmYzz22GM49thjodbcnCeccAIee+yx6vdPOOGE6vfy+TzWrFlT/X4j3/jGN3DyySc3/du0aROzOR+KROmO3Q7N6s13shthuhZV0/1oZY9CdTebB3NkpGdLmOp4nXxFUxbbTYHb3l9ZTaX4HU4cB2jXVBMKVN2Aa5dRGh+H0d9f/Z4vcnW/SY1z6Fag+BH4bkuXOrzHjai6AT2TrY6ZWrQIpQQaJAH+hiroaA9UGtokYO+gqCoGTjgemWXLql9j5bXs2XZX1gSNmIODTIMCnuP07GkOHDxE8jiUxxXrAUC1TKZrFJuMenkOtAAAJcgClAgec4qpd7Coumok7gHFD0ozyBCPYBESNOs+8NzzyK5cWf26keebbRwFLZ1mujeI2+ywFzuzrogZSOEt/sV5/3qtuGs5lzj7LI7PNwCxRVyue+IKcRpBBrAOcoThufEaxgGAovNtMh1//8A28BcXRdNiBdTjVLqYgwPCrDBSo6Ncmmt2Q3rZUszufFmqnjS1sKpeqxInE7ufo0VYnP4KgwM9OxX0gr+Wx88QF73fO5RhKoj/6le/wpe//GXs3r0bp59+Og4//HCWLw8AmJ6exsDAQN3XBgYGMFV54Hf6fiNXXnklHnrooaZ/N9xwA/O5H0rEzSDs2YfZ9XqOamcOW47ZF3v0QnbctqJtLZphQkunUIqzefK8tuU1QbY9Kw+sTodyBYqfacIh0uuXrrf/TM3hIRR378HsCy8hs3x59eualeqxdLX9+9uJIGOvG9yYG3JreBjFseTLFAG/qaSoBoCsxPi4AnSvwZeW8+nCQqcVWjYDh4O3f1xbAIB987i4Gf5cPIZjC70Z5kJvXHqtgOEJjznFLqFnJB5GyaL1raRe8u3ChmuqlfJ5NtZEMbYRrAXeOMIVa8uPMFhkevEU/+Ikq7BuHhi/CsqCyzLxo4bYAmlfHjanBsQBLLLYfUEqgXsi9n6Bvc1aHTGqFQA5n4uxiHGGVzTN76XQI76Q3Ntzw1o4isJuhoJ4D9NQVBWpxYtQeHkXu3nUELtxcx+jfQEDjMEBlBPMxI6KZphwywlmrrvRNaRWaNkMnBm+lnDzGWaC+Le//W1s2LABf/d3f4ezzz6bm6Ccy+Wwv0Fo3L9/P/L5fKTvN7J48WKcdNJJTf+OOuooLvM/VPDtH2I2XetFEI8h1GipNJxSuccmjHYkz/SA7MoVmHz8D0wbXzaiWRaz0tsohzyj5iHrOjbGtmzBvt/+Fp4bz6vMi5A5nVq8CNPPPQcAdZnLAPyMxm4/05iHPr90qbvDUJTS+Haoaf4ZSS3HNoyqh23SsGrQGPf9Z93cz3PjCfQAPx/xuP7KQCWbgWn5fbwgbPV1JMrqYd1gL67nLJBMRmG3sG4iDTBo0ppOM/GrjpJFa/TloVoW8kesqxOgfT9qCT4rlaEtQ4zmU6phwONsD8FibdSzGX5WN15M+wqNnS99nEbWAN8GpLH7ZOT533tMrrV893vVrmGQyW7k87Cn+b2fTGzgJNo7APECa3E89AG/yWjPFYAxgorMs597JLN8GWZ38RHE41avMH+PYtzaei4HR1bf6160gx7xGHiIK1DgeV6izUDnE8wE8WuvvRbf/e53sWfPHlx33XX4yle+wuql61i/fj22bt0Kt6ak9+GHH8b69eur33/44Yer35uensazzz5b/T7BhihZve3QesiwBRiUOed6HNfrriRQS6UxeNKJGP/9w3DKfLpx6/19KE+yEcM6+XgDfjPUoMnR7Es7kV62DKmFCxl4dnrVjPdWqJqO/vXrkVu7pul7WoZPlmw7jHyu64Natx7ijShQoCg9WLWAkVDW4yYrrgDJqqmn59hQ9d4tUxRV9TdQzMSC+AIvtzJeL55YAARZKmwzxHttFhegpVPMMrJZCOvMMnwrsMhe5dL0L24AMsc2GAUgvvUFo2zaqJmqgyediPSSJXVf8/2oGQRJYyZ5G3m5Dr08g15MsmElzjbVc+wa68YVIfV8jqtnapzqBqOvj3/g0HWgxNizAMGZh++1xuK5o2UzXO+JuAJw9XUkEsX9wFpv+5nYZ+kYe5c4iW2KokA1GNrx9fhxaowTZGqJW72iZ/jeS93AKxObhSispdlb8bWkR7vfRnjYBxI+zATxF154AZdddhkA4LLLLsOOHTtivZ5t2ygUCrBtG67rolAooFwuY8OGDUin0/jSl76EYrGIm266CVu3bsXFF18MANi0aRNuvfVW3HHHHSgUCvjsZz+L4447Dsccc0zsv5GooUs/5EZ6tuCIeYg1YmS/dRJtG9FSKWRWrECZQXZrGObgQOzmnVU6+Hj74w3CnpqGUyiguGcPUgtHYY2MoJiQlYY5MAA9m236ek+ZqHGtDrLZrkuXWPgya5l0T+J/XLsQwH//exJfWZT9MmjqGTcjDKhkrDE6BHu2HdsyhVeGOBDfCiHwPWZFXMsUoPJ+MRJYWNzPzMVnJqXrjAMZLAIHHLLCmFQcMPBbj3MdJdGMLgosRdTYz+Z0iknmfksYPEe0bFaqAEItLOcWd832K0PkfJ90zgIuwMa6TDVNuEU+STkBnhvf/o33Zx3Hzz5ATVlsApCM8M8hvb1nsYNVMceOk9xgLRhBiXPz5E4oStBLikMPn7jB+piWNnMCFv0VEgxMd5tU2QqZg+lzHWaCuOu61c25pmmwY5YtXnPNNUin0/jCF76Am266Cel0Gu973/tgGAZ+8pOf4Ec/+hEGBgbwmc98Bj/84Q8xOjoKADjqqKNw3XXX4S/+4i8wNDSE3//+97jxxhtj/31EPSzEHLOXJmcxOmMDlYyTBMutUiPDKO7m04xQz2SYdZKO0jRUgYLsmlWYePRRZA47DIqiVjyMDwgt4ekpEzXmdKse7l1kazPJCO5RkPXseNnRQOD737346h+K441tDQ8zaeITV0AyBtj54bGwTPF9sfk1ooqDquuxmj41wuL+YekDzybAxdYTkEXQh3WTRBYComoY8BhnGbEQm1h8fnGvo7h+1GwCFvIIvL3YmXUDi0BKElm7vcJ0bnFFtwxHa5mYJCE6sXjmJRI0YxCI1VJ8A1lx7XsATpVKMYiVIR7z+adlYoxtxwuUmYM9JueEEeP24NUDhkUVEiBPNYOiMbRUq+D3k2NQqZXg86XbpMow9Kx8fYcOFeKpFDUUi0V85jOfqf737Oxs3X8DwOc///nIr3f11Vfj6quvDv3escceiwceeKDl71588cXVjHGCDyxK5PSBfpTHJ2ANDXX+4WDcmA9x1j7AndDSGTjFApMMikYUNV6X8VqiZk+Y/QMYfs1rDs4BCsyhQZTGxmANDTOZS7foMTZmscatNFUz8n2Rft5zHKimGW/Mvj4UXn4ZWLy4q99zbTt26a3R34epJ5/s+vdcm4FX9uAAZnfujPUaLDAHBzD93PNorlPonrie5lUUdhtoHniex+RQzkLANPr6MPsSm+uIhSAuU0PCAOZzYrBX4EIMr+qAwNtcz/W+IsQuj64ImGZDM/nIMLIAmd35cqzXYIVR8XZOLVrE5fWZNBwWtGeJgp7NovDKq0xeK64IqZom80AYU1SVyZrbCmavrShc9wieEz/oybqhayOe60I1jFivoWf9tdZaMMJoVvHQs1kUd+/p7ZcZZIjPvPhiT7/ruU6sBB0tm0P5ue09/351HjEFY/9ZMxlauRwLBvdq0JC4qeeWALR0Gk6hADWXY/aaXsxeGUClSWWP17Ao9EwWhV2viJ7GIQkzQfy0007DPffcU/3v173udXX/LUtpJ8EGl0m5eB9mdrzQ1e/E3dQpqha7xLlbrKEhlCYmuAjGmmXCKRSgpVKYfPJJODOzGDj+2B4OIV7PDR+MgUHYk5PCBPGePlMGy5FRqXDoRhCPHUTKpHuKaHsMBHG/sWb3h9O43umAv6GyJeiuzdJOgtVhNyihM/rCG0eLRLVMuKUSNMti8GrxBUyWGdmsAhpBhm/cwzrALjASNNZj0sSUQYUIwPZ9YkU1Y3Bh768Rt3FeYCfTqyDOIuNZS6elEXj1vjwKr/A7MLK4xxRN8ysnJIRl1iOLPY/MBBm6vJ69LPZOQOA7OxsrcNcOdsI9uwB6I57jQIm5D9GzWRR6FaA5oMWooHDtmBni6VTPe6m4eyctzah3RtzmlUE1UpcJSp1g4XcfJP9JIYhnMnBmDsBgKIiDQRCOl795KIyCfX6gg68F1nyFmSD+y1/+ktVLEXMBxwFiboBUrfuSehbZZqquw7XLUPVkDtbG4AC3DOrUokWY3bnTzwBWVVgLRlDYvQdpTtlRYej5HAqCs3c104RTKkIzO294fZuT+Btuo68P09u3R/55/3ATb8n1xX+/y3Q35VeeHS8jI0A1DLilUleZ7r5/ecy/W6k0FBWcCa2oKjyXzc6G1SEy8BGXURAPxDo2gnh8/Ka0jD4/l1VAw680MQcH40+K0f2hVTLhjL5owb52xC2PDgjszpi8TwCToKiey2FmX3dB/SZiWsrouWwsOykWh2+ZPEuDLE5uMLAACuAl/sVB1XV4NrvG0bHfK15Z2Awu16BChJ8gzuZaC+4JnoK4GrMKEDhom6JnMgxm1QCTxp852NPbmUzHc12gxySkANUwer9XvXiB0DhrftxAD6s1M+66YvTlMfvSS0zmUgsTe8CgmmEknu7AYr+sZdLMmyP7VfeHbrC1FSxsV4hwmF5Nv/rVr/DlL38Z9913H8uXJSQkblZTgGaZcMrRo10sNhFJ+4jrue66cXuuA0TsRmyODKO4Zy8URUH+8MNhjQyjlFCTywDNMOH06GPMyntcz0dv4OfaNpPNu9plhoTnxGtEG6BZFtxCdx3WXZtNppE5PITS2FhXv8NaEBMNq6ZtrAVxGZHNcxOoPHOK3d0/YXgMrIAAtk1ymAkoDJtYsg0cyHUtsbJgi3PAj+uDyVJslMGzlGXQMgxW75dq+tUzhzIs7n09y65XDmv0XLarvX23MKsi4+w76wfV2DwLefUiYNLzg1VmcnU+80/QAyrZ6XGv60qgLA5xe66w7gETwOJaDRItYsNCc0lnYLPuD8DAQxwAVMNPkJxL8PBkJxgK4t/+9rexYcMG/N3f/R3OPvts3HDDDaxempAQZofcbJeLtusCcW0ncjmUOW5iG/Ez0qM/uLtpFqFAwfDrXov8unUAAC3le3UljX8I7WFzUtOMNw6+IB7xM7UdgEG2tIJK1nLExpqe40Blcc/096E82Z0A6tk2FCP+32wND6G4r0tBnJFlgjk4iBKjhpax5jEwgNJE/HmwyAIBfG/3rpsTJ4SeZ9fEkhWsmu6xaNIFMBafnfjNcwG2Qg87UUeOgFgtfoZezINJzMeflk7HEruYJTekU2ybscbA34/wsSRhlQ0rY4AnQNG1WI1aA5gIO1lODVsZVYjwXJNYnbM0zlUTrNZ4jWOPJ1/8lKe/BgurKuCgvZkIVNPoKajHomrUtyuKd63EbmjNqbqHxT5OY7RuMqnKT1nMAkkBLBrIA4CaTnMJajTB8FLRsllqrMkBZoL4tddei+9+97vYs2cPrrvuOnzlK19h9dKEpDDpmNvfB7sLMcdz3J69rgOMfL6rTSwLiw1FU+E60Q7OnmPHElo0y0pcFDfyOZR7KIlyGYmlvrdztM/UZSQaAZWmHBG9Uz07vs0Q4Fu1dPtesxLKjIEBlMe7K893y2U2Yw92P3YAy8xFY2AA5Yn4GdnMMg1ZiHKc8K9VuQRxVgEEz4nvyw8cbIrIAhbNc4H4Wce1RG3Y3IluqoDmE3Gb0bHL4M/BOSBHwCLwTOaBX20V/x7zBQs53q9GdIYH7riikZbl1ICUhWVKNsvVO5/Z2pmAIM4sSMQ1Q5yB5FFpYs5mPqyCCGLWkV49zJkEyro8x4fOg0Xzyh6DAu1gUemnpdNMAtRsGrWzb5jLyj6TVcVvkugZeaum5jLMBPEXXngBl112GQDgsssuw44dO1i9NCEjjBY3o78fpS5ELibRynQKbhcPChab0q7K4t141hq+YDfR8+/3NOZgj2M6LsDCRsS04ETclLBszGb05VGeiiauscooNbrJhq/gltkc4lXDgGs7XQnMnl2GwuD99ju69yiIMcrGAQBjoJ/R/cXQP1ZRhGUJtaPXRqw8YSXSsxIr4mb41sLMxiWTYWjjwiboyeqAxxrF0MVbX1T6K/QCu+a+8mQ8cxUAY+7PAnzxT85DrZbNJlpF2Y6uq0ijwuDRy7s5Kqu1U+3BZq8bWFqm8BJ3We2/tUyGjWVezKaWAUY+L+xe7XWdZdEslkUVG4vqKL0vxrmkBSwSmFj1y2HbMJfdWsnKQ9zfV84tQdxPxJNjr3UowUwQd2usDzRNgy1pxhrBCEY6jqrpUHU9ekaz58XOEO82s91feOM9EIwuNnpuzIc0K0uHbjD6exPE/U0qm2Uosm0Lo0xtADAHott4eC4bscpvrOl25b/uMcocBQA9052A55ZtqGZ8QVzRtJ5FH1Ye6kClAkOyLt96nmFGL2MfYIWB1yNLWB26WTTJBeJn+Nbi2WwqQVg2SWRx+AX4lSfHhWU2fa9oXa7JtbDLVIx/X/nrO4PKQ46COKsMcR5CL4seO4Af6JfFnojH/eV5HtOMRV7e+ayymnmvnUx99TntrVgkUwHs+kYwq8zJ54VVTul93fXHCmARuGexLrCxdMrBnmYtiDOy01F7D5TXzYWFNYllsb23XY9Nvxwe/uac8b3r5Qymz2XYKCQAisUiPvOZz1T/e3Z2tu6/AeDzn/88q+GIQwhrdBSFPXuQXb48sTEVXYNrl6HqEYQ6Bs0Q9XwOMy9G60YdVyTWusw88lwn9oZZ1XW4TvcPXpYNvYxKpN4cGGj7c67NLkO82+gyqw7RRt6vODByuUg/75bLTERpADCHh1HaNwY9m43081454n0WAS1lwZmdhZZOd/V7LAMCwEGRl9W1Gxejz7cBMfr64r8Yo1LEAP++nIQ5OMjsNePASoD2bAdqis01FTTJiStmu7YN3cowmZOf0RO/ioFVJj3gCyZOsQjNsuLNiWFWZ5AZLfL6Dmzg9IjPg1pYHXhZZIiztBEov/xy7NcJw/e/ZTBHDplprBIM9FwOMy+8yGBC8V9CNQx4rKuMGImjQMUft1iElkoxeb1aWImmAKpWHyyf7QGe6zKxTOEp3LMSGVkF21itI3o+jwPbxVTkG319OPDc813/HhMhmkUVGwMfaj2bRWH3q/Hm0YBr29BNM/brBMJpL/uCAGZ9DFIpOIVZZuskqwxxlWGj3FZ4rgMwXNs0w5Su8vZQgJlCcNppp+Gee+6p/vfrXve6uv+WNbuH6BGGCRHG0CAK254AEhTEg02N2T/Q8WdZHDK6KbPzM4l7vzUVKFBU37NcjZDJxMrHO+jW3I346blsGk0C/nVUGhvrLIgXS9BZCIcVAs92HgeiVhgDAyiNj0cXxEslqEb8DRYAmMNDmNm+A5nDot2vbqnExDLFH3sYxX37kFm2rKvfYy1eBz7U5pAcIq/R11fZlHf3voTBKgMywBwZQXHvPmkEceBg07g4gTFW5ezAQT/MTmtXxzkx/OwCwU7PxBPYWZWqA8F9tx/a6Gj8ObH67LI5lMa6azRcP5n4cwgsLlKLehieUcNl1TRjW8cwE4l4ehEzqjZiWRkSwEysz2SSaTQmCJbPuCAQxEUQZyTiAjXrecREhm7wbJuJZQpwsEkk82QDhg1KSzt3xn4dZhYuPQh6rCoaes36ZfH8ZVHFxkLs1XNZ2M8xztZlZMsV2OnEEsQZrUFVy7uB2C8FAPBcj031DBTmz+FGPNdlpnPUvS48Zkl2BENB/Je//CWrlyIkx/Ncth1zDROe68IpFqBZHTaVjMb1O9fPABEEcZdRUwnPjbjqMmioYfT7ZXTmQAQRynGY+HgHVgSRxqzAqtEkAJj9/ZiJkClhz84itTCeoFKLMTiI0sQE0ot6UCN6HnMAxSeejBxEckslqBYbQTzIRo6Ka9tQGQguAJAaXYDpZ5/rXhC3HWaNVAHAHPRtiaQRxPv7MPX000xey3McJgJZgDk0hP1bH4v1Gv4Bjt1DJ2jCG+fzY9akC/49ZU9OshHEWVkj5fxeBbEFcddhFozT+/pgT04BLARxBs88wD8Qz7zYWzYtK2HCyOdQ2ru3tzmwstlhkPTi2XPAeoFhMAVgU4VRfS1GzznZEphYVdAEsKxa0StWQdbIMJPXq4VlMDFolMpFEGf4fmqVZCUm1W41sKueqJwdY8+HkS1GD/cqqzWs13WCVVAxbhUbk6aaKfYZxq5tswmWsLDlYhVISqfjJQ40wrDaxbeWYbfWNuLZDhN7l1qCZq6aGa9akjgI+9op4pCH5cY0IHPYYdFKNBlF8rQuMoiYlQyZJpxy50MaC6HFb6y5P9LPeg6bLO1emruwFJUUVQM8dPQRd4tFqDFL7muxhodRfLV9yVw3ft9R0AwTTqkc+edZCmXBJiSq7YBbKkFlUP4H+IJYLw0RPYetZYqIxrXt8LMzo18P7WB2WKnQSwZTI/71yzDDv68P5clo62MrmGYZM2rMxDL45Ht0svBaZ5PtBLBsiMouA1FLp3sXSBhZN8Q5+LplNk2PgYPCZa+w2ltytV6wHSb2EIC/NrK0TWHl1w8EtoJylGVr2SzTJmIs9wOs1skwWO6PNUbe12GwPBPyaqzpMbDHANhUwgBsn0GKrsMtd3EeKJeZ7RPQQ48Yz2Gzhsa1nWLxGfB41rAK2PvWmnEbjzJqXpli/KxjdD8DfkWUzbEiiqn1VYUgwEmwgwRxontsB2AsiJtDgyjv34/yVOvDrgePXYZ4posuvQwytoHonYH95i/x3t+gBD8KLqOsLL0vD3t/dyKT/6BgmY06iGKHTDnfM5Wh4JdKQdH0tu+3b1nCRnQ4OK4Fp9CFfznDjVtgXRAFpmK8okA1jK4PJG6pzFQQ1/PsO8vHRVEVJs0rWWfTB9ddnGxYllYgQPdVDmGwOtQBlWCiZEKvnsv21DCrEY9RthMQ2BOwEOkZihGqCs/zerq+WYnRqq7DtXu7912WPR5iCpdMA5cKm/WwEZaiM+uGeC7rCpEY95rnMdyvM26sKeM6GQbzefJqlOqys3Zh0YugFSz2wMyqORgGO/R8rqv9qFu2mQVB9Wymq55VAMMzZ6WKrVdYVSRBAdNnDcteGnEDiaw+KzVlMQkkBbAS6oGKRRjHxugew/UxQMtkhDdzP9QgQZzoGpZNCQMUKOg76ihMbnsSrhOeleLZ7EpaFFWLbGHii7bJNZ3yF/p4my7NMOFELBlm9vC1UnCKxa5+xy2zrTZILVmM4qt7Wo/n2FAZbUJrya5agQPbt7f8vjPL3mM8tWghZl6K6GXI2CPNWjiKwisRG8l4bMV4a2SkY9CjEbdUgsbIMgbw/x5F07rKyqnFcxxAYXsd+r7yE7Ffx7XZBg+A+IdxlpnPQCV4F1OIYilWqKbJpHGcV2YniLEIGgBss2NYNkRleUDxy+i7P5ywsisBgrLfHhpbM/IQB+ILl0wtfxhkx4XhMUqQAIKKB3aCuGfH6z9Ti57P+fZEPc+FoU93lkEDvRqYrt09+ihHga0gzud+AMDUQjOwoJEZxdDZ9Etg1Vujy/1M3P4ptfTUZDRmn6zq2DGrM9j1rMh1HRRoB6v7Pk6gvG4uLKq2WHt1ex67DPFs9B5vvcB6vwlU7jtOgcP5CgniRNfwsEwB/Bs8s3wZZluIfJ5dhmIyFOIVpaO9hj+uE6k5ZSeibvRYbZQCX6yOMHrgAZUGk8Xo9gieXWbqV6yZ/viufVCoLE9Po7hvL4r79mL2xZdgxPTpDUPP5uA5bsuMbbdQgJpmK4ibw8Mo75+MZMPDuu9GanQUhV2vMPPA7QZrdAGKu1sHPcJgadsSkF66pOVa1XE+5TJUlmsZfH/14p7u3pcweDS0MoeGUBob7/n3WW3KA1gcFFhlzlRR49lNAGyfzYqmwXPd2Pe4L9Kxe5+Chqhx8By2exiz0tC5W2TI6GWZIR43u5PlwZG12FwLqwAv6wxxltnrvgVeTEGcqS0JQ0Gc4XXG1Z7HYeeTq1kWM1u1JhhuA3vJOE4aoz/+2sK0j0WX64jHMKmtF7su12bn5x4vQ5xN0M5/9rJcx9muT7GrMxkG7VslPHaL7/nNqMIiwzbg2gjL9zBAy6QP6cbXIiBBnOgalllojaQWLURxzx6UJiaafJfdEtvMdD2XjeR5zerQqmWi+Z2xEn+MiLYOLsvmcAMDKHeRpeqW2B3GA3KHH479jz6G0sQEimP7MPmHbbCnD/gPPEVBetlSpuMFZFauwPTTz8I+cAD2gQMoTUygNDEBp1SEPT0NPdt7p+8wFCjIrjgMszteaPtzbrnM1G4C8MUya8FIZ+90DoK50d+PUkR//AC3VILCqLFfQGb5sugZ+iHzYS3Qm8PDKO7dF/t1eKzv1oKRWGK9V2braw4AakxhlbUvfa+iah0e29JMFmX2LAVXgI1dEeugj9Xjvcc0o7+/v6eMfq/MLkM8rvWP57CrBGHRJ4A3zDOfWXo5xxTrmfYz4OEhzjiYycOeBx67aoS5gqJpQA+VLkli9PVHtgxsCUMbBb+aK/p8fKsuVutsD+sEo7/dF6LjWHSxsQcMmrSzgmmPk2wmVhNYj+E6rmUycGbZNCBl2chXtdjauTTC8rkc4PdMSz4h7VBmfj1pCSawFgJqURQV+SOPwOyLLzZlX7pltj7M5uAgyuOdsxY9RhYCiqJGsmlhFU00BqM1/mPZRM8cHEQxwntaNzbjTFmzvx/pZUtQGhuDvX8SA8ceg+yKFdV/rAX42nGtBSOY+P3D2P+HP6A0NobS2BgmHn4Exb17YfTl2Y85MozS/v11GfGNuMUiNMbZ6QCQW3c4Jp94su1B0JmdZT62oqpQDaOrJiisLVMA+GuR6/ZkU+CWyswFcdUwoCjo2raoEZbe2AFxG3rxqEoyR0ZiBRBYZ334QYPurICaYLw/NoeiPSPbwVJwBQLhN54Y4TK0lgB6b/bL0n6uVwGYZfm871na++HbZWmz0ZePZfmRBIrG9lDLsmolrhUI08xCTfOtahjB0loGCLKa5fW9rr5Wl80Xo78w+5cUUX0YlW566LSCpWWKahhwbSfye8YyEUmkdYNqGPBiNnFm07wyXjVNI0wrpfr7YwWGWVooquk0s0aQrIIZQMXOhSOsrrNG/MbXnKp+5iFzUhDP5XJ1/3Rdx4UXXlj9/sqVK5FOp6vfP+aYYwTO9tCDte9zI0Yuj75jjkZ5YqIuq9Ar20wFcWNgAKVIgrHDLELql+q3X8BYiT9Gf0RBnKVPYaXzcdSyKF7XUmp0IXKrVyO7ahW0dIb567ccd9EiDJ56MoZOPgm51auRW70a+XXrkFuzmmkjz4AgS/zAc89X7RacQgH2zAGUp6ZgH/D/V89mmY+tWRbyhx+Ofb95AE6hALdcRnlqyh93ehqe58GenITe18d87Py6tZj8wx8iHwCcQgGqZTGfhzW6ALMv7+r699xikbkgDgDpZcswu7O3rPUAP3uI7dx6bYYa4DlsRVUgftY6wNgbf3gYpX0xM8QZYw4OxvalZx3M8N+neJUQLBuaAcH1bXYdjPLK7A6bRn9fbwKw5zErPQ7Ks3sVs1gKldwsIlifnRlmF3uOw2ydjLu2+ZmFbJMPWImkrPsgcfXnZgi3xpqMtWs1lYJbYJNJygMWnzfrKqVuMrXdUgkqowQR1kG9JGFlmRI3C7sZds/kuL1gPIZndD0drUo+Cp5tAwzvH0XTYlsWtoKHZQrAtwHxfGROCuLT09PVf/v378fChQtxySWX1P3Mj370o+rPPP7444JmemjC6+auRVE15I88Egd27KhapziMfXdVXYfnuPC89pknLC0njP4+lDvYPbAqo1Z1Ha7jNFnPNI3nOEwtNVKLFqLwyivRftjzoDBuLigazUrVid/mwACskQXcxjNHRqDoGiYefhiF3a9i/2OPYeaFFzH99DPY95sHsP/RrbAW8Bk/vXQJUosXY+9992P3XXdj+ulnMP30M9j/+DZMPPwIZl7aCWvBCPNxrQULoKVT2L/1sUiHZD+oxb4yILdmNaafebbr33OKBS5Z+6lFC9s2lY2Cb+fC/r2yRoZR6NL7PYCHtZI5EC1gmBRVz26JysWZNNZkbOOiMfCYZf3MAyq9DbrM8GdZKaKa0Rtp80SLcehlXQUIyJ1pCrAVKVlW+wGAaho9Vxyx9McHANUy4casfgrwk2sYZojPEWEirsVEGDzuL27CPSNYNHdmHZS1RqJXmLnFItsEEUXhYxkUZegYDU5Z+bjH9enmidEXz8aM5ToeZ2/QCOuAksaxyodlg+la5kogdq4w55Wo2267DdPT0/ijP/qjnn5/165d+N3vftf0b9u2bYxneujgltgfWsJQdd33Vd3rP+TdQgFqiq2IZPT3dcwS92x2WTfG4GDn8Vg2W4ngvci6YV168WK/4SLrtBEiFAUKcqvXILtyJUpj4xg44QT0HXkkBk86ESNnnoHsypUwBge4jZ9bvQrDr30NBo4/FoMnnYjBk07E8GtPhWoaMPJ5WMPDXMbtO/poOLOzmHriSbilUvi/ctnfqHNqfKWaJsyB/ugBoArObAFaKs18Ploq5TeVjVEWzcPfHADSy5djpoPffSu8cplZRlNAsJkWdZALwxzoj3V4YZ29Goj0MqEoSiyhDmD7jA1ILVyIwq7uqkVYWznF9cVnge+F35vNDmuhkn3mHnvMgYHYVRgBrA/efjPk3qpWWGYWAoElUMzgXAW/Cmr+ZYh36zUdBR4JUubAQNd9YpImrv0M8z4WC0YiN5v3KxTZCeJ6LstNTOw8du9BHpbezqrOL8M4Dn61RYy9ElNBPAWHUeWHx9CDH/Btr1jZuTTCw/IRYG/VM9+Z84L4ddddh3e/+91Ip+vFhcsvvxwLFizAhg0bcN9997X8/W984xs4+eSTm/5t2rSJ99TnLL4wzd5+IIzMYYfhwI4X4MGDWyhAYyyIZ5YuRWFn+0Os5zL084roa8nK08oaGUHh1d1tf8a1bagsS49Uzc9WCBnXgwfPdar/y0uonI9YIyPoO/LIugevZlnIH7GOqbVDGHouh9TChXVf6z/mGOSPWMdtTEVRMPSaU+GWyxh/6Peh//b86h5MPLqVS5Z6QP6IdZh49DEUu7C74LGWBWRXrcKB557v+fd5CeJ6xn9G2z1sOv0gLPs5pRYuxGyXImYVDvG+1OJFmH3xpd5fgMOcjHwukrVYklgjIyjF8X8vl5kfUIy+PJzZQlcZUKyb/Zpd2sl4nsc8iBLH0oa1UOkfGNmIqLwwBgeZVap4Djt7P6DSZ6HHvgasM8T1vh4tgUJg3eRMz+WYNtXjRZxgVStcxpW7AKMG0zXwae4er3rKtW2ma52WTleTQDrhFNkGYv1gVbR7k/Vn4Qviva0LLHsu8Ki+YEFw9uv1fWdpa6qoGhChj1rk12O4eWHSKLcFPHqlAWw92Yk5Lojv3bsXN998M6644oq6r99www3Yvn07XnjhBbzrXe/C+eefjx07doS+xpVXXomHHnqo6d8NN9yQxJ8wJ/FcDyqH8o8wVN2A2d+P0t59lYWZ7aKipdNwih0ilh67hVdRVEDxRfYkMEeGUerQFM0rsT2EAr6X8cxLLzVlie9/5FFMPLIVk9ue4NJwkZhfKIqCgeOOxfBprw39N3LmGXALBeTWrOY2By2dxoKzz8L4g1siC4c8r/3Mct9HvNfMZ7fE1l+1lvwR6zD1xJNd/x4vG5fMYcsx88KLXf8er/JYa3QUxb29CVCe4wCMfCdrya1dg+mnn2H+unGI6//OK+iTP2Idpp56Wtg8rAULurIl8itVGFfdDfR3tIVrBcsGn0B80aoRv9qI7T0Wt6S9FpexZYo5ONB7tj9jQVzmDHFFVWN554fB4xlTteVi2ciVw37Bt1Zg5yHOI4vdGOjveLZqB4+gbGblimjJEKyza/PR/ctZV2fFWuMZ2rl18x4kjZ7Pwe517WR8rUBREtM/uoGnZYrL4V4HfF1K0bTIPduI9sxpQfx73/se1q5di9e+9rV1Xz/zzDORTqeRTqfxgQ98ACeeeCJuvfXW0NdYvHgxTjrppKZ/Rx11VBJ/AhGB9IrDcKBFQIMFejabaBaRkc+3j6YzzNhSoECzUnAKrbPWeJSPq7qO1MKFGPvtgyjtn8DEo49i/Pe/hzE0hMETT4Bmmdj369/AHBhgOi5B1KJZFoZPex0X8atxnJGzzsDk43/Anl/dg1d+fnvbTGjPYbzJrEFRVeTWHY7dv7y7N7sLhk32GrFGhmFPTXdtd+FyCNoBQVZVuWuBgFcfDUVRoPdYBslL5DX6++HMzvbk08krcGD098fLzmOcmR1gjS5AaXw8cik960BPYDEXudnwzAy0LNum08Ha0cvaw/q+0vv6excCQvAcByrjvZKiqvBcNmIq6/dPUVVoltVT5iP7LGx2vtI8BAojzzZLnFsjNsbWAB7j4EIAS/snHh6+sauUWAuNOJgMkbR1hx84i5bRz3qfwjJQFgc9n5NWELcWdN/fhBd6nlEmPeOtpQIFqmHAKXPow+KBW6+0bprpEu2Z04L4ddddh/e85z0df06tRO+J+DjFApdMvXZohglreBgmJ9uD7MoV2L/1sdBSZw/sS4qNwdbN3Hj4blsLRjpmjbEsPQrILFuGgeOOw4Fnn4cxMIDBE09EdvlyAEBu9Rr0r18Pa5Rfs0mCSBI9m8XIGadjwevPwvDrXovxLQ9hz6/uqfv36i/u9JtwchKcAzLLliG9dClmX9rJdZxeyK1b23XGMY9mewHmQH/XB1u3WGLuaR6QXrwYsztf7vr3WJdB15JavBiF3e2tt8LgZXWjqGqsRl6svbsDFEVB31FHYvddd0cSczzHZSrMKaoKa+EoCq+8GunnnZkD0DNZZuMHRGke3gqW9l5aOsU005RXYI6VSOkL9myFv9za1Zh+pvsKEd8Sgu21Da+3QEsjHmO7CgAwh4dQGutdIG2EV4DTHByMldnciFvmNM8Y1kuNuDbb3gTAwX4tMqGoKrJr1uDAs8+1/BnPdZlbVaqm6ffriaCzsL6uVcOAWxafISuzn7NfUSeHIM6yIoo1xuAgygzXxiocHUuN/t4r8oh65qwg/rvf/Q6PP/44/vRP/7Tu6y+88ALuuecelEollEolfPOb38SDDz6I8847T9BMDy3sqSno+Xzi42ZXrqyKqazRUmkMHH8c9j/+eNMGxy0WmQsxRn8bQdxmbwvjN1vZDc9Lvjmalkph8KQTkT3ssKbvpRYt8j3FCOIQw+jvx4LXn9X0b/QNGzD78i7k1vKzcAnIrVmNA89vx6t33Nmxj0AAzwakAalFi1DaN4b/n707j4+rLvcH/jln9smsmUz2PWnTrF2SlC50YbHsCMpOvcC9ZVMR5YfCVaFSUS8K6lVUVLSoIAqICC4XKUsbtjZJ17RJl7RJ2mZPJslMZiaznPP7I83QtEmbNDOZLJ/369VXkzlnznnmZObMzHO+3+fpP9Iw9jvJiNiodcPcuejds2dcH9KDAwNQaCLTR0OblAhvc/O4k72SbwBihGLSJSWid3fNuBsiSQMDEbtwoLHHjTnxe6pIjM4bok1IgGV+CTo/+PC0C2IdWyrQ+cGHER2gYcjNRc/OXWNKevm6HVCZzWGPQRNvn1BJm3ARBGGwRF2YGudKgciUkxpsXjnxL+KRKJukjouDr9sx7kS05POF/bPs4GCSMHz5l8N74QUYHDE8MIERw6eK2IwfqwX+MDVxBSJXYi2co1oHZ8FGYLS9wRCxusPnSp+eBs/x4/A0D15UD7jdaH/nvcEBGZveRn9DI5RGQ9j3O9bGsoPlAsPbUF4Qz/3ieLiI2vBcfA132Stg6OLNwLhnXESix4jKNPEEbiQGDgKAxhr+Hgsy5Ij09hky0dmS9InJKQQdARs3bsQVV1yBhFMaublcLtx33304dOgQ1Go1CgoK8Pe//x05OTlRinR66t2797Qp0nIwCFmWYZ6B5WSUMQYYcnPRu6cGAGBZMB+iUoWA2w1lTHhHUIlKJWRJhhQMnFaLfXAqd3hfloKogD41Fb2798A8v2TYaHBZliJ69ZKIPiGIIuwrz5+UfYkqFeyrViA4MIDurdvQW1MDa2kp1JbRE2CD57vwllA4lSAIiFuxHJ3vDza7jsnKjOj+zkap18FaXoa+vftgW3Le2e+AyCafh0redH74MeLOXzbmxE0k6kEPURoMiC0vRV9tHawLF4z5fkGPN+xffofEZGeh++Nt0KUkj//OEZ4wqE2IhzYhfsRlPbt2Y6C9/bQmxOGi0GgQf8EqdLy3BbFLFofKkjl27BxsSnjS00mWJJhLisMegyY+Hq5DhyPaVHmsVBYLfD090NhsE95WpJKUmjgbXPWHoU9LnfC2wp3oFQQB6lgr/D29UMdax3y/wdd+eM9HQ70DxhPHZFHEhK+kCwAEvZG56Kq2WNC3ry5s25MGBqAym8K2vSFqqwV9+/aFZVtyGBsDnsyQnQ3X4SPjek+MtMHPV+ej66OtcB2qhxwIwDx/PjS2WAT6++Go2g5r6aKw73foAobqLAPmIpEQHzzH90Jjiw3rdsdDEAQIJ2atTSShLfn8EXmPiclIh7uxCYbcsefCgh4vRE14z+FDyfmJkAPhL/MKAIoTZblkyGGbNS95IzcoBBjssycF/GGNebaatgnxn/70pyPeXlBQgJ07d05uMDOQubDwtNuCfh9c+w9AaQj/1eWpQG2xILasDL4eBxw7dkKXnARZkqEIc0IcALTJg9PiTx05HRwYiEhSQ5uYiKDPh749NTAVF4VOnINT/yOT2CGi6FNoNLCvXIGA24Pujz+GoFRCZTLBsmB+aJ3uqmoE3R5oE+KhDkPi6GwEUUTc+cvR9eFHcB89ClGtRux5i0dM5gT6+yP6gRIYnO6q0OnQ/s67iD1v8VkvggY9Hii0kTtv6lNTIXkH0PXhR7AtWzqmJFegrw/a5KSIxaSx2+E6dBgdW96Hbel5YxoVODijLDKfFxQaDZRGAwY6OqGJUDm1SDDmzUX3tiqordawX/weotBqEbdiObq3VQ5+OZcH64vbV62IyP5ONZR8Gk+TzMERyOH/QjeUqAlHQlz2R6ius2mwxIwsSRGbCTMRMdlZcFRth33VirEneyIwC0Njs6H/8JEpcaHlVIIgQFSpwzZ7SPKG/4ICcKKxZjAw4cTdkKDHA00ELu4NnbfC8ZqQAv6IvG5VVgv8u3aFfbsTJapUIw68UMbEROw9QGOPQ++evTBkZ51xvaDbA1VSeGclaeJs8HV2RjUhDgw+HyZ68XWwzFxkGsh3bN6CmKzMMb/ug243lIbwD5BRqFUI+gagUJ/beTJSfQsEnOjh09sHdZhmzgVcrrAPqjyVMiYGAacTKmP4L0zOJlPvkxdNWQqVGuaiomiHEXFqixWx5WXwdXbB29oKdQTeZLUJ8YNlTE7ptix5vRAjNMovJj0dSpMJjqpq+E+MZAl6IzeqkIimDqVeh/gLL4B95QrIsoyOzSfKOGyugEKnhXFuLlyH6qFNSpyUeIaS4vaVK6C22dCxecuIJSa6t26DcW7kEyCW+SWwLFyA7q3b0LHl/TM2kfR1dkEdG9kLB4bcHGji49H+zrtjK3/h6IHKFNkPxLal58EwJwcdm7fAffTYWdf39/VFNCbjvDx0V1WNq3an5PdHZHTRWCm0Wij0OjgPHgpLknY0ypgYxF+werBc06oVMBdP7me3mMwMuM5Qy/ZUki8ydfk1cTYMnEP9+5FEql6yIAiDpZJaWsO+7XBQmUyIyco8Y5krye9H+zvvwedwRKwk0HhqFY9mMBEcoabR9ok1WjxZMILfBfTp6XAdPhKWbQUjlLgHTiQYw1DeRRqI3OtWodePu0mgHAxOyQtfE6HU6xH0nL0Pgr+vL+yD6lQWK3xToI6yNt6OgbP06zqbSM0+FBQK6DMzxlWqMFI9RpSW0cvGjsV4LrSPlybOFpY64rIURO+eGrjq6yM2G3CIJj4+bO87s9m0HSFOFEkCBFjmzz/7iue6fUGENikJPbv3wLJgfmjEdtDjiWiiJSYjA9rEBDiqd8BcUoxAvwtKfWRLJBDR1DLaFN+kKy6b3EBOMM7JhXFOblT2fTK11Yr4Cy/AQEcnOjZvGfWLiSCKUBoiO+oDGDwu+rRUdL7/4ZmbWcuDjQwj9SXhZLqkJGgTEtCxeQv6j5wlqSIjoj1HlHo97CtWoKPifcSdv+ys07WByRmxczam/Hlof/tdxF90QVTjiCRdago63tsM45zcMY1IG5x1Ef7EmqhSQVSdKH83wc86ks8fsRkPEyoBBES0Lj0wOMKw8/0P4TneDFPBPGjsdsjBILorqyD5fJB8PhhycuDYvgOm/HkRO06qoRF8Zyj9dSYBtxuKCH3m1djj4G5sOue/4ckGXw8RKjeVmYGO9zbDkJ014VHikUo2A4MJRm9r64RH/kp+f8RKwRlyc9BXV4fYstIx3yeSFzuiSRkTA3+fEyrT8Pfhnt17EOjrg23pkhMNrcOb8B1snuwZ130iMSNJHRcH58H6CW1jsMRGZGYfxmRmom3T21CZTdDY7SOu4zpUD8/xZljLS+Hr6Q3LuexUaqsVnuPHoY0/t0Sx5BuI2DlHZbHA3XgUMZmZ57wNX48DzgMHoU9Phzkx8gMRVGYT+o80ICbrzLMz6MyYECeKEn1KCiDL6N5WBWPeXKjNZgT73VBEqHnoEIVGC+vCBejduxeCqIApPy+i+yMimk409jgkfOriaIcBYHBEccLFF0Y7jGEEUUT8BaujHQYAQGmIQdzypXBUViN2yXlQ6j9JIgVc/ejZuXNYQ8CgxwNr6diTF5GgjIlB8tVXRjWGSBNEEfqMDPQ3NsKQffYmwgGnM2KzCXQpKfA2t4yrfupIAi5XxGbQTLQE0OBU+8iVlhIUCthXrYDk96NjcwVEtWowCT5nDmIyPin9p7bZ0PbWJthXrYxIHIMJyAOwnVd+TvcPRjAhrjKbxzSbZywCrv6IJXEFUQyNFp3Ia0KWJMiyHPa69UM08fHo21cLeV7eBOsyD0C0RqbuvMZmg7O2bvDvNcaL5JEcVR9Nhjm56PrwI9hXr4RCq0XA5YJjxy4oY/TQZ2ag7e13oYvA+TNUv3scz8XBRqvhnSkmKpWDvdYmUOYn6PVG7GKiIIqwr1qJzooPRh9gIYgwFxeh64MPIQWCMBcWhD0OpSFm3LMqThbweKGMUG8aUaGE0hAD54ED5zQzdcDRDdf+A7CWlUWkb8FIRIUSyhg9Bhzd0FijWzZoOmNCnCiK9Kmp0CTEo2fHTmhiYwfrD0bwS80QhU4H07x56N1XCzFCbyxERESRpjKZYJ5fjM733x82+jvgciH2vPPOeTQpTUxMZgba3nobKpMZmrjhM9+87e1wHTw0+IsgDDaTnTMnInFo7HFw7NgZloR4JGcXGOflDX4WPIeE+GCzusgn2USV6owX6FQmI1I/e23E9q8ymyEH/Oc84t/f54zY31AQRaitVnjb2kdtqjtWcgRqsJ8sJiNj3DWFT+Z3OuGo3g5dSkoEohs03otqo4nkKHYAMBUWoPODDxB/4QVjmqUVdIe/seRUoLZYYC1diM73P4BCp0PA6YJt2ZLQhU596sSbBo9GaYhBwOk6bXT6aCJVLlR9oszPuc5qCHq9Ee2JotBoxjTAIpIDQgQIEBUipIAfonL8sxolrxei1RL+wE4wzp2L3tpa9B89iphxDFCUIaP/8BFYy0onLRk+JCYnG45tVVAuWgCFjrP+zwUT4kRRplCpEVtehv4jDRFpTjMapcGA2MVl7ExMRETTmsZmQ8JFp3/Ri2RSic5MUChgv2AVOis+OG30ZMDphH3VSggKBfxOF3p27oQ6NjKjOBU6HSDLEyqbMjjyT45o7V+lXg9RpYJz/4FxN44M9DmhjHAPganCmJcHZ91+WBctHNP6A13dcB08CGBw5LV9dWRGrwOAMX8eurduO+eEeN++WvgcPRG/iCcoFNBnZKC7sgq2JeeN675BrxeOympYFi2A2mKJTIAnxGRmnCjzYDnnJGOk+hMMUVutg0nxig+g0OsQk50Fbfzg39/f14e+2jpAlqHQ62EpKYa/rw/a+JFLVkx3Grt92OyxyXr/1STEw9vWNuaEuBShhLg+Ix2uQ/XnnhCPUOmwqUaXkgJ309FzutAV7O+PWDmpIab8eejdtRu9Pb1QxVqgiY+H61A91FYrdIkjz3Jw1u2H2mo9pyT/RClUapjnF6N37z6YS4rPuWHpbMaEONEUIAjihEZAnPN+mQwnIqIZgMnvqUeh0SD+glWQAoFhtwsKRWgUldpiRvzqVRGNY7xJ1JP5e3vRu6cmIvVUT2UtK0X31kp0ba2ELikB+vT0EddzNzXBe6KBm0KnhRyUoEuOfHxTgSbOBmddHRzV22EuLjrj6N+Ay4WeHTthW7IYgkoFUamM6HlCodFAZTLB294eSoqOletQPQJuN6xliyI6onlITHYWAk4nuj7aClNh/phLFvXW7IW5pDjiyXBgqFTPSnRWvA/LooXn1Ig46PVG/HjqU1OhTUiAHAig84MP4T5xbHzd3bAtOQ+iRgNn3X701dYh0NcH5QRnq0xl0Xgf1iYmorPifRhyc8ZUNiXoiUwdd7XFgqDHe2LGztiStgGXC/0NjTAVFkQsrqlGbY9Df2MjpIx0iIqzpyL9LmeokbsUCER8BLYAAebiIkjBIJx798HT3AJDZib6m47C190NnHiO6ZKTEHC54Hf0QFAqEZMdvTreKoMRhtxc9OzcjZjMjHG//8x2TIgTEREREVHYCQoFFFG+WKGJs6G3Zi88LS3QJSWN+X6uQ/Xob2hE7OKyiDaIHSKIImLPK0fQ44GjejsGurpPX0mWEXS7YTmR3O8/cgSug4ciUu91qrItXQLP8ePo+mgrlGcYFerr7IRt6RIoDZGpyzsSY95cdFdWjysh4Xc64W1rg23Z0ojV5D6VIAgwzy+Bv6cH3duqEJOVCUPOmQfmeI43QxoYOK0EUiQptFrYli9H14cfQj1CQlwQRRjz5sLf2wdPc/OwZUqDAQqNdlKOqahSASoV7KtWQvL7B2NTKEJNJM0lxejeVgV/b1/YG0vOdqJSCY19sAnrWM7vQY8nYjNqjHlz4Nx/AJYF88+6bn9DA1yHDkMZE4PubZUAMGmv/2gSIECXkgznvjqYigvPODgv0N+Pvpq9MBcXQ1AoIExSORJBVEAhKmAuKYbk90Oh0UJti4XkG3xtQ5bgqN4BlcUMQ24uRK0m6oMM1RYLLPOL0VuzDwGnE/rMjDFdcCAmxImIiIiIaAaLW7YEnR98CMjyWUdTB9weOOvqIEsS4lYsn9QEliCKUMbEwLZ0CYIe74jrKGP0oZGYpoICGHJyZtUMCUGhgD49Heq4OMiB4Ojr5eUNa7Q7GRQ6HZSGGPTs3AVTQf5ZRye7m47CdagelkULJj0ZJggC1FYr4lYsR8/2HQg4nRBUKhjn5J4Wt7etDc79+yPWMPVMlHod7CtXIOgdOG1ZoN+Frg8/gizLiC0vA05KSnV9+BGspYsmMdLBxPhItcQFQUBs2aLTZstQeBjm5KL7421jSoj7HA7o08deH3o8tPHx6NtXN1iq5wyvfefBQ/B1dSHu/GUQNRoEXK5JmRkyVWiTkiAN+NC7ew9UViv0aamnJZQ9zc1wHz8Oc3FxRPt3nIkgKqDQKD75WfvJ+6z1vHKICgUEceq89yo0Wljml8Db2orePTXQJiQAqeyjczZMiBMRERER0YwlqtWIW74MHRXvw9/Te8Z1va1tMObPgzbeHrVE82iJtVMJgjAr6s6O5FxrwkeaZX4JPMeb0fXR1jM2yZNlCb6ubsSeVx61hA8wWOoldnE5/L198J8oo3Jq3N62NtiWL4ve60GtHjFhqDIZoYwxQNSoT7twlXjpmskKb0ymwmyZmUqh0UBpMmKgo/O0567r8BFI3sGLi2pbbMQbmxrn5qJ7WyXUsZ/UEtfEx0MaGIC/txeyJMHX7UDc8qWh15NqEmYgTSUCBOgzMxBw9cPb3Iy+2jooT3ofk/x+SH4/LMXFU/b9TaGamhcwRKUSutQUqCxmiDzfjAkT4kRERERENKOJajXsK86Hv/fMCXFdauqYG7QRnWpwBHsalCYTZL/vjOsa584d04WPSBMUCqhjrVDHWqEyGiEHh49kjsnJnrKlPvhaJWCwV0T3x1thW74UCo0G7mPH4evshCxJ0KelAgAcO3YhJiszonHokpOh0McMe+337NwFQamEuTAfwGDjxtk0q2ckAgSoDAYoc3Pg7+s7banKZJxSo6+nk8Fjy/PiWDEhTkREREREM56oVkNjt0c7DJoF1JbpOVVdHWuNdghE46bU62AuKUbXRx9DGx8Pf28vYrKzoLHbIYgiAMC+YvmklCY59bUft3wpBKVySlz8mmoEUQG1heccih4mxImIiIiIiIiIaFrSxNlgLixAcGAAhtyc05LfkSyVcibR2i8RnR0T4kRERERERERENG1xBhARjYcY7QCIiIiIiIiIiIiIiCYDE+JERERERERERERENCswIU5EREREREREREREswIT4kREREREREREREQ0KzAhTkRERERERERERESzgjLaAUxVHo8HAFBbWxvlSKLjYJsz2iEQ0QT4243RDoGIiIiIiIimMeaGpqfZmg8YyuEO5XTPhAnxUTQ0NAAA1q5dG91AiIiIiIiIiIiIiOisGhoasHz58jOuI8iyLE9SPNNKZ2cn3nzzTWRmZkKn00U7nElVW1uLtWvX4vnnn0d+fn60wyEKKz6/aabic5tmMj6/aabic5tmMj6/aabic5tmsun8/PZ4PGhoaMAll1yCuLi4M67LEeKjiIuLw6233hrtMKIqPz8fixYtinYYRBHB5zfNVHxu00zG5zfNVHxu00zG5zfNVHxu00w2XZ/fZxsZPoRNNYmIiIiIiIiIiIhoVmBCnIiIiIiIiIiIiIhmBSbEiYiIiIiIiIiIiGhWYEKciIiIiIiIiIiIiGYFJsTpNElJSVi/fj2SkpKiHQpR2PH5TTMVn9s0k/H5TTMVn9s0k/H5TTMVn9s0k82W57cgy7Ic7SCIiIiIiIiIiIiIiCKNI8SJiIiIiIiIiIiIaFZgQpyIiIiIiIiIiIiIZgUmxImIiIiIiIiIiIhoVmBCnIiIiIiIiIiIiIhmBSbEiYiIiIiIiIiIiGhWYEKciIiIiIiIiIiIiGYFJsSJiIiIiIiIiIiIaFZgQpyIiIiIiIiIiIiIZgUmxImIiIiIaFwaGhogCAIOHToU7VCIiIiIiMaFCXEiIiIimhZWr16Nb37zm2HZ1re+9S2cf/75YdnWyZ577jmkpqaGfbv0iUj97YYIgoBNmzZFbPtEREREFF1MiBMRERER0ZQnyzICgcA539/v94cxGiIiIiKarpgQJyIiIqJpKTMzExs2bMDll18Oo9GInJwc/PWvfw0t37VrF1atWgWLxQKr1YrS0lLs378fL7zwAr773e/io48+gsFggMFgQEVFBbxeL66//nqkpKTAaDQiLy8PP/vZz8a8z4qKCtxzzz1obm4ObfeFF14AANx1113IzMyEwWBAVlYW1q9fD0mSQttdvXo17r//ftxyyy0wm81IS0vDL37xi2H73rp1K1avXg2bzYaMjAw88sgjwxLEtbW1uOyyyxAXF4fU1FTcfffd6O3tHRb7s88+O2ybJ4+GbmpqwuWXX47Y2FiYzWYUFRWhoqLijH+DDz74APPnz4fRaMSSJUuwb9++0LJgMIinnnoK+fn5MJvNKC0txdtvvx1aXlNTg4suugh2ux1msxnnnXce3nnnndDyobIsv/nNbzB//nzo9Xo88cQTI/7tRpKZmYn169fj0ksvhdFoxFNPPYWWlhZceeWVSEhIgNFoRElJCV5++eXQfQoLCwEAV111FQwGAy677LIxPRYiIiIimkZkIiIiIqJpYNWqVfI3vvGN0O8ZGRlyWlqaXF1dLQeDQfmpp56SjUaj3NvbK8uyLC9btkx+7LHHZL/fL/v9fnnHjh1ya2urLMuyvH79enn58uXDtu92u+Xf/va3ssPhkIPBoPz3v/9dVqvV8v/93/+NeZ8bN26UU1JSTov917/+tdza2ipLkiR/9NFHcmxsrPzMM88Me2wmk0l+++235WAwKL/yyiuyKIrywYMHZVmW5bq6OjkmJkZ+8cUXZb/fLzc0NMglJSXy448/LsuyLPf19cnJycnyAw88IPf398vNzc3yypUr5U9/+tPDYv/1r389LC4A8ltvvSXLsizfcsst8rp162SPxyMHg0G5rq5OPnz48Ih/iyNHjsgA5Isuukhubm6WPR6P/NnPflZeuXJlaJ3169fL8+fPl+vq6uRgMCi/+uqrsl6vlw8dOiTLsizv2bNH/ve//y273W7Z6/XK69evl00mk9zW1jZsH8uWLZObmprkQCAQWu/Uv91IMjIy5ISEBPnDDz+UJUmS+/v75aNHj8p/+ctfZKfTKft8PvnZZ5+VlUqlXFNTM+IxGetjISIiIqLpgyPEiYiIiGjaWrduHRYtWgRRFHH33XfD6XSitrYWAKBWq9HU1ITGxkYolUosWLAACQkJo25Lp9PhjjvugMVigSiKuOKKK3DppZfi3//+95j3eaY4ExISIAgClixZgrVr15623c9+9rO48MILIYoiPvvZzyI2NhbV1dUAgJ/97Ge46qqrcNNNN0GpVCIjIwNf+9rXsHHjRgDA3//+d/h8PjzxxBPQ6/VISkrCj3/8Y/ztb39Da2vrmI6lWq1Ga2sr6uvrIQgC8vLykJWVdcb7PProo0hKSoJWq8Udd9yBysrK0LIf/ehHeOKJJ5CXlwdRFHHttddi2bJlePHFFwEARUVF+NSnPgWdTgeNRoNvfetbEAQBW7duPW0faWlpUCgU0Gg0Y3osQ+644w4sXboUgiBAr9cjNTUVn/nMZ2AwGKBSqfBf//VfKCgoGDYyfSRneyxERERENH0wIU5ERERE01ZycnLo55iYGACA0+kEMNjgUhAEXHjhhUhNTcWXv/xluFyuUbc1MDCABx98EHPnzoXZbIbFYsG//vUvtLe3j3mfI5FlGd/5zndQWFgIq9UKi8WCX/7yl2fc7tC2h7Z78OBB/PWvf4XFYgn9u/fee0PJ7qNHjyIjIwNKpTJ0/9zcXACDpVDG4sknn0Rubi4+85nPICEhAXfccQfa2trOeJ9Tj4XH40EgEEBbWxv6+vpw/fXXD4v5ww8/xPHjx0Nx3XTTTUhPT4fJZILFYkFfX99px+VsSfkzOfW+DocDd955J7KyskL73Lt372n7PNlYHgsRERERTR9MiBMRERHRjJSRkYFf//rXaGxsxHvvvYe33noL3/ve9wAAonj6x+Af/vCHeOONN/DGG2/A4XCgp6cHl112GWRZHvM+R9run/70J/z4xz/G73//e3R2dqKnpwd33333uLabmJiIW265BT09PaF/fX19oQR/WloampqahtUUr6+vBwCkp6cDAIxGI/r7+0PLm5ubh+3DZrPhRz/6Efbv348dO3agoaEBDzzwwJhjPJnFYoFWq8Xf//73YTH39/eHaqPfeeedkCQJlZWV6Ovrg8PhgMlkOu24nHpMRzrGozl13Ycffhh1dXXYvHkzent70dPTg8LCwmH7FARh3I+FiIiIiKYPJsSJiIiIaEZ67rnncOzYMciyDJPJBKVSGRpBnZiYiKamJni93tD6vb290Gg0sNvtkCQJL7/88mllTc4mMTERnZ2d6OrqGrZdpVKJ+Ph4CIKAd999F88///y4tvv5z38er7zyCl5++WX4fD4Eg0EcOnQI//d//wcAuOKKK6BUKvH1r38dHo8Hra2t+MpXvoKrrroKiYmJAICysjK8+OKLoWT6ww8/PGwff/rTn1BfXw9JkmA0GqHRaIaNOB8PjUaDe+65B1/72tdQW1sLWZbh8XiwZcsWHDhwIHRcDAYDrFYr+vv78d///d9nHME/ZKS/3Vj19vZCr9fDZrPB7/fjpz/9Kfbu3Xva9vfv3z+ux0JERERE0wcT4kREREQ0I7377rtYvHgxDAYD5s+fj6VLl+Khhx4CANx4443Iy8tDcnIyLBYL3n//fTz44INIS0tDRkYGkpOT8fbbb+Oaa64Z1z4vvPBCfPrTn8bcuXNhsVjwxz/+EbfffjsuuugiFBcXIy4uDs888wzWrl07ru2Wl5fjrbfewq9//WukpKTAZrPhuuuuQ2NjIwDAZDLhrbfewq5du5CamorS0lLk5ubid7/7XWgbjz/+OEwmE9LS0lBaWoprr7122D527dqFCy+8EEajETk5ObBYLHjyySfHFefJnnzySdx8882hUiOZmZn43ve+B7/fDwD4yU9+gl27dsFqtaKgoAApKSlITU0963ZH+tuN1eOPPw6Px4OEhARkZmaira0Ny5cvH7bO9773PTzxxBOwWCy48sorx/RYiIiIiGj6EOTxzNUkIiIiIiIiIiIiIpqmOEKciIiIiIiIiIiIiGYFJsSJiIiIiIiIiIiIaFZgQpyIiIiIiIiIiIiIZgUmxImIiIiIiIiIiIhoVmBCnIiIiIiIiIiIiIhmBSbEiYiIiIiIiIiIiGhWUEY7gKmqs7MTb775JjIzM6HT6aIdDhERERERERERERGNwOPxoKGhAZdccgni4uLOuC4T4qN48803sXbt2miHQURERERERERERERj8Pzzz+PWW2894zpMiI8iMzMTwOBBzM/Pj24wUXCwzRntEIhoAuYkGKMdAhEREREREU1jzA1NT7M1H1BbW4u1a9eGcrpnErWE+NNPP43nnnsOe/bswbXXXos//elPAIADBw7ga1/7Gj766CMMDAxg/vz5eOqpp1BWVha67yuvvIKHHnoILS0tWLp0KX77298iIyMjtPyRRx7BM888A5/Ph+uvvx4/+9nPoNFoxhXfUJmU/Px8LFq0KAyPeHpRHeuNdghENAHFqeZoh0BERERERETTGHND09NszweMpfR11JpqJicn45vf/CbuvPPOYbf39PTg8ssvx969e9HV1YXrrrsOl112Gfr7+wEMZvtvv/12/OIXv0BXVxdKSkpwww03hO7/7LPP4oUXXsDWrVtx+PBh1NXV4dFHH53Ux0ZEREREREREREREU0/URoh/5jOfAQDs3LkTnZ2dodsXL16MxYsXh36/77778NBDD6Gurg6lpaV4/vnncemll2LNmjUAgA0bNsBut2Pv3r0oLCzExo0b8cADDyA7OxsAsH79etx666144oknRoyjpaUFLS0tp91eW1sbtsdKREREREREREREs0/A74PH3Q+d3gClShXtcAjToIZ4ZWUlJElCbm4uAKCmpgbl5eWh5UajETk5OaipqUFhYSFqamqwYMGC0PIFCxago6MDbW1tSEhIOG37v/zlL/HYY49F/HEQERERERERERGdK1mWQ/8mZ3/SpOxnppIkCbXVH6HhQA1kSYIgisicW4T80qUQxcgV7QgGgxHbdrQJghCWYzelE+JdXV1Yu3YtNmzYALN5sP6Ny+WCxWIZtp7FYoHT6Rxx+dDPTqdzxIT43Xffjauvvvq024cKsRMREREREREREUWLJElob29HT0/PpCXDAUAOMCE+EQGfF9kpdszLugSiKEKSJPh8PgQ6G6BSayO23wOu1ohteypQqVRIT0+HWq0+521M2YR4b28vLrnkElx66aX42te+FrrdYDCgt7f3tHWNRuOIy4d+Hlp+qqSkJCQlJYU7fCIiIiIiIiIioglrbGyEKIrIzMyEahJLbnj8gUnb14wjAz3dnTAaDFAqP0m/BgIBOF0uWGLjACEyu9appmy6d8JkWUZXVxeamppC1UTOxZQ8QkPJ8PLycvzv//7vsGVFRUXYuXNn6HeXy4X6+noUFRUNW758+XIAgzXK7Xb7iKPDiYiIiIiIiIiIpipJkuD1ejFnzpxhidXJIAYnbzT6TCMFgxAF4bRRzGq1GqIwmAkXRUVE9q1QRGa7U4XNZkN3dzckSTrn8imRK1hzFoFAAF6vF4FAIPTi9vv96Ovrw6WXXoqCggL8/Oc/P+1+a9euxb/+9S9s2rQJXq8X69evR0lJCQoLCwEAt99+O370ox/hyJEj6O7uxoYNG3DHHXdM9sMjIiIiIiIiIiKakKESKYIQoeHEFBGDiVoBgcDwUfaBQAAIUx3s2WrotTCR8kFRO/qPP/44dDodvvOd7+Dll1+GTqfDnXfeib/+9a/4+OOP8ec//xlGoxEGgwEGgwEVFRUAgPz8fGzcuBF33XUXYmNjsWPHDrz00kuh7a5btw433XQTysvLkZWVhTlz5mDDhg3RephEREREREREREQ0i0iyAFGlQb/bHUqKBwIB9Lvd0Gh1AC9wRJUgT2Y1/mlk+/btKC0tRXV1NRYtWhTtcCbdnmO9Z1+JiKas4lRztEMgIiIiIiKiCQoGgzhw4ADmzp076aUw3D7WED8nMuAZCECpEBHwuTHg9QCyDAgCNFoddHrDOdcPv2vdfyIhIRHf/s53R11Hr56SFbLDZrTXxHhyuRyfT0REREREREREROfk0k9dhGd/9csJbydGo8L+urowRDQof24u/v3mm2Hb3lgN+IMQRAEqlQhdjAGW2DiYrDZYYuOgizn3ZHg0rF69Gs8880xYt/ncc89hyZIlYd3meDEhTkRERERERERERDRBgYCEoCRDqzppNL8gQFQoplWZFEmSzqlG96k106cqJsSJiIiIiIiIiIhowrZs3oys9FT84mdPIzsjDRmpyfjRU0+Flm+vrsKq85chMS4WGSlJuOO2zwEALly1AgBw/tLzEB9rwW+f/TUA4LbPrUV2RhqS7DZ86sLVqKnZE9rWXev+E1++74u4+YbrkWCzYnHpQuzatTN0v6NNTbj5husQH2vBtx59BADw0FcfRF5uNhJsViw7rxwVW7aEtvedb2/ALTfegC/cezeS7DYU58/DO2+/HVre19eHL33h85iTnYms9FQ8cP+X4PV6Q8v/8Pvfo3RBMXLTE3HZpZ8aNtr91NHqz/7ql7j0UxcBGGwO+fWHH0JmWgoS42KxsLgIWzZvHvUYO/v6RnzMANDa2oobb7wRCQkJSEtLw7e+9S1IkgQAOHLkCC666CLYbDbExcXh5ptvhsPhCN03MzMT3//+91FaWgq9Xo977rkHFRUV+PKXvwyDwYDPfe5zI8YjCAJ+/vOfY968ebBYLACAH/zgB8jNzYXRaER+fj7+8pe/AAD27NmDe+65B5WVlaG+kf39/ZBlGT/84Q8xd+5cxMbG4vLLL8exY8dGPQYTxYQ4ERERERERERERhUVXZyeOHTuGuoP1+MtfX8Nj6x9B/aFDAID/95Uv44orr0Jzeyf21x/BXXffAwB4Z3MFAOD9j7aivbsH/7nuTgDARRdfjJ179qLhWDNKy8px+ylJ2Zf+/Cfcd//9aG7vxKrVF+CrD3wFAPC7PzyPtPR0vPjSK2jv7sG3NnwbALBw0SJ88PE2HG/rwC23rsXaW26C2+0Obe9f//wHLrn0Mhxrbcdd99yDe+++M7TsnjvXwTvgRfXO3dixuwaHDh3C/3z3OwAGLwQ89NX/h1/86lk0HGvGBRdciM9e82kMDAyc9XhteustvPLyS/hoWxVaO7vx19ffQFpa2qjrj/aYJUnCDZ+9Frm5uWhsbMTWrVvxt7/9Db/5zW8ADCbeH3roITQ3N6Ourg4tLS145JFHhm3797//PV5++WU4nU787Gc/w4oVK/DjH/8YLpcLf/jDH0aP6aWXsGXLFnR0dAAAsrKysHnzZvT29uLb3/42Pve5z+HYsWMoLi7GM888g/LycrhcLrhcLsTExODpp5/GCy+8gH//+99oa2vDokWLcNNNN5312J0rJsSJiIiIiIiIiIimEUmSI/7vXImiiPWPbYBarUZZ+WLMzcvD7t27AABqtRpNjY1oaW6GVqvF0mXLz7it/7jtdphMJmg0Gvz3N76J2n170dXVFVp+5dVXY9ny86FQKHDL2rXYuWPHGbd30823IC4uDkqlEl/80v0I+P3YX1cbWn7ekiW4+tPXQKFQ4NbP/QeOHT2Kzs5OtLe34x9/fwNP/eh/YTKZYLFY8NB/fx0v//nPAIA/vvA8br5lLZYtWwq1Wo0Hv/YQPF4PPvzgg7MeL7VajQGvF7X79sHv9yMzKwtZ2dmjrj/aY95eXYVjx47h8ccfh1arRXJyMh544AG8+OKLAIDs7GysWbMGGo0GcXFx+MpXvoLNp4xE/+IXv4js7GyoVCoolWNvzvnwww8jPj4eOp0OAHDdddchJSUFoijiuuuuQ15eHrZu3Trq/X/xi1/g8ccfR2ZmJlQqFb71rW+hsrISTU1NY45hPGZ221EiIiIiIiIiIqIZRJJk/HtrY8T3c/7CFIji+OteW2NjoVarQ7/r9Xq4XC4AwC9++Ws8/u3HsGzJYtjj7Ljvy1/GbbffMeJ2gsEgvvXoI/jrX/6Czs4OiOLguN6uzk7YbDYAQEJC4if70enR399/xth+/MMf4vfPbURLSzMEQUBfXx86Oz9JsA/bnl4PAOh3udDR0Y5gMIi8nKzQclmWEQwGEQzKOH68GZdceklomSiKSEtLQ3Pz8TMfLACrVq/GNx55FN969Js4dPAgPrXmEvzP93+ApOTkEdcf7TE3Njais6MDVqs1tFySpNBo87a2Ntx///2oqKiA0+mEJEkwGo3Dtp2RkXHWeEdy6v1+//vf44c//CEaGhoAAC6XC52dnaPev6GhATfeeGPobwwMHsNjx44hPT39nGI6EybEiYiIiIiIiIiIpglRFLDmvHNLXI6HNxAM+zazc3Lw2+d+D1mWUbFlC66+4jKcf/4K5OTmnrbun//0Il5/7TW88c9/ITMrC319fUiOjxtzs0cBw5P5H7z/Pp76wRP457/fQmFhEURRREqCfUzbS01Lh1KpRMOx5mHJflkGPAMBpKakoKnxk4sUkiTh2LFjSE5OAQDExBjg8XxSmqWtrW3Y9u+6517cdc+9cDgc+OK99+Cb3/hv/Gbj78b0OIekpaUhJTUVjSeS0Kf6+te/DkmSsHv3bthsNvztb3/D3XffPWwd4ZTGn6f+PpqT12tsbMS6deuwadMmLF++HAqFAgsXLgwd55G2mZ6ejmeeeQarV68e0/4miiVTiIiIiIiIiIiIphFRFCL+LxJeeP4PaG9vhyAIMFvMEAQBCoUCABCfkIAjhw+H1nU5nVBr1Ii12eDxeLBh/aPj2ld8QjyOHK4P/e50OqFQKhFni0MgEMD3/+d76OvrG9O2EhMTcelll+OrD3wFDocDsizj2NGj+Oc//wWFKOCmW27BC3/4Paoqt8Hv9+OpJ38AtUqNZcsHS8LMXzAfL/3pT/D5fKit3Yfn//D70Larqyqx9eOP4PP5oNfrodPrQsdkPErLyhEXF4dvf/vb6O/vhyRJOHjwYKgsitPpRExMDMxmM5qbm/Hkk0+edZsJCQmor68/63onGxqxbrfbAQyOFq+pqRm2zePHjw+rr37vvffiG9/4RmhfDocDL7300rj2Ox5MiBMREREREREREVHEvfP2JiwuXYj4WAs+d/PN+PFPforMrMEyJN985FF8/t67kRwfh42/eRa3rP0csrKyMScrA4vmF2NRWdm49vXgVx/Cj374FJLj47DhW+vxqTVrcOlll2FhSRHmzcmBUqlC6hmaV57qV7/5LVQqFZYuLkOS3Yarr7wcBw8egEalwKrVq/HdJ76PdXfcgYyUJLyz6S385W9/g0ajAQA8uv4xtLQ0IzUxHg98+X7ccuva0Hb7+pz40he/gLSkBORmpqOvtw8bHv/uuB4rACgUCrz86ms4ePAg5syZA6vVihtuuAEtLS0AgPXr12P37t2wWCy4/PLLcc0115x1m/fffz9ef/11WK1W3HbbbWOKo6CgAF/96lexfPlyJCQkYOfOnVi2bFlo+YUXXogFCxYgKSkJFosF/f39uO+++3DTTTfhyiuvhMlkwvz58/Hmm2+O+xiMlSCPdZ7BLLN9+3aUlpaiuroaixYtinY4k27Psd5oh0BEE1Ccao52CERERERERDRBwWAQBw4cwNy5c89p1PBEuH2BSd3fdCJLgHsgAJ1GEbHR9OdKr57ZFbJHe02MJ5fLEeJEREREREREREREY+T1B6BWiVMuGU5jw4Q4ERERERERERER0Rj4/BIEACol06rTFf9yRERERERERERERGcRDMoIBCVoZnhZkpmOCXEiIiIiIiKiKcjn86Grqws+ny/aoZzRdImTiGhCZGDAH4RGpYDASinTGi9nEBEREREREU0hkiRh06ZNqKqqgiRJEEURZWVluPjiiyGKU2dc23SJk4goHLz+IBSiAIWC2fDpjglxIiIiIiIioilk06ZN2LdvH1asWAGr1QqHw4Hq6mr4AxKWnr8aPn8QA74gBvxB+AMSgpKEQFBGMCghKMmQZQAY/P/EjxAEQBAGEzmicOKfCChEEQqFAKVChEopQiEKUCrFwd8VIhQKEUqFcGLZ8AZyo8UJAGvWrInGoSMiiohAUIIkydBrmEqdCfhXJCIiIiIiIpoiPN4BVFZWYuXKlbBarQAAq9WK0tJSbN68BcbEfOh1WmjUCmhUCui1ysEk9onktUIUQlP5BUHAUPpaBiBJ8uA/efBfMPjJ/4GgBLc3gEBQCv1+8j9/QIYsyydGR4oQ5CC2bavEqlWnx7llyxbk5JdCp9NAKYpQKgeT7SqlCLVSMSypTkQ01ckyMOCToNMoAJ6+ZgQmxImIiIiIiMJIlmV4fUH4/EHIMqBUitCpFVAoWEKCTucPBNHdN4CuXg96nANo7+iEJEmhJPOQwd9lFGYYYLPZohJrUBochR4ISmhv78T7sjxinJIkoa2jG9oY82BCPSDBF5Dg9wcRlGQoFSLUKhFqlQI6tRI6rRI6zeC/GJ0KOo7AJKIpxOsLQK0UeTFvBuG7DBERERER0Tj4fD44nU4YjUao1WoAgGcggOMdLnT3euFwDkAhCtCoFQAGp1kP+ILQa5WwmrRIsOoRZ9Hxi/Us5vL40drVjw6HG063H+YYNWLNWuRlWDE/14p9WxVwOBzDks0OhwOiKMJoNEYtboUoQCEqoFYpkJxog0IhjhinQqFAWVFG6PVxsmBwMDnu8wfh80vw+gLwDATQ3euFeyCAfo8fggAYY9Qw6tSwGDWwmjTQqpm+IJrN4mMt+ODjbZgzd+6k7tfnlwAAKtXYL2rfte4/kZCQiG9/57uRCosmiO8oREREREREYzBSA8GS+QuRmLUQPa4BJMTGID3RiAVz7VCrFMPuG5RkOPt96O7z4tCxHuyp70RaghEZSSZoTlmXZibPQADH211o6eqHPxCE3apHTqoFsSYtlKfMHigrK0N1dTVKS0uH1eYuKysbMckcDWq1+pziVChE6BTiGUeBu71+ON1+9PUP4Gi7EzX1ndBqlIg1aZEQq0esScsLSkRTyKWfugjbtm6FUqmERqPBotIyPPnDH42avN6yeTMuv+RT0Ov1EAQBcXF23Hn3PfjyAw+Muo/27p4xx5M/Nxf/+9OfYc0ll4z3oQwjSTL8AQl6LdOnMw3/okRERERERGMwUgPBysoquAcCuPbqK6BSjj56TCEKsBg1sBg1yE4xw+n24UhzLyp2HENGkgnZyWaWVJmBJElGu8ONY+0u9Di9SIiNQUFWLKzGMyd0L774YgBARUVF6OJLWVlZ6PapIlJx6rUq6LUqJMTqAQwex17XADp7Pdjf6IBnIID4WB1S7AbEmrQQBCbHiaLt+08+hXV33Q232437vnAv7r37Tmx6d/Oo69vj43Gk6RgAoHLbVlx+yRqUzJ+PCy+6aLJCHlUgEIBSoYTXF4RGLYKnmJlnXAnxvr4+vPnmm6isrER3dzdiY2NRVlaGSy65BGazOVIxEhERERERRZXP50NVVVUoGQ4M1kouLy9DRUUF5CsvATD2kbtGvRoluXa4vX7UNnSjYlczCrJiEW/VR+gR0GQKBiUca3fhSEsf1EoRaQlGzJ9jP+NFk5OJoog1a9Zg9erVp5XnmUomK05RFGA1aWE1aTEnzQq314/WLjf2Hu4CAKTYDUhLMJ42M4OIBo1U6itS9Ho9rr/+Rnzu1pvHfJ/yxedhXn4+du3cOWpCPEajwvZde5A3bx7uWvef0Ov0aGtrwztvb0JGZiZ+/duNmD9/AW773FocbWrCzTdcB4VCgc9/8T58a8O3cejgQTz4wFewvboKJpMZX/ryl3HXPfcCAL7z7Q2o2bMHZosZr7/2Gr74pfvx9E9/gr+89ncsXXoeAGBgYAA5GWl47Y2/o6x8MW773FpUbNkMj9uNouJi/OgnP0VRUfFpcXd1deHeu+7EB+9XAABy58zBX157HXFxceM9tBRGY3o3djgc+NKXvoSUlBQ8+OCDqK2thdfrRW1tLb72ta8hNTUVX/rSl9Dd3R3peImIiIiIiCad0+kctdGhJElwOp3ntF29VoXSeQkoyIzF3sNd2Hu4C8GgFI6QKQqCQQn1x3qweccxdPR4UJxjw7KSZKQlGMecDD+ZWq2GzWabksnwk012nHqtCtkpZqxYkILCbBucbh+27DiG2iPd8AwEJiUGoulAkiT8+9//xpNPPolf/OIXePLJJ/Hvf/8bkhS59xmn04k//elFZOfkjGl9WZbx0YcfoHbfPuTkju0+APDSn/+E++6/H83tnVi1+gJ89YGvAAB+94fnkZaejhdfegXt3T341oZvw+1244rLLsEVV16J+sajePVvr+OpJ3+AtzdtCm3vn//4Oy66+FM41tqO+778AK7+9Gfw6it/Di1/8//+hbg4O8rKFwMALrr4YuzcsxcNx5pRWlaO2z/3uRHj/N8f/RCSJOHgkUY0Nbfixz/5KbRa7ZgfJ0XGmN6RS0pKoFKpsG3bNjQ2NuKNN97A888/jzfeeAMNDQ3Ytm0blEolFi5cGOl4iYiIiIiIJp3RaIQgCHA4HMNuD1ejw/hYPZaXJGPAH8RHNS1we/0T2h5NLkmS0dTahy07j6PHNYDSeQkoy0+AzayLdmgzmiAIsJl1WDA3HstKkiHJMj7YdRy1R7rh8wdD6/l8PnR1dcHn80UxWqLJd3Kpr2uuuQYrVqzAvn37sOmkRHC4PPy1ryLJbkNiXCyqKyvxm+d+d8b1O9rbkRwfB5vZiIsvWI17v/BFXHX1p8e8vyuvvhrLlp8PhUKBW9auxc4dO0Zd91///AcSExNx5933QKVSYW5eHu74z//Cyy/9KbTOwkWLcP0NN0IQRIgKDW5ZeyteefklBIOD55I/v/gibrz5k1Hv/3Hb7TCZTNBoNPjvb3wTtfv2oqur67R9q9VqdHd3ob7+EBQKBRYuKoXBYBjz46TIGFNC/OOPP8ZTTz2F/Pz8EZfn5+fjhz/8IT766KOwBkdERERERDQVHOvwIDFjHqqqq0NJ8XA3OlSrFFiUF4/kOAM+rmlBV69nwtukyOvq9eCD3c043tGP+XPsKJ2XALNBE+2wZh29VoXCbBuWz0+BPxhExc7jqD/mwJtvvjmpo2OJpoqhUl9DTW+BwVlNpaWlqKqqCvsFov/5/g/Q0tGF3XtrIYoi6g8dAgD86cU/Ij7WgvhYC8oWzA+tb4+PR3N7J9q6HHj0W49hy+b34PeP/WJwQkJi6Ge9To/+/v5R121saMSunTuRHB8X+vejp55EW2tbaJ309AwAgNcXgFopYsWKFdBqtXj3nXfQ29uL//vXP3HTzbcAAILBIB75xtdRNC8PiXGxyJ8zOLK9q7PztH1/+YH/h6XLluPWG29ETmY6vvHfD4/rcVJkjCkhnpKSMqaNJScnj3nHTz/9NMrKyqDRaHDTTTcNW3bXXXchLy8PoijimWeeOe2+r7zyCnJycqDX63HRRRehsbFx2PJHHnkEdrsdZrMZ69atw8DAwJjjIiIiIiIiOllDSx+a2py48TNXorCgABUVFXjttddQUVGBgoKCsDc6zE4xoyg7DjsPdKC5wxXWbVP4DPiD2H2oA7sOdiInxYylxUmINXEafLTpNEqU5NpRlp+A97e8h717J2d0LNFUE6lSX2eTk5uL7z/1Qzzw5fvh8Xhw0823oL27B+3dPajaueu09VUqFR76769DEAT8+pen5wDPhYDhXTDT0tOwZOlSNLd3hv61dTnw19ff+OQ+ggC/XzoRkwhBEHDDjTfhTy++gNde/QvmL1iArOxsAMCf//QiXn/tNbzxz3+hpaMLtQfrAQyWfzmVwWDAd773P9i9rxZvvf0u/v766/jj838Iy+OkczfuImY/+9nPsHPnTgDA9u3bkZaWhqysLFRXV49rO8nJyfjmN7+JO++887Rl8+fPx89//nMsXrz4tGW1tbW4/fbb8Ytf/AJdXV0oKSnBDTfcEFr+7LPP4oUXXsDWrVtx+PBh1NXV4dFHHx3fgyQiIiIiIgLQ2tWPw8d7UJ6fAINegzVr1uDBBx/EvffeiwcffBBr1qyBKI6/NvTZxMfqUZafgLrGbjS29oV9+zQxrV39+GDXcShEESsWJCPZzunvU41OLeB4Qy3Ky8smZXQs0VRjNBohimLESn2dySWXXor4+Hj85te/GvN9HvzqQ3jqyR/A45n47Kj4hHgcOVwf+v2yy69AY2MjfrfxtxgYGEAgEEBNzR5UV1WG1pFlGb6ABK1aGbrtpltuwRt/+xue2/jb0OhwAHA5nVBr1Ii12eDxeLBh/eh5x3/94x84eOAAJEmC0WSCSqWCqGAD4Ggb9ye3p556KjQS/JFHHsENN9yA//iP/8CDDz44ru185jOfwTXXXDNiV9UvfOELuOiii0YsMv/888/j0ksvxZo1a6DT6bBhwwbs2rULe/fuBQBs3LgRDzzwALKzs2Gz2bB+/Xps3LhxvA+TiIiIiIhmOYfTi5r6LizMi0eMThW6fbIaCJoNGiwuTMKR4704fLw3ovuisfEHJOw+1IG6RgcWzI1HYbYNKiUTG1NRtEbHEk0VarUaZWVlqI5gqa8zeeDBr+KHTz055gT3FVddBavFOq4k+mge/OpD+NEPn0JyfBw2fGs9DAYD3vjHv/CPv/8dc3OykJGShPs+fy/6+k6cB2QgKMnQqEUIJw0uz88vQE5uLnZs347PXv/JYNxb1n4OWVnZmJOVgUXzi7GorGzUWOrrD+Gaq65Egs2K88oW4cKLL8Ytt66d8GOkiVGefZXhurq6EB8fj0AggA8++AAvv/wy1Go1EhISIhHfaWpqalBeXh763Wg0IicnBzU1NSgsLERNTQ0WLFgQWr5gwQJ0dHSgra1txBhbWlrQ0tJy2u21tbURiZ+IiIiIiKY+ry+AnQc6UJRjg9UYvTIYBp0KiwsTsW1fG0RRQGaSKWqxzHY9zgHsPNiBWJMGy0uSoVKGf2YAhc/Jo2NPToo7HA4IghDR0bFEU8VQSa+KigpIkgRRFFFWVhb2Ul//99bbp912/Q034vobbhxx/ZWrVuFI07FhtwmCgOpdu0fdR//AJ3W3f/Xsb4cty5s3b9jyK6++GldeffWwdXLnzMFLf3l1xG0/+PA3AABKxenn9Q+3Vp52m8FgOG1bt6793IjxffFL9+OLX7p/xP1S9Iw7Ia7X6+FwOFBTU4N58+ZBr9fD7/dPWkF4l8sFi8Uy7DaLxRK6unvq8qGfnU7niAnxX/7yl3jsscciFS4REREREU0zkiRj14EOJMfFINEWE+1woNeqsLggAVv3tkIhCkhLYCJvsh1tc2J/owMFWbEsjzJNnDw6dqipoMPhQFVVFRLT56Gp3Y3c1MiOkCWKNlEUsWbNGqxevRpOpxNGozHiI8Onm0BQQlCSodeMO0VK09i4/9rXXnstLr74YrhcLtx9990AgN27dyMjIyPswY3EYDCgt3f4dMHe3t7Q1d1Tlw/9PNrV37vvvhtXn3LVCBgcIb52LacwEBERERHNNgeODo4gnZNmPfvKk0SvVaE8PwHb9rVCoRCQHMek7GQISjJqj3Shq9eLxYWJMMUwkTSdjDY6dtn5q7DzYCf6PX4U5cRBIQpn2RLR9DZU6ouGk2VgwCdBp1EAPA3MKuNOiP/v//4vfve730GtVocSxn19ffjmN78Z9uBGUlRUFGrqCQyOCK+vr0dRUdGw5cuXLwcA7Ny5E3a7fdSSLklJSUhKSop43ERERERENPW1dbvR0tmPpcVJEKdYksygV6N0XgKqatugVSsRa4peKZfZwB8IYsf+DoiigGUlSawVPg2daXTseYVJ2H2oA5X7WlE6L55/X6JZyOsLQK0Up9z7PUXeuBPiKpUK69atG3bbBRdcMO4dBwKB0D9JkuD1eqFQKKBSqeDz+SBJEiRJQiAQgNfrhUqlgkKhwNq1a1FeXo5Nmzbh/PPPx/r161FSUoLCwkIAwO23344nnngCl19+OcxmMzZs2IA77rhj3PEREREREdHsMuAPYu/hTpTk2qFVT82p02aDBsU5cdh5oB2LC5NgOKnZJ4WPZyCAqto2WI0aFGTZmCyZ5kYaHatSiliUF4+9h7uwbW8bSvPjp+zrnojCz++XAAAqFftBzEbjPtvLsoyXXnoJ27ZtO60r869+NfZOsI8//viw2t0vv/wybrvtNjz33HNYs2YNNm/eDGBwatN9992HjRs34vbbb0d+fj42btyIu+66C62trViyZAleeuml0HbWrVuHxsZGlJeXw+/347rrrsOGDRvG+zCJiIiIiGiWqanvRJLNgDiLLtqhnFF8rB45AxZU17ZhSXESNCqObA2nvn4fquvakJZgRG6qJdrhUAQJgoCinDjUNXZj295WlOUnQK/lRSaaWgRh8IKcLMtRjmTmkCQZvoAEvZYXwaazodfGOd1XHucr6p577sGf//xnrFixAjExwxvMvPjii+ccyFSzfft2lJaWorq6GosWLYp2OJNuz7Hes69ERFNWcao52iEQERFNK0fbnGho6cOy4iQoFNNjtFjtkW709Q+gvCCRI5jDpNc1gOq6NsxJs7J56Sxz+HgvGlv7sLggETGceUFTzIEDB5CcnAyDYXL7R7h9gUnd36SQAfdAAGqVCOU0eb8fL/0Mn+3i9XrR0NCAvLy8YUnx8eRyx32EXnrpJVRVVSEnJ2f8ERMREREREU0xbq8f+xsdKC9ImDbJcADIy7Ciqq4NdY3dKMhis7SJ6nEOJsPzs2LZtHQWyk4xQxCAyn2tWFyYyJHiNKXY7XYcP34cKSkp0Gq1ExoZOx6SFJyU/UymAZ8EAYAoyDPy8QFAMDhzL5LLsoy2tjZYLJYJvQ7GnRA3mUxIT08/5x0SERERERFNJXsPdyEjyQizQRPtUMZFFAUsmGPHh3taYDa4kGJnEvdcOZxebK9rR0GWDUlxMWe/A81IWclmyDKwbV8bzitMhE4zs0dZ0vRhtVoBAM3NzQgGJy+J6wtIk7avySBJMgKSBPUMb6KrVk6fi/vnQqvVIj4+fkLbGPfZ/atf/SoeffRRfPe73520K1JERERERESR0NzhgtcXRHaKJdqhnBO1SoGFc+2o3NcGg04FnVqA0+mE0WiEWq2OdnhTls/nCx0nrx/YXteOwmwbEm1Mhs922SlmSLI8OFK8IBFaJsVpirBarbBarZAkadLqie9t7puU/UwGz0AAe+u7MC/TCo1+Zr8/zk02RTuEiBEEAaI48YT/uM/s11xzDS666CI8/fTTsNvtw5YdPnx4wgERERERERFNBp8/iLrGbiyYGw/FNK7BbTZokJdhwSuv/R2tjXWQZRmiKKKsrAwXX3xxWL44zhSSJGHTpk2oqqqCJEkQBAGJ6fPwqU9dzGQ4heSmWiBJMqrr2rG4MBGqGT7akqaXyTynC8LMeO4HJQkHj/YiOcEIY4w22uFEnEIxs0fAh8O4E+I333wz7HY7Pv/5z5/WVJOIiIiIiGi6qGvsRrxVj1jT9P9yXLvrY/R2NGHlypWwWq1wOByorq4GAKxZsybK0U0dmzZtwr59+7BixYrQcaqqqkLd7q1IT+Rxok/MTbdiwBfEjv3tKM1PmNYXzYhmu4aWPqhVIpJZEotOGHdCfPv27Whvb4der49EPERERERERBHX2eNBV68X589PiXYoE+bz+VBVVRVK8gKDU+tLS0tRUVGB1atXs3wKRj9OZWVlPE40osJsG7bvb8eeQx2YP8fOsrFE01BHjxs9zgGU5MZBAF/DNGjccx9ycnLg8XgiEQsRERFNIT6fD11dXfD5fNEOhYgorIKSjH1HupCfGTsjSiE4nU5IkhRK8g4ZqjXrdDqjFNnUwuNE4yWKAhbOtcMzEEBtQ3e0wyGicfIMBHCkuQ9z0i1QzfBGmjQ+4x4h/uUvfxm33norHn30USQmJg5blp2dHbbAiIiIKDpOra/KOrRENNM0NPdCp1HOmJrRRqMRoijC4XAMS/Y6HA6Iogij0RjF6KYOHic6FwqFiNJ5CfhoTwsadX3ISJy5zeqIZpKgLOPAUQdS4g0w6TXRDoemmHEnxP/rv/4LAPDvf/87NF1IlmUIgoBgMBje6IiIiGjSjVRflXVoiWim8J4YLbakKPHsK08TarUaZWVlqK6uRmlpaejcXVlVhbKyMpYBOUGtViMvvwSVlVUoLy8b9h7H40RnolYpUDovHlv3tiJGq0KcRRftkIjoLBqae6FWsm44jWzcCfEjR45EIg4iIiKaAjweLyorK0NN2QDWoSWimWV/kwMpdgMM+pl1Lrv44osBABUVFZAkCYIgIDF9HooWLo1yZFOHo88LZQ+luwAAUy5JREFUc3IR5qoVoeN08iwoojMx6NUozo3D7kMdOK8wCTE6VbRDIqJRDNYN96Ik18664TSicSfEMzIyIhEHERERTTLvQABdfV70OAfgcvvg8vjR1+sYtb5qMBhEVU0jkhLjEWvSwhSjZnMpIppWHE4vuno9WLFg+jfSPJUoilizZg1Wr14Np9MJo9EIpyeIXQc7EGvWQase91e/GcXrC2DnwQ4U5dqReF4m1nzqotBx4oVeGqt4qx5ZyWZsr2vHkuJE1iQmmoL6vX4cPt6HgqxYvkZpVGP6VFR1YqpduNYjIiKi6HC5fWju7EdbtxvegQCsJi2sRg3sVjMMOhVEJKB22z9Gra8aHxcLl9uPxtbBxmQ2kw4JNj3sVj0UIpPjRDR1ybKM2iPdmJNmndFfkNVqNWw2GwDApgaS4wyoqe9CWX5ClCOLHkmSsftgJ5JsMaG68ScfJ6LxyEo2w+XxY9fBTpTOi+fgAKIpJBAMoq6hG5lJRhhn2EwwCq8xJcT/8z//E7m5ubj77ruxevVqaDSfFKP3+Xx499138cwzz6C+vh67d++OWLBEREQ0fsGghObOfjS1OjHgDyAhNgYFWbGwGrUQR0hij1SHtrq6GuXl5chN/yR54PL40dnjwZHmPtTUdyEhVo/UeAOsJu1kPjwiojE51u6CDCA13hDtUCbVnHQrPtrTjKbWPqTP0maAh471QJJlzE23nn1lojEoyLJh294WHDrWgzlpfF4RTQUyZBw42gOLUYOEWNYNpzMbU0J8+/bt+PnPf457770XLS0tyM7OhtlsRm9vLw4fPoykpCTcf//9ePnllyMdLxEREY3RgD+IhuZeHGt3wRSjRm6aBXaLbsQk+MlOrUM7Wn1Vg04Fg06FzCQT3F4/mjv7setgB1QqBdITjEiKi4FSIUbs8RERjZU/IOHg0R4snGufdaM5FaKAklw7tu1tRaxZB8Msq3vc3u3GsXYXlhUnnfX9j2isFKKABXPj8dGeZpgNGsRb9dEOiWjWa2p1IhCQkZdhjnYoNA2MKSGuVCrxpS99Cffddx+qq6tRXV2N7u5uxMbGorS0FKWlpbPugyUREdFU5fMH0dDSh6ZWJxJi9VhcmDiuKYMj1aE9W31VvVaF3FQLspPN6OjxoKm1DweaHEhPNCIj0QS1auaWJyCiqa/+eA9sJu2sncFiilEjO8WMPSeaAc6WxLDb60fN4U7Mn2OHVjO7a6hT+Ok0SpTk2rH7UAeWFCVBr51dF5uIppKuPi/aHW6U5MZBwfwkjcG4PhUIgoCysjLWCSciIpqCgpKMxpY+HD7eC7tVh6XFSYiZwEjAc6mvKooCEmL1SIjVo6/fhyPHe7FlxzGk2I3ITDZBx4QEEU0yl8ePY20uLJ+fHO1Qoior2YQOhxv1x2dHiYegJGPngQ6kJ5pgM+uiHQ7NUHEWHdITTdh5oAPnFSWxnwpRFLg8PtQf60FehhUaFb9r0NhwHjMREdEM0O5w44Ndx9HZ68F5RYmYP8c+oWR4OJhi1Jg/145lJcmQZBkf7DqOmvpOuL3+qMZFRLNLXUM3L8hhcHBTcW4cmlqdcDi90Q4n4uoauqFWKZCTwqnzFFk5KWZo1ArUHumKdig0A/h8PnR1dcHn80U7lCkt4PfB2etAv8eD/Y3dyEgywhyjOfsdiU6Y3Z8KiYiIpjnvQAD7jnSjz+3DvAwrEm1Tr4GMXqtCYbYNOalmNDT34cPdzUiIjUFWinnW1bIlosnV7nDD5fFj4Vx7tEOZEvRaFeZlxmLPoU4sK0mesX0ejne40NHjwbLiJJb2pIgTBAEluXH4YHcLWjr7kRQ39T6L0dQnSRI2bdqEqqqq03r4iOLMPFefC0mSsLfyfRyu2w1ZkgBBhD0jD/a5F0U7NJpmmBAnIiKapo62OXGgyYHUeAPmz4mDYoonNrRqJeZlxiIrxYyG5l58vKcFdosO2anmcdU4JyIai6Ako66hG/MyrFP+/DiZUuwGdDjcqG3oRnFOXLTDCTun24faI90oy09g/wqaNCqlAvNz47B9fzvMBjXridO4bdq0Cfv27cOKFStgtVrhcDhQXV0NAFizZk2Uo5s69la+j9amQ1i1cmXoOFVWVWFv1fsoXrwy2uHRNMJPhkRERNOM2+tH5b5WNLb2oXReAvIyYqdVskejUiAvIxYrF6ZAr1Nia00rtu9vR69rINqh0TQTlGT4AxKCQSnaodAU1NTaB61GOSVnzkRbYbYNXT0etHb1RzuUsPIHJOzc34E56RZYjJw6T5PLatIiI8mEXQc7IUlytMOhacTn86GyshKlpaWwWgd7PFitVpSWlqKyshJ9LneUI5waAn4fDtftRnlZ2bDjVF5WhsO1uxHwsywjjR1HiBMREU0jzZ0u1B7pRlqCETmplmndvEmtUmBOmhWZSWY0tvahuq4NZoMGOSlMZNAgf0CCy+2D0+2D0+2H1xeAdyAIry8Af2AwCS4IgHwi76BUiNBpldBrlDDq1bAYNbAYNTO2LASNzusLoP5YL84rSox2KFOSSqlAcW4cdh3sgMWggXaG1Fffe7gTJoMaGYmmaIdCs1ROihndvV4cOtaDuekzv3ktTUy/x4+j7U4cbmyBJEmhJO8Qq9UKSZLw3rZ6WGNjkWjTIynOMGtLDnrc/ZBHOU6yJMHrdsFg5uuOxmZMn3zS0tLGVHutqalpwgERERHR6QJBCbVHutHV58WivHhYTdpohxQ2KqWI3FQLMpNMONrmxPb97TDqVchJtSD2lMfp8/ngdDphNBqhVrPMynQylr+dZyAAR58X3Sf+eQaCiNEpYdSpYdCrEGvSQqtWQKtRQqUUIQoCRFGALMsIBGUEghI8AwG4vX709ftwoMkBl8cPm1mLRFsMEmP1w2ZT8Pk0cx1s6kFSXAzLMZ2BzaxDst2APfWdKMtPmPa1thtb+uB0+7G0OCnaodAsNlRP/MM9zYg1aRFn0UU7JJqCnG4fDjb1oLvPi2R7DMqL0rHzfQUcDsewZK/D4YBCocCaZXPRPyChtcuNj/e0wGrSICvZfNrn5JlOpzdAEMQRj5MgitDqDVGMjqabMSXEH3/88UjHQURERKPodQ1g98FOGGNUWF6SBJVyZtZEVSpEZCWbkZ5gxLF2F3Yd7ECMVoWcVDOsRg0bDU1TZ2oS5fUF0d3nhaNvAN19XvgDQViMWsSatEiJN8AUoxnTLAhBEKBSClApReg0ymFfEH3+INq63Tje4UJdQzdS4g1Ijzfg/Yr3+HyaoXqcA+joceP8+SnRDmXKm5Nmxcc1LWhsdSIzafqOqnY4vTh4tAdLipM4I4SiTqtRojA7DnvqB5vXaljLnk7wB4LY3+hAa5cbmckmlMyJC52zysrKUF1dHSqbMlRDvKysDFqtBlrt4IXMuelWHO9wYffBDhj0auRlWGfNxV/XQBD6hBxUVlWFyqYM1RDPzi+BUjU7R87TuRlTQvy2226LdBxEREQ0gsaWPhw82oO8DCvSEozRDmdSKBQiMpJMSE0w4ni7E3vqu9BQVwlHWwMbDU1DIzWJqqyqwtE2JzLyyhFr0sJq0iA90QijXg0xzGWA1CoF0hKMSEswwuX2oaGlDy+8/DpcXUf5fJqBZFlGbUM3clItbKg4BgpRwPzcOHxc0wqbWTstkyo+fxC7DnSgIDt21pYRoKknIVaPzh4P9h7uwqK8+GiHQ1NAe7cbe490Ic6sw8qFKae9R1188cUAgIqKitMu1p9MpRSRmWRCWrwBDS192FrTiqS4GMxNt0KlnLkXBJ1uHw409aB0+Socr6vC5i1bIEsSBFFEdn4JCsvOj3aINM2cc7G4/v5+tLe3Q5Y/aRaRnZ0dlqCIiIhmu2BQQs3hLvS5fFhSlAjDNExSTJRCFJCeaEK8RYMP/rUPK090kwc+aTRUUVGB1atXs9zFFCRJMrp6XKisrDztb1deVoYtW7Zg7Q1XQqOZvHrxBr0ac9NM+NvR/Xw+zVDNnf2QJBlp8bPjAmI4GPRqzEmzYPfBTiwpTppWvSlkWcbuQ52Ij9UjOY5T5WlqmZdhxYe7W3Cs3YlUnpNmLUmScaDJgZaufhRlx8FuHbmMjiiKWLNmDVavXj2mcm4KhYicVAtSE4yoa+jGB7uOoyDLhvhYfaQeStS4PL7Bi90pZsSadIhdvBL5C5fC63ZBqzdwZDidk3EnxBsaGnDLLbdg69atpy0LBoNhCYqIiGg2c3v92LG/AzqtEkuKk2b0aI+x6O93QZblERvoBINBtLR3IyOVjfOiSZZl9Hv86O33oc/lQ2//AJz9PvgHXKM2iZJlGS6Xa1IT4gDgdDpHfT5JkgSn0wmbzTapMVF4+AMSDjQ5UJIbF/aZBjNdRpIJHT0eHGh0ID8rNtrhjNmhYz3wB4LIy+AIXJp6FAoRxblxqK5rQ6xJC72WSbvZxusLYOeBDoiigKXFSdCqz56CU6vV4/ocolEpMH+OHe0ON/Yd7kJLVz8Ksmwz5vvDUDI8K9kEm/mTiwlKlYoNNGlCxv0Kuf/++2G321FVVQWDwYDq6mpcdtll2Lhx47i28/TTT6OsrAwajQY33XTTsGU1NTVYsmQJ9Ho9CgoK8M477wxb/sorryAnJwd6vR4XXXQRGhsbhy1/5JFHYLfbYTabsW7dOgwMDIz3YRIREU0Kn8+Hrq4u+Hw+AEC7w42Pa1qQFBeDhXPtM+bD7EQYjUaI4mADnZMNNdA5eNyN96qPYvehDhxtc6Lf45/U+E79G04FkYpJlmW4vX60O9w4fLwXew514qM9zdi0rQmVtW1o63JDpRKRnWLGykWpuHjJHCgUihH/dqIowmic/BFzZ3w+CUJUYqLwqD/eA6tRM+wLM41dUY4Nrd39aOt2RzuUMelweHC0zYkFc+On1ah2ml0sxsGSYDX1XcNm19PM53L78HFNKyxGDcrmJYwpGT4R8VY9ls9PgSAAH+5uhqPPG9H9TYahZHhmkgl2y8wb+U7RNe5X5EcffYS6ujrExsZCEAQsWLAAv/rVr3DFFVfgP/7jP8a8neTkZHzzm9/Epk2b0NnZGbrd7/fjqquuwp133onNmzfjtddew7XXXouDBw8iPj4etbW1uP322/Hqq69ixYoV+PrXv44bbrghNGL92WefxQsvvICtW7fCbDbj05/+NB599FE88cQT432oREREETNSo8HcvCLY0kowf24C4ixM6AxRq9WjNhpaXF6OixZnoa/fB4dzYHCEY9NgotMYo4ZJr4YxRo0YrQp6rTKsNYXP1CwyWo0ZwxGTPxCEZyAIz0AAbq8f3oEg3AN+eAYC8HgDEEUBBp0KBr0aphg1ku0xiNGpRvmipzhjk6holCYZ7flUVVWFhPR5cHqCsLFiyrTj8vhxrM2F5fOTox3KtKVVK1GSG4edBzpg1CdN6dGs/R4/9tR3oCTXDp0mskkmoonKSbHgY0cLGlr6kJVsjnY4NAm6ej3YdbADuakWpCdOXsNilVJESa4dzZ0ubN/fjoxEE7JTzNNy1lRf/wD2NzmQwWQ4Rci4Pz0EAgHExg5Oo9Pr9XC73UhOTkZ9ff24tvOZz3wGALBz585hCfH33nsPbrcbDz/8MERRxI033oif/OQnePnll/GFL3wBzz//PC699NJQw6MNGzbAbrdj7969KCwsxMaNG/HAAw+E6pmvX78et956KxPiREQ0pYzYaLCyCjE6NeIWZ0Y7vCnnTI2GBEGA2aCB2aBBZpIJsizDMxBAX78PTrcPbV1u9HsHE7qiAOg0Kmg1CqhVCmhUCqiUIjQqBZQKEQqFAFEUBn8WB38WBQGCIEAQMPg/AFEURvwbRrsx40gxVVVXw+cPYvmKC+APSAgEJfiDEnz+IHx+CQO+IAb8J/75Bsvf6TQKaDVK6DVK6DRKmI0x0GmU0GtV0IzzosJYm0RNptFiml+6HDsPdCA/MxbJdtYjnk7qGrqRmWxicnSCbGYdMpNM2HGgA0sKE6FQTL1ZSv6AhO3725GVbObFY5oWRFFAyYnmtXEW3bRsXktj197txu5DnSjJjYtaPe/kOAMsBg12H+pEZ68H8+dMr4uH3U4vDjb1IDfNAptJG+1waIYa9ysiOzsbe/bsQXFxMQoKCvDMM8/AYrGErdZiTU0NiouLh41iWrBgAWpqakLLy8vLQ8uMRiNycnJQU1ODwsJC1NTUYMGCBcPu29HRgba2NiQkJJy2v5aWFrS0tJx2e21tbVgeDxER0al8Ph+qqqpCSUvgRKPB8jJUVFTgUxdfyKZ+pxhPoyFBEKDXqqDXqpBoiwndLssyBnyDI589vgD8fgkD/iDc3gAczgEEghKCQRmSJA/+LMkIBiXIJ+578kznYMCPHdsqsWrV6Y0ZN2/eAsGUA4VSBWAwkQ4AwmBwoZ8/uV04sXDwtmG/h9YTTlr+CUkGJHkwZp/Ph20jxFR2IiZzUgE0Wg2UChEqhQiVSoReq4TVpIHmxMUB9YkLBIIQvpFE420SNRnOFJNWo0R1XTsG/EGO5Jsm2rvd6Pf4sXCuPdqhzAjZKWb0uAZQ29CNopy4aIczjCzL2HWwAxaDhq9PmlYMejVy0yzYfagTS4uSpuWIXTq79m439tR3YtG8eMRGOZGr16qwuCAR9cd78OHuZhRm24Z9Lp6q2nvcaGjuw7wMC8wGJsMpcsadEH/44YfR0tKC4uJiPPLII7jqqqvg9Xrx7LPPhiUgl8sFi8Uy7DaLxRKqEz7acqfTOeLyoZ+dTueICfFf/vKXeOyxx8ISOxER0Vg4nc5RGw2yqd+ZjbfR0MkEQYBWo4RWo8S5tuAZSox3dnZix+aRGzMCMgoyjMOWyTIgn/SLfPLtJ2Xah36U8ckdhhLyw7Z14ldRRGgUe29PNz7EmWIyRPV5NZG/XaSMFJPZoMGSokRU7mtDMCgjN80SneBoTIKSjLrGbszLjJ2So5mnI0EQUJwThw/3tOBYuxOp8VOnrv6BJgf8AQkL89hEk6afjEQj2h1u1B/vQUZCzJS5SEzh0dbtRk19JxbmRT8ZPkQUBcxJsyLWpMWeQ53o7PEgf4q+X8qQ0dTqREePGwVZsTDo+LqgyBp3Qvy6664L/bxq1apQw6aYmPBcaTIYDOjt7R12W29vb6jB0XiXD/08WoOku+++G1dfffVpt9fW1mLt2rXn/kCIiIhGYTQaIQgCHA7HsORlNBsN0tgMlU6xWMyhxowj/Q3tNgvU6smtv6tT26A4Q0x8Xo2dXqvC4sJEVO5rhQwZc9LO9RIKRVpDcy90GiUSojQtfaZSqxRYONeOyn1tiNGqYJ0CyZ2jbU60dPZjSXESm2jStCQIAgoyrXjxlTfQfnQ/ZFmeEv1HaOLaHYPJ8EV58VPifHkqm1mHZSXJqDnchQ/3tGD+HDtMMVMn4RyUJBxs6oEvEERxThw0qulT3oWmr3Gfcb/85S9j7969od9VKlXYkuEAUFRUhD179kCSpNBtO3fuRFFRUWj5zp07Q8tcLhfq6+tHXb5z507Y7fYRR4cDQFJSEhYtWnTav/z8/LA9JiIioiGSJKP+uAuJGfNQVVUNh2OwAWS0Gw3S+JzcmHGq/A2nYkzTmU6jRHlBIlo6+0ONWmlqcXv9ONLch/zM2GiHMiOZDRoU5diw40A73F5/VGNp73bj4FEHSvMTRmngSzQ9fPj+Zri6jmLlypW45pprsGLFCuzbtw+bNm2Kdmh0jhx9Xuw+2IkFc+1TMhk+RK1SYFFePDISjdi2txWNLX3RDgkA0O/1Y/ehToiigMJsG5PhNGnG/Uw7fPgwFixYgNLSUtx555246aabzikhHggEQv8kSYLX64VCocDq1auh0+nw/e9/H1/5ylfw+uuvY8+ePXj11VcBAGvXrkV5eTk2bdqE888/H+vXr0dJSQkKCwsBALfffjueeOIJXH755TCbzdiwYQPuuOOOccdHREQUbv6AhF0HOxAMSrjl+qtRsfndKdVokMZnOjWL5PPq3Og0SiwuSMS2fa1QKkRkp7Bm8VRS29CN9EQjDGxQFzGJthj0e/zYvr8d5xUmQaWc/BGsDqcXuw8N1uRlM0KazkbrIVNaWoqKigqsXr2aF6+nGafbhx0H2lGcGwebeXo0+U1PNMFq0mL3wcGGm8U5cVCPs2F6uLR0udDU6kJGogGJNjYzp8k17oT466+/jubmZmzcuBHf+9738JWvfAU33HAD1q1bhyVLlox5O48//viw2t0vv/wybrvtNjz33HN4/fXXsW7dOjz22GPIzMzEq6++ivj4wTpx+fn52LhxI+666y60trZiyZIleOmll0LbWbduHRobG1FeXg6/34/rrrsOGzZsGO/DJCIiCquhhILFoEFBXjwUojDlGg3S+Ey3ZpF0brQaJcryE7B1byuUCgHpiaZoh0QAWrv60e/xY8EcNtKMtJxUC9zeAHbsb0fpvPhJrT3b1+/Djv3tKMqxTZmavETnij1kZha314+q2jbMSbNOu7JdRr0aS4oSUdfowAcnGm7GWyfvMXh9ARxu7sWAL4iiHBtitJNbZpAIAAT55C5N5+Cdd97B97//fbz11lsIBoPhiivqtm/fjtLSUlRXV2PRokXRDmfS7TnWe/aViGjKKk7lKMappLvPi50H2pGVbEZWMv82RNORy+3Dtn2tyM+0ISkufOUCafz8AQnv7zqO4pw4xFmmx4i86U6SZOw82AFJkrEoLx7iJNTwdrp9qNzXiryMWKTYOXKQpj+fz4cnn3xy2AhxYLC8WUVFBR588EFexJ4mfP4gPq5pQWq8cdrPHmvvdmPfkS5YjBrMy4iFVjN83OyOIx3wuPuh0xugVE0scR2UZbR29eNYmwtJcXqkxBuhENgTIhJmaz5gPLncCRXneeutt/Dss8/ivffew4IFCyayKSIiohmpudOFfYe7UZwbN+1GjxDRJwx6NRblJaC6rg0KhTCpI6louINHHYg1apkMn0SiKGD+HDu217Vh96EOlOTaI5oU7+v3oaq2DXPTrUyG04xxcq+P0tJSWK1WOBwOVFVVsdfHNBKUZGzf3444i27aJ8MBID5Wj1izFoeO9uD9Xc3ITjEjI9EIQQA2bdqEbZWVkCUJgigie14JCsvPH3cDWBkyOns8aGp1QqtWcFQ4TQnjTogfPXoUGzduxMaNG9HT04NbbrkFH330ERYuXBiJ+IiIiKatQ8d60NTqRHlBAswGTbTDIaIJshg1WDDXjh37O1CaHw+rkSUcJluPcwAtnf1YPj852qHMOgpRwMK8eGzf344dB9qxYI49IuVTuno92HmgA/MyOTKcZp5Te30IgoCEtHlYunxVlCOjsaqp74RSIWJexsxp6KxUiJiXGYtkuwEHjzrQ0NKHrqM7cbyxHqtWrgxdvKmsqgIEoHjxyjFtNyhJ6HC40dLlhigIyEoxI5afnWiKGHdCPCsrC+effz42bNiA66+/Hlotn8xEREQnkyQZew93occ1gCVFidBzBATRjGEz61CUY8OO/e0oL0hkk79JFJRk7KnvxNx0K7TqCU10pXOkVIgonZeAXQc7UFXbhkXz4qFShq8ZW3OHC7UNg7OqOAuDZqKRen0cbXdj35FuLC5MhMDyEVPaoaM9cLn9WFyYOCmloyabKUaN0nkJaOvqw6//bzdWrVo5rAFseVkZNm/ZgvyFS0ctnxKUJPS6fOjq86C7dwDGGBUyk0ywGDUQMPOOGU1f4/okGQwG8e677+K8887jdB4iIqIR+AMSdhxoBwAsKUqCSjl5zceIaHIk2mLgD0iorm3DeUVJ0GmYnJ0Mh446oNMokZZgjHYos5pCFLBgjh21Dd34cHcLFsy1T3gWVFCSUdfQjQ6HG2X5nFVFM59arQ410MxKVqGt242mVicykti4eapq7nThaLtzVny+V8IPQB6xAawsSWg83g6jxQoBgwOB/AEJXl8Q/V4/3N4AYrRK2Mw6pM0x8gI2TVnjemYqFApceumlcLlckYqHiIho2nJ7/di+vx3mGA0Ks20zcuQIEQ1KSzBiwB9E1b42nFeUCLUqfKNk6XQOpxfH2l1YXsJSKVOBKAoozLbhaJsTlfvaMCfNgvRE42mjW30+X2gU7GgDqnpdA6g53AWNSoFlJcl8LdGsI4oCinLisG1vK+xWHWcWTkEOpxf7DnejLD9hVlwENxqNEEURDofjtAawEEQEBTUcvV7IAERBgFIpQK9VIs6ihUGnhjIC5bSIwm3cr+Q5c+agpaUFycn8MEpERDSk1zWA7fvbkZZgRG6qJdrhENEkyE21wOcPorquDeUFifwCGCHBoISaQ12YlxkL7SxIREwnaQlGmA0a1NR3ormzH/MyrbAatZAkCZs2bUJVVRUkSYIoiigrK8PFF18casbmHQig/ngvWrv6MSfNgrSE0xPqRLOFKUaNjCQj9h7uQnlBYrTDoZO4vX7s2N+BohwbLMbZMXtltAawlVVVyCkowdwMe7RDJJqwcX+i/NKXvoQbb7wR69evR2Zm5rDustnZ2WENjoiIaDpo73Zj96FOFGTHIjmODcCIZpP8zFjsPtiJHfvbsWheAhScGRJ2dY0OxOhUbLA4RZli1FhSlISjbU7s2N8Bo16Fower0HTkEFasWBFKpFRXV0OWgbIlK9Dc0Y+27n4kxRmwvCSZFzqIAGSnWPDRnmYcbXOyNNQU4Q9I2L6/HRmJRiTaYqIdzqQaagC7ecsWyJIEQRSRnV+CwrLzoxwZUXiM+5PHunXrAABr1qwJXcGXZRmCICAYDIY3OiIioinuaJsTB5ocWJhnh82si3Y4RDTJBEFAcW4ctu9vR82hTpTMieMo1zBq7epHh8ONZSyVMqWJooCMJBNS4w1obHHgzT27TmvGVlpais2bt0Bjm4vURAuWz0+ZFaUHiMZKIQooyo5DdV0b7BYdLxRFmSzL2H2oA0a9GjmzcPbnUANY+5xF8Lpd0OoNozbSJJqOxn2GPXLkSCTiICIimnYOHevB0TYnFhcmwqhns2mi2UoUBSyYa0flvlbUNnSjIMsW7ZCmtaG60wqVFnsPd2FRXjzrSk8TCoWIwWvDIzdjA2QUZxlhs1miEB3R1GcxapASb8DeI10onZcQ7XBmtf1NDvj8EhbMjY92KFGlVKlgMFvPviLRNDPuhHhGRkYk4iAiIpo2ZFnGviPd6O7zYklREke4ERGUChGl8xKwdW8rDh3rYS+Bc3Bq3WlAwNz8YphLr4x2aDQOZ2rGJooijEaWgiA6kzmpFnywuxnNnS6W4ouS4x0utHb2Y0lxEkuhEc1Q59T558UXX8SnPvUplJSUAAAqKirw2muvhTMuIiKiKSkYlLDjQAf6+n04rzCRyXAiClGrFCjLT8CxNieaWvuiHc60s2nTJuzbtw8rVqzANddcg1WrVqL56GFs2rQp2qHROJzcjM3hcABAqIZ4WVkZ1GrOqCI6E4VCRFFOHOoaujHgZ1nayebo86L2SDcW5sVDq+bnfKKZatwJ8Z/+9Kd4+OGHccEFF6CxsREAEBsbi+9///thD46IiGgq8QeCqKptgyzLWFyQwCn8RHQanUaJsvwEHDrWg9au/miHM234fD5UVVWhtLT0tLrTVVVV8Pl8UY6QxuPiiy9GQUFBaOBURUUFCgoKQk3aiOjMYk1aJMTGoPZIV7RDmVU8AwHsONCBohwbzAZNtMMhogga9+Wup59+Gv/6179QUFCAH/zgBwCAefPm4cCBA2EPjoiIaKrwDARQXdcGs0GDwiwbRE6fJKJRGPRqLMyLR3VtO1RKkQ13x8DpdEKSpBHrTkuSBKfTCZuNtdmni6FmbKtXr4bT6YTRaOTIcKJxysuw4v1dzWjt6keiLSba4cx4gaCE7XXtSE808ngTzQLjHiHe0dGBgoICAIAgfJIMkGU5fFERERFNIS63D1trWpAQq0dxThyT4UR0VlajFiVz4rDzQAd6XQPRDmfKMxqNEAQhVGJjCOtOT29qtRo2m43JcKJzoFSIKMq2Yd+RbvgDLJ0SCT6fD11dXRgYGMDuQ52I0SnZA4Rolhj3CPG5c+fivffew+rVq0O3bd68Gfn5+eGMi4iIaErocQ5g+/425KZakJ5oinY4RDSNxFv1yM+MRXVdO84rTESMThXtkKYspyeIhLQ8VFVVoaysDFarlXWniWjWi7PoYLfqUNfgQHFuXLTDmTFObeIsCAJSMvNx6w1XRzs0Ipok406IP/roo7j22mvx+c9/Hj6fD48//jh++tOf4g9/+EMk4iMiIoqarl4Pdh7oQGG2jVMnieicJNsNGPAP9h84rzARWjbiPU1btxt7DnXiqisuw67qD1BRUQFJkiCKIsrKylh3mohmtXknSqe0O9yIt+qjHc6McHIT55MvwL777jtYs2ZNtMMjokkw7k/kl19+OV599VX8+Mc/Rnp6Ot555x386le/4kmDiIhmlHaHG7sPdqJkThy/fBDRhGQlm+EPSNi2rxVl+QnQazlSfMixdif2NzpQOi8eVpOWdaeJiE6hUipQkGXDvsNdsM7XQqUcd+VbOslQE+ehZDjwSRPniooKrF69mu89RLPAOQ1RueCCC3DBBReEOxYiIqIpoaWzH/uOdGFhnp3N8IgoLOamW6FUiNi6txXl+Qkw6Gf3l21JknGgyYHWrn6U5SfAbNCElg3VnSYiokEJsXq0dvbjQJMDhdk8P04EmzgTEXAOTTVNppHrp8bGxk44GCIiomg72uZEbUMXSuclMBlORGGVnWJGTooZ2/a1osf5SaPNoaZePp8vitFNHu9AAFV1beh1DWBpSfKwZDgREY0sPysWbd396Or1RDuUaY1NnIkIOIcR4rIsRyIOIiKiqGts6UP98V6UFyTCOMtHbxJRZKQnmqBSKlBV24Z5mRbs2/lxqKnXyTWzRXFmTolv6exHbUMXku0GzE2zQhSFaIdERDQtqFUK5GfasPdwF5aXJEOhmJnvE5EmKpRIycxHZVUVytnEmWjWGnNC/NFHHwUA+P3+0M9DDhw4gIyMjPBGRkRENIkOHevBsTYnFhcmwqBjfV8iipykuBjoNEr85bW/o6+z6bSmXgBmXH8el8eP/Y3dcLn9WDA3HrEmbbRDIiKadpLiYtDS2Y8DTT3Iz+Is/fGSJBm7DnagpHQZOpsMbOJMNIuNOSFeUVEBAAgEAqGfAUAURSQmJuI3v/lN+KMjIiKaBPsbu9HW7cbiwkQ2uyOiSaHXCGhtqsPKlStndFMv70AAR5r7cLzDhcwkExbMsXNUIxHRBBRkx+LD3c2Ij9WxvN84yLKMPfWdCEoySuclQDGPTZyJZrMxJ8TfffddAMC9996LX/ziFxELiIiIaLLIsox9R7rhcHqxuDARWvU59ZomIho3p9MJWZZnbFOvvn4fmlr70NrVj6Q4A5bPT4ZOw3MsEdFEadVKFGTZsOdQJ5bPT4ZKqYh2SNPCviPdcHv9KC9IhOJEuS42cSaavcb9qZTJcCIims58Ph+cTidiYgw4cKwP/R4/FhckQq3ilwkimjxGoxGiKMLhcAxLijscDgiCMOlNvYbOjRMZJecZCKC9243jHS54fQEk2w04f34KtEyEExGFVaItBh09Huw93IUFc+OjHc6Ud6DJMTgApiARSs5SIiKcQ0K8paUFX//617Ft2zY4nc5hy5qamsIWGBERUThJkoRNmzaFmtcBAtKyC3DTdVcxGU5Ek06tVqOsrAzV1dUoLS0N1RCvqqpCYvo87DjQhZxUC+IskZ0Of+q5cTyNPb2+AHpdPvQ4vejs8cIz4IfNrENOqgV2i44NM4mIIig/c7B0yvEOF1LshmiHM2Udae5Fc2c/lhRyAAwRfWLcCfHbbrsNbrcbX/jCFxATExOJmIiIiMJu06ZN2Ldv32nN6za/986Ma15HRNPDUPOuU5t6XXDhRWjtcmPfkS4AQLLdgOS4mIj0OBjt3AgMNvb0ByQM+IPwDgTQ7/XD7Rn83+X2wR+QYDZoYDaoMS/TCotRG5qGTkREkaVUiCjJtaO6rg1Wo4Z9cEbQ2NKHhpY+LC5I5GwlIhpm3GeErVu34tixYxGfxnnw4EF84QtfwLZt22A2m/Hoo4/iv/7rvwAANTU1WLduHXbv3o3MzEw8/fTTuPDCC0P3feWVV/DQQw+hpaUFS5cuxW9/+1tkZGRENF4iIpq6fD4fqqqqQgkfYGY2ryOi6UUURaxZM3JTr7QEI1LjDeju86K5ox8f7m6BWiUizqKDxaiBKUaDGK0SgnBuCWh/QILT5UZlZeWIjT03b94CKSYbgkIJjUoBjVoJvVaJGJ0KqSYD9FoVDDoVR4ETEUWRxahBRpIJuw91YnFBIs/JJ2ls6cPh5l6UFyQiRseLBUQ03LgT4omJief8wXusAoEArr76atxyyy345z//iV27duGiiy5Cbm4uli1bhquuugp33nknNm/ejNdeew3XXnstDh48iPj4eNTW1uL222/Hq6++ihUrVuDrX/86brjhBmzdujWiMRMR0dTldDohSdKMbV5HRNPbaE29BEGAzayDzaxDoSSj1zWAzl4PWjr7UdfggD8gQadRQKtRQq0UoVCIUIoiBBGQJUCSZciyjEBQgi8gwR+Q4PcH4QtIkGUgODD6uVGWZczPNSMxPi7in/2JiOjcZSeb0dXjwcGjDuRlxEY7nCnh5GS4gclwIhrBuBPi3/3ud3Hvvffif/7nf5CUlDRs2dnqDI7V/v370dDQgK9//etQKBQoLS3Ftddei9/+9rfw+Xxwu914+OGHIYoibrzxRvzkJz/Byy+/jC984Qt4/vnncemll4amv2/YsAF2ux179+5FYWHhaftqaWlBS0vLabfX1taG5bEQEVH0qTQ6AMKIzetEUZz05nVEROMligKsJi2sJm3oNn8gCM/AYDmTAX8QkiQjKMmQJBmCYvA+giBApRShUoiD/6sUUClFqJUi/H4/dn6gGPHcqFCIsFnNTIYTEU1xoihg/lw7PtzdAotRi4RYfbRDiiomw4loLMadEL/++usBAH/84x9PWxYMBiceEQD5xGiWU2/bvXs3ampqUFxcPCz5vmDBAtTU1AAYLKdSXl4eWmY0GpGTk4OampoRE+K//OUv8dhjj4UlbiIimnrcXj92HuxG7ryi05rXVVdXo6ysjOVSiGhaUikVUCkVMMWc2zlstMaePDcSEU0vWrUS8+fEYeeBDhj1SbO2nvihYz041uZkMpyIzmrcCfF33303EnEMk5eXh9TUVGzYsAHf+MY3sGPHDvz1r39FYmIiXC4XLBbLsPUtFgsaGxsBYNTlTqdzxH3dfffduPrqq0+7vba2FmvXrg3L4yEiouhwefyo2teKtAQjzp9/FTZt2nRa87qhpnZERLPRaI09eW4kIppebGYdMpJM2HmgA+cVJc2qJseyLKOuwYHOHg/OK0qCjg00iegsxn2WWLVqVSTiGEalUuFvf/sbvvSlLyE5ORl5eXm4/fbbUVNTA4PBgN7e3mHr9/b2hqa7n235qZKSkk4r/UJERNNfX78PVbVtyEkxIyPJBACjNq8jIpqtztTYk4iIppecFDN6nAPYd6QLxTlx0Q5nUkiSjD31nej3+LG4KBEalSLaIRHRNDCmhPiWLVuwcuVKAMA777wz6noXXnhheKICUFhYiLfffjv0+0033YQlS5agqKgITzzxRGgECwDs3LkTN998MwCgqKgIO3fuDN3P5XKhvr4eRUVFYYuNiIimNkefFzsOtGNuuhWp8cMviI7WvI6IaDbjuZGIaPoTBAHz58Th4z2tONLci6xkc7RDiih/QMKugx2QZBnlBYlQKcPT146IZr4xJcSvuOKKUMmR0aZPCoIQthriALB7927k5uZCoVDgxRdfxNtvv42f/exnMJlM0Ol0+P73v4+vfOUreP3117Fnzx68+uqrAIC1a9eivLwcmzZtwvnnn4/169ejpKRkxPrhREQ083T2eLDzQAeKcmxItMVEOxwiIiIiokmjUiqwaF48tu5tQYxWhfgZ2mTT7fVjx/4OGPQqFOXEzaoSMUQ0cWO6fHZy/W1Jkkb8F85kOAC8+OKLSE1Nhc1mw3PPPYe33noLNpsNKpUKr7/+Ov7617/CYrHg0Ucfxauvvor4+HgAQH5+PjZu3Ii77roLsbGx2LFjB1566aWwxkZERFNTa1c/dh3swIK5dibDiYiIiGhWitGpMH+OHXvqO+F0+6IdTtg5nF58XNOKBJse8+fYmQwnonETZFmWox3EVLR9+3aUlpaiuroaixYtinY4k27Psd6zr0REU1Zx6syeHjmSo21OHDzqwMK8eFiN2miHQ0REREQUVUfbnKg/1oPFhYnQa1XRDicsjne4UHukG4XZNiTFcQBMpDE3ND3NxnwAML5cLlvvEhHRtHekuRcNLX0oL0iEUc9mcEREREREaQlG+PxBVNW2YXFhIrTq6ZsCCkoyao90obPXi/KCBJgNmmiHRETTGDsOEBHRtCXLMvYd6cLRNifOK2QynIiIiIjoZDmpFsTH6lFd2w5/YLDUrc/nQ1dXF3y+6VFOxe314+OaFgz4g1hWnMRkOBFN2PS9PEhERLNaMChh18FO+AJBLClKglqliHZIRERERERTzryMWOwNduHjmhY4W2qwc8d2SJIEURRRVlaGiy++GKI4NcdLHu9woa6hG5lJJmSnmCEIrBdORBMXtoR4IBCAUsn8OhERRZ7XF8CO/e3QqpUoz0+AQjE1P8ATEREREU0FBVmx+NMrr6Pl6GGsWLECVqsVDocD1dXVAIA1a9ZEOcLhBvxB7D3chX63H4vmsUcQEYVXWDIIf/zjH5GXlxeOTREREZ1Rr2sAH9e0wmrSYsFcO5PhRERERERn4ff7ceTgXpSXl8FqtQIArFYrSktLUVVVNaXKpzR3uvDBrmZo1QosK0liMpyIwm7MQ7odDgcefPBBVFZWoqCgAE8//TRaWlpwxx134PDhw3jggQciGScRERGOtTtR1+BAQVYsku2GaIdDRERERDQtOJ1OSJIUSoYPsVqtkCQJTqcTNpstStENcnn82HekCwMDQcyfEwebWRfVeIho5hpzQvz//b//h61bt+Lyyy/HG2+8gVtuuQW7d+/GunXr8NWvfhVmszmScRLRLBDw++Bx90OnN0CpUkU7nBnL5/PB6XTCaDRCrZ4eTSiDkoy6hm509HjYVZ6IiIiIaJyMRiNEUYTD4RiWFHc4HBBEEUajcVLiGOm7iM8fxOHmXhxrcyEr2YTMZDMUImuFE1HkjDkh/tZbb+H9999HRkYG7rrrLuTl5eH111/HlVdeGcn4iGgWkCQJeyvfx+G63ZAlCYIoInteCQrLz5+yzV2mI0mSsGnTJlRVVU2bJjoA4HL7sOtgJzRqBZYVs3kmEREREdF4qdVqlJWVobq6GqWlpaEa4pWVVUjOmAePT0Ykx8qM9F1k0aJSZBeUo6nVhfhYHZaVJEGv5cAoIoq8MSfEe3t7kZGRAQCYM2cOdDodk+FEFBZ7K99Ha9MhrFq58pMPZlVVgAAUL14Z7fBmjE2bNmHfvn3TookOAMiyjKY2Jw429WBOmgXpiUZ2lSciIiIiOkcXX3wxAKCiomLYAJm5RYtRVduGhFg95qRboYnAAJSRvotUVlahs8eDT199OYz66TFzlYhmhjEnxE+l0XC6OhFNXMDvw+G63aFkODBYx668rAybt2xB/sKlLJ8yAQP+IFxuHxx9/aisrMTKU45zaWkptmzZggVlSxBrNkA5RRpUOt0+7D3chWBQxnlFifyATEREREQ0QaIoYs2aNVi9evVpZUuS7EYcbHKgYsdxpCYYkJloglZzzimjYXw+H6qqqkLJcODEd77yMlRUVECjvDws+yEiGqsxn936+/uRnp4e+r23t3fY7wDQ1NQUvsiIaMbzBYI40tg2anMXWZLgcPTAHm+PUoTTTyAoweH0Ys+AH929Xvj8QcToVJD9/WdsorNj3zFAGQOdRgFzjAZWkwaxJi0Mk5yI9geCOHy8F0fbXMhJNSMj0QSR9QOJiIiIiMJGrVaf1kBTo1KgKCcOWcl+HGnuxfu7jiPWrENyXAzsFh0U5zBwJijJcPR5cbixGcFgcEo39CSi2WXMCfHf/va3kYyDiGYRSZbR0tWPY20uWGI0ozZ3gSDiUOsAenwOZCSaoFaydvRIJHnwg2ZHjwe9zgEYYlTIio1DeoIRphg1BEGAz+fD5jcVIx5nhUKBCxbnQqFQwuXxo8c1gO4+Lw4d6wUgw2rUItashW2CCfIzNfMMBCU0tTpxpLkXcWbWDyQiIiIiioYYnQpFOXGYm25FS1c/jjT3YfehTlgMGliMGhh0KsToVFApRahOfD+TZBnBoATPQABeXxDOfh96XQPo6/dBr1PBahi9oac4iQ09iYiGjDkhftttt0UyDiKaJQb8Aexv7IEgAMU5Nui1KvjaSlBZVYXysrJhNcRzCkowryAJTW1O7DrYgexkM2xmXbQfwpThCwTR1u1GW3c/1EoF7FYdslPMUCsVyEo2D1t3tCY61dXVKCsrCyWozQYNzAYNMhJNAACXxw9HnxfdvV7UH+sFAMSeGD0ea9bBoDt70vpMzTzdA0EcbXXieIcLVpMGZfkJMBtYkouIiIiIKJrUKgUyEk3ISDTB5w+iu8+LXtcAWrr64fYG4A8E4Q9IAABREKBQCNCqldBqlDDqVchKNsNkUEOrHkw7HSsvP+t3ESKiyTKhglBXXHEF/vGPf4QrFiKa4frcA9jf6EC8VT/YIBGDpTAKy88HBGDzli2QJQmCKCI7vwSFZedDFEXkpFgQZ/bi0LEeOD0+pCeYIP7/9u48Ns7q6uP47xmPPR7P2J7xFjub7WzE2AkB4pQlpIlSpUVUQWUpDaSkQkAaaCvo+wqpQBoVNUBVJGihSKRVKRShhC4gpBIBKYtJW0HcvmlsY7I4sR1nMbE9Hntsj7e57x+ppzhx7EniZLbvR7Lkee7Mc89jTo7kw/W9SXy4Yv/gkI6cCOiEr0/erHRdMjMnoj22z3SIzsj1sbidqXI7UzVjyslVG4HeAXV0Bf+zgrxTlmUpJytd3kyHMjPS5HKmKu2UQ3jGOkCnurpaR08ENGPeYhXluXTVgqKImusAAAAALq601BQV5rpUmOs653ucy+8iAHChWMYYc64fzsrKUldX12TGEzP+9a9/6corr9Q///lPXXHFFdEO56Kr+c9KUGCy+ANBfdbUqTnTz7zKe2hwUMHegNIz3GMepNk/NKT9TZ2ypVi6ZKZXKbbYOADyYhkYGtaRzwP63NerPI9T0wvccqSO/f81F0zPHvO6NP7WJWfDGKNA38m9yju7+xXoG1RPcFApNktpqSlKtdsUCg3pvTdf1pe/vOy0P4+sqqrS//zP/yo9nRXhAAAAQDKYrN9FcHHQG4pP4/UDEtnZ9HLPa4X4efTSASSRju6g9jd3at5Mj7yZ6Wd8nz01Ve5s7xnHHXa7Lp2VqwOHO1V3sF1lJTnhfesS2bAxOv6fPdfzstO1aF7+GRvhkRjrEJ1zYVmWMjPSlJmRpuKik9eMMerrH9LgUEgDgyF1dLTLmDMcmmqMenoCNMQBAACAJDFZv4sAwPk4r4b4ddddN1lxAEhQXT392t/cqfnFHmW7z9wMj5TNsjR3pkcHj/hVd6hdZaU5ctjPq5TFtI7uoBqP+uVIS1HF7Fy5YvygScuyRh2Gme0qUErK2Id5coAOAAAAAAC42M5rv4G33npLktTd3a1HH310UgICkDh6g4Pa2+zTnOnZk9IMH2HJ0uxpHnkyHao/1KHBoeFJu3esGBga1mdNHTp0xK/iwiyVl+bFfDN8LF88zNPn80kSB+gAAAAAAICoOatllR999JF27dqlsrIyXX/99QqFQvrVr36lxx57THl5efrpT396oeIEEGf6h4ZU39ihGQXuM+4Zfr5KCrN1MNSpTxs7VF6aI3tKYmyf0u7v08GjfuVmp2vujPy43yudA3QAAAAAAECsiLghvmXLFm3YsEE5OTnq6OjQz372M73zzjtqaGjQU089pW9/+9sXMk4AccTI6MDhTuVmp6sw131B5yqdmq2DLX59eqhDl5bmyp4Sv83joeFhHTzape6eAc2bMTlbzMQCm82mVatWafny5RygAwAAAAAAoiriztGzzz6rrVu36sSJE/r973+vhx9+WCUlJaqvr9e6detki/MVjAAmz+HWboVC0szCrAs+lyVLs6ZnK91h12eNHRoOhS74nOdraHBA3X6fhgYHw9d83UHt3n9CNsvSZXPzE6YZ/kUjB+jQDAcAAAAAANES8Qrxw4cP69Zbb5Uk3XbbbVq3bp2efvppGhsARvF1B9Xa0auFc/Jks6yLMqclS3Ome7Sv2ae9zT5dUpyjlIs099kIhUKq27VTBz/bIxMKybLZVHrJAmVMXaDO3gHNmupRTlbiNcIBAAAAAABiRcQN8dAXVl2mpKQoMzNTLpfrggQFID71Dw7pQEun5kz3yJF6VkcUnDebZWnuTK/2NnVof7NP82Z6L1pDPlJ1u3bqePMBfXnZMnm9Xvl8Pn2yq1rpgX5dvXylUu2JsQc6AAAAAABArIq4Y9Xf368f//jH4dfBYHDUa0l67LHHJi8yAHElZIz2NXeqwJshb2Z0VjmnWJYumelV/aEOHWjp1NwZHlmKjab40OCADn62J9wMlySv16sllYv1YVWVLLNCEg1xAAAAAACACynihvjVV1+tjz76KPz6S1/60qjXVoytxARwcTW3dslmSTOmZEY1jhSbTfNLcvTpoXYdPOLX7GmeqMYzoq+3RyYUCjfDR3i9XplQSMHegNzZ3jN8GgAAAAAAAJMh4pMwP/jgA73//vtn/HrvvfcmNbDGxkbdcMMNysnJUUFBge688051d3dLOrmf+apVq+RyuVRaWqqtW7eO+uyHH36oiooKZWRkqLKyUv/+978nNTYkr7EOQ4TU3hXUCV+f5sz0xMQ2JfYUm8pKchToHVTjcX+0w5EkpTldkmWTz+cbdd3n88my2ZSe4Y5SZAAAAAAAAMkj4ob4xXbvvfcqJydHR44c0d69e9XS0qKNGzdKktasWaM5c+aora1NL774ou655x7V1tZKktrb23XjjTfqoYceks/n05o1a7R69Wr19/dH83EQ50KhkGo+rtJfXt2iv/759/rLqy+o5uOqUXvrJ6vgwJAaWjo1b4ZHDvvF3Td8PKn2FM0v9crn79fh1u6oxtITHNRnTX55ps3VrurqcFPc5/NpV3W1ZpUtlD01NaoxAgAAAAAAJIOYbYgfOnRIa9askdPplNfr1c0336yamhrt379fH3/8sTZv3iyn06nly5dr9erVeumllyRJf/7znzVnzhzdeeedcjgcevDBBxUKhbRjx44oPxHi2RcPQ/zGN76hLy9bpuPNB1RXvTPaoUXVsDHa2+xTUZ5L2e7o7Bs+Hofdrktn5ehzX6+OtAUu+vwhY3S4tVu1De0qyHHqupVfUWHxHH1YVaXXX39dH1ZVqbB4jsoXL73osQEAAAAAACSj2FnOeYoHHnhAr776qpYtW6ZgMKg//OEP+vrXv67a2loVFxeP2od30aJF4S1bamtrtWjRovCYZVlauHChamtrdcMNN5w2z7Fjx3Ts2LHTrtfX10/+QyEunekwxMrFJw9DLLv86qRd3dt0zK9Uu03TC2J3uw9Hql2Xluaq7lCbJGla3sWJNdA3oIYWv+wpli6bm6f0tJPldsGSZSq7/GoFewNKz3Anbe4AAAAAAABEQ8w2xJcvX64XX3xR2dnZCoVCWrVqlX7wgx9o27Zt8ng8o97r8XjC+4sHAoHTDq374vipXnjhBf3kJz+5IM+AxDDeYYihUEgHmo5p+rRCuZ1pUYowOto6++TrCmrhnHxZiv6+4eNxOuwqL81TfWO7BgeHVVyUJUuWhgYH1NfbI+ckNqaHQyG1fB7Q8fZeFRe6NSXXddrPx56aygGaAAAAAAAAURCTDfHh4WF97Wtf01133aWdO3dqYGBADzzwgNauXas1a9bI7x99SJ7f71dmZqYkye12jzt+qvXr12v16tWnXa+vr9fatWsn6YkQz5wZblm2k4chfrEp7vP5ZLPZlJqeofrGDjnT7CrKdysnyxHzDeLz1dc/pINH/Zpf7FWqPSXa4UTE6bCrYnaePmvs0N5D7epvrVPj3hqZUEiWzaZZ8xeqvHKpbLZz30mqrbNPTcf9cqWnjVoVDgAAAAAAgNgQk90an8+nlpYWff/731d6errS09O1YcMGrVixQps3b1ZTU5M6OzvDK8V3796tiooKSVJFRYW2bNkSvpcxRnv27NGGDRvGnKuoqEhFRUUX/JkQv+ypqZo1f6F2VVercvFieb3eUYchzp6epxJj1NbZq5bWbjUf69L0KW7leZwJ2RgfDoW0r9mnaQVuZbkc0Q7nrKTZU1Q+K1d/e2+Hgh0t4W1wRv57yjq5pcnZ8geCOtwa0OBQSLOmeeTNjL391AEAAAAAABCjh2rm5eVp1qxZev755zUwMKCenh5t2bJFl112mebOnavKyko9+uij6uvrU1VVld58802tW7dOknTTTTdp//79euWVVzQwMKBf/OIXkqSvfOUr0XwkxLnyyqXjHoaYYlma4nXpsrn5mlmUpaMnerRnf5s6uoJRjnzyHTraJUdqiqbmuaIdyjkxw0PyHdmnJZWLT9sT/mD9Hg0NDkZ0n5Axau8KqrahTQda/Mr3OnXZvHya4QAAAAAAADEsJleIS9Lrr7+uBx98UM8884wsy9JVV12ll19+WZK0detW3XXXXcrNzVVBQYFeeOGF8Arx3NxcvfHGG/re976ne+65RxUVFXrzzTflcMTXSlbEFpvNFvFhiLlZ6crJcqits0+Nx/w61h5QSVG2XOnxf3hia0ePunr6tXBOXtyufh9vT3gTCinYGzjj/t4hYxToHZCvO6gTnX1KtaeoMCdDed4MpVjx+fMAAAAAAABIJjHbEF+4cKH++te/jjk2Y8YMvfvuu2f87PLly1VbW3uhQkMSi/QwREuW8j0Zysl26nhbj2ob2lXgdWrGFLfsKfGx5/apAn0DajzWrfJZOXH7DNL4e8LLsunTlh65fSGlp6UoxWaTZDQ4ZNTXP6TevkGlpabIm+3QJTNzlJmRXAepAgAAAAAAxLuYbYgDiSDFsjQt3608T7qajnfr//ad0MwpmSrIyYirFdZDw8Pa2+RTydRMuZ3x3QQeb0/42Zcu1OzZU9QbHFL/4LCGhkOyLEuu9BTlZKfL5bTLYadsAgAAAAAAxCs6O8BF4Ei1a94Mr7p6+nXoWJdaO/o0a1pWXDSXQ8Zo3+FOedwOTfHG577hpyqvXCpZ0odVVTKhkCybTbPKFqp88VLZbDZlJMD2NgAAAAAAADgdDXHgIspyObRgdp5a23v06aEO5Wanq7gwM6a3IDl01C8TMiqdlh3tUCbN2ewJDwAAAAAAgMRhi3YAQLKxWZaK8txaNC9fxkj/t++EWjt6ZGSiHdppjrYF5A/0a95Mr2wJeGjkyJ7wNMMBAAAAAACSAw1xIErS7CmaM92jS2Z6dbyjVzUH2hXoGxj1nqHBAXX7fRoaHLwoMX1xvhOdvTpyIqD5JblKtcfuCnYAAAAAAAAgUmyZAkTZWNuozChwae+//qGDn+357x7X8xeqvPLkHteTLRQKqW7Xzv/OZ9mUMWW2vrRshTIclAkAAAAAAAAkBjpdQAwY2UYl1+NU8/FuVe3YIdN9TF9etkxer1c+n0+7qqslS1qwZNmkz1+3a6eONx8YPd+uajXVfXJB5gMAAAAAAACigS1TgBiSZk9RyZQM9bQ2qLJysbxeryTJ6/WqcvFiHazfM+nbpwwNDujgZ3tUufiU+SovzHwAAAAAAABAtNAQB2JMX2+PjAmFm9MjvF6vTCikYG9g8ucLXbz5AAAAAAAAgGihIQ7EGGeGW5bNJp/PN+q6z+eTLJuGUxyTOt+AsUvW2PNZNpvSM9yTOh8AAAAAAAAQLTTEgRhjT03VrPkLtau6OtykHtlDvKB4vvY2d6mmoU2fd/ZqOBQ653kCfQP6rKlDh473aOqsS8ecb1bZQtlTUyfluQAAAAAAAIBo41BNIAaVVy6VLOnDqiqZUEiWzaZZZQtVvnipjGWpw9+n1vZeHWrxKzvTIW+WQ9kuh9LTxv8n3T84JF9XUG2dQfUNDKko16U50z2yzStQXfXOMecDAAAAAAAAEgUNcSAG2Ww2LViyTGWXX61gb0DpGe5RK7XzPRnK92SEG9wd/qCajnVLkpwOu9JSbbKnnPwDEGNONsL7+oc0PCxlu9NUmOuSN8uhFNt//0hkvPkAAAAAAACAREBDHIhh9tRUubO9Zxx3pNpVmOtWYe7Jfb6DAycb3wODwxoKGUmSzZK8WelKT0tRRrpdlqxzng8AAAAAAACIZzTEgQSSnmafcNsUAAAAAAAAIFlxqCYAAAAAAAAAICnQEAcAAAAAAAAAJAUa4gAAAAAAAACApEBDHAAAAAAAAACQFGiIAwAAAAAAAACSgj3aAcSqvr4+SVJ9fX2UI4mO/a3d0Q4BwHkY/Dwz2iEAAAAAAOIYvaH4lKz9gJEe7khPdzw0xM+gsbFRkrR27droBgIAAAAAAAAAmFBjY6Ouvfbacd9jGWPMRYonrrS1tentt99WSUmJnE5ntMO5qOrr67V27Vq98sorKisri3Y4wKQiv5GoyG0kMvIbiYrcRiIjv5GoyG0ksnjO776+PjU2NuqrX/2q8vLyxn0vK8TPIC8vT3fccUe0w4iqsrIyXXHFFdEOA7ggyG8kKnIbiYz8RqIit5HIyG8kKnIbiSxe83uileEjOFQTAAAAAAAAAJAUaIgDAAAAAAAAAJICDXEAAAAAAAAAQFKgIQ4AAAAAAAAASAo0xHGaoqIibdq0SUVFRdEOBZh05DcSFbmNREZ+I1GR20hk5DcSFbmNRJYs+W0ZY0y0gwAAAAAAAAAA4EJjhTgAAAAAAAAAICnQEAcAAAAAAAAAJAUa4gAAAAAAAACApEBDHAAAAAAAAACQFGiIx6HOzk5985vfVGZmpqZOnapnnnkmPFZbW6urrrpKGRkZuvTSS/Xee++Ne68//vGPmj17tjIyMrRy5Uo1NTWNGt+4caPy8/OVnZ2tu+++W/39/ecU17nEhuQTr7ldUlIip9Mpt9stt9ut8vLys352JL5Yze/nnntOixcvlsPh0Le+9a3TxqndmEi85ja1G5GIxfzu7+/X3XffrdLSUmVmZqq8vFyvvvrqqPdQuzGReM1tajciEYv5LUn33nuvpk2bpqysLJWUlOjxxx8fNU7txkTiNbdjsnYbxJ077rjDrF692vj9frNnzx6Tn59v3nrrLTMwMGBKSkrM5s2bTTAYNFu3bjVZWVmmtbV1zPt8+umnxuVymbffftv09vaaBx54wCxZsiQ8/utf/9qUlpaahoYG09bWZq699lrz0EMPnXVcxpizjg3JKR5z2xhjiouLzfbt2yfvB4GEFKv5/ac//cm8/vrr5v777ze33XbbqDFqNyIRj7ltDLUbkYnF/A4EAmbjxo2moaHBhEIh89FHH5msrCzz97//3RhD7UZk4jG3jaF2IzKxmN/GGFNXV2d6e3uNMcY0NzebsrIys23bNmMMtRuRicfcNiY2azcN8TgTCARMWlqaqampCV97+OGHzS233GLeeecdU1BQYIaHh8Nj11xzjXnuuefGvNfDDz9sbr755vDrrq4u43A4TG1tbfizzz77bHj8nXfeMfn5+Wcd18hnzyY2JJ94zW1jYrO4I7bEan5/0aZNm05rGlK7MZF4zW1jqN2YWDzk94jrr7/ePPXUU+HPUrsxnnjNbWOo3ZhYvOR3c3OzKS8vN5s3bw5/ltqN8cRrbhsTm7WbLVPizL59+xQKhVRRURG+tmjRItXW1qq2tlYLFiyQzWY7bUySmpub5fF41NzcLOnkn1MsWrQo/N7MzEzNnj07/P5TxxctWqQTJ06otbVVknTffffpvvvumzCukXuNFxsQr7k9Yt26dcrPz9fy5cv1t7/9bRJ+IkgksZrfE6F2YyLxmtsjqN0YT7zkd09Pj6qrq8NxUrsxkXjN7RHUbown1vP7Rz/6kVwul2bOnKmenh6tXbs2fC9qN8YTr7k9ItZqtz3aAeDsBAIBZWdnj7rm8XjU3d2tQCAgj8dz2tjIPkAzZ85UZ2fnqHuN9f7u7u4xx0e+7+7u1pQpU/T8889HFNd4c526RxGSV7zmtiS98soruvLKKyVJv/vd73T99derpqZGxcXFET8/Elus5nckcVO7MZ54zW2J2o2JxUN+h0Ihfec731FlZaVWrVo17lzUboyI19yWqN2YWKzn9xNPPKHHH39c1dXVeuONN+T1esedi9qNEfGa21Js1m5WiMcZt9utrq6uUdf8fr8yMzPldrvl9/vHHDvTvcZ7/6njI9+Pdb/x4opkLiBec1uSli5dKqfTKafTqQ0bNujyyy/X9u3bJ3pkJJFYze9I4qZ2YzzxmtsStRsTi/X8Nsbou9/9ro4ePapt27bJsqyI5gLiNbclajcmFuv5LUmWZamyslLp6enatGlTRHMB8ZrbUmzWbhricWbevHmyLEt1dXXha7t371ZFRYUqKipUU1OjUCh02thYKioqtHv37vDrQCCghoaG8PtPHd+9e7fy8/M1ZcqUs4pr5F5nExuST7zm9lhsNpuMMRM+M5JHrOb3RKjdmEi85vZYqN04VSzntzFG999/v3bv3q3t27fL7XaPmovajfHEa26PhdqNU8Vyfp9qaGhIDQ0N4XtRuzGeeM3tscRE7Y7e9uU4V7fffru58cYbTVdXl6mpqTFTpkwZdarsE088YYLBoHnttdciOlX23XffNX19feaHP/zhqFNlt2zZYmbPnm0OHjxo2tvbzXXXXTfuqbJnissYc9axITnFY243NTWZqqoq09/fb/r7+82WLVuMy+UyBw4cmNwfDuJerOb34OCg6evrM4888oi59dZbTV9fnxkYGDDGULsRmXjMbWo3IhWr+X3fffeZyy+/3HR0dJw2Ru1GJOIxt6ndiFQs5ndHR4d5+eWXjd/vN8PDw2bnzp0mPz/f/PKXvzTGULsRmXjM7Vit3TTE45DP5zO33HKLcblcprCw0Dz99NPhsT179pglS5aY9PR0M3/+fLNjx47wWFNTk3G5XKapqSl87bXXXjOlpaXG6XSaFStWmMbGxvBYKBQyjzzyiMnNzTVZWVnmrrvuMsFgMDy+fv16s379+ojimig2wJj4zO26ujpz2WWXGZfLZbxer7n22mvN+++/P7k/GCSEWM3vTZs2GUmjvtatWxdRbIAx8Znb1G5EKhbzu7Gx0UgyDofDuFyu8NfmzZsjig0wJj5zm9qNSMVifvt8PrNixQrj8XiM2+02l1xyiXnyySdNKBSKKDbAmPjM7Vit3ZYx0V6jDgAAAAAAAADAhcce4gAAAAAAAACApEBDHAAAAAAAAACQFGiIAwAAAAAAAACSAg1xAAAAAAAAAEBSoCEOAAAAAAAAAEgKNMQBAAAAAAAAAEmBhjgAAAAAAAAAICnQEAcAAAASTHl5uV566aVohwEAAADEHHu0AwAAAAAQObfbHf5+YGBAw8PDcjqd4Wvbt29XXV1dNEIDAAAAYp5ljDHRDgIAAADA2Xv00Ue1c+dOffDBB9EOBQAAAIgLbJkCAAAAJJiSkhL95je/kSQ1NjbKsiz99re/1cKFC+VyubR06VK1tLToueeeU3FxsTwej9avX6/h4eHwPY4cOaLbb79d06ZNU0FBgdasWaMTJ05E65EAAACASUFDHAAAAEgCW7du1Y4dO9Ta2ipJWrlypQ4fPqx9+/apurpa27Zt02uvvSZJ6u/v18qVKzV16lTt27dPBw8elN1u1+233x7NRwAAAADOGw1xAAAAIAls3LhRBQUFcrvduvXWW9XS0qLHH39cDodDc+bM0XXXXadPPvlEkvSXv/xF3d3d+vnPfy6XyyW3260nn3xSO3bsUEtLS5SfBAAAADh3HKoJAAAAJIGioqLw9y6XS/n5+UpJSRl1rbu7W5K0f/9+tba2yuv1jrqHw+FQc3Ozpk+ffnGCBgAAACYZDXEAAAAAoxQWFqq4uFgNDQ3RDgUAAACYVGyZAgAAAGCUm266SYODg9q4caP8fr8k6fPPP9e2bduiHBkAAABwfmiIAwAAABglMzNT//jHP9Tc3KwFCxYoKytL11xzjaqqqqIdGgAAAHBeLGOMiXYQAAAAAAAAAABcaKwQBwAAAAAAAAAkBRriAAAAAAAAAICkQEMcAAAAAAAAAJAUaIgDAAAAAAAAAJICDXEAAAAAAAAAQFKgIQ4AAAAAAAAASAo0xAEAAAAAAAAASYGGOAAAAAAAAAAgKdAQBwAAAAAAAAAkBRriAAAAAAAAAICkQEMcAAAAAAAAAJAUaIgDAAAAAAAAAJLC/wPRS+ypZUakKQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/cAAAIyCAYAAACO1Dp8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACo3klEQVR4nOzdeVhUZf8/8PfMMMM2wwzDvoOAKIrilpW5r1iZuVSm5Vpqala2mhtmPmlmmVZaPWpqaWnLY+aWaWWJaSoGihvKIgKywwzLDHB+f/Rjvo6A6zAHmPfrurhyzn3mzHsG8z6fuc+5b4kgCAKIiIiIiIiIqMmSih2AiIiIiIiIiO4Oi3siIiIiIiKiJo7FPREREREREVETx+KeiIiIiIiIqIljcU9ERERERETUxLG4JyIiIiIiImriWNwTERERERERNXEs7omIiIiIiIiaOBb3RERERERERE0ci3siG9GrVy/MmTNH7BhERETUQNjXE9k2FvdETcClS5cwatQo+Pr6QqlUwtfXF4MHD0ZmZqbY0USzZcsWdO/eHS4uLpBIJKisrBQ7EhER0R1jX1/b66+/jqioKLi4uMDHxwejRo1Cenq62LGIGi0W90RNwODBg6FSqZCYmAidTocTJ07g8ccfh0QiETuaaFxdXfHcc8/hgw8+EDsKERHRXWNfX5tEIsH69euRm5uLpKQkSCQSPPzww2LHImq0WNwTNXJ5eXk4c+YMpkyZAq1WCwDw8vLC2LFj4e3tDQBYv349/P39zZ63YMECPPDAA2bbCgsLMWzYMKhUKoSFhWHDhg2mtrS0NAwePBharRZqtRpt27bFwYMHzY6/YsUK+Pv7w83NDRMmTIBOpzM9f968eWjZsiVUKhUCAgIwY8YMlJaWmtorKyuxfPlyREZGQqVSwd/fH0uWLDG1//XXX+jVqxfc3NwQFBSEuXPn3nA0fuDAgRg1ahRatGhxux8pERFRo8K+vm7/+c9/0KlTJygUCmg0Grz66qs4efIkCgoKbvcjJrIJLO6JGjk3NzdERUVh8uTJWLduHf755x9UV1ff0bH++9//Yvz48SgoKMCHH36ISZMm4c8//wQAvPHGG/Dz88OVK1dQUFCAb7/91uwkIisrC/Hx8Th79iz++ecfJCQk4MUXXzS1h4eHY9++fSguLsbu3buxa9cuvPXWW6b2BQsW4OOPP8b69etRVFSEf/75Bz169AAAnD17Fn379sWUKVOQnZ2N33//Hdu3bzc7ISAiImqu2Nffmr179yIoKAiurq539NkQNXsCETV6ubm5wty5c4UuXboI9vb2gqurqzBr1iyhvLxcEARBWLduneDn52f2nPnz5wvdunUzPe7Zs6cwbNgws30ee+wxYcKECYIgCMK4ceOEhx56SEhMTBSqq6vN9lu3bp0glUqFwsJC07adO3cKcrlcqKysrDPz8uXLhY4dOwqCIAjV1dWCUqkUtm7dWue+M2bMEJ544gmzbZs2bRJCQ0Pr/UxqHDhwQAAgGI3Gm+5LRETUWLGvv7Gff/5ZcHJyEnbt2nVL+xPZIo7cEzUBbm5uWLhwIY4cOYKioiKsXbsWn332Gf7zn//c1nFCQkJqPa6ZmGbZsmUICwvDsGHD4OXlhfHjxyM7O9u0r6urK9RqtdlzjUajaZ81a9agY8eOcHNzg1qtxptvvomrV68CAHJzc6HT6RAREVFnrvPnz+P777+HRqMx/UydOhVZWVm39f6IiIiaKvb19duxYwdGjBiBTZs2YdCgQbf1eRDZEhb3RE2Mvb09hg4din79+uH48eMAAJVKBb1eb7bflStXaj03JSWl1uOay/Hc3Nzw/vvv4+zZszhx4gRSUlLw0ksvmfYtKChAUVGR2XPlcjm8vLwQFxeH6dOn47333kNWVhaKiorw9ttvQxAEAIC7uzuUSiXOnTtX53vy9vbGk08+icLCQtNPcXGx2X1+REREtoJ9/f/58ssvMXr0aHz99dd49NFHb7gvka1jcU/UyBUUFOD111/HP//8g4qKClRVVeGXX37BgQMHTPexdejQASUlJfj6669RXV2NX3/9FVu3bq11rJ07d+Knn35CVVUVdu/eje+//x7jx48H8O/ScsnJyaiuroZKpYK9vT3s7OxMz5VIJJg1axb0ej2uXLmC+fPn46mnnoJMJkNRURFkMhk8PDwgl8tx/PhxrFq1yuy5M2bMwBtvvIG///4bgiAgPz8fcXFxAIDnnnsO27Ztw9atW2EwGFBVVYULFy5g9+7d9X4uVVVVKC8vh8FgAABUVFSgvLz8ju9RJCIiEgv7+rqtWrUK06dPx44dOzBw4ECLfNZEzZq4dwUQ0c3odDph4sSJQsuWLQWlUimo1WqhTZs2wjvvvGN2v9wnn3wi+Pv7CyqVSnjiiSeEF198sdZ9eNOmTRMeffRRQalUCi1atBDWrl1ran/99deFwMBAwcnJSXB3dxcef/xx4erVq4Ig/N99fh988IHg6+sruLq6CmPHjhWKi4sFQRCEqqoqYebMmYKbm5vg4uIiDBw4UIiNjTW7N9BoNApLliwRWrZsKTg7Owt+fn7CkiVLTO2HDx8W+vfvL7i7uwtqtVpo3769sHr16no/l3Xr1gkAav0cOHDgrj9zIiIia2JfXzcAgp2dneDs7Gz28/vvv9/9h07UDEkE4f9fS0NEVI/169djzpw5uHz5sthRiIiIqAGwrydq+nhZPhEREREREVETx+KeiIiIiIiIqInjZflERERERERETRxH7omIiIiIiIiaOBb3ZPMKCwsRHByM9PR0saPc0OLFizFgwIA7em5KSgokEgkuXLhg4VQNz9/fH+vXrxc7Ri138/uoi16vR1BQUL3rAxMRNWfX98W//vorJBIJKisrRU5meXPmzEGvXr3u6Lnjxo3DmDFjLBuoCb3+nfr8888RHBwsdow6KZVK/PrrrxY73nvvvYdx48ZZ7HjUtLC4J5u3cOFCDB06FAEBARY5XkN1fLNnz8bevXstflxLaSxfIAQHB+Pzzz9v8GNa+vfh7OyMl156CbNmzbLYMYmImgpL98V0exrTlymN4QuE9evXw9/f3yrH1Ol0d/xlT12mT5+OvXv34u+//7bYManpYHFPNq24uBifffYZnn32WbGjEOHpp5/Gvn37OHpPRDaFfbG4jEaj2BHIguzt7TFmzBi8//77YkchEbC4J5u2d+9eaDQaREZGmm3/66+/0KtXL7i5uSEoKAhz5841+zb78uXLGD16NPz9/eHi4oLo6GgcP34cixcvxpdffomvv/4aSqUSSqUSaWlpAICffvoJnTp1glqtRsuWLbFs2TJUV1ebjimRSLB8+XJ06dIFSqUS99xzj9m3rgsWLMADDzxgelxWVoY5c+agZcuWUKlUaNGiBb744osbvt8DBw4gMjISLi4u6Nu3L5KTk01tVVVVeO+999C6dWuo1Wp06tQJv/zyi6k9MTERffv2hYeHB9RqNbp27Yr9+/eb2tu0aQMAaN++PZRKJaZMmQIAWLVqFUJDQ6FSqeDl5XXDS8V0Oh0mTpwINzc3+Pn5YcWKFbX2OXPmDB566CF4eXnBz88Pzz33HPR6PQAgJiYGaWlpmD59OpRKpSkTAGzYsAHt27eHWq1GmzZtsGXLFrPjxsXFoU+fPnB3d4dWq0Xv3r1RVlZW7zGv/30UFhbi2Wefhb+/P9zd3RETE4OzZ8+a2mv2j42NhY+PD7RaLSZPnmz298rV1RVdunTB999/X+9nRETU3NTXF1+rqqoK7777Llq2bAm1Wo3OnTtj165dpvaakedt27aZ+sX+/fsjIyPDtE92djaGDh0KjUaDFi1a4Msvv4REIrnhJdHPPvssgoODoVQqERISgvnz55v13b169cLMmTPx5JNPQq1WIyAgAJ988onZMTZu3Ijw8HCoVCoMGzYMhYWFN/w8Dhw4gM6dO0OtVsPNzQ3dunVDQUGBqb2yshLTp0+Hm5sbvLy8MHfuXLPnx8XFoXv37nB1dUVISAhef/11VFRUmNqDg4Mxf/58DBo0CCqVCv/5z38QExMDANBoNFAqlVi8eHG9+QwGAyZNmgSNRoPAwEAsXbrUrP1G/TQAzJs3z/Q7CggIwIwZM1BaWgoA9Z5HpaWlYfDgwdBqtVCr1Wjbti0OHjxYb8Y9e/YgKioKSqUSffr0qXXr5Y3OeQ4ePIgpU6bgypUrpgxffvklACAjIwNPPvkk/Pz84OnpiVGjRiEnJ8d03PrOzW50TIlEgn379pmOcSvniytXrkS3bt2gVCoRFRWFP/74w+z9DRo0CD/++GOjuBKDrEwgsmGvvfaaMGjQILNtZ86cEZydnYXNmzcLRqNRSElJEdq1aycsWrRIEARBKC0tFcLDw4Vx48YJOTk5QlVVlXDq1CkhJSVFEARBGDt2rDB69GizYx45ckSQy+XC119/LRiNRuHvv/8WfHx8hPfff9+0DwAhNDRUOHXqlFBeXi7Mnz9fcHd3FwoLCwVBEIT58+cL3bp1M+0/evRooUuXLsLp06eF6upqISMjQzh27Fid7/PSpUsCAKFLly5CWlqaoNfrhYkTJwqtW7cWjEaj6fjt27cXzpw5I1RVVQnfffed4OTkJFy4cEEQBEFISEgQ9u7dK5SWlpryubi4CNnZ2Wavcf78edPrnjt3TnB0dBQSEhIEQRCEkpIS4bfffqv39/HMM88IHTp0ENLT0wWdTieMGzdOkMlkwrp16wRBEIScnBzB3d1dWL58uVBeXi7k5OQIffv2FSZNmmQ6RlBQkPDZZ5+ZHXfdunVCQECAcPToUaGqqko4ePCgoFKphIMHDwqCIAiJiYmCg4ODsGrVKkGv1wsVFRXCgQMHhPLy8nqPef3v46GHHhJ69eolZGZmCnq9Xpg5c6bg7+8vlJSUmPa3s7MT3n33XaGiokI4e/as4OrqKqxdu9bsuNOmTROGDx9e72dERNTc1NUXHzhwQABg6qOWLVsm+Pn5CceOHROMRqOwefNmQS6Xm/q9mv2ffPJJobCwUCgsLBTuv/9+4emnnzYds0+fPsJDDz0k5OfnC/n5+cKQIUMEAMKBAwfqzfbZZ58JWVlZQnV1tRAXFydotVph9erVpvaePXsKLi4uwi+//CJUVVUJ27ZtE6RSqakv/PPPPwU7Ozth+/btgtFoFLZv3y44ODgIPXv2rPc1fX19hbVr1wrV1dVCRUWFcOjQIUGn0wmC8O85hkKhEDZv3ixUVlYKhw4dEuzs7IT9+/cLgiAIqampgpOTk/D+++8LFRUVwrlz54TIyEhh5syZpuMHBQUJXl5ewqFDh4Tq6mpBr9fX+rzrM3bsWMHOzk5YvXq1YDAYhLi4OMHV1VXYtGmTIAi31k9v2LBBSE1NFaqrq4XExEQhNDRUeP31181e4/rzqCeffFKYNGmSUFZWJlRVVQlnzpwRLl68WGfGixcvCgqFQlizZo1gMBiEP//8U3B3dxeCgoJM+9zsnGfdunWCn5+f2XHLy8uFiIgIYdasWYJOpxNKSkqEMWPGCP369TPtc6Nzs7qOKQj/nv/9/PPPgiDc+vliu3bthPPnzwtGo1GYOXOmEBgYaHbMnJwcAYDp/ItsB4t7smnPPPOM8Pjjj5ttmzFjhvDEE0+Ybdu0aZMQGhoqCIIgbN26VdBqtabC73p1dUrPPvusMHToULNty5cvFyIiIkyPAQgffvih6XFVVZXg7e0tbNiwQRAE82Ky5h/to0eP3tL7rCm8t2/fbtpWXFwsyGQy4ffffxcEQRBcXFyE3bt3mz2vX79+wltvvVXvcdVqtemYdRX3Fy9eFBwcHIQtW7YIRUVFN8xYVVUl2Nvbm2UsLCwUJBKJqbh/7733hHvvvdfseX/88YegUCiEyspKQRDqLsSjoqLMTsYEQRAmTZokTJw4URCEfwvqBx98sN5sNyvur1y5IgAQ4uPjTe0Gg0Fwc3MTNm/ebNo/JCTE7BgjRowQpkyZYrZt9uzZQu/evevNQkTU3NTVF19fbLZs2VL44IMPzPYZMmSIMHnyZLP9U1NTTe2rVq0SWrVqJQiCIKSnpwsAhFOnTpnaExISblrcX+/5558Xhg0bZnrcs2dPYfz48Wb7uLu7C1u2bBEE4d++5tr9BUEQhg0bdsPiPjg4WHjzzTeFy5cv12obO3ZsrT6ic+fOwjvvvCMIgiAsXrxYiI6ONmv/7rvvBEdHR6G6uloQhH/7tGuLaUGo/XnXZ+zYsULHjh3Ntr366qtCnz59BEG4tX76esuXLzc7Zl3nUePGjRMeeughITEx0fQ+6rNo0aJaGV966SWz4v5m5zx1FeLffvut4Ovra/b6ly9fFgAI6enpNz03u5Xi/lbPF7/44gvT48TERAGAkJWVZdpmMBgEADccUKHmiZflk03TarUoKioy23b+/Hl8//330Gg0pp+pU6ciKysLAHDp0iUEBwfD3t7+ll8nPT0doaGhZtvCwsJMl+zXCAkJMf1ZKpUiKCiozln8L126BACIiIi45QzXH1+lUsHd3R3p6enIzs5GcXExRo4cafa+Dx06ZLqkMS0tDU888QQCAwPh4uICjUaD4uJiXL169Yavt2XLFqxbtw6BgYHo0qULNm/eXOe+OTk5qKioMMuoVquh1WpNj8+fP49jx46ZZRw8eDAkEonp91OX8+fPY9asWWbP27x5M65cuQLg38/zdj/La9X8jq79HcvlcgQFBZn9jn19fc2e5+zsjJKSErNtRUVFZu+ZiKi5q6svvt6t9qPX/jt77b+xNX1ZUFCQqf1ms6cLgoC3334bbdq0gaurKzQaDdasWVOr37vRv+2XL18269cA1Hp8ve3bt+PixYvo1KkTwsLCMH/+fLPLq2/0evV9TmVlZWaXj98sw43U9X5q+sFb6afXrFmDjh07ws3NDWq1Gm+++eYNzyUAYNmyZQgLC8OwYcPg5eWF8ePHIzs7u859b/aZ38o5T13Onz+P7Oxs098FjUaDNm3awN7eHmlpaXd8bnatO/17DsDsfKLm/yeeT9geFvdk0zp16oRTp06ZbfP29saTTz6JwsJC009xcTF0Oh2Af08GUlJSYDAY6jymVFr7f6uAgACz+9sBIDk5GYGBgWbbUlJSTH+urq5GWlpanTOr1pyQ3O7Ea9ceX6fTITc3F/7+/tBoNHBwcMCOHTvM3rderzfdO/jMM8+guroaR48eRXFxMQoKCuDi4gJBEOp93wDwyCOPYPfu3cjNzcUrr7yC0aNH15nbw8MD9vb2ZhmLiorM7jP09vbGAw88YJaxqKgI5eXl8PPzqzeHt7c3Pv74Y7Pn6XQ67Ny5E8C/n+eNPsv63luNmtmdr/0dV1ZWIi0trdbv+GYSEhLQuXPn23oOEVFTVldffL1b7UfrU9NHpKammrZd++e6bNmyBR988AE2bNiA3NxcFBYWYvLkyaZ+71b4+/ub9WsAaj2+XlRUFL766itkZWVh27ZtWL16NdatW3dLrxcQEICLFy+abUtOToajoyM8PDxM267v127Wz12rrvdTc65ys346Li4O06dPx3vvvYesrCwUFRXh7bffNvtM68ri5uaG999/H2fPnsWJEyeQkpKCl156qc58N/vMb+Wcp75ziaCgILPnFBYWory8HPfff/9Nz81u5TO+27/nNRISEqBUKtGqVavbeh41fSzuyaYNGDAA+fn5SEpKMm177rnnsG3bNmzduhUGgwFVVVW4cOECdu/eDQB46KGH4Orqiueeew65ubkQBAGnT582nSR4e3sjOTkZVVVVpmNOmDABP/30E7799ltUVVXhxIkTePfdd2vNDLxixQokJSXBYDDg7bffhsFgwJAhQ2rl9vDwwKhRozBt2jTTpG2ZmZk4fvz4Dd/vokWLcPnyZZSWlmLWrFkICwvD/fffD3t7e0yZMgWvvvoqkpKSIAgCysrK8Pvvv5s6qaKiIiiVSri6ukKv1+ONN94wfeFRk0kqlZpNInf27Fns3LkTOp0OdnZ2UKvVAACZTFYrm1QqxZgxY7BgwQJkZGRAr9dj1qxZkEgkpn3Gjx+PEydO4OOPP0ZpaSkEQUB6ejp++OEH0z7e3t5mGQDghRdewFtvvYWjR4+iuroaFRUVOHr0KI4dOwYAmDp1Kn7++WesXr0aZWVlMBqN+O2330wTENV1zGv5+Phg8ODBmDVrFrKzs1FWVobXXnsNCoUCDz744A1/J9cqLCzEkSNHMHTo0Ft+DhFRU1dXX3y9SZMmYdmyZYiPj0dlZSW++eYb7Ny5E5MmTbql1/D390evXr3wxhtvmIqyOXPm3PA5RUVFsLOzg6enJyQSCQ4cOIBNmzbd1nsbO3Ystm/fjp9++glVVVX46aefTF8s18VgMGDdunWmUXa1Wg2ZTAY7O7tber0nn3wSZ8+excqVK2EwGJCcnIy5c+di0qRJZv3p9by9vQHghn1djZMnT+Lzzz9HZWUljhw5gs8++wzjx48HcPN+uqioCDKZDB4eHpDL5Th+/DhWrVpVK8v151FbtmxBcnIyqquroVKpYG9vX+9nMmrUKCQkJJgyHj58GBs2bDC138o5j7e3N3Jzc5GXl2d63rBhw2A0GjF37lzTyPjVq1fx9ddfA7j5uVldx7zerZ4v3szu3bvx0EMP3fLfG2o+WNyTTVOr1Zg0aRLWrFlj2talSxf8/PPP+Oyzz+Dn5wc3NzeMGDHCVLw7Ojpi//790Ol0iIqKglqtxujRo5Gfnw8Apn+A3d3dodFokJaWhq5du2Lbtm14++234erqipEjR+L555/HzJkzzfJMnToVTz31FLRaLbZv346dO3dCo9HUmf2zzz5Dz549ERMTA6VSiW7dut105GPixIno378/vLy8cO7cOfz444+mf/iXLVuGUaNGmS5TCw4Oxn/+8x/TEjkffvghTp48CVdXV0RGRsLPz8/sqgJHR0csXrzYNIPuc889Z/qSws/PDy4uLpg1axY2bNhQ65KzGu+//z6ioqIQFRWFli1bIioqynTCAQCBgYGIi4vDzz//jNDQUGg0GgwcOBAJCQmmfebNm4f//e9/0Gg0aNeuHQBg5syZWLBgAaZMmQKtVgs/Pz+88sorptl727Zti3379mHz5s3w9fWFl5cXFi5caJqdtq5jXm/jxo0IDg5Gx44d4e/vj1OnTmHfvn1QqVQ3/J1ca8OGDejbty+/aScim1JXX3y9l156CdOmTcOIESOg1WqxZMkSfPfdd7d1pdNXX30FQRAQFBSEDh06mL48d3BwqHP/cePGoW/fvoiKioK7uztWr1592+uvP/DAA/j0008xc+ZMaDQa/Pe//8WECRNu+Jxt27ahTZs2cHZ2Rs+ePTFu3DiMHTv2ll4vKCgIe/fuxddffw1PT0/06dMHMTExtWa0v17Lli0xY8YM9O7dGxqNBu+88069+z766KM4fPgw3N3dMXz4cLz88sumz+Vm/fSAAQMwZcoU9OrVC2q1GrNnz6713uo6jzp58iT69OkDlUplOu6yZcvqzNeiRQt8//33+OCDD6DRaDB79mxMnTrVbJ+bnfP06dMHjzzyCFq2bAmNRoOvvvoKKpUKcXFxSEtLQ1RUFFxcXHD//ffj999/Nx33RudmdR3zerd6vngjBoMBGzdurPfKBmreJMLtXFtE1AwVFBQgOjoaBw8evO3LnixJIpHg559/Rr9+/UTLQOLR6/Vo06YN9uzZc1f36xERNUVi9MXx8fHo0KEDrly5Ah8fH6u8JlFDW758OU6ePHnT5ZGpeWJxT9RIsLgnIiJqOImJiTAYDIiOjsaVK1fw9NNPAwD2798vcjIiIsvgZflERERE1OwVFRXhiSeegEqlQqdOneDu7o4vv/xS7FhERBbDkXsiIiIiIiKiJo4j90RERHTXVq1ahc6dO8Pe3h5PPPGEWVtiYiLuvfdeODk5ITIy8qaXQa9atQp+fn5QKpUYPny42ZKYREREVDcW90RERHTXfH19MWfOHDzzzDNm241GIx5++GEMGTIEBQUFmD9/Ph599FFcvXq1zuP8/PPPmD9/Pn788UdkZmZCJpNhypQp1ngLRERETRovyyciIiKLWbBgAc6cOYMtW7YA+LdYHzNmDDIzMyGV/jum0K1bNzz55JOYNm1areePHj0aPj4+pmWuzp8/j8jISOTm5kKtVlvvjRARETUxdmIHEENubi727NmD4OBgODo6ih2HiIgIZWVlSElJwcCBA+Hu7i52HItJTExEVFSUqbAHgOjoaCQmJta7f0xMjOlxeHg4FAoFzpw5g65du9baPzMzE5mZmbW2FxQUICkpCR06dGBfT0REjUJD9/U2Wdzv2bMHY8aMETsGERFRLZs2bcLo0aPFjmExOp0OGo3GbJtGo0Fqaupt7V9SUlLn/mvWrEFsbKwlohIREVlFQ/X1NlncBwcHAwCWLl2K0NBQccMQWUlycjJeffVVbNy4EZGRkWLHIaLrJCUlYcyYMaY+qrlQKpUoKioy21ZUVASVSmWR/SdPnowhQ4bU2h4fH4+JEydiyZIl7OvJpiQnJ+O1115jf0/UCDV0X2+TxX3N5XktWrRAmzZtRE5DZB0102u0atUKHTt2FDkNEdWnuV1C3rZtWyxZsgTV1dWmS/Pj4+MxatSoevePj483jWhcuHABFRUVaNWqVZ37+/j4wMfHp97XDw0NRdu2be/yXRA1HT4+Ppg9ezYGDBgAT09PseMQUR0aqq/nbPlERER01yorK1FeXo7KykpUV1ejvLwcRqMRvXr1gqOjI5YuXYqKigps3boVCQkJGDlyZJ3HGTduHNatW4cTJ05Ap9Nhzpw5GDZsGCfTI7pFrq6uGDp0aLOau4OIbg2LeyIb0apVK/zxxx+Ijo4WOwoRNUOLFi2Co6Mj3n77bWzduhWOjo545plnIJfLsX37dnz//ffQaDSYN28evvvuO9OI4sGDB6FUKk3H6d+/PxYsWIAHH3wQ3t7eMBgMWL16tVhvi6jJKSgowA8//IDc3FyxoxCRldnkZflEtkgqlUKhUJjNWE10I4IgmH7o7kkkEtNPc7RgwQIsWLCgzraoqCj89ddfdbZ1794dOp3ObNv06dMxffp0S0cksgmZmZlYvHgxHn30UV6WTzfFvt7yJBKJaOfbLO6JbERKSgrmzJmDL7/8st57V4kAoLq6GlevXkVhYSE7ewuTSCTQaDTw9PTkF21ERCQa9vUNSy6XIzAwEAqFwqqvy+KeyEaUlpbi+PHjtUbIiK6XmpoKqVSK4OBgyOVyseM0K0ajEdnZ2UhNTUVISIjYcYiIyEaxr284giAgLy8PaWlpCAsLs+prs7gnIiKTmonQwsPDYWfHLsLSZDIZ/Pz8cP78ebPZ44mIiKyFfX3Dc3NzQ35+vtX7ep5VEBGRSc2lec31vvDGoOaz5WWQRNQQnJyc0LFjR7OJKomuxb6+4YnV17O4JyIiIiJqJoKDg7F69Wq0bNlS7ChEZGUs7olshI+PD2bPno3AwECxoxA1e7169eLybUQkiurqahgMBlRXV4sdhahZa4x9PYt7Ihvh6uqKoUOHwt3dXewoRHetV69esLOzw7lz50zbzpw5w0sMicjmnTlzBg888ADi4+PFjkJ0V9jX3z4W90Q2oqCgAD/88ANyc3PFjkJkEWq1GnPnzr3r41RWVlogDREREVka+/rbw+KeyEZkZmZi8eLFSEtLEzsKkUXMmDEDO3fuxIkTJ2q1FRcXY+LEifD29oa/vz9eeuklVFRUAABSUlIgkUiwfv16hISEoF27dvj111/h7e2NFStWwMfHB25ubvj8889x7NgxREdHQ61W46mnnjKdHBQXF+Phhx+Gp6cnXF1dMXjwYP6/RUREZGHs628Pi3siIrIYg8GAtLQ0nD59GmlpaTAYDA32Wt7e3nj++ecxe/bsWm3PP/88MjIycObMGfz999/4888/sXDhQrN9du/ejZMnT+LYsWMAgNzcXNMa9OvXr8f06dMRGxuLXbt24cKFCzh48CC++eYbAP/e0zp27FikpKQgPT0dLi4ueO655xrsvRIRETUm1urv2dffHhb3RERkEQaDAfHx8cjMzER1dTUyMzMRHx/foAX+K6+8giNHjuD33383bauqqsLmzZuxZMkSaDQaeHt7IzY2Fhs2bDB77oIFC+Di4gJHR0cAgFQqRWxsLBQKBR5++GEoFAo8+eST8PHxgYeHBwYMGIDjx48DADQaDUaMGAEnJycolUq88cYb+O233xrsfRIRETUW1u7v2dffOhb3RERkEVlZWRAEAQEBAdBqtQgICIAgCMjOzm6w19RoNHjttdfwxhtvmLbl5ubCYDAgODjYtC04OBiZmZlm680GBQWZHUur1UIul5seOzk5wdvb2+yxTqcDAJSWlmLy5MkICgqCi4sLunfvDp1OZ7ockIhILGFhYfjxxx/Rtm1bsaNQM2Xt/p59/a1jcU9kI5ycnNCxY0colUqxo1AzpdPp4OzsbLbN2dkZJSUlDfq6M2bMQEpKCnbs2AEAcHd3h0KhQEpKimmflJQU+Pj4mM2wezez7b733ns4ffo0Dh8+jOLiYhw8eBAAzE4oiIjEoFAo4OXlBYVCIXYUaqbE6O/Z198aFvdENiI4OBirV69Gy5YtxY5CzZRSqYRerzfbptfroVKpGvR1HR0dMW/ePLzzzjsAAJlMhieeeAJvvPEGCgsLkZ2djdjYWDz11FMWe82SkhI4OjpCo9GgoKAAb731lsWOTUR0N9LT0/H666/j4sWLYkehZkqM/p59/a1hcU9kI6qrq2EwGFBdXS12FGqmvL29IZFIkJ6ejvz8fKSnp0MikcDLy6vBX3vixIlwdXU1Pf7www/h5eWFiIgIdOjQAffccw/mzZtnsdd74YUXYDAY4OHhga5du6J///4WOzYR0d0oKSnB/v37UVhYKHYUaqbE6u/Z19+cRGjM1xU0kOPHj6NTp07Ytm0b70cim5GYmIgRI0bg6NGj6Ny5s9hxqJGqqqrCuXPn0LJlS8hkstt+vsFgQHZ2NkpKSqBSqXhpaB3q+4xr+qZjx46hY8eOIiZsHtjXk61if083c7d9PcD+/mbE6uvtLH5EIiKyWQqFAgEBAWLHICIiogbE/r5x4mX5RERERERERE0ci3siIiIiombCw8MDzz33HHx9fcWOQkRWxuKeiIiIiKiZ8PDwwLhx48zW7iYi28DinshGhIWF4ccff+TEUnRDNevB2uBcq1ZT89nezdq7RET1KS4uxu+//87Z8qle7Outx9p9PYt7IhuhUCg4kyndlFQqhUwmQ3l5udhRmq3y8nLIZDJIpeyCicjyLl++jJdffpnr3FO92Nc3PKPRCIlEYvXinrPlE9mI9PR0LFmyBGvWrEFYWJjYcagR8/DwQEZGBvz8/ODg4MARZgsRBAHl5eXIyMiAp6en2HGIiMiGsa9vOIIgIDs7GxqNhsU9ETWMkpIS7N+/n5fp0U25uroCAK5cuYKqqiqR0zQvMpkMnp6eps+YiIhIDOzrG5aDg4MoX+SzuCciolpcXV3h6uqK6upq3pNnIRKJhJfiExFRo8G+vmGI2d+zuCcionqxGCUialoUCgVCQkLg4OAgdhRqItjXNx/8TRIRERERNRNhYWH4+uuvERkZKXYUIrIyFvdENsLDwwPPPfccfH19xY5CREREREQWxuKeyEZ4eHhg3Lhx8Pb2FjsKERERNZCkpCT07t0b8fHxYkchIitjcU9kI4qLi/H7779ztnwiIqJmTBAE6PV6VFdXix2FiKyMxT2Rjbh8+TJefvllXLx4UewoRERERERkYSzuiYiIiIiIiJo4FvdERERERERETRyLeyIiIiKiZiIkJAQbNmxAq1atxI5CRFbG4p7IRigUCoSEhMDBwUHsKERERNRAHB0d0apVKzg5OYkdhYisjMU9kY0ICwvD119/jcjISLGjEBERUQO5cuUKli5dirS0NLGjEJGVsbgnIiIiImomCgsLsW3bNuTm5oodhYisrMkW97m5uXB3d8e9994rdhSiJiEpKQm9e/dGfHy82FGIiIiIiMjCmmxx/8orr/DyYqLbIAgC9Ho9qqurxY5CREREREQWZid2gDvx22+/4fz585g4cSLWrFlT736ZmZnIzMystT0pKakh4xERERERERFZVZMr7g0GA6ZPn45NmzbhxIkTN9x3zZo1iI2NtVIyIiIiIiJxabVajBo1Cp6enmJHISIra3LF/TvvvIN+/fqhffv2Ny3uJ0+ejCFDhtTanpSUhDFjxjRURCIiIiIiUXh7e+PFF1+Ev7+/2FGIyMqaVHF/4cIFrF+//pYnBPPx8YGPj0/DhiJqIkJCQrBhwwa0atVK7ChERETUQPR6Pf755x9ERETAxcVF7DhEZEVNqrj/448/kJWVhZYtWwIAysrKUFZWBm9vb5w7d47/gBHdgKOjI1q1agUnJyexoxAREVEDSU1NxaRJk9C+fXt07txZ7DhEZEVNarb8xx9/HBcvXkR8fDzi4+OxcOFCREVFIT4+HiqVSux4RI3alStXsHTpUqSlpYkdhYiIiIiILKxJFfeOjo7w9vY2/ajVasjlcnh7e0MikYgdj6hRKywsxLZt25Cbmyt2FCIiIiIisrAmVdxfb9y4cTh8+LDYMYiIiIiIiIhE1aSLeyIiIiIi+j8ymQwajQZ2dk1qai0isgAW90RERNSglEql2Y+dnV2dS9XWkEgkcHZ2Nu0fExNjxbRETVtERAT27t2Ldu3aiR2FiKyMX+kR2QitVotRo0bB09NT7ChEZGN0Op3pz1VVVQgMDMRjjz12w+ccO3aMS3cSERHdBo7cE9kIb29vvPjii/D39xc7ChHZsN27d0On02H48OFiRyFqls6fP49hw4bh1KlTYkchIivjyD2RjdDr9fjnn38QEREBFxcXseMQkY1at24dnnjiCTg6Ot5wvz59+qCqqgqdO3fG0qVL0aZNmzr3y8zMRGZmZq3tSUlJFslL1NQYjUZcvnwZFRUVYkchIitjcU9kI1JTUzFp0iS0b98enTt3FjsOEdmg3Nxc/Pjjj/j9999vuN+vv/6K++67DxUVFViyZAkGDBiApKSkOr+YXLNmDWJjYxsqMhERUZPBy/KJiIjIKr788kuEhYWha9euN9yvZ8+eUCgUUKlUWLRoEezs7HDo0KE69508eTKOHTtW62fTpk0N8RaIiIgaLY7cExERkVWsW7cO48ePv+3nSaVSCIJQZ5uPjw98fHzuNhoREVGTx+KeiIiIGtzx48dx6tQpPPXUUzfc79SpU6ioqEC7du1gMBiwdOlSlJWV4b777rNSUqKmLTAwECtWrEBYWJjYUYjIynhZPpGNkMlk0Gg0sLPjd3pEZH3r1q3Dgw8+CC8vr1ptSqUSBw8eBABcvXoVTz75JNRqNQIDA3H48GHs2bMHGo3GyomJmialUon77ruPk+cS2SCe5RPZiIiICOzduxft2rUTOwoR2aCVK1fW26bT6Ux/7t27N86cOWONSETNUk5ODjZu3IgFCxbAz89P7DhEZEUcuSciIiIiaiZycnLw+eef17lEJBE1byzuiWzE+fPnMWzYMJw6dUrsKEREREREZGEs7olshNFoxOXLl1FRUSF2FCIiIiIisjAW90RERERERERNHIt7IiIiIqJmwsXFBYMGDYKrq6vYUYjIyljcExERERE1E/7+/li4cCFCQkLEjkJEVsbinshGBAYGYsWKFQgLCxM7ChERETWQiooKpKeno7y8XOwoRGRlLO6JbIRSqcR9990HFxcXsaMQERFRA0lOTsbw4cNx+vRpsaMQkZWxuCeyETk5Ofj000+57i0RERERUTPE4p7IRuTk5ODzzz9ncU9ERERE1AyxuCciIiIiIiJq4ljcExERERERETVxLO6JiIiIiJqJyMhIHDlyBB07dhQ7ChFZGYt7Ihvh4uKCQYMGwdXVVewoRERERERkYSzuiWyEv78/Fi5ciJCQELGjEBERUQO5dOkSJkyYgLNnz4odhYisjMU9kY2oqKhAeno6ysvLxY5CREREDaSsrAyJiYnQ6/ViRyEiK2NxT2QjkpOTMXz4cJw+fVrsKEREREREZGEs7omIiIiIiIiaOBb3RERERERERE0ci3siIiIiombC19cXsbGxCA4OFjsKEVkZi3siIiIiomZCo9EgJiYGWq1W7ChEZGUs7olsRGRkJI4cOYKOHTuKHYWIiIgaSH5+PrZu3YqcnByxoxCRlbG4JyIiIiJqJrKysvDuu+8iPT1d7ChEZGUs7olsxKVLlzBhwgScPXtW7ChERERERGRhLO6JbERZWRkSExOh1+vFjkJERERERBbG4p6IiIiIiIioiWNxT0RERETUTDg5OaFr165QqVRiRyEiK2NxT0RERETUTAQHB2PlypUIDw8XOwoRWRmLeyIb4evri9jYWAQHB4sdhYiIiBpIVVUVdDodqqqqxI5CRFbG4p7IRmg0GsTExECr1YodhYiIiBrI2bNn0adPH5w8eVLsKERkZSzuiWxEfn4+tm7dipycHLGjEBERERGRhbG4J7IRWVlZePfdd5Geni52FCIiIiIisjAW90RERERERERNHIt7IiIiIiIioiaOxT0RERERUTMRHh6OPXv2ICoqSuwoRGRlLO6JbISTkxO6du0KlUoldhQiIiJqIHK5HK6urpDL5WJHISIrY3FPZCOCg4OxcuVKhIeHix2FiIiIGkhaWhpmzZqF5ORksaMQkZWxuCeyEVVVVdDpdKiqqhI7ChERETUQnU6HgwcPoqioSOwoRGRlLO6JbMTZs2fRp08fnDx5UuwoRERERERkYSzuiYiIiIiIiJo4FvdERERERERETRyLeyIiIiKiZsLT0xMzZ86En5+f2FGIyMpY3BMRERERNRPu7u4YPXo0vLy8xI5CRFbG4p7IRoSHh2PPnj2IiooSOwoRERE1kKKiIuzbtw8FBQViRyEiK2NxT2Qj5HI5XF1dIZfLxY5CREREDSQjIwOzZ8/GpUuXxI5CRFbG4p7IRqSlpWHWrFlITk4WOwoREREREVkYi3siG6HT6XDw4EEUFRWJHYWIiIiIiCyMxT0RERERERFRE8finoiIiBrUuHHjoFAooFQqTT9paWn17p+YmIh7770XTk5OiIyMxP79+62Ylqhps7e3R0REBBwdHcWOQkRWxuKeiIiIGtxLL70EnU5n+gkMDKxzP6PRiIcffhhDhgxBQUEB5s+fj0cffRRXr161cmKipik0NBQbN25E69atxY5CRFZmJ3YAIrIOT09PzJw5E35+fmJHISKq16+//orS0lK8/vrrkEqlePzxx/Hhhx9i69atmDZtWq39MzMzkZmZWWt7UlKSNeISERE1Ghy5J7IR7u7uGD16NLy8vMSOQkQ26NNPP4VWq0X79u2xdu3aevdLTExEVFQUpNL/O0WJjo5GYmJinfuvWbMGnTp1qvUzZswYi78Hoqbg9OnT6NatG06cOCF2FCKyMo7cE9mIoqIiHDhwAC1atICbm5vYcYjIhjz//PNYtmwZNBoNDh48iJEjR0KtVmP48OG19tXpdNBoNGbbNBoNUlNT6zz25MmTMWTIkFrbk5KSWOCTzTIajRAEQewYRGRlLO6JbERGRgZmz56N/v37s7gnIqvq2LGj6c+9e/fGtGnTsHXr1jqLe6VSWWvJzqKiIqhUqjqP7ePjAx8fH8sGJiIiaoJ4WT4RERFZlVQqrXdUsW3btkhISEB1dbVpW3x8PNq2bWuteERERE0Si3siIiJqUN988w1KSkpQXV2NP/74A6tWrcKjjz5a5769evWCo6Mjli5dioqKCmzduhUJCQkYOXKklVMTERE1LSzuiYiIqEGtWrUKAQEBUKvVmDx5MhYtWoQnnnjC1N6mTRt8+eWXAAC5XI7t27fj+++/h0ajwbx58/Ddd9/B09NTrPhETUqLFi2wefNmLoVHZIN4zz2RjbC3t0dERAQcHR3FjkJENub333+/YfupU6fMHkdFReGvv/5qyEhEzZaDgwNCQ0PZ3xPZII7cE9mI0NBQbNy4kd/kExERNWMZGRlYtGhRvStMEFHzxeKeiIiIiKiZKCoqwvbt25GXlyd2FCKyMhb3RDbi9OnT6NatG06cOCF2FCIiIiIisjAW90Q2xGg01rv8FBERERERNV0s7omIiIiIiIiaOBb3RERERETNhJubG8aOHQsvLy+xoxCRlbG4JyIiIiJqJry8vDBt2jT4+fmJHYWIrIzFPZGNaNGiBTZv3syl8IiIiJoxvV6PY8eOoaSkROwoRGRlLO6JbISDgwNCQ0Ph6OgodhQiIiJqIKmpqZg6dSrOnz8vdhQisjIW90Q2IiMjA4sWLUJqaqrYUYiIiIiIyMJY3BPZiKKiImzfvh15eXliRyEiIiIiIgtjcU9ERERERETUxLG4JyIiIiJqJuzs7ODp6Qm5XC52FCKysiZX3FdUVGDSpEkICQmBSqVCmzZt8NVXX4kdi4iIiIhIdC1btsSOHTsQFRUldhQisjI7sQPcrsrKSvj6+uKXX35BSEgI/vzzTzz44IMICQnBfffdJ3Y8okbLzc0NY8eOhZeXl9hRiIiIiIjIwprcyL2zszMWLlyIFi1aQCKR4IEHHkC3bt1w6NAhsaMRNWpeXl6YNm0a/Pz8xI5CREREDeTcuXN46KGHkJCQIHYUIrKyJjdyfz29Xo+///4bM2fOrNWWmZmJzMzMWtuTkpKsEY2oUdHr9Th27BhatmwJtVotdhwiIiJqAJWVlbh69SqMRqPYUYjIypp0cV9dXY1x48ahS5cuGDBgQK32NWvWIDY2VoRkRI1Pamoqpk6dis6dO6Nz585ixyEiIiIiIgtqssW9IAiYMmUKrly5gj179kAikdTaZ/LkyRgyZEit7UlJSRgzZow1YhIRERERERE1uCZZ3AuCgGnTpiE+Ph779u2DUqmscz8fHx/4+PhYOR0RERERERGRdTXJ4n769Ok4fPgwfvnlF7i4uIgdh4iIiIioUQgKCsInn3yC8PBwsaMQkZU1udnyU1NT8fHHH+P06dMICAiAUqmEUqnE4sWLxY5G1KjZ2dnB09MTcrlc7ChERETUQJydndGpUyeoVCqxoxCRlTW5kfugoCAIgiB2DKImp2XLltixYweioqLEjkJEREQNJDs7G+vXr8dbb72FgIAAseMQkRU1uZF7IiIiIiKqW15eHr744gtkZ2eLHYWIrIzFPZGNOHfuHB566CEkJCSIHYWIiIiIiCyMxT2RjaisrMTVq1dhNBrFjkJERERERBbG4p6IiIiIiIioiWNxT0RERETUTKjVagwZMgRubm5iRyEiK2NxT0RERETUTPj5+WHOnDkICgoSOwoRWRmLeyIbERQUhE8++QTh4eFiRyEiIqIGUl5ejuTkZJSVlYkdhYisjMU9kY1wdnZGp06doFKpxI5CREREDeTixYsYNWoUkpKSxI5CRFbG4p7IRmRnZ+Ojjz5CRkaG2FGIiIiIiMjCWNwT2Yi8vDx88cUXyM7OFjsKERERERFZGIt7IiIiIiIioiaOxT0RERERUTMil8shkUjEjkFEVsbinoiIiIiomYiMjMSff/6JDh06iB2FiKyMxT2RjVCr1RgyZAjc3NzEjkJERERERBbG4p7IRvj5+WHOnDkICgoSOwoRERE1kOTkZDz11FNcCo/IBrG4J7IR5eXlSE5ORllZmdhRiIiIqIFUVFTg7Nmz7O+JbBCLeyIbcfHiRYwaNYrf5BMRERERNUM2XdxnZGRAp9OJHYOIiIiIiIjorth0cb9ixQp07doVY8aMwaeffoozZ85AEASxYxERERERERHdFpsu7hcvXoyFCxfC2dkZn3zyCYYOHYr9+/ejqqoK6enpKC4uFjsiEREREdEt8/Pzw+LFixESEiJ2FCKyMjuxA4gpPDwcjz/+ON544w0UFRXhl19+QUREBEpLSxEbG4u4uDi0a9cOPXr0QI8ePdC6dWtIpTb9fQg1cXK5HBKJROwYRERE1EDUajX69esHV1dXsaMQkZWxUgUgkUig0WgwfPhwtG3bFh06dMDq1avx9ttvQ6PR4LPPPsPw4cPx3XffoaqqCpmZmSgsLBQ7NtFtiYyMxJ9//okOHTqIHYWIiIgaSG5uLr788ktkZ2eLHYWIrMymR+7rI5PJ0KZNG7Rp0wavvvoqSkpKcODAAfj7+6O0tBTLly/HTz/9hKioKNOofps2bTiqT0RERESiunr1KlasWIExY8bAx8dH7DhEZEWsRm9CIpHAxcUFjzzyCDp16oQOHTpg6dKleOedd+Du7o61a9di5MiRWLt2LaqqqpCbm4uCggKxYxPVkpycjKeeeopL4RERERERNUMcub9NMpkMrVq1QqtWrfDyyy9Dp9Ph119/hVarRVlZGT799FNs3LgRbdq0Qc+ePdGjRw+0bdsWMplM7Ohk4yoqKnD27FmUlZWJHYWIiIiIiCyMI/d3QSKRQKVS4eGHH0a3bt0QHR2NOXPmYNmyZfD19cUXX3yBxx9/HO+//z4qKytRWFiIvLw8sWMTERFZVUVFBSZNmoSQkBCoVCq0adMGX331Vb37SyQSODs7Q6lUQqlUIiYmxoppiYiImiaO3FuQTCZDeHg4XnrpJbz00kvQ6/X4/fffYW9vj/LycmzevBkrVqxAZGSk6V799u3bc1SfiIiatcrKSvj6+uKXX35BSEgI/vzzTzz44IMICQnBfffdV+dzjh07hlatWlk5KVHTp1Qq0b17d6jVarGjEJGVsbhvQM7OzqbRhqqqKri6uiIkJAR79uzBV199hdWrV2PEiBFYsGABKioqUFpaCg8PD5FTExERWZazszMWLlxoevzAAw+gW7duOHToUL3F/a3KzMxEZmZmre2cX4RsVWBgIN577z2EhoaKHYWIrIzFvZXIZDK0aNECM2fOxMyZM1FaWoqDBw+iuroa5eXl+PHHHxEbG4tWrVqZRvWjo6NhZ8dfEVmGn58fFi9ejJCQELGjEJGN0+v1+PvvvzFz5sx69+nTpw+qqqrQuXNnLF26FG3atKlzvzVr1iA2NrahohI1OUajEQUFBTAajbC3txc7DhFZEStHkTg5OWHgwIEAgOrqari7u8PDwwO7du3CN998g08//RR9+/bFihUrUF1djYKCAnh5eYmcmpoytVqNfv36wdXVVewoRGTDqqurMW7cOHTp0gUDBgyoc59ff/0V9913HyoqKrBkyRIMGDAASUlJcHFxqbXv5MmTMWTIkFrbk5KSMGbMGIvnJ2rszp8/jxEjRuDo0aPo3Lmz2HGIyIpY3DcCUqkUQUFBmDZtGqZNm4bS0lIcOnQIOp0OFRUV+OOPPzBz5ky0bNnSNKrfoUMHyOVysaNTE5Kbm4tvv/0W/v7+XPeWiEQhCAKmTJmCK1euYM+ePZBIJHXu17NnTwCAQqHAokWLsHHjRhw6dAiDBg2qta+Pjw//TSMiIgKL+0bJyckJ/fr1A/DvCIenpyfkcjl2796N7777Dp9//jk6d+6MdevWQSaTITs7myc2dFNXr17FihUrMGbMGP59ISKrEwQB06ZNQ3x8PPbt2welUnnLz5VKpRAEoQHTERERNX0s7hs5qVQKf39/TJ06FVOnTkV5eTni4uJw9epVGAwGJCYmYuzYsQgNDUWPHj3Qs2dPdOzYEQqFQuzoREREJtOnT8fhw4fxyy+/1Hl5fY1Tp06hoqIC7dq1g8FgwNKlS1FWVnbXE+8RERE1d1znvolxcHBA79698fjjjyM6OhoDBgzAmjVr0K5dO/z4448YN24chg0bBqPRCADIzs4WOTEREdm61NRUfPzxxzh9+jQCAgJM69cvXrwYwL9Ldx08eBDAv1cZPfnkk1Cr1QgMDMThw4exZ88eaDQaEd8BERFR48eR+yZMKpXC29sbzz77LJ599llUVFTgr7/+wqVLl2A0GnHp0iUMGTIEISEhpnv1O3fuzJlTiYjIqoKCgm54Wb1OpzP9uXfv3jhz5ow1YhE1SxEREdi/fz/at28vdhQisjIW982Ivb29qYivrq6Gv78/Pv/8c+zevRu7du3CF198AQ8PD+zbtw/29vbIycmBh4eH2LHJSpRKJbp37w61Wi12FCIiImogMpkMSqUSMplM7ChEZGUs7pspqVQKDw8PTJw4ERMnToTBYMDRo0dx6tQpVFVVISMjAwMHDoSfn5/pC4EuXbrAwcFB7OjUQAIDA/Hee+8hNDRU7ChERETUQFJSUhAbG4svvvgCERERYschIiticW8jFAoFunXrhm7dukEQBBQUFOCzzz7Drl27sHfvXmzcuBHOzs747bffoFQqkZ+fD61WK3ZssiCj0YiCggIYjUbemkFERNRMlZaW4q+//kJJSYnYUYjIyljc2yCJRAKtVotx48Zh3LhxMBgMOH78OI4cOQKZTIa8vDzExMRArVaje/fu6NGjB7p27QpHR0exo9NdOH/+PEaMGIGjR4+ic+fOYschIiIiIiILYnFPUCgUuPfee3HvvfdCEASUlJRg1apV2LlzJw4cOICvvvoKCoUCe/fuhZeXFwoLC6HRaCCRSMSOTkRERERERGBxT9eRSCRwcXHBU089haeeegoGgwH//PMPDhw4ALVajeLiYowcORLV1dWme/W7du0KZ2dnsaMTERERERHZLBb3dEMKhQKdO3dG586dIQgCSktL8c4772DXrl347bffsGXLFsjlcmzbtg0tW7ZEcXExXFxcOKpPREREJAJvb2+88sorCAgIEDsKEVkZi3u6ZRKJBM7Ozhg9ejRGjx6NyspK/PPPP9i5cycCAgJQVFSEZ599FlevXkX37t3Rs2dP3HvvvVAqlWJHJyIiIrIJWq0WI0eO5HLHRDZIercHOHLkCLp27Yr7778fu3btMm1/9NFH7/bQ1MjZ2dmhY8eOmDNnDqKjo9GuXTu8+eab6N+/P/766y9Mnz4dXbt2xdGjR0338guCIHZsmxUREYH9+/ejffv2YkchIitg/0xkmwoLC7Fr1y7k5+eLHYWIrOyuR+5nzZqFtWvXQi6XY/r06cjMzMSECRNQWFhogXjUVEgkEjg6OuKxxx7DY489hsrKSpw6dQo//vgjwsPDUVxcjFdeeQVnzpwxzcB///33Q6VSiR3dZshkMiiVSshkMrGjEJEVsH8msk1XrlzB/PnzMXjwYLi7u4sdh4is6K6Le5lMhjZt2gAAfvrpJ4wZMwZFRUW859rG2dnZoX379mjfvj0EQUB5eTlefPFFbN++Hb/++iu+/fZbyGQyfPDBB+jXrx9KS0vh5OTEvzcNKCUlBbGxsfjiiy8QEREhdhwiamDsn4mIiGzLXRf3lZWV0Ol0UCqVkMvl2Lx5M55++mkcOXLEEvmoGagZ1R86dCiGDh2KyspKJCUl4aeffkKbNm1QXFyMt99+G4cOHTIb1Ver1WJHb1ZKS0vx119/oaSkROwoRGQF7J+JiIhsy10X9x9++CH0er1p0jSpVIqNGzfim2++uetw1DzZ2dkhKioKUVFRplH9Z599Fh4eHjhw4AC+//57yGQyxMbGYvjw4SgvL4e9vT2k0rueIoKIyGawfyYiIrItd13cd+zYsdY2iUSCESNG3O2hyQbUjOo/+OCDePDBB1FVVYUzZ86Yjep/8skn2L59Ox544AH06NED3bp1g6urq9jRiYgatfr658cff1yENERkLY6Ojmjbti2cnZ3FjkJEVtZgQ6ExMTENdWhqxmruEX311VcxePBgtGvXDqNHj8aIESOQlJSEl19+Gd26dcPatWshCAIqKipQXV0tdmwiokbn6NGjnC2fyAaFhIRg7dq1nF+HyAbd9cj9vHnzam0TBAHJycl3e2iycRKJBA4ODujXrx/69euHqqoqXLhwAT/++CNCQkJQXFyMLVu2YN26dejWrRt69eqFbt26QavVih29UfL29sYrr7yCgICABn0dg8GArKws072+3t7eUCgUDfqaRFTbSy+9xNnyiYiIbMhdF/effPIJ3nvvvVrrlzs5Od3toYnMyGQyREREICIiwjRqX1FRgfLycuzfvx8//fQTJBIJJk+ejJkzZ6KyshJSqZRLv/1/Wq0WI0eOhIeHR4O9hsFgQHx8PARBgLOzMzIzM5GVlYXo6GgW+ERWxtnyiWzT6dOnMWLECBw9ehSdO3cWOw4RWdFdF/etW7dG37594efnZ7Z9z549d3toonrVjOp3794d3bt3R1VVFS5evIgdO3bAw8MDxcXF2L17N5YvX477778fPXv2xAMPPGDT670WFhbi559/RkhISIN9DllZWRAEwXR1gFarRXp6OrKzsxv8igEiMsfZ8omIiGzLXRf3v/32W52jAF999dXdHprolslkMoSHh+PFF18EANO9+Dk5Odi/fz9ef/11AMCoUaMwb948VFdXQxAE2Nnd9f8CTcaVK1cwf/58DB48uMGKe51OV2sCH2dnZy6/RyQCzpZPRERkW+66suHlfdQY2dvb495778W9996LqqoqpKamYseOHbC3t0dxcTGOHDmC2bNn4/7770ePHj3QvXt3eHp6ih27yVMqlcjMzDSb90Cv18PX11fEVES2ibPlExER2Zbbni1/xIgR+Oyzz8y2/fTTT9iyZQv0er3FghFZikwmQ4sWLfD8889j8uTJaN++Pbp164bx48cjIyMDc+bMQY8ePfDSSy+ZRvSNRqPYsZskb29vSCQSpKenIz8/H+np6ZBIJPDy8hI7GlGzx/6ZiIjItt32yP3hw4fxn//8x/R4/vz5eOuttwAA4eHhiIuL42zl1KjZ29ujQ4cO6NChA6qrq5GWloaffvoJRqMRJSUlOHfuHKZMmYL77rsPPXv2RPfu3eHt7S127CZBoVAgOjoa2dnZKCkpga+vL7y8vDiZHpEVsH8mIgAIDQ3Ft99+i8jISLGjEJGV3fbIfVFREcLCwgAA1dXV+OSTT7B06VJkZ2ejVatWeO+99ywekqihSKVSBAcHY9q0aXjhhRfQvn17dOjQAc8++yyuXr2K+fPno1evXpg0aRKqq6sB/DtJVVPk6OiItm3b1ron3tIUCgUCAgIQGRmJgIAAFvZEVsL+mYiAfwcxAgIC4ODgIHYUIrKy2y7uNRoNKioqAAAJCQkoLCzE5MmT4eHhgXfffRfff/+9xUMSWYu9vT3atGmD5cuX48SJE7h06RI++eQTxMTEQKfT4cKFC+jatSumTp2KLVu24MqVK2JHvmUhISFYu3YtIiIixI5CRA2A/TMRAcDly5cxb948XLp0SewoRGRlt13c33PPPfjyyy8BALt370bHjh2hUqkAAC1btkRmZqZlExKJRCqVIjAwEFOmTMHs2bPRvn17tGzZElOmTEFBQQHeeust9OnTB4899hiqqqoAwPRfIiJrY/9MRABMywEXFBSIHYWIrOy277l/88030aNHD3zzzTc4fPgw5s6da2rjclfUnCkUCoSHh2PZsmWorq5GZmYmdu3ahdTUVOj1euj1egwdOhTR0dHo2bMnevToAX9/f7Fjm5w+fRojRozA0aNH0blz5wZ9LYPBgKysLNMa297e3rw8n6iBsX8mIiKybbc9ct+xY0fs2rULbm5uGDduHKZPn25q+/PPPxEUFGTRgESNkVQqhZ+fHyZNmoS33noL7du3R0hICCZPngydToe3334b/fr1w+DBg02Xydbcs9/cGQwGxMfHIzMz0/QlSHx8PAwGg9jRiJo19s9ERES27Y7Wue/evTu6d+9ea3t8fDweeeSRuw5F1NQoFAoEBQVhyZIlqK6uRlZWFvbs2YOEhARUVFRAr9dj2LBhCA8PN43qBwYGih27QWRlZUEQBHh7eyMvLw+VlZUoKChAeno6QkNDxY5H1Kyxf65NEASkpqbWunrBw8MDHh4eKC4uxuXLl83aFAqFaXLCpKQkCIJg1h4SEgJHR0dcuXIFhYWFZm1arRbe3t7Q6/VITU01a5PJZKZ5T86fP19r2dXAwEAolUrk5OQgJyfHrM3FxQX+/v6oqKhAcnJyrfdZMzP6pUuXUFZWZtbm6+sLjUaD/Px8ZGVlmbU5OTkhODgYVVVVOHv2bK3jhoeHQy6XIy0tDTqdzqzN09MT7u7uKCoqQkZGhlmbvb296d/806dP1zpuixYt4ODggIyMDBQVFZm1ubm5wcvLq87P0M7ODi1btgQAnDt3rtYkt0FBQXB2dkZ2djby8vLM2tRqNfz8/FBeXo6LFy/WylTzGSYnJ5u+mK/h5+cHtVqN3NxcXL161axNqVQiMDAQRqMR58+fr3XciIgIyGQypKSkoLS01KzN29sbWq0WhYWFtebxcXR0REhICIC6P8PQ0FDY29vj8uXLKC4uNm2v6+8HEdmGOyru6/P6669b8nBETZJUKoWvry/Gjx8PADAajcjNzcX48eOxb98+vPPOO1i0aBECAgKwdetWaDQaVFdXQyq97QtpGiWdTgeFQoFz585BEAQ4OjqirKwMx44d4+z5RCKx5f65rKwMn3zyCfbv32+2/bnnnsO4cePwxx9/4OWXXzZrCwkJwddffw0AePrpp6HX683aN2zYgFatWmH16tXYtm2bWduoUaPw4osv4p9//sGkSZPM2jQaDfbu3QsAmDZtWq0vFVasWIH77rsPGzduxOeff27WNmjQICxcuBDp6ekYMWJErfd55MgRAMBrr72GxMREs7bY2FjExMTgf//7H959912ztq5du2LlypXQ6XR1HnfPnj1wdXXF22+/jYMHD5q1zZw5E6NHj8aBAwcwe/Zss7aIiAhs3LjR9Jlc/0XG5s2bERoaipUrV2L79u1mbWPHjsW0adNw7NgxTJ061azN09MTO3bsAADTyjbX+uSTT9CpUyesX78eX3zxhVnbkCFDMGfOHCQnJ2PUqFFmbXK5HH/++ScA4OWXX671RcfixYvRr18/fPvtt1ixYoVZW/fu3fHee++hoKCgzs9w//79UCqViI2NxV9//WXW9sorr2DkyJH4+eefMX/+fLO2tm3bYu3atQBQ53G//fZbBAQEYPny5di9e7dZW+fOneHr61vrOUTUvEmE67+OtgHHjx9Hp06dcOzYMXTs2FHsOGRDBEFAdnY29uzZg7i4OEycOBGCIOCpp56Ch4cHevbsie7duyM4OBgSicSir52YmGiVe+7T0tLwzz//QKFQwMvLCwBw5coVGI1GdOjQAQEBAQ322kRNGfsmy6r5PI8ePQqNRlNrhN3X1xfe3t4oLCysNYrr4OBgGsWNj4+vdVtVq1at4OTkhLS0NOTm5pq1eXp6wt/fHzqdDufOnTNrs7OzQ7t27QAAp06dqjU6HBYWBhcXF2RmZtaaANHV1RUhISEoLy+vcxS35u/M2bNna30ZERwcDK1Wi5ycHKSnp5u1qVQqhIeHo6qqCidPnqx13KioKMjlciQnJ9caYffz84OXlxcKCgpqzczu6OiI1q1bAwBOnDhR6+qH1q1bw9HREampqbVG2L28vODn54eSkpJaI+FyuRxRUVEA/l0V4vovDcLDw6FSqZCRkYHs7GyzNjc3NwQFBaGsrAxJSUlmbRKJBB06dADw79Ua11/9EBISAldXV2RnZ9e6SkGtViM0NBRGoxEJCQm4Xvv27SGTyXD+/PlaV5AEBATAw8MD+fn5SElJMWtzdnY2Xelx/PjxWseNjIyEg4MDLl26VGvyPF9fXxb3RI1QQ/f1LO55AkUiMhqNKC4uxgcffICff/4Zx48fh9FohJ+fH7744gv4+/tDEASLFPplZWW4ePEiBg0aBCcnJwukr5vBYMAPP/wA4N+T3LKyMgiCAB8fH9jb25tOmInIHPsmy+LnSUREjU1D903N4zpgoiZKLpfDzc0Nb731FuLi4pCRkYGNGzeiX79+cHZ2RlFREcaOHYvx48dj3bp1SE5OrjX6cavs7e0REBAABwcHC78LcwqFAhEREbh8+TKOHz+O3NxchISEwGAwmJblIiIiosbLYDAgLS0Np0+fRlpaGifFJWoi7qq4Ly4uxldffYWlS5cCALKzs2tN1EJEt0YikcDDwwNjxozB+vXr0alTJ0REROChhx6CRCLB+++/jwcffBB9+vTBmTNnAOC2Cv3Lly9j3rx5tS6dvBt1df46nQ5Hjx6FTqeDnZ0dsrOzsX79epw9exYVFRU8QSCyAvbPRHSnuOoNUdN1x8V9fHw8wsPDsWDBAixcuBDAv/dUXbv0DhHdOblcDrVajblz5+KPP/5ARkYGvvrqK/Tr1w+urq4oKirCzJkz8fTTT+Pzzz83TWBXn+LiYuzevbvWfXl3qr7O//jx41AoFBgwYIBpduaa2YHz8vJ4gkDUwNg/E9HdqFn1JiAgAFqtFgEBAaY5g4iocbvj4v6FF17A/Pnzce7cOcjlcgBAt27dcPjwYYuFI6J/SSQSuLu7Y9SoUdiwYQPuv/9+REREoF+/flAoFFi5ciWGDBmCXr164ejRowBub1T/TtTX+ScnJ8PFxQXp6enQ6/Xw9vZGaGgorl69Cm9vb54gEDUw9s9EdDd0Oh2cnZ3Ntjk7O9eaDJCIGp87XgovISHBtKxMzWRfKpWK/+MTWYGdnR3UajVeeeUVvPzyyygsLMTPP/+MnTt3ws3NDUVFRVi2bBkuXbqEHj16oEePHhYv9uvr/B0cHJCamgo/Pz84OztDJpMhLy8PKpUK+fn5phMEg8GArKws6HQ6KJVKeHt7c5k8Igtg/0xEd0OpVCIzMxNarda0Ta/Xc/Z9oibgjkfua5YDuVZaWhq8vb3vOhQR3TqJRAJXV1c89thjWL9+Pfr374+IiAj06NEDzs7O+PjjjzF06FA888wzFn1dpVJZa7klvV6PDh06oKysDKmpqSgsLMTZs2chCAJatGiB0tJS6PV62Nvb834+ogbC/pmI7oa3tzckEgnS09ORn5+P9PR0SCQS0/K2RNR43XFx/9hjj2Hs2LGm9UcvX76MGTNmYPTo0RYLR0S3r2ZUf/r06Thw4AAyMzOxdetWDBw4EKNGjbLYN+/1df4tWrTAkCFDoNVqodFo4O7ujsDAQBQWFqKgoAASiQSCIPB+PqIGwv6ZiG7mZrPha7Va6PV6ZGVlwcXFBVqtFhcuXODM+USN3B0X9/Pnz4evry8iIiJQWFiIoKAg2NnZ4bXXXrNkPiK6CxKJBBqNBiNGjMCWLVvw1VdfWay4VygUiI6Ohq+vL6RSKXx9fREdHQ2FQoGwsDC0adMGERER6N69O2QyGQRBQOvWrREdHQ2DwcD7+YgaCPtnIrqRG82GX9OWl5cHT09PODg44K+//kJWVhavtCNqAu74nnt7e3usX78ey5cvx4ULF+Dt7Y3AwEBLZiOiRk6hUCAgIKDO7dHR0cjOzkZJSQk6dOgALy8v0z31vJ+PqOGwfyaiG7l2Qlzg31H69PR0ZGdnm11ZBwBlZWWQSqVwdnaGVqs127eu/p+IxHXHxf3GjRsRFRWF6Oho3HPPPQD+XWrn9OnTvPSPiOot/IF/L+nPyspCeno6nJ2dodfreT8fkYWwfyai+hgMBpw7dw6lpaWQSqXw8PCAQqEwu3ru2ivrSktL4erqalrStqadE+MSNU53fFl+bGxsrcl5fHx8MH/+/LsORUTN240u6Seiu8P+mYjqUnPJfXl5OSoqKpCVlYU//vgD586dQ0pKCuzt7WtNluvk5ISCggLI5XJkZWXh0qVLSElJgVQq5cS4RI3QHY/c16xZfS1vb29OiEVEt+RGI/tEdOfYPxNRXWoux4+KisLp06eRkZGBoqIiFBcXw8nJCVlZWWjfvr3ZlXUVFRUwGo04deoUlEolBEFAaWkpKioq4OXlhRYtWgAAL9cnaiTueOTex8cH586dM9t27tw5eHp63nUoIiIiujPsn4moLjqdDs7OzpDL5dBqtaZL6T08PNCrVy/Y2dmhoKDA7Mq6oKAg3HfffXBzc4OnpydCQkLQq1cvVFZW1hql58S4ROK74+J+5MiRePrpp3HixAno9XqcOHEC48aNw2OPPWbJfERERHQb2D8TUV2uveS+srISfn5+0Gq1CA4ONrvvvubKusjISNMofIsWLRAeHg4/Pz8oFApotVrk5eWZHV+v10OlUln9fRHR/7njy/LnzJmDlJQUdOrUCRKJBAAwatQozJs3z2LhiKhx42Q6RI0P+2ciqsu1k9mWl5cjIyMD7u7u8PDwAFD/qjV1rXDj6OiIiooKToxL1MjccXHv4OCATZs2YcWKFbh06RKCg4Ph7u5uyWxE1IjVTMwjCAKcnZ2RmZmJrKwsToxHJDL2z0RUl2uXqc3Pz0dpaSlcXFyg0+luWJzXtcKNQqFAr169UFBQgJKSEvj6+poteUtE4rjjy/JruLm5oXPnzlY9cSgsLMRjjz0GlUoFX19ffPDBB1Z7bSL6V1ZWFgwGA6qqqnD27FlcvnwZGRkZSE9PFzsaEUGc/vlGbqfv/u2339C2bVs4OTmhS5cuOHnypPWCEjVjNZfct2/fHgMHDkRQUJDZqjUAkJaWhtOnT+PChQumH61WC3d3d7N9lUql6fJ9Ly8vZGVl4fTp00hLS+Os+UQiueOR+2sJggBBEEyPpdK7/s7ghqZPn46KigpkZGQgNTUVffv2RUREBGJiYhr0dYno/+Tn5yM5ORlXr16FTCaDTCaDTqdDWVkZAgICzL695+X7ROKwdv98I7fad+fl5eGRRx7Bhx9+iMcffxwfffQRhgwZgnPnzsHe3l6k9ETNQ139cc199ddekadQKHDkyBHIZDK0bdsW+fn5yM/PR1BQkNm/KQaDAWlpaTh+/DikUimcnJxQUlICR0dH9OnTB0qlUqy3SmST7riXz8vLw+jRo+Hh4QE7OzvI5XLTT0PS6/XYunUr3n77bbi4uCAqKgrPPPMM1q5d26CvS0TmiouLce7cOTg5OcHf3x/u7u4wGAwoKSkxW3Kr5mSBa+ESWYdY/fON3E7f/d133yEsLAxPP/007O3t8eKLL6K6uhr79u0TITlR83Gz/rhmqbyAgABUVlbCy8sLXl5eMBqNKC4uRmFhIfLy8kzP0+l0iI+Px5kzZ1BVVYUrV67g0qVLcHd3R2FhIX799Vf29URWdsfF/YsvvoiLFy/is88+g5OTE7799lt07twZK1assGS+Ws6dO4fq6mq0bdvWtC06OhqJiYm19s3MzMTx48dr/SQlJTVoRiJbUFpaCkEQIJFIUFVVBaPRCLlcDplMZrYUzrUnC1qtFgEBARAEgWtuEzUQsfrnG7mdvjsxMdF0eTAASCQStGvXrs59Afb1RLfqZv1xzVJ5wL99vKOjIxwdHZGeng6JRIKQkBDY29ubnpeYmAhBEODq6gq5XA5PT094eXlBEASEhISgrKyMfT2Rld3xZfn79u3DX3/9hYCAAMhkMgwdOhRt2rTB+PHjMX36dEtmNKPT6aBWq822aTSaOtfVXLNmDWJjYxssC5Etuf5SPkEQ4OfnB7lcDkEQoFKp4OnpCaPRaLYUzrUnCzW4Fi5RwxGrf76R2+m7dTodXF1db2lfgH090a26WX987az4Tk5OyM3NhUwmg0QigaOjI8rKykwz6zs7OyMlJQXBwcEwGAwoLCyEh4cHpFIpysvLUV1dDTc3N/b1RFZ2x8W9Xq833aNjb28Po9GI8PBwJCQkWCxcXZRKJYqLi822FRUV1bmu5uTJkzFkyJBa25OSkjBmzJgGy0jU3NQ1M35ZWRlkMhkMBgNkMhlKS0uRlZWFqKgos9l261pCp77ldojo7onVP9/I7fTdSqUSRUVFt7QvwL6e6FbdrD++dlZ8hUKB7OxsyGQyuLm5IS0tDT4+Pqbn6vV6qNVqXLhwAZWVlbh8+TJycnLg5eUFJycnuLm5QaFQcN17Iiu74+I+MDAQFy5cQFhYGMLCwvD999/Dzc2t1jeCltayZUtIJBKcOnUKbdq0AQDEx8ebXepXw8fHBz4+Pg2ah6g5un6U3mAwmC7lAwCtVguj0Qjg3wm7CgsLUVFRgbZt26J///5mk+XVtYQO18Ilajhi9c83cjt9d9u2bfHpp5+aHguCgH/++QdTp06t89js64luzc3642uXyispKUH37t0BACUlJaiuroajoyNKSkqg1+tRWVmJ8vJyHDt2DBKJBOXl5Th58iQ8PDzw4IMPwtHREQqFgn09kZXdcXE/depUJCQkICwsDLNmzcJjjz0GQRDwn//8x5L5anF2dsaIESPw5ptvYuPGjUhNTcXnn3+OdevWNejrEtmKukbpU1NTER4ebrafRqOBSqWCVqtFSUkJVCpVnWvcXn+ywLVwiRqWWP3zjdxO3z1s2DC88sor2LRpEx577DF8/PHHAIB+/fpZOzZRs3Ir/XHNUnnXi4yMNHteRUUF4uPj4eHhgeLiYsjlcoSHh6OoqAhpaWlo27ZtrZVziKjh3XFx/9xzz5n+PGzYMKSmpkKn0yEiIsIiwW7ko48+wjPPPAMfHx+oVCq8/vrrXAaPyEKunXAH+HeUPicnB+np6WbfwNdcylfXScD16jtZICLLE7N/vpEb9d1KpRK7du1C9+7d4ebmhh9++AHTp0/HM888g7Zt22L79u1cBo/IAu60P77+eadPn0ZJSQmkUilCQkKgVqtRUlKCtLQ0yGQyKBQKFvZEIrirde7j4uKwdu1apKenw9/fHxMmTLBUrhvSaDTYunWrVV6LyNbUNeGOn58fzp8/z0vriZoIsfrnG7lR363T6cwe9+rVq97Z8YlIfEqlEmVlZSgvLzcts1lRUQGZTAZ7e3tOpEckkjteCm/jxo3o1asXSkpK0KFDB+j1evTt2xcbNmywZD4isjKFQoHk5GScP38eGRkZMBgMMBgM6NSpE3x9fSGVSuHr64vo6Gh+K0/UCLF/JqKG5u3tDW9vb1y9ehXnz5/HpUuXkJ2dDalUarptj4is745H7t966y388MMPZpfD7969GzNmzMDTTz9tkXBEZF0GgwHZ2dkoLi42TaJ36tQphIeHm907d/2Ee97e3iz0iRoJ9s9EZEk6nQ4JCQnIy8uDm5sboqKioFQqMWDAABiNRsTHx8NoNJqW0PP29uaVfUQiuePiPisrCwMHDjTbNmDAAGRnZ991KCISR1ZWFuzs7NCjRw/k5+ejtLQUBQUFZsV7XRPuZWVlcSSfqJFg/0xElqLT6bBt2zZIpVK4urri/PnzOHv2LEaMGAGlUolHH30UnTt3RmpqKgRBQHBwMAcDiER0x5fl9+/fH7t37zbbtmfPHvTv3/+uQxGROGrut5fL5fDy8kJISAiCg4NRUVFh2ufaCfe0Wi0CAgIgCAILB6JGgv0zEVlKQkICpFIp2rdvj8DAQLRv3x5SqRSnTp0C8O+tfKGhoejTpw/69u2L0NDQWoMBmZmZqK6uRmZmJuLj42EwGMR8S0TN2h2P3Pv6+mLkyJEYPHgwQkJCkJKSgp07d2LChAmYN2+eab+FCxdaJCgRNTylUonMzExotVrTtppZ8WvUNeGes7MzJ88haiTYPxPR3bh2tD0pKQkajQZGoxG5ubkoLy+H0WjElStXbnqculbfSU9PR3Z2NlfQIWogd1zcJyYm4p577kFubi5yc3MBAF26dEFCQoJpH4lEcvcJichqvL29kZWVdcNZ8W/lCwAiEg/7ZyK6U9ffeieTyXDy5EnodDooFAo4OjoiOzsbMpkMBoPhhpfYczCAyPruuLg/cOCAJXMQUSOgUCgQHR2N7OxslJSUwNfXF15eXmad9618AUBE4mH/TER36vrR9gceeACnT59GYmIiOnXqhKtXr8LNzQ3BwcE3HYHnYACR9d3VOvfXunDhAmQyGUJCQix1SCISgUKhuGFnfStfANyt//3vf1i3bh1iYmIwaNAgBAUFWezYRLaG/TMR3arrR9sdHR3RtWtXpKWlAQCCgoIQGhqKsrKym47AczCAyPrueEK9CRMm4I8//gAAbNmyBREREQgPD8fmzZstFo6IGqeaLwAiIyPNZsW1lMLCQhw5cgTPPfccgoOD0bp1a3z22WcWfQ2i5or9MxHdKaVSCb1eb7ZNoVCgRYsW6N69O9q2bQtHR0fo9fqbrmVfMxjg6+sLqVQKX19frqxD1MDueOR+165dWLVqFQDg/fffx5YtW+Di4oJXXnkFo0aNslhAIrI9bdq0QWZmJj799FPk5eUhLi4O2dnZSE9PR2JiIj766CMMHjwYgwYNQosWLcSOS9SosH8mojtV12i7q6srANzRCPzNrgYkIsu64+K+tLQUTk5OKCkpwblz5zB8+HBIpVI8/vjjlsxHRDZMq9WiR48eGDp0KIxGI7KysnDp0iVkZmZi5syZqKysRHh4OKZOnYoXX3xR7LhEjQL7ZyK6U/XdegegQW/HIyLLuOPi3sPDA0lJSUhMTMS9994LqVRq+iaPiMiSJBIJFAoFFAoF+vbti169eplG9A8dOoSMjAykpaUhMzMTCxYswODBgxETE4OwsDCxoxNZHftnIrob9Y22cwSeqPG74+L+hRdeQOfOnQH8e08fAPz+++9o06aNZZIRUaN07fq3SqUS3t7eVv/2XiaTwdPTE4888giGDBkCo9GI7OxsJCUlITc3F7NmzcLzzz+P0NBQjB07FnPnzrVqPiIxsX8mIiKyTXdc3E+fPh2DBg2CnZ0dgoODAQChoaFYvXq1pbIRUSNz/fq3mZmZyMrKsvgEOa6urhg0aBBcXFxuuu+1o/r33Xcfunbtivz8fMTFxSEuLg5paWlIS0tDWVkZnn/+ecTExCAmJgYtW7bkSCY1S+yfiYiIbNNdLYV3/SWvLVu2vKswRNR4GQwGHDt2DGlpaWjRogWUSiW0Wi3S09Nvutbt7QoJCcHChQuhVCpv+7lSqRTu7u54+OGH8dBDD8FoNOLq1au4cOECioqK8Oqrr+LFF19EcHAwRo4ciaVLl1osN1Fjwf6ZiIjI9txVcR8XF4e1a9ciPT0d/v7+mDBhAu6//35LZSOiRqJmxP7y5ctwcnJCbm4ucnJyEBkZCWdn55uudXu7ysvLkZ6ejhYtWsDR0fGOj3PtqH6HDh2wbt06FBYW1hrVt7Ozw4QJE9C/f3/ExMSgdevWHNWnJo39MxERke254+J+48aNmDRpEh599FF06NABKSkp6Nu3L9asWYOnn37akhmJSGRZWVkQBAGhoaHIzc2Fl5cXrly5gpycHFRXV8PX19eir3f69GkMHz4c27ZtQ9u2bS12XKlUCq1WiwcffBAPPvigaVT/ypUrKC4uxptvvomXX34ZAQEBeOihh/DRRx+xyKcmh/0zETUVV65cwZUrV8y2ubq6IiQkBOXl5Th9+nSt53Ts2BEAcPbsWej1erO24OBgaLVa5OTkID093axNpVIhPDwcVVVVOHnyZK3jRkVFQS6XIzk5GUVFRWZtfn5+8PLyQkFBAS5dumTW5ujoiNatWwMATpw4AUEQzNpbt24NR0dHpKamIi8vz6zNy8sLfn5+KCkpwfnz583a5HI5oqKiAAAJCQkwGo1m7eHh4VCpVMjIyEB2drZZm5ubG4KCglBWVoakpCSzNolEgg4dOgAAkpKSUFZWZtYeEhICV1dXZGdnIyMjw6xNrVYjNDQURqMRCQkJuF779u0hk8lw/vz5WgM/AQEB8PDwQH5+PlJSUszanJ2dERERAQA4fvx4reNGRkbCwcEBly5dQkFBgVmbj48PfHx8UFxcjAsXLpi12dvbm+ab+eeff1BZWWnW3rJlSyiVSly+fBlXr141a3N3d0dgYCBKS0tx5swZszapVIro6GgA/56zlpeXm7W3aNECGo0GWVlZtf5+X/+ZWtodF/dvvfUWfvjhB8TExJi27d69GzNmzODJA1Ezo9Pp4OzsDJVKhby8PGRnZ6OyshIXL15ESEjILa112xjJ5XLI5XJERETgv//9L4qKinD48GHExcUhJSUFaWlpUKlUGD9+PB544AEMGjQIbdu2ZcFPjRr7ZyJqCq5cuYJHHnkEf//9t9n2QYMGYeHChUhPT8fw4cNrPe/IkSMAgAkTJiAxMdGsLTY2FjExMdi6dSveffdds7auXbti5cqV0Ol06NOnT63j7tmzB66urpg1axYOHjxo1jZz5kyMHj0a+/btw+zZs83aIiIisHHjRgBAt27dahXhmzdvRmhoKBYtWoTt27ebtY0dOxbTpk3DsWPHMHXqVLM2T09P7NixAwDw0EMP1So+P/nkE3Tq1AkfffQRvvjiC7O2IUOGYM6cOUhOTsaoUaPM2uRyOf78808AwFNPPYWzZ8+atS9evBj9+vXDl19+iRUrVpi1de/eHe+99x4KCgowcOBAXG///v1QKpWYMWMG/vrrL7O2V155BSNHjsSuXbswf/58s7a2bdti7dq1AIB77rmn1nG//fZbBAQEYN68edi9e7dZ26RJk/Dss88iLi4OM2fONGvz9/fHd999BwAYMGAACgsLzdo///xztGvXDu+//z42b95s1jZixAi8+uqrOHPmTK2+09nZGQcOHAAAPP7447W+8Fm2bBl69OiB9evX4+OPPzZr69KlS633Z0kS4fqvl26Ri4sLCgsLIZVKTduqq6uh0WhQXFxssYAN4fjx4+jUqROOHTtm+vaPyNbdaBb8mmXmakbss7KykJWVhXbt2uGee+6x+Gz5f//9N7p06WLxkfvbYTQaUV5ejoKCAsTGxuLYsWMoLy+Hn58fBg0ahFWrVsHBwUGUbNQ8Wapvasr9syWxrydq3Gr6+iVLliA0NNS03cXFBf7+/qioqEBycnKt50VGRgIALl26VGvU2dfXFxqNBvn5+cjKyjJrc3JyQnBwMKqqqmoVtMC/I+FyuRxpaWnQ6XRmbZ6ennB3d0dRUVGtkVd7e3tT/rquNGjRogUcHByQkZFR64oANzc3eHl5Qa/XIzU11azNzs7ONF/KuXPnao06BwUFwdnZGdnZ2bWuCFCr1fDz80N5eTkuXrxYK1PNZ5icnIyKigqzNj8/P6jVauTm5tb6QkGpVCIwMBBGo7HWlQbAv190yGQypKSkoLS01KzN29sbWq0WhYWFtUazHR0dERISAqDuzzA0NBT29va4fPlyrX7Mw8MDHh4e0Ol0SEtLM2uTy+UIDw8H8O+VHlVVVWbtNZ9hVlYW8vPzzdo0Gg18fX1RVlZWq3iXSCSmqzUuXLgAg8Fg1u7v7w8XFxfk5OQgJyfHrC0zMxMzZsxosL7pjkfu+/fvj927d2Pw4MGmbXv27EH//v0tEoyIrMdgMODo0aMoKCiARCKBIAhIT09Hly5doFAo4O3tjfT0dPz6669wcnKCRCKBo6Ojafk5V1dXUZbEa0g1o/oqlQqfffYZiouL8ddffyEuLg5JSUnIysqCWq3G888/jzZt2iAmJgbt2rXjqD6Jjv0zETUloaGhdX6R7+joeMMv+K/9QuB67u7ucHd3r7NNKpXe8Lg1q4zUxdXVFa6urvW23+i4AQEB9U4+rFKpbvjcVq1a1dtWc1l6XZycnG543JrCty6enp7w9PSss83e3v6Gx23RokW9bVqtFlqttt72Gx03MDCw3jYXF5cbPremGK+Lr69vvbeYOjs73/C4N5qw1svLy+pXt95WcT9v3jzTn319fTFy5EgMHjwYISEhSElJwc6dOzFhwgSLhySihpWWloaLFy/Cy8sLjo6OKCsrw8WLF+Ht7Y3Q0FAoFArTvWaurq6Qy+XIyspCYWEh8vLyUF5e3iBL4jUWUqkUGo0GAwcOxMCBA2E0GpGXl4f09HSkpaXh22+/xRtvvAFvb28MGjQIy5cvv2HnT2Rp7J+JiIjotor76+8/ueeee5Cbm4vc3FwA/95DcP29L0TU+KWmpsLBwcH07aKLiwuKioqQmppq+mbcYDCYJqrJyMiAXC5HSEgIpFIpAgICLLokXseOHXHkyJE7WgrPGmpG9ZVKJVavXg2dTocjR47g0KFDOHHihOnyuLlz58LHxwcxMTGIjo42u0yayJLYPxMREdFtFfc1EwcQUfMiCEKt2V2v36ZUKpGZmQmtVovS0lLTCL+HhwcANMiSeE2BVCqFi4sL+vXrh379+sFoNKKoqAh5eXk4e/Ys1q9fjzlz5sDT0xMDBw7EO++8Y/HVBYjYPxNRU+Pq6opBgwbBxcVF7ChEzcYd33O/f//+OrdLJBL07t37jgMRkfUFBwfj8uXLuHLliqloLy0tRadOnUz7eHt7IysrC+np6TAYDMjMzISPj4/pvim9Xm+xovXs2bOYMGFCrUl2moKaUX0A+PDDD6HX63H06FHExcXh6NGjyM3NhYODA5YtWwYHBwfExMSgU6dOHNUni2H/TERNQUhICBYuXNhor9IjaoruuLjv169frW01E0ldPxMhETVugYGBCA8PR15enmkJl/DwcLNL7BUKBaKjo5GdnQ17e3tUVFTA0dERJSUl0Ov1kEgkFps0RK/XIzExsdYsuE2NVCqFSqVCnz590KdPH1RWVqK8vBznz5/HqVOnsH//fsyfPx9ubm4YOHAgYmNjERYWJnZsauLYPxNRU1BeXo709HS0aNECjo6OYschahbuuLivrq42e3zlyhW88cYbGDZs2F2HIiLrUigU6NKlC7Kzs1FSUgKVSgUvL69ak+MpFArTbK+RkZGm/X19fevcn8zZ2dmZRijeeecd6PV6HD9+HIcOHcLhw4eRlZUFrVaLzz//HKWlpRg0aBC6dOkCmUwmcnJqStg/E1FTcPr0aQwfPlzUZW+Jmps7Lu6v5+vri5UrV6JLly545JFHLHVYIrKSmsK9ofYnczWj+j179kTPnj1No/oXLlxAfHw8duzYgdjYWGi1WgwYMABvvPEG2rVrJ3ZsaoLYPxMREdkGixX3wL8TcGVmZlrykERENuHaUf158+Zh1qxZOHHihGlUPyUlBf7+/ti6dSsuX76MmJgY3HPPPbCzs+g/49RMsX8mIiJq/u74rHDt2rVmj/V6PTZv3oz777//rkMRkW0LDg5GbGyszc4qL5FIoFQq0b17d3Tv3h2VlZWoqKjAhQsXcOzYMXzzzTdYtGgRNBoN+vfvj1mzZqFr165ix6ZGgv0zERGRbbrj4v6tt94ye6xSqdC5c2csWrTorkMRkW3TarWIiYnhDLr/n52dnWmE/qWXXsLUqVNx4sQJxMXFIS4uDmfOnEFYWBj27NmDhIQEDB48GPfee69p1n6yLeyfiYiIbNMdF/eXLl2yZA4iIpOcnBxs3boVjzzyCNzd3cWO06hIJBI4OTmhW7du6Natm2lUPzk5GUeOHMGGDRvwzjvvQK1Wo2/fvpgxYwZ69eoldmyyIvbPRNQUdOzYEUeOHOEX+UQWdNsLK2dnZ+Pq1aumx0ajEQsXLsTQoUPx/vvvWzQcEdmm9PR0vPvuu8jKyhI7SqNnZ2cHZ2dnqNVqTJkyBfv378f69evx2GOP4fz58zh+/Djy8vKwc+dOvPrqq/j1119hMBjEjk0NgP0zERGRbbvt4n7ixInYs2eP6fHs2bOxfPly2NnZYdGiRVi2bJlFAxIR0a2RSCRwdHTEvffei1mzZmHLli3o1asXkpOTcejQIfz3v/9F79694e7ujqFDh2Lnzp1iRyYLYv9MRE3J2bNnMWHCBF5tRGRBt13cx8fHY9CgQQD+nX137dq12LBhA7Zt24ZvvvkGGzZssHhIIiK6fTKZzDSqP2bMGPzyyy/YuHEjRo8ejdTUVMTFxSE3Nxd//PEHZs2ahV9++QUVFRVix6Y7xP6ZiJoSvV6PxMRElJWViR2FqNm47Xvui4uL4eHhAQCm/yFjYmIAAL1798bly5ctm5CIiO5azah+ly5d0KVLF1RVVaG8vBzJyck4ePAgNm7ciOXLl8PZ2Rm9e/fGuHHjMHz4cLFj021g/0xERGTbbnvkXqVSoaioCABw7NgxtGvXzjQjc2VlJaqqqiybkIhsjkqlQteuXeHk5CR2lGarZlRfo9Hg0Ucfxb59+/Dll19i7NixyMjIwP79+5GTk4OEhAS8+OKL2Lt3L8rLy8WOTTfA/pmIiMi23XZx37NnT7z++uuIj4/HJ598YroEEPj33hlbXZeaiCwnPDwcK1euRHBwsNhRbIJEIoG9vT06deqE559/Hps2bcLEiRNx6dIlHDhwAF999RUGDhwINzc3PPjgg9i0aZPYkakO7J+JiIhs220X94sXL8Zvv/2Gjh07oqKiAjNnzjS1ffXVV3jggQcsGpCIbE9VVRV0Oh1HGkVy7b36AwYMwM8//4yvvvoKEyZMwNWrV7Fjxw7k5OQgNTUVzz//PHbt2sV7JhsB9s9E1JQEBwcjNjaWXzwSWdBt33MfHByM06dPIz8/H1qt1qzttddeg0KhsFg4IrJNJ0+eRJ8+fbBt2za0bdtW7Dg2rWZUv2PHjujYsSOmTp2K8vJyXLp0CQkJCdi2bRtWrlwJBwcH9OzZE8OHD8czzzwjdmybxP6ZiJoSrVaLmJgYrnNPZEG3PXJf4/oTBwDQaDS8R5aIqBm7dlS/W7du2L17N7Zs2YJnn30W+fn52LZtG65evYr8/HzMmDEDP/30E0pLS8WObVPYPxNRU5CTk4OtW7ciPz9f7ChEzcZtj9wTEREB/zeqHx0djejoaEyZMgXl5eVISUlBSkoKvv/+e6xatQr29vbo3r07Hn74YcyYMQMSiUTs6EREJLL09HS8++676Nq1K9zd3cWOQ9Qs3PHIPRER0bWkUimcnJygVqvRrl077Ny5E1u3bsXUqVNRUlKCTZs2IScnBzqdDrNmzcL27duh0+nEjk1ERETULHDknoiILK5mVD8qKgpRUVF49tlnTaP6NZdiLl++HHK5HA888AAGDx6MF154AXZ27JaIiIiI7gRH7omo0YmKisKePXsQHh4udhSykGtH9cPCwrBz50589913eP7551FRUYE1a9YgNzcXer0ec+fOxffff4/i4mKxYxMRERE1GRwiIaJGRy6Xw9XVFXK5XOwo1EDkcjkiIyMRGRmJiRMnoqysDGlpadDr9di4cSMWLVoEOzs73H///Rg8eDCmT58OZ2dnsWMTEZGFqFQqdO3alZN9ElkQR+6JqNFJTk7GrFmzkJaWJnYUsgKpVGqagd/X1xc7duzA999/jxdffBHV1dV4//33UVhYCL1ej6VLl2Lbtm0oLCwUOzYREd2F8PBwrFy5EsHBwWJHIWo2OHJPRI1OUVERDh48yMnWbJRcLkfr1q3RunVrjB8/HqWlpcjIyEBaWhr++9//4ty5c5DJZLjvvvsQExODqVOnwtXVVezYRER0G6qqqqDT6eDo6AiplOONRJbA/5OIiKjRkkqlUCqVUKvV0Gq1+Pbbb/Hjjz/i5ZdfhlQqxZIlS5CXlwe9Xo+PPvoIX3/9NQoKCsSOTUREN3Hy5En06dMHZ8+eFTsKUbPB4p6IiJoMuVyO8PBwjB8/HqtXr8aBAwdQUFCAU6dOYe3atXjiiSfg7u6O+++/H4sWLUJ2drbYkW3eu+++i6ioKKhUKgQGBuLNN99EVVVVvfv36tULDg4OUCqVph8iIiK6ORb3RETUJNXcq+/i4gK1Wo0NGzZgx44deP311+Hg4IAlS5YgLS0NOp0OGzZswObNm5GXlyd2bJtTXV2NdevWIT8/HwcPHsSOHTuwbNmyGz7ngw8+gE6nM/0QERHRzfGeeyJqdPz8/DBz5kx4enqKHYWaEDs7O4SFhSEsLAxjxoxBaWkpqqqqcPr0aaxduxa//fYbJBIJunTpgsGDB2P8+PEIDAwUO3az99prr5n+HBQUhNGjR+PgwYNm24mIiOjusbgnokbHy8sLo0eP5uW4dMdq7tWv8dFHHyE9PR1//PEHDh8+jPfeew9du3aFVqvF3r17UVpaioEDB8LDw0PE1Lbht99+Q7t27W64z9y5c/Hmm28iNDQUc+fOxcMPP1zvvpmZmcjMzKy1PSkp6a6zEhERNSUs7omo0SkoKMC+ffvQu3dvzoJOFmFnZ4eQkBCEhIRg9OjRKC0tRWVlJU6fPo0vvvgC27dvh0QiQadOnRATE4Onn34aYWFhYsdudlauXImEhARs2LCh3n2WLFmC1q1bw8HBATt27MATTzyBAwcO4J577qlz/zVr1iA2NrahIhNRA4mKisKePXvg7e0tdhSiZoPFPRE1OpcuXcLs2bOxbds2FvdkcdeP6i9evBjPPfccDh06hEOHDmHFihVo2bIlvLy8EBcXh8zMTAwaNAheXl4ipm6cRowYgW+//bbedkEQTH/euHEjFi9ejAMHDsDNza3e53Tt2tX052HDhuF///sfvvvuu3qL+8mTJ2PIkCG1ticlJWHMmDG38jaISARyuRyurq6Qy+ViRyFqNljcExGRTbOzs0NwcDCCg4MxatQolJaWoqKiAklJSdi4cSM2bdoEAOjQoQNiYmIwevRoREZGipy6cdi2bdst7ffll1/ilVdewb59+9CqVavbeg2pVGr2JcH1fHx84OPjc1vHJCLxJScnY9asWXjzzTcRHBwsdhyiZoHFPRER0f8nkUjg7OwMZ2dnAMDrr7+OsWPH4s8//0RcXBw+/vhjeHh4ICAgAAkJCThz5gwGDRoEX19fkZM3Xps3b8YLL7yAvXv3om3btjfct7CwEHFxcejVqxcUCgV++uknfPPNN9i7d6+V0hKRtRQVFeHgwYNcEYPIgljcExER1cPOzg4BAQF44okn8Pjjj6OsrAxlZWVISkrCpk2bsHr1agiCgHbt2mHQoEEYNWoUoqOjxY7dqMyePRuFhYXo3r27aVv37t2xa9cuAEBMTAy6d++O2bNnw2g0Yv78+UhKSoJUKkVYWBg2bNiAbt26iRWfiIioyWBxT0SNjqOjIyIiImBvby92FCITiUQCJycnODk5AQCmT5+O4cOH49ChQ4iLi8Nnn30GuVyOFi1aICUlBUeOHMGgQYPg7+8vcnJxXbp06YbtNUU+AHh4eODIkSMNHYmIiKhZYnFPRI1O69atsXHjRi6FR42aTCaDv78/HnvsMYwcORLl5eXQ6XQ4c+YMvvvuO7z77ruorq5GmzZtEBMTg5EjR9Y7KRwRERHR3WJxT0REdJckEgkcHR3h6OgIAHj66acxcOBAxMXF4dChQ1i/fj10Oh1atWqF3Nxc/Pzzzxg0aBCCgoJETk5EJA4/Pz/MnDkTnp6eYkchajZY3BNRo3PixAl069YNmzdvvukEXESNkUwmg6+vL4YPH45hw4aZjer/8ssvmDt3LqqqqtCqVSvExMRg2LBhpsv9iYhsgZeXF0aPHs2r9IgsSCp2ACKi6wmCAKPRKHYMIouoGdX38PCAWq3GI488gl9++QWLFy9GeHg4Nm3ahBUrVnDGaCKyKQUFBdi3bx+KiorEjkLUbHDknoiIyIpkMhm8vb0xbNgwPProozAYDCgoKEBKSorY0YiIrObSpUuYPXs2tm3bBldXV7HjEDULHLknIiISiUQigb29Pby9veHs7Cx2HCIiImrCWNwTERERERERNXEs7omo0WndujU2b96MFi1aiB2FiIiIiKhJYHFPRI2Oo6MjQkND4eDgIHYUIiIiagCOjo6IiIiAvb292FGImg0W90TU6KSmpmLRokXIyMgQOwoRERE1gNatW2Pjxo0IDQ0VOwpRs8Hinoganby8PGzfvp3L4xARERER3SIW90REREREZFUnTpxAt27dcPr0abGjEDUbLO6JiIiIiMiqBEGA0WgUOwZRs8LinoiIiIiIiKiJY3FPRI2Ol5cXxo4dCzc3N7GjEBERERE1CXZiByAiup6fnx+mTZsGpVIpdhQiIiIioiaBI/dE1OiUlJTg2LFj0Ov1YkchIiKiBtC6dWts3rwZLVq0EDsKUbPB4p6IGp3z589j6tSpSE1NFTsKERERNQBHR0eEhobCwcFB7ChEzQaLeyIiIiIisqrU1FQsWrQIGRkZYkchajZY3BMRERERkVXl5eVh+/btKCoqEjsKUbPB4p6IiIiIiIioiWNxT0SNjlwuh6enJ+zsuKAHEREREdGt4JkzETU6UVFR2LFjB5fCIyIiIiK6RRy5JyIiIiIiq/Ly8sLYsWPh5uYmdhSiZoPFPRE1OgkJCXjooYdw7tw5saMQERFRA/Dz88O0adPg5eUldhSiZqNJFffvvvsuoqKioFKpEBgYiDfffBNVVVVixyIiCzMajbh69SoqKyvFjkJEREQNoKSkBMeOHYNerxc7ClGz0aSK++rqaqxbtw75+fk4ePAgduzYgWXLlokdi4iIiIiIbsP58+cxdepUpKamih2FqNloUhPqvfbaa6Y/BwUFYfTo0Th48KDZ9mtlZmYiMzOz1vakpKQGy0hERERERERkbU2quL/eb7/9hnbt2tXbvmbNGsTGxloxEREREREREZH1NdnifuXKlUhISMCGDRvq3Wfy5MkYMmRIre1JSUkYM2ZMQ8YjorsQHh6OTz75BEFBQWJHISIiIiJqEhpNcT9ixAh8++239bYLwv9r796jqyrvNI4/SYAAOScJJAEOEO4ShIBBBLpQEBwVaBURwq0CKkVhRMfOWC6LSxlnFHGpI45iRZGLCFiBVCoSiw5U1BZouRgigXBLKRCDQEISSEhI3vmjy9SYC4nknH3h+1nrrMXZ+z07z3teDz9+7pO9TdmfV61apQULFmjbtm3V3j7D5/PJ5/PVaU4A/uf1etWrVy+FhYVZHQUAAPhB/fr11axZM9WrZ5t2BHA821xQb/369TLGVPn4zurVqzV9+nR98skn6tKli4WJAfjLqVOntHjxYmVlZVkdBQAA+EH37t21adMmde7c2eoogGvYprmvibVr1+qXv/ylkpOTFR8fb3UcAH6SlZWllStX6ty5c1ZHAQAAABzBUc397NmzlZOTo/79+8vj8cjj8Wjo0KFWxwIAAABQC/v379c999yj9PR0q6MAruGoX3I5fvy41REAAAAAXKPi4mKdOXNGV65csToK4BqOOnMPAAAAAAAqorkHYDtRUVEaNmyYIiIirI4CAAAAOIKjvpYP4PrQtm1bzZ07Vx6Px+ooAAAAgCNw5h6A7RQUFOjo0aMqLCy0OgoAAPCDG264Qb/5zW/Utm1bq6MArkFzD8B20tLSNG7cOB07dszqKAAAwA+8Xq969eqlsLAwq6MArkFzDwAAACCgTp06pcWLFysrK8vqKIBr0NwDAAAACKisrCytXLlS586dszoK4Bo09wAAAAAAOBzNPQDbCQoKUv369a2OAQAAADgGt8IDYDs9e/bUl19+ya3wAAAAgBrizD0AAACAgIqKitKwYcMUERFhdRTANWjuAdhOWlqaJkyYoKNHj1odBQAA+EHbtm01d+5ctWrVyuoogGvQ3AOwnYKCAh06dEiXL1+2OgoAAPCDgoICHT16VIWFhVZHAVyD5h4AAPjNihUrFBISIo/HU/ZYvXp1leNzcnI0evRoeb1etWzZUosWLQpcWAABk5aWpnHjxunYsWNWRwFcgwvqAQAAv+rdu7d27NhRo7GPP/64Ll++rFOnTulvf/ub/uVf/kVxcXEaOnSon1MCAOBsNPcAAMAWLl68qHXr1mn37t0KDw9X9+7d9cgjj2jZsmVVNveZmZnKzMyssD0tLc3fcQEAsBWaewC20759ey1YsICL7AAukZKSopiYGEVERGjkyJH6z//8TzVq1KjCuPT0dJWWlio+Pr5sW0JCgpKSkqo89pIlS/T000/7JTcAAE5Ccw/Adpo0aaI777yT+9wDLjBgwAClpqaqXbt2Onz4sCZOnKgZM2bo1VdfrTA2Pz+/wm2xIiMjlZeXV+Xxp0yZomHDhlXYnpaWpvHjx1/7BAD4RVBQkOrXr291DMBVaO4B2E5WVpZWr16tkSNHqlmzZlbHAVCFxMREbdiwocr9xhh16NCh7HlcXJwWLlyocePGVdrcezwe5ebmltt24cIFeb3eKn+Gz+eTz+f7EekBWKlnz5768ssv+R/5QB3iavkAbOfUqVN65ZVXdObMGaujAKjG+vXrZYyp8lGZ4ODgKvd17txZQUFB+vrrr8u27du3r9zX9AEAQOVo7gEAgN8kJyeXXfDu2LFjmjVrlu6///5Kx4aFhSkxMVFz5sxRXl6eUlNTtXTpUk2aNCmQkQEEQFpamiZMmKCjR49aHQVwDZp7AADgN1u3blXPnj0VFhamQYMGqV+/fnrppZfK9k+dOlVTp04te7548WLVr19fPp9Pd911l2bNmsVt8AAXKigo0KFDh3T58mWrowCuwe/cAwAAv3nhhRf0wgsvVLn/jTfeKPc8MjJS69at83csAABchzP3AGwnIiJC/fv35yI7AAAAQA1x5h6A7XTs2FEvvfQSzT0AAABQQ5y5B2A7xcXFys7OVnFxsdVRAACAH7Rv314LFixQq1atrI4CuAbNPQDb2b9/vwYPHqzDhw9bHQUAAPhBkyZNdOeddyoiIsLqKIBr0NwDAAAACKisrCytXr1aZ8+etToK4Bo09wAAAAAC6tSpU3rllVd05swZq6MArkFzDwAAAACAw9HcAwAAAADgcNwKD4Dt3HTTTdq6datiYmKsjgIAAAA4AmfuAdhOSEiIPB6PQkJCrI4CAAD8ICIiQv3795fH47E6CuAaNPcAbOfw4cN64oknlJGRYXUUAADgBx07dtRLL72kNm3aWB0FcA2aewC2k5eXp507d+rSpUtWRwEAAH5QXFys7OxsFRcXWx0FcA2aewAAAAABtX//fg0ePFiHDx+2OgrgGjT3AAAAAAA4HM09AAAAAAAOR3MPwHZiY2M1ffp0tWjRwuooAAAAgCNwn3sAthMTE6NRo0ZxexwAAACghjhzD8B2zp8/r+TkZOXk5FgdBQAA+MFNN92krVu3Ki4uzuoogGvQ3AOwnYyMDM2fP1+nT5+2OgoAAPCDkJAQeTwehYSEWB0FcA2aewAAAAABdfjwYT3xxBPKyMiwOgrgGjT3AAAAAAIqLy9PO3fu1KVLl6yOArgGzT0AAAAAAA5Hcw/AdsLCwhQfH69GjRpZHQUAAABwBG6FB8B24uLitGzZMm6FBwAAANQQZ+4BAAAABFRsbKymT5+uFi1aWB0FcA2aewC2s2fPHvXp00cHDhywOgoAAPCDmJgYjRo1Sk2bNrU6CuAaNPcAAAAAAur8+fNKTk5WTk6O1VEA16C5BwAAABBQGRkZmj9/vk6fPm11FMA1aO4BAAAAAHA4mnsAAAAAAByOW+EBsJ2uXbtqw4YN6tChg9VRAAAAAEfgzD0A22nYsKFiY2MVGhpqdRQAAOAHYWFhio+PV6NGjayOArgGzT0A2zl+/Lh+/etf6+TJk1ZHAQAAfhAXF6dly5apffv2VkcBXIPmHoDtZGdn6+OPP1Zubq7VUQAAAABHoLkHAAAAEFB79uxRnz59dODAAaujAK5Bcw8AAAAAgMPR3AMAAAAA4HA09wBsx+fzafLkyYqJibE6CgAAAOAI3OcegO34fD49+uij8ng8VkcBAAAAHIEz9wBsJzc3V3/+85+Vn59vdRQAAOAHXbt21YYNG9SxY0erowCuQXMPwHaOHDmiJ598UidOnLA6CgAA8IOGDRsqNjZWoaGhVkcBXIPmHgAAAEBAHT9+XL/+9a918uRJq6MArkFzDwAAACCgsrOz9fHHHys3N9fqKIBr0NwDAAAAAOBwNPcAbCc0NFStW7dW/fr1rY4CAAAAOAK3wgNgO926dVNSUhK3wgMAAABqiDP3AAAAAALK5/Np8uTJiomJsToK4Bo09wBsJyUlRXfffbcOHTpkdRQAAOAHPp9Pjz76KM09UIdo7gHYzpUrV5STk6OSkhKrowC4RkOHDpXH4yl7hIaGKjw8vMrxAwcOVMOGDcu9BoD75Obm6s9//rPy8/OtjgK4Bs09AADwm+TkZOXn55c9hg8frtGjR1f7mkWLFpV7DQD3OXLkiJ588kmdOHHC6iiAa3BBPQAAEBDnz5/Xxo0btXXr1jo7ZmZmpjIzMytsT0tLq7OfAQCAE9DcAwCAgFizZo3atWunfv36VTtu3rx5mjNnjjp27Kh58+bp3nvvrXLskiVL9PTTT9d1VAAAHIfmHoDtdO7cWUuXLlXbtm2tjgKgDi1btkwPP/xwtWOef/553XjjjWrYsKE2bdqksWPHatu2berTp0+l46dMmaJhw4ZV2J6Wlqbx48fXSW4AAJyA5h6A7Xg8HvXo0UNhYWFWRwFQjcTERG3YsKHK/caYsj9/9dVXSklJ0UcffVTtMfv27Vv25xEjRmjjxo1KSkqqsrn3+Xzy+Xy1TA7AaqGhoWrdurXq169vdRTANbigHgDbOXnypF5++WV98803VkcBUI3169fLGFPl4/uWLVumIUOG1LoRDw4OrnAsAM7XrVs3JSUl6YYbbrA6CuAaNPcAbOfMmTNau3atzp8/b3UUAHWgqKhIq1ev1qRJk6odl5OTo+TkZBUUFKikpES///3v9f7771f6tXsAAFAezT0AAPCrDz/8UEFBQZVeGG/o0KFasGCBJKm4uFjz589Xs2bN1LRpUz399NN65513dOuttwY6MgA/S0lJ0d13361Dhw5ZHQVwDX7nHgAA+NXIkSM1cuTISvclJyeX/TkmJka7du0KVCwAFrpy5YpycnJUUlJidRTANThzDwAAAACAwzm2uR80aJCCgoJUWFhodRQAdSw6OlqJiYmKjIy0OgoAAADgCI78Wv7KlSv5Cg/gYm3atNGMGTPk8XisjgIAAAA4guPO3J87d07PPPOMXnjhBaujAPCTS5cu6eDBgyooKLA6CgAA8IPOnTtr6dKlatu2rdVRANdw3Jn76dOn65e//KWaN29+1bGZmZnKzMyssD0tLc0f0QDUkYMHD2rixIlav3694uPjrY4DAADqmMfjUY8ePRQWFmZ1FMA1HNXcb9++Xfv379fSpUt14sSJq45fsmSJnn766QAkAwAAAFBTJ0+e1Msvv6xHHnlELVu2tDoO4Aq2+Vp+YmKigoKCqnwUFxfrscce0+LFixUcXLPYU6ZM0e7duys83n33XT/PBgAAAEBVzpw5o7Vr1+r8+fNWRwFcwzZn7tevX1/t/oyMDB08eFDDhg2TpLIL6rVr104rVqzQkCFDKrzG5/PJ5/PVfVgAAAAAAGzENs391cTGxurkyZNlz//+97+rT58+2rlzp1q0aGFhMgB1LTg4WGFhYQoKCrI6CgAAAOAIjmnuQ0JCyjXx393fvnnz5goNDbUqFgA/SEhI0LZt27gVHgAAAFBDjmnuf6hdu3YyxlgdAwAAAEAtRUdHKzExUZGRkVZHAVzDNhfUA4DvHDhwQGPGjNGRI0esjgIAAPygTZs2mjFjBlfKB+oQzT0A2yksLNTx48dVVFRkdRQAAOAHly5d0sGDB1VQUGB1FMA1aO4BAAAABNTBgwc1ceJEHT9+3OoogGvQ3AMAAAAA4HA09wAAAAAAOBzNPQDb6dChg1588UW1bt3a6igAAACAIzj2VngA3CsyMlIDBgzgPvcAALhUcHCwwsLCFBQUZHUUwDU4cw/Adr755hutWLFC3377rdVRAACAHyQkJGjbtm268cYbrY4CuAbNPQDbOX36tF5//XWaewAAAKCGaO4BAAAABNSBAwc0ZswYHTlyxOoogGvQ3AMAAAAIqMLCQh0/flxFRUVWRwFcg+YeAAAAAACHo7kHYDuRkZG644475PV6rY4CAAAAOAK3wgNgOx06dNDChQu5FR4AAABQQ5y5B2A7RUVFysrK4vfwAABwqQ4dOujFF19U69atrY4CuAbNPQDbSU1N1b333ssVdAEAcKnIyEgNGDBA4eHhVkcBXIPmHgAAAEBAffPNN1qxYoW+/fZbq6MArkFzDwAAACCgTp8+rddff53mHqhDNPcAAAAAADgczT0AAAAAAA7HrfAA2E5CQoK++OILRUZGWh0FAAAAcATO3AOwneDgYDVo0EDBwfwVBQCAG0VGRuqOO+6Q1+u1OgrgGvzLGYDtpKena+rUqcrIyLA6CgAA8IMOHTpo4cKFio2NtToK4Bo09wBsJz8/X3v27NGlS5esjgIAAPygqKhIWVlZKioqsjoK4Bo09wAAAAACKjU1Vffee6+OHDlidRTANWjuAQAAAABwOJp7AAAAAAAcjuYegO20adNGs2fPls/nszoKAAAA4Ajc5x6A7URHR2v48OHyeDxWRwEAAAAcgTP3AGzn7Nmz+uCDD5SdnW11FAAA4AcJCQn64osv1KVLF6ujAK5Bcw/Adk6cOKEFCxYoMzPT6igAAMAPgoOD1aBBAwUH044AdYVPEwAAAICASk9P19SpU5WRkWF1FMA1aO4BAAAABFR+fr727NmjS5cuWR0FcA2aewAAAAAAHI7mHoDteDwe3XzzzWrcuLHVUQAAAABH4FZ4AGync+fOeuONN7gVHgAAAFBDnLkHYDulpaUqKipSaWmp1VEA1MC2bds0aNAgRUREqEWLFhX25+TkaPTo0fJ6vWrZsqUWLVpU7fE+++wzxcfHq3Hjxurdu7e++uorPyUHYJU2bdpo9uzZ8vl8VkcBXIPmHoDt7Nu3T7fddpsOHjxodRQANRAWFqZJkybpf/7nfyrd//jjj+vy5cs6deqU/vCHP2jBggVKTk6udOy5c+d03333acaMGcrOzta4ceM0bNgwXb582Z9TABBg0dHRGj58uJo0aWJ1FMA1aO4BAMA16dOnjyZMmKCOHTtW2Hfx4kWtW7dOzz77rMLDw9W9e3c98sgjWrZsWaXHSkpKUqdOnTRx4kSFhobq3//931VaWqpPP/3U39MAEEBnz57VBx98oOzsbKujAK5xXf7OfUFBgSQpLS3N4iQAKvPdGftjx44pKCjI4jRAYBw7dkzSP2uUW6Snp6u0tFTx8fFl2xISEpSUlFTp+NTUVCUkJJQ9DwoKUo8ePZSamqqf/exnFcZnZmYqMzOzwvZ9+/ZJotYDdnXgwAEtWLBAERERlf6PQcCNjh49Ksl/tf66bO737t0rSRo/frzFSQBUZ8aMGVZHAAJu7969uvXWW62OUWfy8/MVERFRbltkZKTy8vKqHP/Dr+lWN37JkiV6+umnq/z51HrA3mbOnGl1BCDg/FXrr8vm/sYbb5Qkvf322+XODjhZWlqaxo8fr3fffbdsfk7HnOzPbfORmJNTuHFO+/bt0y9+8QvbzScxMVEbNmyocr8xptrXezwe5ebmltt24cIFeb3eKsdfuHChxuOnTJmiYcOGVdi+c+dOPfbYY9R6m2NOzsCc7M9t85HcOSd/1/rrsrn/7oxAQkKCbr75ZovT1K0bb7yROTmA2+bktvlIzMkp3Dgnu11cav369df0+s6dOysoKEhff/21unXrJukf/7j5/tf0vy8+Pl5vvvlm2XNjjFJSUvSv//qvlY73+XzVXm2bWu8MzMkZmJP9uW0+kjvn5K9azwX1AADANSktLVVhYaGKiookSYWFhWVXtw8LC1NiYqLmzJmjvLw8paamaunSpZo0aVKlxxoxYoQOHz6sd999V0VFRXrllVckSXfeeWdgJgMAgEPR3AMAgGuyfft2NWrUSIMHD1ZWVpYaNWqkuLi4sv2LFy9W/fr15fP5dNddd2nWrFkaOnRo2X6Px6PPP/9ckhQVFaUPPvhACxcuVEREhFavXq3f//73Cg0NDfi8AABwkuvya/kAAKDuDBw4sNrfvY+MjNS6deuq3J+fn1/heKmpqXWWDwCA6wFn7gEAAAAAcLjrsrn3+XyaP39+tRfgcRrm5Axum5Pb5iMxJ6dgTrgaN76fzMkZmJMzuG1ObpuPxJx+jCBztXvYAAAAAAAAW7suz9wDAAAAAOAmNPcAAAAAADgczT0AAAAAAA5Hcw8AAAAAgMO5trnftm2bBg0apIiICLVo0aLC/pycHI0ePVper1ctW7bUokWLqj3eZ599pvj4eDVu3Fi9e/fWV1995afkNTN06FB5PJ6yR2hoqMLDw6scP3DgQDVs2LDca+xmxYoVCgkJKZdx9erVVY6v7Rpa4YUXXlD37t3l9XrVpk0bzZkzRyUlJVWOt+s61ea9tttn5YcuX76syZMnq3379vJ6verWrZvWrFlT5figoCCFhYWVrcfQoUMDmLZmHnroITVo0KDcfzcnTpyocnxqaqp+8pOfqHHjxuratau2bt0awLQ18/25eDwe1atXT8OGDatyvF3X6bXXXtMtt9yi0NBQjR07tty+2q7Da6+9platWsnj8WjkyJHKzs72Z3RHcHutl9xX76n19l0jN9V6iXov2b/eU+srP9Y11XrjUjt37jTvvPOOWbp0qWnevHmF/Q888IAZNmyYuXDhgklJSTExMTFm8+bNlR7r7NmzJiIiwqxcudIUFhaal156ybRp08YUFhb6exo1Nnr0aPOLX/yiyv233367+c1vfhPARLW3fPly07dv3xqPr80aWmXhwoXmL3/5iykqKjIZGRmmR48eZuHChVWOt+s61fS9dsJnJT8/38ybN88cPXrUlJaWms8//9yEh4ebP/3pT5WOl2TS0tICnLJ2HnzwQTNz5swajS0qKjLt2rUzzz77rCksLDTvvfeeCQ8PN1lZWX5O+eNduXLFtGzZ0qxatarKMXZdpw0bNpjf/e53Ztq0aWbMmDFl22u7Dlu2bDFNmzY1u3fvNrm5uWbUqFFm9OjRgZqGbV1vtd4Y59d7ar1918hNtd4Y6r3T6j21vm5qvWub++9s27atQsHPz883DRo0MPv37y/bNnv2bJOYmFjpMd58803Tq1evsuelpaWmdevWZtOmTf4JXUvnzp0zoaGh5ssvv6xyjF0LyffVpuDXdg3t4vnnnzf33HNPlfvtuE61ea/t/lmpytChQ82LL75Y6T67FpLvq02x37Jli2nWrJkpKSkp29avXz/z2muv+SveNdu0aZMJDw83ly5dqnKM3ddp/vz55Qp+bdfh5z//uXnqqafKnqenp5t69eqZnJwc/4V2kOuh1hvjjnpPrbfnGl0Ptd4Y6r2d6z21vm5qvWu/ll+d9PR0lZaWKj4+vmxbQkKCUlNTKx2fmpqqhISEsudBQUHq0aNHleMDbc2aNWrXrp369etX7bh58+YpKipKffr00YcffhigdLWTkpKimJgYderUSTNnzlRBQUGl42q7hnbx3dfYqmO3darNe233z0plLl68qL/+9a/Vrssdd9yh5s2b62c/+5m+/vrrAKaruTfffFNNmzbVTTfdpGXLllU5LjU1Vd27d1dw8D//+rf7Z2f58uUaO3asGjVqVO04J6zTd2q7Dj/8bN1www1q0KCBDh486O+ojuW2Wi+5p95T6+23Rm6v9RL1XrL354daXze1/rps7vPz8xUREVFuW2RkpPLy8qocHxkZWePxgbZs2TI9/PDD1Y55/vnndfToUWVmZmrWrFkaO3asdu3aFaCENTNgwAClpqYqKytLH330kf74xz9qxowZlY6t7Rrawauvvqr9+/frV7/6VZVj7LhOtXmv7f5Z+aHS0lI99NBD6t27t+6+++5Kx/zxj39URkaGjhw5op49e+ruu+9Wbm5ugJNW79/+7d+Unp6uM2fOaNGiRZoxY4Y2bNhQ6VinrdHZs2f14YcfatKkSdWOc8I6fV9t18Fp62YHbqv1kjvqPbXenmvk5lovUe+/Y9d1otb/uPGVcWRzn5iYqKCgoCofV+PxeCr8h3DhwgV5vd4qx1+4cKHG469Vbeb31VdfKSUlRRMnTqz2mH379lV4eLgaNGigESNGKDExUUlJSX7JX5mazKlDhw7q0KGDgoODFRcXp4ULF2rdunWVHq+2a+gPtVmnVatWacGCBdqyZYuioqKqPKbV61SZ2rzXgf6sXAtjjKZOnarTp0/rt7/9bZV/d9x+++1q0KCBvF6vnnnmGdWrV09/+tOfApy2ejfffLOio6NVr149DRo0SNOmTav2s+OUNZKk1atXq1OnTurbt2+145ywTt9X23Vw2rrVBbfXesl99Z5aT623I+r9P9l1naj1P258ZRzZ3K9fv17mH9cLqPRxNZ07d1ZQUFC5r3Ls27evyq/pxMfHa9++fWXPjTFKSUm56leufqzazG/ZsmUaMmSIfD5frX5GcHBwjd6ruvJj1qy6jLVdQ3+o6ZxWr16t6dOn65NPPlGXLl1q9TMCvU6Vqc17HejPyo9ljNG0adO0b98+JScn1+pKxXZYk6upLmN8fLz279+v0tLSsm2B/uzUxvLly696prIydl+n2q7DDz9bR44c0eXLl2v9d4qTuL3WS+6r99R6ar3dUO+dUe+p9f8cf821vsa/ne8wJSUlpqCgwPzhD38wzZs3NwUFBeWu4vnzn//c3HfffSY3N9fs37/fNG/e/KpX0F21apW5fPmyefnll01sbKzlVwW9fPmyiYqKMhs2bKh2XHZ2ttm8ebO5dOmSuXLlitm4caNp3Lix+eKLLwKUtGY2b95sTp8+bYwx5ujRo+YnP/mJmTJlSpXja7OGVlmzZo2Jjo42e/bsuepYO69TTd9ru35Wfuixxx4zPXv2NOfPn692XGpqqtm9e7cpLi42Fy9eNPPnzzfNmzc32dnZgQlaQ7/97W9Nbm6uKSkpMZ9//rmJjo42a9eurXTsd1dufe6550xhYaF5//33bXv13N27d5t69eqZb775ptpxdl6n4uJiU1BQYObMmWNGjRplCgoKTFFRUa3XYcuWLSYqKsrs2bPH5OXlmTFjxnC1fHN91Hpj3FXvqfX2XSO31XpjqPdOqPfU+n+qi1rv2uZ+27ZtRlK5R9u2bcv2Z2dnm8TERBMWFmZatGhhXn755XKvDwsLM9u3by93vG7dupmGDRuaW265xezduzcwE6nG+vXrTXR0tCkqKqqwb8iQIebZZ581xhhz5swZ07t3b+PxeEx4eLi5+eabzfr16wMd96p+9atfmebNm5vGjRubNm3amP/4j/8w+fn5ZfunTJlS7h8AV1tDO2jXrp2pV6+eCQsLK3sMGTKkbL9T1qm699oJn5Xvy8jIMJJMaGhouXX5bh2+P5+tW7eauLg407hxYxMVFWUGDx5s9u3bZ2X8SvXv399EREQYj8djunbtat54441y+7t27WrefffdsucpKSmmT58+pmHDhqZLly7m008/DXTkGnn88cfNfffdV+k+p6zT/PnzK9SiBx980BhT/Tps377dhIWFlTvWq6++anw+nwkLCzP333//Vf+xej24Hmq9Me6q99R6+66Rm2q9MdR7Y5xR76n1dVvrg4yx8XcZAAAAAADAVTnyd+4BAAAAAMA/0dwDAAAAAOBwNPcAAAAAADgczT0AAAAAAA5Hcw8AAAAAgMPR3AMAAAAA4HA09wAAAAAAOBzNPQAAAAAADkdzDwAAAACAw9HcAy40cOBAzZ071+oYAADAj6j3AL6P5h6woePHj2vcuHFq2bKlPB6PWrZsqZ/+9KfKzMy0Oppl9uzZoxEjRqh169YKCwtTq1atNGLECJWWllodDQCAH4V6XxH1HvjxaO4BG/rpT38qr9er1NRU5efna+/evRozZoyCgoKsjmaJzz//XP3799eQIUOUnp6u3Nxcbd26VYMHD1ZwMH+NAQCciXpfHvUeuDZ8SgCbOXfunA4ePKipU6eqadOmkqTmzZvrwQcfVIsWLSRJ7dq109KlS8u9LigoSJ9++mnZ85ycHI0YMUJer1edOnXSO++8U278a6+9po4dO8rr9ap58+Z66KGHyvYNHDhQjz/+eJWvX7x4seLj4xUeHq4WLVpowoQJOnv2bLnjFxQUaO7cuercubO8Xq86dOiglStXSpIKCws1e/ZsdezYUU2aNNGAAQO0d+/eKt+T119/Xf369dOjjz6qxo0bKyQkRHFxcZoyZUot3lkAAOyDel8R9R64NjT3gM1ERUWpe/fumjJlipYvX66UlJQf9VW0t99+Ww8//LCys7P1v//7v5o8ebK+/PJLSdLhw4c1Y8YMbdy4UXl5eTp69KgmTZpU49e3aNFCSUlJysnJ0c6dO5Wenq4nnnii3OsfeeQRbdmyRRs3blRubq6++OILde/eXZI0depU7dq1S5999pm+/fZbjR49WoMHD1ZOTk6lc4mJidGOHTu0cOFC7du3TyUlJbV+PwAAsBPqfUXUe+AaGQC2c/bsWTNv3jzTu3dvExoaapo0aWKeeuopU1hYaIwxpm3btuatt94q9xpJ5pNPPjHGGHP77bebESNGlNs/evRoM2nSJGOMMceOHTMNGzY07733nrlw4UKFn3+11/9QUlKSadq0adnzb7/91kgyf/nLXyqdmyRz8ODBcts7depkVq1aVenxL168aJ5//nnTu3dvExISYqKjo828efNMaWmpMcaYkpISc9ttt5moqCgzZ86cstdVtR0AADug3pd3tXr/17/+1fTr18/079/f9OvXz+zYscMYQ70HvsOZe8CGoqKi9F//9V/atWuXLly4oGXLlumtt97Sc889V+NjtG/fvsLzv//972V/fu+997R8+XK1adNGvXv31tq1a2v8+qSkJPXr10/NmjVTeHi4JkyYoPPnz5f9H/bjx49LkuLi4irkOnLkiCSpb9++ioyMLHucOnVKJ0+erHQujRs31owZM7Rr1y6dO3dO06dP13//939r06ZNkqTg4GCtWbNGL774YrnXVbUdAAA7oN6Xd7V637JlSyUnJ2v79u1asmRJ2bcIqPfAP9DcAzYXGhqq4cOH684779SePXskSV6vVxcvXiwbc/r06Qqvy8jIqPC8devWZc/vu+8+ffzxxzp79qymT5+uBx54QOnp6Vd9/cmTJzVq1Cg98cQTOnHihHJzc7Vq1SpJkjFG0j9+R1BSueN957vfI0xJSVFOTk7Z49KlS5o1a9ZV34+IiIiy3xfMy8sr2x4bG1vp+Kq2AwBgJ9T78iqr9z6fT+Hh4ZKkBg0alLvIHvUeoLkHbCc7O1uzZs1SSkqKLl++rJKSEv3f//2ftm3bpgEDBkiSbrnlFq1du1Y5OTnKzc2ttEhu3rxZH330kUpKSvTxxx/rd7/7nR5++GFJ0qFDh7R582bl5+erXr16ioiIkCSFhIRc9fX5+fkqLS1VdHS0GjZsqMOHD1c4wxATE6Nx48Zp2rRpOnTokCQpMzNTe/bsUdu2bTV8+HBNmzZNf/vb3yT9o2gnJydXeuuf5557TsnJycrNzZUxRunp6Zo8ebI6duyoe++9tw7ecQAAAo96X15t6n1xcbGmTZumuXPn/ti3H3AlmnvAZho0aKCzZ89q1KhRio6OVlRUlJ588knNnDlTTz31lCTpmWeeUXh4uGJjY9WrVy/df//9FY4zadIkvf3224qMjNS0adP0xhtvqH///pKkoqIiPfvss2rVqpXCw8P11FNP6Z133lHHjh2v+vouXbroueee08SJE+X1evXggw9q/PjxFX7+W2+9pdtvv11Dhw6Vx+PRrbfeqq+//lqStGbNGvXq1Ut33XWXvF6v4uLi9NZbb5WdCfi+goICzZw5U7GxsYqMjNSwYcPUrVs37dixQ16vt07ecwAAAo16X15N631JSYkeeOABjR49Wvfcc8+1LQLgMkGmsk8XgOvawIEDddttt+mZZ56xOkqtrFixQkeOHKmQu6rtAABcz5xW70tLSzVx4kT17Nmz7H+AfB/1Hte7elYHAIC6MG7cOKWkpOjSpUvasWOHkpOTVb9+/Sq3AwAAZ3n//feVlJSkkydP6sMPP1RERIQ2btwoqep/BwDXE5p7AK7ww6v/Xm07AABwlrFjx2rs2LGV7qPeA3wtHwAAAAAAx+OCegAAAAAAOBzNPQAAAAAADkdzDwAAAACAw9HcAwAAAADgcDT3AAAAAAA4HM09AAAAAAAOR3MPAAAAAIDD0dwDAAAAAOBwNPcAAAAAADgczT0AAAAAAA5Hcw8AAAAAgMP9PykxW/X92MH+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reported: 23 beats ; Detected : 25 beats\n" + ] + } + ], + "source": [ + "counts = []\n", + "for nTrial in range(6):\n", + "\n", + " print(f'Analyzing trial number {nTrial+1}')\n", + "\n", + " signal, peaks = ppg_peaks(ppg[str(nTrial)][0], clean_extra=True, sfreq=75)\n", + " axs = plot_raw(\n", + " signal=signal, sfreq=1000, figsize=(18, 5), clean_extra=True,\n", + " show_heart_rate=True\n", + " );\n", + "\n", + " # Show the windows of interest\n", + " # We need to convert sample vector into Matplotlib internal representation\n", + " # so we can index it easily\n", + " x_vec = date2num(\n", + " pd.to_datetime(\n", + " np.arange(0, len(signal)), unit=\"ms\", origin=\"unix\"\n", + " )\n", + " )\n", + " l = len(signal)/1000\n", + " for i in range(2):\n", + " # Pre-trial time\n", + " axs[i].axvspan(\n", + " x_vec[0], x_vec[- (3+df.Duration.iloc[nTrial]) * 1000]\n", + " , alpha=.2\n", + " )\n", + " # Post trial time\n", + " axs[i].axvspan(\n", + " x_vec[- 3 * 1000], \n", + " x_vec[- 1], \n", + " alpha=.2\n", + " )\n", + " plt.show()\n", + "\n", + " # Detected heartbeat in the time window of interest\n", + " peaks = peaks[int(l - (3+df.Duration.iloc[nTrial]))*1000:int((l-3)*1000)]\n", + "\n", + " rr = np.diff(np.where(peaks)[0])\n", + "\n", + " _, axs = plt.subplots(ncols=2, figsize=(12, 6))\n", + " plot_subspaces(rr=rr, ax=axs);\n", + " plt.show()\n", + "\n", + " trial_counts = np.sum(peaks)\n", + " print(f'Reported: {df.Reported.loc[nTrial]} beats ; Detected : {trial_counts} beats')\n", + " counts.append(trial_counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oFX75zi2Kdad" + }, + "source": [ + "## Save reults" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "uXUtLU1lKdad" + }, + "outputs": [], + "source": [ + "# Add heartbeat counts and compute accuracy score\n", + "df['Counts'] = counts\n", + "df['Score'] = 1 - ((df.Counts - df.Reported).abs() / ((df.Counts + df.Reported)/2))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "id": "dXkbr7ErKdae", + "outputId": "be5eb93e-4971-4bce-bd7a-34ca7f5dc3e6" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
nTrialReportedConditionDurationConfidenceConfidenceRTCountsScore
0036Count4045.146400.894737
1127Count3059.909300.894737
2229Count3544.279360.784615
3339Count4553.278460.835294
4447Count5054.007510.918367
5523Count2552.635250.916667
\n", + "
" + ], + "text/plain": [ + " nTrial Reported Condition Duration Confidence ConfidenceRT Counts \\\n", + "0 0 36 Count 40 4 5.146 40 \n", + "1 1 27 Count 30 5 9.909 30 \n", + "2 2 29 Count 35 4 4.279 36 \n", + "3 3 39 Count 45 5 3.278 46 \n", + "4 4 47 Count 50 5 4.007 51 \n", + "5 5 23 Count 25 5 2.635 25 \n", + "\n", + " Score \n", + "0 0.894737 \n", + "1 0.894737 \n", + "2 0.784615 \n", + "3 0.835294 \n", + "4 0.918367 \n", + "5 0.916667 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "-PuGeDAkKdaf" + }, + "outputs": [], + "source": [ + "# Uncomment this to save the final result\n", + "#df.to_csv(Path(resultPath, 'processed.txt'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "name": "HeartBeatCounting.ipynb", + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + }, + "vscode": { + "interpreter": { + "hash": "40d3a090f54c6569ab1632332b64b2c03c39dcf918b08424e98f38b5ae0af88f" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/_sources/examples/templates/HeartRateDiscrimination.ipynb.txt b/_sources/examples/templates/HeartRateDiscrimination.ipynb.txt new file mode 100644 index 0000000..f55a32d --- /dev/null +++ b/_sources/examples/templates/HeartRateDiscrimination.ipynb.txt @@ -0,0 +1,841 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "4cMI7LRPHuhO" + }, + "source": [ + "(hrd_template)=\n", + "# Heart Rate Discrimination task - Summary results" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RS4nPf2SHuhG" + }, + "source": [ + "Author: Nicolas Legrand " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "ZUJgGeY7H8gq", + "tags": [ + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "%%capture\n", + "import sys\n", + "\n", + "if 'google.colab' in sys.modules:\n", + " !pip install metadpy, systole, pingouin" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "VNcqaB4zHuhM" + }, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import pingouin as pg\n", + "import seaborn as sns\n", + "from metadpy import sdt\n", + "from metadpy.plotting import plot_confidence\n", + "from metadpy.utils import discreteRatings, trials2counts\n", + "from scipy.stats import norm\n", + "from systole.detection import ppg_peaks\n", + "\n", + "sns.set_context('talk')\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "inaNEpksHuhO" + }, + "source": [ + "This notebook introduces basic analysis steps, plots and quality check for the Heart Rate Discrimination task. The current version use data from a young and healthy participant tested with the default task parameters implemented in the launcher.py file (80 trials per condition, 30 using a 1-Up/1-Down staircase and 50 using the Psi method.\n", + "\n", + "The target directory is defined by the `path` variable and should include the following files: `final.txt` (the behavioural data), `Intero_posterior.npy` and `Extero_posterior.npy` (the posterior estimates) and `signal.txt` (the PPG signal time series during the interoception trials)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "p8NY1tssHuhP" + }, + "source": [ + "**Import data**" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "RanXAiXtHuhP", + "tags": [ + "parameters" + ] + }, + "outputs": [], + "source": [ + "# Define the result and report folders - This should be adapted to you own settings\n", + "resultPath = Path(Path.cwd(), \"data\", \"HRD\")\n", + "reportPath = Path(Path.cwd(), \"reports\")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# ensure that the paths are pathlib instance in case they are passed through cardioception.reports.report\n", + "resultPath = Path(resultPath)\n", + "reportPath = Path(reportPath)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "e06-piOKHuhQ" + }, + "outputs": [], + "source": [ + "# Logs dataframe\n", + "df = pd.read_csv(\n", + " [file for file in Path(resultPath).glob('*final.txt')][0]\n", + " )\n", + "\n", + "# History of posteriors distribution\n", + "try:\n", + " interoPost = np.load(\n", + " [file for file in Path(resultPath).glob('*Intero_posterior.npy')][0]\n", + " )\n", + "except:\n", + " interoPost = None\n", + "try:\n", + " exteroPost = np.load(\n", + " [file for file in Path(resultPath).glob('*Extero_posterior.npy')][0]\n", + " )\n", + "except:\n", + " exteroPost = None\n", + "\n", + "# PPG signal\n", + "signal_df = pd.read_csv(\n", + " [file for file in Path(resultPath).glob('*signal.txt')][0]\n", + " )\n", + "signal_df['Time'] = np.arange(0, len(signal_df))/1000 # Create time vector" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-YL6QItZHuhQ" + }, + "source": [ + "# Response time" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 371 + }, + "id": "1e2HWDnnHuhR", + "outputId": "311612eb-fb60-4638-a5ba-dc7bdfcaf62d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSUAAAHYCAYAAAC7so0yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hUZ/o38O+ZwgwMdehFmigqFopir1FT3GgSMcWY6Joia3bTV7PJppjNJjG9rVFf04uJYowtzd6iUQELSlWKdKS3gSnn/cMfE0dAKcMM5fu5Lq5lzlPOPVmZeeaepwiiKIogIiIiIiIiIiIishCJtQMgIiIiIiIiIiKivoVJSSIiIiIiIiIiIrIoJiWJiIiIiIiIiIjIopiUJCIiIiIiIiIiIotiUpKIiIiIiIiIiIgsiklJIiIiIiIiIiIisigmJYmIiIiIiIiIiMiimJQkIiIiIiIiIiIii2JSkoiIiIiIiIiIiCyKSUki6pOysrIgCAIEQUBWVpZZ+mzqb9++fWbpj4iIiHqGM2fO4M4774S3tzdkMhkEQUB4eDgAYN++fcYxQkd0tj0REVF3JbN2AETUc7300ktYsWKFyTVBEGBvbw9HR0f4+/sjIiICU6dOxezZs2FjY2OlSImIiKgn0Ov12LRpE7Zv346jR4+iuLgYdXV1cHZ2xsCBAzFx4kTce++9GDp0qLVDNcrMzMT48eNRXV0NAFCr1ZDL5XBzc7NyZERERN0bk5JEZBaenp7G3+vr65Gfn4+8vDwcOXIEq1atgqurK1555RXExsZaMco/yeVyhIaGGn83h6b+7OzszNIfERFRX3L06FEsXLgQaWlpxmtyuRwODg4oLS3F4cOHcfjwYbz++uu44447sH79+m7xheeaNWtQXV2NkJAQ7Nu3D76+vibldnZ2xjECERER/YlJSSIyi8LCQpPHer0e586dw86dO/HRRx8hMzMTf/vb33Dw4EF8/fXXVl+C5Ovri5SUFLP2ae7+iIiI+opt27Zh3rx5aGhogKurK55++mnMnTsXAwYMAHB5XJGYmIhNmzZh1apV+OGHH1BXV9ctkpJnzpwBAMyZM6dZQhIAoqOjOUYgIiJqAfeUJKIuIZVKMWzYMDz55JNISkrC3XffDQD49ttv8frrr1s5OiIiIuou0tPTsWDBAjQ0NGDIkCE4efIknnnmGWNCErg8rhg5ciRee+01ZGZmYs6cOVaM2FRdXR0AwN7e3sqREBER9SxMShJRl7Ozs8MXX3yBiIgIAMDrr7+OsrKyZvUaGxuxatUqTJ06FW5ubrCxsYGXlxfmzJmDn3/++br3+eOPP/DXv/4VISEhsLOzg6OjI4YMGYLFixfj119/Nal7vYNucnNz8cQTTyAsLAwqlQoKhQI+Pj6IiorCE088gePHjzdrc72DbjQaDd577z2MGzcOLi4uUCqVCAgIwP3334+TJ0+2+rwCAwMhCAI+//xzNDY24s0338SIESOgUqng5OSEadOm4Zdffrnufx8iIqLu6N///jeqqqqgVCqxefNm+Pn5XbO+Wq3Gjz/+CCcnJ5PrhYWF+Oc//2l871apVAgLC8OyZctQVFTUYl9XjweKiorw2GOPISgoCEqlEp6enrj77rtbnOnY9P7c9L6/YsUKY19XXm/LQTUpKSm499574eXlBaVSieDgYPzjH/9oNe6rVVdX4/XXX8fYsWOhVquhUCjQr18/3H333Thy5IjZn/uVDAYDNmzYgNtuuw2+vr5QKBRwd3dHVFQUli9fjqSkJLPFTEREvYxIRNRBL774oghAbOtLycaNG431P/nkE5OyrKwsMSwszFguCILo5ORkfAxAjI2NbbFfnU4nPvrooyZ1VSqV6OLiIgqCIAIQnZycTNpkZmYa62ZmZpqUnTx5UnRxcTGWS6VSk74AiAsXLmwWR1PZ3r17m5Xl5uaKQ4cONdaRy+Umz08ikYgffPBBi88vICBABCB++OGH4ujRo43t7e3tTf57Xf3flIiIqLsrLCwUJRKJCEB84IEHOtzPvn37RGdnZ5NxgEqlMj52cXERDx482KzdleOB7du3ix4eHiIA0c7OTlQoFMYyR0dH8eTJkyZtR44cKXp6eopyudx4T09PT+PP4cOHRVEUxb17915zvPTzzz+b3Mve3l5UKpUiANHb21v89NNPr9k+MTFR9PPzMxm3ODg4mIwRXn31VbM+9yYlJSXipEmTTMZgzs7OJmOUOXPmmC1mIiLqXZiUJKIOa29Ssrq6WpRKpSIA8f777zder6mpEQcNGiQCEKdMmSLu27dP1Gg0oiiKYkVFhfjOO+8YB7fvvfdes36XLVtmjGPx4sViamqqsayiokL88ccfxbvuusukzbWSkjfccIMIQIyMjBSPHDkiGgwGURRFsaGhQUxLSxPfeust8Y033mgWR2tJSZ1OZ0wmOjk5iV9//bXY0NAgiqIonj9/XvzLX/5iHID/9NNPzfptSkq6uLiIvr6+4o8//ig2NjaKoiiKKSkp4pgxY4wfYioqKlr7z09ERNTtrF+/3iQx1hE5OTnGhOSQIUPEQ4cOGcsOHDgghoaGigBEtVot5ubmmrS9cjzg4uIijh8/Xjx+/LgoiqKo1WrFnTt3it7e3iIAceLEiS3ef/LkySIA8cUXX2yx/FpJyYsXL4qOjo4iAHH48OHiH3/8IYqiKOr1evHnn38W/fz8TJKtV8vPzzcmE++44w7xxIkTxjFCUVGR+Pzzz4symUwEIG7evNmsz12r1Yrjx48XAYgKhUJcuXKlWFxcbCzPy8sT16xZI/7rX/8yW8xERNS7MClJRB3W3qSkKIrigAEDRADi+PHjjddefvllEYA4efJk46D0aj/88IMIQHRzcxO1Wq3xempqqnGGxbJly9ocx7WSkra2tiIA8ffff29zf6LYelLyu+++M5b9+uuvzdpptVpj0nLo0KHNypuSkgqFQkxOTm5WXlxcbJxR8fXXX7crZiIiImv697//bXyPzMvL61AfsbGxxsRaQUFBs/IrE3+PPPKISdmV44FBgwaJdXV1zdpv3brVWOfixYvNyjuTlPzb3/4mAhBdXV3FoqKiZuVnzpwxzsRsqf3ixYtFAOL8+fNbvLcoiuI777wjAhBHjBhhcr2zz33dunXGL1V37NjR6v3NGTMREfUu3FOSiCxKrVYDgMmekp988gkA4Mknn4RcLm+x3W233QZHR0dcunQJ8fHxxutffPEFDAYDXF1dsWLFCrPE6OzsDAAoKCgwS3/ff/89AGDs2LGYOXNms3KZTIYXX3wRAJCUlGQ8xfNqMTExGDRoULPr7u7uGDt2LADg9OnTZomZiIjIEkpLS42/N40R2kMURWzYsAEAEBsbCy8vr2Z1/Pz8EBsbCwD47rvvWu3rqaeegq2tbbPrN998s/GU79beoztCFEXjGCE2NhYeHh7N6gwdOhQxMTEtttdoNPj2228BAMuXL2/1Pvfffz8A4NSpU63uUdmR5/7pp58CAG655Rbccsstrd6/q2ImIqKej0lJIrKqvLw8ZGdnAwAeeOABeHl5tfjj7e2NmpoaADDWB4Dff/8dADBjxgwolUqzxPSXv/wFALBw4UI89dRT2L9/v/FkzY44ceIEAGD69Omt1pk6dSqkUqlJ/auNHj261fY+Pj4A0OIBQkRERL1VZmam8b3vWu+zM2bMAHA5CZqZmdlindbeZ2UyGdzd3QGY9332ytinTZvWar3WyuLj46HRaAAAM2fObHUMFRYWZmxz5RjqSu197jqdznjo36233tpq7F0ZMxER9XwyawdARH1L04DW1dUVAJCfn28su3TpUpv6uDJBWFhYCAAICAgwV4h44403kJGRgb179+Kdd97BO++8A6lUivDwcMyaNQsPP/wwfH1929xfcXExAFyzjVKphJubG4qKioz1r+bg4NBqe5ns8su5Vqttc1xERETW1jQeAC6PEZq+ZGurK98zr/U+e+WJ3sXFxQgKCmpWx9Lvsx2J/UpXjqHaOpuwtS9Z2/vcS0tLjY/bMwYzZ8xERNTzMSlJRBZTU1ODCxcuAAD69+8PANDr9cby5OTkFpcnX4sgCOYL8P84Oztjz549OHToELZt24bDhw/jxIkTiI+PR3x8PN5880188sknuOeee8x+byIior7kyhlxiYmJ7U5K9mVXjqHq6+vNtmKkLTo6/rJmzERE1P1w+TYRWcwvv/xiHIxOmTIFAEz2furI8pym9l2xtGfChAlYuXIlDh06hIqKCmzZsgXDhg1DfX09Fi9e3OZv+Jv2iMrNzW21jkajMe6r1dKeUkRERL3R1KlTIZFc/kiyefPmdre/8j3zWu+zV5Z1l/fZK+PIy8trtV5rZZ0dQ3WGWq027gPenntbM2YiIup+mJQkIotobGzEq6++CgBwcnLCbbfdBgAIDAw0Llnatm1bu/sdN24cAGDnzp3GPYq6glKpxOzZs/HDDz8AuJxEPHToUJvajhw5EgCwe/fuVuvs27cPOp0OADBq1KhORktERNQzeHp6Yu7cuQCAb7/9FmlpaW1uK4oigoKCjAfkXOt9dteuXQAuLxdvaem2NVwZ+969e1utt2fPnhavjxo1yngITUfGUJ0hk8kQHR3d7ntbM2YiIup+mJQkoi5XX1+PRYsWITExEQDwr3/9y3jCNQA89NBDAC6fwt1UpzVXbzC/aNEiSKVSlJaWGk+w7gydTgeDwdBq+ZUnUzbN7Lieu+++GwBw5MgR/Pbbby3e8+WXXwZw+ZTNoUOHtidkIiKiHu2VV16Bvb096uvrcccdd1xz1iAAlJeXY+7cuaisrIQgCLjrrrsAAGvWrDHuNX2l/Px8rFmzBgC61dYrgiDgzjvvBACsXr26xb21z507h7i4uBbbq1QqzJ8/HwCwcuVK5OTkXPN+5j4M74EHHgAA/PTTT/jpp5/a1MbaMRMRUffCpCQRdQmDwYCkpCS88847CAsLw/r16wEA9913H5YtW2ZS96mnnsKwYcOg0WgwdepUfPTRR8alzABQUVGBn3/+Gffffz8mTpxo0jYkJAT//Oc/AVw+oObBBx9Eenq6sbyqqgrff/89br/99jbFnZubiwEDBuCVV15BYmKicfYiAJw+fRoLFiwAcHlQPXny5Db1OXfuXOOplnfeeSe+/fZb4+bwmZmZmDt3Lo4cOWJ8DkRERH3JwIED8dVXX8HGxgZnz55FeHg4Vq5ciYyMDGMdvV6PxMREvPDCCwgODjauXACAZ599Fs7OzigrK8P06dPx+++/G8sOHz6M6dOno6KiAmq1Gs8884xFn9v1/Otf/4KDgwMuXbqEGTNm4MSJEwAuzwL97bffcPPNN8POzq7V9q+++ip8fHxw6dIljB07Fl999RWqq6uN5SUlJdi0aRNuv/12sydk77vvPkyYMAGiKGLu3Ll48803TRKr+fn5ePfdd7F8+fJuEzMREXUzIhFRB7344osiABGA6OnpafxxdnYWJRKJsQyA6ObmJq5evbrVvvLy8sQxY8YY6wuCIDo7O4uOjo4m/YSEhDRrq9PpxEceecSknr29veji4iIKgiACEJ2cnEzaZGZmGutmZma2eB2AKJVKRbVaLdrY2Biv2djYiBs3bmwWR1P53r17m5Xl5uaKYWFhJn04OzsbH0skEvH9999v8b9NQECACED87LPPWv3vt3DhQhGAuHDhwlbrEBERdWeHDh0SQ0JCTN6HbWxsRLVabTKuEARBvOeee8TGxkZj23379olOTk7GOiqVSlSpVMbHzs7O4oEDB5rds7XxwNWu9V48efJkEYD44osvtth27969xnu0ZPv27aJCoTDWcXBwEG1tbUUAore3t/jpp59es/25c+fEgQMHmowp1Gq1yfMHIE6fPt3sz72kpEScOHFis/Gbvb298dqcOXPMFjMREfUuPH2biMyi6dAXQRCgUqng5eUFf39/RERE4IYbbsCtt95q3EOoJT4+Pjh06BA2btyI9evX48SJE7h06RIkEgkCAwMxbNgw3HDDDcZlTleSSqX46KOPcM899+Djjz/GwYMHUVRUBJlMhiFDhmDMmDFt/qbd19cXW7duxd69e3HkyBHk5uaiuLgYMpkMISEhmDp1Kh577DEMGDCgXf99fH19ceLECXz88cfYsGEDkpOTUVdXh379+mHKlCl48sknER4e3q4+iYiIepPx48cjJSUFGzduxPbt2/HHH3+guLgY1dXVUKvVGDRoECZPnoz77rsPoaGhJm0nT56M5ORkvP322/jpp5+QlZUFQRAwePBgzJo1C0899ZTJISvdyaxZs5CQkID//Oc/2LNnDyorK+Ht7Y2//OUv+Pe//43k5ORrth88eDBOnz6NL774Aps2bcLJkydRVlYGGxsbhISEICIiAjNmzEBMTIzZY3dzc8O+ffuwfv16fPPNN4iPj0d5eTlcXFwQGhqKGTNm4L777utWMRMRUfchiKIoWjsIIiIiIiIiIiIi6ju4pyQRERERERERERFZFJOSREREREREREREZFFMShIREREREREREZFFMSlJREREREREREREFsWkJBEREREREREREVlUj05K/vTTTxAEAYIgIDAwsN3tFy1aZGzf2s8vv/xi/sCJiIiIiIiIiIj6MJm1A+iompoa/O1vfzNLX/369YO/v3+LZS4uLma5BxEREREREREREV3WY5OSzz77LHJycjBnzhxs2bKlU30tXrwYL730knkCIyIiIiIiIiIiomvqkcu3jx49iv/973+YM2cObrvtNmuHQ0RERERERERERO3Q45KSWq0WDz30EOzs7PDRRx9ZOxwiIiIiIiIiIiJqpx63fPu1115DUlIS3n33Xfj5+Zmlz7179+Ls2bMoLS2Fs7MzoqKisGDBAgQEBJilfyIiIiIiIiIiIvpTj0pKJicn49VXX0VkZCT+8Y9/mK3fAwcOmDzevHkzVqxYgVdeeQXLli1rUx9r1qzB2rVr21Q3MzMTDg4OmDBhAr755pt2x0tERERERERERNST9ZikpCiKeOihh6DVarFmzRpIpdJO9zlgwAC8/fbbmDZtGgIDA6FQKHD69Gm8/fbb2LhxI5YvXw57e3ssXbr0un0VFBQgISGhzfcuLy9HSkpKZ8InIiIiIiIiIiLqkXpMUvLjjz/G4cOH8eijj2LkyJFm6fO5555rdm306NHYsGEDHnnkEaxatQrPPfcc7r//ftjb21+zL29vb0RGRrbpvsnJyaivr+9QzERERERERERERD2dIIqiaO0gricvLw9DhgyBg4MDkpOT4eDgYCz7/PPP8de//hUBAQHIysoy2z0rKyvh4eGBxsZGbNmyBbNnzzZb31FRUUhISEBkZCTi4+PN1i8REREREREREVFP0CNO3/7HP/6BqqoqfPDBByYJya7k5OSEsLAwAEB6erpF7klERERERERERNQX9Ijl2017NS5durTZ/o5Ny6AvXrwILy8vAMAPP/yAcePGdfq+NjY2AACdTtfpvoiIiIiIiIiIiOiyHpGUbFJUVNRqmcFgMJY3NjZ2+l46nc54EI2fn1+n+yMiIiIiIiIiIqLLesTy7aysLIii2OLPZ599BgAICAgwXpsyZUqn77lmzRpUVlZCJpNh2rRpne6PiIiIiIiIiIiILusRScnOCAwMRGBgIOLi4kyu79y5E8uXL2+2X2RjYyM+/PBDPPnkkwCA2NhYeHt7WyxeIiLqOseOHcPixYtx7Ngxa4dyXVqtFufOncPPP/+M7du3448//kBNTY21wyLq8QwGAy5cuIBdu3Zhx44dOHz4MMrKyqwd1jX1pNcuIiIiorbqUcu3OyI7OxsAmn2Qq62txRtvvIE33ngDnp6exiXaqampxrpz587F22+/bdmAiYioS2g0GqxatQqlpaVYtWoVhg8fDqVSae2wWlRWVoZNmzchu+giRFsJJDIJ9Ke12P/7Acy++VYMGjTI2iES9Uj19fXYvnUrLqamwlarg41EggyDHicOHcKYKVMQHR0NQRCsHaaJnvTaRURERNQevX6mZGuioqLw/PPPY/r06VAqlUhJScGZM2fg5OSEO+64A1u3bkVcXJzxsBsiIurZ4uLijLOhysrKms2g7y50Oh02bd6EzLKL8BvZHwOiB6N/ZCj6jx+Mejsdftj+I/Lz860dJlGP9OvPvyD/TBKi1K6YEByM6MBATA4MQj8IOPzbTqSmplo7xGZ6ymsXERERUXsJoiiK1g6ir4mKikJCQgIiIyMRHx9v7XCIiHq9/Px8LF26FHq93nhNKpVi1apV8PHxsWJkzaWkpODrTevhNyoISpWtSZkoikg/mozxg6Mxa9YsK0VI1DMVFxfj23XrEKZSwcvRqVn5iewcKPoH4Z4FC7rNbMme9NpFRERE1F59dqYkERH1DaIoYvXq1bj6O7jWrltbdnY2RDuhWUISAARBgKOnM5LTU7td3ETdXXZ2NsR6DTwcHFss93NxRnFuLqqrqy0cWct62msXERERUXsxKUlERL1abm4uEhMTYTAYTK4bDAYkJiYiNzfXSpG1TK/XQ5C0PktLKpNCb9BZMCKi3sFgMEAqAJJWZkHKJBJAFE1mJVpTT3vtIiIiImovJiWJiKhX8/PzQ0REBCQS07c8iUSCyMhI40Fn3YWHhwcMtVrotC0nHqtLKtHP26/bLC8l6inc3d2hk8pQWV/fYnlRVRVUzs5wcHCwcGQt62mvXURERETtxaQkERH1aoIgIDY2tlkSr7Xr1jZ48GCo7dTITc5qtjyzrOAShFoDIsIjrBQdUc8VEBAAtZ8vzhYWQnfVbMiy2lrkazQYGhEBmUxmpQhN9bTXLiIiIqL2YlKSiIh6PR8fH8TExBg/xAuCgJiYGHh7e1s5suZUKhVm3/IXKOtlSD9yDgXn81CcXYjz8WmoTL+E8SPHYtCgQdYOk6jHkUqluGnWLMDdHQeyspBcWICs0ktIyLmI+JISBI4YgZEjR1o7TBM96bWLiIiIqL14+rYV8PRtIiLL02g0iI2NRWlpKVxdXbF69WoolUprh9WqoqIiJJ5MRHJaCnQ6Hfr5+CF8RDhCQ0M5Q4qoEyorK3H69GmknDmDBo0Gand3hA0fjrCwsG4zS/JKPe21i4iIiKitut/Ii4iIqAsolUpMnz4dGzduxPTp0y3yob6srAxnz55FUXExbORyBAcHIzQ0FHK5/LptPT09cdONN+GmG2/q8jj7IlEUceTIEWzduhWHDh1CcnIyqqqq4OzsjIiICCxcuBDz589vVwJYr9djz5492LFjB37//XekpaWhrq4Orq6uiI6OxsMPP4xZs2a12DYrKwtBQUHX7H/06NE4evRou54nNefk5ISJEydi4sSJ1g6lTZRKJZYuXYrVq1cjNjaWCUkiIiLqNThT0go4U5KIyPIsPdsoMTERv+z+FdW6WsgdFNDr9ECtHv4e/RBzx1yo1eouuzdd3+7duzF9+nTj4+DgYLi4uCAzMxNlZWUAgFmzZmHTpk1QKBRt6vOTTz7Bgw8+CODyYSQhISGwt7dHRkYGqqqqAAAPP/wwVq9e3SzZeWVScvz48S32HxYWhjVr1rTviRIRERERdVPcU5KIiPqEuLg4Y7KprKwMcXFxXXavrKwsbN/5EwxqKULGD0FQ+ACEjByEfqP6I6v8Ijb/uBn6qw7aIMsSRRFBQUF4//33UVRUhPPnz+PEiRMoLS3Fl19+CYVCgR07duCFF15oV5/Dhw/HunXrUFZWhtTUVMTHx6O0tBRvvvkmBEHA2rVrsXr16mv2c+jQoRZ/mJAkIiIiot6ESUkiIur18vPzERcXZzzNWhRFxMXFIT8/v0vudyI+Hg1yLXwG9oNE8udbrcJOiX7DgpBVmIMLFy50yb2pbaKjo5GamopHH30UHh4eJmX33XefMRm5bt06GAyGNvV5xx134OTJk3jggQfg5ORkvC6TyfD0008bZ1EyuUhERMeOHcPixYtx7Ngxq8ZRXFyM1NRUnD9/Ho2NjVaNhYj6HiYliYioVxNFEatXr8bVu5W0dr2z9Ho9MrIy4OSlbnE/QlsHOxgUQE5OjlnvS+3j6Oh4zb09b775ZgCXZ9WWlJS0qU+1uuX/z6/uMzU1tR2REhFRb6PRaLBq1SqUlJRg1apV0Gg0Fo/h0qVLWP/deqz5fC2+jPsan3//JVatWYVjx46ZfWxERNQaHnRDRES9Wm5uLhITE5tdNxgMSExMRG5uLvr162e2+4miCFEUIZG2/r2fIJG0efYdWUd9fb3xd1tbW7P2aWdnd816jz76KFJSUiAIAgIDA3HjjTfitttuM5l1S0REPVdLW8osWLDAYvcvLy/H+g3rUVB3CZ4DvOHr6ghtow6XcoqwbdcO1NfXY/LkyRaLh4j6Lo5uiYgIOp0OVVVVJomY3sLPzw8RERHNEjoSiQSRkZHw8/Mz6/1kMhl8vXxRVVLRYnmjphFinR6enp5mvS+Z1/r16wEAI0aMgKOjo1n7vN6pzx9++CF27tyJ3377DWvXrsXcuXMRFRWFzMxMs8RBRETWY+ktZVpy/PhxFFQXo//IgXDycIFEKoXCVgHfUH/YB7jg8PEjqKystFg8RNR3caYkEVEfptFoEB8fj6SERNTXVEOQSOEfEoKoUSPh7+9v7fDMQhAExMbGYunSpS1ev9Zy246KDI9AxrbzKC8ohYu3q/G6QW9A7rkseDi5ITQ01Oz3JfOIj483HkbzzDPPmKXPLVu2YPv27RAEAcuWLWtWLpPJsGDBAtx9990ICwuDj48PLl26hB07duDf//43Tp48iZkzZyI+Pv66SdI1a9Zg7dq1bYorMzMTDg4OmDBhAr755psOPTciImqb620ps2LFii4Zl1xJp9Ph9LkzcPJVQypvng5w7+eB8xdTkJqaiujo6C6NhYiISUkioj6qoaEBmzdtQmFKKnztbDFAZY8GnQ45p05hc0YGbrptTq9JnPn4+CAmJgYbNmyAKIoQBAExMTHw9vbukvuFhYVhQn4+DiccQVneJdi7OkDXqENtSRXUShfcdtscKBSKLrk3dU5RURHuuOMO6HQ63H777bj77rs73WdKSgoWLlwIAHj88ccxbty4ZnX8/Pzw1VdfmVzz8fHBQw89hKlTpyIqKgoZGRn44IMP8O9///ua9ysoKEBCQkKb4ysvL0dKSkqb6xMRUcdYekuZlmg0GjRoG2CvUrdYLpFKIcglqKur69I4iIgAJiWJiPqs+Ph4FKakYrSPDxyUSuN1X2dnnMrNxZ5ffkFgYGCvSZ7FxMRg165dKC0thVqtRkxMTJfdSxAEzJgxA4GBgTh1+hTyCvNhL1dhXPRIjBgxAmp1yx8EyLoqKytx8803IycnB1FRUfj888873efFixdx4403orKyErfccgtWrlzZ7j5CQkLwt7/9DStXrsQPP/xw3aSkt7c3IiMj29R3cnJyr9y2gYioO2raUubUqVMme0tLJBKEh4ebfUuZliiVSijkCtTX1MPJw6VZuV6nh6FBf939j4mIzIFJSSKiPkiv1yMp8SR8bG1NEpLA5YTaIC8vHMjLRVpaGoYNG2bR2ERRRG1trcnjK7+tt7Oza7a0SaVSXXe5k1KpxNKlS7F69WrExsZCedXzNjdBEDBw4EAMHDiwS+9D5lFTU4ObbroJiYmJCAsLw6+//trpvSQLCwtxww03ICcnB1OmTMGmTZuueeL3tTTNrkxPT79u3SVLlmDJkiVt6jcqKqpdsyqJiKjjrLGlzNVkMhnCh47A7vj9cPPzgMzGNCVQklMEB4UKgwYN6vJYiIiYlCQi6oPq6+tRV12FYJWqxXKlXA5bABUVFRaNCwBqa2txzz33tKvN+vXrYW9vf9160dHR3B+Jmqmrq8OsWbNw9OhRDBgwALt27YKrq+v1G15DcXExpk2bhvT0dIwdOxbbtm3rVCLcxsYGwOW9wIiIqOey9JYyLRk1ahRSM9Jw4UQq3IO94ODqBG1DIy5dLIa2pB43TpphtkPeiIiuhadvExH1QXK5HBKJFA2tJDgMogitQTQmQoh6K41Gg9mzZ+PAgQMICAjA7t274eXl1ak+y8rKMGPGDCQnJyMyMhI///xzm5Lm15KUlAQAFlnaR0REXSsmJsa4lUtXbynTEicnJ9xz592ICBqG2vPlyDqcioKEbDg12mH2jL+0uPcxEVFX4ExJIqI+SKFQICh0IHJOxMPPxQWSq5YLFVZWQrS1RVBQkJUiJOp6Wq0Wc+fOxe7du+Hr64s9e/Z0+oCBqqoqzJw5E6dPn8bQoUPx22+/wcnJqVN91tTUYNWqVQCAmTNndqovIiKyPktvKdMStVqNeTHzUFZWhrKyMsjlcvj6+kImY4qAiCyHrzhERH1U1KhRyExLw8mLuRjs5QlbGxsYRBEFlZU4V1aK0NGj4eHhYfG4VCoV1q9fb3xcW1uLBx980Ph43bp1UF217Pzqx0TXo9frMX/+fPz000/w8vLCnj17EBwc3Ka2gYGBAIC33nrLZHZL0zLw+Ph4DBo0CLt3727zMvCHH34YN910E2bNmmVyuFRKSgoefPBBZGZmwt7eHv/85z/b/iSJiKjb6i5byqjVah7AR0RWw6QkEVEf5ePjg1tuvx27f/kFB/PzoIQArcEA2Nli0JgxmD5jhlXiEgThmktdVSpVp5fCEm3YsAFxcXEALs9YWbx4cat1P/zwQ0RERBgfZ2dnA7g8g/FK77//Pg4dOmR8fMcdd7TaZ1xcnMky8WPHjuH//b//B7lcjpCQEDg6OuLSpUs4f/48AMDFxQUbNmwwJkSJiIiIiHo6JiWJiPqwkJAQ+D/8MDIyMlBeXg65XI7g4GC4ublZOzSiLtXQ0GD8PSsrC1lZWa3WraysbHefKSkp16yr0WhMHv/rX//CL7/8gvj4eBQWFiI9PR12dnaIiorCzTffjEceeaTTe10SEREREXUngiiKorWD6GuioqKQkJCAyMhIxMfHWzscIqJuraamxuQ07raetE1E18cxCRERERFZC0/fJiIiIiIiIiIiIotiUpKIiIiIiIiIiIgsiklJIiIiIiIiIiIisigmJYmIiIiIiIiIiMiimJQkIiIiIiIiIiIii2JSkoiIiIiIiIiIiCyKSUkiIiIiIiIiIiKyKCYliYiIiIiIiIiIyKJ6dFLyp59+giAIEAQBgYGBHe5n06ZNmDp1KlxcXKBSqRAeHo633noLWq3WfMESERERERERERERgB6clKypqcHf/va3Tvfz9NNPIyYmBvv27YOrqytCQkKQlJSEf/7zn5g+fToaGhrMEC0RERERERERERE16bFJyWeffRY5OTmYM2dOh/vYvHkz3n77bSgUCmzZsgUZGRk4deoUkpKSEBQUhAMHDuDZZ581Y9RERERERERERETUI5OSR48exf/+9z/MmTMHt912W4f7WbFiBQBg+fLlmD17tvH6oEGDsG7dOgDA//73P5SUlHQqXiIiIiIiIiIiIvpTj0tKarVaPPTQQ7Czs8NHH33U4X7S09Nx6tQpAMDDDz/crHzatGkICQlBQ0MDtm7d2uH7EBERERERERERkakel5R87bXXkJSUhP/85z/w8/PrcD9Hjx4FAAQHB8PX17fFOhMnTjSpS0RERERERERERJ3Xo5KSycnJePXVVxEZGYl//OMfneorLS0NANC/f/9W6zSVpaamdupeRERERERERERE9CeZtQNoK1EU8dBDD0Gr1WLNmjWQSqWd6q+srAwAoFarW63TVFZeXn7d/tasWYO1a9e26d7JycltqkdE1J3pdDrja6mLiwvkcrmVIyIiIiIiIqKeosckJT/++GMcPnwYjz76KEaOHNnp/jQaDQDAxsam1ToKhQIAUF9ff93+CgoKkJCQ0Om4iIi6O71ej/j4eJw6cQI1ZZe/tFG5OGN4VBRGjRrV6S+NiIiIiIiIqPfrEUnJvLw8/Otf/4Kvry9eeeUVs/SpVCoBAI2Nja3WaWhoAADY2tpetz9vb29ERka26d7JycltSnQSEXU3oijit99+Q/LRo/CxUSDUxQUAUFBZgcM//YxLJSW4ZdYsSCQ9ancQIiIiIiIisrAekZT8xz/+gaqqKnz22WdwcHAwS58u//dBumnpYUuuXJZ4PUuWLMGSJUvadO+oqCjOqiSiHik7OxvJJ05gmFoNL0cn43UXOzu4VVfjVEIiBg0ejJCQECtGSURERERERN1dj5jK0pTAW7p0Kby8vEx+HnvsMQDAxYsXjdd+//336/Y5cOBAAEBGRkardc6fP29Sl4iorzt39ixstTqThGQTDwcH2OsNOJuUZIXIiIiIiIiIqCfpETMlmxQVFbVaZjAYjOXXWpLdZMyYMQCAzMxM5OXlwdfXt1mdgwcPAgDGjh3bkXCJiHqdirIyOCta34vXSalAZWmpBSMiIiIiIiKinqhHzJTMysqCKIot/nz22WcAgICAAOO1KVOmXLfPgQMHYtiwYQDQ4qnZe/bsQUZGBmxsbDB79myzPh8iop7KVqVCXaO21fL6Ri1sVSoLRkREREREREQ9UY9ISnZGYGAgAgMDERcX16zsxRdfBACsXLkS27ZtM15PTU3Fgw8+CODyknF3d3fLBEtE1M0NDA1FuSii5v8OArtSbWMDSg16DBw82AqRERERERERUU/S65OS2dnZyM7ORk1NTbOyuXPn4vHHH0dDQwNmz56NkJAQhIeHIywsDJmZmZgwYQJee+01K0RNRNQ9DRw4EN4hITiWm4vCqkoYRBEGUURRVRWO5+bCIygIgwYNsnaYRERERERE1M31+qTk9bz77rvYsGEDJk+ejEuXLiEtLQ1DhgzBypUrsWfPHiiVSmuHSETUbcjlctw29w74R0bgbG0ddmdmYndmJpJqauA9fDhui5kLhUJh7TCJiIiIiIiom+tRB920ZNGiRVi0aFGr5aIoXrePefPmYd68eWaMioio91KpVLj9jjtQXFyM/Px8AIC3tzc8PDwgCIKVoyMiIiIiIqKeoMcnJYmIyDo8PDzg4eFh7TCIiIiIiIioB+rzy7eJiIiIiIiIiIjIspiUJCIiIiIiIiIiIotiUpKIiIiIiIiIiIgsiklJIiIiIiIiIiIisigmJYmIiKjPEUURv//+O5555hlMmDABrq6ukMvlcHd3x8yZM/HNN99AFMUO979p0yZMnToVLi4uUKlUCA8Px1tvvQWtVnvNdsXFxXjssccQHBwMpVIJLy8v3HXXXTh58mSHYyEiIiIi6o6YlCQiIqI+Z8+ePRg/fjxWrlyJw4cPw9nZGSNGjIDBYMDOnTuxYMEC3HrrrWhoaGh3308//TRiYmKwb98+uLq6IiQkBElJSfjnP/+J6dOnt9pnRkYGhg8fjg8++ADFxcUICwuDKIrYsGEDRo8eja1bt3b2aRMRERERdRtMShIREVGfI4oigoKC8P7776OoqAjnz5/HiRMnUFpaii+//BIKhQI7duzACy+80K5+N2/ejLfffhsKhQJbtmxBRkYGTp06haSkJAQFBeHAgQN49tlnW4xn3rx5KCoqwk033YS8vDzEx8cjLy8Pzz//PBobG3HvvfeioKDAXP8JiIiIiIisiklJIiIi6nOio6ORmpqKRx99FB4eHiZl9913nzEZuW7dOhgMhjb3u2LFCgDA8uXLMXv2bOP1QYMGYd26dQCA//3vfygpKTFpt2XLFpw8eRJOTk749ttv4eTkBACQyWR4+eWXMWnSJNTU1OCtt95q/5MlIiIiIuqGmJQkIiKiPsfR0RFyubzV8ptvvhkAUFZW1iyB2Jr09HScOnUKAPDwww83K582bRpCQkLQ0NDQbCn2xo0bAQDz5s2Di4tLs7ZN/W3YsKFNsRARERERdXdMShIRERFdpb6+3vi7ra1tm9ocPXoUABAcHAxfX98W60ycONGk7tVtJ02adM12ubm5yMvLa1M8RERERETdmczaARARERF1N+vXrwcAjBgxAo6Ojm1qk5aWBgDo379/q3WaylJTU43XGhsbkZWVdc22/fr1g42NDRobG5Gamtpq0hMA1qxZg7Vr17Yp5uTk5DbVIyIiIiIyNyYliYiIiK4QHx+P1atXAwCeeeaZNrcrKysDAKjV6lbrNJWVl5cbr1VWVhr3rWytrSAIcHZ2RnFxsUnblhQUFCAhIaHNcRMRERERWQOTkkRERET/p6ioCHfccQd0Oh1uv/123H333W1uq9FoAAA2Njat1lEoFABMl4c3tetI25Z4e3sjMjLy+gHj8kzJ6/VHRERERNQVzJqUrKqqgkajgaurK6RSqTm7JiIioj7IkmOLyspK3HzzzcjJyUFUVBQ+//zzdrVXKpUALi/Hbk1DQwMA030qm9p1pG1LlixZgiVLllw/YABRUVGcVUlEREREVtHhpGRWVhZ+/fVX7N+/H0eOHEFBQQG0Wq2x3MnJCYMHD8bkyZMxefJkTJ8+nYlKIiIiapU1xxY1NTW46aabkJiYiLCwMPz6669t3kuySdOp2U3LuFvSVHblCdtOTk6QSCQwGAytthVFERUVFc3aEhERERH1VO1KShoMBvz4449Ys2YNdu/eDVEUIYpii3UrKipw5MgRHD16FCtXroSHhwcWL16Mhx56CIGBgeaInYiIiHq47jC2qKurw6xZs3D06FEMGDAAu3btgqura7v7GThwIAAgIyOj1Trnz583qQtcXrIdEBCAzMxMZGRkYNy4cc3aXbx40TiL8sq2REREREQ9VZuTklu2bMEzzzyDtLQ044eF/v37Y/To0YiIiICbmxvUajVsbW1RVlaGsrIyZGZm4o8//kB8fDyKiorw+uuv480338RDDz2El156Ce7u7l32xIiIiKh76w5jC41Gg9mzZ+PAgQMICAjA7t274eXl1aHnM2bMGABAZmYm8vLyWjwh++DBgwCAsWPHNmubmZmJgwcP4v7772+1nZ+fH/z8/DoUHxERERFRd9KmpOSUKVNw8OBBiKKIESNGYMGCBZg/fz68vb3bdBODwYDdu3fj66+/xo8//oiPP/4Y33zzDb766ivceuutnXoCRERE1PN0h7GFVqvF3LlzsXv3bvj6+mLPnj3o169fh5/TwIEDMWzYMJw5cwZr167FihUrTMr37NmDjIwM2NjYYPbs2SZlMTExWL9+PTZu3Ig33nij2RLttWvXAgDmzZvX4fiIiIiIiLoTSVsqHThwADNnzsSRI0eQmJiIp556qs0fGgBAIpFgxowZ+OKLL1BQUIDXXnsNNjY2SExM7HDgRERE1HNZe2yh1+sxf/58/PTTT/Dy8sKePXsQHBzcpraBgYEIDAxEXFxcs7IXX3wRALBy5Ups27bNeD01NRUPPvggAGDp0qXNZnTedtttGD58OCorK3HvvfeisrLSGOcLL7yAAwcOwM7ODk8//XSbYiQiIiIi6u7aNFPyyJEjGD16tFluaGdnh+XLl+Pvf/87srKyzNInERER9SzWHlts2LDBmFRUKpVYvHhxq3U//PBDREREGB9nZ2cDuHw4ztXmzp2Lxx9/HO+99x5mz56N/v37w97eHklJSdDr9ZgwYQJee+21Zu0kEgk2btyIiRMn4ueff4avry8GDRqEixcvori4GHK5HF9//TV8fHza9PyIiIiIiLq7NiUlzfWh4UoqlQphYWFm75eIiIi6P2uPLRoaGoy/Z2VlXTOZ2TRrsa3effddjBs3Dv/73/9w8uRJ5OfnY8iQIViwYAGeeOIJyOXyFtsNHDgQp0+fxiuvvILt27fjzJkzcHZ2RkxMDJ599lmTxCgRERERUU/XrtO3iYiIiHqDRYsWYdGiRR1q29rp4FeaN29eh/Z/9PT0xIcffogPP/ywI6EREREREfUYXZaU1Ol0OHPmDCQSCYYPHw5BELrqVkRERNQHcGxBRERERNR7tOmgm5akpqbi5ZdfxpdfftmsbN++ffD398fIkSMRGRmJoKAg/P77750KlIiIiHo3ji2IiIiIiPqODiclv/zyS6xYsQI5OTkm18vLyzF37lwUFhZCFEWIooicnBzMmjULhYWFnQ6YiIiIeieOLYiIiIiI+o4OJyX37NkD4PIpk1f65JNPUF5ejoCAAOzcuROHDh3CsGHDUFVVhQ8++KBz0RIREVGvxbEFEREREVHf0eGkZF5eHgCgf//+Jte3bNkCQRDw2muv4YYbbsC4cePw8ccfQxRF/Prrr52LloiIiHotji2IiIiIiPqODiclS0pK4OzsDBsbG+M1rVaL48ePQyaT4dZbbzVeHzduHGQyGTIyMjoXLRF12qVLl5Ceno6srCxotVprh0NkUceOHcPixYtx7Ngxa4fSIlEUkZ2djWPHjuHEiRMoLi62dkgWxbEFEREREVHf0eHTtyUSCWpra02uJSYmorGxESNHjoRKpTIpc3JyQnV1dUdvR9QjHTt2DKtXr0ZsbCyio6OtGktpaSl27t6F9KwMaLQaSCVSuDm5Ylz0WERFRfEUW+r1NBoNVq1ahdLSUqxatQrDhw+HUqm0dlhGly5dwtbt25BdmAMd9BBFEbZSBQb3H4Rbbr4FdnZ21g6xy3FsQURERETUd3R4pqSfnx+0Wi2Sk5ON13bs2AEAGD9+vEldURRRVVUFNze3jt6OqMdpSoCUlJRg1apV0Gg0VoulvLwc337/LU7nnIVDiBrBEwbDJyoQVTb12LpzO0+wpT4hLi4OZWVlAICysjLExcVZOaI/1dTU4LuN3+F8aRbch/kiZMIQDJgYBocQV8Snn8LmHzdDr9dbO8wux7EFEREREVHf0eGk5OTJkyGKIp566ikUFxfj5MmTWL16NQRBwC233GJSNzU1FVqtFj4+Pp0OmKin6E4JkGPHjqGguhjBI0Ph7KmGVCaFUmULv8EBsPNzwoGjB1FVVWW1+Ii6Wn5+PuLi4iCKIoDLCa24uDjk5+dbObLLTp06hfyKIgRFDoS9swMEQYAgCHD2VMNveCBSstJw4cIFa4fZ5Ti2ICIiIiLqOzqclHzqqaegUCjw66+/wtvbG1FRUSgpKcGIESMwY8YMk7q//PILAFh9+SqRpXSnBIhWq8Xpc2fg5KuGTN58xwZ3f09UN9YiLS3N4rERWYIoili9erXx7/F6160hKTkJtu72kNk0/xtVOdnDYCsgLb33/41ybEFERERE1Hd0OCkZGhqKrVu3IigoCKIoQhAEzJgxA1u2bGlW97PPPgMATJ06tcOBbty4EQ8//DBGjhwJHx8fKBQKODg4IDIyEs8//zxKS0vb3eeiRYuMs1Fa+2n60EOWpdFoUFlZicbGRmuH0m7dLQHS0NCABm0DbO1b3o9OKpNCaiNrto8b9V2iKKK4uBgXLlxAfn4+DAaDtUPqlNzcXCQmJjZ7HgaDAYmJicjNzbVSZH+qq6+HjVLRarlMIbPqFhCWYumxBRERERERWU+HD7oBgBkzZiAjIwMlJSVwcHBo8cAArVaLDz74AAAwatSoDt/rv//9L06dOgWFQgFvb28MHz4cxcXFSExMRGJiItauXYvffvsNI0aMaHff/fr1g7+/f4tlLi4uHY6Z2q+4uBjHjx/H+XPnYNDqILdVInTYMERHR8PR0dHa4bVJUwLkalcmQPr162exeBQKBRRyBepr6uHo7tysXK/TQ9+oa3aABPVNubm5OLBvH4qys2Fo1EIik8HVzxfjJk5ESEiItcPrED8/P0RERODUqVMmiUmJRILw8HD4+flZMbrL3F3dkV6e2WKZKIrQVjfAZVDfeD+y5NiCiIiIiIisp1NJySbu7u6tlsnlckyePLnT93jkkUcQGhqKsWPHQi6XG6+fOXMG8+fPR1JSEubPn4+zZ8+2u+/FixfjpZde6nSM1Dn5+fn4ccMGiJdKEezsDJWDAyrr63Fu335knz+PuXfdBWdnZ2uHeV3dLQEil8sxfMgw7D95CG5+7pBetYS7JKcIDjYqDBw40KJxUfeTm5uLH7//HjaVlRjh7g4npS1qGhpwPjsHO4ricPMdd/TIfyeCICA2NhZLly5t8Xp3OHl+xLDhSN2ehpryati7OJiUXcopgq2gRFhYmJWisw5LjC2IiIiIiMh6Orx829IeeughTJo0ySQhCQDDhg3DJ598AgA4d+6cyYmd1HOIoojdv/0GWVk5xgcFIcDVFW729ujv7o7xAQGou5iLQwcPWjvMNmkt0WHNBEh0dDS8HTxw/kQaKorKodfpoanVIDclG3W5lZg0ZmKPmYlKXUMURRw+eBDyykqMDgyCu70DbGQyqFUqjPT3h1NDIw7t3ddjT4D28fFBTEyM8e9PEATExMTA29vbypFdNmTIEAwfMBQFp7ORl5KDmvJqVJVWIuvMeVRnl2Ni9Hh4enpaO0wiIiIiIiKzaVNSMi8vr0tuXlBQYJZ+Bg8ebPy9rq7OLH2SZeXl5aHkYi5CPTwglZj+s7SRydBf7YLz586hurra7PcWRRE1NTXGn+rqahQVFRl/qqurTcpramquuy9kd0uAuLi44J4778GwfoNRnVGKC4eSkR+fCQeNErNn/AXjxo2zSlzUfZSWlqIgMxP9Xd0gaSGhPsDDAxWFhbh48aKVIuy8mJgYqNVqAIBarUZMTIyVI/qTVCrFbXNuwy2Tb4JDgxJlZwtQmVIMXxsPzL3l9l45K7C7jy2IiIiIiKhrtWn5dkhICB566CE888wz8PHx6fRN4+Li8PLLLyMmJgYvvPBCp/s7dOgQAMDe3h6hoaHtbr93716cPXsWpaWlcHZ2RlRUFBYsWICAgIBOx0ZtU1FRAbGxAS52LR/G4qqyR0phISorK+Hg4NBinY6qra3FPffc064269evh729/TXrxMTEYNeuXSgtLe0WCRA3Nzfcc9fdKCkpQXl5OeRyOfz8/JrNPqa+qa6uDnqtFo62ti2WOygUMGi1PfpAJKVSiaVLl2L16tWIjY1tca9Ca5LL5Rg/fjxGjx6NiooKSCQSODs7QyLpMYsa2qW7jy2IqP1EUURFRQV0Oh0cHR2hULR+gBcRERFRm5KSPj4++Oijj7Bu3TrMnj0b9957L2655RZIpdI23+j8+fP45ptv8PXXX+P8+fMQBAGBgYEdjRsGgwGFhYX47bffsHz5cgDA66+/ft1EUUsOHDhg8njz5s1YsWIFXnnlFSxbtqxNfaxZswZr165tU10uMW/OxsYGokSCRr0eClnzf5YarRaCVApZC2XdVXdNgLi7u19zrzbqm2xtbSGVyVGj0cC2hUR1TUMDJHIZ7Fr54qCniI6ORnR0tLXDuCaZTAY3Nzdrh9HluuPYgqg3O3bsmHFM0hWvg2lpaTjyxxHkFOTCIBqgUtohPGwExo0b1+PfO4iIiKhrtCnDk5KSgg8++AD//e9/sWHDBmzcuBHOzs4YPXo0oqOjMWLECLi7u0OtVkOhUKC8vBxlZWW4cOECjh07hj/++AMpKSkALn+DOnPmTLz11lsYOnRouwN+77338MQTT5hci46OxhdffIGbbrqpXX0NGDAAb7/9NqZNm4bAwEAoFAqcPn0ab7/9NjZu3Ijly5fD3t6+2eEILSkoKEBCQkK77k9/8vf3h52LC7JKSxHawr5pWaWlUPv5wsPDwwrR9W6iKCIvLw+5ubkQRRFeXl4ICAjotbOzCKivr8e5c+dwIT0djQ0NcPPywpAhQ+AR4I+MtHS42tubLOEWRREZJSVw9PSEv78/KisrkZqaiurqaiiVSgwYMIB/m9Ru3WlsQdTbaTQarFq1CqWlpVi1ahWGDx9u1i9LT548iW2/bYfWVoTrAHfIbOSoLq3EnhP7cTEvF3ffeRdsW5mJT0RERH2XIF5vc7wrlJeXY82aNfh//+//ITMz83IHbTi0QxRFyOVy3H777XjkkUcwceLEDge8ceNGvP/++9DpdMjJyUFhYSHkcjnmzp2LVatWme105kceecTY38WLF687A7O9MyXr6+sRGRmJ+Ph4c4TbKxw5cgS///or+tupEKBWQyaVolGnQ0ZJMfJFETfdcYfJ/qHmIoqiyZLU2tpaPPjgg8bH69atg0qlMmmjUqmu+29fo9EgNjYWpaWlcHV1xerVq7vNbMkmVVVV2LZjOzKyz6NR0AICINNL4e/phzmz5/SJ2Vp9zaVLl7Bl0yZU5ObBTSaHQiZFqUYDrVKJgCGDcTEjA3Y1tRjg7g4nW1vUNjQgo+QSyuUyzLxtDqqrq/HH/v3QV9dAJZFAYzDAYGuLQRHhmD5jRpfMZq6pqTHZYqEt2ydQz9EdxhZ9WVRUFBISEjgm6eW+/vprbNiwAaIoQhAE3HnnnViwYIFZ+q6rq8NHa1ah0dEA31B/k7/fhjoNsk9k4OYJM/k3SkRERM20Kyl5pV27duGXX37BgQMHkJiY2OKJrF5eXpg0aRKmTJmCuXPndsmS0dOnT+Pvf/87Dh48iPDwcJw4caJdS79aU1lZCQ8PDzQ2NmLLli2YPXu2GaK9jB8AWmYwGHD48GEkHjkCXXUNFIIADQClizPGT52K8PBwi8RhrgRIV34AMAetVouvvvkaGcUX4DWoHxzUjhAEAbWVNchPzoGPyhMLF9zP5E8votfr8dXnn6M+Kxuj/P2NWyWIooicsjKk1dUhYuIE5GZloSQ3D4bGRkjkcjh7eWLcpEnQarXY+eOPCLSxQbCbO6QSCQyiiILKSpwrL0PE1KmYOnWq2eNmUrLv6C5ji76EY5LeLz8/H0uXLjX5e5JKpVi1apVZ9nNNSEhA3C+bETxuEGTy5l9M5aXkwKFBiUeWLDXLGJ2IiIh6jw5PaZk+fTqmT58O4HJyo7i4GCUlJdBoNHB1dYW7u7vZZi1ey/Dhw7Fjxw4EBwfj5MmT+O6773Dvvfd2ul8nJyeEhYUhMTER6enpZoiUrkcikWDixIkIDw9Heno6NBoN7O3tMWDAgB635Cc/Px9xcXHGU7pFUURcXBymTZtmlg8A5pCWloYL+ZnwH9kfStWf/31VTvYIihyIC0dScObMGYwdO9aKUZI5ZWZmojQ3F2N8fEz2bhUEAQGuriiuqUFhfj7uXbgQBQUFqKmpga2tLXx9fSEIAr789FO4i8AAjz+3WJAIAnydndGg0yHpRDxGjRrFhCF1WHcZWxD1FqIoYvXq1bh6DkLT9RUrVrRpZvK1VFRUQKKUtZiQBACViwOqz5ehoaGBe0sSERGRCbNsGieXy+Hr64vw8HCMGTMGAwYMsOiHBgcHB0yePBkAzPotv42NDQBAp9OZrU+6PgcHB0RGRmLcuHEYPnx4j0tIXu8DQAcnJ5tdWnoaBHuZSUKyicxGBqWbCudSeShTb1JQUACl3gDHVrYR8HFyQnFuHhobG+Hr64vQ0FD4+/tDKpXi0qVLKC8sgr9a3WLbfi4uaKyuQnZ2dlc+BepDrD22IOoNcnNzkZiYCIPBYHLdYDAgMTERubm5nb6HQqGAQatvdXzTWN8AmVQGeQuHqBEREVHf1mtOsmhKHJorgajT6Ywb6Pv5+ZmlT+obLPEBwBw0DRrIbFr/gCBX2kCjqbdgRNQ9tPyhUqfTQTQYYNPKnpEyiQQQxRaX2xIRkXX4+fkhIiKi2eF1EokEkZGRZhnjDhgwALaCAuWFpc3KDAYDKvJLMTQ0jElJIiIiaqZXJCXLysqwb98+AEBERIRZ+lyzZg0qKyshk8kwbdo0s/RJfYMlPgCYg5vaDQ1V9a3ObKirqIGHG09U7k28vb2hkUpQpdG0WF5QWQkPPz8oFIpmZc7OzpDb2aGkurrFtmW1tZDYKKBuZSYlERFZniAIiI2NbbZEu7XrHeHh4YGIsBG4lFaISxeLYdBf/lK2vroOmQnpUMudMGrUqE7fh4iIiHqfHpGU3L9/P1555RVkZWU1K0tISMCNN96IyspK+Pr6Yt68eSblgYGBCAwMRFxcnMn1nTt3Yvny5c32i2xsbMSHH36IJ598EgAQGxsLb29v8z4h6tUs8QHAHIYOHQpb2ODSxeJmZVUlFRBqDRg+bLgVIqOuEhQUBFc/P5zOz0fDFbPKRVFEdmkpyiUShEdGtvhv1M7ODqHDhyGzshJ1jY0mZVq9HiklJfAICICvr2+XPw8iImo7Hx8fxMTEGF/bBUFATEyMWce3N868EZMix6PhYg0yDp1D+qGzKEjMho+tB+6aeyc8PPglJ1F3ZjAYoNFouG0ZEVlchw+6saTy8nI8//zzeP755+Hl5QVfX19IpVJcvHgRBQUFAABfX19s37692QELTfub1dTUmFyvra3FG2+8gTfeeAOenp7G2WupqanGunPnzsXbb7/d1U+PeqGmDwBXnr5t7g8AneXl5YWJ0ROw58g+1FRUQ+3tBkEQUFFUhsZLdRg9bBQGDBhg7TDJjKRSKf4yZw62bNqE/Tk5cJPJoZBJUarRoFGpwMgpkzFo0KBW248fPx5Fefn4/cIFeCuVcLazQ11jA3Kra6Dw8sSMm27sNkl3IiL6U0xMDHbt2oXS0lKo1WrExMSYtX+5XI6bbroJY8aMwYULF6DT6aBWqxEUFMQTt4lacezYMaxevRqxsbGIjo62SgyNjY1ISEhAwskEVNRUQiqRYsjAwRg1chS8vLysEhMR9S09Iik5btw4vPPOO9i3bx/Onj2LtLQ0aDQauLi4YOrUqbj11lvx4IMPwsHBoc19RkVF4fnnn8eRI0eQnp6OlJQUaLVauLu7Y+bMmVi0aBFuvfXWLnxW1Nt19QeAzhIEAZMnT4arqyuOxx9HfloBRADuzq4YOeMGREZGNluCTj2fm5sb5t9/P86dO4eMtDRoGxvR39MTQ4cONZ6y3RqVSoWYu+9CYmIizp48ieKaGsgUCgwdNQoRERFwcXGx4DMhIqK2UiqVWLp0qTEBomzlwLPOcnZ2RmRkZJf0TdSbaDQarFq1CqWlpVi1ahWGDx/eZX+XrWloaEDcpjicy06F0k0F+yAnaBu0OJJ8HMnpKZh3WwyCgoIsGhMR9T2C2F2OAu5DoqKikJCQgMjISLOeFk7mUVNTg3vuucf4eP369c1m4LZVd/gGtC1EUURVVRVEUYSDgwNnNdB1iaKIxsZGyOXyLk9em/NvkohMcUxCRGR5X3/9tcmKqjvvvBMLFiywaAyHDh3CTwd+hV9EEOwcVcbrosGAzFMZcJe4IPahJTykioi6FKdBEXWh6OhofPrpp906IQlcnjXp5OQEZ2dnJiSpTQRBgEKh4GxaIiIionbIz89HXFyc8bBJURQRFxeH/Px8i8Wg0+mQcDoRKi9Hk4QkAAgSCXxD/VFUUYyMjAyLxUREfRM/TRIRERERERF1MVEUsXr1aly9WLG1612ltrYWlTVVcHBzarFcYacEbCQoKyuzSDxE1HcxKUlERER9UmFhIb766is8+uijGDt2LGxtbSEIAqZMmdKh/rKysiAIQpt+/vrXvzZrHxgYeN12Go2mk8+aiIisJTc3F4mJiTAYDCbXDQYDEhMTkZuba5E4ZDIZJIIE+saWT9sWRREGnR4yWY84goKIejCzvcqUlJQgOzsbdXV1mDRpkrm6JSIioj6qq8cW3333HZ544gmz9adUKjF+/PhWyzUajXHfxnHjxrVab+jQoXByann2CrdMICLqufz8/BAREYFTp06ZJCYlEgnCw8Ph5+dnkThUKhWC/YNwNi8Vzl7qZgcdVhSVwVai5EE3RNTlOp2U3Lp1K1566SWcOnUKwOV9xnS6P79xKS8vNx5Q8P3337c6yCYiIiICLDe2cHR0xPTp0zFq1CiMGjUKiYmJ+M9//tPhuL28vHDo0KFWy7/44gssWrQItra2uOuuu1qt9+GHH3Z4tiYREXVfgiAgNjYWS5cubfH61cnBrjQmejTObzyP3OQseAb7oqasCtVlVaivroOmrA6TRo2Hh4eHxeIhor6pU0nJ119/Hc8999w1975wcXGBra0ttm7diri4ODzwwAOduSUREfUyP/30Ew4fPtxquV6vN3n8yiuvXPNApjlz5nT7w6WodZYcWyxevBiLFy82Ps7Ly+tQP231+eefAwDuuOMOODo6dum9iIioe/Lx8cFtt92GTZs2Ga/ddttt8Pb2tmgcQUFBmHPzbPy4bQt+j98LraCHoJRAIgqwE5QoKinGpUuX4ObmZtG4iKhv6XBS8ujRo3juuecgk8nwxhtv4L777kNYWBiKi4ub1V2wYAG2bNmCnTt3MilJREQm8vPzcfr06TbXP3v27DXLJ06c2NmQyEp689giKysL+/fvBwAsWrTIusEQERHhcmLS3t4ezr6ucApwhVKlhKOjIwQ9kHs2Gxt+2Ii/3nd5hj8RUVfocFLy/fffBwD861//wmOPPXbNupMnTwYAJCYmdvR2RERE1Mv15rHFF198AVEU4e/vj2nTpl2z7urVq/HWW2+hvr4eXl5emDhxIu699144ODhYKFoiIuoq+fn5+PHHH02u/fjjj5g5cyZ8fHwsGktSUhJKakoxdEI4ZDamqYHAiBBkHk1DcnIyIiMjLRoXEfUdHU5KNi21+/vf/37dum5ublCpVMjPz+/o7YiIqA/wUigQZKcyuaYzGHC8ssL4eJSTM2RXHfZxrroKlbqWT5CknqO3ji1EUcQXX3wBALj//vuve1jN999/b/L422+/xfPPP49vv/0WM2bMuO791qxZg7Vr17YptuTk5DbVIyKizhNFEatXr262RUnT9RUrVlh0X8nU9FQo1HbNEpIAIFfYQO6sQFp6GpOSRNRlOpyULC4uhoODQ5v3mFAoFKiuru7o7YiIqA9wlssxQGVvck0URfS/4ppcEJoN2LPq6piU7AV669hi//79yMzMBHDtpdtTpkzBDTfcgFGjRsHf3x+NjY04dOgQXnjhBSQmJmL27Nk4fPjwdT8cFhQUICEhwZxPgYiIzCA3N7fFGf4GgwGJiYnIzc1Fv379LBZPo7axxYRkE5lchkZto8XiIaK+p8NJSZVKherqauj1+mseOAAANTU1qKiogLu7e0dvR0REfZQgCLCx4KwBsp7eOrZoOuBm4sSJ6N+//3XrNbGzs8Nf/vIX3HDDDZgwYQISEhKwbNky7Nq165r38/b2bvOsluTkZNTX17epLhERdY6fnx8iIiJw6tQpGAwG43WJRILw8HD4+flZNB4vdy9kpeVCFMVmX/iKooj68jp4+PMEbiLqOtdeP3QNoaGh0Ov1bTqc4Mcff4TBYEB4eHhHb0dERES9XG8cW9TU1CAuLg5Axw+4sbW1xX//+18AwN69e1FeXn7N+kuWLEF8fHybfgYPHtyhmIiIqP0EQUBsbGyzBGBr17va8OHDYaOToTSvpFlZSU4RbKHA8GHDLRoTEfUtHU5Kzp49G6Io4rXXXrtmvdzcXDzzzDMQBAFz587t6O2IiIiol+uNY4u4uDjU1tbCzs4O8+bN63A/48aNA3B5id+FCxfMFR4REVmYj48PYmJijAlIQRAQExMDb29vi8fi7++PiaPGo/pCGTJPpqOs4BLK8i/hQkIa6nIqMHXcZIsfvkNEfUuHk5J///vf4evri02bNuH+++9HUlKSsUyr1SI9PR3vvPMOoqKikJ+fj4EDB2LhwoVmCZqIiIh6n944tmhakh0TE9Op07NtbGyMv+u4fyoRUY8WExMDtVoNAFCr1YiJibFKHIIgYOrUqbhzdgz6OwVAk1UNTXY1Ql2Dcfdtd2H8+PFWiYuI+o4O7ylpb2+Pbdu24cYbb8TXX3+Nb775xlimVCqNv4uiCB8fH/z444+Qy+Wdi5aIiIh6rd42tsjMzMSBAwcAdHzpdpMrE7SW3nOMiIjMS6lUYunSpVi9ejViY2NN3uMsTRAEhIWFYciQIWhoaDDGR0RkCR2eKQkA4eHhOHXqFP76179CoVBAFEWTH7lcjkWLFuHEiRMIDQ01V8xERETUS/WmscUXX3wBURQRGBiIKVOmdKqvlStXAgCGDBkCX19fM0RHRETWFB0djU8//RTR0dHWDgXA5eSkUqlkQpKILKrDMyWbeHl54ZNPPsGqVasQHx+P/Px86PV6eHl5YdSoUbCzszNHnERERNRHdPexxYQJE5Cbm4vHH38cjz/+eIt1RFHEl19+CQBYuHDhdQ8veOutt6BQKDB//ny4uroar5eWluLZZ581Hpbz8ssvm+dJEBERERFZWaeTkk0UCoVxE3YiIiKizurqscXFixcRERFhfKzRaAAAhw8fhpubm/H6smXLsGzZMuPj3NxcZGdno6KiotW+9+/fj8zMTAiC0KZ9L3Nzc/H+++/jscceQ2BgINzd3VFfX4/k5GTodDpIJBK89tpr3f5gHyIiIiKitjJbUpKIiIioJ9Hr9SgtLW12XafTmVyvq6trd99NB9xMmjQJQUFB161/9913AwD++OMP5OTk4NSpU5BKpQgODsbkyZOxdOlShIeHtzsOIiIiIqLuymxJyfr6elRUVECr1V6znr+/v7luSURERL1YV48tAgMDIYpiu9tlZWVdt87nn39uTEy2xZgxYzBmzJh2x0JERERE1FN1KilZU1ODN954A9999x3Onz9/3fqCIECn03XmlkRERNSLcWxBRERERNQ3dDgpWVxcjEmTJiE9Pb3Nsww6MhuBiIiI+gaOLYiIiIiI+o4OJyWfe+45pKWlwc7ODk899RRuvPFGeHp6QibjNpVERETUfhxbEBERERH1HR0e5W/fvh2CIODzzz9HTEyMOWMi6jWOHTuG1atXIzY2FtHR0dYOp5n8/HycPHUSmTlZECCgf2AwwsPD4enpae3QiKgP4tiCupuGhgZUVlZCLpfD2dkZgiBYOyQiIiKiXqPDScnKykrY2Njg9ttvN2c8RL2GRqPBqlWrUFpailWrVmH48OFQKpXWDssoISEBP+/+BbXQwN7dEaII7D91GAlJiZh9060ICwuzdohE1MdwbEHdRW1tLY4ePYqU06fRWFsHQSqBp78/Ro0ejZCQEGuHR0RERNQrSDrasF+/fpDJZJBKpeaMh6jXiIuLQ1lZGQCgrKwMcXFxVo7oT4WFhfh59y+Amw0GjB0CnwH94DuwHwaMGwKdI7Dtl+3G2ImILIVjC+oO6urq8MOGjTizdx98tFqMdHHBUDsV6tLSsX3DRpw5c8baIRIRERH1Ch1OSt52222oq6vD8ePHzRkPUa+Qn5+PuLg44wEMoigiLi4O+fn5Vo7sspOnTqJW1MBngJ/JUjRBEOA7KABV2hokJSVZMUIi6os4tqDuID4+HqUXLmBsv34IcfeAs50dPB0dMSogAJ6iAQd27UJ9fb21wyTq0woLC7Fr1y58++WX2PDddzh+/Dhqa2stdv9jx45h8eLFOHbsmMXuSUTUG3U4Kbls2TIEBAQgNjYWFRUVZgyJqGcTRRGrV69udiJsa9etISc3BypXhxb3xpJIJFA42yEnN8cKkRFRX8axBVmbTqfD2cRE+NrZwc7GxqRMEAQM9PBEQ3kF0tLSuiwGURRRU1Nj/KmurkZRUZHxp7q62qS8O4wriCzp2LFj+O6zz5C8bz+EixehSUvDwa3b8M3nn6OwsLDL79+0RVNJSQlWrVoFjUbT5fckIuqtOrynpKurK3bt2oX58+djyJAhWLJkCUaOHAkHB4drtps0aVJHb0nUI+Tm5iIxMbHZdYPBgMTEROTm5qJfv35WiOxPEokEor71DzGiKEIi4fJJIrIsji3I2jQaDTR1dXCxs2ux3EYmgxJAVVVVl8VQW1uLe+65p831169fD3t7+y6Lh6g7uXDhAg7v3IlAmRz9g4ONX7A36nU4kXMR23/8EQsfeAByubzLYmhpi6YFCxZ02f2IiHqzDiclAUAmkyEwMBDHjh3Dyy+/fN36giBAp9N15pZE3Z6fnx8iIiJw6tQpGAwG43WJRILw8HD4+flZMbrLQoJCcOHobhgMBkgkphOm9To9GsvrERQeaJ3giKhP49iCrEkul0Mqk6Feq22x3CCKaBRFKBQKC0dGRABw6uRJqBq0CPHxNbluI5Uh3NcXh/LzkJaW1mUHNra2RdO0adPg4+PTJfckIurNOrx8OysrC+PGjcPGjRsBXH5Bvt7PlQkaot5KEATExsY2Wxrd2nVrGD58OJwVjsg+cx56nd54Xa/VIfv0ebjZqzF06FArRkhEfRHHFmRtCoUCwYMHI6eyEvoW/m3lVZQDdnY8gZvICgwGAy5euABvx5ZnBtvZ2MBeBAoKCrrk/j1hiyYiop6mwzMlX3jhBeTn58Pd3R2vv/46brzxRnh6evLETCIAPj4+iImJwYYNGyCKIgRBQExMDLy9va0dGgBArVbjjltvx4/bt+D878mQOykgioCusgFu9mrMnXPHdZdLEhGZG8cW1B2MHDkSWalpOJGTg8FeXnBUKqEzGJBbXob0qioMnTABarW6y+6vUqmwfv164+Pa2lo8+OCDxsfr1q2DSqUyqU/Ut1z7C/6uSg72hC2aiIh6mg4nJXfv3g1BEPDtt9/ihhtuMGdMLdq4cSN27tyJhIQE5Ofno7S0FDY2NhgwYABmzZqFxx9/HK6urh3qe9OmTfjoo49w8uRJNDY2YsCAAViwYAEee+yxLt2PhHq3mJgY7Nq1C6WlpVCr1YiJibF2SCZCQkLw8OKHcPbsWVzMvQhBEBAwKgBDhgzh3lREZBWWHlsQtcTT0xO3xszFrl9+xR8F+ZDqDdCJIuQO9hgxeTImT57cpfcXBOGa78MqlYrv09QnSSQS+AUGovBMEgJb+NxX39iIaqDLllH3hC2aiIh6mg4nJSsqKmBra4tp06aZM55W/fe//8WpU6egUCjg7e2N4cOHo7i4GImJiUhMTMTatWvx22+/YcSIEe3q9+mnn8bbb78NAOjfvz9UKhWSkpLwz3/+E9u2bcNvv/3GfYOoQ5RKJZYuXYrVq1cjNjYWSqXS2iE14+joiLFjx2Isxlo7FCIii48tiFrj7++PhQ8sRnZ2NsrLyyGTyRAUFARHR0drh0bUp42IiMDWlFScLylBsJubcVskrV6Pk3l5cPL2woABA7rk3k1bMS1durTF691hiyYiop6mw3tKBgQEGJelWsIjjzyC/fv3o7q6GpmZmTh+/Diys7Nx+vRpDB06FMXFxZg/f367+ty8eTPefvttKBQKbNmyBRkZGTh16hSSkpIQFBSEAwcO4Nlnn+2iZ0R9QXR0ND799FNER0dbOxQiom7P0mMLomuRSqUIDg5GVFQURowYwYQkUTcQHByMsdNvQJZOh4OZmTibn4+TuRexLzsLooc7Zs2ZAxsbmy67f9MWTU3vU91tiyYiop6mw0nJO++8ExqNBnv27DFnPK166KGHMGnSpGbLqYcNG4ZPPvkEAHDu3DkkJye3uc8VK1YAAJYvX47Zs2cbrw8aNAjr1q0DAPzvf/9DSUlJZ8MnIiKi67D02IKIiHoWQRAwZswY3LloIQZMnACdrw/kwcGYcOutuHfRIoucgB0TE2PcV7Y7btFERNSTdDgpuXz5coSFheGhhx5CZmamOWNqt8GDBxt/r6ura1Ob9PR0nDp1CgDw8MMPNyufNm0aQkJC0NDQgK1bt5onUCIiImpVdxpbEBFR9+Xj44OZM2diwaJFuPveexEdHW2xvVabtmhyd3fH0qVLu+UWTUREPUWH95TcuHEjHnzwQbz00ksYNmwY5s6di+jo6Oue2Hv//fd39JatOnToEADA3t4eoaGhbWpz9OhRAJeXAPj6+rZYZ+LEicjIyMDRo0fxwAMPmCdYIiIialF3GlsQERG1Jjo6mtszERGZQYeTkosWLTLupSGKIr7++mt8/fXX12wjCILZPjgYDAYUFhbit99+w/LlywEAr7/+epu/IUtLSwNw+XCb1jSVpaamdjJaIiIiuh5rjy2IiIiIiMhyOpyU9Pf3t8pG9O+99x6eeOIJk2vR0dH44osvcNNNN7W5n7KyMgAw7gfSkqay8vLy6/a3Zs0arF27tk33bs++l0REXUmn06GyshISiQROTk6QSDq8qwdRp1lrbEFERERERJbX4aRkVlaWGcNoO19fX4wfPx46nQ45OTkoLCzEyZMn8eWXX2LMmDFwdnZuUz8ajQYArnk6m0KhAADU19dft7+CggIkJCS06d5ERNam1Wpx4sQJnElIQG1FBQRBgIunJyJGjcKwYcOYGCKrsNbYgoiIyNKOHTuG1atXIzY21uJLwXU6HbKyslBfXw87OzsEBARAJutwaoCIqMN63CvPvHnzMG/ePOPj06dP4+9//zvWr1+P5ORknDhxAlKp9Lr9NG1I3NjY2GqdhoYGAICtre11+/P29kZkZOR16wGXZ0q2JdFJRNQVdDodtm/bhszEk/C1tUWokzP0ogF5efnYlbsZlZWVmDhxorXDJCIiIuqVNBoNVq1ahdLSUqxatQrDhw+32IE5Z8+exd4De1FUXgK9qIdUkMLTxQM3TJlmcoAsEZEl9Lik5NWGDx+OHTt2IDg4GCdPnsR3332He++997rtXFxcAPy5jLslTWVNda9lyZIlWLJkSZtijoqK4qxKIrKalJQUXDh9GiM9PaFWqYzX3e0dkHnpEuIPHcLAgQPh6elpxSiJiIiIeqe4uDjjZ82ysjLExcVhwYIFXX7f5ORk/LDjRxgcBfiODIZSpYSmth6FF/KxadsPiBHmYtCgQV0eBxFRk16xeZiDgwMmT54MAIiPj29Tm4EDBwIAMjIyWq1z/vx5k7pERL3B2TNnoIZgkpBsEuDqCkltHfe+JSIiIuoC+fn5iIuLgyiKAC4f7BYXF4f8/Pwuva9er8e+g/ugdwD8h15OSAKAUmWLgKHB0NqL2H/oAAwGQ5fGQUR0pTbNlHz55ZcBAG5ubli6dKnJtfZ64YUXOtTuenQ6ncn/Xs+YMWMAAJmZmcjLy4Ovr2+zOgcPHgQAjB071kxREhFZX3lJCbzs7FoskwgCHOUyVFZUWDYo6nN6wtiCiIjInERRxOrVq40Jyauvr1ixosv29c7Ly0NhaTE8w/s1u4cgCPAI8Eb+mVzk5eWhX79+XRIDEdHV2pSUfOmllyAIAkJDQ40fHJqutVdXfHAoKyvDvn37AAARERFtajNw4EAMGzYMZ86cwdq1a7FixQqT8j179iAjIwM2NjaYPXu2uUMmIrIapZ0d6qurWy3X6PVQWGhfI+q7uvvYgoiIyNxyc3ORmJjY7LrBYEBiYiJyc3O7LCFYX18PnUFnnCF5NaVKCZ1ebzwQlojIEtqUlJw0aRIEQYC/v3+za5awf/9+HDx4EAsWLEBgYKBJWUJCApYsWYLKykr4+vqaHIIDwFj/rbfeQkxMjEnZiy++iJiYGKxcuRIjR47ErbfeCgBITU3Fgw8+CABYunQp3N3du+aJERFZQWhYGI5mZ2OgTgebq05aLK+rQ51UipCQECtFR32FtccWRERElubn54eIiAicOnXKZJm0RCJBeHg4/Pz8uuzeDg4OsJHKUVtZCwe1Y7Py2qpa2MjkcHBw6LIYiIiu1qakZNMsxOtd6yrl5eV4/vnn8fzzz8PLywu+vr6QSqW4ePEiCgoKAAC+vr7Yvn077O3tTdpmZ2cDAGpqapr1O3fuXDz++ON47733MHv2bPTv3x/29vZISkqCXq/HhAkT8Nprr3X9EyQisqBhw4Yh6eRJ/JGTgzBPT7jY2UEEUFRVhXOXLsF3aBiCgoKsHSb1ctYeWxAREVmaIAiIjY01rhC4+npXfjHn7e2Nfl79cOFCDuxdHEzuJRoMKL5QgBDvQB50SEQW1eaDbhYvXownn3yyK2Np1bhx4/DOO+9g9uzZUKlUSEtLQ2JiIvR6PaZOnYp33nkHycnJCA8Pb3ff7777LjZs2IDJkyfj0qVLSEtLw5AhQ7By5Urs2bMHSi5hJKJeRiqVYsDgwSiGiJ9TU7Dl9Gn8lpGOc3V1CIqKwuw5cyCVSq0dJvUB1hxbEBERWYOPjw9iYmKMSUFBEBATEwNvb+8uva8gCLhh6jQ46G2RcTwFlSUVaKhvQGVxOTJOpMLBYIcbpk7jigUisqg2zZQEgM8//xxeXl545513ujKeFnl4eOCJJ57AE0880e62V28i3JJ58+Y1W/ZNRNQb5efnY/vmzagpKkI/iRR19vYorq+HQSLBjdOmGg8BI7IEa44tiIiIrCUmJga7du1CaWkp1Gp1s23GukpAQADmz7sH+w8eQGZaJkr1OsilcgzpNxCTJkzkATdEZHFtnilJREQ9W319PbZv3gwUFWNSP39EBwZiysBQzB02HMEKJY4dPIji4mJrh0lkMYWFhfjqq6/w6KOPYuzYsbC1tYUgCJgyZUqH+2w6rOdaP6tXr261vVarxZtvvokRI0ZApVLBxcUFU6dOxQ8//NDhmIiIqHtRKpXGswuWLl1q0dV5/fr1w733zMffFsfigfl/xdIHYjH/7nuYkCQiq2jzTEkiIurZUlJSUF1YhMn+/lBcccCNVCLBcF9fHMjMxOnTpzF9+nQrRklkOd99912HVmG0hYeHBwYMGNBiWWtL9DQaDWbMmIFDhw5BKpUiLCwMtbW12LdvH/bt24fly5fj9ddf75J4iYjIsqKjoxEdHW2VewuCADc3N7i5uVnl/kRETZiUJCLqIy7m5MBZIjFJSDaRCAK87OyQnZEBMClJfYSjoyOmT5+OUaNGYdSoUUhMTMR//vMfs/R988034/PPP29Xm+XLl+PQoUMICgrCzz//jNDQUADA1q1bceedd2LlypUYP348br31VrPESERERERkTVy+TUTURxgMBkivsXm5RBBgMBgsGBGRdS1evBg7d+7Eq6++ittvvx0eHh5Wi6WoqMi4rPuTTz4xJiQBYPbs2Vi2bBmAy8vDiYiIiIh6g3bNlGxsbMTBgwfbdHhMayZNmtThtkRE1HFe3t7ITEiATq+H7KrTtUVRRFFtLQKHDbVSdNRXcWxx2datW9HY2IgBAwZg6tSpzcqXLFmC//znP0hISMD58+fRv39/K0RJRERERGQ+7UpKlpeXd2rzd0EQoNPpOtyeiIg6LiwsDPG//44z+fkY4ecHyf/NmhRFEedLStBoq8Sw4cOtHCX1Nb11bHHq1CnMnz8fhYWFcHBwwPDhw3H33XcjLCysxfpHjx4FAEycOLHFcl9fXwQFBSEzMxNHjx5lUpKIiIiIerx27ynZmZkMRERkPQ4ODpjxl7/g161bsf/CBXjZ2UEikaC4rhaNSluMnzGDJy+SVfTGscXJkydx8uRJ4+OtW7fiv//9Lx577DG89dZbkF41WzktLQ0Arpls7N+/PzIzM5GamtolMRMRERERWVK7kpIuLi7YtGlTV8VCRERdbODAgVAvWoTTp08jKz0dBoOIwGFDMXzECPj5+Vk7POqDetvYwsfHBy+//DJuvPFGBAcHw8HBAWlpaVi1ahVWr16N9957D3K5HG+88YZJu7KyMgCAWq1ute+msvLy8mvGsGbNGqxdu7ZN8SYnJ7epHhERERGRubUrKWljY4PJkyd3VSxEZGbl5eVITk5GbW0t7OzsEBoaCjc3N2uHRVbm5uaGadOmAdOmWTsUol43tnj44YebXRs2bBg+/vhjBAUFYfny5Xj33XexdOlSBAYGGutoNBoAl/97tEahUAAA6uvrrxlDQUEBEhISOhA9EREREZHltHv5NhF1f6Io4sCBAzh07HfU6usgVcqg1+iw9/A+REeMwg3Tbmi2dJCIiLrWU089hffffx/5+fnYunUrHn30UWOZUqkEcPngn9Y0NDQAAGxtba95H29vb0RGRrYppuTk5OsmOYmIiIiIugKTkkS9UHx8PHb/vhf2/s4I8Q+ERCKBaDCgNP8SDhw/BFulbauHKRARUdeQSqUYPXo0Nm/ejPT0dJMyFxcXAH8u425JU1lT3dYsWbIES5YsaVNMUVFRnFVJRERERFbBpCSRGYiiiNra2mbX6urqjI/t7Owg/N9pxwCgUqlMHpuLTqfDkWNHIXe3hUegt/G6IJHAzc8DWk0j/kg4hlGjRhln5hBR12toaEBxcTEAwNPT85rLdKn3avr//eoTwwcOHIjDhw8jIyOj1bbnz5831iUiIiIi6umYlCQyg9raWtxzzz3tarN+/XrY29ubPZaCggJcqiyFV4R/i+Vu/TyQnZuOnJwcfrAlsgCtVovDhw8j/nQiqmqrAABOKkeMDI/CuHHjIJPxrbgvSUpKAoBmB0uNGTMGn332GQ4dOtRiu7y8PGRmZhrrEhERERH1dJK2Vpw0aRLGjRvXlbEQkRnodDoYRANk8pYTHTK5DAbRAL1eb+HIiPoevV6Prdu2YueR3Wh0MsA7MgDekQFocDLgl0M7sW3bNhgMBmuHaTV9bWyxY8cOnD17FgAwc+ZMk7I5c+ZALpcjPT0de/fubdZ2zZo1AICIiAiEhIR0fbBERNTrXLp0CWfOnEFSUhIqKiqsHQ4RUdtnSu7bt68LwyAic1Gr1VDKlagqrYSrr3uz8qpLlbC1UcLV1dUK0RH1LRkZGTiZchpew/zhoHY0XvcO8YPKxQGJZ09h6NChGDBggBWjtJ6eOraYMGECcnNz8fjjj+Pxxx83Xj979iw++OADLF26FCNGjDBeNxgM+P777xEbGwsA+Mtf/oJRo0aZ9Onp6YklS5bgo48+wgMPPICff/4ZoaGhAIBt27bhjTfeAAC8+OKLXfzsiIiot6mpqcEvv/6C5POpqNfWQxQBe4UKwwYNxcwZM7ilExFZDdeMEZmBSqXC+vXrTa7V1tbiwQcfND5et24dVCqVSZuu4OTkhLCBQ3As9QQcXZ0gV/65b52uUYfi8wUI6xcKDw+PLrk/UXfQXfZ5PXvuLKCSmiQkmzi6OqHEtgBJZ5P6bFLS2i5evIiIiAjjY41GAwA4fPgw3NzcjNeXLVuGZcuWGR/n5uYiOzu72SwTrVaLtWvXYu3atVCr1QgICIBMJkNGRgbKy8sBABMnTsRXX33VYjxvvPEG4uPjceTIEYSFhWHo0KGoqakx7iX51FNPYc6cOWZ57kRE1DdoNBp8H7cB54sy4RHiAz9PF4gGEeWFpTiSdAw1NdW46867IJVKrR0qEfVBTEoSmYEgCNfdH1KlUnXJHpItmTZ1KoqKi5B5LA0qLyfYOdhBU1uP6sIK+Dh64saZN1okDiJr6S77vJZVlENpb9tqucLBFuWVFWa9J7WdXq9HaWlps+s6nc7k+pXJ7GsJDAzEK6+8giNHjiA5ORkZGRnQaDRQq9W4+eabMX/+fNxzzz2tfvCztbXFvn378O677+Kbb75BWloabGxsMHnyZPzjH//A3LlzO/ZEiYjIqq7+stSSX5SeO3cOF/IzETAqBAq7yzMiBakAV193KO1tkXwyFRkZGcbZ+URElsSkJFEv5OjoiHvvmY+EhAQknE5EXWkVlDYKjB41FVFRUXBycrJ2iER9gr3KHjnF+a2WN9Y1wMHbMl9WUHOBgYEQRbHd7bKyslq87uzsjOeee65TMdnY2GD58uVYvnx5p/ohIuqJamtrcebMGaQkJaG+thbOrq4IGz4cgwcPhlwut3Z4HdbeL0vN+UVp0rkkyF2UxoTklVRO9hDtJEhOSWFSkoisgklJol7K3t4ekyZNwoQJE9DY2IiysjLk5OTg7NmzcHd3R3BwMJdpEHWxsMFDkJRxFvU1dbC1tzMpq6+ug6FaiyHThlgpOiIiou6jrKwMmzduRFVuHryUCjjLbVBx/gJ2pmcgfWgYbp0zBzY2NtfviEzU1Na2mJBsYmNrg9q6GgtGRET0JyYliXo5jUaDHT/tQPL5VGjERghSARIt4OvujdmzZsPHx8faIRKZXXfZ53XQoEEYcDIEKYnpcA/xgrOnGgBQUViGkvOFGOw/EAMHDjT7fYmIiHoSURTx688/oyE3DxP9/aGQ/fkxtaKuDidOn8EfXl6YOHGiFaPsmdTOLigsvtRimSiKaKjRwNnP2bJBERH9HyYliXoxg8GAH7f8iDPZyfAK9UU/d2cIgoD66jrkpuTg+00bsGjBQri4uFg7VCIAQAdW0l5uB9OG3WWfV7lcjnlzY/Drb7/iXHoySlIKAAD2CjuMHhyFmTNm9ujlaEREROZQUFCAwswshHt4mCQkAcDZzg79VHY4m5iI0aNHW3y2pDn2g7z6y1JLflE6bOgwJG05h9qKGqicTcc9lcUVkGulCAsLM9v9iIjag0lJol4sKysLqVnp8B0eAHtnB+N1Wwc7BEUMwPmjKUhMTMS0adOsGCX1dba2fx4Eo+1gVlJr+LOdnZ3dNWpanp2dHW6/7XZMLpuM/PzL+0v6+vryywAiIqL/U1RUBDQ0wLWVZJyXoxMulpaioqICHh4eFo3NHPtBXu/L0q78ojQ0NBTDQsJw6lQSHP1c4OylhmgQUVZQirqCKowZPgoBAQFdcm8iouthUpKoF8vIyIDOxmCSkGwilUlh7+mIpJSzTEqSVV05CG80GDrUR6P4ZztLnXLfXmq1Gmq12tphEBERdTsSiQQGiDCIIqQtnDqtNxgAiQCJRGKF6Ho2mUyG22+7He6H3JFw5iQK8rIBAXCxd8aUyTdizJgxZjvpm4iovTqdlKyrq8O6devw66+/Ijs7G/X19Th//ryxvLKyEjt27IAgCO36homIOq+xsRESm9YPs5ErbKAp00AURQ5GyGquTCI2dDApeWW77pqUpLbj2IKIqG/p168fpCoVCquq4Ovs3Kz8Ynk5nLw8ucqgg2xsbDBt2jSMGzcOJSUlkEgk8PDw4BYy3ZAoihA7up8RkRUJgtChnEKnkpInT57EnDlzkJuba/zDuToIR0dHvPLKK0hNTYWnpydnZBFZkIuLC/RJWhgMhha/Wa4tr0agmy8TkmRVnZ0pKYoitExK9hocWxAR9T1qtRoDwsKQcuwYbOVyqP9vGbdBFHGxrAzFBj2mjhwJqbT1L9u7ijX3gzQ3pVKJfv36WTsMukp9fT0qKytRXV0NnU5n7XCIOkwmk8HBwQFOTk4mW3RdS4fnv5eWlmLWrFm4ePEiIiMj8dZbb8HR0bFZPUEQ8MADD0AURWzdurWjtyOiDhgyZAhUUjucP5GC9BMpOHv4FDLiU1BeWIrq8iroKhoQPjzc2mFSH9fZpKRWND3mhknJnotjC6KeT6fToa6uDoYOzny/Unl5OQ4ePIgfNm/Gtu3bcO7cOWi1WjNESd3RDTNmwG/YMMSXluLQhQuIz87GgcxMZDQ2ImrKFISHh1slrqb9IJt+rk46Nu0H2fTDL/upPaqqqpCVlYXy8nImJKnH0+l0KC8vR1ZWFqqqqtrUpsMzJd99910UFBTghhtuwK+//gqJRII333wT1dXVzerOmjUL//znP3HkyJGO3o6IOkClUsFOrkRKcgrgJIPSyRb6ah2y07NgCxtMmzAVQ4cOtXaY1MeZLt/Wt7v91Uu+u/MMBbo2ji2Ieq6SkhIcP34cSSlnodXr4KCyR+TwCERFRbV5tsSVEhIS8Oue31Ctq4XMQQGDTo8/Th9HoJc/Yu6IgXMLS3ypZ1MqlbgjJgZZWVlIT09Hg0aDQCcnDBo0CF5eXtYOj8js6uvrkZeXB+DyeNjFxQVKpZJ7p1KPZDAYoNFoUF5ejpqaGuTl5UEul193DNDhpOS2bdsgCALeeOON6/7RhIaGQi6Xm+wHRURdb9++fSiuK8PgScNRo6tDTW0tABGiiwEo0ULtooZMxvOuyLquTEoaAOhEA2RC2wdjV86utLOzs8rSLjIPji2Ieqbc3Fx8t2kDyhoq4OyrhsrWHtUVNfjp4K9Iy0jH3XfeBTs7u1bbV1VVITs7GzqdDm5ubtBqtdix62dI3BUICRlifD3Q1Gpw4dR5/PDjZiy8736+3vdCEokEwcHBCA4OtnYoRF2usrISwOWxsJ+fH2fZUo8mkUiMs8lzc3NRU1ODysrKrktKXrhwATY2Nm2aRi8IAhwdHY1/dETU9Wpra5GYdBIuAW7wCPSCCBE6rRYGUYRcJkdOahYO/H4Anp6eCA0NhVKptHbI1Eddvdy60WCATNqxpCSXbvdsHFsQmYcoiqitrTV5XFdXZ3xsZ2dn8uFXpVJ1+MOwwWDAjp9/QiVqEDJmMCT/9/rt7KlGQz8N0k+k4/fff8f06dObtdVqtdi7dy/izySguuFyvDYSOTSVdRBdpBg0oL9JXEqVEn5DA5F1MhtZWVno379/h2ImIuoOmlaCuLi4MCFJvYYgCHBxcUFNTQ2qq6uvO9O9w0lJg8EAmUzWpj8eURRRU1PDJXVEFpSfn4/q+hoE+vgAAAQIkMttUFNbg8zMTFTVVKGyoBhffP8VfL18MD56HEaPHs03RLI4hUIBGxsbNDY2AricZLRrx+QXJiV7D44tiMyjtra2XSfTr1+/vsOvn9nZ2ci7lA/vcH9jQrKJwk4JJz9XJCadxIQJE0y+ABVFEb/8+guOnD4Gl0A39Pe93L66tArHfz4MByc1GrWNUNgoTPq0c1RBLxeRk5PDpCQR9ViiKBr3kOTkEOptmv5N63Q6iKJ4zbF9hzcr8PX1RV1dHYqLi69b9/jx42hoaEBQUFBHb0dE7SSKIkSIwBUvAHX1dTh/4TyqtbVQqlWwdVbBZ7g/NA4G/LT3F/z+++9WjJj6MtN9Jdt3OEIDk5K9BscWRD1PaWkp9BID7Bxb/oLA0c0JdZr6ZhveFxUVIfHcKbiHesM9wAtSmRSCIEDlbA87Z3s0GBpRUlLSYp+CRDDLQTpERNYiin8e08g9JKm3ufLf9JX/1lus29GbTJkyBQDw2WefXbfuihUrIAgCZsyY0dHbEVE7eXl5QaVQoaKozHitqKgIDaIWDm5O0FY3QC6Vw9HdBb4D+8HW1xGH/jiMmpoaK0ZNfdWVs93aewI3Z0r2HhxbEPU8MpkMol6EQd/ya7euQQuJRNJsD+u0tDRo0AhnT7XJdYlUAntHBxga9CgrL7v8BesVGjUNEOsN8PT0NO8TIerl6urqkJ+fj5KSkusmCYiILKXDy7cfe+wxfPrpp3j11VcRFRXV4j4xRUVFePLJJ/Hzzz9DoVDgkUce6VSwRNR2jo6OGDYoDEeSjkHlbA+50gYVVZVQ2iuhq2tEXV4VfH18YaO0AQB4+HviQm4KMjIy2rSfG5E5OTg4GH9vb1KyQfyz/pX9UM/DsQWReahUKqxfv974uLa2Fg8++KDx8bp160y+DOrMNghBQUGwt1GhLP8S3Pp5NCu/lFuCIE8/uLi4mFyvr68HZAKKswtx6WIRNPUNsFHawN3XA25+HihNvIQ621qIBhGC5PKqD4PegItns+Dp7I6BAwd2OGaivqSmpgaHDh3CqXOnUddYD6kgga+7D8aOGYshQ4ZYOzwi6uM6nJQMCwvDq6++imeeeQY33ngjIiIijJvNz58/H9nZ2YiPj4dWqwUAvP/++/D39+/QvURRxJEjR7B161YcOnQIycnJqKqqgrOzMyIiIrBw4ULMnz+/3XvhLVq0CF988cU16/z888+46aabOhQ3mYder8fFixdRXV0NpVKJgIAA2NjYdKrPpj08RFHsUF8NDQ2QSqXd/uTqG6bdgPKKCqSeSIeoElBTXglBKgC1BqjVLvAP+3PZo1QugyCTXP6QQL1eTU0NKioqIJPJ4OHhYfVlI51Zvs2Zkr2HJccWRL2ZIAjXfD1UqVRme710cnJC1LAI7I8/BIlMAhcvVwiCAL1Wh8IL+ZDVihg7fUyzcbpSqUTh+XwUFRVB7qyAzNUGtfUaVJ5Lh6ODI+wUdtBcrEFmQjrsXR2h0+pQU1QJN1sX3HbrnE6PBYn6grq6Oqzf8B0uFGfDxd8NXq7u0DXqkHOxALnbNmFWXR1Gjhxp7TCJqA/rVEZl2bJlcHV1xdNPP42EhATj9e+//944JdzZ2Rnvvfce7r///g7fZ8+ePSazJYKDgxEUFITMzEzs3LkTO3fuxPr167Fp0yYoFIpr9NSyfv36tfqh5upvdcmyLly4gH27dqGioBCiTgdRIsDe1RWjJ05EeHh4hw5lueuuu0xOoNy2bVu7+4iJiTH+PmLECLzyyivt7sMS7OzscM9dd+PcuXM4efoULqUXQu6kROCIYKh93SGV/XmaiLahEaJW5EyzXq66uhqHDh5EetJZ6OrrIUilcPHyxMgxYxAWFma1g46u/HDc/uXbeuPvPPSk57PU2IKIzGfatGnQ6XRIOHsSl84XQSKXQmzQwVHhiJtnzMKgQYOatSktK4VW0MEp0AUOns7G6zqNFqVnCiCtMeDmKTdCLxpQUFQAe7ktxo2OwogRI6BWq5v1R0TNHT9+HJlF2QiKHgAb5Z+fkx3UjshLu4jdB/Zi0KBB/FKXiKym09O8HnjgAdx1113YtGkTDh8+jPz8fOj1enh5eWH8+PGYN28enJycOnUPURQRFBSExx9/HHfffTc8PP5cGvLVV1/hoYcewo4dO/DCCy9g5cqV7e5/8eLFeOmllzoVI5lfVlYWtsfFwaGuHqM9PeGoVKK+sRHnL13C3u3bAQARERHt7rfphF9z6e57ssjlcowYMQIjRoyAm9oVh5KOwsXHzSQhKYoiCs/nQ+3gjJCQECtGS12ptrYWm77/HlVZ2Qh2doablycatDpk5xfgt82bUV9fj1GjRlkltt5y0I0oXj4R9vz582hoaICzszOGDBnSqffBhoYGZGRkoLq6Gra2tujfv7/Vn2dXs8TYgqi7OHz48DXLNRqNyeM//vij1ZNaBUHAuHHjzBZbW8nlcsyaNQujRo1Ceno6Ghoa4Ojo2Gqyo66uDumZGfAbHIBqQx2qy6qgVNlCIhGg1WohOEghqRUwYcIEeHt7W/z5EPUGer0eiWdOwt7LySQh2cQryBsXClOQmpqKqKgoK0RIbfHBBx8gJyfH2mF0iL+/Px599FFrh0HdnFnWntrb22PhwoVYuHChObprJjo6GqmpqZDL5c3K7rvvPly8eBHPPfcc1q1bh9dee83qyxCp80RRxNHff4dtTS2iAgONs7dsbWww1McHQn4+/jh4EGFhYe1evuPg4IDy8nKzxdqTkgPjxo3DhewLuHA8FW6BnrB3cUCjphElOYWQ1gDTb7yp1Q861PPFx8ejIjsb4/39ofy/11OVjQJqlQqpRYU4un8/Bg8ebJV/0yYzJcWOL9+25kxfjUaDLVu34NyFFOikBgg2EhjqdNj/+wHMmDK9QwP+M2fOYNe+3SitLgPkEohaPRyVDhg3aizGjx/fq9/vunpsQdRdvPHGG+06Sfq9995rtczGxsYqSckmHh4eJpMHWlNcXIwaTS0CRwSjtq4ORcVFqCuvgyiKkEllCAgKRK2uHBUVFUxKEnWQRqNBbX0t7H1bnlkslcsgUchQVVVl4cioPXJycnA+LQ3OLeRCurOK/9tqx9ymTJmC/fv348UXX+TEsi6WlZWFzz//HM7Oznj88ce77D7de0O8/+Po6HjN8ptvvhnPPfccysrKUFJSwtP4eoGysjIUZmVhmJtbi8tJg93dcSAvF1lZWe3e6Nze3t6sScmetNzZxcUF8++aj/0H9iM5IwUVGSWQSqTwc/fGhKnjMXjwYGuHSF1Er9fj3MmT8FOpjAnJKwW7uSMnO9tq35Z3bvl295gpueOnn3DqfBK8h/rD3sUBgiDAoNej8Hw+duz6Cfb29ggNDW1TX6Io4sCBA9i4dRN0jiIcvV3g6q6Gk6MTKvLL8NvBXZBKpVZNPhARdZQgCBAEAaIeUKvVcFG7QKPRwGAwQGGjgCACFy5UWW1LEaLewMbGBnKpHA11DS2WiwYD9I16TkjoAZzlctzi4WXtMNrlp+JCa4dAnZSVlYUVK1YgICCgZyYlt2/fjp07d0IikeCWW27BjBkzuupWJgdz2Nratrv93r17cfbsWZSWlsLZ2RlRUVFYsGABAgICzBkmtUN9fT0MOj1UrcyCtJXLITGIzZY0tUVnkxbaq7716UkzJQHA1dUVd9x+ByoqKlBZWQmFQtEtDjqhrqXRaNBQVw8nW7sWy+VSKewkEtTU1Fg4sst6+vLtoqIinMs4B4+BPnBQ//lFmkQqhc/AfrhQk4Zjx49h4MCB1/2QLYoi9u/fj282fIsGRwOc/NxRLzYiOz8HtiW26B8UDIPegN+PH0FkZGSf+jBhybEFkTU4y+SQXvUaYRBFlOv+HHu4yOSQXFFHJ4qo1HXNjJSu4uXlBSeVE8ryL8FngB8ECLBV/jmGL8kuhIOtPfz8/KwYJVHPJpfLMXRQGA4lHYVbPw9IpKZj/bL8UthJFDzJnoisqsNJyR9++AFPP/00Zs6cidWrV5uUPfnkk3j//feNjz/44AM8+eSTePPNNzse6TWsX78ewOUDR643q7IlBw4cMHm8efNmrFixAq+88gqWLVvWpj7WrFmDtWvXtqlucnJyu2PsaxwcHCC1kaOivh6qFg4vqtZoAJm0QwmIq2c2iqLYrm/ir07a9LSkZBNnZ2c4OztbOwyyEBsbG0ht5KhtaPnbcr3BAI3B0KEvdsyhozMlDaII7RX7ulrr7zE7Oxv1hgb4ebZ8OJraxw05Fy6ipqbmurOrU1NT8ev+36CVG+A20AsK58uJZNFgQPWlKmRmZyIkMAQ5ef+fvfuOk6o+Fz/+OdNnd2Z7742y9F4EFRFBRECxG4kkJvGaxMTk3us1mnKNSbzxF1PMNbmKJho1iQo2FKJUGx0WlrKd7WzvM7PTzpzfH8sOO1tgd9m+3/frhS92zjlzvoM7M9/znOf7PPkUFhaOqQznkTS3EIThcF1YGGaNbza70ulzTnshy7Bdo8vFB1UVQzbGgaDX61kwex47Pv+ExgB/AiOCvK+ppb6ZhqJarp27dNTOsQRhpJg/fz5ZedmcO55L9IQ4/INMyG6ZurJqmorruXrOVYSGhg73MAVBGMf6nRr1wQcfUFxczNVXX+3z+PHjx/n973+PoijEx8eTmpqKoij89re/Zd++fVc63i6OHTvmvXB57LHH+nTshAkTePbZZ8nIyKChoQGbzcbBgwe54447cLlc/Nd//Rd/+tOfevVcFRUVHD9+vFd/OmZ2Ct0LDAwkYeJEztXX4+4UoFAUhdzqagKjovqVzdp5guvoIUjTk85Byf50fBeEoabVapk4bRqlzc24ZbnL9rKGBiR/PyZMmDAMo/O9WdCXoKSrU/3J4bqAdbvdSCpVjzc41DoNHsWD2+2+7HMdyziOW6egNWhR6y8GJySVCv8QMzZ7KzaHDUVSBrxx13AbKXMLQRhJJElCp1J5/4yVJc1XXXUVi6cvoDG3mvyDWRRlFpB3KIva0+eZPWkm11133XAPURBGvfDwcO6+/S4SA2KpPlVG7qenKfgiC0+Vg+WLrhUrDoQxoaioyFsWBGDXrl2sWLGCoKAg/P39Wbx4Mdu2bbvkc5w+fZpvfOMbpKWlYTQaCQ4OZubMmTz66KPk5+d32b+qqop///d/Z/LkyRiNRgICAli4cCF/+MMfepyft4+xqKiITz/9lDVr1hAeHo5KpeK9994DIOlCP419+/Zx8uRJ7rzzTqKiolCr1T41pT0eD2+88QYrV64kLCwMnU5HXFwc999/P9nZ2Zd8rdu3b+fWW28lJiYGvV5PVFQUS5cu5Te/+Q1NTU1AW+3O9u/h4uJi79ilTjdGB0K/MyWPHDkCwPXXX+/z+F/+8hcAbr31Vt5++21UKhUPP/wwzz//PJs3b2bZsmX9H20nVVVVbNiwAbfbza233srdd9/dp+OfeOKJLo8tXLiQt956i+985zv86U9/4oknnuCrX/3qZS90o6OjmTNnTq/Om5WVJQKTvbBk6VLeKSvjQFERKSEhBPkZsTqcFNbWYjP5c9P116NWqy//RJ10/n/Z0tLSp+WPLS0tPj+PlYsDYeybN28e57KzOVRSzOTwCEL8/XHJMsX19RTZrMy65hqCg7vP9Bts/v7+3r87PJ5eZzB3XLotSRJ+ft0vTx9sYWFhqNzQarFhNHUdQ3N1I4GmwMtmSbpcLkrLSwmNDaeluQVnix2N8WJgUq1Rgwbqq+vQSpox14F6JMwtBEEYGmq1mptvvpkZM2aQlZVFU3MTJpOJyZMmk5ycLMrKCMIAiY2N5YFNX6e0tJS6ujq0Wi3JyckiE1kYk1566SW+9a1vERoaSlpaGufOnePgwYOsX7+eN998kzvuuKPLMc8//zzf//73keW2Gqvp6ek4HA7y8vLIzMzEz8/Pp6nOyZMnWblyJdXV1W1lEqZNw2azcfjwYQ4fPsxbb73Fjh07elzF+89//pMnnniCgIAA0tLSur1++eyzz/jVr36FWq0mPT0ds9nsvTay2Wzcfvvt7NixA4CYmBimTp1Kfn4+f/vb33j77bfZunUrq1ev9nlOt9vN1772NV5//XWgrazbjBkzqKur49ChQ3z55ZfMmzePZcuWMX36dOrq6jh9+jR6vZ558+b16/9Hb/Q7KFlTU4NGoyEqyrfg6ieffIIkSfzXf/2XdzLx+OOP8/zzz3PgwIErG20HTU1NrF69mpKSEubOncsrr7wyYM8N8Ktf/YqXXnqJxsZG9uzZw7p16y65/4MPPsiDDz7Yq+eeO3cux48fH4hhjmkRERFsuPtuvvziC3Jyc5Gbm1FpNERMnMCKpUtJSkrq1/N27uJusVgIDw/v9fHDVXNPEK5USEgIt9x5J7s/+YSM4hI81VUokgpDUCDzV6wY1qYpHSfGCm010rS9CEp2zKr09/cftovY1NRUYsKiKM8uIWX2RJ+6TdYmC7bqZpZdcxUazaW/dtsnGxq9ltDIMKrKqzGE+KHSXLwBoygKjaV1TI+ZTEJCwuC8oGEy3HMLQRCGliRJJCYmijrugjDIVCqVeK8J48L3vvc9nn/+eR588EFUKhWyLPPDH/6Q5557jn//93/ntttu87le2LFjBw8//DCKovDjH/+YH/3oR94goSzLbN++3ef57XY7t912G9XV1Sxfvpy///3v3kbLR48eZf369ezfv5+HH36YV199tdsx/vjHP+bxxx/npz/9qTc20blXxs9//nPuv/9+nnvuOW/yRnti23e+8x127NjBggUL2Lx5MzNmzADakht+8Ytf8POf/5yvfOUr5OTk+MQ5fvzjH/P6669jNpt58cUXufPOO73/Fi0tLT6v5Y9//CP79u3juuuuIyoqii+++KIf/zd6p99BycbGxi4ZH3V1deTn5xMcHMyCBQu8j0dHR+Pv709FxcDUu7FYLNx4441kZGQwdepUPv74437VkryUwMBApk6dSkZGBnl5eQP63ELvRUREcOuGDTQ1NXkzGkNDQwc0O7Fz5uNA7y8II0lUVBT3btzI+fPnaWhoQKPRkJiYOGy1JNt1vlvv9HjQ9iLAOFI6b6vVatbetJY3t75F/oGzmKOD0el1WBqacdXbmZ461ed7sScajYakhCTOVOYQn55Ey4Fm6jIrMEab0Zn0OC0OWgrqSAyMZ9UNq8ZcJtFwzi0EQRAEQRCE0e3+++/noYce8v6sVqt55pln+Oc//0lpaSmZmZnMmjXLu/2xxx5DURS+//3v89RTT/k8l1qtZu3atT6PvfnmmxQUFGAymXj77bcJCQnxbps3bx4vvPACa9eu5fXXX+fJJ5/sNpHqxhtv7HKuzis3p06dyosvvuizMtRoNHL27FleffVVwsPD2bZtGxEREd7tWq2WJ598klOnTvHuu++yefNmHn/8cQAqKyu9y7//9re/ccstt/icz2w29zrJbqD1+2rGZDLR1NTk04m4PXq6ePHiLvtrtdrLZoj0hs1mY82aNRw8eJAJEyawa9euQSvOq7vQ+bk3NcCEwRUYGEhcXBxhYWEDvlxaBCWF8UaSJGJjY5k2bZq3Dspw02q1Pl/Gva0rORI6b7eLi4tj0333c92ca9A3SrjKrMToIrh11Xpu23BblyztnsydPQdNq0RTTQPpi6cTHRWNu9xG85kaGk5VEqUL41tf+8aYzHYYrrmFIAiCIAiCMPp1F1jT6/XeQGRBQYH38YKCAjIzM72rcXqjfcn0xo0bfQKS7W6++WYmTZqEx+Phk08+6fY5Nm3adNnzbNy4sdtSdVu3bkVRFNavX+8TkOyoPeDYse76Rx99hMPhYNKkSV0CksOt3zP5yZMnc+jQIbZv38769euBtqixJEldCtTbbDaamppISUm5osHa7XbWrVvHZ599RmJiIrt37+6yxGuguN1ub4HQuLi4QTmHMDL0dTn2eFm+XVVVRUlJCbIsExkZSWJi4pjLyhJGFpPJ5F264OhlUHKkZEq2Cw0N5YYbbmDFihV4PJ5+1b1NS0tj5TUr2P35HkrPN2AM9iM0KgxnnY2p8ZO59657epyEjHbDMbcQBEEQBEEQxoaemna2L0vueC1/9uxZABITE4mOju7V8+fk5AAwbdq0HveZNm0aOTk5PTacSU9Pv+x5etonMzMTaGvms3Tp0m73aWxsBKCsrMz7WPtr7e4m/3Drd1Byw4YNHDx4kG984xtkZ2dTUVHBm2++iUql6lI89MiRIyiKQnJycr8H6nK5uO2229i9ezexsbHs2bOH+Pj4fj/f5bzwwgs0NTWh0WhYvnz5oJ1HGH4iU9KXzWZj+47tZBVk0+pxIEkqNB4VcZGxrFuz1vuBLggDzWQyUVtbC4BTGZ1ByXaSJPUrINl+7OLFi0lKSuL06dNUVFWgC9AxYckE0tPTh62Zz1AY6rmFIAiCIAiCMHZ0bJ7ZUXtyjaIo3seam5sB+tQ4sj0WcKlr4vbEuZ7iBj2NsTf7tAcci4qKKCoquuRz2Gw279/781qHSr+Dkt/97nd5/fXXyczM5PHHH/f+z3344Ye7ZC288847SJLENddc069zybLMvffey/bt24mKimLPnj29zoxoX8P/m9/8httvv937+M6dO9m1axff+MY3fKLpTqeTF154gf/4j/8A4N/+7d96HTUXRieRKXmRLMu8+967nC7JJnJiLHERQUiShLXJQnFOKW9ufYv7v/LVEflhJox+HYOKvc2U7Ljf5TpbjzbR0dHj7vtnKOcWgjASKZffZcCOEgRBEITxrL0vSVNTU6+Pab/eqKqq6nGfyspKn30HUvv10jPPPMN//ud/9vq4/rzWodLvoKTBYOCLL77g97//PQcOHCAoKIibb76Ze+65x2c/p9PJp59+SkJCAitXruzXud566y22bNniPe/Xv/71Hvf94x//yOzZs70/FxcXA10DSVarlWeeeYZnnnmGyMhI7xLtnJwc77633XYbzz77bL/GLIweIlPyosLCQnKK84ibkYR/0MUAkX+gieTZEyg4mM3JkydFEEAYFB2Dkr2tKTlSMyWF/hnKuQW0TRp37tzJkSNHOHLkCCdOnMBut3Pttdf61OHpLUVROHDgAB988AFffPEFWVlZNDc3ExQUxOzZs7n//vu59957e6yNfLmayZGRkd6JrjB2GI1GrFYrAC5P3wOMzg7HjOVMakEQBEEYSO1LsIuLi6moqOhVMsCkSZM4ceIEp0+f7nGf9m2TJ08emIF2MG3aNN57771Lnr+n4wAOHjzY62MGupdHT66oOrzJZOLHP/7xJffR6XScOHHiSk6Dw+Hw/v1yaaq9jfzOnTuXn/zkJxw4cIC8vDyys7NxuVyEh4ezcuVKNm3a1KXTkjA2iaDkRXl5ech6fAKS7dRaDf7hAZzKOi2CksKgEEFJAYZubgHwz3/+kx/84AdX/Dzt9uzZw4oVK7w/p6SkkJycTGFhITt37mTnzp384x//YOvWrej1+h6fZ968ed1uH6zGfsLwMpvN3qCkwyP3+fiOx4y1jHFBEARBGCzJycnMmjWLEydO8Jvf/KZXCWmrV6/mzTff5LXXXuMXv/hFl2Y327dvJycnB5VKdUU3znty++2384tf/IItW7bw1FNPkZCQ0KvjbrrpJvR6PdnZ2Wzbtq1Xsa72Zqitra1XNObLGRVdKzZt2oSiKL36s2zZMp9j2x/v3OEoPj6en//85+zcuZOioiIsFgsOh4OysjK2bt0qApLjiFi+fZHdYUet67kOntag8zYiEcavpqYmDhw4wLb332f79u2cOXPGp1tyf/Vr+XaH2pO9qc8iCB0FBASwYsUKfvSjH/HOO+/wk5/85Iqer73G5R/+8AeqqqooKCjg6NGj1NXV8be//Q29Xs9HH33ET3/600s+z9tvv80XX3zR5c/7779/ReMTRqaOgcTefvZ1NJbLWAiCMDisViuVlZXU19f71NgThPHm6aefRpIkfve73/Hf//3fPnUYZVnmww8/ZNu2bd7H7rrrLlJTU7FYLNx1111UV1d7tx0/ftzb/Xvjxo3eUoIDaebMmWzatAmbzcb111/Pp59+2mWf7Oxsfvazn/mMOzIykh/+8IcA3Hfffbz11ls+732LxcKLL75IVlaW97H20knV1dU+jw+0K8qUFISxQGRKXhQSHII7x4Xi8SB102nb2thCSmjv7sYIY9Pp06fZ+69/4W5sIkijxuVRyDp0iCMJCazfsIHg4OB+P/eVZkqKi3Ghr77+9a/7lIQpLy+/oudbsGABOTk5aLXaLts2btxIaWkpTzzxBC+99BJPP/20t+i6ML6JoKQgCEOlsbGRz7/4nNM5Z3C4nKhVapJiE1l61RLROG4Ea3S52F49usq3NLpcjIb1HTfeeCPPPfccjzzyCE8++STPPPMMkydPxuFwUFhYSGtrKz/72c+8SWsGg4GtW7eycuVKdu3aRXx8PFOnTqW1tdXbbXvx4sU899xzgzbmP//5z7S0tLB161aWLVtGZGQkiYmJuFwuiouLqa+vB+Cvf/2rz3E///nPKSkp4Y033uCuu+7iO9/5DsnJydTV1VFSUoLb7Wbv3r3ezt9hYWHccMMN7Ny5kzlz5jBt2jRvEkh/yhz15IqDki0tLXz44YdkZmZSX19/yWwZSZJ4+eWXr/SUgjCg+pL5KMuyd4nVWKMoCiaTieaKeg5+8Dnm0EBCo8MIi49Aq9dhaWxBbnIy++pZwz1UYZiUlZWx+8OPiJDdpCcno74QULE6HRwrKuaDd9/lK1/9KhpN/75arrTRjVi+PXaM1rlFexHxnqxevZonnniC+vp6ampqLtm5URg/Ov7eXGlQ8nK/g4IgjF+NjY38/Z9/p7SpgpCEcIKCI3G2OsgtOUfJlhJuW7thUGrgCVemt8tzR5pQRs/Yv/vd73L11Vfzu9/9jn379nHmzBlMJhOTJk1i1apVbNy40Wf/mTNnkpmZyTPPPMO2bds4e/YsWq2W+fPnc++99/LQQw9dskzPlTIYDGzZsoVt27bx17/+lUOHDpGRkYFGoyE+Pp61a9dy6623smrVKp/jNBoNr7/+OnfccQebN2/m8OHDnDhxgrCwMBYvXswtt9zCnDlzfI554403ePzxx/n44485ceIEbrd7wF/PFQUlX3nlFb7//e/7BHW6S/+WJAlFUUbUhYMgtOtL5uNYDUh6PB4++eQTDpw4hCpYj0u2UWutpzazlpLsYiJiI3A3O5g1cQZTpkwZ7uEKw+RkRgY6q5Wpyck+hY/9dXrmxMayv6SEc+fOMXHixH49v6gpKcDYnlt0rMnTXqenO0899RTnz5/H7XYTGxvL8uXLueuuuwZ1gisMH99Myf7UlBSZkoKgKApWqxVJkvDz8xuyBg2jyf79+ylrqiB1wWQ0urYwgNHsR0B4EMWnz/Hx7k9ITU3tNttfGD7f+973hnsII0p3GXpJSUmXLUPwyiuv8Morr/S4febMmZfc3llkZCTPPvtsnxoj96ZUwqX6p3S2du3afpUdXL9+PevXr+/VvuHh4WzevLnP5+iLfgclP/74Yx544AEURcFgMLB48WJiYmL6nSEjCMPF4XDgdDrR6XSX3Xes1pM8ceIEX2YcIGRiJElRk2hoaKC6phpLSwvNhfXU5SvcfftdLFy4ULzHxylFUSjMyyM+IKDbib5Jr8ffo1BSUjIwQUnl8kFJj6Lg7vDlLoKSo99Yn1v84x//ANomvpfKaPvLX/7i8/Orr77Kz372M7Zu3drlDrYw+vkEJeX+ZEqKRjfC+OXxeMjMzOTk8eM0VlcDEuGxscyZP49JkyaJ4OQFNpuNU9mnCY4P8wYk20mSRHRaHKWH8ykoKBDZkoIgDKl+z/KfeeYZFEVh8eLFvP/++4SFhQ3kuARhSFksli6ds7ozFutJejwejmYcQxOsJziqrfJHSHAIwcHBOJ1OrAkWGs9WExsbK+6cjmOKouCRPahVPU/u1VLb71N/dbyY7k2mZOd9RFBy9BvLc4tjx47xf//3fwA89thj3e6zfv16Nm7cyMyZM4mLi8NisbBr1y6eeOIJzp07x8qVK8nIyCA+Pv6S53rhhRd48cUXezWuwSxcLvTOQC7fFkFJYTxRFIVdO3dy+sBBwlUqpgQGoigK5QXn2F5USP3113PVVVcN9zBHBIvFgt3lICyo+yp/eqMeRSPR3Nw8xCMTBGG863dQ8tixY0iSxCuvvDKmLhqE8amlpWXcBiUtFgvVddUETfR9H0tI6HV69OF66jRVnD9/XhTAHsdUKhVR8XFUZeeQGNJ1Qutwu2lWFCIiIvp9js7Lt9uX5vak44W4SqW65HJYYXQYq3OLqqoqNmzYgNvt5tZbb+Xuu+/udr/33nvP52eDwcDdd9/NihUrmDt3LiUlJTz55JO89NJLlzxfRUUFx48fH6jhC4NsIBvdiJqSwnhSUFDA6UOHmRYURHRgoPfx6MBACmtrOfzpp6SkpBAVFTWMoxwZDAYDGpUaZ6sD/8CuN3FllxvF7RFlQgRBGHL9Dkq63W5MJhMTJkwYyPEIwrCora31NhxwOBw+2xwOh3fpYG1t7ZCPbcj0UONCURS4THBIGB9mzJrF9txcyhsbiQ0K8j4uezycKj+PX1jYFS35ae/mBqAALkVBd4nfu871JMXv6Og3FucWTU1NrF69mpKSEubOndunekXtwsLC+NGPfsRDDz3Eu+++y+bNmy/5+x4dHd3rZd5ZWVk+tS6FoXfFNSVlkSkpjE9nTp3G5JZ9ApLtkkJDKS4s5OzZsyIoSdsNi9TEVE6VZBEUGdLlO6SmtJpAg5nU1NRhGqEgCONVv4OSqamp5OTkIMsyarV6IMckCEPuv//7v3vctmnTpiEbx3Awm81Eh0dTWllBYERwl+3WRgtaRUNsbOwwjE4YSSZNmkT5kiWc3L+f0sZGwv39cckyFVYr6pAQblq7FoPB0O/n77z82unxoLvQ4bs7osnN2DPW5hYWi4Ubb7yRjIwMpk6dyscff9zvTLb2JYj19fXU19cTGtr9EjyABx98kAcffLBXzzt37lyRVTnMriRTUlEUUVNSGLdqqyoJ8et+lYQkSQTptNTV1AzxqEauJYuvovCtQgpP5BM9IRajyQ+3y01tSRXW8iZWLl0h5lOCIAy5nq/2LuO+++7D5XKxY8eOgRyPIAhDTJIk5s+dh6fRRW1ZtU9XMEerg/NnS0iOTSQhIWEYRymMBJIksXz5ctbdcw9hM6ZTadDTGBjA9OuXc/f9X73i5f1qtRo/Pz/vz5e7OHcoIjtorBlLcwubzcaaNWs4ePAgEyZMYNeuXZcMJF5Ox2Zsbrd7IIYojBAdA9UuRUHuRXfOdm5FoeMnpVi+LYwnOoMBh8vV43anW0YnliN7xcfHc+ctdxClCeH8sSLyPj/DuS+zUdXJrFy6giVLlgz3EAVBGIf6nSn5yCOPsHXrVr797W8zadKkMbXUShDGm+nTp1NbW8sXR76kvrQWY6ARl8OF3OQkOSqB9WvXi6WxAtAWmExLSyMtLW1Qnt9kMmGz2YDLN7vpuL3j0m9h9Borcwu73c66dev47LPPSExMZPfu3Ve8fPD06dNAW12wKwluCiNP55sqTo8HYy8zhTvfvBFZTsJ4MjE9nf0FBThlNzq172Wt1emgEVg0Sr9HBktqaioPJj1IYWEhTU1N6PV6UlJSfG4KC4IgDKV+ByX/8Y9/sHHjRn76058yc+ZMbr/9dhYuXHjZbJWvfvWr/T2lIAyIu+66i1tvvZXnnnuOw4cPAzDB35/ZAUFA28XAe1UV3v1viYz2LiH9or6O8w47AGvWrOGee+65ouWqI4UkSVx33XVMmDCBM2fOUF1bgyFIz6SrJzF58mRR9FoYMiaTierqaqBvQUlxIT42jIW5hcvl4rbbbmP37t3ExsayZ8+ey3bLvhy3282zzz4LwPLly711joWxwWAwoNVqcV3I+HJ45H4FJf38/NBqtYMyxqFgsVjIzc3F4XBgNptJS0sbE3MsYfBMnTqVzGPHOFJcyvToKAKMRhRFocFm41RVJeEpKaP25tZgUqvVg3ZzWRAEoa/6PavdtGmTN3NKURTeeOMN3njjjUseI0nSiLpwEMYno9GI0Wj0qZEoIWG4cAGgV6m4OybOu00rSd7f9Y7JgrGxsQR2U1h7tJIkifj4+Cu+eBaEK9ExuHjZ5dsesXx7rBktc4ulS5dSVlbGI488wiOPPOJ9XJZl7r33XrZv305UVBR79uwhJSWlV8/52GOPkZ6ezoYNG3x+n0tLS3n44Yc5ePAgGo2Gn/70pwP9coRhJkkSZrOZ+vp6oG91JcdCPUmPx8MXX3zB/iMHaHZYUGlVKE6FUHMwN1y3gunTpw/3EIURymQysf7229m+bRuHysrQyR4URcGl0xI1aRJr1q71KX0hCIIgjDz9DkomJCSI5ZzCqNZTYXlJknrs+CuCIIIwuDoGJZ2KyJQcb4Z6blFaWsrs2bO9P9vtbZnwX375JWFhYd7HH330UR599FHvz2VlZRQXF9PY2OjzfG+99RZbtmwB2rLfvv71r/d47j/+8Y8+587OzubXv/41DzzwACkpKYSEhNDU1EROTg6KomAwGHjppZdYuHDhFb1mYWQKCAjoZ1By9M9LDhw4wM4vd2OKDyI1Ph21Ro3L7qSioJz3dnyAXq9n4sSJwz1MYYSKiIhg46ZNFBUVUVlZiSRJxMXFER8fL65VBUEQRoF+ByWLiooGcBiCMPR8gh+9vAAQQRBBGFz9zZQU78exYajnFrIsU1dX1+Vxt9vt83h7ndPLcTgc3r8XFRVd8vU0NTX5/PzQQw8RFRXF0aNHKS8vp6ioCL1ez9SpU1mxYgXf/e53SU1N7dU4hNGnvx24O+47WprctL/v2oPt+48cwC8mgMjkGO8+WoOO+ClJFJ7I54v9XzJhwgQRYBJ6pFarSU1NFZ+RgiAIo5AoSiSMW74XAPIl9rxoLGQkCMJI1pebBWP5JkFDQwO1tbVoNBqio6NFXbVBkpSUhNKHTsftego2btq0iU2bNvVrLKtWrWLVqlX9OlYY/XzmJPLYzJRUFIWMjAwOHztCVX01iqKgOD3UWeqZPn1ul/0lSSIsIYKyrHJqamqIiIgYhlELgiAIgjCYRFBSGLc6Tt57kympKIrPfiN98i8Io9F4D0o2Nzeza/dusvKzsDntqCSJIFMQC+fMZ/Hixah72fxCEITRpT83SjvvO9LnJXv37mXfoc/QhOgJnRqNSq2iKLOAhspGSs+XkZKcgkpS+RyjM+iRFdnbBEgQBEEQhLFlwIKSZ86c4ejRo96uqREREcyfP58pU6YM1CkEYUD1ZZkogEtR6JhPM1aCIJ01NTVRUFCA0+kkKCiI1NTUUd3NUxhdfN+Xl74wHw3Ltz0eD8XFxTQ0NKDVaklOTu5xrDabjX++9SZF9SWEJUcRGZ6I7JapK6vhX599gsVqYdXKVeNqCaOYWwjjRcel12Nx+XZlZSVfHj1AQHIoYfEXMx5jJ8ZTW11DTWUNwUHBhIaE+hxnaWhGr9GPqcaCgiAIgiBcdMVByY8//phHH32U06dPd7t9+vTpPPPMM6xcufJKTyUIA6pjRoFLUfAoCqpLXOx3vkjw9/cftLENB1mW2bt3L4dPHMXqsoJaheSGyKAwVq9cTVpa2nAPURgH+pQpqYzsoGRJSQk7Pt7B+dpK3JKMIisEGs0snLOAq6++ukvWY0ZGBkU1JSQtmIjO0NYtVKPVEDMhjjo/PUdOHmX2rNlERkYOx8sZUmJuIYw3/a4pKY+OFRxnz56lFQdxceE+jweEBxEYFEhdfSO1tbU+QUm30019cQ0LJ88dkZ/xgiAIgiBcOdXld+nZ//7v/7JmzRpOnz6NoiioVCoiIiKIiIhArVajKAqZmZmsXr2a559/fqDGLAgDovMEty9LRf39/cfcMso9e/ew9/BnaGOMpC5JZ8KSKcTPT6FWaeLt97dQWlo63EMUxoHeBiVlRUHuUAtwpF2wVlZW8uY7b1FQV4xD66bZ1kJTaxNl9RVs2/khe/bu6XLMiVMn8Qs3ewOSHYXEhNGKk6ysrKEY/rAScwthPBqIRjcjOSjZ2NSE1l/XJdNbkiSSp6ehaZWoOFNKXXkNloYWqosqOHc4m9iAKK65+pphGrUgCIIgCIOt35mSJ0+e5JFHHsHj8bBw4UJ+9rOfcd1116HX64G2DpR79+7lqaee4sCBAzzyyCNcffXVzJgxY8AGLwhXwmg0olarkeW2JaIOjwfDJQKNo6luU181NjZyOOMoQclhhCdczMLS+xlImplG/uFsDh46SHx8/DCOUhgPelvrtfO2kRaUPHjoEGV1FTjcDtxaD4ZQfySVFnu9jZb6FrZ/8i/mzZ1HcHAw0LbMu8XagiHOr8tz2ZqtWBtasNls3mXMY5WYWwjjle/y7b7UlBwdQUmjwYDb4e52W0B4ENFJMbiqbDhKLFjlRvRaPdfMXMLixYvF0u1xpqmpiczMTLJPncJhtxMSHs7UGTOYOnUqGo1ohyCMP8899xwlJSXDPYx+SUhI4Hvf+96gPf/p06d5+eWX2bt3L6WlpbS0tBAQEMDkyZNZvnw5999/P6mpqYN2/pGqqKiIV155haCgIB555JHhHs5l9fuT/be//S0ej4e1a9fyzjvvdMka0+v13Hjjjdxwww1s2LCBbdu28bvf/Y6//vWvVzxoQRgIkiRhNptpbGwELp8pORrq1/VXfn4+VreN6NikLtskSSI0PpzcwnwsFsuYe+3CyOKTKXmJsgod348ajcYbtBoJ7HY7mWcysVha0MX4E5YS5s0OMscGYTnfSHVmJfv372fNmjUAqFQqzP5mGiwW7/M47Q7OncijobYet0emtdnGgdZD6PQ6Vt6wEj+/rgHM0U7MLYTxqv+ZkhcDmCO5puTEiRM5eOIwloYWTMG+wVO304XSKrP+5vXMnj2b1tZW/P39MRgMwzRaYbhUV1fz3ttv01pRSZSfH0atloZzRezKL6AgL5+169eJOufCuFNSUkJufi4a88iZ6/aGu8UxaM/tdDr53ve+x4svvuhdVZOWlkZaWhp1dXUcOHCAL7/8kqeffppf/vKXPProo4M2lpGoqKiIJ598ksTExLEdlPz000+RJIk//OEPl1zGqlar+f3vf8+2bdvYu3dvf08nCIPCZDJ5g5KXuwgYy523nU4nkkaFSt19RQetQYdVdL8UhkDnoLdL8aCXun7HdO68PZKavzgcDhoaG5A1CoHJoV3GZooJorGwltzcXG9QEmDW9Jl89Nm/cCY5UalVZB88Q3NrC6aUYCS9Cr9mB+FBkRzOOobFYuHuu+4ec1kjYm4hjFedg5KKolz2c82jKLg6lLEYCXOTqqoqMk5kkJufh0t2kxgbz6yZs0hOTmZyyiROnTpD2IQogiJDkCQJS0MLFTllxAVHM3PmTPz8/MbkDRfh8jweD//66CM8VVVcnZSE9sJ3QDJQb7VyPDOTo7ExLF68eHgHKgjDQGPWE3FVwnAPo0+q9w9OdqfH42HdunV8/PHH+Pn58bOf/YxvfOMbhISEePepqanhH//4B08//TT79+8flHEIA6ffVzNVVVUEBgaSlJR02X2Tk5MJCgqiqqqqv6cThEHRl8yE0bJEqj8CAwORXApOuwOdoetdOGtDC0a9ccw19xFGHj8/PyRJQrlwoe30eNCrLh+UzM3Nveykw+l0+vz897//HZ2ua/1GgPT0dBYuXNjX4QNtr8Hj9qAyq5FUXQP9HtmDxqSnydrs8/js2bM5k3WGoqO5qAwampqbCJoWgdst42y2Ex0eSXRcLK2hwWQfzyMvL4/09PR+jXGkEnMLYbzqOK9QaGvAp7tMULLzvGW45yY5OTm8+9F7NLutmCMDUanVnCw9w+m8syxbdA23rFuP3ydGTuWeoTa3EiTQSzomxaZw800397gSw+PxIMsyGo1mRN2AEgZWSUkJtaWlzI+K8gYk24X4+xNj0HPqeAbz588fczfkBEHovaeffpqPP/4YvV7P7t27WbRoUZd9wsPD+d73vsfGjRt58803h2GUQl/0+xPdaDRis9lwu92X/WJwu93YbDZx51MYcXybaly6hlPnIMhYMmHCBMICQjmfV0bitBSfSb/T7qDpfAPXz7u2xwCOIAwUlUqFv78/lgvLmB0eD91dZne+SVBcXMzWrVv7dK5t27b1uO3mm2/ud1BSq9USGxXDqdocPLKMquPFlaLQ2mxFI6kJCQ7xOc7Pz4+777ybXbt38cmenbj83dibWtFrdURFxxIVGYmEhF+AP5JJTVZ21pgLSoq5hTBetWd8t9+QcXhkdN3c1OiocxkLo9E4qGO8FIvFwgfbt+Hwk5kwbYp3HhGZHE1taTX7Dn5GXFwc69evZ2ndUnJycigoKKCusR5rq43Pv/iCmTNmkJSU5D22vr6eY8eOcSrrNA6ng0BTALNnzmb27NliafcYVF1djcYtE2Ts/jM9MiCQisZGmpubfTKiBEEYP1paWvjNb34DwBNPPNFtQLKj4OBg/u3f/s3nsaqqKp555hk++ugjiouL0Wq1pKenc++99/LQQw91e73b/r1UWFhIcXExzzzzDIcPH6auro533nmHW265haSkJIqLi9m7dy/BwcH88pe/5LPPPqOmpoZnn33Wu4za4/Hwj3/8g1dffZXjx4/T3NxMREQE119/PT/60Y+YPHlyj69n+/btbN68mUOHDlFXV0dwcDBpaWnccsstfPOb3yQwMJBly5bx6aefAlBcXNzlZp7SYYXFSNHv7tvp6em4XC62bNly2X3ffvttnE7nmLt4EnqmKAoNDQ1UVlZitVqHezg96hhc7Eum5FgLSup0Om5csQqdRaLgaA4NlXVYGluoPHeeoiN5pIQnXPZDXxAGSm86cHe8iTASM3iXLl2KtlWi6Xw9rS02ZJcbl91JS10zil3GT9EzZVLX78SAgAA23LqB9EmTiY+PZ1LqRKamTyE6KhpJuviVrTXqsNpG7mdrf4m5hTBeqdXqPs1J2vbxrSc5nFmEZ86coaG1ibj0pC7jCIuPQDYoZJzIANpKXBw+foSzZbk061tp1Fo5UpDB3958nb1796IoCpWVlfztjdfYe/wzHEEK+kQzdZoWtu3bzj/f+ic2m204XqYwiNRqNfKFWtLdccsyqKRLlvYQBGFs2759O42NjajVah566KE+H3/y5ElmzJjBb3/7W86dO0d6ejoxMTEcPnyYRx55hOuuu47m5uYej//nP//J8uXL2b9/P0lJSd02gf3ss89YuHAhH330EXFxcaSkXEz4sdls3Hzzzdx3333s3LkTvV7P1KlTaWpq4m9/+xtz5sxhx44dXZ7T7XazceNG1qxZw3vvvYfT6WTGjBn4+flx6NAh/vM//5OMjLbv2OnTpzNt2jSgrRb7kiVLfP6MRP3OlLzjjjs4cOAA3/72twkPD+f666/vdr9du3bx7W9/G0mSuPPOO/s9UGH0KCoq4tCBA1QUFeFxy2j0OtKmTuWqJUsICgoa7uH58On0q4zfmpIAkydP5ivGe9l/8ADnzp1D9sgY9Uaum3sNixcvHnOBWGHk6s2F+aVuEqj0agwRXX9fFY9Ca/nFiYYxNgBJ1SEruLEVd4uzy3H9MWfOHKYdOURBbRGyyonN4kQlSfjrjCh2F6GBYcycObPH46Mjo6mtaO6xcYXTYicoJmhAxjqSiLmFMJ6ZzWZaWloAcMi9CUqOnHlJZVUlarMWtab7gJEpPJCS8lJcLhfvvP8ute5G0q5K99m/trSaXZ/vwWAwcPrMaWrdDaQuurhPSEwY9gQ7ucfz2b9/PytWrBiS1yYMjfj4eCSjkarmZqK76bhe1thIWFLiiG7oJAjC4Priiy8AmDp1KmFhYX061m63c9ttt1FdXc3y5cv5+9//TmRkJABHjx5l/fr17N+/n4cffphXX3212+f48Y9/zOOPP85Pf/pTb9Mtu93us8/Pf/5z7r//fp577jlv4kRraysA3/nOd9ixYwcLFixg8+bNzJgxAwCXy8UvfvELfv7zn/OVr3yFnJwcwsPDfc77+uuvYzabefHFF7nzzjtRXVhN0dLS4vNa/vjHP7Jv3z6uu+46oqKivP9mI1m/g5IPPfQQL7/8MmfOnGHlypUsXryYFStWEBsbC0BZWRm7d+/mwIEDKIrCtGnT+hXNFkaXvLw8drz7LkaLlamhofjpdDTYrBQcOEh5SQl33HPPiApMikxJX4mJiSQmJtLc3IzL5RLdL4Vh0atMSaXn96PGpCN4emSXYxRFIWjKxS94SaPyyehpPFs9YEFJg8HAvXfdw5Z3t1JWex7FKKFSq5AaZUL8Qli/Zp3PZKOz6dOmcyrvTLedapuqG1A7JaZNnTYgYx1JxNxCGM/62oF7JAUl1So1iqfnJWEe2YNarSY3N5fKhiriF6T5BCTrymuoOFdOdVUlL7/xV2S3TOzkhC7PafA3EBAbQsbpEyxdulTMUcaQiIgIktPTOXv8GHqNhpALF/Oyx0NhbS31Kokb588XdUUFYRwrLy8HICUlpc/HvvnmmxQUFGAymXj77bd9ykDMmzePF154gbVr1/L666/z5JNPdlvf/MYbb+Spp57yeazz99DUqVN58cUXfbK6jUYjZ8+e5dVXXyU8PJxt27YRERHh3a7VannyySc5deoU7777Lps3b+bxxx8HoLKykt///vcA/O1vf+OWW27xOZ/ZbObBBx/s87/HSNLvoKRer+fjjz9mw4YNHD58mP3793PgwAGffdrXqy9cuJCtW7eKenRjnNvtZt/OXQS02pnToSZQgMFAdGAg+4uK2f/ll9zUodvscPPJlBzH3bc7E3ehheHUu+XbfX8/SpKEpB26ZV9RUVF842sPkJOTQ3FJMR6Ph5joGKZMmXLZGxsTJ05k5qQZHM88gTk2iKCoEBSPQkNFHbbKFhZNn9+rZjCjjZhbCOOZb1Dy0nWu2/YZOfOSxMREDmYe7rZhnqIotFQ1Mnv6VVRWVoJBhd54cZ/KgnLOnS1AClATMCUMZ4sDT6uLyuoqHAcdTF48DY324iVLQFgg1eVlNDY2EhUVNWSvURh8K29cxYdOB8dycjBWVaFXqWiRZTCbuOqGG0S5DkEY59pXE/QnQah9WfTGjRu7rUt78803M2nSJHJycvjkk0/41re+1WWfTZs2XfY8Gzdu7LbMxNatW1EUhfXr1/sEJDu65ZZbePfdd9m3b583KPnRRx/hcDiYNGlSl4DkWHFFrctiYmLYv38/W7Zs4c033+To0aNUV1cDbXe75s2bx913381tt93mTS8Vxq7CwkKaq6u4Kiq6y11MnVpDUlAQ+WfPYl22bMTUgBOZkoIw8lzp8u2Rwm63c/bsWbJysmm1txIeGkZYWFivPv/UajXr160jfH8Yx04ep7KiBIAQczDLrr2KRYsWjdlsETG3EMarjjcEe5UpKfvWlBxOkyZNIvZANMUnCkicleoNTMpumbLsYswqP2bNmsXZs2fpWDLQ0eqgOLsQbaSRgMQQHNZWPLKCxqzDL9BE49lqqgsriJl4sW6X7JZRSSrRgXkMMhqN3HbHHRQXF1NQUIDD4WBiYCDp6emEhoYO9/AEQRhm7Tfg2hti9kVOTg6At95id6ZNm0ZOTg7Z2dndbu/NjZGe9snMzATaShAtXbq0230aGxuBtpVB7c6ePQvA4sWLL3vu0eqKv81VKhV33nmnqOkk0NzcjNrjwaTXd7s92M+P/Lo6LBbLiAlK9naplKIoPlkLw52R0FuKoniL9ZrNZnEBL4wKfc2UNJlMyPLls4qGUmNjI29tfZviqlI0QTp0ej1FBaUcP3uCxbMWsnLlSu9+siwTFBTkrU3TTqvVcu2117Jo0SJqa2uRJInw8PAu+41FYm4hjEejefm2Tqfj9ltvZ8u7Wyg5lA/+aiSVCrnFSZAxgHVr1hIVFUVzczOqgwqtFhtGkx91ZTU4FTdhcW0lNxw2B8GBQVhbbXgUD9pQI1UlFURPiPPeiKkrqyYuPFp0YB6jVCoVycnJJCcnD/dQBEEYYdrL+RQWFvb52PYsy/bai91pz75v37ez3sQwetqnPeBYVFREUVHRJZ+jYzO39mv5wG5q7Y4V4hajMGAMBgMyEk63G103d69tTieSRjOi6v/0dvm2rCh03Drck//LURSFzMxMDh87QlVtFVarDY/TjUanJTgkmAnJacyZPafbjmGCMNw6BiXtHrnb92bHDCGNRoPb7R6SsfWGoihs+3AbRXWlJC1M81nK2FhZzxfH92OxWGhsbqKitgKPohDoZ2burLksXLiwy3JkvV7vnYQJgjB2jeagJEB4eDgPbGorWVFUXIQsy0RFRjF16lTv+FJTU4mPiKP4dBGJs9Jw2uyojRpUKonWZisqWSIyMpLm5mYqaipRaVU47HY8sgdJgqqiSmhys+jmheJGqyAIwjizdOlS/vd//5fTp09TW1vbp2Y37d9DVVVVPe5TWVnps+9Aar++eeaZZ/jP//zPXh/XvhKiqalpwMc0UgxoULK4uNhniVViYuJAPr0wwiUnJ6MPCqSoro6Jne5AKIpCUX0dsVOnjqgof+eMLEVRul0S2fniYKQuF4W2f+vdu3fz2ZEvUAXrcBtkqitrcGk8aFQ6HB4PDXnNnMo+zerrbyQ6OpqWlhYMBgNxcXHd1sAQhKHUMROwzG7nn+fLLrE3/L//9/9GVIHnsrIyzpUVEj01vktttaCoEErOFbN99w7ipycTOikCtUZNU3UDOz7/hLLz5dy+4bZxkQ3ZW2JuIYwXfV6+3WGf4V6+3U6n0zF9+nSmT5/e7Xa1Ws2GW27l7XfepuhQLs3WFlpbrTRW1qOVtMRHxxEYEIjZZEaWZcrySnDUWzl3PBfFLmPW+bP6uhuZOnXqEL8yQRAEYbjddNNNBAYG0tTUxJ///Gd+8pOf9PrYSZMmceLECU6fPt3jPu3bJk+efMVj7WzatGm89957lzx/T8cBHDx4sNfHjLYST1d8i/H8+fM8/PDDREREkJKSwqJFi1i0aBEpKSmEh4fz8MMP+6yJ7w9FUdi/fz+PPfYYS5cuJTQ0FK1WS3h4OCtXruSNN97wFr7vj61bt3LdddcRHByMv78/s2bN4je/+Q0ul+uKxj3e+Pn5MXfxYorsdnKqqnBeyFyyOBwcLy3FbjKxcITVQuh4F0QBXD38HnXM1DIYDCM6YFBaWsqXxw4QmBpGaGw4NRVVGJMCiV2UQlBqGHadm4gpsdj1bl78y2aef+nP/G3L6/zl76/wwksvcubMmeF+CcI4N9q+SDurqKjAgbtL12wAu8OOTXHg0UF0ahwBYYH4B5mImRhP3KxkzhSc5dSpU8Mw6pFlKOYWgjDSjOZGN30RFhbG1776Ne5YvYHZqdPxk/UEqQOYPHGSt/i/SqUiPi6eILWZBdPmcs2Uxay7bg3f/sZDLFy4cNR/TwiCIAh9Zzab+fd//3cAfvnLX142UNfQ0MD//d//AbB69WoAXnvtNerr67vsu337dnJyclCpVN4ySwPp9ttvB2DLli2UlJT0+ribbroJvV5PdnY227Zt69UxRqMRgNbW1r4PdBhcUVDyk08+YerUqfzpT3+itrYWRVF8/tTV1fGnP/2JadOm8a9//avf59mzZw9Llizh17/+NV9++SVBQUHMnDkTj8fDzp07ue+++1i7di0Oh6PPz/0f//Ef3H777ezbt4/Q0FDS0tI4ffo0//mf/8mKFSv69Zzj2cKFC1ly4yqqdDr2lZayu/Ac+ysrcUdGcNOGDSQkJAz3EH34+fn5TGxHc1ONdqdOncKpdhMSE0ZNcSWyVsEUGwSA3s+AolaoKD5PXXUdNj8XUqye1KunEDU7gRqlga0fvustxCsIw6E/xatHmp4ulxsaGpAVNzpj19q7foH+aIL1nMw8ObiDG+GGam4hCCNN35dvj75a1+0MBgOzZ8/m61/7OjdetxKp3k1rvRXPhddta7ZSmJFHtDmCe+65h1WrVrFo0aIRtdpGEARBGHqPP/64N06zYsUK/t//+380NDT47FNfX8/zzz/P1KlTvXPFu+66i9TUVCwWC3fddZd3FQ7A8ePHvauuNm7cSFJS0oCPe+bMmWzatAmbzcb111/Pp59+2mWf7Oxsfvazn/kEHyMjI/nhD38IwH333cdbb73lk5BnsVh48cUXycrK8j6WkpICQHV1tc/jI1W/l2/n5ORwyy23YLfbCQkJ4d/+7d9Yvny5t+5VeXk5e/fu5YUXXqC2tpYNGzaQkZHBpEmT+nwuRVFITk7mkUce4e677/Zpof7aa6/xzW9+k48++oif/vSn/PrXv+7187777rs8++yz6PV63nrrLdatWwe0/TLcdNNNfPbZZzz++OM8++yzfR7zeKVSqVi0aBEzZ87k3LlzOJ1OzGYzycnJI3JZsFqtxt/f3xsEcXhkzN28LRzK6MlGqKmvxRDYFmxtaWxBF2T0CbyqdVqqcypQ+2kJTArHo1FQqVUYzX4kTk+l5Ewhez/fR3p6+ojOCBXGLqfT6f17stGPhcFdmxnsrKmi7kI2+7e//e0R9fkSExODDi2W+mbMob4X0E6nE5fVSZCfGb1/1/q6/kFmaiprh2qoI85Qzi0EYaTpy/LttgZ8o2du0hNJklhz0xq0Wi0nz2aSn1+FpFah9kjEh0Vz800396lmmCAIgjC2qdVqPvzwQ7773e/y8ssv8+ijj/KjH/2ItLQ0AgMDqa+vp7CwEFmW0Wq1XH311UDbzbCtW7eycuVKdu3aRXx8PFOnTqW1tdXbbXvx4sU899xzgzb2P//5z7S0tLB161aWLVtGZGQkiYmJuFwuiouLvRmcf/3rX32O+/nPf05JSQlvvPEGd911F9/5zndITk6mrq6OkpIS3G43e/fu9Xb+DgsL44YbbmDnzp3MmTOHadOmeRvw7Nu3b9BeX3/1Oyj51FNPYbfbmTFjBjt37iQ8PNxn+6RJk1i+fDnf//73WbFiBadOneIXv/gFr732Wp/PtWDBAnJycroNkGzcuJHS0lKeeOIJXnrpJZ5++uleF75+8sknAfiv//ovb0AS2moIvPTSS1x//fU8//zzPPbYY11en3BpRqNx1NT7MZvN3qBkbzr9jvSJv0FvwNXUFqyRVBKK7PuaXFYHzlYHYWlhuHGjknzfL5EpMZQeKqCwsJCJEycO2bgFoZ3VavX+3ahWo+vmM92gVsOFoKTL5ULTTXOt4RIbG0tKfDJZ2bno5hjQd8iKtDfYcNW0ErV4UrfLD52tDgIMxqEc7ogylHMLQRhpOs4v3IqCrCioe1im7FIUOhacGSk1JftDp9Nx85qbuWrxVRQVFeF2uwkNDSUpKWlE3XASBEEYLu4WB9X7e7/kdyRwtzig50bXV0Sv17N582YefvhhXn75Zfbt20dJSQkFBQUEBgayaNEiVqxYwde+9jWfWuQzZ84kMzOTZ555hm3btnH27Fm0Wi3z58/n3nvv5aGHHkKv77qaaaAYDAa2bNnCtm3b+Otf/8qhQ4fIyMhAo9EQHx/P2rVrufXWW1m1apXPcRqNhtdff5077riDzZs3c/jwYU6cOEFYWBiLFy/mlltuYc6cOT7HvPHGGzz++ON8/PHHnDhxYkQ1Be2s31dxu3fvRpIkXnrppUsG7MLCwti8eTMLFy5k165d/TrX5SZaq1ev5oknnqC+vp6amppLtnlvl5eXx8mTbUvkvvWtb3XZvnz5ctLS0sjPz+eDDz7ggQce6NfYhZGv43LssbB8e/LESZzKP42z1UFIRChFBYV4kjyo1Co8sozb5kKt0aAxaHA2OQgID0BBwWaz4XA4UKvVyMg+gSFBGEodl293F5Ds/LjVavXWThkJJEli3c1rsW99m6LDeWgC9WgNOuxNNjxNDgL1AfgFdf0ckV1urNXNLF28YBhGPTIM5dxCEEaazjc9HR4ZP3X3U/WO8xJJkkb83KQ7iqJQXFxM5qlMKqsr0Wl1TJowienTp4/K1yMIgjAYRlr5s16LHPyxz5gxgz/84Q99OiYyMpJnn322T6the9O/pKioqNfPt3btWtauXdvr/dutX7+e9evX92rf8PBwNm/e3OdzDId+ByUbGxsxmUzMmzfvsvvOnz8fk8lEY2Njf093SR0LePb2wrS9KGpKSop3WVhnV199Nfn5+Rw8eFAEJcew3tRwGk1LpCZPnkzSsQQKj+cTlhyJXq2jIacKc0IwrdZWzP4mWtQumioaCAgKQK/Xk5ubi8VmRVZkPE4Ze3kTxcXFzJo1SxSTF4Zcr4KSHTJ8LRbLiFveFxgYyMZ77yM7O5vsnGxs9lbCJ4QxdepUDh85zMkzp5EnxBAUGQyShK3JyvmcUqICIpg1a9ZwD3/YjKS5hSAMNb1ej16v99Yzd8ge/HpIFOxYT9Lf33/UZRQqisLevXv5/MiXuLQyxmATcquL3L0FHMk4yp0b7iAqKmq4hykIgjDsvve97w33EARhUPU7KBkdHe1THPRyPB4P0dHR/T3dJf3jH/8A2tJxe7t8JTc3F4DU1NQe92nflpOTc4UjFHpLURRKS0s5c/o01RUVaLU6UidNZOrUqYN217zj8/a8fPvi5H+k3703GAzccdsdfPDhNs4VFKJX6bCU1mIrb8Yv1IQuOATFJuOplYmaNJHikmLsihO/EH80Wg0N+TWodRqOnjlOZGQki0dYx3Rh7GtpafH+Xd9DULLj4yO1MY7BYGDWrFk+QUZFUZBlmYKCAs7uOYFbkTEYDaglNTqVFikplMOHDzN9+vRxeUE+kuYWgjAczGbzxaDkJepKjqabpd05e/Ysnx76nICUUELjLmZFu11uijLyePeD9/jm178xokpzCIIgCIIw8Pr9TX/TTTfx5z//mT179rB8+fJL7rt7925sNhs333xzf0/Xo2PHjnnbvD/22GO9Pq69iGhISNcGCu3at3Xu5tSdF154gRdffLFX5x4NHZCGg6IofPHFFxz97DP0dgehRiMu2c2XubmcPHqUdbfdNigX6f3JlLTb7Zdd3tx5e319fY/d3PV6/YAGO4OCgtj4lfsoLS2lvLwcu92O3W7H7XYjSRLGWUaOnjjGuaO5uAMgOCEc2eGmobgGGt1MXjgNt9PFZwc+Z+bMmfj5+Q3Y2AThcjq+d3qzfLtjEHMka/+M27v/Uxw6F7Ezk2ior6e2pBqcCgnpSTTpW9mb8RmHTxxh9fU3dqkPM9aNlLmFIEDbe9bj8QxpFmJAQAC1tW3NrnoblBxt9SQVReFYxnEwq3wCkgAarYa4qcmUHz1HXl4eZrOZnJwcbDYbJpOJ9PR0IiMjxSoOQRAEQRgj+h2U/MlPfsLWrVt54IEH+Pjjj3tsiJGXl8c3v/lNoqOj+fGPf9zvgXanqqqKDRs24Ha7ufXWW7n77rt7fazdbgfaimv3pL3Iacfl4T2pqKjg+PHjvT6/0FVubi5H9u1jotGPhOgY74TTJcscKSnho/ff56tf//qAd4TuXaakb03JAwcO8Nvf/rZP5/nOd77T47Ybb7zxktv7Q5IkEhISeqzlkZiYyG/+8CzuFjf1teVIqPD39yN+9gRC48Jxu9wUlueQl5fHzJkzB3RsgnApHTMfR3OmZGd5eXns/nIv/gmBxCdEIssyLTk2goIicda0Ym2xkjY/HZVaRUV+Gdt37SA8PJz4+PjhHvqQGQlzC0Gor68nIyODnNOncTudBIaGMn3WLKZPnz7gc5DOfG+Uyj3u55BHb6ak0+mkrLKcwMTuEwMM/gY8Oti+fTsWtw2H5EJt1CDbXHxx5EsWzl7AiutX9LqxpSAIgiAII1e/g5I5OTk8/fTT/OAHP2DmzJnccccdLF++3Fufsby8nL179/L2229jMBj43e9+11Zb60K79Y6uueaaPp+/qamJ1atXU1JSwty5c3nllVf6dLzBYADaJkY9ac9q602dyujo6F5ntGRlZfUq0DnenDh+nEDZQ2JoqM/jWrWambExfHm+goKCAiZPnjyg5+0YlGyV5W4Dk63yxQsDrVbbq2K3I4nb7ebcuXM0NTWh1+tJTU0lODiY6NgYjIkBaLVa1DoN5pAAbzBYo9UgaSRsNtswj14YTzweT58zJUdLUPJ4xnFkI4QntmV8NzQ20Oq0ExAZhCfITP2JCurLawhPjCI6LY78uiwyTmSMq6DkcM8tBKG8vJz3396Cu7aWWJMJg1ZLffl59hUVU1hQwLpbbhnUwGRvVm+0bbs4LxltQUlJkpC4dOOAxqZG6i21TLp6OoERQUiShKIo1J+v5bMjXxBgDmDRokVDN2hhWJw/f57MzExKCgoAiEtKYsbMmcTFxQ3zyARBEISB0u+g5LJly3yWTrzxxhu88cYb3e7rcDj4+te/3u02SZL63J7cYrFw4403kpGRwdSpU/n444/7vHQlODgYuLiMuzvt29r3vZQHH3yQBx98sFfnnjt3rsiq7MTlclFVWkZaD/8f/XV6/BWF8+fPD3hQsmO27HmHnX+eL7vk/r/73e/49re/PaBjGEy5ubl8vOtjqhpqUTSArBBgMDFv5lz0Wh0SEsHRoV2OczlcKG5lxNfQFMYWm82Gp8OFeMeGNh117r490smyTFFZMYGxF79PrFYrkk6FpFahVquQ/NRYGlsIT4xCkiTMEUGcKzo3jKMeesM5txAEWZb5+KOP0DbUc1VyMuoLnzMJISE02mwcyTzF0bi4Qa213Pug5OjNlNTpdCTGJpBdWUBobHiX7S2NLVhqm4lPT25rBnaBJEmExoZjt7Ry6Nhh5s6dO+iZq8LwOXXqFHs+2o7GaiXK3x9JgqJDh8jNzOSaVavGXXkTQRCEseqKqkcPRLZYX5/DZrOxZs0aDh48yIQJE9i1axehoV0DKpfTviQsPz+/x30KLtyV62n5mDDApEv/PigwKDWErvT3WBdkIGxR10wmRVFQ3BcvGiSNymf8zTm1WAovX6/0ctxuN/n5+eTk5tDa2kpwUDBms5m6ujrKz5eTlZ+DIdpE8oJUDH5G3C43taXV7Dv8GWF+IVSV1hISE4Za41szq6rwPCH+QUyYMOGKxygIvdU567GnTEn9KKsp2fbel3w/bzp9nEndPTgODcfcQhAACgsLaaioYHFUtDcg2S7Iz49Yo4FTx48zf/78QWvA0vEm+1itKQkwd85cct/Np6qogogLN2IAXHYnhRm5qBSJhGnJ3R4bEhtG5fESKisrx1Um+XhSV1fH3h07iJRlpiQne38/0hSF3OpqPvvkE2JiYsZlQzhBEISxpt8zKs8lJkqDxW63s27dOj777DMSExPZvXt3v7+M2pd8FBYWUl5e7l0a1tHnn38OILoPDwGtVktsUhIVp8+Q0E3zIYvDgU0ldfv/6Upd8dJPCSRV10CChATqS9Q7GoDYg81mY+u7W8ktzkfxV6HWqanMqMBWb8EUaMIte7CrnQToNFTWVJGQkIBGqyEqJYZKoLm8hVBDIAVHsglPjsIUbMbZ6qSmpAqpWea6G1Z4Sx0IwlDo+H7UShKqHm5EdAxWulwuXC7XoI/tSqhUKlITkzlZdpbwhEgA/P38qa6rQZE9yC4Zj82NObQtuKAoCi3VjUydOG84hz3khmNuIQjtamtr0ckezD1870WYA6hoasZisRAUFDQoY+h1TclRnCkJbTf8b7j6evZ8uY+88rMYgvxwu1y4m5yEaYJQh4NW2/1lilqjxqN4kOWe/32E0e3MmTMozS2kp6T43NCXJImJERFUFhZy6tQpEZQUBEEYAwbnNu8gcLlc3HbbbezevZvY2Fj27NlzRXdHJ06cyPTp0zl16hQvvvgiTz75pM/2PXv2kJ+fj06nY926dVc6fKEXZs6ezbacXPJrqkkNC/dOQhxuNyfKywlNTCAlJWXAz9uxrmiS0Y9FwV2Dontqq6m+sN83v/lNbxOk4bZ9x3aySnOJm52MX4A/pWWlqNwGAmKMtJa2IDtdhM6IQu2vpbq+Br1eT3RUNABh8REUluawbO61VFRWkluQS727CrVKTVRoJEvXLGHatGnD/AqF8abjUuyemtxA1wzKnjrbjyRzZs8hqyCbioJyolJiCA4KprKqkqbqBtw1dvz9TIREh6IoChV5ZRhlHbNmzRruYQvCuKFWq5FR8ChKtzdEXLKMpJIGtRv3eKgpCW3BpSVLlpCSksKpU6eoqqlCp9MzYXEakZGR/OWNV2iqaSQosuucrKm6ET+9kbCwsGEYuTAUKsrKCNXru30fSpJEuNFARWnpMIxMEAZOx4C7x+MRzbuEMaVjosHlVruOiqCkLMvce++9bN++naioKPbs2dPr4FRSUhIAv/nNb7j99tt9tv3sZz/j9ttv59e//jXz5s1j7dq1QFuh/W984xsAfPvb3yY8vGu9G2HgpaamctUNKziwZw9lhYWE6HW43B7qZDdBcbHcfMstg7JcqmNmlp9a3e1yUWOHCxCn0zkoy8j7qrq6mqyCHCImxOAX4I/L7aKuvg59gBGj2Q+XxYmtrgWVXoPOqMftdFNTW0NEeDhqtQaNVgPqtkZOd95xB/X19TQ1NaHT6YiOjhZfjMKw6LgUu6el2wAaSYUaCZm2ZbqjISiZmprKjdetYuenu8irOIMh2B+tRcJ2rgFcCuGTwijPKaW13oK/yo+bVqwWSxMHWWVlJTt37uTIkSMcOXKEEydOYLfbufbaa9m3b98VPffevXt59tlnOXToEBaLhcTERO644w4ee+wx/P39ezzOYrHwP//zP2zZsoXi4mJMJhMLFy7kP/7jP1i2bNkVjUm4tMTERL40GKlqbiY6MLDL9tLGRiInThjUWsvjZfl2u+joaKKjo7s8PjF5AifyTuF2uXE5XKhUKgIjgpEkaCiuYcn0RaLm9RimUrdlw/ZE9ihIYp46aDweD4WFhZw9e5aGpkZM/iampKeTlpY2aKUrxiNJktBoNLjdbux2u/hME8YUu90OgEajGb6g5KlTp9i1axcqlYpVq1ZdUXOSt956iy1btgBtXbN7KmwP8Mc//pHZs2d7fy4uLga6X6J722238cgjj/D73/+edevWkZqaislk4vTp08iyzNKlS3n66af7PW6hbyRJYuHChSQmJnL69Glqq6ow6HTMTEtj8uTJveqC3h8dfzd67vR7MShpsVj6Vcd0oJWVldHqthN3oQi81WrFKbsIuHCx6xcZQFNBDa21FvRmA3p/AzZbM7bWVswmM3arHZUseS9mQkJCCOlm6bwgDKXevB87bm+9kC3U/sU30i1YsICEhAROnz5NRVUF2kAtN827AVmWKS0vQ/bIxM+dy/Tp04mMjBzu4Y44Azm3APjnP//JD37wgwEa3UV//OMf+f73v4+iKMTFxREfH8/Zs2f5xS9+wdatW/niiy+6/bytra1l6dKl5OTkoNfrmTJlCjU1NXz00Uds376d//3f/x1VjdZGm4iICJKnpHP22DE0ahVh/qa2pkkeD/nV1TRrNVwzf/6g3pgcD41uemPGtOl8uf8LSs4Vo/LTICEhuRSMGj1zp8/luuuuG+4hCoMoMTmZL0+fwSXLaDtlJsseD9UOO/PS0oZpdKNffX09p06doqi0GAmJpIREpk+fTnBwMG63mw8/+oiMsyeQDQo6fwPOOgcZWSdIT57Ehls3iNJOA8hsNtPQ0EBDQwP+/v4jIvFFEK6Uoig0NLT1zujNHKXfQck9e/bwi1/8gkWLFvGrX/3KZ9tvf/tbHn30UW+heZVKxW9/+1sefvjhfp2rYwZMUVERRUVFPe7b1NTUp+f+3e9+x1VXXcXzzz/PiRMnOH/+PFOmTOG+++7jBz/4gejqNwyioqKGtEZMx8ysnpaLjsSmGh6PByRobmmmpaUFq9WKy+nCo3hQo0KtUaHV67BXWfDEBSOpQFEuNOBRFCryy4gMDh+UJfGC0F/9DUqOhkzJdr39jKupqSErK4uWlhYMBgMTJ04kLi5uTE9Yh3JuAW0ZZitWrGD+/PnMnz+fjIwMnnrqqSt6DceOHeORRx4B4IUXXuCb3/wmkiRx/vx51q1bx7Fjx/jmN7/J1q1buxz7wAMPkJOTw9y5c/nggw+IiYlBURQ2b97Mgw8+yPe+9z2uuuoqsax/EK268Ua2u92cyMpGOl+BtbWVFrcbrb8f161cSdogB0I6Tt6dHg+KonR5z8uKgrtDM6exFpSsra1l+yc7MMUHERoWi8Vpw+l04rG6kBpkQoKDB+1GtTAyTJkyheOHDnG8tJTZcXHoLmTnuWSZk2VlaENCRImhfrDZbGRnZ/PJnl00u1swBPsBkL0/lwNHDzJr6kyOZxwnqzQXc3IIkdFRhIWF4Wf0w9Zk5dTJLMy7drL25rXD/ErGjsDAQBoaGrBYLJSVlREcHIzBYBAr1oRRyePxYLfbvb/T0PY7fjn9Dkq+/fbbfPrpp9x9990+j+fm5vJf//VfeDwe9Ho9arUam83GD37wA5YuXeqTxdhbmzZtYtOmTf0aZ286cN5xxx3ccccd/Xp+YfTrzXJR3QgMSgYGBlJXWUvdqWbUZh2KouBwOKirriMwJBB7nZWA4EA0ag11pypQB+rQatQ4m+0UZJ/Hz61n5bqVYhmGMKJ0DEpeqqZk5+2jKSh5OYqisG/fPr48sh+bYkftp0VudfPFkf3MSJ/OzTetGbM3zIZybgHw9a9/3Wf1RXl5+RWNH+Cpp57C4/Hw1a9+lW9961vex2NiYvjHP/7B5MmTeeedd8jMzGTGjBne7RkZGXzwwQeoVCr++c9/EhMTA7StIvjWt77FF198wWuvvcZTTz3VbUBTGBgGg4FbNmxgx44dHPz0U1RuNxFaLSq1msyDB7HbbKy88cZBew92XIqtAE7Fg17yzRTrnEFpNpspLi72qZHdWWtrq8/P586du2RgLzExEZ1O14eRD5yjx45S62hgwqIpqC40DFRQkJBoqKzjTH4WS6qqRJOTMcxkMnHzrbfy0Xvv8WlpCYGSCglo9HgwhIWyZv36QWs2NRYVFhZy6MhhsvOzKSopRqVTkzJzAtFpcag1amSPzMnPj3N6y9+R1BKGpAC0YQYq66upb6wnKSGJoMAgwlIiycw6zdVLrxb//gPEaDQSGxtLeXk5FovlyhuwCsIIEhsb26ubiP2ORuzfvx+A1atX+zz+0ksvIcsy1157LR9++CE6nY6vfOUrbNmyhT/96U9s3ry5v6cUhEHRmyBIx8dHwpeFoigcOXoEl9sFTQqBCaGodRoklYTFYqH+fC1UupgweSKh8REUncynLK+E4MBA7K5mpiZM5KrFV5GYmDjcL0UQfPhkSkqXz5RsN1qWb3emKArnz5/n3LlzyLJMaGgoFouFPQc+JSA5hNj4VCRJQlEUmmsaOXLmGP5GP1auXDncQx8Uo31uYbFY+Ne//gXgE5BsN2HCBJYvX86uXbt4++23fYKS7WVqli9f3m023oMPPshrr73G9u3bsVqtl6xLKVyZrKwsco4fZ1ZIKKmTwlGrVCiKQmVzM6cPH0Gn13PDIL0H/fz8UKlU3gLxDtmDXtU5KHmxyY1Op8NgMPCb3/zmkiuJOnviiScuuf2FF17wBsaHkizLnMo6Q1BMiDcgCSDRli0aFBlCTX4leXl5Iig5xsXFxfHVBx4gKyuL8rIyUBRmxMaSnp4+qJ9/six3uTHWWeekl02bNvW4isFoNPK3v/1twMbXV6dOneL9HR9g17uRg0Gr8kej0VKUX0hLfTMTF0yhqaUJ2QwYVSgeCIgLQeunw2j2o6WhheKSEkzpJoKjQ8nPq6S8vFwEJQdQQEAAWq2WpqYmWlpacLvdwz0kQeg3jUaD2WwmMDCw16sa+h2UrK6uRq1WExcX5/P4v/71LyRJ4qc//an3C+Ppp59my5YtfPbZZ/09nSAMGt/l29131Bxpy7fLy8vJKy4g/eoZlOWWUH/iPNpQI5JGhVzlwFpjwWg0IqklKvLLUDslViy5juuXX4/ZbBYTCWHE6uvy7XajMShps9nY9tGHZJ/LwYELlUaFp1WmvqqW4AkRhCdcrCkpSRKBEcE47U6OnTrO4sWLx9ySTRj9c4uMjAwcDgd6vZ4FCxZ0u8/VV1/Nrl27OHjwoM/j7T9fc8013R63YMEC9Ho9drudEydOsGTJkoEdvAC0LT06dvgwoR6YGOn7HowODMTpdpN14gQLFy0alAYzKpUKk8lEc3MzABa3G0OnmnoW18ULVpPJ1KtVQUPB4/GQm5vLicyTVFZXotfpmTIpnZkzZ/Z63uFyuXC5XRgN3f/bSpKESqceU9nxQs+MRiNz5sxhzpw5Q3revs4pLvf7aLVauzxms9m6/Hyp8ixGo7HPS3otFgs7dv4LJVhDanoqufm5GHUm/IPNOCMc1J2tprq4EotiQ9Kr0Yf6YT3fdHEckoQpyERzZSMNjQ2EhoQyMj5txh6j0YjRaCQqKspbaksQRhtJkvpVZqrfQcn6+noCAgJ8TtrS0sKZM2fw9/fn2muv9T6empqKwWCgrKysv6cThEEhy7LPRKE3y7dHQqZkUVERTpWLhLgIgiKCqSmppvZ8NW6ri5jQKFz+TlprLfhZtCSERDN9yTSmTJkyZpd8CmOHb+Zy9zcJLm4fvcu3FUXhg20fkFl4hqj0OMyhgUiSRENlPaUVpajdFmw2G35+fj7HhcSEUXAui5KSEqZOnTpMox88o31ukZubC0BCQkKPn7epqakA5OTkdHts+/bOtFot8fHx5Ofnk5OTc8mg5AsvvMCLL77YqzFnZWX1ar/xoqGhgbrz55kVEtzt9tjgYHKKiiguLmb69OmDMoaOQclddTWX3Le+vr5LwENSS0gq34sCRVFQ3BcvciVN1wsHj6vnxjqX4/F42LFjB4cyj6D4qTCFmrE4mvn4wC6OZ2Zw12139irzUq/XY9QZKM0qoiyvBI9bxi/An4iEKALCg/DIHjyt7lHdcVwY2dpvDAzUfN9ut1828xLaagpfyssvv0xERESfzp2dnU2To5mUOZO7vN91Jj3aUANVxedRQjVoTTpceg0qVLTWWfCPDkDxKKjUKiStitbWVhqr6vHX+xEdHd2ncQh909/AjiCMVv0OShoMBpqamnwKcO/fvx9FUVi4cGGXOzlGo3FUZrIIY1vnifxoaXQjyzKSWoUkSWj1OmImxBE9IZaWlhZaWlqw1DWjdam49857+jyBEYTh1Jsar91t9wlKjoKby2VlZWQX5hI1JZ6A0IsFoNVaNQaTEbfKQ01tDYkJviUW2pYzKsiyzFg02ucW9fX1AN121m7Xvq29K+FAHNtZRUUFx48fv/yAhS5cLheKR+nS8bedWpJQS9KgLq+70lrPwbOiMUaafB5rC0peDDpKGlWXi97yHbn9/vw8efIkBzMPEzopmqDIiwFdOU2m8EQe7217n2898M3Lvrbq6mrq6uuorK7EHB+ExqTD0lBDTUU1MUlxaHVaAvQm0tPT+zdQQbgMSZJITEzkzJkzAEz0NzHJ5Pt+cnk8/Kum2vvzjeERaDt8P2U2N1Pc6psJORwaGhpQGTWotW3vO7PJTFN1c1vnS0lCF2DEXt+MIcSER/YgtzgJCDJTn1uNxdKCpNfgaXXjccoYWtXY7E0smDT3kt9TgiAIfdXvWU9aWhonTpzg008/ZdmyZQC88847SJLE0qVLffZ1Op00NTWRkJBwRYMVhIHW8S6oBGh7uCvVOSNruGt9hIWFgcODo9WB3qjH5XZRWFREs6UZj0rBdr4Z6ly88sbfWHvjGjF5F0aN/i7fdrlc3r/L9v69PzseN9j1+goKCnCp3ZhDfLN9jCY/NBotstNDQ1MjCUo8Uofami11TRg0esLDwwd1fMNltM8t2gOkl2oQotfrga6NR67k2M6io6N7vdwxKyvrss83ngQFBaE3+VNjaSGwm1pIja2teLQaQkNDB20Mg7EiQ5IkJO2ls8/7S1EUjmUcRx2s9wlIAqg1auLSkyg7co78/HwmT57c4/O43W7e/eBdZLNEfFwKLQ4LWn89ftFmbNXN5J/KISowgrs33DUmy1cII0fHoCRAsNb3c1lRFO6OuVhmRDtCM9u0Wi0el+y90RcSEkJ1bTWWhhZMwWY8LjcqlYrAgCCKss+hsYFbDYrbg/VcEx7FAypQZIWi4iZiQqKYsKZrzWNBEIQr0e+g5Jo1a8jIyOCBBx7gV7/6FRUVFbzyyisAbNiwwWffjIwMPB7PiLpwEATompXV04Sic3BkuDNzJk6cSGRQOOVZxSTOSqWwqIhGSyP+IWZkhxuny0LS/Mm0ul28+9H7mEwm4uPjh3XMwugkyzJ5eXmcPX2apoYG/EwmJk+ZwuTJk70BkoHUMXv5st23OwTrOtbekW0uPC4ZVR8vwF1NF9/XPS2hHShutxtJo+7ymaPVa4mIjaToXCFanQ6PoqC+sIvb6aIq7zzp8RPHbIOH0T63MBgMAJfsgtye1du5+LfBYMBms/Xr2M4efPBBHnzwwV6Nee7cuSKrsgODwUD6zJlk7t1LVEAgpg6fc25ZJquqivDk5EH9Tu04N7kxPIKgTgGROqeDnbVty7r9/PyGvelRa2srVXXVBKV0v+Td4G8Ag0RlZeUlg5IFBQWU11SQOC8FjUFLVVUVtXV1WJqakWUZjUmPyeDPrFmzBumVCEKbpKQk798bXF0/kyVJQneJIGRjp2OCZ0VjCPctx+JxyVTtK/L+HLksyWfeoihQuaugjyP3lZqayr6Dn9FS10xAWCAGvYGEuAQKzhVQ3VCBrbQZk9oPy7l6pFo3TsmDMc5MWHIMNWfPozapUZu1aAwaVC4VikvNto8/wmQykZycfEVjEwRBaNfvoOQPf/hDXn31VQoLC7n33nuBtovCu+66q0uNnffff7/bLAdBGG6+TW56DoBoJBVqJOQL65qGOyip1WpZt2Ydb737Nmf3naRRbkEf4kdLcT3uRifh4eHETIhHUknkH8ri2PHjIigp9JnL5WLb+x9QePoUgQoEGgxYz1ewKyubU6kp3Hr77QN6MdzbGq/dbXc4HD41oFxNDvRhfj0d2vXcThm59WKmZHfdjwdSSEgISqsbt8uNRuv7VRw3OZHz+aW0nmukzFiMf6AJh9WOtbqZuOBoVq+6cURmZAyE0T63CA5uC8q0L8XuTvu29n07Hmuz2fp1rDCwFi9eTGV5OQfz8ojU6Qn288PmdFJusaCPjOSG1YP3HnQ4HD6Z3yaNpstnoUlzsV6pzWbzduoeLqoLN3V7GoeiKG216S7zmV5RUYGilzD4twXdIyIisFqtOFwO1Go1miAdBecK+b/N/8dtt9wm6toJgyYx8WLplEaXy6ekyOXIikJzpxVVKo3U5UappFERfUOqz88dzzEQjU7i4uKYkjqZjLOnUCZ70AUYqK6uxu1001plQW524jZq8MfIrKXXsWv/HtCrqM2tRB2iwxBnRqfVYTabcdocKDY3FoedfZ99SlJS0pidiwiCMLT61sKrg6CgIPbv38/Xv/51Jk+ezKJFi/jlL3/Ja6+95rOf0+nkL3/5C4qicN11113xgAVhIPV3qehIaKqRmJjIpq/cT2JgLK4KG0qFA3+PgQnTJzFhfnpbYWpJIigmlOz87GFfci6MPvv376f45EnmhYWzMCmJyVFRzE1IYElMDHV5+ez6ZOeAnq+3NV67226z2XwCic6mvt046JglGRgY2FYiYRBNnjyZYL8gzueWdLnwcLY6CA8JY8Wi64jWhCKXtxLoNLJ66Uo2fmXjoC4bHW6jfW4xceJEAEpKSnwCSx0VFBT47Nv52Pz8/G6Pc7lclJSUdHusMLCMRiMb7riDq9asoTU8jDy3iyqjgWnLr+PO+74yqJnKnetWd9fwq/Nn43A34NPr9STFJtBQ0X1A3dpkQSOrepXV3P556FE8FBYW0mhrwi/URFB0CP4hZgxBfpy3VfPm1rdoamoa0NchCO06/q66FAVrH+o4N7lcvSrNKkltgcr2P4MR4JMkiXVr1zF34kwasqs48uGXlGUW4aqwEeYfwpL1y1hwy9XIZon8wgIioqKIDo1Eg4rA+BCCAgMJDAxErVaj1WvxeBSC40IpqSylqqpqwMcrCML4dEWVtGNjY3nppZcuuY9Op6OysvJKTiMIg6a3mZLt21s9bZOSkVJ/Kzw8nClTplDtrid1QdfOetDWOMOlKJfNpHC5XOTl5dHQ0IBWqyU1NXVMBz+ES3M4HJzJyCDR5E9Ip2xIf72eyaGhZGVnU1dXN2C/J50vrHuq8dpO16kBVWpqKidOnADA1dz/oGRaWtqg3/338/PjppWrefej9yg4nE1QbCgarZbm2kYctTZmTZrBrbfcilar7VOGxlgwmucWs2fPRqfT4XA4OHz4cLcdsj///HOgLRuvo0WLFrF3717v9s4OHz6M0+nEYDCI5atDwGAwsHDhQhYsWIDb7UatVl82028gdJyXaC401elMK0lIXOxJ096pe7hIksS8ufPIe7eAivwyolJikC78W9mtrZw/U8Kk2NTLBiVjY2NRH5BobbHh8DhpsjRjCg/wNumw11oJCgsmZe4kzh3M5uTJk1xzzTWD/vqE8cdkMhEWFkZtbS3Qli1p6mUDqoYebkgNF4PBwG0bbiNodxDv7XifhLRoTCFmgqNCUWvabnokz57AqV3HkB1uwvVR6PQ6AkKDfOYeHtmDJLXVvm6Wa0fMtZAgCKPflbX3E4RRrmMQpC9ZWSMhU7JdWFgYit2D2+lGq9d22d5c20RcSCRabddt7fLz8/no4+3UNNWCToXi9mD81MCcqbO44YYbLnmsMDbV1NRgb24mOiKy2+1RgYGcqq+jsrJyUIKSOqnnGq/efTq8J2VZ9llu5Wzq23u04/6DvXS73ZQpU/D39+fosaPknsvDoXgICwxm3orlzJ492/u+G08BydHObDazatUqtm3bxosvvtglKJmXl8eePXsAuP3223223X777Tz99NPs3buX/Pz8Lr+HL7zwAgCrV6/G1KkTrDB4JEka0u/AjgHGnuYlkiShV6mwX7jZ2Dm7cjhMnDiR1detYuenu8mrOIs2QI/sksEqkxqdyC3rbrlsUDclJYWEyDjOnS5CHa5H0YBaq0FRFKwVzXha3ETNiUGj1eAfHsDprDMiKCkMmqSkJJ+gZNxlavm261xPciSQJIna+jpCUiJJmuFbM9tqs1JfX0+r2omlpgFNqR6QcFmd6EwXauoqCnZLK4H+AcgON1qNdthr2QqCMHYMWFCypqaG4uJibDabmCAIo0bnRjeX0nH7SLo7OHnyZMI+D6E8u5jEGak+AYzmuibcDQ7mrJqNJEnY7XbOnDnD6bOnabFaCAoIIjoyikPHD+Pw9xC/IA29UY/H46Ghoo4vTx5AURTWrFkzjK9QGA5tv0dSjzWN2h4f2GBZX24SQNf3bMcllX1tdtM5U3KoJCYmkpiYiMPhQJZlDAbDkGRjjRYjdW6xdOlSysrKeOSRR3jkkUd8tv3kJz/hww8/5LXXXmPJkiV885vfRJIkKioquOeee/B4PNxyyy3MnDnT57g5c+Zw88038+GHH3L33Xezbds2oqOjURSFzZs389prr6FSqfjxj388hK9UGGq9XcGhV6lHVFASYMGCBaSkpHD69Glq62rRaXWkpaUxYcIEn8BuT593arWaW9ffyltb3+LEyVPYDW6UFjeuZgdqt0TihCRCYtpKa2gMWhz1I+cGsTD2JCYmcvToUQAa3L0PNDa6R1amZDuHw4FW53vpX1VdRXlFOW48yDoFSaeiurASRVKQitSETY1B8XiwNVlRyyoiwyOoya1gUmwq4eHhw/RKBEEYa644KPnBBx/w3//935w8eRJou5DtWLuuoaGBe+65B4A333yTwMDAKz2lIAwYn6Ck1Pug5HA3uunIYDBw841reGfbu+QdzCIwOhiNVkNLbRPuRidzp8xi5syZWCwW3tryNgXnC9GGGND7GahpKOSz/Z+BWcOCBYvRXCier1KpCI0NR5IkMs6cYOHChYNeY08YWcLDw/ELCqS8sZHJ3dRPO9/UhNbkT2xs7ICdsy81XgHUkoRGknBfCJzq9XrMZrP3fe1ssmMIu/ydfNnhRrYPXZOb7gxGJ/PRbKjmFqWlpcyePdv7c/tn+5dffunzmffoo4/y6KOPen8uKyujuLiYxsbGLs85f/58fvvb3/LDH/6QBx98kF/84heEhYVx9uxZHA4HkyZNYvPmzd2O5y9/+QtLlizh2LFjJCcnM2XKFGprayktLUWSJH7/+98zZ86cfr1WYXTwDUr2fFNF36l8xUgRFhbGsmXLut1WXFzMkaNHySvMw6N4CAkMYe6sOcyZMwfNhaWxoaGhfO2rX+PNN9/k86Nf4h9gwD86jPCESEzBZu9zWetbiA9L7fY8gjAQOje76a2Rtny7XWR4BLmnCrwlYZpbmimrKEftpyHQ7EdttY2kqSlodDpyj2XRmF+Dw2LHGGrCz+xHmDmEmtwKzB4/ll1zrVjFIQjCgLmidIz/+Z//4dZbb+XEiRNtnfUu/OkoODgYo9HIzp072bJlyxUNVhAGmm9m1qUzqvQjNCgJMGHCBO6/96ssSV+AqtqNq8RKgl80t990K+vWrkOtVvPJzk/IqzpHwvxUkqanEp0aS/yUJBSjCtkfKrspWB0cFYLNY/c2ZhDGD51Ox4x58yix2ajqVK+ssdVGbkM9E6ZNIygoaMDO2degZOf9rFarT0DR1csl3K7mi/sFBQWJWqrDbCjnFrIsU1dX5/3T3mzJ7Xb7PG6z2fr0vI888gg7d+5k9erVWK1Wzp49S2JiIo8//jhHjx7t8SZPeHg4x44d4/HHHycxMZGzZ89itVpZvXo1u3fv5uGHH+73axVGh94s3wYwdNg23DUle+PMmTO8/tYbnCg+hTbeH//UYGpo5P3dH/LOu+/63HQwGAysWbOG5IQkwmIjSJ6Z5hOQbK5tQmmRmTljZnenEoQB0TEo2eRy4elFN2yHx4OtD01xhordbkeSJGqKKznw/qdkHThFUfY5ZGSMAf7YaixIdoWIxGiSZ6axZMMyQoNCiFaFEthiwL9eg6fCwaSwFO69427i4+OH+yUJgjCG9DtT8uDBgzzxxBNoNBqeeeYZNm7cyNSpU6muru6y73333cf777/Pzp07eeCBB65owIIwkMZCTcl2UVFRrFmzhtWrV+PxeGhsbKSiooLs7Gz8/f05m59NRGo0ej+D9xhZ9qDSqNAGGqmtryMqMsqbrQAgqVSoNGqczpFXH0foPVmWKS4uxmq1YjQaSUxM7FWNtIULF9JQX09mRgbGujoCdFpsLhfNkkT8tGksv/76AR1nX8opdNyv/QLAYrGQlpZGRkYG0PsO3M4hbnIDbf9PCgoKqKysRJIkEhISSEhI8J67pqaG0tJSPB4PkZGRxMXFjYushKGeWyQlJfVYouBSioqKLrvP9ddfz/X9eI+YzWZ++ctf8stf/rLPxwqjX2+Xb+vUIzNTsjs2m43tn+xADlSROuViU76gyBAsjS1knjxFyolk5s2b5z0mLCyM669ezr/2fcK5plyCo0NRqdU0VTfgrG1l3tQ5TJ48ebhekjACORwO3G43BoMBtbp3pVsuJT4+HpVKhcfjwQM0u90EXWbu1LGepCT1XAJnKDU3N/PmlrcorCzGLy6Q5tYWKmqrsDda0Rp1yA1OPM0uYpPjCQgPAsAUZCY8NZqrJsxnzpw52Gw2TCYT4eHh42IuIgjC0Op3UPIPf/gDAD/60Y/4/ve/f8l9r732WgDvhaIgjBRjoaZkZzabjR3/2kH2uVxaXa0oCihOD/UNdcyb43tnU6vTotVqkZ0e3CoXrfZWzKaL2QhOuxPF4RnQbDhhaOXm5vLZnj00VVWBWwa1CnN4OIuvuYbp06df8li1Ws3qm25i6rRpZJ09S3NjI1H+/lybnk5KSopPAHsg9LWmJIC+Q9mF9qBku15nSg5xPcnKykre/eA9ztdWoOhA8ShovlSTGpfCyhU38OX+/ZzNz6LVbQcV6NCSGJ3A2jU3j/kyCmJuIYwUiqLg8XgGJLjRF73NlOy4umOkZ0pmZWXR0NpEyuzJXQIapiAz2lAjx09mMHfuXJ/tCxcuJCgoiCNHj1ByrhRFUYgIDmPeyhXMnj17yP/fCCNTeXk5x44epSgnF8Uj4xcQwLTZs5kzZ84VlUbRarXExsZSWloKtAUcLx+UvLh0W6vVjoib+tv/tYPCmmKSFkxAa9TR2NjYduOzsBR7eTMeycjE+emExUd0eX9KkuRTr1sQBGEw9PuK8ssvvwTgu9/97mX3DQsLw9/fn/Pnz/f3dIIwKAYiU9Lj8vTr3B2PG6i7jna7nTfffpOC6iLC06KJi0hBUaAkrwhrXTl5R86SvmSGt7C8Sq0iMj6KwvxC9JH+SB0alyiKwvm8UkLNwUycOHFAxicMrfz8fLa/8w7BDhdXRUah06jJr64mKyubV7KymLN4MTfccAMRERE9PodKpSIpKYmkpKRBH2/70lno3/LtlpYWn+YhcqsL2Smj1l36wtU1hJ23m5ubeXPrW9Q4G4ibm4zBZGzrLNtoIetMLpm/y0QTqCdyUgxxkSEAWBst5OcU8uaWt7j/vq+O6c7LYm4hDLe6ujoyMjLIPXMGt9NJcFgY02bNYvr06QN+I6Y7o72mZHfq6+tR+2nQaLv/9zOHBlBXVIfL5UKn02Gz2airq0OSJFJTU5k4cSL5+flkZWXhcDqoqq6iqKiI5ORk0RhsnGuf52hbLKQGBaHX66ltaOTgjh2UFBZyy223XVFgMiEhwRuUbHC5SLrM/g0jLChZVVVFXlEekRNj0Rnb/h2Cg4IJCgpCrVZTRgk6j46QmDCfaxGn3YlikQe0brggCEJP+j27qq6uxmw29zprQ6/Xj/hJkzC+KIrS62VSALoOFwcdax+5LU5kuwu14fLLYTue21F7MQAzUIGQs2fPUlBRROL8NO8ybQmISY2jurGW6pJqoivrvd0rAaLT4ijLLaG1qInG4HqUMA8uh5O6shr83Xpuunm1aMIxCnk8Hg58/jkBdgezExJocTjYm5WFzWIhVFJhcro4u28fNSUlzLv6aiZOnIherx/WZmRXWlPSYrEQHh5OQECAN3PI1WRHHd5zs5uhbnKTmZlJZXM1aVdNQa1p+0yRJAlTsJnAmBBOnctgyqyZBEYE02pvRZIk/IP8SZ4zkXMHszl58iRLliwZ1DEOJzG3EIZTWVkZH2zZglxXR6zJhF6jpa60jL1FxRQWFLB2/fpelb64Ej7zEvWlMiVHT01JjUaDx+XxNtjozO1woVapcblcfPrpp2ScPoHFbkWSJIJNQWglDTUtdTjVbnT+elylLg6fPMq0CVNYv249Op1uGF6VMNwcDge7duwgsNXOrORkVBd+tyIDAoi32zmcnc3x48dZvHhxv8+RlJTkvVnWm2Y3HffR6XQ+N1uHQ2VlJa1uB3EXlmW3k5CIiIigrqYWS1EjtmYr5pAAANwuNyWnzhEVHMGkSZOGYdSCIIw3/Q5K+vv709LSgizLl10+YbFYaGxsJDw8vL+nE4QB19raisdzMVvxckEQfafl25GRkVRdaA5jr7HhH9/7YI7b6kRuvRgImTt3bq+PvZRTZ06hCzb41I0E0Gl1RMVFkVfRQEV+mTco2Z6hFRwQRHJEIjZLK401VagkNdMT01m8cJFPoW9h9KiqqqK2vJw5YWF4FIVDBQUoFisLA4IwqNW43DLnrS00VVSy5a+vEBoZgdkcQFxqCgsWLSIhIWHIx9yXmwTd7WexWJAkibS0NI4fPw60ZUEaLhGU7Lh0Ozg4eNCb3JzJPotfuNkbkOzI2tiCKkBDXVM99S0NOFxOJEnCoDMQER6OMdyf01mnx3RQUswthOHidrv514cfomtoZF5SMuoLny0JISE02GwczTzF8fh4Fi5cOKjj6P3ybd9MyZGcMZiSkoL20GdYGlouBj7cbppbmpHdMlWFFSydtoj33n+P08XZBCWEEhuRjEf2cO5sPudzS4lOiGHKkpne19lS30zG6UxMe0ysvnH1cL48YZjk5+djrallTlycNyDZLsBgIFpv4NTxDBYsWNDvpf596cCtKIpPTcnBvoHRG+03Abq7IWA2mYmOjCYvt56i4/kExQQjuz04G1qJDAjntls2iKQEQRCGRL+DkpMmTeLQoUNkZmYye/bsS+773nvv4fF4mDVrVn9PJwgDrnN2TV+CkjabjWXLlrF9+3YA7NXWPgUl7dUX75ympKQMWCDEYrN6A5Ky7Ka5pQW3241WoyUqIooyv2Iq88ppbbah9tfhccno3GqumruIW9bfgsfjwWKxoNVqx/QS0fHAbrfjcbvx1+upbG6mxdLCPHMABu/EXMHW2kqw7CEa0LpcTDEaKTx9mveKirn59ttISUkZ0jEPRPdtwCco6Wy+dLMb5xAu3QZwOB1oTd1fqLidLmSVQkNzIwHhgRgD/FEUsFvtFJUW4yfrMElj+wJBzC2E4XLu3DmaKiq5KjraG5BsF+znR7Rez+mMDObNmzeotQx7e3Omc1ByOLPcLychIYFJyZPIPHOGqPQ4rC4b1bU12FtbsVW2QIObY45j2CUnqVelYzT7AW0Z/x6ThGlCCM01LVgbLd6gpjkkAHtSOCfOnGTJVUsICAgYzpcoDIOGhgaMEhh7CP6Fm81UNjfT2tra7zltx6Bki+zG5fGg7eF9aZNlnB0a24yEoGRcXBx+WiONVfWERHddgSDZFaamTWHW9JlUVFei1WiZMDeNKVOmiOsAQRCGTL9vq65btw5FUXj66acvuV9ZWRmPPfYYkiRx22239fd0gjDgOk78tZLU5S5rZ52DJFOnTvX+3VFrRfH0vsOeo+ZiULJjt8krFRIYTGuLjdraWs5knSW/sIDCsmKy87I5ePgglsYWFDXU1tVyPreEhtIaPIqH/KICMjIy0Gg0BAcHi4nIGGAymVBrdTTabNRaWvBXwNShHlqNxYLWA5EmE4kmM1ZbK+EmE4uSkjHbbOzduRP5QlfroeJT41Xqe1Cy/T3t2+zm0kHJoW5yExUeibXR0u02Nx6cTXYMJiN+gSY0Oi1avRZTiBl9oIGa8zXodYZujx0rxNxCGC61tbUYFAVTD5lBEWYzLQ0N2Gy2QRuDLMs+yz0vXVPy4raRXsJAkiTWr13HzJRpnNufzdlPT9JYVIOropUAnZn0pTOoaK6m3t2ER31xLmVrteFwOQmIDcajVagtrfZ53pCYMFparZSVlQ31SxJGAI1Gg8uj4LkQCPR4PDTUN1BeVk55eTm19Q0gSVdUCzYqKsonW7DJ3XO2ZGOHbSEhISMiezkkJIRpE6dQk1eBreniZ4uiKDRU1tFaaeHapdewatUqNm28n6/ccy8LFiwQ1wGCIAypfn9afve73yU2NpatW7fy1a9+ldOnT3u3uVwu8vLy+O1vf8vcuXM5f/48EydO5P777x+QQQvCQOhrp1+t1LENDMTHx3vrGCmygrO+dx25PS4ZR4d9BzIoOX3adJrPN5Kfm4db68EUGYB/qAmX4sbhdOJyONElmohcnEjMVSkYIv3Rh/jhCpL4cNd2Tp06NWBjEYZXWFgY0SnJ5NfWInsUn99dm8NBo9WKUa26EExvm9ArgEqSmBQZSWNlJcXFxUM65v40uum8fBt8g4tyqxvZ2XNw1dk8tJmSM2fMRLJ6aKpu6LLNYrWgWN2ournmkWRwNdsx6MZ2pqSYWwjDRa1W41YUFKX7G4wuWUZSqQY1S9Jisficv7eZkm6326cczUjk5+fHTTeuJtAUQFR0NCkpqUyelc7s6+cRnRqLMcAPDGqqqzsEHpW2/0gqFWp/LY5Wh89zqlQSCj3/PxNGvpqaGnJzczl37pxPUxir1crZs2fJzMykrKys2//HKSkpKEYDlc1N2Kw2crOyKT13juaKShrLKzhTdI6axgaampr6PT6VSuVTzqbhEku4O24biuaAvbXyhpVMS0yn4kQx+UezKTl9jvyDWdSeqSDEGMSRjKM896c/8t7771NYWCjeT4IgDLl+3zoymUxs27aNVatW8frrr/PGG294txkMFzM5FEUhJiaG9957b0SksQtCu952uGwnSRJ6lQr7hYm/w+FgxowZHD16FAB7jRV9mN9ln8dRZ2uPAWE2mwe0s3Vqaio4PFjLmtDotXj0Ms11zbTWWsEmozZqIECDX6A/ICFpVNTn1xM3OZE6p5svDn7J1KlTB/WiSxgakiRx9bXX8m5lJefLyrC43TQ7HDRbbbTYW8HjQauAtaWZEpcLY0gwmgsXuWaDAbXsuaKJfF+53W5aWy8G6/vb6AbaArKBgYHe8ffU7EZ2uPEMYZMbgAkTJrBwxnwOZh6moaqeoIgQFI+Hhoo6HFVWQsPDcJ630mB34xdhRlJJ2OttOKqtmExmjP6X/4wZzcTcQhguiYmJ7DfoqW5pIbLTUmBFUShvbCRmSjp+foP3Huw4L5Fouxnak84By5EelIS2GoButYf0JdO71NXV6nWocNHY3ITL7UKr0WIwGNCotThbHXjs7i6lLxqrG/DXGYmMjBzKlyEMgLq6Ovbs3k15fgFuux1JpcIUGsLM+fNptdk4few4juZmJBRUej0RCYnccOMqIiIivM8RERFB2vTpZO4/gKahEaNbJtzkh0mj5ZzVisroR6Ci8MHWrXxl06Z+v3cTExPJy8sDLl1XsmM9yYSEBGpqavp1voHm5+fH3XfdTV5eHtk5OVhtVlx6J+dKCql11mMKDkKtVnG0IIOT2Zksv2oZS5cu7bYplSAIwmC4orzyWbNmcfLkSb72ta+h1+tRLtxhbv+j1WrZtGkTR48eFd27hBFnIDr9dsxytNf0rsNex/1mz549oAHAiooK/INNJKYmo1Q7acysovFkJUqTG/+IQPSxZiSdyts93BDsh0ej0FBRR3hiJFX11VRWVg7YeIThFRMTw2333EPq/PlYNGr2V1dhsbcSrNNj0OnQa7W0KAr1bhc6hwN7a9tSZofbjQxDVuC8traWzMxMn8essps6p5M6p5Nah4NKu937p9bh8G6zui8GFSsqKigoKKC5ublXS7g7Ph4SEkJISMgAv7KuVCoVq1ev5tZV64nVRWAtqMdW2MSEkGTSUyYTMyGOtBmTMDq1WHPqacmqRdUgk5SWTGh0GCa/npv2jBVibiEMh8jISJLS0zlTU0Ndh4xFtyyTVVlJi17HnAFc2dCdzvUkLxUUUEmST9ByNAQlHQ4HKq2q20Zf4XGRyI1OXE6Xt3SIRqMhLDgUa2UzHoub0JiLTa2cdgc1BRVMSplIWFjXWnnCyNXY2Mg7b75JdeYppvr7c31iIkujowlqsbD1jTfY9/4HJKCwPDGRG5JTmB0YRHNeHu++9RYNDb6rDCanp1PVaiOroZ6z1mY+rari/crzlONh4YQJLEubQEtFJVlZWf0eb8e6kg0dAo9dXtcIzZSEtkzwyZMnc8v69axfu47axjpU4TomLp1G7MR4olJjSVuYjjE+gD3791FYWDjcQxYEg4JSnQAAlRtJREFUYRzpf5GNC6Kionj55Zf505/+xLFjxzh//jyyLBMVFcX8+fMH9Y6yIFyJK+3029LS4tM1221x4ra50Pj1nLWjKIpPk5uBXLoNbc1NFBTS5kyk1WKj8tx57E02TInB6CNNuGobkFSS92JLkiRUWhWyW0ar1+HxeHyWzwijX1RUFHfefTcxcXH84y9/pVxRUOk0NLe6KLJZ8KhURPubCHLLlJeXk5aWRlFdHYagIJKTk4dkjO+99x7vv/++z2Mf11T3sPelPfLII3znO98hNTWVY8eOAeBosOPv6rqEu2MZhaSkpG67U14pq9XKuXPncDgcBAYGkpKSglqtZs6cOcyePRur1YpKpcJoNHL48GHe3/0hsZMSiEiMwm5pRVEUDP4GGirrqc2tQJooUV1d7ZMtMhaJuYUw1CRJ4sbVq/nI7eZ4Tg766mp0koRFUdAEBrBsxYq21QiDqK/zEoNKjUtuuzEz1DWA+8NsNoNLwWl3ojPofLaFJ0RSfKYAa1ED1pgW9NF6PLIHrayCKidqJ9RX1GK3tuKw2nHU20iOSmTVylXD9GqE/jp69Cit5ytYmpSE9sKNeY1OR3RgIOpzBURodcQFBHq3hZpMLDQa+aKoiIyMDJYvXw5ASUkJ2999l1CHk/TAQAJ1emyyTJXTie1CrXidRkOoRsO5vDyfOXtfdAww9pQp6VEUn20dA5kjzZkzZ6i3NZI6O73LnCciMYr8qkZOnDwx5M0OBUEYv644KNlOr9dz1VVX9bjd5XLxwgsv8N3vfnegTikIV6Tj5L8/mZItLS1ERUURFxfnLbJur7FiSgzq8Xh3ixOPo+3CQZIk5syZ04+R9ywgIACtSkPOwTM01jfikl24kKkvqMFQZ8VjklAbNKguLFf3uGXkVhm9vwFLfTN6jY6goJ7HL4xekiSREhlJjMmfioZGLCqJGreLYI8Hg9OJCzhfXk5pcxMtJhPX37Ieo9E43MPut/j4eO/fHTVWKnYWXHL/48ePY7VaB6y4u8fj4fPPP+fgsUM02VuQVBIqj0R0SCSrblhFamoqkiT5nG/69OkcP5lB4bE8oibGYQ4NwGV3kLnnODXnqzH6Gfny5EEyzp5gYvJEbrpxddtF/hgm5hbCUDIajWy4/XbKysooKCjA5XIRFBREenr6kLzXmpubvX/vTVkZvUpFy4VY5GjIlExLSyPEFExlQTnxU5J8AiKSBAGBgcSr/LEVNlGbU4kkSZgN/qxffjNRUVGcyTpDQ1Mj4aZIZtwwnWnTpo3q76nxyO12k3PqFPFmszfo2K68sZEAlZogJJoamwiPuJgZq1WriTObyM7MZNmyZUiSxOf7PsVosRJjDkBjbyX4wkqCBEXhdFMTp8vKiApsC266LrHs+nI6BhjtHg/NLheGTmNvdrlofwdKkkRcXFy/zzfYKiorUJt13WYsA5jDAyguKxniUQmCMJ4NWFCyJ7Is8/LLL/PLX/6S8vJyceEgjBh9bXTTeb/24+fNm3cxKFl96aBkxyzJiRMnEhgY2JchX1ZMTAxyq5vS86WETI4kMDISvxYrTRX1uFpcOM5ZcNa0ItW40frr8bhk9GotQRHBlJ4qZHbKdIKDgwd0TMLI4HK58NdpmRYTy7SYWMobG9l39gw2WytFshst0OrxIFut+Jv8hz0Tz9//4jJlRVF8Ot76+fl5L2Y9Ho9PLcqOxwynzz77jF3792CKDyY1fjJqrQa7pZXy3FJe/ftrRIaEU11Xg0pSMTFtAjfccANhYWHcfcddfLj9I85lF3LeVUx1eRUujUzMjAQmTpuMRqOhqbqRk3mnsG618JV7vjJky+xHEjG3EAZLe2OLjs0thkpfMyX1ahVciLWMhkxJg8HAyuU38O729ynMyCMsIRKdQYeloYW64mqSwxP4yt334nQ6qaqqQqVSERcXR8CFGp8DvbpEGHoOhwO3w4HZ2DXb3el2Y1Sp0KhUuGV3l+1+Oj1upxOXy0VDQwPVpSXMCgvD3tBIk8UCigKShCRJJPr7k2G1UNvSQr3DweTo6H6POSgoCLPZ7H1/vldVccn9FUXxlkkaiVQqFcolbmJ4ZA9qla7H7YIgCAOtX0FJm81GXl4esiyTnJzcbRBDURReffVVnnrqKYqKigZlWZwgXIn+Ld++eFex/fh58+bx3nvvAeCss6HIHiR198/XsZ7kYEyuq6ur8WjAHBeMrFFwOZzojQa0Rl3bEi+NhNzqwtpqxV3ZADaZqPgYSk+eI8oUzvLrlg/4mISRISgoCJvSNunXqNWcKSsjTq0lPTaUWqeDGqsVSW9g/rRpZFac5/+z99/RcaTXgf/9requzhE5R4IAA5gnkMOZ4ZCTJU0eSSNbI2mirV1LsndXto5+9lor2ce7x9J6V7uyNZK9kua1R9bkPJocOcwRgcg5h+4GOnd11fsHCBAYACRAgARAPp9zeA66q7r6KRBdXXXrPvfu/egjiouLl+S4XV5ezt///d9PPA4GgzzwwAMTj//5n/95Sobhl770pSlBS2BJ6yEFg0E+PbwPZ2EKmUVnLoTMdguyyUBNSw113Q1Y0x3oSZ36jxp57+MP+MYffo3t27fzh1/5A3p6eti3bx8fhj6maPtqPKlnvmc9mV6sTitNB5uora1l06ZNS7CXi0+cWwiXu3kHJSetsxIyJQHWr1+PyWRi7769dNR1ompJLIqZHWuv5Nprr524WZuenn6OLQkrkdlsRjFbGIlGpjWUsplMdGgaCUnDaJx+iRqIhLF6PJhMJsLhMFo8gctiwer14hsYYDQWw3m6IZrDaETXNJoGBlDtNtavX39R9m8lKCwoZP+JgzOWUdB1ndG+AJs3zD5DQRAEYbHNKygZCAT41re+xe9+97uJunOSJHHHHXfwf//v/yX79F2o999/nz/5kz+hpqZm4oLhzjvv5Pvf//7i74EgnKfFaHQDsHbtWqxWK5FIBF3TiQ1HsMzQ6VdLJIn7zmR0LWZQsre3l2PHjvHBJx/S2d9NenEmUtxAPBBD1zW0eBKzzYwxz0CiN4I9zYXmTaL6Ygx1DGDKNBDQR/i33z3FxnUb2LRp00RmgnBpKC8vZ6/XS21vL9kuF6FwiNV2B0ZZJsWokFTMZOblYTWbWJWWxtGOTvr6+sjKyrroY52cJTkXDodjWlCytbV14mdnqRdHyfQmNtGBEL5jY42dPB7PvN93No2NjYzGQpTmTc20Gu4ZpLGqDlORHcVmJrMwC9lgIBlL0Hu0g3958v+Rn59PXl7eWNazlsSV450SkBxntlkwuk1U19as+KCkOLcQhDFTp2/PJSh55kbpSsiUHLd69WrKysoYGhoiHo/jcrkWrXSGsLwZjUbKN1RS/d77FKakYpoUfMz3ejnc1EQ/Sda6PVNeF47H6Y5EuWrXJiRJwmazISsKo9EoqXYHGTk59Hd1ExkdxaYoBFWVkXgMAzo379mzoHMZv98/5YbBXCzn+uzl5eVk782i/UQThRtLUcxjgUktmaTzVBtOg23Fn1cIgrCyzDkoqaoqN910E4cPH54yLU7XdV588UXq6+s5cuQIP/3pT/nzP/9zNE3DYDDwpS99ie9973usW7fuguyAIJyvxWh0A6AoChs2bGD//v0ARHpHMXks014b7jkTBHW5XIvWROTUqVM8/+oLBLUIiRQwme0E4yHwa2QV5GDNdNDR04Ejw0PMHyYSCrB501gty7p91Qw4+oi7daxFbkbCEd7Y+xYna6r48v1fIjU1dVHGKCw9q9XKrltu5q2XXqKro4NoLI7BouMLhwirSWxe70QHU6fVQnJwgFBobh3lF9t8a7c5HA76+880xtF1nebm5onHphQbsjK9dpI59cz0Mb/fz/Dw8KL8zUejUSTj9A6z7ada0e0yjlw36kgcLakhGwwYzAqZG/Po/qiZN954g0ceeQSAUCSEYpl9CpXJaiYUWZr/o8Uizi0E4YzzqSk5bqVkSo6TJEl0zb5Mbdu2jeb6ej5ta6MsNZU0p4NYQqVteAiDy0lAkqju66UgJQWT0cjA6CgtgQBppaVs3rwZgMzMTNLz82hqbiHFbiczMxOr1crQ4CCB0RFaohFsWdl8+etfZ9WqVQsab1tb28TPZkni7uzcaetous7TPV2Mf4sNDQ0t6D0vJIvFwn1338szzz9L6756ZKcJWZZIjMRwm13ccfvnl+SGtCAIl685ByV//etfc+jQIQB2797Nrbfeiq7r/P73v+fdd9+ltraWxx9/nF//+tdIksSDDz7IX/3VX4nOXcKytViZksCUoGS4Y4Rwx8i01042MjJCJBJZcGbAyMgIL732MnGHzqp1a+gf6CfcHceV5SXcN0pvezcppCMpMgbFQCIYx2K1YLFYaD3RRDAcxLshG6NuIDU/HQkJtVil+XA9r73xOn/4lT8QUyMvIWvXrsVut/Pu22/Ts3cvXbEobpuNjJxU0tPSkU+XHRiNRDEopkXLHJyv+X4uPrt+MBgkEAhMPFbc028SABjMRmSLES06VvupqalpUYKSbrcbSdWJR2OYLGP1HrWkhn/YjzHTjJ7UkSUJw6RC+UarCcVrobbu1EQWYIonhcaG1lnfJzoaISVvZX/HinMLQTgT9Kiurp54LqIl8SfGsq10XUedFLQ3nq6bF5mUHRmNRi/SaAVhYdxuN/d9+cu8/9571NbVo/p9yLIBR1oa99x6K4qicOTAAY709qFrGorNypprd3LNzp0TjY0kSeKa667j5b4+DrW3syo9HZfTgWYyMtRvwJ6Vyf333rvggCRMnXnhNZlmvWbwKgrDpxvqtLcv70YxWVlZPPKNhzl16hQtrS0kkxrZm7JYv379ote7FwRBOJc5ByWffvppJEni0Ucf5Z/+6Z8mnv8v/+W/8Nhjj/HLX/6S3/zmN3i9Xp577jmuv/76CzJgQVgMuq5/JlPy3BkJY+tNz5SEsbuOS6G6uhp/bITSrWuQJAmvx0t3bw/R0TD2LBfRwRAjfX6kHDNqNEF8MEzuqhLUuMpAVx/WHCdGqwk9dKYgt9FkJKssl+ZTLfT09JCTk7Mk+yZcGIWFhXztG9/gX1QVvbOL8sKiiWAkjH02GgcHSS8pJjMzc0nGuNCg5MDAwMTPBqsRg2n2z7fJbSZ6OijZ2NjIlVdeOa/3nsmqVatIc6XS09BJwfoSJEkimVRJqiokZeLBKA67Y1rtWUkCTdcmsgHXr1vP4eqjBPp9uDOmTuEeGQoghTUqV3idLHFuIQjwrW99a1qmY21wlNrg3KeMTpm+rc2/0Zeu6bC0/cGEy4jX6+Xue+7B5/Ph8/kwGo3k5ORM1JJcv349AwMDJJNJPB4PNtv0xjjFxcV8/r77+Oj99znU1YWWSCArCim5udx+/XWsXr16UcY6OVPSq8w+e8EzKSjZ2to6pTO8Gp5/9281NPU1i91p3mKxsGnTJjFVWxCEJTfnoOTJkycB+P/+v/9v2rK//Mu/5Je//CUAf/d3fycuGoRlLxaLkUic+bJfyPRtgGPHji3a2Oajt68Xo9M0MU3UZDKRk5VNR3cnQXUEg0Mh2hWE3jiR1hE8DjeZJdlEghESagK7N4VIMILH7gIddMYytJypLnrVdgYGBkRQ8hIkyzK79uzh1Wef5XBnB6vS03GYzYxGozQODBC227jx+uuXLEt2oUHJyVO5Z8uSnFjushDtG5sC3dDQMK/3nXWbisIte27muVeep/lwPbJTYXhkmFg8jt4bx5ztICZHiQYjWBxjFxlqNEEiECevNHcig7KoqIht67aw7+RBgsOjeLNTQQJf7zDhngDb1m5ZlCyQpSTOLQRh8cVHYliz51cGIzEam/jZaDSK8i3CReH1emdsaibL8pxujJaUlFBUVER3dzfhcBir1Upubi7yHM/r52JyUNKjKLOu51FMwFh96/b2dtatW0d9fT0AsaEwjqLp+3k28aEztbKLiormXdpmPlRVpba2luMnTzAwNIDNamX9mvVs3LhR1HsVBOGCm3NQcmhoCJvNRl5e3rRl+fn52Gw2IpEId9xxx6IOUBAuhMlTr+H8pm+HQqGJzIbjx49PPO+uzMSWNf0LPBlJ0P/xmekcgUBgwV/0BoMBLTk1uyIjIwOj0Uhffz9DgRG00QTGiI7JZaH8qnUYTQqSFB2b+jUSJu6PEtQ0DtbtBcCT5iU9PxOYOr1UuLSsWrWKz993Hx9/8AGHurrR1AQGo0JacRF7du2iqKhoycY238/FZ0/UJ2dKms4RlJy8vKmpadG6Oa9Zs4YHzGaeff45Tuw7iWQ2YDdbCYZCSBpoCgSG/EgSKCYTQzU9KEkDN+y6YWIbsixz++23k5aWxsGjh+g/0QmAx+Hm+utu4eqrr17xn1FxbiEIszObx8o/6Lo+pXGGyWRCkiRisdiMr5vcVG+u4sNnXlNaWjrx3oKw3MmyPON3yGLQNG3KVGzvWYKSk5e1trbyhS98geeffx6A2HBk3ucXseEzQcnKysr5DHteEokEL7z4AsfrqzC4FWwpDoIRP69++AZHTxzly/d/WdR/FQThgppzUDIej5OSMr176Tin00kkErlg0/16e3t56623OHjwIAcPHuTYsWNEo1Guv/563n///fPa5l//9V/zgx/84Kzr/OM//iN/9Ed/dF7bF5avyVmORknCMMeThM8WlQ+Hw3R3d58pTi+BLcsxY1MNWTFgdJpQR8cuLA4fPkxu7vRi2fNRVFjE/hOHptSuk5BITUnF6/VS2xfjiht3UVlZySu/f5XWww040l3IBpn4aIxgdRCjooBXw5xjBx36+wbobGgj1Z5Cfn7+gsYnLG+lpaUUFxfT29tLOBzGZrORnZ295HVE5xuU/GztyymZkq6zX1gr7jPLfT7fojW7gbGgmmJWKN6wisziHBSLiZaaRlpPNRP2RZHMBqLdo8hRMMZlbrxuDxs3bpyyDYPBwPbt29m2bRtDQ0Pouk5aWhrKWS6MVpKlPrcQhOVqvGwBjN1IfeCBByaW/frXv55o8PXwww9Pe23cH0XXdCR57sfyyYHMNWvWLGDkZ6frOolEAlmWJ6bqCsJy1dvbOyX47zaeJVNy0rLh4WEKCgqQZRlN09ATGomR2DlvlI7TdZ3Y0JnP5IYNG85j9HNz4MABjtafIGdDIQ7vmZu8aqlKy5F6XnrlZb7xta8v+bmhIAiXrhVzNvDb3/6WP/3TP70g287IyKCsrGzGZdnZ2RfkPYWldT5NbgAUaeq6wWCQw4cPn9mWxzpjQHKcJd1O8HRQ8tChQwvO/ikvLyf302zajjdTuLFkIjCZVJN01LaSavGwa9cuMjIyyMjI4Pjx49Q2nEKNqJTnr+JkQzWWAgeppRmoUZVAyyDhkRDxeIxEpI9/++1T3LTnxhU/RVSYnSzLy26K/kKnb09u+HCuCwCD2YjBYiQ5qa7kYgUl29raGBoZJu+KEsy2sXGUb1mLNzOFtlMt+Ad8JHxRKkrL+dztn2Pbtm2zZj4qiiK6YQrCZWQuUzVdLtfMCzSdxEgUk2duNeh0XSc2KSi5du3aOb3uXPr6+qiqqmJgcABFMSEBg0ODDAWGkSSZ8lWr2bZlq7gBKixbk6duOw1GlLNcM9gMBkySRPx0U6r+/n7Kysqoq6sDxqZwzzUoqY7G0eJjdWIlSWL9Baofraoqh48fwZ7lmhKQhLEa89nl+bRXtdPe3k5hYeEFGYMgCMKKCUq6XC5uvPFGrrjiCq644gqOHj3KD3/4w0XZ9m233cavfvWrRdmWsDJMbXIz96CkLEmYJJm4rk1sZ7xzLIAl4+zdii0ZdoLNPmCsllo0Gl1Qkxyz2cx9d9/LM88/S/v+RrAbkGSJ5GgCr83DnZ//AhkZGQCkpqaye/dudu/eDcCrr75KV6gPyW5iuH2QkdZhdFnHnGXH5U0n6Y9R01fP0PPD3PO5uxbtIkUQzmWhQclxBquCfJYmN+MUt3kiKNnQ0MBVV101r/efTTAYZHQ0SNA3SlJNYnONHR8ycrPIyM0iHovT/mkD3/jKNyguLp7y2kQiQWNjIz6fD5PJRGlp6Yx1twRBuPTYbLY5ZRGazWZMJtOUqd3jYsNzD0omIypa7EyjnIqKirkPdga6rrN3717e++R9wnoUk8tCf18/gV4fFouVsq3lSEh8cPgjPt77MTuu3M51111Henr6WberaRrS6c7jgnAxzLWeJIwFDz2Kif54bOK1GzZsmBSUjOAsmdv7Tp66XVpaesHqOvr9fnyjflILZ07CsXsc9EhJ+vr6RFBSEIQLZl5Byb6+vnPWrzrbckmSUFV11uVn89BDD/HQQw9NPO7q6jqv7QgCnH9Qcnz9+Ok6jj09PVOaY1jSzx6UNHmsSEYZXdVQVZUTJ04suNtvRkYGj3zjYerq6mhrayOpJcnOymbt2rVnPYnp6u0iuziX1MIMavefJGwy4l6TjsVuRVGMBI1BHEYryZjEm+++xapVqzCZZu86KAjn67MX1PMt5j7b+ib33Gqimdxnmt00NTXN671nous6Bw8e5K333mZweJDAvhFMJhOeVA+F60sngpNhfxCzYp6W7dTY2Mhrv3+d/sAAuiKhqxr296xsqdzMTTfedMlNeVzKcwtBWI7megyUJAmn08nQ0NC0ZWPTsed2I2Py1O3s7OwF3wA5deoUb330DtZ8F2WFpQz7hhlI+kkvyCfY4qOzrh3JIBOJhYmrcV56/1VO1lexee0mbr311in1LDVNo7a2liPHjtLV243RYKBiVTlbtmxZdln+wqWntbV14udzBSXH1xkPSra2tnLNNdfw9NNPAxAfDs+5rEJs6OLUk5RlGVmSptWnn0zX9EVtHCQIgvBZ87qy0U+nowvCSne+07cn1j+dUFBdXT3xuZAtRozOswftJFnCkm4j0jP2/gcPHlxwUBLGit5XVlbO68TFaFBIxpMYZSPxYBxPYRoOz5ngiK5rGAwGslfl0r6/kcbGRpEteRmLxWLU1dXRWF9PPBrDm57GunXryM3NXXDWSigUmvL4szUiz2W24Pu5Om/PtF5jY+OCm9189NFHvPXxO5iz7GS58wnrMcxGheFOP5F9J1l7zUYUs4mBll4qi9ZOmS7e0dHB0y8+Q9SaJP/KVZitZjRNY7h7kI+OjDWjuu3W2857bMuROLcQhKnmc2PmbEHJuR7LFrOepK7rHDp8CM0hkVk0ln01ODiIZJaxeuwks1T6DrXhLEwhZWM2BpOBQI8PzWpkf80hkprG3XfdhSRJaJrGm2++yd6j+8BpwJXrIakm+fTUQU7WVXH35+5acFanIJzNXJvczLROW1sbDz/8MEajEVVV0ZM6iUAUk/fsGcwXs56kx+MhMzWTnu4BXKnuacsDfT6sBgsFBQUXbAyCIAhzDkr+1//6Xy/kOJbU8ePH+cpXvkJvby9Op5MNGzbw5S9/mXXr1i310IQLZKGZkuPq6+snfrak2+d08m9Ot08EJQ8dOrRo3X7na/WqMho/aiaaEyGpJbE5z2Qm6EkNLZbEneHGZDGjG6UzzXyEy04gEODF555joKUVryxjMRpprKuj5tAhNu3Ywa5duxb0Nzz58wjMu+vrgoOSk5rh+P1+hoaGzrvTZCAQ4OMDe3EUesksysYTCtLY3ERMTWAv9hKoG6Dx0ClMiol0Swq7J3XbBth/4ABBKcKqDWsmfqeyLJOWl4EkSRw+eZQrr7hy0epeLrVL+dxCWBk6Ozupqqqir6sL2WCgpKyM9evX43ZPv0C/WGatFTmPdbV4kmQ4gdF+7hkOi1lPMhKJ0N7Tibdk7Bil6xqRaASTY2wcUV8YyWnElufCaBkL4MgmA4rTTEpKKlX1Vezo205WVha1tbXsPbqPlNWZeLLONMTKKMqivbqFl994lby8vAs2tVW4vCUSiSkz8zzKuT9Lk7Mp29vbMZvNlJeXU11dDZyuK3mOoGRiJIaujmUuyrJ8QRMCZFnmqm1X8uxrzzPQ1ktaQebEuUfIH6SvoZutZZsmSkEJgiBcCCIoCRw7doxjx45NPH7ppZf4m7/5G7797W/z93//9+ecVgbw85//nCeeeGJO71dbW3u+QxUWydRMyXP//042ObNy8h3Uc03dnmm9wcHBJSseXVlZyYEjB+mqawddR42qmJygJZMEh0axma14PV6SahJUbUG1L4WVS9d1XnvlFUaam9mZl4/t9BR+Xdfp8Pk4+uFHpKamLuhO/uTPIzDvAOdsF6Rznb792WY3DQ0N5x2UrKurI6SGKc0f+0w77A7KSlfR29tHYDSAbDYw1D7A52/5HNftvHZKDbVwOEx9SwMpBekz/g682akMNfXR1NQkgpKCsEC6rrN//372vfseSiRCutWKqmkcaGrixKFDfOHee8nLy1uSsc03U3I2cV/0nEFJLZFEHT1TQmMxMiVBRxpvDHi6BqSm6WhJjYgvhOK1TDnGjU8PdWd46G/oprGxkaysLI4ePwZOw5SA5NgmJfLKC2jae4ra2lquuOKKBY1ZEGbS0dGBpp0ODgKuOZROmRy4DIVCDAwMsHHjxklByQjOc/SOnDx1e/Xq1dhstvkPfh42bNiAz+fjowOf0NAxiOIcq7Mtx2B9YQW333Zpzc4QBGH5ubQKU81TTk4O/+2//TduueUWSkpKcDqd1NfX87Of/Yx/+qd/4h/+4R9QFIX/8T/+xzm31dPTw5EjRy7CqIXFsFiZkhO18CQwp83tpMFgNqK4zSQCYzVnDh06tCRBSbfbzf1338dzLz7PYLCP4cZeEloqUhKsZislxcUYjUb6WrpxWhyiA/dlqquri57mFrZkZk0EJGHsorAgJYWhUIjjhw9TWVl53tmSnw1KztdMJ+wGm4KszP2Gg+K2kIyOjaOpqYnt27ef11jC4TCyyYBsOHOcsNvslJaUEI/H8aUMETWPcMtNN08LpiYSCZJaEsUycxBBlmVkxTBjUwtBEOanpaWFT995h2LFRElx8cTxa42mcbi9nVdfeJGvPfLwktyQW0hQUpbliUBKzBfBlnf2rMu4PzplWwsNxNpsNjJTM+ns78OT6UVCwuv20uvvx2Q2oalJZMmAroMaS6ADsjZWG1OSpIljnK7rdPV24cyeOWPVoBiR7UYGBgYWNF5haem6Tl9fH9FoFKfTSUpKyrJpZDS5yY1bUZDnMhtKlrEZDISTY3We2tvbp5RWivki6EkNyTD7tcfFqiep6zr9/f3EYjE2bdrEmjVrqK6uxuf3YbVYKSsro6SkZE7JOYIgCAtxWQclH3vssWnPVVZW8o//+I8UFxfz53/+5/zP//k/+eY3v0lRUdFZt5Wdnc2WLVvm9L61tbVEIpFzryhcMJODIAsJSk48l2JDNs59O5Z0+5Sg5L333juvMSyW/Px8Hn/kMT766CNee+t1EgMquasLyMjNRFd1epu6CHYGuOma3WJ61GWqq6sLYyJOyix36nPcbqp6exkdHZ3XlMPJFhqUnKkA+1yzJCevH+0bG8fk5lXzZbPZSMZUtGQS+TMn8iaTCT2hY7faZwx02Gw2HFY7weHRGWs7xaNxiGt4PJ7zHp8gCGNOHD+OPR6nNCd3yvNGWWZTXh4fdHRQV1fHxo0bL/rY5nMs/WxQcnJAZ3KtyNlMXqeiomLBDS0kSWLr5i20vfEC/r5hPJkppKWnMRwYJtA/TNQfwWjQCI6MEgyMoCd10jypOJ1O1ISKHlUnjnEG2YiqJmd/s6QuAiYrWFNTE59+/DEDHZ1oqorBZCK3tISd111HdvbM3aAvpvl03p7MqygTQcnW1lbuvPNOTCbT2A1FTSceiGJOmfmcStd04sNnPpMX6vhTX1/Pu++/R31zA/F4HLNiYsO6DXzu9tvPe6aIIAjC+bqsg5Jn85/+03/if/2v/0V3dzcvvfQS3/rWt866/uOPP87jjz8+p21v3bpVZFUuscmZkufV6OYzLBnza8xhybAz2jgMQE1NDaFQaN7NPRaLxWLhpptuYtWqVbz+1hv0tvTR3OqDpI7b5uKWa2/kmmuuWZKxCcuDxOxTqsefX0izkoUGJWcy13qSM63f1NR03rVey8vLcX70Lv1tfWSVTO0Mq8ZVAt3D7Nl6/YwdtBVFYXPlJn7/6TvEctMw286MSdd1uhs6SHOmUlZWNu9xCYJwhq7rdLa0UOCYOSPRbDTiAnp7e5ckKDmfTMnPBjBlWSZ5OiCiBuNo8SSyafbAXWwRm9yM27hxIz09Pew/fpChjgFsXgfyiMZwfR96PIkeSaIbQFaMSHGNuJpgdHSUQMcwHqubiooKJEliTVk5n9TsJ7M4e9rxOBIMI0X1cyYNCMtTfX09rz/3PM5olM2pqdjNZvyRCE1V1TzX3c29DzxAVlbWko5xclDSazx3PclxHqNCF9GJbSiKwtq1aydKhcUGw7MGJeOBKHpy7HzKaDRekEZO1dXV/Opff01fYBCD1YBsVxiNhHnrk3eoqjnJf/7T/0xmZiYDAwMcP36cuqZ6kmqS/Nw8Nm3cRFFR0bLJZhUE4dIggpKzMBgMXHXVVTz//PMLypoRlqcp07elRciUnGM9yXGK24JsMqDFk2iaxrFjx5Y88FdcXMzjDz9Ga2srgUAAk8lESUnJBa9lIyxvWVlZJBQFXziMd4a/he5AAE921rwuoj/rQnRfNrnOPygZCAQYGBg4r8Lubreb666+ljc+eJPOWIK0/AyMZoXRoQADzb3kujLPWv/syiuvpLm1hcZDjThzPDhSXKixBIOd/dhVM7d+/pZ5NwISBGE6SZLQmf3Ys5Q94ReSKQljx6FAIABA3B/BkjHzTAdd00lMmr69WA01ZFnm1ltvZdWqVZw4eYLe/l76+uNkZmSQuS6Prpo2wu0RzFkObKluRgcCVH10jHx3DrfedvvEecfWrVs5eaqKtqpm8ioKMSpjly2R0TAdJ1sozS4UpWVWoGQyyUfvvYc7FmNLQcFEgCtLUUh3OPi0tZVPPvqIe++/f0nH2draOvHzfDIlJ9eVHA9sbtiw4UxQcnj2DOb4pKnbFRUVi/59n0gkePaF5+gLDGAv8uAqSEFWDOiaTnhglK6T3fzmN7/hrrvu4rmXnyeQGMWe4cZglTnccpwTdVXs3rGLnTt3isCkIAiLRgQlz8J0un6aqqpLPBJhsS1s+vbUjAOD1YjRPveTFRi7GDKn2Yh0jwVHq6qqljwoCWPB+NLS0qUehrCM5Ofnk1FQQFVjE1fk52OZdGLeEwjQn1TZvXXrgqb8ffOb3+Sdd95hdHT0vD8H27Zt49ChQxOPlXlO3zaYDBisRpKRseN9U1PTeXeb3LFjB2azmb0HPqX7SCuapmFRzGwqruTGPXvO2tXXZrPx5S9+if3793Pk5DH8fX3IkoHKwjVsv+rqJak/ezl47733+PGPf8z+/fsJBoMUFhZy//338xd/8RfzymJ///33ueGGG869IvDXf/3X0xr9nOsiLzMzk97e3jmPR5iZJEkUlJbSeegwxalp07PwEglGJcjNzZ1lCxfWQmpKSpJERUUF+/fvByDmi84alEyMxKZkZS1mgE+WZVavXs3q1avp6uriF0/+M2nrc3B4nWTn5tDT2El/ey/hIR8kVKSYxC133kRlZSXRaJTXXnuN9z94nyHfMIl4gqYDp8gqy8VkNiNHdUqzC7n37nvF9O0VqK2tjUBvL1dnZE777BlkmdLUVGoaG/H5fHi93iUZYzAYZHBwcOLxfKdvj+vo6EBV1SnNAOO+CFpSm1J7elxs6EzAciENBGfT0NBAW1c75mw77pIzxz5JlrBnuoiHY5ysqyb2bAzVLVF2xVqk8fO70lwG2vt495P3ycnJEdcLgiAsGhGUPIuqqiqAJeu+KFwYiUSCaPRMZsBCp28bLMbzultosJz5+F2owHc0GqWurg6fz4eiKKxatYqMjAxxd1OYla7rdHR00NLSQiKRICUlhV179vBmLMaHHR2kKwoWoxFfNEpIMVK5Y8eCpzfedttt3LbA7o433njjRFByvk1uxiluC8nIwpvdSJLEtm3b2LhxI93d3SQSCbxe75w7ZttsNm644QZ27txJMBjEaDQyOjpKQ0MD9fX1uN1j0xvPt4anMNVPf/pTvv3tb6PrOnl5eeTn51NTU8OPfvQjnn32WT7++GNSUlLOvSHGMtTOFlgPBAIT5xY7duyYdb1t27bNmCFzqXRdXw42btpEU3U1dX19rM7MnGhiEVdVjnZ24srOYvXq1UsytoVM34axjMfxoOTZ6kpOXlZaWnrBsrCDwSCJZAKrcywD0qgYyV9TRO7qAuLRsaY2nYea8Xq91NbW8pP/9T8ZDA5j8JowZBvR40aCQxFajjeya+f13Pz5myktLRUByRUqFAqhqyrOWZpIua1WtECAUCi0ZEHJ9vb2iZ8VScI+j781t6IgMZZtraoqPT09rFq1CovFMnb9oUO0P4TlMw0y9aRGbPjCNrnp7e0lloyTnj3ztYAjy4WvqpceXz9brr7qTEDytPSCTBp7fRw7fkwEJQVBWDQiKDmLV199lerqagBuvvnmJR6NsJg+W79uMRrdLEe1tbW8/tYbDAWHkcwGNFXD8sl7bChfz+233T6RCSwI48LhMK++8goddXWY4glMkswJXcPs9bLjhl1oW7fScKqOSDRCTno669avp3hS19qlHvu4yQH/+Zj8ulAotOAxKYqyoMxGRVGw2+28+uqrnKivIi4lkE0GkmEV10fvceP1e9i2bduCx3k5O3z4MN/5zncA+PnPf86jjz6KJEl0d3dzxx13cPjwYR599FGeffbZOW1v8+bNfPzxx7Mu/8EPfkBVVRX5+fns2bNn1vWefvppUSvvAisoKOD6W2/lwzffpKe5mRSzGVXTGFZVnNlZfOHuuy/a9+R4t+xxC5m+rev6lNqQcX8UXdOR5OnH6fgFqCc5E5vNhtFgJBaKYnOfyTyWDTIWu4WQP4hiMOL3+/nnX/8LQ3E/1jVeLNkOJFlC1zUSgRiRGh+fHtjHXXfdJQKSK5jVagWDgVA8ht00PRAejMWQFePYekvks01u5nOeY5AkXEYjgdMJB62treTn51NcXExtbS0AvqM959xOTk7OOdeZL0VRxmpmz9L9W9N1dE3H4FQwKDOfSzkz3LR2tM24TBAE4Xxc8kHJnTt30tnZyXe+852JCw8YK/L7v//3/+ab3/zmlCwfTdP493//d/7oj/4IgM9//vNnrf8lrDyT60nKjJ08zMd8MysvtHA4zKlTpxgaGsJoNFJSUoKu6zz3yguoTp2iq1ejmE3ouo6/b5gDNYeRkLjzzjvRdZ2WlhZOVp1kYGgQu9VGRXkFa9asmbE7sHDp0nWd1199la4TJ9mSmUmK3Y4kScSTKqd6+vjw929y91ceYOvWrUs91HNb+hjponnzrTc5WHuEjIpc3BkeJEkiqSbpa+7m1Xdex+FwXJBC+JeLH/7wh2iaxoMPPshjjz028XxOTg5PPfUUFRUVPPfcc5w4cWLBU+l0Xec3v/kNAA8++OCCuxwLC7d582by8vKoqqqiv6cHq6JQWVLCmjVrlrSe8kIyJROJBKtWrcJoNI7NwtB0YsNhTJ9p/qXrOtFJWVkXMiiZm5tLTmoW3a3dFG1YNSXAo+s6fa3d5KVnU1VdxWBgCCXPhjXHMRFIlSQZxW1GL3YRrvbx6quvzrm5pLD8FBYW4kxLo6l/gA2fmY2m6TpNg4NkVZTPOUP9QphcT9KrzP/mhEcxTQQl29ra2LlzJ11dXfPaRldX16L/DtavX4/FYGK0L4DZ/Zmgr64TGhxBkRUU4+zT1bWkJm4KCIKwqFZMULKjo4PNmzdPPB6ffvvJJ5+QlpY28fx3v/tdvvvd70487uzspK2tDb/fP2V7iUSCJ554gieeeIKUlBQKCwsxGo00nq5hAnDttdfy5JNPXsC9EpbClCY3smHeWV7LKVOytraWV954lT5fP5gk1FgS5V0DUgIMqWZWr197pl6MJOHNSgUdTtRVcVXvVRw5coT9Jw6SNOtYXDYSwz1UvV5L0ZFDfPG+L5619p1waenu7qa9rp6NGRmkOs7UHzMZjFTm5vBpaytHDh+moKBgCUd5eRkeHuZ4zQlSV2XiyTwzhc1gNJCzOp/mUAP7DuyjvLx8WWSrrjTBYJA33ngDYEpAclxZWRm7d+/m7bff5umnn15wUPLDDz+kubkZgK9//esL2paweNLT0+dcB/Rimc9NwZlqniqKQklJCfX19QAMHTh3MORCHttlWWbXdbt4+sVnaD3RSFZJLhaHlchomL6WbsxhA9u2b+V3zz+NLoOSZp6W2SlJMgaPGckiU11bfcHGKlx4iqKw/frrefullzje2Ulpejp2k4lAJEJ9fz9Rp4Nbl7iRymczJefLoyi0Rc5sq729nZGRkXlto7q6etGncHu9Xq7YuI2Pq/Yx4rbgSHMiGwyo8QQhX5B4T5ii/AL0pEw8GsNkmZrJqus6wb4AG9dftajjEgTh8rZigpLJZJKhoaFpz6uqOuX5yVP4zqaoqIgf/ehHfPrpp9TW1tLY2Eg0GiUlJYXbbruNr3zlKzzwwAPiTtAlaPK0zPPJepQlCRnQzrnmhdXe3s6v//U39I8OoiZVYqEoujwWsIiHY9h9dvLXF2FzTb1g8WSlMNjYy9tvv82p9nrSyrPxZJ25ExuPxGg50shLr7zMH37lD0Sw4zLR2tqKMRYjzTG9IYIkSeS53TQ1NBKLxUT354uktbWVUCJCdnbxjMtT89LpqO/C7/cvWd2tlezo0aMTf89XXnnljOtce+21vP322+zbt2/B7/erX/0KGJvBca6GIj/84Q/p7u5GVVVyc3PZvXs3X/rSl8Rn7zIxn+/dlZJxW15ezn133Mu7H75H79F24skEJoNCVmoGu+/YjdvtJqklgZn3f+wpHSRpYj1h5aqsrESSJD798EP29vWiqSoGk4mUgnzu2LNnSW+A6rq+4KDk5GY3bW1tHD9+fOKx0Wki/er8GV830jBEqNUPwKlTp+b9vnPx1a9+laH/PURDbTNhzwgGqwKqhj6iUuTJ5Stf/Apvvfs27cebKdxYimIZyxTVkhqdp9qwS1Y2b9p8jncRBEGYuxUTlCwqKkLX9Xm/bnL6/WQej4fvf//7CxyVsBJNzZQ8v5N5RZKIncff42J64YUX6BjqRnGZSESSmIqcKB4LakJF90eIDMc49PpeijeU4Urz4EpzI0nS2Mm+QaKusR5Tjm1KQBLAZDWTXZFHc20LXV1dotHTZSKZTGKUpVkvhk1GA7qaIJkUF4MXi6qqSAZ51qCDUTGi6Zr4PzlP41lkBQUFKLNcdI4X8q+rq1vQe4VCIZ555hlgblmS//Iv/zLl8a9//Wv+63/9rzz77LNs2bLlnK//+c9/zhNPPDGnsY3XOBOWh8WoYxmPx2lqaprXa+rq6i74931FRQVlZWV0dHQQCoVwOBzk5eVhMBgIBoO4nC5kXSY+GMGUYv3MNG9QfTH0WJLSNaLBxqVg/fr1VFRU0NHRQSQSmfh7WOpAu6ZpU+rPOwzzv1ye/Bq/38/JkycnHlvS7LM247Nk2CeCkjU1NaiqitG4OJfriUSC+vp6Ojs7Wb92PTlZObR1thEJRzGbLGy7dgtXXnklWVlZuFwunnn+WVr31yM7FGSDTGIkhtvs4gu3f47s7OxFGZMgCAKsoKCkICyWyUHJ860PaZBlWMJAQCAQ4GjNcSx5DuK+COYcB7b8sbpSWlJD05NIisxId5Cag1U4PE4cTgclG8sw28yooTh6UiMje+Y7tY4UF716J93d3SIoeZlITU0lDEQSCawzBGj6R0ZxZWWKWqMXUWpqKgZNIjwSmpbxDDAy6Mdlc4gu3OdpeHgY4Kw1u8aXjZd1OV9PP/00wWAQm83GF7/4xVnXu/POO/nqV7/Kxo0bycvLIxgM8vbbb/P973+f5uZmbr75Zo4ePUp+/szH7nE9PT0cOXJkQWMWlsb5fJ7tdvuUWSANDQ1nblbIkHVDyYyNbnwn+oj2jQVfmpubz9p8abEYDIYZmzg5HA42rK2kqbWZkd4gUXcIS6YdkNDVJDF/lGjrCFIcNm7cONasQ8zkWPGMRiPFxVNnA4xnKtbW1DDi92Oz2ykrL5+olXqxnc9f2eTX6Lo+JShpTp29gY/Ja2W8dXckEqGxsXFR6kb39/fzzPPP0j3UAzYDSKCHVNLcqXzpplsoLS2dckMkMzOTh7/+EKdOnaKltYVkUiN7Uxbr168XpZ0EQVh0IigpXHYm3/1cSKbkUjp16hSqnMRqMpLUNezZZ6bcJrUkksUAsSTmbAfSqIZjdQqhLj+n9lfh8rpJdaYQSUQnXqPpGiOBEcKRsfIHdpsdnaXNBBUurrKyMj5OT6e6u4ctBfnIk/7Gh0Mh+lSV6zZvXvIMhpWit7eXkydP0tbZjizJrCoppbKy8qzTrAcGBjh58iSd3Z0YZANFhUWku9Poru+gZPNq5EndMiPBMKPdfrZv33PROgRfasZrU5/t9zc+XToSicy6zlyMT92+9957z9rE5IUXXpjy2GKx8OUvf5kbb7yRrVu30t7ezg9+8AN++ctfnvX9srOz55RRCWOZkgvdP2HxzKfJzTiXyzUlKDk5+9XksWIwz3y6b061TgQlL9RU0fnYec1Omltb2H/oAOGqYWLdIWSrAT2aRPXH0aNJ0rMz+PjgXhJqgptvull8J11ikskkv3/jDU4dOYI1oeI2mehLJKg/epS88nLuuOuuJe3KfT50XT/z+ZTAlDJ7Ey3ZIGPyWokPjx2TT548uaCgpK7rNDQ08Kvf/BpfLEDumkKyinMwmowkYnHaq1p47c3XefhrD037LrRYLGzatIlNmzad9/sLgiDMhQhKCksqHA4TDoexWq0zFmu/ENTT3fBg/p23x8lLHJSMxWKY7RbUaBzZZEA2jp2Ua5pOMpnEoBhISiCbZBLxGBoatgIPg8e6MEYkvvH4H/LGW7+nt60bzajT1dVFKBqG07NJ1JEYWlcMxwz1BYVLk8lk4qbbb+fV557no+Zm8lwuzEYjg8EgA8kkxRs3iBPTOTp27BivvvU6IT2MLdWJrmk07m1m/5ED3POFuyemBE92/PhxXn3rdUaTIaxeO7qmUfXBKRyyFbNuoHFfLa5sLyariZAvSHQwSEX+aq6++uol2MNLw3jWbzwen3WdWCwGsKCL4JaWFj788EPg/BvcpKWl8b3vfY8//uM/5vnnn+cXv/jFWbPEHn/88Tl3J966davIqlxGzico6XQ66enpmXg8OShp9p4jK+u0pqYmotHokmbDp6am8uAffJWC/ALefe8duju7SRh0ZMWIO9NDxbZ1ZBZk4+8d5pMjn5KWmsa2bduWbLzC4jtw4AC1+w+wITWVrElZw4FIhMPVNbxtt/OFO+5YwhHO3+QSK4rbMnHOPhtzypmg5IkTJ7j//vvP633D4TAvvPgCh04eoT80iNVjp7W+iZ7mTko3rSYlO43iTWU07q3hxIkTXHfddXPabn9/Pz09PWP1xvPylrRLuiAIlwYRlBSWxNDQEPv37aOxpoZkPI5sNFJUXs5VV19NVlbWUg9v2bPZbNhMVkbVKMmYip7UkAwympZE13W0hIYsyVhMVjQ9RjKkYlQMpBdkIffG+e2//zv1LfWEYxHqT57Cmu0ktSQTi8OKGk0w1DGChMZHn3xEaWmpaK5wmSgpKeGLX/1Djh49SmNNDZqawJ2Xyw2bN1NZWbkk06ZWmu7ubl596zVIVShbvW4icKRpGm0nm3n+5Rd4/OHHpgQeurq6eOXNVyFFYXX5mdck1SStxxuxx81sKt9IXVM9MXWUVJebLTdcz6ZNm8R0+gUYz1odn8Y9k/FlC2kk9Otf/xpd1yksLFxQl+cdO3ZMjGl4eJjU1NTz3pawfJ1vUHKyKZmSZwlKKk4zkkFCT47d0GxoaFj0br/zlZqayr1338OG9ZX8v3/7Nd41GaTlZiBNmhDrzU5ldHiEg0cOsXnzZtGU8hKRSCQ4cegw+VbLlIAkgNtqZXVKCvU1NfiuvXZFNXfTtDOtMc2ps2dJTqyTZmO0cey7p6amhkQiMWvd49nous4LL77AybZajPk23HIGrnQPyYRKoGWI+sO1rNuxEWeKC2uag7rG+nMGJUdGRnjtjdepb6knkoghSWA1Wlhbtpbbbr0Vm+3c+yYIgjATcYUpXHSDg4M8+9vfkujto8TrweXxEorFaDl8hN81NlK5dSsOhwOHw0FJSYkIiM2grKyMTHc6aD7Cg6OEOgNYc10kE0mS8SRaRMXmsKMNxiheXULhxlJkWab+02qaezsxJ33Y16Qih8KEB0YZbfURHQjjTHchRTTcTjclV5fRfrKDuro6NmzYsNS7LFwkmZmZ3HrrrWg33zzW/MZoFHW75uH48eOEibFqdcmU35ssyxSsK6bpk1qqqqrYvn37xLJjx44RkmKUlU99jcFooLCylJZPT5Gdnc3nPvc5VFVFURTxf7IIVq9eDUB7e/usF33jzULG150vXdf5zW9+A8DXvva1Bf2/TZ5aNznjX7i0nE9Nyc8GJafUzvbOfuNCkiVMHiuxobHSLbW1tUselBwXCATALJGWMzUgOc6bncpAbR9+v18E6C8RAwMDhPw+1qemzbg82+2munWsCeOlHJQ0uS1IsoSu6cTjcerq6li/fv283rO9vZ36tgZy1hXQ5+snFI0RDoeJRqNoKQaCgwFOfHSEvFUFBIdGsNvOHvSMRCL848//iYb+ZoxpViSHBBr0h3w0vNfM0WNHeOjrD1FSUjKvcQqCIIAISgpL4MP330ft7eOaoiKMp+9ue602jLE4e2tP8WJ9PcWZWaiyjD01hWv37GHdunVLPOrlxe12s+OK7by99z3UlBR83X70hI7BraDFEshxiWQwilU3k1OWj2JUGB0eoa2uFSXPRu7mYmSDAb/fhzHLSqwnSKR5hGhslMrrt5CWn4FRMdLvUqhvaBBBycuQLM/e9Xm50+JJogOhac/ruo6ePFMrVTJM7TaejCw80NPc3oI93Tlj8MlgNKB4zHR2dU55vqm1GWeGe8bXGE1GZKdCR2cH27ZtE/UjF9HmzZsxmUzEYjEOHDjANddcM22djz76CGBKEHk+PvjgA1paWpAkia997WsLGm9VVRUwNu1cBGEuXedbU3ImRodp1i6/40xey5Sg5HKh62evay1J0lhLbuGSM9vNG0kaC0+rqkp9ff1EyYLc3FyKi4uXf8asLGE+y02CcdLpupLjn8uTJ0/OOyjZ0tJCwqDh8DrxhfyE+oMYUJCNBpIRFTUUYygSIqRGIKYRsYR44cUXuPWWW6fNwNB1nX/913/lZHM1znVp6CaJaCyGpiWRrGApcdFS387P/+UJvnL/A2zcuHFeYxUEQRBBSeGi8vl8tDc0sCYtdSIgCWN3R/u7uig1W2jUVDZkZGA3m2no6+OtF19CUZTzzlQ5m6SuE590BxPGvnwTk050FUmadoKkTToPTozGGTwwNcgwvp0pvWKkqSdaamj2OmZzcf3116MoCnsPfoohCoGuAImuKIlEHKNJwepy4c1PIR6OYXXa6DrVRlLR8BSmIp/+3es6GM1GzGVp6GENAknMNjNGZezQYFSMxBMLG6cgXGzqaJyhg11L9v66rhMYCRDwB1CTKiaTCa/XOza16XyuoUVW5AXhdDq55ZZbePnll3niiSemBSUbGhp49913AbjvvvvO6z3GG9xce+21C8ogUVWVH//4xwDs3r1blFK4hC3G9O1x5pRz10KdPL27trYWTdMu+g2p8QDk5HOknJwczJgIDo/gTJ3e7dfXM0SqOxWPx3OxhilcYKmpqVhdLroDAcpnKE3SNzKCajCy96OPiAwNYT19Mn7IIJOal8fn77yTtLSZsyyXA5PHgmSY22fLnGqbCEoeP36cBx54YF7vpaoqklFGkiTisTiamsSQVACdcLMfg9uMKd+J4jQhR3Sysws4UHMYVVW59557p3wWm5qa2H/0AOYsB9ZUByOjI5hcFmSDTCIYIxlJYsl0EoxHeP3tNygsLBSfS0EQ5kWc1QoXVSAQIBmLkzJpakYyqTHQ14dDlnHb7TT5hgnFY6Q5HFTm5nK4vZ39n+ylrKxs0acsNoVDNIWnZ1TNh65qxAbDizSiuZNlmZ07d7Jt2zZaW1sJh8P4fD4++PADGjtbCMaCxLtVutu7MEpGgr4RFK8Fh+vMxYvRaCSaiGI0SZhSLESGA8TCY40ddF0nFgiTsSr9ou+bIKxUBbn5HP/wdZSQDYzSWK3XEY2+wX7SPakkAjEKryic8prigiL21R1CL8mZdoxTEypqIEbqhtTzqislnN1f/uVf8sorr/Dkk09yzTXX8OijjyJJEj09PTzwwANomsZdd901LfOjqKgIgL//+7+fNWAZDAZ55plnAPjGN75xzrH8xV/8BWvWrOGee+6ZEmTq6OjgT/7kT9i3bx9Go5G/+qu/Os+9FVaC85m+PdtrzlZPcqZ1QqEQHR0dFBYWnuUViyOZTFJTU8OR40fp6etFUYysW72WLVu2kJGRQU5ODiX5xdSeqse81YLJcqaUT2DAT2wgxLY9u5Z/dpwwZ2azmfVbtnDwzbdID4VImdQAMxSPUdPfR0BN4taS7MjJxXG6vNNoNMqx1jZefPZZvvLgg8u2O/dcpm6fWffMPtTV1c27CVVKSgpaRCUcCjMaDuLwOIlGogR7/OgymDKt6DENYhpGo4I3OxWH00n1qVqu7uoiLy9vYlvHjh9HlZLYPG5isSjIEgbj2OdOcZiJRkNIaNhcNkbiQaqrq2eceSAIgjAbEZQULiqTyYRkMBBJJLCcvrgOjo6ixmI47XaimgaShHL6JFOSJIpTUzna3cXAwAAZGRlLOfxlyWKxUFFRQTKZ5N9++xQJq86aXRsIxkOEYxESkTjRniCGpIRkNKJPrm1jNhONRUmqSbTE2PPjJxr9rT3YJMu8p4wIwlKw2Wzk5uaedR1N06Z0qM3Ozp41I+h87/IH/AHC/iA2r0JKWQaSPDbFMDIaofFYPfnWLNauXTvlNZs2beJ47Ql6GjvJXpU3EZiMRqLUfHqCcM8I733yPvsPH6By7XquvOJK0e1ykVxxxRX85Cc/4c/+7M94/PHH+dGPfkRaWho1NTXEYjHKy8v5xS9+Me11bW1twFjgcTbPPPMMoVAIu90+p0zLU6dO8d//+3/n4YcfpqSkhJSUFAKBAHV1dei6jsVi4Ze//CVXXXXV+e+wsOzl5OTM+zX5+fkzPj+XoKRslFFcZhIjYzcka2pqLnhQMplM8uprr3Hw5CFkt4Iz100inuDDk3s5XnOC++68l9LSUr7wuc8TeeZ3tO5vQPGOBSajgRByBK6qvEJ03r4EXX311QwODHDoxEk8AwO4LBZC8ThDySS6240nEOCK/AJMk7LFnRYLV+Tn81FnB7W1tWzZsmUJ92B2kwON56K4LUhGGV3VUFWVU6dOsWnTpjm/vqKigtSPvLTXtJAwJHBmubHGrISb/BjSTOjRJBarBVeqh4g/RCwWw5PmoU/uorGxcUpQsruvG6vTTjQQQjcp6JJOPKJjUIzIBhmMMrGREJa0sdkgg4OD8/m1CIIgiKCkcHFlZWWRkp1FS1cP3oKxO4bJZBJ0HYMs0zk6itliIcNxJkvEajKhq0ni8eU5jfjaa6+dsTB8LBbjn//5nyceP/zww7M27ZntgmI+mpubqW9rIGt9HkarQqp0OhtVB8MmAydeP4jfN8LIoB9HmgujomAyKdisNkLBIJGeUcxGBV3XaThQS2wwzKY1G/D7/aSkpIhadsKyds0115zzznwwGJwyBeonP/kJDodj0cbg8/lo62mnZEMZ/d39DBzpxOS1oGs6qj+GIQqONMe0LI78/Hxu23Mrb7z7exr6a7ClOojH4nTUtaFG4xStX4UnP4NoKMKHxz7hVEMdX/niA+ImzSL5zne+Q2VlJT/+8Y/Zv38//f39FBYWct999/G9733vvP9Gxqdu33fffXPaxh//8R+TlZXFoUOH6OrqorW1FbPZzLp167jxxhv5j//xP1JaWnpeYxGWt5dffnlBr6+srOTll1/m008/5W//9m8BkM0GDNa5neabvJaJoGRtbS233XbbgsZzLlVVVRysOkT62hxc6Z6J5zOLs2k90cTLr73CHz36OB6Phwf/8EGqq6upqaslEg6TVlhC5fpKSktLV2zdY2F2iqJwx5130rB2LbVVVfh9PmwOBzeuXcvJY8fQY/EpAclxFkUhxWCkqbFxWQYlJVnC5J57pqMkS2N1JU/Xxz5x4sS8gpI2m43P3XI7//b0U4z6hpH0sZJMekJDRsbpceHO8KJrOlEpMlavU5IwmAzTrrcMsgFVUgn2jWCyOzA4FFQtiRpRMRiMqIEoRDTS8jLob+kRMzoEQZg3EZQULipZlrl6505ef/ZZTnZ1UZaRgclkQgXqAgF6dY31BXlT6k0Oh0IYzObzqrM0kwceeOCsWSuhUIhHHnlk4vEvf/lL7JOmkHyW2Wye8Qs4GAxOCUreeOONixoA+ayqqiqGIn5Gu+OoySSSJGGz2MjMyMDhcKA5ZWJdYRINKtF4DLPTgtlixmwwE28NIgU1UjNSGKruIRKNYLSaqOmo41R7PanOFHZfd4MoXi0IZ9HR0UEoEWHV1WvJKs1lsKOfkeEAkiThKcvF5nYw0jDAwMAAWVlZU167detWcnNzOXHiBO1dHTR1NWE1W1h389XYPWPHDXe6h7S8DJoP1fHm22/xBw98RXThXiR79uxhz549c17/XE04AN5///15jeGWW27hlltumddrBGGyyY1qTF7rnI8PJq+VUFtg2jYuBF3XOXz0MAaPaUpAEkCSZfLWFNK6r566ujry8vKoqqqiq6cbxahQvmET69evH6vPK1yyDAYDFRUVVFRUTHn++OHDmI2zT9c3GQwkYrELPbzzYkqxzrme5Dhz6tSg5HxVVFTw8IMP8dOf/ZSBeh8WhwVFN2KWFdwZXiRJIhIKYzYqOB0OkmqSZFidPlMkqRMcCWLz2Il0hkmmmjCl2dCTOuFuP/HOEAWFBZgsJqSwLjpwC4IwbyIoKVx0FRUVxL/wBT55730+7OpC0TW6kgkSCZWry1axKv1M9k8imaRpeJjiK7bhdk8vdH4+zGbzrBmLM7Hb7Rc0mLgYgsEg+w7sI6iHSLW5sJmtaJpGKBimua0FAzIxOY4rw4NRUQg0BIhbQwQ0DUJJ3GYn9933ALm5ubzy1qvYCz1kleZgspiJR2P0NXfzwhsvIcvyjFmhgiCMTQ8HfeyGgMtOwbriKcsjo2H86KfXmy4rK4usrCx8Ph8/++U/kl6cOxGQHGcwGsgszaG5roX+/n4yMzMv1O4IgrDCTA4omucwdXvc5Gnevb29+Hw+vF7voo5tXCKRoG+wH1ehZ8blitmEZDVw9OhRXnv7dUYTIcweG5qW5ERjFZ8e2Mf999x3XtPchZUtPSuLltZWdF2fFnDXdZ3hWJTyz9zwWy7MKfMPpE+uQdnQ0EA4HJ53QL6wsJAv3/9lXvz9y9jyXCSTGq31zaihGJqkkwjGyc/ORZYNdNd34DI7p5SYiUaj+IJ+LEYLBrMJp93ESK+PUG9krBN6MI5BlcirKKLjRAulOYWsWrVq3vsqCMLlTQQlhSWxYcMGysvLaWpqIhQKMTo6yolDhxgaHaXL78duNhOIhGn1B7DkZLPz2muXesjL2sGDBxmNhzCajJhtFiRZwsDYyb1/wMfIsB+TbsSb7aHi6vUMdPQz0NZLLBwlrkX52lce5Oqrr+bn//wEeJQpwRSTxUz+2mLaTjbx4ScfsXbtWlFYXhBmkJWVhcVgZnQwMC0DCMDfN4zL5iI1NfWs2/H5fEQTMTJSZr4R40x10ZvoYHh4WAQlBUEAIB6P09jYOPF4LvUkxxmtCgaLkWRUBcbqSi52o4pwOExVVRUtrS10dXVhUzzEYjEMkozFYcOZ6jpTT3c0wvHek6SWZVJWvhbp9DRtNaHSeryRZ55/lscefnRejT+ElW/d+vWcOnqUdt8whSmTvkd1aOjrJWw0UlZWtnQDPAujc/4lkBTnmQQKTdMIBoPnlSW8detWQqEQHx/YSzARhIhGz75WLOl2svNysGCi5WgDxojEbTfePiURo6enh1gyzrrtlbRWNxMORbC7HURGw6jhBCanBSmm0328jXWr13LPXXdjnGF6vSAIwtmIo4awZMxm85S7cWvWrGH/vn3U19ejRcIYTCZWX7ODq66++oLdsb8UqKrKsarjZKzKpqe9h2BPAGeuZ2K5pEgk4yrx4TgZV5VhUIxkleSQVTKWZdB8tIGOzg4Kugto62rHmG+jurYaCQmXayyAYrVYySjKpvdoO52dnRelM6cgrDSZmZmsKiilquEUVqcNxXLmIiQUCDLa5efmHXswmUx0dXVx8uRJevp7MSkmystWs3btWmw2G4qiIMsyajyBYp5eGiIRT2CQDaJukyAIExoaGlDVsaCiZJBQXHOfEQJjQcxIzygwlnG5mEHJjo4Onn3xOfpHBjE4TYyERuk50ofRacJisWAymnC5nBRvKEOSJMJDQazpDnIrCqZkxBkVI4WVpbTuq6empmZZ1g4ULpz8/Hy27NzJ4Q8+pH80SLbLRTgUpqGnm95oBLs3hVeff56KDRu4+uqrz1p66WI7r0ori1SdRZIkrr/+ejZs2EBtbS2BQIDOzk6GR3zEfXHCfj+lWQVUXFlBfn4+yWRyWvKBM83Dxt3bGO4eJOQPomdpSBYDssVA/7FObt9zK7t27RJJC4IgnBcRlBSWjezsbO66+26CwSDRaBS73T6tIYQwXTQaJRwN4y1LQzGbaK1rITEaw5bhQDLIhLpGiHUGSU9JJzV/emMMk9VEOBrh8OHDdPd140hPw2S3oOs6wcFeBocHKSoowml3omoq0Wh0CfZSEJY/SZK47dbbGH1mlJb99VhSbZhsFiIjIZKBOBtK17F9+3Y+/vhj3v/0A6JSAqvXjhpKUP1mLfsPHeCL995PTk4O6e40Bjv6yF9bPO19Btr7SXF6KCgoWIK9FARhOZo8dVvxjM2YmA+T1zIlKLlYwuEwz774HEPJACU7KuioacXgVLBmuDCkmlBsZqyyhUDXCFUfH8Npt2MwGEkryJixJqZiVpAcBjo7O0VQ8jIjSRLXXXcdmZmZHDtyhMO1tfT39GA3KmwrLqbAm8JQOETVe+/T1d7OfV/60qLUH31/aBB5hunikysLS6fHN07VZy7TspS8Xi87duyYeKyqKsPDwxw7dozqU9W88d6b8D5keNO5cusVbNmyhYyMDBwWO/7eIdKLsrB4bYT0CKFQBEmXMfgg3ZvGtm3bREBSEITzJoKSwrLjcDiWfQ3H5cRsNmM0KMTCUXJW52O2Wehp7iLY5Acd5ISGnJTJXZ0/Y6fK6EgYQ4rMoROHkU1GLFYLFvfpu8u6TtA3Smt7G/npuaezGVwXdwcFYQXxer189Q++ysmTJzlZXUVoJEiup4iN125g7dq1NDY28s4n72Iv8JBXkDlxEZOIJWg92sBzLzzPIw89zI6rtvPi71+mp6mLjMIsDEYDWlJjsKOPSM8ou2+4FZNp/tPBBEG4NNXU1Ez8PJ96kuMmT/duamoiGo0uyvTo6upq+kcGKNmxhkQ0Tm9HN85Vqcg2I/7BYSLDIWJKBMkuMdo3giNpIT8vD02avSmIJElzajYlXHokSaKiooKioiJ+8bOfUWBU2JSfP/Fd6rXbyXV72NvczMGDB7n++usX/J5Difi5V1qh3v/gA443nsCe5SZtVQ66pjPQPcgLv38Jv9/P7t272bRuIx8c+ZiQGmE46EczaCgWE4lwBH9dP2mKh4GBgUWr/S8IwuVHBCUFYYVTFIX15Wv5pGY/aXkZpOVnkJqXTnB4BH/fMAPdA0QHgxhm6FgY6PdhiEkEg0F8oQBmxYSvaYDMTRZkowEkCbvXSaB7mLbqZrYWb5jWNVhYWXRdp6enh9bWVpLJJKmpqZSVlYmpwIvIZrNx1VVXcdVVVwFjv/O+vj6OHTvGu++/R5gYhZMCkjCW/ZO/vpjOwy00NTVRVlZGaVUxh44eouVQPTb3WOa402Tnxh03TGxbEISz03Wdrq4uWlpaSCaTpKSkUF5ePq+GdyvBwMDAxM+Ta9HN1eTXJJNJhoeHF6WZTGtbK0a3GaNipK+lh6SkYU1zEAwFMdhNaOhICR2r04acqTPQPURBQSH9A0NQMv391YRKcjQhGt1c5hoaGoj7A6zJy5uWUWs1mcizO6g5dowdO3aI85tZ1NbWcqLhJNkbC3F4nBPPO7xOhjoH2Hv4U9asWcP1119PfWMD+z89iCnDhjXFTmQ4SDIQIzsnG6vdxouvvsQfP/pHi5KZKgjC5UcEJQXhEnDllVdyqrGO5iP1ZJXmMtTVT3drF5FYBC2pYbKZqf3kJL7eYQrWj00H9fcME+4dwWm0c6TmGAmzhkExEOoZoT3UgLckHVuqEzUcJ9jhx6s6uHH3jTNOpxJWhnA4zOuvvkp7XT2GWAyjJBGR4OOMDG7+3OcoKipa6iFecoLBIK+89ir1rQ1E1Chd3V0YFCPaR8dZtbUci92KrutoSQ2zzYxmljh8+DCdfd34wn4chV7kUBg1EMNscvGlu79IaWnpUu+WIKwI4XCY1155hY66eoyJOIokEdLhk7RUbrr99ku3S+w8p24DY9O9JWCRExA1XUc6nfWYjCeQTQbiiTixeAzFZkJCQo7reLNTiZrMDA/10dvfi9Gi0NvcTWZx9sR5h6ZpdFS3kOZImVKTXLj8jIyMYJHAMkvAMcVmozMUJBKJzDsoKUkSf/Znf3bWdaLRKD/72c8mHn/zm9+clln8q1/9iuHhYQB8J/qQjANTls+U7TvlHPsCJwOfqDqBwaVMCUiOS8lNY6itn+rqam666SbSUtNIz8rAZDcRHYlhtzhI21BCal46uq7TvPcUNTU1bNu27cIOWhCES5IISgrCJSA9PZ0v3PZ5/v2Z37HvhQ+J6XGsuU5cOankZOeQ4vXSeLSOodZ+CCaxO+ykulJwe6x0j/RhLXJjSx07MYkMBRk40cXQ8W4iHgcmswlb0sSmyk3k5uYu9a4K50nTNF595RW6TpxkY0YGaQ7HWEOBeJzqnh5eee45vviHf0hGxvS6o8L5SSQSPPPcs9R1N5JVnktOqpNQlYqGhr83QO2nJ0nPy2SoZ4BIKIIsy8RGoox2+0gpy6R085qJDOd4NEbb8WZ+//abPJz30CWX5SUIi03X9TPHvMwM0uxjx7xoIkFNby+vP/889/7BH4iMuwtkaGhorNt2Swud7W2YLCYkgwEtliQSCoNBQpIltJiK+XT98HgojsPtQLdKlOYW097TSUNfLfZUJ3pSIzw4itfi5u4771pWTUyEi89kMhHXdJKahmGG0kSRRALZYDivMieyLHPDDTecdZ1gMDglKHnttddOKz319NNPTwQltXgS4sl5j+VCGhwewuqeuVyWJEmYHGZ8fh8AXb1dZJflkVE082wp2WGkt7f3go1VEIRLmwhKCsIloKOjg1d//xojiRAYJezZHkweM5JBwmQyYbFaWbd9I03mevLMGdxz9z1omsYvfvPPpK/Oxq5F6R7sAV3Hmuogf9dqBo914jI5Kd1STtfxVjZUVi71bgoL0NnZSUddHVsyM0mddOJsM5nYkp/Px60tHDt6lJtvuWUJRzlG13VCodDE48k/z/QYwG63L5ss3oGBAQKBAO3t7VQ31ZBemYvRYcIgyzjsDkZio3jXZNL1cRPD/UPYC72Y052okQSjPQPEiFNasG5KyQWTxUzhxlLa9jVQV1fHhg0blnAPBWH56+jooKOuns2ZmaRNOuZZFIVNeXl80tLC0aNHl2VQcr7HwOUWoKuqquKV37/KSCKIwWlCd8nUHqvGaXciJXTCPaNYCpwkQnHQwOqwkYypxPpDFBQVkojEycjIYM+ePRw/fpz27g6MBiOrt19FZWUlKSkpS72LwhJbtWoVe+12uvx+Cj7z96DpOu1+P8Xbti5KXdRLka7rWExmfKGhiecSagJN01CMCrIso8bUienYsiyjamdp3qMxY916QRCEuRBBSUFY4aLRKM+9+DzD2ghppZn4wj5S1+YiG2TCIyHau9qxWCw4HA4yCjIZqB/EYDDQ2tpKVIuRl5WKNRZlcGiQoG8Uu9eJJEnY8zyEmkfoOtVOpitdTJVa4ZqbmzHHE6TMcPFqkGVynU7qq2u48aablvzEMhQK8cADD8y6/JFHHpn23FNPPbXkDbL6+vp45913aOpoITAaoKu9C80tE2iPYjKbcVjtY0HJ4AhB/yi6XUbCiHdVOnpSY2QogNllQUmx0t7ZzlrnWgzy5MCkCclhoLWtVQQlBeEcWltbMcXjpM5wzJMliTyXi+baUyRvvXXZdY2d7zHwqaeeutBDmrOenh5efP1lNI/Mqoq1yLJManEGzS3N+FoH0AIqcX+C+GgEs8eGM9VN3B8h3D2C0+ogsySH9mNNmEwm8vLyyMvLW+pdEpYhr9fLuq1bOPHRxyQ1jfyUFIyyTDAWo7a3F9XtZtuVVy7pGL/1rW8Ri8VmXR6JRPibv/mbicff//73sVpnb1Ll8XgWPCZd16murubIsaM0tjTRO9CHb3AYo9tMwpAEdIxGBafJhh5SWV22GoDVpWXsrT04pZzCuFgkBuEkBQUFCx6fIAiXJxGUFIQVrqamhv6RAYquLmeoawAM0liTGsDmsjMS8zM4NIjD4UCxmIhEI3zyySd0dHQwEh4lFo9htVgpKiiitaONkV4fsslAIhgj5BulNLOIe++6RxSvXuFUVUWRpFmzCc1GBS2pomnakgclV6LBwUH+7XdPMRD34cx1E/ePII0aMdgMqCQxmWWCapjwUASP001XTxcoEsmIyujQCFpMxWa2otsdyG4z0XiMgD8wLSNINsio6vKaAiYIy5GqqiiyPOsxz2Q0oifiJJPJZReUXMmOHjtKmCir1qyZ+N173B7WVKyh35NKy6d1WGNmgv1BDEmN2MgIBoOR7Oxs8tcUEYvEMKrypVvvU1g0u264AVmWqTp8mMbWVoySREKW8WRn8YVbbiE7O3tJx1dRUXHW5cFgcMrj9evXX9Cbq7qu89Zbb/Hx4b1ILiPplbkEmiL09PdCp4anNB1ntodQ/wh9zR3kOjInyjZt2byFE7VVdNa2klteiGwYO0+MR+O0H28iLy2b8vLyCzZ2QRAubSIoKQgrXHd3N5LdiGJWsNgsSElIhOMoNhNIEorFxMjoCLqu0VzXxEBXF58Y9hNTYwz1D3HyZBU5Odnk5OSw1raGYd8woVCIwNAwGTlF/NEjj+NyuZZ6N4UF8ng8BHWdRDKJMsMF+GAwiDc/T1ycn6dP9n7CQHSYkivLaW5tJmnQcWS4CY+GkCwGosEIqbnphHyjRKNRrFYbqi+GyazgMtnxpHvwer20jDYwGBhGSbcQjUWnvEdSTaKOxsnOmrmmkyAIZ6SkpBDUNOKqisk4/XR3IBjElZMtOvMussaWJhwZrukdkS1WCosKUYejVKSU0jPQS390mIziLFxpHhSzwsiAn766LiqL14msK+GcjEYju/fsYdsVV9DS0kI8Hsfr9VJcXCzOZWbQ0NDAJ0c+xVOWTkp2GsmkSpevl4RFIz4UwVfTR6IvgklRyMnPRU5IHD16lJ07d5KTk8Odt32Bl994lcZPajC6zGhqEj2YJDctm3vvulccSwVBOG8iKCkIK1Q4HOb48eN8/Okn9GvDJBtkUjwerFYbo23DeCsyxy4KTl8XdHZ00tPUSUZeBhXXV6IlNY69fYCQL0SX3I2iKGSkZ5CVmUU0FCHZGeGm3TeKgOQloqKign0ffMCp3l7W5+RMuWAcDoUYTCa5YdOmZVGX0W63T5mOqOs64XB44rHNZps2zqWsqRYOh6lpqCUlP52EmmA0FMTqsWEymQgNjKLHNTRNJx6JYXXZCA8GUUNxDFGJtTvWk5qbPrGtjMIsBg4MEJXDSBln9lHXdTpPteExu1i3bt1S7KYgrCjl5eXsTU2hpqeHjXl50455A6rKrs2bl8Ux77PmewxcVjUldeAsv1NJkrDabHzp3i/y8muv0NPUi799CD2pYZZNbCnbyOdu/9yy/H8RlieXy8XGjRuXehjL3vETx9GsEinZaQD4AwESWoKMwizUbJWBeCepKSmUbF6NzWWnq66dIyeOsn37dgwGA+vWrSMvL4+qqip6+3oxGowUFxdTXl4umu8JgrAgIigpCCuQ3+/n35/+d9oGOklYNdTBBIHICCPBEcxeM/G+GEMne7BlOggHw5hVIw3VPVgVC+VXr0OSJAxGAyWbVlN3uJZgp5/WUBKTbiTkCxLqG6E8r4wrl7gej7B4HA4Hu265hbdffpl9rW3kedwoBgMDo6P0JuIUb9xI5TJpZiRJ0rQpTE6nc4lGc27hcJi4msDltJFIjBWKNygGjGYFR6aL0bYAugmiRjNWp41Q7wiSP4nZpODNTp2yLXeml7SMNDrr2/CZBpCjoCU1gn0BHLKVL9z+eXGjQBDmwGq1cuPtt/PGCy/wSUsLeW43JqOBgdEg/WqC4o0bl21t1pV2DJysqKCQ/fWH0UvGbn6p8QSDHf0M9QySiMUJD4xiyN9AXl4ejz38KE1NTQwOjtW6LioqIjMzUwQkBeEC6O7rwZ5y5jgSi8WQDNJYl3KrAWu6A6NiwuYau8nhSHEx0jBEJBKZOB65XC7KysrIysrCarWSlZUlSv4IgrBgIigpCCuMruu8/sbrtPm6KL5qNZIsEX/vMLGhGM5iLxF/iLSSTGK+CJ3HOkiEYyiyQlJLknZ1DlE1hpmxboTerFTWbd9Ae00zfY09DMS6yUzP4Pprt7Nt2zbRtfASM16v6OjhIzQ2NaLH4zgz0rl282Y2b96McYYpjsK5Wa1WFINCNBjBmmpHlmWSiSSKxYC3LAOD2cjQiW4i0QAJJQSjCa7ffh2d/V101raRszofo2JE13WCvrHMyu2briIjPYO2rnYMBgObK7ezadMmssTUbUGYs9WrV2P7ylc4euQILXV16DEVd3YW12/ezMaNG8Ux7wLYvGkzx2tP0tvUhTszhfoD1QTDQYweM3E9jm7ROXjyMGazmZtvvpny8nJRi04QLgKTohCMn2m8YzAY0DVA10GS0FUNg+VMgDERjWOQ5InjZHd3N++89y4tXa3EEwmMBgM56dlcv/M68RkWBGFBxNmYsGxomkY4HEaSpBmnZwpj+vv7aWhvInN1LorFBEDZ1jXUH6rBX9UPFoluNYQeUpE1iaI1pbgzvTRV1ROVYzS1NFFUUESKd6yBhjPFxeor1mKKG/nKPV+moqJC1OK5hBUVFVFUVEQ0GiWZTGK1WsVd7gWy2+2sKavgYMMRSrMrcNjsjIwGUcwKkiQhIZGSk8baqyrpaewkx5rJV7/6VU6dOsVrb75O895TGGxGtISGkjSwsXgdd95xJxaLhfb2dtrb29E0Db/fT1pamgikCMI8jHdwTiQSJJNJzGazOL+4gPLz87lt9y28/s4bHDr4CaoVXKUpaEkNt8dO8ZXFaGGVT45+Snp6Olu3bl3qIQvCZWHN6jW8ue8dtDIN2SDjcrkw9sjEIjEMsgFtNIGndOzaQNd1fF2DbCvbjMVioaenh3/73VP49FEyV2djczuIhaN0tnbz9IvPcM/n72bt2rVLvIeCIKxU4spGWHLJZJLjx49z4sgR/IODSJJEZn4+W7Zto6ysTFw8fEZfXx9RNUZ+mnviOVeam8rrNjPY3s9AVx/97T1Y3XauvH0H7gwv4ZEQnQ1tmIwKSUmjq7sLt9uNQR4LPo4MBLBb7eTliUYnlwuRBbu4rtm+g+bWZpoP1+PMdBEKhfF1DaGFVHR/gtyifAY7+7GpZvbs2j1Rn6m4uJiamhp8Ph9Go5GSkhIKCgoYGRnhmeeepamzGdWgIckSRDVy0rK58/N3THTEFARhbhRFEY0YLpJt27YB8Kvf/hpjvh2zyYrb5SIlJQWL2QIuCAz6OXT0MJs3bxY3xoQJqqpSV1dHzcmT+IaGsNhsVKxbx/r167HZbEs9vBVt48aNHD5+hJZjDeSvK8JqsZLiTaW7q4v4YASP3UVKThqxSIzuunacko0N6ys5evQob771Jl2Rftbu3DBx/mg0OSjeWEZbVTPvfvAuq1evFjdNBUE4L+LIISwpTdP4/RtvcOrgQTIMRta7XCR1ja76Bl5tambHzTdx1VVXLfUwlxVZlkEHXdORDGcCtmabhdyKApzpbnydgxRuKsWd4QXA5rLjSfUy1DGMtyKD8HCIkZERvB4v8WicodY+rlqzDbfbPdvbCoJwFhkZGXzliw/w1jtv09LRihJMEvIH0eJJHE4Hmi9OdloWN9yxi4qKionX2Wy2iQv4cYlEgmeff5aG/hZyKwuxux1IkkQsHKWjppXfPfc03/jq1/F4PBd5LwVBEOYmkUjgSvNSurEc2WCYdoPZm5VKf90AIyMj4lgmAGN/M6+89DLNJ07glSTSrVbCwz4+aW6h6tgx7r7/frxe71IPc8Xyer188Z77ef6lF2jf3whWGS2pYexJokdAsRlpOVAPCY0Mdzolq4t59qXnGQwM0t3bg6XASW19LZlpmWTnZCMhIUkSWSW5dB1qprW1lVWrVi31bgqCsAKJoKSwpOrr6zl16DAbU1LJmFTEPcftobG/n33vvU9paSlpaWlLOMrlJT8/H4fZznDPIGl5GdOWD7T1YVQUvJkpU54v2lBKdF8EX1UfSUVnSBkg3DtKaGCEorQCdt+w+2LtgiBckrKzs/nqH/whfX19+P1+FEXBYDAQjUaxWq1zzkRubGykubuNwq2lWBzWiefNNgvFm8po+rSW48ePc/3111/I3REEQTgvbW1t7Nu/j47mNoYDwzhcDjKLckjLzzgTnNT1pR2ksOwcOHCA1uPH2JaRScqkjvIxVWV/exu/f/11vvTAA2IG1QLk5+fzR48+Tl1dHX19fciyTH5+Pm63m9bWVhKJBF6vF1VVef71FzGmW8guKMQXCeAuTENVVbr6upFkieysbAAsdgtJNEKh0BLvnSAIK5UISgpLqurkSdy6NiUgOa4kPZ325mZqamq47rrrLtgYdF2f8kX62S/Vmb5k7Xb7kp0Uud1uNq3dwMfHP8Vss+BMGevEq+s6w92DJHwRUjxeEpE4eM68zuqwse6ajfQ0dNJ8tAFVC+PO8XL9zu1s2bJFTIsRhEUgSRJZWVkLakjT2NQINnlKQHKcwWjAnu6i+lSNCEoKgrDsHDt2jJfffJURLYQ534nBY2F0NIL/WC2jwwG8RekMDQ/TW9eBacTAO++8g9FoxGazsXr1agoLC6dtU9d1mpqaOHb8ON293ZgUhYrVFWzcuFFkzl0iEokEVUeOkGe1TQlIApiNRtZmZHKsuYWenh5ycnKWaJSXBpPJRGVlJZWVlVOez8gYS3TQNI1f/r9/RnfJ5JYXEBkNjzXwiySwptjRdZ3+gX7S09MxGozEIjFkXcZqnX7OIgiCMBciKCksqaG+PjKsMwfDZEnCoygMDw5d0DGEQiEeeOCBWZc/8sgj05576qmncDgcF3JYZ7Vnzx6CoRDV1TX0Kp0YrQqJYBwLJnZfvQt/wM/x9hq8WalTgqcmqxmzw8qa8gr+6OHHcbvd4o6zICwz8XgcgzJ7RqXRbCQejs26XBAEYSn4fD7eeOf3yKkm1pSX0NjUiD80gntVGnF/hJaaFrp9fWCUiI/EiKs6T734O3RJR1EUzAYTq/JLePSRRydu7Oi6ztvvvM3Hh/aiWcCe4mQ0EeXNfe9w+PgRvnjP/eTn5y/xngsL5fP5CAdGWDtLkDnVbof+fvr6+kRQ8gLr7++nZ7CXtHWnMyEdVtxeD76uAGavDavdykjQz+joKF6Pl77mbtI9qRQXFy/xyAVBWKlWTGXp3t5ennzySb71rW+xfft2rFYrkiSxa9euBW/7vffe4/Of/zzp6elYrVYqKir4y7/8S5GGfhGYzGZiqjrr8lgyiclsuogjWhnMZjP33XsvX//Sg+xcezUbstawZ+v1PPKHD3HTTTexY/sOXNhoOdpAZDQMgBpX6WnsJNTh55ord+DxeERAUhCWobTUNOKjMXRNm3F5cDhIVsb5Z2IKgiBcCNXV1YzEg2SX5SFLMoUFhTgtDoL9I0TVGHE5wWjbMJIviZ6EqBzHvtaLc1MGtooUrKs9nOpr5L///X/H5/Ph8/l47bXXeP2d32PNc1F6RQVZpbnkVhSwasda/FKQ5196gXg8vtS7LiyQJEkggTbLtH799D9x3nrhJRIJkloSxTzWGEySJPIqCjHGJIZreokHY+iaTiQYpu1kE/gS3HDtLtFITBCE87ZiMiV/+9vf8qd/+qeLvt2f/vSnfPvb30bXdfLy8sjPz6empoYf/ehHPPvss3z88cekpKSce0PCeVm9di0H299gdTKJ8plaa6PRKKOSRElp6RKNbnmTZZni4uIZ70zm5eXxxbvv5423fk/P0TZUPYmkS3jsLm69/ma2b9++BCMWBGEmyWSShoYGjp88weDwIDIy6miMroZO8soLpqwb6PchhZJs3LBxiUYrCMJyN9o4TLgzMOU5XdfHojrjpBkCPAss8zgwOIDRaUI2jOU8mE1mVpeV4ff7aWpqwmg1YYzpZBVmU1d1CkdFKpYUG7qmEx0MYfHasKU56PmklZ/8z59gcVpp6WwjokYJV8cI+kYpWl+K0WRENsjkryumfX8DdXV106aiCitLSkoK7vR0Ovv6p03fBugNBNDNJlJTU9F1XQQnLyCPx4NFsTA6PILZNtZp25XqZs2V62mtbsZf1U8sFMU/ZKIwO5/rP3cd69evX+JRC4Kwkq2YoKTL5eLGG2/kiiuu4IorruDo0aP88Ic/XNA2Dx8+zHe+8x0Afv7zn/Poo48iSRLd3d3ccccdHD58mEcffZRnn312EfZAmEllZSVVR49ysL2dyuxsnBbLWG3EUIiT/X1kla2+4J3c7HY7Tz311MRjXdcJh8MTj20227STH/sMJ0zLTXFxMY89/ChtbW34/X7MZjPFxcWidqQgLCOqqvLyyy9zpPYY2A3YPHbikRiReBTfkQZC/lHS8zORZRn/gI+kL8ZVG66gvLx8qYcuCMIylQhESQTOvd5iMxqNaMmpGd4G2UBKSgodnR3YHDasioJ/yI/BoWDxjtWgk2QJySijxlXsHidJPUljfwsbK7ZiUpxYHV6kOPR0dBOPxKjYvh5ZljFZTGA10NvbK4KSK5zBYGDzFVfw7osv4hkeJt/rHTv31qGtp4d97a3ELVae+9d/Iy0nm41btrBu3ToRnLwAnE4n61avYV/tIdzp3omMSVe6h3U7N1L78UkyclK47+57KSwsnFMDP0EQhLNZMUHJhx56iIceemjicVdX14K3+cMf/hBN03jwwQd57LHHJp7PycnhqaeeoqKigueee44TJ06wYcOGBb+fMJ3L5eLO++7j9Zdf5tPubsxJDU3XSZpM5KxZw+1f+AJG44X9M5UkaVp9SOcMjXdWIoPBQElJyVIPQxCEWRw4cIBDtUfJXJ+HK9U98XxOWT7VHxxHH4gTTY6gA3mpmWy5ZTObNm1ClldM9RVBEC4TpSWl7D9xkGgoisVumbpQh/hQhLxV2XR3dCNbDTA5oKTrIEG4fxRd1pEzzXT7ewnFQkgJCbPVgq3IzXDzML6eIVJz08dep+nieHiJ2LhxI36/n+N7P6WlpQWX0Ujv8DDdgQA2q5Xr8vMxGY30tLTxZmsrAwMD7Nq1SwQmzyEQCFBdXU1Pbw8Gg4GiwiIqKiro6enhxMkT9A32YzGZqVhdwfr167HZbOy6fhfdvd00H6jDnZuCzWUnForg6xoi25HOA/d/WdT2FARh0ayYoORiCwaDvPHGGwBTApLjysrK2L17N2+//TZPP/20CEpeQFlZWTz40EO0tLTQ19eHLMvk5+eTm5srTjQEQTgvuq5Pqwt8rsd2u/2iHnNUVeXQscPYMp1TApIAisVE6bbVDNf28eV7v0RWVtZELWVBEITPuueeexgZGZl1eSwW48knn5x4/NWvfhWz2Tzr+i6Xa95jKCsrozCrgJbjTeStL8LmGptVkogmSAxE0YMq6YVZDA4Moo0GTwciJTQ1ia7qmCwmhpv7wCIj2xWMTjN2i5NoLEYiqZIIJ9AVjaGuAVJz04kEw0gxXTS6uUTIssyuXbsoLy+ntraW9tZWBoeH2FRUxKb8fAyng8/ZbjcdvmGOfbKX0tJSCgoKzrHly1dNTQ2vvPEq/tgIisuMltQ4UHUY/ZkkGCUMLgWrx05iNMGptxs4dPQwX7z3ftLS0viDL/8BBw4c4FjVcQbbugiPhvG6PeTm5xAIBMjIyLjgiSOCIFweLtsjydGjR4nFYpjNZq688soZ17n22mt5++232bdv30Ue3eXHYDCwatWqCz5VWxCEy0MoFOKBBx446zqPPPLIlMdPPfXUtKzpC8nn8+Eb9ZNamD3jckeKi169k+HhYZHxLAjCWd1www1nXR4MBqcEJW+//fZFP94pisJ9d9/Lcy8+T9uxdpImkGTQwxp51kxC2XYGO/rJKsphYF8/UV8Ek8tCzB9FMSmYbBZCA6NIXgVnmhuz3YKckEkkVTBLaFGVeFIlFokRi8ToPNlKUVY+paL2+CVDkiRycnLIycnhjTfeINLaxpaCgmk35PI8Xlp9fqqrqkRQcha9vb28+PpLJJw6q7atQT49zbqvt5eqT45jM1q5ctcODMpYOCARS9B6tIEXX3qRb3z9GxOl09xuN6+//QZGt5mYS6Oqt46q5lqKswu47577cLvdZxuGIAjCOV22Qcn6+noACgoKZu0WNn6SU1dXd9HGJQgLpWka7e3t1NfXE46EcbvcrFmzhszMTJFlJQjLiCzLSICuzd5dQp+lE6kgCMJy5PV6+fpXv0ZLSwvt7e1omkZGRgbl5eU0Njbyyu9fwz/ox6QbGTnRj5JmxZbmwOF1MtzUT2Ikitmj4HCOBUwVxYTD7hjLbJchPhpleGSAjgONFKTnce9d94iadpeoob4+vBbLjOeukiSRYrEw1N+/BCNbGY4ePUpQi7Bq7ZqJ36GOji/gx7kqhXhbkKHuQTIKswBQzAq5awtpP9ZBS0sLpaWltLS08MZ7b2LIsrJ61aqJUgnRUISmY80898LzfO2rD4oSCoIgLMhlG5QcHh4GOGtn7fFlPp/vnNv7+c9/zhNPPDGn966trZ3TeoIwX/F4nJdefpmTDVUkjBpGixE1FOfjg3vZsfVqbrjhBnHiIAjLhMfjId2bzkDPEM6U6VMlRwb8WA1mMTVREIQVZbbZL+vWrSM/P5/q6mq6u7s5ePAgPYO9RIcDROsDyEkJm82OKWkiGU5gcI4FGy0WC4qiMNofgLBGaUkxd37hTsrLyzGZTEuxi8JFYDKbCanqrMtjqorVYpl1+eWuvrkBR6Z7SlBXVVXC0QhWtx3VEWNkwD8RlASwueyoRo2enh5KS0s5eOggMZNKaVnplO1Y7FZy1xfSeryNtrY2iouLL+q+CYJwablsg5LRaBTgrCcz47V2IpHIObfX09PDkSNHFmdwgnCe3n7nbQ7XHSN7XT7OVBeSJKHrOkNdA7y//0Pcbjfbtm1b6mEKwgVnt9t56qmnpjyn6zrhcHjisc1mm3KSbbfbL9r4YOzC/Yot23jhzZcZ7h7Em506MZ7IaJje+i42l1SSmZl5UcclCIJwobhcLrZv3w7AvffeSyAQ4OTJkySTSbKzs/n353/HYHgY/6kBrDlOrKl20HXCgyFi3aN47G6+8IUviG7bl4FV5eW8V1NDNJHA8plZbdFEgkFV5YbVq5dodMufpiXPnoggSzPPxjj9VCKRoKmtGU9+yozZqna3A1XRRFBSEIQFu2yDkpbTd9bi8fis68RiMQCsVus5t5ednc2WLVvm9N4tLS04nU4qKirmtL4gzEUgEOBY9QlSSzJwpZ2p7yJJEml5GURGwuw7uJ/NmzeLqU7CJU+SpBnrpTmdziUYzey2bNnCsG+YT4/sZ7CtH7PTghpNoIdUKvLLuP2225d6iJeF9957jx//+Mfs37+fYDBIYWEh999/P3/xF38x72D117/+dX7961+fdZ3XX3+dW2+9dcZlwWCQv/u7v+OZZ56hra0Nh8PBVVddxX/+z/+ZXbt2zWssgrDcJJNJotEoJpMJo9GIoiiUlZVhNBrxeDysLl5NuO0kXnsq/d19+DtHgbEkAq/TTXpGKmVlZUu8F8LFUFFRwdG8PA52dLAhOxv36euxQCTCiZ4evPl5rFmzZolHuXwV5hVypPUkmcVn6lYbjUbsVhsjo6Noo3HsuVPPiUL+IEZNJjc3l2QyiQ5nvWaQZBlN0y7ULgiCcJm4bIOSXq8XODONeybjy8bXPZvHH3+cxx9/fHEGJwjnoaOjg2AsxKqcmQt+p+SmMXCii/7+frKzZ26sIQjCxSXLMjfdeBNrKtZQXVPNsM+HNdNC+epyVq9eLTpbXgQ//elP+fa3v42u6+Tl5ZGfn09NTQ0/+tGPePbZZ/n444/PWuplNvn5+bM2YJjtvGJwcJCdO3dSV1eH2Wxm7dq1DAwM8Oqrr/Laa6/xf/7P/+Gb3/zmvMciCEstHA5z+PBhDh8/QjAcxD/oY3BgiNFIEC2pIkkyJqMJt8dNTI1h9dgprCzB5rQTCoXo6+xluH0Io1vmuReeZ9OGjaxdu1aUpLmEWa1W7rrvPl596SUOtLdjUpOATsxgwJufz+13fGFOiSOXq40bNnKyvpqBtl7ST0/RlpBIS02j59MODHGZ1Ly0ifXj0RhdNW2UZZdQWFiIJElkpWXQPtCDNzt1yraTSZW+3n56W7v4YPQD2jvb2bB+A+vWrZuYaSgIgjBXl+3VzurT6f7t7e0kEokZm900NTVNWVcQlrNkcuxkTfrMCXo8Gmeosx9/v4/RHh91dXWkpaXN2uBJEISLS5Ik8vPzRe3IJXD48GG+853vAGO1oR999FEkSaK7u5s77riDw4cP8+ijj/Lss8/Oe9sPPfQQf/3Xfz2v1zz88MPU1dWxdetWXnrpJXJyctB1nV/84hc8/vjjfOtb32LHjh1s2rRp3uMRhKUSDof57e/+ncaeZmwZTvp6B+hsb0eTwWA3YnTakIwyiYhK/+ggsslIZDSO/93DeLwewtEIWlIjszCblMJM6oebqX+5gW0tW/nc7beL2R+XGL/fT3V1Na1NTWjJJNn5+aytrCQYDNLa2kqiv5+R4SF+95snKVxdxtZt28jLy1vqYS87JSUl7N6xi3f3vk9jnw9HmhtNTRIcGCFV92CwGWg72oTVYycRS5AciVGYns9dd9yJLMsEg0HsVjv9J3uIEiezIBu3y01SS9LY2EjPqQ6MSFiKXLSGu2l4o5mT1Se5/977sdlsS737giCsIJdtUHLz5s2YTCZisRgHDhzgmmuumbbORx99BDBR+0YQlrPMzEwsRjOjgwFc6R4AfD1DNB6rI5aMkzRo6Gad33/8NrX1p7jv7ntJT09f2kELgiAsoR/+8IdomsaDDz7IY489NvF8Tk4OTz31FBUVFTz33HOcOHGCDRs2XNCxHD16lJdeeglZlvntb39LTk4OMBa0fuyxx/j444958skn+eEPf3heQVJBWCp79+6lsbeZwm2rGBnw09veg2Q1oDgULMVOJLMRySihazpqf4R4TwRTihU9oTHcNURWSQ7rdm3GZDldB74om5EBPwdOHiIvN3fO5ZOE5a+5uZnXX3yRxPAwGWYLRkmitrkF1WZFcTiIDwySZTKR7nQQV5N0HD7Kc/X13HrXXSKJ5DMkSWLnzp3k5eVx7Pgx2rs6MBhMXLF5Ixs3biQWi1FdXU3fQD9mt5mKneVUVFRgsViora3l5TdewRcOoBl0Ok600t3ciTPVjaxLDPcM4rQ7WbuzEleaBxjryH3qSCPvvvcun//c55d25wVBWFEu26Ck0+nklltu4eWXX+aJJ56YFpRsaGjg3XffBeC+++5biiEKwrxkZmZSWlBKdcMprC478WiM+iO16C4DnvxMwv4gOenZpKek0368iWeef5aHv/6Q6FwpCMJlKRgM8sYbbwBMCUiOKysrY/fu3bz99ts8/fTTFzwo+cwzzwCwe/fuaV2LYaxMzJNPPslrr71GKBS66I2ZBOF8RKNRjlYdw5Wbgtlmoa2mhaSsIZkMmHMdyDYFXdeRDDKySQKvBS2ukRiNkbIum77BNgyK4UxA8jRXuofhlCEOHzvC5s2bZ2zEIawswWCQN156CfvIKJuKijGcnvmj6TrvnKqlpb6BW9atIzv1zFTifK+X452dvP366xQUFEz0DBDGSJJEcXHxrI1oZpqh0d3dzfOvvkjCqbNqy1pkg8xw1yDdjR30t/QSD8XIX1tE6dZyrI4zGZEWu5WUwnROnqri+uuuX3Y1vAVBWL4u+UIsO3fupKioiH/4h3+Ytuwv//IvkSSJJ598kieeeGKiA1lPTw8PPPAAmqZx1113sXHjxos8amGl0XWdYDA45V8oFJqyTigUmrJ8xo53CyBJErffehv57mxa9tdx6tMqwokIhlQzYV8Ir8NDdlYWZquZwo2ldA12U1dXt6hjEARBWCmOHj1KLBbDbDZz5ZVXzrjOtddeC8C+ffvmvf333nuP+++/n927d3PPPffwN3/zN7S1tc26/vh7XHfddTMuv/LKKzGbzUSjUY4dOzbv8QiXl8+el1zsc5JxIyMjhKMRnKkuAIK+USSjjGSQMHrN6EkdSZKQ5LGgomSSMTiMJJMayWgCo9fEcN/wjONzp3voHxogGo1ekLELF1dNTQ2xoWE25uZOBCTHJVWVTCSS4ciU5yVJYk12NpGhIerr6y/Y2Bbj87RcPpPncuToEYJEKFhXjMFoQJIkUvPSqdy1hfU3bcVoV8gszpkSkBznyUwhFI3Q39+/BCMXBGGlWjGZkh0dHWzevHni8fgJyCeffEJa2pkivd/97nf57ne/O/G4s7OTtrY2/H7/tG1eccUV/OQnP+HP/uzPePzxx/nRj35EWlra2JdiLEZ5eTm/+MUvLtxOCZeMUCjEAw88cNZ1HnnkkSmPn3rqqRm7Ay+E1+vlq1/5KidOnOD/9+//hjnFitNoIy0jDW+KF4M8VnfJZDWD3UBLawuVlZWLOgZBEISVYPwCtqCgYNYau6WlpQDndQPnww8/nPL4+eef5wc/+AE/+tGPppynfHY84+/5WYqikJ+fT2NjI3V1dTOWnRn385//nCeeeGJO46ytrZ3TesLKcq7zkotxTgJjf7eyLKPGVQBkg4yunQ62SAD62A+TEx0liYnER11CVVXUeALFPDVbUlM1ZEkSNSUvEV2dnXgNBoyf+f9MJJNEYzFyzWaCo6PTXmc2GrEh4fP5LtjYFuPztFw+k2ej6zqnGupxZ3lmzD622C3IdoVAv4/0gsxpyzVNQ5IQDagEQZiXFROUTCaTDA0NTXteVdUpz4fD4Xlt9zvf+Q6VlZX8+Mc/Zv/+/fT391NYWMh9993H9773vYv+ZSAIC+VwONixYwf7Dx8g7tXJLM6ZcT3ZIJ9ujiMIgnD5GR4eBjhrZ+3xZfO52C0rK+PHP/4xu3fvpqioCLPZzIkTJ/jxj3/M008/zZ//+Z/jcDimddFezPH09PRw5MiROY9ZEC4Uj8dDQXYeTR3tuNLcpOdn4j8ZQI8nUX0xZKdyJkgJaFEVLaxiMBgwmU1owQQGxYr8mUCVruv4eobYULhGlKG5xBkkCSQJVZ/5nFXXdVRdx2hcMZe1y1pSU5ENM0+Dt9vsGBUjQd/04DDAcPcgbrub7OzsCzlEQRAuMSvm6F1UVHReaeytra3nXGfPnj3s2bPnPEYlCMtXfk4exzqqZwxKJtUk6micrMysJRiZIAjC0hufcXG2gIbZbAYgEonMus5nff/735/23FVXXcXvfvc7/sN/+A/87Gc/4/vf/z4PPvjglBufizme7OzsOTf/aGlpwel0UlFRMaf1BWE+JEli+1XbaX+hg65T7eSWF9BZ30Y4EibWPopllRtJkdFiSXRVIxlMkPTFcXpdRLpGMagSJouReCSG1Tk2XVRLavQ0dmKOG7li2xVLvIfCYsnLz6fl6DESySTKpCC00WAg0+Ols6OD/NzpXbYHgkFUi3nWuonC3EmSRH52HqcGmmbMhEQHq25GDSUIDPhxpbmRJAld1wn0+wl2+rhpxx5R21MQhHlZMUFJQVjO7HY7Tz311JTndF2fkrlrs9mmTIW40E0KNm3cRFVDDYOd/aTlZUwZV1ddOx6zi3Xr1l3QMQiCICxX4xdN8Xh81nVisRgAVqt1Ud7zb//2b/nlL3+J3+/n3Xff5Y477pgynnA4vCjjefzxx3n88ccXZczCyvTZ85KlPCdZvXo1d9zyBd589y36+jtIz86ks6GNRH+UZFjF6DGBQUaPJdGCKiaTgh5U0ZMSq4vLSPem0X2kFc0iISsyyWACl8nB7TfdLgJRl5C1a9dycO9ejnV2sjk/H+OkRjdIEgGTQlcsSloigUUZa5DUPzpK1eAARZs3X9DsvMX4PC2nz+TZbN60mboXGhjuGSQl+0yJNF3X6axtpTi7kIK8AmpO1dKvdKNYTSTCcRTVwFWVV7Bz584lGbcgCCuXCEoKwiKQJGnGqf5L2Xmu9P/f3r0HR1XffRz/nCRkcyHhFiBclk3EhGASSICZAoEJqFGg8IC9OKZAI9RWOmqrzDhtGc3FTjvtTC9hOjIVq+JgmNYyhWn7UAtUQsU+PiIIWiCAIRCgkAIPEMIl5PJ9/mB2y7obQzDs5vJ+zew/53c53xz4wXe/Oed3Ro9W/hema/v//l0XT59XQlI/tba26lLdBcUrVnPnfFGJiYlhiw8AwmnAgAGS/vPYdDDeNm/fz6tfv37KzMzUhx9+qMOHDwfEc+XKlZDGg54rWF4Szpxk/PjxSktLU1VVlerr66V7b2wzsGfPHp05d1aNTY0yc9QnJl6xsbGKiY6VZ7hb8+bMVWpqqqqrq1VdXa2m5iYNGjhImZmZ6t+/f9h+HnS++Ph4fXHBAv33ho2qPFqjpOhoRTiOzl5rlJOYqC9On6bqqir9/cQJxTmOmlpb1RLjUkpurmbPmXNH38DeGeupq63JtmRkZChv4hS9u+t/dP5f/6eEpES1NLfoUt0FJUbGa/7c/1JaWppqa2t14MABXWq4pMSERI0dO1Zut/uO/jkA6JkoSgI9lOM4mjFjhkaMGKE9e/fo2Mnjio6IUN49X1DuHf6NMgB0denp6ZKk2tpaNTU1BX3ZTXV1tV/fzuB9PLu5uTkgnpMnT+qTTz4JOq6pqUm1tbWdHg8QKnFxcQHbCtz84o+6ujodOXJEzc3NGjhwoNLS0nzrJT09nb/3vYDH49GipUu0b98+1dbUqLW1VTlut7KysjRo0CA15ufr0KFDOn/+vKKiopSamqrk5GQKYZ3IcRwVFBRo1KhR2rN3j47/64RioqKUO26qcnNyNXTojce6PR6PPB5PmKMF0BNQlAR6MMdxSOQBIIjc3FxFR0ersbFR77//ftC3Wb/zzjuSpClTpnTKOZubm1VVVSVJGjnSf2+0yZMna9u2bb5zftr777+v69evKyYmRjk5OZ0SD9CVDB061FfwQO+VmJioKVOmBP131+VyKTs7OwxR9S6O4ygjI4O9hgGERES4AwAAAAi1hIQEPfjgg5Kk1atXB7QfPnxYb7/9tiTpK1/5Sqec86WXXtLFixcVFRWle++916/Ne45t27YFvVvypZdekiTNnj076HYhAAAAQHdDURIAAPRKzz//vBzH0dq1a7V69WqZmaQbe90VFhaqtbVVCxYs0Pjx4/3GpaSkKCUlRevXr/c7vmXLFn3ve98L2C/y+vXr+tWvfqXly5dLkpYtWxawhcaECRM0d+5ctbS06JFHHtGpU6ck3Xi5wOrVq7V27VpFREToueee69RrAAAAAISLY94MHAAAoJcpLy/X8uXLZWZyu91KSkrS/v371djYqDFjxmjHjh1KSkryG+Pdv+y1117To48+6ju+ceNGPfTQQ5JuPIrqfUT74MGDamhokCR9+ctf1rp163x75d3szJkzysvL0+HDh+VyuXTPPffo7NmzOn78uBzH0cqVK/XUU0/dicsAAAAAhBx3SgIAgF7r6aef1pYtWzR79mxdvnxZ+/fvl8fj0YoVK/TBBx8EFCQ/y8SJE/X888/r/vvvV0xMjKqqqvTxxx+rX79++tKXvqQ//vGPWr9+fdCCpCQNHjxYu3bt0ooVK+TxeLR//35dvnxZs2fP1t/+9jcKkgAAAOhRuFMSAAAAAAAAQEhxpyQAAAAAAACAkKIoCQAAAAAAACCkKEoCAAAAAAAACCmKkgAAAAAAAABCiqIkAAAAAAAAgJCiKAkAAAAAAAAgpKLCHQDQXS1cuFBVVVXhDgPAp2RkZKiioiLcYQBASJGXAF0TeQkAtI2iJHCbduzYodra2nCHAeBTzp49G+4QACDkyEuArom8BADaRlESuE2XLl2SJMXGxmrs2LFhjgbAgQMHdPXqVd/aBIDehLwE6FrISwCgfRQlgduUmpqq8+fPa+zYsdq1a1e4wwF6vYkTJ2r37t1KTU0NdygAEHLkJUDXQl4CAO3jRTcAAAAAAAAAQoqiJAAAAAAAAICQoigJAAAAAAAAIKQoSgIAAAAAAAAIKYqSAAAAAAAAAEKKoiQAAAAAAACAkKIoCQAAAAAAACCkKEoCAAAAAAAACCmKkgAAAAAAAABCiqIkAAAAAAAAgJCKCncAQHf1rW99S6dOndKwYcPCHQoAsSYB9G78Gwh0LaxJAGifY2YW7iAAAAAAAAAA9B48vg0AAAAAAAAgpChKAgAAAAAAAAgpipIAAAAAAAAAQoqiJAAAAAAAAICQoiiJbmfGjBlyHKfdT05Ozuc+V3l5uUpLS3X06NHPPRfQW3jXaGlpaafMV1lZqdLSUm3cuLFT5gOAzkReAnRd5CQA0LVFhTsA4Ha53W6NGjWqzfa0tLTPfY7y8nIdO3ZMM2bMUEpKyueeD0DHVVZWqqysTEVFRVqwYEG4wwGAoMhLgJ6PnAQAOhdFSXRbS5cu7bTfegIAAHwe5CUAAAAdw+PbAAAAAAAAAEKKoiR6vKNHj6p///5yHEcVFRUB7WamBx54QI7jaN68eZKkNWvWyHEcHTt2TJI0c+ZMv32h1qxZ4zfH9evXtWrVKk2fPl0DBw6Uy+XSXXfdpSeeeEInTpwIGldKSoocx1FlZaX27t2rhx9+WMnJyYqMjFR5ebmvX319vcrKyjR+/HjFx8erb9++ysnJ0QsvvKBLly51zkUC7rCjR4/61o8kbd26Vffff7/69++v+Ph4TZkyRX/6058CxjmOo7KyMknS66+/7rcOZ8yYEdD/H//4hx555BGNHDlSLpdLSUlJmjNnjt56662gcZWWlspxHD366KO6cuWKnnvuOWVkZCg2NjZg/7eNGzdq1qxZSkpKksvlktvt1qJFi/TRRx99vosDoFchLwHCi5wEALoQA7qZ/Px8k2QlJSW3PGbdunUmyRITE62mpsav7Wc/+5lJsuTkZPv3v/9tZmabNm2yvLw8c7lcJsmysrIsLy/P99m0aZNvfF1dnU2aNMkkWUREhHk8Hhs3bpzFxMSYJBs0aJB98MEHATF5PB6TZGVlZeZyuSwuLs4mTpxod999t5WXl5uZ2bFjxywtLc03d3Z2tmVnZ1tERIRJsjFjxtjx48c7fhGBOyjYGq2pqTFJJslefvllcxzHkpKSbOLEiTZgwACTZI7j2Jtvvuk3V15enrndbpNkQ4YM8VuHTz75pF/f4uJi3zkGDBhgubm5NnjwYN+x0tLSgFhLSkpMkj388MM2YcIE37qaMGGCTZ482dfv8ccf980zfPhwmzRpkvXr188kWZ8+fWzdunWdexEBdBvkJeQl6LrISQCga6MoiW7ndpJ/M7PFixebJJs6dao1Nzebmdnu3bstOjraHMext956K2CMN0Hftm1bm/POnDnTJNmsWbPsyJEjvuMNDQ32zW9+0yRZamqqNTY2Bp07MjLSli5dag0NDb62K1eumNmN5EeSjR8/3j755BNf+6FDhywzM9MkWX5+foeuA3CntfcFIDY21latWmUtLS1mZtbc3Gzf+c53TJK53W7fcS9vkl5UVNTmOdesWWOSbOjQobZhwwa/tvXr11tCQoJJss2bNwedOzIy0kaPHm0ff/yxr827Dl9++WWTZNHR0VZRUeFrv3btmj311FMmyWJiYmz//v0duUwAegjyEvISdF3kJADQtVGURLfjTS7a+/zyl7/0G1dfX2933XWXSbLi4mK7fPmyZWRkmCR75plngp6rveR/06ZNJskyMjJ8ycLNWlpafHcr3Jw43Dz3uHHjfF9GblZZWem7E+HAgQMB7R999JE5jmOSbPv27W1cLSD02vsCsGzZsoAx165dsyFDhpgk+/DDD/3a2vsCcP36dRs5cqRJsrfffjton5UrV5okKygoCDq3JNu5c2fAuNbWVktNTTVJ9oMf/CDo3N41vmTJkqDtAHo28pIbyEvQFZGTAEDXxp6S6Lbcbrfy8vLa/IwYMcKvf0JCgioqKhQVFaUf/ehHmj9/vqqqqpSTk6Of/OQntxXD+vXrJUmLFi1SbGxsQHtERIRvP6jKysqgcyxevFiRkZEBx//yl79Ikh588EFlZGQEtGdnZ6ugoECS2tybBuiKHn/88YBjLpfLt19SdXV1h+Z77733dOLECd19992aOXNm0D4LFiyQJO3YsUMtLS0B7ZmZmZo0aVLA8YMHD6qmpkaS9PTTTwede/ny5ZJYh0BvR15CXoLuh5wEAMIrKtwBALdr6dKlKi0t7dCYyZMnq7i4WMXFxdq6datiY2O1bt06RUdH31YM3s2k33jjDV+y/ml1dXWS1ObG8mPHjg16/ODBg5KkrKysNs+fnZ2tzZs3q6qq6pZjBsItLS0t6PGhQ4dKkhoaGjo0n3cdnjt3TtOmTQvax8wkSVevXtW5c+c0ZMgQv/b21uHgwYMDxnhlZ2dLkk6dOqX6+nolJiZ2KH4APQN5CXkJuh9yEgAIL4qS6HXuu+8+FRcXS5KmTZvW5n/8t+LChQuSdEvJ95UrV4Iej4+PD3rc+wZLb1IUTHJysl9foDto6+98RMSNm/e9yfqt8q7D8+fP69133223f7C12Bnr0NufLwAAOoK8BAgfchIACC8e30av0tDQoK9//euSbiQbW7Zs0dq1a297vr59+0qS3nzzTdmNPVrb/LT1mFRbEhISJP3njoZgTp8+7dcX6I2863DOnDntrkMzU0pKyi3P3ZF1eHN/ALgV5CVAz0JOAgAdQ1ESvcqTTz6p6upqTZ06VWvWrJEkPfHEEzpy5EjQ/o7jfOZ83keY/vnPf3ZqnJI0ZsyYduf2tgXb2wnoKW51He7bt6/Tz+1dh2fOnGnzS4B3HQ4bNow7EgB0CHkJ0L2QkwBA56IoiV7jd7/7nV5//XUlJiaqoqJCixcv1qJFi3Tp0iUtXLhQzc3NAWO8m8RfvXo16Jxf/epXJUmvvPKKLl682Knxzp49W5L017/+NehjWPv27dPmzZv9+gI9UXvrcNq0aUpOTtaxY8d8L3noLGPGjFFqaqokaeXKlUH7/OIXv5DEOgTQMeQlQPdDTgIAnYuiJHqF2tpaLVu2TJK0atUq36MSL774olJTU/Xee+/phRdeCBg3evRoSdL27duDzjtv3jzNnDlTJ0+eVEFBgfbs2ePXbmbavXu3nnnmGe3cubNDMefn52vatGlqbW1VYWGh310T1dXVKiwslJkpPz9f06dP79DcQHfiXYc7d+4MuveSy+Xyval2yZIlevXVV9XU1OTXp66uTr/+9a87/EZbx3G0YsUKSdLPf/5z/fa3v/W1NTY2+tZ2TEyMnn322Q7NDaD3Ii8BuidyEgDoXLzoBt3Wq6++qq1bt35mnx07dqi1tVWLFi3ShQsX9LWvfU0LFy70tXvvTpg+fbp+/OMf64EHHvB7U15hYaH+/Oc/66c//ak2bNig5ORkOY6j73//+5o1a5Ycx9Hvf/97PfTQQ3rnnXeUm5srt9ut4cOH69q1azpy5IhvU+r58+d3+GesqKjQfffdpz179igtLU1ZWVkyM+3bt0+tra1KT0/XG2+80eF5ge6koKBAgwYNUk1NjUaNGqX09HRFR0crJydH5eXlkqSioiKdPn1aK1as0De+8Q1997vfVXp6uiIjI3X69GkdP37c16+jHnvsMe3cuVOrV69WYWGhnn32WQ0bNkyHDh3SxYsXFRUVpVdeeYXHFYFejryEvAQ9HzkJAHQyA7qZ/Px8k3RLHzOzH/7whybJPB6PXbhwIeicpaWlbfZ58cUXLTc31+Li4nzzvvbaa359mpubbe3atTZr1iwbPHiwRUVFWd++fS0zM9O+/e1v2+bNm62pqclvjMfjMUm2bdu2z/x5L168aCUlJZaVlWVxcXEWFxdn2dnZVlZWZvX19R27eEAIeNdoSUmJ71hNTY3fugymqKgo6PoyM9u1a5fNnTvXkpKSLCIiwiRZfn5+QL+9e/faY489ZqNHj7aYmBiLjo42t9tt8+bNs9/85jd25swZv/4lJSUmyYqKitr9uf7whz9YQUGBDRw40Pr06WMjRoywhQsX2t69e9sdC6DnIi8hL0HXRU4CAF2bY2Z2pwqeAAAAAAAAAPBp7CkJAAAAAAAAIKQoSgIAAAAAAAAIKYqSAAAAAAAAAEKKoiQAAAAAAACAkKIoCQAAAAAAACCkKEoCAAAAAAAACCmKkgAAAAAAAABCiqIkAAAAAAAAgJCiKAkAAAAAAAAgpChKAgAAAAAAAAgpipIAAAAAAAAAQoqiJAAAAAAAAICQoigJAAAAAAAAIKT+HyfzSLFOGerMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "palette = ['#b55d60', '#5f9e6e']\n", + "\n", + "fig, axs = plt.subplots(1, 2, figsize=(13, 5))\n", + "for i, task, title in zip([0, 1], ['DecisionRT', 'ConfidenceRT'], ['Decision', 'Confidence']):\n", + " sns.boxplot(data=df, x='Modality', y=task, hue='ResponseCorrect',\n", + " palette=palette, width=.15, notch=True, ax=axs[i])\n", + " sns.stripplot(data=df, x='Modality', y=task, hue='ResponseCorrect',\n", + " dodge=True, linewidth=1, size=6, palette=palette, alpha=.6, ax=axs[i])\n", + " axs[i].set_title(title)\n", + " axs[i].set_ylabel('Response Time (s)')\n", + " axs[i].set_xlabel('')\n", + " axs[i].get_legend().remove()\n", + "sns.despine(trim=10)\n", + "\n", + "handles, labels = axs[0].get_legend_handles_labels()\n", + "plt.legend(handles[0:2], ['Incorrect', 'Correct'], bbox_to_anchor=(1.05, .5), loc=2, borderaxespad=0.)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AHWKhCf-HuhT" + }, + "source": [ + "Response time distribution for the decision and the confidence rating phases for correct (red) and incorrect (green) responses." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "D3XNBf5-HuhT" + }, + "source": [ + "# Metacognition" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4XUsazH4HuhU" + }, + "source": [ + "SDT estimate for decision 1 perforamces (d' and criterion)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FZ7NrgpXHuhV", + "outputId": "e61560b5-d9db-4496-8fe9-d617d5021dcc" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Condition: Intero - d-prime: 1.38023349795524 - criterion: 0.4602326313983878\n", + "Condition: Extero - d-prime: 2.699085962223946 - criterion: 0.382121415010272\n" + ] + } + ], + "source": [ + "for i, cond in enumerate(['Intero', 'Extero']):\n", + " this_df = df[df.Modality == cond].copy()\n", + " if len(this_df) > 0:\n", + " this_df['Stimuli'] = (this_df.responseBPM > this_df.listenBPM)\n", + " this_df['Responses'] = (this_df.Decision == 'More')\n", + "\n", + " hit, miss, fa, cr = this_df.scores()\n", + " hr, far = sdt.rates(hits=hit, misses=miss, fas=fa, crs=cr)\n", + " d, c = sdt.dprime(hit_rate=hr, fa_rate=far), sdt.criterion(hit_rate=hr, fa_rate=far)\n", + " \n", + " print(f'Condition: {cond} - d-prime: {d} - criterion: {c}')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 387 + }, + "id": "pUYRU_Z5HuhV", + "outputId": "2c37ccd8-4674-44c6-c778-1decf1d5fe13" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPIAAAHSCAYAAABmauWkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEIUlEQVR4nOzdd3wVVf7/8fdND4QSegsJHaSGSBOREhVZiiwCwiLoKhArRlelKILC17WBuFhIsIMLSlmkKCgGpAlIEkAkQKQkSO+YhNy0+f2RX67EJJhy597c5PV8PPIwd86Zcz4zg/jxc2fmWAzDMAQAAAAAAACgVHNzdgAAAAAAAAAA/hqFPAAAAAAAAMAFUMgDAAAAAAAAXACFPAAAAAAAAMAFUMgDAAAAAAAAXACFPAAAAAAAAMAFUMgDAAAAAAAAXACFPAAAAAAAAMAFUMgDAAAAAAAAXACFPACAXW3cuFEWi0UWi8XZoQAAAMBBcvK/jRs3OjsUoEyjkAfAFNOnTzelmLN7925Nnz5dc+bMseu4+GuXL1/W9OnTNX36dF2+fNnZ4QAAACe4PscrzI89kIM415w5czR9+nTt3r3b2aEAkOTh7AAAoCh2796tl156SYGBgQoPD3d2OOXK5cuX9dJLL0mSHnjgAVWtWjXffhUqVFCLFi0cGBkAAHCG2rVrO2SewuYgMMecOXOUkJCgoKAgdejQocB+OflfhQoVHBQZUD5RyAMA2FXnzp114MABZ4cBAABMdvr0aWeHgFKE/A9wDB6tBQAAAAAAAFwAhTwADvXnhRB+/fVXPfjggwoICJC3t7caNGigcePG6cSJE3n2tVgs+uc//ylJSkhIyPMOlunTp+fZ59y5c3rhhRcUHBysKlWqyMfHR40bN9ZDDz2kX375pVAxxsbGatSoUWrQoIE8PT3Vq1evXP1Pnz6tZ599Vq1bt1bFihVVsWJFtW7dWs8995zOnDnzl+fk22+/1YgRIxQYGChfX19Vq1ZN7dq10xNPPKEff/wx333S0tL03nvvqXfv3qpRo4a8vLxUp04d3X333frmm28KnOv6lxCfPn1ajz/+uBo1aiQfHx/VqVNHo0aNyvfb1F69eqlRo0a2z40aNcp17q8/J4VZ7KI45+zYsWO2cY8dO6YzZ87oySeftMVfu3ZtjRgxgm+DAQAohR555BFZLBZVrVpVx44dy7fP+++/L4vFIg8PD23atElS0XKQHPbIk86ePaunn35azZs3V4UKFfLkNampqZozZ45uueUW+fv7y8fHR4GBgRozZkyh3iUXFxenxx57TDfddJMqVaokPz8/tWjRQiNGjNCyZcuUlZWV735r1qzRPffco/r168vb21v+/v667bbb9P777ystLS3ffXr16mXLldPS0vTqq6+qXbt2qlixovz9/XXHHXfke15y3oeYkJAgSfrnP/95w3cg/tViF8U9Z0FBQbJYLPrkk0+UlpamN954Q+3bt1fFihVVpUoV9enTR2vXri1wf6DMMQDABNOmTTMkGX/+a2bDhg227VFRUYafn58hyahUqZLh4eFha6tXr57x22+/5dq3du3aRuXKlQ1Jhpubm1G7du1cP2+88Uau/t99951RtWpV25ienp5GxYoVbZ+9vLyMTz/9NE/s18e4dOlSw9PT05BkVK5c2fDx8TF69uxp67tx48Zcc1SsWDHXHP7+/sbmzZvzPUfJycnGsGHDbH1zzkOVKlVsn9u3b59nv2PHjhmtW7e29bFYLLn2kWQ8/PDD+c6Z0/7RRx8ZderUMSQZvr6+tusgyfDx8TG++eabXPv9/e9/N2rUqGHrU6NGjVzn/u9//3u+5y8/xT1nR48etfVZvXq1UatWLUOSUaFCBcPb29vWVrlyZWP37t35zg0AAEqmoBzvr6SkpNjyl27duhnp6em52n/++WfDx8fHkGS8+OKLtu1FyUEMwz550vz5843atWvb8qJKlSrlOt7ffvvNaNOmTa4c8/o53NzcjP/85z8FnotXX33VcHNzy5V7VatWLde2S5cu5Tl/Q4cOzXUclStXNiwWi+1z165djYsXL+aZr2fPnoYkY/LkyUaPHj0MSYaHh0eufEySMW3atFz7vfHGG0bt2rVtcVWuXDlP/p3f+duwYUOeGEpyzgIDAw1Jxty5c40uXbrY9r8+f7VYLMaHH35Y4DkHyhIKeQBMUZhCnr+/vzFo0CAjLi7OMAzDsFqtxhdffGFLlkaPHp1n3I8//tiQZAQGBt5w/r179xq+vr6GJGPcuHHG/v37jYyMDMMwDCMhIcF49NFHbUnMTz/9VGCMfn5+xt/+9jdbjIZhGIcOHTIMwzASExNtCdBNN91kbNmyxdZn06ZNRosWLQxJRrVq1fIUJQ3DMIYPH25LXCZOnGgcP37c1nbu3Dnj888/z5NoJiUlGS1btjQkGb169TI2btxopKamGoZhGJcvXzZmz55tS2rmzJmTZ86c46pSpYrRsGFD49tvvzWysrIMwzCMHTt2GG3btrUlatfHYxi5C2lHjx4t8NzfqJBXknN2/fz+/v5G9+7dbdcuPT3d+O6774y6desakowePXoUGB8AACi+4hbyDCO7WJeTn02ZMsW2/foiX/fu3W05W47C5iD2ypP8/PyMFi1aGN9//72RmZlpGIZhHDx40DAMw8jIyLAVk6pUqWIsXLjQsFqthmEYxuHDh40BAwbYCktff/11njnee+892zyDBg0yYmNjbW3JycnGt99+a9x7773GlStXcu133333GZKMxo0bG59//rmt/dq1a8ZXX31lNG7c2JBkDB48OM+cOYW8KlWqGN7e3sa8efOMa9euGYaRnZtdXyD86quv8uyfU0j7+OOPCzz315+/PxfySnrOcub39/c36tevb6xYscJIS0szDMMwDhw4YHTt2tV23S5fvnzDGIGygEIeAFMUppDXu3dvW3J0vf/85z+2O8X+/G1tYQt5ffr0sX3zWJAJEyYYkoy77767wBg7d+6cJ5nM8fDDD9uSilOnTuVpP378uO0OwsceeyxX2/r1621zvPfeezc8luu9/PLLhiSjZ8+etgTmz5YvX277xvrP5y9nTi8vL2P//v159j1z5oxRrVo1Q5Lx6KOP5mqzRyGvJOfs+vlbtmxppKSk5Nl/5cqVtj5/LkQCAICSuz7H+/PdWX/+mTBhQp7933//fdsXmVFRUYZhGEZYWJghyahataqRkJCQZ5/C5iD2ypPy+0Izx+LFi2391q1bl6c9PT3dVrRq06ZNrraLFy/avrAeMWKE7cvUv7Jp0yZDklGrVi0jMTEx3z7Hjx+3PeFwfXHQMP4o5EnK9661zMxM47bbbjMkGa1bt87TXtJCXknO2fXze3t75/pyPcfZs2dtd3MuXLjwhjECZQHvyAPgNFOmTJGbW96/hu6++25J0rVr1xQfH1/kcY8dO6aoqCh5eHjomWeeKbDfmDFjJEnr169XZmZmvn2effZZubu759luGIa+/PJLSdLDDz+sOnXq5OnToEEDPfzww5KkxYsX52r76KOPJElt2rTRI488Uoijyvbhhx9Kkp5++ml5enrm22fw4MGqXLmyzp8/r+jo6Hz7DBs2TK1atcqzvVatWraYv/jii0LHVRglPWfX+9e//iVfX9882/v16ycvLy9J0s8//2yPsAEAQAHOnDlzw58rV67k2efhhx/WkCFDlJWVpfvuu0+RkZGKiIiQJM2fP18NGzYsdjz2ypNGjx6tBg0a5NuWkx9169ZNd955Z552Dw8PTZs2TZK0b9++XPnI0qVL9fvvv8vT01OzZ8++4fuE8zuuUaNGKSAgIN8+DRo0UO/evSVJ69aty7dPQECA7X3T13Nzc9MLL7wgSfrll1/snkOV5Jxdb+jQoWrZsmWe7TVr1lS3bt0kSXv37rVX2ECpRSEPgNN06dIl3+316tWz/X7x4sUij7t161ZJUlZWlm666SbVqVMn35+77rpLkpScnKwLFy7kO1b37t3z3X706FFbbLfffnuBsdxxxx2SpAsXLujo0aO27du2bZMkDRgwoNDHdeLECdvLhh966KECj6tu3bpKSkqSJFv/P+vTp0+B8+S0/TnmkirpObteQX92PDw8VLNmTUnF+7MDAAAKz8h+wqvAn08++STf/T744AM1bNhQJ0+eVFhYmCRp7NixGjp0aLFjsWeeVFD+J0m7du2SdONcpnfv3rYvgnP6S3/kfyEhIapbt26hjy0nt/3www8LPK46depo/fr1NzyunEUv8tOjRw95eHjkidkeSnLOrldQ/if98f8P5H8oDzycHQCA8qtSpUr5bs9JIiQpPT29yOOePHlSUnYhrzCrxkpSSkpKvttr1aqV7/azZ8/afq9fv36B417/be7Zs2dtq66dPn1akhQYGFio+KQ/jkuSzp8/X6h9CjquG8V8fdv1MZdUSc/Z9Qr6syP98eenOH92AACA+fz9/fXuu+9q4MCBkqTGjRvr7bffLtGY9syTCsr/pD/ymRvlMj4+PqpRo4bOnDmTK/8pTv4n/XFsV69e1dWrV/+yf3HyPx8fH1WvXj1PzPZQknN2PfI/IBuFPABlTs5jsrVr17YlTMWV32O19lDYRymud/3jv3Fxcfk+WgAAAOAK5s+fb/v9xIkT+vXXX9WuXbtij2fPPKk05X/SH8f2/vvv215BAqD84tFaAGVOzrvXzp8/r+TkZFPmuP6b2t9++63Afte3Xb9PTowFPfqQn+vfKVeU/fJz4sSJQrXd6BvpoirpOQMAAGXDO++8o5UrV8rd3V033XSTrFarRowYUeCdZIVhzzzpRnJykxvlMqmpqbbXtpQ0/yvJfn92o/zParXmG7M9lOScAciLQh4Al5KzOIZhGAX2yXmvSWZmpr755htT4mjUqJGqVasmSfr+++8L7JfzrpLq1avnekT0lltukSStWrWq0HMGBQXZHkkoyn752bBhw1+2VatWLVfM1y9McqPzX5CSnjMAAOD6fv75Zz377LOSpBdffFFff/21qlatqri4OD311FP57lOYHMSeedKN3HzzzZJunMts3LhRGRkZkqROnTrZtufkf7t27dKpU6cKPWdObrt69eoix3u9H374ocDzt3nzZlvMOceYozD5942U5JwByItCHgCXUrlyZUnS5cuXC+zTrFkz9erVS5L0/PPP57ti2vWK81Jci8Wie++9V5IUERGR7yO8J0+etK3CNnLkyFxtDz30kKTslcHef//9Qs87btw4SdkvO46Njb1h3xsd15IlS3Tw4ME828+fP2+LOef4cuSce+nG578gJT1nAADAtV27dk0jRoxQamqqbr31Vj3//PMKDAxUZGSkJCkyMlLLli3Ls19hcxB75Uk3MmLECEnSjz/+qG+//TZPe0ZGhl5++WVJUps2bdSmTRtb27Bhw1S5cmVlZGToqaeeKnRhbPz48ZKyV3T9q7wxOTlZaWlp+bYlJibq008/zbM9KytLr7zyiiTppptuUtu2bXO1Fyb/vpGSnDMAeVHIA+BScv7DfvXqVX355ZcF9ps7d678/Px06NAhde3aVV999ZVSU1Nt7SdOnNCCBQsUGhqqiRMnFiuWKVOmqGrVqrp48aJuv/1220pkUvbqYrfffrsuX76satWqadKkSbn27d27ty2pefzxxzV58uRcjxucP39eH3zwga3gl+Nf//qX2rZtq9TUVPXu3VvvvPNOrhV3L1++rG+++UZjxoxRjx49Cozdx8dHd911l9avX29LIn/66SfdfvvtOn/+vCpVqpQn5qpVq9q+6f74449t35oWRUnOGQAAcG1PPfWU9u/fr6pVq+rzzz+3vYtu2LBhtpxn3LhxOn78eK79CpuD2CtPupF77rnHtnrq8OHD9d///te2wMLRo0d1zz336Mcff5Qkvf7667n2rVKlim3bF198ob///e/avXu3rT0lJUVr1qzR3XffnWtRi549e+qf//ynJOmxxx7TU089pSNHjtjarVartm/frueee06BgYEFLhZRpUoVPfLII5o/f74tLz5+/LhGjhxpeyJj5syZefbLyb+XLl2qS5cuFfJM/aEk5wxAPgwAMMG0adMMScaf/5rZsGFDvtv/LKfPhg0b8rSFhoba2itVqmQEBgYagYGBxltvvZWr35YtW4w6derY+rq7uxvVq1c3fH19bdskGWPHji1WjIZhGBs3bjSqVKli61+xYkWjYsWKts9Vq1Y1Nm3alO++ycnJxpAhQ3LFUrly5VzjtW/fPs9+J06cMLp27WrrY7FYjKpVqxqVK1fONVbTpk0LPK8fffSR7dxUqFDB8PPzs7V5e3sbq1evzjfmGTNm5OoXEBBgBAYGGvfee2+hz19xz9nRo0dtfY4ePZrv2IZhGIGBgYYk4+OPPy6wDwAAKJ7rc7zatWv/5c/WrVsNwzCMZcuW2fZbsmRJnnGTk5ONli1bGpKMHj16GBkZGbnaC5ODGIZ98qT88s/r/fbbb0br1q1t/b28vIyqVavaPru5uRlvv/12gfu/8sorhpubm62/r6+vUa1atVzbLl26lGsfq9VqjB07Ntcx+Pn5Gf7+/rn2k2T89ttvufbt2bOnIcmYPHmyceuttxqSDE9PT8Pf3z/Xfi+88EK+8f7www+GxWKx5dN169a15d+FPX8lOWeFye3uv/9+Q5Jx//33F9gHKCu4Iw+Ay1m6dKmeeuopNW/eXOnp6UpISFBCQkKe2/27d++uQ4cO6c0339Rtt92mqlWr6vLly3J3d1erVq1033336fPPP9ecOXOKHUvPnj0VFxenf/3rX2rVqpWysrJkGIZatWqlZ555RnFxcQV+41uhQgUtW7ZMq1ev1t///nfVq1dPqamp8vDwULt27TRhwgTboybXq1evnrZs2aJFixZp0KBBqlu3rlJSUpSWlqagoCANHDhQc+bM0aZNmwqMu1GjRoqNjdVjjz2mmjVrKi0tTbVq1dLIkSMVGxur/v3757vflClT9Pbbb+vmm2+Wp6enfvvtNyUkJBRpdeCSnDMAAFB6nDlz5i9/0tLSdPz4cY0dO1ZS9utFhg4dmmesChUqaNGiRfL29tbmzZvz3BlW2BzEHnnSX6lfv7527dql2bNnq2vXrvL19VVKSooCAgI0evRoRUdHa8KECQXuP3nyZO3Zs0fjxo1T06ZNJUlpaWlq1qyZRo4cqeXLl+d6nFiSvLy8NH/+fG3btk0PPPCAmjRposzMTCUlJalWrVrq1auXXnzxRe3du9d29+KfeXl56fvvv9crr7yiFi1ayGq1qkqVKgoNDdWaNWs0Y8aMfPe77bbbtGbNGt1+++2qWrWqzpw5Y8u/HXXOAPzBYhjFfGMlAMDlWCwWSdkLWuS8RxAAAABlV69evfTDDz9o2rRpmj59urPDAVBC3JEHAAAAAAAAuAAKeQAAAAAAAIALoJAHAAAAAAAAuAAKeQAAAAAAAIALYLELAAAAAAAAwAVwRx4AAAAAAADgAijklRKjRo1SSEiIRo0a5exQAAAAYBJyPgAAUBIezg4A2Q4cOKCYmBhnhwEAAAATkfMBAICS4I48AAAAAAAAwAVQyAMAAAAAAABcAIU8AAAAAAAAwAVQyAMAAAAAAABcAIU8AAAAAAAAwAVQyAMAAAAAAABcAIU8AAAAAAAAwAVQyAMAAAAAAABcAIU8AAAAAAAAwAVQyAMAAAAAAABcAIU8AAAAAAAAwAVQyAMAAAAAAABcAIU8AAAAAAAAwAVQyAMAAAAAAABcgIezA7CXDRs2aNasWdqxY4eSkpIUGBioYcOGadKkSapYsWKxxjQMQ4sXL9ann36q2NhYXb58WdWrV1erVq3Ur18/PfPMM3Y+CtyIYRhKSUlxdhh2VaFCBVksFmeHAQAAUCqQ75U/XHMAKJoyUcibO3eunnzySRmGoQYNGiggIED79+/XzJkztWzZMm3ZskXVqlUr0phJSUn6+9//rvXr10uSGjdurMDAQJ05c0Y//PCD9uzZQyHPwVJSUuTn5+fsMOwqKSmp2IVmAACAsoZ8r/zhmgNA0bj8o7XR0dEKDw+XJEVERCgxMVExMTE6cuSIQkJCFBcXp3HjxhVpTMMwNGTIEK1fv1533XWXfv31Vx0+fFg7d+5UQkKCzp8/r48++siEowEAAAAAAADy5/J35M2YMUNZWVkaM2aMxo8fb9ter149LVq0SC1bttTy5cu1d+9etWvXrlBjfvLJJ/ruu+/UpUsXrVq1Sh4euU9T1apVNWjQILseB4rm86H3ysfDNf/4pmZkaNTSL5wdBgAAQKlGvlf+cM0B4K+55t+S/19SUpLWrl0rSbmKeDmaNWumPn36aP369VqyZEmhC3mzZ8+WJL3wwgt5ingoHXw8POTj6ensMAAAAGAS8r3yh2sOAH/NpatUsbGxslqt8vb2VufOnfPt06NHD61fv17bt28v1JiHDx/Wvn375Obmpt69e2vHjh36+OOP9euvv8rPz09du3bV2LFjVaNGDXseCgAAAAAAAHBDLl3IO3TokCSpYcOG8izgm5smTZpIkg4ePFioMXft2iVJql69ut59911NmjRJhmHY2r/66iu99tprWr58uXr37l2S8AEAAAAAAIBCc+lC3sWLFyXphivS5rRdunSpUGOeOnXK1n/ixInq37+/Xn/9dTVt2lQHDx5UeHi4oqKiNGTIEP38889q0KBBgWNFREQoMjKyUPPGxcUVqh8AAAAAAADKJ5cu5KWmpkqSvLy8Cuzj7e0tSbp27VqhxkxKSpIkZWRkqEmTJvrf//5nu9uvbdu2WrVqlZo0aaLTp09rzpw5evPNNwsc69SpU4qJiSnUvAAAAAAAAMCNuHQhz8fHR5KUlpZWYB+r1SpJ8vX1LdKYkvT444/neWS3QoUKeuSRRzRt2jStXbv2hoW8unXrqmPHjoWaNy4urtDFRgAAAAAAAJQ/Ll3I8/f3l/THI7b5yWnL6VvYMSWpVatW+fbJ2X706NEbjhUWFqawsLBCzRsSEsLdewAAAAAAACiQm7MDKInmzZtLkhITE5Wenp5vn8OHD+fq+1datmxp+72gR3Zz7trLysoqdKwAAAAAAABASbh0IS84OFheXl6yWq3auXNnvn02b94sSerWrVuhx8x5DPfIkSP59skpDt5ooQsAAAAAAADAnly6kFepUiX17dtXkvJdHTY+Pl5RUVGSpKFDhxZqzAoVKmjgwIGSpE8//TRPu2EY+uSTTyRJoaGhxQkbAAAAAAAAKDKXLuRJ0tSpU2WxWLRgwQJFRkbKMAxJ2SvGjhw5UllZWRo8eLDat2+fa7+goCAFBQVp6dKlecacNm2aPDw8tHnzZs2YMUOZmZmSsleynThxovbs2SMfHx899dRT5h8gAAAAAAAAoDJQyOvUqZNmz54tKXtxicDAQHXs2FGNGjVSdHS0WrRoofnz5+fZLyEhQQkJCUpKSsrTdtNNN+mDDz6Qu7u7XnzxRdWtW1ddunRRnTp19MYbb8jT01MfffSRWrRoYfrxAQAAAAAAAFIZKORJUnh4uL777jv169dPycnJ2r9/vwIDAzVlyhTt2rVLNWrUKPKY999/v7Zv365hw4bJzc1NsbGx8vT01MiRI/XTTz9p5MiRJhwJAAAAbmTDhg0aMGCAatasKV9fX7Vs2VJTp05VcnKyXcZ/7733ZLFYZLFY1KtXL7uMCQAAYC8ezg7AXkJDQ4v0zrqcR3Bv5Oabb9aXX35ZkrAAAABgJ3PnztWTTz4pwzDUoEEDBQQEaP/+/Zo5c6aWLVumLVu2qFq1asUe/8SJE5o8ebIdIwYAALCvMnFHHgAAAMq26OhohYeHS5IiIiKUmJiomJgYHTlyRCEhIYqLi9O4ceNKNMejjz6q5ORkDRgwwA4RAwAA2B+FPAAAAJR6M2bMUFZWlkaPHq3x48fLYrFIkurVq6dFixbJzc1Ny5cv1969e4s1/pdffqmVK1fq8ccfV0hIiD1DBwAAsBsKeQAAACjVkpKStHbtWknS+PHj87Q3a9ZMffr0kSQtWbKkyONfunRJEyZMUIMGDTRz5sySBQsAAGAiCnkAAAAo1WJjY2W1WuXt7a3OnTvn26dHjx6SpO3btxd5/H/96186c+aM5s6dKz8/vxLFCgAAYCYKeQAAACjVDh06JElq2LChPD098+3TpEkTSdLBgweLNHZUVJQ+/vhjDRo0SIMHDy5RnAAAAGYrM6vWAgAAoGy6ePGiJN1wRdqctkuXLhV63GvXrmn8+PHy8/PTO++8U+z4IiIiFBkZWai+cXFxxZ4HAACAQh4AAABKtdTUVEmSl5dXgX28vb0lZRfnCmvatGk6fPiwZs+erYCAgGLHd+rUKcXExBR7fwAAgMKikAcAAIBSzcfHR5KUlpZWYB+r1SpJ8vX1LdSYsbGxeuuttxQcHKwJEyaUKL66deuqY8eOheobFxdXpGIjAADA9SjkAQAAoFTz9/eX9McjtvnJacvp+1ceeughZWVlKTIyUu7u7iWKLywsTGFhYYXqGxISwt17AACg2CjkAQAAoFRr3ry5JCkxMVHp6en5Lnhx+PDhXH3/SmxsrNzd3TVgwIA8bUlJSZKkbdu2qU6dOpKkn376qUSP3wIAANgDhTwAAACUasHBwfLy8pLVatXOnTvVvXv3PH02b94sSerWrVuhx83MzNSZM2cKbE9PT7e1Z2ZmFjFqAAAA+3NzdgAAAADAjVSqVEl9+/aVpHxXh42Pj1dUVJQkaejQoYUa0zCMAn+mTZsmSerZs6dtW1BQkH0OBgAAoAQo5AEAAKDUmzp1qiwWixYsWKDIyEgZhiEpe8XYkSNHKisrS4MHD1b79u1z7RcUFKSgoCAtXbrUGWEDAADYFYU8AAAAlHqdOnXS7NmzJWUvLhEYGKiOHTuqUaNGio6OVosWLTR//vw8+yUkJCghIcH23jsAAABXRiEPAAAALiE8PFzfffed+vXrp+TkZO3fv1+BgYGaMmWKdu3apRo1ajg7RAAAAFOx2AUAAABcRmhoqEJDQwvdP+cR3KKYPn26pk+fXuT9AAAAzMYdeQAAAAAAAIALoJAHAAAAAAAAuAAKeQAAAAAAAIALoJAHAAAAAAAAuADTF7vIyMjQkSNHdO7cOVksFtWoUUONGzeWhwfrbAAAAJQV5HwAAADmMyWzunr1qj7//HMtW7ZM27dv17Vr13K1+/r6qkuXLho6dKhGjRqlypUrmxEGAAAATETOBwAA4Fh2LeRdvnxZr7zyit577z1du3ZNrVq10r333qsmTZqoevXqysrK0qVLl3T48GHt2LFDjz/+uJ555hk99thjmjJliqpWrWrPcAAAAGACcj4AAADnsGshr3HjxqpataqmTp2qf/zjHwoICLhh/+PHj+u///2vIiIi9OGHH+rChQv2DAcAAAAmIOcDAABwDrsW8mbPnq3Ro0fL3d29UP0DAgI0ceJEPfPMM1qwYIE9QwEAAIBJyPkAAACcw66FvAceeKBY+7m7uxd7XwAAADgWOR8AAIBzuDk7AAAAAAAAAAB/zfRC3sKFC9WxY0dVrlxZAQEB2rVrl9lTAgAAwMHI+QAAAMxnaiHvs88+05gxY1ShQgWNGjVKJ0+e1NWrVyVJZ8+e1ciRIxUdHW1mCAAAADAZOR8AAIBjmFrImzVrlvr3768tW7ZoxowZMgzD1larVi2dPn1a8+bNMzMEAAAAmIycDwAAwDFMLeTFx8dr4MCBkiSLxZKn/dZbb9WWLVvMDAEAAAAmI+cDAABwDFMLef7+/rpy5UqB7Q0bNtTJkyfNDAEAAAAmI+cDAABwDFMLeaGhoVq4cGGB7b///rvc3d3NDAEAAAAmI+cDAABwDFMLeZMnT9avv/6qUaNG2V54nMMwDH3xxRdq0qSJmSEAAADAZOR8AAAAjuFh5uCtWrXSihUrNHz4cK1Zs0YWi0UrVqzQ7t27tWzZMu3atYsXHwMAALg4cj4AAADHMLWQJ0l33HGH9u3bp5dffllLly7VO++8kz2xh4ceffRRjR071uwQAAAAYDJyPgAAAPOZ+mhtjvr16ysiIkLnzp3T0aNHtWfPHp0/f15z587Nd2Wz4tiwYYMGDBigmjVrytfXVy1bttTUqVOVnJxc5LEeeOABWSyWG/6sXbvWLnEDAACUFY7I+QAAAMoz0+/Iu56bm5sCAwPtPu7cuXP15JNPyjAMNWjQQAEBAdq/f79mzpypZcuWacuWLapWrVqRxw0ICFDDhg3zbfP39y9p2AAAAGWSWTkfAABAeWdqIe/8+fN64YUXtHPnTnl6eqpFixYKDg5WcHCwOnTooKpVq5Z4jujoaIWHh0uSIiIiNG7cOFksFp08eVKDBg1SdHS0xo0bp2XLlhV57AcffFDTp08vcYwAAABlmSNyPgAAAJhcyHvwwQe1evVqtWrVSl5eXlq1apUWLlxoe7QiMDBQwcHBxSqy5ZgxY4aysrI0ZswYjR8/3ra9Xr16WrRokVq2bKnly5dr7969ateuXYmPCQAAALk5IucDAACAyYW8jRs36p///Kc+/PBD27Zjx45p9+7d2r17t2JjYxUTE1Ps8ZOSkmzvqru+iJejWbNm6tOnj9avX68lS5ZQyAMAADCB2TkfAAAAsplayKtatao6d+6ca1tQUJCCgoI0ePDgEo8fGxsrq9Uqb2/vPPPk6NGjh9avX6/t27cXefwNGzbol19+0YULF1S1alWFhITovvvu450vAAAA1zE75wMAAEA2U1etvffee7VhwwbTxj906JAkqWHDhvL09My3T5MmTSRJBw8eLPL4mzZt0tKlS7Vhwwb973//0wsvvKBmzZrp9ddfL37QAAAAZYzZOR8AAACymXpH3ksvvaRbb71V8+bN08MPP2z38S9evChJN1yRNqft0qVLhR63WbNmmjVrlvr06aOgoCB5e3tr7969mjVrlpYsWaKJEyfKz89Pjz766A3HiYiIUGRkZKHmjIuLK3R8AAAApYnZOR8AAACymVrI8/b21j333KPHHntMn332me655x516tRJHTp0UOXKlUs8fmpqqiTJy8vrhjFI0rVr1wo97vPPP59nW5cuXfTll1/qscce03vvvafnn39eY8aMkZ+fX4HjnDp1ivfBAACAMs/snA8AAADZTC3kPfLII/rwww9lsVgUGxur7du321Yva9SokYKDg9WxY0dNnjy5WOP7+PhIktLS0grsY7VaJUm+vr7FmuPPXnnlFX3wwQe6fPmyoqKiNGjQoAL71q1bVx07dizUuHFxcUUqNgIAAJQWZud8AAAAyGZqIW/JkiW64447tHTpUvn5+eno0aOKjY21/Wzbtk3Lly8vdlLn7+8v6Y9HbPOT05bTt6SqVKmi1q1bKzY2VvHx8TfsGxYWprCwsEKNGxISwt17AADAJZmd8wEAACCbqYU8Dw8P3XPPPbbHTxs1aqRGjRppyJAhtj5nz54t9vjNmzeXJCUmJio9PT3fBS8OHz6cq6895DzKm5GRYbcxAQAAXJXZOR8AAACymbpq7V133aW9e/fesE+tWrWKPX5wcLC8vLxktVq1c+fOfPts3rxZktStW7diz3O9jIwMHThwQJLUoEEDu4wJAADgyszO+QAAAJDN1ELeK6+8oq+//lo//vijKeNXqlRJffv2laR8V4eNj49XVFSUJGno0KF2mTMiIkJXrlyRh4eH+vTpY5cxAQAAXJnZOR8AAACymVrIa9mypVJTU9WrVy9NmDBBGzduVFJSkl3nmDp1qiwWixYsWKDIyEgZhiEpe8XYkSNHKisrS4MHD1b79u1z7RcUFKSgoCAtXbo01/bvvvtOEydOzPP+u7S0NM2dO1dPP/20JOnhhx9W3bp17XosAAAArsgROR8AAABMLuSNHDlS9erVk7u7u9555x2FhoaqatWqatGihUaMGKHXXntN3377bYnm6NSpk2bPni0pe3GJwMBAdezYUY0aNVJ0dLRatGih+fPn59kvISFBCQkJeZLM5ORkvf7662revLnq1Kmjm2++WTfffLOqV6+uCRMmKC0tTffcc49mzZpVorgBAADKCkfkfAAAADB5sYsPPvhAkpSZmakDBw5o9+7dtp+oqCh9+eWXslgsyszMLNE84eHhatu2rWbNmqUdO3bo7NmzCgwM1NChQzV58mTbi5cLIyQkRFOnTtWPP/6o+Ph4HThwQOnp6apZs6buvPNOPfDAAxo4cGCJ4gUAAChLHJXzAQAAlHemFvJyuLu7q3Xr1mrdurVGjRpl237ixAnt3r3bLnOEhoYqNDS00P1zHsH9s4CAAL388st2iQkAAKA8cUTOBwAAUJ45pJBXkPr166t+/frODAEAAAAmI+cDAACwD1PfkSdJGzZsUN++fdWoUSO1adNGo0aN0tKlS5WVlWX21AAAAHAQcj4AAADzmVrI++abb3THHXdox44dCggIkL+/v9atW6fhw4erQ4cOOnr0qJnTAwAAwAHI+QAAABzD1ELeiy++qPbt2+vYsWPatGmTNm/erHPnzmnFihW6cuWKbrvtNl28eNHMEAAAAGAycj4AAADHMLWQt2/fPj344IOqWrWqbZvFYtGgQYP0448/Kj09nYUlAAAAXBw5HwAAgGOYWsirXLmyMjMz822rV6+ewsLCtHLlSjNDAAAAgMnI+QAAABzD1ELebbfdpgULFhT4kuOAgACdPHnSzBAAAABgMnI+AAAAxzC1kDdlyhTt3btXw4cP1/nz5/O0b9iwQXXq1DEzBAAAAJiMnA8AAMAxPMwcPDg4WJ999pnuv/9+NWzYUAMGDFCrVq3k7e2tLVu2aN26dZo+fbqZIQAAAMBk5HwAAACOYWohT5LuvfdetW3bVjNnztSqVau0dOlSSZKvr69efPFFPf/882aHAAAAAJOR8wEAAJjP1ELewYMHlZycrODgYP33v/9VZmamjhw5IovFokaNGsnd3d3M6QEAAOAA5HwAAACOYWohb9KkSfr555916NAhWSwWubu7q1mzZmZOCQAAAAcj5wMAAHAMUxe72L59u+677z65ueWdJj09XT179tSiRYvMDAEAAAAmI+cDAABwDFMLeZcuXVJgYGC+bZ6enmrVqpXee+89M0MAAACAycj5AAAAHMPUQl79+vV15MiRAtvbtWunuLg4M0MAAACAycj5AAAAHMPUQl7fvn01b948XbhwId/2zMxMWa1WM0MAAACAycj5AAAAHMPUQt6kSZOUmZmpvn376tdff83TvmLFCjVp0sTMEAAAAGAycj4AAADHMHXV2oYNG2rNmjUaNGiQWrdurbvuukudOnWSJK1bt07btm3T7NmzzQwBAAAAJiPnAwAAcAxTC3mS1K1bN+3bt0/Tp0/XkiVLtGrVKkmSu7u7HnroIT3++ONmhwAAAACTkfMBAACYz9RHa1euXKkrV66odu3aev/993X27FkdPXpUe/bs0fnz5xUZGSl3d3czQwAAAIDJyPkAAAAcw9RC3t///netWbPmj8nc3BQYGKi2bduqSpUqZk4NAAAAByHnAwAAcAxTC3mGYdywffXq1Ro4cKCZIQAAAMBk5HwAAACOYfd35C1cuFDR0dHq3LmzJMlisRTY9/Lly/r666/tHQIAAABM5qycb8OGDZo1a5Z27NihpKQkBQYGatiwYZo0aZIqVqxYpLEiIyO1bds2xcbG6vTp07p48aIqVqyoli1basiQIXr88cdVoUIFu8QNAABgD3a/I+/y5ct67733NGrUKFksFv3zn/9Ux44d9eCDD2ru3LnavHmzfv/9d0nSvn375O/vb+8QAAAAYDJn5Hxz585VaGio1qxZIx8fH7Vq1UrHjh3TzJkz1alTJ128eLFI4z333HP69NNPFR8fr8qVK6tDhw6qUKGCduzYoYkTJ6pDhw46fvx4ieMGAACwF7sX8h5//HFdvXpVW7dulWEYuuWWW+Tn56dly5bpySefVK9evVS1alXVqFFDb7zxhkJDQ+0dAgAAAEzm6JwvOjpa4eHhkqSIiAglJiYqJiZGR44cUUhIiOLi4jRu3LgijTl9+nTt3LlTSUlJio+P108//aSTJ09qy5YtqlevnuLj4/Xwww+XKG4AAAB7svujtZLk7e2tbt26qW/fvnr88cfVv39/SdLhw4cVGxurPXv26OjRo2rUqJGeeeYZM0IAAACAyRyZ882YMUNZWVkaM2aMxo8fb9ter149LVq0SC1bttTy5cu1d+9etWvXrlBj5hQG/6x79+566623dO+992rt2rVKTk4u8mO7AAAAZjClkJfjm2++yfW5SZMmatKkiYYOHWrmtAAAAHAgs3O+pKQkrV27VpJyFfFyNGvWTH369NH69eu1ZMmSQhfybqRVq1aSpKysLKWmplLIAwAApYKpq9bu3LlTqampZk4BAAAAJzM754uNjZXVapW3t7dtcY0/69GjhyRp+/btdplzy5YtkqSgoCBVr17dLmMCAACUlKl35HXt2lXu7u5q1qyZ2rdvrw4dOtj+WadOHTOnBgAAgIOYnfMdOnRIktSwYUN5enrm26dJkyaSpIMHDxZ7noyMDJ08eVIrVqzQlClT5OnpqTlz5hR7PAAAAHsztZD36aefKjY2VjExMfrmm2/0xRdfyGKxSJJq1qyp9u3bKzg4WK+++qqZYQAAAMBEZud8OavRVqtWrcA+OW2XLl0q8vjh4eF6++23c22788479dJLL6lr165/uX9ERIQiIyMLNVdcXFyR4wMAAMhhaiFv9OjRGj16tO3z4cOH9eOPP+qLL77QmjVrFBsbq6ioKAp5AAAALszsnC/nsV0vL68C+3h7e0uSrl27VuTxGzdurO7du8tqtSohIUHnzp3T1q1btXDhQgUHB9vGLsipU6cUExNT5HkBAACKytRC3p/lvPj4vvvu02effabXX39dP//8syNDAAAAgMnsnfP5+PhIktLS0grsY7VaJUm+vr5FHn/ChAmaMGGC7fPmzZv16KOP6t1331VCQoJWrVp1w/3r1q2rjh07FmquuLi4YhUbAQAAJJMXu7iRMWPGqGXLlpo9e7azQgAAAIDJ7JHz+fv7S/rjEdv85LTl9C2JHj166Ouvv5anp6dWr16trVu33rB/WFiYoqOjC/WTsxouAABAcTitkCdJt956qxYvXuzMEAAAAGCykuZ8zZs3lyQlJiYqPT093z6HDx/O1bekAgIC1K5dO0lSdHS0XcYEAAAoKVMfre3evbtCQkIUHBys4OBgtWnTRh4ef0x59OjRG36zCgAAgNLP7JwvODhYXl5eslqt2rlzp7p3756nz+bNmyVJ3bp1K/Y8f5aRkZHrnwAAAM5maiEvNTVVkZGRSktLk8Vikaenp1q3bq2bbrpJycnJWrVqlW677TYzQwAAAIDJzM75KlWqpL59+2rVqlWKjIzMU8iLj49XVFSUJGno0KElOpbrx8x5r19wcLBdxgQAACgpUwt50dHRysjI0P79+xUbG6vY2Fjt3r1b69atU3Jysnr06KHIyEgzQwAAAIDJHJHzTZ06VatXr9aCBQvUvXt3jRs3ThaLRadOndLIkSOVlZWlwYMHq3379rn2CwoKkiS9+eabuYp8S5Ys0alTpzR8+HDVqVMn1z4bNmzQuHHjlJWVpeDgYPXs2bNEsQMAANiL6avWenh4qF27dmrXrp3uv/9+0+bZsGGDZs2apR07digpKUmBgYEaNmyYJk2apIoVK5Z4/Pfee0+PPfaYJKlnz57auHFjiccEAAAoK8zO+Tp16qTZs2fr6aefVlhYmGbOnKkaNWpo//79slqtatGihebPn59nv4SEBElSUlJSru0nTpzQU089pSeffFIBAQGqU6eODMPQsWPHdP78eUnSTTfdpBUrVsjNzamvlQYAALAxPSuxWq2yWq2mzjF37lyFhoZqzZo18vHxUatWrXTs2DHNnDlTnTp1KvF7+E6cOKHJkyfbKVoAAICyxxE5X3h4uL777jv169dPycnJ2r9/vwIDAzVlyhTt2rVLNWrUKPRYgwcP1iuvvKI777xT7u7u+uWXX7R37155eXmpX79+mj9/vmJjY9WwYUMTjwgAAKBoTLkjLy0tTa+88oo+++wz27eg1atXV2hoqMaOHavQ0FC7zRUdHa3w8HBJUkREhO0xi5MnT2rQoEGKjo7WuHHjtGzZsmLP8eijjyo5OVkDBgzQ6tWr7RQ5AACAa3NkzpcjNDS0SOMahpHv9qCgIE2ePJkvawEAgEux+x15aWlpuv322/Xyyy/r1KlTatmypYKDg5WRkaEvvvhCd955p+666y6dOnXKLvPNmDFDWVlZGj16tMaPHy+LxSJJqlevnhYtWiQ3NzctX75ce/fuLdb4X375pVauXKnHH39cISEhdokZAADA1Tk65wMAAIAJd+S99dZb2rJli5544gnNnDlTlSpVsrXt3LlT7777rhYuXKju3bvrhx9+UEBAQLHnSkpK0tq1ayVJ48ePz9PerFkz9enTR+vXr9eSJUvUrl27Io1/6dIlTZgwQQ0aNNDMmTP15ptvFjtWAACAssSROR8AAOWNYRhKSUlxdhh2VaFCBdvNVyg+uxfyFi1apNtvv11vv/12nrbOnTurc+fOGjNmjEaMGKHBgwfrp59+KvYLhGNjY2W1WuXt7a3OnTvn26dHjx5av369tm/fXuTx//Wvf+nMmTP63//+Jz8/v2LFCAAAUBY5MucDAKC8SUlJKXN1iKSkJLssRlre2T2bio+PV79+/W7YJzQ0VMuWLdOePXv00UcfFXuuQ4cOSZIaNmwoT0/PfPs0adJEknTw4MEijR0VFaWPP/5YgwYN0uDBg4sdIwAAQFnkyJwPAAAA2ex+R56np6e8vb3/st9tt92m/v376/PPP9fYsWOLNVfOarTVqlUrsE9O26VLlwo97rVr1zR+/Hj5+fnpnXfeKVZsUvbiG5GRkYXqGxcXV+x5AAAAHM2ROR8AAOXZ8Dlj5eGd/81LpV2GNV1fhn/g7DDKFLsX8po0aaLY2NhC9e3Vq5f+/e9/F3uu1NRUSZKXl1eBfXISzGvXrhV63GnTpunw4cOaPXt2id7ncurUKcXExBR7fwAAgNLKkTkfAADlmYe3pzxdtJAH+7N7IW/IkCF69dVXNX36dNWvX/+GfX18fHT16tViz+Xj4yMpe9W0glitVkmSr69vocaMjY3VW2+9peDgYE2YMKHYsUlS3bp11bFjx0L1jYuLK1KxEQAAwJkcmfMBAAAgm90LeY8//rjeeecdDRw4UN98841q165dYN+dO3eqQYMGxZ7L399f0h+P2OYnpy2n71956KGHlJWVpcjISLm7uxc7NkkKCwtTWFhYofqGhIRw9x4AAHAZjsz5AAAAkM3ui11UqVJF//3vf3XgwAG1bdtW7733npKTk/P0++qrr7Rw4UL179+/2HM1b95ckpSYmKj09PR8+xw+fDhX378SGxsri8WiAQMGqE6dOrl+3nzzTUnStm3bbNuOHz9e7PgBAABclSNzPgAAAGSz+x15ktS7d299/fXXGjVqlJ544glNmTJFvXv3VuPGjZWSkqI9e/Zox44dqlOnjqZMmVLseYKDg+Xl5SWr1aqdO3eqe/fuefps3rxZktStW7dCj5uZmakzZ84U2J6enm5rz8zMLGLUAAAAZYOjcj4AAABkM6WQJ2W/1Hj//v16++239eGHH+qrr77K1X7HHXdo3rx5N3wM469UqlRJffv21apVqxQZGZmnkBcfH6+oqChJ0tChQws1pmEYBbZNnz5dL730knr27KmNGzcWO24AAICywhE5HwAAALLZ/dHa61WpUkUvvviiEhISFB8fr++//15RUVE6deqU1q1bp0aNGpV4jqlTp8pisWjBggWKjIy0FeJOnTqlkSNHKisrS4MHD1b79u1z7RcUFKSgoCAtXbq0xDEAAACUZ47I+QAAAGDiHXl/1qRJEzVp0sTu43bq1EmzZ8/W008/rbCwMM2cOVM1atTQ/v37ZbVa1aJFC82fPz/PfgkJCZKkpKQku8cEAABQXpmV8wEAAMDkO/IcJTw8XN9995369eun5ORk7d+/X4GBgZoyZYp27dqlGjVqODtEAAAAAAAAoETsekdenz59SjyGxWLR999/X+T9QkNDFRoaWuj+N3oXXkGmT5+u6dOnF3k/AACAssSZOR8AAEB5ZtdCXlZWliwWS4nGKE6BDQAAAI5DzgcAjmUYhlJSUpwdhl1VqFChxP8tAcojuxbyWMkVAACg7CPnAwDHSklJkZ+fn7PDsKukpCRVrFjR2WEALsfUd+RFRUWZOTwAAABKAXI+AAAAxzB11drbb79dAwcO1BtvvKHmzZubORUAAACchJwPABxn+Jyx8vD2dHYYxZJhTdeX4R84OwzApZl6R95HH32k6OhotW3bVhMmTNCFCxfMnA4AAABOQM4HAI7j4e0pTxf9cdUCJFCamFrIe+CBB3To0CFNmjRJH330kZo2bao333xT6enpZk4LAAAAByLnAwAAcAxTC3lS9ko0L730kg4dOqRBgwZp4sSJatmypZYsWWL21AAAAHAQcj4AAADzmV7Iy1GvXj19+umn+umnnxQQEKARI0aoe/fu2rFjh6NCAAAAgMnI+QAAAMzjsEJejhYtWujll19Wjx499OOPP+qWW27RyJEjlZiY6OhQAAAAYBJyPgAAAPszddVaq9Wq2NhY7dq1S7t27dJPP/2kQ4cOKSsrS4ZhqFatWurUqZO+//57tWrVSv/3f/+n8PBwM0MCAACAnZHzAQAAOIaphTw/Pz9bAuft7a3g4GA98cQT6tKli7p27arAwEBJUnJysqZNm6ZnnnlGv//+u6ZOnWpmWAAAALAjcj4AAADHMLWQd++996pr167q0qWLOnToIE/P/Jearlixot58801lZWVp3rx5JHUAAAAuhJwPAADAMUwt5C1cuLBI/Tt37qw5c+aYEwwAAABMQc4HAADgGA5f7OJG+vbtq8WLFzs7DAAAAJiInA8AAKB4SlUhz9/fX8OHD3d2GAAAADAROR8AAEDxmPpoLQAAsC/DMJSSkuLsMOyqQoUKslgszg4DAAAAKPUo5AEA4EJSUlLk5+fn7DDsKikpSRUrVnR2GAAAAECpV6oerQUAAAAAAACQP+7IAwDARQ2fM1Ye3p7ODqNYMqzp+jL8A2eHAQAAALgU0+/Iu3z5sho3bqwff/xRknT+/PlcnwEAQPF4eHvK00V/XLUAiYKR8wEAAJjP9EJeZmamjh07pmvXruX7GQAAAK6PnA8AAMB8vCMPAAAAAAAAcAEU8gAAAAAAAAAXQCEPAAAAAAAAcAEU8gAAAAAAAAAXQCEPAAAAAAAAcAEU8gAAAAAAAAAXQCEPAAAAAAAAcAEU8gAAAAAAAAAXQCEPAAAAAAAAcAEeZk9QrVo1HT16VHXq1JEk1axZM9dnAAAAuD5yPuczDEMpKSnODqNEkpOTnR2CyygL11vimgNAUZleyLNYLAoMDLR9dnNzy/UZAAAAro+cz/lSUlLk5+fn7DDgIFxvACifeLQWAAAAAAAAcAGm35EHAAAAwLGGzxkrD29PZ4dRZKlXU7R84qfODsPluOr1lrjmAFBUFPIAAACAMsbD21OeLljYyXDBmEsDV73eEtccAIqKR2sBAAAAAAAAF2B6IW/hwoXq2LGjKleurICAAO3atcuUeTZs2KABAwaoZs2a8vX1VcuWLTV16tRirYIUGRmpBx54QO3bt1ft2rXl6empqlWrqmvXrnr99dfLxOpQAAAA9uSonA8AAKA8M7WQ99lnn2nMmDGqUKGCRo0apZMnT+rq1auSpLNnz2rkyJGKjo4u8Txz585VaGio1qxZIx8fH7Vq1UrHjh3TzJkz1alTJ128eLFI4z333HP69NNPFR8fr8qVK6tDhw6qUKGCduzYoYkTJ6pDhw46fvx4ieMGAAAoCxyV8wEAAJR3phbyZs2apf79+2vLli2aMWOGDMOwtdWqVUunT5/WvHnzSjRHdHS0wsPDJUkRERFKTExUTEyMjhw5opCQEMXFxWncuHFFGnP69OnauXOnkpKSFB8fr59++kknT57Uli1bVK9ePcXHx+vhhx8uUdwAAABlhSNyPgAAAJhcyIuPj9fAgQMlSRaLJU/7rbfeqi1btpRojhkzZigrK0ujR4/W+PHjbfPUq1dPixYtkpubm5YvX669e/cWeszw8HB16tRJbm65T0/37t311ltvSZLWrl1brMd2AQAAyhpH5HwAAAAwuZDn7++vK1euFNjesGFDnTx5stjjJyUlae3atZKk8ePH52lv1qyZ+vTpI0lasmRJsee5XqtWrSRJWVlZSk1NtcuYAAAArszsnA8AAADZTC3khYaGauHChQW2//7773J3dy/2+LGxsbJarfL29lbnzp3z7dOjRw9J0vbt24s9z/Vyvk0OCgpS9erV7TImAACAKzM75wMAAEA2Uwt5kydP1q+//qpRo0bZXnicwzAMffHFF2rSpEmxxz906JCk7G95PT098+2TM/7BgweLPU9GRoYSExP1n//8R88++6w8PT01Z86cYo8HAABQlpid8wEAACCbh5mDt2rVSitWrNDw4cO1Zs0aWSwWrVixQrt379ayZcu0a9euEr34OGc12mrVqhXYJ6ft0qVLRR4/PDxcb7/9dq5td955p1566SV17dr1L/ePiIhQZGRkoeaKi4srcnwAAAClgdk5HwAAALKZWsiTpDvuuEP79u3Tyy+/rKVLl+qdd97JntjDQ48++qjGjh1b7LFz3lHn5eVVYB9vb29J0rVr14o8fuPGjdW9e3dZrVYlJCTo3Llz2rp1qxYuXKjg4GDb2AU5deqUYmJiijwvAACAqzEz57vehg0bNGvWLO3YsUNJSUkKDAzUsGHDNGnSJFWsWLHQ42RmZioqKkpr1qzRtm3bdOjQIaWkpKh69erq3Lmzxo8fr/79+9slZgAAAHsxtZB38OBBJScnKzg4WBEREXr//fd1/PhxXb16VYGBgapcuXKJxvfx8ZEkpaWlFdjHarVKknx9fYs8/oQJEzRhwgTb582bN+vRRx/Vu+++q4SEBK1ateqG+9etW1cdO3Ys1FxxcXHFKjYCAAA4m9k5X465c+fqySeflGEYatCggQICArR//37NnDlTy5Yt05YtW274pMb1PvnkE1tx0c3NTU2bNpWfn59+/fVXrVy5UitXrtT48eM1b968fFfiBQAAcAZTC3mTJk3Szz//rEOHDsliscjNzU2BgYF2G9/f31/SH4/Y5ienLadvSfTo0UNff/21mjRpotWrV2vr1q3q3r17gf3DwsIUFhZWqLFDQkK4ew8AALgks3M+SYqOjlZ4eLik7NeXjBs3ThaLRSdPntSgQYMUHR2tcePGadmyZYUazzAMtWvXThMmTNDQoUNVpUoVSdnvRp4zZ46ee+45RUZGqkOHDnrkkUfseiwAAADFZepiF9u3b9d9990nN7e806Snp6tnz55atGhRscdv3ry5JCkxMVHp6en59jl8+HCuviUVEBCgdu3aScpOKAEAAMo7s3M+SZoxY4aysrI0evRojR8/3naXXL169bRo0SK5ublp+fLl2rt3b6HGGzJkiHbv3q2HHnrIVsSTsh8FfuaZZ2x360VERJQobgAAAHsytZB36dKlAr+N9fT0VKtWrfTee+8Ve/zg4GB5eXnJarVq586d+fbZvHmzJKlbt27FnufPMjIycv0TAACgPDM750tKStLatWslSePHj8/T3qxZM/Xp00eStGTJkkKNWa1atRs+MtuvXz9J2Y8NAwAAlBamFvLq16+vI0eOFNjerl27Eq3WWqlSJfXt21eS8l0dNj4+XlFRUZKkoUOHFnueP4/5888/S8ouJAIAAJR3Zud8sbGxslqt8vb2VufOnfPt06NHD0nZdwfaQ867iytUqGCX8QAAAOzB1EJe3759NW/ePF24cCHf9szMTNtiFMU1depUWSwWLViwQJGRkTIMQ1L2irEjR45UVlaWBg8erPbt2+faLygoSEFBQVq6dGmu7UuWLNF//vMfnT59Os9cGzZsUL9+/ZSVlaXg4GD17NmzRLEDAACUBWbnfIcOHZIkNWzYUJ6envn2adKkiST73UGX8yhwToEQAACgNDB9sYvFixerb9++Wrx4sZo2bZqrfcWKFbakq7g6deqk2bNn6+mnn1ZYWJhmzpypGjVqaP/+/bJarWrRooXmz5+fZ7+EhARJ2Y9qXO/EiRN66qmn9OSTTyogIEB16tSRYRg6duyYzp8/L0m66aabtGLFinzfAwMAAFDemJ3z5SxedqMVaXPaLl26VOx5cnz11VdavXq1LBaLnnvuub/sHxERke/TIfkpyZ2JAAAAphbyGjZsqDVr1mjQoEFq3bq17rrrLnXq1EmStG7dOm3btk2zZ88u8Tzh4eFq27atZs2apR07dujs2bMKDAzU0KFDNXnyZPn5+RV6rMGDB+vatWvauHGjDh06pF9++UUZGRmqUaOG+vXrpyFDhmjMmDHy8vIqcdwAAABlgdk5X2pqqiTdMP/y9vaW9McjscV14MAB3X///ZKyc8xbbrnlL/c5deqUYmJiSjQvAABAYZhayJOyF5nYt2+fpk+friVLlmjVqlWSJHd3dz300EN6/PHH7TJPaGioQkNDC90/5xHcPwsKCtLkyZM1efJku8QFAABQHpiZ8/n4+EiS0tLSCuyT8+iur69vsec5fvy4+vbtqytXruhvf/ubXnvttULtV7duXXXs2LFQfePi4kpcbAQAAOWX6YU8Sapdu7bef/99vfvuuzp+/LiuXr2qhg0bqkqVKo6YHgAAAA5gVs7n7+8v6Y9HbPOT05bTt6hOnz6t0NBQJSYmqlevXlq2bFmB7+P7s7CwMIWFhRWqb0hICHfvAQCAYnNIIS+Hm5ubAgMDHTklAAAAHMzeOV/z5s0lSYmJiUpPT8+3wHb48OFcfYvi7Nmz6tOnj+Lj49WtWzetWrXKdhcgAABAaWJqIe/MmTN6+umntXPnTvn6+qply5YKDg62/dSuXdvM6YFyyTAMpaSkODsMu6pQoYIsFouzwyi1uOYAnM3snC84OFheXl6yWq3auXOnunfvnqfP5s2bJWU/4lsUFy9e1B133KG4uDh17NhR33zzTZHerwwAAOBIphbyHnroIX399dfq0aOHvLy8tG3bNi1dutT2P2e1a9dWcHCw1qxZY2YYQLmSkpJS5v4HJCkpSRUrVnR2GKUW1xyAs5md81WqVEl9+/bVqlWrFBkZmaeQFx8fr6ioKEnS0KFDCz3u1atXdeedd2rv3r1q06aNvv32W179AgAASjVTC3mbNm3So48+qnfeece27dy5c4qJiVFsbKxiYmK0e/duM0MAAACAyRyR802dOlWrV6/WggUL1L17d40bN04Wi0WnTp3SyJEjlZWVpcGDB6t9+/a59gsKCpIkvfnmm7mKfCkpKerfv7+io6PVsmVLff/996pevXqJYgQAADCbqYU8Pz+/PMlUzZo11bdvX/Xt29fMqQFIGj5nrDy8C/ei7tImw5quL8M/cHYYLodrDsAZHJHzderUSbNnz9bTTz+tsLAwzZw5UzVq1ND+/ftltVrVokULzZ8/P89+CQkJkrLv9L3e22+/rS1bttg+DxkypMC5ly5dqjp16tjlOAAAAErC1ELewIEDFR0drXHjxpk5DYACeHh7ytNFizooHq45AGdwVM4XHh6utm3batasWdqxY4fOnj2rwMBADR06VJMnTy7SawasVqvt9wMHDtywb2pqarFjBgAAsCdTC3kvvfSSbrnlFm3ZskW33nqrmVMBAADASRyZ84WGhio0NLTQ/Q3DyHf79OnTNX36dDtFBQAA4BhuZg7evHlzZWZmKjQ0VI899piioqLyPNYAAAAA10bOBwAA4BimFvKGDBmiatWqyWKx6P3339cdd9yhqlWrqnnz5hoxYoRee+01ffvtt2aGAAAAAJOR8wEAADiGqY/WfvLJJ5KkjIwM7d+/X3v27NHu3bu1e/durV+/Xl9++aUsFosyMzPNDAMAAAAmIucDAABwDFMLebZJPDzUrl07tWvXTqNHj7Zt/+2337Rnzx5HhAAAAACTkfMBAACYyyGFvII0aNBADRo0cGYIAAAAMBk5HwAAgH2Y+o48SVq4cKE6duyoypUrKyAgQLt27TJ7SgAAADgYOR8AAID5TC3kffbZZxozZowqVKigUaNG6eTJk7p69aok6ezZsxo5cqSio6PNDAEAAAAmI+cDAABwDFMLebNmzVL//v21ZcsWzZgxQ4Zh2Npq1aql06dPa968eWaGAAAAAJOR8wEAADiGqYW8+Ph4DRw4UJJksVjytN96663asmWLmSEAAADAZOR8AAAAjmFqIc/f319XrlwpsL1hw4Y6efKkmSEAAADAZOR8AAAAjmFqIS80NFQLFy4ssP3333+Xu7u7mSEAAADAZOR8AAAAjmFqIW/y5Mn69ddfNWrUKNsLj3MYhqEvvvhCTZo0MTMEAAAAmIycDwAAwDE8zBy8VatWWrFihYYPH641a9bIYrFoxYoV2r17t5YtW6Zdu3bx4mMAAAAXR84HAADgGKYW8iTpjjvu0L59+/Tyyy9r6dKleuedd7In9vDQo48+qrFjx5odAgAAAExGzgcAAGA+uxbyzp49q1q1auXZXr9+fUVEROj999/X8ePHdfXqVQUGBqpy5cr2nB4AAAAOQM4HAADgHHYt5NWpU0d16tRR+/bt1aFDB9s/W7RoIYvFIjc3NwUGBtpzSgAAADgYOR8AAIBz2LWQN2PGDP3888/au3ev1q9fr8zMTFksFvn4+Kh169a5Er127dqpUqVK9pweAAAADkDOBwAA4Bx2LeQ9//zztt+tVqt++eUXPfnkk9q6davi4+N14MABffDBB7JYLLJYLAoKClKHDh20dOlSe4YBAAAAE5HzAQAAOIebWQN7e3tr/fr1Onr0qHbt2qVLly7p6tWr+vnnn/Xggw/K3d1dly9f1q5du8wKAQAAACYj5wMAAHAc0wp5kvT222/r6aefVseOHW3bWrdurfnz5+uHH35QWlqaIiIizAwBAAAAJiPnAwAAcAxTC3lXrlyRt7d3vm1du3bV+PHj9corr5gZAgAAAExGzgcAAOAYphbyunTpogULFhTY3qJFC8XGxpoZAgAAAExGzgcAAOAYphbyXnrpJcXExOiee+7RsWPH8rSvXbtWPj4+ZoYAAAAAk5HzAQAAOIZdV639s1tvvVWLFy/WAw88oObNm6t///66+eabJUnfffedNm/erNGjR5sZAgAAAExGzgcAAOAYphbyJGnIkCG6+eabNXPmTC1fvlxfffWVJMlisWjYsGH6z3/+Y3YIAAAAMBk5HwAAgPlML+RJUsOGDRUZGal58+bp+PHjSk5OVmBgoCpWrOiI6QEAAOAA5HwAAADmsmsh75577lFISIgmT54si8WSp93NzU2BgYH2nBIAAAAORs4HAADgHHYt5O3YsUMrVqzQM888Iy8vL/n5+aldu3bq0KGD7addu3a87BgAAMCFkfMBAAA4h10LeZ988omaN28uLy8vSdKIESO0Z88effLJJ0pNTZXFYpGbm5uaNWuWK9G78847Szz3hg0bNGvWLO3YsUNJSUkKDAzUsGHDNGnSpCI9zpGZmamoqCitWbNG27Zt06FDh5SSkqLq1aurc+fOGj9+vPr371/ieAEAAFyVM3M+AACA8syuhby+fftq4cKFatiwoSRp6tSpCgwMVGZmpg4cOKDdu3fbftavX6/FixfLYrEoMzOzRPPOnTtXTz75pAzDUIMGDRQQEKD9+/dr5syZWrZsmbZs2aJq1aoVaqxPPvlEY8eOlZT9WEjTpk3l5+enX3/9VStXrtTKlSs1fvx4zZs3L99HSQAAAMo6Z+V8AAAA5Z2bPQerWLGirFar7XPjxo21ePFiubu7q3Xr1ho1apTeeOMNfffddzp79qyOHz+ulStXlmjO6OhohYeHS5IiIiKUmJiomJgYHTlyRCEhIYqLi9O4ceMKPZ5hGGrXrp0++OADXbx4UQcPHlR0dLQuXLigN954QxaLxfYSZwAAgPLIGTkfAAAA7FzIa9asmf73v/8pIyNDUnZRLCsrq8D+9evXL/FjqjNmzFBWVpZGjx6t8ePH2+6Sq1evnhYtWiQ3NzctX75ce/fuLdR4Q4YM0e7du/XQQw+pSpUqtu0eHh565plnbHfrRURElChuAAAAV+WMnA8AAAB2frR24sSJGjlypGrVqqVu3brJYrFo586dat++vVq1aiU3N7vWDZWUlKS1a9dKksaPH5+nvVmzZurTp4/Wr1+vJUuWqF27dn855l89gtuvXz/Nnz9fBw8eLF7QAAAALs7ROR8AoGwwDMP2e3JyshMjsZ8KFSrw2i04lF0LecOHD1fdunUVGRmpH3/8UZL0n//8R3PnzpW3t7fatGmT64XH7du3L9JCFH8WGxsrq9Uqb29vde7cOd8+PXr00Pr167V9+/Ziz3O9a9euScr+lxUAAKA8cnTOBwAoGzLTMmy/165d24mR2E9SUhL/jYND2bWQJ2UXznr06CEpe7GIF198UQEBAdq9e7diY2O1ePFiffDBB7JYLLJYLGrSpEmx7247dOiQJKlhw4by9PTMt0+TJk0kyW530C1atEiSbMcIAABQHjky5wMAAEA2uxfyrvfss8/qzjvv1C233JJre3x8vGJjYxUbG6vdu3cXe/yLFy9KuvHjsDltly5dKvY8Ob766iutXr1aFotFzz333F/2j4iIUGRkZKHGjouLK2l4AAAATmF2zgcAKHs+H3qvfDxMLUmYJjUjQ6OWfuHsMFBOmfpvzWuvvZbv9mbNmqlZs2YaPnx4icZPTU2VJHl5eRXYx9vbW9Ifj8QW14EDB3T//fdLksLDw/Mkqvk5deqUYmJiSjQvAABAaWd2zgcAKHt8PDzkU8CTdQAK5prl7//Px8dHkpSWllZgH6vVKkny9fUt9jzHjx9X3759deXKFf3tb38rMFn9s7p166pjx46F6hsXF1fiYiMAAAAAAADKLlMLeWfOnNHTTz+tnTt3ytfXVy1btlRwcLDtp6Qvt/T395f0xyO2+clpy+lbVKdPn1ZoaKgSExPVq1cvLVu2rMD38f1ZWFiYwsLCCtU3JCSEu/cAAIBLMjvnAwAAQDZTC3kPPfSQvv76a/Xo0UNeXl7atm2bli5daluauXbt2goODtaaNWuKNX7z5s0lSYmJiUpPT8+3wHb48OFcfYvi7Nmz6tOnj+Lj49WtWzetWrXKdhcgAAAAspmd8wEAACCbqYW8TZs26dFHH9U777xj23bu3DnFxMQoNjZWMTExJXrxcXBwsLy8vGS1WrVz50517949T5/NmzdLkrp161aksS9evKg77rhDcXFx6tixo7755hv5+fkVO1YAAICyyuycDwAAANlMLeT5+fmpffv2ubbVrFlTffv2Vd++fUs8fqVKldS3b1+tWrVKkZGReQp58fHxioqKkiQNHTq00ONevXpVd955p/bu3as2bdro22+/VZUqVUocLwAAQFlkds4HAACAbG5mDj5w4EBFR0ebOYWmTp0qi8WiBQsWKDIyUoZhSMpeMXbkyJHKysrS4MGD8ySXQUFBCgoK0tKlS3NtT0lJUf/+/RUdHa2WLVvq+++/V/Xq1U09BgAAAFfmiJwPAAAAJt+R99JLL+mWW27Rli1bdOutt5oyR6dOnTR79mw9/fTTCgsL08yZM1WjRg3t379fVqtVLVq00Pz58/Psl5CQIElKSkrKtf3tt9/Wli1bbJ+HDBlS4NxLly5VnTp17HQkAAAArskROR8AAABMLuQ1b95c/v7+Cg0N1dixY3XPPfeoc+fOdn/XXHh4uNq2batZs2Zpx44dOnv2rAIDAzV06FBNnjy5SPNZrVbb7wcOHLhh39TU1GLHDAAAUFY4KucDAAAo70wt5A0ZMkR79uzRmTNn9P7772vevHmyWCxq3LixOnbsqODgYAUHB+vOO+8s8VyhoaEKDQ0tdP+cR3D/bPr06Zo+fXqJ4wEAACgvHJnzAQAAlGemFvI++eQTSVJGRob279+vPXv2aPfu3dq9e7fWr1+vL7/8UhaLRZmZmWaGAQAAABOR8wEAADiGqYU82yQeHmrXrp3atWun0aNH27b/9ttv2rNnjyNCAAAAgMnI+QAAAMzlkEJeQRo0aKAGDRo4MwQAAACYjJwPAADAPtzMnmDDhg3q27evGjVqpDZt2mjUqFFaunSpsrKyzJ4aAAAADkLOBwAAYD5TC3nffPON7rjjDu3YsUMBAQHy9/fXunXrNHz4cHXo0EFHjx41c3oAAAA4ADkfAACAY5hayHvxxRfVvn17HTt2TJs2bdLmzZt17tw5rVixQleuXNFtt92mixcvmhkCAAAATEbOBwAA4BimviNv3759evPNN1W1alXbNovFokGDBunmm29Wx44d9fLLL2vOnDlmhgHABRmGYfs9OTnZiZHYT4UKFWSxWJwdRqlV1q451xvlCTkfAACAY5hayKtcubIyMzPzbatXr57CwsK0YMECkjoAeWSmZdh+r127thMjsZ+kpCRVrFjR2WGUWmXtmnO9UZ6Q8wEAADiGqY/W3nbbbVqwYEGBLzkOCAjQyZMnzQwBAAAAJiPnAwAAcAxT78ibMmWKunbtquHDh2vevHmqUaNGrvYNGzaoTp06ZoYAoAz4fOi98vEw9a8r06RmZGjU0i+cHYbLcdVrzvVGeUXOBwAA4Bim/l9ScHCwPvvsM91///1q2LChBgwYoFatWsnb21tbtmzRunXrNH36dDNDAFAG+Hh4yMfT09lhwIG45oBrIecDAABwDNNvd7j33nvVpk0b/d///Z9WrVqlpUuXSpJ8fX314osv6vnnnzc7BAAAAJiMnA8AAMB8phTyrly5oipVqtg+t27dWv/973+VmZmpI0eOyGKxqFGjRnJ3dzdjegAAADgAOR8AAIBj2X2xi5iYGNWoUUOPPPJInjZ3d3c1a9ZMTZs2JaEDAABwYeR8AAAAjmf3Qt7cuXNVtWpVvfrqqzfsFxUVpejoaBmGYe8QAAAAYDJn5XwbNmzQgAEDVLNmTfn6+qply5aaOnWqkpOTizzWsWPH9OGHH+rhhx9WSEiIvLy8ZLFY9MADD9glVgAAAHuzeyFv48aNGjlyZK7HLPJjsVjUuXNnrVy50t4hAAAAwGTOyPnmzp2r0NBQrVmzRj4+PmrVqpWOHTummTNnqlOnTrp48WKRxpszZ47Gjh2riIgIxcTEKD09vcQxAgAAmMnuhbxTp06pXbt2f9mvd+/e6tChg1asWGHvEAAAAGAyR+d80dHRCg8PlyRFREQoMTFRMTExOnLkiEJCQhQXF6dx48YVacwaNWqof//+mj59utasWaOHHnqoRDECAACYze6LXfj5+enatWuF6tuvXz8KeQAAAC7I0TnfjBkzlJWVpTFjxmj8+PG27fXq1dOiRYvUsmVLLV++XHv37i1UgVGSXnjhhVyfo6KiShQjAACA2ex+R16jRo30008/FbrviRMn7B0CAAAATObInC8pKUlr166VpFxFvBzNmjVTnz59JElLliwp9jwAAAClnd0Lef3799eSJUt05MiRv+z7+++/y2q12jsEAAAAmMyROV9sbKysVqu8vb3VuXPnfPv06NFDkrR9+/ZizwMAAFDa2b2QN2HCBPn5+WnAgAE6fvz4Dfv++OOPCgwMtHcIAAAAMJkjc75Dhw5Jkho2bChPT898+zRp0kSSdPDgwWLPAwAAUNrZ/R151apV03//+1/dfffdat++vV566SU9+OCDqlixYq5+X3zxhZYtW6annnrK3iEAAADAZI7M+XJWo61WrdoN45GkS5cuFXue4oqIiFBkZGSh+sbFxZkcDQAAKMvsXsiTpDvuuEPr1q3Tfffdp/DwcE2aNEndunVTs2bNlJ6err179yo6Olp169bVxIkTzQgBAAAAJnNUzpeamipJ8vLyKrCPt7e3JBV6AQ57OnXqlGJiYhw+LwAAKH9MKeRJ2e8p+eWXX/Tuu+/qww8/VFRUVK6VwEJDQxUREaEaNWqYFQIAAABM5oicz8fHR5KUlpZWYJ+cd/D5+voWe57iqlu3rjp27FiovnFxcU4pNgIAgLLBtEKeJPn5+WnixImaOHGiTp06pcTERGVmZqpp06aqVauWmVMDAADAQczO+fz9/SX98YhtfnLacvo6UlhYmMLCwgrVNyQkhLv3AABAsZlayLte3bp1VbduXUdNBwAAACcwI+dr3ry5JCkxMVHp6en5Lnhx+PDhXH0BAADKIruuWvvLL784ZV8AAAA4jqNzvuDgYHl5eclqtWrnzp359tm8ebMkqVu3bsWODQAAoLSzayGvffv2uvfee7Vt27ZC77N582YNGzZMHTp0sGcoAAAAMImjc75KlSqpb9++kpTv6rDx8fG29/INHTq0yOMDAAC4Crs+Wrtp0yY999xzuvXWWxUUFKS+ffuqc+fOaty4sfz9/WUYhi5duqRff/1VO3fu1Lp16/Tbb7+pa9eu+uGHH+wZCgAAAEzijJxv6tSpWr16tRYsWKDu3btr3LhxslgsOnXqlEaOHKmsrCwNHjxY7du3z7VfUFCQJOnNN9+kyAcAAFyeXQt5t9xyi7Zs2aKNGzcqIiJCCxYsUEREhCwWS65+hmHI19dXgwYNUlhYmHr16mXPMAAAAGAiZ+R8nTp10uzZs/X0008rLCxMM2fOVI0aNbR//35ZrVa1aNFC8+fPz7NfQkKCJCkpKSlP29atW3X33XfbPqekpEiSFi9erNWrV9u2v/POOxoxYkSxYwcAALAXUxa76NWrl3r16qWMjAxFR0crLi5O586dkyTVrFlTrVq1UkhIiDw8HLbWBgAAAOzM0TlfeHi42rZtq1mzZmnHjh06e/asAgMDNXToUE2ePFl+fn5FGi89PV0XLlzIs91qtcpqtdo+p6amljh2AAAAezC1kubh4aEuXbqoS5cuZk4DAAAAJ3JkzhcaGqrQ0NBC9zcMo8C2Xr163bAdAACgtCl2IS8rK0sHDhzQ1atXVa1aNTVv3tyecQEAAKAUIOcDAAAoPYq8am16eromTpyoatWqqW3bturevbtatWqlmjVr6v/+7//4VhMAAKAMIOcDAAAofYp8R97gwYO1du3aPMnbhQsX9OKLLyo+Pl6ffPKJveIDAACAE5DzAQAAlD5FKuQtWbJE33zzjSSpadOmGjZsmBo0aKBjx47p888/18mTJ7VgwQL985//VM+ePU0JGAAAAOYi5wMAACidilTIW7hwoSTpzjvv1FdffSVvb29b2/PPP68+ffooNjZWn3/+OUkdAACAiyLnAwAAKJ2K9I68mJgYWSwWvfXWW7kSOkmqXLmyXnvtNRmGodjYWLsGWRgbNmzQgAEDVLNmTfn6+qply5aaOnWqkpOTizzWsWPH9OGHH+rhhx9WSEiIvLy8ZLFY9MADD9g/cAAAgFKmNOd8AAAA5VmR7sg7f/68fHx81KpVq3zbb775Zls/R5o7d66efPJJGYahBg0aKCAgQPv379fMmTO1bNkybdmyRdWqVSv0eHPmzNHbb79tYsQAAAClV2nN+QAAAMq7It2RZ7VaVaVKlQLbc9qsVmvJoiqC6OhohYeHS5IiIiKUmJiomJgYHTlyRCEhIYqLi9O4ceOKNGaNGjXUv39/TZ8+XWvWrNFDDz1kQuQAAAClU2nM+QAAAFCMVWtLmxkzZigrK0tjxozR+PHjbdvr1aunRYsWqWXLllq+fLn27t2rdu3aFWrMF154IdfnqKgou8YMAAAAAAAAFFWR7sgrbZKSkrR27VpJylXEy9GsWTP16dNHUvbqawAAAAAAAICrKnIh78yZM3J3dy/wx2Kx3LCPh4f9bgKMjY2V1WqVt7e3OnfunG+fHj16SJK2b99ut3kBAADKutKU8wEAACBbkTMswzDMiKNYDh06JElq2LChPD098+3TpEkTSdLBgwcdFldpYxiGUlJSnB1GiRVnBWIAAFA8pSnnAwAAQLYiFfKmTZtmVhzFcvHiRUm64Yq0OW2XLl1ySEzXi4iIUGRkZKH6xsXFmRZHSkqK/Pz8TBsfAACULaUt5wMAAEA2ly7kpaamSpK8vLwK7OPt7S1JunbtmkNiut6pU6cUExPj8HkBAABKorTlfAAAAMjm0i8v8fHxkSSlpaUV2MdqtUqSfH19HRLT9erWrauOHTsWqm9cXJxDio3D54yVh3f+jyGXdqlXU7R84qfODgMAAAAAAMApXLqQ5+/vL+mPR2zzk9OW09eRwsLCFBYWVqi+ISEhDrl7z8PbU54uWsjLcNG4AQAAAAAA7KHIq9aWJs2bN5ckJSYmKj09Pd8+hw8fztUXAAAAAAAAcEUuXcgLDg6Wl5eXrFardu7cmW+fzZs3S5K6devmyNAAAAAAAAAAu3LpQl6lSpXUt29fScp3ddj4+HhFRUVJkoYOHerQ2AAAAAAAAAB7culCniRNnTpVFotFCxYsUGRkpAzDkJS9YuzIkSOVlZWlwYMHq3379rn2CwoKUlBQkJYuXeqMsAEAAAAAAIAicflCXqdOnTR79mxJ2YtLBAYGqmPHjmrUqJGio6PVokULzZ8/P89+CQkJSkhIUFJSUp62rVu3qkaNGraf9957T5K0ePHiXNsXL15s7sEBAAAAAAAA/59Lr1qbIzw8XG3bttWsWbO0Y8cOnT17VoGBgRo6dKgmT54sPz+/Io2Xnp6uCxcu5NlutVpltVptn1NTU0scOwAAAAAAAFAYZaKQJ0mhoaEKDQ0tdP+cR3Dz06tXrxu2AwAAAAAAAI7m8o/WAgAAAAAAAOUBhTwAAAAAAADABVDIAwAAAAAAAFwAhTwAAAAAAADABVDIAwAAAAAAAFwAhTwAAAAAAADABVDIAwAAAAAAAFwAhTwAAAAAAADABVDIAwAAAAAAAFwAhTwAAAAAAADABVDIAwAAAAAAAFwAhTwAAAAAAADABXg4OwAAAFD+GIZh+z05OdmJkdhPhQoVZLFYnB0GAAAAyjAKeQAAwOEy0zJsv9euXduJkdhPUlKSKlas6OwwAAAAUIbxaC0AAAAAAADgArgjDwAAONXnQ++Vj4drpiSpGRkatfQLZ4cBAACAcsI1s2YAAFBm+Hh4yMfT09lhAAAAAKUej9YCAAAAAAAALoBCHgAAAAAAAOACKOQBAAAAAAAALoBCHgAAAAAAAOACKOQBAAAAAAAALoBCHgAAAAAAAOACKOQBAAAAAAAALoBCHgAAAAAAAOACKOQBAAAAAAAALoBCHgAAAAAAAOACKOQBAAAAAAAALoBCHgAAAAAAAOACKOQBAAAAAAAALoBCHgAAAAAAAOACKOQBAAAAAAAALoBCHgAAAAAAAOACKOQBAAAAAAAALoBCHgAAAAAAAOACKOQBAAAAAAAALqDMFPI2bNigAQMGqGbNmvL19VXLli01depUJScnF3vMZcuWqXfv3vL391fFihXVoUMHvfnmm0pPT7dj5AAAACgscj4AAFCelYlC3ty5cxUaGqo1a9bIx8dHrVq10rFjxzRz5kx16tRJFy9eLPKYzzzzjIYOHaqNGzeqevXqatq0qfbt26dnn31Wt99+u6xWqwlHAgAAgIKQ8wEAgPLO5Qt50dHRCg8PlyRFREQoMTFRMTExOnLkiEJCQhQXF6dx48YVacz//e9/mjVrlry9vfXVV1/p119/1Z49e7Rv3z41atRImzZt0pQpU0w4GgAAAOSHnA8AAKAMFPJmzJihrKwsjR49WuPHj5fFYpEk1atXT4sWLZKbm5uWL1+uvXv3FnrMl156SZI0ceJEDRo0yLa9ZcuW+uCDDyRJ7777rs6dO2fHIwEAAEBByPkAAABcvJCXlJSktWvXSpLGjx+fp71Zs2bq06ePJGnJkiWFGjM+Pl579uwpcMw+ffqoadOmslqtWrlyZXFDBwAAQCGR8wEAAGRz6UJebGysrFarvL291blz53z79OjRQ5K0ffv2Qo2Z069x48aqX7++XcYEAABA8ZHzAQAAZPNwdgAlcejQIUlSw4YN5enpmW+fJk2aSJIOHjxYpDFz9rPHmKVJhtV1V1+7PvbUjAwnRlIyjoyd6+18jo6da+5cXO/CKwvXW3Lt2F0JOV/RuerfD/zdUDyuer0lrnlxcL2dj3/HC+/62EuywnxpULFiRWeHIMnFC3k5K5NVq1atwD45bZcuXXL4mBEREYqMjCzUvDmPdsTFxSkkJKRQ+xRWVlaW7fcvwz+w69jOMmrpF84OwS5uvfVWubnZ98ZYrnfpZcb1lrjmpRXXu/DKwvWWzLvmOVq2bKnPP//ctPFLM3K+wilrfz/wd8ONlbXrLXHNb4TrXXrx73jh1a5d29khlEjHjh1Nn6Mw+Z5LF/JSU1MlSV5eXgX28fb2liRdu3bN4WOeOnVKMTExhZo3x7Vr14q8D1zX7t27nR0CHIjrXb5wvcsfrrl5yPngyvi7ofzhmpcvXO/yo7T8d9ulC3k+Pj6SpLS0tAL7WK1WSZKvr6/Dx6xbt26hK7b79u2TYRjy8/NTo0aNCrVPeRQXF6dr167J19dXrVq1cnY4MBnXu/zhmpcvXO+iadmypbNDcBpyvvKFvxvKH655+cL1Ln+45oVXmHzPpQt5/v7+kv54NCI/OW05fR05ZlhYmMLCwgo1LwonJCREMTExatWqlaKjo50dDkzG9S5/uOblC9cbhUXOV77wd0P5wzUvX7je5Q/X3L5cetXa5s2bS5ISExOVnp7/yx8PHz6cq29hx/z1118L7FPUMQEAAFB85HwAAADZXLqQFxwcLC8vL1mtVu3cuTPfPps3b5YkdevWrVBjdu3aVZJ09OhRnThxwi5jAgAAoPjI+QAAALK5dCGvUqVK6tu3ryTlu1JYfHy8oqKiJElDhw4t1JjNmzdX27ZtCxwzKipKv/76q7y8vDRo0KDihg4AAIBCIucDAADI5tKFPEmaOnWqLBaLFixYoMjISBmGISl79bCRI0cqKytLgwcPVvv27XPtFxQUpKCgIC1dujTPmNOmTZMkvfbaa1q1apVt+8GDBzV27FhJ0qOPPqqaNWuadVgAAAC4DjkfAABAGSjkderUSbNnz5aU/aLhwMBAdezYUY0aNVJ0dLRatGih+fPn59kvISFBCQkJSkpKytN2zz33KDw8XFarVYMGDVLTpk3VoUMHtW7dWkePHtWtt96qf//736YfGwAAALKR8wEAAJSBQp4khYeH67vvvlO/fv2UnJys/fv3KzAwUFOmTNGuXbtUo0aNIo/51ltv6csvv1TPnj11/vx5HTp0SDfddJNee+01RUVFycfHx4QjAQAAQEHI+QAAQHnn4ewA7CU0NFShoaGF7p/zOMaNDBs2TMOGDStJWAAAALAjcj4AAFCelYk78gAAAAAAAICyjkIeAAAAAAAA4AIo5AEAAAAAAAAuoMy8Iw/lw/jx43Xq1CnVrVvX2aHAAbje5Q/XvHzhegPID383lD9c8/KF613+cM3ty2IU5g3AAAAAAAAAAJyKR2sBAAAAAAAAF0AhDwAAAAAAAHABFPIAAAAAAAAAF0AhD6Xa6dOntWDBAk2YMEHdunWTr6+vLBaLevXq5ezQYALDMLRt2zZNmjRJt956q6pXry5PT0/VrFlTd955pz7//HPxWs+yZcmSJRo/frxuvvlm1atXT97e3qpUqZI6duyoqVOn6sKFC84OESb7+uuvZbFYZLFYFBQU5OxwADgJOV/5Qb5XPpHzlW/ke/bFYhco1ebMmaOnnnoqz/aePXtq48aNjg8Ipvr+++91++232z43btxY/v7+Onr0qC5evChJ6t+/v5YtWyZvb29nhQk76tChg/bs2SNvb2/VrVtXNWrU0NmzZ5WYmChJqlWrlr799lu1b9/eyZHCDElJSWrdurXtegcGBurYsWPODQqAU5DzlR/ke+UTOV/5Rb5nf9yRh1KtcuXKuv322zV58mQtX75cU6dOdXZIMJFhGGrUqJHefvttnTlzRocPH9auXbt04cIFffbZZ/L29taaNWv04osvOjtU2Mljjz2mH374Qb///ruOHj2qn376SQkJCdq7d6/atGmjs2fP6h//+Iezw4RJpkyZosTERN19993ODgWAk5HzlR/ke+UTOV/5Rb5nf9yRB5fyzjvv6IknnuDb2TLq6tWr8vX1laenZ77tr7zyip5//nlVq1ZN586dk5sb30WUZTt37lSXLl0kSfv371erVq2cHBHsafv27erevbsGDhyowYMH65///Cff0AKwIecru8j38GfkfGUX+Z45+FsRQKlRuXLlApM6SerXr58k6eLFizp37pyjwoKTXJ/EpaSkODES2Ft6errGjRunChUq6J133nF2OAAAByLfw5+R85VN5Hvm8XB2AABQWNeuXbP97uvr68RI4AhbtmyRJPn5+alFixZOjgb29O9//1v79u3TW2+9pQYNGjg7HABAKUK+V/6Q85VN5HvmoZAHwGUsWrRIktS+fXtVrlzZydHADFlZWTp9+rS+/fZbTZw4UZL06quvys/Pz8mRwV7i4uL0yiuvqGPHjnriiSecHQ4AoJQh3ysfyPnKNvI9c1HIA+ASoqOjNW/ePEnSpEmTnBwN7C2/1Qo7d+6sTz/9VHfddZeTooK9GYahcePGKT09XREREXJ3d3d2SACAUoR8r+wj5yv7yPfMxzvyAJR6Z86c0ZAhQ5SRkaG///3vGjFihLNDgp3Vr19f3bt3V5cuXVS3bl1ZLBbt3r1bn332mS5fvuzs8GAn77//vrZu3arHH39cN998s7PDAQCUIuR75QM5X9lHvmc+CnkASrUrV66oX79+SkxMVEhIiD755BNnhwQTDBs2TFu2bNH27dt18uRJ7d69W126dNGiRYvUu3dvZWZmOjtElNCJEyc0efJk1a9fXzNnznR2OACAUoR8r/wg5yvbyPccg0IegFIrKSlJd911l2JjY9W6dWutW7eOd6WUE+3atdOaNWtUo0YN7d69W4sXL3Z2SCihJ554QlevXtV//vMfVapUydnhAABKCfK98o2cr2wh33MMCnkASqWUlBT1799f27dvV7NmzbR+/XpVr17d2WHBgSpVqqSePXtKyn5nDlxbTEyMJOnRRx9VnTp1cv08+eSTkqTjx4/btm3bts2Z4QIAHIB8DxI5X1lCvucYLHYBoNRJTU3VoEGDtGnTJgUGBur7779XnTp1nB0WnCAjIyPXP+H6zpw5U2BbVlaWrT0tLc1RIQEAnIB8D9cj5ytbyPfMxR15AEqV9PR03XPPPfr+++9Vv359RUVFKSAgwNlhwQkuXryojRs3SpKCg4OdGwxK7NixYzIMI9+fjz/+WJIUGBho29arVy/nBgwAMA35Hq5Hzld2kO85BoU8AKVGZmam/vGPf+jrr79WnTp1FBUVpcaNGzs7LJjkhx9+0MyZM3Xs2LE8bTExMerbt6+uXLmi+vXra9iwYY4PEAAA2B35XvlDzgfYF4/WolQ7fvx4rm9lUlNTJUlbt25VjRo1bNufe+45Pffccw6PD/b15ZdfaunSpZIkHx8fPfjggwX2nTt3Lt/YubhLly5p6tSpmjp1qurUqaP69evL3d1dx48f16lTpyRJ9evX1+rVq+Xn5+fkaAEAZiLnKz/I98ofcj7AvijkoVTLzMzUhQsX8mzPyMjItT0lJcWRYcEkVqvV9vuxY8fy/dYux5UrVxwQEcx0yy23aPbs2dq4caN++eUXHTp0SKmpqfL391fv3r01cOBAjR07lhWvAKAcIOcrP8j3yh9yPsC+LIZhGM4OAgAAAAAAAMCN8Y48AAAAAAAAwAVQyAMAAAAAAABcAIU8AAAAAAAAwAVQyAMAAAAAAABcAIU8AAAAAAAAwAVQyAMAAAAAAABcAIU8AAAAAAAAwAVQyAMAAAAAAABcAIU8AAAAAAAAwAVQyAMAAAAAAABcAIU8AGXCzz//rOHDh6tu3bry8PCQxWJRhw4dJEkbN26UxWKRxWIp1tgl3b+8yTlXGzdudHYodjF9+nRZLBb16tXL2aEAAFDukfOVHuR8gHN4ODsAAKVHZmamli1bptWrV2v79u06e/asUlJSVLVqVTVv3lw9evTQqFGj1KZNG2eHmsvRo0fVvXt3/f7775KkatWqydPTUzVq1HByZAAAAKUPOR8AuC4KeQAkSdu3b9f999+vQ4cO2bZ5enqqUqVKunDhgrZu3aqtW7fq1Vdf1ZAhQ7Ro0SJ5eXk5MeI/RERE6Pfff1fTpk21ceNG1a9fP1d7hQoV1KJFCydFBwAAUHqQ8wGAa+PRWgBatWqVevXqpUOHDql69er697//rUOHDiktLU0XLlxQWlqafvrpJ02aNEmVK1fW8uXLlZKS4uywbX7++WdJ0t13350noZOkzp0768CBAzpw4ICjQwMAACg1yPkAwPVxRx5QzsXHx+u+++6T1WrVTTfdpHXr1qlBgwa5+ri7u+vmm2/WzTffrGeffVYPPvigk6LNX06C6efn5+RIAAAASidyPgAoG7gjDyjnXnjhBV29elU+Pj763//+lyeh+7Nq1appxYoVqlKlSp6206dP69lnn1Xr1q1VsWJFVaxYUa1bt9Zzzz2nM2fO5DvesWPHbC/KPXbsmM6cOaMnn3xSjRo1ko+Pj2rXrq0RI0bk+81qUFBQrhfsvvTSS7axrt9emBcXHzhwQKNGjVKdOnXk4+Ojxo0b64knnigw7j/7/fff9eqrr6pbt26qVq2avL29FRAQoBEjRujHH3+0+7FfLysrS19++aUGDx6s+vXry9vbWzVr1lRISIgmTpyoffv22S1me1mzZo3uueceW7z+/v667bbb9P777ystLS1X37Nnz8rT01MWi0UrV6684bgvvviiLBaLmjZtmm/71q1bdd999ykwMFA+Pj6qUqWKOnfurNdee01JSUl2Oz4AAEobcr5s5HzkfOR8cHkGgHLr9OnThpubmyHJeOihh0o01saNG42qVasakgxJRsWKFY2KFSvaPvv7+xubN2/Os9/Ro0dtfVavXm3UqlXLkGRUqFDB8Pb2trVVrlzZ2L17d659b775ZqN27dqGp6enbc7atWvbfrZu3WoYhmFs2LDBNk5+vvnmm1xz+fn5GT4+PoYko27dusZHH310w/1jY2ONBg0a2Pq4u7sblSpVsn22WCzGK6+8Ytdjz3Hu3Dnjtttus/WVZFStWtXw8/Ozfb777rvtFnNh5IyxYcOGPG0pKSnG0KFDc8VbuXJlw2Kx2D537drVuHjxYq79+vfvb0gyhg4dWuC8WVlZRqNGjQxJxvTp03O1ZWZmGhMmTMg1r5+fn+Hu7m773KJFC+PYsWN5xp02bZohyejZs2exzgcAAM5GzpeNnI+cj5wPZQGFPKAcW7RoUa6korgSExNtCd1NN91kbNmyxda2adMmo0WLFoYko1q1asZvv/2Wa9/rExt/f3+je/fuxk8//WQYhmGkp6cb3333nVG3bl1DktGjR4985+/Zs6chyZg2bVq+7TdK6o4fP25UrlzZkGS0a9fO2LFjh2EY2UnAN998YzRo0CBXsvpnJ0+etCVjQ4YMMXbt2mWkpaUZhmEYZ86cMaZOnWp4eHgYkoz//e9/dj329PR0o3v37oYkw9vb23jttdeMs2fP2tpPnDhhREREGJMnT7ZbzIVxo6TuvvvuMyQZjRs3Nj7//HPjypUrhmEYxrVr14yvvvrKaNy4sSHJGDx4cK79vvjiC9txXrp0Kd95N2/ebEtIDx8+nKvthRdeMCQZtWrVMt59913jwoULhmEYRlpamrFhwwYjODjYkGR07NjRyMzMzLUvSR0AwNWR85HzkfOR86HsoJAHlGM5/6GTZJw4caLY4zz88MO2xOTUqVN52q9PnB577LFcbdcnNi1btjRSUlLy7L9y5Upbn+PHj+dpL0lS98gjjxiSjOrVqxtnzpzJ0/7zzz/bvv3Nb/8HH3zQkGT84x//yHduwzCM2bNnG5KM9u3b59pe0mP/4IMPbEnMmjVrCpzfnjEXRkFJ3aZNm2yJVWJiYr77Hj9+3PatfmxsrG37tWvXjCpVqhiSjIiIiHz3HT9+vCHJuPXWW3NtP3r0qOHu7m74+voW+C331atXbd9W/zmRJakDALg6cj5yvqLGXBjkfIBz8I48oBy7cOGC7fdq1aoVawzDMPTll19Kkh5++GHVqVMnT58GDRro4YcfliQtXry4wLH+9a9/ydfXN8/2fv36ycvLS9Ifq5XZg2EY+uKLLyRlx16rVq08fdq0aaOhQ4fmu39qaqr++9//SpImTpxY4DxjxoyRJO3Zs6fA968U59g/+ugjSdLf/vY3/e1vfytwfrNiLqoPP/xQkjRq1CgFBATk26dBgwbq3bu3JGndunW27T4+Pho2bJgkacGCBXn2s1qttj+Ho0ePztX2ySefKDMzU3fddZfat2+f77yVKlXS4MGD88wLAEBZQM5HzleSmIuKnA8wF6vWAiiRo0eP6uLFi5Kk22+/vcB+d9xxh15//XVduHBBR48eVaNGjfL06dKlS777enh4qGbNmjpx4oRtLnu4PvY+ffoU2K9Pnz5atGhRnu3R0dFKTU2VJN15552FmjMhIUG1a9fOs72ox56RkaGffvpJkjRw4MBCzW3vmItq69atkrKTu5zEMj9XrlyxzXu9MWPG6IMPPtDWrVvz/BlavXq1Ll++LB8fHw0fPjzfeb/99tt8/6cjR86Lj/88LwAAIOcj5ys8cj7AXBTygHKsevXqtt8vXryoevXqFXmMs2f/X3v3FhLV18Zx/DdqlicaJw+UF2IOgnUTSIGlaGCBRERKmJ2wA11UN9FBK1SQMKyLLs2CChTD6HBReBGWEiVeRIp4iIqEMIkcO2iTqOl6L3zdr74e/trf0snvBwb37LXWPGurjA9rz3r8ZB1HRERM2m/0f0b79OnThEldUFDQpON9fIbfrgYGBmY8x8n8ytxH6+josI6newfzx48fE56f6bV3dXVZzyMjI6cVW5rdOc/USOzu7m51d3fPOG5CQoKioqLU1tamsrIy5ebmWm0jd2y3bt0qu90+YVy32y232z3juAAAeDpyPnK+6SDnAzwDW2uBBWz16tXWcX19/RzOxDMNDg5ax729vTLDdUenfCQnJ89KbJvN5nFzHoldXFw8rbg3b94cM95ms1lbKEZvtejq6lJlZaWk8VssRsfNzs6eVtyamppZuV4AAOYLcr5/h5zv12KT8wG/Bwt5wAK2ceNGeXkNvw3cv3//l15jdI2R9vb2SfuNbpuoLslcGD2PDx8+TNpvsrbRH9n/0x/NdzgcWrRo0Yxjz+WcR2L/m7gjSdubN29UV1cnSaqoqNDAwIBCQ0OVmpr6W+ICAODJyPnI+f4kcj7g92IhD1jAwsPDlZ6eLkkqLy/X69evpz3WGCNJioqKsoomP378eNL+VVVVkoa3dky0xWIujJ57dXX1pP2ePHky4fm1a9daRYkfPHgw+xOcgo+Pj9atWzfj2HM55w0bNkgarm3yq5xOp+Lj4yX97w7tyNfMzExrS8pEcauqqqxaMQAALCTkfOR8fxI5H/B7sZAHLHDnz59XYGCgent7lZaWNuVdSkn68uWL0tPTreK0NptNGRkZkqSSkhJ9/Phx3JiOjg6VlJRIGv7DO1/YbDarSO6VK1fkcrnG9WlpadGdO3cmHB8QEKBdu3ZJkoqKivT+/fsp481m0WZJOnjwoCSpsrLS2mbwT+ZyzocPH5YkNTU1qbi4eMq+brdb/f39E7aN/He1iooKNTc3W3dpR87/vwMHDsjHx0cul0v5+flTxu3v77cKIAMA8Dch5yPnmwo5H+A5WMgDFriYmBiVlpbK19dXzc3NWrNmjYqKivT27Vurz+DgoOrr65WXl6eVK1fq3r17Y17j7Nmzstvt+vz5s1JSUlRbW2u1PX/+XCkpKfr69ascDodycnL+2LVNx5kzZxQUFCSXy6VNmzbpxYsXkobvPj969Eipqany9/efdHxhYaFWrFghl8ul+Ph4lZaWqqenx2rv7OzU3bt3tX379llPaPfu3auEhAQZY5Senq5Lly6NSUw7Ojp0+fJlZWdnz4s5JyUlaf/+/ZKko0eP6vjx43r37p3V3tfXp7q6Op0+fVqRkZFjClOPlpGRIV9fX3V1dSkrK0uStGrVKsXFxU3YPzo62iqSfPHiRe3bt09NTU1W+8+fP9XQ0KCCggI5nU41NDTMwtUCADC/kPOR85HzkfPhL2EAwBjz7Nkz43Q6jSTr4evraxwOh/Hy8rLO2Ww2k5mZafr7+8eMr6mpMUuXLrX6BQQEmICAAOu53W43T58+HRe3ra3N6tPW1jbp/CIjI40kc+PGjXFtSUlJRpLJz8+fcGx1dbUVYyIPHz40ixcvtvoEBQUZPz8/I8ksX77cXL9+fcrxLS0tJiYmxurj5eVlHA7HmOuXZFJSUmb92js7O01iYuKYn4/dbjeBgYHWuW3bts3anKdjZGx1dfW4tr6+PnPo0KExMQIDA01wcPCY3zNJpr29fdIYaWlpY/peuHBhyjkNDQ2Z3NxcY7PZrDF+fn5m2bJlxtvbe8xrPXv2bMzY/Px8I8kkJSXN+HsBAMB8Q85HzkfOR84Hz8Yn8gBIGq4p8erVK926dUu7d++W0+nUkiVL1NPTI4fDoYSEBJ07d06tra0qLy+3iu6OSEpKUmtrq06cOKHY2FgNDQ3JGKPY2FidPHlSra2tSkxMnKOrm9qWLVv08uVL7dy5U2FhYerv71d4eLiOHTum+vr6f6zvEhsbq8bGRpWUlGjz5s0KCQlRd3e3jDFyOp3asWOHrl69qtu3b8/63ENCQlRTU6OysjKlpqYqNDRUbrdb/v7+iouLU05OjgoLC+fNnH19fXXt2jXV1tYqKytL0dHRGhwc1Pfv3xUWFqbk5GTl5eWpsbFRERERk77O6C0VXl5e2rNnz5RxbTabCgoK1NjYqCNHjig2Nlbe3t769u2bgoODtX79ep06dUq1tbVWfRUAAP5G5HzkfOR85HzwbDZj/lu9FAAAAAAAAMC8xSfyAAAAAAAAAA/AQh4AAAAAAADgAVjIAwAAAAAAADwAC3kAAAAAAACAB2AhDwAAAAAAAPAALOQBAAAAAAAAHoCFPAAAAAAAAMADsJAHAAAAAAAAeAAW8gAAAAAAAAAPwEIeAAAAAAAA4AFYyAMAAAAAAAA8AAt5AAAAAAAAgAdgIQ8AAAAAAADwACzkAQAAAAAAAB7gP7ljHiP7r8e2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(1, 2, figsize=(13, 5))\n", + "\n", + "for i, cond in enumerate(['Intero', 'Extero']):\n", + " try:\n", + " this_df = df[(df.Modality == cond) & (df.RatingProvided == 1)]\n", + " this_df = this_df[~this_df.Confidence.isnull()]\n", + " new_confidence, _ = discreteRatings(this_df.Confidence)\n", + " this_df['Confidence'] = new_confidence\n", + " this_df['Stimuli'] = (this_df.Alpha > 0).astype('int')\n", + " this_df['Responses'] = (this_df.Decision == 'More').astype('int')\n", + " nR_S1, nR_S2 = trials2counts(data=this_df)\n", + " plot_confidence(nR_S1, nR_S2, ax=axs[i])\n", + " axs[i].set_title(f'{cond}ception')\n", + " except:\n", + " print('Invalid ratings')\n", + " this_df = df[df.Modality == cond]\n", + " sns.histplot(this_df[this_df.ResponseCorrect==1].Confidence, ax=axs[i], color=\"#5f9e6e\",)\n", + " sns.histplot(this_df[this_df.ResponseCorrect==0].Confidence, ax=axs[i], color=\"#b55d60\")\n", + " axs[i].set_title(f'{cond}ception')\n", + "sns.despine()\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ymYSLHbFHuhV" + }, + "source": [ + "Distribution of confidence ratings for correct (green) and incorrect (red) trials. Overlapping distribution suggests that the subjective confidence in the decision was not predictive of decision performances." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oUcRkqj6HuhW" + }, + "source": [ + "# Psychophysics" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qEHiQ1WIHuhW" + }, + "source": [ + "Distribution of the intensities values." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 406 + }, + "id": "kGw43ZDGHuhW", + "outputId": "1122cfbe-9ad1-4999-fccb-5c19dc707044" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv4AAAHSCAYAAACU489pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6y0lEQVR4nO3deXxM1/8/8NdkmUlkIYs1yCIipMhiiX2JWloNWmqnn9ZS2mq06IdSgk9bra2UT4N+qlXVWlu+LUXt1JYIUrGELBXEloQQk2XO74/85jYjM8nMZJnIfT0fj3mIe885875n7tx5z51zz1UIIQSIiIiIiKhKs7J0AEREREREVP6Y+BMRERERyQATfyIiIiIiGWDiT0REREQkA0z8iYiIiIhkgIk/EREREZEMMPEnIiIiIpIBJv5ERERERDLAxJ+IiIiISAaY+FOlduDAASgUCigUCkuHYpA2vgMHDugsT0pKktYlJSVZJDZjzJkzBwqFAl27drV0KBXu/PnzePXVV1G3bl3Y2NhAoVAgMDCwTJ/jtddeg0KhwGuvvVam7VLF8PLygkKhwNq1a02ua+jYQIaVts+ehc+MyqBr165QKBSYM2eOpUOhCmZj6QCo6pkzZw4iIyN1likUCjg6OsLZ2RkNGzZEUFAQunXrhvDwcCiVygqLLSkpSfoAr+oHvNjYWPz888+oUaMGIiIiLB1OpZOYmIgOHTrg4cOHAABXV1fY2trC3d3dqPpVoX8r6zZkZGRg6dKlAICIiAjUqFHDovFUNnI6jmlxnyAqG0z8qVzVrl1b+js7Oxs3btxAamoq/vzzT6xcuRJubm6YP38+3nzzTb31q1WrhiZNmpRZPElJSdKXkrL6wNTGV61atTJpr6zExsYiMjISnp6exSZ17u7uaNKkCRo2bFhxwVUCUVFRePjwIXx9fXHgwAF4eHiYVN/Y/q3MKus2ZGRkSO/T11577ZlN8srr2FAex7HKwlCfGbtPlPVnBlFVw8SfytWtW7d0/p+fn48LFy5gz549+PLLL5GYmIgJEybg8OHD+P7774v8PNumTRtcvHixIkM2WWWPryRvv/023n77bUuHUeHOnz8PAOjXr5/JST+RMZ71Y4MllLbPnoXPDCJL4hh/qlDW1tZo3rw53nvvPcTFxWHIkCEAgB9++AGffvqphaMjOXn8+DEAwNHR0cKREBERVQwm/mQx1apVw7fffougoCAAwKeffor79+/rlCnpQq2LFy9i3Lhx8PPzQ7Vq1WBnZ4cGDRogNDQUM2bM0Dnz4+XlhW7dukn/17arfRS++PLpC163bNmCnj17olatWrCystL5ed3Yi9GuXLmC1157DfXr14dKpULDhg3x5ptv4saNG3rLr127FgqFAl5eXgbbNHQBsUKhwL/+9S8AQHJycpFtLRy/MRf3njlzBqNGjYKnpyfs7Ozg4uKC9u3bY+nSpVCr1UbFHx0dLV1Iq1Kp4OPjg/feew/p6ekGn9cYV69exYQJE9C4cWPY29vD2dkZwcHBmDt3Lh48eFCkvPZiTe3rFRkZqdM3xlxUaEr/Pm3z5s3o2rUrXF1dUa1aNQQGBuKLL76ARqMp9jmTkpIQERGBgIAAODo6olq1avD398e7776LlJSUEmMui224c+cOZs6ciaCgIFSvXh12dnbw8fHBG2+8gb/++svgc12/fh2TJ09GQEAAHBwcoFKpUK9ePYSEhGDy5Mk4deqUVLZr167w9vaW/u/t7a0Tl779NCcnBytXrkS3bt3g7u4OpVKJOnXqoF+/fti5c2ex/ZCdnY358+ejWbNmsLe3R61atfDCCy/gjz/+KKEHS2bshf9paWl499134e3tDTs7O9SuXRtDhgzRe+balOOY1sOHD/Hpp5+iXbt2cHV1hUqlQoMGDTBkyBD8+eefemMvTYxaprzuxfWZKfuEMRf3mru/ZGdnY+HChWjXrh1cXFxga2uLmjVrolmzZhg9ejS2bNlisO7Tzpw5I8V57ty5YsuOGjUKCoUCYWFhOsvj4uIwZ84cdO/eHY0aNZKOf0FBQZg5cybu3r1rdDyFGXMsNObi4KNHj2LEiBHS50b16tXRpk0bLFiwAFlZWQbr/f7773j55ZdRv359KJVKODs7w8fHBz179sTChQuL5AlkIkFUxmbPni0ACGN3r02bNknlv/76a511+/fvN9jW7t27hUqlktbb2tqKGjVqSP8HIGbPni2Vb9WqlXBxcZHW1a5dW+cxadKkItvQpUsX8d577wkAQqFQCBcXF2Ftba3Trra9/fv368SXmJgorfvxxx+Fk5OTACAcHR2Fvb29tM7V1VVER0cX2b5vvvlGABCenp4G+67wcyQmJkrLa9euLZydnQUAYWVlVWRbP//8c73bqs/ixYuFQqGQnqd69erC1tZW+n+LFi3EjRs3io1//fr1Up3q1asLKysrqX5AQIB4+PChwW0szk8//aSzDzg5Oen8v0GDBuLChQs6dVq1aiVq164txePg4KDTN0ePHi3xeU3p39GjRwsAYvTo0eKtt96S6jy9r44aNcrg833//fc626VSqXT2IScnJ/H777+b1HembIMQQuzZs0cnZltbW+Hg4CD9X6lUim+//bbI88TGxuq876ytrYWLi4vOPjV69Gip/IABA4S7u7u0zt3dXSeuAQMG6LSflJQkAgICpPIKhUJUr15dp2/ffPNNvX1w7949ERQUJJWzsbGRtlGhUIiVK1cKT09PAUB88803JvWvEMYdG/7v//5P1KpVSwAQ1apV03mdnZ2dRWxsrE5dU45jQghx5swZUb9+fZ3+1x6LtNv58ccfF4m9NDEKYfrrXlyfmbJPFPeZIYT5+8uDBw9Ey5YtderVqFFD2NjYSMuKO1bro41jypQpBstkZWVJ77O1a9fqrNPumwCEnZ2dcHV11elfDw8PcfHiRb3tdunSpchnpJah/dbY+vn5+WLSpEk6fero6Cisra2l/zdp0kQkJSUVqRsZGalTr1q1asLR0VFnWXFxUcmY+FOZMzXxf/jwoXRAeDr5Ke4g3qhRIwFA9OzZU5w/f15anp2dLeLi4kRkZGSRD+uSPhSe3gbtAeeDDz4Qt2/fFkII8eTJE50DljEf7tWrVxctWrQQJ06cEEIIodFoxO+//y4aNmwoAIiGDRuKBw8e6NQvTeJvbP3C26ov8d+xY4fUfr9+/cS1a9eEEEKo1Wrx3XffSQlE+/btRV5ent7n1yYKY8aMESkpKUIIIR49eiS+/PJLKfmeNWtWsTHqEx0dLdXv0KGDOHfunBCi4ENn+/btom7dugKAaNSokd4vFsV9cBnD2P7VJv4uLi5CqVSKxYsXi8zMTCGEEHfv3hVjxoyR+viPP/4oUn/37t3CyspK2NjYiGnTponExESh0WiERqMRFy9eFIMGDZISsOTk5HLZhnPnzklfNMaOHSsuXLggvd7Jycli4sSJUuJ86tQpnbphYWECgAgODhZ//vmn0Gg0QoiCfejy5cti4cKF4rPPPtOpU9x+XVhWVpbw9/cXAETXrl3FgQMHxJMnT4QQQmRkZIjFixdL7+GlS5cWqT9gwADpi9RXX30lsrOzhRAFyeGAAQOEra2tqFatWrkm/i4uLqJDhw5Sv+Xm5oo9e/ZI+2+nTp2KtGvscezGjRtSwv7yyy+L06dPi5ycHCGEEGlpaWLWrFlS4rpt27YyjdGc193YPitunyiub0qzv8ybN08ABSdqtmzZItXLz88Xqamp4rvvvhNjx441GJc+CxYsEABEvXr1RH5+vt4y69atE0DBCYqnj2OjRo0Sa9eu1Xnfq9VqsXfvXtGmTRup//Upz8R/5syZAoCoVauWWLFihbh3754QQoicnByxf/9+6ct2cHCwznYnJSVJJ4Xee+89kZqaKq3LyMgQhw8fFhMnThSnT582GBeVjIk/lTlTE38hhGjcuLGUwBVm6CCelpYmLdd3ttkQUxN/7QGoOMZ8ULm5uYm0tLQidS9cuCCUSqUAUORDsDIk/k2bNpU+2J9O7IUQYvv27dLzb9q0Se/zA/rP7AkhpF9TfH19i41Rn969e0t1Hz16VGR9TEyMlNQ8ffZaiIpP/ItLHkNCQgQAMWbMGJ3l+fn50nsjKirK4HOEh4cLAOLdd98tl23o3r27ACCmT59usIz2DF+/fv10lmu/MBw7dszouIxN8ubOnSvtu9qE9mlbt24VQMFZ4tzcXGn5iRMnpOd4+pdGIYTIy8sTHTt2LPG1K44xxwZ/f3/x+PHjInULv7f+/vtvnXXGHsdef/11AUAMGzbMYJnFixcLAKJly5ZlGqM5r7sQ5Zv4l2Z/6dOnjwCg99cRc12/fl1KdA39YtezZ08BQIwYMcKkth8+fChq164tAIjDhw8XWV9eiX9iYqKwtrYW9vb2en8JEqLg1xPtr1CFv3D+9NNPAoDw8/MzZhPJTBzjT5WCq6srABg9ds/JyQlWVgW7782bN8stLisrK3zwwQelbufNN99ErVq1iixv2rQpBg4cCAD48ccfS/08ZencuXOIj48HAMycORPW1tZFyrz00kto06YNAGDDhg0G25o5c6be5f369QMAJCQkSBfbGiMjIwO///47AGDq1Kl6p0sMCgrCyy+/XGJsFaVBgwYYPXq03nXh4eEAUGSs76FDh3DlyhW4u7tjzJgxBtseNWoUAEh9UpaSkpKwb98+2NjYYMqUKSXGsHfvXuTn50vLtdMulsf79OuvvwYAvPfee7C1tdVbpn///nB2dsbdu3cRHR0tLde+3xo0aCBd61CYtbU1Zs2aVeYxP+3999+Hvb19keV9+vSR7nGinYHKFE+ePMEPP/wAAMUew7Sv29mzZ5GWllZmMZbn626u0uwv5bE9Hh4e6N69OwBg3bp1RdbfvHlTutZk5MiRJrXt6OiILl26AACOHDlSykiNt3btWuTn56N3795o2bKl3jJOTk7o378/AN1jlraPHz58iEePHpV3qLLF6TzpmWRvb4+wsDDs2bMHvXv3xptvvokXX3wRQUFBZXpDMF9fX70Ju6m0B3dD63744QecO3cOubm5Bj+QKtrp06cBADY2NtIHiD7PP/88Tp48KZV/mqurK3x9ffWuq1evnvR3enq60fOdx8TEQAgBAOjRo0exsW3cuLFS9G3r1q0NXnCo7Yenv/gePXoUAJCZmanTV0/LyckBUHCRblnTxqDRaNCsWTOD5bTJ/qNHj3Dv3j3pfdO3b1+sXr0ao0ePxtGjRxEeHo7WrVuXem771NRUaXvfeOMNvV9MtbQXEiYnJ6Nt27YA/tm/tRcp6tO5c2fY2NggLy+vVLEWRxvP02xsbFCzZk2kpqaadTFjdHQ0njx5AgDo2bOnUXWSk5N17r1SmhjL63U3V2n3l759+2LDhg348ssvcefOHQwePBgdO3Y0+oZ/howaNQp79+7Ftm3b8OjRIzg4OEjrfvjhB+Tn56NevXoGj3P/93//h3Xr1uHUqVNIS0vTewLl+vXrpYrRFNrjxe7du1GnTh2D5Qr3sVabNm3g7u6Omzdvom3btnjzzTfRo0cPNGnShHdiLkNM/KlS0H5ouLm5GV1nzZo1CA8Px9mzZzFv3jzMmzcPSqUSrVu3Rr9+/fDGG29IvySYqyySfgDFzhOvXZeXl4f79+/r/eC1hNu3bwMouMGXSqUyWK5+/fo65Z/m5ORksK6NzT+HoNzcXJNjA4rvW21slaFvjemHp/tAO+NTbm6uwbOxhWVnZ5ciQv20MWg0GqNiAKCTfHz22WdISEjA/v37sXjxYixevBjW1tYIDAzEiy++iHHjxpl1H4XCs2EZO3tJ4bi0+1Bxz21nZwc3Nzejt9sc5uwXxijcP+a8boWZE2N5ve7mKu3+MmzYMJw8eRLLly/Hjz/+KP1i5Ovri549e+L1119HSEiIyXG9/PLLmDhxIrKysrB161adM/vaXwGGDx8u/cKtpdFoMGLECJ1fM21sbODi4iKd/MrMzMSTJ08q9Oy5tp8fPXpk1PMW7uMaNWpgw4YNGDZsGP766y+88847AIDq1aujc+fOePXVVzF48OBKc3LsWcWhPmRxWVlZuHbtGgCgUaNGRtdr2LAhYmJisGvXLkyaNAkhISHQaDQ4evQopk2bBl9fX+zbt69UsRV3VoiovGnPordt2xai4JqsEh/lFUPt2rWNjqHwFLQ1atTAvn37cPjwYUybNg0dOnSAjY0NoqOjMXfuXDRu3NisoViFhxPFx8cbFZe+qS6rqsL9k52dbVT/FDelr6nK63U3V1nsL0uXLsWlS5fw8ccfo0+fPqhRowYSEhKwcuVKtGrVyqy7Xzs4OEhDEr/77jtp+fnz53H27FkA+of5fP3119iwYQOsra3x0Ucf4cqVK1Cr1bh//z5u3bqFW7duScNIy+O4YIi2nz/44AOj+vjpKUN79OiBxMREfPfddxg9ejQaN26MzMxM7NixAyNHjkRQUBBSU1MrbHuqIib+ZHG7du2SDhamfvBYWVmhV69e+OKLL3D69Gncv38f69evR8OGDZGeno5hw4ZJwyAsqbgDlXadjY2Nzi8U2jNp2p/r9cnMzCyjCIvS/tpx9+5dg3P1A//8jFxWv44Yo/BzFfcztnbd0337rND+VF4eQ3hMjeHu3bulOnPYsWNHLFiwAEeOHEFGRgZ++eUXNG/eHNnZ2Xj99ddNPqteeBiBOf2j3YeKe2+q1Wrcu3fP5LYrg9L2T1kp69fdXGXVH76+vpg+fTp+++033Lt3D3/++ac0Xv2LL77A9u3bTW5Tm9jv27dP2h+1Z/sDAwPRvHnzInW0vziMGTMGkZGR8PX1LfKrwK1bt0yOBfjnhJc5nz1lccxycHDAyJEjsXbtWly+fBnXr1/HggULYGdnp/NLAJmHiT9ZVE5ODj7++GMABT/naQ+g5nJycsKwYcOki7jS0tJ0LjorfGCsyLMg+/fvL3FdixYtdH7CdHFxAVAwJMFQ4n3ixAmD7Wq31dztbNWqFYCCYTIHDx40WG7v3r0ACsawV5Tg4GBp+4q70ZI2tpYtW5b5z8Ol7V9jdOjQAUDBB7ihayhKw5ht0MaQn59f4s2wjGVnZ4fw8HBs3boVQEGCUfgCRGPep15eXtJQkR07dpgcg3b/PnjwoMHnOHToULmO7zeXMf3TunVraciHOf1THkp63YtT2mN3afcXQzGFhoZi8+bNaNiwIQBgz549JrfTvXt31K9fHxqNBj/88IP0L/DPxddP+/vvvwFAugHm07Kysor9fCiO9rNH+xxPe/jwoTTxw9O0x4u9e/cW+8XBFB4eHpg2bRref/99AOb1Mf2DiT9ZTHZ2Nl577TWcOXMGADB9+nTpqv6SlHQWv/AMFIU/MJydnaW/MzIyjA+2lL766iu940ovXbqEzZs3AwAGDx6ss047I4IQAtu2bStSNzs7G0uWLDH4nNptNXc7W7RoIV3MOX/+fJ2fyrV+++036cNl6NChZj2POWrUqIFevXoBAD7//HO9Y5PPnj0r3UmzPGIrbf8ao1u3btKF0ZMnTy5xvzf1IlBjtqFx48bSL3Effvhhib8yFY4hLy+v2DsSl/Z9OnbsWAAFwx60xxFj4gL+eb+lpKTg22+/LVJeo9Fg/vz5xbZpKcb0j4ODA4YNGwYAWLBgQYl3dy7Lu6Ga+7oXpyyO3aXZX4r71dPa2lr6kmXs9hRmZWWF4cOHAyg40689829tbS29hk+rXr06AEjDgZ42b948PHz40ORYgH8+ewzdiXjhwoUG++P111+HjY0N7t69i9mzZxf7PDk5OTp38C2uj4F/9htz+pj+wd6jCqXRaBAXF4fFixcjICBAGuM5cuRITJs2zeh2jh07hhYtWmDJkiWIj4+XPmSEEDh27BgmTJgAoODizhYtWkj1/Pz8pAP0mjVrKuysf25uLp5//nnpFvVCCOzduxe9evWCWq1GgwYN8Oabb+rUqV+/Pjp27AigYPq5wtMkRkdHo0ePHgYvqAWA5557DgDw4MEDbNy40ay4FyxYAAA4fPgwBg4ciMTERGl71q9fLyXU7du3L/WvNaaaP38+bG1tkZCQgF69ekm/7Gg0Gvz222944YUXkJeXh0aNGmH8+PFl/vxl0b8lsbGxwVdffQUbGxscOXIEnTt3xh9//KFzIeW1a9fw1VdfoXXr1li5cqVJ7Ru7DcuXL4ejoyMuX76M0NBQ/PLLLzpn81JTU7Fu3TqEhYXpTB15/fp1NG7cGPPnz8eZM2d0zp6fO3cOI0aMAFCQpBaeOapGjRrS2dlvvvnG4Fn3999/H82bN8eTJ0/QrVs3fPnllzpDczIyMrBz506MGjUKnTp10qnbtm1baRrVCRMmYPXq1VLikZKSgsGDB+PPP/+02Cw0xTH2OPbxxx+jXr16uHv3Ltq1a4d169bpJIN37tzBli1bMGDAgDL9cmzu614cY/eJ4pR2f5k0aRIOHDigM+Ttxo0beOedd5CQkAAAeOGFF0yOC/hnuM/58+cxffp0AAWzMRmakKB3794AgNWrV2PVqlXSSYFbt25h8uTJ+Oyzz0yaLKMw7b7w+++/Y/bs2Xjw4AGAguF+M2bMwPz58w2epGvUqJE0De5nn32GUaNGIS4uTlqfl5eH2NhYzJ07F76+voiNjZXWLViwAH369MG6det0hnCq1Wps3LgRn3/+OQDgxRdfNGu76P8rxT0AiPQqfPOrwrdVr1GjhnSzEu3D3d1dfPXVVwbbMnQzlsLLAQhbW1vh5uamc/t0Z2dncejQoSJtvvHGG1KZatWqiYYNGwpPT0/x/vvvF9kGfTe1ehoM3Oyk8A1nfvzxR+kut46OjtLdQAGIGjVqFLnbqdaZM2eEs7OzVNbOzk66fXvt2rXFr7/+WuxNbbR3zwQgnJychKenp/D09BRLliwxelsXL16scxv4GjVqSDcdAyCaN2+uc4dFrdLegMwYP/74o04szs7Ows7OTvp/gwYNxIULF/TWLe0NvIQwrn+1N/AydBMzIUruq23btkn7T+H9XaVS6bwP5s+fXy7bIIQQR44cEXXq1JHKWltbCzc3N+lGTdpH4ZuQFX59tXVcXV11XjOlUlnk5m9C/HOnVKDgzroNGjQQnp6eYvDgwTrlUlNTRWhoqFRWoVCIGjVq6LxvAP03ibt7965o2bKlTr/WqFFDamfFihXC09NToBxv4FXcfl/ccxtzHBOi4CaBfn5+UlkrKyvh6uoqHUe0jx49epRZjKV53Q31mRDG7RMl3dzM3P1Fu52F6zzdh5MnTzbYT8YIDg7WaW/Dhg0Gy6anp0t3Ida+rjVq1JCO1ePHjy/22FPc8S8vL09069ZNZ3tdXFyEQqEQCoVCfP7558XW12g0YtasWTqfG/b29sLNzU1YW1vrbOORI0ekeoVzB20dV1dXnXaaNm0qbt68aU730v/HM/5UrtLS0pCWlobbt28jLy8PderUQWhoKCZMmIDNmzcjNTXVrLOxrVu3xsaNGzFhwgSEhITA3d0dDx48gJ2dHQIDAzFt2jTEx8cXOWsDACtWrMCcOXOkC6ZSUlKQnJxs9BRv5mjbti1Onz6NUaNGoXr16sjLy4OHhwfGjh2L8+fPS+ONnxYYGIgTJ05gyJAhqFWrFjQaDdzd3fHWW28hNja22HnVAWDz5s2YPHky/Pz8kJubi+TkZCQnJ5v0U/nkyZNx+vRpjBgxAg0aNMDjx49hb2+P0NBQLFmyBKdOnSp2jvnyNHjwYPz1118YP348GjVqBLVaDRsbGwQGBiIyMhJxcXFo2rRpuT1/WfSvMfr374+EhATMnj0bbdq0gaOjIzIyMqBSqdCyZUuMGTMG27Ztw9SpU8ttGzp06IDLly9j4cKF6Ny5M2rUqIGMjAxYW1ujadOmGDFiBNavX4+lS5dKdTw8PLB9+3ZMnjwZoaGhqFu3LrKysmBjY4NmzZrhrbfeQlxcnDT7SGEzZszAF198gVatWsHW1hbXr19HcnJykQsW69WrhyNHjmDDhg0IDw9H3bp18fjxY+Tk5MDLywsvvfQSli5dikOHDhV5Djc3Nxw7dgyRkZHw9/eHlZUVbGxs0Lt3b+zZswcTJ040uT8rirHHsaZNm+LcuXOIiopCz549pWOlEAK+vr4YNGgQVq1aVaa/WpXmdS+OsftEcczdX3788UdERkYiLCwM3t7eyMnJQW5uLjw9PTF48GD88ccfWLx4sUnb87TC4/mdnZ2lGxzqU6NGDRw7dgwRERHw8vKCtbU1bGxs0LVrV2zYsAFfffWV2XFYW1vj119/ld4XSqUSCoUCPXv2xJ49e4q9kR8AKBQKzJ07F+fOncPEiRPRtGlTWFtbIzMzEy4uLmjfvj2mTp2KY8eOSdcEAMC4ceOwatUqDB06FM899xyqVauGBw8ewMXFBZ06dcLSpUsRExNT7P0BqGQKISrwCkciIiIiIrIInvEnIiIiIpIBJv5ERERERDLAxJ+IiIiISAaY+BMRERERyQATfyIiIiIiGWDiT0REREQkA0z8iYiIiIhkgIk/EREREZEMMPEnIiIiIpIBJv5ERERERDLAxJ+IiIiISAaY+BMRERERyQATfyIiIiIiGWDiT0REREQkA0z8iYiIiIhkgIk/EREREZEMMPEnIiIiIpIBG0sHQERERPSsEUJACGHpMKiKUCgUUCgU5f48TPyJiIiISiCEwMOHD/HgwQM8fvwY+fn5lg6Jqhhra2tUq1YNzs7OcHJyKpcvAgrBr6tEREREBmk0Gty6dQuZmZmWDoVkokaNGqhduzasrMp2VD7P+BMREREVIzMzU0r6XV1d4eTkBJVKVSFDM0gehBBQq9V4+PAh7t+/j4yMDNjZ2cHFxaVMn4eJPxEREVEx0tPTAQC1atWCm5ubhaOhqqpatWqoVq0abGxscPv2baSnpzPxJyIiKk9CCOTk5Fg6jGIplUqeba4g2jOxAODs7GzhaEgOnJ2dcfv2bajVagghyvS9zsSfiIiokJycHEyaNMnSYRRr2bJlUKlUlg5DFgpfCmltbW3BSEguCu9nTPyJiIgqwF/X7lk6BL0CfDjUhIjMw8SfiIjIgP4jJ8PaxtbSYQAA8vNy8fO6JZYOg4ieYUz8iYiIDLC2sYWtrdLSYRARlYmynRyUiIiIiIgqJZ7xJyIiIiqFZ2EmqJJwpih5YOJPREREVArPwkxQJSnrmaK6du2KgwcPYvbs2ZgzZ06p2ztw4AAOHDiAwMBA9O/fv9TtyRUTfyIiIqIykPnXBUuHYJbqAc0sHUKJDhw4gMjISIwePZqJfykw8SciIiIqI/9++RXYPiPz/efm5+PTrVssHQZVICb+RERERGXE1toaKtvKMQUs0dM4qw8RERERlbukpCQoFArpIuK9e/eiR48eqFGjBhwcHNCuXTvs2LGjSD2FQoHIyEgAwLfffiu1oVAo0LVr1yLljx07hiFDhqB+/fpQqVRwd3fHCy+8gF27dumNa86cOVAoFHjttdfw+PFjzJw5E/7+/rC3t0dgYKBO2Z9//hm9e/eGu7s7VCoVGjRogBEjRuDcuXOl65wKwsSfiIiIiCrUmjVr0LNnT5w9exa+vr5QqVQ4fvw4+vXrh02bNumU7dChAxo0aAAAqFWrFjp06CA9mjdvrlN29uzZ6NChA3766Sc8fvwYAQEBsLKyws6dO9GnTx/pC4Q+2dnZ6NSpE/7zn/8AAJo1awZ7e3tp/ZtvvokBAwbg999/h0qlQosWLfDw4UOsX78erVq1woYNG8qqe8oNE38iIiIiqlCTJk3CihUrkJaWhtOnT+POnTuYNGkShBB4//33odFopLJHjhzB66+/DgDo06cPjhw5Ij2WL18ulfv2228xd+5c1K5dG9u2bcP9+/cRExOD27dvY/PmzXBycsKcOXOwZ88evTFt2bIFmZmZOH/+PC5evIjo6Gjs27cPQMEXlaioKCiVSqxfvx6pqak4deoU0tLS8M477yA3Nxevv/464uPjy7HXSo+JPxERERFVqNGjR2PChAmwsipIRa2trfHZZ5+hVq1a+Pvvv00eOpObm4uZM2cCADZs2FBk5p9XXnkF8+fPBwB8/vnnetvIz8/Hjz/+iOeee05aZm9vDyEEPv74YwDA+++/j2HDhknrVSoVli1bhlatWuHJkycG264smPgTERERUYUaP358kWUqlUoaU3/16lWT2jt+/DiuX78OX19fdOvWTW8Z7ZeBI0eOID8/v8j6gIAAtGrVqsjyS5cuITExEQAQERGht+333nsPAAxeR1BZcFYfIiIiIqpQjRs31ru8du3aAICsrCyT2tP+QnDv3j107NhRbxkhBICCsfz37t1DrVq1dNY3bdpUb71Lly4BAGrWrFmkjpb2WoObN2/iwYMHcHZ2Nin+isLEn4iIiIgqlIODg97l2qE/2iTdWBkZGQCA9PR0HD16tMTyjx8/Njqmhw8fAvjnS4k+derU0SlfWRN/DvUhIiIiomeao6MjAOCFF16AEKLEh5eXl9FtOzk5AQDS0tIMlrl161aR8pURz/gTEVGFE0IgJyfH0mHoVVnjIpIz7dz/hmgvyP3rr7/K/LmbNGkCALhz5w7S0tL0nvmPi4sDANStW7fSnu0HmPgTEZEF5OTkYNKkSZYOg4ieEdr59LOzs/Wu79ixI+rUqYPk5GRs3rwZAwcOLLPnbtKkCby9vZGYmIgvvvhCmuGnsMWLFwMomG60MmPiT0REFvPXtXuWDoGIngGNGjUCAJw6dQqPHz9GtWrVdNarVCp8+umneO211/Cvf/0LDx48wMiRI2FrayuVSUtLw7Zt25CRkYF///vfRj+3QqHAjBkzMHbsWCxatAgtWrTAkCFDAABqtRr//ve/cerUKdjZ2WHq1KllsLXlh4k/ERFZVP+Rk2FtY1tyQQuwqaRxUeWVq2eayMrqWYr1+eefh5ubGxITE9GwYUP4+flBqVQiMDAQS5cuBVBwb4Bbt25hxowZeOONN/Duu+/Cz88P1tbWuHXrFv7++2+pnKnGjBmDU6dOYdWqVRg6dCimTp2KunXr4vLly8jMzISNjQ2+/vpr+Pv7l+Vmlzkm/kREZFHWNrawtVVaOgyiMvHp1i2WDqFKcnZ2xu7duzF79mwcP34cJ06c0Lm7r9YHH3yAPn36YPny5di/fz8uXLgAjUaD2rVr46WXXkK/fv3Qr18/s2KIiopC79698d///hfR0dGIjY1FrVq10LdvX0ybNg0tWrQo7WaWO4Uwdb4kIiKiUlKr1Zg0aRL+unYPr/xrGhN/I+Tm5mDLN58hwMcNy5Ytg0qlsnRIsqDRaKR53Js0aSJNN1mYdn9+lnGfqjyM2efMxTP+RERERKWgVCqxbNkyS4dRKkolv3zLARN/IiIiolJQKBQ8W07PBN7Ai4iIiIhIBpj4ExERERHJABN/IiIiIiIZYOJPRERERCQDTPyJiIiIiGSAiT8RERERkQyUKvHfv38/+vbti5o1a8Le3h7+/v6YNWsWHj16ZHabW7ZsQbdu3eDi4gIHBwcEBgZi4cKFyM3N1Vs+KSkJCoWi2EdoaKjZ8RARERERVQVmz+O/fPlyvPvuuxBCoH79+mjQoAEuXLiA+fPnY8uWLThy5AhcXV1NanPKlClYtGgRAKBRo0ZwcHBAXFwcpk6dih07dmD37t3FzpPboUMHvcsDAgJMioOIiIiIqKoxK/GPjo5GREQEACAqKgpjx46FQqHAjRs3EB4ejujoaIwdOxZbtmwxus1t27Zh0aJFUKlU2LhxI8LDwwEAFy9exAsvvIBDhw5hxowZ0hcDfY4cOWLO5hARERERVXlmDfWZN28eNBoNRo4ciXHjxkGhUAAA6tWrhw0bNsDKygpbt27FuXPnjG4zMjISAPDBBx9IST8A+Pv7Y82aNQCAFStW4M6dO+aETEREREQkayYn/llZWdi1axcAYNy4cUXWN27cGN27dwcAbNq0yag2r1y5grNnzxpss3v37vD19YVarcb27dtNDZmIiIiISPZMTvzPnDkDtVoNlUqFNm3a6C3TqVMnAMDx48eNalNbzsfHBx4eHma3OWnSJPTs2RO9evXC+PHjsXXrVmg0GqNiICIiIiKqykwe43/58mUAQMOGDWFra6u3TKNGjQAAly5dMqlNbT1z21y+fLnO/1etWoXAwEBs3boV3t7eRsVCRERERFQVmZz4379/HwCKnbFHuy49Pb3c27SxscGIESMwZMgQBAQEoF69erh79y5+/fVXzJw5E7GxsejZsyeio6Ph7OxssP2oqCisWrXKqHgTExPh5OSEjh07Yv369UbVISIioqpJCIGcnBxLh1EqSqVSumaTqi6TE/8nT54AKNhBDNFOuZmdnV3ubdavXx/r1q3TWVavXj2MHTsW3bp1Q0hICBISErBs2TLMnDnTYPs3b95ETEyMUfECBV9ALl68aHR5IiIiqppycnIwadIkS4dRKsuWLSt2ynRTde3aFQcPHiyxXMuWLREbG1uq51q6dCkyMjLw2muvwcvLq1RtVXUmJ/52dnYAUOw3W7VaDQCwt7e3WJsA4OvriwkTJmDBggXYunVrsYl/3bp1ERwcbFS78fHxRn+pISIiInn469o9S4dglgAft3Jru0GDBmjYsKHB9Y0bNy71cyxduhTJycno2rUrE/8SmJz4u7i4APhneI4+2nXaspZoU6t9+/YACmYOKs748eMxfvx4o9oMCQkx6dcBIiIikof+IyfD2kb/NZCVTX5eLn5et6Rcn+P111/HnDlzyvU5yHgmJ/5+fn4AgJSUFOTm5uq9wPfq1as6ZY1tMyEhwWAZU9vU0g4fysvLM6keERERkamsbWxha2t46DKRJZk8nWdQUBCUSiXUajVOnjypt8zhw4cBAO3atTOqzdDQUAAFF82mpqaWSZtacXFxAAquBSAiIiKiyicpKQk1atSAQqHQO3GKEAI9e/aEQqHASy+9BABYu3YtFAoFkpOTAQDdunWDQqGQHmvXrtVpIycnBytXrkSnTp3g6uoKlUoFHx8fvPXWW7h+/breuLy8vKBQKHDgwAGcPXsWr776KurUqQNra2ssXbpUKvfgwQNERkaiZcuWcHBwgKOjIwIDAzF37lw8fPiwbDqpDJic+Ds5OaFXr14AoHcWnCtXrmDfvn0AgIEDBxrVpp+fH5o3b26wzX379iEhIQFKpVLnrr4lycrKwsqVKwEAPXv2NLoeEREREVUcLy8v/Pe//wUATJw4EUlJSTrrFy9ejD179qBOnTr43//+BwCoXbs2OnToIF2U/Nxzz6FDhw7So3bt2lL927dvo0OHDnjrrbdw7NgxODs7w9/fHzdv3sTKlSsRGBiI6Ohog/EdOnQIbdu2xa+//or69evDx8dHmgUpJSUFrVq1wpw5cxAXF4dGjRrBx8cH58+fx+zZs9G6dWuDXywqmsmJPwDMmjULCoUC69atw6pVqyCEAFAwM87QoUOh0WjQv39/tGzZUqeel5cXvLy8sHnz5iJtzp49GwCwYMEC7NixQ1p+6dIljBkzBkDBjlCzZk2deuPGjcPWrVuli3+1Ll68iN69eyMxMRGOjo6YOnWqOZtKRERERBVg6NChGDlyJB48eIDhw4cjPz8fQMHNY2fMmCGdxdfmgn369MGRI0dQp04dAAX3czpy5Ij06NOnj9T2kCFDcPr0afTu3RsJCQlISkrC2bNncffuXYwdOxb37t3DoEGDDE40M3fuXAwfPhy3b9/G6dOnceXKFYwbNw4AMGzYMFy5cgUtW7bE5cuXce7cOZw7dw4XL15EQEAALl26hBEjRpRn1xnNrMS/devWWLx4MYCCi2I9PT0RHBwMb29vREdHo0mTJli9enWResnJyUhOTkZWVlaRda+88goiIiKgVqsRHh4OX19fBAYGIiAgAImJiejYsSM++eSTIvVOnjyJV155BU5OTmjWrBlCQ0Ph6+uLpk2b4ujRo3BxccG2bdt4lTcRERFRBYuMjNQZfvP0o/BwGQBYsWIFfHx8cOzYMcydOxePHz/GsGHDkJOTg4iICGnUiSl27tyJ/fv3w9/fv8hNXR0cHPDVV1+hVatWSExM1HtyGgACAgKwatUqODg4SMvs7e1x8OBBHD16FFZWVvjxxx91bkbbuHFjbNiwAQqFAgcPHsShQ4dMjr2smXxxr1ZERASaN2+ORYsW4cSJE7h9+zY8PT0xcOBATJ8+HY6Ojia3uWTJErRv3x4rVqxAbGwsbty4gWbNmmHEiBGYPHmy3guJp0+fjl27diE6Ohq3bt3ClStXUK1aNYSEhKBPnz546623pG+CRERERFRxSprO08PDQ+f/Tk5OWL9+PTp16oT//Oc/OHbsGC5evIjAwEB8+umnZsWgTeZHjBihd1p4KysrvPTSSzh9+jQOHDiAYcOGFSkzcuRIWFtbF1m+c+dOAECvXr3g7+9fZH3z5s3x/PPPY/fu3di1axc6d+5s1jaUFbMTfwAICwtDWFiY0eW1Q4KKM2jQIAwaNMjoNgcPHozBgwcbXZ6IiIiIKoY503mGhobio48+wkcffYS9e/fC3t4eP/zwQ7E3ei3OuXPnAADff/+9lKg/LS0tDQAMjsVv2rSp3uWXLl0CUHB9gSHNmzfH7t27K8WNX0uV+BMRERERlbWwsDB89NFHAICOHTsaTLyNkZGRAQBGJd6PHz/Wu7zwEJ/CtDP2FL6Q+GnakSeVYXYfs8b4ExERERGVh6ysLIwaNQpAwTCcPXv2YN26dWa3px1+vnHjRgghin0cOHDApLadnJwA/POLgT63bt3SKWtJTPyJiIiIqNJ4++23cfXqVbRv316ai/+tt97CtWvX9JbXTqtpiHYYjvbeTmWpSZMmJbatXafvGoCKxsSfiIiIiCqFn376Cd9++y2cnZ2xfv16jBw5EiNGjMDDhw8xfPhw5OXlFamjvWA3Oztbb5vaa0e//vprZGZmlmm82ilDf//9d71Dif766y/s3r1bp6wlMfEnIiIiIotLSUnBm2++CQBYuXKlNBX7ihUr4O3tjePHj2Pu3LlF6mmn0Dx48KDedl966SV069YNqampeP755xEbG6uzXgiBmJgYTJ48GadOnTIp5i5duqBjx47QaDQYOnSozq8SV69exdChQyGEQJcuXdCpUyeT2i4PvLiXiIiIqIzk5+VaOgSjVUSs//vf/7B3795iyxw5cgQajQYjRoxARkYGhg0bhuHDh0vrtWf/O3XqhI8//hg9e/ZEx44dpfVDhw7F//3f/2HBggXYtm0b6tSpA4VCgX//+9/o3bs3FAoFNm3ahAEDBuDw4cMICgpCgwYNUK9ePTx58gTXrl2TLrzt16+fydu4fv16hIWFITY2Fo0bN8Zzzz0HIQT++usvaDQa+Pn54fvvvze53fLAxJ+IiIiojPy8bomlQ6hU/v77b/z9998llvv4449x+PBheHp6YuXKlUXWt2vXDrNmzcKcOXMwYsQInD17FtWrVwdQcOfcjIwMrFmzBpcuXcLly5cBAK+99ppU383NDfv378eGDRuwfv16REdHIzo6GnZ2dvD09ETnzp0xYMAAnS8UxmrYsCGio6OxePFibNmyBQkJCQAKbvo1cOBATJ48uVJc2AsACmHM5PqkIyQkBDExMQgODkZ0dLSlwyEieuao1WpMmjQJf127h1f+NQ22tubNzy0nubk52PLNZwjwccOyZcugUqksHZIsaDQaaa72Jk2awMqq6Chp7f78LOM+VXkYs8+Zi2f8iYiIiEpBqVRi2bJllg6jVMy9ORY9W5j4ExEREZWCQqHg2XJ6JnBWHyIiIiIiGWDiT0REREQkA0z8iYiIiIhkgIk/EREREZEMMPEnIiIiIpIBJv5ERERERDLAxJ+IiIiISAaY+BMREREZoFAopL81Go0FIyG5KLyfFd7/ygITfyIiIiIDFAoFbGwK7nf65MkTC0dDcqDdz2xsbJj4ExEREVUkJycnAEB6ejqEEBaOhqoyIQTS09MB/LPflSWbMm+RiIiIqAqpXr060tPTkZWVhevXr8PFxQV2dnawsuL5UyobGo0GT548kfYzoGC/K2tM/ImIiIiKYW9vDw8PD6SmpiIrK0tKzIjKi4eHB+zt7cu8XSb+RERERCVwdnaGra0tMjMz8fDhQ+Tl5Vk6JKpibGxs4OTkhOrVq5dL0g8w8SciIiIyir29Pezt7VGnTh0IITjen8qMQqEo8wt59WHiT0RERGSiikrUiMoSr0ohIiIiIpIBJv5ERERERDLAxJ+IiIiISAaY+BMRERERyQATfyIiIiIiGWDiT0REREQkA0z8iYiIiIhkgIk/EREREZEMMPEnIiIiIpIBJv5ERERERDLAxJ+IiIiISAaY+BMRERERyQATfyIiIiIiGWDiT0REREQkA0z8iYiIiIhkgIk/EREREZEMlCrx379/P/r27YuaNWvC3t4e/v7+mDVrFh49emR2m1u2bEG3bt3g4uICBwcHBAYGYuHChcjNzTW6jcePH8PHxwcKhQIKhQIHDhwwOx4iIiIioqrA7MR/+fLlCAsLw6+//go7Ozs0bdoUSUlJmD9/Plq3bo379++b3OaUKVMwcOBAHDhwAG5ubvD19UVcXBymTp2KHj16QK1WG9XOzJkzkZiYaPLzExERERFVVWYl/tHR0YiIiAAAREVFISUlBTExMbh27RpCQkIQHx+PsWPHmtTmtm3bsGjRIqhUKvzyyy9ISEjA2bNnERcXB29vbxw6dAgzZswosZ1Tp05h2bJl6NevnzmbRkRERERUJZmV+M+bNw8ajQYjR47EuHHjoFAoAAD16tXDhg0bYGVlha1bt+LcuXNGtxkZGQkA+OCDDxAeHi4t9/f3x5o1awAAK1aswJ07dwy2kZeXhzFjxsDe3h5ffvmlOZtGRERERFQlmZz4Z2VlYdeuXQCAcePGFVnfuHFjdO/eHQCwadMmo9q8cuUKzp49a7DN7t27w9fXF2q1Gtu3bzfYzmeffYZz585h3rx5qF+/vlHPTUREREQkByYn/mfOnIFarYZKpUKbNm30lunUqRMA4Pjx40a1qS3n4+MDDw8Ps9q8fPky5s2bh+DgYLzzzjtGPS8RERERkVyYnPhfvnwZANCwYUPY2trqLdOoUSMAwKVLl0xqU1vP1DaFEBg3bhxycnIQFRUFa2tro56XiIiIiEgubEytoJ2tx9XV1WAZ7br09PQKaXP16tU4ePAgJk2ahFatWhn1nE+LiorCqlWrjCobHx9v1nMQEREREVmKyYn/kydPAABKpdJgGZVKBQDIzs4u9zZv3ryJadOmwcPDA/Pnzzfq+fS5efMmYmJizK5PRERERFSZmZz429nZAQBycnIMltHOt29vb1/ubb711lvIzMzE//73Pzg5ORn1fPrUrVsXwcHBRpWNj483+ksNEREREVFlYHLi7+LiAgDF3qBLu05btrza3L59O7Zt24aXXnoJL7/8slHPZcj48eMxfvx4o8qGhITw1wEiIiIieqaYnPj7+fkBAFJSUpCbm6v3At+rV6/qlDW2zYSEBINl9LWpTb4PHTqEOnXqGKz78ssvQ6lUYvDgwfjiiy+MiomIiIiIqCoxOfEPCgqCUqmEWq3GyZMn0aFDhyJlDh8+DABo166dUW2GhoYCABITE5Gamqp3Ss/i2szMzERmZqbB9rUXBBdXhoiIiIioKjN5Ok8nJyf06tULAPTOgnPlyhXs27cPADBw4ECj2vTz80Pz5s0Ntrlv3z4kJCRAqVTq3NV3zpw5EEIYfGjt378fQgisXbvW6O0kIiIiIqpKTE78AWDWrFlQKBRYt24dVq1aJSXZN2/exNChQ6HRaNC/f3+0bNlSp56Xlxe8vLywefPmIm3Onj0bALBgwQLs2LFDWn7p0iWMGTMGADBx4kTUrFnTnJCJiIiIiGTNrMS/devWWLx4MYCCi2I9PT0RHBwMb29vREdHo0mTJli9enWResnJyUhOTkZWVlaRda+88goiIiKgVqsRHh4OX19fBAYGIiAgAImJiejYsSM++eQTc8IlIiIiIpI9sxJ/AIiIiMCePXvQp08fPHr0CBcuXICnpydmzJiB06dPw93d3eQ2lyxZgo0bN6JLly64e/cuLl++jGbNmmHBggXYt2+fNO0nERERERGZxuSLewsLCwtDWFiY0eULj7s3ZNCgQRg0aFBpwjLp+YiIiIiI5MDsM/5ERERERPTsYOJPRERERCQDTPyJiIiIiGSAiT8RERERkQww8SciIiIikgEm/kREREREMsDEn4iIiIhIBpj4ExERERHJABN/IiIiIiIZYOJPRERERCQDTPyJiIiIiGSAiT8RERERkQww8SciIiIikgEm/kREREREMsDEn4iIiIhIBpj4ExERERHJABN/IiIiIiIZYOJPRERERCQDTPyJiIiIiGSAiT8RERERkQww8SciIiIikgEm/kREREREMsDEn4iIiIhIBpj4ExERERHJABN/IiIiIiIZYOJPRERERCQDTPyJiIiIiGTAxtIBEBERkXGE0CA/Px9qtdrSoRikVCqhUCgsHQYR6cHEn4iI6Bkg8vNx61Ya7qfG47333oO1tbWlQ9Jr2bJlUKlUlg6DiPRg4k9ERPQMyUnPQOaFeFhbVb7RutUDmlk6BCIqBhN/IiKiZ8zU/gPgUInOqufm5+PTrVssHQYRlYCJPxER0TPG1toKKltbS4dBRM+Yyvc7IRERERERlTkm/kREREREMsDEn4iIiIhIBpj4ExERERHJABN/IiIiIiIZYOJPRERERCQDTPyJiIiIiGSAiT8RERERkQyUKvHfv38/+vbti5o1a8Le3h7+/v6YNWsWHj16ZHabW7ZsQbdu3eDi4gIHBwcEBgZi4cKFyM3N1Vs+Pj4eH374IZ5//nn4+PjAyckJKpUKXl5eGD58OP7880+zYyEiIiIiqirMTvyXL1+OsLAw/Prrr7Czs0PTpk2RlJSE+fPno3Xr1rh//77JbU6ZMgUDBw7EgQMH4ObmBl9fX8TFxWHq1Kno0aMH1Gp1kTq///47Pv74Y/zxxx94/PgxGjduDB8fH6SlpeGHH35Ahw4d8Mknn5i7mUREREREVYJZiX90dDQiIiIAAFFRUUhJSUFMTAyuXbuGkJAQxMfHY+zYsSa1uW3bNixatAgqlQq//PILEhIScPbsWcTFxcHb2xuHDh3CjBkzitRr3bo1NmzYgNu3b+PWrVuIiYlBfHw8bt26hXfeeQdCCHz44Yc4efKkOZtKRERERFQlmJX4z5s3DxqNBiNHjsS4ceOgUCgAAPXq1cOGDRtgZWWFrVu34ty5c0a3GRkZCQD44IMPEB4eLi339/fHmjVrAAArVqzAnTt3dOp16NABQ4YMgbu7u87y6tWr44svvkBAQACEENiyZYs5m0pEREREVCWYnPhnZWVh165dAIBx48YVWd+4cWN0794dALBp0yaj2rxy5QrOnj1rsM3u3bvD19cXarUa27dvNzpWhUKBJk2aAAAeP35sdD0iIiIioqrG5MT/zJkzUKvVUKlUaNOmjd4ynTp1AgAcP37cqDa15Xx8fODh4VEmbQLAkydPEB0dDQBo1aqV0fWIiIiIiKoaG1MrXL58GQDQsGFD2Nra6i3TqFEjAMClS5dMalNbr7RtZmZmIi4uDpGRkUhOTkb79u0xfPhwo2IhIiLS5OdbOoQi8jUaS4dARM84kxN/7Ww9rq6uBsto16Wnp1dYmxkZGXBxcdFZ5uLigv/85z947733YGNT/KZGRUVh1apVRsUbHx9vVDkiInr2aPLzcfTYMUuHUUR+vv5prYmIjGVy4v/kyRMAgFKpNFhGpVIBALKzsyusTRsbG3To0AEAcOfOHSQnJyM9PR0//fQTOnTogC5duhQbw82bNxETE2NUvEREVPXl3Dfu5FVFyc/Pg0at5p03ichsJif+dnZ2AICcnByDZbTz7dvb21dYm46Ojjhy5Ij0/wcPHuCzzz7Dxx9/jOeffx4HDx5Eu3btDLZft25dBAcHGxVvfHy80V9qiIjo2RXo7Q0rK4WlwwAA5OXl4uZlZ3jXVEFpbfLHNxGR6Ym/djhNcTfo0q57euhNRbbp7OyM+fPn4+7du4iKisJHH32EPXv2GCw/fvx4jB8/3qi2Q0JC+OsAEZEMWFkpYG1VOc6xCysrKBQKWFlZAYrK8WWEiJ4tJh/N/Pz8AAApKSnIzdU/3vDq1as6ZY1tMyEhwWAZU9vU6tu3LwBIs/sQEREREcmRyYl/UFAQlEol1Gq1wbvhHj58GACKHVpTWGhoKAAgMTERqampZdKmVl5ens6/RERERERyZHLi7+TkhF69egGA3llwrly5gn379gEABg4caFSbfn5+aN68ucE29+3bh4SEBCiVSp27+hpDe8feoKAgk+oREREREVUlZg1cnDVrFhQKBdatW4dVq1ZBCAGgYGacoUOHQqPRoH///mjZsqVOPS8vL3h5eWHz5s1F2pw9ezYAYMGCBdixY4e0/NKlSxgzZgwAYOLEiahZs6ZOvXHjxuHQoUPIf2rO5fv372PKlCn4/vvvAQARERHmbCoRERERUZVgVuLfunVrLF68GEDBRbGenp4IDg6Gt7c3oqOj0aRJE6xevbpIveTkZCQnJyMrK6vIuldeeQURERFQq9UIDw+Hr68vAgMDERAQgMTERHTs2BGffPJJkXobN25Ely5d4OTkhBYtWqBdu3Zo2rQpatWqhUWLFsHa2hqffvopBgwYYM6mEhERERFVCWbPBxYREYHmzZtj0aJFOHHiBG7fvg1PT08MHDgQ06dPh6Ojo8ltLlmyBO3bt8eKFSsQGxuLGzduoFmzZhgxYgQmT56s907Ba9aswZ49e3D8+HHcvHkT6enpqFatGgICAtC5c2eMHz8ezz33nLmbSURERERUJZRqIuCwsDCEhYUZXV47JKg4gwYNwqBBg4xuc+DAgUZfS0BEREREJFeVY3JiIiIiIiIqV0z8iYiIiIhkgIk/EREREZEMMPEnIiIiIpIBJv5ERERERDLAxJ+IiIiISAaY+BMRERERyQATfyIiIiIiGSjVDbyIiKhyE0IgJyfH0mEUURljepbk5udbOgQdOXm5yNdokJ+fD7Vabelw9FIqlVAoFJYOg8iimPgTEVVhOTk5mDRpkqXDoDL26dYtlg5Bh0ajQcy1a1Cm38d7770Ha2trS4dUxLJly6BSqSwdBpFFMfEnIpKBv67ds3QIVEauPVFaOoQihBDQOHkgJz0VmRfiYW1VuUYSVw9oZukQiCoFJv5ERDLRf+RkWNvYWjqMImwqYUyVkbW1Dfr2GWXpMPTKy8vDzt3r4V1ThemvvAJlJXlNc/PzK92vI0SWxMSfiEgmrG1sYWtb+c4Wk3EUCkWl/pKkUChgZWUFpY0tVLaVN04iOatcv8UREREREVG5YOJPRERERCQDTPyJiIiIiGSAiT8RERERkQww8SciIiIikgEm/kREREREMsDEn4iIiIhIBpj4ExERERHJABN/IiIiIiIZYOJPRERERCQDTPyJiIiIiGSAiT8RERERkQww8SciIiIikgEm/kREREREMmBj6QCIiIiIyltOTo6lQzBIqVRCoVBYOgySASb+REREVOVNmTLF0iEYtGzZMqhUKkuHQTLAxJ+IiIiqtMy/Llg6BIOqBzSzdAgkI0z8iYiIqEpS2thg1qBXLR2GXrn5+fh06xZLh0Eyw8SfiIiIqiSFQgGVra2lwyCqNDirDxERERGRDDDxJyIiIiKSASb+REREREQywMSfiIiIiEgGmPgTEREREckAE38iIiIiIhlg4k9EREREJANM/ImIiIiIZICJPxERERGRDJQq8d+/fz/69u2LmjVrwt7eHv7+/pg1axYePXpkdptbtmxBt27d4OLiAgcHBwQGBmLhwoXIzc3VWz41NRXLly9H//794enpCZVKBUdHR7Rs2RIffvgh7ty5Y3YsRERERERVhdmJ//LlyxEWFoZff/0VdnZ2aNq0KZKSkjB//ny0bt0a9+/fN7nNKVOmYODAgThw4ADc3Nzg6+uLuLg4TJ06FT169IBarS5SJzQ0FJMmTcIvv/yCrKwsPPfcc6hVqxbi4uLw8ccf47nnnsOZM2fM3UwiIiIioirBrMQ/OjoaERERAICoqCikpKQgJiYG165dQ0hICOLj4zF27FiT2ty2bRsWLVoElUqFX375BQkJCTh79izi4uLg7e2NQ4cOYcaMGUXqqVQqTJgwAadPn8bdu3cRHR2Na9euIS4uDsHBwbh9+zYGDBiAJ0+emLOpRERERERVglmJ/7x586DRaDBy5EiMGzcOCoUCAFCvXj1s2LABVlZW2Lp1K86dO2d0m5GRkQCADz74AOHh4dJyf39/rFmzBgCwYsWKIkN3Tpw4gZUrVyIkJESKAwCaNm2KrVu3wtbWFsnJydi1a5c5m0pEREREVCWYnPhnZWVJSfS4ceOKrG/cuDG6d+8OANi0aZNRbV65cgVnz5412Gb37t3h6+sLtVqN7du366xzc3Mz2K6npyeaNm0KALh06ZJRsRARERERVUUmJ/5nzpyBWq2GSqVCmzZt9Jbp1KkTAOD48eNGtakt5+PjAw8PjzJpUys7OxsAUK1aNZPqERERERFVJTamVrh8+TIAoGHDhrC1tdVbplGjRgCMP8uubVNbryzaBAquRbhy5QqAf744EBFR5aDJz7d0CHrlazSWDoGIqFyYnPhrZ+txdXU1WEa7Lj093WJt5ubmYuLEiQCAXr16ITAwsNjyUVFRWLVqlVFtx8fHG1WOiIj00+Tn4+ixY5YOg4hIVkxO/LWz4yiVSoNlVCoVgH+G2ViizXfeeQcnT55EjRo1EBUVVWL5mzdvIiYmxqi2iYiobOTcN+5kDhERlZ7Jib+dnR0AICcnx2AZ7Xz79vb2Fmlz7ty5iIqKgkqlwpYtW+Dp6Vlinbp16yI4ONioeOPj443+AkJERMUL9PaGlZWi5IIWYKXgDe6JqOowOfF3cXEBgGJv0KVdpy1bkW0uWrQIs2fPhq2tLTZt2iTNMFSS8ePHY/z48UaVDQkJ4a8DRERlxMpKAWsrJthEROXN5COtn58fACAlJQW5ubl6y1y9elWnrLFtJiQkGCxjTJtffvklpkyZAmtra3z//fd46aWXjHp+IiIiIqKqzuTEPygoCEqlEmq1GidPntRb5vDhwwCAdu3aGdVmaGgoACAxMRGpqalmtbl69WpMmjQJCoUCX3/9NV599VWjnpuIiIiISA5MTvydnJzQq1cvANA7C86VK1ewb98+AMDAgQONatPPzw/Nmzc32Oa+ffuQkJAApVKpc1dfre+//x5vvvkmhBD473//i9GjRxu9PUREREREcmDWoMpZs2ZBoVBg3bp1WLVqFYQQAApmxhk6dCg0Gg369++Pli1b6tTz8vKCl5cXNm/eXKTN2bNnAwAWLFiAHTt2SMsvXbqEMWPGAAAmTpyImjVr6tTbunUrXnvtNWg0GnzxxRdGj9MnIiIiIpITky/uBYDWrVtj8eLFeO+99zB+/HjMnz8f7u7uuHDhAtRqNZo0aYLVq1cXqZecnAwAyMrKKrLulVdeQUREBJYuXYrw8HA0atQIjo6OiIuLQ35+Pjp27IhPPvmkSL2hQ4ciPz8f1apVw8aNG7Fx40a9Mb/wwguYMWOGOZtLRERERPTMMyvxB4CIiAg0b94cixYtwokTJ3D79m14enpi4MCBmD59OhwdHU1uc8mSJWjfvj1WrFiB2NhY3LhxA82aNcOIESMwefJkvXcK1k4B+vjxYxw9etRg276+vibHQ0RERERUVZid+ANAWFgYwsLCjC6vHRJUnEGDBmHQoEFl2iYRERERkdxx4mQiIiIiIhlg4k9EREREJANM/ImIiIiIZICJPxERERGRDDDxJyIiIiKSASb+REREREQywMSfiIiIiEgGSjWPPxERFdxPRHszwcpGrVYjPz8fQmgsHQoRGVBZjx9KpRIKhcLSYVAZYuJPRFRKOTk5mDRpkqXD0Cs/Px9Hjx5FjrUrRH4+UPQG6ERkYVOmTLF0CHotW7YMKpXK0mFQGWLiT0RURjL/umDpEIrI12iQk54BuLtaOhQi0qMyHjcAoHpAM0uHQOWAiT8RURn698uvwNba2tJhSB6p1Ri6eJGlwyCipyhtbDBr0KuWDqOI3Px8fLp1i6XDoHLCxJ+IqAzZWltDZVt5xtPk5OVaOgQi0kOhUFSqYwXJA2f1ISIiIiKSASb+REREREQywMSfiIiIiEgGmPgTEREREckAE38iIiIiIhlg4k9EREREJANM/ImIiIiIZICJPxERERGRDDDxJyIiIiKSASb+REREREQywMSfiIiIiEgGmPgTEREREckAE38iIiIiIhlg4k9EREREJANM/ImIiIiIZMDG0gEQEVHFyNdooMnPt3QYAApiISKiisXEn4hIJk6cPAFra1tLh0FERBbCxJ+ISAY0ajVy7mfA2pqHfSIiueInABFRFaa0tkGIjw8S1SoE+XjDxqbynfG3UvByMyKiisDEn4ioKlMoYGVlBYVCAWsrK1hbMckmIpIrfgIQEREREckAE38iIiIiIhlg4k9EREREJANM/ImIiIiIZICJPxERERGRDDDxJyIiIiKSASb+REREREQywMSfiIiIiEgGSpX479+/H3379kXNmjVhb28Pf39/zJo1C48ePTK7zS1btqBbt25wcXGBg4MDAgMDsXDhQuTm5uotr9FosHPnTsydOxcvvfQS6tSpA4VCAYVCgaSkJLPjICIiIiKqSsy+c+/y5cvx7rvvQgiB+vXro0GDBrhw4QLmz5+PLVu24MiRI3B1dTWpzSlTpmDRokUAgEaNGsHBwQFxcXGYOnUqduzYgd27d0OlUunUefDgAV544QVzN4OIiIiISBbMOuMfHR2NiIgIAEBUVBRSUlIQExODa9euISQkBPHx8Rg7dqxJbW7btg2LFi2CSqXCL7/8goSEBJw9exZxcXHw9vbGoUOHMGPGjKIbYGWFoKAgjB07FqtWrcKRI0fM2SQiIiIioirNrMR/3rx50Gg0GDlyJMaNGweFQgEAqFevHjZs2AArKyts3boV586dM7rNyMhIAMAHH3yA8PBwabm/vz/WrFkDAFixYgXu3LmjU8/Z2RkxMTFYtWoVxo4di5YtW5qzSUREREREVZrJiX9WVhZ27doFABg3blyR9Y0bN0b37t0BAJs2bTKqzStXruDs2bMG2+zevTt8fX2hVquxfft2U0MmIiIiIpI9kxP/M2fOQK1WQ6VSoU2bNnrLdOrUCQBw/Phxo9rUlvPx8YGHh0eZtElERERERP8w+eLey5cvAwAaNmwIW1tbvWUaNWoEALh06ZJJbWrrlUWbREREJG9CCOTk5Vk6jBIpbWykYdNE5cnkxP/+/fsAUOyMPdp16enpFmvTVFFRUVi1apVRZePj48slBiIiIio7OXl5mLdpo6XDKNGsQa9CZeBkKlFZMjnxf/LkCQBAqVQaLKOdcjM7O9tibZrq5s2biImJKZe2iYiIyHKuPTGcX1iaj12OpUMgGTE58bezswMA5OQY3lHVajUAwN7e3mJtmqpu3boIDg42qmx8fHy5fQEhIiKisten5zBYW5t9+6Iyl5+fh527f7B0GCQzJr8DXFxcAPwzPEcf7TptWUu0aarx48dj/PjxRpUNCQnhrwNERETPEGtrG9jYcDgNyZvJs/r4+fkBAFJSUpCbm6u3zNWrV3XKGttmQkKCwTKmtklERERERP8wOfEPCgqCUqmEWq3GyZMn9ZY5fPgwAKBdu3ZGtRkaGgoASExMRGpqapm0SURERERE/zA58XdyckKvXr0AQO8sOFeuXMG+ffsAAAMHDjSqTT8/PzRv3txgm/v27UNCQgKUSqXOXX2JiIiIiMg4Jif+ADBr1iwoFAqsW7cOq1atghACQMHMOEOHDoVGo0H//v3RsmVLnXpeXl7w8vLC5s2bi7Q5e/ZsAMCCBQuwY8cOafmlS5cwZswYAMDEiRNRs2ZNc0ImIiIiIpI1sxL/1q1bY/HixQAKLor19PREcHAwvL29ER0djSZNmmD16tVF6iUnJyM5ORlZWVlF1r3yyiuIiIiAWq1GeHg4fH19ERgYiICAACQmJqJjx4745JNP9MbTr18/uLu7w93dHV5eXtLy4OBgabmxM/YQEREREVVFZiX+ABAREYE9e/agT58+ePToES5cuABPT0/MmDEDp0+fhru7u8ltLlmyBBs3bkSXLl1w9+5dXL58Gc2aNcOCBQuwb98+adrPp2VmZuLevXvSQys9PV1aVtyMQUREREREVV2pJrQNCwtDWFiY0eW1Q4KKM2jQIAwaNMikOA4cOGBSeSIiIiIiuTH7jD8RERERET07mPgTEREREckAE38iIiIiIhlg4k9EREREJANM/ImIiIiIZICJPxERERGRDDDxJyIiIiKSASb+REREREQyUKobeBFVdhqNBllZWZYOo0SOjo6wsqoc38PZZ6YTQiA/Px/5Gg1y8nItHY6O3Px8S4dARM8QIQTyNRrk5+fj4cOHUKvVlg5Jr8r0GfAsYeJPVVpWVhbatm1r6TBKdOLECTg7O1s6DADsM3Pk5OTg6NGjyEnPwCdbtvDDiIieWbn5eYi5dg3K9Pvo1KmTpcMxqDJ9BjxLmPiTLDzJc7B0CAbZ2TyydAh6sc9Mp3HyQKJaBYVCYelQiIhKhZ8BVRMTf5KNoQPGwdbW1tJhSHJzc7Fh2ypLh1Es9pnpej0/FEpbpaXD0Mvamod8Iiqe0toGIT4+SFSr0Ov5oZXquPEsfAZUdpXn1SQqZ7a2tlApVZYO45nCPjOdtbUNbGwqz5clIiKTKBSwsrKCQqGA0lbJ41kVw4GoREREREQywMSfiIiIiEgGmPgTEREREckAE38iIiIiIhlg4k9EREREJANM/ImIiIiIZICJPxERERGRDDDxJyIiIiKSASb+REREREQywMSfiIiIiEgGmPgTEREREckAE38iIiIiIhlg4k9EREREJANM/ImIiIiIZICJPxERERGRDDDxJyIiIiKSASb+REREREQywMSfiIiIiEgGmPgTEREREckAE38iIiIiIhlg4k9EREREJANM/ImIiIiIZICJPxERERGRDDDxJyIiIiKSASb+REREREQywMSfiIiIiEgGmPgTEREREckAE38iIiIiIhkoVeK/f/9+9O3bFzVr1oS9vT38/f0xa9YsPHr0yOw2t2zZgm7dusHFxQUODg4IDAzEwoULkZubW2y927dv491334WPjw/s7OxQp04dDB48GLGxsWbHQkRERERUVZid+C9fvhxhYWH49ddfYWdnh6ZNmyIpKQnz589H69atcf/+fZPbnDJlCgYOHIgDBw7Azc0Nvr6+iIuLw9SpU9GjRw+o1Wq99RISEtCiRQssW7YMt2/fRkBAAIQQ2LhxI9q2bYvt27ebu5lERERERFWCWYl/dHQ0IiIiAABRUVFISUlBTEwMrl27hpCQEMTHx2Ps2LEmtblt2zYsWrQIKpUKv/zyCxISEnD27FnExcXB29sbhw4dwowZM4rUE0Jg0KBBSEtLQ+/evZGamoro6GikpqZi1qxZyMnJwfDhw3Hz5k1zNpWIiIiIqEowK/GfN28eNBoNRo4ciXHjxkGhUAAA6tWrhw0bNsDKygpbt27FuXPnjG4zMjISAPDBBx8gPDxcWu7v7481a9YAAFasWIE7d+7o1Pvll18QGxuL6tWr44cffkD16tUBADY2Npg7dy46d+6MrKwsLFy40JxNJSIiIiKqEkxO/LOysrBr1y4AwLhx44qsb9y4Mbp37w4A2LRpk1FtXrlyBWfPnjXYZvfu3eHr6wu1Wl1k2I72OQYNGgQXF5cidbXtbdy40ahYiIiIiIiqIpMT/zNnzkCtVkOlUqFNmzZ6y3Tq1AkAcPz4caPa1Jbz8fGBh4eHSW1q/9+5c+di612/fh2pqalGxUNEREREVNXYmFrh8uXLAICGDRvC1tZWb5lGjRoBAC5dumRSm9p6xraZk5ODpKSkYus2aNAASqUSOTk5uHTpksEvFs+SGzduWDqEZ8bDhw+lv0uaGaqiFY7n5s2byMrKsmA0/2Cfma4y9xlRRcjPz4MQAhqNBulZWVDamJxelIucvDxoNBoIIZCTm4N8jcbSIUnYZ6arrJ8BWvXq1bN0CCUyeS/Tztbj6upqsIx2XXp6erm2mZmZCc3/3yEN1VUoFKhRowZu375dbDxRUVFYtWqVUfHGx8cbVa68hIWFSX/fuHHD4GxH9A8BayxaNtnSYeilQD5atmxp6TCKYJ+ZrjL3GVFFOJefg19OnbR0GEVZK3HurxOWjkIv9pnpKutnQEBAQJFl/v7+WL9+vQWi0c/kxP/JkycAAKVSabCMSqUCAGRnZ5drm9p6ZRHPzZs3ERMTY1S8llb4i4enpydSUlIsGA0REVEll5dn6QiePewzk+nLI+/evWuBSAwzOfG3s7MDUDDMxhDtGWh7e/tybVNbryziqVu3LoKDg42KNzExEU5OTvD39zeqfHnSDjGwt7dH06ZNLRzNsyE+Ph7Z2dnsMxOwz0zHPjMd+8x07DPTsc9Mxz4znbbPCg8FrQxMTvy1M+cUd4Mu7Tp9s+yUZZvVq1eHlZUVNBqNwbpCCGRkZJQYz/jx4zF+/Hij4q1MvL29kZ6ejqZNmyI6OtrS4TwTQkJCEBMTwz4zAfvMdOwz07HPTMc+Mx37zHTsM9Np+8zb29vSoegweVYfPz8/AEBKSorBi9iuXr2qU9bYNhMSEgyW0demUqmEp6dnsXX//vtv6dcAY+MhIiIiIqpqTE78g4KCoFQqoVarcfKk/otRDh8+DABo166dUW2GhoYCKBhCY2jKTUNtautq1xuqV79+fdSvX9+oeIiIiIiIqhqTE38nJyf06tULAPTOgnPlyhXs27cPADBw4ECj2vTz80Pz5s0Ntrlv3z4kJCRAqVTq3NW38HNs2rRJ76w92vYGDRpkVCxERERERFWRyYk/AMyaNQsKhQLr1q3DqlWrIIQAUDAzztChQ6HRaNC/f/8iUy15eXnBy8sLmzdvLtLm7NmzAQALFizAjh07pOWXLl3CmDFjAAATJ05EzZo1der1798fLVq0QGZmJoYPH47MzEwAQH5+Pj766CMcOnQI1apVw5QpU8zZVCIiIiKiKsGsxL9169ZYvHgxgIKLYj09PREcHAxvb29ER0ejSZMmWL16dZF6ycnJSE5O1nvDhVdeeQURERFQq9UIDw+Hr68vAgMDERAQgMTERHTs2BGffPJJ0Q2wssKmTZtQq1Yt7Ny5Ex4eHmjVqhXq1auHefPmwdbWFt9///0zcVMFIiIiIqLyYlbiDwARERHYs2cP+vTpg0ePHuHChQvw9PTEjBkzcPr0abi7u5vc5pIlS7Bx40Z06dIFd+/exeXLl9GsWTMsWLAA+/bt05m+szA/Pz+cO3cOb7/9NmrWrInz588DKBgGdOLECQwYMMDczSQiIiIiqhJKdX/osLAwnbvIlkQ7JKg4gwYNMms8fu3atbF8+XIsX77c5LpERERERFWd2Wf8iYiIiIjo2cHEn4iIiIhIBpj4ExERERHJQKnG+JPljRs3Djdv3kTdunUtHcozg31mOvaZ6dhnpmOfmY59Zjr2menYZ6arrH2mEMZccUtERERERM80DvUhIiIiIpIBJv5ERERERDLAxJ+IiIiISAaY+FcR586dg62tLRQKBRQKRbFlc3Nz8fnnn6Nly5ZwcHCAi4sLunXrhq1bt1ZQtBVv9+7deOedd9CuXTvUr18fdnZ2cHBwQEBAACIiIpCSklJsfTn22dmzZxEZGYnu3bujdu3asLW1hYuLCzp16oSVK1ciNze32Ppy7LOMjAxs3LgRU6dORdeuXeHk5ASFQgEvLy+j6gshsGbNGoSGhsLZ2RnOzs4IDQ3FmjVrjLoB4rNq//796Nu3L2rWrAl7e3v4+/tj1qxZePTokaVDs4hbt25h3bp1mDRpEtq1awd7e3soFAp07dq1xLpyfN8JIXDs2DH8+9//RseOHeHm5gZbW1vUrFkTPXv2xPr164t9/2RlZWHmzJnw9/eHvb09atasib59++LAgQMVtxEWsGnTJowbNw6tWrVCvXr1oFKp4OTkhODgYMyaNQv37t0zWFeufabPb7/9JuVexR3rK02fCXrm5eXlidatWwsA0sOQ7Oxs0bFjRwFAWFtbixYtWohGjRpJ9T744IMKjLzi9OvXTwAQNjY2okGDBqJVq1bC29tbWFtbCwDC0dFR7NmzR29dOfZZQkKCzv6k7bM6depIy1q3bi3u37+vt74c+0wIIbZt26bTb9qHp6dniXXz8/PFoEGDpDrNmjUTzZo1k/4/ZMgQodFoyn8jKtiyZcuEQqEQAET9+vVFUFCQUKlUAoBo2rSpuHfvnqVDrHBLlizRux916dKl2Hpyfd/t3btXp598fHxESEiIcHV1lZa9+OKL4smTJ0Xq3rlzRzRp0kQAECqVSgQFBYn69esLAEKhUIgVK1ZYYIsqRsuWLaXt9vLyEq1atRINGzaU+qxWrVoiNja2SD0599nTHj58qNNnho71lanPmPhXAYsWLRIApOS2uMR/0qRJAoDw9vYWFy9elJb/8ssv0oft9u3bKyLsCrVhwwbx+++/i8ePH+ssv3btmujatasAINzd3cWjR4+K1JVjn125ckXUqlVLzJ8/XyQlJems+/XXX4Wbm5sAIF599VW99eXYZ0IIsWvXLtG5c2fx/vvviw0bNogVK1YYnfgvXrxYABCurq7i2LFj0vJjx45JCcyyZcvKMfqKd/r0aWFlZSUUCoWIioqSvtikpqaKkJAQAUC8/PLLFo6y4n399deiR48eYvr06WLr1q1i1qxZRiX+cn3f7dmzR3h7e4svvvhCpKWl6az77rvvpG2fNm1akbrh4eECgAgJCRGpqalCCCE0Go2IioqSvkCdOXOmIjajwq1atUocPHhQ5OTk6Cw/d+6ceO6556QTEE+Tc5897Z133tHJvwwd6ytTnzHxf8YlJiYKBwcHERwcrHPWQ59bt24JpVIpAIh9+/YVWa/9cAkODi7vsCuVW7duSf3222+/FVknxz7Lzs7W+yVIa/369dLB6u7duzrr5Npn+uzYscOoxD8nJ0e4u7sLAOJ///tfkfVff/21dAYuNze3nKKteNoPy1GjRhVZd/nyZWFlZSUAiLNnz1oguspj+fLlJSb+cn7fZWZmFkleC/vPf/4jfanOz8+XlsfExAgAwsrKSly5cqVIvZEjR8r2y+eJEyekz8ULFy5Iy9ln//jzzz+FlZWV6Nevn/jmm28MHusrW58x8X/G9ezZU1hbW4vTp0+L/fv3F5v4r1q1SgAQjRs31rv++vXrUv2EhITyDLvS0Z5R3bx5s85y9pl+9+/fl7b7+PHjOuvYZ/8wNvHfvXu3NORM33CEJ0+eCEdHRwFA7N27t5yirVgPHz6UzsQeOXJEb5kePXoIAGLmzJkVHF3lYkziz/edYdrEC4C4deuWtHzGjBkCgOjRo4feekeOHBEAhJ2dncjKyqqocCuFBw8eSH12+vRpaTn7rEBOTo547rnnhKOjo/j777+LTfwrW5/x4t5n2HfffYfdu3fj7bffRkhISInljx8/DgDo1KmT3vUeHh7w9vbWKSsH8fHxuH//PqysrBAUFKSzjn2mX3Z2tvR3tWrVdNaxz0yn7Yc2bdpApVIVWa9SqdC6dWudss+6M2fOQK1WQ6VSoU2bNnrLaPehqrLN5YnvO8MKH6/s7e2lv7X90LlzZ731tO/HJ0+eIDY2tlxjrGyOHDkCAHB0dESTJk2k5eyzAp988gni4uIwb9481K9fv9iyla3PmPg/o+7cuYP33nsP9evXx7x584yqc/nyZQBAo0aNDJbRrrt06VLpg6zEhBC4ffs2tm7divDwcADAlClT4OPjo1OOfabfhg0bAABubm5o1qyZzjr2menk2GfabW7YsCFsbW31lqlq21ye5LgPGUt7vGrZsiWcnZ2l5SX1ma2tLRo0aABAHn2m0Whw48YNrF27Fq+99hoA4NNPP4Wjo6NUhn1WcLLw448/RnBwMN55550Sy1e2PrMp92egcvHuu+/i3r172Lp1K5ycnIyqc//+fQCAq6urwTLadenp6aUPshL6+eefMWDAAJ1l/v7+WL9+PYYNG1akPPusqJSUFOnL5pQpU2Btba2znn1mOjn2mRy3uTyxP/WLjo7GV199BQD497//rbOOfVZg6dKlmDx5ss6yNm3a4Ntvv0Xv3r11lsu9z4QQGDt2LHJzcxEVFVXk80+fytZnPOP/DPrtt9+wYcMGhIeHF0lii/PkyRMAgFKpNFhGO8yg8E+jVYmbmxs6dOiAdu3aoWHDhrCyssLly5fx/fff4++//y5Snn2m6/Hjx+jfvz8yMzPRpk0bvP/++0XKsM9MJ8c+k+M2lyf2Z1FpaWl4+eWXkZeXhwEDBmDIkCE669lnBTw8PNChQwe0bdsWdevWhUKhQGxsLL777jtkZGTolJV7n/33v//F0aNH8fbbb6NVq1ZG1alsfcbEvwJFRERIN3kw5VH4pi1ZWVmYMGECHBwcsHz5cpOe387ODgCQk5NjsIxarQagOw7Sksqizwrr1KkTjhw5gmPHjiE5ORkJCQkIDw/Hzp070a5dO2RmZuqUZ5/9IycnBy+//DLOnDkDLy8vbN26Ve8QDfaZ6Z7FPistOW5zeWJ/6srMzESfPn2QkpKCkJAQrF27tkgZ9lmBQYMG4ciRIzh+/Dhu3LiB2NhYtG3bFhs2bEC3bt2Qn58vlZVzn6WmpmL69Onw8PDA/Pnzja5X2fqMQ30qkKOjI9zc3EyuV716denvjz76CCkpKVi0aBEaNmxoUjsuLi4A/vnZSR/tOm1ZSyuLPiuOt7c3Nm/ejBYtWuDChQv48ssv8eGHH0rr2WcF8vLyMHjwYPz++++oV68e/vjjD3h4eOgtyz4z3bPYZ6Ulx20uT+zPf2RlZaF37944c+YMAgIC8Pvvv+uM7ddycXHB48eP2WdPadGiBX799Vf4+PggNjYWP/74I4YPHw5A3n32zjvv4MGDB/jmm2+MHmINVL4+Y+JfgebPn2/St0R9YmJiABRccPPZZ5/prCv8bbJOnToAgC+++AKDBw8GAPj5+eHo0aNISEgw2P7Vq1elspVBWfRZSaytrdGnTx9cuHAB0dHROuvYZ0B+fj6GDx+On3/+GTVr1sTevXuLXARdGPvMdNp+eJb6rLS025GSkoLc3Fy9vx5VtW0uT8/i+648PH78GC+++CKOHz+Oxo0bY+/evQa/1Pv5+SE1NdVgn+Xm5iIlJUUqKydOTk7o0qULtmzZgujoaCnxl3OfafOviRMnYuLEiTrrtEN0/v77byn/2rp1K9q3b1/p+oxDfZ5Rd+7cQVpams6j8EUh2mWFx4uFhoYC+GearqelpqYiMTFRp6xc5OXl6fyrJfc+02g0+Ne//oWNGzfCxcUFe/bsQdOmTYutI/c+M4e2H06dOiX95FuYWq3GqVOnAADt2rWr0NjKS1BQEJRKJdRqNU6ePKm3zOHDhwFUnW0uT3zfFYylDg8Px6FDh+Dp6Yk//vhDSsL00faDdj972smTJ5GTkwM7OzsEBgaWR8iVmr7PRfYZiuReaWlpePDgAYCCz0ztMu3J2ErXZ+V+pwCqMCXdwOvWrVvC1ta2xDs7BgUFlXeolYparRaNGjUSAMRHH32ks07ufTZ27FgBQDg7O4uTJ08aVUfufVaYKXfudXNzK/HOvTVr1qxSd+596aWXjLpzb2xsrAWiqzyMvXOvnN93OTk54oUXXhAAhIeHh7h69WqJdaKjo6U7kBd3R9UBAwaUR8iV2r1790T16tWLHJPYZ/oVdwOvytZnTPyrkJISfyGEePvttwUA4e3tLS5evCgt3759u3QXzZ9//rkiwq0wFy9eFFOnThV//fVXkXWXL18WvXr1EgCEg4OD+Pvvv4uUkWOfCSHE5MmTpbvJHj161KS6cu2zpxmb+AshxMKFCwUA4erqKo4dOyYtP3bsmHRn6aVLl5ZjtBXv5MmTQqFQCIVCIaKiooRGoxFCCHHjxg0REhIiAIj+/ftbOErLMybxF0K+77u8vDwxcOBAAUDUqVNHXLp0yei6ffv2FQBESEiIuHHjhhBCCI1GI6KiogQAYWVlJaKjo8srdIs5cOCAmDdvnkhMTCyyLjo6WrRq1Ur6EvXw4UOd9XLts+IUl/gLUbn6jIl/FWJM4v/48WPRrl076dtny5YtpbPdAMT7779fgRFXjDNnzkjb5+rqKoKDg0Xbtm2Fp6entNzFxUXs3r1bb3059tmxY8ek7atbt67o0KGDwcdvv/1WpL4c+0zLzc1Nejg7O0sH9cLL33777SL18vPzxcsvvyz1UbNmzUSzZs2k/w8aNEjk5+dbYIvK15IlS4RCoRAARIMGDURQUJCUpDZp0kTcuXPH0iFWuJSUFJ39xcHBQQAQNjY2OssXLFigU0+u77sffvhB2kYvL69ij1cxMTE6dW/fvi0aN24sAAiVSiWCgoJEgwYNBAChUCjEsmXLLLRV5Wvbtm1Sn9WpU0eEhISINm3aiLp160rLPTw8xJkzZ4rUlWufFaekxL8y9RkT/yrEmMRfiIKhLZ9++qlo3ry5sLe3F9WrVxddunQRmzdvrqBIK9bDhw/FypUrxaBBg4Sfn5+oXr26sLGxEa6urqJ9+/Zi7ty5Ii0trdg25NZnhfelkh7ffPON3jbk1mdaxvTZ6NGj9dbVngFq3bq1cHR0FI6OjqJ169Zi1apV0tnwqmjv3r2iT58+wtXVVahUKuHn5ydmzJhR5EyjXCQmJhq1H82ePbtIXTm+77RJlzGP/fv3F6n/4MEDMWPGDOHn5ydUKpVwdXUVffr00TtkqqpIS0sTixcvFuHh4aJRo0bCyclJ2Nrailq1aolu3bqJxYsXiwcPHhisL8c+K05Jib8QlafPFEIIASIiIiIiqtI4qw8RERERkQww8SciIiIikgEm/kREREREMsDEn4iIiIhIBpj4ExERERHJABN/IiIiIiIZYOJPRERERCQDTPyJiIiIiGSAiT8RERERkQww8SciIiIikgEm/kREZLakpCQoFAooFAokJSVZOpxizZw5EwqFAgsWLLB0KBUiKysLNWvWhIuLC+7du2fpcIioEmDiT0T0/82ZM0dKYstabGws5syZg6VLl5Z525VVUlIS5syZgzlz5lg6FFy/fh2LFy9GzZo18fbbbxdZ37VrV+m1L/ywsrKCs7MzAgMDMWXKFCQnJxt8jsL7T+GHnZ0d6tevj/DwcGzcuBFCiCJ1165dq1Pn008/LXGb3nrrLZ06Bw4c0Fnv6OiI999/HxkZGZg7d27JnUREVR4TfyKiChAbG4vIyMgql/jb2tqiSZMmaNKkCWxtbXXWJSUlITIyEpGRkRaK7h8ffvghsrOzMW3aNDg4OBgsZ2tri9q1a0sPFxcXPHz4EGfPnsWiRYvQtGlT7Ny5s8TnK9yGQqFAamoqduzYgcGDB+PFF1+EWq0utv7atWuLXf/kyRNs2LChxDjefvttuLu747///S8SEhJKLE9EVRsTfyIiMpuHhwcuXryIixcvwsPDw9Lh6JWamor169dDqVTi9ddfL7Zs+/btcevWLelx7949ZGdn48cff4Sbmxuys7MxYsQIPHr0qNh2Crfx6NEjxMXF4fnnnwcA7Ny5EzNnzjRY18vLC5cuXcKxY8cMlvn555+Rnp4OLy+vYuNwdHTE8OHDkZubW+W+dBKR6Zj4ExFRlbZ69Wrk5+fjhRdegKurq8n17ezsMHjwYClxvn//Pg4dOmR0fSsrKwQEBGD79u3w9fUFAERFRSEvL09v+dGjRwMA/ve//xlsU7vutddeK/H5R4wYAQD4/vvv8fjxY6PjJqKqh4k/EZERDhw4oDP+PyEhAa+//joaNGgAlUqF+vXrY+zYsUhNTS1SV6FQ4F//+hcAIDk5ucgYcH1j4O/cuYOZM2ciKCgI1atXh52dHXx8fPDGG2/gr7/+KvMYtS5evIhx48bBz88P1apVg52dHRo0aIDQ0FDMmDEDFy9e1Clv6OJeLy8vdOvWTacPCj+0CWtoaCgUCgUmTpxoMCYA+OOPP6Qx99euXSu2bGFCCHz99dcAgGHDhhldT5/AwEDp76ysLJPr29nZYdCgQQCAhw8fFulLrdGjR0OhUGDjxo16E/WUlBT88ccfcHR0xMCBA0t83latWqFx48bIzMzETz/9ZHLcRFR1MPEnIjLR/v37ERQUhG+++QaZmZnQaDRITU3FmjVr0KZNmyKJde3ateHs7Ayg4Oxv4fHftWvXhqOjo075vXv3ws/PD//5z38QGxuL7Oxs2NjYIDExEf/73/8QHByM7777rkxjBIA9e/YgMDAQq1evxpUrV5CXlwd7e3tcv34dJ06cwCeffIIff/zRqD7SziZTuA8KP6pXrw4AePPNNwEA69evL/Zs9OrVqwEAPXr0gI+Pj1ExAEBcXByuX78OAOjUqZPR9fQ5e/as9HeTJk3MaqN+/frS3w8ePNBbxtvbG127dsXDhw+xefPmIuu//fZbaDQavPrqq8Ver1BY586dAQC7du0yI2oiqiqY+BMRmeiVV15B9+7dER8fjwcPHuDRo0f46aef4OTkhBs3bmD69Ok65W/duoUvvvgCANCgQQOd8d+3bt3ClClTpLLnz59HeHg4MjIyMHbsWFy4cAHZ2dnIyspCcnIyJk6ciJycHLzxxhs4ffp0mcUIABMmTIBarUbPnj1x/vx55OTkID09HdnZ2YiLi0NkZGSJY8q1Tp06ha1bt+r0QeGHtj8GDx4MFxcXPHjwwODZ6Lt372Lbtm0AgPHjxxv1/FraITkNGjRAnTp1TKqrpVarsXnzZkyePBkA0LNnT7Ro0cKstgr/KlLcsCPttQhPD/cRQkgX/pZ0vUJhbdu2BQCThigRURUkiIhICCHE7NmzBQCh79C4f/9+aV23bt1Efn5+kTLLli0TAIS9vb3Izc3VWffNN98IAMLT07PYGLp37y4AiOnTpxssM2nSJAFA9OvXr8xiTEtLk+reuHGj2BgLS0xMlOolJiYajKc4ERERAoAIDQ3Vu37hwoUCgKhdu7bIyckxOjYhhBg5cqQAIPr27VtsuS5duggAwtbWVtSuXVt6uLq6StvQoEEDMW3aNPH48WO9bRS3/wghRGZmpqhXr54AIFxdXXVeH+3+oa37+PFj4ezsLBQKhbh69apUbt++fQKA8PPzE0Lo9v/+/fsNbt+pU6ekcteuXSu2L4io6uIZfyIiE82YMQNWVkUPn/369QMAZGdn48qVKya3m5SUhH379sHGxkbnV4CnjRo1CkDBkKD8/PwyidHJyUkqf/PmTZNjLw3tcJ/jx4/j/PnzRdavWbMGQMEZ7qenDC3JjRs3ABQMPTJGbm4u0tLSpMf9+/eldZmZmbh//z4yMzNNiiEjIwN//PEHunfvLsXz7rvv6n19tOzt7TFkyBCdM/wA8M033wCAdM2Isdzd3aW/tTEQkfww8SciMpF22MTT6tWrJ/1dOGE01tGjRwEAGo0GzZo1Q506dfQ+evfuDQB49OiRwTuymhqjvb09wsLCAAC9e/fGRx99hBMnTiAnJ8fk7TBVkyZNpAuBtWP5tQ4fPoyLFy9CoVBg7NixJrd9584dAMUPqymsS5cuEELoPDIzM7F37160aNFCukaipC92hS9kdnFxQY8ePRAdHQ2gYJadDz/8sMRYtMm9dkz/gwcPsGXLFlhbW0tf/oxVePu1fUJE8sPEn4jIRE5OTnqX29jYSH/n5uaa3K72TKxGo9E56/z04+7du1IdQxfEmhPjmjVr0LJlS9y5cwfz5s1DaGgonJyc0LFjR3z++edmfZkxlvas//fff48nT55Iy1etWgUAeP755+Ht7W1yu9q2VCqV2bE5OzsjLCwMv/32Gzw9PfH333+XeK1B4QuZGzZsiODgYLzxxhvYt28f1q1bB2tr6xKfNzQ0FE2bNpVm8fnpp5/w+PFj9OrVS+cLnDHs7e2lvwv3LxHJCxN/IqJKQjtsp3bt2kXOOht6GHuxrTEaNmyImJgY7Nq1C5MmTUJISAg0Gg2OHj2KadOmwdfXF/v27Suz5ytswIABqF27NtLT07Fx40YAQHp6ujSrzbhx48xq183NTWqrtJycnDB48GAABbMmFTckqvCFzMnJyYiOjsaaNWt0pjg1hvas/zfffCNd6GvqMB9A99cdbZ8Qkfww8SciqiS0s87cvXu3xDvDlhcrKyv06tULX3zxBU6fPo379+9j/fr1aNiwIdLT0zFs2LByGf5ja2uLN954A8A/w320Z//r1KmD8PBws9rVju0vq18rPD09pb8Lz9BTXkaOHAkbGxts3rwZx48fh5ubm1l9UXj7jb3egYiqHib+REQVQHshpxDCYJkOHToAKDjzv3PnzgqJqyROTk4YNmyYdBOstLQ0vRfg6lP44tXitltr3LhxsLKywpEjRxAfHy99AfjXv/5l8kW9Ws2aNQMAk276VRztPQEAGD2HfmnUqVMHffr0kYZlDR8+HEql0uR2EhMTARQM9WrcuHGZxkhEzw4m/kREFUB7A6+MjAyDZRo3boyuXbsCAD788MMSZ48pyzH3JZ3FLzxGvLjZaArTbjNQ/HZreXp6ok+fPgAKxvyfP3/e7It6tbQ3rjp79izUarXZ7QAFY+O19yZwdHQ0+yZeppoxYwbef/99vP/++3jrrbfMauPEiRMAgJCQkAr5wkJElRMTfyKiCvDcc88BKLhbq3YMuz7Lly+Ho6MjLl++jNDQUPzyyy86F2OmpqZi3bp1CAsLwwcffFBm8R07dgwtWrTAkiVLEB8fD41GA6DgTP2xY8cwYcIEAAV3njX25lV+fn7S2ek1a9YYddZfe5Gv9kZT5l7Uq9WhQwfY2NggJycHsbGxZrdz4cIFDBkyBJcuXQIAvPXWW6W6YNgUoaGhWLhwIRYuXAg/Pz+z2tAm/l26dCnL0IjoGcPEn4ioAvj6+krTZQ4ePBjOzs7w8vKCl5cXli5dKpV77rnnsGvXLtSpUwcXL15E//794ejoCHd3d1SrVg3169fHqFGjyuUi2/Pnz+O9995Ds2bNYGdnB3d3dyiVSnTo0AHnz5+Hs7MzfvjhB6NmpAGAatWqYeTIkQCAadOmwdHREZ6envDy8jJ4n4IXXnhBZxy9uRf1ajk7O+PFF18EAGzfvr3E8seOHSsyfaqDgwMCAgLwyy+/ACh4/ebNm1equCrSgwcPcPDgQQDAsGHDLBwNEVkSE38iogqyefNmTJ48GX5+fsjNzUVycjKSk5OLDIPp0KEDLl++jIULF6Jz586oUaMGMjIyYG1tjaZNm2LEiBFYv369zheG0mrdujU2btyICRMmICQkBO7u7njw4AHs7OwQGBiIadOmIT4+Hp06dTKp3RUrVmDOnDlo3rw5ACAlJQXJyck6U5IWZmVlhZdffhkASnVRb2HaqTd/+OGHEn91ePoGXmlpadBoNPD29saQIUOwc+dO/Pjjj2Zfc2AJW7ZswZMnT9C2bVu0bNnS0uEQkQUphDG/vRIREVWQ5s2bIy4uDtOnT8fHH39c6vY0Gg38/Pxw9epVHDx4UBr3Lxfdu3fH/v378e2335p84y8iqlp4xp+IiCqNAwcOIC4uDlZWVqUe5qNlZWUlDc359NNPy6TNZ8WJEyewf/9+BAQEYPjw4ZYOh4gsjIk/ERFVCmlpaYiIiAAADBw4sExvTjZkyBC0adMGO3fuxMmTJ8us3cpuzpw5AIDPPvvM6GsziKjqsim5CBERUfkZMmQIjh49ilu3biEvLw9OTk5lfmZeoVAgKioKP//8M+7cuVOmbVdWWVlZCA0NRe/evfHCCy9YOhwiqgQ4xp+IiCyqa9euOHjwIKpXr47WrVtjwYIFCA4OtnRYRERVDhN/IiIiIiIZ4Bh/IiIiIiIZYOJPRERERCQDTPyJiIiIiGSAiT8RERERkQww8SciIiIikgEm/kREREREMsDEn4iIiIhIBpj4ExERERHJABN/IiIiIiIZ+H8e0p9uHWD5kAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(1, 1, figsize=(8, 5))\n", + "\n", + "for cond, col in zip(['Intero', 'Extero'], ['#c44e52', '#4c72b0']):\n", + " this_df = df[df.Modality == cond]\n", + " axs.hist(this_df.Alpha, color=col, bins=np.arange(-40.5, 40.5, 5), histtype='stepfilled',\n", + " ec=\"k\", density=True, align='mid', label=cond, alpha=.6)\n", + "axs.set_title('Distribution of the tested intensities values')\n", + "axs.set_xlabel('Intensity (BPM)')\n", + "plt.legend()\n", + "sns.despine(trim=10)\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pAt0AIUmHuhX" + }, + "source": [ + "## Staircases" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-4aCpZH3HuhX" + }, + "source": [ + "### Psi" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 375 + }, + "id": "kWFkQFF6HuhX", + "outputId": "281c6155-1905-4b3d-b54e-c12113a7e6a5" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABeoAAAH2CAYAAAAPoLxYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxU9bk/8M/ZZp/sJAESAoi4ASqLsqkIiqK4oa1YuyjUarHu9bZVXFqX21/rbdFW3CrYa71qq7iBKMqiCCiyuyC4ANkgezLrmTnb74+QSMhMMkkmGUI+79crL5KzPmeYTJ555nuer2BZlgUiIiIiIiIiIiIiIkoJMdUBEBERERERERERERH1ZSzUExERERERERERERGlEAv1REREREREREREREQpxEI9EREREREREREREVEKsVBPRERERERERERERJRCLNQTEREREREREREREaUQC/VERERERERERERERCnEQj0RERERERERERERUQqxUE9ERERERERERERElEIs1BMREXWDNWvWQBAECIKQ6lCIiIiIiKibNOX8a9asSXUoRNTLsVBPRNSN7r///m4p1m7btg33338/FixYkNTjUvvq6+tx//334/7770d9fX2qwyEiIiKiHnBoXp/IVzIw70ytBQsW4P7778e2bdtSHQoR9RFyqgMgIqKO27ZtG37/+9+jqKgIt956a6rD6VPq6+vx+9//HgBwzTXXICMjI+Z2LpcLxx13XA9GRkREREQ9IS8vr0fOk2jeSd1jwYIF2LdvHwYPHoxTTjkl7nZNOb/L5eqhyIjoaMVCPRERUTc47bTT8NVXX6U6DCIiIiJKsgMHDqQ6BDqCMOcnomRh6xsiIiIiIiIiIiIiohRioZ6IKAUOn2j0m2++wZw5c1BYWAi73Y6CggJcd911KCsra7WvIAi49tprAQD79u1r1Q/z/vvvb7VPVVUV5s+fj1NPPRXp6elwOBwYOnQo5s6diy+++CKhGLdu3Yqrr74aBQUFUBQFU6ZMabH9gQMHcOedd+Kkk06C2+2G2+3GSSedhP/6r/9CRUVFu4/JihUrMHv2bBQVFcHpdCIrKwujRo3CTTfdhA0bNsTcJxqNYuHChTj77LORk5MDm82G/Px8XHLJJVi+fHnccx064dOBAwfwq1/9CkOGDIHD4UB+fj6uvvrqmCNjpkyZgiFDhjT/PGTIkBaP/aGPSSKTyXbmMdu7d2/zcffu3YuKigrccsstzfHn5eVh9uzZHNlDREREdAT45S9/CUEQkJGRgb1798bc5oknnoAgCJBlGR9++CGAjuWdTZKRG1dWVuL222/H8OHD4XK5WuWyqqpiwYIFmDhxIjIzM+FwOFBUVISf/vSnCfVy37lzJ2688UaceOKJ8Hq98Hg8OO644zB79my8+uqrME0z5n7Lli3D5ZdfjoEDB8JutyMzMxNnnnkmnnjiCUSj0Zj7TJkypfn9UTQaxR//+EeMGjUKbrcbmZmZOPfcc2M+Lk3zEezbtw8AcO2117Y5B0F7k8l29jEbPHgwBEHAc889h2g0ij//+c84+eST4Xa7kZ6ejqlTp+Kdd96Juz8R9UIWERF1m/vuu88CYB3+crt69erm5atWrbI8Ho8FwPJ6vZYsy83rBgwYYJWWlrbYNy8vz0pLS7MAWKIoWnl5eS2+/vznP7fY/r333rMyMjKaj6koiuV2u5t/ttls1j//+c9WsR8a4yuvvGIpimIBsNLS0iyHw2GdddZZzduuWbOmxTncbneLc2RmZlpr166N+RgFg0HrBz/4QfO2TY9Denp6888nn3xyq/327t1rnXTSSc3bCILQYh8A1g033BDznE3rFy1aZOXn51sALKfT2fz/AMByOBzW8uXLW+x32WWXWTk5Oc3b5OTktHjsL7vsspiPXyydfcz27NnTvM3SpUut3NxcC4Dlcrksu93evC4tLc3atm1bzHMTERERUcfEy+vbEwqFmnPWCRMmWJqmtVj/2WefWQ6HwwJg3Xvvvc3LO5J3WlZycuNnnnnGysvLa86FvV5vi+stLS21RowY0eJ9xaHnEEXReuyxx+I+Fn/84x8tURRb5NtZWVktltXV1bV6/K644ooW15GWlmYJgtD88/jx463a2tpW5zvrrLMsANbvfvc764wzzrAAWLIst8jBAVj33Xdfi/3+/Oc/W3l5ec1xpaWltXrPFevxW716dasYuvKYFRUVWQCsv/3tb9bpp5/evP+h71kEQbCeffbZuI85EfUuLNQTEXWjRAr1mZmZ1sUXX2zt3LnTsizLikQi1ssvv9ycGP/kJz9pddzFixdbAKyioqI2z79jxw7L6XRaAKzrrrvO+vLLLy1d1y3Lsqx9+/ZZ8+bNa05YP/3007gxejwe64ILLmiO0bIsa/fu3ZZlWVZxcXFzsnviiSdaH330UfM2H374oXXcccdZAKysrKxWHzpYlmX98Ic/bE5Sf/Ob31glJSXN66qqqqwXXnih1ZuKQCBgHX/88RYAa8qUKdaaNWssVVUty7Ks+vp66y9/+UtzArtgwYJW52y6rvT0dGvQoEHWihUrLNM0LcuyrE8++cQaOXJkc1J+aDyW1bJQvmfPnriPfVuF+q48ZoeePzMz05o0aVLz/52madZ7771n9e/f3wJgnXHGGXHjIyIiIqLEdbZQb1mNxfimnPyuu+5qXn5oEX/SpEnNeXqTRPPOZOXGHo/HOu6446yVK1dahmFYlmVZu3btsizLsnRdby4Wp6enW//617+sSCRiWZZlffvtt9bMmTObC8dvv/12q3MsXLiw+TwXX3yxtXXr1uZ1wWDQWrFihXXllVdaDQ0NLfb78Y9/bAGwhg4dar3wwgvN68PhsPXGG29YQ4cOtQBYl156aatzNhXq09PTLbvdbj355JNWOBy2LKsxHz/0A4A33nij1f5NhfLFixfHfewPffwOL9R39TFrOn9mZqY1cOBA6/XXX7ei0ahlWZb11VdfWePHj2/+f6uvr28zRiLqHVioJyLqRokU6s8+++zmRPhQjz32WPNI78NH3iRaqJ86dWrzKJJ4br75ZguAdckll8SN8bTTTmv1xqHJDTfc0JxA7t+/v9X6kpKS5jsAbrzxxhbr3n///eZzLFy4sM1rOdQf/vAHC4B11llnNSerh1uyZEnz6KPDH7+mc9psNuvLL79stW9FRYWVlZVlAbDmzZvXYl0yCvVdecwOPf/xxx9vhUKhVvu/+eabzdsc/kEDEREREXXcoXn94aOrD/+6+eabW+3/xBNPNA9OWbVqlWVZlnX99ddbAKyMjAxr3759rfZJNO9MVm4ca5BKk5deeql5u3fffbfVek3TmovSI0aMaLGutra2eRDS7NmzmwfItOfDDz+0AFi5ublWcXFxzG1KSkqa70o9tPhvWd8X6gHEHHVuGIZ15plnWgCsk046qdX6rhbqu/KYHXp+u93eYsBUk8rKyua7Mf71r3+1GSMR9Q7sUU9ElGJ33XUXRLH1y/Ell1wCAAiHw/j66687fNy9e/di1apVkGUZv/71r+Nu99Of/hQA8P7778MwjJjb3HnnnZAkqdVyy7Lw73//GwBwww03ID8/v9U2BQUFuOGGGwAAL730Uot1ixYtAgCMGDECv/zlLxO4qkbPPvssAOD222+Hoigxt7n00kuRlpaG6upqbN68OeY2P/jBD3DCCSe0Wp6bm9sc88svv5xwXIno6mN2qDvuuANOp7PV8hkzZsBmswEAPvvss2SETUREREQHVVRUtPnV0NDQap8bbrgBs2bNgmma+PGPf4ynn34aTz31FADgmWeewaBBgzodT7Jy45/85CcoKCiIua4pJ54wYQKmT5/ear0sy7jvvvsAAJ9//nmLHPSVV16B3++Hoij4y1/+0uYcTrGu6+qrr0ZhYWHMbQoKCnD22WcDAN59992Y2xQWFjbP8XUoURQxf/58AMAXX3yR9Ly5K4/Zoa644gocf/zxrZb369cPEyZMAADs2LEjWWETUQqxUE9ElGKnn356zOUDBgxo/r62trbDx123bh0AwDRNnHjiicjPz4/5df755wMAgsEgampqYh5r0qRJMZfv2bOnObZzzjknbiznnnsuAKCmpgZ79uxpXr5+/XoAwMyZMxO+rrKysuaJnebOnRv3uvr3749AIAAAzdsfburUqXHP07Tu8Ji7qquP2aHiPXdkWUa/fv0AdO65Q0RERETxWY3dCeJ+PffcczH3+8c//oFBgwahvLwc119/PQDg5z//Oa644opOx5LM3Dhezg8AmzZtAtB2/nr22Wc3D+5p2h74PucfM2YM+vfvn/C1Nb2fefbZZ+NeV35+Pt5///02r6tpUtlYzjjjDMiy3CrmZOjKY3aoeDk/8P17Rub8REcHOdUBEBH1dV6vN+bypoQRADRN6/Bxy8vLATQW6isqKhLaJxQKxVyem5sbc3llZWXz9wMHDox73ENH5lRWVmLIkCEAgAMHDgAAioqKEooP+P66AKC6ujqhfeJdV1sxH7ru0Ji7qquP2aHiPXeA758/nXnuEBEREVHyZWZm4vHHH8dFF10EABg6dCgeffTRLh0zmblxvJwf+D6HbSt/dTgcyMnJQUVFRYuctzM5P/D9tfl8Pvh8vna370zO73A4kJ2d3SrmZOjKY3Yo5vxEfQcL9URER6mmNjZ5eXnNyXFnxWp7kwyJ3vZ6qEPb8+zcuTPmbaBEREREREeiZ555pvn7srIyfPPNNxg1alSnj5fM3PhIyvmB76/tiSeeaG4LSUR0NGPrGyKio1RT7/Pq6moEg8FuOceho25KS0vjbnfoukP3aYox3m2qsRza070j+8VSVlaW0Lq2Rhd1VFcfMyIiIiLqnf7+97/jzTffhCRJOPHEExGJRDB79uy4I8ETkczcuC1N+Whb+auqqs2tNLua83dlv8O1lfNHIpGYMSdDVx4zIuqbWKgnIuqFmiaftSwr7jZNPSYNw8Dy5cu7JY4hQ4YgKysLALBy5cq42zX1jczOzm7RwmXixIkAgLfeeivhcw4ePLj59tGO7BfL6tWr212XlZXVIuZDJ/5t6/GPp6uPGRERERH1Pp999hnuvPNOAMC9996Lt99+GxkZGdi5cyduu+22mPskkncmMzduy9ixYwG0nb+uWbMGuq4DAMaNG9e8vCnn37RpE/bv35/wOZvezyxdurTD8R7qgw8+iPv4rV27tjnmpmtsksh7rrZ05TEjor6JhXoiol4oLS0NAFBfXx93m2OPPRZTpkwBANx9991oaGho85idmYBIEARceeWVAICnnnoqZoud8vJyPPXUUwCAq666qsW6uXPnAgC++OILPPHEEwmf97rrrgPQOLHU1q1b29y2rev6z3/+g127drVaXl1d3Rxz0/U1aXrsgbYf/3i6+pgRERERUe8SDocxe/ZsqKqKyZMn4+6770ZRURGefvppAMDTTz+NV199tdV+ieadycqN2zJ79mwAwIYNG7BixYpW63Vdxx/+8AcAwIgRIzBixIjmdT/4wQ+QlpYGXddx2223JVz4/sUvfgEA+Pzzz9t9rxAMBhGNRmOuKy4uxj//+c9Wy03TxMMPPwwAOPHEEzFy5MgW6xN5z9WWrjxmRNQ3sVBPRNQLNSVxPp8P//73v+Nu97e//Q0ejwe7d+/G+PHj8cYbb0BV1eb1ZWVleP755zFt2jT85je/6VQsd911FzIyMlBbW4tzzjkH69evb163bt06nHPOOaivr0dWVhZ++9vfttj37LPPbk5gf/WrX+F3v/tdi1tDq6ur8Y9//KO5oN/kjjvuwMiRI6GqKs4++2z8/e9/b75lFGhMppcvX46f/vSnOOOMM+LG7nA4cP755+P9999vfsPw6aef4pxzzkF1dTW8Xm+rmDMyMppHLS1evLh5BExHdOUxIyIiIqLe5bbbbsOXX36JjIwMvPDCC8294H/wgx8057nXXXcdSkpKWuyXaN6ZrNy4LZdffjlOP/10AMAPf/hD/N///V/zBKZ79uzB5Zdfjg0bNgAA/vSnP7XYNz09vXnZyy+/jMsuuwzbtm1rXh8KhbBs2TJccsklLSaNPeuss3DttdcCAG688Ubcdttt+O6775rXRyIRfPzxx/iv//ovFBUVxZ2MNT09Hb/85S/xzDPPNL8XKikpwVVXXdV8F+2DDz7Yar+m91yvvPIK6urqEnykvteVx4yI+iiLiIi6zX333WcBsA5/uV29enXM5Ydr2mb16tWt1k2bNq15vdfrtYqKiqyioiLrr3/9a4vtPvroIys/P795W0mSrOzsbMvpdDYvA2D9/Oc/71SMlmVZa9assdLT05u3d7vdltvtbv45IyPD+vDDD2PuGwwGrVmzZrWIJS0trcXxTj755Fb7lZWVWePHj2/eRhAEKyMjw0pLS2txrGHDhsV9XBctWtT82LhcLsvj8TSvs9vt1tKlS2PG/MADD7TYrrCw0CoqKrKuvPLKhB+/zj5me/bsad5mz549MY9tWZZVVFRkAbAWL14cdxsiIiIiSsyheX1eXl67X+vWrbMsy7JeffXV5v3+85//tDpuMBi0jj/+eAuAdcYZZ1i6rrdYn0jeaVnJyY1jvec4VGlpqXXSSSc1b2+z2ayMjIzmn0VRtB599NG4+z/88MOWKIrN2zudTisrK6vFsrq6uhb7RCIR6+c//3mLa/B4PFZmZmaL/QBYpaWlLfY966yzLADW7373O2vy5MkWAEtRFCszM7PFfvPnz48Z7wcffGAJgtD8Hqp///7N77kSffy68pglks//7Gc/swBYP/vZz+JuQ0S9B0fUExH1Uq+88gpuu+02DB8+HJqmYd++fdi3b1+rWzMnTZqE3bt345FHHsGZZ56JjIwM1NfXQ5IknHDCCfjxj3+MF154AQsWLOh0LGeddRZ27tyJO+64AyeccAJM04RlWTjhhBPw61//Gjt37ow7esflcuHVV1/F0qVLcdlll2HAgAFQVRWyLGPUqFG4+eabm28LPtSAAQPw0Ucf4cUXX8TFF1+M/v37IxQKIRqNYvDgwbjooouwYMECfPjhh3HjHjJkCLZu3Yobb7wR/fr1QzQaRW5uLq666ips3boVF154Ycz97rrrLjz66KMYO3YsFEVBaWkp9u3bF7ONTXc8ZkRERESUOhUVFe1+RaNRlJSU4Oc//zmAxpaPV1xxRatjuVwuvPjii7Db7Vi7dm2rkd2J5p3JyI3bM3DgQGzatAl/+ctfMH78eDidToRCIRQWFuInP/kJNm/ejJtvvjnu/r/73e+wfft2XHfddRg2bBgAIBqN4thjj8VVV12FJUuWtGj3AwA2mw3PPPMM1q9fj2uuuQbHHHMMDMNAIBBAbm4upkyZgnvvvRc7duxovvvgcDabDStXrsTDDz+M4447DpFIBOnp6Zg2bRqWLVuGBx54IOZ+Z555JpYtW4ZzzjkHGRkZqKioaH7P1VOPGRH1LYJldXJWDCIiol5KEAQAjRPGNvXxJyIiIiKio8eUKVPwwQcf4L777sP999+f6nCIiNrFEfVERERERERERERERCnEQj0RERERERERERERUQqxUE9ERERERERERERElEIs1BMRERERERERERERpRAnkyUiIiIiIiIiIiIiSiGOqCciIiIiIiIiIiIiSiEW6omIiIiIiIiIiIiIUoiFeiIiIiIiIiIiIiKiFGKhnoiIiIiIiIiIiIgohVioJyIiIiIiIiIiIiJKIRbqiYiIiIiIiIiIiIhSiIV6IiIiIiIiIiIiIqIUYqGeiIiIiIiIiIiIiCiFWKgnIiIiIiIiIiIiIkohFuqJiIiIiIiIiIiIiFKIhXoiIiIiIiIiIiIiohRioZ6IiIiIiIiIiIiIKIVYqCciIiIiIiIiIiIiSiEW6omIiIiIiIiIiIiIUoiFemqXqevQfH5YlpXqUIiIiIiIKAk03YA/FE11GERERER0EAv11K5obS3UigPQ6utTHQoRERERESVBVX0Y+6uD8AVZrCciIiI6ErBQT+2yDBNGKAytwcdR9URERERERwHTtBBSNTQEIqkOhYiIiIjAQj0lyIhEoIdDMIKhVIdCRERERERJEI7oCKka1Iie6lCIiIiI+jwW6ilhRiAIzdeQ6jCIiIiIiChJAmENDWx/Q0RERJRyLNRTwvRQCHogCFPTUh0KERERERElQSCswR+MwDDMVIdCRERE1KexUE+JMy0YoRC0Bl+qIyEiIiIioiQwDQshVYcvxFH1RERERKnEQj0lTHI6oAeC0Hw+WCZH3BARERER9XYOu4yAqsEXYKGeiIiIKJVYqKeESQ4HLMuEEQpDDwRTHQ4REREREXWRyyFDi5oIqRpCKltcEhEREaUKC/XUIbLbAz0Y4KSyRERERERHARECXE4ZgbCO+kAk1eEQERER9Vks1FOHyG4XDFWFHgzBUNVUh0NERERERF3kcdoQUjUEQho0nS0uiYiIiFKBhXrqEEGSIDmcMIJBTipLRERERHQUUGQRNllESNXgC3JUPREREVEqsFBPHSZ73I3tbwJ+WIaR6nCIiIiIiKiLPE4bAiENvmAUlmWlOhwiIiKiPoeFeuowyW6HIEgwQ2Fofn+qwyEiIiIioi5y2CWYpoWQqiMQ5qSyRERERD2NhXrqFNnjgR4IsP0NEREREdFRQBAEuF0KAqEoGjipLBEREVGPY6GeOkVyOWFGNRihEPRQqEvHsiwLkZoaaD6OziciIiIiShWPQ0EooiMY1hDR2OKSiIiIqCexUE+dIogiJJcLeqDrk8pGq6uhHqiAWlnJnvdERERERCkiSSKcdhnBsMZR9UREREQ9jIV66jTZ44YeCkEP+GFqnetjqTU0IFJTi0h1DcxIBEY4nOQoiYiIiIgoUR6ngkBYhy8YhWFyUlkiIiKinsJCPXWaqCiQbAqMULhTbWv0UAhqRSWi1dUQRBFGWIUe7FobHSIiIiIi6jyHTYYgAGFVhz8YTXU4RERERH0GC/XUJZLbDT0QhO7zwbISH3FjahrU/QcQra2FaLPBlpkBUw3DCIU6dBwiIiIiIkour1NBIBxFQ5Dtb4iIiIh6Cgv11CWS0wnLMKCHw9ADgYT2sQwD6v79iNbVwzJMKBkZEO12WIYJIxKBqardHDUREREREcXjciiIRA2EVQ0htXMtLomIiIioY1iopy4RBAGy2wU9EEhoUlnLsqBWVCBa1wAjHII9JxuCKEIQBIgOB4xwGHqI7W+IiIiIiFJFFAW4Hd/3qiciIiKi7sdCPXWZ7PHACDe2rTEibd8eG62uQbSuHtH6etizsyFIUvM6yemAqaowgsHuDjkhRiQCyzRTHQYRERERUY9zuxQEVQ3+YBS6wZyYiIiIqLuxUE9dJkgSJIcDerCxV308ms+HSE0NojU1sGVmQLTZWqyXHA4Y0SgMNQJTS+0ttprPh1BxMdQDB1IaBxERERFRKthkCYooIhThqHoiIiKinsBCPSWFfHBSWc3vh2UYrdYb4TDUikpEq2sgezyQXa5W2wiiCMlmg6Gq0IOpa39jahoiVdWIVFVD8/mhHyEj/ImIiIiIepLbpSAQiqIhEIFlWakOh4iIiOioxkJ9HG+//TYEQYAgCBg8eHDc7QKBAObPn4/jjz8eTqcT/fr1w8yZM7FmzZoei/VIIDkcEATACIZaTSprahrUAxWI1tRCUGQoaWlxjyM6HDBS3P4mUlUFzdcAM6pB8/kQranhGxMiIiKiowBz/I5x2WXohoVQREdQ1VMdDhEREdFRjYX6GAKBAH75y1+2u111dTXGjh2Lhx56CHv37sUJJ5wAh8OBZcuWYerUqVi4cGEPRHvkkNwe6MFgi0llLcOAuv8AIrV1sAwdtszMto/hdMIIq9DD4Zgj87ub5vMh2tAAzReAvV8/mKoKLRCE7vf3eCxERERElDzM8TtOEAS4nQqCIQ0NgbbnoiIiIiKirmGhPoa77roLxcXFuOSSS9rcbu7cudi1axfGjBmD7777Dlu2bEFxcTGeeuopWJaFm2++Gdu2beuZoI8AstsFQ41AD4VghMOwLAtqZSWi9fUwgkHYsrMhiG0/5URZhiiJMNUIjHC4hyJv1NTyRqurh5LmhWS3QfamQauvR7S2lhPLEhEREfVizPE7x+NUEFI1BMIaolrPD6QhIiIi6itYqD/Mxx9/jMcffxyXXHIJLr300rjbbd26FW+++SZEUcRLL72EAQMGAGgcdfKLX/wCP/nJT2AYBh544IEeijz1BFGE7HIdHFXfgGhtLaJ19YjW1cGWnQ1RlhM6TlP7m57uDR+probmawAsQPZ4AACyxw3LMKH7A4jW1fdoPERERESUHMzxO0+WRDhsMkJhDQ0BTipLRERE1F1YqD+Epmm47rrr4HK58Pe//73NbV955RUAwNSpUzFs2LBW66+//noAjX0wg31oMlLZ44YRDELzBxCprkG0phq2zExIdlvCx2hsfxOGHgz1WG94zeeHVt8AzeeHLSsTgiAAaHxTpqSnNX7wUF8HU2dvTiIiIqLehDl+13mcCgIhDf5QFKbJuZuIiIiIugML9Yf47//+b3z++ed44IEHUFBQ0Oa2H3/8MQDgzDPPjLn+tNNOg91uh6qqferWWNFmgyDLMEIhRKtrILvckF2uDh8DlgkzEoGpqt0U6fdMXUekqgrRujoo3jSIitJivexyAYIIwx9AtLa22+MhIiIiouRhjt91DnvjnbEhtbFYT0RERETJx0L9QTt37sTDDz+M0aNH46abbmp3+927dwMAjjnmmJjrFUVBYWEhAGDXrl3JC7QXULxeRGvrIMgSlPT0Du8vCAKk5vY3oW6IsKVIVRU0n6+x5Y3XE3MbJSMdms8Hrb4BRoQTaRERERH1Bszxk8ftVBBSdYRU3mFKRERE1B0Saxp+lLMsC9dddx00TcNTTz0FSZLa3af24MjqrKysuNs0raurq2vzWE899RSefvrphGLds2cPvF4vJk+ejBdeeCGhfXqa5HTC0T8/4Z70sYgOB/RAAEYoCCA7ecEdRvM3tbzxwZGb29zy5nCS3Q7RZofm9yNaWwtn//7dFhMRERERdR1z/OSyKxKCqgY1ykI9ERERUXdgoR7AE088gXXr1uHmm2/G2LFjE9pHPdiSxWaL33vdbrcDAMLhcJvH2r9/P7Zs2ZJgtI1vCr766quEt0+FrhTpAUByOBCtrYWhRmBGo43tcJLM1HVEKuO3vDmckpEOtaICWoMPSnoGZJcz6TERERERUXIwx08uRRGhGyaiuglNN6HIvDmbiIiIKJn6fKG+rKwMv/vd7zBw4EA8+OCDCe/ncDgQCoUQjcbv0Rg52CLF6Wy7oNu/f3+MHj06ofPu3Lmz3TcFRwNBFCHZ7TDCKvRQqM03S50VqaqG5vMDlhW35c2hRFmG7HJD8/kQramB7Gq7xykRERERpQZz/OQTBQE2WYSmGVCjOhQ5+fk5ERERUV/W5wv1N910E3w+HxYvXgyv15vwfpmZmQiFQs23x8bStC4zM7PNY11//fW4/vrrEzrvmDFjOjQypzcTHU4YahhGMARkZCT12JrfD62hAZqvoc2WN4dT0rxQD1RAC/ih+fxQ0hJ/zhARERFRz2CO3z1sioSIZkCNGPC6Uh0NERER0dGlzxfqmxLiefPmYd68eS3WNY1qKSkpQX5+PgBgyZIlmDhxIoYPH46ysjJ88803MY+raRqKi4sBAMOHD++u8I9qktMBzeeDHg7DMgwICfQVTYSp64hW1yBaWwvF62235c2hBEmC7PVCr29A1OmC7HFDEHnbLxEREdGRhDl+97ApEkLsU09ERETULfp8ob5JRUVF3HWmaTavb7oNdvz48Vi9ejXWrl0bc5+NGzciGo3C4XDglFNOSXq8fYEoyxAlCaba2P5G6cBoqLZEqqoRrW842PKm48eUPW6owQD0QABaQwNs7YymIiIiIqLUYI6fXHZZQr0WQUQzYJoWRDGxu1KJiIiIqH19fijw3r17YVlWzK/FixcDAIqKipqXTZkyBQBwxRVXAABWr14dc8TNU089BQCYMWMGPJ72+59TbJLTASOswgiFknK8puK65msssCfa8uZQgihCSU+HVt+AaG0dLMNISmxERERElBzM8buHfHACWU0zENGYAxMRERElU58v1HfW6NGjMXPmTBiGgdmzZ2P//v0AAMuy8PTTT+P555+HKIqYP39+iiPt3USHA4aqQg+GYFlWl45lGUbjBLJ1dVA8HohdmKBWdrkAobHwH62t61JcRERERHRkYI7fPrsiIaqbbH9DRERElGRsfdMFixYtwqRJk7B582YMGTIEJ554Iqqrq1FSUgJBELBgwQKMHj061WH2aqLNBlgmjIgKI6xCdjk7faxIVRW0hgZYhgk5La3LsSnp6YjW1UJyuaCkp3Wp8E9ERERERwbm+G2zKRIiUQORKEfUExERESUTR9R3Qb9+/bB582bcddddKCoqwpdffolgMIgZM2Zg5cqVuOmmm1IdYq8nCAIkhwOm2rX2N3oggGh9A6INDbBlda7lzeEkhwOiYoPu9yNSU9vl4xERERFR6jHHb5tNERHVDIQjHFFPRERElEyC1dV+ItSjxowZgy1btmD06NHYvHlzj5wzvP8AQiUlkGw2yCnoxWmEw9D8fjgHDoS7aFDH949EECotRaSiEpLdDiU9PWmxmZoGtbISjvx8uAcVQnJ2fsQ/EREREfVNqcjxSyv9KKnww+OwwelI/EZr07JQVhXAgH4eDB2QDkXm2C8iIiKiZGBWRUc80W6HGY3CjERgRqMd2tcyDKj7DyBaWwtBEJLS8qZFbIoC2emC7vMhUlOT1GMTERERER1pREGATRYbJ5Rln3oiIiKipGGhno54gihCstthhFXowWDC+1mWhfD+A4jW1cNUo7BlZSWl5c3hlPQ06KEwdH8AeiCQ9OMTERERER1JbLKEiGZAZZ96IiIioqRhoZ56BcnphBEOQw8m3qc+UlkFrb4eus8He042BEnqltgESYLi9UBraECkphaWaXbLeYiIiIiIjgQ2RWKfeiIiIqIkY6GeegXR4YARUWGEw7CM9kfuROvrEa2tRaSmFrbsLIiK0q3xyR4PTE2D7vMhyolliYiIiOgoZlckRHUTEc0ApzwjIiIiSg4W6qlXEGUZoiTDjETaHVWvB4OIVFYhUl0DJS0NksPR7fEJoghbZiai9XWI1tXBCIe7/ZxERERERKkgyyJg4WCfera/ISIiIkoGFuqp15CcDhjhMIxQ/D71ZjQK9UAFojU1kOx2KF5Pz8XncECyOxCtr0ekqootcIiIiIjoqGU7OKqefeqJiIiIkoOFeuo1RIcThqpCD4Vj3mJrGUbj5LG1dbAsC0pmRo/HqGRkwFQj0Bp8iNbW9fj5iYiIiIh6gk0RD04oyz71RERERMnAQj31GpLdBlho7lV/KMuyoB6ogFZXB0MNw56dDUEQejzGxhY4GY0tcGprYahqj8dARERERNTd7IoETTM4op6IiIgoSViop15FcjhghlUYh/Wpj1ZXI1pXj2iDD/acHAiSlKIIAcnp/L4FTmUlW+AQERER0VHHJkuIaiaimgHdYL5LRERE1FUs1FOvIjkdB9vffF+o1xoaEKmpRbS2BvasTIiKksIIGynp6d+3wKljCxwiIiIiOrqIogBFFhHlqHoiIiKipGChnnoV0W6HGY3CUFUYkQj0UBhqRSWi1dWQPV5ITmeqQwQACJL0fQucGrbAISIiIqKjj02RGgv1EfapJyIiIuoqFuqpVxFEsbH9japCa2iAun8/orW1EBQblDRvqsNrQXI6IdociDYcbIETYwJcIiIiIqLeyq40tr/hhLJEREREXcdCPfU6ksMBI6xC9/kRrauHZZiwZWakOqyYbBnpMMMqNJ8f0draVIdDRERERJQ0NkVCRDcQiRoclEJERETURSzUU68jOhwwIir0QABGOAR7TjYE8ch8Kje2wMlEtO5gC5xIJNUhERERERElhSKLgAlouoGIxj71RERERF1xZFY3idogyjIkux1agw/27GwIkpTqkNrU2ALH1tgCp4ItcIiIiIjo6GFTREQ0E2qEhXoiIiKirmChnnole04OHP3zIdpsqQ4lIbaMjIMtcHyI1talOhwiIiIioqSw2SRENIN96omIiIi6iIV66rWO1HY3sQiSBCUj42ALnJpOtcCxDAOGqnZDdEREREREnWOXJWhaY5/6nmZZFlvuEBER0VFDTnUARH2F7HLBCIehNTQgUlEJZ2EBBEFocx9T06AHQzBCQeihMCzDgC0zA47c3B6KmoiIiIgoPpsiIaqbiGgGDMOEJPXMYBrLslBWFUBI1TGgnwcep9Ij5yUiIiLqLizUE/UgW0YG1IoKaD4/5Lp62LIyW21jqGpjcT4YhKGqMCMq9LAKU1VhWQBME6LNDltGes9fABERERHRIURRgCyJ0HQT4agBj7NnCvWVdWHU+SIIR3V4XAoL9URERNTrsVBP1IMObYEj2m2Q3C6IigIjFIYeCsIIhWCoERhhFaYahhGJQrQpkJxOKF4vDFVFpLoGgiRBtCmQXa5UXxIRERER9XF2RUIkqiMS1XukYF7nV1HbEEatr7EtZDCkQTdMyD00mp+IiIioO7BQT9TDZJcLRigMrb4BqizDMk0YkQiMcBhmWIVlGBAddkguF2xZWRAkqXlfUVFgaTqiNY3FeldhQUom1C0uLsbKlSvh9/vh9Xoxbdo0DBo0qMfjICKi9vE1m4i6m02RoEZ0qD3Qpz4Y1lBZG0J1vYo0tw0hVUc4osMfiiLT6+j28xNR38a8ivoyPv+7Hwv1RClgy2xsgaNWGjAjEUAQIDmcUDLSIdrtbfauVzIzEKmqQrS2DoIsw1UwsEUxvztt3LgRDz74IJYtWwbTNGGz2RCNRiGKImbOnIn58+dj3LhxPRILERG1ja/ZRNRTbIqIhqABNaLDsqx252HqrIhm4EBNEDU+FQ6bBK/LBgFAUNXgD7JQT0Tdh3kV9WV8/vccFuqJUkCQJNhzcmBEolDS0iAqid8iLAgC7NnZUCsrodXVQZVlOAb077Y3RE2WLFmC2bNnIysrCxdccAFGjhwJu92OSCSCzz77DJ988gkmTZqEl156CbNmzerWWIiIqG18zSainmSTJcAEtIOTyjpsyX+baRgmDlQ3FulhARleOwDA6VBQF4ggHNER0QzYlZ4ZwEJEfQfzKurL+PzvWYJlWVaqg6DEjRkzBlu2bMHo0aOxefPmHjlneP8BhEpKINlskD2eHjkntc/UNKiVVbBnZ8OR1w/2fv267VwbN27E5MmTMXz4cFx22WWQ5dZvvnRdx2uvvYbdu3dj3bp1/DSViChF+JpN1PukIscvrfSjpMIPj8MGp6PrhfWquhBcTgWD+6ch3WNPQoTfsywL5dVBVNWF4A9qyM1yQRK/H6RS3RCGTRExKC8NORnOpJ6biPo25lXUl/H53/M42w5RLyUqCuxZmYjW1iBSUwutoaHbzvXQQw8hKysr7gszAMiyjMsuuwxZWVl46KGHui0WIiJqG1+ziSgVbIqEqGZ2S5/6qrow6nwqGgJRZGc4WhTpAcDtUBBWG/vUcxwaESUT8yrqy/j873ks1BOlQEl5OZ5/5RU88c9/4vlXXkFJeXmnjiM5nZA9XkSrq6FWVEIPhZMcaeNkIUuXLsW4cePivjA3kWUZY8eOxVtvvYXi4uKkx0JERG3jazYRpUpjoV6HGtGTetx6fwS1vjBqGlRkpTka2+wcxmGToBsWwhEdITW55yeivot5FfVlfP6nBgv1RD1o0/btuPL6X2DElLMw73e/xb1//G/M+91vMWLKWZh9w/XYvGNHh4+ppHkhKDZEa2uh7t8PU9OSGvPKlSthmiZGjhyZ0PajRo2CaZpYtWpVUuMgIqL28TWbiFLFpkiIHuxRbxhmUo4ZUjVU1IVQVa8izWWD0x67UCAIAlwOGaGDo+qJiJKBeRX1ZXz+pwYnkyXqIW+8+y7m3HoLCtwe3D7yZEwvKIRLVhDSNawoLcGSTZsx/cofYtGCR3HJeed16Ni2zAxEqqoRrauHqMhwDhwIQUrORFp+vx82mw12e2K9Ru12OxRFgc/nS8r5iYgocXzNJqJUkUQBsiRC0xvb37idXRsTFtUM7K8OorYhDLssweu2tbm926GgqiGMQFiDYVqt2uMQEXUU8yrqy/j8Tw2OqCfqAZu2b8ecW2/B5Lx8PHvGFFw6eChcsgIAcMkKLh08FM+eMQWT8/Ix59ZbOjyyXhBF2HOyYYRCiNY1QK2oSFp/Tq/Xi2g0ikgkktD2kUgEmqYhLS0tKecnIqLE8TWbiFLJLkuIaDrUaNfazximhf01QdT6IjBNIDOt/SKBTZEgCQLUiI4AR9UTURIwr6K+jM//1GChnqgHPPLEQhS4Pbjn1LFQxNi/dooo4p5Tx6LA7cEjCxd2+ByCJMGek41ofT2idfWI1tS2WF9cXIzFixfjsccew+LFixPuGzZt2jSIoojPPvssoe137NgBURQxderUDl8DERF1DV+ziSiVbIoIrYsTylqWhYqaIOp8KsIRDTnpDghCYqPjXQ4FwbDG9jdElBTMq6gv4/M/NVioJ+pmJeXlWL5qFWYVDY5bpG+iiCJmFQ3G26tWdmqCWdFmgy0zA9GaGkSqq6H5fNi4cSMuvugiDBkyBHPmzMFv7rgDc+bMwZAhQ3DJxRfj008/bfOYgwYNwsyZM/Hpp59C19seHaXrOjZt2oSLLroIgwYN6nD8RETUNXzNJqJUstkkRDQTakTv9N2d1fUq6vwR1AciyEl3QpISf8vqdsgIR3QEVR2a3vkPC4iIAOZV1Lfx+Z8aLNQTdbM169fDtCxMLyhMaPvpBYUwLQsfbNjQqfPJLhdktxvR6hr8+3+fxxmTJ+OLtR/h9hGjsOKCi/D+BRdjxQUX4fYRo/D5h2sxedIkLFmypM1jzp8/H7W1tXjttdfivkDruo7XXnsNtbW1uPvuuzsVOxERdR1fs4koVRRJhGma0HQTUb3jE8o2BCKoaQihuiGMbK8TNqVjcy5Jkgi7IiGsavCHtA6fn4jocMyrqC/j87/nJW0y2d27d2PDhg0oLy9HVVUVVFVFdnY2+vXrhxNOOAGTJk2Cy+VK1umIeo1AMAiHLDf3pG+PS1Zgl2X4A4FOn1NJT2/si3/brZicl9+q5U5TX/wLBw3GA1s34arZs/HRunUYN25czOONGzcOL730EmbPno1nnnkGY8eOxahRo2C32xGJRLBjxw5s2rQJtbW1ePnll5uPU1xcjJUrV8Lv98Pr9WLatGlHxKerR2pcRETJ0NnXbKJYmONTRwiCAJsiIaoZUCM67B0otDcEIjhQE0R1vQqPU4HT0bm3qi6ngkA4Cn8wiqw0R6eOQUTUhHkV9WV8/ve8LhXqN2zYgKeffhrvvvsuKioq2j6RLGP06NG4+uqr8ZOf/ATp6eldOTVRr+Fxu6HqOkK6llCxPqRriOg6vB5Pl8674IV/ocDtTqgv/ty1a/DQgw/i9TfeiHu8WbNmYd26dXjwwQexdOlSLFu2DIqiQNM0iKKIiy66CHfffTfGjRuHjRs34sEHHsCyt9+GaZpwyDJUXYcoiph54YWYf889KXkBP1LjIiJKto68ZhMdjjk+dYVdkRDVG/vUJ/psqGkIo6oujKr6MByKhHR3+5PHxuO0y8397cMRHU570samEVEfxbyK+jI+/3uWYHWieeC//vUv/OlPf8IXX3zRovegx+NBdnY2srKy4HQ6UVtbi9raWlRXV8M0G299FAQBTqcTV111Fe69914UFibWDoQajRkzBlu2bMHo0aOxefPmHjlneP8BhEpKINlskLtYPO6LSsrLMWLKWbh95Mm4dPDQdrd/fe93+Mtn2/H5mg9QOGBAz53z8x3Ys2dPQiPLi4uLsWrVKvh8PqSlpWHq1KnN+y1ZsgRXzZ6NApcbs4oGY3pBIVyygpCuYUVpCZbs24vSUBAvvvQSZs2a1anr64wjNS4iou7W1ms20aGY46dOKnL80ko/Sir88DhsnR69Hks4osMXjKAgz4ui/LQ2t7UsC1V1YVQ3NBbpPU6lS0X6JrUNKiRZQGGuF7lZvOODiJKHeRX1ZXz+d78OFerXrFmDX//619i6dSssy0JWVhYuv/xynHnmmTj99NMxbNiwmPsFAgFs2rQJn3zyCd58801sONh72+Fw4JZbbsFdd90Fr9ebnCs6yrFQ3zvNvuF67Ny0Gc+eMaXNCWU108TctWtw4tixePHJJzt9vudfeQXzfvdbrLjgooRH8U9/+y0sXrwY11xzTbvbW5YFIxyGEQzBiESal2/auhXnzrosZrudJppp4oGtm/BRZUWb7XaSaePGjThj8mRMzs07ouIiIiI6EjDHT72jqVBvmBbKqwMoyPVg6ID0uJPBmqaFitoQan0qquvDSHfb4HHZkhKDGtVR54tgYK4Hg/unQRSFpByXiIiIqDt1KCObOnUqAOC8887DDTfcgAsuuACK0n4R0OPxYMqUKZgyZQp+85vfYM+ePXj++efxt7/9DX/605/gcrlwzz33dO4KiHqBO+fdiOlX/hAPbN3UZqH4D1s2oTQYwKJ587p0vs72xff5fHG3sQwDejAEIxSEHmos0JthFWY0Chz8vO+Pf/pTh9rtPPiHP+CNt97q6OV12EMPPogCV/LaAB2OPe+JiKg3Y45PySSJAmRRRFQzEdEMuGIU6g3Twv7qAGp9EdQ2hJGd5kzqhwUOmwwLKsIRHSFVS9oHAERERETdKf7Q3hjOO+88bNiwAcuXL8cll1ySUAIfy5AhQ3Dvvfdi3759+O///m9kZWV16jhEvcWYUaOwaMGj+KjiAOauXYPX936HkK4BaBzN/vre7zB37RqsqzyAxY8+hjGjRnXpfIf2xU9EU1/8tLSWtyeb0SiidXUIlZYh8N0ehIqLESopRbisHNGqGli6AcnlguzxYL/fj3fXfYRZRUPavGsAaCyKzyoajKXLluHrbdthGUanr7U9xcXFWLpsGWYVDU44rreWLkVxcXG7x964cSMuvugiDBkyBHPmzMFv7rgDc+bMwZAhQ3DJxRfj008/TdZlEBERdRvm+JRs9oMTyoYjeqt1umGirNKP6vow6hpU5GQkt0jfxO1QEFQ1+ELRpB+biIiIqDt0KCNavnx5Uk/ucrnwX//1X0k9JtGR6pLzzsOKl/+NPy98HH9ZtQqP7NgGuywjousQBQEXTJ2GRfPmdblIDwBTJk6EKAhYUVqSUI/6FaUlEAUBk045tXG0fDAEPRSCGYnACKuNbW4iKkRZhuRwwJ6dDdHWcmTS2i1bYFoWphck1pN2ekEhHtmxDe8tfQsDMtJhz8npltZKK1euhGmaHY5r1apVbbYBOrTn/e0jRrXuef/hWkyeNIk974mI6IjHHJ+SzaaIiGgGItGWgzGimoHy6iBqGsIIhjT0y3LCJkvdEoPLoaCyLoRgSINumJDjtOAhIiIiOlIkf+gCEcU1ZtQovPTkUygpL8cHGzbAHwjA6/HgrAkTOj1xbCyFAwZgxtSpWLJpMy4c1PZIcs00sWTfHpw3aRJyJRHBfftgqiqMg21tJLsdktMJJSMdohz/JaNT7XYkGfVV1VD3H4ARVqGkpcHeL6fVhwBd4ff7k94GaOPGjbhq9uyYPe9dsoJLBw/FhYMG44Gtm3DV7NnseU9ERER9ik2R4AtpUA8p1KsRHeXVAdQ0RKBGdeRmubq1eK7IImRJRDiiIxDSkOHt+iS1RERERN2JwwqIUqBwwAD8+PLL8cuf/Qw/vvzypBbpm9w570aUBgN4YOsmaKYZc5vv++IHcee8G6E1+Btb2mg6FK8XzgEDYO/XD7LH02aRHuhkux1DR1b//hDtdqiVVQgfOIDgvmJEampgxYm5o7xeb1LaAB2qIz3vC1xuPPTgg52KnYiIiKg3UmQRpmlC0w1ENAPBsIbSqgCq6sKIagZyM7u3SN/E7ZARVDX42f6GiIiIegEW6omOUh3tiz9u3Dg48vPgHNAftqwsSE4nhHZ6uh/q0HY7iWhqt3PWxIlQ0tLgyMuFpWlQDxyAWr4foeIS6IFgh6/7cNOmTYMoih2LSxSbJ9Y7XHf2vCciIiI6GgiCAJsiIaKZqG1QUVYVQGVdCKZpoV+mE5Io9EgcTocCNWogpGqIaN03JxIRERFRMnS49U2yik2DBg1KynGIKL6e7Ivf8XY7e3HB1GnNdxOIsgx7Tg6McBjR+nrowSAMVYWS5oXs9XYoFlFRIDkcABpfa2ZeeCGWfLg24bgumjkz7mtUd/W8JyIiSiXm+JRstoMTyvqCEVTXhyFLIrLSHRCEninSA4AkCnDaZIRUHf5gFPYMZ4+dm4iIiKijOlyoHzx4cJeTK0EQoOt6l45BRInpqb74QGO7nelX/hAPbN0Uty3M9+12Alg0b16r9ZLTCYfdDt3vh1pRAT0YglRT26E4BJsNtvQ02LKzISoK5t9zDyZPmpRYXKEgXpo/P+6xu6PnPRERUaoxx6dks8sS6oMRhFUdTrucsh7xbocCXygCfyiK7B7+oICIiIioIzo1maxlWcmOg4i6WVNf/O7U1G5nzq23YO7aNZhVNBjTCwrhkhWEdA0rSkuwZN9elAYDWPzoY3FH8guiCCU9HZLbDd3ngx6IdCgOIxqFEQpBCwZhz8rC2LFj8eJLL+Gq2bPbjisUxEsvv9zmxK+H9rxPpFifSM/7QxUXF2PlypXw+/3wer2YNm0aRycSEVGPYI5PyeSwS3BEJSiKBI8zsQEO3RVHrd9COKIjHNHhcqQuFiIiIqK2dKpQLwgCBg8ejGuuuQZnnnlmsmMiol4sme12RFmGLSurwzGYmoZoXR2MYBBmOALd78fF58/AR+vW4cEHHsBfli1rGZco4qKZM/HS/PltFumBlj3vLx08tN1Y2ut532Tjxo148IEHsOztt2GaJhyyDPVgbDMvvBDz77mn3diIiIi6gjk+JZMgCMhMc6Q6DAiCAJejsf2NLxhloZ6IiIiOWILVwaEzF154IVasWAHDMCAIAoYOHYprr70WP/vZzzBw4MDuipMOGjNmDLZs2YLRo0dj8+bNPXLO8P4DCJWUQLLZIHs8PXJOOjr0RLudtujBILSGBogOB5T0dNgy0mHLzkZpeTlWrVoFn8+HtLQ0TJ06tUOj1i+5+GJ8/uFaPHvGlHZ73s9duwYjzzoTr7/xRtztlixZgqtmz0aBy93maP8XX3oJs2bN6sAjQERElBjm+KmVihy/tNKPkgo/PA4bnI5Ojd/qNaKagaqGMAb282DIgPQem8yWiIiIqCM6XKgHgP379+Of//wnnnvuOezevRuCIEAURZxzzjmYM2cOLrnkEthstu6It8/rzYX6kvJyrFm/HoFgEB63G1MmTuzRoi31TZZpQmvwQQ+FoKSlQU7zwJ6dDSU9vdM9Sj/99FNMnjQJk3Pz2u15v66qAh+tWxd3NPzGjRtxxuTJ7R7rga2b8FFl47Hy8vLYHoeIiJKOOX7qHImF+vKyEqxf9yGCgQDcHg8mTjoTAwYW9khs3WF/TRCZXjsK87xI96SmXz4RERFRWzpVqD/UunXrsGjRIvznP/9BIBBovMUxMxM/+tGPcM0112D06NHJipXQOwv1m7Zvx58XPo53Vq+GaVnft/QQBMyYOhV3zrsxoTYoRF1hRqOI1tUDlgUlMwOK1wt7vxxITmenjpfoKPiXXn4Zl112WdzjdGR0/tWr34fp9aCyspLtcYiIqFsxx+9ZR1Khfvu2zVj42CNYvWoFLNOErNihaxEIooip087DvJt/jVEn977/f18wCk03UJDnxcB+vEuYiIiIjjxdLtQ3CYVCePnll7F48WJ89NFHjQcXBIwYMQJz587F1Vdfjezs7GScqk9LVaG+4YsvYEU1eIcf26F933j3Xcy59RYUuD1tTiy6aMGjuOS887rpCoi+pweC0HyN7XBsGRlQ0tNgy86GKHf8lu9PP/0UDz7wAJYuWwbTNFv1vL+7nZ73xcXFGDJkCG4fMardfvcflJfh3s0bMdDtxg+HDmN7HCIi6hHM8XtGKgv1NklCurdxhPm7y9/Crb+aC3fGAAw6+QIMPP5MyDYn9GgYZV99iOLtbyNYX44Ff38W5824qEfiTBbdMHGgJoj+/TwYOiANiiylOiQiIiKiFpJWqD/Ut99+i0WLFuH5559HaWkpBEHAHXfcgT/96U/JPlWf05NJvGUYqNu6DeVvvIWGzz6Hc+AADL/tloT337R9O86bfSUm5+W339Kj4gBWvPxvjqynHmEZBjSfD3ooDFt6GiSPB0KHepUKkOx2SG43ZLcLpfv3d6rn/eLFizFnzhysuOAiuOT4E5t9WVeLG9d9iDPy++Oe0eMSao/DkfVERJRszPG7T0/l+FHNwJ7yBnxTUo/tX1fhm9IG1DSE8YdfTMQ3u3Zg9uUzkDvkNJwy41aIUuvcxDQ0bFu+AJV7NuLlJe/0upH1VXUhuJwKCnI9yE7v3F2VRERERN2lW2YNOuaYYzBnzhwYhoEFCxZA07TuOA11o8pVq1H84suIVFY1LwuXliFcVg7nwMT6yj/yxEIUuD1xi/QAoIgi7jl1LOauXYNHFi7Ei08+mYToU8vUdYSKS6Ckp8HOEWZHJEGSYMvMhORyQ6uvQ7TBhw61qxcA0e6A7HRAtDuQ43Dgqosugux2Q7TbE+597/f74ZDlNov0APD817saf5fiFOmBlr9LDz34YJuT1xIREXUGc/zeb9WmEjz+yvZWy0sr/Xjib/8Dd8aAuEV6ABAlBafMuBXr/u/XWPi3/8GT/3ihu0NOKrdTQUMwitoGFV6XDTaFo+qJiIjoyJHUQn0oFMK///1vLFq0COvWrQMAWJaFkSNHYtq0ack8FXUzM6q1KNI3qdnwMQquaL+tRkl5OZavWoXbR57cZt9toLHAOKtoMP6yaiVKyst79QSzodJS7HnmWeiBIAAge+IEDLz0YggS3wQciSS7DVJeHkxd79iOlgVDVaEHgjBq6yDZbBAdTkhOR+NIe5cLstsNyeWE0Mbz3+v1QtV1hHQtbrH+QCiEdQf24/ZRpyT+u7R0KYqLiznBLBERJQVz/KPHsMKMmMu/+LoUq1a+ixFTr49bpG8iSgoGjZqBVe8/jfKykl41wazLoSAY1uALRlFRG0JBrifhARZERERE3a3tqk+CPvroI8yZMwf5+fmYO3cuPvroI2RkZOCXv/wlPv30U2zfvh3nsf94r5Jz5hkQHY5Wy+u2bIGhqu3uv2b9epiWhekFiSXu0wsKYVoWPtiwocOxHilMXcfe555vLtIDQM36Ddj3wouwDCOFkVF7RFnu2JeiHJyMth+c+fmQ3G6Y0QgiFZUIl5UhVFqK4L59CHy3B+HycmgNDTBjjDqcNm0aRFHEitKSuLFtrq6ECXTsd8k0sWrVqs4+HERERACY4x+NivLTIEut3wJ++U0ZLNPEwOPPTOg4A084C5ZpYsP6tckOsdtlpjkQCDUW6+sDkVSHQ0RERNSs0yPqy8vL8dxzz+G5557Dt99+C8uyIIoizj33XFx77bW47LLLYLPZkhkr9SDZ5US/s85ExbsrWiw3I1HUb92G7Anj29w/EAwm1NKjiUtWYJdl+AOBTsecajUbPoZWV9dqecP2HdhnWSj68Y84sv4oJEgSZJcLsssFy7JgRiIwwiqitXWAZUJ0fN8iR3I6G0fbe9yQ7HYMGjQIMy+8EEs+XIsLBw2OOWI+pOuwS1KHf5d8Pl+yL5WIiPoA5vhHN0UWMWRAGr4uqW+x3BdRICt2yLbE+rbLNickxYaA398NUXYvWRKR7rWj1qfCbpPgcSqcWJaIiIiOCB0u1P/73//G4sWL8f7778M0TViWhWOOOQbXXHMNfvazn6GgoKA74qQUyD//3FaFegCoXr8BWeNPb/M2UY/b3W5Lj0OFdA0RXYfX4+lSzKkQratDtK4OFSvei7tNw47P8O3T/0D/C86HkpYGW2ZmD0ZIPUUQBEgOB6SDd6OYmgYjrELzB2DW1DW22nE6ITockByNLXJ+++tfY8o77+CBrZtizufgkmVEDKPDv0tpaWndco1ERHR0Yo7fdwwrzGhVqNcsBaLsgB4NJ1Ss16NhGFoUHq+3m6LsXh6ngrCqocEfQYVNQkFu77wOIiIiOrp0uPXN7NmzsWLFCjgcDvzsZz/DBx98gK+//hp33313r0zgLcvC+vXr8dvf/haTJ09GdnY2FEVBv379MH36dLzwwguwLCvu/oFAAPPnz8fxxx8Pp9OJfv36YebMmVizZk3PXUQ38QwdCs/wY1stV8v3I1Qcv1UHAEyZOBGiILTZ0uNQK0pLIAoCzpowoVOxpkq0rg67/vQ/+PbxJ2GEwm1uG/zmW3zz2OP46v89gmiMkfd09BEVBUqaF47cXDj750NyuWCoEagHKhAuLUeopAwn5vTDokcfxUeVFZi7dg1e3/sdQnpjm5yQrqFGVSEAHftdEkVMnTq1266LiIiOPszxWzqac/xhBRkxl2f0H4ayrz5M6BhlOz+AIIqYMPGMJEbWszLTHPCHo2gIRlHvZwscIiIiSr1Ot75xuVxYs2ZNp5JVQRDw7bffdvbUSbVq1Sqcc845zT8PHToUQ4YMwZ49e/Dee+/hvffew4svvohXX30Vdru9xb7V1dWYPHkydu3aBbvdjhNPPBFVVVVYtmwZ3n77bfz973/HvHnzevqSkir//On4ZvfXrZbXbPgY7qL4E1UWDhiAGVOnYsmmzXFbejTRTBNL9u3FBVOn9bqJZPVgEGY0CtFugxmJJrSPpWnQfL6ERtWXlJdjzfr1CASD8LjdmDJxYq97jKiRIEmQ3W7IbvchLXLCiNbUYPqIEVj6zDNY8Nxz+MsHH+CRHdtgl2VEdB2iKCIvNxev7t2T8O/SRTNnciJZ6pWKi4uxcuVK+P1+eL1eTJs2jc9loh7GHP/oz/GPjTOh7KkTzsfHK/6FwpOmtjmhrGloKN6xHFPPOb9XTSR7OFkSkeG2o65BhV2R4HbKbIGTIP69JqK+hK951JM6Vai3LAtVVVWoqqrq1EnbapnS0yzLwpAhQ3Drrbdi9uzZyM3NbV73/PPP47rrrsOyZctw77334v/9v//XYt+5c+di165dGDNmDN58800MGDAAlmXhmWeewfXXX4+bb74ZEydOxCmnnNLDV5U8OZMnYc8zi2CEW44Wr9+2HQMungnZ5Yq7753zbsT0K38Yt6UH0FhY/MOWTSgNBrCoF7/hSbRI32T/suUY+oufQ5Rj/wpu2r4df1r4ON5dswamacKmKIhqGkRRxPlnn43/mncjxowalYzQKQVitcgZ6/bgnw8+jOKyUqz/bAf8agRetxtnjhuHyppaXDj3WjywZRPuGd3+79I/f/lLaH4/ZJcrafMiMDmh7rRx40Y8+OCDWLZsWeNrns2GaDQKURQxc+ZMzJ8/H+PGjUt1mERHPeb4jY72HL8wzwubLCKqmy2WDz1pAlb++0/YtnwBTplxa8xivWlo2Lb8rwjWl2PeTYt6KuRu43HZEIrobIGTIP69JqK+hK95lAqC1dY9nzH8/ve/T8qJ77vvvqQcp6t8Ph+cTicUJfaokYcffhh33303srKyUFVVBfFggWzr1q0YPXo0RFHErl27MGzYsBb7/fSnP8Xzzz+PWbNm4dVXX01avGPGjMGWLVswevRobN68OWnHbcvuBX9D1eo1rZYPuPRi9Dtjcpv7vvHuu5hz6y0ocHswq2gwphcUwiUrCOkaVpSWYMm+vSgNBrD40cdw8fTp3XQF3ce3axf2PP1szHWD51yDkhdfbvUhR5O0k05E0U9/3KpY/8a77+La225FVlYWxo0bh5EjR8JutyMSieCzzz7Dp59+itraWiz+6wJcct55Sb8mSi3LMGCEVViG3mL5W6tW4bq7focCtxuziobE+F3ag9JgEE/d/3tcPP08SE4HRLsdktMJ2eOG7HJB7MTkfxs3bsSDDzyAZW+/DdM04ZBlqAdH+s+88ELMv+ceJifUJUuWLMHs2bPbfc176aWXMGvWrFSHS3TUYo7ft3L8Xz/2IXbta9mKMd1tw4SCatz6q7lwZwzAoFEzMPCEsyDbnNCjYZTt/ADFO5YjWF+ORx9fhOnnz+z2OHuCrps4UBdEv0wXCvp5kO6xt79TH8S/10TUl/A1j1Klw4X6vqYpWQeAAwcOIC8vDwBw99134+GHH8Y555yD995rPYnounXrMHnyZDgcDlRXV8PtdiclnlQU6ms3b8XOPzzYark9LxfH3XlHu6OnNu/YgT8vfBzLV62CaVnft/QQBFwwdRp+PW9erx0dvvf5f6Fh245WyzPHjcGJ8++C76td+PL+B+IX6088AUU/+0lzsX7T9u2YftVsDB8+HJdddhnkGCPudV3Ha6+9ht27d+O9l17utY8ddVwiv0unHHc8TDUMI6zCNIzGSWsdzubCvex2Q3K5IDkd7f7uLlmyBFfNno0Clzv+B22hIF5kckKdtHHjRkyePDnh17x169bxgyEiSoq+nuM/tWQHlq7b02r5/deNx75vvsDCxx7BqpXvwjJNSIoNhhaFIIqYes75mHfTHRh18uhuj7EnBUJRBMIa8nPcKMr3sgXOYfj3moj6Er7mUSp1ukd9XxE+pMDqdDqbv//4448BAGeeeWbM/U477TTY7Xaoqopt27Zh0qRJ3RtoN3IO6A/noEKED5tANlJRieB3e+A5Zmib+48ZNQovPfkUSsrL8cGGDfAHAvB6PDhrwoRe3W89WluLhh2fx1xXdPWPAABpxx+Hk35/L764/wEYoVCr7Xxf7sSefyxC1umnwTVoEP78xEJkZWXF/WMAALIs47LLLsMzzzyDPz+xEC898WTyLoqOaIn+Lkl2G5T0dJi6DiOswggFEa2rhWizQXI6IDmcB4v2LkguV8wWORs3bsRVs2djcm5eq9ZVLlnBpYOH4sJBg/HA1k24avZsfMTkhDrhoYce6tBr3kMPPYTXX3+9Z4MkoqNSX8/xh8XpU19aEcCok0fjyWf/D+VlJdiwfi0Cfj88Xi8mTDyjV/ekb0tzC5xABJV1Mgb286Q6pCMK/14TUV/C1zxKpS4V6k3TxFdffQWfz4esrCwMHz48WXEdMV588UUAwMknn4y0tLTm5bt37wYAHHPMMTH3UxQFhYWF+Oabb7Br165em8Q3yRx9aqtCPdA4qWx7hfomhQMG4MeXX57s0NrUnZOxHljxPmCarZbnnDEJ7iGDm3/2HjccJ91/T9xifeDrbxD4+hsAwA2yHTWnTYBQVYMGtws+twtGjB7jsixj7NixWL58OUrKy5N2TZZhoHbTFgR274Zot8NVWABX0SA48vKS1uucui7R3yVRliF6PYDXA8s0YagqTFVFxF8FCCIkpxOSwwHRYYfsdEJyuyG7XRAVBQ89+CAKXO6480sAgCKKuOfUsZi7dg0eevBBvP7GG8m9UDqqFRcXY+nSpbjgggviJsBNml7z3nrrLRQXF3N+BKJuxhz/6M/x4xXqSyr8OGloNgBgwMBCXP6DH/VgVKmV5XXgQF0QTrsMj1NhC5yD+PeaiPoSvuZRqnWqUK9pGubPn4+nnnoKfr+/eXlWVhZuvfVW3HXXXUfUZFKdtXnzZjz5ZONo5d/+9rct1tXW1gJovOZ4mtbV1dXF3QYAnnrqKTz99NMJxbRz586Etks2z3HDIblcrQrNDTs+gx4IQPYcWaNONm3fjj8vfBzvrF4N07K+76stCJgxdSru7OJkrGpFBeo2xbgtWRQx6KrZrRZ7jxuOk35/Lz6/536Yqhr3uFl2B7IAYH8FAMACEHTYm4v2DS4Xgk4HLEHAqFGjsGzZMnywYUOXPwCxLAsN23dg//J3EK2uaV5e+8nGxsuyKXAWFMBVVATXoEK4iwZBSU/v0jmpZwmi2Dj5s8sFy7JgRqMwVRVafR1Mwzw40r7xq7ymGkuXLcPtI0bFLdI3UUQRs4oG4y9LlzI5oQ5ZuXIlTNPEyJEjE9q+6TVv1apVuOaaa7o3OKI+ijl+38nxC3K9sCkiolrLQScllf44exz9ZFlEutuOOp8KmyLB5VCgyG3nQX0B/14TUV/C1zxKtU4V6i+99FK88847OLy9fU1NDe699158/fXXeO6555IRX8pUVFRg1qxZ0HUdl112GWbPbll8VQ8WW21tTM5otzeOwgjH6U/eZP/+/diyZUsXI+5eoiwj49STUbNuQ4vllmGg9tNNyD17So/HpPn8iNbUwDWosMVo70MnsL195Mmt+2pv2ozpV/4QixY82unJWA+8swKIMb1D3rSpcA6MPbrdO/xYHHPDL/D1gscSPo8AwKNG4FEjGFjT+GZQF0X4XU40uF04u6AQajtvEtsT+OYblC9djnBJ6zsmmphRDcHv9iD43fe9TJX0dLiKBsE1aFDjvwUDOzVZKfU8QRAg2e2Q7PZDWuSEYQSDiNbVYcWKFTBNE9MLEru9fXpBIR7ZsQ3vv/cervnpT78/jyjyTgyKy+/3w2azNf+tbI/dboeiKPD5fN0cGVHfxRy/7+T4kiigMNeLb8saWiwvqfDDsqyj4gOZzvC6bAirjS1wqupCGNCJFjimacFC42N8NODfayLqS/iaR6nW4UL9f/7zHyxfvhwAMGzYMPzgBz9AQUEB9u7dixdeeAHl5eV4/vnnce211+Kss85KesA9oaGhATNmzEBxcTHGjBkT8w2Jw+FAKBRCNBqNe5xIJAKgZd/LWPr37988mVV7du7c2e6bgu6SOWZMq0I9ANRs+AT9zjoTQjsjb5PFsiwceOddVL6/CgAge9wYev0v4BzQH5u2b8ecW2/B5Lz8dvtqz7n1Fqx4+d8dHlkfKilFw47PWi0XFAWFV/6gzX1dgxoLn6LdDvPg86OjZNNEZiCIzEAQD4weB+zcjS8feBiuQYUdKpqHy/dj/7K34f9qV6fi0Boa0LDjs+8fC1GEs39+86h7V9Eg2HNyeux5QZ3X2CLHC3i9sEwTIV2HQ5bhkpWE9nfJCuyyjOrv9iBwyIc5gihAcjgbJ7B1uyAlmOxQ3+D1ehGNRhGJRBJKhCORCDRNa9GigoiShzl+o76U4w/Kb12o94c0NASiyPD23b/ZWWnft8BxJ9gCRzdMBMMagqqGUFiDIAgYmOuBw9b7p4Tj32si6kv4mkep1uHM4V//+hcAYPr06XjjjTdaPHHvvvtuTJ06FVu3bsULL7zQK5P4QCCA888/H1u3bsVJJ52Ed999N+YvXGZmJkKhUPPtsbE0rcvMzGzznNdffz2uv/76hOIbM2ZMykbm2LOz4Bl+LAK7v26xPFpTg8A338I7/NgeiaN+y9bmIj0A6IEg9j73Txz/mzvxyBMLUeD2JNxX+5GFC/Hikx2bjPXA8ndiLu8/4zzY++UkdIxBP/kRfJ99Ad8XX0IPBDp0/li0+no01NcnVDSP1tXhwDsrULd5S8y7AjrNNBEuK0e4rBw16xs/0JGcTjgLC+EZOhiZY8fClpmRvPNRtxBEEWmZmVB1HSFdS6hYH9I1RHQdTsNE5EBF83LLsiDZbZCcTogOBySHvbFo73JBcjr5IU4HFBcXY+XKlfD7/fB6vZg2bVqvbzM0bdo0iKKIzz77DGPHjm13+x07dkAURUydOrUHoiPqe5jjN+pLOX5R/9hFhZIKf58u1MuyiHRXYwscexstcNSojmBYQ0jVEY7oUKPGwX91OGwyJElEQa4HstS78x3+vSaivoSveZRqHS7Ub9myBYIg4K9//WurT5fS0tLw//7f/8O5556LrVu3Ji3InhIKhXDhhRfi448/xrHHHov3338f2dnZMbcdPnw4ysrK8M0338Rcr2kaiouLm7c9WmRPGN+qUA80TirbE4V6IxJB+dK3Wy2P1tTi2zUfYPmqVbh95MmJ99VetbJDk7EGvv0W/l27Wy0XFAWZY8cg8O13be4fKiltPL/Xi8IfXgHLsqDV1SG4rxih4mJsW70GuYIIW1cLmHGK5o4B/RHaVwxL17t2/AQZ4TACu3cjsHs3qj5Yi6G/+HnzXQV05JoycSJEQcCK0hJcOrj9yaJXlJZAFAScc8EMOA/5XbIMA4aqwgiriNY3QFSUxoK9y9HYesfpgux2QXK5ILYzUU9ftXHjRjz4wANY9vbbME3z+/k2RBEzL7wQ8++5B+PGjUt1mJ0yaNAgzJw5E5988glOOeWUNidr0nUdmzZtwkUXXdTrP6AgOlIxx2/Ul3L8onxvzOUllX6MHJbY4JOjlcelIBRp2QLHNC2EIzqCqoZgWEMkakCNfl+kt8lS40S06U7U+lTU+sKQRAED+3kg9uI2OPx7TUR9CV/zKNU6XBmprq6Gw+HACSecEHN90ydO1dXVXYush6mqiosvvhgffvghioqKsHLlSuTn58fdfvz48Vi9ejXWrl0bc/3GjRsRjUbhcDhwyimndFPUPS/9pBMhe73Q/S0nmmr4/AtoDQ3dPsFo5crV0OP0/qr64EOYltXhvtqJTsZqWRb2v/1u7HWahi/u/X1C5xVtNshuN4DGXuG2rCzYsrKQeeopODBkMGZcNRtnjxiJS087HZlhFemhEFyR+LdfJ8oIhxFs54MEAFAyM5B//nlIO/44hEpKESouRmhfMULFJTC6cEu2EQ7ju38swrE3zYO9X79OH4e6X+GAAZgxdSqWbNqMCwcNbvODL800sWTfXlwwdVqrD7wESYLsdkN2u2GZJsxIBIaqHpyw2ILocEB2OCE67JCczu9H27NFDgBgyZIluGr2bBS43Lh9xKjW8218uBaTJ03Ciy+9hFmzZqU63E6ZP38+Jk2ahNdeew2XXXZZzERY13W89tprqK2txd13352CKIn6Bub4jfpSjp+b5YJNFhHVD5tQtqLvTijbRBCExhY4tY0tcEzLaizMawZUtXHUvKabcNhkuOwKstKcLXrS90t3oqI2BEWKQJFF5Ge7U3g1Xce/10TUl/A1j1Kpw4X6SCTSZnKbfrBQG+lk/+1U0DQNl19+OVauXImBAwdi1apVKCxsu9h7xRVX4L//+7+xevVqfPPNNxg2bFiL9U899RQAYMaMGfB4Oj4J0ZFKkCRknX4aKt9f2XKFaaJ24ybknTut284dqalB1Qcfxl3vCoZwWm5eh/tq+xNsPeP/6iuE9u5ttVx0ODB4zs8SLi7KbjdscW6VHjNqFJ75y19x7W23YnNZKcaOHYtRo0bBI0lw1jcguncfPD4/jnG74VWSO3Gr5HQi95ypyJk0EaLS+BimnXA80k44HgBgmSYi1dUIFZccLNwXI1y+HzDNtg7bghEM4runn8Wwm26EkhZ7FBcdGe6cdyOmX/lDPLB1U9xWUppp4g9bNqE0GMCiefPaPJ4gipCcTkgH+/ma0SgMVYXm88Gs1Q+OsD/YIsdu/76vvdPZJye027hxI66aPRuTc/PanW/jqtmz8dG6db1yZP24cePw0ksvYfbs2XjmmWeaX/PsdjsikQh27NiBTZs2oba2Fi+//HKvvEai3oI5fqO+lOOLgoD8bDeKDyvMl1QG+vSEsk0UWUSG245anwp/SEM4qkMA4LTJSHPbYbdJEOM8RrIsIjvDgZoGFZIkwK5IyExz9OwFJBH/XhNRX8LXPEqlPt9rwDAM/OhHP8Lbb7+N/Px8rFq1CkOHtt/qYfTo0Zg5cyaWLl2K2bNn46233kL//v1hWRaeeeYZPP/88xBFEfPnz++Bq+hZ2eNPQ+XKVa36m9d8/Alyp53dbX2n97+1rN2WLbMGD+1wX21vAm+yLNOMO5o+b9pUeI85pt1jJOqS887Dey+9jD8tfBzLly/HsmXLoCgKNE2DKIqYMXUq7px7LY7r3795pHto3z6E9x/oUNG8iSDLyDljMnKnToHscsXfThThyM2FIzcXWWPHAGgstoZKyxpH3R8s4Gv19W2eL1pbi++eeRbDbrwBkiO5b1hMTUPg2+8QqayCIIlwDxkCR//8Pv9Gsz0l5eVYs349AsEgPG43pkyciDGjRmHRgkcx59ZbMHftGswqGtx6RPe+vSgNBrD40cc6NCnz4ec76/TTMcDhhBEOI1pXD9GmQHI4IDodkOwOyC4nJJcbstsFQZJaHS+R/u2J9ng/UnrBP/TggyhwuROeb+OhBx/E62+80aMxJsusWbOwbt06PPjgg1i6dGmr17yLLroId999NxNgIuoQ5viJ6Z/jalWoD4Y11PkjyOrFheVk8bgUmGh8z9Mv3Qmb0joPicdhk5HutqGmXoUkClAUCR5nYgOKjkT8e01EfQlf8yhVBMvq2GySoigiPz8f5eXlXdrmSPHiiy/iRz/6EQBg8ODBGDhwYNxt//a3v+HUU09t/rmqqgqTJk3C119/DbvdjhNPPBHV1dUoKSmBIAh49NFHcdNNNyU13qaJpkaPHo3Nmzcn9djxhPcfQKikBJLNBvlgUXvPs4vh+3Jnq22HzL0WaSfGvmW6K/y7v8Z3Tz2T0LbvlZbg3ATa37y+9zv85bPt+HzNB232qDd1HaX/eRV1m1o/3rLXixPu+g1EW3JHtzcpKS/HBxs2wB8IwOvx4KwJE+LG2lw0PzjaPVRc0nbRXBCQNW4s8qafm9RJXjWfD6F9xQjuK4b/q11Q9++PuZ1n2DAMuW5Ol3uTaz4ffDu/gu/LnQjs/hpmtGWbIDnNC+/w4fAeNxze4cMhe9q+9djUdajl+xEqKUGopBTqgQMAAEd+fuPEvIMGwdk/P2bBOB7LNBGtqYFaWQVL02DLyYYjPz/lfdk3bd+OPy98HO+sXg3Tsr7vfy4IjR8IzbsRAPDnhY9j+apVMC0LdllG5OA2F0ydhl/Pm5dwkT6R840eMaKxRU5YhaGqgABIDkfjaHt7U4scF2S3G5u2bWu3f7tlWQn1eD+SesEXFxdjyJAhuH3EqITmCHh973f4y+c7sGfPnl7fG7G4uBirVq2Cz+dDWloapk6d2uuviai3YI7f93L80ko/3tmwF2982Lo14jUXnoiTj2WrwmSo86nQTBO5mS4U5nlh70Cx/0jFv9dE1JfwNY96UqcK9V0dnSoIAvQemsyyPc899xyuvfbahLZdvXo1pkyZ0mKZ3+/HH//4R7zyyivYt28f3G43Tj/9dNx55504++yzkx7vkVKo9335JfY8+1yrbdNOPAFD5ib2eCbKMgzs/ssCqAcqEtp+ZXkpzswf0G5f7blr1+DEsWPx4pNPxt1ODwSwZ/H/xmx5AwADZ12KnEkTE4orFbSGBoSKS5onqw2XlsLSDaSdeALyzpsOZ//4t7gngxmN4tsnn0ZoX3HM9eknj0LRj3/UobswLMtCuLQMvi93wrdzJ8IHJ+hNiCDAWTCwsWh/3HFwDSpEtLoaoeLS7wvz5eWwDKPtwygKnAMHwl1UCGdhIdxFg6BkZsIyDESrq6FWVEKtqECkohJqRSUiVVWt7wYRRTjy8uAcOADOgQPhHNgfzgEDmlvDdLc33n0Xc269BQVuT5uj5RcteBSXnHdehz40Ssb5mhiRKEw1DCOswjT0xqK9w4llaz/AnNtua/N4xYHGEYKDPN745wwFccutt+LRBQtQ4HK3uV1P9YJfvHgx5syZgxUXXJTw3UHT334LixcvxjXXXNPt8RHR0Yk5/pQWy/pCjl9a6cf2r6vw5JLPWq2bNrYQMye3/2Extc+yLFTVhyFLInKzXCjM9UCSuucOZCIiIurdOlWo7/JJBQFGO4Uwiu1IKdRbpomdD/2x9YhtQcAJd/0WtqzYPdg7o/qjdSh7rXVLB8nphKlprQqgEcPAXz/bjjtGndJmX+11lQew4uV/xx0NHN5/AHsXLUa0ti7meltWJo77zZ0pHxXdUT3dc1QPBvHN3xYiUlUVc33OGZMw4JKL24zJsiyE9u5D7abN8H25M+6EwqkkOZ0wIpFOtR86lC07C84BA+AcOAD23Fw48nJhy8np8PPMMk3ofj+itXUQbTbY83Kbj7Fp+3acN/tKTM7Lb7P//ANbN+GjirZ/TxKRrPOZug5TVfHp5k2YecMNmJybj3tGxz7ejpoa/Gr9hzgrfwDuHTMu7jnv/GQ9NldV4uwBBXGPpZkmHvt8B3b7fXh20SKcdNJJ7V6zkubt9KTJjz32GH5zxx14/4KLE95n2ttv4k//8z+4+eabO3VOIiLm+KmVqkJ98QEf/vriVqjRlv9vwwdl4JezTu6ROPoCw7RQWRuCx6WgX6YTA/t52JqRiIiIWulwhfG+++7rjjiolxFEEdnjT8eBdw7r225ZqPlkI/rPOC/2jh2kB4M48M6KmOvyzpsO9cB+1H68scVyuyQh1+XqUl9t35c7se9fL8CMRGOuhyCg4AdX9LoiPYAef1Mgu90Y+ouf4+u/PR6zwF69dh2UtDTkTm09Ok0PBlG3aTNqPvkUkYrE7qhIFSMcTspxojW1iNbUouGzz79fKIqwZ2fDkZ/XXLy35+XClpkJzedHtKYG0ZoaRGpqEa1t3D9aW9viQyzR4UD6iJOQPmok/vrEQhS4PQn3P39k4cI27zxpzyNJOp8oyxA9Hjz64ouNx4tTWAeAF7/djSKPJ26RvumcdlHEII+3zWMpoog7Tj4VsCzozz6H7Qlcs2i3Y/Tjj3aqWO/1eqHqeofn20hLS+vwuYiImjDH75sEQcCAfh58V9bQYnlJBSeUTSZJFJCT4URlXQiKLMImS8jNij83FBEREfVNLNRTp2WdPg4HVrzXagRx7caNyJ9+Tod6eMdz4J0VMQug9rw85Ewcj0h1datCPQBcO+oUVA/sj7+sWoVHdmxr1Vd7UZy+2pZlofrDtSh/a1mryXKbiHY7in5yNbzDj+3y9fUVtqxMDP3FXHzz9ydgqmqr9fuXLYfs9SJr3FhYloXgt9+i5uONaNjxWbttaPoE00SkqiruXQkJHUJVUbdpM+o2bcaNNhdq2yhgN1FEEbOKBuMvq1aipLy8Q61umpSUl2P5qlW4feTJSTlfIsc7EAph3YH9uD3OXTWHbreh4kC72wEALAvH3nYLXIUFbW8HIFRSiq//+iii9Q2wZWe3u/3hpp59NkRRxIrSkoR61K8oLYEoijh7yhRYse7oEIRuLbRYlhX39TJpuvkaiIg5fl9WEKNQH47oqGlQkZPRMy35+gJFFpGV5kBNQ+PksjZFQobXnuqwiIiI6AjS+4YD0xFDSUtD+kknthz5C0D3+dHwxZfIGDWyS8cPl+9HzYaPY64beOnFECQJjrw8eE84Hv6dX7VYL6gqHrt2Lv54732JT8aq6yh77fWYhf8mtqwsDJl7DRz53dvb/Wjk7N8fQ+b8DN89/Wzrfu0ASv79CsLl5fB9uRPR6ppOncPRvz/STjwB3uOPgxEMwr9rF/y7dsdtX5QIW04OACBaXd3pYxxp3IoCt9L+SG0AmF5QiEd2bMMHGzbgx5df3uFzrVm/HqZlYXoCEzwncr5Ejre5uhLmwWO1JdHtmrgKC+A5JvF+veGysk4Vl7MBzDj7bCzZtBkXDhrc7nwbS/btxQVnT0W2biD43Z7WGwkCJKcDkssN2e2CmOD/fVtMXYcRCkEPhmCEQ4DZ/YV6yeGAdHAi4WRcAxERNRrYzxNzeUmFn4X6JHPaZaS5bKhuUCFKImyKCJcjsb9pmm4gENYQUnWEIzq8LhtyM538IJuIiOgowkI9dUn2hPGtCvUAULPh4y4V6i3LQtnrb8QcpZk24qQWo9n7nXVmq0I9AFR9sBbH3Xl7QsVFPRjE3n8+j+C338Xdxj10CAb/7KeQPe4Er4IO5znmGAy6+irs+99/tf6/NU1Uf/hRh44nyDI8w45B2kknIu2E42HLbDk3QvrIEbAsC9Hqavi+2g3/rl0IfvstzKgW83hKejpcgwrhLCyAq7AQrsKC5sld9VAIoeIShIqLD/5bAiMYbDc+e24/OHJzG9vW5OVBtNmglpcjXNb4Famu7v7RyF3gkhVkO5zwBwIx15u6Dt3ng9bgg+Zr/NL9AUgOO5yFhQj5fHDIckItXJrOZ5fluOcLBIPtHi+k67BLUrvnTHS7zlIrKoFO/tfedPkPcPEHH+CBLZva7J3/hy2fojQYwMLLr0Ao3sTKogjJ6YDsdEC0O1oUvCWHI+GYjEgERjAEPRSEEQ7DVCPQ1TBMVYWld21uhnaJIiSHHZLTeXBCYfv3Hzw4HCxSEBF1QdxCfaUfpx6X28PRHP28bhs03URtQxiyKKAwzwub0vpOZMuyoEYNhFQNgbAGNWpAjehQIzoimomsNB2GYSI/2w1R5N9BIiKio0G3FeoDgQDefvtt7NmzB263G2PHjsX48eO763SUIp5jh8GWnY1oTcsR0IHdXyNSXQ37wdHIHdWw47OYRXNBkjDg4pktYxh2DBwDBkAtL2+xPFJRAf+u3Ug7/rg2z6VWVGLPs4tbXcOhMseNRcEVs3plT/ojTcaokdBnXYqyV1/r1P6S04n0USORduIJ8Bx7LCS7rc3tBUGAvV8/9OvXD/3OmART1xHauxf+3d9ADwQge71wFRbANagQShs9vmWXC2nHH9f8fLIsC9HauubCfbS2FpLDAUdeHux5uXDk5cGWlQkhRoH10OekEYlA3X8A4bKyxuJ9eTnU/Qdi3nWQKm9MnwFt5258+8RTUNLToQcCjUX5Bh+MUKjNfU8H8PjEM6GZBhSx/XZYTf3WvZ7YRQOP291u/3aXLCNiGO32eE90u86y9+sH58COtwsCgIkDB2DRX/+KObfd1v58GwsWYOK0qXGPZRkGDFWFHgjCqK2DZLNBdDgbR9nb7ZBcB4v2LmeL56tlWTDC4cbifDAIIxKBqaowwiqMiApRliE5nVCycyB082ujZZqN5w0GEa2rg6gohxTtHZBczsZrcDqT0naNiOJjjn/0yfTa4XLICKktc4+SitgfmlPXZabZUVUXRq0vAlkSUZDrgSSJMEwLYVVDUNURUjVEojpCER1q1EAkasCuSHDaZTjsMqobwjBNC4ZpYUCOG5LU9QmhiYiIKLU6/c76448/xhtvvIFAIIDjjjsOP/3pT5snsnvzzTdxzTXXoKGhZa/DCRMm4JVXXkE+24YcNQRRRPaE07F/6dut1tVs+AQDLrqww8c0Na2xR3wM/aacCfthPZ8FQUDulDNR/H8vtdq+as2HbRbq/bt2Y+///itm3/SDB0f/C2eg35SzOGIziXImToDW4EPl+ysT3sd9zFBkjz8d6SNHdKnthSjL8AwbBs+wYZ0+BnDwA4DsLNizs5B56imdPo5kt8M9uAjuwUXNyyzTRLS2FmpFJSIVFY3/VlZCraiEGYm0eTw5zQtbVjbsOdmwZWXBlpmBcPl+NOz4DNphr8kdoWgaAt982+H9BADHZWQkvP2K0hKIgoCzJkyIuX7KxIkQBaHN/u1jcnIhHjxWWz3eE92uswRRiPlBTaIuOX8GVgwYiD8vfLzD8220jENs/J3xehuL9pEIjHAYus8HQRIhHix4i3Y7ZLcLksMBMxKBHgrDiKgwwyoMVYUZ1RpHsjucsGVm9GhBXBBFiF4P4PU0Fu0PfmCg+/yN1+A4eA0OO2SXE5LLDVFmwZ6So699AMQcv+8RBAGFuV7sKm7ZKrC00g/TsiAyB046QRCQneFERW0QdX4BoihAEoXG4rxmIhxpbG9jGhYcdgluh4KcNGeLkfOyJKK6PgzDtGBaFgbkeKDILNYTERH1Zp0q1P/hD3/A73//+xbLHn74YXzyySc4cOAArrzySkRiFJM2bNiAGTNm4NNPP4XMkclHjaxxY3Fg+butJv2s/XQT8mec1+FR6FVrPoBW17qnuJyWhtw4o0bTTx4FZdnyVoXIwNdfI1xeDmeMvvTVH61H2RtvtpoMt4los2HQ1VchfcRJHYqfEpN//nTofj9qP4k/J4DscSNz7Fhkjz8N9n79ejC61BJEEfacnMY7Uk46sXm5ZVnQGhoQqaiEWlkJ3R+A7PXAnp0FW1Y2bFmZEG2x7zAYcPFMhEpK0LD9M3y9eg0yulBA7k7TBhZg0qAiRN9cin1eLxSvF7LXCyWt8d8crxezpk7Da5s2xe3fnu9yYVJ+f7y659s2e7znu1yYkJeP/3zX9nYd1fRaGK2pbWyzZBoQFBtE22FfitxuIX/MqFF46cmnUFJenvB8G20RJAmyywXZ5YJlWTAjERhhtXEeB8uE6HBAsjtgRiMwVBWwAMnhgOL1QrTbu/TBQ7IIotjyGqJRGOEwtPo6mIbZeKcA2+FQsogibBkZnb47prdhjt93Fea1LtSrUQPV9WHkZrpSFNXRTRIF5GQ4UVkXgmlZ0DQTqmZAhACnXUam1w67IsX9e2ZXJORmulBVH4JpWjBNCwP6eWCP0UaHiIiIeocOZ9IbNmzA/fff3/xzdnY2ampqUFFRgbvvvhsNDQ2IRCK47LLLcN1116GoqAilpaV44YUX8L//+7/YsWMHnn/+eVx77bXJvA5KIdnjQfqokajfuq3FciMYRMOOz5A5+tSEjxWtq0fFytUx1w2YeQEkuz3mOlGWkTN5IvYvW95qXdUHazHoqiubf7YMA2Wvv4ma9RvixqFkZqDgisshe9wIlcbp+3wY2e1u1SOd4hMEAQWXXwYjFGo5z4EgwHPsscgefxrSTjqR7YYOIQgCbBkZsGVkwHvc8I7tK4pwFxXBXVSE/UWFuOH6X+DqY47F5Lz+R1RB06vY4AUQ+PqbuNvc6k6DfsYUBHUdXkWJOdLv6mHDMW/dh/jD5k9x75hxcXu8q4aJ4oC/3V7why6PVFWjfts2BPcVQ/f5ofn90A9+aX4/jGBjO6B9//uvdq9XtCmtC/gxvmSbDeemZUDMzYMtMxN2UYKpaV26u0RomqD1YJ96U9Ma28uEwxAVGbas7HZbS6WaIAiN7XsO/m0wNa1xtH0odETP/UC9g2WaAATIcVpxHW2Y4/dthXnxJ5Q92gv15WUlWL/uQwQDAbg9HkycdCYGDExsovmusskSctKcCIQ12BUJaW57h0bFK7KIvEwXqurDqKoLNxfrnXbmz0RERL1Rh/+CP/XUUwCAsWPH4rXXXsPAgQNRVlaGWbNm4a233kIoFMLPf/5zPP300837nHDCCTj33HNRUFCAhx9+GP/5z3+YxB9lsieMb1WoBxonle1IoX7/srdhaa0n+nQVDUJGO+1Fssafjor3VsKMRlssr9+6Df0vOB9KejqMcBh7//kvBL7+Ou5xXEWDMPCyS/HtwidbHastos2G4/7rDhbrO0CQJBT99Meo/XQTgnv2wp6Tg4xTT4E9OyvVoR3Vxpx8Mn77+z9gzq23oMDtwbXHDsekvP6wSRIMy4RuWrAf4W0eZFFEepy7BwDgxMwsvDxtOkoCAawqL0Oe04HjMzLhkORWPd5vue46LFy8OG4v+B21tbh39FiUvf4mgt/tQTjBD+8SYUa1g5Mbtz0xcUyCACU9HfacHNhyGtsdNX6fA3t2Vty7K+IRFaVLhf8jQfM1eL2pDoWOAkYkAq2+8y3Dehvm+H1bYW7s182SCj/GHJ/Xw9H0jO3bNmPhY49g9aoVsEwTsmKHrkUgiCKmTjsP827+NUadPLrb43Ac7DnfWZIkIjfTher6cOPofNNC/34eeJy9+286ERFRXyRYVseGnA0fPhzffvstPvroI0w4pIfwhg0bMGnSJAiCgK1bt2JUjJ65FRUV6N+/P/r374+ysrKuR98HjRkzBlu2bMHo0aOxefPmHjlneP8BhEpKINlscUeVWZaFXX/+H0QqKlutO+7OO+DIbz/BD3y3B98+/kTMdcfechNcg9of2VL2+huoXruu1fLcaWcj67Rx2POPxYhUVcXdP2P0qSj84RVQKyrw9V8fw7G33QJXYUG75w2VlOLrvz6KY2+7Ga6C9rcnOhJs3rEDf174OJavWgXTslr0P7986jm4cdYsFHk8zf3xIxWVMNQwZI8HSloa5LQ0KOlpUNLSvv85LQ2y14NIVTVCe/ciuHcfgnv3Qff5Un25zSKGgYpwCIbTiaLjj8eAYcNQFvDjhRXv4o2P1qIqHMZxmVk4JSsbp+fm4dScfpCOoLsOEqWkpx8s4OccUszPgS37yB8pT3QkaCrUOwsGwl00KNXhdDvm+KmVihy/tNKPkgo/PA4bHHYJ9z69AYFwywEzQwem46YfnNIj8fSkd5e/hVt/NRfujAEYdPIFGHj8mZBtTujRMMq++hDF299GsL4cC/7+LM6bcVGqw02IaVmobVBhWCZy0p3Iz3Yj3RP7bmQiIiI6MnX4o/uysjJIkoTx48e3WH766adDkiSYponjjz8+5r55eXlIT09HTU1N56KlI5YgCMieMB7lr7/Zal3Nxx9j4KWXtLm/ZZoof/2NmOsyx41NqEgPADlnnIHqj9a3anlQvW4DatZ/DCMcjrtv/ozzkDttaos2IK7CAniOSf4kk9RSSXk51qxfj0AwCI/bjSkTJ3aq/zZ1TLL7nx9KLhoEd9Eg9DvrYG/9unoE9+1DaO8+1H39NfSKSqSq9G2XJAzyHBw5+PU3OPD1N5AA/NTpwU/PnQELSFlsyaQ1NEBraEDw2+9arZPT0mDPyYarqAhZY0fDwQkgifo85vh9myAIKMzzYufe2hbLSyv9ME2rxSSmvd32bZtx66/mInfIaThlxq0Qpe9Hnss2J4pGnYfCk6Zi2/IFuPVXc/Hyknd6ZGT94TrakkcUBGSnO1Dnj6CyLgzLAgzTQlaaowejJiIioq7ocKE+HA4jNze3VU9jURSRlZWF6upq2Nq43d7hcMB3BI2spOTJHDMa+5e+DUvXWyyv27QF/S+Y0WYbhtqNnyJcVt5quWi3o/8FMxKOwZ6dhfSRI9Cw47MWy01VjbuPoCgY9KPZyBg1MuHzUHJs2r4df174ON5ZvRqmZcEhy1APjuieMXUq7px3I8bEGLlHyVU4YAB+fPnl3XZ8QRBgy8qELSsTmaeegoEAjEgUkaoq6IFAiz7vms93SL/3QJu/u90Wb4+fsefpPh90nw/B7/agavUauAYVIuu0ccg45WRITmeqwwPQ+AGPZRiwNA2mrsPSdJi6BkvXYWo6YJqw5eRA8faN/uFE3Y05PhXmeVoV6qOaicq6EPKz3SmKKvme+Nv/wJ0xoFWR/lCipOCUGbdi3f/9Ggv/9j948h8v9Fh8XWnJIwgCstIcaAg0Fest6IaJfhnOI2pOIiIiIoqtU83wxBiT7bW1nPoG2eVCxqmnoO7TTS2WG+Ew6rftQNZpY2PuZ4TDOLD8nZjr8s6dBiWtY72G+005s1WhPm7MaWkYMvcatqtJgTfefbe5R/rtI09u1Rd8yabNmH7lD7FowaO45LzzUh0uJZlkt8FVMLDd7cxoFJo/0GKy1lgTuOo+PyzD6IHIEyNIEnLPnQZ7Tg5ERYEZjR780g75PtEvrdsnRg0VlyBUXIKyN95CxqiRyDptHNxDh0DowN91yzCgh8IwQiEYoRD0UAhGMAQjHIIebFxmhMONRXddh6l9X3S3dB2WrjV/37QuEa6iIqSPPAnpI0fCnpPd2YeAiMAcv69rq0/90VKoLy8rwaqV72LE1OvjFumbiJKCQaNmYNX7T6O8rKRHJpg9tCXPiKnXt2rJs2nb27hy1vnttuRJ99ghiQIq68MwLcA0LeRmuo6qOyOIiIiORpwOnpIqe8L4VoV6oHFS2XiF+gMr3oceaD2Roi0nBzlnTO5wDO6iIriKihDat6/N7ZyFBRhy7c+gpKd3+BzUNZu2b8ecW2/B5Lx83HPqWCiHFABcsoJLBw/FhYMG44GtmzDn1luw4uV/c2R9HyXabLBnZ7U7wbBlmojW1iFSWYlIVRXUyqrm73V/IHnxOBxwFQ2C62Brn3jzdshud9ImlrYsq3FUeTQKPRBApLoGkepqRKtrmr/X6uuTUsy3NA11m7egbvMW2LKzkDVuHNJPHtlYhPcd+kGJ77Cf/Sm5+wEAQvv2IbRvH/YvfRuO/v2RPnIE0keNgCM/n6MHiYg6oDAvTqG+MoBxJ/ZwMN1k/boPYZkmBh5/ZkLbDzzhLHy28klsWL8Wl//gR90aW7Jb8nhcNoiigKqDE8wGw1qH/i5KkoDsdCcnpSUiIupBLNRTUrkGFcIxYADU8pZtbELFxQiXlcM5sGXfa7WiEtUftZ78FQAGXnIRRLlzT9F+U87Evn8+H3d9+smjMGj2D9tsx9NXROvqoAdbf1ASTzIKkI88sRAFbk+rIv2hFFHEPaeOxdy1a/DIwoV48cknu3ROOroJogh7TvbBEdUntFhnhMPNhftoTS2idXWI1tVBq6tDtL4BMM34BxZFuAcXwXvccHiPGw7nwIEdGmWeDIIgQLDZIB6c0DtWP3lT1xGtqT1YwK9uUcyP1tV1qogfranFgXfexYF33k3GZfQIdf9+qPv3o2LFe7BlZzcX7V2FhT3+/0ZE1Nuke+xIc9vgC0ZbLC+p8KcoouQLBgKQFTtkW2Jt3mSbE5JiQ8Df/Y9Bd7TkcTkUiKKAmnoVO3eXYcvGjxAKBeFyuTH6tMnI6x//7kabLCKsakhz29Ev0wlFlrp0fURERNS+TlVBKyoqIEnx/1C3tc6yLI5wO4oJgoCcieNR+sqSVutqNnyMgitmNf9sWRbK33wrZpHMe/xx8J4Qe8KyRKSPOAm27CxEa2pbrcs79xzkTT+HRRs0Ful3/el/YEaj7W98kGiz4bj/uqPTxfqS8nIsX7UKt488OW6RvokiiphVNBh/WbUSJeXlnGCWOkVyOuE+OAL+cJZhQGvwtSreSw473EOGwDPsGEiOI38SNlGW4cjLhSMvt9U6U9cRra1tMQI/UlWN4J49sDQtBdH2jGhNDarWfICqNR/Alp2N7AnjkXXaWMjuo6N9A1F3YI5PBbkefLmnZf5cVhWAYVqQjoK2KW6PB7oWgR4NJ1Ss16NhGFoUHm/HWnF2VHe25Nn15XY8/tgjWBOj5/2Uqefhhhtvx8gYI/NDqob9NSEEwzqCYQ1Z6Q5keh1sn0NERNSNOlWot7q5Vy71bhmnnoLyt5bCjLQs/tZt2YL+My9oLnr5d+6E/6tdrQ8gihhw8UVderMniCIGXnYp9vxj0ffLZBmFV/4AmaNP7fRxjzZ6MAgzGsWxt90CV2H7ffpDJaX4+q+PQg8GO12oX7N+PUzLwvSCxPp8Ti8oxCM7tuGDDRu6dcJT6psESWqe6PZoJcoyHLm5cOS2LOI3zh+yHbUbP0WouCRF0fWMaE0N9i9dhgPvvIuMU05G9sQJcA0q7LGiomWaMFQVRliFqaowwuHGn9WDP6uRxu8jkcY+/pHIwfURwDQhp3mhpKcf/EqDLSMdSnoGlPQ0SG43i6OUNMzxqTDP26pQr+kmKmqDGJDT+yfvnjjpTAiiiLKvPkTRqPbnQCrb+QEEUcSEiWd0a1zd1ZKnvZ73W7a/jat/eEHMnvfpHjtcDgX1fhUHakJQowb8IQ39Mpxwsx0OERFRt+hwof6+++7rjjjoKCI5HMgcfSpqNnzSYrkZiaJ+6zZkTxgPU9dR9sZbMffvd8akmKNCOyrthOMx7KYbUbd5C0RFQfbECZxoMA5XYQE8xwztkXMFgkE4ZBkuObEE3yUrsMsy/IHk9RknosY7DbInjEf2hPEI7z+Auk8/Rd3mLTHnDEkKUYTkdEK0KRBlGYKsQFRkCLIMUVEO+7lx/aHfN6+TFQiKDD0QgO/zLxH47ru22xcdwtJ11G3ajLpNm+EsGIjsCeORceqpkOyJtUEzdR1GMNg8UW7jv4f8HAw2T5prhNWDxfnGwnuXHDgQd5Ugy1DS0qBkpH//b/phX2leCG2MhCYCmONTo7h96isCR0WhfsDAQkyddh42bXsbhSdNbXP0umloKN6xHFPPOb/bJ5LtjpY8yeh5r8gi+mW6EFI11PlVBMMa1IiONI8N/TLYDoeIiCjZWKinbpE1fnyrQj0AVK/fgKzxp6N67UeIVte0Wi973Mg795xWyzvbR909uAjuwUUdC566lcfthqrrCOlaQsX6kK4houvwxpm0k4g6rqS8HGvWr0cgGITH7caUiRNRePFFyL9gBvw7v0Ltxk/h2/lVm73tJacTcloaFK8XcpoXsscN2eWG5HJCcrkgu1yN/7ob/xXt9qSP/O53xmTogSB8X36Jhs8+h3/317B0PaF9w6VlKP3Pqyh/axmyxo2Fd/ix3xfeA0HogUDjV7Dp+2DXC+7dwGpqbVTbutVbM0GA7PW0LuA3j85Ph5yWnvAHFnR0Yo5PAFCYG69Q78fpJ7WeIwVobNuyft2HCAYCcHs8mDjpzG4tbJuWhZWfFmPHN9Xwumw47aR8nDwsJ+G/MfNu/jWunHU+ti1fELcfvGlo2Lb8rwjWl2PeTYtiHCW5uqMlTzJ73rscChx2Gb5gFAdqggiqGkKqjqw0BzI8drbDISIiShJOJkvdwlUwEK5BgxAqLm6xXC3fD98XX6LivZUx98ufcT4kZ8vkNBV91JuESkqTuh0BUyZOhCgIWFFagksHtz+Kf0VpCURBwFkTJvRAdERHt03bt+PPCx/HO6tXw7QsOGQZqq5DFATMmDoVd867EWNGjUL6yBHQGhrg+2o3dJ8Pktt1sCD/fWG+s5N9J5vscSPrtHHIOm0cDFWF/6tdaPjsc/h27mzVgi0WU1VRvfYjVK/9qAeiTRHLgu7zQ/f5EW7j75XkdEJJT4ctOxtpJx6PjFNO7hVzNBBR8qS5bcjw2FEfaPnBZKwJZbdv24yFjz2C1TF6n0+ddh7m3fzrViO0k2HpR99h9ebvX8t27q3F8UWZuHzqschJb7/IPerk0Vjw92dx66/mYt3//RqDRs3AwBPO+r4lzM4PULxjOYL15Xj08UXdcg2HS3ZLnu7oeS8KAjI8drgdCur8KvZXBaFGdPiDUfTLdMLlYDscIiKirjoy3mXTUSl7wumtCvUAsO/5F2KOeJTz86ANG4qK2pYj7dWK/8/encdHUd//A3/NfeyRbO6EJEQRRUUQBA/wBBUP8ODbVjyqttbaqt969Pb4thZsf/1+PdtqvaDV1tviUQFRQeXwQEREKyoikIRw5N7sPdfvj9mEHLvJbvbIJnk/Hw8eCbOzM7Ozs7OfvOczr89+tHEcqn/wfcilJVBkGe5+BgNMR44673CAFUVsu/f+hJ/DiiINUpiAqooKnD1rFpZu/AjnVtf0O6CsZppYumsnzpk1mwaSJSOG1+9HMByCqekwIxEwHAtWEMFwsT8LitT/OS9RL69cie/feAMqHU7cfNRknFlZBZUXENA1vF5fh6UbP8KZF30HS+67H+fPmQMhLw+Fx01Peb3ZxMky8o+ejPyjJ8PUNHi3foHmd9+Db9vXQ71pw4Id2RNEaO9eeP/zHzS8/AryJk1CwfRpcBx8EA3CTsgoUVXq7FOob2jyQTdM8NHvqoGyzzduXo6L5p8VM/s8FXua/Hh7U98Ljl/sasX/PrERZx43FqceUwmeY/vt6T/n7Hl4dulrePBPd2H1qkfw6aqHwAkiDC1iX2g4/Sxc+9/ZKdID6Y/kyVTmPWDH4ZR4VPhDGlra7TicYDQORxKSi8JRZQGKRCUJQoittrYWq1atQkdHB1wuF2bPno3q6uqh3ixCsoq+FUnG5B89Gbtf/jfMUKjH9HixBO+5nWhfuTL2wg4fjw2bNgIABEHAddddh7y8vLRub3eix4PDfvHTQcXtkIH9/NrrcOZF38HCjzfi9inTYhbrNdPE7zZtRL3fhyXXXjsEWzn8DDYiaritM1cNtC8s04LX14HnPtkMPcFMdQAQeB5Xzp2XUrF+4yef4Ps33oATS8v6fOZUXsAFNQfj3OoaLPx4I75/4w14/dnncMykSYNeXy5gBQH5k45C/qSjENq/H83vvY+WDRv7fCflFJYFJ8vgZBmsLIOTJQCA1t4Ord2bcKxPupgRrSvTXywsQMH0afBMO2bEfoYJIbaqUhc+3d6z44xuWNjb7EdliSst2eeD9cra7XFT2TTDxLJ3d2D95l3Yu2UpVr/6BEzThCCI0LQIWJbFad16+k+aPBUPLX4KDbvr8N67a+Hr6IDT5cIJM07KeCZ9LOmM5MlE5n1vDlmAIh6Iw/EFNXRPH9rbUI8N769FwO+H6nDg2ONPQllFZdfjDACHIiDfJaMwT+66CEQGRsVMMtJs2LABixYtwrJly2CaJkRRRCRin7fnzp2L2267DdOnD68ORIQMFhXqScawooiC6cegae36Aeflj5qIi6770YDzNTY24sUXX0QgEMhooR6wi/VUjMiMYyZNwpL77sf3b7wBV619G/PH1vTt3btrJ+r9Pvzt/j8N+4JhNgxFRNRQxlLlmkT3hVdRoB8+HhdeeCGKi4sHXG7nOS8YDqVUqL/rrw+i0uGMe2EMAASWxe1TpuGqtW/jrgcfxNMPPTTo9eUauaQEY84/D2VnnYW2zZvR/O57CNbvTvt6WEkEpzrAKQo4RbZ/yvKB/0d/Z+UDv3Oy1PV/hufjZixblgXDH4DmbYfW1h4t3tsF/EhbO3RvOyJt7Rm7EBFpbsHe117H3pVvwDn+EBQcOx1KRQWMwIFBdHV/AEYw+jM6neV5qNXVKDh2OsSCkfW5J2SkipdTX7/fh8oSV1qzz5Pxxc4WfLGrdcD52gIm5EMuwDnfm4DDi31wyDzC4TA+/fRTfPjhh1gw/yzc262nf8WYqgF7kWdDOiN5MpF5HwvLMsh3SVAVHoGQDssE/rNlExY/fB/WrXmzTyTSSaecge9fcyOOPGoKNNNER3MAwbAOXyCCwjwFeU4x7ePZjCQbNmzAwkWLsDxazOzctyzL4ty5c3E7FTPJMLR06VIsWLAABQUFOOecc3DUUUdBkqSu8/YHH3yAmTNn4plnnsH8+fOHenMJyTgq1JOMKjz++AEL9QbLoPqSi1BeXp6lrSK54Pw5c/D6s8/h/x58APesXo27tmyGxPMIR/Oyz5k1G0uuvZaK9AnS/X6YkQjG33QD1KrKAedPR0TUUKwzVyW6L/Y1N2PDiuUoLi5O6pwXafNCl+2ib7LxI3UNDVixejVuPmpyv1FTgF2snz+2BvesXoW6hoYRFznFSSIKjzsWBcdOR7CuDk3r30Pb5k9i9lRneB68ywne4QDvdNr/HA5wDkfXALn2zwP/z2RuP8Mw9oC9TgeUft4XIxzuKuB3FfPbOv/fBq3dC93n63eg4H5ZFnxfbYPvq20JP6Xjy6+w781VcE04DIUnHA/34ROGPEbHMk2Y4TD0QNB+/yiLn5AulaWxi7W1+zpQ7dHTnn2eCNO08Mrab5J7Ut4EbNM0VLENKBBbMW3aNBx99NF48cUXcdP1V+GZNPb0T5d0RfKkO/N+ICLPQXRyA0YiffLJcvzgu+d1RSKFNQNtHXZ8TihioCMgojhfgUxxOH3YxcyLoeaX48gY+3bNe8sxc+aJeOaZp6mYSYaNDRs2YMGCBTj00ENx4YUXgu/WlpYkqcd5e8GCBVi/fj1djCIjHn0DkoySy0rhOPgg+L/ZEXeenaUlGD/CinYkMcdMmoRnHnoYdQ0NeOe999Dh88HldOKUE04YcQXCTOgsNBnBECLNLQAAtaoSznEDD9LbyQiFYJlmSkWzZNcZaW4By6dnwDFGELp6Kg9V4c+yrK5BSwfaFx1qYreg98YKPAy/H5HWVnCiCFa2e2gnUhh++913YVoWzqxMrEByZmUV7tqyGe+89x4u+6//GtT25jqGYaBWV6O6uhoV589DcHcDzEgkWpC3C/OsODx79XGSBK6kBHJJSdx5LMOA5vXaBXyvF1pbW1dhP7R/P0INe9K/YZaFjq1foGPrFxDy8lBw/LEoPO5YCCncHWd/9sJdPfiNQAB69KcRDMEIBmAEgjBCoejPoP0zaE/rvFgx9ruXIv/oyel6pYQMe05FgMclobWj74Cy7zZ/mLHs8/588J+92NPcN15O5Flouol4lx51S8CO0Fg0aQUYK9dB5oELL7wQjz76KP7657vx1zT09E+3dETypDvzPhGDjUQq8ajwBzU0tQbhD2oIhDR4onE4HMXhAOgsZl6M4oOn4+iz+tm3r92HBQsuxvr166iYSYaFO++8EwUFBX2K9N3xPN913r7zzjvx0ksvZXcjCckyKtSTjCs84fi4hXouLw+7SgeOfyAjW1VFxYgrCGYqu90yjK4ikxEKgxUFcLIMPslblTsZgSCCDQ12cS8ayZHJXsEAwLvdENIRgWFZMCORQRewU1q1YUTfgxDMUNjuoZxBclkpFIcDRijctV7N6wXLsQfetziFZZ/fD5nnoSZ4cUTlBUg8j44Mv6ZcwasqXOMPGerNyCqG4/qNdwvu2YvWDz9E60eboPsSP48lSmtvx76Vb2DfG6uQd+QRKDj+OLgOHQ9T02D4/dB9fuh+X/Sn/X/DH/09Gq9j+O2iPJIY7yEeIxhMw6siZGSpKnX1KdTvafKjwOHPePZ5b6GIjhXvxf5b4ryTxmFMiRNPvfYfNLbHj5/rMFz4j38CyqV9KBP3Y9q0aVixYkXKPf0zKdVInnRm3idisJFIDMPAqYpQZAHtHWHsbYnG4QQ1FObJcDvs9s1Q5LLnShb8ojvvhJpf3qdI3x3LCTj6LHvfLrrzTrycYDEzV17jaJXO/T/c3sva2lq8+uqrOOecc+IW6TvxPI9p06bh3//+N2pra3P6dRGSKirUk4zLm3QUuJdegRGjaOk6/TSYO5K8jZWkXaCuPq3zjXbpzm43IxG7OBsMwtR1cJKdbS14POAkCbzDAVYUB7WtUkkx5JKSaO/TICLt7WA53i52ywo4qe9yO3uxat7BFXKVinI4amoG9dyeG2La+8XvP1DADgajBWwu+hriF7CTZWqavZ9CQZgRDZxkXxgQ8vIANrM9r8X8fKjl5TA1zS5U+v3Qg0GYobD9vrW0ApbZbRDSA3cYOB0OhHQdAV1LqFgf0DWEdR0upzOjr4nkLqW8DMp581B2ztno2PoFWjZ8CO8XX6alKN6DaaL908/Q/ulnAMumf/kJ0gNUqCekt6pSF7Z83dRjmmFaMMSCrGSfd7d6Yx06Alqf6aUFKo4/qhwcy+AQ9Ru88+83ceTJ34UFLuZyLLBoCJejRfPg4IkCzGXLUu7pn8vSmXk/kIbddSlHInEsg4I8GeGIgdZoHE4wouObtVvw0AP34LUVy7OWy55LWfC1tbVY9uqrODKJffvqvx8ZsJiZS69xNErn/h+u7+WqVatgmiaOOuqohOafNGkSli1bhtWrV+PKK6/M7MYRMoSoUE8yjuV5FJ5wPPa/uarHdOch4yAddihAhfoh01ng3Xbv/Qk/hxVF8CkMajkSWIYBq598Z83rHVR2u+b1dvWMtzStq+c0YIGTFQhuN1jZ7vnOOxzgVBWcJHWtczCU8nKoVZXdeqoGo3E6QURamgEL0UEvZXswy2AIZigEhmOBQd6NzMky+EFGwPTGOxxAYWG0gO23e9nGKWBzigJGSC5yx9L16AWAEGCZYGUZgssJVooOBhrNK2eTXO5gsYIAMT8PyM+DZRhdMR+6P2C/b6EgdJ8PkZYWcJIEVlZw8rHHgmUYvF5fhwtqBo4oer2+DizD4JQTTsjCK0pMqvFMZHBYnkfeURORd9REaF4vWjduQsuHGxHev7/f5zEcZ5+fVAXhxqbECvBDVKQHqEc9IbEcVO6OOV0tPCSr2edtHWG8vSl2R5F5Jx0MLnqhPOj3oe6T5bjonGNRGxqDdj1+rFbIlLHDPAJHn/UTtLUHBrVdw0W6Mu8H8u76NWmLRJJEDqUFKnxBDUtfWIrf3XIdHJ6KrOWy51oWfGcxM9l9218xM9de42iTzv0/nN/Ljo4OiKIIKfr37EAkSYIgCPAO8u9eQoaLrBbqTdPEsmXLsHjxYsqVGmVKz5iNwM5d8H39NQBALi9D9WWXoEVLvMcxST/R48Fhv/hpRiJaRhKrM2IlGIQZCsE0jH57aEdaWgEMIru9pbWr4MtwPFhZhlhUGI2lUTM2YCUrihBFEaLHYxd//QEYAT/0QBBGOAQzGILW0QGGYaI9yN12EVhMrFGVDXYBOx/Iz49bwNY6OmIOGtofhmXBKgrEAg9YSQKvHrhIkq3ifNxt4zgILhcEl6vrIor9mv1dYxcYoSCKOQ5zTj4ZSzd/gnOra/odUFYzTSzdtRPnzJo9pONEdB9/oXMcBV61715guNg9JUlmCW43SmadiuLTTkGwrg6B+t2AaYFzqOBV9cBPVQUrSV3nSM3rRcuGD9H8/gZora1D/Cpio0J96qiNP/LUlLshixxCEaPH9NomLavZ58ve3QFN73shb3xVPo6oKej6v8PphKZFAK0Dhyg70KbnoTY0BpoV/47DyiNm4YuAgQ2f78X0w0uH5bgkiUhH5v1A/D5fWiORGIbBN199it/deh1KDh4g8z6Nuey5mAXf0dGR9L7lBTFuMTMXX+Noks79P9zfS5fLhUgkgnA4nFCxPhwOQ9M0uN2xLyQTMlJkpVC/bds2LF68GE888QT27duXjVWSHMPyPA7+0dUI7dkDyzShlJfbxZaW5qHetFGvv5zi4SBjWfCm2dWT2gyHAMbOAhfyPWAl0e5RHu+5/fS2749UUgylcgwAgGG5rsI8pyhZ603McBwEtwuCu7P4G+zKgmYYpqsYx8oyrCHsAduf/grYlpF8ob7rIomi5GyRmGEY+yKCqkAqKoQZiUAPBKD7fNA7fLjxkksxb/16LPx4I26fMi1msV4zTfxu00bU+31Ycu21qGtowNvvvguf3w+nw4FTZ8zIaPHe1HWY0btIjFAIrCiCU2SIrkKwHI9IextCe/fZF4ocjhFbUMl1nQPxqglmgwpuN0pPn42SWaeh48sv0fzeB/B+vrVrINdM6xpwWrE/w5wi2xcUor9zigJlzJisbMtIRG38kYvjWBw2tgCfbGvsMX1fSwCX//BmvHPJORnPPq/b34GNW/seVwyA808a1+N7YMbMk8GyLD799FNMmzYNHqEdbr4Du8Pl2B8pij6rL93k8PTrX+LDz/fiW7MORWmBOqhtHQ5Szbzvj8PpTHskUsKZ94PIZY8nk1nwg+VyuZLet7oWiVvMHOxrHG7557kqncdYpo/XTOfnz549u8d5eyBbtmwBy7KYNWvWoLZhJMrlz+VoHn8hVRkr1AcCATz33HNYvHgx3n33XQAHilf0x/XoxDAMlDQVeQJ19fDFyZSlHPXRI+1Z8LoejXYJwgiHo4VCBYLbZcecdPamHqhgO8j6k1pZCefBiffAzzS7+GsX5nOn73xyehewR4uuuyTy8xFpacXxJ5+Mh397B6757W9w1dq3MX9sDc6srILKCwjoGl6vr8PSXTtR7/fhtptuxv8+8Be89tZbMC0LMs8jpOtgGQZnz5qFn197HY6ZNCkt29l5p4oRCvUdf0GWu3pqMwwDTlGgdXRAa22D7vdDyPfEHEOB5CaGZeE+/HC4Dz8ckdY2tGzYgOb3N0BP8PZlhufBO53g1AN3F3X24LcvpHXv1a/Y/1eVjA8sPRpRG3/0OKKmb6EeACylIuPZ55Zl4ZU122M+Nv2IUowp6TmOSsWYKpw2ew4+/PBDHH300eB5HhxjolrejQKhFbuClQia8YvwX9e34/+e3Iizj6/BrGlVdCwnacbMk9MaiTSYzPt///sRbNryJQ4bfzAUiQeb5PhBmcqCT1VnMTOZfRuvmDmY1/jvVx7GGWecgdWrVw+r/PNclM5jLJPHazbz80888cQe5+14dF3Hxo0bMW/evBFdoE1ULo9LQOMvpC7tf728//77WLx4MZ577jn4fL6uhnteXh7OP/98PPHEE+leJRmFvrrnfuzt51Z1ylEfHXS/f1BZ8KH9TWC6D6ppGnaB3jDAyRI4hwNiYaH9uxrNIJdl+qONDEtigQcMx+K/vv1tjCkrxb2PP4571q3DXVs2Q+J5hKNF+HNmzcaVU6di0b33oNLhxM1HTe5bzN/4Ec686DtYct/9OH/OwH8s9tYVadOZ+88MPP5CJ6VyDASvF2FJgt7RgXBTE3jFjmLK1TsdSGyiJx9lc85E6emz4d36BfzffAMjGLLHfHA6wDud4B0qeIcTvNMBzuEEKwp0Dh5i1MYffSZ0i5bpbuvOFvzgvMxmn//nm2Z8Xd/eZ7rIszh7xkExn3PtT36GBfPPwosvvogLL7ywq+jj5AI4wvEV9kWK0RAugxlnsFnDsPDq+h0AgNnTqRCUjIoxVWmNRBps5v0rr76Gby+4DLLIQZF5KBIPJs7dFL39e9lrac+CT4fq6mqcO3cu1ryX+L6dG6eYmWzePScqsCxgw+Yvh13+eS5K53gDmRi7AMh+fr6vZTcYBn3O293puo4XX3wRLS0tuPXWWxN6vSNZLo9LQOMvpEdaCvWNjY144oknsGTJEnzxxRcA7F4QPM/jrLPOwuWXX4558+ZB13VqxJOYGhv79tbpb77qSxeguJ9bJUdjjvpolmwWvKVrMLuNj8CwHIT8PLCyDF5R7F6ZDseQZ5CTkSvZc16q7Gx3HseffAr+ceRE1DU04P2vvkKH3w+X04lTTjgB+xobMWfBRTixtKxPPI7KC7ig5mCcW12DhR9vxPdvvAGvP/tcQj3rLcPoypo3QiGw0SgSsbj7+Av2BbH+Cu4Mw0DIywPncCDS3AJOVRFpa0No3z4I7jzwTro4O9wwHIe8iUcib+KRQ70pJA5q449uboeIyhIn6vf7ekzfVtsKTTczln1uGCZeWfdNzMdOPaYK+c7Y9/lNmjwV9/5lMW66/io8+uijmDZtGiZNmgRJkhCJhFG3ZTm2fL4dZZPno/TgY+Ouf/l7OzG+Kh/VZZSDnIxrf/IzXDT/rLREIg0q854X4fN1oLk9CAuAIvIQhcSjI3ftbkxrFnw63X7bbZg580Rsfu2+uDEn9r69D4G2Pbjt1udjLieZvPvWPV9hy+t/Rvn4EzDlnJuGXf55LkrneAPpHrsAGLr8/H1ff4Avv/yyz3k7HA5jy5Yt2LhxI1paWvDss8+O+mMsl8cloPEX0mfQhXrLsrB8+XIsWbIEr776KnRd7+pZM23aNFx++eVYsGABioqKup6jJzmIHxn5FEmGwPN48cUXE36OwPPwVFdDpR7zZJCU8lKo1d3+gGRYO9ZG7b9QOBwkGv2UzoiooVhnrhroNVp+f/LnPEGAqqaemcs7HVDGjAHDsqjiWFSWlEIqLuo65n/+uztQ6XDGzbAHAIFlcfuUabhq7du468EH8fRDD8Wcz9Q0O9ImGIKpa3ZBXpYhePLBSZIdVeJwgJPlpMdfYHkecmlJVyRV9zgc0ZMPVqQ4HEJSQW180t3hNQV9CvUR3cT23W2YMNbucZ/u7PN3P92Dxta+d846ZB6HVuejbn/sAUgB4IhjTsX9jy3FM3//C1asWIFly5ZBEARommbHgZx+Fn581WwwjmosfftrtPnCfZZhmhb+8doX+OklUyGLFJ+VqEmTp6YtEmlQmfd6BMVFBagociKiGwiG9T6DIfdHlNS0ZsGn0/Tp0/HMM0/bBal+9m2gbQ+effaZuAWrZPLuv97wAtT88j5F+u4Gm38+2vKmO6VzvIF0j10ADG1+/qTDx8KTn49XX321z3l73rx5uPXWWzNSiE31WNzfGoDXn3gMr9shosQz+L/rcnEcjUxsWy6/zmxIuuWxfft2LFmyBI8//jj27NnT1XCvrq7GpZdeissvvxyHHXZY2jeUjExuhwNXzp2HYDiU8HMUSYabivQEgBlO/EuxO7GwCHJZWZq3ZmgJbhdYScK2e+9P+DmsJEFwx78zJRfXmauS2RfHCQIiPA9WFDDhVz8f8O4fVVWRl5eXlu3kVQVK5RgwHItwcwtC+/dDKirC7sZGrFi9GjcfNTlukb6TwLKYP7YG96xehbqGBlRVVMCyLDvSJpo3D1hgZdneL52RNqoDnKNvpM1gcYoCpaoSfLvXLth7OxBqbAKvKvYdBFkagJmQkYLa+CSWI2oK8MaG2j7Tt+5o6SrUp1MwpGPl+ztjPuYP6fjL858ktJyiY6/DS7cswudbNsTt6T++Oh+vvbcTaz7e3Wd4oaa2IF58+2tcfOaEQb6S0WnO2emJREo1817kOYh8cp1vzjzjdPz+t+nJgs+E+fPnY/36dVi4aBGWvWrvW14QoWsRsCyLufPm4bZbn++3mJlo3n3Q24h932zEUbPTm38+WvOmO6VzvIF0LgsY+vz89W89gh07duDPf/4zVq9eDa/XC7fbjVmzZmXkIk46jsX9rQFc+7+rEU7igqAkcnjwF7MGVazP1XE00r1tufw6syXpQv348ePBMAwsy4LL5cK3vvUtXH755TjllFMysX1kFHA7HFR4HyXMSARaR0c0+kIZdLSMZRiItLVDy8KtpsOFVFyMqQ/cD80bv5dZb4LbBam4eFitM1cNp33BSRKUMWMAhkWkpRXhxkasXrMGpmXhzMrEogrOrKzCXVs2462338ZFc+bACIbA8jxYRTkwvkO3vPlMDejJMAzEfDv2JtLcDE5VoLW3I7R3L0SPB5yS2O3Aw5llmvZgvKEwGI4F73LRRQoyKNTGJ7FUl7mhyjwCoZ53TWzd1YILM7C+Nz7cBX8o9h0aNy2YgurygXsv1+/rwN1PbYLTU9pvT39Z5HHBKYdAEnm8/sGuPo9v+HwfJtQUYMqhJYm/AJKWSKR0Z95nap2zzzgbvFKAhkZf3HnTaUzN4XjosSexu74O69a907VvTzzxFIyJtuEamnyQRR6qzPe5IyTRvPum2i2Ald7889GcN90pneMNpHNZQG7l52dyzAcgfcei1x9BOGLgp5dMRWXpwB3ROr+bvP7IoAr1mRqXIB1y6fgZCQb9l/OJJ56If/7znyPmigUhJLOMUAjh5hYILidMQ4fe1AiAASfLdtFekgYcKNCyLOg+P3SvF5xqFwTJAVJxcdYLv0Oxzlw1nPYFKwhQoz3rWZ5F2/79kHkeKp/YxTOVFyBxHNpbW8GKkp0dL0vgVDtvnlOUtBaLw42NCV0EsXQdlhYBWBbbt36B97Z+joCuw+lw4NQZM1BVUZG2bRpKpq7bsUKhIIxwGKwoglNkmJqO0N69EPLyaEB1MmjUxifdsSyDCWMLsOnL/T2mN7YG0dgWRHF++i6I7mnyY83m3XEfry5345DK/LStr9OZx43FV7Wt2LmnbweQ5978CjVlbnjcMhp21+Hd9Wvg9/ngcDoxY+bJKRWGR7pUI5HSmXmf7nV+vOJe+Fsb8J3vPoDavYl30kgbPh8nnHp+138NoGs7GMbutatIPKRowd4hC1AkHizLJJR3r4V9YDkhbfnn6cybznbUSLqla7yBdC8r1/Pz0yUT2eeVpa6MfDf1lsv7dbQcP9mSdKG+c1CH9evXY/z48ZgzZw6++93v4rzzzoOUptvZCSEjix4IINLaCqmgAILHA4ZjoxEZYRjBELS2dpi6Dk6R7cK9LPfJijfCYWitbQDLQCwpguB0gXcMQcM4CZTdTnIZw3FQKirAsCzyi4sR0nUEdC2hYn1A1xA2DBRUVkKtrrIz52U5I9sZbmzEputugBnumyMcj84wWPDGCuwNBCDzPEK6DpZhcPasWfj5tdclNAhurjHCEbswHwzBNIzohRFHtzsYVBjBADSvD1pbazSz30ODYpOEURufxHN4Td9CPQBs3dmC4qPHpGUdbb4wHnnpUxhG7xAaoKbcHbOIni4cy+Cysybgric/6pNpHooYePhfH2LH2r/irdUrYXWLSGBYFrNmz8G1P/nZgFEunXTDxLbaVmze1oidezogixymHV6K4yeWQ+AHd4Hbsiy0esPQTRNF+QrYATq+DMQwTATDOhRZAMemtqxUpDPzPhPrvO8vi3HcccfBtPoes0PJMi2EwgbaOsIQeBayxNv/BA6qLOCwIybjqaeexCWXXBr3Ne7Y9ApMQ0tb/nm68qazHTWSCekabyDdy8r1/Px0Gc7Z57m8X0fL8ZMtSRfq9+zZg3/+859YsmQJNm/e3DXYg8vlwre//W1cdtlldIssIRliDaIhOFAv9UzTOnzQO7x2b+MCD6TSUvvWetOEEQxC9/thBAIwQmGYoRCMQACR1jawogBOtnvaG34fjFDI7iXqckEqLADvdsP/zY4hfW3xUHY7GS4YloVcXo4zzjkb7G/+B6/X1+GCmoMHfN7r9XVgWRZnf/tbkArTn1HcnebtgBkOY/xNN0Ctqhxw/kBdPbbdez+uO2IijisphcoLCOgaXq+vw9KNH+HMi76DJffdj/PnDJznmU5Jn7975/4zDDhZgZCfB1aWwSsKOIcKXlW7BtC1LAt8WxtYRYLu9SK0fz94hwOC201xOGRA1MYn8UwY6wED9Mlx37qjGSenoVAfCut49KVPYw7syjDAyVPGZLRQDwCFeQq+NWs8/vnaF30e29duYr9ZiYkxIhI2bl6Oi+afhfv+shhzzp4Xc9kHivNN+HR7E4LhntE+tfs68OaHtZh1TBVOOKocopBYtnpEM7Dpy/1Y90kDdkejV9wOEUeNK8KkQ4owrjI/4UK71x/BZ9804bPtzfiqrhWGYYFlgHyXjAK3jMK8nj8L8mS4VTGlvzN8QQ279nixc48X9fs7YJgWSjwqKkucqCxxoqzQkbbM+2QMxTrTzakCpmUhHDEQCutobg3CYgBF4qGIPCYdOxtLX1mJB/58N15/rW/e/axZs7Fq1aqk889PO+20Pu2ddOZNZztqJFPSMd5AupeVy/n56TLcs89zdb+me9ty+XVmS9KF+vz8fFx//fW4/vrr8fHHH+Oxxx7D008/jba2NixZsgRLlixBVVUVLrvsMlx22WWYMIEG4CEkHXSfD5G2diDJYg/vcEAs6H+wykzR2tuhBwJ2kb6oCFJxUddjDMuCdzi64hmMcBi6L1q0DwZhhkPQgyHovg6wigy5rAxCfh6kwsI+ve1zzXDKKyeEYRgceswxOOfMOVj6/ns4t7qm3wFlNdPE0l07MW/u3Kw2WtWqSjjHDXwRodNpFQeK+iov4IKag3FudQ0WfrwR37/xBrz+7HMZ71lvRiIwQiH7nBbRkn4+K9mRNqKrCJwkg1cVcA4HeFWNeR5kGAaixwPe6bQz+xU1mtm/D0J+Hng1d/5IJbmH2vgkHqcqorrMhV29Ij6217cjohkJF5Zj0Q0Tf1v2HzQ0+WM+fuLkMShKY7xOf46ZUIqtO1vw0Rd97x4YO/mcHkXpHhEJK+7DjddfhWeXvtZVvO1enP9sexMC4di5+528/gheWrMdb260C/YzjqqAJMber01tQazf0oAN/9nbZ7lefwTrtzRg/ZYGqDKPiQfbRftDqz19euzvbwng0+32xYPavR19LsSYFtDiDaHFG8LXMW7+FDgWnu7F+2gBvzD6U5X4rn1mmhb2Nvuxc48XO/Z4sWuPF41twT7L3FbX1vU7xzEoL3SgssSFy2+4C1ffeAe+2fohAr7kM++TlY6c/aHGMoxdmJd4eGBf2AmGdXj9YWjtJorGHIY/3LsYv7h1Lza8v67Pa/zRVZckldd/2ulnQWPzsL2+vcfjL7zwatrzprMVNZJJ06dPxysvv4za2tqUB09Nx7JyOT8/XYZ79nmu7td0b1suv85sSWl0tylTpuCBBx7APffcgxdeeAGLFy/GO++8g9raWvzhD3/AH/7wB0ydOhVXXHEFFixYAGUUDOpGSCYYwSAi7V7IpSVgkhmU0bIQ2rcPRjCY1UEVLcuC1toKM6JBKimBXFIM0dP/xQJOksBJElBYAFPTYAQCdm/7UAisIEIqLspYtEYmDKe8ckIA4H8W/g4nzpyJhR9vxO1TpsUs1mumifs/2wKF5/Hrq34A3/ZvYi4r0mpHrwDRi4UDfP6zdaFKYFncPmUarlr7Nu568EE8/dBDaV2+1bsXPCywsgzB7QYrSwCS63nIiiJ4VQXncIBT5IR7LrKCALmsDLzbjXCjAr2jA1pbGwy/H0J+PsXhkAFRG5/0dnhNQZ9CvWaY+Lq+DUccNLgxgyzLwrNvfoWvattiPn5IZR7OO/Fg7GmJXcTPhG+dNh47Grxo8YZ6TI93/mU5AUefbUckPPjne3DDbX/C5q8aEyrOx+ILaHhl7TdYtbEOp06txImTKyCLPEzLwpc7W7D2kwZ8sbOlT1E9lkBIx4bP92LD53shCRyOOKgAh9cUYG9LAJ9tb8b+1kDS29edZpjY3xqIuxxZ5FDglqFIPOobfUnFlQCAYVio3+9D/X4f3o9OY9lKVJU4cfgRFSgpy/wgv6nm7OcSUeAgChzyIEE3TITCOoJhA5A8OPaUA3eDGADq9nfgvy67Fu+8NT/hvP7/uvQvqNvft5PS7r1Noz5vuj/V1dVpKwKnuqxczc9Pl5GQfZ6L+zUT25bLrzMbUirUd5IkCZdeeikuvfRS7NixA0uWLMHjjz+O+vp6fPTRR9i0aRN++tOf4tRTT03H6ggZVUxNQ6SlFVJhAcTCAkhJDKAaaWuDGYkg0tIKWRSz0hPdMk1EWlpgmSakkmLIZaUQkswLYwUBbF4ehLy8hOanLHhCUjd9+nQ8/cwzuHjBAly19m3MH1uDMyurekTHvLN3D/543AyIDAN98d/xSbyFMUxSd/+wkoSpD9yftWL9/LE1uGf1KtQ1NKQ8wKxlGNFe86HohUUBrCxDLCq0L0Aqqp3hP4gBdlM9Z/OqCq6qElpbO1hF7orDEZxO8C4XxeGQAVEbn3Q6vKYAr72/q8/0rTtbBl2oX/HeTmzcui/mY2WFKr4/dyL4Qea2D5Ys8fjuWRPwp+c3J/w1xnICppzzc3COPDzy0qdp2Q5/UMOy9Tvw1kd1mHpYCb7Y2YKm9tDAT4wjrBn4+KtGfPxVY1q2LxGhiBH3TonBMk0Lu/Z2YNfeL7H83R046egxmHFUBRQ5LWWNUYPnWDhVEU7VvmAW61gfc8pM3PuXx3DTf/8gobz+2afMjLmuipLCUZ83PVzkan5+uoyE7PNc3K+Z2LZcfp3ZkPZvtIMOOggLFy7E7373O6xcuRKPPfYY/v3vf0PTNLz55pvpXh0hGWNGImB4fkgLGZZhINzUDN7thpCfD6m4OKksSNHjgeH3Qw8GEGlrz3iWdOf2MhwHqaQESlkZeKcjY+ujLHhC0mv+/PlYt349Fi1ciHuWLcNdWzZD4nmEdR0sy+KquXMhguk3Lz5QX49t99yfdKa85u3I2l0oZ1ZW4a4tm/HOe+/hsv/6r6Sfb2qaXZgPBmFqGjhJBKfY+fGcLIF3OMCpgyvOpxvDshALPOBdToSbonE4be0I7dtnj/tBcTgkQdTGH90qS11wKgJ8wZ4xXp/vaMH8U62ks8rf/bQBb2yojflYnkPED88/asiKrzUVeahytqO2I7EOIwDgLBz4+643UWAR0cx+5wmEdKz7pCHpZY8G7f4IXl2/A29sqMXxE8twypRKeNzD5+7bXMEwDOJ9fM865zxUjEktr3/mSaeAGUTe9HEzTupzvuk9vkOigmG9z7JGIwb2nS4cF79tmkrmfShivz+yyKe8rEwYKdnnubZfM7Vtufw6My1jrR+GYXDWWWfhrLPOQlNTE5544gksWbIEn3/+eaZWSUja6D4fNK8XsAAhzw3O4cj6oKyWZSHS0gJWFiF68qGUlyW9DQzLQiopgREKI7Rvb0YjcExdR6SpCYwkQioohFJRnvG4HcqCJyT9pk+fjpdfeSVmzmWBpuOTm3+eUF58spny2aTyAiSOg7e9LaH5D0Ta2L3mYZnRSBsXWFkCJyvgVBW802FHeOUgVhCglJdBcLsQVhToXi8ibe12HI7HAzaZWDUyqlEbf3RiGQYTagr69IBv8YawvzWI0oLEL/r9Z0czXli9LeZjksjh6guOGvKCqwd7sLmhAQUVh6d1uW6HiEmHFOHo8cU4qCIPX9W2YuUHu1IeLHdMsRPlRQ5s3dEMf2hwxcxOlSVOjK/KRzCso7ndzqhv7QjDNJMcFD0JkshBFjm0+yJJPzesGXjn491Yu3k3phxWgtOmVmFMibPrcdO00OYLo7k9iBZvCM3toa7XxTCAxyUj3yXB45LgccnwuO2fikTfi0Dqef0VY6owa/achPPud32yHCefNgcGl4edDT3z7huigyYnq6HRl2T44MjEMAxEgYUi8XAoAhyyEHOMkUQz703TQiCsIxDU4A9pCEcL9ZLIQ5UFOBQBxxwzLW1Z/KkaSdnn6RzjIJe3LZdfZyZl5dunqKgIN998M26++Wa8//77WLJkSTZWS8igmLqOSLsXUkkRYAFaaxt0fwCiJx+sKGZtO7S2NgCAWFAAubxs0BEInCxDLCiAGQ4j0tqWkQgcU9MQbmoCpzogFXogl5dnrVhFWfCEZEasnMt4mfTDTUDXEDYMyCZghEIxx7+wDANGNG/eDIXBcBxYRYZYWGBnxztUO1pGVYdV5jvvcIBTFERa28DKMvSODrt3PcXhkEGgNv7ockSMQj1gx98kWqiv3deBJ5Z9HjNqg2UZfO/cIzCm2Nn3wSxzupz4eNkdmPWDR1LurONSRUwef6A4z7IHljehpgCHjfVgW10bVn6wC9/sbu9nST1xLIPJ44tx0uQKjC13g2EYGKaFb3a3YcvXTfj06ya0+wcufLMsg0Mq8zDx4CJMPLgw5kUSw7TQ7gujJVrgbo4OMttZ/Pb6Ignl5ncq8SioKXdjbLkbNeVulBU4wLIMOgIR7I7m0tft70D9fl+f8QLiMS3goy/246Mv9sPBBezBcwUnOgIGjH4uMuxA7Iskssh1FfEPqnDjuCPL4XZk72/BXJNKXv+1P/kZLpp/1oB595tX3ItA+x5c9v2/whvjoo0/MLhe8f6AFnN5o41hWTAME4rEQ5Z4yCIHWbSL9qpsDzzc/XwX628B3TDhjxbmAyEd4YgRHe9Ah2HYnzOWY6BG1yEJLFRFQF5BKS697PI+g1pn20jLPk/nGAfplkvjLww3Wb9MfPzxx+P444/P9moJSZjW2gre6YTgcoN3OsFJkl3IaGwCryoQ3O6MZ73rPh+MUBhyaQmU0rKUi95igQdGwA89GITW3g6xIH0ROEY4jEhTM4Q8N8QCu0g/nIpWhJDR5/X6OvtW1tmzEG5uhujxgFdVO9Im1C3SRhTBygqEvDw7b96hglcd4NShj7RJBcOykAoL7N71jY3gVBVaWxtC+/ZBzM/P6uDjZOSgNv7Id9hYT8whSLbubMapUweOfmlqD+LRlz9FRI8d97Lg9ENx2Nj4bdT6fYndQZnofP2ZMfNkhPzNaKrdguKxk5N+fn/F+d4YhsGh1R4cWu3B1/VteP2DXdhW1xZ3/jyniBlHVeCEieVw9SoccyyD8VUejK/y4MJTD0Ht3g5s+boRW75uQnO3jHtJ4DChxoOjxhXh8JoCqHL/bXeOZVDgllEQ504HXTfR0hHqWciP/h4I6/C4pAOF+TI3HErs9blUERNqCjCh5sBx4A9p2B0t3H/0xX7sSSD33m+o9qiog4xKAeyM/T3Nfuxp9mPrzhas/GAXpk0oxalTK1FWmLloz5Fo0uSpuO8vi3Hj9VcNmHd//wNLcMpJM2IuJ6wnNyBxJ0+ejJIk7voZyXTDRDDaC77FG7J72It2kd7uCd9ZuBfARc9boYgOf9AuzAfDOkIRI/pTBwNAkXjkOyVIol0jCWv24y3tIZiwIEeXL4scFOnAOjojcrIpE9nn2fxuIqMD3c9FSDe6zwfLMCHmuyGXloAVBPBOByLNzWAVBVp7NNfXnZex7HUjFEKkvR1SSTGk4qK0rCdTEThGMIhwSyukgnwIHg+U8vKsDFhLCCGDpZkmlu7aiXlz5+KQSUch3NyCSFMTtHYvLNMEp8gQXE6wkgxOlu3ivMMRs9f9cMcKApSKCghuP8LR3vWRtjawfj+E/PxBx+FYpgkzHLbHehEEysEnZIRQZQE15W7saOjZA3l7fTvCEaOrSBOLP6jhkZc+hS9Oj9izT6jB9CPKYj7mlAWIAou7n9qU8LaKAgvnAMXn/nTFdaxZgqJL703o4qylBXDStEMSKs7Hc0hlPg6pzMc3u9vx+ge78GVta4/HTpxcgYnjiroKaP1hGQY10R7r8048GHua/Kjf74PbKWLcmPy09mzleRYlHhUlnvSf7x2y0HUhY9YxVfhyVyve2lSHr2rb0r6u/hiGhQ/+sxcf/GcvjjioAKdNrcK4yryU77iI6AY6/BH7X0CDNxBBOGJ0xZM4FTtCxKEIUCU+7nFlWRbCEQOBkB7t7azBH7KLqZLA2VEkcjSSRBYgSRzYLEa7zjl7Hp5dmnzevWVZCIUNtPnC2Bk997z23k4AQFNbMBplFAQAHFSRhymHleDoQ4txcEXiY0yMJjzHwqWKcKkiTNNCKKIjFDawPxAEyzCQJR6KZEdRyRIPTTftXvORA0V6kbcL7q58BSLf97wvi7xdhHfZx3cobMDnj6C53egq1ssiDyn6e7YjhmeeehZeWf4m7rv7j3jj9b7Z52fMOQc33vwPTJl6DPa1BOIuJ6IZEAUuqe8mgWexa48XTW1BaLoJ3TCh6ya0OD91wwLHMuB5FiLPQuA5CAILgWMhChwEnoXAs+BYFpphQNNMRHQDmm4iopnQdAMR3YSm2T8tyx5Tho2OTcGyTPT/9kVjlmXAAmDYbvMwTPT/0d+j83U91m1672WyLAOHIqA4X4EQ41gZSgzsODo5B2POktqi//u//8P1118PJY09rTZu3IjGxkacffbZaVsmIYPRPfJGKizq6hXO8jzk0lIIbjfCjQq0jo5oHI4/7XE4pq4j0twCqaAAUkEBRI8nbcvuE4EjSSn1CNX9/ugAtYUQCz2QS0uHdQ9TQsjIp5kmfrdpI+oDfjxz222QS0tR17AHb6xbi44OH9x5eZg9exZqqqrBO4ZXpE0qeKd9l0CktRWsLEPzJh+HYxlGV4a/EQqBFQSwsgS93Wvn4Ofnj5r9ORxRG58k6vCagj6FesO08FVdK44aVxTzORHdwGOvfIbG1mDMx4+fWI4zjo2fNetxy/jVd6fDF0o89sIpCynn3HfGdXyy8k+YfNYNMYtJlmWhcdfH2PHRy3jwz3fj6KPHp7TOTgePycOP5k9CY2sAe5oDqChyoCh/8J9PhmFQUexERQ7ECrV6Q4N+L5noWAkTagpQv78DL765BV/vDYNls1sA+nxHCz7f0YLKEidOO6YKk8cXx7x4EorYvYqb2+27DFq9IXj9EXQEIvAG7OJ8KJJ4L3GGQVeh3aHYpZwDhXk9qXEEGAZQJR5q9AJAZy9qNdrjuXM99u/2/xWZh2lYCEajToJhHYFuv3f+03Q7XsUhH8hCdygCCssPxf+7729ob92LjR+sR4e3A5IjD4dNnAZByUe7L4xl679Bmy+Cdl8Ybb4w2jvCfe7CWfn+rpivacvXTdjydRMeX2YX4MZV2sX6jkB6Y28sy4JhRv8ZZvSnBcOM8btpQeBYSAIHUeTsnwKX0MW2TGNZxn7PZcEeH08zEYzoXWNSyCIH3TCh6SZkkYcqCShwK0ltu8hzEHkObocIw7S6YnLaOsLgORaiyIEZghEECisOxcK7F+O6hnps/GAd/H4fHA4nph13Isoq7DvEavfaPeDtfWNfBAuE7bsLgmEdgZCGSYcUoSMQQShsX8wIRQyEI3YMkG6afe5A03QT9z3zcbZfbk5wO0R43DIKXJL90y13jQsyFHdXCDwD3VBz4nuxt6T2xi9/+Uvcc889+MUvfoHvfe97yM/PH/SK161bh//3//4fVqxYgd/85jfUiCdDzo68cUBwuSHm970CzykKlKpK8O3tdvHB64vG4agQ8twpF6kt00SkqQm82wXBk5+R3HWxwAPdH43AaWuHWDC4CwGatwO6v8O+qFFQCKmkOOtXwgkho0ugrj6p+d5qqMdxJaVQeQEBXcPr9XVYumunXaR/9llYloXz5s3DsuXLYZomZJ5HSNfBsizmnnsubrv99oRudx0p7DicQgguF8JNTdDalWgczn6I+Xkx78IyNQ1GMAgjGLKjgmQJnCxDyM+z70aQJWh+P/R2L0L791MOfg6jNj5J1BE1hVj+7s4+07fubIlZqDdNC0++9kXcwVIPrynAt2aNH7Ad6XHLWR9gtntcR2RpGybN+W9IjgIwDAPT0LF/x0fY9v7T8Lfuxv0PLMHRRx+T9m0o9qgozkAv9aHS6g3h//3jQ0S02PFHsYgCi199d3qf97+yxIX/rHoAn361B9MvvB1MEsV6UWBR6FZgwUKrN4ywNrhIlfr9PvxjxVa8uu4bHHdkGSK6aRfmvSG0tAdTHti3N8uy707xBzWgdeD5B1xWSE/7NiZK4KtgmhaMDgsb9u4GsDuty/f6I/j4y0YAwKMvfYYSj4rDxnpQ4lEQ1gxENAPhiIGwZtq/R//f+XuPInyv39MxsLIQLVJLQmfxngXLMuBYFhzLgOPsHs0cZ0+zH4v+4+x5ekxj2a7nMCwDTT/Qu7qzZ3W4s4d19DUD9mdB4O2LB5Jg99IWeQ48Zy9HEjgwDKI9tA/sr8791Lksw7S6encLnT2/o7+L3f7PMOjan/Z2mTCtA/u186f9u2n/bvWebv+0gB77o8c+6TONje7Lzmmd+5lD2YRTYVlAIKzj410aAl9uQyB68avzZ3/jXJDEeP0ReP0R7NrT9zFF4iEKLPjO94ljwXd7H3nOng6g60KYbhz4XOqGGZ0e/d20/3/hqYfgiIMK+6xP0w0Ew/axlYuSKtTfcsstuPfee/Gzn/0Mt9xyC84991xcfPHFOOmkk1BSUtLvczVNw+bNm/HKK6/gqaeews6dO2FZFo499lhccMEFqbwGQlKm+/ywDANifh7k0vjHMsMwEPPzwTudiDQ1gVOjcTh790HIc4N3DC6mxrIsRJqbwYgiRI8HcllZRgoZDMtCLimGGY5G4ISUpOMcIq1tMEIhSMUlkIqLIBX2PfERQki6CG4XWEnCtnvvT/g5OsPggc//g9s3boDE8whHC/Dz5s7FM7fdhrq6Opx04omoVB24eeIknFlZ1bOgv2YtTpw5E08/8wzmz5+fwVeXe1hRjMbhuBFWusfhBCDkubv1nA8CsMDKsv0eyRI4WbFjghxq19gqYtdg4yq0tmh8XF4exeHkGGrjk0RVFDvgdojw9hqkdOvOlq5b6jtZloWX1mzHlq+bYi6rssSJK845Iid6lsbTPa5j1WNXw7IAjud7xXUs7hPXQWLzhTRENBM/vWQqKktdA85fv68Ddz+1Cb6Q1qdQ37C7DqtXrcTEWdckVKRv3PUJvnrvaTz55NM45OCxXcdqZ7RKa0cIrR3hrp9tHWE0twdRu7djwIFyWzvCeC1OL28SmxZnrIpM2d8awP7W+DEm2aYZJrSgPTArIaOdfTdO+pcr8GzMQcDtaLDc/ewlVahftGgRfvzjH+OWW27BU089haVLl+LFF18EAFRVVWHy5MkoLi5GQUEBJElCa2srWlpa8M033+CTTz5BJGI36CzLwrhx47Bw4UIsWLAg/a+KkCSYum4PsBotOidyaz7L85DLysC73YgoMjSvD1pbK/QOHzjVLn4nE4mjtbfDsixIBQWQy8sGnQucCE5RIHo80Qic1oQjayzLQqSlFZauQy4tgVRSEvPOA0IISSepuBhTH7gfmjfxAZgEtwsfBINYvXo1vF4v3G43Zs2aherqamzYsAEXL1iAE0tKcfuUaRC6nf9UXsAFNQfj3OoaLPx4Iy5esADr1q8fVT3rO/FOJzhFQaS1DaysQPN6Edq3HyzPg1UUiIWFdg96JVqcV9WY312sIEApL7cL/105+O12HI7Hk9Hvu06WaUYHCQ7BDIeBAUsunU8EmCxsXy6gNj5JFMMwOLymAB/8Z2+P6W0dYextDqC86ECnlXc+rsfazbF7yRa4Zfzw/KP6zbXPFZMmT8VDi59Cw+46vPfuWvg6OuB0uXDCjJNQMaZqqDdvWKosdeGQyvyUlvHu+jWwTBNjJpyc0Pye8kPR2vAFtmx6F+PH1XRNZxgGisxDkWNHAzW2BfHOpnps+Hxv1ovLhBBCBk83crPH/ECS/utjzJgxePzxx/GHP/wBjzzyCJYsWYL6+nrU1taitrY2bnYfAPA8j3PPPRfXXHMN5syZQ1EZJCdora3gnA4IbheEvOQKz7yqgquqAt/WBlaRYAaCMEIhhJubADDRW/9lsP3kwes+P4xgEFJJCZSy0q5eiJkkFhZADwQSjsCxTBOR5mYAgFRcBLm8DIJr4F4whBCSDlJxcdJxYNUArrzyyj7T71y0CJWqo0+RvjuBZXH7lGm4au3buHPRIrz08stJb/NIwHAcpKJC8C4nIk3N0N1+sIIATlXBq3aufaJ3f/EOR7fC/+By8JNh6jqMYBBmKAQjEgEnimBlGbzbCYZJYl0Mk9axaHIZtfFJoo44qG+hHgA+39ncVaj/+Kv9eHnNNzGfr8o8rrngKLhi9HLLZRVjqvBf375kqDcjrVLJix9qfp8PvCCBFxPL7udFBZwgwteR+IV/ACjOV/CtWeNx1gk1eHdLA9Zu3g0f9YIecizLIM8hIs8pIc8pwR+MYEeDlyJKCCFddGN4XlwddDehiooK/Pa3v8Vvf/tbfPbZZ1izZg0++OADNDQ0oLGxEaFQCIWFhSguLsYRRxyBk08+GTNnzoSLinskh+j+aOSN2w25pGRQf1gyDAPR44HgdkP3B6D7/TCCARjhMIxACJq3A6bW0lW05xQZDGf3HjLCYUTa2yCVFEMuLgbvzM5AFj0icPb2H4FjGQbCTU1gBAFiYQGU8nKKLCBklOsvLz5QXz/gPIkuK91qa2vx6rJluHnipLhF+k4Cy2L+2Brc8+qrqK2tRXV1/IEORzpOkqCMqYBlGF3fX4Nh5+AXQHC7EG5shOZVozn4+yDm58fMwU+UZVkwI5Gu4rxpmOAUGZzDcaD3v8Nhf38lcVGAYRgwo2wQXGrjk4EcWuUByzJ9cpq37mjB7GnV2F7fhidXfhHzuTzH4KrzJqKkgNqSQy2defFDweF0QtfC0CPBhIr1eiQIQ4vAOchzlVMRcOZxY3HqMZXYuHUf3t5UH3eA5P6oMg+3Q4RLFfv8dDlEuFURssh1DVrpD9oRDb6A/dMf1ODrzKkHDgwCK/Ndg792DQKrCJBFDpGIAX9YRyAYzd0Oa/AH9Wj8g94jjzuZwW1j4TgGAsciHDESvX+tD5FnkeeSkOeQkO+SkO88UJDPj/50qgLYXn+7hyMGtu9uw5e7WvFlbSv2teRO1A0ZuTiOgTM6aLJTFaBKAiSRA88dyOyP9TvPRf/xLHiO6fq/EP3J8Qx4loVpWdB0E7puZ/prhj3WgN71u53HzvcYI6DnOAECz0LkODCsPT6FaVmwLMAyLZiwYJnRtnR0es+f9uP2fLEfNy1E57NgAl3z6aYZjRELobEtiOb2IFq9IWTretqoK9R3N3HiREycOBHXXnttOhZHSFaYum73Ji8uglRclHKPOYbj7F75bpd9m30wCCMQgO63i/ZmMAgjFLSzfgUBnCJD9/kgFXggeTyDHth1sA5E4ITiRuCYuo5wYxM4WYZUVAi5ojwrPf4JIbkp4bx4hkkqU56VJAjuzBf5Vq1aBdM0cWZlYlEFZ1ZW4a4tm7F69eqYvfNHm1SK9N2xghDNwfd3i8NpA+v32xesk+jxbhm63Ws+FAIYFpyiQMj3gJUl8IpiF+cdakKxdqQvauOTWGSJx8EVbnxd395j+o49Xuza48Xif/8HRozbzRkAl511OA6uoOjEXJDOvPihMGPmyWBYFru/WIOxk+YMOP/ure+AYVmcMOOklNYr8hxmHFWB4yeW4/NvmrH6ozrsaDgwWLIscihwyyjMk1HgllGQp6AwT0ah2/6/KCT2XZrdvwwPMEwLwa6ivmYX+KNF/GBIB8cxUCQeisRDjf5UZB5y9HeBY+0Bl03rwMWG6AWG7r8HQjoYBj2K7/ZPEYrED6oDnSRyOOKgwq7BI9s6wviythVf1dqF+1h58CLfe1BX+x/P9RzYtefvvQcnjf87yzLQDBORSHTA2h4D2R4YxFbTjR4DqnYOuNp98FQjOsCqES2CJopjGbtQ2/n6ooVbhmHsgWH1AwPERjSj3yIqA0SX03N5PMceKCJrhv27bg9mO1D8CMugx4C5LMeAY6KDwMYYOLfzd6BzYNpu+8Y4sO/0QQwCzDKA2ll0VwQ4uhXgHXL0/9F/zuj/RYGlOwmTYBgmWjrCaG4Loqk9iKa2ILz+CHTDHiBW7xwgVjcP/B4dLNaC1XVBo/sgs10XPbjOafbvZcO0U8DoCN4kJAatrQ2cY3CRNwNhWBa8wwHe4YBUbPecNzp724eCMENh6KEgeJcLQr4H0gADtWVKVwROIGjn9HsONAnNSAThpmbwLgdETwGUMRVU6CBklEs0Lz7S2grd7wdgR550P7fEIrhdSUfbDEZHRwdknofKJ3YuU3kBEs/D6/UOPDNJGu+043Mira1dcThaW/vAT+yG4ViwsgTJVQxWksA71K6YnXRdWCCE9HV4TWGfQr1pWnjghU+gxenBdv4p4zB5fObP9SQ56ciLHwoVY6owa/YcbNy8HFVHzgLLxf9uNw0NtVtWYNbpZ6VtXAGWYTBxXBEmjitCMKyjrSMMt0OEKg+uyJwrONbuHexUUvu7j03TclKR75Jw3JFlOO7IMpiWhVZvCIZp9SjKszk8mHV/TMuC2a1A3b3Ab1qWXZjn7SI6xyXRAcKyC98R3UBEswvtPMt2FeY7C/zJbquum4hEx3joXnBnWabPnRGZ0n2f6aYJ07B/dl74cEQvOGVre0YrjmNRnK+gOH/wd9KOdFSoJ6OS7vfD0nWIhYWDjrxJBidJ4CQJYoHHzs0N2EV7mBakkuK0Z/MmimFZSMXdInAUOwLHCIUQaWmBkJcP0ZMPuaI8KwP+EUJy32Dy4nOFy+VCSNcR0LWEivUBXUNY1+F2uzO+bXYUTHID5qb7faitrcWqVavQ0dEBl8uF2bNnZzzyx47DKYTgciHc3BId7DW553Oqav9T5GFdHCFkODn8oAL8e13fDPp4RfpTp1bilCmVmd4sMspc+5Of4aL5Z2Hzivtw9Nk3xizWm4aGzSvuhb+tAdf+95K0b0PD7jq8u34N/D4fHE4nZsw8mQYZzkEsw6Awb+QUBlmGAcsz0YJe+jomMAwDnmfA8yzUNN04wzJMV+/7odR9n0lp3Ge5aLiMP0Lnz9io8pYmb731Fu6++2588MEH8Pl8GDt2LL797W/jV7/6FRwOx1BvHunGMgw78qaoEFJRYdYHiWN5HqzbDSELhZ9E8KoC0ZPfFYEjuN2ItLVBKiiAWFAAuayUeiUSQkaE2bNng2VZvF5fhwtqDh5w/tfr68CyLGbNmpXR7Qo3NmLTdTckVaRmJQlTH7g/LcX6DRs2YNHChVi2fDlM04TM8wjpOliWxdxzz8Vtt9+O6dOnp7ye/rCiCKW8LKPrIGQwqI0fW1mBCo9LQmvHwOetyeOLMe+kgc+5hCRr0uSpuO8vi3Hj9Vdh/VM/Q/WkszHm8FPAiwr0SBC7t76D2i0r4G9rwP0PLMGkyVPTtu5PNn+EB/90F95a/Tos0wQvSNC1MBiWxazZc3DtT36W1vURQkgihsP4I3T+7B8V6tPgz3/+M2644QZYloXKykpUVVXh888/x6JFi/Cvf/0L69atQ0FBwVBvJomKtLZGI2/cEPLzh3pzcoJYUBAdCDeISFu73WO2wI7kGare/oQQkm7V1dWYe+65WLpmLc6trul3QFnNNLF0107Mmzs3473KNW8HzHAY42+6AWrVwD1OA3X12HavHUGUaqF+6dKluHjBAlSqDtw8cRLOrKyCygsI6Bper6/D0jVrceLMmXj6mWcwf/78lNZFyHBDbfz4GIbBhJoCvPfpnn7nO6jCjUvnTKAoAZIxc86eh2eXvoYH/3QXVq96BJ+uegicIMLQInbR5/SzcO1/p7dIv3LFv3Hj9VfBkV+BibOuwZgJJx+4OPDFGmzcvBwXzT8L9/1lMeacPS9t6yXZZ1kWwhEDumFCkfikYmRI+liW1ZXpP+hRikeJvS2BQY0/srclkJUoqNVvLMMtP/0R1Djnzw8/ts+fv7/rIcw649yMbEO8u/9yBRXqU/TRRx/hxhtvBAA8/PDDuPrqq8EwDBoaGnDeeefho48+wtVXX41//etfQ7uhCYp16324qQmhvfvsAVDVnreLJZI9nEv0QACmpkMuLLQjZ+iPBgD2AIFSSQmMcBiCaUIqKoRYVET7hxAy4tx2++04ceZMLPx4I26fMi1msV4zTfxu00bUB/x45rbb4i4r0biazsz+eN+Zgfp6AIBaVQnnuOz1Ot2wYQMuXrAAJ5aU9tkXKi/ggpqDcW51DRZ+vBEXL1iAdevXZ7xnPSG5YqS18fe3BuD1R3pOawlgX4sfihiBJPW8ezKR2+CPGKBQX+JRcdV5EyHwVNhKp+ESaZBNkyZPxUOLn0LD7jq89+5a+Do64HS5cMKMk1Axpgqt3hDq9iceL9ffPvtk80e48fqrUHLQsX3idnhRwdhJc1B15CxsXnEfbrz+Kjy79LUR2zN0OB2LyURsGKaFUFhHMKwjFNEhRAdLbfdF4HaKcCrCqP07OZvvuWlaCEV07G32o60jAoa1B7Id6MKvKvPId0qDWmcmtPnCCIT0AefzBSIIRQzIIgenOnDqw0CvMxfHH/lsyybc8tMfoeTggc+ft/zsR1j8z1dw5FFT4i4v0X3bqXOfCdFBaHO1EwEV6lO0cOFCmKaJyy+/HD/84Q+7pldUVODpp5/GhAkTsHTpUmzZsgWTJk0awi0d2KBuvRdFHPaLnw6LYr1lGNBa2+zIm8JCcFLunLxzAa8qUMeMgWWZEFwDX3klhJDhaPr06Xj6mWdw8YIFuGrt25g/tqZvL/JdO+0i/bPPxi1MJ/WdyTCAlXvdf+5ctAiVqiPuBQsAEFgWt0+ZhqvWvo07Fy3CSy+/nNVtJGSojKQ2/v7WAK7939UIR4yEn5PIbfDjqzzgOAaG0ff85lJFXHPBUXDIQzeQ5Eg0HCINElG/L7GieaLzdaoYU4X/+vYlPaale5/99c93w5FfETcTHwBYTsDRZ9+I9U/9DA/++W489NiTSb2O4WC4HIuJRmxEdAOhsIFgWEdEt4ulisQj3yVBEjlwLIOOoIY2bwj+oAaPS4Ykjq542Gy857puIhixL5KENQOhiI7HXvqsayDaxNbJ4c4fzciJMQma24P4/eMfIqIN/P2b7J8L8V7nYP/kKC90oLoss/HMt/70QTg8iZ8/n378ATzxz+dizpfMvu3UfZ8xDOByZDcGO1FUqE+Bz+fDa6+9BgA9GvCdxo8fj1mzZuHNN9/E888/n/ON+MHeeq/7/cOiUB9pbQOnqnbkjSd/qDcnJ/HO0Zu1SggZPebPn49169dj0cKFuGfZMty1ZTMknkc4mss+b+5cPHPbbf32Hk/0OzNQX49t99zf73yd82RTbW0tXl22DDdPnNRvBBBgF+vnj63BPa++itra2oxHAREy1EZaG9/rjyAcMZK+Dd4X0votrkgih0OrPNi6s6XHdFFgcfUFE1GQlzuF4ZHCF9IGFWkw0HuZLU5ZgCiwuPupTQk/RxRYOFO44JPOfdawuw6rV63ExFnXxC0ydWI5AdWTzsbqNx9Bw+66ETdA4nA4FhOKKLrwLPzmDw/gpNlnQxZ5uBxiV5FelXk4FAGyaJfN2n1hqBKPdl8YTd4gFIFHnksCl4W4kFyQiffcsixEtAPFedO0IIscHIqAwjwZjW1BRPTk18nzLIo9Q1+ob/eHEdEG/v6t29eBe57alJbX2e5PvONtd/luKaP7rLa2Fm+sXI4jkzh/vv7aIwh2NMb82yPRfdsp146N/lChPgUff/wxwuEwJEnCscceG3Oek046CW+++Sbef//9LG/d4GX71vtssCNvNMiFBRR5QwghBNOnT8fLr7yC2tparF69Gl6vF263G7NmzUqqEJ3od2aufbeuWrUKpmnizMrECgdnVlbhri2bsXr1alx55ZWZ3ThChthIbeNn4jb4c2cehC9rW2Gadhc+gWdx5TlHoKqE7s7MpFyMNEiExy3jV9+djpYOu1eylUDXT0XiEdEN7GvxQ+Q55LmkQcUVpGOfvbt+DSzTxJgJJyc0/5jDT8Gnqx7Ce++u7dPTf7jpHgdjmCZa2oMAkt+vLe1BiFmIw/r8049x43VXJRSxccct1+HZpStw/PHHwSELUGUhZmRXnlOCUxHQLAtQpBDafRHsbfIjzynCMcg4HN0woxE7Bkwzt3OzM/Ge64YFlmEgSzw8Lsm+SCILUGUeTkXoGhNguJ7zOiW6/cP9dfan82+PZM+fA/3tMRL3GRXqU/DVV18BsAenE4TYV4TGjRsHAPjyyy/Tum7LshAKhRKaV5KkPl8asZ4bikSgcSxCkQj4bo9zHNfn9RmG0TV/WNfARiK9F9eDyPNge/XYi2gazATvy2EZBmKvbTBNExE9sTyqcGsr5Lw8iAUFPSJvIpFIwl+IDMNA6hWXY1kWwklEBfE8D57v+bHTNA2GkfjtOrLc92p0oscCEPv91HUdeoL7Eoh9TIXD4YQa2wDAsixEsedtRoZhQNMSz7sTRbHvMZXi+2maJiIDHMvdCYIAjut5y2Oq72c6jql0vJ+pHlPpeD9TPabS8X7SOcI2ks8RJSUlWLBgQY9p7fX1MHz+fr93grt3x/zO7C5W2yDW+xnv+xeIfY7ob/7e4p0j2tvbkedwQJAkDLRXecOEyguQeB5er9feZjpHAMjMOSLWZ5hk10hr40fCYXDQEQmHezwe77PZOb+uhREJ939beHmhil9+dxre+3QPGAY44agK5Ds4RBL87mv3R9A7XtYyTRhG7PODQxKQ7+r5GeEFHizb87Opa1oSn01AEPt+NrUkzg8cz4Hj+p5rzej5vq0jBH+4/3MeLxzYhs5c5977Uddiv5dAvPdTj/texlpWf9/fiRwXLMuC7/PdaUDX7DfZME2Ew2FwrIGqYhk83zc6hOeFPud7XYvAtCz4/CEEAkEU5ilxBz1kWAaC0Hv7rJj7LJZIOAwGfY8dXdfg93XA4XRDEgUA/bWLGBjgwIsKOEGEr6Mj+WOK48D1+v42dL3fNmHv44zjxT7vp65F0DkaZ6zPU495LQu6wfaIg5F4BgzDQBER91jsrvf3t8shwSGziX9/Mwx4oe/3t673/3l67h8PoaC0Bsec898Ay/cZf5SFAY5jcMw5/40Pnr8d/1zyIM45fSYAC4YegdHt7e3+/c1xLEoKVLhUAbuZNnRwJtq8PrR5gTyXDCnGMQ30PEeENQOhsA5fIARN1yELHCSJBy/0fwFDFPtG90YiA59r2ztCCIR1MGzf85RpGjCNnseyKvHIi3FcKCIQayTXeO2xznOGIgKqZB+HLNPzHMEygMAzEDgLavQiSecdCoauxfz+6q+NH+/7rrts1gH6256+7b10nKf0hPZBp977AchcG7+9vT3m+dMAB6DneYqFAUkU4HC60NbW1m/bRtP6vm+x3s/+9kuutfFTLtQfcsghuPrqq/G9730PJSUlqS5uWGlpsW/zLCgoiDtP52Otra1x53n44YfxyCOPJLTOrVu3AgD27t2LP/7xjwk955e//GWfA+K+++6LXTyaPBHvPPdsz0mTJ+OCCy7oMe3TTz/Fyy+/bM+/fv2A2/Dds89BSa/99Mwbr6Oxn/3SXWVJCS4648we03Y37sdzb76Z0PMB4LyTTsLkiUf2mLZ06dKE/8DKy8vrGlSsU3t7O+6/P/G4gjlz5uD444/vMW3VqlX44IMPEl7Gb37zmz7TEj0WAOC4447DWWed1WPaxo0bsXLlyoSXccMNNyA/P7/HtL/+9a9ob29P6PmHHXZYn8LYtm3b8Oyzz8Z5Rl9XXHEFampqekx76qmnsGvXroSeX1paih/96Ec9pu3fvx8PP/xwwttw/vnn4+ijj+4xbdmyZfjkk08Ser4kSfjVr37VY1o4HE7q/TzllFNw6qmn9pi2bt06vPPOOwkvI6lzRAz9niMSdM0116CsrKzHtL/97W/Yt29fQs8fO3ZsnyvttbW1ePzxxxPehosuuggTJkzoMY3OEbbReI5wBoI4/ottPaZ1KDI+OPzQAxNifGd2d/755+MQV8+sx7jniBjLineOeOC5Zwdcd6d454j29nbc9POfI5EzxSmffAYtHEZY1+F226+HzhG2TJwjYn2GhwK18UdWG3+KG3j+n5/1mNbfZ3OKG3h3Zc/5Yzn7/EtQUliM808e1zVt+UtPorWlKaHX4DOc+MJ/SI9pLq4Dhzm2J/R8ADh59lxUjR3XY9r6d15Dfe03CT3f4XThgu98v8c0v68DLz//t4S34ZjjTsaEI3sOeLd543p8+fnmhJex0Xt01++duc7LX+jbLo31XgKxv7+3bf0UU9yfxX0vey/r/O98D85e31svPbsEfl9H1/z9HReV1QfjlNPn9Zi2u24n1qx6Ne5zervo4ktRXTm2x7Rnnvon6upqE3q+p6AI51xwaY9pChvE8/98KOFtKBD63m324btvgUcYP//ZzQD6/2zoFovNHZOgR4IwtAicLhe0SATPP5n4Nhx19HGYNLVnm/A/Wzbi082Jtwk/9k6E0avkc7RrC3gmseJTadV4TDluVo84mF3bt2LVGysAxD8Wu+v9/V1R5MCa159H4/79CW1DVVU1FlxyWY9ptbW7sPTZ/nP/T5wxHSfOmA7gC3wdqEGbnt/j8YOUXfAIdueDY662j5d4595Y39/hkB9P/u3BhF4DAEyaeiLGHHwkQmEdYBgoEo/6rzfh6y+2JLyMn//ylj7T/u+Pv0/4+fvCRagL94xhLBH3o1puSHgZInN4n2n9tfGnuIEPVx04Rg4ZfygunP+trv+zDIMd32zDk8/FziHvXEb342ygNv5Ax2W26wCxtidWG5+DkdR5qlwq7TOtsw6QyGcTsNsRvWWyjR/r/Pkf36EImmqPaRMc26ByIUz52U/R3t4e97M5xQ28/XorDr/mBz2mx2vjx9svudbGT7lQ/8033+CWW27B//zP/+D888/HD3/4Q5x++umpLnZY6H5FL57OqyrBYDDuPHv27MGmTYnn9JHBYUUJLE83kRBCCBmYVFyMyb2yqfe3tOCD5cuGaIuG1uv1dWBZFrNmzRrqTSFZQm18auNng2VZffJl9+2px5vLEy/UjxT33nQKgJ65ztm2cPH7iFg9ewUe5QxBSiGpREtiEEgAkEUeaq9M+ni95zPJNCwYxoFtT/RO8O52b30HDMvihBknpXPTEvb7a0+E2KuX53P/+Dzhnv0OiUdVqbNHHEzzntQGX5QlPqnoIpZl+hwPnZnxw0koooPjGBR5lOgxzmPPN8nty977IVknT63EtONP6THti88+xkcfJF6oTxUX4/2kWGJCekr5DHfrrbfi73//O3bv3o0XXngB//rXv3DQQQfhhz/8Ia688soR3QOnswdLf7fIdF6JUpT4gxWUl5dj6tSpCa1z69at/f5BQOLjFLqVnBBCSGJYUeiTKe9zqHHmHtl008LSXTsxb+5cGkh2FKE2PrXxs6V3viyvtw3ZtgylXMjY/cH5EyGrPccX+GDV1wgHk79oYBgm2nxheAODG9hwqDV7Q+C75WoHw4nHEAKAaWio3bICs04/CxVjqhKOg0qng8fk9bnrJpkiuVMVUVHkTPdmjUp5LgnVpW44FB6KxINhGIhxYnIyJd8p9TnPNNXn9qCaZHQaxHXREYWxEg0H64dpmli+fDkefvhhvPbaazAMAwzDgOd5XHDBBbj66qtHZA+cxx57DFdffTXGjx/flWXZ25NPPonLLrsMVVVVqK1N7Ha9/hxzzDHYtGkTpkyZgnfffTeh5ySaX+nbsROf3Xo7Jt65EM6Darqmx8udav1qGz679XaMu/YaKBVj+t2GocqotwwDoX37IJeXIX/cOAi9GiqUP20byfnT8VBG/QGUUW+jjHrbaD9HdH4XTvr9IhRMOKzHY92PqXjfmd0JgoDgzl345OafY/I9/wfnuINjvp/9LSvWOaL5iy8HXHen/s4RmzZtwllz5uD44hL8YtIU8DF6LOqmhd9/+AHWN+7DuvXrMX36dNTW1uKNN95AR0cHXC4XTj75ZFRVxR+Uls4RtuGYUU9t/JHRxv9mdztueXAdfn/tiTh4TF7X9HifzS93NuGWB9fhum9Pxpii/geF5YW+eeKaFoFlDvzZ3N3Ugb88vwV33zSrR/Eo3mez83X03q5cz6jf3dSBB57/pM/+763zs/91fRtuuvcd3HzJVJTm9Txv9besWO/nl7ua8Ms/vZPQewkAgtg301yLhBMumrAsC47n4Qtq8PoiUBQeLpWHU2ZR4JK7BobsTyLf34ZhYk+zH20dYbT5QvC4FCjRXta9M+rr9nfgnqc+wh+vPaHf/d/pm93t+NWD7+KmS6ahqtudHrquwTRM/OfTT/C97/4Xisceg6PO+DFYtm/fR9PQ8dGKP2H/jg/x7NLXMGny1JjHVH9jF7AsB7bXMaUIDNxqz/fYsiz4Qxq217fj2Te/7HFs9HeO6P55qil3d/Wal6UD6+zv+zveeaW3zvez87i+96ZTUFWsZPT7+8knn8T111+P2Vc/Bl6QYYKDFSMDm4nmretaCKse/QEeeOABXHJJ30F/E/3+bmwLoMMXgT+owRfSwICBKvOQJB6yJPQ5R6gSgwJX34zweAbTxu/+Po2vLhiwjd/f+/rN7nb88sH3cO9Np/Y4Z8drj8VaVrJt/FjL6O8ckchxmc06QH/b0/39tD8fbyd9nrrnptN6vBe6ruOrXc0JfTYB+xyxfXd712fzkMr8jNYBNm3ahDlzzkJRzVQcdbp9/uydUW8aGv7zxp/RXPsxVq58LW6Hh859+4frT8LhB/XsPBLr/ezvvci1Nn5a7hliWRZz587F3Llz0dDQgMWLF2PJkiXYtWsXnn/+ebzwwgsjsgfOoYfaObW1tbXQNC3mYFPbt2/vMW+6MAyT0h9ysZ6riyIEw4QsigMum+M4yNH5JV6A3M+twfH0Lrwni2XZAderdfigOl1Q8vL6FOmB/m9pTkSq7wNgnxTiDVSWqFS3IVYhJ1mxBiJJBsdxfU6OyUr1/WRZdsjfz3QcU+l4P1PdhnS8n6keU+l4P+kcYRtN54jO78JY31Hdj6lkvjO7i/V+di7L3Lcfeq9t9MVYhrlv/6DW3anz/ZwxYwb+/vjjuHjBAmxvacH8sTU4s7IKKi8goGt4vb4OS3ftRH3Aj2eefRaWZeG8efOwbPlymKYJmecR0nW7HXjuubjt9tsxffr0hLaBzhG2dJwjMona+COjjS9KIRjgIUpSQm18UZJggAcvSH1iMxLRdyDP2HghAhN9zwPxPpudryOR7eo9oGmyGIYZ1GvvsQ08D/A8eCGS8P7vrfc2JLssjuNTei+Bvhcx+hOOGGhuDQAAigoUuFURxflKj+LvYMQ61x6sKNjb7Icsh9Dcbvd+dyjx3ncm4X0mSiFYYFHV606PTkeMOxPc449jwYKL0bp/J6onnY0xh58CXlSgR4LYvfUd1G5ZAX9bA+5/YAkmTbaLTL2PqVZvCHc/uwURLfFooM6xCzxu+3WEIwZafSEwDIvCAldCx0bnY52fp4Mqi5K6m6Pz+zuZ80pvmf7+PuOMMxCJRFC7dT3GTpoTc57u557az9chEong9NNPT/i19D5X728N4Kb730U4knjnGknk8OAvZqHEM/g7Ngfa3u7vU6zvst5t/P7eV1EKofegn0D89zPRY6S/NmGiy+g8Rwz2uMxUHSC57Un+PNUbz/Nd3+H72yLR96w/IdTv6+gxJZN1gBkzZuDxx/9unz/3xT9/Btr24Nlnn8GMGTPirqdz38Zqc8R6P5M9NoayjZ/2cK+KigrcfvvtuO222/D666/jkUcewauvvopvvvkGv/71r3H77bePmB44U6ZMgSiKCIfD2LBhA2bOnNlnnrVr1wIATjjhhGxvHgFgBAPgnU7wTrpljxBCSG4S3C6wkoRt9yY+8DArSRDcA/eOHMj8+fOxbv16LFq4EPcsW4a7tmyGxPMIRwvw8+bOxTO33Ya6ujqcdOKJqFQduHnipL4F/TVrceLMmXj6mWcwf/78lLeL5B5q4/dEbXwykum6iVAk8TvpACCimQhqOvIcItwOCYV5MtyOvj3004VlGZQXOcBxLBiWQVNbEKZpweVIrbiSiPnz52P9+nVYuGgRlr36CD5d9RA4XoShR8CwLGadfhau/e8DRfpYfCENEc3sM0ZDPN3HLnA7JbR3hLv2d55TQrtveEYMZUJ1dTXOnTsXa95bjqojZ4Hl4l+464womjtvXkrxfl5/BOGIkfT76fVHUirUE9Kb2yFCEjnc/VTiY+RIIgd3Fs6dQOzzJy+I0LWI3UFk3jzcduvzCXf+GYkyNgoHwzCYM2cO5syZg4aGBlxyySVYs2YNNE3DCy+8gBdeeAGHHHIIfvrTn+Kqq65KuVfVUHC5XJgzZw7+/e9/45FHHunTiN+2bRtWr14NAPjWt74VaxEkgyzDgKlp4GQZvMMx1JtDCCGExCQVF2PqA/dD83YgUF+Pbffcj/E33wC1sjLucwS3C1JxcVrWP336dLz8yiuora3F6tWr4fV64Xa7MWvWLFRXV2PDhg24eMECnFhSitunTIPQ7XZjlRdwQc3BOLe6Bgs/3oiLFyzoisghIxO18amNT0a2UFhHkzfYFSWTKI5jUeZS4XHJKMxLLOYmVQzDoLRABccy4BigsTUEw7SQn0ScyGBNnz4dr7z8Mmpra/HiKyuwZ18zwMk44/TTMXZs4gXf3mM0DCQY0rC3yQ9F5lFWcGB/70ggbmo0uf222zBz5onY/Np9OPqsG2MW601Dw+YV9yHQtge33fp8Wtab7PtJSLqVeFQ8+ItZ8PoTj/JxO8SsXjDqfv6M9bfHaJfR4bJra2u7bpFtaLBHkmYYBkcffTQ+/fRTbNu2DT/+8Y/x6KOPYvny5ShO0x+c2XT77bfj1VdfxT/+8Q/MnDkTV199NRiGwZ49e3DxxRfDNE1ccMEFmDx58lBvasICdfVpnW+oGMEgOEkGpypgU7z9lRBCCIlloO/CQH19QvN1if6drVZW9hnMNtOqq6tx5ZVX9pl+56JFqFQdfYr03Qksi9unTMNVa9/GnYsW4aWXX87otpKhRW384dnG7317e6rzkaGTqffSH9LQ6g2hKF+B2yFCSGKwS4YB8pwSlBRjbgajKF8BxzFgGLtnfXO7iQK33KM3f6b2WXV1NX5y3Q9Rv9+HxrYA/EEdpmmh3ReGLxR/LJZ9LYGk1tMpGNYxtjwPbkd6YoVSlavnlenTp+OZZ57GggUXY/1TP4sZsbHv6/eha0E8sPgZeMrH4+v6tn6Xme1iZq4aivc8V4+zRA20XXXRx9P1Oks86rA4VuP97ZGM4X5sxJL2s7phGF29T9544w2YpgnLslBYWIgrr7wSP/rRjzBu3Djs27cPf/3rX3HPPfdg06ZN+PWvf43HHnss3ZuTcdOnT8c999yDm2++Gddccw0WLVqEoqIifP755wiHwzjssMPw6KOPDvVmJmRQt96LYs72VjeCQXAOB8XeEEIISbukvjMZZkhibdKhtrYWry5bhpsnTopbpO8ksCzmj63BPa++itraWuoRM8JQG3/4tvEHcxu8KLBwytTRJdc4ZQGiwGbkvewIROANRFDsUVGYJ6O0QM1YbE0meFwyeI61i/XtQTS1BeFxydA0AwKf3D5LNgaCYewYHsO0oOkBfLO7DY++8llS+fOJKsxTUFnizGisUCJyPV4D6D9iQ80rweyr/goLHF7ZDLyy+Z0Bl5eOTPnhbCje8+FwnPUnme1nGAzb1zkUhvux0Z+0Fep37tyJRx99FH//+9+xd+/erlGfZ8yYgR//+Mf49re/3SOMv7S0FL/97W8xd+5cHHvssVixYkW6NiXrbrzxRhx11FG4++678cEHH2D//v0YO3YsvvWtb+HXv/41nMOkUNz91vvuwk1NCO3dB1YQwKlKj8d4hwOix5PNzUyIZRgwwhGIhYU5eyGBEELI8NX5ndn++dYBo2oira3Q/f6EvzPTGWuTqlWrVsE0TZxZWZXQ/GdWVuGuLZuxevXqlHvIkNxAbfzh38aPdxv8/pYA9rX4oYgCJKlnz2mnLHQNWElyh8ct41ffnd5vT+3eEnkv23xhBEI6SvIVFOWrKPYo/c6fq1yqCK6EAcsyaG4LYk+zH/luGb/47jRwLIM8hwg2gUiewfSc5jkWZYUqdMNE/X7vgPnzdfs6cE8SBaZOFUUO5DkzH+0zkOEQrwHEj9g4ZOLx+OPTX1KmfBKG4j0fLsdZPMlsf6s3BF9Qg1NJ7Ps3l17nUBjux0Z/Ui7Uv/DCC3jkkUewevVqWJYFy7Lgcrlw2WWX4cc//jEmTpzY7/OnTZuGsrIy7N27N9VNGVKzZ8/G7Nmzh3ozUiYVF/cpDnCqCjAMOFEcNr3TjWAQnEyxN4QQQjJHKi6GWmlf3B6KqJps6OjogMzzUPnEvktVXoDE8/B6vRneMpJp1Ma3jZQ2fqzb4GWRA8MATlmEIg9tfAZJnMctp+0iimVZaPWGEdENlBYoKPGow/4CjSoLqCx2gmMZhMI6nKqIYo8COcnM/cGQRR5lhQ7s2mPvw0zklSdyoSFbhku8BtA3YsOOufmSMuWTNBTv+XA6zmIZ7tufy0bqvk352+o73/lO1+9HH300fvzjH+OSSy6BI4lezN174RCSDhR7QwghJBUjZbyWVLlcLoR0HQFdS6hYH9A1hHUdbrc7C1tHMona+CRbRmK+bCy59jpNy0JzewimZaKkQEVpgZoTPbXTQZZ4VJW6ENEMKBKf1YiYRHvDZkquHWckN9BxQcjwkXKhXpZlXHTRRfjxj3+MY489dlDL2LlzZ6qbQUgXir0hhBAyWIMaryWHMuXTbfbs2WBZFq/X1+GCmoHvGHi9vg4sy2LWrFlZ2DqSSdTGJ5mWybz1XJKLr9MwLTS1BcGxDEo9DpQXOeBQhtd+HQjPseCHqPf5UGQgj+S8ZjJ4dFwQMvykXKhvaGhAfn5+GjaFkPSwY28kcArF3hBCCElOvPFa+pNLmfLpVl1djbnnnoula9bi3OqafgeU1UwTS3ftxLy5c2kg2RGA2vgk0zKVt55rcu116oaJxrYgJIFDYZ6MimInFImij4a7kZzXTAaPjgtChp+Uv5G9Xi/8fj/GjBmT0PwNDQ3QdZ3+gCMZYwSD4FQHeCf1pieEEJK8WOO1jGa33X47Tpw5Ews/3ojbp0yLWazXTBOPfvE5FJ7Hr6/6AXzbv+l3mZ0XN2pra7Fq1Sp0dHTA5XJh9uzZ1EbMEdTGJ9mQzrz1XJYrrzOiG2hqDcKhCCjMV1Be5IAkcAM/kQwLIzWvmaSGjgtChpeUC/U1NTUoLy/H7t27E5p/5syZqKurg67rqa6akD56xN5QPj0hhBCSsunTp+PpZ57BxQsW4Kq1b2P+2BqcWVkFlRcQ0DWs3dOAWZXVuPYIe3BRffHf8clACxUEPBj245nly2GaJmSeR0jXwbIs5p57Lm67/XZMnz49w6+M9Ifa+ISMLOGIgaa2IPJcIjxuGRVFTgh87gxMOlpRdvjIQu8nISRVabnHzbKsjM5PSKKMYIhibwghhJA0mz9/PtatX49FCxfinmXLcNeWzZB4HmFdx4R8D+ZUjcX4m26AWlU54LICdfXYdu/92PPxZtw8cVKPov/r9XVYumYtTpw5E08/8wzmz5+fhVdH4qE2PiG5KaIZMMzEP2+GYaLNH0ZBtGd/RZED3BDltxMbZYePLPR+EkLSJethdKFQCDxPGXgkM4xggGJvCCGEkAyYPn06Xn7lFdTW1mL16tXwer1wu904cfx47Pvfe6BWVcI5buABZzv9T68YHZUXcEHNwTi3ugYLP96IixcswLr166ln/TBBbXxCsqPdH4Y/qIPnmaSeV5SnoCBPRlmBAyyb3HNJ+nXPDq/b14F7ntqEmy+ZiqrS+IPTU3Z47qIseEJIumS1Nd3Q0IDGxkaUlJRkc7VklLAMA0aEYm8IIYSQTKqursaVV17Z9X/f9m+wbxDLiTcwrcCyuH3KNFy19m3cuWgRXnr55cFsJskiauMTkh2BkAZfUEOpR4VDSe7uYVXmUeCWwTBUpM8VvbPDq0pdOKQyf+g2iKSEsuAJIemQdKF+zZo1ePvtt3tM8/l8+N3vfhf3OZZloa2tDcuXL4dlWTjuuOOS3lBCBmIEQ+Akir0hhBBChjuBZTF/bA3uefVV1NbW0gClWUBtfEJyW0Qz0NIRQnG+iqJ8BUX5ylBvEhkA5ZXnPnqPCCG5JulC/VtvvYU77rijx5V4v9+PO+64Y8DnWpYFWZbx61//OtnVkhFO9/nAcBw4ZfANToq9IYQQQkaOMyurcNeWzVi9enWPHvwkM6iNT4ajiG4gGNLhVEVwIzjOxTBMNLUH4XHJ8LgkFObJQ71JpB+UV5776D0ihOSqpAv1NTU1OOWUU7r+/84770AQBJxwwglxn8OyLNxuNyZOnIgrrrgChxxyyOC2loxIpqZB83oBACIwqGI9xd4QQgghI4vKC5hYUAitfjd827/p83iktRW63w/e4YDo8cRdTqLzdRLcLkjFxSlt+3BEbXwyHLV6QwCAQFhHcb4CfgQOkGpaFpraQ1BlAfkuCaWFDoqvyXGUV5776D0ihOSqpAv1V1xxBa644oqu/7Msi4KCArz11ltp3TAyepiaBlYQwLvcCDc3Qy7hk46uMYIhcKIITpYp9oYQQggZzhgGsCwAwEMnngJ8uAmffBijx1u3+RJdXiJYScLUB+4fdcV6auOT4SaiG9BNCxVFDnh9EexvDaAoX4HIc0O9aWnV6g2BZQGPS0JFkWNE3zkwklBeee6j94gQkotSHkz2b3/7G5QU4koIsXQdDC+AkyWIeW6Em5ogl5SA4RJvZNuxNyr1pieEEEKGO8vC+JtugFpVGXeWQH09tt1zf9rm65q/rh7b7r0fmrdj1BXqe6M2Psl1gZAOVRKgSDxEgQPnZdDYEkRRvgJJHBnFeq8/gohuorRARXmRA8IIuwhBCCGEkJ5SLtR373lDyGCYmg5OEiHk54MRBJiahnBzM6Ti4oRu6+wZe0P59IQQQshwp1ZVwjnu4KzPRw6gNj7JZZZlIRDUUJivIN8lQxE5sAwDlmHQ2B5AoVuBIqX8p+6QCoZ0dAQjKPUoKC1Qocp01zAhhBAy0o28ED8y7Fi6Fu1RL0MpL4NYUACGYaC1tiX0fCPULfZGpMFdCCGEkOFAM82h3gRCyDAVjhhgWAaqzMMh8+A4FmOKnSjyKCjKU9DiDcEf1IZ6Mwctohto7gii0C2jIE9BnlMa6k0ihBBCSBYk1c3g+9//PgCgvLwcd955Z49pyWAYBosXL076eWRkMjUdjMCDFQWwogi5rBSWYSC0bz+0Dh8EV/9xNkYwSLE3hBBCyBAL1NUnNd/vPt6IYwqLcGZlFVReQEDX8MH+fTitYuCIGpJe1MYnw40/pMEh83AoQtcduCzLoLzQAY5lwbAMmtqCMEwLbsfw6shjmBaa2oLId0rwuGUU51MEFSGEEDJaJFWo//vf/w6GYXDYYYd1NeI7p1kJDNLVOR814kknU9cBhgHL82Cig8DyDgekkmK7WL+/EazAg5PlmM+3TBNGOAyxoIBibwghhJAhILhdYCUJ2+69P4knCaiYOgX3LFuGu7ZshsTzCOs6JuR7qFA/BKiNT4YT07QQDOvIczrgVnsW4RmGQWmBCp5jwDFAY2sIhmnC44r9t0RGts+yYJkWOC75m9cty0JzWxCKJMDjklFWoCYUBUoIIYSQkSGpQv3ll18OhmFQXl7eZxohg2HpOliBByvwPY4jMT8fZjgCyzAQaW6BVFIMVuiby2gEgxR7QwghhAwhqbgYUx+wB2BNlOB24Z/Fxfh9bS1Wr14Nr9cLt9uNE8ePx77/vSeDW0tioTY+GU6CYR2iyEGRechxcugL8xS7Zz1j96xvbg+iwC1n/Jg2LQv7WgIwDBM8x0KWeCgiD1FgE1p3a0cYDAsUuCWUFzkGVewnhBBCyPCVdI/6RKYRkihT08HwPBihb5FdKimGqWkwNR3hpmbIpSVg2J6NVYq9IYQQQoaeVFwMqbg46edVV1fjyiuv7Pq/b/s32JfG7SKJoTY+GU78IQ0ORejTm763fJcEjmPAMAya24NoaguiME8By2auWN/uC0PgWJQVqghHDATDBlq8IZiWBUXkoUg8JMke+La3jkAE4YiBkkIVZYUOiAKXse0khBBCSG5KqlBPSLpZumb3qBf79pZnGAZKeRksXYepRxBpboZYVNTVG4VibwghhBBCCBk9dMNERDNQlK/AOUChHgBcqgiuhAHLMmhuC6KxLYCiPCUjPdXDEQOBkI6yQhXlhQ5YAPxBDYGQjlBERyiswxsII+I1IQscFMm+I4DnWPsxfwQlHgUlHgUOpe/fRoQQQggZ+ahQT4aUpev9xtYwHAe5vAymoSO8bz+0tnaInnwA3WNvpFEXe9Pe3o5AIJDw/KqqIi8vL4NbRAghJBvo/E8IGc38IQ2KLMChCBD4xIrtqiygssQJjmXQ1BbC/tYgivMV8Ak+PxGmZaHFG0K+S0K+S+66iOBSRViWnanvD+oIhDS7aB8xEAzpaPOFwXMsDMNCYb6Mwjwlq3n6hOQSauMQkl30mctNKRfqI5EI9u7dC1EUUVZW1uMxn8+H3/72t3jjjTfAsizmzp2LW265BYpCI9cTm6lpYHi+30I7J0lQSssAw0Ro3z7oPh6802kX6hUFnGN0xd60t7fjgQcegKZpCT9HEARcd911dFIlhJBhjM7/JJuojU9yUSCkw+OS4EqgN313ssijssTZFYPT2B5EqUdNWwyO1xcBzzNwO0QU5ff8HDAMA1UWoMoCAAURzYA/qMEfsnvbRzQDpmVH9RR76DNERidq4xCSXfSZy10pF+ofe+wx/Pd//zeuuOIKLFmypMdj5557LtatWwfLsgAAW7Zswdq1a/HWW2/R4FQElmHAMi27UB9joNjueKcDUnGR3bN+fyMYjoMRCo3K2JtAIABN03DhhReiOIE84MbGRrz44osIBAJ0QiWEkGFsNJ3/A3X1/T9eX5/W+RJd72hCbXySa8KaAcsCFIkfVDSMwHOoLLE7+OhGAM3tQRTlKykfs2HNgD+koaxQRYlHBTdA8V8UOIgCB49bhmGY8Id0aLqBfKdEnx8yao2mNg4huYA+c7kr5UL9ypUrAQCXXHJJj+mvvPIK1q5dC5Zlcckll0BRFDzxxBNYu3Yt/vGPf+Dyyy9PddVkmDN1HSzPgRWEPoPExiJ6PDAjEUA3EG5qBidL9j9JysLW5p7i4mKUl5cP9WYQQgjJspF8/hfcLrCShG333j/wzAyT3vmiWEmC4HYlPP9IRW18kmsCQQ0OmYdTFQcshsfDRwd61Q0T+1r8aPOFU4qa6R15k+wFBI5j4XaMrghPQvozkts4hOQi+szlnpQL9Vu3bgUAHHPMMT2mP/XUU2AYBr/85S9x5513AgCmTp2Ka6+9Fk899RQ14gksTQfDCzEHko1HKi6GqWkwdQ0Mw4662BtCCCFkJJOKizH1gfuheTsGnDfS2grd7wfvcED0eFKer5PgdkFKoGfRSEdtfJJLLMtCIKSjpECBS01toFVZ5FFW6IBhmNjXEoTAa3AOcvBWrz8CnotG3uRRtjwhhBBCUpNyob6xsRGqqsLT6w+ft956CwDwgx/8oGvad7/7XVx77bX45JNPUl0tGQFMXQMj8GCFxHuRMCwLuawMlq7D1HQILirUE0IIISOJVFxMhfIcQG18kktCYQM8z0CWeChSyn/CwqkIKPaoMEwL+1sC4DkGspjccsPRrPnSAhXFHhUcl77BaQkhhBAyOqXcyvH7/X0Gjtq5cycaGxtRXV2Ngw46qGu6w+FAfn4+WlpaUl0tGQEsXQenqkn1qAcAluehVlXBMox+B6ElhBBCCCGDQ218kkv8IQ2qLMDtENOW417glhHRDOiGheb2EEo9Kng+sWK7FY28yXOKyHdJg+6RTwghhBDSXcqX/QsKCuDz+dDW1tY1bfXq1QCAGTNm9Jlf13U4ndQLmgCmpoMReDBJ9KjvxHAcFekJIYQQQjKE2vgkVximhWBEhyrzcKnpbf+XeFR4XBJcqoCm9iBM00roee3RyJs8p4TifGXgJxBCCCGEJCDlQv3UqVMBAIsXLwYAmKaJxYsXg2EYnHbaaT3mbWxshM/nQ1lZWaqrJcOcZZqwdB0szyfdo54QQgghhGQWtfFJrgiENCgiD1UWIApcWpfNsgzKixzwuGUIPItmbwiW1X+xPqIZ8AUi8LhkirwhhBBCSFql3Kq44oorYFkWfvWrX+Hss8/Gsccei/feew9OpxPf/va3e8y7du1aAMDhhx+e6mrJMGcZBhieA8PxYPnUcyYJIYQQQkj6UBuf5IpASIOqCGnvTd+J51iUFzpQmKfANE20+yNx5+2MvMl3SRR5QwghhJC0S7lQf9FFF+HKK6+EYRhYuXIlNm3aBFmW8dBDDyE/P7/HvM8++2zMXjhk9DE1jXrTE0IIIYTkKGrjk1yg6SZ004IqcXCpmfu7QZZ4lBaqKMpX4A9p8Ae1mPN5/RGwFHlDCCGEkAxJS1fmJUuW4KqrrsK7776L/Px8zJ49GwcffHCPeSKRCPLy8nD55ZfjnHPOScdqyTBm6ToYXgA7iHx6QgghhBCSedTGJ0PNH9KgSDwcipjxiBmXKqIoX4FuWmhsCYDnWUjdonYimoGOQARlhSqK8xWKvCGEEEJI2qUtc2TmzJmYOXNm3MdFUcQjjzySrtWRYc7UdHCSSD3qU9DY2JjW+QghhAwPdP4n2URtfDJULMtCIKihMF+By5Gdzj2FeQoimglDN9HcFkRJgQqeY3tF3shwZiiGh5DRjto4hGQXfeZyD4WDkyFh6RoYh4N61A+CqqoQBAEvvvhiws8RBAGqqmZwqwghhGQanf8JIaNJOGKAYRm7R72cvT9bSwtUaLoBTTfR3B5EsUdFR4AibwjJJGrjEJJd9JnLXVSoJ0PC1HQwAmXUD0ZeXh6uu+46BAKBhJ+jqiry8vIyuFWEEEIyjc7/hJDRxB/S4JB5OFUBDMNkbb0sy6C8yAnDtLC/JYCmtiAimkGRN4RkELVxCMku+szlrrQV6rdv347nnnsOW7ZsQUtLCzQt9gA8AMAwDFatWpWuVZNhxtR1gGHA8jwYgQr1g5GXl0cnSEIIGYXo/E+yjdr4ZCiYpoVgWEee0wH3EMTMCDyLskIHdN3E/tYA8pwS8pwUeUNIJlEbh5Dsos9cbkpLof6OO+7AokWLYJomLMsacP5s9oggucfSdbACD1bg6VgghBBCCMlR1MYnQyUY1iGKHBSZhywNzU3gisSjtNAB07IgChyKPRR5QwghhJDMSrnV8+STT+KOO+4AAFRUVGDOnDmoqKgAz1OqDonN1HQwPA+G8ukJIYQQQnIStfHJUPKHNDgUAa4h7sHudogQeTc4jgVPkTeEEEIIybCUW9oPPPAAAOC8887Dc889B1Gk4ivpn6Vrdo96yqcnhBBCdSJSkgAAVEZJREFUCMlJ1MYnQ0U3TEQ0A4X5ypAX6gEMWY9+QgghhIw+KXcL+Oyzz8AwDB588EFqwJOEWLoOlhfAUo96QgghhJCcRG18MlQCIR2KLMCpCBB46sVOCCGEkNEj5ZYPwzBwu92oqKhIx/aQUaAz+oaV6I8+QgghhJBcRG18MlT8IQ0Omc+J3vSEEEIIIdmUcqF+woQJCAQCCIfD6dgeMsJZpgnLNO1CPWWcEkIIIYTkJGrjk6EQ1gyYlgVZ4uFQKCaTEEIIIaNLyoX6H/zgB9A0Dc8//3w6toeMcKamg+U5sAIPhuOGenMIIYQQQkgM1MYnQyEQ1OCMxt5wLDPUm0MIIYQQklUpF+qvvvpqnHfeefjJT36CNWvWpGObyAhm6RoYXgBLWaeEEEIIITmL2vhkKATCOhSZh9tBfysQQgghZPRJOXvkd7/7HSZPnoy1a9fitNNOw8yZM3HcccfB5XL1+7z/+Z//SXXVZBgyNQ2MwNNAsoQQQgghOYza+CTbdMMEAIgCB0WiiExCCCGEjD6MZVlWKgtgWRYMY9+W2Lmozv/3xzCMVFY7ah1zzDHYtGkTpk6dio8++igr6wzu2YtAXR04UQTvdKa0rHBTEzhFhaOmGkJeXpq2kBBCCCGEpBO18bNrKNr49fs7ULevA05ZhCIPfWE8FNbR7g+jstSFsWXuod4cQgghhJCsS7lFdvLJJyfUaCcEsDPq+TweDPWoJ4QQQgjJWdTGJ9mm6SYEnoMk0DhWhBBCCBmdUi7Uv/3222nYDDIaWJYFS9fBcjxYURjqzSGEEEIIIXFQG59km2aY4HkGAp/yMGqEEEIIIcMStYJI1li6DoZnwfA8WH7ob68lhBBCCCGE5AZNNyFSj3pCCCGEjGJUqCdZY2oaWF6g3vSEEEIIIYSQHnTdBM+xEKhQTwghhJBRKm2F+vr6etx888048sgj4XQ6wffqMd3a2orf//73+MMf/gBd19O1WjKM2D3qBbCUT08IIYQQMixQG59kg26YsGCB51mIFH1DCCGEkFEqLfkjb7zxBr7zne/A6/XCsiwA6DP4lMfjwUsvvYSPPvoIRx55JM4777x0rJoMI6amg5NE6lFPCCGEEDIMUBufZIuumxB4FgLP0iDGhBBCCBm1Uu6uUFdXh29961tob2/HvHnz8MILL8Dj8cSc9/vf/z4sy8KyZctSXS0Zhixdox71hBBCCCHDALXxSTZpugme8ukJIYQQMsqlXKi/++670dHRge985zt46aWXMH/+fIhi7ELsnDlzAAAffvhhqqslw5Cp6WAEnnrUE0IIIYTkOGrjk2zSDBMCz0Cg2BtCCCGEjGIpt4RWrlwJhmGwcOHCAec96KCDIEkSduzYkepqyRCI3vE8KKauAwwDlufBCFSoJ4QQQgjJZdTGHz0spNDITxNdNyFwHETqUU8IIYSQUSzlQn1tbS0URcH48eMTmt/pdMLv96e6WpJFrCiCE0WY4dCgl2HpOliBByvwlDtJCCGEEJLjqI0/8om8XRgPhY2h3hRo0Yx6KtQTQgghZDRLuVDPsixM00xoXl3X4fV64Xa7U11t2nzyySe44447MGvWLJSWlkIQBHg8Hpx00kl48MEHoWlav8/XNA3/93//h8mTJ8PhcMDj8eC0007D0qVLs/QKMk9wOcGpKoxwGJYxuIa8qelgeB4M5dMTQgghhOQ8auOP/Da+yyHCIfMIhDWYqdw6myLDMGHBAs+zECn6hhBCCCGjGJ/qAsaOHYutW7eitrYW1dXV/c67Zs0aaJqWcM+cTNu+fTuOPvrorv9XVVXh6KOPRn19PdatW4d169bh73//O1auXBlz8KxQKIQzzjgD69atA8dxOPLII+H3+/H222/j7bffxi9/+Uv8v//3/7L4ijKDFUVwqgJOlqEHAhBcrqSXYema3aM+R/Lp29vbEQgEEp5fVVXk5eVlcIsIISR5dC4jhGQKtfFHfhtfkXgokgBBYBEM63DIQ9NO7+xNL/DssLvzlr6HCSEkN9D5mIwUKRfqTz/9dGzduhUPPfQQfv/738edT9M03HrrrWAYBmeffXaqq00Ly7JQUlKCn/zkJ7jsssswduzYrseWL1+Oyy+/HB9++CF+9KMf4dlnn+3z/F/+8pdYt24dDjroIKxYsQKHHXYYAOCVV17Bd77zHfzxj3/EzJkzMW/evKy9pkwRXC5oqgqt3TvIQr0OTpbB5kCP+vb2djzwwAMD9qTqThAEXHfddXQiJ4TkDDqXEUIyidr4o6ON71QFOGQBgaA2dIV6wwTPcxD54RV7Q9/DhBCSG+h8TEaSlAv1N910Ex5++GHcfffdGDduHK666qo+82zatAk33XQTPvjgA7jdblx77bWprjYtKisrsWPHDqiq2uexc845B3/6059w6aWX4l//+heam5tRWFjY9fi+ffvw0EMPAQAWL17c1YAHgPPOOw+/+MUvsHDhQvz2t78dEY143ukEqyiwWlthahrYJAeE7Yy+yYUe9YFAAJqm4cILL0RxcfGA8zc2NuLFF19EIBCgkzghJGfQuYwQkknUxh8dbXy3Q4QiC2jtCMMwTHBc9qNn7B71DERheMXe0PcwIYTkBjofk5EkLdE3jz32GK644gr88Ic/xC233IL29nYAwIwZM7Br1y7s3bsXlmWB53k88cQTKCoqSnnD00GW5X4f7+wVZBgGvv766x6N+FdeeQWRSATjx4/Haaed1ue511xzDRYuXIhNmzZh+/btGDduXHo3PssYjgPvcIBTVOh+P8T8/ISfa5kmLNO0C/VJFvgzqbi4GOXl5UO9GYQQkhI6lxFCMoHa+KOjjS/wHBwyD1XiEQjpcDmyf/errptQJHHYDiRL38OEEJIb6HxMRoK0dFu49NJLsWLFCowbNw6NjY2IRCKwLAvvv/8+9uzZA8uycMghh+C1117Deeedl45VZkUwGOz6vXePnPfffx8AcNJJJ8V87pgxY3DQQQf1mHe4E1wucE4VRiAIK4kBp0xNB8tzYAUeDDc8G+CEEEIIIaMNtfH7GoltfJcqQpUF+EOJRwakU2dG/XAt1BNCCCGEpEvKPeo7nXHGGfjyyy+xZs0arF+/Hg0NDTAMA2VlZZg5cyZOO+00cMOsSPv0008DAAoLC3HEEUf0eOyrr74CgH570YwbNw47duzAl19+mbmNzCLOoYKXFWgsCzMcBjdAb6VOlq6B4YWcyKcnhBBCCCGJozZ+XyOtje9URSgSh5YOCxHNyGrB3DBMWLDAcyyEIYjdIYQQQgjJJWkr1AMAwzA45ZRTcMopp6RzsUOitrYWCxcuBAD87Gc/6/MHSEtLCwCgoKAg7jI6H2ttbe13XQ8//DAeeeSRhLZr69atCc2XCQzDgHc6wTkU6P5AEoV6HYzAgxWpUE8IIYQQMtxQG7+nkdbG51gGTlWEQ47AH9KyWqjXDLs3vcCzYFkma+slhBBCCMlFKRfqa2trwXEcxowZk9D8DQ0N0HUd1dXVqa46YwKBAC644AK0t7fj2GOPxU9/+tM+84RCIQCA2E/xWZIkAD1vr41lz5492LRpUwpbnD282wVOdUBr32vnzrMD93wxNR2couTEQLKEEEIIIWRg1MYfXW18O/6GR2NrEPlOCwyTnaK5ppvgeY5ibwghhBBCkIZCfU1NDcrLy7F79+6E5p85cybq6uqg63pK673xxhtx//33J/28U045BW+//XbcxyORCObPn4+PP/4YNTU1WLp0KYQYA6B2DlIViUTiLiscDgMAFEXpd5vKy8sxderUBLbe7m0z0B8FmcRJEnhFBieJMAJB8E7HgM8xNQ282wWGom8IIYQQQoYFauOPrja+KvNQJB4cyyAUMaBIab3xOi5dNyFwDESBYm8IIYQQQtLSAktmYNHBzB+L0+lEYWFh0s/Ly8uL+5iu67jooouwcuVKVFRUYNWqVXF7EXk8HgAHbo+NpfOxznnjueaaa3DNNdcMtOkAgGOOOWbIe+bwLhc4hwO6zzdgod6yLFiGDpbnqUc9IYQQQsgwQm382EZiG59hGLtXvcLDH9KyVqjXdBOyJFKPekIIIYQQpDmjPhGhUAg8n/pqFy1ahEWLFqVhi2yGYeDSSy/FSy+9hOLiYrz55ps4+OCD485/6KGHYv369fj666/jzrN9+/aueUcS3ukEp8iItLbC1O0ifDyWroPhWDA83+98hBBCCCFk+KI2/vDnVAU4ZAHtPj9M08pKZrydUc9A4KlHPSGEEEJIVltEDQ0NaGxsHFQvmUwyTRPf+9738Nxzz8Hj8eCNN97A4Ycf3u9zjj/+eADAunXrYj6+e/du7Nixo8e8IwUrCOAdDnCKAiMQ6HdeU9PA8gL1pieEEEIIGaGojT8yyKIdfyOLHAIhLePrMwwTlmWB5ziIPPWoJ4QQQghJutvLmjVr+uQ/+nw+/O53v4v7HMuy0NbWhuXLl8OyLBx33HFJb2gm/ehHP8I//vEPuN1urFy5EpMnTx7wOeeffz6uv/56bNu2DW+99RZOO+20Ho8//PDDAIApU6bgkEMOych2DyXe5QKvOhBpbYXgdsedz9J1MLwANgfz6RsbG9M6HyGEDAU6lw0/lmWlJSKEjAwMw2Rt4M7+UBvfNtrb+C6HCLVDgD+gwalmtv1u96ZnIfBsVnrvZwp9DxNCSG4Y6vMxtfFJp1Ta90kX6t966y3ccccdPVbo9/txxx13DPhcy7IgyzJ+/etfJ7vajLn55pvx6KOPwul0YsWKFZg+fXpCzystLcU111yDv/zlL7jqqquwYsUKHHbYYQCAf//73/jf//1fAMBvfvObjG37UOIdDnCqDLRaMMJhcJIUcz5T08FJYk71qFdVFYIg4MUXX0z4OYIgQFXVDG4VIYQkh85lw4thGGhubkZHR0e/g1SS0UkURbhcLhQWFoLjhqZnMbXxbaO9je9SRSgSj7aOMHTdBJ/BSBpNN8Fz7LDNp6fvYUIIyQ1DeT6mNj6Jh+M4qKoKt9sNl8uVcOGesZK83PP444/j73//e9f/33nnHYiiiBNOOCHuc1iWhdvtxsSJE3HFFVfkTO+T9957DzNmzAAAlJeX95tXeeutt+Lss8/uMS0YDGL27Nl47733wHHc/2/vzuOjqu7/j79nX7Kxb2EXZJVV3IJsWkDZFFoLVAU33KpU+BaXnygqtiiKoqJiS0GtQtWiokWqLLGyibIKCIiAMYBhCZA9mcmc3x9ppsYkkMAkk0lez8djHo947zl3zpyMN+/5cOZede7cWRkZGcHrVk6ePFnPPPNMSMdceKOpHj16aOPGjSE9dnnlpBxRVvJBKT9fzjol30wrJyVFjrhaimrZ4ow3nq1Mp06dUtYZLtvzc16v97Q3KQOAcOBcFhny8/OVlJSknJyccA8FVZzb7Vbz5s3DUqwn4/9PTc/4h45mKPlIhmxWi+KiS16MEwon0nJks1nUonGs6sZ5Kux5KhJ/hwGgagjH+ZiMj7KqVauWGjZsKKv1zAsgyr2ifty4cRo3blzwv61Wq+rUqaNVq1aV91Bhl5ubG/z58OHDOnz4cKltU1JSim3zeDxKTEzUc889p7feekt79uyR0+lU3759dc8992jUqFEVMu6qouDyNx7lHjkqE4iTpYQ3XMDnl8Vhr1Ir6iUpLi6OkAwg4nEuiwzHjx9XTk6ObDabGjZsqKioqDKFNNQMgUBAmZmZSklJUU5Ojo4fP64GDRpU+jjI+P9T0zN+TJRTUR6Hjp/KrtBCvc8fkMvllCOCr0/P32EAqBrCcT4m46M0xhjl5uYqPT1dqampOnnypNxut2rXLnmR88+Vu1D/S/Pnz5fHE5krIPr163fO149yOp26//77df/994doVJHD7vXI5vHI4rArPydH9l98bSjg90sWi6x2uyyOqlWoBwCgsqSnp0squKQGBR38ktVqDb4vDh06pPT09LAU6n+JjF9zM36U2yGPyy6LLMrNy5fLWTGFdF9+QE67RU4HRQ0AQOQh4+N0vF6vvF6v7Ha7jhw5ohMnTlROof7nK29Q89hjomX3epWflVWsUG/8flkddlkd9ipxkzQAACqbMSZ4vcqoqKpzCThUPYXvj7y8PBljwp6dyPg1l9VqUbTHIa/brswcX4UU6vMDBTfcs9msckbwinoAQM1ExkdZxcbG6siRI8rNzS1Txmf5As6JIyZGNq9X+bm5Mvn5RfYFfH5Z7HZZHM4wjQ4AgPD6+apevgqL0/n5++NcV4MD56rg8jd2Zef4FaiA96PPny+HvaBIb7WyoAcAEFnI+Cirn997qiwZ/5xX1Bf6/vvv9c4772jbtm1KTU2Vz+crta3FYtGKFStC9dQII6vTKZvXI5vLLX9Wthwx0cF9xu8rWFFfxa5PDwAAgLIh49dMHpddbpdDdkeOsnP9inKHNs/7/QHZbVY5uOwNAABAUEgK9Y899pimT5+uQCBQpn8dCPdXeRFajpgY+aK88qWl/aJQ75fN7ZaVFfUAAAARh4xfs8V4HYpyO5SV7Qt5od7nD8hht8rl4LI3AAAAhc65UP/WW2/psccekyQ1adJEgwYNUpMmTWS3h2yxPqo4e3S0rB6PzIkTCvh8sv73xrGFl75hRT0AAEBkIeMjNsopj9uhE+m5ys8PyGYL3ep3X35ALpdTDq5PDwAAEHTOSXvOnDmSpOHDh+udd96R08nq6ZrGYrPJHhUlm8crf2amnLVqyQQCMoFAQaHeQaEeAAAgkpDx4bDb5HXZ5XXZlZXjV0xU6N4DPn9ATrtFTi59AwAAEHTOyWj79u2yWCx6+eWXCfA1mCMmRrZor/KzsmWMUcDnl9Vuk9Vhl8XGShkAACAdOHBAFotFFotFBw4cCMkxC4+XmJgYkuOhABkfUsGqeq/bocyc0u9NUF75AaOAMbLZCm4mCwAAIhf5PrTOuVBvsVgUGxurJk2ahGI8iFC2KK/sbo8sVosCubkyfp8sdgfXpwcAIMSmTZsWDK+FD6vVqtjYWDVt2lSXXXaZ7r77br333nvKy8sL93ARocj4kKRor1Mel035xijPlx+SY/r9ATlsVjnsNlmt3NcAAADyPQqd86Vv2rdvry1btig3N1culysUY0IEslgsskdHyxbllT8zS1a7TRYH16cHAKAiNWzYMPhzdna2Dh06pIMHD2rdunV6+eWXVbduXU2fPl133HFHGEf5Pw6HQ+3atQv+HAqFx/N6vSE5HgqQ8SFJNqtF0V6notx5ysrxyxmCm7/6/Ply2K1c9gYAgBKQ72t2vj/ndHTrrbfK5/Pp3XffDcV4EMHsMdGyebzKz85WIC9PVrtDFlbUAwBQYX766afg49SpU/L5fNq2bZueffZZtWrVSsePH9edd96p3/3udzLGhHu4io+P165du7Rr1y7Fx8eH5JiFx7voootCcjwUIOOjUIzXKY/brswcX0jOI778gOx2LnsDAEBJyPc1O9+fc6H+tttu0/Dhw3XvvffqP//5TyjGhAhlc7tl93pkczmVn5P73xX1FOoBAKgsNptNF1xwgSZNmqTt27dr9OjRkqS3335bM2bMCPPoEEnI+CjkdRfcUNZmtSgn79wvf+PzB+Sw20KyOh8AgOqOfF+znHOh/vHHH1fXrl1lsVjUv39/9enTR3/84x/1+OOPn/aB6skeEyObN0qSZLVz6RsAAMLF6/Xq9ddfV/fu3SVJM2bMUGpqarF2eXl5evnll9W/f3/Vq1dPTqdTjRo10ogRI/TJJ5+c8Xm+/PJL3XTTTWrTpo28Xq9iY2PVsWNH3Xzzzfr3v/9dpO2ZbjaVnJys++67T506dVJUVJRcLpeaNGminj176r777tNXX31VrM+ZbjaVk5Oj559/Xpdddplq164tt9utFi1a6MYbb9SWLVtKfV0tW7aUxWLRggULlJeXp5kzZ6pr166KiopSXFycBgwYoGXLlp1xfiIVGR+FLBaLoj1OeT32kNxUtuAa9RY57Vz6BgCA8iDfF6jW+d6cI4vFYqxWq7FarcZisRT579M9cHZ69OhhJJkePXqEeyglys/LM2l79pijX6w26d/vC/dwAAAIq/z8fLNz506zc+dOk5+fH5JjPvroo0aSKWuMe/fdd4Pt582bV2TfgQMHTKdOnYL7LRaLiYuLC/63JHPHHXeUeFy/32/uvffeIm2joqJM7dq1jcViMZJMXFxckT779+8Ptt2/f3+RfVu2bDG1a9cO7rfZbEWOJcmMGzeu2DgK961atarYvuTkZNO5c+dgG4fDUeT1Wa1W88ILL5T4+lq0aGEkmRdffNFcfPHFwf7R0dFF5uuXc3q2KuK9ci7I+JWrqmf87Fyf2XXguFn5dZLZfSDVfJd04qweuw6kmpVfJ5k9SanGnx8I98sCAOCshDq3ke+Lqi753pjyv1fOeRlDnz59go++ffuqb9++RbaV9kD1ZHU4ZPdGyR4by2p6AACqgMGDB8tmK7jExOeffx7cnpmZqcGDB2vHjh3q16+fEhMTlZ2drZMnT+rkyZOaNWuWoqOj9eqrr2r27NnFjvvQQw/phRdekCTdfPPN2r17tzIyMpSamqoTJ07ogw8+0ODBg8s8zsmTJ+vEiRPq0aOH1q1bJ5/Pp9TUVOXk5GjPnj165pln1KlTpzIfLz8/X6NGjdL27dsVFxenv//978rIyNDJkyf1/fffa+jQoQoEApo4ceJpVxY98sgjSk5O1gcffKDMzEylp6dr165duuSSS2SM0cSJE3Xq1KkyjytSkPHxc26nXR6XXW6nTVm5/rM+TsFqeqscdptsVksIRwgAQM1Bvq/G+T5k/0SASlHVV9sYY4wvPcOk7fnO5Bw7Fu6hAAAQVlVhRb0xxrRt29ZIMgkJCcFtjz/+uJFk+vbta/Ly8krst3jxYiPJ1KtXz/h8vuD23bt3G6vVaiSZKVOmlHkcp1tx4/F4jCSzdu3aMh/PmNJX3CxatCi479///nexfj6fL7iSpnPnzsX2F664cblc5ttvvy22/8iRI8btdhtJ5u9//3u5xlySqraiHpUrEjJ+alq22brniFm9JfmsV9Rv3pVi1n9zyBw8mh7ulwMAwFkL94p6Y8j3kZDvjQnDinrgl+zRUYpq2ULOOnXCPRQAACCpzn//Jv/8Gpbz5s2TJE2aNEkOR8nfgrvmmmsUGxurY8eOaePGjcHtr7/+ugKBgOrWravHHnssJGOsVauWJOnw4cMhOd4//vEPSdKll16qgQMHFttvt9v16KOPSpK2b9+ub775psTj/PrXv1b79u2Lba9fv74uvfRSSdK2bdtCMmagKov1OuV12+UPGOX6zu6msr78gOx2q5x2biQLAMC5IN9Xz3xPoR4VwupwyGLh66wAAFRFBw8e1A8//CBJuuWWW9SoUaMSH40bN1ZGRoYkBdtL0tq1ayVJv/rVr+R2u0MypqFDh0qSxo0bp8mTJ+vzzz9XVlbWWR/v66+/liRdeeWVpbbp379/8GvDhe1/6eKLLy61f5MmTSSpxJt4AdWNzWZVTJRL0W6HMrPO7qayvv9e+sbpoFAPAEAoke8LRHq+t4flWQEAAFBpCoNm3bp1JUmHDh0K7jt27FiZjvHzUP3TTz9Jklq0aBGqIerpp5/W3r17tWrVKs2aNUuzZs2SzWZTt27dNGTIEE2YMEHx8fFlPt6RI0ck6bR93G636tWrp5SUlGD7X4qJiSm1v91eEKV9vrMrWgKRJi7KqRMeh35KzVRcwFXu68z7/QE57FY57awXAwDgXJDvSxbp+b7cCclms53zo/BFAwAAoGJlZGRo3759kqTzzjtPUsGNmAp9++23Msac8TF+/Phgn4r41lytWrW0cuVKffHFF5oyZYoSEhJkt9u1ceNGPf7442rbtq0WLlwY8udFATI+ysLtsivK45DbYVdWdvk+wAYCRvnGyG63ysGKegAAzhr5vvoqd6G+LL/osjwAAABQ8ZYtWxYM7v369ZMkNWrUKLj/5195LavC/mfT90x69+6tp556SqtXr9bJkyf14Ycf6oILLlB2drZuvvlmpaSklOk4DRo0kCQlJyeX2iYnJ0fHjx8v0r6mIuOjrGKjnIr2OpRRzkJ94WVvHHZbuVfiAwCA/yHfV998X+5lL4UX5UfNderUqXJdU8rr9SouLq4CRwSgOuDcAoReXl6e/vSnP0mS4uLidM0110iSWrZsqfj4eB08eFAfffSRBg0aVK7jXnbZZVq1apU+++wz5eTkhOw6lr/kdrs1fPhwdezYUW3btlVOTo5Wr16tUaNGnbHvhRdeqB9//FErVqzQE088UWKbxMRE+f1+SVKvXr1COvZIQ8ZHWcV4nfK6HTqRnqucXL/crpI/UmZmpCk3Jyf431m5fuX58pXmzNFhZRZrz991ACjA5yKcDvm+eud7CvUol1OnTmnOnDnlulaTw+HQ3XffzR8OAKXi3AKEXnZ2tm655RZt3rxZkvTggw+qVq1awf233Xabpk2bpnnz5umWW25R9+7dSz1Wamqq6tSpE/zv8ePHa8aMGTp+/LgeffRRPfXUU+c0Vr/fL6vVKqu15C97ejye4M+ltfml0aNH6/3339e6dev06aefauDAgcWe8/HHH5ckde7cWZ07dz7L0VcPZHyUldVqUYzXqWhPwar6kgr1mRlp+njxm8EPymXB33UA4HMRTo98X/3zPReSRLlkZWXJ5/Pp2muvVf369c/Y/ujRo3r//feVlZXFHw0ApeLcAoRGIBDQzp079emnn+qll17S/v37JUk33HCDpkyZUqTt5MmT9c9//lPffPON+vfvr+nTp2vMmDHBG1KdPHlS69at08KFC7Vx40bt2LEj2LdNmzb64x//qBkzZujpp5/W8ePHdf/996tt27aSpLS0NH3yySdatGiR3n///TOOOzk5WVdccYVuuukmDRkyRBdccEHweufbtm3TxIkTJUlRUVHq27dvmeZi1KhRuvjii/Xll1/quuuu08svv6zf/OY3cjgc2r9/v/7whz9o3bp1kgpudAWg7OKinUpNd+hURq78+QHZbUU/YOfm5Mjv9/N3HQDKic9F+CXy/f/UhHxPoR5npX79+mrcuHG4hwGgmuHcApTPz69FmZubq7S0NAUCgeC2evXqafr06br99tuL9Y2OjtayZcs0atQorV+/Xvfcc4/uvfdexcXFKRAIKC0tLdi2TZs2xfpPnz5d6enpmjNnjubNm6d58+YpOjpaDodDJ0+elDGmXB8Y9+3bp6lTp2rq1Kmy2WyKi4tTRkaG8vLyJElOp1MLFiwosvLndGw2m/75z39q0KBB2rFjh373u9/ppptuktfr1cmTJyUVrN557rnndNVVV5V5nAAkp8OmaI9DXnfBqvpa0a4S2/F3HQDODufPmot8X7qakO8p1AMAAESowhsvWSwWRUVFqVGjRmrevLm6d++uK664QsOGDZPT6Sy1f5MmTbR69Wq9++67Wrhwob7++msdO3ZMVqtVLVu21AUXXKArrrhC1113XbG+NptNL730ksaMGaNXXnlFX3zxhVJSUmS329WxY0ddcsklGjNmTJleR3x8vJYsWaJVq1Zp3bp1Sk5O1pEjR2S329WmTRv1799fEydODK7oKav4+Hh9/fXXeuWVV/TOO+/o22+/VVZWlpo1a6Z+/fpp0qRJ6tatW7mOCaBAXLRLJzNydexEtuKinLJYuEEsAADninx/5uNW53xPoR4AACCCTJs2TdOmTQvZ8Ww2m0aPHq3Ro0efVf+EhAQlJCSUqW3Lli1ljCm23eFwaNiwYRo2bFi5n7+k4/2c2+3Wfffdp/vuu69cxz1w4MAZ2yxYsEALFiwo13GB6iLKbZfXZZfdZlFWrl9Rbke4hwQAQEQi3xdVk/N92a7WDwAAAADAf1ksFsVFuxTtdSozq+w3PQQAAEDJKNQDAAAAAMotNsopr8suXyCgPH9+uIcDAAAQ0SjUAwAAAADKzW6zKibKqWi3g1X1AAAA54hCPQAAAADgrMRGORXlsSszx6dA4PTXlAUAAEDpKNQDAAAAAM6K1+2Qx+2Qy2lTZg6r6gEAAM4WhXoAAAAAwFmLi3Ip2uNURjaFegAAgLNlD/cAEJmOHj0a0nYAIHFuAQAgEsVEOeVx23UiPVc5ef7gdv6uA8DZ4fwJ1EwU6lEuXq9XDodD77//fpn7OBwOeb3eChwVgEjHuQUAgMhls1oUG+VUWkauMrJ98rjdstvt/F0HgHLicxFQs1GoR7nExcXp7rvvVlZWVpn7eL1excXFVeCoAEQ6zi0AAES2uGiXTqTl6NSxTNWuG62hI29Qbk6OTqTnyOOyq3G9KEV7naX25+86APC5CKjpKNSj3OLi4vgjACDkOLcAABC5XA6bojwOeV12ZeT4FBcdq6joWOUoQ/VqedS0SZw8Lj5+AsCZ8LkIqLm4mSwAAAAA4JzFRbsU7XUqM8snY4wCAaP8gJHDbpXTzkdPAACA0yEtAQAAAADOWbTHIa/bLpvNopzcfPnyA7LbrLLbrLLZ+OgJAABwOqQlAAAAAMA5s1gKbiob5XEoPTtPfn9ADptVToct3EMDAACo8ijUAwAAAABCIjbKJa/bIZ8/oKxc/38ve0OhHgAA4Ewo1AMAAAAAQsJhtyra65DX7VBOrl92u1VOBx87AQAAzoTEBAAAAAAImVrRLkV77JIKCvdc+gYAAODMKNQDAAAAAELG6y5YUe922WS3WeW087ETAADgTEhMAAAAqDL69esni8Uii8WiSy+99LRt09LSFBUVFWw/bdq0yhkkgDOKjXYqNtolh90qm42PnQAA1GRk/LKxh3sAAAAAqBhJSUlasWKF0tPTFRMToyuuuELNmzcP97DKbP369dqzZ4/OP//8Eve/++67ysrKquRRASiL2CiXcvPy5XHxkRMAgFAi41dfLG0AAACoZjZs2KDhw4apVatWuvnmm3X/5Mm6+eab1apVK40YPlxfffVVuId4Ru3bt5ckvfHGG6W2ef3114u0BVB12KwWNaobpbhoV7iHAgBAtbBhwwYNGz48mPEn/9+UYMYfPmIEGb8aoFAPAABQjSxevFiX9+6tHV+s1qTOXfTp1cO0/Orh+vTqYZrUuYu2/+cL9U5I0OLFi8M91NMaPXq0nE6n/v73v8sYU2z/vn37tHr1avXs2VOdOnUKwwgBAACAyrF48WL17n25vli/TZ0G3K7Bv1+owff8Q4N/v1CdBtyu/6zbqoSE3mT8CEehHgAAoJrYsGGDxowerd4NGmre5f10TcvW8todkiSv3aFrWrbWvMv7qXeDhhozenSVXnVTt25dXX311frhhx+UmJhYbP8bb7whY4xuvPHG0x5n3759uv3229W6dWu53W7Vrl1b/fr10+uvv65AIFCs/YEDB4LXw5Sk999/X/369VOdOnVksVi0ZcuWYNuMjAz9+c9/Vq9evRQXFyePx6P27dvrgQceUGpq6jm9fgAAAEAqyPijR49R/da9lDD2GbXoMkh2p0eSZHd61KLLICWMfUb1W/fS6NFjyPgRnPEp1AMAAFQTT06frqbeKE3tfqEc1pJjnsNq1dTuF6qpN0pPTp9eySMsn3Hjxkn639dfCxlj9MYbb8jhcGjs2LGl9l++fLm6dOmi1157TSkpKercubNq166tzz//XOPHj9eoUaPk9/tL7f/0009r5MiR2rlzp9q0aaNGjRoF9+3du1fdunXTQw89pC1btqh+/fpq3bq19u3bp6eeeko9e/bUgQMHzm0CAAAAUONNf/JJeWs1VrfBf5DV5iixjdXmULfBf5C3VmNNf/LJSh5h+ZDxS0ehHgAAoBpISkrSx//6l0a2aFlqkb6Qw2rVyBYt9dHHHyspKamSRlh+Q4YMUb169fTPf/5TmZmZwe1ffPGF9u/fr6uvvlr16tUrse+RI0f029/+VpmZmRozZowOHz6sr7/+Wvv27dOyZcsUExOjDz74QE888USpzz916lTNmTNHP/30kzZs2KCDBw+qY8eOysnJ0fDhw/X999/rhhtu0MGDB7V3717t2LFDhw4d0vDhw3XgwAFdf/31IZ8TAAAA1BxJSUn618cfq3nXq0st0hey2hxq3uUqffzRR2T8CM34FOoBAACqgRUrVigQCGhg02Zlaj+waTMFAgGtXLmygkd29hwOh0aPHq2MjIwi19ssXH1zuq/EvvLKK0pNTVXz5s31+uuvKzY2Nrhv0KBB+tOf/iRJev7555WRkVHiMW677Tbdddddsv73Hz6sVqucTqfmz5+vb7/9Vv369dOCBQvUoEGDYJ969erp7bffVtOmTbVmzRqtXbv27CcAAAAANVphxo9v36dM7eM79CXjK3IzPoV6AACAaiA9PV1uuz14Tfoz8dodctntSktLq+CRnZtffjU2KytL7777rurUqaOhQ4eW2u+TTz6RJN19991yOIrPya233qq4uDilpaWVGrTHjx9f4vb33nsveAxrCd9eiIqK0q9+9StJKvHamwAAAEBZpKeny+5wBa9JfyZ2p0d2h5OMH6EZ314hRwUAAECliomJUY7fryy/r0zF+iy/T7l+f5FVKFXRhRdeqI4dO2rVqlVKTk7W559/rvT0dN19991yOp2l9tu9e7ckqXPnziXud7vdatOmjTZu3Khdu3Zp4MCBxdp06NChxL7btm2TJM2cOVOvvPJKiW1++OEHSVJycnLpLw4AAAA4jZiYGPl9ufLnZZepWO/Py5bfl0fGj9CMT6EeAACgGrjiiitktVr1afKPuqZl6zO2/zT5R1mtVg0YMKASRnduxo0bp/vvv19vvvmmVq1aFdx2Ounp6ZKkhg0bltqm8MZRhW1/KSoqqsTtJ0+elCRt3br1tGOQClYHAQAAAGejMOMf3PUftegy6IztD377ORk/gjM+l74BAACoBpo3b66hQ4Zo8Q8H5AsETtvWFwho8Q8HNGzoUDVv3rySRnj2rr/+elmtVr388stasWKFOnTooF69ep22T0xMjCQpJSWl1DY//fRTkbZlFR0dLUnasGGDjDGnfSxYsKBcxwYAAAAKNW/eXEOGDlXS1qUK5PtO2zaQ71PStk80dNgwMr4iM+NTqAcAAKgmHp46VclZmXpi89elFut9gYAe3/S1krMy9f8efriSR3h2mjRpoiuvvFLJyckKBAKnvcFUoXbt2kmStm/fXuL+nJwc7d27V5LUvn37co2n8Ku2pR0bAAAACJWpDz+srJOHtWXZ86UW6wP5Pm355HllnTysh//f/6vkEZ4dMn5xFOpLsG3bNjkcDlksFlksltO29fl8mjlzprp27aqoqCjVrl1b/fv3L3LXYgAAgMrQq1cvLVy0SKuPpOiWLxL1wYF9yvIXhPksv08fHNinW75I1JqjKVr0j3+cccVKVXLvvffqiiuu0BVXXKHrr7/+jO2vuuoqSdKcOXPk8xX/QPO3v/1Np06dUmxsrBISEso1lt/85jeSpBdffLHEY6NqIuMDAIBI1KtXLy1atFBH932lNW//n37Yukz+vGxJBdek/2HrMq15+/90dP9X+sc/FpHxIzjjU6j/hfz8fN16663y+/1nbJuTk6MBAwZoypQp2rFjh9q0aaO6desqMTFRo0aN0gMPPFAJIwYAAPifkSNHavWaNerc53LN2r5NA5d+pCuWLtHApR9p1vZtuqBvH61es0bXXnttuIdaLkOGDNHy5cu1fPlyNW3a9Izt77zzTtWpU0dJSUm66aabilyj8rPPPtODDz4oSbrvvvtKvU5laW677TZ16NBBmzdv1vDhw4Ordgrl5+dr9erVuvXWW3Xw4MFyHRsVg4wPAAAi2ciRI7VmzWr1ubSrdqx6TcteGqNlL16nZS+N0Y5Vr6nvZd20Zs1qMn6EZ3xuJvsLs2fP1ldffaURI0boww8/PG3b+++/X6tXr1arVq30ySefBL9+sWTJEl133XV66qmnlJCQoGHDhlXG0AEAACQVrLr5cMkSJSUlaeXKlUpLS1NsbKwGDBgQEderDIUGDRpo0aJFuvbaa/XWW2/p/fffV8eOHZWamqp9+/ZJkkaMGKH/dxZfDfZ4PFq6dKmGDh2qZcuWqW3btmrdurUaNGigjIwMff/998rOLljl9HCEXF6ouiPjAwCASNerVy8t+fBDMn41zvisqP+ZAwcO6JFHHlGPHj10zz33nLZtSkqKXn31VUnSvHnzggFekoYPH64pU6ZIkqZNm1Zh4wUAADid5s2ba/z48br33ns1fvz4GhPgC/3qV7/S1q1bddttt6l+/fratm2bjh8/rj59+mj+/PlavHixHA7HWR27ZcuW+vrrrzVnzhz169dPJ0+e1FdffaWkpCS1b99ekydP1urVq9WiRYsQvyqUFxkfAABUJ2T86pvxLcYYUyFHjkCDBg3SihUr9OWXXyo9PV39+/eXJJU0RX/5y180YcIEtW3bVnv27Cm2/+DBg8GvbOzdu1fnnXdeSMbYs2dPbdq0ST169NDGjRtDckwAAFAxAoGAdu/eLangxkdWK2skUDLeKxWHjA8AAEKJ3IayKu97hXfSf73xxhv69NNP9fvf/149e/Y8Y/v169dLki6//PIS98fHx6tVq1ZF2gIAAACoPGR8AAAARAoK9ZKOHj2qSZMmqWnTpnriiSfK1Kdwhc3pVtEU7iv8lxMAAAAAlYOMDwAAgEjCzWQlTZw4UcePH9fixYsVExNTpj6pqamSpDp16pTapnDfiRMnTnusuXPn6rXXXivT83777bdlagcAAADUZGR8AAAARJIaX6hfunSpFi5cqOHDh+vaa68tc7+cnBxJktPpLLWNy+WSpOAdgUtz+PBhbdq0qczPDQAAAKB0ZHwAAABEmogt1P/hD3/Q7Nmzy92vb9++SkxMlCRlZGTozjvvVFRUlF588cVyHcftdkuS8vLySm2Tm5srSfJ4PKc9VuPGjdWjR48yPe/+/fsVExOj9u3bl3GkAAAAQGQg45PxAQAAaqqILdRHR0erbt265e4XFxcX/PmRRx5RUlKSnn32WTVv3rxcx6ldu7ak/309tiSF+wrblub222/X7bffXq7nBwAAAKobMj4AAABqqogt1E+fPl3Tp08/p2MUfhV1xowZevrpp4vs+/kqmkaNGkmSZs+erd/+9reSpPPPP19r1qzR3r17Sz3+999/H2wLAAAA4PTI+AAAAKipIrZQH0pHjx497f6UlBRJRa9Deckll2j+/PlavXp1iX0OHjyo/fv3B9sCAAAAqDxkfAAAAEQSa7gHEE6JiYkyxpT4WLVqVbBd4bbx48cHt40YMUIOh0PfffddkbaF5s6dK0nq3r272rRpU+GvBQAAAAAZHwAAAJGpRhfqz0XDhg2D15y85ZZbtHv37uC+jz76KPg120cffTQs4wMAAABQPmR8AAAAhAuXvjkHTz/9tDZu3Kh169apU6dO6ty5szIyMoLXrZw8ebJGjBgR5lECAAAAKCsyPgAAAMKBFfXnwOPxKDExUTNmzFDHjh21Z88eHTt2TH379tV7772nZ555JtxDBAAAAFAOZHwAAACEg8UYY8I9CAAAgOooEAgEL53Rrl07Wa2skUDJeK8AAABEBnIbyqq87xXeSQAAAAAAAAAAhBGFegAAAAAAAAAAwohCPQAAAAAAAAAAYUShHgAAAFVGv379ZLFYNG3atHAPBQAAAEAIkPHLhkI9AAAAAAAAAABhZA/3AAAAABAauUePypeWXub2jtgYuerXr8ARAQAAADgXR05kKS0zr8ztY6OcalDbW4EjQkWhUA8AAFAN5B49qk13T1QgN7fMfawul3rMmU2xHgAAAKiCjpzI0l1Pr1RuXn6Z+7icNr08ZQDF+ghEoR4AAKAa8KWlK5Cbq7b3TZS3WdMzts/6MVnfPTdbvrT0iC/Ub9++XbNmzdKqVat0+PBhud1udevWTRMmTNDYsWNL7LNw4UL99a9/1ZYtW5SWlqa4uDg1bNhQCQkJuuWWW3TxxRcH2+bn5+svf/mL3nzzTe3YsUOZmZmqU6eOGjdurD59+ujOO+9Uhw4dKuvlAgAAoIZIy8xTbl6+Jo/toaYNY87YPjklXc++vUlpmXkRX6iviRmfQj0AAEA14m3WVNHntQ73MCrNX/7yF911113y+/2KiYlR+/btdfToUX3++ef6/PPP9dlnn2n+/PlF+jz44IOaMWOGJKlhw4bq2rWrMjIydODAAe3cuVNer7dIiL/++uu1aNEiSVLTpk3Vtm1bnThxQrt379bWrVvVunVrCvUAAACoME0bxqhN01rhHkalqakZn0I9AAAAItKqVat0xx13yOPxaO7cuRo/frysVqsk6fPPP9eYMWO0YMECJSQk6NZbb5UkHTt2TDNnzpTdbteiRYs0cuRIWSwWSVIgEFBiYqIyMzODz7F582YtWrRIsbGx+uijj9SnT5/gPp/Pp2XLlik2NrYSXzUAAABQfdXkjG+t9GcEAAAAQuCBBx5QIBDQiy++qJtvvjkY4CWpb9++evXVVyVJTz/9dHD73r17lZ+fr86dO2vUqFHBAC9JVqtVAwYM0LBhw4Lbdu/eLUkaMGBAkQAvSQ6HQ8OGDVPfvn0r5PUBAAAANU1NzvgU6gEAABBxkpOTtWHDBnm9Xv3ud78rsc3VV18th8Oh7777TocOHZIkNW/eXJK0Z88ebd68+YzPU9j+yy+/1IEDB0IzeAAAAADF1PSMz6VvAAAAEHG2bt0a/HnAgAGltitcTZOcnKwmTZqoSZMmGjt2rN5++2317NlTl156qfr376+EhAT16dNHUVFRRfpfcskl6t27t1avXq22bduqX79+6tOnj3r37q3LLrtMLperYl4gAAAAUMPU9IxPoR4AAAAR5+TJk5KkrKwsrVmz5ozts7Kygj/Pnz9fnTp10l//+letXbtWa9eulSR5PB7deOONeuqppxQXFyep4Kuy//rXv/Tkk0/qjTfe0PLly7V8+XJJUlxcnO666y49+uijFOwBAACAc1TTMz6XvgEAAEDEiY6OliR17NhRxpgzPvr16xfs63Q69dBDD2nfvn3at2+f3njjDV1//fWSpLlz52rs2LFFnis2NlZPPfWUDh8+rJ07d+q1117Ttddeq8zMTP35z3/WpEmTKu11AwAAANVVTc/4FOoBAAAQcTp37ixJ2rdvn7Kzs8/6OK1atdINN9ygN998U4mJiZKkpUuX6scffyyxfYcOHXTbbbdp8eLFeuuttyRJ8+bNk9/vP+sxAAAAACDjU6gHAABAxDnvvPPUvXt35eTkaM6cOSE5Zs+ePYNfby28MdXpXHbZZZKk3NxcHT9+PCRjAAAAAGqqmp7xuUY9AABANZL1Y3JI21VlzzzzjAYOHKgHH3xQxhjdfffd8nq9wf0nT57Uxx9/rK1bt2rmzJmSpBUrVmjp0qUaN26cunTpEmzr8/k0Y8YM5ebmyuv1qkOHDpKkv//979q7d6+uv/56tWnTJtg+KytL06dPlyQ1a9ZMDRo0qIyXDAAAgBooOSU9pO2qspqc8SnUAwAAVAOO2BhZXS5999zsMvexulxyxMZU4KjO3tNPP62XXnqp1P1jxozRiy++qPnz52vChAmaMmWKpk6dqvbt28vlcuno0aM6cOCAjDHq27dvsF96erpmzZqlWbNmqXbt2mrVqpWMMdq/f79Onjwpi8Wi2bNnKzY2VpJ07NgxPfbYY3rsscfUsGFDNWvWTD6fT3v37lVmZqZcLpfmzp0ri8VS4XMCAACAmiU2yimX06Zn395U5j4up02xUc4KHNXZI+OfHoV6AACAasBVv756zJktX1rZV9E4YmPkql+/Akd19rKzs097Xcr09ILXecMNNyghIUEvvPCCPvvsM+3du1e5ubmqV6+errzySg0dOlQjR44M9rv88sv14osvasWKFfrmm2+0Z88e5ebmqlGjRho8eLAmTpyoSy65JNh+1KhR8vv9WrFihXbt2qWdO3fK7/eradOm6t+/vyZNmqSOHTtW3EQAAACgxmpQ26uXpwxQWmZemfvERjnVoLb3zA3DgIx/ehZjjKn0ZwUAAKgBAoGAdu/eLUlq166drFZuD4SS8V4BAACIDOQ2lFV53yu8kwAAAAAAAAAACCMK9QAAAAAAAAAAhBGFegAAAAAAAAAAwohCPQAAAAAAAAAAYUShHgAAAAAAAACAMKJQDwAAAAAAAABAGFGoBwAAAAAAAAAgjCjUAwAAAAAAAAAQRhTqAQAAAAAAAAAIIwr1AAAAFcRisQR/DgQCYRwJqrqfvz9+/r4BAABA1ULGR1nl5+cHfy5LxqdQDwAAUEEsFoucTqckKTMzM8yjQVVW+P5wOp0U6gEAAKowMj7KKi0tTZLkcrnKlPHtFT0gAACAmiwmJkbHjx9XSkqKJCkqKkpWK2slUCAQCCgzMzP4/oiJiQnziAAAAHAmZHyUxhij3NxcpaenKzU1VZJUu3btMvWlUI8z+t3vfqddu3aFexgAAEQkl8ulsWPHqk2bNjp27FiZV1OgarBarXK5XJXyXG63W3Xr1q2U5wLI+AAAnD0yfmSrzIxfq1YtxcXFlamtxRhjKng8iHAtWrRQUlJSuIcBAEDE8nq9uvrqq3XRRRepUaNG4R4OysHpdKpLly4V/hwxMTGqW7eubDZbhT4XUIiMDwDAuSHjR66Kzvg2m01RUVGKiYlRTExMmf8Rh0I9zqhOnTo6ceKEPB6POnToEO7h1DjffvutsrOzmf8wYf7Di/kPL+a/YlgsFtntZ/5S465du5STkyO326327dtXwsjwc4XzX6tWLR06dKjCnsdisbD6CmFBxg8v/saGF/MfXsx/eDH/FYOMHxkqI+OfS77n0jc4o1atWunEiRPq0KGDNm7cGO7h1Dg9e/bUpk2bmP8wYf7Di/kPL+Y/vArnv1OnTlq/fn24h1PjFM5/fHw81xtFtUTGDy/+xoYX8x9ezH94Mf/hRcYPr6qe8aveiAAAAAAAAAAAqEEo1AMAAAAAAAAAEEYU6gEAAAAAAAAACCMK9QAAAAAAAAAAhBGFegAAAAAAAAAAwohCPQAAAAAAAAAAYUShHgAAAAAAAACAMKJQDwAAAAAAAABAGFGoBwAAAAAAAAAgjCjUAwAAAAAAAAAQRvZwDwBV34QJE3T48GE1btw43EOpkZj/8GL+w4v5Dy/mP7yY//Bi/lHd8R4PL+Y/vJj/8GL+w4v5Dy/mP7yq+vxbjDEm3IMAAAAAAAAAAKCm4tI3AAAAAAAAAACEEYV6AAAAAAAAAADCiEI9AAAAAAAAAABhRKEeAAAAAAAAAIAwolCPUq1atUpDhw5V/fr15fF41L59e02dOlWZmZnhHlrE++mnn/Tmm2/q3nvv1aWXXiqPxyOLxaJ+/fqdsa/P59PMmTPVtWtXRUVFqXbt2urfv78WL15c8QOvBowxWrt2rR544AH17t1bdevWlcPhUP369TVw4EC99dZbOt09tjMyMvTwww+rffv28ng8ql+/voYOHarExMTKexER7t1339WECRN04YUXqkmTJnK5XIqJiVGPHj00depUHT9+vNS+zH/FWLp0qSwWiywWi1q2bFlqO+b/3E2bNi0416U9Xn311RL7cv4PraVLl2rkyJHB81CjRo2UkJCghx9+WH6/v1h75h/VBRm/4pDxw4eMH35k/KqHjF95yPhVR8RnfAOU4IUXXjAWi8VIMk2bNjXdu3c3LpfLSDIdOnQwx48fD/cQI9pzzz1nJBV79O3b97T9srOzTe/evY0kY7PZTJcuXcx5550X7H///fdXzguIYMuXLy8y561btzY9e/Y0derUCW4bMmSIycnJKdb36NGjpl27dkaScblcpnv37qZp06ZGkrFYLGbOnDlheEWRp2vXrsE5bNmypbnwwgtN8+bNg/PfoEEDs2XLlmL9mP+KkZ6eXmT+W7RoUWI75j80Hn300eD7PCEhocTHBx98UKwf5//Q8fl85vrrrw/OXbNmzUyvXr1M69atjdPpNJJMenp6kT7MP6oLMn7FIuOHDxk//Mj4VQsZv3KR8cOvumR8CvUo5uuvvzZWq9VYLBYzd+5cEwgEjDHGHDx40PTs2dNIMiNHjgzzKCPbvHnzzJVXXmkefPBBs3jxYjN16tQyhfh7773XSDKtWrUyu3btCm7/8MMPgx+ylixZUsGjj2yfffaZadWqlZk9e7ZJSUkpsu+NN94IzuOUKVOK9R0+fLiRZHr27GkOHjxojDEmEAiYuXPnBk/smzdvroyXEdFee+018/nnn5u8vLwi27dt22Y6d+5sJJmOHTsW68f8V4x77rnHSDIjRow4bYhn/kOjMMSPGzeuXP04/4fOrbfeaiSZXr16mU2bNhXZl5mZaT788MNi5yfmH9UBGb/ikfHDh4wffmT8qoWMX7nI+OFXXTI+hXoUU3giv/HGG4vt27Nnj7FarUaS2bp1axhGVz29+OKLZwzxP/30U/BfAVeuXFlsf+EHgR49elTgSCPfqVOnip2cf+7JJ580kkydOnVMfn5+cPumTZuMJGO1Ws13331XrN8NN9zAB9wQ+PLLL4P/er1z587gdua/Yqxbt85YrVYzYsQIM3/+/FJDPPMfOmcT4jn/h87KlSuNJNOyZUuTlpZWpj7MP6oLMn7lI+NXHjJ+1UbGr1xk/MpHxg+v6pTxuUY9isjIyNCyZcskSRMmTCi2v23bthowYICkgmvQofIsWbJEeXl5atu2rfr3719s/+233y5J2rRpk77//vvKHl7EiI2NlcPhKHX/VVddJUlKTU3V0aNHg9vfe+89SdKAAQPUpk2bYv0K53/p0qVc4/UcdOjQIfhzVlZW8GfmP/R8Pp9uu+02eb1evfTSS6dty/yHF+f/0Hn22WclSZMnT1ZMTEyZ+jD/qA7I+FUX55jQIONXbWT8ykPGjxyc/0OnOmV8CvUoYvPmzcrNzZXL5dJFF11UYpvLL79ckrR+/frKHFqNVzjfhfP/S/Hx8WrVqlWRtii/7Ozs4M8ejyf4c+Gc9unTp8R+F110kVwul3JycrRly5YKHWN1tnr1aklSdHS02rVrF9zO/Ifen//8Z23fvl1PPPGEmjZtetq2zH/obd26VWPHjtWAAQM0YsQITZ06VTt27CixLef/0MjJydGnn34qSbryyiu1c+dO/eEPf9DAgQM1bNgwPfLII/rhhx+K9WP+UR2Q8asuzjGVg4wfXmT8ykPGDy8yfuWrbhmfQj2K2LNnjySpefPmpa5IOO+88yRJu3fvrrRx4X+/m8L5Lwm/m3O3cOFCSVLXrl0VGxsb3H6m+Xc4HGrWrJkk5r+8AoGADh06pAULFmj8+PGSpBkzZig6OjrYhvkPrW+//VZ/+tOf1KNHD91zzz1nbM/8h96WLVu0cOFCrVq1SkuWLNH06dN1wQUX6L777lN+fn6Rtpz/Q2Pr1q3y+XySpC+++ELdu3fX7Nmz9dlnn+njjz/WE088oXbt2gX/DhRi/lEdkPGrLs4xlYOMX/nI+JWPjB9+ZPzKV90yPoV6FJGamipJqlOnTqltCvedOHGiUsaEAvxuKt7GjRv16quvSpIeeOCBIvuY/9B7/vnnZbFYZLPZFB8fr5tuukktW7bUJ598orvvvrtIW+Y/dIwxuu222+Tz+TR37lzZbLYz9mH+Q6dJkyZ6/PHH9eWXX+ro0aPKycnRtm3bdMcdd8gYo+eff14PPvhgkT7Mf2gcPnw4+PPdd9+t7t27a8OGDcrNzdV3332n6667Trm5uRo3bpw2b94cbMv8ozrgfVx18bupeGT8ykXGDw8yfniR8cOnumV8CvUoIicnR5LkdDpLbeNyuSQV/fogKh6/m4qVkpKikSNHyu/369prr9Xo0aOL7Gf+Qy8+Pl4JCQm6+OKL1bhxY1ksFm3ZskVvvPGGTp48WaQt8x86r7zyitasWaPf//73uvDCC8vUh/kPnQkTJmjq1Km66KKLVK9ePblcLl1wwQV65ZVX9NRTT0mSnnvuOR04cCDYh/kPjYyMjODPXq9Xn3zyiXr16iWn06k2bdpo4cKF6tatm3w+n5588slgW+Yf1QHv46qL303FIuNXPjJ+eJDxw4uMHz7VLeNTqEcRbrdbkpSXl1dqm9zcXElFr+2HisfvpuKcOnVKV111lZKSktSzZ08tWLCgWBvmP/R+85vfaPXq1Vq/fr0OHTqkLVu26OKLL9bChQvVv3//Il8NZP5D4+DBg3rwwQcVHx+v6dOnl7kf8185Jk+erCZNmsjv92vJkiXB7cx/aBTOoySNHz9etWvXLrLfarXqvvvukyR9+umnCgQCRfox/4hkvI+rLn43FYeMHx5k/MpHxq/ayPgVq7plfAr1KKLwDV34FZCSFO775ZsfFYvfTcXIyMjQ4MGDtXnzZnXq1En//ve/i1y3shDzX/G6dOmif/3rX6pXr562bNmiRYsWBfcx/6Fxzz33KC0tTS+88IJiYmLK3I/5rxw2m00XX3yxJOm7774Lbmf+Q+Pnc9OhQ4cS2xRuT09P1/Hjx4v0Y/4RyXgfV138bioGGb/qIONXPDJ+1UbGr1jVLeNTqEcR559/viQpKSkpeDOGX/r++++LtEXlKJzvvXv3ltqG3035ZGVlaciQIVq/fr3atm2r5cuXq27duiW2PdP8+3w+JSUlFWmL8ouJiVHfvn0lFVxPtBDzHxqbNm2SJN11111q1KhRkcfEiRMlST/++GNw29q1ayUx/5Wp8KuXfr8/uI3zf2i0b98++HNpX3H9+YqcwtU2zD+qAzJ+1cU5JvTI+FUPGb9ikfGrPjJ+xaluGZ9CPYro3r27nE6ncnNztWHDhhLbfPHFF5KkSy+9tDKHVuNdcsklkqTVq1eXuP/gwYPav39/kbYoXU5OjoYPH67//Oc/atGihVasWKFGjRqV2r5wTgvf/7+0YcMG5eXlye12q1u3bhUx5BqjMLz8PMQw/6GVkpJS7JGWliapILgUbiv8GiDzX3m2b98uSWratGlwG+f/0IiPj1eLFi0kSfv27SuxTWEYd7vdwaIO84/qgIxfdXGOCS0yftVFxq94ZPyqi4xfcapbxqdQjyJiYmI0aNAgSdJrr71WbP93332nlStXSpJ+/etfV+rYaroRI0bI4XDou+++06pVq4rtnzt3rqSCD2Jt2rSp7OFFFJ/Pp1GjRmnFihWKj4/XypUr1axZs9P2KXy/r1q1qsR/cS2c/6uuukrR0dGhH3QNkZqaqsTEREkF7+VCzH9oHDhwQMaYEh/z58+XJLVo0SK4rV+/fpKY/8ryr3/9Szt27JAkDRw4MLid83/o/Pa3v5UkvfXWW0UKBYX+9re/SZL69u0ru90uiflH9UDGr7o4x4QOGb/qIuNXLDJ+1UbGr3jVKuMb4Bc2bNhgLBaLsVgsZu7cuSYQCBhjjDl06JDp2bOnkWSuueaaMI+yennxxReNJNO3b9/Ttvv9739vJJlWrVqZXbt2BbcvWbLEuFwuI8l88MEHFTzayOb3+82vf/1rI8k0atTI7N69u8x9hw4daiSZnj17mkOHDhljjAkEAmbu3LlGkrFarWbjxo0VNfRqITEx0TzxxBNm//79xfZt3LjRXHjhhUaSiY+PN+np6UX2M/8Va/78+UaSadGiRYn7mf9zt337djNhwgSzZcuWItvz8/PN22+/bWJjY40kM3To0GJ9Of+HxpEjR0xcXJyRZG6//XaTnZ1tjCl4L8+ePdtIMhaLxaxatapIP+Yf1QEZv/KR8SsPGT+8yPhVFxm/4pHxw686ZXwK9SjRc889ZywWi5FkmjVrZrp37x58k7Zr184cPXo03EOMaElJSaZu3brBR1RUlJFk7HZ7ke1PPfVUkX5ZWVnm0ksvNZKMzWYzXbt2Needd56RZCSZyZMnh+kVRY633347OF8tW7Y0CQkJpT42bdpUpO+RI0dM27ZtjSTjcrlM9+7dTbNmzYIn/RdeeCFMrypyvP/++8H5b9SokenZs6e56KKLTOPGjYPb4+PjzebNm4v1Zf4r1plCPPN/7jZv3hx8n9epU8d0797d9OrVy9SuXTu4/fLLLzcnTpwo1pfzf+h89tlnxuPxGEkmLi7O9OrVK3gOslgsZubMmcX6MP+oLsj4FYuMHz5k/PAi41ddZPyKR8avGqpLxqdQj1ItX77cXHXVVaZOnTrG5XKZ888/3zz00EPF/gUc5bd///7g//inezz66KPF+ubm5poZM2aYCy64wHg8HhMXF2f69u1r3nvvvcp/IRGoMKiU5fHLf201xpi0tDTz0EMPmfPPP9+4XC5Tp04dc9VVV5mVK1dW/ouJQCkpKWbWrFlm+PDh5rzzzjMxMTHG4XCYBg0amP79+5tZs2aZtLS0Uvsz/xXnTCHeGOb/XJ04ccJMnz7dDBkyxLRu3Tr4/m/YsKG56qqrzJtvvmn8fn+p/Tn/h86ePXvM+PHjTdOmTY3D4TD16tUzw4cPN4mJiaX2Yf5RXZDxKw4ZP3zI+OFFxq+6yPgVj4xfdVSHjG8xxhgBAAAAAAAAAICw4GayAAAAAAAAAACEEYV6AAAAAAAAAADCiEI9AAAAAAAAAABhRKEeAAAAAAAAAIAwolAPAAAAAAAAAEAYUagHAAAAAAAAACCMKNQDAAAAAAAAABBGFOoBAAAAAAAAAAgjCvUAAAAAAAAAAIQRhXoAQFhNmzZNFotF/fr1C+lxExMTZbFYZLFYQnpcAAAAAKdHxgeA8qNQDwA4rcIgfDaPBQsWhHv4AAAAAH6BjA8AVY893AMAAFRtDRs2LHF7RkaGMjMzT9vG4/Gc8fj16tVTu3bt1Lx587MfJAAAAIAyI+MDQNVjMcaYcA8CABB5pk2bpscee0ySVBX/lCQmJqp///6Squb4AAAAgKqGjA8A4cOlbwAAAAAAAAAACCMK9QCAClF4DcvExEQdOXJEkyZN0vnnny+v11vk5k+nu9FUVlaWFi5cqBtvvFHdunVT/fr15XK51KRJE11zzTX65JNPznp8u3bt0oQJE4JjcrvdatasmS655BI99NBD2rVr11kfGwAAAKiOyPgAUHG4Rj0AoELt3btXo0ePVkpKitxutxwOR5n7vvPOO7rpppskFXwoiI2Nld1u1+HDh/Xhhx/qww8/1OTJk/XMM8+Ua0yfffaZhg0bptzcXEmSw+FQVFSUkpOTlZycrC+//FJOp1PTpk0r13EBAACAmoCMDwChx4p6AECFuu+++1SrVi2tWLFCmZmZSktL0+7du8vUt3bt2vq///s/rV69WhkZGTp58qQyMzN16NAhPfbYY3I4HHr22We1ZMmSco3pzjvvVG5urgYOHKhvvvlGeXl5OnHihLKzs7V9+3Y99thjatmy5Vm8WgAAAKD6I+MDQOixoh4AUKGsVquWL1+upk2bBredf/75Zeo7YsQIjRgxotj2xo0b65FHHpHX69Uf//hHvfDCCxo+fHiZjnnkyBF9//33kqQFCxaocePGwX1ut1udOnVSp06dynQsAAAAoCYi4wNA6LGiHgBQoW644YYiAT6UhgwZIklat26d8vPzy9QnJiZGVmvBn7/Dhw9XyLgAAACA6oyMDwChR6EeAFChEhISzql/SkqKHn30UV166aWqW7eu7HZ78CZWHTt2lFRwQ6oTJ06U6Xgej0dXXHGFJGnw4MF65JFH9OWXXyovL++cxgkAAADUFGR8AAg9CvUAgArVoEGDs+67bt06tW/fXo8//rjWr1+v1NRUeTweNWjQQA0bNlS9evWCbTMzM8t83L/+9a/q2rWrjh49qieeeEKXXHKJYmJi1Lt3b82cOVOpqalnPWYAAACguiPjA0DoUagHAFQom812Vv38fr/GjBmjkydPqlu3blq6dKnS0tKUnp6ulJQU/fTTT1q/fn2wvTGmzMdu3ry5Nm3apGXLlunee+9Vz549FQgEtGbNGk2ZMkVt2rTRypUrz2rcAAAAQHVHxgeA0ONmsgCAKmndunX64YcfZLPZ9PHHHys+Pr5Ym59++umsj2+1WjVo0CANGjRIkpSenq6PPvpIDz74oJKSkjR27FglJSXJ6XSe9XMAAAAA+B8yPgCUjhX1AIAq6ccff5Qk1a9fv8QAL0nLly8P2fPFxMRo7NixmjdvnqSC62Z+8803ITs+AAAAUNOR8QGgdBTqAQBVUlxcnKSCMJ2SklJsf3Jysl544YVyH/dMN5TyeDzBn61W/kwCAAAAoULGB4DScXYCAFRJvXv3VlRUlIwxuu6667Rnzx5JUn5+vv7973+rX79+slgs5T7u2rVr1aVLFz333HP69ttvFQgEJBVc/3Lt2rW68847JUlNmzZVly5dQveCAAAAgBqOjA8ApaNQDwCokuLi4vTMM89Ikv7zn/+oXbt2iomJUXR0tAYPHqxTp05p/vz5Z3Xsb775RpMmTVLHjh3ldrtVr149OZ1OJSQk6JtvvlFsbKzefvvts75JFgAAAIDiyPgAUDpuJgsAqLLuuOMONW/eXDNnztTXX38tv9+v+Ph4XX311XrggQfO+BXXkvTq1UvvvPOOVq1apQ0bNujQoUM6duyY3G632rRpo4EDB2rixIlq0qRJBbwiAAAAoGYj4wNAySzGGBPuQQAAAAAAAAAAUFNx6RsAAAAAAAAAAMKIQj0AAAAAAAAAAGFEoR4AAAAAAAAAgDCiUA8AAAAAAAAAQBhRqAcAAAAAAAAAIIwo1AMAAAAAAAAAEEYU6gEAAAAAAAAACCMK9QAAAAAAAAAAhBGFegAAAAAAAAAAwohCPQAAAAAAAAAAYUShHgAAAAAAAACAMKJQDwAAAAAAAABAGFGoBwAAAAAAAAAgjCjUAwAAAAAAAAAQRv8fZTQaAEcjEqMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "if sum(df.TrialType == 'psi') > 0:\n", + "\n", + " fig, axs = plt.subplots(figsize=(18, 5), nrows=1, ncols=2)\n", + "\n", + " # Plot confidence interval for each staircase\n", + " def ci(x):\n", + " return np.where(np.cumsum(x) / np.sum(x) > .025)[0][0], \\\n", + " np.where(np.cumsum(x) / np.sum(x) < .975)[0][-1]\n", + "\n", + " try:\n", + " for i, stair, col, modality in zip([0, 1], \n", + " [interoPost, exteroPost], \n", + " ['#c44e52', '#4c72b0'],\n", + " ['Intero', 'Extero']):\n", + " this_df = df[(df.Modality == modality) & (df.TrialType != 'UpDown')]\n", + " ciUp, ciLow = [], []\n", + " for t in range(stair.shape[0]):\n", + " up, low = ci(stair.mean(2)[t])\n", + " rg = np.arange(-50.5, 50.5)\n", + " ciUp.append(rg[up])\n", + " ciLow.append(rg[low])\n", + "\n", + " axs[i].fill_between(x=np.linspace(0, len(this_df), len(ciUp)),\n", + " y1=ciLow,\n", + " y2=ciUp,\n", + " color=col, alpha=.2)\n", + " except:\n", + " pass\n", + "\n", + "\n", + " # Staircase traces\n", + " for i, modality, col in zip([0, 1], ['Intero', 'Extero'], ['#c44e52', '#4c72b0']):\n", + " this_df = df[(df.Modality == modality) & (df.TrialType != 'UpDown')]\n", + "\n", + " # Show UpDown staircase traces\n", + " axs[i].plot(np.arange(0, len(this_df))[this_df.TrialType == 'high'], \n", + " this_df.Alpha[this_df.TrialType == 'high'], linestyle='--', color=col, linewidth=2)\n", + " axs[i].plot(np.arange(0, len(this_df))[this_df.TrialType == 'low'], \n", + " this_df.Alpha[this_df.TrialType == 'low'], linestyle='-', color=col, linewidth=2)\n", + "\n", + " # Use different colors for psi and catch trials\n", + " for trialCond, pointCol in zip(['psi', 'psiCatchTrial'], [col, 'gray']):\n", + " axs[i].plot(np.arange(0, len(this_df))[(this_df.Decision == 'More') & (this_df.TrialType == trialCond)], \n", + " this_df.Alpha[(this_df.Decision == 'More') & (this_df.TrialType == trialCond)], \n", + " pointCol, marker='o', linestyle='', markeredgecolor='k', label=cond)\n", + " axs[i].plot(np.arange(0, len(this_df))[(this_df.Decision == 'Less') & (this_df.TrialType == trialCond)],\n", + " this_df.Alpha[(this_df.Decision == 'Less') & (this_df.TrialType == trialCond)], \n", + " 'w', marker='s', linestyle='', markeredgecolor=pointCol, label=modality)\n", + "\n", + " # Psi trials\n", + " axs[i].plot(np.arange(len(this_df))[this_df.TrialType=='psi'],\n", + " this_df[this_df.TrialType=='psi'].EstimatedThreshold, linestyle='-', color=col, linewidth=4)\n", + " \n", + " axs[i].axhline(y=0, linestyle='--', color = 'gray')\n", + " handles, labels = axs[i].get_legend_handles_labels()\n", + " axs[i].legend(handles[0:2], ['More', 'Less'], borderaxespad=0., title='Decision')\n", + " axs[i].set_ylabel('Intensity ($\\Delta$ BPM)')\n", + " axs[i].set_xlabel('Trials')\n", + " axs[i].set_ylim(-52, 52)\n", + " axs[i].set_title(modality+'ception')\n", + " sns.despine(trim=10, ax=axs[i])\n", + " plt.gcf()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jK3nePFxHuhY" + }, + "source": [ + "This figure represents the evolution of threshold estimate across trials for the Interoception and Exteroception condition. Shaded areas represent the 95% confidence interval of the threshold estimate by Psi. For each condition, the first 30 trials (connected with dashed lines) were allocated to an Up/Down method (2 interleaved staircases starting a -40.5 or 40 respectively). The intensities and responses were included in the Psi staircase to maximize the amount of information included. The remaining 50 trials were monitored by the Psi staircase only. This dual estimation was implemented to estimate the reliability of the estimation of threshold using an up/down procedure, as compared to a longer psi procedure." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EjwOwGyJHuhY" + }, + "source": [ + "# Psychometric function" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 352 + }, + "id": "pYnNCd4ZHuhY", + "outputId": "c68998ee-a51f-4b19-fd79-3be86926d1ba" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv4AAAHSCAYAAACU489pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAADowklEQVR4nOzdd3hU1dbA4d/09Ep6B0LoKTSpIoiIiBVRwIIV21XU67ViwXL1evXqZwUrCmLBLqiIgPSWRockpACppPdM+/6IGYhJSJvJBLLe58kjc8re6yRjsuacvddWmM1mM0IIIYQQQohzmtLeAQghhBBCCCFsTxJ/IYQQQgghegBJ/IUQQgghhOgBJPEXQgghhBCiB5DEXwghhBBCiB5AEn8hhBBCCCF6AEn8hRBCCCGE6AEk8RdCCCGEEKIHkMS/m5g7dy7Dhg1j7ty59g5FCCGEEEKcg9T2DkDUO3ToEAkJCfYOQwghRCfV1NSwatVq1m3cjtLRl+iRE3Fydmn1vKrKCjJSD5CRdoji4iL0BhNmhQq1RodCocJsNmLQ12LS11JSmIOjxsCUC8Zz11134uvr2wVXZl1lZWUkJCSQtHs3+cePY6yuRmUw4KjWoFQoMJnNVBv0GNVqVI6O+AYHEzN8OHFxcbi5udk7fCHOSgqz2Wy2dxAChg0bRkJCAnFxccTHx9s7HCGEEB1QUVHBx58sJfFAJn0Hjyasd38UCsUZzykrKWJ/8nYyjqZSozfj3isMd29/XNy8cXR2R6E89XDebDJRXVlKeVkhOZlHyD6aiI+7hhtmz+SSS6bh4+Nj60vstIKCAtb98Qf7du3CWFJCH08vgn188PXwxNPFBeVp12symSiuqCC/pJjjBQWkFReh8vBg8IgRTJo8+ay4XiG6E0n8uwlJ/IUQ4uxWUVHBkvc/ZH9qLsMnXIq7h/cZjzeZTBw5kEDS7m3UmbT4hw3EJ7APao22HX2WcDDhTwzlJ4gZEMrMKy9lzJgxjZLn7sJkMrFlyxZ+//FH1CUlxIZF0D80FJ1G0+Y2avV6DmZmkpSVicHDnYsuv7zbXq8Q3ZEk/t2EJP5CCHH2qqmp4f0PPiTp4HFGTrwMVzfPMx5fVVnO1g2rOXbsBN5BAwjrF4tS1bHRt7W11RxLP4ih7AQeDnWMjO3PnNnX4e7u3qH2bKG0tJQvli/naEIiQ319GT1wEGqVqsPtGYxGth3Yz578fHoPi+O6OXO61fUK0V3JGH8hhBCik1atWk3igUxGnH95q0l/RXkJ63/9jqKyWvoNuxg3z86Nz9fpHAkO7092pgJXTwfi92dSuvh97rjtFry8vDrVtjUUFRXx0eLFVKYd5aqYWAK8z/wkpC3UKhXjhwylb2Ehv8Yn8EFpKTffcUe3uF4hujN5NiaEEEJ0wuHDh1m3cTt9B49udXhPVWU563/9juIKPYNGTut00t/AwcEJL59gCstq6Bc9gbQT5Sz54CNKS0ut0n5HlZaW8tHixdSkZzBz9BirJP2nC/D2ZuboMVQfTefjJUvsfr1CdHeS+AshhBAdVF1dzdfffI/S0Zew3v3PeKzJZGLrhtUUldUycPhUdI7OVo3F3asXCrUzRzOOMWzsxaQeK2H5ii8wmUxW7aetTCYTXyxfTmXaUa4cdR6uTk426cfVyYkrR51HRWoaXyxfbrfrFeJsIIm/EEII0UHr16/n6PEiokdObLV6T8qBRI4dO0HfoROsnvQDKFDgHxROcXk1efkniR51IQl7Uti6davV+2qLrVu3cjQhkYtjYm2W9DdwdXLi4phYjiYk2u16hTgbSOIvhBBCdEBtbS2btu4kIHxgq3X6y0qKSNy9Fe+gAVYb3tMcjUaLi7sPWceycffshU/IAH74+TcKCgps1mdzCgoKWPP9Dwz19bX68J6WBHh7M9TXlzU//NDl1yvE2eKsT/xzc3P57LPPuO+++xg9ejSOjo4oFAomTpzY6bbXr1/PpZdeio+PD46OjvTv35+FCxdSWVnZ+cCtzGw2YzKZ5Eu+rPYlBb+EOLPk5GTyCyuI6Duo1WP3J2+nzqQlrF+sVWMwm83o62qoqSpHX1eD2WzG08uHiupa8vLyGBg9iuIqBX/8sc6q/bZm3R9/oC4tYfTA1r831jR64CDUJaWs++OPLuvTbDZTVVVFSUkJVVVVXfK70x59inPDWV/V54svvuCBBx6wertvvvkm999/P2azmeDgYEJCQjhw4ADPP/8833zzDZs3b7Z79QCTyURpaSnFxcXU1tbaNRZxbtLpdHh6euLu7i51soU4jdlsZsvW7bh4Bbd6t7+qsoKMo6n4hcZ0uGTn3xn0teQdTyU78yAVZSWYzWYUCgUubh4Ehg1ApXbk2LETBAYGEtZ3MLsSkpk+/RJcXV2t0v+ZlJWVsW/XLkaEhneqZGdHqFUqYkLD2LVrF5dMn27T662pqSEpKYkdW7eSl5mJ2WhCoVLiFxbGqDFjiImJwcHB4azvU5xbzvrE383NjQsvvJARI0YwYsQIEhMTee655zrVZnx8PAsWLABg8eLF3H777SgUCrKzs7nsssuIj4/n9ttv55tvvrHCFXSM2WwmNzdXKhgIm6qtrSU3N5eamhr8/f1bHcMsRE+Rl5dHavpx+sZc2OqxGakHqNGb8Q3qa5W+iwuOs3/3Ompr63DxDiGg30DUah0GQy2lBcc4lLwNhcJERVA4gwcPJCQiivRDu4mPj7fK0/DWJCQkYCwpYUC0dZ9utFX/0FC2Zxy16fWmpqayYulSKrJzCHdzY1JwCA4aLTX6OlKOHee79z/g98AAZt90E337Wufnbo8+xbnnrE/8b7nlFm655RbL6xMnTnS6zeeeew6TycSNN97IHXfcYdkeGBjIihUr6N+/P99++y179uxh6NChne6vI8rLyy1Jv6+vL25ubqi6+M6KOLcZjUbKysrIz8+npKQEZ2dn3Nzc7B2WEN1CdnY21bVGvH38Wz02I+0Q7r3C2rUib0uKC46TvP03dK5+RMWMRqNzbLTf0zccfW01WYe3kXYggfT+/RgSMxxP33B2xyd2SeKftHs3fTy92rUirzU5aLX08fQiafdum1xvamoqS999D1+9npnjxuP8tzvs/YJDqKypYW1iAkvfe4+b7ryz04m4PfoU56azPvG3toqKCn799VeARkl/g8jISCZNmsTatWv5+uuv7Zb4l5WVAeDl5YV3F02cEj2LUqnE29sbg8FAUVER5eXlkviLNissLCQxMZGSkhI8PDyIjY21+++q1mJqT8zZ2dloHN1aTebr6mopLi7Cv2+/Tsdv0Neyf/c6dK5+RAyeiKKF4XcanSO9B0+kvDif1d9+QllxLjXVlVTkF1NTU2MZCnKm601JSeG7774jLy8PPz8/rrzySiIjI1s9r6amhvzjxxkQENjp6/274vJy9mdkUFpVibuTM4PCw/E8bSjP6ftLKirIKy+3XK+13o81NTWsWLoUX72eGaPOQ6lUUlVVZXky6uDggL+/P85OTswYdR5fbFjP808/zUXTp+Pr69uufhtizs/P549ffmGAkwszJkxocdils4MDM0adx087tvPhu+8yfvJkqqqqmlxvd/x/U3QdSfz/JjExkdraWnQ6HSNHjmz2mPHjx7N27Vq2b9/exdGdUlVVBdAl4zVFz+bq6kpRUVG3nNQuuqfExES+Xb4cc3EJXg4OJNXU8Oevv3L19dcTExPTLWNKTExk2YqVlFQa0Tl7UFtZwi9r1nPDnGuajTnr2HGcXFuf51VSVIDeYMLFrfOJVd7xVGpr64iKGd1i0t+gKO8oVRUl1FYZOXAkAwy1lOal8McffzB9+vQzXu/BgwdZ/MZbOOqN9HJ25UBlOau//YG7HriPfv36nfH7lJOTg7G6Gl+PM69e3F77MtJZs20byppavB0cSKmpYee+vUwdPYZB4eFN9udUlHOgpIQ//viDwMBAq70fk5KSqMjOYea48SiVSnJycti77wA1dWZUWgeMdTWkpqUzdMggTtZUc+z4cUpyczloMnPAyanN/Z7+fi0vKSE3NZWRQ4aSn5+Pv3/LT5mUSiWBnl5898P3lB5Np29gYKPrNZvN3e7/TdG1JPH/myNHjgAQGhqKpoXHlH369AHqV2u0B7PZjNFoBOonXwphSw3vMaPRaJlAKERLCgsL+Xb5ciJQcv7EC9Co1egNBjYkJ/PNsmWEhoZ2eWGE1mJycXFh2YqVKJyDOf/8cajVGgwGPXt2beKzz79uNubjJ/Jw9279Ln5JUQFmhQpHZ/dOXYPZbCY78yAu3iFNhvf8XU1VGZkHt+EZ2B9HFy+83J0I79ufHb9/wedffENUVFSL1/t/b71HSnISMd4BTBo5Aa1GS52+jj92/Mlb/32NfrHD8Qwa3OL3KScnB5XBgKfLqQnPpRW11NYZ0RtNmIxmjCYTJpMZo9mMyVT/Zfzrv04OavqGNP7QcCy/kGWr/iDKyYnhIf1QKVUYTEZ2Hctg6c+/M2bIKLbu2U5/F2eGBUfi6+GCWg1Lt29lxccfE+Dvj1u5id7+/VGrVPi5GEk8eognF77GqBnzcHJp/LNxdtBw51WNn+ZXVNXx7jd72PbbV4RVGUg+UoS+toaMtH1oHDxw7xWEQqFE5Wji5MkT/L5pOznVpfR3ceX8wT4oPD3xDo5i9c7dPPHka4y89KYm/TaoLC9h16pPuTLKj4nnT2T5779zQe8++Gu0rFu/jaDIaDTa5ifwlldXsnbnRgboXBno4s2lY8dhMBrZkJzMZ++/T1FpDb1qFET3rv9e+DobSTp6sMWYbpkxCG/3xu+3D3/cR1FZzRnfgw0iAt2ZOSmy0bajJ0r5Zn1Km84HmDkpkojAxnF9/ccRMnLK2nS+l5sDt142uNG2wtJqPvppf5tjuGhkGNH9fBpt+217JntSm5aNbe571p1I4v83RUVFAGf8w9Swr7i4+IxtLV68mCVLlrSp34MHD7YxQhqV7ZIkTNja6e8xSfxFaxITEzEXlzDxgkmWii4atZqJ0dF8vGE9CQkJXHhh6xNiuzKmb7/9lpJKIxMnjkf1V9UdtVrD0BHj+XP18iYxm81mamprcG7DmP262hrUGl2rd+hbY9DXUlFWQkC/ga0eW5STCgo1/r2HUVNZTHV1CQoUBPYeSllOwhmv983fvsK1upYLR52PWl1/80ur0TJ51PnsX/kx+w+lcedld1JZY6KiqoLyqjoMblHsjk/m7qc/5dopUTiqNY2Go2xOzqasom2V53p5ODZJ/JPT0tFXVNEnoDdlFXpAD0Bfd38O5O/nl107cTHW0DeoLxWVBjxdjDg56IgLDObrjKM41dYRPWA8x/NOPbX0cgykKmM3q9ZsxicsulF/nq66Jol/ncHE+l1HyTmSRnhAMJk5ZVSW5lFbbcTTw4eySv2pgx16kXb8CBpqGBcdS2lFBeklJajda/ByCqI6cze/rN3SpN8GBZnJOOWd5PxZF2E0mSgsKmRoYDBh3t7szSwg5egxnN39mj03JTsNU1UNQ0IiKCstw2AwoNFomBgdzbrly6itNhIZdh4n8k/7XpwhptkXRTXpY9eBXE4UtO0JcEW1vkniX1RWw8bEts/HnDw8lIi/jRzbm3qSxCNtW6sh2NelSeJfVWNoVwyD+/QimsaJf8qx4mbbuG5KFN6d+5xvU5L4/01NTf2nWK225V/oDXdAq6urz9hWTk4OCQkJ1gtOCCG6uZKS+iEEfy/jqFGr8XJwpKSkpNvFdCIvD52zjyUJbqBWa3Bw9mwSc/06F7QpmTeZTCgUnS+8YDToMZvNqNWtP+Wtq6lE5+yJUqlCqVRiNtfHoVSp0Tp5kHeG69UbTHg7OluSfrPZTHWtgepaI44KDUcLa/hm/dEmfVboHUjJyKG4LATl324OaNVt/9DTXDX6iuoqvHQ6VH/7fquVKrx0DuRVVBLq4tBkv0alRAO4qlSolI1/BiqlCi8HR0pr2z6E0WTUozSbUavVf72uQ6VxaHIzRKFQUmcGH60GtVKJWqUEsxmTydimfvW1lZb3a0VdHWazGQe1GpVSiaNaTY2xrsVza+pq8NLp0KjUYKzDaDSi0WjQqNWoAQe1db4X4uwlif/fNEx6qqtr+X+shpr5jo5nfpQTEBBAXFxcm/o9ePBgqx8khBCiu/Pw8CCppga9wYBGfepPjN5goKimmqEeHt0uJr+wEA5nFmEw6C0JL4DBoKemshiPv8WsVCpRKMBsMrXad33ibez0NajUGhQKBQZD63fOtQ7OFOUfx2Q01Cf8ivo4TEYDdVUl+Pn1b/F6NWolheXl1Onr0Gq0FJbWkFtYicGoJ6+igjqtDpPR0Gg9ApPRQG1lCe5+faisMWL622JSDjo1jg5qNGolaqUSpVKBUqlA9dd/lYpT/3Z1anrTzdvdlUMqMx5uWtRKFQoUoACD0YhRbaJPkC/GylK83HWoVSp02vrY9EYTeqDcaCTQxwl3l1MfmgxGIwcLNVw8rj9D4vo3jlfbNDVy0KqYM20Qq3I96R3kSphfL/JyqjlxIhsfTwcUilMfOsxmE85aFSX6GvRGIwajCRQKAnxc0ep0HCzUMG38AIbGDWj257fHr5jjmzIxGIxo1WoUCgU1BgNGkwmtg5K+oT74Bfg0e65R4c/RIydxddFQU6e1VPvTGwwYAJNKwcDeXo0+BDd8L5qLyc256QfNyyf0obxK32R7c/y9nZpsC/Jx4YZpzV97cwJ9nJtsmzwilMF9erXpfFfnpu8pN2dtu2KIDPFosu28wQH4eja9Prdm+utOJPH/G0/P+keMDUN+mtOwr+HYlsyfP5/58+e3qd9hw4bJ0wEhxFkvNjaWP3/9lQ3JyUyMjm40nl7h6dHmmyFdGdNVV13Fu0s+Zs+uTQwdMb7R2HUPZ1WTmBUKBQ46B/T6lm8QNdDqHDDoazGbTJ0a7qPW6HBx86C04BievuFnPNYroC+5mfvJTY/H0cUbL3cnzJjJPrqHUE+avd7qmhp2bt3AkEH9SUlO4o8dfzJ51Pm4OGowGPUkH9nFSZMKB9de5Gck4Bseh5uLI046BQWZ+4kMdubGmy/H0VTIlm36+g8cf13v+JigDl83wPB+fdl75CApJbmM690HjUqF3mhk89E0XLzduOqCC/h2/ToOF+dY9tcZDCRkH8czOAh3f39Sc442+dmHRAXzwO2Xt2nOiZODhhumR1N8JBrzseMM6t2LCH8nNlcVYaoqwC8wFKVShclkJC87iwGBvqQWn2Tz0TT8HRxw8fTE18uZg8fT6vu97bIW+50c683r+fvYuHcP5w8direXN2knC1AaDLh5u3FeXFSLNx4DfYbycWEmCdnpRA8YgPq06/Xv0xulQkF+2bHmvxdniOl008ZEtHrMmQT0cmbWhZ2rcnV+XHCnznd30XU6huED/Bg+oPkhV92ZJP5/069f/RshKysLvV7f7ATftLS0RscKIYSo5+3tzdXXX883y5bx8Yb1eDk4UlRTjcLTg6uvv94uK563FlPfvn25Yc41fPb51/y5ejkOzp71d/qdVdww55pmYw4O8iMl52SrfXt4+aAwG6muLMXJteOVbhQKBYFhAziUvA19bfUZJ/g6OLkRNmAMhxN+J7eyGHPkIAozE6ksSGHOXQ83ut7fvltKUbWWYyey0ShNfPTqAxw5coR3//d/pK36kl5OrqTmnaTYZGbqtTczPHYIu7f9gb52J05aL2qKi4n0UnHDvXcQExNNeno6G9Vqiisq8LZS+V9PV1emjh7Db9u2kpGYgLeDA4U1NZgcdEwdPYZwf/8m+3MqyjlQUcFDj/yLoKAgq7wfFQoFo8aM4bv3P6CypgZnJyeGDhnEnr37yUzZi1rrgKGuBgetgjEjhhFVU8PPG/9kXWoKQ/r3J/nPDW3q9/T3a/qfGyivqmLn0TRchwwldtiwM4428HR1ZXzcMN7+/jvKsk+Qs2WL5XpvuP12gG71/6boepL4/01sbCxarZba2lp27tzJ2LFjmxyzadMmAEaPHt3V4QkhRLcXExNDaGgoCQkJlJSUMNSj/k6/PROL1mL6+36PVmIODQkm+Uh8q/16ePmgUSupKCvsVOIP4Bfcl/RD8Rw7vO2MdfwBvPwicHLxQGcuY2C/cGqqK9EEOzN58mQA/EMi6RU1hW2/baS2uhKXXr1x9+2Nk1cY114by/Dhw/nmm2/Iy8tjYC8fZs26xlLRbua0kS1+nwICAlA5OpJfUmy1xB9gUHg4Qb16sS89ndKqSiKcnBkcEYHHX9WD/r5fWVGBRq1m8uTJODg4WO39GBMTw++BAaxNTGDGqPPw9/fH3d2dnJwcSx3/gIAAHB0d8TWZSA4JodLLkwF/1fFva7+nvx/z8/Op+OUXKpyc8fX1PeN5JpOJ7KJCRl04mfGTJlFVVdXkervb/5uia0ni/zeurq5MnTqVn376iSVLljRJ/FNSUli3bh0AM2fOtEeIogMmTpzIn3/+2epx0dHRJCUldaqv119/nZKSEubNm0d4eHin2hLibOXl5dXl1Xta01pM7Yk5MDAQffV6DPq6My7ipdXq8PT0orQwF9+gzq2kqtboGDR8Enu2ryF93wZCos5Do2s6xlhfW0XW4e3Uludz2dXzGBI9nPht6whwdQOlmk9XH+C7DakYjGa8Q05VcXF21HCytIYo6stW/+tf/2o2jjN9nxwcHPANDuZ4bh4DQsM6db1/5+HiwrghQ9q0//f43Tj6+1nm7Vnr/ejg4MDsm25i6Xvv8dOO7UyOicXF0ZHevXs3Oq6iupo/khKpdHNl4SP/snxoao/TYx45cmSTPv+uoc98rYbb7rqrxT674/+bouv02MR/3LhxHD9+nAULFrBgwYJG+xYuXMjPP//MZ599xtixY7n99ttRKBTk5OQwe/ZsTCYTV1xxBdHRzZfiEt1XSEgIoaGhLe5vWJmyM15//XUyMzOZOHGiJP5CnKMCAwNx1KkoLMjFL7Dl3ykA4X36s2PHNgz6ka2u9NsaT59ghp53Eft3r+Pwju9x8Q7G3ScUlVqL0VBHaUEWFYXHUShM9BkYR0Sf/vWrB+dnENV7NPf8Zx35xY0LSfh7O3HVBZFcEBeMg67zaUHM8OGs+ewzJuj16FpYD8eWaurqSCsu4qJLp9uk/b59+3LTnXeyYulSlm7ZTLirK5FBQeg0Gmr1elJOnCCjvByXwADmzZvXoaS/O/Qpzk1nfeJ/7NgxYmNjLa8bynFu2bKFXr1Ozfj+17/+1ejuxfHjx8nMzGy2tNyIESN47bXXePDBB5k/fz7PP/88vXr14sCBA9TW1hIVFcX7779vu4sSNnPLLbfwzDPP2DsMIcRZzs/Pj74RwWSkHmg98e87kOSE7eSfSCUwvPU6/K3x9AnmvAuvJf9EKicyDpJzZKtljQ0XNw8GxIxGb1TSy12Hs7MzKYeSyc4v47tdtai1p4YH9XJ3YPbU/kwaHlJfctJK4uLi+OOnnziYmUlM38495eiIQ1lZqDw8GDZsmM366Nu3Lw8/8QTJycls37KFdZmZmI0mFColfmFhXDV2LNHR0ZYnDmdrn6LtqrKyyP5pFX3vucveoZzRWZ/4G41GCgsLm2w3GAyNtldVVbWr3QULFjBkyBBeffVVduzYQX5+PmFhYcycOZPHHnsMl9NWJRRCCNGzKBQKxo45j30ff0VVZQVOzi3/TXBydiG8d19Sjh7EP6Rfo1KYHaXW6AgMH0RA2EAM+lqMBj0qtQa1RofBoOfY0X2EhPTGZDKydt1mqk2uBGrrh4eolAquOL8P102Jssod/r9zc3Nj8IgRJP2xjsEREU3WT7Alg9FIUlYmgydPwtXV1aZ9OTg4MGrUKEaOHEl1dTV1dXVotVocHR1tttChPfoUp9SeLKQiJQVDRQV+UxoPlzKbzOStWUvonOvQtlL10Z6s9xHfTsLDwzGbza1+/f0ub0ZGRrPbTzd58mRWr15NYWEhNTU1HD58mBdeeEGS/h4gIyMDDw8PFAoFy5cvb7LfbDZz0UUXoVAomDFjBgCffPIJCoWCzMxMAC644AIUCoXl65NPPmnURl1dHe+88w7jx4/Hy8sLnU5H7969ueeeezh+/HizcYWHh6NQKNiwYQPJycnMmjULf39/VCoVr7/+uuW4srIynn32WaKjo3F2dsbFxYWYmBgWLVpEeXm5db5JQvRw0dHR+Hq7kJ66v9VjB0Wfh1ZRR+aRRKvGoFAo0GgdcHByRaOtX0yquKgAF0cdfn5+HEjewYAQRwJ6xwAQ5u/K6w9OZN6lg2yS9DeYNHkyBg93th1o/XtjTdsO7Mfg4c6kvyYxdwWFQoGTkxMeHh44OTl1SQJujz57GmN1NaV793H8m+84+O//sOvm29l96x0ceukVMj75DPPf1qtwDA5CodFQmZ5hn4Db6Ky/4y+ELYSHh/Puu+8yZ84c7r77bsaOHdtovP5rr73G77//jr+/Px999BFQ/+h/7Nix7N69m9raWgYPHoy7+6l1u/38TtX7zc/PZ/r06ezevRulUklISAghISEcOXKEd955hy+//JLffvutxUfVGzdu5MUXX0SlUjFgwABcXV0tv/izsrK48MILSUlJQalUMmjQIAD27t1LcnIyn3/+OWvXriU4uHN1kIXo6XQ6HePHjGTlz38S0XfQGe/6u3l4ETt8DFs3/4m3fxhunmeuztJRen0dFSX5DOwXTmnxSQqOHWTenCtQuvVmT+pJbp4xCJ3G9nfgfXx8uOjyy/npk6X0LSwkwNvb5n3mFBayJz+fGfNuwsen+QWuhGhJbWEhpcl7KTt4kPLDR6g6dhxaWKTPUFFB3cmT6E57nynVasJvugFdr7YtLGYvZ/0dfyFsZfbs2dxwww2UlZUxd+5cjMb61TcTExN5/PHHLXfxG/7ATJs2jc2bN+Pv7w/Am2++yebNmy1f06ZNs7R93XXXsXv3bi6++GJSU1PJyMggOTmZkydPcvvtt1NYWMg111zT4grSixYtYu7cueTn57N7925SUlK44447AJgzZw4pKSlER0dz5MgR9uzZw549ezh06BCDBg3i8OHDXH/99bb81gnRY1xwwQX0DvYieeeGJncA/y5yYCwhIUGk7qkvoWltZszknsjA080RP99eJO9Yy7ChkYwZM4YxQwO586qhXZL0NxgzZgy942L5NSmR8nYOt22v8qoqfk1KpPewOMaMGWPTvsS5KffXNaS88SZ5a9ZSlZnVYtKv8/XBe8xoTPqmqxcHzpiOU2iIrUPtFEn8z3F1eiMV1fo2fzX3h6uyHefX1BmanK83mNoVg9F05j+enfHss882Gn7z96/Th8sAvP322/Tu3ZutW7eyaNEiqqqqmDNnDnV1dSxYsICpU6e2O4ZffvmF9evX079/f7799lsiIk6tgujs7Mx7773H8OHDSU9PZ+XKlc22MWjQIJYsWYKz86mlzB0dHfnzzz/ZsmULSqWSL774olFlh8jISFasWIFCoeDPP/9k48aN7Y5dCNGYo6Mj11x9BabqfDKPHjrjsUqlkjETL8HLTceB3b9ZPfkvLTpJeVkJxTU6dm36hcgQD+bOmW1ZQberKZVKrps7F+c+vflux3abJf/lVVV8t2M7LpF9mT13rt2uV3RvNfn55P62hsP/fY3M5Sua7Hcf1HTivcrJCfehQwieeRX9H3+UEZ98wPD336P/I//EMTCwK8K2Ohnqc45buS6FFWsOt/n4Fc9fgotj4/Jrtz6/hsqapgl9cyYND+GB2Y2Xt/8z4ThvfNn2ca1vPDiR3kHurR/YAa2V8wwKary0vKurK8uXL2f8+PG88MILbN26lUOHDhETE8NLL73UoRgakvnrr7++2RUYlUolM2bMYPfu3WzYsIE5c+Y0OeaGG25A1cyEuV9++QWAqVOn0r9//yb7hwwZwpQpU1izZg2//vorEyZM6NA1CCFOiYqKYtKE81j1xzY8vXxw92z5Ub+TsysXXHwl63/7nv07f6Hv0AlWGfZTU1NF9olM8ourKDuygcBeLrzw5D9ws+IiWh3h7u7OLfPn8/GSJazctpWLY2KtOuwnp7CQX5MScYnsy82332736xXdh7G6mtJ9+ylJTKI4MZma7GzLPsfgYMLmzm50vGv/KByDg3HtH4XbgP649ousH7d/jn2QlMRf9CgdKed53nnn8dRTT/HUU0+xdu1aHB0d+fzzz9FqO1aPe8+ePQAsW7bMkqj/XV5eHkCLk3wHDBjQ7PbDh+s/5A0ePLjF/ocMGcKaNWs4dOjMdyeFEG03ffolZOfksHvTKkZOvAxXt5areri4ejB52tVs3bCaI/G/4h00gLB+sR2u9lNbW0166gHSUw9SXVGCo2svPCImYFQ2vbFgD15eXtx21118sXw53yYkMtTXl9EDB3Wq2o/BaGTbgf3syc+n97A4Zs+dK0l/D2c2m6k+dpyinbsoTkyi/NBhzIbmb1pWHz9OXUkpWo9TNxlVDg7Evf1GV4VrN5L4C9EGkydP5qmnngLqF39rKfFui4a1I9qSeLdUhvb0IT6na6jYc/pE4r9rmIMg1X2EsB4HBwduuXkei5d8wM4NPzJ8/PRW7/xPmnYNKQcSSdy9leStWfiFDMA3qG+7FvmqKC9hf/wGstKPoFA74hseg3/4IF68ZzxBPt2nAp27uzu333knW7duZc0PP5D25wZiQsMYEBbWrkW+aurqOJSVRVJWJgYPd2bMu4kxY8bI8B5B+ocfk/PTqjMe4xgUiEdMDO5DBqFy7JnrHUjif46bOSmSyya0fQU/Z4emb4kPn7yIto66V6ualhQ7Py6Y84YEtDkGRxuWmOuIiooKbrzxRqB+GM7vv//OZ599xg033NCh9hrKwX711Vdcc801VosTsNStbnhi0Jzc3NxGxwohrMPZ2Zn5d9zGRx9/wq6NP9J30HmE9RnQYqlFpVJJ1OBhBARHsD95OxlHk8g+moh7rzDcvPxxdffG0dm90VADs8lEdWUp5aUnyck6wom0JCorq3ANjsU3PA5HZ3cevXEkkSHdr464Uqlk3LhxREVFse6PP9i1axfbM47Sx9OLoF4++Hl64uni0iiJN5lMFFdUkFdczImTBaQVF6PycGfw5ElMmjxZqvf0QMaaGuqKS3AM8G+03TUqqknir3J2xiN6KB6x0XjEROPga5tqWmeT7pVhCavTalRoO1nFwdmxc0uua9RKNOqz927MvffeS1paGmPGjOHOO+/kxhtv5J577mHs2LH07t27yfGt1VMePHgwSUlJ7Nu3z+qJf1RUFAD79u1r8ZiGfc3NARBCdI6zszO333Yrq1atZt3G7eQcO0r0yImtlvocff4lRA+vICP1ABlph8hLy+C4wYRZoUKt0aFQqDCbjRj0tZj0tZQU5uCoMRDRO4pq95HonOqHLNx51VBGDPRvsa/uwMfHh2uvu45pl1xCQkICSbt3s/H4CYzpR1EZDDiq1SgVCkxmM9UGA0a1GpWjI77BQVx06XSGDRsmNy56GGNtLcW7Ezi5ZQvFu+Jx7R/F4OeeaXSMZ1wMCrUap7BQvEYMxzMuFpe+fVB04QJyZwNJ/IU4gy+//JKlS5fi5ubG8uXLCQ8PZ82aNSxbtoy5c+eyadMm1OrG/xs1TNitrq5uts1rrrmGZcuW8eGHH/Lggw82qvXfWdOmTePll1/mt99+49ChQ02S+/3797NmzRrLsUII63NwcODqq69iyJDBfLXyO7b98TX+YQNbrfXv5OzCwOiRDIweSV1dLSVFBZQUFVBXW4PJZEJfV8vJ/GyqywsYN2wsA2LPZ/mfRej+Ov/CEaFMGxPRYvvdjZubGxMnTmTixInU1NSQk5NDTk4O1dXVGI1GVCoVjo6OBAQEEBAQgINDzxya0VMZa2spSUji5OYtFO3ajam21rKvdN9+DBUVqE9bUFXt7MyIjz9A4yYfCs/k7L0NK4SNZWVlceeddwLwzjvvWBbwevvtt4mIiGD79u0sWrSoyXkNJTT//PPPZtudMWMGF1xwASdOnGDKlCkkJSU12m82m0lISOCBBx5g165d7Yr5/PPPZ9y4cZhMJmbPns3Ro0ct+9LS0pg9ezZms5nzzz+f8ePHt6ttIUT79OvXj4ceuI+rp5+PuSyDbWu/YMfGX8jNzsSgb36NjgZarQ5f/2B6Rw6il18g1ZVllOQfJchLw7zZl3PHnffww85T83TCA9yYf9UQW1+SzTg4OBAREcGYMWOYPHkyF110EZMnT2bMmDFERERI0t9DmE0mSvbsJeWNt9h54y0ceuk/nNy8pVHSD6BydKDq+Ikm50vS3zqFubUVR0SXGDZsGAkJCcTFxREfH3/GY00mk6V6S1RUlExqaoOJEyfy559/tlrOE2Dz5s2YTCYmTpzIpk2bmDNnDsuXL290zLZt2yyJ84YNGxg3bpxl3+eff87cuXOB+j/8/v7+KBQKHn30US6++GIACgsLufLKK9m0aRNQX2Y0MDCQmpoajh49apl4u379eiZOnGhpOzw8nMzMzCbbT5eVlcXkyZNJTU1FqVQyePBgzGYz+/fvx2Qy0a9fP/744482r9wr7zchOq+2tpY9e/awecs2UtOPU11rROPoipOrN+6evdBotCiUSswmE3p9HaXFJ6kqL0RfXY6jTkVk7xDGjjmPoUOHotVqeeHjnezYXz9fx0Gr4vUHJ3arybxCtFdJUjKpb79LbX5Bs/tVjo54jRpJr3Fj8IiJRtmOSeHiFBnqI3qUY8eOcezYsVaPe/HFF9m0aRNhYWG88847TfaPHj2ahQsX8swzz3D99deTnJxsGbIzZ84cSkpK+OCDDzh8+DBHjhwBYN68eZbzvb29Wb9+PStWrGD58uXEx8cTHx+Pg4MDYWFhTJgwgSuvvLLRB4q2Cg0NJT4+ntdee41vvvmG1NRUoH7Rr5kzZ/LAAw/I+FghuphOp2PEiBEMHz6c/Px8Tpw4QU5ODplZxzh+4gjldXWYTCaUSiU6rZbIID/CRo0gICCAoKAgfH19LfOHavVGVKcVUrjlssGS9IuznrZXryZJv9LBAa+RI+g1bgyesTEoO1hGW5wid/y7CbnjL7oreb8JYXtms9mS+LdWIKDh+E1JJ9i+L5eHrx/WpnOE6A4qUtMo3Lad0OvnNHnfJj/8KBWpaXjERON7wUS8Ro1ApdM135DoELnjL4QQQtiZQqFodjXuMx0/ITaYCbFtG7InhD0Za2o4uXkLub+uoSKl/im0R0w07kMaLzbZ56470Lh7oPP2skeYPYIk/kIIIYQQwuqqjh0n95ffyN+wAWNl4wUpc39d0yTxd2mmRLawLkn8hRBCiG7OaDKTcqyY/mFyJ1R0b2azmdLkPWT/+BPF8YnNHuPaPwqvUSO6ODIBkvgLIYQQ3d7anVm89XUS46IDuWXGYHw8He0dkhBN5G/4kxPffk9VZlaTfSpHR3wmno//xVNw/qs8tuh6kvgLIYQQ3Vit3sjnvx0CYHNyNjqtigXXxdk5KiGaKklMbpL0O4WFEjB9Gr3Gj0ftJB9Y7U0SfyGEEKIbW7U5naKyGgA0aiVzpw6wc0RC1C+2pfhblbfAyy+lYEP94pWew2IJvGwG7tFDpepUNyKJvxBCCNFNVVbrWbnuiOX19LERMsxH2FVNbi7Hv/mOmrx8Bi96utE+l969Cb/5JjyHxeEUIhWnuiNJ/IUQQohu6vs/0yiv0gPgqFMxc1KknSMSPVXVseMcX/ktBRs3gckEQOn+/bgPGtTouKArLrNHeKKNJPEXQgghuqGKqjp+2JhqeX3F+X1xd5HFjETXqso6RtaKLyncth3+tuZr3m9rmyT+onuTxF8IIYTohlZtSae61giAq5OGK87vY+eIRE9Sk5dH1oqv6sfs/y3hd/D3J3jmlfhMPN9O0YmOksRfCCGE6GZq6gz8uOmo5fWMcb1xctDYMSLRU9QVFXPsq5Xk/b4Ws8HQaJ9jSDAh18yk17gxKNqx0rToPiTxF0IIIbqZ33dkUVZZB4CDVsX0cbKiqegaae8toWjHzkbbHIODCJ1zHd6jz2tSyUecXSTxF0IIIboRg9HEd3+eGts/9bxw3Jy1doxI9CQh111jSfx1vj6EXDcL34nnyx3+c4Qk/kIIIUQ3olIquPvqaL7+4whHsoplbL+wCbPZTMWRFFyj+jXa7tK7NwHTp+EYFIjfRVNQamSI2blEEn8hhBCiG1EoFAwf4MfwAX5kn6ygl4fU7RfWVX4khfQPP6b80GGG/vdlXCP7Ntrf+47b7BSZsDUZqCWEEEJ0U4G9XOwdgjiH1BYUcPjV19nz8KOUHzoMQPqHH2P+W9Uece6SxF/0CBMnTkShUPDMM89Ypb0NGzbwzDPP8P3331ulPSGEEMJWTHV1ZK34koS77+Pkxk2N9mlcXTFW19gpMtHVbD7Ux2AwcPToUQoKClAoFPTq1YvevXujVssoI3H22rBhA88++yw33XQTV1xxhb3DEUKcAyqq6qiuNeLjKUN7hPUUxydwdMmH1OTmNtruHBFO+C3z8Bg6xE6RCXuwSfZdVlbG8uXL+eabb9i+fTvV1dWN9js6OjJq1ChmzpzJ3LlzcXNzs0UYQgghxFlj1ZZ0Pl9zmPMG+3Pl+X3pH+5l75DEWay24CTpH35E4bYdjbZrPDwIu342vpMukEo9PZBVE/+SkhJefPFF3nnnHaqrqxkwYADXXnstffr0wdvbG5PJRHFxMWlpaezYsYN7772Xf/7zn9xzzz08/vjjeHh4WDMcIYQQ4qxgNJn5dXsmJpOZrXtyiAh0l8RfdFhNXh6J9z2Iqea0ITxKJYGXXkLI7GtROznZLzhhV1Yd49+7d29WrlzJwoULycjIYN++fXz44Yc8/vjjzJ8/n7vuuovHH3+cDz/8kH379pGRkcFTTz3FypUr6dNHypWJrpWRkYFCoUChUACwdu1aLrzwQjw8PHB2dmb06NH89NNPTc5TKBQ8++yzACxdutTShkKhYOLEiU2O37p1K9dddx3BwcHodDp69erFJZdcwq+//tpsXM888wwKhYJ58+ZRVVXFk08+Sf/+/XF0dCQmJqbRsd9//z0XX3wxvXr1QqfTERISwvXXX8+ePXs6980RQnSp5CMFnCypfzquVCq4aFSYnSMSZzMHPz/chwyyvHYd0J+Y/71CxK03S9Lfw1k18X/ttddISUnhkUceISQkpNXjQ0JCeOSRR0hJSeHVV1+1ZihCtMsHH3zARRddRHJyMn379kWn07F9+3Yuv/xyvv7660bHjh071vL+9vX1ZezYsZavIUMaj5V8+umnGTt2LF9++SVVVVUMGjQIpVLJL7/8wrRp0ywfIJpTXV3N+PHjeeGFFwAYOHAgjo6nxv7eeeedXHnllfz222/odDqGDh1KeXk5y5cvZ/jw4axYscJa3x4hhI2t2Zlp+feIAX54uTnYMRpxLuh9+63ofHrR9757GPLicziHh9s7JNENWDXxnzdvHqoOjBdTqVTMmzfPmqEI0S733Xcfb7/9Nnl5eezevZuCggLuu+8+zGYzDz30ECaTyXLs5s2bueWWWwCYNm0amzdvtny9+eabluOWLl3KokWL8PPz47vvvqOoqIiEhATy8/NZuXIlrq6uPPPMM/z+++/NxvTNN99QWlrK3r17OXToEPHx8axbtw6o/6CyePFitFoty5cv58SJE+zatYu8vDz+8Y9/oNfrueWWWzh48KANv2tCCGsorahlx74cy+spI0PtGI042xTtjidj6WdNtjv4+TFs8Tv4TZ6EQilFHEU9m74TGpIUYT+mujoMFZVt/mqulq+hsu3nG2trm8ag17cvBqOxK741jdx0003cddddKP/65ahSqfjPf/6Dr68vx44da/fQGb1ez5NPPgnAihUrmlT+ufrqq3n++ecBeOWVV5ptw2g08sUXXzB48GDLNkdHR8xmMy+++CIADz30EHPmzLHs1+l0/N///R/Dhw+npqamxbaFEN3HnwnHMRjrf/d6uuoYPsDPzhGJs4G+rJwj/3uDg8+9yIlvv6c4PqHJMTJ5V/ydTWtqXnjhhcyYMYNXXnmFfv36tX6CsLrj33zHsS++avPxo5Z/itrFudG23bffibGyqk3n+06aSOT9/2i0rWDjJlL/7+02xxD9v//i0juizcdbw/z585ts0+l0xMTEsGbNGtLS0pqMrz+T7du3c/z4cfr27csFF1zQ7DFXXHEF999/P5s3b8ZoNDZ5WjZo0CCGDx/e5LzDhw+Tnp4OwIIFC5pt+8EHH2TOnDktziMQQnQPZrOZ33dmWV5PGh6CSiV3Z0XLzGYzhVu2cnTJB+hLyyzbjy75kLh3oiXZF2dk08T/o48+4sknn2TIkCHMnz+fp59+Gm9vb1t2KUSHREZGNrvdz6/+zltFRUW72mt4QlBYWMi4ceOaPabh6Up1dTWFhYX4+vo22j9gwIBmzzt8uH61RR8fnybnNGiYa5CTk0NZWZmUzBWim0o7UUpGzqnk7UIZ5iPOoK6klLR3F1O0vXGJTpd+kUT+425J+kWrbJr4z5s3j1mzZvHyyy/z6quv8tlnn/HEE09w//33o9FobNm1EO3i7Ozc7PaGoT/tXc68pKQEgOLiYrZs2dLq8VVVTZ+otBRTeXk5cOpDSXP8/f0bHS+JvxDd058Jxy3/7h/mSbCvqx2jEd1Z0c5dpL71LvrSUss2pVZL6PVzCLz0Ekn6RZvYfPlcJycnnn32WebPn89jjz3GI488wrvvvstLL73ENddcY+vue7zgq68kcMalbT5e5dy0zNfw99+DNua9Ck3Tt5TPhPF4jxrV9hgcz/5qFi4uLgBccsklrFq1yqptu7rWJwZ5eXktHpN72gqNDccLIboXo8nMxsQTltcTh7VeDU/0PIaqajI++oS839c22u4+ZDB97rkLxwD/Fs4UoimbJ/4NAgMDWbp0Kffffz8PPvgg1113Ha+//jqvvfYao9qRFIr2UWq1KLXaTrWhbuHOc5tj0GhQnmNPeBpq/7ekYULu/v37rd53VFQUAAUFBeTl5TV753/fvn0ABAQEyN1+IbqpkvIaPFx0FJXVoFQqGBcdaO+QRDdjqKgg+aF/UZN76kaPUqslfN4N+E+7WKr1iHbr8ndMVFQUixYtYvz48Wzbto0xY8Ywe/ZssrKyWj9ZiG6ioZ5+dXV1s/vHjRuHv78/mZmZrFy50qp9R0VFERFRP/n5jTfeaPaY1157DagvNyqE6J683R1546GJvP3wBfzjmhjcXXT2Dkl0M2oXF9wGnprv5dK3D9H/e4WA6ZdI0i86xKbvmtraWrZv385bb73FvHnzGDRoEB4eHlxwwQVs3LgRX19fLrnkEv744w8GDBjA66+/bstwhLCahpWmd+3a1ez4fJ1Ox0svvQTAzTffzEcffYRer290TF5eHu+9957luLZSKBQ8/vjjALz66qt88cUXln21tbU88MAD7Nq1CwcHBx5++OF2tS2E6Hqh/m4yqVe0KOK2W3Dw9yPk2msY8vKLOAUH2zskcRaz6VAfFxcXTCYTZrMZnU5HbGws//jHPxg1ahTnnXceYWH1S5JXVlby9NNP889//pPy8nIWLlxoy7CE6LQpU6bg7e1Neno6oaGh9OvXD61WS0xMjOUD7E033URubi6PP/44t956K/fffz/9+vVDpVKRm5vLsWPHLMe112233cauXbtYsmQJs2fP5uGHHyYgIIAjR45QWlqKWq3mww8/pH///ta8bCGEEDZUdvAQbgMa/95WOzsT83//Q6WTJ0Ki82ya+Ds4OPDoo49y0UUXERMT02IlH2dnZ/773/9iMpl47733JPEX3Z6bmxtr1qzh6aefZvv27ezYsaPR6r4NHnnkEaZNm8abb77J+vXrOXDgACaTCT8/P2bMmMHll1/O5Zdf3qEYFi9ezMUXX8y7775LfHw8SUlJ+Pr6cumll/Kvf/2LoUOHdvYyhRBCdAFjdTVHl3xA/roNRD5wH74Tz2+0X5J+YS0Kc3vrFLaDUqlk2bJljVYWPZMvvviCOXPmNJtAneuGDRtGQkICcXFxxMfHn/FYk8lkqeUeFRVlKTkphC3I+00I66rTG/nsl4OMGuTPgAhvVMozFwsQ57bKjAwO/+dVqk9kA6B0cCDmtVdwDJLJ3sL67PoX/Oeff2bGjBmW11OnTm00XlkIIYQ41yQdKeD7P9N47J0t3PXSH5hMNrv/Jroxs9lMzi+/kvzPRy1JP4BzWBhK7blVCU90H1Yf6rNs2TLi4+MZOXIkcOayhyUlJaxevdry2tPTk1mzZlk7JCGEEKLb2LLnVJLXO9gdpdzx73EMlZWkvvUuhVu3ndqoUBB89ZWEzL4WpbrLqq2LHsbq76ySkhLeeecd3njjDRQKBTfffDOvvPIKMTExxMbGEhMTQ0xMDK6uruzbtw9PT09rhyCEEEJ0SwajiZ37Ty2wN3aIDOfoaSozszj075epyTn1PtC4uxP5wH14xsbYLzDRI1h9qM+9995LWVkZW7ZswWw2M2bMGFxcXPjmm2+4//77mThxIh4eHvTq1YtXXnmFyZMnW6Xf9evXc+mll+Lj44OjoyP9+/dn4cKFVFZWdqi9rKws7rvvPvr374+TkxMODg5ERERw8803s3fvXqvELIQQomfZk3qSiur60r4atZJhA3ztHJHoSgUbN7Hn4UcbJf3uQ4cQ88arkvSLLmGTZ0k6nY7Ro0czdepU7r33XqZPnw5AWloaiYmJJCcnk56eTkREBP/85z873d+bb77J/fffj9lsJjg4mJCQEA4cOMDzzz/PN998w+bNm/Hy8mpze9u2bWPq1KmUl5ej0Wjo3bs3Wq2W1NRUPvnkE5YtW8bnn3/ONddc0+nYhRBC9BxbTxvmExfli5ODjOXuKfI3bCTlf6ctuqhQEHLtNYTMmolCpbJfYKJHsekgsl9++aXR6z59+tCnTx9mzpxptT7i4+NZsGABUF/e8Pbbb0ehUJCdnc1ll11GfHw8t99+O998802b2jObzdx4442Ul5czevRovvjiC0JD6xdWKS0t5e677+bzzz/ntttu46KLLsLd3d1q1yKEEOLcZTSZ2bHv1J3eMUMD7BiN6Greo0dx4rswqjIyUbu40O/B+/EcFmfvsEQPY9WhPldffTUvvvgiNqwQ2sRzzz2HyWTihhtu4I477rBMJg4MDGTFihUolUq+/fZb9uzZ06b2Dhw4QGpqKgDvvvuuJekHcHd356OPPsLZ2ZmysjI2bdpk/QsSQghxTjqSWUxJRS0AKqWCkQP97RyR6EoqnY7+j/4L9yGDiX71ZUn6hV1YNfHfsWMHCxcuRK+vH7/o4uLCmDFjuPvuu1myZAk7d+6kpqbGav1VVFTw66+/AnDHHXc02R8ZGcmkSZMA+Prrr9vUZnV1teXfffr0abJfp9MR/Ndy2Q3XKYQQQrRm54FTd/sH9fbGxUlrx2iELZnNZmpyc5tsdwzwZ/Dzz+LgLx/6hH1YNfE/fvw4BQUFaLX1v8yuu+469Ho9n3zyCXfeeSejR4/G1dWVgQMHMmfOHP7zn/+wZs2aDveXmJhIbW0tOp3OUj7078aPHw/A9u3b29RmVFQUjo6OAGzdurXJ/pycHI4ePYpKpSIuTj6tCyGEaJvTE/+RgyTxO1eZ9HrS3nmPxPsfojIjw97hCNGI1av6nD6J9oMPPmDXrl2Ul5ezd+9ePv30UxYsWEBQUBBr167l0UcfZdq0aR3u68iRIwCEhoai0TQ/Qarhrn3DyqOtcXV1ZeHChQDcfPPNrFy5ksLCQsrLy1m/fj2XXHIJer2exx57jLCwsA7H3hmnr43QE1c5Fl3r9PfYmdblEEK0LLewkqzccstrGeZzbtKXlrL/qWfJW7MWU00NB194CX1pqb3DEsKiS1aIUKlUDBo0iEGDBjF37lzL9hMnTpCUlNThdouKigDOWLGnYV9xcXGb233ssccICAjglVdeaVK5p1+/fnzxxRdce+21rbazePFilixZ0qY+Dx482Ob4FAoFWq2Wuro6KisrZYKxsKmGkrharVYSfyE6yGQyc8GwYHYfzMfDVUtAL2d7hySsrDIjg4MvvERtfoFlm9bTE7PcoBPdiE0T//fee49jx47xwgsvNLs/KCiIoKCgDrffMF+gYWhRc3Q6HdB47H5r9Ho9R48epaioCLVaTUREhKWcZ0pKCh9++CFjx461jPVvSU5ODgkJCW3utz1cXV0pLCwkLy8PAGdnZ5RKqz/AET2YyWSisrLS8h5zdXW1c0RCnL0CfVx4cM4wjCYzhaVt/3skzg6FO3Zy5LU3MJ02j9Hngon0vXs+yjPkKEJ0NZsm/kuWLGkyQfa+++7jgw8+ICgoiJdffpmrrrqqw+07ODgAUFdX1+IxtbX1FRQaxu23xZVXXsmqVauYNm0aH3zwAYGB9SsrFhcXc99997Fs2TJGjx7NgQMHzpgMBQQEtHkewMGDB9v14cTb25vKykpqamrIzs5u/QQhOsHBwQFvb297hyHEWU+lVODr6WTvMISVmM1mjq/8lqxln5/aqFAQftMNBF5xmTwlFd2OTRP/9PT0RkN7tm/fzltvvcWIESMwm81ce+21bN++nWHDhnWofU9PT+DUkJ/mNOxrOLY1P/30E6tWraJXr16sWLGi0TAaT09PPvroI3bv3s2hQ4d4++23efTRR1tsa/78+cyfP79N/Q4bNqxdTwdUKhWhoaGW+Qdn+vAjREdptVpcXV3x9vZGJQvMCCGEhUmvJ/XNdyj4c6Nlm8rJiX4PLcBreMfyGiFszaaJv16vbzT+/quvvsLX15c///wTjUbDhAkTeOGFF/j222871H6/fv0AyMrKQq/XNzvBNy0trdGxrWmozT9y5Mhmx85rNBouuOACDh06xO7duzsUt7WoVCp8fX3x9fXFbDZ36foJ4tynUCjkbpUQQjRDX1bOoX+/TNmBU/PzHPz9GfDEoziFhtgxMiHOzKaJf1hYmCXxBvjuu++48sorLUN0Zs2axWuvvdbh9mNjY9FqtdTW1rJz507Gjh3b5JiGRH706NFtarO8vLz1g/5izTUJOkuSNCGE6H7MZjOvLk+gb4g7sVG+hPq5yu/qc0BdcTGV6RmW1+5DBhP1r3+icZO5UKJ7s+ls0Msuu4yPPvqIvXv3smTJErKysrjkkkss+x0dHcnPz+9w+66urkydOhWg2eo5KSkprFu3DoCZM2e2qc2GJwM7d+6ktJkSXHq9nvXr1wP1Nf+FEEKIlhzLK+fPxON8+ON+7n1lPaUVMizzXOAcFkrUI/8EpRLfSRcw8OknJekXZwWbJv4PP/wwzs7OxMTEcNdddxEZGdmobn9aWlqnJwwuXLgQhULBZ599xpIlSyzDXXJycpg9ezYmk4krrriC6OjoRueFh4cTHh7OypUrG22/5ppr0Ol0nDx5ktmzZzeaOFtcXMwtt9zCoUOHUCgUXH/99Z2KXQghxLkt4fCp0o69g9zxcNXZMRphTZ6xMUS/+jJ977sHZQtrCQnR3dg08ffy8iIpKYn333+fV155hQ0bNqBWnxpd9MMPPzB06NBO9TFixAjLcKH58+cTFhZGXFwcERERxMfHExUVxfvvv9/kvMzMTDIzM6moqGi0PTg4mCVLlqBWq/nll18ICwsjKiqKwYMHExAQwLJly1AoFLz88svExsZ2KnYhhBDntsTDp55qx0X52jES0VFms5m8P9ZhqKpqss+ld28ZuiXOKjZfwMvZ2ZlbbrmlyfbCwkJGjhzJlClTOt3HggULGDJkCK+++io7duwgPz+fsLAwZs6cyWOPPYaLi0u72rvxxhuJjo7mjTfeYOPGjWRmZmI2m/H392fMmDHce++9zc4nEEIIIRrU6Y3sSztpeS2J/9nHbDSS/uEn5KxazclNWxjw5GMo1V2y9qkQNqEwSymYbqGhnGdcXBzx8fH2DkcIIUQnJR7O56kl2wBw0Kr4/LlL0KhlocWzhUmv58hrb1C4dZtlW/DMqwi7Ye4ZzhKie7Ppx9a8vDwefPBBdu7ciaOjI/379yc2Ntby5efnZ8vuhRBCCLtJOG2Yz5C+vSTpP4sYqqo49OLLlO7dZ9nmEtmXgBnT7RiVEJ1n08T/1ltvZfXq1YwfPx6tVsvWrVtZuXKlZTycn58fsbGxrFq1ypZhCCGEEF1OxvefneqKiznw7AtUpqdbtnkOiyXqX/9E9Vc5ciHOVjZN/Ddu3Mjdd9/NW2+9ZdlWUFBAQkICiYmJJCQkkJSUZMsQhBBCiC5XWFpNZu6pdWEk8T87VOfkcuCZRdTk5lm2+UycQN9/3CNj+8U5wabvYhcXlyZlNH18fJg6daql/r4QQghxrkk8rYynn5cTAb2c7RiNaIuKo0c58Mzz6E9bwyfwissIv+kGFEoZpiXODTZ9J8+YMUMmqgohhOhxTh/mExvlKyUfu7mSPXvZ9/hTjZL+8Hk3EnHzTZL0i3OKTd/Nzz77LGvWrGHz5s227EYIIYToVoZG9iKmnw8atZK4KB97hyNaUZKQiLG6uv6FUknk/f8g6MrL7RuUEDZg06E+/fr1w9PTk8mTJ3Pbbbdx9dVXM3LkyHbX1RdCCCHOJlPPC2fqeeHU6o0o5WZ/txd20w0YKiop+HMjUY/8E6/hw+wdkhA2YdM6/vPmzSM5OZmDBw9SV1eHQqFAoVDQu3dv4uLiLGU9L7roIluFcNaQOv5CCCGE/ZiNRqqzc3AKCbZ3KELYTJcs4GUwGDhw4ADJyckkJSWRlJREcnIyRUVFKBQKjEajrUPo9iTxF0IIIbpGZXoGzhHh9g5DiC7XJbWp1Go1Q4cOZejQodxwww2W7cePHyc5ObkrQhBCCCFED2c2m8lavoLjK78lcsF9+E6cYO+QhOhSdi1KGxwcTHCwPFITQghxbsjIKeO7DakM7duLIX174evpZO+QxF/MJhPpH35Mzs+rAUh54000ri54Douzc2RCdB2b16hatmwZcXFxuLm5ERISwu7du23dpRBCCGEXCYfyWbf7GK9/kcgrn8nfu+7CbDSS+ta7lqQfwCk4COeICDtGJUTXs2ni/+mnn3LjjTfi5OTE3Llzyc7OpqysDID8/Hxmz54t49mFEEKcM/amnbT8e0jfXnaMRDQwG40cef1N8v9YZ9nm0rcPg194Dq2Xpx0jE6Lr2TTxf/XVV5k+fTqbN2/mueee4/R5xL6+vuTm5vLee+/ZMgQhhBCiSxiNJvYfLbS8HiqJv92ZjUaOvPYGJzdusmxzGziAQc89g8bN1Y6RCWEfNk38U1JSmDFjBkCzqxaOGzdOFvcSQghxTkg9XkJ1rQEAtUpB/3AvO0fUs5kMBg7/93+c3LzFss09eigDn1mI2knmXoieyaaTez09PSk9bfnrvwsNDSU7O9uWIQghhBBdYk/qqWE+UWFeOGjtWj+jRzPp9Rz+7/8o2r7Dss0jJpr+jz+CSqezY2RC2JdN7/hPnjyZZcuWtbi/vLwclUplyxCEEEKILrH3tMRfhvnYV/qHHzdK+j2HxTLgiUcl6Rc9nk0T/8cee4zU1FTmzp1rmdTbwGw28+WXX9KnTx9bhiCEEELYnN5g4kBGkeW1TOy1r6ArLkPbq/5n4Dl8GP0fewSlVmvnqISwP5s+hxwwYADff/89s2bNYtWqVSgUCr7//nuSkpL45ptv2L17t0zuFUIIcdZLOVZMbV39KvRatZL+YVItxp4c/P0Z/PyznPjue3rffitKjcbeIQnRLdh8AOKUKVPYt28fixYtYuXKlbz11lv1HavV3H333dx22222DkEIIYSwqdOH+fQP90KjlmGs9uYY4E/fu++0dxhCdCs2Herz448/UlpaSlBQEIsXL6agoID09HSSk5M5efIkb775ZrPVfoQQQoizyb7TynjKMJ+uZaqrI+29JdSVlNg7FCG6PZsm/ldeeSWrVq061ZlSSVhYGEOGDMHNzc2WXQshhBBdpl+oJ32C3VEqYFCEt73D6TFMej2HXnqF3F9+Y//CZ6grabmSoBDCxon/6Qt2Nefnn3+21PkXQgghzlY3TBvA6w9MZMXzlzAgQur3dwWTwcDhV16lOD4BgKqsY+T89LOdoxKie7P6GP9ly5YRHx/PyJEjgeYX7mpQUlLC6tWrrR2CEEIIYRdODjKJtCuYjUaOvPo6RTt2WbZ5jxlN6Jzr7BiVEN2f1RP/kpIS3nnnHd544w0UCgU333wzr7zyCjExMcTGxhITE0NMTAyurq7s27cPT0+pfCCEEOLMzGYzubm5nDhxgoKCAvR6PRqNBh8fH4KCgvD395c5Yz2E2WjkyOv/R+HWbZZtXqNG0O+hBShkbSAhzkhhbm08TgfU1taSkJDA2LFjmThxIgaDgeTkZMrLyy2/mD09PSkuLmbmzJl8+eWX1g7hrDNs2DASEhKIi4sjPj7e3uEIIUS3YDQaSUhIYPOWbaSkH6emzoTGwQWlUo3JZEBfU4GDVklkRDDjxo4mLi5OFoY8h5lNJlLffJv8dRss2zyHxdH/sX9JyU4h2sAm5Tx1Oh2jR49m6tSp3HvvvUyfPh2AtLQ0EhMTSU5OJj09nYiICP75z3/aIgQhhBBnufz8fL5a+Q1J+9Jw9gymX+wUvHz8UatPJXgGg56iglzSU/az/+Mvidm1m1kzr8bX17dLYswrquKXrekMjPBmQIQXrk6ySJStmE0m0t5d3Cjp94iJpv+jD0vSL0Qb2eSOv2g/ueMvhBCnZGRksOSDpRSUm4kZNQlP79YT+aKTeSTvXI+Pq4I7bruJ8PBwm8f5+45M/u+rJADC/F156+FJNu+zJzKbzRxd8gG5q3+1bHMbPIiBTz2BSqezY2RCnF1sWtVHCCGEaK/8/HyWfLCUUr0D46dc1aakH8Crlx/jp1xFqd6BJR8sJT8/38aRwv70U/X7B0oZT5sp3buvUdLvOqA/A598TJJ+IdrJpol/Xl4ec+fOJTIykqFDhzJr1iz+/e9/8+uvv5KXl2fLroUQQpyFjEYjX638hoJyM6PGT0Otad/QGbVGy6jx0ygoN/P1N99iNBptFGm9A0eLLP8eKGU8bcZj6BDCb7kJAJd+kfV3+h0d7RyVEGcfm4zxb3DrrbeyevVqxo8fj1arZevWraxcudIywdfPz4/Y2NhGi3wJIYTouRISEkjal0bsuMvanfQ3UGu0RI+8gMQtP5GQkMCIESOsHGW9orIacgorLa8H9pY7/rYUdPllaD098YyLQ+3kZO9whDgr2TTx37hxI3fffTdvvfWWZVtBQQEJCQkkJibW/4JPSrJlCEIIIc4SZrOZzVu24ewZ3ObhPS3x6uWHs1cwm7dsY/jw4TYp9XngtGE+vTwc8fWUZNTWfCaMt3cIQpzVbJr4u7i4EB0d3Wibj48PU6dOZerUqbbsWgghxFkmNzeXlPTj9IudYpX2wvsMJDVpLbm5uQQEBFilzdPtP3oq8R8k4/utqmDTFupOniToysvtHYoQ5xSbjvGfMWOGVKgRQgjRJidOnKCmzoSXj79V2vP2DaC6zkR2drZV2vu7A+mnxvcP6i3j+62laHc8Kf97g4xPPiVz2edI8UEhrMemif+zzz7LmjVr2Lx5sy27EUIIcQ4oKChA4+DSqE5/Z6jVGjQOLjap7lNVoycju9TyWir6WEfpvv0cfvm/mP+alJ376xrqiortHJUQ5w6bJv79+vXDaDQyefJk7rnnHtatW0dFRYUtuxRCCHGW0uv1KJXWHYGqVGrQ6/VWbRPgUGYxpr9uRLs4agjxc7V6Hz1NeUoqB5//N6a6OgBUjo4MemYhOm95miKEtdg08b/qqqvw8vJCoVDw7rvvMmXKFDw8POjXrx/XXXcdL7/8MmvWrLFlCEIIIc4SGo0Gk8lg1TZNJj0aG6zqejjz1F3oqDBPlErrTx7uSaqysjjw7HMYq6sBUGq1DFj4GC59+9g5MiHOLTad3PvJJ58AYDAYOHDgAMnJySQlJZGUlMTatWv56quvUCgUNq+zLIQQovvz8fFBX1OBwaC3ynAfg0GPvqYCX9/OVQhqjlatxNfTkfziavqHyx3pzqjJzWXfU4swlNePCFCo1fR/9GHcBw2yc2RCnHtsmvhbOlGrGTp0KEOHDuWGG26wbD9+/DjJycldEYIQQohuLigoCAetkqKCXHwDQjrdXmF+Do5aJYGBgVaIrrGrJ0Vy9aRICkur5W5/J9QWFrHvqWfRF//1BEWppN+D9+M5LM6+gQlxjrJ64n/PPfcQGxtLbGwsQ4YMQatteQGW4OBggoODrR2CEEKIs5C/vz+REcGkp+y3SuKfkXaAvhHB+Ptbp0pQc7zdZfXYjtKXl3PgmUXU5p2afN337vn0GjvGjlEJcW6zeuL/7rvvWhZKUavV9O/f3/JBIDY2lpiYGNzc3KzdrRBCiLOcQqFg3NjR7P/4S4pO5uHVy6/DbRWdzKOy6DjjLr/WJot3ic7L+OgTqrKOWV6H3zIPvykX2jEiIc59Vk/8U1JSSExMbPT16aef8umnn1p++UZERDT6IHDJJZdYOwwhhBBnobi4OGJ27SZ553rGT7kKtablp8YtMejrSN65ntghfRk2bJgNohTWEH7zTVQdO0FFSgrB11xN0OUz7B2SEOc8hbkLVsbIzc1t8mEgPT0ds9ksk3v/MmzYMBISEoiLi5NFz4QQPVp+fj6v/9+7lOodGDV+WruSf4O+jh2bfsFdU8OC++6yycTe33dkEuLnSp9gdzRqldXb70mM1dXkr1uP/yXT5MmMEF2gSxL/5pSVlZGYmEhSUhL333+/PULoViTxF0KIUzIyMljywVIKys1Ej7ygTcN+ik7mkbxzPT6uCu647SbCw8OtHldFtZ7ZT64GQK1Ssvixyfh6Olm9HyGEsIUuqerTHDc3N84//3zOP/98e4UghBCimwoPD2fBfXfx9TffkrjlJ5w9g4mIHISXj3+jUp8Gg57C/Bwy0g5QWXSc2CF9uebqq2xypx/gyGn1+x11Knw8ZHJvW+Wt/QO3gQNwtEGVJSFE29gt8RdCCCHOxNfXlzvvuJ2EhAQ2b9lGSuLvVNeZ0Di4oFRqMJnq6/Q7apX0jQhm3OXXEhcXh0plu+E3hzKLLP+OCvOS4SltlL9hI6lvvoPG3Y2BTz0pC3MJYSdWTfwnTZrU6TYUCgV//PGHFaIRQghxtlOpVIwYMYLhw4eTm5tLdnY2+fn56PX1K/L6+voSGBiIv79/lyThhzJOJf79wzxt3t+5oDghkdT/ewsAfWkZKf/3FjGvv4pCqbRzZEL0PFZN/E0mU6d/8dppyoEQQohuTKFQEBAQQEBAgN1iMJnMHMk6NdSnf5is2Nua8iMpHHr5v5j/KuKhdnOj/yMPS9IvhJ1YNfHfsGGDNZsTQgghuo1j+eVU1hgAUCogMtTDvgF1c1XHj3Ng0QuYamoAUDo4MPCpJ3AMkjH+QtjLOfORe/369Vx66aX4+Pjg6OhI//79WbhwIZWVlR1u02w2s2LFCi6++GL8/PzQ6XQEBgYyefJk/vvf/1oxeiGEEN3doYxTd/tD/d1wctCc4eierfZkIQeeeQ5DeTkACrWaAY/9C9fIvnaOTIie7ZxI/N98800mT57MqlWrcHBwYMCAAWRkZPD8888zYsQIioqKWm/kbyoqKrjooouYM2cOv/32Gy4uLkRHR6PRaPjzzz956aWXbHAlQgghuqvDp03s7R8uw3xaYqio4MCzz1FbcLJ+g0JB5IL78IiJtm9gQgjbJ/7Lli0jLi4ONzc3QkJC2L17t1Xbj4+PZ8GCBQAsXryYrKwsEhISOHr0KMOGDePgwYPcfvvt7WrTbDZz1VVXsXbtWi6++GJSU1NJS0tj586dZGZmcvLkST766COrXocQQoju7fSKPjKxt3mmujoOvvASVVnHLNt6334LPuPH2jEqIUQDmyb+n376KTfeeCNOTk7MnTuX7OxsysrKgPqVGWfPnt3pxaqee+45TCYTN9xwA3fccYdlcnFgYCArVqxAqVTy7bffsmfPnja3+cknn/D7778zatQofvrpJ/r0aVx2zMPDg8suu6xTcQshhDh7VFTVcSyvwvJa7vg3L+WNtyg7cNDyOnjWTAKmX2LHiIQQp7Np4v/qq68yffp0Nm/ezHPPPdeoYo+vry+5ubm89957HW6/oqKCX3/9FYA77rijyf7IyEhLidGvv/66ze2+9tprADz55JOo1bLUgRBC9HTZJytx1NWvD+DqpCWwl7OdI+qevMeMRqGpn/vge+EkQudcZ+eIhBCns2lWm5KSwj333APQbJnPcePGsXLlyg63n5iYSG1tLTqdjpEjRzZ7zPjx41m7di3bt29vU5tpaWns27cPpVLJBRdcwI4dO/j4449JTU3FxcWF8847j9tuu41evXp1OG4hhBBnl36hnqx4fjpZuWUUltbIwl0t6DV2NBoPd3J//Y0+d82X75MQ3YxNE39PT09KS0tb3B8aGkp2dnaH2z9y5IilHY2m+eoKDcN0Dh8+3KY2G+YgeHt78/bbb/Poo482elLxww8/8PLLL/Ptt99ywQUXdDh2IYQQZxeVUkFEoDsRge72DqVbcx80EPdBA+0dhhCiGTZN/CdPnsyyZct4+OGHm91fXl7eqaXVG6r1eHm1PNayYV9xcXGLx5wuJyfHcvwjjzzC9OnT+c9//kPfvn05fPgwCxYsYN26dVx11VXs3buX4ODgFttavHgxS5YsaVO/Bw8ebP0gIYQQohupzsnFwc9XFuQS4ixh08T/scceY/jw4cydO5fnn3++0T6z2cyXX37ZZOJse9T8tSiIVqtt8RidTgdAdXV1m9qsqKifvGUwGOjTpw/fffed5WnCkCFDLJN9c3Nzef31189Yzz8nJ4eEhIQ29SuEEEKcTaqOHWfvo0/gERtN5P3/QNnCk3chRPdh08R/wIABfP/998yaNYtVq1ahUCj4/vvvSUpK4ptvvmH37t2dmtzr4OAAQF1dXYvH1NbWAuDo6NiuNgHuvffeJkOInJycuOuuu3j66af59ddfz5j4BwQEEBcX16Z+Dx482OYPJ0IIIbpObmElJrOZAG9nGbP+l7qiYg4seh5DRQUnN23BUFHJwKeflO+PEN2czRJ/s9mMyWRiypQp7Nu3j0WLFrFy5Ureeuut+o7Vau6++25uu+22Dvfh6VlfR/lMC3Q17Gs4tq1tQv0Hl+Y0bE9PTz9jW/Pnz2f+/Plt6nfYsGHydEAIIbqh7zaksnprBq5OGmZdGMUV53f8SfW5wFBVzYFFL1CbX1C/QaHA76ILJekX4ixgs0F5BoMBZ2dn3nzzTYKCgli8eDEFBQWkp6eTnJzMyZMnefPNNzv1i6Jfv34AZGVlodfrmz0mLS2t0bGt6d+/v+XfLQ0hangqYDKZ2hyrEEKIs9ORrPo5YuVVehy0HZ+Xdi4wGQwcfvkVKk+78RVx6zx6jRltx6iEEG1ls8Rfo9Hg4uJiGWMPoFQqCQsLY8iQIbi5uXW6j9jYWLRaLbW1tezcubPZYzZt2gTA6NFt+6UUGxtrGRZ09OjRZo9p+DBxpom9Qgghzn51eiPp2WWW1/1Ce+6KvWazmbS336MkKdmyLfDyGQTOuNSOUQkh2sOm0/Avvvhitm7darP2XV1dmTp1KkCz1XNSUlJYt24dADNnzmxTm05OTsyYMQOApUuXNtlvNpv55JNPgPqqRUIIIc5dR7NLMZrqSzprNSpC/V3tHJH9HFvxJfnr1ltee48dQ/i8G+0YkRCivWya+D/33HOsWbOmU4t0tWbhwoUoFAo+++wzlixZYqm5n5OTw+zZszGZTFxxxRVER0c3Oi88PJzw8PBmY3v66adRq9Vs2rSJ5557DqPRCNQPX3rkkUdITk7GwcGBBx54wGbXJYQQwv4ahvkA9AlyR63qmWUrc9es5diXX1teuw0aSL8F/5AynkKcZWz6f+zgwYMxm81ce+21zJ49m9WrV1vKZVrLiBEjeO2114D6ybRhYWHExcURERFBfHw8UVFRvP/++03Oy8zMJDMzs9l4Bg4cyAcffIBKpeKpp54iICCAUaNG4e/vzyuvvIJGo+Gjjz4iKirKqtcihBCiezmSWWL5d1RYzxzmUxyfQNq7iy2vHYODGfD4IyjPUEpbCNE92TTxnz17NsHBweh0Or788ktmzJiBh4cH/fr147rrruPll19mzZo1ne5nwYIF/P7770ybNo3KykoOHDhAWFgYjz/+OLt376ZXr17tbvOmm25i+/btXHPNNSiVShITE9FoNMyePZtdu3Yxe/bsTscthBCiezty7NQd/34hPTPxz1+3Af4qZqHx9GTg00+gdnGxb1BCiA5RmBvGxtiQ0Wjk0KFDJCUlWb4aKvsoFArLUJqerKGcZ1xcHPHx8fYORwgherzyqjrmLPzF8vr9xy/E39vZjhHZh9lo5OgHH5G/bgND/v0cLr172zskIUQH2XQBrwYqlYpBgwYxaNAg5s6da9l+4sQJkpKSuiIEIYQQol1Sskos/3Z30eLn5WS/YOxIoVLR+47bCLrichz8fO0djhCiE7ok8W9JUFAQQUFB9gxBCCGEaNbpw3wiQzx79AJVCoVCkn4hzgE2n46/fv16pk6dSkREBIMHD2bu3LmsXLlSFr8SQgjRrZ1e0aen1O83m82kf7yU4nhZSV6Ic5FN7/j/8ssvzJgxAxcXF4YOHYrZbOa3335jxYoVDB48mB9++IGIiAhbhiCEEEJ0yD/nDiP1eAmHM4uJjeoZd7uzf/yJ7O9/JPvHn+l9x20ETJtq75CEEFZk0zv+Tz31FNHR0WRkZLBx40Y2bdpEQUEB33//PaWlpUyYMIGioiJbhiCEEEJ0iJODhqF9fbhmcj/6BnvYOxybK9y2g4yPP61/YTKR/8d6TAaDfYMSQliVTRP/ffv2ccstt+Dh4WHZplAouOyyy9i2bRt6vZ5FixbZMgQhhBBCtKL8SApHXnsd/ir0p/P1ZcCTj6JU23UqoBDCymya+Lu5ubVYqjMwMJD58+fz448/2jIEIYQQQpxBTV4eB5//N6a6OgBUzk4MXPg42tNu2gkhzg02TfwnTJjAZ5991uJE3pCQELKzs20ZghBCCNFuNbU9Y4iLoaKSA4teRF9aCtSX7uz/6L9wCg2xc2RCCFuwaeL/+OOPs2fPHmbNmsXJkyeb7F+/fj3+/v62DEEIIYRoF4PRxPXP/MqdL63l1c/jKSmvtXdINmHS6zn08itUHz9u2dbnnjvxGDrEjlEJIWzJpoP3YmNj+fTTT7npppsIDQ3l0ksvZcCAAeh0OjZv3sxvv/3GM888Y8sQhBBCiHbJyi2nts7IiYJKcgur+Mc1MZ1qz2w2U1dXh9FoRKVSodVq7b4mgNlsJu2dxZTu2WvZFjxrJn6TJ9kxKiGErdl81s61117L4MGDeeGFF/jpp59YuXIlAI6Ojjz11FM88cQTtg5BCCGEaLPT6/dHBLqh1aja3UZ+fj579+4l69gx0jOOU1pegdkMCgW4u7oQER5MaEgIQ4YMwde360uFnvjuB/LXrbe87jVhPKFzruvyOIQQXatLpusPGjSIzz//HKPRyNGjR1EoFERERKBStf+XqRBCCGFLpyf+ke1cuOvIkSNs3LiJ5P1HqKpT4OTui4dnKIEBHqhUaoxGAxVlJSQcOcnmXYdw+nkN0YP6cf75E4iMjLT2pbTIa3gcub/8Sm1+AW4DBxB53z12fwohhLA9qyf+TzzxBLGxscTGxtKnT59G+1QqVZf+YhNCCCHaq9GKvSFtS/yrqqpYtWo16zfvxKzxIKL/OAJDeqM8ww0uk9FI9rGjxB/aS8Le95k0fhTTp1+Co6Njp6+hNU6hoQz9z79J//Bjet9xO0qNxuZ9CiHsz+qJ/7///W/LXQNXV1eio6MtHwRiY2MZNGiQ3OkXQgjRLVXV6MnKK7e8jgprPfHPy8vj/Q8/4eixIiKHjiE0IqpNd8+VKhXB4ZEEhfUlK/0wq9dt49CRVG6/dR5+fn6duo620Hp6EvXPB23ejxCi+7DJUB+dTse0adOoqqoiMTGRTZs2AfWLd2m1WgYNGmT5IBATE8OYMWNsEYYQQgjRLmknShvWsMJRpybIx+WMx+fl5fHOe++TW2Jm7EWzcHRybnefCoWCsN798fUPYcfGVbzz3vvcfeftVk3+9WXlKFRK1M7tj08Ice6wejnPb7/9lpCQEH7++WeioqI4ePAgJ06c4KeffmLRokVceumllJSU8NFHH3Hvvfcyfvx4a4cghBBCdMiRzNPG94d4oFS2fOe+qqqK9z/8hNwSM6MnXdahpP90jk7OjJl0OTklJt7/8BOqq6s71V4DU10dh/79MnsffYKa/HyrtCmEODtZPfG/4oor2L9/Py+99BKfffYZffv25euvv+biiy/miSee4OuvvyY1NZXi4mLWr1/Pa6+9Zu0QhBBCtJHZbKaqqoqSkhKqqqowN9zu7qZsFa/ZbKa0opY9aQWWba0N81m1ajVHjxUxcsIlqNUaKsrLKDpZQEV5WYsLV7ZGq9UxasJ0jh4vYtWq1e2+Bn1ZGTV5+ejL6mOorKgg/j//JX/PXiozs9jzr8eoLSzqUGxCiLOfTYb6qNVqHnjgAebNm8czzzzDww8/zNtvv80rr7zCZZddBoCbmxvnn38+559/vi1CEEIIcQY1NTUkJSWxY+tW8jIzMRtNKFRK/MLCGDVmDDExMTg4ONg7TAtbxVtRrWfdrix+2nyU3MKqRvuKy2upqNbj4th04uuRI0dYv3knIZGxJOzawoGE7VQX5qEwmzErFDh6+zEw7jxiR4zFqZ1PAhydnIkcMpp1m7YSHT201aIYhopK8tevJ+fn1dTk5lFrNJJSWkqaUU8ZUFdYCICHTsfovlMY4mT7ycNCiO5JYe6C2ztHjhzhn//8Jz///DMTJ07kf//7H9HR0bbu9qwybNgwEhISiIuLIz4+3t7hCCHOYampqaxYupSK7BzC3dyIDAzEQaOlRl9HSnY2GWVluAQGMPumm+jbt6+9w7VZvAmH8vn30p3U1hkBaO6PoYNWxWM3jSSuf+Na+x988CE//7GbvGPH0FaVE+HhTahPAFqNljp9HVkFOaSXFFLn7MpFV91I1MCh7bpms9nM5rXfMXyAP7feekuLxxUnJHLo5Vcw1dYBcLy8nPU5JzCYTIS7uhHm4opOpaLWaCRbpaQoNAiXoKBu87MVQnStLkn8G6xfv54HH3yQvXv38uGHH3LTTTd1VdfdniT+QoiukJqaytJ338NXr+fC2Dicm7lLXllTw9rEBPK1Gm668067Joi2ijfhUD7PfrAdM2bO9FdQoQAFCp6+7TxL8p+fn88ddy8gMyWTQR7ejB44DCcHpybnVtVUse1APKm1NUy99rZ2J//HMo5w/NAWFj72ULOLfBUnJHLguRfBbAazmeMVFfx+4hhBzi6M8w/ASd34ob732NGYfXy6zc9WCNH1rD7G/3Tp6en8/PPPvPTSS9xwww089NBDHDp0CJPJRGZmpi27FkII8Tc1NTWsWLoUX72eGaPOazaJBnB2cGDGqPPwrdOzYulSampqujjSeraKt6Jaz7+X7mw16Ye/cmrM/HvpTiqq9QBs27aN/YlJDPTwZmLsmGaTfgAnBycmxo6hr86BNd9+SlVVZesXfZqgkD5U1SnYu3dvk32GikoOvfyKJemvNRpZn3OCIGcXLgwKbpL0AxRu34mjUtktfrZCCPuweuJ/8803M3LkSFxdXenbty+XXXYZL774IkePHmXUqFH873//Y/PmzTz00EPW7loIIcQZJCUlUZGdw4WxcSiVZ/71r1QqmRwTS0V2DsnJyV0UYWO2infdrixq64ytJv0NzGaorTOybncWAN9//wMeSjVjBg5DpTjzujQqhYrzBg5DW1lO0u6tbevwL0qVCic3H44fP95kX/769fXDe/66iJTSUgwmE+P8A1C2tIaA0Uhleka3+NkKIezD6pN7ly5dipOTE5dffjlXX301MTEx9O7d29rdCCGEaAez2cyOrVsJd3Nr8c7537k4OhLu6sr2LVsYOXJkmxalshZbxWs2m/lp89Fmx/O35qdNR7lkdBi7d+5msLdvi3f6/87ZwYkIDy/2x2/jvHGTW/0QczoPLx/S0rMwm82W6zGbzeT8vNqS9JvNZg6XFhPu6tbsnf7TlR9JwaVfpF1/tkII+7HJUJ+qqiq++OILbr75ZubNm8f999/PJ598QmJiInq93hZdCiGEOIPq6mryMjOJDAxs13mRQUHkZWZaraZ8W9kq3rLKuibVe9rCDOQWVpGafoy68gpCfNsXV6hPINWFeVRVVrTrPBc3D8rKK6mrq7NsM5SXU5ObZ3ldazRSUltLmItrq+0ZKysx/dWWvX62Qgj7sfod/5SUFBITExt9bd68GahfnVCtVjNw4EBiYmIsK/dOmDDB2mEIIYQ4TV1dHWajCQeNtl3n6TQazEYTdXV1ODm17Q63Ndgq3pq/Kvh0VEFhCUpAq9G16zytRovCbKauthZaz88tlEoVJrMZo/FU3MbqxuPy9eb6NQN0qjMPO2pg1htAp7Pbz1YIYT9WT/z79OlDnz59mDlzpmVbbm5ukw8Dn376KUuXLkWhUDT6hSaEEML6tFotCpWSGn1d6wefplavR6FSotW2LwHvLFvF66BtW3LcEh9vD0xAnb62XefV6eswKxRode37wGAyGVEqFKhOS+pVjo2HPmkU9Q/va9v4t1Shqf/Tb6+frRDCfmyygNff+fv7M23aNKZNm2bZVlZWRmJiIklJSV0RghBC9GiOjo74hYWRcuw4/YJD2nxeyokT+IWF4ejYtYs+2SpeN2ct/t5O5BVWtWucvwLw83aib0QIWlcXjuVnM6DPkDafn1WQjaO3H07OLu3oFSrKSnBzdW6UnKtdXXHw96MmLx/MZnQqFR46HZkV5fR2cztjeypnZ5R/tWWvn60Qwn5sWs7zTBpW7r3//vvtFYIQQvQYCoWCUWPGkFFWRmUbSzhWVFeTUV7OeWPHdvnkT1vFq1AomDGuYwUnZozvjVqtZvjI4aQW5lNV07a5ApU1VaSXFDFo2Oh2TewFKCkqoE9ESKPrUSgUBFx6iWVyr0KhIMrdk4zyMqoMhjO259ovEoVCYdefrRDCfuyW+AshhOhaMTExuAQGsDYxAZPJdMZjTSYTfyQl4hIYYLeV1m0V76QRoei0Ktqa7yoUoNOqmDQ8FIArrricEpOBrQfiMZrPPLzGaDay/UA8dc6uxAwf07YO/2IyGqkqKyA4OLjJPve/XWOkuztqpZLNuTmYWqpTqlLhHBHeLX62Qgj7kMRfCCF6CAcHB2bfdBP5Wg0/7dhORQvVXCqqq/lpx3bytRrmzJuHQxvLaVqbreJ1cdTw2E0jUaBoNflvWLn3sXkjcXHUADB69GgGxcZwoKSQDYlbqWzhzn9lTRUbEreSWlvDRVffiJOTc+sXfZoTx9Jw0poZMqTxkCJDVTUpr73eaJtOpeKCgCBOVFaw9sRxqgxNK+j1GjeWKqOxW/xshRD2oTCb27qEibClYcOGkZCQQFxcHPHx8fYORwhxDktNTWXF0qVUZOcQ7upKZFAQOo2GWr2elBMnyCgvxyUwgDnz5tGnTx97h2uzeBMO5fPvpTubrfTT8HlAp1Xx2LyRxEX5Ntr/wQcf8vMfu8k7dgxtVTkRHl6E+gSi1Wip09eRVZBNekkRdc6uXHT1jUQNGNquazabzWxe+x3DB/hz6623nNpuNHLwhX9THJ94Kla1GvNfE3uPl5ezPucEBpOJMFdXwl3c0Gk0OMUM5Vhdbbf72QohupYk/t2EJP5CiK5UU1NDcnIy27dsIS8zE7PRhEKlxC8sjPPGjiU6Orpb3Q22VbwV1Xrm/3stZZWNqwf5ezsxY3xvJg8PxfmvO/2nO3LkCK+//QE+YbEUFp5kf/w2qgvzUJjNmBUKHL39GDRsNDHDx7T7Tj9A5tFDHDu0lQfuvZ3IyEig/sPA0cXvk/vLb5bjAq+4jJBrZpK/fgM5P6+iJjePWqOR1LJSUg16an19cPT3R6nTdtufrRCi69g88S8pKSEuLo7ly5czevRoTp48yciRIy2vRT1J/IUQ9mA2m6murqaurg6tVoujo2O3nuxp7XjLq+qYs/CXRts8XXUsfXpqq+1+/fVKflm3i7EXzULn4EhVZQV1tbVodTqcnF3aPZG3QXVVJVt+/4pLJo1k5syrLdtPfP8jGR8vtbz2Hn0eUf96CMVf/ZjNZnbdfBv64hI0nh4M/+h9ampqzpqfrRDC9mxeztNoNJKRkWFZGfDvr4UQQtiPQqHAycnprFnAydrxpmSVnNZ2faEcpVLRpgR5+vRLOJySxo6Nqxgz6XJcXN3atThXc+rqatmxcRW9g72YPv0Sy/aTW7eR8cmnltcu/SKJfOA+S9JfH7/C8lqhVKJUKs+qn60QwvZkcq8QQoge68ixYsu/1ar2/Ul0cnLi9lvnEeChZOu6H6iuquxULNVVlWxd9wMBHkpuv3Wepb5++eEjpPzv/yzlO3W+vgx44jFU7VwMTAghJPEXQgjRY/UOcmfisGCCfJzbnfgD+Pn5cfedtxPqo2PL71+RefQQ7R1BazabyTx6iC2/f0WYr46777wdPz8/AGry8jn4wkuY6urnIKicnRn41BNoPdzbHasQQnTJyr1CCCFEdzRyoD8jB/oDMG/Rb1TXnnkBrOb4+fnx0AP3sWrVatZt2kpW2gHCIwcTFNIHpUrV4nkmo5ETx9LISNmHQl/CJZNGMX36JY1W0lW7uuDcO4KSxCQUajX9H30Yp5Cmdf2FEKItJPEXQgghOsnR0ZGZM68mOnooGzduImnfFo7s2YqTmw8eXj64uHmgVKowmYxUlJVQUlRAVVkBTlozwwdHMWHCNZbqPadTOzkx4MnHOLrkQ9z698Nj6JBmehdCiLaRxF8IIYSwksjISCIjI8nPz2fv3r0cP36ctPQscnIPYjKbUSoUuLk6M7x/CMHBMQwZMgRfX98ztqlUq+l79/wuugIhxLlMEn8hhBDCynx9fZk8eTJQP4a/rq4Oo9GISqVCq9WesWqQvqwMjZtbV4UqhOhBZHKvEEKIHunT1Qf4+o8j7EktoKau/WP720qhUKDT6XByckKn050x6c/fsJH4+fdQnJhks3iEED2X3PEXQgjR4xiMJn7YeJQ6vRGAV+4bb+eIoHT/flLffBuzwcCBRS/Q78EF+Iwfa++whBDnELnjL4QQosfJzCmzJP0qpYLegfYtj1l9IptD//4PZkP9kwe1iwsuffvYNSYhxLnH5nf8vby8SE9Px9+/vlyaj49Po9dCCCFEVztyrMTy74hAN7Salstu2pq+tJQDi17AUF4BgEKjYcDjj+AYIH8nhRDWZfPEX6FQEBYWZnmtVCobvRZCCCG6WkrWqRV7+4V62i0OU10dB198mZrc3FPxPHAfbgP62y0mIcS5S4b6CCGE6HEOd4PE32wykfLGW5QfOmzZFnbj9fQaO8Yu8Qghzn2S+AshhOhRqmr0HMsrt7y2V+Kf+dlyTm7eYnntd9GFBF11hV1iEUL0DJL4CyGE6FHSjpdiNtf/29lBTZCPS5fHkLPqF058+73ltUdMNL3n337GUp9CCNFZkvgLIYToUU4f5hMZ4olS2bXJtqGikqwVX1heO4WHEfXIP1GqpcK2EMK2bJ74L1u2jLi4ONzc3AgJCWH37t227lIIIYRo0ZHTE/9Qjy7vX+3izOAXnkPr7Y3W25uBTz2B2smpy+MQQvQ8Nk38P/30U2688UacnJyYO3cu2dnZlJWVAZCfn8/s2bOJj4+3Sl/r16/n0ksvxcfHB0dHR/r378/ChQuprKy0SvvvvPMOCoUChULBxIkTrdKmEEKIrnd64h9lp/H9zmGhDH3l3wx6ZiE6b2+7xCCE6Hlsmvi/+uqrTJ8+nc2bN/Pcc89hbhhUCfj6+pKbm8t7773X6X7efPNNJk+ezKpVq3BwcGDAgAFkZGTw/PPPM2LECIqKijrV/okTJ3jsscc6HacQQgj7qtUbCQtww9VJA9i3lKfO2xun0BC79S+E6HlsmvinpKQwY8YMgGYnLI0bN47Nmzd3qo/4+HgWLFgAwOLFi8nKyiIhIYGjR48ybNgwDh48yO23396pPu6++24qKyu59NJLO9WOEEII+9JpVDx7+2iWL5rG+49fiKebg837NNbWkv7xUgxWegIthBAdZdPE39PTk9LS0hb3h4aGkp2d3ak+nnvuOUwmEzfccAN33HGH5QNGYGAgK1asQKlU8u2337Jnz54Otf/VV1/x448/cu+99zJs2LBOxSqEEKJ7UCgU+Hs727wfs9HIkVdfJ/v7H9n7+EJqCwtt3qcQQrTEpon/5MmTWbZsWYv7y8vLUak6vkx6RUUFv/76KwB33HFHk/2RkZFMmjQJgK+//rrd7RcXF3PfffcRHBzM888/3+E4hRBC9Dxms5n0Dz+haMdOAKoyMsld/audoxJC9GQ2Tfwfe+wxUlNTmTt3rmVSbwOz2cyXX35Jnz59Otx+YmIitbW16HQ6Ro4c2ewx48ePB2D79u3tbv+hhx4iLy+PN998ExeXrq/zLIQQ4uyV/cNP5KxabXntOWIYoXOus2NEQoiezqaJ/4ABA/j+++9ZvXo1sbGxKBQKvv/+e1577TXGjRvH7t27m71T31ZHjhwB6ocMaTSaZo9p+GBx+PDhZve3ZN26dXz88cdcdtllXHHFFR2OUQghRPdwsqSaNTsyycgpw2gyt35CZ/ravIWMj5daXrv07UPUPx9E0Ymn3EII0Vk2Xy1kypQp7Nu3j0WLFrFy5Ureeuut+o7Vau6++25uu+22DrfdUK3Hy8urxWMa9hUXF7d4zN9VV1dzxx134OLiYom3IxYvXsySJUvadOzBgwc73I8QQojWJR7O582vkoD6Mp7/vX+CTfop3X+AI//7P8trnZ8vAxY+jsrB9hOJhRDiTLpkmcCgoCAWL17Mu+++y7FjxygrKyMsLAw3N7dOtVtTUwOAVqtt8RidTgfUJ/Nt9fTTT5OWlsZrr71GSEjHS63l5OSQkJDQ4fOFEEJYz6HMUzeAwgM79/enJVXHjnPoxZcxGwwAqF1dGPjUk2g9PGzSnxBCtIdNE//33nuPY8eO8cILLwCgVCoJCwuzWvsOf909qaura/GY2tpaABwdHdvUZmJiIv/73/+IjY3lvvvu61R8AQEBxMXFtenYgwcPtuvDiRBCiPY5lHlqTZf+Ydav319XVMyBRS9gqKgAQKHRMOCJx3AKDrJ6X0II0RE2TfyXLFnSZPLufffdxwcffEBQUBAvv/wyV111VYfb9/Ss/8V9pgW6GvY1HNuaW2+9FZPJxJIlSzpVcQhg/vz5zJ8/v03HDhs2TJ4OCCGEjVRW6zmWV255HRXW8hDRjjDW1nJg0fPU5ufXb1Ao6PfA/bgN6G/VfoQQojNsmvinp6czd+5cy+vt27fz1ltvMWLECMxmM9deey3bt2/vcH38fv36AZCVlYVer292gm9aWlqjY1uTmJiISqVqdrGuir/u4mzduhV/f38Adu3a1anhQEIIIWzvSFYxDYvHuzhqCPKxbqU2pVaL95jRVKZnABBxyzx6jR1t1T6EEKKzbJr46/X6RhNvv/rqK3x9ffnzzz/RaDRMmDCBF154gW+//bZD7cfGxqLVaqmtrWXnzp2MHTu2yTGbNm0CYPTotv8CNhqN5OXltbhfr9db9huNxnZGLYQQoqudPr4/KswTpbLpavKdoVAoCJk1E42HBzW5uQReJiu9CyG6H5uW8wwLC7PccQf47rvvuPLKK3FwcEClUjFr1izi4+M73L6rqytTp04FaLZ6TkpKCuvWrQNg5syZbWrTbDa3+PX0008DcP7551u2hYeHdzh+IYQQXaPR+P5w6w7zOZ3/RRcSfuP1NmtfCCE6w6aJ/2WXXcZHH33E3r17WbJkCVlZWVxyySWW/Y6OjuQ3jIfsoIULF6JQKPjss89YsmQJ5r+e5ebk5DB79mxMJhNXXHEF0dHRjc4LDw8nPDyclStXdqp/IYQQ3ZvJZObw6Xf8Q60zsbfi6FGrtCOEEF3Fpon/ww8/jLOzMzExMdx1111ERkYybdo0y/60tDS8vb071ceIESN47bXXgPrJtGFhYcTFxREREUF8fDxRUVG8//77Tc7LzMwkMzPTMm5fCCHEuelEQQWV1XoAFIr6oT6dlbtmLckPPEzWF19ZbjgJIUR3Z9Mx/l5eXiQlJfHll19SUlLCnDlzUKtPdfnDDz8wdOjQTvezYMEChgwZwquvvsqOHTvIz88nLCyMmTNn8thjj+HiYt1JXEIIIc4ehzJODfMJ9XPFyaH5ld7bqnDHLtLeXQzAsRVfolAqCZnVtuGkQghhTzZfwMvZ2ZlbbrmlyfbCwkJGjhzJlClTrNLP5MmTmTx5cpuP78gdmmeeeYZnnnmm3ecJIYSwn6LyGtQqBQajudPj+8sOHuLIf18DkwkAjacnPufbZgVgIYSwti5Zubc53t7efPrpp/bqXgghRA9x7YVRXHF+X9KOl3Tqbn9VVhYHnnsR01+LRqqcnBj0zJM4+PlaK1QhhLApmyb+eXl5PPjgg+zcuRNHR0f69+9PbGys5cvPz8+W3QshhBAA6DQqBkZ0fE5ZbcFJ9j/zPMbKSqBhVd5Hce5EZTez2Uxubi4nTpygoKDAsh6Nj48PQUFB+Pv7o1BYt+yoEKJns2nif+utt7J69WrGjx+PVqtl69atrFy50vKLzM/Pj9jYWFatWmXLMIQQQogO05eXs/+Z56grLKzfoFDQ78H7cR88qEPtGY1GEhIS2LZ5MzmpqZiqa3DXalErFBjMZkrr6lA6OhDQty+jx40jLi6u0yvJCyEE2Djx37hxI3fffTdvvfWWZVtBQQEJCQkkJiaSkJBAUlKSLUMQQgghOsxYU8PB5/9N9fHjlm29599GrzEdW5U3Pz+fb776iozkZMKcXJgeGUWAtzea0wpf6A0GcgoL2ZOezsoDS9gdHc3Vs2bh6ytDioQQnWPTxN/FxaVJ/XwfHx+mTp1qWXhLCCGEsJUD6YUEeDvj6ebQ7nNNej2HXnqF8kOHLduCZ80kYNrFHYolIyODT5csQXWykJmxcfh5Nj/RWKNWE+rnR6ifH7lFRfyenMR72dnceMcdsmikEKJTbFrHf8aMGZ1amVcIIYToKJPJzKIPd3Djs79x6/NryMwpa9f5xpoa9GWnzvG76EJC51zXoVjy8/P5dMkSXEvLuXb8hBaT/r/z9/Li2vETcC0t59MlSzq96KUQomezaeL/7LPPsmbNGjZv3mzLboQQQogmTl+4q6CkGh9Px3adr3F1ZfBzz+A2aCDeY8fQ5847OjTZ1mg08s1XX6E6WciM885Dq27fw3atWs2M885DdbKQb7/+GqPR2O4YhBACbJz49+vXD6PRyOTJk7nnnntYt26drJQrhBCiS5y+cFeYv1uHSnmqnZ0Z+PST9HvgPhQdnGCbkJBARnIyF8XEtDvpb6BVq5kSHUN6UhIJCQkdakMIIWya+F911VV4eXmhUCh49913mTJlCh4eHvTr14/rrruOl19+mTVr1tgyBCGEED3Uocxiy7+jwjzbdI7OWNdkm0qnQ6npWP1/s9nMts2bCXNyafPwnpb4e3kR5uzCts2bO7QIpRBC2HRy7yeffAKAwWDgwIEDJCcnk5SURFJSEmvXruWrr75CoVDIY0shhBBWdyjz1B3//m1I/AcUHCDmRDy/OVxitRhyc3PJSU1lemSUVdobEh7O6pQUcnNzCQgIsEqbQoieo0tW7lWr1QwdOpShQ4dyww03WLYfP36c5OTkrghBCCFED1JZredYXrnldVTYme+2F2zcxNiszSiAS4/8RPmREbj2i+x0HCdOnMBUXUOAd8cXDztdoHcvTHv2kJ2dLYm/EKLduiTxb0lwcDDBwcH2DEEIIcQ56GBGEQ2jYVydNAT5uLR4bNHueFJef5OGabt6pQaNh7tV4igoKMBdq21Up78zNGo17lqtVPcRQnSITcf4A6xfv56pU6cSERHB4MGDmTt3LitXrsRkMtm6ayGEED3UgfRCy78HRnijVDZfjad0/wEOv/xfzH8NOa1S6vgl8hIcrLRYll6vR92BSkBnolYq0ev1Vm1TCNEz2DTx/+WXX5gyZQo7duwgJCQET09PfvvtN2bNmkVMTAzp6em27F4IIUQPdSD91Pj+gRHND/OpSDvKwef/jamufkJvnVLDl4EXUuLYtonAbaHRaDBYeSKuwWRC08HJxkKIns2mif9TTz1FdHQ0GRkZbNy4kU2bNlFQUMD3339PaWkpEyZMoKioqPWGhBBCiDbSG4wcyTpV0WdgRNPx9ZWZWex/ehHGqioAFBoNa/pOJc/BOmPxG/j4+FBaV4feYLBKe3qDgdK6Onyt9ERCCNGz2DTx37dvH7fccgseHh6WbQqFgssuu4xt27ah1+tZtGiRLUMQQgjRw2TklKE31A8n1aqV9An2aLS/+kQ2+596FkP5X5N/lUr6/+shclwDrR5LUFAQSkcHcgoLWz+4DbILT6J0dCQw0PqxCiHOfTZN/N3c3Fos1RkYGMj8+fP58ccfbRmCEEKIHiYyxJNlz17M4/NGcsuMQWjUp/7U1eTmsm/h0+hLSuo3KJX0e3ABXiNH2CQWf39/Avr2ZY+VhrbuzcggoG8f/P39rdKeEKJnsWniP2HCBD777LMWJ/KGhISQnZ1tyxCEEEL0QO4uOkYPCWD6uN6Ntldn56AvLat/oVAQ+Y978Bk/1mZxKBQKRo8bR2ZVBbmdHNqaW1REZmUFo8eNQ2HlCcNCiJ7Bpon/448/zp49e5g1axYnT55ssn/9+vVy10IIIUSX8YyLZcCTj6HU6ehz1x34Tppo8z7j4uIIj47m9+Qk6jo41r/OYOD35CQiYmIYNmyYlSMUQvQUNq3jHxsby6effspNN91EaGgol156KQMGDECn07F582Z+++03nnnmGVuGIIQQQjTiGRvDsPfeRutlveo9Z6JSqbh61izey87mp+3bmXHeeWjbUde/zmDgp+3bMfby5qprrkGptHklbiHEOcrmC3hde+21DB48mBdeeIGffvqJlStXAuDo6MhTTz3FE088YesQhBBC9BCFpdU4O2hw0NX/eTNUVqJycEChUjU6rquS/ga+vr7ceMcdfLpkCV9u2siU6Bj8vc68mjDUD+/5PTkJYy9vbrzjDqnmI4TolC5ZuXfQoEF8/vnnGI1Gjh49ikKhICIiAtXffhELIYQQnfHxTwfYlHyCPkHuzBwbjPMXi9H5+dLvwQUorbR6bkeFh4dz54IFfPv113yTlECYkwtDIyII8PZutLKv3mAgu/AkezMyyKys+P/27js8qir9A/j3Tp/03nunpkEChA6CiKIg2AV1BcvPgmtZG5ZV12VXsa+ADVAsNCkKUgSRAAmSQgslCSG990wy/fz+CDNkmEkyCTMpzPt5nnmS3HvOueeeSSbvnDkFoXFxmLdgAQX9hJBr1ievghcuXEBhYSEcHBwwfPhwODo69sVlCSGE2JicS7XQahkKC6uhzduBluICtOTl47xKjeh/PNfvwb+XlxcWP/ooMjMzcTQ1Fb/mXoD2ZBucRSIIeDyotVo0KpXgSaXwjQjH/PHjkZCQQB1lhBCLsOorYElJCRYsWIBjx47pjwmFQsyaNQtvvPEGYmNjrXl5QgghNqSqvhXV9W0QaZW4o+x3cPJq/Tmxl6fRcJ/+wufzMXr0aIwaNQoVFRUoKytDVVUVVCoVhEIhvLy84OfnBx8fH1q9hxBiUVYN/B9//HEcO3YMDzzwAKZMmQKtVou0tDSsX78eO3fuxEcffYRHH33UmlUghBBiI3IK6vRBf0CHoN975g0IffihARdEcxwHX19f+Pr69ndVCCE2wqqB/59//omHH34Yq1at0h9buHAh3nnnHbz44ov4v//7PwQGBmL27NnWrAYhhBAbcO58mcmgP/zRJQMu6CeEkP5g1TXBOI5DUlKS0XFXV1esWrUKkydPxttvv23NKhBCCLEB6tZW+Py65qqgf0Z70E/LXxJCCAArB/7JyclIT0/v9Pwdd9yBEydOWLMKhBBCrnNqmQwnl70Jz+ZK/THHyVMR/uhiCvoJIaQDq74ivvrqq/jpp5+wbds2k+dra2vhZsY6xoQQQogp6tY25Lz5Ntry8vTHznoOxfCnHqWgnxBCrmLVV8Xp06eDMYZ58+bhnnvuwd69e1FTU4OGhgZs374dK1aswCOPPGLNKhBCCLmO8cUiiL089T9nOkWhacqt4A2QFXwIIWQgserk3sWLF+PkyZM4efIkfvzxR/z0008G5+Pi4jBq1CiUlJQgICDAmlUhhBByHeL4fEQ98zT+yqlEvYqHPZ7JeDrSs/uMhBBig6wa+H/yySf67wsLC3HixAn94+TJk8jOzsbNN98MAHBycsKwYcMwYsQIfP7559asFiGEkOtIvUyFDS5jwMABHIcRERT4E0KIKX22hWFwcDCCg4MxZ84c/TGZTIZTp04ZvCH4/vvvKfAnhBBikrK+HrKLBXBNTNAfc3UUY/UrM3AyrwYFZY3wdrPrxxoSQsjAZdXAf+XKlSguLsY777xj8ry9vT3GjBmDMWPGWLMahBBCrgOKmlqcXvYGFFVViHnpBbiNSgTQvnS0j7s9fNzt+7mGhBAysFl1cu/q1atx4cIFg2NPPfUU7OzsEBkZiS1btljz8oQQQq4T8ooKnHrpVcjLysDUapz793/RVl7R39UihJBBxaqBf0FBgUFvflpaGj799FOMGDECrq6uuPPOO5GRkWHNKhBCCBnkWktKcOrlZVBUVemPBd65AFJfn36sFSGEDD5WDfxVKpXBOv0bNmyAl5cXDh48iKNHjyIpKanTYUCEEEKI7NIlnH55GZS1dfpjoX97EIELbgcANLcqodFo+6t6hBAyqFh1jH9wcDDy8/P1P//888+YO3cuJBIJgPade1esWGHNKhBCCBmkmi/kIufNt6FuaWk/wHEIf/wR+My4QZ/m6+1ncPhkKYaGuuOWCWFIjPHup9oSQsjAZ9Ue/zlz5uDrr7/GqVOnsHr1ahQVFeGmm27Sn5dKpajq8NEtIYQQAgAN2SdwetkbV4J+Hg+RS580CPoB4FR+DdoUGmScq0KzTNkPNSWEkMHDqj3+zz//PDZt2oS4uDgAQGRkJGbNmqU/n5+fD3d3d2tWgRBCyCBTc/goLqz4EEytBgBwAgGinl0Kj3FjDdJV1bWisq5V//OICI8+rSchhAw2Vg383dzckJ2djZ9++gkNDQ245557IBBcueS2bdswcuRIa1aBEELIIKJVKnFpzVp90M8TixHz0gtwjY8zSpudW63/3s/DHu7O0r6qJiGEDEpW38DL3t4eDz30kNHx2tpaJCUl4YYbbjCRixBCiC3iiUQY+tqrOPXSqwAYhi57BY7RUSbTZp2/MlQ0Ptqrj2pICCGDV5/t3Hs1d3d3rFu3rr8uTwghZICyCwzA0NdfBV8shl1QoMk0Gi1D9oUrPf7xUZ59VT1CCBm0rDq5FwC+++47JCQkwMnJCYGBgTh+/Li1L0kIIWSQ0KrVUDU1GR13jIzoNOgHgPySBrS0qQAAfB5H4/sJIcQMVg38161bh4ULF8LOzg733nsvysrK0HT5Bb6qqgp33303beBFCCE2StPWhnP/+jdOv/r6ldV7zJTZYZhPTIgb7CRCS1ePEEKuO1YN/N9//33Mnj0bqampeOutt8AY05/z8vJCRUUFVq5cac0qEEIIGYCU9fU49cprqM/IQmthEXLe+hc0crnZ+Q3H99MwH0IIMYdVA//c3FzccsstAACO44zOjx8/HqmpqdasAiGEkAGmtaQEJ194GbL8i/pjIldXcDzz/iW1ylU4V1iv/zmBJvYSQohZrDq519XVFY2NjZ2eDwoKQllZmTWrQAghZABpyjmLs+/822Boj+8tNyP0wYXg+HyzyjiVVwOttv0TZEc7EcL8XaxRVUIIue5YNfCfNm0avvvuOzz//PMmzzc3N4Nv5gs9IYSQwa3m8BFc+OBjMFX7pFxwHEIeXAT/W2/pUTmjh/rgw2cmIfN8FbSMgc8z/kSZEEKIMasG/i+99BJGjRqFe++9F2+//bbBOcYYfvrpJ4SHh1uzCoQQQgaA0m07cOmbtcDluV6cUIioZ56CR8q4HpfF43EID3BBeICLhWtJCCHXN6uO8R8yZAi2bt2KnTt3Ij4+HhzHYevWrVixYgXGjx+P48ePY8mSJRa51oEDB3DzzTfD09MTUqkUMTExWLZsGWQyWY/K0Wg02Lt3L5YuXYqkpCS4uLhAJBLB19cXt956K3799VeL1JcQQmwB02hw8YuvcOnrNfqgX+DggOH/fL1XQT8hhJDes/oGXjfccANOnz6Nf/7zn9i0aRM+/fTT9gsLBHj88cfx8MMPX/M1PvnkEzz99NNgjCEgIACBgYHIycnB22+/jc2bNyM1NRVubm5mlbVmzRp9nXg8HiIiIuDg4IC8vDxs374d27dvx5IlS7By5UqTE5YJIYRc0XTuPMp/2an/WezlhaGvvwK7gIB+rBUhhNgmq2/gBQD+/v5YtWoVqqurUVBQgBMnTqCmpgaffPLJNQfPGRkZWLp0KQBg1apVKCoqQmZmJi5evIjExEScPXsWixcvNrs8xhhGjhyJL7/8EnV1dTh//jwyMjJQW1uL//73v+A4DqtXr6ZlSAkhxAzOw4Yi+P57AQD24WEY+Z9/XVPQX1XfarA0NCGEEPNZvce/Ix6Ph+DgYIuW+dZbb0Gr1WLhwoUGw4b8/Pzwww8/ICYmBlu2bMHJkycxcuTIbsubN28e/va3vxm9IREIBHjuuedw4cIFfPHFF1i1ahUee+wxi94LIYRcj/xvnwu+nR28pk4GXyLpdTlKlQb/95/9sJMIEBflhQduHgpXx96XRwghtsYqPf5VVVVYu3YtPv74Yxw7dqzTdBqNBvv37+/1dVpaWvDbb78BgMm5ApGRkZg6dSoAYOPGjWaV6ebm1uWnELNmzQIAnD9/vqfVJYSQ615D9gkwrdbgGMdx8L3pxmsK+gHgVH4N5EoN6poUOHyyDPa0Wy8hhPSIxXv8T548ienTp6O2thaMMXAchwceeABfffUVAKCtrQ2//vqrftJvY2MjNBpNr66VlZUFhUIBsViMpKQkk2kmTJiAffv2IS0trdf31FFbWxsAwM7OziLlEULI9YBptSj8dj1Kt2yF/+1zEbLwPotf46+cSv33cZGeEAlpOWhCCOkJiwf+r7zyClpaWvDaa68hLCwMO3fuxJo1azB69GhUVVXhvffeg0wmA2MMQ4YMwUMPPdTra124cAFA+0ZgQqHpnh/dcqGW6qH/4YcfALS/oSCEEAKoW1uR++HHqEv/CwBQuvln2AUFwWvyxC7zMcbQ3NyMsrIylJeXo6SkFLV1DVAolVCpVFCrNRAI+BAKhRCJhPj5UAlUnCMkDq4YFhKu71wihBBiHosH/n/99ReeeOIJvP766wCA+++/H25ubli2bBnq6uqQkJCABx54ADfffPM1j/evq6sDgC5X7NGdq6+v7zSNubZt24ZffvkFHMfhhRde6Db9qlWrsHr1arPKPnv27LVWjxBC+lxrSSnOvbscbSWl+mN2wUFwGhpjMn11dTVOnz6NkpJSXCwsRm1tI9oUajCeEGJ7N9g7OIEvkIInEIAn4kGl1UKmVqOxvg3NMiUUsjzUlsjx25YCnDrijtDgQAQE+GP48OHw9PTsq9smhJBByeKBf1VVFUaMGGFwbMmSJfj8889x3333Yd26dRa7llwuBwCIRKJO04jFYgBXhuj01rlz57Bo0SIAwNKlSzFuXPfrT5eXlyMzM/OarksIIQNVbfpfyP3wY2haW/XHXEclIurZZyCwk+qPaTQanDt3Dmlp6cg+fR6tSg5SRw84u/oiaFgsXNw8IbVz6LL3/szFWgQoAsEYg6NYg8hwKeprq5B+pgJ/pJ2G3fbfEDc8GmPGJCMmJoZ2hSeEEBOssqrP1S+4/v7+AIAFCxZY9DqSyxPFlEplp2kUCgUAQCqVdpqmO8XFxZg5cyYaGxtx0003Yfny5Wbl8/X1RUJCgllpz549e81vTgghpC8wrRbFP21E8Y8bDI4H3DEfQXfdAe7y/4CmpiZkZGQg9Ug6ispqILRzR3BMCvwDw8HrYWBeWt0CoH2icGigN/wCPeAXGAYA0Go0KC3OR8a5M0jP/AZB/p5IGZuExMREODk5WeCOCSHk+mCVwD89PR0jRozA0KFDwefz9b049vb2Fr2Oq6srgCtDfkzRndOl7amKigpMmzYNRUVFmDx5MjZv3tzpfIKrPfLII3jkkUfMSpuYmEifDhBCBjy1TIYLH3yE+r8y9Md4Egmilj4F97HJANo7XPbs2YMDh9LQ0KKCu08YEiZOgLOLe6+uKVeqUdso1//s5+lgcJ7H5yMwJAqBIVForK/BxQun8e3GXdixax+mTBiDGTNm6D/9JYQQW2aVwP+TTz7Bp59+CpFIhOHDhyM6Ohocx6GgoABKpbLLoTk9ERUVBQAoKiqCSqUyGZDn5+cbpO2JqqoqTJ06Fbm5uRg7dix27Nih/5SBEEJsjbKhEadeegXysnL9Mam/H2Je+gfsAts35crPz8eGTVuQW1iN4Mh4xEYMg/AaX/NLq1quXE/Mh6tj50G8s6sH4pMnQ6Uch0t5Z/DzrkM4nXMOd8yfp1/sgRBCbJXFA//c3FxkZWUZPDIy2nuGlixZgsceewyRkZGIjY1FbGwsRo4cqV8bv6fi4+MhEomgUChw7NgxpKSkGKU5dOgQAGDs2LE9Kruurg433HADzp49i4SEBOzatQsODg7dZySEkOuU0NkJ9iEh+sDfLWk0Ipc+CYG9PRQKBXbv3o09+w+Did0wdtp82DtYZphNcYfAP8DL0ayVfIQiESKHxsMvKBzZxw7gg09WY8bUFMycOZN6/wkhNsvigX94eDjCw8Mxf/58/bGKigqjNwM//fQTfvzxR3Ac1+t1/B0dHTFz5kzs2LEDq1evNgr8c3Nz9RuEdaxPd5qamjBjxgycPHkSw4cPx549e+Ds7NyrOhJCyPWC4zhEPPl/aCsthfu4sQi8Yz44Hs+glz9sSBJCI4dZbJlNrZahvunKMJ9A7551wNg7OGHclDkoyD2Drb+l4szZ89T7TwixWVYZ6nM1Hx8fzJo1y6Bnv6mpCVlZWcjOzr6mspctW4ZffvkF3377LVJSUrB48WJwHIfy8nLcfffd0Gq1uO222xAbG2uQLyQkBADw3nvvGbwpaG1txezZs5GRkYGYmBj8/vvvcHfv3bhUQggZzJQNjRC5GHZ6COykiH1vOXiXh+8cPnwYP27aDq3Isr38Ojweh1snhqOyrhVlNS3wdOn55okcxyEsaji8/YKQfewAPvx0Ne6aP8fkp8SEEHI965PA3xQnJydMmjQJkyZNuqZyRo8ejRUrVuDvf/87HnnkEbz99tvw8PBATk4OFAoFoqOj8cUXXxjlKywsBAC0tLQYHP/oo4+Qmpqq/3nevHmdXnvTpk3w8fG5pvoTQshAVH3oMPI+/R8i/u9ReE403LCQJxKBMYb9+/dj07bf4OY/DENjk622mRaPx8HXwx6+Hte2QISu9z/nRDq++2kr5HI5pk6dSpuAEUJshkUD/zNnzmDYsGF9nnfp0qUYMWIE3n//faSnp6OqqgrBwcGYP38+XnrppR6Nzdct/wm0r93fFd0+AoQQcr3QKpUo+OobVPy2BwCQ99lK2IeFwS7AX5+GMYZdu3Zh66/74R+RiMih8f1V3R7jOA7D4sYgVyTGT1t2QaFQYNasWRT8E0JsgkUD/9jYWNx+++14+umnzdrgCmiffPvxxx9j69atUKlUvb72tGnTMG3aNLPTM8ZMHn/jjTfwxhtv9LoehBAyWLWWlOLC+x9AdrFAf4zj86CsqTEI/Pfv34+tv+5H8JCxCI3sXYdNf4scGg+BUIStv+6HRCLB1KlT+7tKhBBidRYN/P/880+88MILGD9+PEJCQjBz5kwkJSUhLCwMrq6uYIyhvr4eeXl5OHbsGHbv3o2SkhKMGTMGBw8etGRVCCGEmIkxhso9e1Hw5TfQdtgQ0SEiHNEvPAuJt7f+2OHDh7Fp22/wj0i0etBfXNkMF0cxHO0sswT01UIjh0GlUmLj1l200g8hxCZYNPAfN24cUlNT8ccff2DVqlX49ttvsWrVKqOPUBljkEqlmDNnDh555BFMnjzZktUghBBiJlVjI/I++xx16X8ZHPedfRNCHlwIXof9UfLz8/Hjpu1w8x9m9eE9arUWR0+VQ6NlcHMSI2WkHxys8AYgamg8VEoFfty0HU0sBuC7WfwahBAyUFhlcu/kyZMxefJkqNVqZGRk4OzZs6iurgYAeHp6YsiQIUhMTIRA0G9ziwkhxObVZ2Yh9+NPoapv0B8TODkh4onH4J6cZJBWoVBgw6Yt0IrcMDQ22ep1K61ugUbbPiSzSaaEVGy9/xdDY5NxuLYCRSfS4BVzAwDaqJEQcn2yauQtEAiQnJyM5GTr/5MghBBivtr0Yzj3r+UGx1zi4xD51BMQubkapd+9ezdyC6sxdtr8PpkIW1jRpP8+0NsRfD7PatfiOA7xyVOR+tdnqCnMgpf7RKtdixBC+lOvA3+tVotz586hqakJbm5uiIqKsmS9CCGEWJFrQjzsQoLReqkQnFCIkEX3w3f2LHA84wA7Pz8fe/YfRtiQJIuv02+KQqVBWY1M/3Owj/Wvae/gBK+QOBSdS0dTXYTVr0cIIf2hx10oKpUK//jHP+Dm5oYRI0YgJSUFQ4YMgaenJ955551OV8shhBAycPCEQkQ/uxQOkZGIfW85/G6ZbTLo1w3xYWK3PlvBp7iyGbp/JWIRH95uPd+0qzdcfSJg5+yNorNpBks7E0LI9aLHgf9tt92G9957D01NTWCM6R+1tbV47bXX8OCDD1qjnoQQQnqp5eJFVOzZa3TcLigII//7LuxDgjvNu2fPHuQWViMuaUqfrXVfWH5lmE+QtyN4vL65Lsdx8AlPglIpx549e/rkmoQQ0pd6NNRn48aN2LVrFwAgIiICCxYsQEBAAC5duoT169ejrKwM3377LR588MFr3pGXEELItdGqVCjesAmlm38GADhERMAhLNQgTVfBfFNTEw4cSkNwZHyfDPEBAFmbClX1bfqfQ3z75ro6QokDPANH4I9DaZg0aRKcnPr2+oQQYk096vH/7rvvAAAzZszAqVOn8M477+Cxxx7D8uXLkZOTg4SEBADA+vXrLV9TQgghZmvJv4gTz76Akg2bwDQaMI0GeR9/BqbVml1GRkYGGlpUCInou026Csoa9d87SIVwd+77FXZcfMJR36JCZmZmn1+bEEKsqUeBf2ZmJjiOwwcffGC02YmTkxOWL18OxhiysrIsWklCCCHm0SgUuLTuO5x47h9oLSzSHxd7eSLkwYUmx/GbLEejQeqRdLj7hEEoss4GWldjjOFih8A/1N+pz4YXdcQXCOHmE4rUI+nQaDR9fn1CCLGWHg31qampgUQiwZAhQ0yeHzVqlD4dIYSQvlWfkYn8VV9AUVllcNxn1o0IXngfBHZSs8s6d+4cispqkDBhvKWr2amq+jbI2tT6n8P8nPvs2lcLjxqBrENbcf78eQwdOrTf6kEIIZbUo8BfoVDAx8en0/POzs76dIQQQvqGorYOBV99jdrDRw2Oi728EPHk43AZOaLHZaalpUNo5w5nVw9LVbNbAj4HXw97lNfI4ONuBzuJsPtMVuLs6gG+1A1H09Ip8CeEXDdo61xCCBnE5BUVyH7meWhaW68c5PHgf9scBN65AHxJz8fIV1dXI/v0eQTHpFiwpt1zd5ZickIAWuUqqNTmz0WwluCI4cg+dRjV1dXw9PTs7+oQQsg1s95WiIQQQqxO7O0Nx+grGyg6Rkcj7oP3ELLo/l4F/QBw+vRptCo5+AeGW6qaPWInEcLZQdx9QisLCApHq5LDmTNn+rsqhBBiET3u8a+srASfz+/0PMdxXabhOA5qtdrkOUIIIT3DcRzCH12Mky++iqC77oD3jOlmT+DtTElJKaSOHuB18VpvC3h8PqQO7igpKe3vqhBCiEX0OPCnnXkJIaTvaVUqlO/chdZLRYh8+gmDcxIfH4z64nPwhNc+Jp4xhouFxXB29b3mssyl1bI+26Srp5zdPHHxUlH3CQkhZBDoUeD/+uuvW6sehBBCOlF3PAMFX62BvKwMAOA5eSJcYkcapLFE0A8Azc3NqK1tRNCwWIuUZ44jp8qgVGkRGegCf0+HAfUmwMXNE8U559Dc3AxHR8f+rg4hhFwTCvwJIWSAai0pxaWv16A+w3AjqeIfNxgF/pZSVlaGNoUaLm59M5m1Va5CcWULAKCyrhUT4/3h7+nQJ9c2h6u7Fy4o1SgrK0N0dHR/V4cQQq4JrepDCCEDjKK2DsU/bUDl3t+Bjjvt8njwmTEdQffcZbVrl5eXg/GEkNr1TfCdV3Jlwy47iQC+HvZ9cl1zSe0coIWAAn9CyHWBAn9CCBkg1C0ylP68FWXbf4FWqTQ45zR8GMIefgj2oSFWrUNJSSnE9m59smOuWqNFXnG9/ufIQBfw+mGn3q5wHAepgztKS8v6uyqEEHLNKPAnhJABoPZoOvI++x/UzS0GxyU+3gheeD/cx43pk2C8tq4B9g5OVr8OAFwsbYRC1f6JBp/HIcy//3bq7YqdgxNqauu7T0gIIQMcBf6EEDIAiL09DYJ+obMzAu9cAO8Z0y02cdccCqUSfIHU6tfRahnOXqrT/xwe4AyJaGD+S+LxBVCqWrtPSAghA9zAfJUlhJDrGNNoAB7PoAffISwMHhPHo+7YcQTMuw1+c24GX2r9APxqKpUKPIH1/zUUVTajVX5lT5eYYDerX7O3+AIBVCpVf1eDEEKuGQX+hBDSR7QqFaoOHETJps2IeOJxuIwcYXA+5IFFCHv4IQid+2/Ii1qtAU9k3U3dGWM4W1Cr/znY1xH20r77VKOneDweVAraeJIQMvhR4E8IIVamValQtf8ASjZtgaKqGgBQ/NNGo8Bf7N7/vd4CAR+qjisJWUFpdQsaWq5MXh4a4m7V610rrVYLSR98CkIIIdZGr2SEEGIl6tY2VO37HaXbdkBZU2NwrvnsObSVlUHq59dPtTNNKBRCprZe7zZjDCfzrrSFn4c9XBzFVrueJWjUaghFA/cTCUIIMRcF/oQQYmHKunqU/7oT5bt2QyOTGZzj+Hx4TZ2CgAXzIPH27qcadk4sEkEjt17gr9Zo4eooRuPlHv+RER5Wu5alaDVqiPpwgjUhhFgLBf6EEGIhiupqFP24EdV/HAS7qtecEwjgNW0KAm6fB4m3Vz/VsHvubi7ILSu3WvlCAR9jR/hhaKgC5bUyuDpJrHYtS2ltaYJH6MD6ZIYQQnqDAn9CCLEQjUKJqt/3A4zpj/GlUnjPvAF+N8+G2HPg924HBPhDkX4GjDGr7hvg7CCGs8PAHuIDtA9Namuphb//qP6uCiGEXDMK/AkhpBfUMhn4Egk4Pl9/zC7AH25Jo1CX/hdE7m7wvXk2fGbeAIG9fT/WtGd8fX3BaVVoa22Bnb1jf1en37W1toAHNfwG2FwMQgjpDQr8CSGkB2SXClG+8zdUH/wTUX9fCvfk0QbnAxbMh/uYZHhMGN+nG29Zip+fH6RiARrqqi0a+Nc2tsHNSdInuw9bUn1tFaQiAQX+hJDrAgX+hBDSDY1Cgdqj6ajcsxdNZ3L0xyt27jIK/B0jI+AYGdHXVbQYR0dHuLs7o762Cn6BYRYps7FFgb3pRXB1EiMxxhseLn2/MVlvNdRVw8PdGY6O9OkHIWTwo8CfEEJMYIyhJTcPlfv2oyY1FRpZq1GalvyLULfIIHAYPEN5usNxHMKCA5F+psIi5THGkHGuCgxAXZMCR06W4ebxYeDxBkfPf2NdNcaMCOrvahBCiEVQ4E8IIR0oGxpRffAgqvbtR2tRsck09uHh8L3pRnhMSAFfPPAnqPZUQIA//kg7Da1GA16HOQy9UVDWhMq6K2+a4qO9Bk3Qr9Go0dZSi4CA0d0nJoSQQYACf0II6aB8xy8o2bTF6DhPIoHnhPHwvmEaHKIiB91Y9Z4YPnw47Lb/htLifASGRPW6nFa5CpnnKvU/+7rbIcDLwRJV7BOlRRdhJ2IYNmxYf1eFEEIsggJ/QohN0qpUkJeXwy7IcBiH1/SpBoG/07Ch8J4+Fe7jxoIvGfhrzluCp6cn4oZHI+PcmV4H/owxHMuphErTvrSpgM8haZjPoHrDVJh3GqNGxMDT07O/q0IIIRZBgT8hxGZoVSo0nj6DmtQjqD2aBp5QiNFfrzZYklPq6wuPCSmQeHvDa9oUSG10NZcxY5KRlvkNGutr4Oza8/0H8koaUV5zZdfihGgv2EkGzypHjfU10LTVYeyY2/q7KoQQYjEU+BNCrmsauRz1mVmoSzuGuuPHDSbpagA0njoNl7hYgzzRz/29j2s58MTExCDYzwMXL5xGfPLkHuWta5IbDPHxcbNDmL+zhWtoXfkXTiHI3xPR0dH9XRVCCLEYCvwJIdcdVVMT6o4dR21aOhpPnIRWqTSZjicSoa28wijwJwCfz0fKuGR8u3EXVMpxEIpEZuVTqjQ4fKIM2subF4uFfIwZ4Tuohvho1CrUVRTg5jtuAv8aJzcTQshAQoE/IeS60lpUjKynngEYM3meEwrhEhcLj/EpcE8eDb508Kwp39cSExOxY9c+XMo7g8ih8WblST9TgZY2lf7ncSN9IRUPrn81DRX5CPERIiEhob+rQgghFjW4Xo0JIeQyVWMjGk+dhnvKOIPeZGmAP4ROjlA1NumP8e3t4DZqFNzGJME1Po6CfTM5OTlhyoQx+HnXIfgFhcPewanbPBEBLqiolUGtYRge5g4f98G1x4FK3oLq4lOYvGA+nJy6v19CCBlMKPAnhAwKquZmNJ3OQeOp02g8fRqthUUAgLjAQNgHX1mZh+Px4BIfh8aTp+GWPBruY5LhNHwYeAJ6ueuNGTNm4HTOOWQfO4BxU+Z0O2TH18Me05OCkFvcgGHh7n1US8tgjKEi/xhEIglmzJjR39UhhBCLo/+EhJABSd0iQ1PO5UD/1BnILl0yOXynITPLIPAHgLBHloAvlQyqceUDlVgsxh3z5+GDT1ajIPcMwqKGd5vH1VGCpKE+XaZhjEGj0YAxBo7jwOfz+/35qq/IQ2tjJYYnz4T4OtyYjRBCKPAnhAwoitpanH3rX5AVFgFabZdpRe5uAI9ndFxgR0N5LCk8PBwzpqZg62+p8PYLMhjyU1LVDB93ewj4xs/D1WQyGSorK9HY1ISGhibIlUqAAeAAiUgEFxcnODs5wdvbG/b2fTtESNbShKpL2XDxDoeTm20u4UoIuf5R4E8I6XOatjY05+ZBdrEAfrfeYtDTK3JxQVtZucmgX+jsDOcRw/UPid/gWi1mMJs5cybOnD2vH/IDAGcv1eFEbg28XKWYlBDQafBfW1uLwsIiVFTXQqUBhGJ7SCTOcHSQgMfjQavVQqmQo7y2FUVlNTiXexE+nu4IDg6Cu7v1hwsxxpCVvh8ikQQeweZNYiaEkMGIAn9CiFWpW1rQcrEAsvyLaLl4EbL8i+2B/eVhO+5jkiDxuTIshOPz4RAZgabTZyBwdITz8GH6QF8aGECBfj/RDfn58NPVOJ2VhlZxKC6WNgIAqurbcCynAuNGGPaUq1QqXLiQi0vFpWA8CVzdA+Ho7AqO6/zTAca0aG6sR1lNFcqrMhEaFIDIyAgIhdbb/CvnRDoEqgYEDRkDFX/wbDJGCCE9RYE/IcSi5JVVqD74J2QXC9By8SIUlVVdpm86d8Eg8AeAkAcWgi8WQRoQAM7EUB7SjjGGiooKlJaWorq6GiqVCkKhEJ6envD394ePj49F3yiFh4fjxpkz8eaKtRC5V8HVLwYAYC8VYES44e6+LS0tyMw6gfqmNrh5BcLZ1R0cuq4LYwyypjrIGmugamtAS2M9ivNzcPZUJsaMS4FfQLDF3/hdyMlCXekZ3H/XXKze14zaRrlFy7eWzp77qppquCiU8O1kOVtCiG2jwJ8Q0iNMq4WipgatRcXQKpTwSBlrcF5ZV4ei9T90Ww5fKoVjdBQEDsZjuR0jIyxW3+uRRqNBZmYmjqamojwvD9o2OZxFIgg4DmrG0KhUgieVwDciAmPHj0dCQoJFNqI6eqoc6w/LwXcOR9WlLHB8ASKihmNCvD8koiv/TlpaWvDX8Uy0KIDAsKEQCrve/Eur1aCy+AIqLp6Cpq4MQo0azkIhPHk8OGvUqCg9h+1njiJo2EjExI1FaMRQ8CxwPwW5Z1CWn4G75t2EcePGYfW+3ddcprV199wXXLoEjUIB98YGcH/9ZbHnnhByfaDAnxBihDEGVX0D2srK0FZWDnl5uf6rvLxCvxOu2MvLKPC3Cww0Kk/g6AD7sDA4hIdd/hoKiY8P9eb3QlVVFTZv2IBLJ04g2M4BsyOj4evuDmGH5UpVajXKa2txsqAAm3JW43hsLG6/4w54eXn16po1DW34YtspHDlZDgBwDxwJrUYN1J9BoL0vJKLgK9dWqZCZdaI96A+JAp/f9b8ZWXM9crMOgFVeRKi9I0JCIuDm4AJBh2BVqVahuKwA5YX5OF1RjMKwIUicMBPOLr0f/38hJwtl+Rm47aapmDJlSq/L6UvmPPeFdQ0or6vHhVYZNq2+9ueeEHJ9uW4C/wMHDuD9999Heno6WlpaEBwcjAULFuDFF1/s9eoQmzdvxqeffors7GwolUpERkbivvvuw9NPP23V8aaE9AW1TAZwHAR2dgbHL639FuU7f4NW3v2QB0VVFTRtbQYbYgkc7OE1dQpE7m5wCA+HfXgoxJ6eNDbfAi5duoR1q1eDX1OL+fEJ8HZ1M5lOKBAgyNsbQd7eqKirw94T2VhZVoaFS5YgJCTE7OvJFWr8/Ecefj6YhzaFRn9cKhbgnRf/BtZ4ARt+3oW21hYMixsDoVCICxdyUd/UhsCwoQDHQa1Wg+Nx4PF4RkN9GmrLkXv0F3ipZBgVORyuDs4m6yESCBESEA43eydwAoYLxXk4uK0KY2cugKePv9n3A7S/qc05kY660hzcNe8mTJkyxazfTcYY2traoFQqIRKJIJVK+/R32tznXsDjwd/eHoEe7uDHJfT6uSeEXJ84xgb/QMBPPvkETz/9NBhjCAgIgKenJ3JycqBQKDBkyBCkpqbCzc30i2RnnnvuObz//vsA2se12tvb48yZM9BoNJg4cSL27Nlj0XWeExMTkZmZiYSEBGRkZFisXGKb1K1tUNbVXX7Ut3+trYWiqhqK6mrIq6qhkckQvPA+BNw+1yBv4fofULJhU7fXEHt6wC4oCOGPPwqxx+DaqGkwqqqqwsoPP4RjYzNuGTMGoh5sSKZUq7EjLQ3Nzo54dOlSs3t/FSoNlvxrL+qaFPpjQ0PdsHhODGrK8nHkaDqOpv2F/MJSSF0CEBIZixa5Co5uAQBPBLniSj6JWAxnJ0c4ODiAx+NB1lyPnIObEAwlxkSOhKCbTwYAQC5vhaK1Ed4+nvgr/xzKRFJMuvV+s3v+ZS1NyErfD4GqAXfOvwUpKSkG5x/4527UNsrh7izBmtdmXr6mHNnZ2Ug/cgSVhYVgGi04Pg/ewcFIHjcOcXFxkEgkZl2/t3ry3Jdu2w5tmxw8qQT+t87p9XNPCLk+Dfoe/4yMDCxduhQAsGrVKixevBgcx6GsrAxz5sxBRkYGFi9ejM2bN5td5s8//4z3338fYrEYGzZswJw57UvXnTt3DjfddBP+/PNPvPzyy/o3BoT0BY1CAVVjI1SNTVA3N0PV1ATPSRMNeh01CgWOLXzIrN56AFBUVxsdk/r56r8XODlB6usLqb8vJL6+kPr5QuLnC4mPL62V34c0Gg02b9gAfk0tbpkwsUdBPwCIBALcMmYMfjr0J7Zs3IjFjz5qNO5bo2VoU6jhIL3yaaZYyMcd06OxcstJONoJ8eDNwxDsqsTarz5HWVUTHD0CMXrqnYhurEPmsT9x9MBWOHhFwYc5wcHJFVKpM3g8Dlotg0IhR1llNcR19fDydEdu1gF4qWQYMzTRrKAfAMQSKeRtMsiaZZg4LAG7s9ORkboHk2fd0eWYf8YYCnLP4OLZY4gM9sQd8xcjPDy82+vl5eXhh7Vr0VJWjhAnJ0wNCIREKIJcpURucQl+/uJL7PXzxd2LFiEiwjrzUvriuSeE2I5BH/i/9dZb0Gq1WLhwIZYsWaI/7ufnhx9++AExMTHYsmULTp48iZEjR5pV5ptvvgkA+Mc//qEP+gEgJiYGX375JaZNm4bPPvsML774Ijw9PS17Q+S6p1UqoZbJwAkEEDo6GpxrOHES9cczoGpqD+xVjU1QNzVC1dQMbYfeUx23pCSDAJwvFvdo3LyiptbomGtCPEa+txxSX1+TE29J38vMzMSlEycwPz6hx4GfjkggwA2xcdicnYnMzEyMHj0arXIVTuTWIPN8Ff7KqUB8lBeevstwHfsZycFoU6hx49gQVJQW4vPVa6DkuyJl5mxIpFd+Pzg+H9nHj4LxCiEQSiGMGAUHR2cIBO1vJMQSKbRaDVqaGnDmRDp4pbkYNSTW7KAfADhwkEjt0dLaBA+mxZioYdh19hQK8nIQHj3CZB5dLz9PWY/bbhyPmTPN25U3Ly8Paz9fCS+VCvPHT4D9Vb36UQGBkMnl2JeVibUrV2LRo49aJfi31nNPCLFNgzrwb2lpwW+//QYABkG/TmRkJKZOnYp9+/Zh48aNZgX+ubm5OHHiRKdlTp06FREREcjLy8P27dvxt7/97Rrvggx0TKuFRq6AVi6HRiGHpk0OrUIBpyExhuk0GhT9uKH9vFwOTVsb1DIZ1DIZNDIZ1LJWqGUyMJUKAOA/7zaELLrfoIyW3DyUbf/F7LqpmxqNet5Fbq5oa20FeDyIXF0hctM93CD29ITYywsSL0+IvTwhdDYeUy10djZ5nPQPxhiOpqYi2M6h03Hd5tAyBjuxA6RKHj5cuRF+R9uQW9wAjfbKaM/DJ8vw6O0jIRZe6REWCniYPzUScrkca7/9Hkq+K5In3gRehzeYSqUCB3ZtgYtPJGKS5qD4wjEUnNiDlsDhCI4cCYGwPdDm8fhwdHbFpax8RPMAyFtQ01IHgUAMeyc3CEXdD5kRS6RokzWhpUUGD1dXhDjY42JOJsKihoPjODQ31aMw7yyaGuvR1FgLtaIZI6KDcMf8JXBxccGhQ4fQ0NAAFxcXxMfHm9wgTKNS4oe1a+GlUuGW5DEG99qRvUSCW5LHYEd6Gn5YuxbPv/KKyWE/tbW1yMrK6va6V2OM4ffdeyBpkaG2vAKy+gb4+PjA7qp5OebwcXNDsL0DjqamYtSoUeA4rtf16m2+a81rTQO1XoRY2qAO/LOysqBQKCAWi5GUlGQyzYQJE7Bv3z6kpaWZVaYuXVhYGPz9TU8amzBhAvLy8pCWlkaBvwUxxsA0mvaHWn35qwZMo4b28lembp9gaB8SbJBXq1KhPiNTn0erUkGrUkKrVIGpVNAqle3HLn91SxoNt1GJBmWU7fgVlXv3XU53Oa1CYbKnHQDGbdkAruNH5jweSjZtMbnjrClqWavRMYGTU7f5+PZ2EDo6QejsBKYxvtaQV18CXyqF0NHRsH5kUKqoqEB5Xh5mR0Z3mkbLGNTq9t8FkdDwOb9Y0oCzhfVoaVVCq2VobZbgfPFZVAmGQOJg+EZCodIgt6gew69akx8AsrOzUVbVhJSZs40C4cL8s6hvqIdnyGi4eAbC0dUbJbnHUVaQiebK83D3i4SHfxSkDq5oa6kH6kvgLOFBWVEAe5EIco0GVbWlcPYNg4NT18EWBw48vhCKy3+XEb6BuFiQh4a6ajTW1+CPfb+gvrEFPL4IWkUjgrwdMW3K/WhqasL/Vn2NBpkGYnsXKGQN2LXnAO6/ZwHi4uIMrlFXkY8WbTnmj5/QadCvw+PxMC0uHmsPp+LEiRNITk42OJ+VlYUt69eD1TfATSJBtlyOg7/9htvvu8/oulfbu3cv9m/bhunevmgsuIQKtRqFeXkYMnIkfK7a+8IcI0JCsDM3FxUVFaioqOhVva7lfq4lrzUN1HoRYg2DOvC/cOECACAoKKjTVXZ04zjPnz/fozK7Gv/Z0zIHurTP10FeWgpoGcC07TuqMtYewDItON3PjIHv7oHxrz5jkL86rxBn3/uwPa+2Q/4OZXH641p43n0vYmZPMygj/a3/Qn3cvDdnTCLF+J++Mzgmb2nFuXf/Y/Y9N/HtjAL/yuIqtBYWmV1Ga3Mr7F2uDNXhOA5MKAKnMG98fXVlHa4eGNDi7Im22LHQSuygtXMAk9pDa2cPrdQOTOoArdQO6DA0ItDJDVePtE8rU6OhuQZAjf5YZ1P43Z0lmJQQYHCspqENf2aVGKXtrIzk4T4I8DIcsnT0VBlKq2UmyjAuxE4swOzxYQbHWuUq/Hq4wOw6xEZ6IDrYMIjNvlCF80X1xok7KWPBtCjweIartPy097xR8s7qEBnoglFDvA2OXSiqR8bZSnOrgFsmhMHRznDN+0/WH8TZ8+WIkYagoLQEWi2DWqOFUq2FSq2BSq3VB/0RgS4YPdQwINQyhqaWK29eXRycIWFqyGV1kDi4wdFOiPgoLyTEeGHUEG84OxgPg2GM4cjRdDh6BBoM79Gdyz17EuBJYO/UPnGULxAheMg4OLgHQ1ZbAFVLOfIz8yBx9IRGowHXWIkor2j4unhAIpGAMYbKxhpUl1+EWOoAobDroTgCoRByuQIAg6ezG/hKBbKOHUTWsVTYuwcjLnkaQkOC4enpgfMnj2HNtz+A4/iQuodj0qTxEAiEUKtVOPnXIXz7/UYEBQXpF4BgjKG+5CxCYpyMhvd0xkEqRYijI9IOH0ZSUpJ+3k1tbS22rF+PUPAwafIUCAUCqNRq/HHiBDZ/953Bda9WW1uLn9atgytjmDJkCCRCITRaLQorK3H25Ek4OztDKu3ZPBs/dw9oT55ETk4O/ti1q8f1utb76W1eaxqo9SLEWgZ14F9XVwcAXf5R6s7V15sIAKxc5qpVq7B69Wqzrnv27Fmz0llD1bEMuNcZB3qmNFQY98Y11DeDX25+wFxWWouYq45V1LXCuI/RNJVSZXRM08O1qcrLG4zr1aiASzf5tOCg5Amg4gSQy9oMAn8AOOEYDrVEczmNEHK+EAqeCHKeqP0rX6T/eXxUMMZeVX4R3w0fySIBGQD98HvF5Yfx79vwMA+4OhoGJ9v+zEd+SWM3d9JuaKibUeBfWdeKb37JMSs/APh42BsF/gcySnD0VLlZ+T2cJUaBv6xNjXU7zf+bEAqGGQX+GeeqsPVgvtllzJ8WZXTs+93noDXzd+vmlFCjwP98YT2+32N+B8GUxECjwP/4yXwIZRpU1Bh/QnS1NoXa6JhDx/I4wNVJiggvZ4TEuuKeOyciPMAFfF7Xy1K2tbWhsLgc/tEpRueUCjmqq6shEEshtjP8xMrByQ1CIR8hwZPRWF2KssKzOJn2G6K1SriKRVDKZeDzAIFACC9ndzRVlUHWWAsXD79O68LQ3pkga2lEZXkxlPI2KGrLcemvSri4+mP2/Lvh5eWt76kfOXoCvl/1J4RiO9xx4wP6fQUEAiFGjp6AgzvXIzMzE9OnTwcAaNVKsOZqRPpFdtkmV4v098f+wkK0tbXph+JkZWWB1Tdg8pSp+n0JhAIBJsfG4ps/Dhhc92pZWVmQVVUjwssLkssdW3weD8He3qi/dAnl5eUICwszmbczQoEAziIR0tPTe1Wva72f3ua1poFaL0KsZVAH/vLLK5eIRJ3vCqmbxNXW1tbnZZaXlyMzM9Os6/YnxvVkEyUTUVCP8sPkUBjGdT0khQHQgActx4OKZ/zpDicQoErkCg3HgxYcNBwfah4fas7wobn8NdQvxKiMtvBh+P2SCiqe4HI6HlScACqeEEqeAEpOCA3HAy735q13cTEq47DfGDS3Gr8xMYnWtSdm4KCBoJvAXMdU4O/mJMH4WH842AvhaCeCgM9Ds7YEMdEeiApyNatcpVIJjZZBJDbuAVerVWBaLXg8vtHEcu5yvTnw4OEbCg/fUFQUnYdzVS4EPB5UyjYoWlVQgAPAgVPJ0VBXBgYGjuO1f4rGGBjTgjEt1CoF1Eo5VMpWqBUyeDvzEeDtivBmPwT4+kAt8YOPj69BHQQCIcAJwBPaG20mJhAIIbF3RUNDg/6YVqMCxxgk3ew2fDWxUAim0UKpVOoD/4aG9qEjgquG3AkFArhJpAbXvVpDQwPsBAIIeYZ5+TwepAKB/n9VTwl4PNQ2NsK7F/W61vvpbV5rGqj1IsRaBnXgr5tEpby8i6gpunGg5n4kaskyfX19kZCQYNZ1z549a/abE0tTDUtEXpkfGHhgHAdwHBjHgYED47UHugztx+xcjSd92nl74kTc7PY8l98EME5XFs+gPHAcxifEGZXBTb8Zh4ISoeXxwDh++1cev70cHs/gzYVIyMeMq/ILJGKcnPmw2ffsGmc8f8MrMhQuzaaHjF298RAACPjGxxKivSFXGgdfpoT7uxgd83SRYsxw02N3TW0WZC81ru/ICE94uRpP/jP1PuPqnnoAcLIXIWVkJz2uJspwdzYOBoeEuHXai3z1fTjaGd+DWMTHRBPPUWd1CPByMDoW5u+MSfEBxolhui1M1XZSQoDJYTmm0kYGuZis19RRxjsZd0YqNn5JHjcyEJUtFxAf7QUejwP/8kMo4EMo4EEo5F35XmD8Jlwk5CPQx/B5Vmu1PdqEUCQSgc/joDQxjE0gEILj8aDVasCuelPPLn9cwnX4XXBw9oCiKg8SOycIRRI4OztCo1ZDqVRA3dIAEZ+Bp5FBq2XQMi04jgcejwPH48HOXgyppxvUKhVUrXWYMCEFAoEAJ+vrAB8f5Jc2QK1W6VcSAtrfmICpoVXJTJ6Ty+rhcvlNvKujGGqlA+QiAeSqzv8HmKJQqcDxeQadRi4uLsiWy6FSq412Vq6Tt2Gkic6Djnlb1Woor+oT0Wi1aFOr4d3JMCS+RGrw9WpqrRbOzs6oq6ntcb2u9X56m9eaBmq9CLGWQR34u7q291bphueYojunS9uXZT7yyCN45JFHzLqubgOv/jD/2fuuKb9/oCcef/Ohayrj1pvicOtNcb3OLxEJ8PrDY66pDhPjAzCxk0DRXM/dl9h9oi6MiPDAiAhzBz2Z9tAtw64pf6C3I15cdG3L/c2dfG3LGjrZi/D8/aOuqYwpiYGYkmh+0G3K3++5tuczPtoL8dHXtmHS7MkjsDEnFeEBTgaBSW+p1Go0KpU92shJKpUiONAXRSUXERBiOARGJJbA09MTJSUlULQ2GZxTKOSQiMUGE2T9goeg4OxhlNRVIsDVHQK+ADweH9XNjRA6uSF6eCJE3azuU1NZCqGdFHw+X38/M5KTUbt7P07+dQgjR08wGMcfFuwLjuObPOdiz9d30HzwzGQwxvDxB/nILS5BVID5vz+5paXwDg426BCKj4/Hwd9+wx8nTmBybKzB+HHO1aXLjqH4+HjYe3ki79x5yFUqgzH+nFQCX19fk/l8Zt7QaZkd2+qPuroe1+ta76e3ea1poNaLEGsZ1IF/VFT7mNyioiKoVCqTPVj5+fkGac0tMy8vr9M0PS2TEEJ6y9/fHzypBOW1tQjy9u4+QzfKamvAk0rh59f5OPqrcRyHcWOTcWbtJsjbZIbr93McIoeMRFbGUciaqvTHtVoNNGo5nN09DT4x8/ANQZGrD3IbG6HmGJzkLWhTq6ESiOATGtVt0A8A8jYZ/Dyc2jdrvHw/Q4cOhbu7O779fiMO7lwPib1re2++PR9L/rYIAEyeu/+eBQZzujiOQ/K4cfj5iy8hk8vNmuDb0taGS83NmJeSYvCJlru7O26/7z5s/u47fPPHAbhJpKiTt4FzdcHt993X5Vwyd3d33LVoEf778is4cPYsgl1c0KZWg5NKMGTkyB5P7AVg1FY9rde13k9v81rTQK0XIdYyqAP/+Ph4iEQiKBQKHDt2zGj7dQA4dOgQAGDs2KunUZo2Zkx7r3FBQQFKS0tNLunZ0zIJIaS3fHx84BsRgZMFBRYJ/E9dugTfiPAeLwcZFxcHv117kJV+wGgd/+DwIXB1cUV1yXmEDp8MHp+PlqYGiIUCODgYDsOyc3SDxtETzepGuIZEQa1WwVEohou7p1lBP2NaqBStcHLyMbofX19fBAUFITMzU78ee0JCgj546+rc1fe6188X+7Iyu1zHHwC0Wi1+z86Cg58vYmNjTZbV8boju7ju1aZPn46MY39Bdvo0nEND4C1p7+nvTdAPdN1W5tbrWu7nWvJa00CtFyHWwDFT6+sNInPmzMGOHTuwcOFCrF271uBcbm4uYmJioNVqkZ2dbfJF2ZSRI0fi1KlTeO211/S7+Ors378f06ZNg0gkQklJicV27tUN9UlISEBGRoZFyiSEXB/++usvbFq9GrfHJcDnGoKRiro6bM7OxPwlS3q1e2teXh4+X/0NlHxXxCVNgdTuSs9/7rkTWP/VJ/CNmQw3/2gIeIC/r49BkKpSKVFRegn15echrrqAW2NHwcPJpUd1aGqoRVNNESZOGIdmheKa7qcreXl5WLtyJbyUKkyLi4eDiWC7pa0Nv2dnoUokxAOPPdblMtC9NVCee0LI9aGHy7EMPMuWLQPHcfj222+xevVq/Trh5eXluPvuu6HVanHbbbcZBf0hISEICQnBpk2bjMp8/fXXAQDLly/Hjh079MfPnz+Phx9un0D6+OOPWyzoJ4SQriQkJCAkNhZ7T2RDqTZv8vjVlGo19p7IRmhcHBITezd3ISIiAo8teRAuolYc2fMD0g/tRsmlXFSWFUEqsYOHhysqLh5HQ9l58LRyqBStaGluRFNDLUqK8lF88TQkfBVmzroZblEjkHbhDFQ9uh+Ghroq+Hh5QCgWX/P9dHevix59FA3OTlh7OBW/pqfhQkkxCisrcKGkGL+mp2Ht4VQ0ODtZLegHBs5zTwi5Pgz6Hn8A+PDDD/H3v/8djDEEBgbCw8MDOTk5UCgUiI6ORmpqKjw8DCdM6sZhfvPNN3jggQeMynzmmWfw4YcfAmjfsMvBwQGnT5+GRqPB+PHjsXfvXpNbs/cW9fgTQrpSVVWFlR9+CMfGZtwyZgxEPZjoq1SrsSMtDc3Ojnh06dIeTew1RS6X48SJEzh8JA2FxeXQaBn4PA52Yj4uXCyGf9RYML4dGpqawVj7KkouTo4IDPSHj48PBAIBGhtqcXDbt/BTtmHisASzJi431tegsaYYiQkjcTg312L3Y869ph0+jMrCQjCNFhyfB+/gYIxJSUFsbKxF/xeYMpCee0LI4HZdBP4A8Pvvv+P9999Heno6ZDIZgoODMX/+fLz00ktGY0yB7gN/ANi4cSM+++wzZGdnQ6lUIiIiAvfddx+eeeaZHi2FZw4K/Akh3bl06RLWrV4Nfk0tboiNM2voR0VdHfaeyIbGwx0LlyxBSEiIxerDGENbWxuUSiVEIhGkUik2bdqMXfv/wrgbFkAoEkOj0YDP50MgEBgt5VpdUYqjuzfCVdaEMVHDuhz2o1YpUXTxDFzdHVHY1mqV++mKqXs1tcSutQy0554QMjhdN4H/YEeBPyHEHFVVVdiycSMKsrMRbOeAkaGh8HV3N1qDvKy2BqcuXUKhrAWhcXGYt2BBn/T2tra2YsWHn6CoWoFxU2+FSCTuMn1jQy0yUvegpeA8QuztEekXBA9nV4MNlRRKBU6eyUCNrA4Sf19EJCb22f0MJAP9uSeEDHwU+A8QFPgTQsyl0WiQmZmJo6mpKM/Lh7atDc4iEQQ8HtRaLRqVSvCkUvhGhGPs+PFISEgAn9/17tiWVFlZif+t/ALlDVokT5xtMAnYFK1Gg4K8HFzMyYSsohh8lRLOQhGEPB7kKiUKygrBF/MxadZM3HDjjX1+PwPJQH/uCSEDGwX+AwQF/oSQnmKMoaKiAmVlZaiqqtLvZ+Ll5QU/Pz/4+Pj06XCUjiorK/HFV2twsaQOkSPGIig0utu6MMbQUFeNhrpqNNbXoKKsEBVFuYgI9cGjSxZjxIgR/XY/A81Afu4JIQMXBf4DBAX+hJDrTVtbG379dSf2H0oHE7ogJHI4/APDweuiB1qr0aC0OB+Xck+DUzVg6oRkzJ59U6/XrieEEHLFoN7AixBCyMAllUoxf/7tiI0diT//PITs04dx4eQR2Dl5wsXNEw5OLuDx+NBqNWhpakBDXTVam6phJ2IYNTwaEycuQGRkZH/fBiGEXDco8CeEEGJVkZGRiIyMRFVVFU6dOoWSkhLkFxShvOIstIyBx3FwcrTHqJhABATEYcSIETQZlRBCrIACf0IIIX3Cy8sL06ZNA9A+Rl2pVOqX+xSJRDQmnRBCrIzG+A8Qbm5uqK+vh1QqxZAhQ/q7OoQQQgghZBCJiYnB+vXru0xDPf4DhFwuB9A+GS4zM7Ofa0MIIYQQQq43FPgPEF5eXqiqqoJEIkFoaGifXffs2bNoa2ujTxrMQG1lHmon81FbmY/ayjzUTuajtjIftZV5+rudYmJiuk1Dgf8AcenSpX65rm4Z0SFDhtAyot2gtjIPtZP5qK3MR21lHmon81FbmY/ayjyDoZ14/V0BQgghhBBCiPVR4E8IIYQQQogNoMCfEEIIIYQQG0CBPyGEEEIIITaAAn9CCCGEEEJsAAX+hBBCCCGE2AAK/AkhhBBCCLEBFPgTQgghhBBiAyjwJ4QQQgghxAZQ4E8IIYQQQogNEPR3BUj/WrJkCcrLy+Hr69vfVRnwqK3MQ+1kPmor81FbmYfayXzUVuajtjLPYGgnjjHG+rsShBBCCCGEEOuioT6EEEIIIYTYAAr8CSGEEEIIsQEU+BNCCCGEEGIDKPAneidPnoRQKATHceA4rsu0KpUK//3vfxEbGwt7e3u4urpiypQp2LJlSx/Vtm/s2bMHTz75JMaOHYuAgABIJBLY29tj2LBhWLp0KYqKirrMbyvtBAAnTpzAm2++ialTp8Lb2xtCoRCurq6YMGEC/ve//0GlUnWZ31baqqGhARs2bMDzzz+PyZMnw9HRERzHISQkxKz8jDF8+eWXGDNmDJycnODk5IQxY8bgyy+/xPU4ZevAgQO4+eab4enpCalUipiYGCxbtgwymay/q9ZnKioq8O233+Kpp57C2LFjIZVKwXEcJk+e3G1eW/m7Atr/No4cOYIXX3wR48ePh7u7O4RCITw9PTFjxgysX7++y7+RlpYWvPrqq4iJiYFUKoWnpyduvvlm/PHHH313E31o48aNWLJkCUaNGgU/Pz+IxWI4OjoiISEBy5YtQ21tbad5ba2trrZz5059rNTVa/eAbCdGCGNMrVaz0aNHMwD6R2fa2trY+PHjGQDG5/PZyJEjWXh4uD7fP/7xjz6suXXdeuutDAATCAQsMDCQjRo1ioWGhjI+n88AMAcHB7Z3716TeW2pnfLy8gx+d3Rt5ePjoz82evRoVldXZzK/LbXVzz//bNBWukdwcHC3eTUaDVuwYIE+z9ChQ9nQoUP1P991111Mq9Va/yb6yMcff8w4jmMAWEBAAIuPj2disZgBYEOGDGG1tbX9XcU+8cEHH5j8nZk0aVKX+Wzp74oxxvbt22fQPmFhYSwxMZG5ubnpj82ePZvJ5XKjvNXV1Sw6OpoBYGKxmMXHx7OAgAAGgHEcxz777LN+uCPrio2N1d9vSEgIGzVqFAsKCtK3lZeXF8vOzjbKZ4tt1VFzc7NBO3X22j1Q24kCf8IYY+z9999nAPSBbleB/1NPPcUAsNDQUHbu3Dn98W3btun/KW/fvr0vqm11P/zwA9u9ezdrbW01OH7x4kU2efJkBoB5eHgwmUxmlNeW2ik3N5d5eXmxt99+m126dMng3K+//src3d0ZAHbHHXeYzG9LbfXbb7+xiRMnsmeffZb98MMP7LPPPjM78F+xYgUDwNzc3NiRI0f0x48cOaIPbj7++GMr1r7vHD9+nPF4PMZxHFu1apX+DU1paSlLTExkANi8efP6uZZ946uvvmLTp09nL730EtuyZQtbtmyZWYG/Lf1dMcbY3r17WWhoKPvoo49YZWWlwbl169bp7/mFF14wyjtnzhwGgCUmJrLS0lLGGGNarZatWrVK/8YpKyurL26jz6xevZodPHiQKZVKg+MnT55kw4cP13cuXM0W26qjJ5980iBe6uy1e6C2EwX+hBUUFDB7e3uWkJBg0GNiSkVFBROJRAwA279/v9F53T+khIQEa1e731VUVOjbaufOnUbnbKmd2traTL750Vm/fr3+ha6mpsbgnK211dV27NhhVuCvVCqZh4cHA8C+/vpro/NfffWVvpdOpVJZqbZ9R/dPdeHChUbnLly4wHg8HgPATpw40Q+161+ffPJJt4G/Lf5dNTY2GgWxHb3zzjv6N84ajUZ/PDMzkwFgPB6P5ebmGuW7//77beqNJmOMpaen6/+/5eTk6I/belsdPXqU8Xg8duutt7Jvvvmm09fugdxOFPgTNmPGDMbn89nx48fZgQMHugz8V69ezQCwyMhIk+dLSkr0+fPy8qxZ7QFB18u6adMmg+PUTobq6ur095uWlmZwztbbytzAf8+ePfrhZaaGKsjlcubg4MAAsH379lmptn2jublZ3zubmppqMs306dMZAPbqq6/2ce36nzmBv63/XZmiC8YAsIqKCv3xl19+mQFg06dPN5kvNTWVAWASiYS1tLT0VXX7VVNTk76tjh8/rj9uy22lVCrZ8OHDmYODAysuLu4y8B/I7USTe23cunXrsGfPHjzxxBNITEzsNn1aWhoAYMKECSbP+/v7IzQ01CDt9ers2bOoq6sDj8dDfHy8wTlqJ0NtbW367+3s7AzOUVuZR3fvSUlJEIvFRufFYjFGjx5tkHawysrKgkKhgFgsRlJSksk0ut+XwX6v1kJ/V8Y6vg5JpVL997r7nzhxosl8ur85uVyO7Oxsq9ZxoEhNTQUAODg4IDo6Wn/cltvq3XffxenTp/HWW28hICCgy7QDuZ0o8Ldh1dXV+Pvf/46AgAC89dZbZuW5cOECACA8PLzTNLpz58+fv/ZKDjCMMVRVVWHLli2YM2cOAOC5555DWFiYQTpbb6er/fDDDwAAd3d3DB061OActZV5bKmddPcaFBQEoVBoMs31cq/WYku/L+bSvQ7FxsbCyclJf7y7thIKhQgMDARwfbeVVqtFWVkZ1qxZgwceeAAA8O9//xsODg76NLbaVmfPnsW//vUvJCQk4Mknn+w2/UBuJ0GfXo0MKE8//TRqa2uxZcsWODo6mpWnrq4OAODm5tZpGt25+vr6a6/kALF161bMnTvX4FhMTAzWr1+Pe+65xyi9rbaTKUVFRfo3ls899xz4fL7BeWor89hSO9nSvVoLtaGhjIwMrFy5EgDw4osvGpyz9bb68MMP8cwzzxgcS0pKwtq1a3HjjTcaHLfFtmKMYfHixVCpVFi1apXR/zBTBnI7UY+/jdq5cyd++OEHzJkzxyig7YpcLgcAiESiTtPohiF0/Fh1sHN3d0dKSgrGjh2LoKAg8Hg8XLhwAd999x2Ki4uN0ttqO12ttbUVt912GxobG5GUlIRnn33WKA21lXlsqZ1s6V6thdrwisrKSsybNw9qtRpz587FXXfdZXDe1tvK398fKSkpSE5Ohq+vLziOQ3Z2NtatW4eGhgaDtLbYVp9//jkOHz6MJ554AqNGjTIrz0BuJwr8B5mlS5fqN43oyaPjRi8tLS147LHHYG9vj08++aRH15dIJAAApVLZaRqFQgHAcAxlX7NEO3U0YcIEpKam4siRIygsLEReXh7mzJmDXbt2YezYsWhsbDRIP1jaCbB8W+kolUrMmzcPWVlZCAkJwZYtW0wO2xgsbWWtdjLXYGknS7Cle7UWasN2jY2NmDVrFoqKipCYmIg1a9YYpbH1tlqwYAFSU1ORlpaGsrIyZGdnIzk5GT/88AOmTJkCjUajT2trbVVaWoqXXnoJ/v7+ePvtt83ON5DbiYb6DDIODg5wd3fvcT5nZ2f996+99hqKiorw/vvvIygoqEfluLq6ArjyMZYpunO6tP3BEu3UldDQUGzatAkjR45ETk4OPv30U7zyyiv684OlnQDrtJVarcadd96J3bt3w8/PD7///jv8/f1Nph0sbWXt36nuDJZ2sgRbuldroTZs7+S68cYbkZWVhWHDhmH37t0GY/t1XF1d0draatNt1dHIkSPx66+/IiwsDNnZ2fjxxx9x7733ArC9tnryySfR1NSEb775xuwh0cDAbicK/AeZt99+u0fvOk3JzMwE0D5p5z//+Y/BuY7vTn18fAAAH330Ee68804AQFRUFA4fPoy8vLxOy8/Pz9en7S+WaKfu8Pl8zJo1Czk5OcjIyDA4N1jaCbB8W2k0Gtx7773YunUrPD09sW/fPqPJzx0Nlrbqi9+prujufaC3kyXo6l9UVASVSmXyk6Lr5V6tZbD8XVlLa2srZs+ejbS0NERGRmLfvn2dvnGPiopCaWlpp22lUqlQVFSkT2sLHB0dMWnSJGzevBkZGRn6wN/W2koXLz3++ON4/PHHDc7phugUFxfr46UtW7Zg3LhxA7qdaKiPDauurkZlZaXBo+MkE92xjuPPxowZA+DKUl9XKy0tRUFBgUHa65larTb4qmOr7aTVavHggw9iw4YNcHV1xd69ezFkyJAu89hqW/WU7t7/+usv/UfEHSkUCvz1118AgLFjx/Zp3SwtPj4eIpEICoUCx44dM5nm0KFDAAb/vVqLLf9dyeVyzJkzB3/++SeCg4Px+++/6wMzU3T3r/udutqxY8egVCohkUgQFxdnjSoPSKb+v9lqW10dK1VWVqKpqQlA+/893TFd5+mAbqc+3TWADHjdbeBVUVHBhEJht7tBxsfHW7uq/U6hULDw8HAGgL322msG52y1nRYvXswAMCcnJ3bs2DGz8thqW+n0ZOded3f3bnfu9fT0vC527r3lllvM2rk3Ozu7H2rXv8zdudcW/66USiW76aabGADm7+/P8vPzu82TkZGh31m8q11W586da40qD0i1tbXM2dnZ6PWG2uqKrjbwGsjtRIE/MdBd4M8YY0888QQDwEJDQ9m5c+f0x7dv367fbXPr1q19UV2rOnfuHHv++efZmTNnjM5duHCBzZw5kwFg9vb2rLi42CiNrbSTzjPPPKPfWfbw4cM9ymtrbdWRuYE/Y4y99957DABzc3NjR44c0R8/cuSIfhfpDz/80Iq17TvHjh1jHMcxjuPYqlWrmFarZYwxVlZWxhITExkAdtttt/VzLfuHOYE/Y7b3d6VWq9n8+fMZAObj48POnz9vdt6bb76ZAWCJiYmsrKyMMcaYVqtlq1atYgAYj8djGRkZ1qp6n/vjjz/YW2+9xQoKCozOZWRksFGjRunfPDU3Nxuct7W26kxXgT9jA7edKPAnBswJ/FtbW9nYsWP172ZjY2P1Pd8A2LPPPtuHNbaerKws/T25ubmxhIQElpyczIKDg/XHXV1d2Z49e0zmt5V2Yqw98NTdl6+vL0tJSen0sXPnTqP8ttRWjDHm7u6ufzg5Oen/CXQ8/sQTTxjl02g0bN68efp2GTp0KBs6dKj+5wULFjCNRtMPd2QdH3zwAeM4jgFggYGBLD4+Xh+wRkdHs+rq6v6uYp8oKioy+N2wt7dnAJhAIDA4vnz5coN8tvZ39f333+vvLSQkpMvXoczMTIO8VVVVLDIykgFgYrGYxcfHs8DAQAaAcRzHPv744366K+v4+eef9W3l4+PDEhMTWVJSEvP19dUf9/f3Z1lZWUZ5ba2tOtNd4D9Q24kCf2LAnMCfsfZhLv/+97/ZiBEjmFQqZc7OzmzSpEls06ZNfVRT62tubmb/+9//2IIFC1hUVBRzdnZmAoGAubm5sXHjxrF//vOfrLKysssybKGdGDP8venu8c0335gsw1baijFmVjstWrTIZF5dj9Ho0aOZg4MDc3BwYKNHj2arV6/W94pfT/bt28dmzZrF3NzcmFgsZlFRUezll1826oW8nhUUFJj1O/P6668b5bWlvytdIGbO48CBA0b5m5qa2Msvv8yioqKYWCxmbm5ubNasWSaHSg12lZWVbMWKFWzOnDksPDycOTo6MqFQyLy8vNiUKVPYihUrWFNTU6f5bamtOtNd4M/YwGwnjjHGQAghhBBCCLmu0ao+hBBCCCGE2AAK/AkhhBBCCLEBFPgTQgghhBBiAyjwJ4QQQgghxAZQ4E8IIYQQQogNoMCfEEIIIYQQG0CBPyGEEEIIITaAAn9CCCGEEEJsAAX+hBBCCCGE2AAK/AkhhBBCCLEBFPgTQgghhBBiAyjwJ4QQQgghxAZQ4E8IIaRXHnjgAXAchwceeKC/q9KlV199FRzHYfny5f1dlevKjTfeCI7jsH///v6uCiHETBT4E0IIgDfeeAMcx4HjOIuXvWbNGrzxxhv4448/LF72QDVQ7rmkpAQrVqyAp6cnnnjiiW7T19fXQyqV6n8XcnNzr7kOHX+3rn7Y2dkhMjISixYtwpEjR3pchkQiQUBAAObMmYMNGzaAMdZt3h9//LHbOs+ePdsgz6VLl0yWCwDPPfcctFqt2e1BCOk/FPgTQoiVrVmzBm+++Wa/B8GW5uvri+joaPj6+hqdGyj3/Morr6CtrQ0vvPAC7O3tu02/fv16yOVy/c9ff/21Revj7e2tf3h6ekKpVCIvLw/r1q1DSkqKPpg2twyO41BaWoodO3bgzjvvxOzZs6FQKLrM/80333R5vqysDLt37+62HmPGjMHMmTORlZWF7777rtv0hJD+R4E/IYSQXnn33Xdx7tw5vPvuu/1dFZNKS0uxfv16iEQiPPTQQ2bl+eqrrwAAKSkpAIC1a9dCo9FYrE4VFRX6R1VVFRQKBVJTU5GYmAgAePPNN7vs+b+6DJlMhtOnT+OGG24AAOzatQuvvvqqyXweHh6wt7fHvn37UFJS0mn569atg0ajQUhISLf38+ijjwIA/vOf/3SblhDS/yjwJ4QQcl364osvoNFocNNNN8HNza3b9JmZmcjOzoZAIMB3330HR0dHlJeXY+fOnVarI5/PR0pKCrZu3ao/tm3bNrPz83g8DBs2DNu3b0dERAQAYNWqVVCr1UZp7e3tMX/+fGi1WqxZs6bTMnWfCJgzd0PXtmfOnMHhw4fNrjchpH9Q4E8IId2YPHkyOI7DG2+8AcYYvvjiCyQnJ8PJyQmOjo4YO3asyaEOa9asAcdxOHjwIID23tyrx2ibGjt96dIlLF26FMOGDYODgwPs7OwQExODp59+GkVFRRatY0c//fQTZs2aBW9vbwiFQri4uCAyMhJz5szBZ599ZjAEBjA9udfce66vr4ednR04jsOGDRu6rNeyZcvAcRzCwsJMjmE3hTGm772/5557zMqjSz9jxgyEhIRg/vz5ACw/3MeUgIAAuLu7AwBaWlp6nF8ikWDBggUAgObmZpw7d85kugcffBAAOg38U1NTceHCBYSFhWHixIndXlckEuH2228HAKxevbrH9SaE9C0K/AkhxEwajQZz587FkiVLkJmZCY7j0NLSgrS0NNx///14/fXXDdJLpVJ9EA2097h2HJ/t7e0NPp9vkGf9+vWIiYnBRx99hJycHH3P7fnz5/Hxxx9j+PDh2LNnj8XqqPPQQw/hrrvuwm+//YaqqipIJBKoVCrk5eVhx44deOKJJ1BRUdFtG5l7z66urrjjjjsAdB0wajQafQ/0ww8/bPbk69OnT+uHs0yYMKHb9HK5HN9//z0A4P777wcALFy4EADwyy+/oLKy0qzr9lZpaSlqa2sBANHR0b0qIyAgQP99U1OTyTQTJ05EeHg48vPz8eeffxqd79jbb25b694gmDMvgBDSvyjwJ4QQM3322Wf4448/sGbNGjQ1NaGxsRHFxcW45ZZbAABvv/22wSowd955JyoqKjBu3DgA7aufdByfXVFRgcDAQH36vXv3YuHChdBoNHjhhRdQUFCAtrY2yGQynDt3DgsWLEBzczMWLFjQac9/T+sItPfyfvPNN+DxeFi+fDlqa2vR3NwMmUyGmpoa7N69G4sWLYJIJOq2jXpyz4899hgAYP/+/bh48aLJ8nbu3InS0lIIBAKzx+kD0Ae1gYGB8PHx6Tb95s2b0dDQAEdHR9x6660AgEmTJiEoKAhqtRrr1q0z+9o9odFocPToUcydOxcA4OXlpX/D0VMdPz3qbGhTx09orv4kQyaTYcOGDeDxeD1aojU5ORkAUFlZ2eknDYSQgYECf0IIMVN9fT1+/vlnLFq0CFKpFEB7L+vGjRvh5+cHrVbb7bCVzmi1Wvzf//0ftFotPvvsMyxfvhwhISH64THR0dHYsGED5syZg6amJqxYscJiddRNJp0+fTpeeOEFg6DR3d0dM2bMwJo1a+Dn59ere+tMcnIy4uLi9EOTTNF9GjBnzhyzAnid9PR0AEBsbKxZ6XXDfObPn69vN47jcO+99wKw3HAfHx8f/cPLywtisRjjxo3D+fPnce+99+LYsWNwcXHpcblNTU1Yv349gPagPyoqqtO0ixYtAo/Hw6ZNmwyGFW3YsAEtLS2YNm2awRvS7kRGRsLBwQEAcPTo0R7XnRDSdyjwJ4QQM6WkpGDKlClGx8ViMWbOnAkAOHnyZK/K/vPPP5GbmwsPDw88/PDDnabT9QZ3NqyiN3XUBZrV1dUWXcHGHLpe/zVr1kClUhmcKy0txa5duwAAjzzySI/KLSsrAwB4enp2m/bixYv6ZUd1w3x0dO197ty5blfbMUdlZaX+0bG9W1tb0djY2OMhRQ0NDfj9998xdepU/T0//fTT4PE6//ceGBiI6dOn63v4dXTDfHryyYqObn6Crg6EkIGJAn9CCDGTbkiDKbre8Lq6ul6VrVsRpbGxEX5+fgY9wx0fixcvBgAUFhZarI7Tpk2DRCJBVlYWJkyYgK+++goFBQW9uo+euueee+Do6IiKigrs2LHD4NzXX38NjUaD0NBQ/XKV5qqurgbQ+ZCXjr755hswxhAYGIjJkycbnIuJicGoUaMAXPlU4FowxgwebW1tyMrKwqJFi/DLL79g4sSJBiv8mNJxorSrqyumT5+OjIwMAMB9992HV155pdt66Cb56j7JyMvLw6FDh+Dq6orbbrutx/ela2dduxNCBiYK/AkhxEyOjo6dnhMIBABg1GttLl1PqUqlMugVvvpRX18PAGhra7NYHcPDw/Hll1/CwcEBR48excMPP4ywsDB4eXnhzjvvxLZt28xeTaenHBwccN999wEwnOSr1Wr1gfbixYt7vKOybgUisVjcZbqOS1vee++9Jq+j6/XXDYWxJIlEgri4OHz55ZeYO3cuFAoFHnjggU4n5wKGG3gFBQUhISEBf/vb37B//358++23RhPGTZk7dy5cXV1x+PBh5Obm6nv77777bkgkkh7fh2541NUrPxFCBhYK/AkhZADQDflITk426hXu7GFJ9957LwoLC7Fy5UrceeedCAwMRHV1NTZs2IDbbrsNkyZN6jIYvRa64T579+7VT1Dds2cPCgsLIRAI9L3TPaEbeqJ7o9SZ3bt361f/uXqYj85dd90FgUCAlpaWXs/hMIfu05zGxsYu9w7oOFG6sLAQGRkZ+PLLL00O8eqMWCzG3XffDQD48ssv9ZOXe9PWwJVPkXTtTggZmCjwJ4SQAUA3cbWzITx9wc3NDY888gh+/PFHFBUVIS8vDy+++CI4jsOhQ4fwxhtvWOW6I0aMwLhx4wx6+XWTfW+99dYeTerV0Y3t727ole56CQkJGDp0aKdl3XjjjQbprSE4OFj/fV8MtdIF+R9++CFKSkowfPhw/bCmntK1szlzKggh/YcCf0IIsTLdRMuueulTUlIAtPfmHj9+vE/q1Z3w8HC8++67+g2w9u7da3Zec+65I12v/9dff43S0lL9eP8lS5b0pMp6uiC+s2VCgfbx6Nu3bweAbpfQ1J0/cuQIzp8/36s6dUf3yQPQvv+BtY0aNQojRoyAUqkE0LtJvUD7hmE1NTUAgCFDhlisfoQQy6PAnxBCrMzJyQlA+wosnZkyZQoiIiIAAM8884w+GOtMbycRm6JQKLo8rxu/3dVKMVcz5547WrBgAdzd3VFWVoZ77rkHKpWqV5N6dXSbSp04caLT+/v222+hUqkgEAj0w146c8stt8DZ2RmA9Xr9dRuIAeh1z3tPLV++HM8++yyeffZZ/VyLnjp+/Di0Wi0EAoH+DSwhZGCiwJ8QQqxs+PDhAK5sRmWKQCDAypUrIRAIkJqaiokTJ+L33383mIh78eJFrFy5EqNHj8b//vc/i9XviSeewB133IHNmzejqqpKf7ylpQUrV67Uj/+ePXu22WWac88dicVi/aZRus23ejOpVyclJQUCgQBKpRLZ2dkm0+gC+MmTJ8POzg4tLS2dPtRqtX5jr3Xr1ul3VLaEiooKvPrqq1i7di0AYMyYMRg7dqzFyu/KrFmz8N577+G9997r9TAd3Z4JCQkJ+vX8CSEDk6C/K0AIIde7RYsW4f3330deXh6CgoLg6empXzklNTUVAQEBANqX1dy4cSMWLlyI9PR0TJ8+HUKhEE5OTmhpaTHoue7NkoudUalU2LhxIzZu3AigfaUdgUBg0Fs/fvx4s5aJ1DH3njt69NFHsWLFCjDGej2pV8fJyQmzZ8/Gtm3bsH37dqNlTtPS0pCTkwMA2LdvX5erIV2tsrISv/76q/6NQE9cPV9BLpejsbFR//OIESOwefPmXr/h6Q+64VK6IWGEkIGLevwJIcTKIiMjceDAAcyZMweenp6ora1FYWEhCgsLjXqOb7vtNuTl5eH1119HUlISHBwc0NDQALFYjNjYWDz88MP4+eef8fzzz1usfsuWLcPHH3+MuXPnIiYmRr+CjZeXF2644QZ8/fXX+OOPP3o07rwn96wTERGBuLg4AL2f1NuRbtOv77//3miuwbUO1+lt/quXZ21tbYWPjw9mzpyJL774AsePH7f4DsnWdPHiRRw9ehRSqbTbeRKEkP7HMWstzkwIIYT0QEVFBQIDA6FWq7F7927MmDHjmsrTarWIiopCfn4+Dh48qB/3Tyznn//8J15//XU8+OCD+s3ACCEDF/X4E0IIGRBWrlwJtVqNiIiIXk/q7YjH4+Gtt94CAPz73/++5vKIIZlMhk8++QRisRivv/56f1eHEGIGCvwJIYT0u+PHj+P9998HAPz973+32Bj3u+66C0lJSdi1axeOHTtmkTJJu08//RQ1NTV46qmnDPYgIIQMXDS5lxBCSL8JCQmBQqFARUUFACA+Ph4PP/ywxcrnOA6rVq3C1q1bUV1dbbFySfteA2+88QaWLl3a31UhhJiJxvgTQgjpN7qefR8fH9x4443497//DW9v736uFSGEXJ+ox58QQki/ob4nQgjpOzTGnxBCCCGEEBtAgT8hhBBCCCE2gAJ/QgghhBBCbAAF/oQQQgghhNgACvwJIYQQQgixART4E0IIIYQQYgMo8CeEEEIIIcQGUOBPCCGEEEKIDaDAnxBCCCGEEBtAgT8hhBBCCCE2gAJ/QgghhBBCbMD/AxN4J61OLhTAAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.set_context('talk')\n", + "fig, axs = plt.subplots(figsize=(8, 5))\n", + "for i, modality, col in zip((0, 1), ['Extero', 'Intero'], ['#4c72b0', '#c44e52']):\n", + " \n", + " this_df = df[(df.Modality == modality) & (df.TrialType == 'psi')]\n", + " if len(this_df) > 0:\n", + " t, s = this_df.EstimatedThreshold.iloc[-1], this_df.EstimatedSlope.iloc[-1]\n", + " # Plot Psi estimate of psychometric function\n", + " axs.plot(np.linspace(-40, 40, 500), \n", + " (norm.cdf(np.linspace(-40, 40, 500), loc=t, scale=s)),\n", + " '--', color=col, label=modality)\n", + " # Plot threshold\n", + " axs.plot([t, t], [0, .5], color=col, linewidth=2)\n", + " axs.plot(t, .5, 'o', color=col, markersize=10)\n", + "\n", + " # Plot data points\n", + " for ii, intensity in enumerate(np.sort(this_df.Alpha.unique())):\n", + " resp = sum((this_df.Alpha == intensity) & (this_df.Decision == 'More'))\n", + " total = sum(this_df.Alpha == intensity)\n", + " axs.plot(intensity, resp/total, 'o', alpha=0.5, color=col, \n", + " markeredgecolor='k', markersize=total*5)\n", + "plt.ylabel('P$_{(Response = More|Intensity)}$')\n", + "plt.xlabel('Intensity ($\\Delta$ BPM)')\n", + "plt.tight_layout()\n", + "plt.legend()\n", + "sns.despine()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "X1j7kFaQHuhY" + }, + "source": [ + "Psychometric functions fitted using the estimated threshold and slope from the final trial on each condition. The size of the circles reflects the proportion of responses for each intensity level." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GwXSsbpAHuhZ" + }, + "source": [ + "# Pulse oximeter" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "S3DNYTpfHuhZ" + }, + "source": [ + "## Visualization of PPG signal" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_Z7av3DWHuhZ" + }, + "source": [ + "This interactive graph shows the PPG signal recorded at each interoceptive trial. Blue and red time series represent different trials of 6 seconds each. In each trial, the 5 last seconds were used to estimate the average heart rate of the participant, the first second was included to help peak detection algorithm initialization.\n", + "\n", + "Bad trials are represented with shaded area. A trial was marked as bad and removed if one of the two conditions was met:\n", + "* Contain a RR interval marked as an outlier. Outliers were detected using the MAD rule on all RR intervals in the recording.\n", + "* The standard deviation of the RR interval inside the trial is larger than 5." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "i_Nz2ioTHuhZ" + }, + "outputs": [], + "source": [ + "drop, bpm_std, bpm_df = [], [], pd.DataFrame([])\n", + "clean_df = df.copy()\n", + "clean_df['HeartRateOutlier'] = np.zeros(len(clean_df), dtype='bool')\n", + "for i, trial in enumerate(signal_df.nTrial.unique()):\n", + " color = '#c44e52' if (i % 2) == 0 else '#4c72b0'\n", + " this_df = signal_df[signal_df.nTrial==trial] # Downsample to save memory\n", + " \n", + " signal, peaks = ppg_peaks(this_df.signal, sfreq=1000)\n", + " bpm = 60000/np.diff(np.where(peaks)[0])\n", + " \n", + " bpm_df = pd.concat(\n", + " [\n", + " bpm_df,\n", + " pd.DataFrame({'bpm': bpm, 'nEpoch': i, 'nTrial': trial})\n", + " ]\n", + " )\n", + "\n", + "# Check for outliers in the absolute value of RR intervals \n", + "for e, t in zip(bpm_df.nEpoch[pg.madmedianrule(bpm_df.bpm.to_numpy())].unique(),\n", + " bpm_df.nTrial[pg.madmedianrule(bpm_df.bpm.to_numpy())].unique()):\n", + " drop.append(e)\n", + " clean_df.loc[t, 'HeartRateOutlier'] = True\n", + "\n", + "# Check for outliers in the standard deviation values of RR intervals \n", + "for e, t in zip(np.arange(0, bpm_df.nTrial.nunique())[pg.madmedianrule(bpm_df.copy().groupby(['nTrial', 'nEpoch']).bpm.std().to_numpy())],\n", + " bpm_df.nTrial.unique()[pg.madmedianrule(bpm_df.copy().groupby(['nTrial', 'nEpoch']).bpm.std().to_numpy())]):\n", + " if e not in drop:\n", + " drop.append(e)\n", + " clean_df.loc[t, 'HeartRateOutlier'] = True" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 647 + }, + "id": "W7rpB_DYHuhZ", + "outputId": "24edec89-6759-4378-8b3c-1ce8f5e64ab5" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACYMAAAN3CAYAAABqO9dxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5wURd7/Pz27yy5piUoSUTDnjIpgQlExhzNnT8/H+5nu9PTOrI+e4fH09DwD5oBiRF0kg2QkJ8mwCywZNueZqd8fs9Pboaq7emaWTZ/366XsVFfq6opdn/6WIYQQIIQQQgghhBBCCCGEEEIIIYQQQgghhBDSpAk1dAYIIYQQQgghhBBCCCGEEEIIIYQQQgghhCQPxWCEEEIIIYQQQgghhBBCCCGEEEIIIYQQ0gygGIwQQgghhBBCCCGEEEIIIYQQQgghhBBCmgEUgxFCCCGEEEIIIYQQQgghhBBCCCGEEEJIM4BiMEIIIYQQQgghhBBCCCGEEEIIIYQQQghpBlAMRgghhBBCCCGEEEIIIYQQQgghhBBCCCHNAIrBCCGEEEIIIYQQQgghhBBCCCGEEEIIIaQZQDEYIYQQQgghhBBCCCGEEEIIIYQQQgghhDQDKAYjhBBCCCGEEEIIIYQQQgghhBBCCCGEkGYAxWCEEEIIIYQQQlwYhgHDMDB58uSGzkpKaa731VjYb7/9YBgGPvrooz2e9i233ALDMHDLLbfUS/xnnHEGDMPAU089VS/x61Df91ifNGTdIA0P+97Gg+pZ5Obmmtdyc3MTivujjz6CYRjYb7/9ks5nQ7FixQpkZGTgiCOOQDQabejskARoDvWwPkm2rc+aNQuGYWDQoEGpzxwhhBBCCCEkZVAMRgghhBBCCGmxPPXUU+ZmiPW/rKws7LPPPrj44osxYsQICCFcYeMbTc7/WrVqhe7du+Pcc8/FsGHDUFNT45uP3377DQ8++CBOPPFEdO/eHa1atUL79u3Rt29fXHrppXjttdewcePG+igCQghp0hQWFuKpp57CU089hcLCwobOTovjtddew1NPPYWFCxc2dFZIPZKbm2u2s+bOQw89hHA4jCeffBKhkP3V+eTJk6VzP+d/w4YNa6DcE1L/nHzyyRgyZAimTp2K77//vqGzQwghhBBCCFGQ3tAZIIQQQgghhJDGQLdu3cy/i4qKkJ+fj/z8fPz000/46KOP8P333yMzM1MatmvXrkhLSwMAlJaWYtu2bRg3bhzGjRuHd955B2PHjkWnTp1c4bZu3Ypbb70Vo0ePNt0Mw0B2djbC4TDWr1+P9evXY+TIkfjrX/+K6667Dh9++KGZVn1y8MEHAwDatGlT72kRQvTo0aMHDj74YPTo0aOhsxKYfv36ISsrCx06dEhpvIWFhXj66acBxCyndezYMaXxE29ee+015OXlYb/99sMxxxyj9McxpfGTkZFhPqeMjAzbtdzcXLOdeQnCOnTogIMPPhi9evWqt3zWJ5MmTcLPP/+MI444AldeeaWnX+u80QnrOWnuPPXUUxgzZgweeeQRXHTRRUhP5zYTIYQQQgghjQ3O0gkhhBBCCCEEMWFWnGg0iuXLl+OBBx7AuHHj8Msvv+Cxxx7Dyy+/LA07Z84c21E069evx2OPPYYvvvgCc+fOxZ133omvv/7aFmbt2rUYOHAgtmzZgoyMDNx666246aabcOKJJ6JVq1YAgLKyMsycORM//PADPv74Y3z66ad4991394gYbMWKFfWeBiEkGC+88AJeeOGFhs5GQkyYMKGhs0AaEI4pjZ9evXol/Zwuu+wyXHbZZSnK0Z7nxRdfBAD86U9/gmEYnn6t80ZCWhonn3wyjj76aCxatAg//PCDr3iSEEIIIYQQsufhMZGEEEIIIYQQ4iAUCuHwww/Hjz/+iAMOOAAA8M477yAcDmuF33///fHZZ59h4MCBAIBvv/3WtmlYWVmJSy65BFu2bEHHjh0xceJEvPPOOxgwYIApBAOAtm3bYvDgwXjzzTeRm5uLm266yXdzkhBCCCGEBGP9+vUYO3YsMjIycPXVVzd0dghp9Nxwww0AYmskQgghhBBCSOODYjBCCCGEEEIIUZCVlYWrrroKAFBSUhLIYoZhGOYmiRACc+fONa8NGzYMy5YtAxDbQDnttNN84+vSpQs+/vhj5VGVXmzatAkPPPAADj/8cLRt2xaZmZno2bMnjj/+eDzwwAOYM2eONP+GYWDy5MnSOHfu3IkHHngAffv2RVZWFnr06IGrrroK8+fP9ww/efJk8xoArFmzBrfddht69+6NzMxM7LPPPvjjH/+I/Px8abrRaBQTJkzAvffei5NPPhn77LMPWrVqhS5duuD000/H22+/jZqamsBl5Edubq6Z79zcXKxduxZ33nkn9t9/f2RmZtosw8Xz+fnnn+OCCy5At27d0KpVK+y1114499xzMXz4cAghPNNbvnw57rnnHhx22GFo37492rVrh4MPPhjXXHMNvv32W0SjUVeYyspKvPbaazj11FPRqVMnZGVloU+fPrjpppuwcOFCZVr77bcfDMPARx99hNLSUjzxxBM48sgj0b59e/N+41RUVOC5557DYYcdhtatW2PvvffGBRdcEMjqU05ODq644gr06tULmZmZ6NSpEwYNGoT//ve/qK6u9gz7+eefY8CAAWjfvj06dOiA/v3749133/UtTx0ikQjeeOMNHHfccWjbti06d+6MM844A998841nOGfdUGEtZ6/wXnXrlltugWEYuOWWW1zxn3HGGTAMA0899RSEEHjvvffQv39/ZGdno3379jjllFPw2Wefed5LTU0NXn31VRxzzDHSMrCmERTV/QP2/qKkpASPPfYYDjnkELRu3RpdunTBhRdeiNmzZ0vvef/99zd/77///mZchmHgjDPOcIWprq7GW2+9hTPPPBNdu3ZFq1at0L17d1xyySX45ZdflPm35nH79u148MEHcdBBB6FNmzYukW6ibTFOIu0fSKxtWZ9pdXU1/vnPf+Koo45C27Zt0alTJ5xzzjnScnnqqadgGAby8vIAALfeequt7J1lIhsT/vWvf8EwDHTr1s1TbC2EMOvPs88+67qe6DPVZfbs2bj11ltxwAEHoE2bNsjOzsZhhx2G2267DWPGjJGGKSoqwjPPPIPjjjsO2dnZaN26NQ488EDcfffdWLdunTKtRNuClYKCAjz00EPm0azx8XnevHme4VR92X777YczzzzTlcf4f9b+6KOPPoJhGK4x0cratWtx991348ADD0Tr1q2RnZ2N4447Ds888wyKi4ulYZKdO+gwbNgwCCFwzjnnoGvXrgnHkwzhcBjvvvsuzjjjDHTt2hUZGRno0qULDj74YFx99dV4//33lWFzc3Nx//334/DDD0e7du3Qpk0bHHLIIbjvvvuwYcMGz3Srq6sxbNgwnHfeeejWrRsyMzPRo0cPnHLKKXjmmWewfv16abgFCxbgpptuQp8+fZCVlYVOnTrh1FNPxWuvvYaqqippGGcdmTdvHv7whz+gR48eyMzMRN++ffHggw+ioKDAM8+zZs3CpZdeiq5du6J169Y4+OCD8Y9//AOlpaWe4QBgzJgxuPzyy805ZHZ2Nvr27Ytzzz0Xr7zyCnbv3u0bh4ySkhL885//xCmnnILOnTsjMzMTvXv3xjXXXIOZM2cqwy1duhRPPfUUzjrrLPTr189sF8ceeywee+wx7Ny50zftRMcNANi2bRvuu+8+7L///sjKykK3bt1wzTXX+K57rrvuOgAxy59e/RohhBBCCCGkgRCEEEIIIYQQ0kJ58sknBQDhtTT6z3/+Y/qZPn266f7hhx+a7uvXr5eGzcnJMf18/vnnpvshhxwiAIhDDz00ZfeiYuHChaJTp05mPtLS0kSnTp2EYRim28033+wKF782adIk17WVK1eKnj17mn4yMzNFdna2ACBatWolfvzxR2X4SZMmmdcmTpwo2rVrJwCI9u3bi/T0dPNaz549xaZNm1xpr1+/3vQDQLRr10506NDB5jZw4EBRXl4uLQ+v+/LCmu7nn39u5rtNmzaibdu2ok+fPqbfXbt2iUGDBtny5MzjxRdfLKqqqqRp/fOf/xShUMj0m5WVJTp37mxzKygosIXZtGmTOOKII8zrGRkZtjRDoZD497//LU2vT58+AoB45ZVXxEEHHWQ+x44dO9rq965du8Sxxx5rxpmenm76MQxDvPXWW2ZcH374oSud8vJyceWVV9rKITs721YXTz75ZLF7925X2Gg0Km699VbTn2EYolOnTmaZXHPNNeLmm29W1mc/KisrxZAhQ2zl1bFjRzNvf/vb38Tpp58uAIgnn3zSFtZaN1R9gbWcnWUTpG553WM8f4899pi45JJLzGcUb5vx/5544glp/kpLS2311tlXPProo8oy0MGrbsTT/OKLL8QBBxxg1vs2bdqY11q1aiXGjBljC3fZZZeJrl27mn66du0qunXrZv532WWX2fzn5uaKww8/3FaPnG3zT3/6kzT/8evvvfee6Natm5nH9u3b28aQZNqiEIm1/2TaVvyZPvroo2LgwIGuth3/z/nMX375ZdGtWzczX9nZ2bay79atm7T8rH3v1q1bRVpamgAgfv75Z2WZTJ482XxezjaWzDP1IxwOi3vvvdcWV9u2bW3tokOHDq5wS5cuFfvss4/tGcbrSXzM/Oabb6RpJtoW4qxfv95sa3G/1vF55MiRynFQ1ZedcMIJtnmE8znfe++9pt/43Mjab1n56quvRGZmphlX+/btbb979+4tfv/9d1e4ZOcOOhx33HECgHjhhReUfqz5SDXhcFicc845tvrWoUMHW/mo0v3ss89s/jIzM0Xr1q1t5ayqM+vWrbP1WfHx1Vrn7rvvPle4V1991dbHdOjQQWRkZJi/jzrqKLF582ZXOGsd+fzzz80wHTp0sPVzhx9+uCgpKZHm+f3337f57dChg2jVqpUAIA455BDx6quvKuvh008/bSvPNm3amPVJ1TZ0WLBgga3dp6Wl2dq9YRji+eefl4a1ttl4n28t2169eokVK1Yo0w46bljb+s8//yz23ntvsyys9Sg7O1ssXLjQ87779esnAIi33norcJkRQgghhBBC6heKwQghhBBCCCEtFh0x2EMPPWT6Wb58uemuIwazCsl++eUXIYQQ+fn5ptvDDz+c0vuRcfbZZwsA4rjjjhMzZ84U0WhUCCFEVVWVWLVqlXjllVfESy+95Aqn2hCrrq4WRx55pABiwovvvvtOhMNhIYQQy5cvF2eddZZt09hLDNapUydx8cUXm+VaVVUlvvrqK3Pz7MYbb3Tla+PGjeL6668XP/74o9i1a5fpXlJSIj788ENTpPbAAw9IyyPRjT7rxlm7du1E//79xZw5c8zrK1euFELENnPj4opjjjlG/PTTT6KsrEwIERPbfPzxx+am2/333+9K56233jLTufjii8WCBQvMa2VlZWLs2LHi6quvFkVFRaZ7OBwW/fv3NzdEP/vsM1NotnbtWnHhhReaG5GjRo1ypRnfhGzXrp3o3r27+P7770V1dbUQIlbe8fxfdtll5ibz22+/LSoqKoQQMTHGZZddJjIyMszNY5ng54YbbhAARN++fcXnn39u3kNFRYUYOXKk6Nu3rwAgLr30UlfY119/3SyXP//5z2LHjh1CCCEKCwvFU089JQzDMMUriYjBHnjgAbOMnnvuOTNv27ZtE3fffbdZtkD9isG86pYQemKwTp06iQ4dOoiPPvrIFEVu3LhRXHTRRQKIiZFWrVrlCn/XXXeZ11988UVzE37Hjh2mICZexvUlBuvUqZM47LDDxMSJE0UkEhHRaFT89ttv4uCDDzY39iORiLL8vMq/tLTUFOKeccYZYvLkyaKyslIIEatHr776qikIeO2115R5bNeunTj44IPFhAkTzLxY238ybTGR9i9Ecm0rXm/iohNr296wYYNNZDZy5EhXeK/nKis/Z997/vnnCwDi6quvVoa9/fbbBQAxaNAgm3uyz9SPhx9+2Mz3bbfdZmuLhYWF4ocffnDlu7i4WOy///6mgCMnJ8esJwsXLhQnn3yy2Y/KRBbJtIVwOCxOOOEEM/yIESNETU2NEEKIZcuWiYEDB9pEfrpiMCH0RVBeYrB58+aZwp8BAwaIxYsXCyGEiEQi4scffxQ9evQQAES/fv1cIqBk5w5+FBUVmcLECRMmKP1Z83HKKaeI7OxskZmZKfbZZx9x+eWXix9++MGcZwXl008/NYU8w4YNM8sgGo2Kbdu2ie+++05ceeWVrnBjx44VoVBIpKeni4cfflisX79eRKNREY1GxYoVK8RVV11lCnvy8vJc933ggQea5fruu++KwsJC8/ratWvF//3f/4lXX33VFu6nn34yy+GSSy4R69atE0LEnsUnn3xiPotTTz3VnCPGideRuPDojjvuEBs2bBBCxPq5N99806wnjz/+uOt+582bZwoAzzjjDLMeVFdXi+HDh4uOHTua9dxZD3Nzc02B1IMPPijy8/PNa4WFhWLq1Knif/7nf8TcuXM9n5WTzZs3m3O7yy+/XMydO9ecR23btk08/vjjZp6///57V/ibbrpJfPTRR7bnU1VVJcaPHy9OOukkcx4vI5Fxw9rWO3XqJAYMGGDOO2pqasS4cePM9jhw4EDPe7/uuut8+3BCCCGEEEJIw0AxGCGEEEIIIaTF4icGKyoqMsVFnTt3tm28+onBampqxNFHH22KK3bu3CmEEGLcuHFmuC+++KJe7stK3DLEjBkzAoVTbRbHNysNwxBTpkxxhauoqDA35/3EYGeeeaZrM1sIIf79738LAKJ169bmRrYuc+bMEUDMektc0KBzX35YN8769OmjtFbxySefCCBmmcK6oWpl7ty5wjAM0apVK7Ft2zbTfffu3eYG6jXXXKO9ofzll1+aeZNZ/qipqTEFKkcccYTrelzMkZaWJubPny9NY/bs2WYa77//vut6OBwWp512munHKQyZMmWKACD23ntvc9PXycaNG0Xbtm0FANtmZkVFhejcubPnJv8jjzxiph1UDJafn29u0so2noUQ4tprrzXjr08xmFfdEkJPDAbELOc4qaysNPuz5557znYtLy/P3CB/9tlnPdOuTzHYXnvtZWsTcRYvXmz6mTZtmu2abvk/88wzAoA4/fTTzU16J999950AYkJXZ98TTyM7O1ts3LhRGj6Ztpho+0+mbQlhrzeyth2JREyLcYcffrjrerJisOHDh5sCGKfITYhY+48LMYcNG2a7luwz9WLlypVmmwgi3P7nP/8pgJhFuCVLlriuFxcXi/32208AEEOHDnVdT6YtfPXVV+a18ePHu8KWlZWZVnwaQgx23nnnCQDigAMOMEXGVubPn2/2xS+//LIy/fqYO0yYMMGMPz5fk2HNBxATyGZlZdnczj//fM9+XEVceHznnXdqh4lEIqaY65133lH6u/jiiwXgtvD12GOPCSAmTlSN/zIOPfRQUyjkFHsJIWwWYr/++mvbNev8WTVeP/jgg2ZdcRIXkB500EFSK7CjR4+2jalW4m3koIMO0r5XHW677TYBQFx33XVKP3FrZUcffXSguEtKSkxrlFOnTrVdS3TcsLb1Qw45RFqO1meoGvOEiFmJBCD23XffQPdFCCGEEEIIqX9CIIQQQgghhBBio7CwEBMmTMBZZ52FzZs3AwDuu+8+hEL+S6jS0lLMmjULF1xwARYtWgQAuPnmm9GlSxcAwK5du0y/nTt3VsZz1FFHoXv37q7/XnnllUD30rFjRwDAli1bAoVT8fXXXwMABg0ahIEDB7quZ2Vl4aGHHtKK6+9//7u0TC+55BIAQEVFBVavXh0ofyeccAL23ntvlJWVYeHChYHC6vLnP/8Z7dq1k157//33AQB33303OnToIPVz/PHH4/DDD0d1dTUmTZpkun/zzTcoKSlBRkYGXn31VRiGoZWfr776CgBwyimn4Nxzz3VdT09Px5NPPgkAWLp0KZYsWSKN57zzzsOxxx4rvfbll18CAHr37o1bb73VdT0tLQ2PP/64Mo/xcrn++uvRu3dvqZ999tkHZ555JgBgzJgxpvvYsWOxe/duAMATTzwhDfvII48gKytLmb4X33zzDcLhMFq3bo2//vWvUj9PPfVUQnEHxatu6TJgwACzHK1kZmZiyJAhAIDFixfbrn377beIRqNo06YNHnjgAWm8Xs83Vdx5553Ye++9Xe5HHnkk9t9/fwDuvOsSr4MPPvggMjIypH4uvfRSZGdnY+fOnZg3b57Uz4033oh99tlHei2Ztpho+0+mbVlRte1QKITHHnsMALBs2TJl/5Eol1xyCbKzs1FZWWmOL1Z+/PFHFBUVISsrC1deeaXtWqqeqYyPP/4Y0WgUXbp0wdNPP60dLl4HrrzyShxxxBGu6+3bt8fDDz8MAPjll19QVFQkjSeRthDvpwcMGICzzz7bFbZNmzZm2nuawsJCs+499NBDaNOmjcvPsccei8svvxwAMHz4cGVc9TF3iM/10tLSPOdmHTt2xF//+lfMnj0bZWVlKCgoQHl5ORYuXIirr74aQOy5XnvttYHSj8cNAFu3btUOM2XKFKxevRpdu3bFHXfcofR30003AXC3/w8++AAAcMcddyjHfyeLFy/G8uXLAQCPPfYY0tLSXH4uuuginHTSSQC8n2W8b3ESf5Zr1qxBeXm56e6sR61bt3aFHTJkCE455RRpvPEyLikpQVlZmTJfQaisrMQXX3wBAPjb3/6m9Bd/BosWLcK2bdu042/Xrh1OP/10AMC0adNs1xIdN6z85S9/kZbj+eefj1atWgGAZ7/ftWtXAKlbZxBCCCGEEEJSR3pDZ4AQQgghhBBCGgNeGyg33HAD/vGPfyivxzdmZQwePBhvvPFG4Pxs375dullUWloaKJ4LL7wQ7733Hm6++WZMnz4dF198MU488UTpRqwO8+fPBwBzY0rGGWecoRVX//79pe49e/Y0/46LgKxUV1fjgw8+wHfffYelS5di165dqK6udvnbtGmTVj6CMmDAAKl7JBLBrFmzAMTEQ88//7wyjvh95eXlmW4zZswAEBOL9ejRQzs/c+fOBRCrayrOPPNMpKWlIRKJYO7cuTjyyCNdflT3ZU3jjDPOULaVQYMGIT09HeFw2HVt+vTpAGLijfimqYy4MMJaLvG0e/fujQMOOEAarkOHDjj++OPNdIIQj/+EE05Adna21M9BBx2EXr16IT8/P3D8QfB6Brqo2hVQ17ac7Srerk844QS0bdtWGrZfv37o3bs3Nm7cmHQeVfjlff369dI+wY/8/HyzTt1+++1S8UKceB+bl5cnzY9OO0mkLSba/pNpW1a82vbAgQPNtq3qPxKldevWuPLKK/HBBx/g008/xe233267/umnnwKIiUOsAttUPlMZ8edxzjnnaAtNq6urTYGWVx0455xzAADRaBTz58+XijcTaQvx+nfWWWcpw3pdq0/mz58PIQQA/7IZMWIEFi9ejJqaGqnIL9G5gxc7duwAEBMLec0HjznmGBxzzDE2N8MwcPTRR+PLL7/E3nvvjTfeeAM///wzJk6cGKi8L7jgAvzzn//Ejz/+iPPPPx833XQTTj/9dNt9OYm3/6KiIk9/8TmStf3n5eWZIriLLrpIO5/xepaenu45FzznnHPw22+/mf6ddO7cWTmmW++loKDAnLPOnz8f0WgUgH89nzlzpsv9pJNOQteuXbFlyxb0798ff/rTnzB48GAcfPDBCQmpAGDevHmorKwEAKkIWEZeXh66detmc/v555/x6aefYs6cOdi2bZtNBBfHOa9NdNywompP6enp2GuvvZCfn+/ZnuLiyZqaGhQWFpqCO0IIIYQQQkjDQzEYIYQQQgghhAC2TZnMzEx07doVxx57LK6//nrpRq2Vrl27mhvRGRkZ6Ny5M4466ihceeWVuPjii20bTHELYYD3ZqXTMsR+++2n3MT34qWXXsKaNWswadIkvPrqq3j11VeRlpaGY445BkOHDsWdd96JXr16accX3zD12nTUja99+/ZS9/T0uqVqTU2N7dr27dsxePBgm5WCrKws2zPYsWMHotFoyqw+OJFZawFiz7OqqgpAbPNSB+tmX/yZ9+nTJ1B+tm/fDsC73ONltG3bNtO/E9V9BUmjS5cuUhFjfMO5uLgYxcXFyjjiWMtFJ20ASmtNfgSJv77FYF7PQBdVuwLq2pazXem0ayBWRvUpBksk7zrE6x8A7Ny5UyuMbCMeSE07kbXFRNt/Mm3Lim7bVvUfyXDTTTfhgw8+wJQpU5CXl2eWwY4dOzB69GjTj5VUPlMZiTyP3bt3IxKJAPAuT2tfpSrPRNqCTv1LtJ9MFut96uQvHA5j9+7dLsEMkNjcwY+4mCczMzNQOCfPP/883nvvPVRWVuKHH34IJAY77bTT8OKLL+Kxxx7D6NGjzbq/zz77YPDgwbjppptc89F4O6ipqdGyNlVRUWH+bZ1nBqnn8WfZtWtXz/KKP8tk6jhgf5ZB65GTjh07Yvjw4bjuuuuwbNky/L//9/8AxATlgwYNwh/+8AdcffXVSkuDMqx9ka7FL2tfFI1GccMNN9gsqKWnp6NTp06mZa6ioiJUVla65rWJjhtWkh13rVbF4u2IEEIIIYQQ0jjgMZGEEEIIIYQQgtiGSvy/vLw8zJs3D8OGDfMVggHAnDlzzLAbN27EokWL8Omnn+KSSy5xWRo47LDDzL/r6xhDKx07dsTEiRMxdepUPPzwwxgwYADS09Mxb948PPPMMzjwwAM9j/BRkagFhWR54IEHsGTJEnTp0gUffPABtmzZgoqKCuzYscN8BnFBS9wKSapRWaCJiwCA2DFRQgjf/6zHDzZUmcbxsqyTLPGy+e9//6tVLh999FG95aUxU5/PQIeGroP1hbVtLl++XKsO3nLLLdK46usZJVr2zaFtDRo0CH369IEQAp999pnp/uWXXyIcDqNbt24uizupfKYymmtbIHLiQn1dIbeKdu3amceDrlu3LnD4hx56COvXr8e//vUvXHrppdh7772xadMmfPTRRzjrrLNw1VVX2YQ58XbQv39/rTZgnRe11Do+ePBgrF+/Hp988gluvvlmHHjggSgqKsJPP/2EG2+8Eccee2wg4be1L6qoqNB6BlYLuu+//z6GDx+OtLQ0PPHEE1i9ejWqqqqwe/duc14bPyLXOa9tDM/Q+mGL9YMXQgghhBBCSMNDMRghhBBCCCGE7EF69uyJQw45BADw008/7bF04xYnpk2bhsLCQowcORJHHnkkKioqcNttt2lbM9hrr70A2C0hOKkv60k1NTX47rvvAABvvvkmbr31VnTv3t3mJxKJaFuJSTVdunQxrSgkYsUtfi9Bw8YtFXkdi1lZWYldu3bZ/CeShtezraqqMtNwkui96aatc72+4rdaMPGyihE/pq8xotOugfpr2/WNtZ9IpA7qkkxbTLSNJNO2rOi27VRYr3NiGAZuuOEGAHXHQlr/vvbaa23tDKj/Z5pIuXbu3NkUC3rVAeu1VJanTl/WUG3Yep86ZZOenm4eP7cniPeBFRUVDW7dqGfPnrj//vvx/fffY9u2bVi8eDHuuOMOAMA333yD//73v6bfZNp/om0o/ix37txpWkOVEX+W9VHHgeTqedu2bXHjjTfio48+wqpVq7Bp0ya8+OKLyMrKslkM0yHZvujLL78EANxxxx14+umnccABByAUsm/ZOK0FO9Ouz3HNj7gYrEOHDoEsqhFCCCGEEELqH4rBCCGEEEIIIWQPc8899wCIWTMZMWLEHk8/KysLF198sSmsqqysxLRp07TCHnfccQCAyZMnK/14XUuGHTt2mJu0xx57rNTPtGnTGmwjNyMjAyeddBKAxIR+p556KgBg7ty52LJli3a4E044AQAwYcIEpZ/JkycjHA4DAE488cTAeYun8euvvyotrk2ZMsVMw8mAAQMAAD///HPCaW/cuBFr166V+ikuLsa8efMCx22Nf+7cuSgtLZX6Wb16tVLA0KlTJ/Nv1RGKq1atQmFhYUL52xPE2/XcuXOVx6uuW7euXo+ITBTrprmqbu63337mkWL1KcJNpi0m2v6TaVtWvNr21KlTzTzH7zFOvPyTtcQYPwZy5cqVmDNnjvmv9ZqV+n6m8ecxbtw47TGlVatWOOqoowB414Hx48cDiJVdvO2lgvizmTRpktLPxIkTE4pbp515cdxxx5lx6JTN0UcfvUeFJVarrYlY9IpTWlqKpUuXAgD233//pPMFAEceeSTee+89s62PGzfOvBZ327p1K+bOnRso3n333TehNhSvZ+FwGL/++qvSX/xZJjLnUGGtR6ms57169cLDDz+Mv/zlLwDsZezHiSeeaB7nmEhfFB9XVfPa0tJSzJ49W3ot0XEjlaxfvx4AcOihhzZI+oQQQgghhBA1FIMRQgghhBBCyB7mjjvuwOGHHw4AuOuuuzB9+vR6SSccDiMajSqvt27d2vzbaYVARfyomilTpkjzXVVVhVdeeSVgTvXIzs42j8RZtGiR63o4HMY//vGPeklblzvvvBMAMGrUKIwaNcrTr/VoHQC46qqrkJ2djXA4jAceeEB7w/2aa64BAMycORNjx451XQ+Hw3jmmWcAAEcccYR5hFUQrr76agDAhg0b8PHHH7uuR6NRPPfcc8rw8XJZunSpzaqJjLKyMlRXV5u/zznnHFNw9eyzz0rDvPTSS6ioqPC+CQVXXHEF0tLSUFFRoay78fKT0bZtW/Tr1w8A8O2330r9/O///m9CedtTXH755QiFQigrK8Prr78u9dNY7yE7O9v820tw98c//hFA7EiuBQsWeMbpbJu6JNMWE23/ybQtK15t+/nnnwcQE8wceeSRtuvx8k9W7HjQQQehf//+AIBPPvnEtAp2xBFHKEUS9flMb7nlFqSlpWHXrl148skntcPF68A333xjioKslJaW4qWXXgIAXHDBBejQoUOgfHkR76enTZsmFWVXVFTg5ZdfTihu3XamomPHjhgyZAgA4OWXX0Z5ebnLz6JFi8w+9Nprr00on4ly8MEHo1u3bgCA3377TenPr10+9thjpnjwkksuCZQHLytbQN2czTpfO/PMM3HAAQcAiB2jrWrfcZzt4PbbbwcADBs2zLcNxTnqqKNM8dxzzz1nOyYxzqhRo0wBUyqfZceOHc0jY1955RWpUHP8+PGYMWOGNHwiZexH27Ztcd111wEAXnzxRWzYsMHTv/MZxPsA2bwWiM17SkpKpNcSHTdSSfw5n3766Xs8bUIIIYQQQog3FIMRQgghhBBCyB4mKysLI0eORI8ePVBYWIgzzzzTFIVZN/Kqqqrw22+/4b777kvoaKdNmzbhwAMPxHPPPYcFCxbYrDYtXrzYPJarbdu22ps4V199NQ4//HAIIXD55Zdj5MiR5kbgypUrceGFFyqPs0mWdu3amVYwHnzwQUycONEUuy1duhQXXHAB5s6di7Zt29ZL+jrccMMNGDx4MIQQuOyyy/Dcc8/Zjt4rKyvDpEmTcM8996Bv3762sB06dDBFAl999RUuu+wyLFy40LxeXl6OnJwcXHLJJSguLjbdr7jiClNE8Yc//AFffPEFampqAMQsNlxxxRWYOXMmAJjxB6V///64+OKLAQB333033nvvPXNTdcOGDbj66qsxc+ZMtGnTRhr+9NNPx6233gogZhnvgQcesFlfqaqqwqxZs/Dwww+jT58+2L59u3mtdevWePzxxwEAH3/8Me6//37zyLri4mI8++yzeP7559GxY8eE7q1Xr16mtb5nn30WL7zwgrnxumPHDvz5z3/GZ5995inaiG92f/DBB3jrrbdMYdrGjRtxxx134KuvvlKWTWOgT58+pijgiSeewCuvvGJaSdu1axcefPBBfPDBBwmXcX3SsWNH07rNhx9+qLRO95e//AVHHnkkKisrceaZZ+LNN9+0HWtaWFiIX375BTfddBMGDhyYUF6SaYuJtv9k2pYz/XjbjgssNm7ciGuvvda0wCMTfMYFbd988w0KCgo0S0rOjTfeCCB2bNpnn31mc5NRn8/0gAMOwEMPPQQg9qzuuOMOrF692rxeXFxsPicrd999N/bff3/U1NTg/PPPxy+//GKOU0uWLMGQIUOwfv16ZGZmegpoE+GKK64wLY1dccUV+Pbbb83xefny5Tj//POxY8eOhOI+6KCDTOtHw4YNS0h08txzzyEjIwNr1qzBkCFDsGTJEgAxweGoUaNwwQUXIBwOo1+/frjrrrsSymcyxOdBKitMQEwQ+a9//QvLly83n6sQAkuWLMENN9xgimnPP/98DB48OFD6l156KW677Tb88ssvNsHd7t278dxzz5kW1YYOHWpeS09Px9tvv4309HRMmzYNgwYNwoQJE8x+B4hZOnv77bdx4okn4q233rKl+de//hUHHnggqqqqcPbZZ+O9996z9S9r167FM8884xJKv/jiiwBiVgOvvPJK0zpUTU0NPv/8c3NMPPXUU3HppZcGKgc/nn32WaSlpWHFihUYOnQoVq5cCSAmth0xYgT+8Ic/KMeqF198Eeeffz4+/fRTm7XPqqoqjBgxwhRLWstYh+effx49e/bEzp07ccopp+DTTz+1Cbh27NiBb7/9FpdddplLHHfeeecBAN577z28++675jpg69ateOCBB/DSSy+hS5cu0nQTHTdSRSQSMa2yUgxGCCGEEEJII0QQQgghhBBCSAvlySefFABEIkujDz/80Ay7fv36hNLfsmWLGDJkiBkPAGEYhujYsaPo1KmTCIVCpntaWpq45ZZbRH5+vnb869evt8WdlpYmOnfuLFq1amW6tWrVSnz99deusPHrkyZNcl1bvny56N69u+knMzNTdOjQwfz7p59+Mq/NnDnTFnbSpElaZa5Kf+7cuaJt27a2tNu3by8AiPT0dPHJJ5+IPn36CADiww8/DHRfXljL0u95FxUViQsvvNBW9tnZ2aJjx47CMAzTLT09XRr++eeftz371q1bi86dO9vcCgoKbGE2bdokDj/8cNtz7dixo/k7FAqJ119/XZqeV3lZ2blzpzj66KPNODMyMsw0DMMQ//nPfzzjqqqqEnfccYetXNq1a+eq6wDEpk2bbGEjkYi48cYbbffTqVMnkZaWJgCIa665Rtx8880CgLj55ps970NGRUWFGDx4sK2tdOrUyXxef/vb38Tpp58uAIgnn3zSFb6kpEQcdthhtvzFyyYjI0MMHz5cWTZB6pbXPXrlL068zzv99NOl93Daaacpy+Cxxx4TgwYNEgDECy+84JlPGcm2S6/7e/bZZ219Qu/evUWfPn3E1VdfbfOXn58vTj75ZFd/m52dbat/BxxwQEJ5FCK5tihEYu0/mbYVL9dHH33UfP4ZGRmiU6dOtnCPPfaYNL+//vqrWUfS0tJEjx49RJ8+fUSfPn0Cl9/OnTtt41MoFPId85J5pn6Ew2Fxzz33SMs1fs8dOnRwhVuyZIno1auXGSYrK8uWn8zMTOm4K0TybWHt2rWid+/e0vG5VatWYuTIkco0/Pqi22+/3bzepk0bse+++4o+ffqIv/zlL6af+NzI+fzjfPnll7ZnnJ2dLbKysszfvXv3Fr///rsrXLJzBx2+//57Mw/RaNQz/ng76dKli2jdurXN/YILLhDFxcWB048/V2vZOOvxlVdeKSKRiDTv8bmQNW+ZmZm28M8995wr7Nq1a13jV+fOnUWbNm1Mt/vuu88V7tVXX7XNaTp27Gh7tkceeaS0/frVESH86+I777xjS7tDhw7mvR5yyCHi1VdflaZhnfdb+1drXIceeqjYsmWLMm8qfv/9d3HQQQe5ytE6ZwUgBg8ebAtXUFAgDjnkENf8IZ6nu+66y3d+E3Tc0J13+M0Px4wZIwCIvffeW1RXVwcsMUIIIYQQQkh9Q8tghBBCCCGEENJAdO/eHaNHj8asWbNw//334/jjj0fXrl1RWlqKmpoa7Lvvvrj44ovxyiuvYMOGDfjwww/Rs2dP7fh79eqFH3/8EQ888ABOPvlk9OjRA6WlpUhPT8dhhx2Ge+65B0uXLjWPftTlkEMOweLFi3Hvvfdiv/32gxACWVlZ+MMf/oBZs2aZ1rsApNyS0PHHH4/ffvsNf/jDH9C1a1dEo1G0b98ef/jDHzBjxgxPKzJ7iuzsbPz0008YNWoUrr76auy7776oqqpCeXk5evXqhXPPPRcvvPCCac3CyaOPPopFixbhj3/8o3n8U3V1NQ488EBce+21+O6772xHdgGxZz137ly8+uqrOPnkk9G6dWuUl5ejd+/euPHGGzFv3jzce++9Sd1Xly5dMGPGDDz99NM45JBDEAqFkJ6ejvPOOw/jxo3D//zP/3iGb9WqFd577z3MmDEDt9xyC/r164dIJILS0lLsvffeOOOMM/DEE09g8eLFpqWnOKFQCJ988gk++eQT8/7C4TCOO+44vP322/jiiy+SuresrCz88ssveP3113HMMcegVatWEEJg4MCBGDFiBP75z396hm/Xrh2mTZuGBx98EPvvvz/S09ORkZFhWoKKHx3XmGnXrh0mTJiAl19+GUcddZRZBqeffjq+++47PPvss6a1msZmIezvf/87Xn/9dZxwwgnIyMjApk2bkJeX57JS2LNnT0ybNg3Dhw/HxRdfjB49eqC8vBzV1dXYb7/9cNFFF+G1117DlClTEs5Lsm0xkfafTNuyxjFhwgQ8//zzOPjgg1FVVYUOHTrg7LPPRk5OjvKI1kGDBiEnJweDBw9Gx44dsW3bNuTl5SEvLy9w2XXp0gUXXHCB+fvss8/2HfPq85mmpaXhzTffxLRp03D99ddj3333RU1NDYQQOOyww3D77bdLj4Y94ogjsGzZMjz11FM45phjkJ6ejqqqKvTr1w9/+tOfsGzZssDjri59+/bFwoULzb4oPj5feeWVmDFjhmnhMRH+85//4KmnnjKPCt2wYQPy8vKwc+dO7TiuvvpqLFu2DHfddRf69euHqqoqpKen45hjjsHTTz+NpUuX4tBDD004j8lw4YUXomfPnti4cSN+/fVXqZ93330Xt956K4466ih07twZxcXFMAwD/fr1w7XXXotRo0YhJycH7du3D5z+G2+8gRdffBEXXHABDjzwQAghUFFRgZ49e+Liiy/Gt99+i6+//lp6hOGll16KNWvW4Mknn8RJJ52Edu3aobCwEJmZmTj66KNxxx134Pvvvzet3Vnp27cvFixYgLfeegtnnHEGOnXqhJKSEnTs2BGnnHIKnn32WTzwwAOucA888ADmzp2LG264Ab1790Z5eTlat26Nk08+Gf/6178wZ86cQHPWINx5552YPn06LrroInTu3BlVVVXo06cPHn30Ufz222/m0dKycO+++y6uvfZaHHHEEWjTpg2Ki4vRqVMnDBw4EK+99hrmz5+P7t27B87ToYceisWLF+Odd97Bueeei65du6K4uBhCCBxwwAG46qqr8O6772LEiBG2cB07dsSMGTNw//33Y7/99kNaWhrS09NxxhlnYPjw4Xj77bd9005k3EgFn3/+OQDg1ltvRUZGRsrjJ4QQQgghhCSHIUQDHCZPCCGEEEIIIaTZMm7cOJx77rnIyspCcXExN4gIaQaUlpaiS5cuqK6uxpQpUxI+SpE0Ls444wz8+uuvePLJJ/HUU081dHYIaVCeeeYZPPnkk7j11lvxwQcfNHR2CGm0lJWVmeLbVatWuY4+J4QQQgghhDQ8tAxGCCGEEEIIISRlCCHw4osvAgDOOussCsEIaSa8+uqrqK6uRufOnXHiiSc2dHYIISTl3H///dhrr73w+eefY9OmTQ2dHUIaLW+++SZKSkpwxx13UAhGCCGEEEJII4ViMEIIIYQQQgghgZg0aRLuv/9+zJ07FxUVFQBiIrB58+bhoosuwoQJE2AYBh5++OEGzikhRJeSkhJcc801GD16tHkcJADk5eXhoYceMq1G3X///cjKymqYTBJCSD2SnZ2NJ598EtXV1Xj++ecbOjuENEpKS0vxyiuvoF27dnj66acbOjuEEEIIIYQQBekNnQFCCCGEEEIIIU2LoqIivP7663j99dcBAJ06dUJFRQUqKysBAIZh4JVXXsHpp5/ekNkkhAQgEongq6++wldffQUAaN++PYCYSCzOFVdcgUcffbRB8kcIIXuCu+66C4WFhQiFQohGowiF+C01IVZyc3Nxzz334Nhjj0W3bt0aOjuEEEIIIYQQBRSDEUIIIYQQQggJxMknn4xnn30WEyZMwLp167Bjxw4AQN++fTFw4ED8+c9/xgknnNDAuSSEBKFdu3Z48803MW7cOCxduhQ7duxARUUFevTogRNOOAE33XQTrrjiChiG0dBZJYSQeiM9PR3/+Mc/GjobhDRajjjiCBxxxBENnQ1CCCGEEEKID4YQQjR0JgghhBBCCCGEEEIIIYQQQgghhBBCCCGEJAftXBNCCCGEEEIIIYQQQgghhBBCCCGEEEJIM4BisEbG9ddfj+OPPx7XX399Q2eFEEIIIYQQQgghhBBCCCGEEEIIIYQQ0oRIb+gMEDsrVqzA/PnzGzobREE4HEZOTg4AYOjQoUhPZxMihDQs7JcIIY2JptwnRaNRrF69Gvn5+Q2dFRu9evXCgQceiFCI3/EQkgjV1dX45ZdfAADt2rWDYRgNnCO2a0JaOk15vkRIS6ElrQ2C9kmNsWw4tyKkecG5EiGkMcE+iTRlWFsJIYQQQgghxEL37t0bXDAihMDWrVsbNA+ENDe6deuGtLS0Bkuf7ZoQQghpenBtoKahy6axlgshhBBCCCGNAYrBCCGEEEIIIcSCYRgN/lV5NBpt0PQJaY40dNtmuyaEEEKaHg09fwAa7xyiocumsZYLIYQQQgghjQHazSWEEEIIIYQQQgghhBBCCCGEEEIIIYSQZgDFYIQQQgghhBBCCCGEEEIIIYQQQgghhBDSDKAYjBBCCCGEEEIIIYQQQgghhBBCCCGEEEKaARSDEUIIIYQQQgghhBBCCCGEEEIIIYQQQkgzgGIwQgghhBBCCCGEEEIIIYQQQgghhBBCCGkGUAxGCCGEEEIIIYQQQgghhBBCCCGEEEIIIc0AisEIIYQQQgghhBBCCCGEEEIIIYQQQgghpBlAMRghhBBCCCGEEEIIIYQQQgghhBBCCCGENAMoBiOEEEIIIYQQQgghhBBCCCGEEEIIIYSQZgDFYIQQQgghhBBCCCGEEEIIIYQQQgghhBDSDKAYjBBCCCGEEEIIIYQQQgghhBBCCCGEEEKaAU1CDCaEwIwZM/DII4/gtNNOQ5cuXZCRkYG99toL5557Lj7//HMIIaRhDcPw/K979+6eaS9YsABXX301unfvjqysLPTt2xf33XcfduzYUR+3SgghhBBCCCGEEEIIIYQQQgghhBBCCCEJ0STEYBMnTsSAAQPw4osvYvr06ejYsSOOPvpoRKNRjBs3DjfccAMuuugiVFVVKeM44YQTMGDAANd//fv3V4b57rvv0L9/f4wYMQJCCBx++OHYvn07/v3vf+Poo4/GunXr6uN2SRNg4/Zq2+/i0irMXrTJ5rZ5ezHWbyowf1dWhbFq/U6bn5Xrd6K0vC4uIQR+W2yPBwAW/L7ZJXhcvna7y9/qokJEHf4W7bKnmV9Wig0lJebvgqpKbCit+725rAy7KivN378X7EZJTV0eN5SWoKCq7nqcuTu2Y/PuEixcvsXuviQfVdVh83dNOIK8/ELzdzgcxa+/rTfvz1kGQgj8vqbuXkvLq7F2w27zd1FJJbbuLHXlJ05VJIKlu3fZ3CJCYNnu3S6/c7Zvc7mtLirE5rIyZfz1wYp19Ss2tT4PEpztFeXYUVHhcg9Ho9J6VVJTjcWOdggAeSXFyC+z110hBKZv3WJr78vX7kA4ErX5W7dxNyqr7M8xEpX3HwuXb0E0WhdfZVUYi1ZstfnZuKUIO3bX1fNwJIqV6915JkSXNUVFqAi7+5p1xcVa4Z1trKi6ytWXbygpwfaKcpvbzooK3zRW5+3CNse4sW7jbmzYXGj+DoejrnF95oINtra5Jm+XbfwJR6KuMTASjWJVrrsthaNRzN9hH8fzSopRVK2ey7ZUckvcz3N1UaHLbUVBge33mqIilNfUmL+FEFhV6A7nJCoE1oZrfP21dErLq11zUedYAsA2hwOAsvJqrM6zt+UV63agzDEfXrrKPidb8Ptm6fxlfXExNlrmsUCsLa0tLrK5bS4rw+8F9jG6oKpS6uYcy9cUFbn6pHk7tqMqEnHlBwBmL9qESNQ+bs9YsME2FofDUcxcsMHmp7S8GstW28uruLTStX5YlWtfPwCxcrb2T1vLy6R94bwd26V986rCQtecBADm79zhmvdvKS+zlXlECNccem1xkW19YWXmgg2uZzlvab7LbcnKra77XLxyq/IjsFSwo7oapRH5PHlFWSnKHc88KgQ2O8pnW3UVIpY8FtTUuMLFWbxiq6uurMnb5ZrjzXCMP1XV7nXl1h0ltnEMiI1t1vhLy6td49/ytTtQUWnv85bu3mVbU1aGw5i5zT53LKiqcvXFG0tLpHPkIBQUVdjWiioi0ahtTahi0Yqtrnn0GkcfBMT6puVr+cEfIYQQQgghhBBCCGk+NAkxmBAC+++/P15//XVs27YNa9euxdy5c7Fr1y588sknyMzMRE5ODp544gllHF9//TWmTZvm+m/kyJFS//n5+bjxxhtRU1ODxx9/HPn5+Zg3bx7y8/Nx3nnnYcuWLbj66qvr9WU0abxMXmjf3Fi+djsefGGUze2zkQvxv/+dbP7OzS/ArY9+Z/Nz26PfYbFFlBEVAg88b48HAP78zM+orrFvItzxjx9c/m6dPAFbyu2bcPdM+9X2+93ly/DqkoXm7+/Xr8Pff5tp/n5h4Tx8umqF+fvOKZNsG6yPz5mFb9etdaV9/4ypGDd/Pe55+ieb+33/m4PN2+vKa3XuLlz3lxHm7+27S/H3V8ch3pTKK2tsZVBdE8EfH6u71+nz83D73+vK8dORC/HcW5Nc+YmTX1aKP02dbHMrrKrCXVPdYR6YOc3l9o/fZuH7XPf9qjYAU8Htf/++3uIGgMdfH1+v8Td3/nf+XHy6eoXLfXtFhbRerSgowP842iEAvLRoAT5aaY9HAPjb7BmosWzc3fGP712bVjc+9A0W/L7Z5lZaHsVDL411pXPP0z+htLxOYJKbX4D/eepHm59n35qEL35aZP7eVVCO2xz9FSFBuGXyeCze7RZB3TRpnFb4y8bax8LFu3a5+vJn5s/Bl2tW29xG5q3HI7NneMb90Iuj8fMke9v757tT8PH3C8zf23aVusb1v7442rZB/+j/jcX34343f+8uLHeNgbsKynHrI+62VFhVhXtnTLXHP2s6cjbkeea9JXLDRHeduXXyBJvYAgDumDLR9vuWyeMxd2edsKawugq3/TrB5kcI4RLRl0YimFrtFr0TO8tWb3fNRZ/5zyQM/3mxze2Pj/1gm8POXZqPW/72rc3P7X//HsssorGKqjDuesK+RvvzMz/b5pNx/m/xAnywcrnN7YOVy/Hywvk2t/H5G3Hf9Ck2t/k7d+DOKfZxe96OHa6x/KFZ05GzIdfmdt+MqdgkEU8BwIMvjELupkJ7HC+ORklZ3Vi8fXcp/vriaJuflet24M7Hf7C5zVq4ybV+uPWR7zB3ab7N7Y+P/YCacN3c4et1a/Dk3NmuvN03YyrWSwSWf5s9Az/l5brc750+BfN32gUy76/4Ha8squsvi6urXHPo5+fPxWerVqK4tBLhsF2I89cXR7ue5b3P5SB/mz1ff3ryR6xwiHPufvJH15oolfw3fwPG73YLhQDg5Y25yK20C502VFXi8fVrbG5/X7camywCsX9uWIdfdstFRvc88zPWb7QLWW/+27dYttournvoxdGoqq6777zNha568eF38/HSe/Zx5caHvsHq3Lr7+eKnRbjbMQeUzTP/NHUyyiyi2NySEjw0a7rNz6+b8/E/Uyfb3J6dPxdfrFnlvtEAfD/udzzyf2N8/eVvLcZND3/j6+9/nvoROwvswvGbHX0QACxbsx13/KN+12CEEEIIIYQQQgghhOxJmoQY7KSTTsLKlStx7733Yu+997Zdu/HGG00R2LBhwxB1fFmbKC+//DLKy8sxaNAgPPPMM0hPTwcAdOjQAV988QU6dOiAuXPn4ueff05JeqRp0SbL3nRUmkCru45u0MuPru7QuTkqj6vOjwBQVlO3uV0ZDqPSIXSyxlgeDivTUIkjre4ZGWmOa/E0VGHdbtbNruqaCIpL1ZZUZLGq0pIRMgwYMFzuZ//8g3YcpHlRGYmgKuIea5R1WBGPEMIVRjj+NdOsclupcPrxqtV+fVFVdcRmNYEyZ5IKoimsSLL2VRONuoQ8cXcvQoY7b2mh2PHhZnqqcd0rj5KL6WnyqbYsnvJwGJFUFlozp0ZDlG19JrKyHb1xA+6eOtkeBkDHUJNYIjUohntqhJpwBDVh93OprPK3tGabmwaYZxqGe5aWboSQ7niGBgy0SkuDH7KUZf1MLD/qeCok92y1DCYLK3OTlTMACEl9jjrc1OXodksPyWa7tfEK529hWwvI4ksLhRAyDHzyw0KXyEuVN1kblbnV57dY5dGI51rKeUXVU1ijCAuBdEPdpzifGyCvcxHr3FOSxWhUuCxgAUCNRTzXKiPN9tuM26ecVXPcasd4Wx2JICKSex8TFQIVlf5WjA1V45Agu2enSJEQQgghhBBCCCGEkOZGk9jpyM7ORkZGhvL6+eefDwDYvXs3duxIjWn/b76JfWV65513uq516tQJV111FQBgxIgRruuExNERHelal0vGn1fYNMOwbTikh0KuDQiVYCWRPIYcL+7rjof0idwjPlroUxONCjz57wn+HkkggggKPePRjEa6YRUgC37pGIbDD9sUSQn1X4+cKRhQCzdMP4Yh/XjA3q4VIgrnhnkK24oBI2V9S0vAKUKQ4VeaBVWVyCtxW5vSlxi0XGQ6DFW5RSL+9domRgnYDHS9632YoS/s9myvkkuJiD2VYjCJm/O4QRVB+5lk5tkB9DpSUZQsbb8+Plk8Rb+OqyFFrY9a/BnwLkPdeiETeulQbZlDpqeFpPH4PeMga79kH0999L8ykWqi5UkIIYQQQgghhBBCSFOhSYjB/KioqDuuoXXr1lI/zz77LM4//3ycc845uOWWW/DJJ5+gqkpuTWjjxo3Iz48dvTFo0CCpn4EDBwIAZs2alUzWSTNB+gLdtfuhswOlviTb+JB+VS/bfPJ4Kx8yDNt15+9Y2nV/q+0GAKpX6narRI64fTZAnP5d6TtFLB5p1zl6JtmsiESjGD/DfcwlSRwDCCbEUniWWTSoE0d6CzJlfrwy5SdyofCB1Aep3K+XDrMSfyHDX1AVChm+VstUebeOxc42HGS4keUxZrGsBQ1QDoqrqzFi7Wp/j7XolJXVj8y3Ia0vLfcZBEE+9TUUFq/U7cb0oyGI0e0HdJHmVeIviKDJC6sIVZ62NHVFXP6WwVJF1KdN+KUqn8NI0pGI2aQCsXq0oBgT5XrguBgKINZTIRfBuf1FfCy46liRM0Lyj2ikebCkIu1uZYLQFLQVQ/NDnyBpJSKAI4QQQgghhBBCCCGkqZPe0BlIBcOHDwcAHH300cjOzpb6+eCDD2y/P/74Yzz55JP49ttvcdxxx9murVq1CgDQqlUr7LPPPtL4+vXrBwBYt24dampqPC2XJYIQAuGw//EIZM9ifSbWvyO1RxVZ3aKRKGB5juGw2w8AhCMRi5+o1A8AhGvCCGfY9ZtV1TWuI6hqwjWu8DXhMFB7XE40Kmz1S0SjiIqo+TuEmIDIeX91vwUi0Yg0j7JyiP+uu0fnvxHz/iBCsbxK/cX+jUQdaQjh2V7CEXt4lZs1r3YEhKM81H5TR6rirq5236uIsn9JFmubieOsu3Him3dOdyGEK55w7UZoTThsG6DDYXebi/cdsvbmJFwTdrc5Zz4t9Vx1L4QEIRyRjxW69co2pjr7fsQ2qqOO/llEoxDCOw3DMBzjWu2msG3MlreBWJtLiweytRtZmHCNKh73/Rhwj78bSkuwb7v2yntpjKjmSn7kFRfh30sX4/I++3vGaXULO479c/e/Ec9+TURjMpe4WzQajVlXEnJhyp4mGo3GxoraehFqRMdXquZ8zrYFxMrenMcpwln9qMYg2ZhnLZ84URE7Qtbdh9jdZHmRzhFr64NOfryuVdeo58OxvyXrCUnfp4y/ugbhzLTacLGjqOVtR9I3K+4RcPflzrWE7F7ic5y4P63817jdaiT+Ym7B2oI9/1HP9h2vUzKijmtxoZXTf8SShuEIZ23XAFBT4167WdtRXLRka0eSMo9Ghaveu+JSjJHKsg/F6pOsXUQl89vYUCqvR7pERTR25KUljsLiCuwsKMcBfbrY7suZvgpZna8Jh5ERrlOUqdoaIfVFovMlQsieIz5n8Job7On81NfaIGif1JjKpjGvmQghicO5EiGkMcE+iTRW0tP9pV5NXgw2b948vP322wCARx55xHX9kksuwY033oijjz4a++yzD0pLSzF+/Hj84x//wLp163DuuediwYIF6N27txlm9+7dAGLHQaq+Xu/cuTOA2IKjuLgYXbp0kfoDgHfeeQfvvvuu1v0sX74cAFBUVIScnBytMKRhGDNmjPn32s0xK3PWZ7ZhQzEKi2pMty27alx+AGDOnDko3LIEQN0xOrJnP3rMGGS1si9oc3JGIT3NXkd/nToVKxyfao/6ZRTSa922IIJySxorEUU1oubv3fHrm7ea4X+b8xt21RoSLEcYa9euRc7aXFceV61eJc3/lClTsKJTTDC5rcBeDruKYgPnqFGjkJZmoKo6arteXWP//Xtuhe33+vUlKC6pUraX7XCXaYnELY7TrQxhrFm3Fjnr3Pdbn200VXE7yw8Atm0vYP+SBLsRhigoQM6mLTb3AkW9Wg/3M4jHE4aBnPy6thapjWP0mNFoZWnHs2fPxvYNmbbwc+fONfsOoM5qg+zZjhs3Dm1bxzb0ZH1RUXER8vLKkZNTAAAoLI0o4yJElzlz56BAYoRWt15Z/a2StKNihJFbXIKcvI02f5WWMU1GRXkZ1qxZi5yc7abb7t0FEDXFdWNTcVia1zFjxqJ1ZuyeysrLY+NhbTxFZe52U1ohb0vFkv6iCmGsXLUSOavWmG4vI4yH9sB0PRwRiAqgVXpq7QRa50p+yMbrODK3sePHoa1jvuP0N2/BfJQvWAhAXua/I4oaR30phUANolizZg0aC6tWrTI/VmksrN/invsWFxciL68MOTmFNr/jx49Hu9oxaPWmSlc4AJgzZy6Kti4FAFRWy8dN63wyzi5EUAkgZ3Od33xEUAxhC++c7wLAckm/slTiVokwVq5aZWubADB12jSsUljumj5jBvJWt7K5TZgwER3bxcqhoMTdx+RKynTFBnl5LViwAFUFK2xuY8eOQ5usWP+0DhGUOsrAzNvMGchz5LscYaxZuwY5a9e7/C9ctAiRRXXzjXxEUGKJu1TStgoRxsbCQrReW45fo5uxrIO9H5M9y+nTpiN3pb3MrOukOGMka6IgrFu3TnmtBmHsLtiNVQVF0uub8jehlWVc21V77872uWHjRkRryziMMHbt3oVVuwttfuJhZHXFOu+Li8Gs7WjrbvdcbtOmIhQUR1zPfPbsWdiaF4trxYoyVNfUuPzMnOWeZ44bNw5tau8hX/KMlyCKKGTjcjFy8jYhUVavKkVVlX1tN31JKRaurcA9l+5lusnakIqpU6di9TJ7fRs9ejQyLR9a5W51tz9C9hRB5kuEkIahJa0NgvZJjaVsGuOaiRCSGjhXIoQ0JtgnkcbEJZdc4uunSYvBtm3bhssvvxzhcBiXXXYZrrnmGpefH374wfY7KysL11xzDQYPHozjjz8eGzZswNNPP41hw4aZfiorYy/dW7Wyv5S1kplZ97LUekyljC1btmD+/Pk6t0SaKvqnuqQ2Wc3jbZL9Rkv3EA3VaRvCw49Q/KubtmF4e2rpB4C09PuvDxrLkYpBjrfxaoNST4Q0MnSHWZ8hIebH53hhz3x4DVLS4/H049bJe30xaUEJSiuiuGxgxwbKQf2cXe9bF+ohzZaN/Ig9nXagc+Rbsu1D5wD3+m2D3seWBllO6KwBUnUvznVE0Haju17RrTuN6XQ/nbLw69tlp15a7zH+t8xNB1e90Cx8n+Ftj/afkahAumOQSNXxrWZ8qY2OEEIIIYQQQgghhJAGp8mKwYqKinD++edjw4YNOP744/HRRx8FCt+1a1c8+uijuPvuu/H999/jvffeM62AZWVlAQCqq6uV4auqqsy/W7du7ZlWjx49XEdRqli+fDkqKirQoUMHDB06VCsM2XOEw2FT9TtkyBDT/N7MBRvx7ZRxtme2Ytt0VEZ2mm6/r9mOT8f+bPPz0vAPcMIJJ+C04/sAAKprIvi/ER+7nv1Lwz/A4MHnoEP7LJvbuUOGoE1W3VfOL+eMxKkDBuDQjp1sbkOGDEGb9Ji/eQvmorCqCkNPHgAAKF67GgvWrsbQcy8AAEyaPQPtMjIw9LgTzfAnnHACBnTrAQD4fNJ49OveA0MPPdyWx5dzRqLfAQdg1swFrns87bSBOGi/mPW8let34pMxP5p+1m7cjQ9G/YDzzz8frTLSUFJWhX9/+7l5vbyiBq9/86n5O2vmOvw8c7L5e0PRb9hauEHZXlYXFeKTab/arm+vqMDbE8e6wrycM9LlNnzyePTrJr/f+mqjLw3/IGVxl5VX4/VvPrPFN23FOAwdek5K4m+JjJ4xFT3btMXQY+z9+sbSUgz7dYLr2c3evg3fzJnlch87cxr2ymqNocceb7rVRKN49ZefcM65Q9Cu9vjhl4Z/gBNPPAn9j97H9GftO6z9EgB5/3H2YHTp1AYAsGzNdnw2zt4XjZw1Evvu2xVDh8b6hc3bi/HuT99wHCIJ83LOSBx//Ak4rXsPl7tOvXL6a7dlM36cP8fm9v3UyejTqTOGHnGU6Va4ZhUWrltjjmkyvp76Pfr06YGhQ0823X6Z9zN67p2NoUMHAQBy8wvxfs53rvHs7MGD0blDbN73xaRv0LdfHwwdGhsvt2wvwTs/fW0Ls2N3Gf478ivXPW+rKMc7E+3zho8njMWB+/TG0IMPVZZDfTF3/SSESqswdOh5Scelmiv5kVdSgg+nTNQam1/OGYnBgwejc2aW0t/LOSNxzDHH4JxeMeu/sjKvWL8WM1cux9DzYm7RaBRzV6zAnI15OGC/vg1+xEg0GsXWrVvRs2dP9OvXr8HzY+W3xZvw9WT7XOrnOT+hd69OGDr0NNPtpeEf4Oyzz8ZendsCAKbNy8P3Uye42tZxxx2PQSfuBwCuuWDcj3U+GWfCrOnomJmJoceeYLotWjgPWysqMPSUunzE+oa1GHru+aZbZv4m5CycZ69fG/IweslCm9uHE8bgoN59MPSgQ0y3l3NGYsBpp+HgDh1dZfPS8A9wyimn4KiDu9vczjjjTPTqlg0A2LS1CMN+/taWjqxM2/2Wi5HTJ7rK4qijj8Z5Aw+0uZ199tno0jE21uf9vhQ7tm/D0DPOtuXt5ZyRsbx1tpfj55PGoW+Pnhh6iHu+e9SRR2LovvuZbgsWzENGZV357qyswH8nOOrC9Cno3b49OpZGMPDUvujXu7Mtr85nqSqzY449Dmf239/mNnjwYHTM9l5/O6mursa4ceMAAH379lX2S63Wr0Gndu1w0F7d3RdX/Y6ePXvhIMvRvVurq4DctTjooINs/nrtsw8OahOr8xnrV6Nzu2wctFc3APZ2DWxD/5P647jDe9ru8cSTTsTJR8f6rnAkile++ghnnXU29u4Si3PFup34dOyPtjJfunkqIvmFrrrSv39/nHBELwBAWWgpZi2f716PnngCTj12X9PN2ccu3r0Lw2dOs4UTG3Ixdski17i8X6dOGHrE0dLy1WF3eCGW5f1ui3dz2Vzk7lhnc9uyvQTvOsbc1z6eieMO62H2JfH7GzDgNBzSt6vN7dxzh6Bdm7qP/+YuzcdXk8Zw7kv2GInOlwghe45oNIq1a9di8+bN6N69e4PPxetzbRC0T2pMZdOY10yEkMThXIkQ0phgn0SaMk2ytpaWluK8887DggULcPjhh2PMmDHIzs4OHM+pp54KIHYs5O7du82jHjt1iglpCgoKIISQHhUZP0oyFAr5pn3XXXfhrrvu0srT8ccfj/nz58MwDHYmjZz09HTzGcUXmtZnZoRCgOU5pqWlu/zEwqaZblFhSP3Ewzvd0yxhrem60rCENQzDnq9QCMKSZsgwXPXPmseQIU+jNnJp/tPSLOFDaTY/abW/437S0iL262lRx297WYfS7Pl3Iiv3tPQ0l5s1r/Y2byCkuN/6bKOpijst3V5+AGCE2L8kQ8jRtuOo6lUoTe5uGAZCjmcRjUTMuOxtUNKuJe1flk48D3VtSJIfw0AoLWRpp/L+ipAgWOuUFd16ZWsDaZJx1oCrDcXqt3cfFwsXcsRl2PpGaTuBfTwzYG/Dsj4g/rcsHvf9yMebPdEOQ6EQDJ9ySwTrXMnfr3ps1p0Xec2JZGUecsyBotForCxq60hj2Eiw1ovGkJ84zvkc4G5HcdL8xiCXn7CvH1uajjHZMEKSuWwIIcP9/J3pSPsaGNK5r2weXhe3+5rXfDh+3eWmmltI47fM90PuMrDet3ROYsj7bOe9h0L2MpfNtePxpaUJaTnJnqXsnmT3oJr/eBGN1tk382rbhhH7n/J6yH4t/rfTv2GJIwTDFaf1unTtZrvHWN7tbURSdxXP3N3+9MrUWp+kbUXaBwBQ1CNdnP2ymb7wH19nzN+ADu1b46xTnPciab+OOqjqmwjZEwSZLxFC9hx1awOjRa0NdPqkxlY2jXXNRAhJDZwrEUIaE+yTSFOjyc2Oy8vLMXToUMyaNQsHHnggxo8fb4q4gmI9BjIcDpt/x7/sra6uxsaNG6Vh165dCwDYf//9kZGRIfVDWg46J3UIDV9ex77JrkmPhJT4s7oZskMwFEc3esUpQ5V/u7vdj27cdRiOX96HeuiUu90/IQmirDwe7Vrl7tMmg6Wi4ZEVn9QDjekoLx2s44lqPIs6zvPyO7ZLOS4q8tBQRWYg2NGzjQG9eZXVvxsDhuu+m1YpNC5UczKdqqU1ziVRR3WHPtm8VHlUY9A5pk99lN2e+phIybpAd76u5asufad/53P2KgfDUB0dqru2kLhphVRTEgnj97JS6TUDhvfx845rqufjPFrTK89+RREvX702Ejz+mB/ZOtP7WFPZMY1+6zIdDMP9DFT1yEkoFLIJ/+I09uNGCSGEEEIIIYQQQgipD5qUGKyyshIXX3wxpkyZgj59+mDChAno3l1yhIMmS5cuBRA7FtIqKNt3331rj20Apk6dKg0bdz/llFMSTp+0ANQaqDrnJIRWyQjETJxv8mVv9jWJKu9R/rf1d517ajdldTfbUpVeY6Opbe43ZVSboapHILM6GURPFuTZWv2qwjm3dglJllTWIlV1lwsFvFOWtT2dcLH0LH4M5zWZf98obdE1mBgspLfRXq95CCoi0BIY+dUFVcTJCxqaO37iEbt70LiDuevH6f9cBepvgZzKOZlTmBooHwHcDcmF4CI42RrG7U92T/Uh4lldUYH/25irvB5ULOfrx1tf5puJeLkIS/lIhYO6a7gECnBPridiwq/EHnwoZCAS0atHrjVnQw+ChBBCCCGEEEIIIYSkmCYjBqupqcEVV1yBCRMmoFevXpg4cSJ69+6dcHzhcBj/93//BwA466yzXCb9rrjiCgDAu+++6wpbUFCAr7/+GgBw1VVXJZwH0nyQvSBP9TZiUFGTX1j7dW/TJrrvxnUsgzmFaX6bC87rsn2O4C/v9QM09e1gbmyknphgI/mC9bQE6NqgSs6siq/VCVe79E+OED9S0U7q4nIjEw/p9tl+edMWoyR4i/KN/MTiSgUG7EKDpoBObqPe0xulAK+pj/0NSgqqkXoMCia6duJsY7J+QAihLarxtvbkM59OUuStm2Yy/gAPYY41Pp/wcg966w3VM0qGZNp3Iin7WV7UtSpps9SlVPT5CGCDBBPSP/cILgtskjYpa6ahkCEXFUrrUcLZI4QQQgghhBBCCCGkSdAkxGCRSATXXXcdRo0ahe7du2PixIno27evb7hHHnkEH3/8MUpKSmzuGzduxJVXXolZs2YhPT0dTzzxhCvsQw89hNatW2PKlCl44oknEIlEAABFRUW47rrrUFRUhGOPPRYXXXRRam6SNDtc+8UaR0Wl4qV00A0SnQ0R3Q19lQUyj1MizfzW/auVlInvfl3A+JrfcVFN/w6aCkEsbfjh3MdK9il6NEETbYsShGjSWDdatcY9DXGzu8kkLqb2S7e+0T2Cqz4Jfqyzjn+LeEIh+2p+4/6eIVA52dqN6ihJv2cFSE5/CyDc0rQ6BSCkG2dQEbZNXJN8fxEkP6lMx3VMpEeEKi2YvHwUDyTFeD3dFC8rauP061+964LbirIqHUXsGnNKP/HinhTNxsRzDjdDr36npYUQkXUUUsGd929CCCGEEEIIIYQQQpo66f5eGp4RI0bgm2++ARA70vG2225T+n3jjTdw7LHHAgBWrFiBF198Ebfffjv69u2Lzp07o6ioCCtXroQQAllZWRg2bBj69+/viqd379745JNPcO211+LZZ5/FO++8g969e2PFihUoKytDt27dMGLECG6ek6TR/4pf6qrh4nb1TFF2dJ0tQPA6b/+S3Z56/H297gfu0qP1AlhY8korKEGsR5DmRSrqUJC6rHMkrGee/Czwwd70ebwoSQWprUU6o5v+UYvuKq53UGok6hxPfSy1KIXgjayNGQ3f7gML51LgRyZUaWRPpkmhOupTq2pp+Em23egKQVNlYTBZ/7EwAfwmYRnM6559dG2eqKxi6R7/KA+bZD3wecCBylwnPR9/fvct+2Am0bZgGG4BLBT581q/1SeG5GxSWRnKspQWMqQfJ+nln70/IYQQQgghhBBCCGleNAkxWFVVlfl3bm4ucnNzlX6LiorMv++++250794dc+fORX5+PnJzc5GZmYnDDz8cgwcPxp///Gf069dPGdeVV16Jvn374oUXXsCUKVOwZMkS9OzZE7feeisef/xx7L333im5P9L0UR09ZPOjFY8w/3UKRbQ3UnzSMCQbvq4wPpGoNiDUR5aoo07WMliqz9WSCQu8/DZ2KRg1PalHbdVE7t9rwy7oUViJYttA1NpwJyQVNKWa5BgXNRqKSvjSFDFgNPh40RDpq55g83my9UiA56UjXBHKH3uWqJCM8wlUCD9tqJ/lsDp/ekJYWZypEJ3KrDTp5SYuNJf3LfKPNTRFSg1YPxItU28xmL9g3z8WXR/6eRCKvzVis/36Zt0aXL5/P22Le1DVGdf6VSJqVNY3mVtTmqMQQgghhBBCCCGEEBKcJiEGu+WWW3DLLbcEDjdkyBAMGTIkqbSPO+44fP3110nFQVouWl8hK76M13lfrmuFxLn5ZN3kcm7yyJK1xpjIBqn963b1NUVo26+g6etuIjlFaV7h40SF0N/YaCAaenO/OaLaGA2sY5S4xeNI9dE1ftYdXE6sNyQFpLL/CRRXKtJViTs92qauaFuF/1Fi9YdMKN7Y0Zpi+YhvDMkxkez/9FCLlLzbgfooOw0rREk+Gx0Bp4BAKLlkaiNy34+v6CfJNmgt+6CWvlTE1gwS0Y0sXsvHLIbNo96kaU8dc+mF6lhLM+0EEpdZurLF6ZOO9IMZWX+mfOhOsbMyK+o8SHOptwZ6bckinNe7D9plZHj6yy8rRc82baXW5IJYYpa1o6jz/HXAVYZNbAgkhBBCCCEkZeTmF6BPz448AYUQQghphqTkXTchLR3pcSsuy16KsJK/db9U1v6C3pk3zzj9XVX3EtUI7TomUtg9Bf1K22+JomuNoO5a84Jfvaee2LZogHJNwSNI9pgkbnCRhiCV1U47Lp0XV1I/esdEWq84owlieUQqTGrAd24xMVjDpQ8kUl+C2qqRqsFSkA/iR1DhntqPvgDN7UcvXMxF7xjnZOqK9hgeZLqhHaVc2CO1tKTIgo8uyT8PSRwdmSwhj9VD7EqA+VXSuZFHIuxKLJeb+lhxn7SUakxvx2SfQ0006uvn6vFjUBEOx6x7OS/KjvRNchx1fQDU0IMgIYQQQgghDcT1f/kalVXhhs4GIYQQQuoBisEIqSd0Xyjrb4boCsRS48eedt3fXi/ZheI9v5flFPNrd420YxnQ8JMAqihSZVmBtAQSkTI42oMiJq2YPTz5G+CzH01LESFJBXumHtVPGglvtNdTuvVNbPO9odt9UHGXP9Y5i8quTeL2blo20nLTtEzk50c5J5SlqRm7ND7FfDvkOiVSdTy0h2xUuP/2a96B7iMJS4RBuxnffJsfdLhRHUGr8/FJLO49pBAz8T4y13VJIyv+H654Cw1Vc0N3Qon3XP6Cv+TKPKJaJErSlImTDbgdg1SDVIs5CSGEEEIIaW5wfkwIIYQ0TygGIyQFaG1xaWwsC4/dFPmRkHrp+L3At+4d1McGqM4xkap793vR77fvUZ+b21GNXYgPVvyOyZvz6y0PvnAlt8cIsnkN+AkNE7dWIPfrb03CHod2coSoSWE9CtKXa1kJ8j2uTTMtifUWnXhUFngaCsNwCyBueeTbPSpOS0aonqifhjyasyVh/6hAXtOthoNSIvJP0OpPFHrHSQLeddZ2PDMcc90ApF4iGUwAGeh4Pml4lehOz02aTpL1w+uOUtUPB8miv17fvUZSzzl91nx+adjc5H8nQmBDeAmKHdX35+/GsYAQQgghhLRkaCmXEEIIaZ5QDEZICtA5JtIjtMRF7+vlRI+YcebM/TLcsYGml0pCx/REA64z6uvsevOr+xQvfCZvzsfCXTtSGmcQuJCrH+qtWHXOk1UFrf1XJlLUsUbSkEfUkeaJ6ujgVOF/2GMyyIUkwq5qcYTQb3ty54YTJhmAK7Orc3chEtmDYrCASQUWe0u8s99LnCDW87SOt9MScerlTR6/3tGuMUuZiafjlwdLMpKkZX2I4qYlmYxaJtXe9xBUYuYjnvUQuxmGqm9Mwi3JnjKZx+tMOVFRls2vz33XacESFXrp5EHipmGtTxqX1E1XqCikx0QakmMig+RKax3NJRMhhBBCCGnJcD5MCCGENEsoBiOkgbG9hxYSN6+wiaTnCOUUV8k2ErQ3NFSb3hqfltcdoeMUoulsDtb5ycsvRDjifRRJoONfNNNVkRYyEA6qeCONGpUgMYgFIBXC9Yf0p4ejzka8Rj4oIiSNjQCiqlTU3qjq2ON6SCtOw1oGS24DPxXUd1q61tga/rjM5odWidqmiqq5okpGqYfb4pc7viiAkIbQ0w/5MZH+oriEEog7JR5U6R7EkpQcRecii1MzT0GLrqSsCivX76zLkY/azyt69wczeoNT4Mft0x6SEkbqmpv2DeNGWV+0QsfuSyr0NiRrxAD1mCZvCSGEEEIIIYQQQkhLhGIwQlJBEuIKqxUf4eVXcyNA5/W+36aZKw7ND6dVGyLWfKqPVkxsk8G5oXPdX0Zg8YqtnrF6WSgIslXgLTmLkW6EEBE6PusHbn3UD3Lrff71X/eaS3CS5DGREs2pK4zusViE6JLKvdcAsgN/Pxqe3Ee1ujPiZ2XTFUDD2Y9wNIoalVItGSTHRAJ2S0PNE3dlEFJXooOybQnpn3s+HxrExkN9v+pr1h/J5MftplPOqrCq7KjiNJT+9UpJJuKJ5U1zESMh6NgyefZ6/OnJn7X8qu43KI5Pb5IKXycmtLrpP1yr36AfNHhEG4gg89jYscX+q1eVZW5d8VyiR8kSQgghhBDSHGkps+Gq6nBDZ4EQQgjZo1AMRkhDk+KNDx2RSjKTey/BiPoLbQ+rRObRW4q86QjtHL9rwklslAfZCNDwmx4KIdKAmwvc10g9qdoolG3I1elN9KwfyEjA4AMhewTdjVZtCySpPsstEfGGzuZ8oCx4x/H270vx9Lzfkk7HiYHUW58JSuBjIoP6l7hR9JU4gcYl63FzGla/6kuU4W8XLO7mtJqrENB4puYtdtI3XqQvNLeWs+d8XRWn1FUurpHlRSUa071XPzG7n6sK51Dh1e59P5iph6rpa9EVwuUmQyn0SjgP1jiSu3H9IVXEjMk5AhhJTr51jnHmVJkQQgghhLRkmv/HgDHOuukDLFu9vaGzQQghhOwxKAYjJAWopsqyr7pdfiSbX34bPHX+UrVx6/39egJ74nZ3If9bK05HAJ3N/4jlmEj9jSX1tWCbZnbSDAORBlxM8Sv31JMq8UCwZ+PvV3XUaiy0dyMUArYbY7UhqSBRIXKgfthnA1uGThtWHVlsE1voWBhTjf2S+9GJb1dVJQqrqvw9BkRlTUVtzTPGY/8ah/Ez1qY8PzpoHSNtmzu5r6daT0gSa5OArmAl8fmYvhgVCDnqRTLzQGt4P//6R/ElZt3Jy58qziBtRGqpSZGetm49BWsd59ohlc0+FdMl3/VcoA8CvAvbkAitYl68547Jzgv9xhJrOjJxckxUqDGnUDzcJAzREUIIIYQQ0iJoSXsIZRXVDZ0FQgghZI9BMRghKUB+TIVeWJlOKJnJt87miqH4W+XfvUGgVLYp8qTe0XAefeIlaNElYjlCK6j4IEiqUQ3faYaBcAMeE0nqAcOotx0k1YZxsuvxoILMlvQCgNQfiVYj3WDJbOhL82YVRGqG8xMkBRGvGJAf1WglKgRC9aBgUnVrwkfMPP/3zdi8vTglefAqy6DCbkBP2C4TwDi0sURBsscXu/3I/1b5SQinyCvZ+DSPiZTNbYOI0/Szoxmn1mcsfq7u+KRtTHFMpFzkpSf8SnaO4tm+DZ++SDMNqz9fa2N+1z0+FrKiGhpsx0QG6N389WiJPQchBF5ZtEARo16bUiVvQN8SndORc19CCCGEENKS0f2AozlgNSRACCGENHcoBiOknkjk6AmvY1b8NpW8Ugoyl5ceXWf9otwjbJB7dIdViMQc/lKyB+6R0SDHoLSgNRLRQF235Xi1NVf/oVXX1JuFvkc8geIHkno0ZcTucElagkl4nPAQo8jGXWcbTmRMsG/S6wic5BvdyWIYhlT45fcyMBQKpewoAa9YpNd8kuUQ3RD4Nz4tS7mqsAmnqvpYQiYydLsFEdCY8fh1CLKxOkj8SdRwuWUwD3dpHP7PKxZB4lbMDIUwK2lNoMcg4fesdS1eBnqWGnM0p79AYkzXb83KZx0Tk1wfWceSiBD4IXedNGxUxC1V2t3lHy8FazGEEEIIIYQQD1rQlFnn5BlCCCGkuUAxGCEpIBlRkHzT23sj3PwCX+9D+wTylNh1nWO8lBvLngI3HwKGkW4saX51H5REFxe65bBle0lK4iH6xDZG9TaQ/dANo3UcmmYb0jtajZBUUP9WN2Qb8zq9rl/XnKq8KoUCHuJvL+rrfZXSMpifGExx5FhCeAhZdYU8QROQlic7QC3UIpjkxJz1iUzok5SFQV1/mnNMXSGs2gKUZoZkKPoAA+5GHqQfkh35B+i1X6W1RJ+guwvL7fHU54t+ZV4CPAzNdZeQuOlEZSt/DethdXFZxWd6aanKWrutQEjrl+p4S13qa81MCGl6CCFQVlPT0NkghBBCGh0tyTIYIYQQ0pKgGIyQesL1IltrQu21WaQrGkk8rBYe+ykiKt8gst2PIytKAZlnWViy42PJrD7FUDqLJJWlBT90w1x57/CUxEP00bHeY0VVx/1sT3j9VDgp3YPWA4oISUOSTO3TF2dIHBMwfek73vht8gcMoBJWJEtMdOGON+pnOd+Qh0sEHhPZfNGxaCTsjUkVUeJ5ULilWgzmJWC0ugYRx0jdPcST/nG6iVkdlCnPNPKqEKPHhD1yQZeOm1L05pOji/70mVY8Mvzm7YmOMV7h/OKsExPW39zMT3OXjCU6ZQIybyp/hnv2rRRKysYyDUEip76EtAx+LyjAkFE/NnQ2CCGEkEZHqqy+NwVoGIwQQkhLgmIwQlKC/2RZ51gcLzdZXLqWMnw3GRy/nRNi3SNRAI3jVXQ2ATXcE0nDvK7p5puOtr8E7oGmSZocqXxizrgCHQfk06dws4vsKRKtaolakYnjNw4prcRoCIm9DKwEE4lK0tF4GVVfx0QGsRZjJZRSMZiem3lNQwxjEzPIdS4kQRI9pk4pZK5fLRiEEO7nLeT9gbMPUQuy9FRDdZY7/TLpcz2OQpXumjsok3FfMRQB9I7gdAvg4uHUVgdlbnqC2qD1IGg7D9LvpKL3k9cj77LQaUdKtwTEecla1opqCiGjENrtP9DYo5F/fghBSMsgIvy+dCCEEEJaJi1pPtyCbpUQQgihGIyQVJDMppXsRbv2C/cErJDo4H45rhlOw1aRvw/vNINuRgQtjmAiLH+/iW40p2pRwrVN/RDk2KIg9VNtKS8APt2CShBhc2bFISmgPjbNAyeq9KYpujat/AhpuMSPZZWJMQzofIhZP5bB5EXnZwEzZEArzzp4TWn0xdd1JDz+sgNMGPXxhf5lmupSl8W3J77+1Z4z60+uXaiseNmE35CI30x/kjg9LIAl0v78AmpZ+zPk7dEadu6SfPww/nfNHKrTtiQZkORrrr8QSy8N5RGNlvBB2qi/djGAIFTzfoQQMeGmI59BrGLqCg25AURI02VDaQleWjg/obBpBl+DE0IIITJa0vy4JQnfCCGEEK6CCdlDBBN5eG981B3HohdfkPmtziaI1+aS3zGR7o1057/xPzQyAkV6ir9l+fG75rVxqLsBXlMVQc7klXqezYwE866Oh4ubVGNIjqpJKB6PazqCTJUFHHmd986v2xogIcnjPoJJcyNX5iYVLyhaUQoEH1qiCEf6iWw2BxUveQk26gPfYwLq+ZhIr+PR/DS5WmJbVRWiyTB/giiHdIQgDiGTPOoUCKZ94pOKyBKRCNkscsbrsfW6LD96GIa/KF01J1enIxeYxY6Q9Y5DLryzWDHUtILsdFOlbWXavDx8M3qZpx/lWKHA88ha7TgceQiUAzvxbtgWZ4CvZlx9YQINxpxjOgLLXibJ25VeovF7dT4zW33yQDVD1+k5OPclpOmwtbwcP+atTyhsWoiTPEIIIURGUxNIzZi/wddPOBLF6CmrXO5N604JIYSQ5KAYjJAUkNRc2bZZpI7PvukibP/6JpGAfSz1L5/9P6kYLHVT7ES+XNfxX2f9xenuFY9GyoaBUFoIE2au1c4f4G+NhTQcSjFkIpvUCtFXoiIapV+h/CF1bmovAEjjIzWSyTqU446zDSGxTXeXVsAh3lBZ0nElrolqY91vXElElKJLQkJSDT+pwK939RKNeVGf5dncCVLSWkOQj1DKy12G7pOV+fM7Lr3OXebmnk8KxzWbf4loTHW9Ln9yEaZ17hjrC9UzFleckJdvSHJ+pDJeSX8Wy6tODtyOMdGbrEzkySsJ0Mz9dWN6AiLdtZPqqu0eNfs3Hatfqmene1SlrwhQkTe/cHXX5K3N72MjP3TqEee+hDQd0kOJv8oOce5HCCGESGnMexF5mwtdbg+9NNo3XEFRBZ59a3LqM0QIIYQ0ISgGI2QPobOxVXcMVRLp1Mu3Df6bCDFv/mmrrIw4rSaojuRyIsuN0NlRVOLY8FJZX3B7RaT2aBNX/kICGelpwXIhOYqsJhwJFEcsXOAgRAN9qwMeVyQ7W0k9Ll0xqVTUwpfiJLVI9AP6FlV0j8SShU0woMoan5cwUyWeUPmXXvcO7qK+xFeGYrDzSyoU8rfckwzeogFvFPq+pNIk/ugKmqy4xFcBxWA6fUGwcVuPwHNuHVWcVxAfd6EZv0rcKg/htsjkPIJSZtQ33j8a0C8npy+VNSjnsYf+awWHFUet3MgJJvLSjFM6bxOu6wkvbzT8alubDhhvHN2NJSHU8WqJtwLMZyn+IqTpkpbE2pXLXkIIIURONNrQOZAjhMBND38nvebcZ6quse+dKN93cylACCGkBUExGCEpIFEBlno+6v1G3tOCmO/GtGfU8Zx5XveykCATi3l9DR70PbzfppDTkzqnchdnVIZkEyxO1HHlhgljMXXrZkd4xI7RSnKVMWP+Blzx/4YHDlc/4kCypwlmGSP4RnwslHvjkZBESUZgWNcfe40ealcda09+VdwpzlYdYWyz6uObqjWc202ryOrpmEiV8NlfxJPKYyI9rvn0gaksE9VchthRWayStX2dZ7Un5isuUZBw91XS+1JaU1K7+Vv8cseRvMDHPo7r2wWL36N+BmS9s00MVluuKstg0qWOrmDI8ncigtRUisHU/gKUpU/5CEkJB7NWl1jeZB8sOUlkrPd6zvG1lTNamWBZWo8DWJNzOXHuS0iTIZlZGud4hBBCiJzG+rGEV7acH86feeP7KCqpNH/rWE8mhBBCmjsUgxGSChL84joWVLJD5vOFuF+cfv78X9w7XrZbfvqFlEZt2+jyzrRTlOV3j9JNR+8gWukn4ndLeRl2VFTa3BIVRDjvu7I6jF0F5b7hfpywHB98M08ZD0ketaUKuf9gz8AuQAkSh0rQ6HSTb3Q7w7HikORJ9LhTj6HQP6xGINkmkLZlIlsYfxGJCqX1S78xzyFQLq6uxn3Tp2in6xWvDD9rLoaRuqMEvCxKyQUObiGe1+a+bB7F7cDU43fcnEpspTcGJV7XVO1TekykZs3Qzo1EIFZ3SSarsrgEEI66RHcBX3wrS925jtAoH9MiWIJCU69MOY891OmngqCKLUg0Xln6d/4G7IrWbVr4Hx/qH2csf/5HQAb5MN43X8kK3qT+3FaW69JLHP8j1DnzJaQpkcxHJ7QMRgghhMhpigIpWZat1sGCfCBFCCGENFcoBiOkAQkpvpb3tYBh/pBtKjUcWmsGpWBGLhpwfc0u3UgLlpyXm3Njw/BIwZmVjFAIYeG2qZzIWsp5n+lpet31yvU7MW1eXvAEiTaqY9pSadXEJaIJElbq2S2aIKS+0a1rP+SuQ0U4bAno7v9lcSm2vX03eXTaqscwGwhfa522X/67UyGH1ZOKSBjzdu6w+RmZu04/g7a8uDPrd0yAW8STON5js2YcNtGD/9FwfgJ2oibIc/cX9sMu3AsornY6q0Qx7uddDw/bQ7hj69OSSFplkc9pyUkpDpLFqchT7PhIv8zG+2z33EU1j5a2d6foTHUEpNXJJeSViA0DbPz7Cd0C6nel/paUlWKXtXP1GyckdUrdRvwFhXK9ZvAKWfd8/bFaU/Zbtwm4+29pVx1IgC1zY2dPSGNnVWEhJuRvdLknZxmMEEIIITIaqxbMK1uyD4MikT1z3uX4TRuxeNfOPZIWIYQQkgwUgxGSAvReRst2WOzOXhYw5OnKUgkmUvE71lEaXnkrQnE8kNcGQO09mzu+AVcekrd5ukfzSB3dO4p6Vt1qPastTwR77ehczGSkp2mFS0sLIWxZ9DTWhVxLwnvTyymCVHkMsuGlWeetODaWWW9IssjEzqpq9cqiBdhcXubyF/R40zip2eRRiBs8jqlKxPqNe7zVDwsAIcndvrxogW84F4keExnCnhFPaYrkfecvOkmBG4WpxlfEoiU4Cib+cIVNyk05OAdK299yp+y6vI/zzafw+gpaJpiSH2mu0xZk9xc/HlJ1TKSfBbm6PAXIABT1y3k8qE6cvrEkF84mjvL90EU+Hmkl5IxNsk5THxPsjiLhFiikf7qI1l505lIqgJSuR+VnKeuJ5Dj5JaSxMWPbFry+ZFGKY+UsjxBCCJGRKqvvKccjW/4fSfkTjQosXL4lcLY+Wrkcv27JDxyOEEII2dNQDEZIfZLgRnYyx6lonILhiexLbGG7rginSNuZfjQq96TMYwKf4CezdgkSVGrBwOHHy7JYkIykaVoGS08LIRy2fgHTSBdyxPM1tEvQIH2MGg1OFl62eaZ5RB4huphHhFnwqlZhi5UUL72uHzreDC+VryM91b+1ESWQuiIh2SUN92iK+njV2O58GVhVHbb91jmiTRevYyIT/a5TKH/E4YZg4ug/d7+jEJ0W5upLlCE9EjKJ86K8Psrw/TAhmbarsAzmjFLnOEnTryopaAqyJPHFPhJJfA2jtsRaR8ghYpML3bSS90U2rgWYitmI+GxQ+FqVVKXrNweUEHvGenXU+eGAbvuxjVWe457imEj/YdsWh8TRPxznvoSkjNLyatSEI/4efcgIhVAtMVMb9EM7e1hCCCGEyGiKH0fIshx1rFnk4eoulJZX4Z6nf7Jdr66JuN5/OQkLgZBjPVRYVVXvorqoELZ3qIQQQogfFIMRkgJ0pnjy99qOzS/Tr+4mtd+X5JKwAbd0DEmkshgM1Wflkhy4w1quyjbcfaMMdk/yDQ/5Na9NMN2yTGQJ4BKVab61dB7n0wTXcY0elUUOFUHanHD9oT6iSXXsT30fYUmIDiprMCrsUhGhdHOlI5d3+ORNZ6NdKH4rGp4qHmX87us63XyoPq34SUUEdY7hcBRn3fSB7boRUlvETEHyyrFZ6WbJi1Okrt8Psr/UIdg8zfuyUzCkI4RMBap7cFklCnDcotc1IZ30++fHiVrk5SzDYFveiTbluv7M3v5i/8rn0VqiJcWN2o+DtX9oUt/zXmf0qZhf+X0EJB9+AswttdqfJJzkb8fIqF3DdJ+LuXGic0ykZtoqv01xs4uQpsIjr4zBD+OXJx1PeiiEiEwMloSiiy2fEEIIkdNYp8de2ZIZHfD7MMvt3+322kfT8dxbk33yJVzvCi4e/TPWFBX5ppkMw9eswt9mz6jXNAghhDQvKAYjJAXoTJalx7wk8bU8oJoMJ/Y1tIogFhME5C/mvDauhfC20uJnGEy+Qee/oaiL1ApAPG4h85sanPVCWwzGb133AME3hVXobCo6RaOmX0WCUmfbZrMsDf98EBIEuQUVdb2SjROuflAWzrk1Lfz7yyB9tdcY7exvg1j1lAnerO6ya7E03ZvxqUBlGcb6Yq2qxv1VZCiAtZZEMAUICQgVYvMXv/mASmRIUomfgDGR4wBt4bWCCqlPaVjZXFYZp8MtwHjtjMNP4GjNnn+bUAt11MdEKvwn2MhFvMglcxAd4brW8YWGsx+W35ufHx2CromSuS4Nk+hzkIj0bKjPHU0ZfmObE2dRy46JVK+t3fGpLFM7c0kISQ0bthShpKxK2/8P69fhFckx5wbk1mE5TyOEEEJST6M9JtIT7/dYylAWL5GIe7ZRVR3BrsJyzzhk79GiAKqjyVtH9WJ3VRW2lnvnjRBCCLFCMRgh9YTOhoFz48XLsg9s/uIeZdckbrZNAHe+fNNzbs5I/MQ3pvzuW74JKBOJxTfKE/uCIyiyjWT/MM5ycd9I/BlrWxEzN8ns7kFEXjbDE01yIde4UYk4lWWdwOa1rc2G5HHoihSdeVNv9toiJyQpZHvLXtVK9q7Gr0rKxhutvlZxxJpXO1GJkuz9rX/SrjStbV2rm5eLtpJF6zg5hYgnZcdE1nuABo222ZGw5T/lIKT42xY2iKTPjUz4XF8bykLSeIJ+oaxCJoyJxWn/O+gxkaojFp2uKgG5NV6j9vhG5ZxJmjHvdGQeXXlR3FsQvMV73r/r3H0EWLb0NNcItjD+frwd6whyTGSAaJV+vecCQn1vHuNvsBykIj5CiBcy6/JebCwrwcKdOyTxyMe75D6AY2MnhBBCZAitDyj2PF7zdNlpiUGNNshuOyMjDVXV3qIunY+06oOQ0VSFe4QQQhoKisEISQFaJmcDxKMr5vA67lCdj+B51dn48LYo4JO+5Rg8340HDYtZful5bvI4N6I8TMi4nCV5iS0M9CfodV7971OKwx+XBvVDohtgrmuKxmV1Vm3SqeMM3i+oNpYJSRSpFQ8P/37WcQDFhnoCG/9e/boreo/NYq1+2Wf88BaXuQUkbhFG6khESBp0jEsgA7VpewsV6gTkjrzpRe+IlySK0hKVnxjFdUxk6p+CbjVVWuKSevYI7xBmqYL6CS6VH1HIsuNor0GOt1Rt3Af6GMERXzwPsnaoK6r3E705PyiR9kcB5sZedxtU3OCF73pNIhz0bUcacUnD6RydDIGQJC5da2m67VuImF/XUa26FpIDCCA57yWk/gi6tkwzQggL925uSNX2eUwkIYQQknKaosBI912R2483aSH/uUxIsRdW3+UYdJ+AkOZMdSSCWdu2NnQ2CGn0UAxGSD2iNS3T3IjUneLpCMQM2zVhe5HvevkO5wt0+Zu32AaJv4UF51cmsRf+Musu8es+EcJ9f4lYaqkrN3dpqUVujg0RSeigxPMh+7IlQCQkBRRXV0vd1ccuBSPQcUPJdApwtgn/gF7HOBGig+pYFxVR28Z3/F9rxU1JtjzxapMqa5V2HUf9ZNJajm7hQ4oSUWza2Z+LQpWSIry6OT/Rlvm3U4Boq0L+86M4PH7IH6V1SpmbjxBEW1Ci5ctDUJrgkdtKgYlmfkz/foJLbTG3zvmsXtflz0AlEtOfC9T5iwunlGWusf5R5cllgcxX7JSaFh3E4qVL6Os1dvgI3mT+1NZoveuQrChU5eP3PAJkQSscAERrfeo9M3mNTVT4yykvIakj6HuRNMOQWuUAUmeBNg7bOiGEECKnsY6RnitbyQTCekxkUCthcbTWmYrcReq5IFUiNEJaIlvKy/DXWdMbOhuENHooBiNkT6HYQ5VOLH2+jPf8QtwnOtVGj4ogx3CJWABJ+sLux5WGdfPfHcYelzusbv68rksMOfjilo25X2Imuv3kyqPmRpZhOMJydZAwF/zyk9TdaeXCD+/6KN8cdFu98O4T/Nx9N3IdVka8BBiE6GBITI3UHSXmvVktpG5Ce0Pfz5KN8kgsyWDpyqu1bboicKelbELmmGMVTyg25IXdj44VtaAoS8xaJMp5TEqy4C0Gk13zKe/4MXWk4ZDPcRV+beECxKdAx4qekPhUi3tk/ZY6P7L70RXE+KFqd27LYP55s7vLGrl/fpxz+HgmZX1+nSVgfwzFuRvewiqNiJMgoT7Fpwy1xa4+bkpRV4IbIE7hscvaYgBhp/ZRmEK1VnX350Gete+Yr/BDCEmMoPND1ZxNZQkzmebKtk4IIYTIabQfBHvkS3YlqnHcpY71ZN9oVH7q3TJY07TiRkh90CotraGzQEiTgGIwQlKAagLpf1SV/xfviaSbeqwb0XJiX0z4hVZtJnuETXADQ5a2Di6xGdQvDF3CL2nhBBQOKXa+9U+JtJclX3Y2XmTPVLZJquwnnL9lm7HaeVFZhWD9IYkhswzmJbq19+P6YgFXO9DJW4ANKuH6Ixhqk/RxkYQiPUWSumNBql4MqSUXMUIpPGLWW2yjJ8Sx9Z06afrEQTwIIsTQ+KJWy+qRdnqqdBzCLyHklpKSTCcet/l3nbrUOz7NRNTHRNr/DiIOUuiulPnytfYWDxdAHOR2UqwPLG5O4bHqmE9FcHneFO5eloyTQX/c0tnUkLlZ1nGaVsBibnZXmchb92WSrqVQAQEo2qUzk4G6CV1FHSEkZQQ7JtKQWtFQi5rZgAkhhJBU01gFRl65kgm/bBbuNSINYnXZSkj1oalnqOQJKS2qEtLySEvhiRWENGcoBiOkHrGLoGSbOYZ080v6cstvh9jjkt/mqKdlMEmcyk0kKF7e28K6t5aN+Fky1riVO/DO38EHfK/5spfVML2YnBsnATc1zf3CxGb1zvJvpOu4po3KUoWmNTs9rBt3kFa1hDdtVfmR+GH9IYniFKZakTlbN4plFiJ1hVE6faeOGEx1VKrX70T6bff4LJsTBCfoSzxVmfia1w86xgVEty/ynD/F/Tj82hwd8FWCP/JjQ51+7P+qwwUv8dLyamzbWer5kYIjN3J/Gmn5WRu0paLZHIJYSnLeSqx/9X7pLCA/uj0m1JWvSWSEZB81aBybGZ8qOadMXm3adfy6UvRmnyNFfZp0kGMifY+793XwdLZclxSKzYNfp+d2SvQdqGqe6fKn4aq2Mmkdz9WJ1Y1diak0XRaSzeQ1Nmk45yUpZMTa1Ri3aaPN7Z8L5qGgqqqBcrSHCdghhRQfB+qMd0Hh+pYQQgiRIztysbHju65WfqDp7UVnDal8X+8bMjlS+VEmIYSQlgHFYISkgETnX6p5pXRPQPK33J+3QMlPWhWL17nZXfe3Ks+GJEOqzXRX2AAvC7XKWih/KJ1UeGVNJkvTjXruknzs2F0miTMWg57VMQlcENQ7quecilJXbWLqHf2o3mH124h3CkFMP6xKJEFCFpGvE7/6LBz/xvGypmfz59tfur/e8xuHpHlyKBXk46l3fM5QQcfkIII7J5M2bzL/VvUzdnGaRqRJ4BV9Ikm7jjTTFdex30sKu9bOXebycU6vfln9rN2wG+NnrAn0uPSPjtR3VyEkN+2n+dFuY6ry0hHDWvLjdFce0aVp0cx27G1tn6oOr5FXTdGZ7ZpijhMElVhJeVxZgDjqrlvilMz5nfVHJZTQyovGOkxXbOHXllUpyQTfMoTiekzc6DzSVX8A1Btb2fmT1DEhfxPm7thuc/t5Qy62lLvX/82RoNpU1XFHQfrdRPjip0X1GDshhBDStGiCWjBfS9Ja7xkkbnpzENWJP/VbkEH2nwhp7rAtEKIHxWCE1CPWl2B1Ai7/TV2dr+VV6Hhzv5wzlNf0hVqxCbDtniW75y7zva57tm8cBhd/OUQFmjMC1ZFdhscxj+645SUrJHl86KXRmDInVxmn2zpCYp/7c2MjORqq/BQyL72wmptgVtQCt5Zbf3bsLkN1TaShs9GEcZst17MGYhWQJNKXa+Ixbnj7q/tbZYEkSI78NsVdMWhuilnLMyIEdlZWuPw8Pme2bzwyYY89O4kLFILgZ3pfPmdwWF/1COeXFnETqJT8xCjQm7tpz4XhtoqlCqpj9UslaPJ+8Stcbn4Wi1RHpTrzaCg+QXauKWRzx9jR0/LCSLrmuyIQ7qOuA651/I6TdAmZEnzZb8bndy3AuFYXTh2rIRMny44bcfT9fkcQ29x8sqicA0rWIgksy6RxKcOK2B1oWToOUGETMb5GSDJEhaj9MMJOdaRlrC3UHxko/CuOWVK9i0mm/VrT+c/n/nNhQkjToFxEsbmqsqGzQUiTptHuIXi9N9OwmO0fv3wOIjuC0u6nYd4fxY6JbKTPipA9DJsCIXpQDEZICtB56V1nJavOzbn55R2jLC5Nfxp+PONxxOC5iWJ5e69vEcL9slD3yD2ZRsp/a17tw8+ymp9fpZjMecSPEfwYLx14tFVqkdZX1UvpFMQvE4Sq+gnZkauxf713vILksyVPqK99cARG/bqyobPRZAlJhFLx+uTb90nFAsIlbFCJZP3EHTraWqecQ2ptxiGEUol5pfHH/drypSFK0bSMYi3jeTu249Ixo3zj9otHllQqLTbIBV+Sgopf8+nXdI6YU1oA8soo0UY2psmah1NkoteGgtU82VxM5hbLj26cHvNJv24uyQFWZT3Jiuo21HPxRDMjiQ/e/aeOOEclNhWOSZLVi87cOpkX9roh/TYg7PXdfs1lrRUCIYejan7qlxcpGpbBBARCsN+LEEJyhKk/nuvSuizJsmn3K7UipGtN152TFjzlJfVARAikSSpyVOK3OaJr8dPmX+EuY0/044SQpsWuaBTzS4obOhuENGkaqxjMe19L5paC9wka77pioixJ3L6pJw8/YiSEEBIEisEISQVKcwN+G9LOTV11dLrWfoJOBgW8sxngdEJNK16yF/fqe09ErGa/podsYx7wNr0r3bzRTFG16a8r9FPH67/pSvRRbSoGeT5J109lXVHE6dN/SPPu2DxLth42B9JCBsoraqTXikoqcdZN7+/hHDUtPK0q+ripwkmPiVSIELyQbRb79cmy36pxT6cPllk/U/n3aoeqK9a+K6SpbJHGZXGUH9+TuqOJvcrSfxs/7mZ5PommqRGOqEVdUr9wjy/2cIoIXfHIAmr4i3t3qcH0RCNqy0l6aXvO7yX+nWnoCm50DGSpitrrq2bfPEo+/oj/NlzH6cr7Pmk6HscN13kxIKLW+iXxk6B1XTmp7SF0s5acWE+j/enlwlXHdINGtUb5WP5UYq7UPkdZ2vUaPWmRyL5aazkVLcidqlp3vbT6lvMICGlRpAFoGbYXCak/muI0RfaeSs/quPzvOPpzENm6tn4LMqRpsZmQlgFbAyE6UAxGSIqQHSEjt1rl2PiVxOX39bKX9RHZRpDGxw6e13SG1PgmkvWeZfl0bmoJ4T7KxxrW5e60eiApZOfX9O44JPmSJyfPQ1woo2OBwWuD0yNRt9BMbxmSyo15In9EykeRgIBKUntr/28VcmhuIJvtTebXZzPV0dD9buEfv83ElvIyb0+NjOv/MiKQ/7Q0AxGFSfBwJIqqar5q9ENlvc43nKQdaIfVaH+645o9Xkk8DgGwbGzwtw5kz5f9mkpg4Z9768Z7Rsg93ZeK4RJ4iaY6Pi8RPEU0fvds9r/qOHWspRI583fuwGtLFup5lkxE/auIW2Qij1ou1JLG6PrgQh6r5uxKy1dd2vKXy3I3b6GOTHGjI0SFO1htWHkPqN6I97caVedW5xovf6e1F8+6IOmX/ASybmsy+vcmxWO+LRM5q+uqdzLmZdnjkLipxht7nHKhl85Gh44QWWqtS7N0dT9UEbXX3VYw5X510bVOR0hq0es7mytBhVzyNhlM9P3a4oX4dXO+dzot6ikQ0nIIIWaVkRCSOI11P8Fz/eCzLlaHtb5vVO3b+LxLh2KdUs/FaIDHRBIShy2BED0oBiMkBcRfWmtZA7Fu/DrfvntsVNrjE1B59NuccXrQ2za3/lIfyxXLo1XpVfuPLXnhisNqNaBu4aG/aeva/PWZEHtZGnFvvrg3ooTcqxTVwkB99F/83xRtrnNxkBRBFleqeuG36eX1G4jVQWk+lEIbnw0v6UagIRdOKvL+65bN2FJeLr/YSMnNLwzk32uDMyOd0yc/5F+qxQU73pvYZlvyaX7KJ+RrGkzxwsj6t0pcZHOQ240P0u26BeKydmgRPrgyqojX4i47psilPQhQJrZwjrnPuOlrUFBUIc+UL+rtfvmzkdQZR94g86MpGCR1bCgpwQ/r19ncglhu9W3LLsGQqmJrOSnTcwkuvbPlizxtoRxTvUfqABj+8SuDevhSi1698ZoXq+a7UrGT002Rp6CbAS5hYIKFLys7vbWAn8BMeLrFPqTxtwwmE1Gp66LFj8YHJ7G45WO1PT1FeN8UYpjzXY3GqhS2SeP1D881E0klys3BPZ2RJoO8xEIBJ2RTtm7GqqJCTz98BoQ0T0IURxCSNE2xCfl/9CG/qajl7G7ZfYdC/usv5cdL3sGSJuhx3IQ0Z9gWCNGDu5mEpAjne3SnxSuHxikeSi4gS2oQC77RZN84kFna0ohJwwoaAIio5Lgbr+MVfXZdfN8Pagtx4hvOzg0Z/bypjkWTbpaEFH61BAjeaOgEiCaJbAzpbhTqW3uDdGarIzj182tNQ2aVxev+m/2LthRaPGqJKAUAAKJS1zpkgl3dRyHgb6lEZgVLbcRRPTArrWLZ2pJ3xr2uSgVOzrmGIgbrV9Gy8nCGUm6gK6zjWfNjLYKn3piIRSu3eoZR4dV3JWTJUyFisY+Rkr5VN/4WhI4gyBursCVAW/LLV5BrSoGYOxa3oEbV1uSRytYESmTrANtlyUcUiqSdH18ok1QIpqSWpRRxyNY4ynht9yhs/3qhmiZ59okpaMCp6AP84hAiVgayTYYgwjgnUqvUkvmd249/Xyg9ZtU1JqkI0ocn0a58rPfaU2FvT+qPkIZlw+ZCbn6Byy0mYtWPQzXPUM3pVeXodUy9NW+EkOZHmkHLYIQkS2N9z+uVK+kxkY4Pa+RxevvR+qgGqjVF/Zaj514VIS0MtgVC9KAYjJAUEDseUfJlt88bsFBItVHpLfzwsmxl3zzXGAx9Xv7LX8wpNouE/JhI+waAfeNA1IZ23lOq1h9e5at77I3Kj58FF0B9vI7SMphH3Mr86FjnaKQLusaOTLTiJ/oLJNxzWveSbKjKvjTyElD6HjMrueraeIxv1iryDTTelwSpwuvI1WZ+6ynBkFgGqxM8e49xMhlUfJz1I+FHoxIdCPVv5z1KjxBWvniSxy/1o/aitfEus6qQkNBVJeJx5MJPQKaM38NNaLpZ/3IK3HRzxebtJqSyUOmDl0jIiltkoohPN11dMYnETRZeKUpSVFpDsavtN86q7s/9EYXi6EbnHFSScS/Rl2prXYZ2bZAo12TFo7RQ6luQ/v6TO77bci2QKNLbp0CdWMLvWQqJqkJXZGKEfLOivC/XM9L8At13HeuRoSiEaQnNHl5vDuBMy8uNnT2pb1rCxkQ4HMX1f/na5V7f7x6U4+UeSJsQ0jgJAYi0gH6XkGQJR9SfZzbJIVQ299d4J2X3k9p3vwm+EiOEEELqDYrBCEkBdS/zLW4uP+5NYqdQKH5NtpGqu7mh9QLc8jJdtRFWl0e9d+UygYzMypUQsU1FRXZcuI7QqqeVie6GpTUPzsck3dxS3JvfcS9BbtMpToBzAylgfKQOpRgogN9Edpts/YRq0zTAZrnMKoczxqAbqM19g8PLCgfbkz8G3IJBL3GTVOzj7GOl4eSiBr+8SR+hV32PjxHOeITET4BxRKd/cB8l6Y91fPKzlAboiUvk9+XuoBIXg/mXvzVP9jrjHuukVmxgr5eqZ8VjIu14zfG8kB7pqdGvKkdTx/zGSxyicySkdM4MhTU9hV9p2oY7r9Z/VfHJkH+lrCHeCVi3VdbGYs72C87yER69u2y+InWTCY10RHXuzPqS6BAe//DFnhe9eaIqz7IjleUiPlmsskz6HBOpmAP6LSDj7cJvy0RVv6IaImlrkjrtV4bU8qfiAwr3Bxmc3JHU0VDHBu1pIlH1hrKugBNQr7uCWBfT9d/c17CEtFRCMBBh8ybEl9OvH6a81mjnwx7ZklsGs/ytsV5TLZH8P6ppmDdHunt1hBBCSByKwQhJEVIrAD5Hdch+u/27d6C9NpxT/XJL53gpoG4Tx28eLNu8s22aBdhM90qjLq9eYhZ/Ny/Rlt/mWCwvyuTlcUo2DGW/VflwW3iS55XoEZWUm28dDxC/y/KBciPVvbHl9OqlLfFb0DvjC6BTabYEWdPP3LYFLyyYV3+ZaYJ4Wdvxq1Yy4ZUuekePydqU6uheDwfFzpVMBKLCetX1Ikkq5vW3DhOLN1jpqYQ1Vl2Xeux3jleBkvbOl1ln9BQhOgIMPzFDS+73AGBIzkiXm8y6XBB8y9whdAlilTFY1mRHQkp8OS1xaRw7FUdALeaR9zHeQh31vFmRuA/Ke/GyGKYpaPBaH9jcQopn7BKNyf3Z82n49rmufkGST12C1IM4nnVUJXhz/HYeOScVGKry4l3FlPXJvSZyu4Z0W6BmwQmoxxCXQExzsFF9QKEzXhCSKCqjfM1tTZ6qdqM67kjngwYnzauECSG6hMBjIglJlsYqBvPKlZ+hBFVYv48YQ4r1sQ71Pt9rIBEaIY0RWbd1zfgxez4jhDRyKAYjJBXIRFAqiyjOjWTb5pc0qCuc6gt81ZFItnPQIc+XGYfU9IpFbCS5bLoL4SuIcr94V4SJbwA7BS/e2XOn5/HyX76B4j9hV/lQlo3qmB6PzAURDbq0Ce7ouMGRILIvjPyOn3AJIzzi17IoIbWWoV5cyo9ZsqbpDuOsjzqiHWs8i3ftxPhNGz18NyyJvtDQFdqsLynB5M2bEkqjuWJAfayc33FzKgGQsydVfYXn+15EJk5w5kHYrYnIxmfXMZGSpJSb85Z0nOn6hw22+S8Vpkt+S4vNZ0CViegSPkJWswBlM6A6AaFlvuKcYzk9K7OhLI0WQVk47HJLWuzu49fPWqo0Ss15UV0WVBXMfRyddh48bsxZP9XWtBJAMYe0Wb1TB1XPbST+ZZarVOhYdRHCbSE45s/9sl1PpOs/5wo6B/ASI6ViOh2PxxxnNAT/6uMk3XFbCYUUHxQ445bk01myTlGVkMYl7zv9xkrzmhCIHQvtdk9000NWnrE4E4qOEC3UFlcbIDMp4p/vTkFpebXNLYgVbU8U/b2q1avSlX1E5QobLGeEkCZCy129EZI6Gu08xfMdvMxN48Wayn8tyg+wdHCE+3Dl8gQjkqNrNJqQloDs3dqmstIGyAkhjRuKwQhJEc5NDOfGj3xiqXhhLuzxJItfFJ5fXEo2COR5Um8W2Y8nkWwchOo2F4IeCym3PqOHzr6zbP9AdkSV85qfm3JTRxHGb+PEFy4SEiLIaWcygYIXni+rXJE4RTHyjXOn5Qh5cP1NYF2LdFO2bMYHK39X+m1oEupHvb4CczinGWrhU0tkx+4y1IQjftXY/6LG+5uEHq0qLueGuWwAdMQjs+rj+zLK6q4lQLYInHx964XRFUf4WpSRuIuEj4lUu+laJrI6qgXyvrG0iM2E1UWFWF9cnNI4tcQySpG1p5f4FXs4r+mr0/KmkIg+1cFd+fPro+rSEbUCHLs3HUGKbj0PujnuDKuKM8gwZs1DXdvS6+fk1hnlwiadPFmftd49JNZH6VpL9kvRFINBKI+JdD9LufjYucbyS1vXAi0gF6nZ4go0RxbSv93+LIn5xakakySOWsdE+qZISDB03jU0JX6auAK7Csttboncz7riYuTrbtAougJVuipxqy0s12yENEtUFgYJIfo01jEy6J6IzokxehaWNd7Xaazh31+R2vfl7O8IqYMtgRA9KAYjJAXEvmB2izD83mOrNr90tRzSr8Ft8elNWqVfX1vzaE3DwxKLEJC/sLNEEBWS426kGVPnV9uzAq8jZ3SsSdRtTrsfgHtDR54H5ZEsHkIzFS5LNTYxYTw+To0SIRUL4UCbZWYfUBdIJvBSiQnVliN8MuGojzIrSKq81qXrnURDkkj9D+nsJtSSZhg8ksDCmKmrsaug3OXuJRjwe4EilAOMOoynP9cmt/cYLrNWprJmJBN0awkaoBAvOcJ6WcWJY9Vj6QgYVEZXrCJHqeBRotZIVBgpt2roLnfVccryzFnikoyvLbnV/nfZkqReSuqUXV39d7cJK4ZLrKF6YauXD1WfL6vjUjeJg7YgURYesvmZOxaZRSRZHpXWZXXyobgZQ6VWc+RR7eKRC8faRCr8UgjEpLnxnJv4jy9eefcUNGpOC/xEbE5xod/RlkIAIdWZc7Yw8vpjL3/JmKA5h5PXJ+/0rOl6XLb4E0oPrvWqRzy2cIoPKCSJa8ZIiD/qo4WaeD1zzUnVL21U741eXDgPn6xaaXNTWbhQfbQYZPz1C9tYN74JIcEI8PqGEKKgKX7kKsuzzm3YvmGU+U/iKMZEyrGkptrfk4Wm96QIqSfYGAjRgmIwQlJAfBPV86sCyYawnyAoFiy+6SlP14rLOpkiM0Gms65jbRQTWtlXCSqhmZeVkpSsOzS+7gAck/P483GE8CorZ9yeFtYkfn03Q+wOen4VX+03wfVcoyCqsKAgo66tysK40a0tyk1TV/oe1gatf0s34u2JyDapveL0q88NTSL132X1yRafs5+gZTArcas4qjLxF37F3byFAaoNd7++WNpOpEdSuZ+1EF5hav91xgPZ+Og/5smOa9XdDHcfl+iN6ggumUjUivSYyEQtg3nUC78YVUfb+gm8W3KzzUhLQ3U0ouU30fegKoG7Kz7N3RtdQQmgZwWstpn7+lPmRyVsdQqb4gIopz8Jrv5L2u781wVKEbSiqJUWwxQWu+zpqktNtj5SHv8oc5PGbe+IZR9BJIpfVZfNvRJGxMZLnTw4rXepxhDn+KZ3TKT86Tv3R2JzPbdrKhGQrxVlbVWnA6+z1Cdrqy14ACD1jmqO2tSrnWts8bgf1dwhIgScXZ/KwoWyh1EWpIdl56BREUKaHGzPhDRPPNu25vtFK4ZjohZoDhLQjy7nj/pJ+72y6sNUQgghREWTEIMJITBjxgw88sgjOO2009ClSxdkZGRgr732wrnnnovPP//c82VeaWkpHnvsMRxyyCFo3bo19tprL1x44YWYPHmyb9qTJk3ChRdeiL322gutW7fGIYccgscffxxlZWUpvEPSHJBtjHiJnszfMksIks1XXWtP8i2TgLNmpw+NCWZ888pt9UuyCeF4+2eEJMIWTRGGKx8aX7frbi7H4lNvUPp9ye+Hl/WCAFowu8DQ9Xl/fLOIq4REUH7s7BXG9Vt4Coucfl1xeB1X6EBLYCpbCDvT9PBrXrOKTeDXzzQwCWZNLbSxw69Q7aSlhYCou0bIrDx5IRkd/cMIhWUUC7qW7GwiR0nf7GzXXoJQdV9ib0dSP655g0a8knmEV5xqvJ9CyCF6MYzUfk1qRmUTuaj9OUVwulbobNeDZbHJ4nW8rfTIVLcn7bSc7cQZn6stBXgIPoaQHH61ZdiucEHGSPeHEB5ibY22Kgsrz49T9CMXGumObTH//mJvs5lKX7TLj0F0epbqkTTKTOdaqubAIb/Ea/GbE8XLREAlTpYIv5zzDFnfqDO/U/iRIb0Hn75Yhc64BdSNH+5jXtVWhqwojyCV5Umy1krCAAAhLnTf1TQ2PvpuPt4e/pv0mqvdJBB/TTSKjJD7VbR0DArYJv0sM8rgBz2ENA88rbsSQrRI9MO+hkQ6jvt8LOT8oFclGNvTU4SaaFTLH5cspDly/4ypmL19q6+/T1atwDu/LzV/N+r9KEIaEU1CDDZx4kQMGDAAL774IqZPn46OHTvi6KOPRjQaxbhx43DDDTfgoosuQlVVlSvszp07ccIJJ+B///d/kZubi0MPPRRZWVnIycnBWWedhbfeekuZ7htvvIGzzz4bOTk5yMrKwqGHHorc3Fw899xzOPHEE7F79+76vG3ShFC+oLa4SQVIirfTupsuTo+JvPwSsE8iZcYarAl5vYiXfbUts4Tg8oO6ybnTioTv/Ug3yNyb88oMm/48vLmCCam7ruAHqBXASb3KxQRe90GhV/0htQwmsRYEWMUIblRWMFQ4BScKlafrt+7RUdL8SUWEsV9vLl3smX5j/yopkYVBkIU/F+J2QrUCX5WIyV+MI6T+ZGNHIritm8iEXXUWzpTxqOq9hhhBOieAY/yS9Cm6Yha/cVAu+nBjfRkovVdHO5Eda6uL9zisdw/2stLxL7FAg5YhCAjBgOpVo2x+4/KjEv74zK10BEM64kk/dORTMmGaKi79tOUCcPfcQdLPaYpRZGKquhjhjtcaVnFknuf8XlvAK3vRbs+L6phIGap5tdc8R2u65Jt2sPid6GxGxq/Lrb9K4lRafnWPZS4/foMpNMZlET/2zpkv73BmeB9hMXyu6vYlMj/OY7+VHxzxJXKTZNymjZiQv6mhs+EiZBiQ7ac2hXq2dsNuLF+3Q3pNd53p7U0iCg8o/lVFL3u9dvfUyY44hedvQkjTRLbGJ4QEoym2INk47if0dq7BpIIxj4/n/JDtJeiga7k9RlN8WoSoWbRrJzaVlvr6+71gN9YWF5m/2RII0aNJiMGEENh///3x+uuvY9u2bVi7di3mzp2LXbt24ZNPPkFmZiZycnLwxBNPuMLefvvtWLlyJY4//nisW7cO8+fPx4YNG/DOO+9ACIF7770XCxcudIWbN28e7r//fgDAO++8gw0bNmD+/PlYt24djj/+eCxfvhx//OMf6/nOSVPCtSmcwCaHufFrm5FK3DzyIN/s0smJRx5d8em+BBSuqJ3COS9rCbrYhTPOL8k9wvnE5RdOui+ueS+GIoZE1hnWxYl7QZN4vCTYy2HTp0T0ofuVosqP/6ayxV0a3pqGbBdYUW9q/W4qc0/GnaKLxvziLaH67xA1/PrbemV8iYrwmitpoViFUm3Aq0Q5Mlf3X97h4u3NE+nmu2oTStj+tebEaXlKdn+qo7zMfFrHL6VA3D0Kq6/Z8+LMjwod60OqI3DtlsEMm4Bs4qx1qK7Re6HlVQf86oz5dBzzASHxLz1OuwXiZcXN5a5oVH5THvVRdu7otbpQe4VUz7ka+MG6rBrBnVfl/TrnzW4nZXi3RTdZ3uKx6pG0LlIyXwlJLJ7KLTrJhWsuJ0e9cF2ux/FZHrPb8p30t3BbV4xflzVBmdDSdxMj5K6LLj8KcZ40D5IxTwfdMUnU+lXXXatf//lsPKCuNWd964GksTB6Yx4m5m9s6Gy4UK6NmsDEIy1kaFsGUYsr1eOH+qMMeTyq+FVxO68u2b3Lbv3DGZfFYeOWIkybl6eInRDSmKFlMEKSRzRBy2B+6xidj9gCRZ5gnnQIIj5rek+KEG/SjZC2dTwr3I4hRI8mIQY76aSTsHLlStx7773Ye++9bdduvPFGUwQ2bNgwRC0dxoIFC/Djjz8iFArhyy+/RM+ePQHEBvw777wTN954IyKRCJ599llXms8++yyi0ShuvPFG3HnnneYL/J49e2L48OEIhUL47rvvsHixxFoKaXEIqL7itvhxbSi7v7CWbZrJLKRIRWNwL37l8TnyLmQv152xqn5Z3I34ZrLD3WGBQO7HnTHVPbrS9bwqR2bZS3V8mexFbt0GTOIbTsr9y9rgzhewntF6XNMtRyInkXWwbJNSttmn8hv7R91PAHJLYwIe6fi4uSzjeKl2zPSaTp3Sqf+7CstRVl5t/naWyd9fHaeMzwCUFnaaOwVFFS63UCgmalIKlXyEsMLxb9xDqjZp/fpfL2xiI8M5vsX/1WuDMkGENAsJNDXbl4gam2uyuYDTo3Tj3FEGoZD968mn35yMnQWJH60uEzxA6iatNVKc/XpL2PrfWFriclONF4C7FGVtL8gY4PrIwTkPdAiG1CJHzc1puCt0MiOW4lsLZV8m6xvUwib/+3bei+oIVJ2bDLpRprp3Gao+wulJag1LEl55BLOw+7FdkgVwrjFkcWogOzJTJa7yjqdW9FQrEpRm2SFccIq6ZP5kibsts0nas+I4cpeL43nILCuq0O0v6o6JdEbg7jikGzuSdEMO4Wudttu91moJViGbI41RxKctZm2EhEIGIhG9lU0irxjU1iFl/VCw+YAqbuvGknsOXOcycdY6vPD2r9K4CSGNG52PS4QQWGexJkIIsdNYj072ypYsz3634XcKAKD/sb/G8lMb3fKXrUsJaeqkGerTC6y49r81wuSXlSKcgNCMkOZEkxCDZWdnIyMjQ3n9/PPPBwDs3r0bO3bUmTP/5ptvAABnnXUWDjjgAFe4u+66CwAwatQolJXVbVSVlpZi9OjRAIA777zTFe7AAw/EWWedBQD4+uuvg94OaY6YGxsaGzqODQzdF2G6vnS+vA76ulRnLmq+hHUcjRmbYDtfwMs2tZxpCjMOmbs1DVdcGmUQu+a/8SF9kavIW5ANBN+XFAH8Wy8pLUOZ8XC5EIRggid5vVCjaUVOtWmq2gXz23io/eEWtcgW0EHvqXEQjkT9j7dz8LeXx+DtL38zfwex9tUYN6H2BJFoFBfe9anLPRQKxTa6XcVXW58CiCpsaBdz8OfhtvIlYqI2M3917rYwPi+elFVIo20JRZ+iVSv9PGnW7ajPgKoz7ukOO16CL9tCP0C/JLO+agspJFachL7AoSlQE43i2gljXe6GxzGRzpeQXtY9PJE9P52KFHTQ0RCFyNyENOkAAhdFPmVzMbdoSbGR7RK8uP2pjnrUHbGCTgX9uxPJgzZTc9+D0gqiv+pT7S9+zRxnEp+5eK2fdGPV9WdIdi5lGw9uUZf+/cmsyzrj9lPdqY5UlQtFZXmQ/y0L6zeuBkVmqU8aZ1Ob7BIAcmF9Y0A1jjTGvDoxQh5iccXcXhqPYpKoOsotiddijrgl0Xh0QtY1Y3qagQg3ighpsvj1sRXhMG6aNH4P5YaQpkeT3DLwW8cobkr6sYgF9Z6dRpYSDBjRfQeteBdJSFNGt14ncjrL1ePHYMHOHf4eCWnGNAkxmB8VFXVWKVq3bm3+PWvWLADAoEGDpOFOOukkZGZmorKy0nZU5IIFC1BVVYXMzEycdNJJ0rADBw60pUGI88tu55fX8a+NvTd+6/zC8bd0I9QpEFF+2a2e4PotlpXWBxJEAAhZeh7h+Aw76bmsxk6NtJxdf+iET/3EO8gmlszaXGyTz7554/TTUoUriRDkC6O6tmr3IDseSoVqk9zP8kNtYA9rg+6FsDUtlYjSs7+yXFR9/b4nyNtciLNv/sDm9reXx+CLnxaZv3XaUyhkoKo6bP4OsvBvqZYkVEfIpCksg9XVK592JWlL+hvw/kIOA+42Jd/k9q47bkGGuuXIogk52o3OxqHUWIqEqK3s/DfcVHepZa3J5+noW3Pyilt+tS4Nty/nnEs+9jf/F2jVEfkxnV4vWvTmILJI5e467U0nffc8G1KrRvKNYP103H26YmxVpCOzVqXsT9T70+r8KK0b6rw4C1rv5eVrOH6HII/XZSVNkQeZ5Svl8b0euTX7AtkcXwOv+Zqf9UQvd2c/LhDLo3MciKfjrG9OS37S+5TUPff6VPWM/MctHYsbKux9sToSMx8yQZyOFThXfF4WmmRzbv84SePCQGKWnPcEWh86NEK8xmjn2jiR+5Fagkxh45OVu9cxkdZrDbmmJYQkh45on82bEG8aq8DIK1d+7+2lry0cHYb8Ayz/PkP9Di8xdMVghDRHQoahta5zt029dsP2RVo66clGUF5ejjlz5mDz5s3YsWMHKisr0aVLF+y111449NBDceCBB6Yin54MHz4cAHD00UcjOzvbdF+1ahUAoF+/ftJwGRkZ6N27N9asWYOVK1diwIABtnD77ruv0iJZPM6VK1em5iYcCCEQDof9PZI9ivWZWP+ORCIIGQbCNWGE02NTwdgmed1zjEYjMGCgpqYG4XCdGioaiZh+IuGIGXfcraYmfq3OzfqvNR8GYpZazLDxeC1pCBEFBCz5isKwxCmEcNW/qCVOQCAaldVP4YorHA7DMOzpRyIRAIbtdzxMOBxGOGK/N+c9x48sMPMbtf82YCDsSs/x7Cxu4VplmplOxF6mQghERdTmJivX2iJwlFVdeQpJmcnKMVwTv1973JGIvRzi4YFYHQmH02rTi0II6zOImPGGM0KIRt3Pl6ipcbQxoLYNAS53a10LG5Y2XtsuasJhmxIyKqKuelFXNyOWOu2uVwbq6p+rDlnc4nXE1gZr20xNTRgiLVR7T/Z6HrHWm3AYkNQZW/2PRiHQMPWqtKwSlVX2ctiwuRD9endy9YVe+UsLGaiuiTjamKPt19TAMAyzXzbLOSKvE82dmhp3/xojXu/s5Wf2R47+DYCt364bByKWumwfXwD5eBUbI7zrooBANOroT0UU0WjI/kwNy1gUH4ut46ljPIzfX02NZeyqbdPVNTVIT7Pfb/xereNvVDKG28pBRG33HJaMDfHfzjzIxrG6+424ytd5v85/zbKLOp+BXXwke94ypOO1pM7IysV6P6o2HI/f2q9HHXOIaDQae5lY+ywammg0aqsXoVDw73iqwzUA3M9NeMwHqsNh2yLRWU5xN8Nwt0lZHXbOA53hDIkfa3rxl7ORsN1PNBoFJP2AiArXuKW6B7ebrFyEbX4dz080KuvLwgAMV9sxDEN6j9b6GIlEEAoZsLcn+7w9Xl7O8clVztGo9Pmqwora+YJqfu8qN0vckUgEMAxbm4zHF0XEtyzi+XLPq+3lbt6nLR1Hn1j7b6zPtc/xzfzXzuNkbTw2rrivmc9cRG3XomZdqHMzHP7iwq86P4bZVuLl5/ksIxHAsZ6KRuPjTd3YEnsu3v24rM4DkJazfT0Vta3X4mGc461s3eTMQzismjvUtWvneBSRjFGytZHzXsKRqGstGjbnbPZyD0dia/WWNpdr8gggCneda3CE/J1JWDKvcv7d0AhF3gH3PEu1xnLOB5y43plE7e8wzPQkc0Mvd9mYBcTmNa1qFaXOsDW170ni+ea7EmIlGo3a5uMNTSrWBiqC9kmNqWzic9No7bxEVS4674UIaQmo2kBYsi5pSMy8CMdvhx/P92GSdh8yDOmczOvdhgyVH+fekirvTqprwghn1Pl7beki9N+rG07p1t3mLxqNff7ZmJ4VIckSgoGI5B3b3dN/xX8HnG7+jr1zcL+L92tzsvcuQWms6zdC0tP9pV4JicE2bdqE999/H6NHj8b8+fM9K363bt1w+umn4/rrr8fQoUO1raPoMm/ePLz99tsAgEceecR2bffu3QCAzp07K8PHrxUUFCQdTsU777yDd99919cfACxfvhwAUFRUhJycHK0wpGEYM2aM+feyleWoqqrC6DGjkVn7ImnTpiIUlETM57g8rxICAmPHjkVWq5ifisoKrF6zBjk5WwEAu4pjbWn69OlYv7IVACAcic14Z82ahS25mQCAkvLYIDdz5kxsWtvKzEcEEfz+++/I+X0FAKC6drY8fcYM5NZ+r7AVEUQBM18rEUUVoubvrYigxnK9GmGsXLUKOavWAAAKEcaGwiLkbMy3lUclwti1qwKVlZVm2KqaKKKRCBYtWgxRuhoAsGJFGWqqq0w/qzZWoqKiHFOnTsOa3zOwvSC2aTlhwgS0b5OGbbW/4/4Xr62w/V6+vAw1NTXm76iIYtmypWhVvS52vfYQJGt72lDrNnbcWLSuLZfi2rKaNn061lq+7ShAGDUwkJO/1XSrqvU767fZ2GYxsFiOMNasXYOctetNt82IoBxA+vZiWx6qqqqwcuUK5ORsspVjWUXs2U6dOhWrl9WJUddtrnLdR1zoM3bsWLTOjOVj5YoyVFvKN39HNYBYfc1sFYIQAtu2sX/RZfKvv6KL41ufTYigGMJVhmtr69WYsXX1CgCWIIoIohj1yyikW9y3OdoiAOyKt9mZM5BX67e8ohyrV9f1E0BsYfn778uRIzZYciAQiYTNtgTUbV7OmzcfZTt+BwAsXR9rQ6NGjYpZcAKwc0cB0tIMMy9r82P1bdz48bF2iIjrfufOn4cSLAAArEYE5ZIy2RNsd/QRAFBUUobc3LXIydkGINYXOf04KSjYjZrKurZRXl6ONWvWmHEAwM8/5yAUMlBcFrHFt0TSz7QE4uOT876X51UivSOQuyEPORvq+rjC2vo9YeIEZDva1bz581BaW5/i7WDS5EnoVOtvOaKosYxVALCztn/N2Vzntg4RlPnUxe3bC2DAsMflaAMrN1QiEo5gwoSJyG6bhtLavvm33+ZgV/5iMx7r/cf76bHjxqFNbZ+ctzXWB48eXTc/AIA8RCEQxa9TpuD32nssQBiRggLk5G8BAJRLyst5f1shfwaTp0zBXrVhNkv8VDrc1q4tQVl5lbudz52Loq1LY2VUFHbFs2NHAUJGXblFoxGsWL4Cxx/cxvQzafIkdG7vv+SQjdcFtfn8deoULK+9n/jcZs7cOdhdOwaX1rpNnDQJHWv9VSGMVatXIWf1WgDAutr4x08Yj3a1fpYgJmS1prkRUVQDWLNmjW+e9xSrVq0yP1YJSoWijuQjghJFWxk9ZjQyLW10heTZLFldjqiwh9+1swClGXX1obI6Fs42Bq0qRzRqb8sVFfb+dlPt3CXuJz6WLVy0CJGSWDnkbq3CzqIIdhyciXRH3rYgggicc78Iihz3uwoRVDnc1kr6kGKEkVdcgpy8jbH81JbposWLIRYvtZVdeWUUNdVVWLx4MULlsTq0uySMcLgGc+fNQ8n2ZbF0asfZ8ePGoW3rmJpn2apyRCL28fb35WUIR8I2t9KyUqxduw45OXYz9/PnL0DFrthaMh8RlML93KsQxgrLvD7ONtjHtTglCCO3uAQ5eXV9+UZEUGApo9i8WuDXKXVzpnh8czdtQnllFEZtWVRWR1FTXY2lS5ehVXXdfDkcds9rysrLsXbNWuTkbLflac7cOSjcugQAsGJlGaqrq828FJTE+inrHGd5XqX9XrfH4pO1qfLauuO8JiAQRgS7d+/Gqt1Fpnt+bduw+hcQ2L5jB1bt2BW7Z4RRXFmJVcWltdejqKquxurVq1FZVYEVK1YiJ62ufGtqarBi+QrkGLH6tq2gBpUVFbb6E7+n0aNHo1Xt2JKXV4yi4hrbMwyH7XHJ2l9lZQVWrVqNnJwtrnIuqO1jlyCKckQxcdJEdKh9xqsca0ggNo6JggLkbLLHtWDhAlQtXFTrR94nAcD8hQuwc3U5yisqbNdXrChDdU21zU22NtqxowCZlj4oEhWoqanG78uXIwcbTDcAmD17NrZvyDTDLl1VjqiISvNFGi/bEYFA45uD70AEreDOl3W+a8X6bmlPUVEVxepNVTiqX2ube/6mIuwudq/9AGDqlKlY1bnuHUV5pXwNVFFZGZuD5Wx2xVGEMPKKipCzoe590rLa9bIznmWKNdZ6hXsJwlhfUoqc3I029zFjxyCrtu/KQxSDEDLDjhkzxnw/F+trwo2uPpHGQXNZG+gQtE9qDGUTgUAJovjll1+UfpxrYEKaO5MWlODMY9u73FVtYMH8BaguWFHf2QpM3J6PLN8zZszExjWtbG7W93bbdrvfGYcjESxbtgxtIrkxP5L3yqtWl6Kyyv2OzEoBwjAKC5GzyT7fWbBwIaoXLra5WeNZhih6wjDfd8aZOGmi+T4LAMYijJ15G8z3XtbwUcm8iZCmTDXCWL5yJXJWrra5L4d9br4VEVShrk1tV4ztzt9z5vyGnSk8KK8h1m+EqLjkkkt8/QQSg02bNg0vvfQSfvnlF/PrjzihUAgdOnRA69atsXv3blRWxl5Qbt26FV999RVGjBiBXr164a677sJ9992Hdu3aBbwdN9u2bcPll1+OcDiMyy67DNdcc43tejwPrVq1kgUHAGRmxl4AWo+aTDScii1btmD+/Pm+/kgTxjyrxu5k/y3cR3dI/AHOo0Hcbp5Z0fSX6jiU5nMdNx3rNwyHFw+RqMcxK5LLgY4wEZK/dYLWp1FRMx8BErF5VTwIa7zhTAPVEGjFs1B8CfKsvfyqSlrnCRiSh6pjrhpQ1CNZZXf2Xxpxe+VHQKAUQPs9UMekJ2ZGY196pRpaFLajKo/0NKBtZkj39CylW33iOkJGVl0sboHGYs2b0a2he6JslM/Kx3S+Vtx78OF6JdUY6l1jwqv+6ZZL6nrZxI5l8ko/lSOAe4xTIyCf1+ocIaGKV/OUSL1jIj1TSg5ZrM5jCoOEdx6XqETSVydzi0H6Eek9B0hey6/Q9ahR74XkKEn/aE1/uu1AkmwAf/7HPQfBCJABroyaHgaAhrfVo4+zKkYgUAmgbT3Xvu0FNdi7k/3Ugy27ajD6t2KXGAwefa9OH2iJRumuOydLZE0qw9l3WV+E245sj52hHTBVQkhjIMj8i5CWwpwV5Rh0VDukpbn3ZlJtsKOh8NtXk+G68yAvL1PAKERxLkIuMZh0j0sSvnk8OULsBHkvkQicI5CWjpYYbPXq1Xj44Yfx448/QgiBtLQ0DB48GIMGDUL//v1x7LHHonPnzrZJRGVlJdavX4/Zs2dj9uzZyMnJwaZNm/DEE0/gjTfewNNPP40//vGPCZs0Lioqwvnnn48NGzbg+OOPx0cffeTyk5WVhfLyclRXVyvjqaqKfVHaunXdC5CsrCwACBxORY8ePXDcccf5+gNilsEqKirQoUMHDB06VCsM2XOEw2FT9TtkyBDT/F5ZaCkW5y7FuecOQbs2MRHhoo1TENpebD7HzBlrMWbOVJxzzrnIbhcTE346fgT69euLoUNPAADk5hfi/ZzvcOopp+KIg7oBAKqqw/jX15/gpJP648QjewEAtu8qw39HfoWTTz4Zxxzaw8zff8bk4LADD8bQvgfE8lVTg9fHjsIpp5yCIzt3AQDMmDsbESEw9MSTAQA7V6/Eirz1GDr4PADAb/PmoDwSxtCTTgEAfDB+NA7cdz8MPegQAMDP06egd/v2GHrUsbay+XTiOHTulIWq1oXmPZeVV+Pdn7/EUUcdhaFnHBRLr3ohft+w3PTTfk4u5qyagwEDBuDQfnthTd4ufDR6JM466yzs3aUdVq3fiY/H/Gj6F5NWYsxv083fxWIJ5q1aZP5+7ZuPcfjhh2PouYcBALLyN+HnhfNs7WnBzh34avYMnDP4HHSsFXZuLS/Hu5PG4dRTT8XhneqsAo6dOQ17ZbXG0GOPN91KaqrxxthfcOKJJ6H/3t1M988mjsMBPXth6CGHmW7zFsxFYVUVMvdujaFDzzHdh40ajoMPPhhDhx5jK8ddBeV464cvzfKIM2vRRnzz6zjbfYQjUbzy1Uc4Z/BgdMyO9UWFkUVYtHap6W/Jqm34fHwOzj33XLRvm4lINIrXxU+oOuRgXNav/o/xbcq8nDMSpw0ciH7ZHWzuCxbMQ0ZlBYaecprNfca2rfh+7mwMPuccdGxVZ2mgOncdZq5cjvMGn4fMtLpz4qbPmQ2BurYIALklxfhwyiSccsopOKq2zX424Wv067e/2U8AwFsjP8MhhxyCoUOPMvslASAzs5Wt7sTryLHHHouzTu4LAPj/7P15nCVHdSeKfzOrWxISkhACDJKQkISEDQiBALMjgdiLsT0Pv8H2+McAxmbs8c/j956HsWeMsWfGxgNeGPM8xsIWMtgIs1pAa9+Xllpq7a3uVu/7vld1VVfVvTfeH3kzM+Kc74mMW3Wrurr7Hj6i+kbGcjIy4sTZ4pyhe1fj5ofvxwc++EGctLDA574Vt2FoKMPw8HsK3B7bhBvuvwPvfvfVeNHZp+GBR5Zg+I1vCubmiiuuwFUvKWjS7lUrsWrTRgy/5/0AgOX79+E3Ft+Hu4ebvdJnCuu37MfXbvpBsDf+7sbrcemll1b7a3RsEv/ru/8YPVdve/ImnHXGKRgefhcA4Jt3fRcXXnQBhoffCAD4wvXX4v0f+ABOPmkBdu4ZxVd++O2qv3zzJtz81OPH9bl9eGwSp50aOskfmSjOJ/ne9z+6EQ/tWonzz/0JDL/mtVX51sOH8dW7b8e73vUuvOTU06ryLy66Aa973RV49znFeto4MoJr770TV155FV7avTxwYM0qPLFuLYbf98Gq3Z1LFuOMhSdh+Ip6b2xcvgy7du3E8FVXm+9y/8rbACCgyfcuvxULFuTVHjh1yXrc8fgDeNe7340Xv+C52LN/DF/54bfwhje8AW+74nzaz0NPFHT6Pe95D846s6DJjy7bhn++6+aAPwCApXt24UdLH8Y73lrTGHne7J+YwF/ffnMwX9tWLsembVsx/O5izJUH9uMbD9wbfIOSdr282+8z+/fhnxbfF9Q5NDmJL992U1W26dAj2LZ/Y1DnC9dfiyuueD2u/OmXAQDWbtqHr930L0Gd+1behsybg7/6/tfxip/8ScCL7nPllVfignOeZ36PEk4m5/WWw6P4u7vvwDu89xlrtfC/blmEN7zhjXhrN1z+niPj+Js7bsVVV12F804r1sw/3HErXn7eSzH8ip8CUNPod199NV54SvF9Jjasw70rnsHwB4sxO50Ofvz0kzi0axdefv7L+pp6ZTrQ6XSwY8cOnHPOObj44ounhc+ByQn8v7fdrPbpE088igXj+iz74qIbCl7VuxRz2vZt+NFjjwR9TN62Anc9viQou3vZLXjOKQsxPPxuAMDI4Qn89Q++GZxBRxYux71PhX0V59zLKnr71LM78M3bb6zqtDsdfPFb1+E1r3kNPnRlwU8uXbYVG7YewOGzDmFhnmP4DfUZtXjpErQ7DsM/XZ+vy596AlMjBzHshZfftWolVm/eiOGr31+VMRryL/fdjQuedxaGL7u8wMc5/OVNP8Jlr74Mw+e/LJi//QfHcf2d/1I8u7rgnTdvP4jv3LOoODd/+sICx8c34Xv33o73XP0enH1WEUlvfMEzuO+ppcHcjOBpLPX4XAD49r3fx4UXnovh4fqdv3D9tXjt616H9771YgAFr7LnyBEMv+VtAX5fu+MWXPLSCyq+voQHHlkCAMFZX777+d67A8DTTz4GHD6M4be+oxhrz258/5GH8M63vxMXnn5G0N8bz3kJ9uwfw/C7i/FGDk/gn+74Pl7p8eoA8Dc/rPmaEq6/67u46KLzMTz808F7XnHF6/HONxbzfqD9JJ5c90xNy7YdxN8t+l51XgPAKQ+uw48W31318aIXvgjYvQOXXnopJJy2ZSNOznNces5Lg/KOczh5w1qc9dzTcekLa95/YnQE2LY56CtfvQIvfMELcelZBR/3nE3rccZJJ+PSF59TPF+zEictOAkvv+B8nHbaEbziFZdieLie37/90T91ZYSibNWGvbjlsTvwuiuuwLveVKyfkxevxY8W34P3v/8DOPU5hYPHyp0PYKy1J1grsq/xBc/g/mXhGvv6bd/GJS+/GMPDtazzxUU34PWvfwPe/uJCzmxtXI8V69fiXT/9FpzTPY92r1qJVWL/3Lz4Ppxz6mkYfu0VQV+vvfy1eN95xZyWdF3SpC8uugGXX345No7uwsbd64Ln+1pP4qkNzwRlTDaSNGiq1cbXbv52sLamWm38+T//QyHHXX5e/S0JbRrA/Icljz6MiXa70l3MF7jn4QdxytAQhl9f068vLroBr33t63D1ucW6a7Va+LNbbsId6OCm9w8npXaYDnQ6Du/62Ndwzz9+Mihf8uQWfPeeW9Waf2bb/Whl+1T5F66/Fm9/+9vxigtfUJXtOziOv/7B9aru3990PS69VOs6AGDRA/fipc89HcOX1/qkScGPlTC0ZRNuelLLWEt27cR3H3lIlX//vrtwwVnPx/Cra5r6xUU34D2e3mfp7l3YODqC4Qsvxheuv7aQ3U8vdMBHFi7HfU8P6MAAauh0Oli7di22bduGF7/4xceFbGCBpe+O4TJf5qbT6WDb9u04DW188J3vMnGRMvAABnC8wxeuvxbvuvq9OP20k4OyD31oGHmeqbqvec3l+MA754+toKZLhRsH403e9OY344pXviQo8/V20q4ElDr1n8Lw8GVFnQ178Q+33BDU2TP5BFZ49isGNy2+D+eddhqGLw9ln9dcfjk+cN75QZnU2b3uNa/BB196QVDm67MAbZMrYWrDety9/GkMf2hAywZw/MDXbr8Fl17wMgxf8oqgXO6fpY8txcHJCQy/udB1rT54EP9w/91qj8nfr/d0yEBhNz9tYXhZpgl65ZUGMID5BEmr9VWvehVarRZe+cpX4ld/9Vfxi7/4i3jRi14UbXPKKafgp37qp/BTP/VT+PjHPw7nHO655x58/etfxze/+U38xm/8Bvbt24ff+73f6xnp0dFRfOADH8Djjz+OV73qVbjllltwxhlnqHpnnXUWxsbGqrSPDMpnZ511VtDOf5bazoJPf/rT+PSnP91YDwBe//rX47HHHkOWZQNiMs9hwYIF1TfK8xx5lmFoaKgqy7IMWZZ7dYaQsTp5XWfBgsIxI/fqdNMeB+2Gug4leT6k1knQX/d6hBwzBwSe9XrL8gxZJzNxzLIMufde1bhZ8X95VoxX9NnR7fMMWeaNn+eANy9D1TsuCH77cx3+Dvsr61T9D4X1y/kFgKEF3px2596fKwAY6uIXlHU63X7EPGTh/Pvzm+V6T+e5nsch7xuH7zSk3qO8B13OVdnOBfMj3qvdAZDBDWhMEuRDbI9llEaXa9P/HkW53vtVP8jE2iwSSaq6Yjx7H2YhXcg6FW7+nsuycIxCCZAF66gYs6jD1q+/1uW6k39nE9hYWZ4F+zbP24345JIWZvo7Z925LWlwNfYQ25/HF3zo167FA9/6taBsqFWcMXovDCGDpnvsjKvbeOuJ0OO8u24ZfZXfPm+gb1lX6SXPDbYHhrxvrs550U91tvh4d88geV4P5UV/uXxHb86GumnYZR148yDXYtU/4RmCb9E9x2LrvRxPvl84b0X4iKqfEsc2xyUG8nz3x/T7KHkbH7cFQ/rslPzH0NCQoq9DeY7MG7PT6SDL8i4tzY+6wQdAhcuCBQumhc9Qm9O/vPue7Ntk4psxGse+V0F7/fXZBjKxjlg7wjP7dbKOPsvyfKjYR3ketC3eLYPL9RiAPks1DdHzItcSOh1k0Dxf8c5Dxfku9k6eh+fzUD5UnMWePFGWaXzIuzTs1yzPkDPeE3yvM7pYzqWk5ZlYO3mEPpbfqF4TLYOHyTAkeWiL3wpo7BAAR+mdXHPeS/Fy1GtCPnPOVXyC/yzLSxqf+50E9bpLr/6Nes3nmf5OjHbJ+c1zNuc5+VZiLWZ6/5Vt9TznwdoE9Hg521MNPCM7S6ox8yG6B3OyFphsJNeMQyEn+uOXccekHJYR2jSA+Q95ngOdzrz7blKuqB+E684BmEJIs/oNUy3OB1jy2tBQyBP7oPjZyH4ekrqSso8sAwSdMPlZqgOx6UhebPjGcyPkBT0ec2gIzrl5t54GcPSg0+l0ec3jRzZIgRSaNN/mJvd4fQuXoU6zXmgAAzjegOljhhYMFfYOAUwmmA9QRv/ifAU59xtkD6kHYHzIELEnSbB088zeo+UjohcltgDWF5OXBjCAYx4ybf8qQemhvXqlraFpz8m9NLzoBtz/sx+ZNrqzKb8NYACzAUmc+qWXXorrr78eTz/9NP7jf/yPjY5gDLIsw1VXXYVrr70Wa9aswac//elpCQpjY2MYHh7GQw89hEsuuQS33347zj77bBNvwM5dPzU1hU2bNgV1/X9v2rQJU1NTtO3atWtVuwGc2MCi69L0ZZEw9FUaKpKWKSgTf6v+oEPgs3q9QJYQfNM5V9cTL12k5giRl6GI8yzz3r1MEBL+bsIywKcJ36pv+5nfs05Nqb9JUZelBUpPj1P0yfvmqR+Lwk5kjlh/uQNag/QHSWBNEwun7ci/yt95D+sgyzKRhlmnz6Kpk1x3LyHcbwB5D5Jzym9XprWNLZPYs9lI0dgL6JRACamzJO0ir9Dp8P15tN/3aIEZSb27fjpOltt9dYL1V/YfNmCp0hR9Tk4F1fy9SaP4meSCP/xhDAf0LzONfy7wtDtpAwX9EOT889uCGb2TRcMQvpeZqi2YB6dS1lmoHas7+t/fexc2jYyI0mYeIbVcgtw3mUr36PQacaRdFl+TjrTpDlh3Gg5h4Mv5NLPbSK+xNWKh6sS+LOZLnr3Nqy9LyLFF94zTeyAGVX1Jy0kaPzOFBWmfCz6nqJfGV5d4mTiXvHHHn1ezutF/5FnDb1au90XwkPJomu8jc5ZLVsfaz7qvpr4Z5P0ijNH5dekfLPW8z+Q+66n5AOY55Ehbv0cDUvivueA32m0+P9ZxU/DwaXM6rRTP7Fwx+rF5A+OdjNMokDPEGea/a55lye8+gAEMYH5BCg892N4DOBGhQ/JpOyPH9nzlqWLAeIXQrqbbSNmTvTfVuyeC1IUy4HhLPtGS3bU8PoABnCiQS73usUe2BjCAowJJ3lhPP/00PvrRj/Ytl/R5552H//2//zc+85nP9NTuyJEj+Jmf+Rnce++9uOCCC3DHHXfgxS9+sVn/zW8uUoPcd9999PnDDz+MyclJnHLKKXjta19blb/uda/DSSedhImJCTz88MO0bdnnW94yv8LRD+AoglBqSQbOwakQvEU91Y3BfCc4MwjrQYqxl9bw+pDGK9bGoTAQFE5hoZJdvjM1dDEjYMSg4Tdn85dk6ZXVemAc+mdEsGmqmnOCIHMetMh0VadqM+CUUsASKq0vl4M4wKC7PxJH1AbWTOFh0wmExmDDcVEa56kx3GOu2fuGhs5wrobm0DnKclAJnVjsuhUwg6z43WFaFBy7jiMzBdORBHFHWmpkaSiiTgZG+XQ/iHSIzHN/Dzm6T4L2zHmb0OliLK2AknNWke3I8ZhiIoudH36DJgd2NliWYDRLPW9iRlM6L8KwJ/tQ7+M07UtciscMLNu/D3snjgRltlOz/a4d8YSeAUxhmss62ujL+MCoswxAv52PWwPpjpbFXLtjpZZTVXHmi8kl+6t0mm0Ep7HMpOO312dQj+LW2xpPQjFWT3ygko/X82l8ox5FIsajaxnDbm+9h3Wusc60Q7rdp+1QGxYq2gVHnAmJk3EefgB6lhrO/3w82ZjhriHVuaLkoSWNiPHeITrh3nCU7huCnHEODmB+Q5aVsbL7B+NHpvD5v71nRn0whyegN51Dv6BtyC/mZZao9VPw9jHnXIv/MPrlvEZvfRc9xesX/87osyyHaSAfwAAGcOzDsSznDWAA0wWmx7TsRfPVVBBVFVB+q/lFQp2Z1fd0JyTeLgOXj1KcyJp7H8AAjk1IDajBLv4yaLJn9xP+1z8sDi4kDmAA8xGSnMH65QQ2k36npqbwkY98BHfccQfOPfdc3HnnnXjpS18abfPzP//zAIC77rqLRgf727/9WwDABz/4QTz3uXU+5tNPPx3vf//7AQDXXHONard69WrceeedwRgDOLGhVDRLZbs2doUHFDMMSaUcNQZb1uUEAw81AsTU66JPu2ZWOX850cJHsyOV+VLxHjF6myNn/r+FYYTUr6OPEUNyDwJDWt0G66aFW0rfvdT1150bCA6pwB0FLEOxMw20vXinKAOzES2DOZcUUcRCI5jEOTXySJH+LaLg99eUYNhTIgrOJuhbXuHfFFBR1gC0O5p2FANOB8vjAKIKE9u5o8m2T889AGqiibGqGHkaH4Q0kfusKVpeXYfsQdKOrTEGTRGTeHnDOUjG4PMW76dp7F6AncNO/A3HoZ1E+udzrpwOjvETMlXhEdsnqZ+QO3XJ+U2YU+UwJN+BRHWT/GQDbuUwYb9pwNrFHH7kO1f4y/pSDiB9yUsQZbMmR8Y43ehtjTdFYLQiiAHcgcqKRMWjhTn1XMolzNHH+Yo4ck6w8eLgIPyqTJDVTIdFVzhrNdKkarGH9azIsQoXMT9NDv4WqHVNnKQt/jJ1bQLOdKBhcnMKZIneeYOLMscmZOh/JKfRsUn8+K5nZ9SH7Vjqkur1E0ynLCPcH7sMWILhV6b7iPC47Jn1BXstt87HMDKYvFxYPxtEBhvAAI4vODQ5iTUHD3olg/09gBMPmH9C/52f+gf3b9+GKclwVHq1ZhnSq05/ASxS9cz0+PHxec9cnRWXh8NnJ6oiev7AodEj2Lrz0NFG47iB1BUtbVDWfpvN+x2bdk0Gv7990zJMTrVnccQBDGDmcPST3SdAu93GL/3SL+HGG2/Ei1/8Ytx555246KKLGttdccUV+PCHP4x2u41f+IVfwPbt2wEUh+g111yDb3zjG8jzHL//+7+v2n72s59FlmX4xje+gWuuuaY6eLdv345f/MVfRKfTwc/93M/h8ssv7+/LDuCYBCulmnJ6EtfxecQfnTLG/xuOq8eThjLWljmpUZyhD9jiVTRbXRpIfGMQdboikRAy4sVWo0wMgv5NToVvD+J9gyFN49Jcl0Ev7Hnksvq0QN5+T0ktOYAaZHSUEqxvyuxNlQEr0dFQGRHZojYMW+b6DwyBxMBKDL2JKFc4+v3Npkx6cOQIdbYJ8ZFOod11H7mloQwfWabqW2kiT1Qwp6FcP5YKhhlpGhQ4qU4GqZDUzjvXnWtWthT71zKEs7NM7nUd+QUg2z/TdRgucdB7noGvg0uJRsg2f6/7pZGGRR43GReVYwS4Y0S/SdjIYZ52fjZAKjxMY2y0j15XkFcuzhsZJas85wJclJNJ+VecK8ZiSllitlG6ua2Z6pD06bpWZlZfYiqV0JajDkM6KeKffI5IJBijvkX3mi68+PXkmqCOetRZzoi+1sPFjZnWqcc0ZKLYQRj8iuxDJs/JMilnkgM1ZU9WnQU/uaezHC5V6WpgkdSu47p0WTlKxvEzR404KvJ0MAOjyrEGs/HJ+rcOmun03DiD8d1ipX4tLvel9RU1UBqdMBqXwmcH9c0zvffImYG8N6ABAxjAcQW3bdmMX733zur3QI+j4eDkBFqpnr4DOCYh1YEq5fLjXMDvPvwgtoyOBmWVvofy9KTMO9upLtG4SB3USTQwsSphpgpLRm6WbzJk1KFlPnynAQDf/NFT+O0/XnS00TjhQDlJWqpqcsm0X/CtO/arslb76J6lE+02Dk1ONlccwAkLx4Qz2Le//W1897vfBQCccsop+OQnP4m3v/3t9L/HH388aHvttdfikksuwaOPPooLL7wQV1xxBS644AJ8+tOfRpZl+NKXvoQrrrhCjfnGN74Rf/EXfwEA+PSnP40LLrgAV1xxBS688EI8+uijeMUrXoGvfvWrs//yAzhmwTRcKwWaqGMw38worm+WGsruKJ4uqoXUzmEc8q6BQDLLOaMyyghRz4tl0LVAOZcZTiC0bUL/XClZ4trcQ2qIUzWCUpBG3iMiwFCDKno14Jy40IvTXGn0Zi1mOufcaZSMk0ujqwv+lmDh6bfzo1U04c6cSGcLPvSrX8djz2yrfrNvpARrZ9cN23i/SR3zZv0JGhosmiaSnWXG2cV78P9y4zCPtpLoTNGEATFKxW7lFW1ckV6GWOwdcUSUhjLlTKGnIRmaUzfqMnbcMQcd2abpeyaniazWBytrcFQgbVUKNTjqhB/tuE/wH7+wGAdGJvrfMQE139b7RDbKdMOp04hYStHqGo2tUtkbMxL3YjyWNU2HqoYuq7ToyeNommi+E4kQrGifgV/KXuuVH7F88LRDn/V9iBGeXaAh2nbpKOWvBwsY3zvXN9yVo69Rr44YF5+fyhFN8Hc0MpjEhUQeU/iasmf8e7DxSnx1X/q54k29MSlfleS5ydcWTR1OcDwxubkBSLCcpHoBO5Uw2VezDKb8EtlTjG8FNH9py0YNPDNxmLWuU/QDwteR71D/7se3H8AABjB/4KShPIgwNNCDavjo7bfgti2bjzYaA5hFYJdi2RE9n6JjTrR5hJ0Uh++inv9c96MuCVJdV1okfwm5HJ/UsWRyOf8WP9UvvecAZgbzY7ccR9Cgc6+rTc/WOtvAUvLOJVy/ZhX+w/33HFUcBjC/YcFcDLJp06bq3+eff37P7ScmauPJhg0bsGHDBrPuwSD8L/DCF74Qjz76KP70T/8U3/3ud7F8+XKcdtpp+OAHP4j/9J/+E971rneZff32b/82LrvsMvz5n/85lixZgl27duGCCy7Az//8z+P3fu/3gtSSAzixwYGk6hBOViw1WyY4xNIwRHVVgX3YVfWD/oxoQTOFpoPYdyhT6UKY8cKbBweYN/+L+vo3jSyW2L4aE2lCBI1u47rMPet7hoJTbQBt7qeskpKSWhpW54uAdzwCV26nMaqlQxkCpTQ39qU6nMqL2Q76FpR0kHDGuCGy4cj+z9lWpI8dqaPsWDfa/H1RrvfYvuKOMOJ31Y9oG0e3EW7YsA4P7dyJz7/pLTPsaW7Bms4ydRTbC4ARpr7B2QfgzgeWw1k/IPM6dCDnMwG5b0yjs9Pni6kQEnszBUJ2pHluTQediPEMsJ3Q460a6nu4EBYoqpALHDol7XOcNinHnV6Q7QHmSi/QC/5mGijJe7FeLa0mKWrCyb7M4ICuU592WElLeexVnzbIveqqUjJM5aTjgjLLkYXz8gn4TON9KtrcQ2PmPE4jgJk9yGhShgMU+FywlO6xj8nOaQv/Dnq7GScV+zZIWShsV75r5SRIeqApQlQZvwCgMFGypqwTiXIXwSF1FVnr1SGcqfJ96PJ0hFYnrmPrVn9qhKMBzG+wzpi3/cI1eOBbv9bY/v/5/E14z9suxgffeWndZx8EGQuvJt52doCv7ZiTtbUbpEHZqidlsZT+7St46Q9izrfVv12oPxroRQYwgOMXhtQli3C/7ztyBD93yyLc+7MfmUu05hWMTk2h5QaRwY5nYDxu0qXaowhWpHJuh2FlTIZsbtcP0JkqNOg0lRynmG5g4Aw2gOMNUm1n0vaVmjFjtslbu3106edUp4PDU3OXlWIAxx7MiTPYhRdeCKA4DFutVs/tP/7xj+PjH//4tMc//fTT8cd//Mf44z/+457bXn311bj66qunPfYAThywUj6WwAzJvA2STieW5kUqHVOi+jQpKSOBscTYXWNd7o1bavkbjRBkiMTzkxoqUtuSflKUtuxbVmOnDV22IIOVc9fcU50Csq6r06qoKgPoAWjqOmcrz83IYAnRc4CukRRiHVlRI6SjjdPGi9K5jDovNaDTy16SdWdbKA0MEYweZRkNC96OpokM6TEzHtbfgdDtGcDO8XGsPnhgZp3MAWinZlupEnMAYeXskzatv9BdyCtPcqZoquRUpL2mKAfF2FZaM9k7EXTFIcLmoXTmkHX0eL0Z7KVRvgQaTcVbB9LphdENK7pEL2A7CtW/JLD30ak4ec3ZoWFzcxA3pcosIaZoSTqvnI7WRzri0YskHyhvAFrK6RnMYcm7JdVLWAF5wxkpH2lHUUcdFpnDC8MnJd0He9+myKBBf4nlFT2j57FuIHHgzn7291JOn5Ql0LQr6Ls7LlvElnMyo+9JcyQvA3nf00qPKTuWkSSd7tYoJOtCVjDWspaTJI+ZQANgOVMW54uUZx0cPZDYpapUUAaZ2MadKUM3gDmHXh1cJazeuAevuvRFfcSoBrb3jobjkTWktdxj20BHH7U7N1NIsn6NJ+bFEwtBA9qSL/aGCs+UAQ0YwACOJ1A8NJHJB25QA33x8Q5cr831aPNlLSg8PF2Ursv19jGQ0ZOn6zBmO6HH8ZN1YnjwerHRBzBb8KV/WIxf+vBr8KKzBwFijipIPZpRba7lrpjNaS5gQBEG0ARzkibSOVf9N4ABHJfQdYJiRlwfqJFUGIaUsch75rfhTDqPSBLjXh2KFI91D8wo4r+DcYPUay8VauFNzLjAIW/0UwFAopCF/2yMZIZwDNm90XXQfogYJbnhuTdlpfXeMVyjryucy6y0gQPgYAlnlhLbMobmCdFzaohHlCgK+cKit4uIkT3PE9JEWqEUyjoKR+f9nl0WNHBQIc9zg+70Gg3FSoXS7+2Tw775Np9ACjb2PDhq8Ip/Nab0kDQ2fj7Vv/uz/oLzxLnGSBGVXwExOrO1J897bTDvtpV4Jbxek2Ccnoq5/ncdYc+u04RL0pjkF0tXmXKGS1BzPIdnYT+H2jE2hnu2baXPkqJ6Vc84JKeBSjKaSkcM5owinYP0uDoKUsLQDVCe2wqdhLZZxOWVzYsV2akRR8L3pjidxoz/vTrV0UhgwYUXVzjH0XqSB0FXZtJz0RSdKuUMtiJ4BnVgK0Fi/AtzQKbyHvmt6Gb3L+Pb2EnHloqkZ4A+H5jjnerHfGWNVwqN1f3L9cp78XFNOudIN+pSjCNz0EP7ARz/MJTn+hZ3H84Xuheg191cLDnToco6J5DRlFIA4TGMPtjFxVg7y7nUvunf4zkWyI4u4PGtdx3AAAZw7IN2OpfP5w6X+QoZjg1d1IkGty9e07e+UtNEytTqRxOsC26pOiApf0rIxQViVme65KExywbsudZ8ohVBLO1SzgD6C9+5aRk2bz9Y/WYXBG9fvHaOsTp+IEXfUNSTl9T6i8fixzdh07YDPbdrtwfu5QOY3zAnzmCf+9zn8LnPfQ5/8Ad/MBfDDWAAcw6FYStuTKoduOoTShlIuoXUiUH2TRw1pmPgaYKU27YOtZEufCftNFPU8QxIjqeLSYewnXRyic+HNronSRbOuMnPRrCUr7Rj2/gfmx9mJI8BiwZypNXCnvHx5sYnGPSyLl1lrJuZFCn9vJhPltWdNDLItKyonsuw1doI4guwKejPpcpA0hD1PAdYpHu/6oFDRzDVanuNxP6h0UJMjKL4NoGM+DFfQaWGiRqX7Nv9rFmgh0lU8KSkbbQg5awM1xmSIuqlOHSXT+SZbQu+jvzL6peUJ59rTf0Uf3pVEKYa2aRxLgZyrvgMGelvZV90+/Zfs9ZPBcWSXTvw2UceskaK/KohNteW40pKv2E/DnmCtGnuLa+MOsP08JmsPc+Nz7JOc1Qv1WfCFszEzY5knoN5FDC8yfNenNMrHkKuB9qeRM1yOk12naoy7I860IHToLTIdeGYqu8s6ykShIM57aRvSmLr592SyoGY4MaivOmLQeFAtjOe7l8BW6MurMAjzTJeKX7mOF3U7av4VmZkNt2rrkeZBWMPJjq9DuD4gS07DpG9pev1x1GcOQXPLMLldCGJV0yEjsh5HTtbY5HBmJE3Jt9K6BX1gBV14QWuwSW5AQzg+AUagdSDE9EXdPf4OCbatR5M8vpbRkePAlYDkPC5v7qzb+cTdwbjcsN80UtaaEwnMhh9VzFGP3kBfclTg6UikY6ZMX3HwBfs6EDLu0TCnPo+91d3zDVKxw3E5IcY2JH9prevv/DV+6bl1NfuHF1nsELHNU+I+ADmJcypM9jnPve5uRhuAAM4KiAPLM5sqqv9wc/CUNmssK6drmT/oo34y6A55VWaLFDdlpepUASetcOMXyc0uJc1y/oBvtDpckKjhjGBfh+uIH7SkCzLyhdgykpa14BeGPRKKZmglWDRDwrjIumvYU5+sGEdPnbX7T1gemIAY+NiyuqcGUOr8rQVkxMHTBZNhEVdypQzJDcq5nmCEt2jaY1VEwySswX0Rpt0AiE3v//t73wbP77r2bpNgtBR7svmKB71uKnCx7HAritnsAjWsRRqcu0yoxDQrMBhYEXu6xVK56/AgN/gfFamHGORWhj6kl7wFIZxBw8Ln05DHU2neAouytdEEKKRc1K/neMRXJhOMheaSoaaco4t+Qd5Zko8krDtHfpJF4cijiypUTtiikWtQLANujFgZxBL9yYdI2vH+JrPSXHGbAJ9QYFcWiA0xFqDFr8uL1IUTnFi7TmdGrGcL4mRmi/qZBDyjlEDPX3Cgb27gwuUCMXeJRXBz1bJq5Tj6EJjhYWEM6yWyPcWfLyhNIy2TARvfEkX/W9gOsGJruT5Y12maUopyt5N8kyxupI+q76Ywy34XNPb8Cj3u77IoKN+pclKMvpajLcdGFWOPeiFpn30t7+FbbtGRPuMODj1B9heOBqOBz07g8X4A8F8xLZhL/aXgh/r5SJOb0B5c9i0YAADGMDxATLyF+NpTzT45TtvxQ83rA/KfNnvF+64ZeAkO09gqhUeulIf1+50VFmLRKZJuRQB8OwIRwusSxv8XUhZoFuwxkC0TupMMH19sy4zNTLYzHAbQP8hDPLRbIMcwNGD6bpm5dn0Ukwe7aWQEpVwACc2zIkz2AAGcLxDZezyy5x0ctIppqhxKdc3v9mIlgFgOjS/15sGSoAuFe0gYbbZTXblzEXGKJs0vJC+7S4dCGocffxZZC/LgKHGRHMKPR+fXkGmuIM1Ens3FzrLxVJiSmizUEonOFChzZhLy0kTsMutPnzgkRiMcaAfcIfM+Pp14BF0wjqhodNXIM0276ndaMXzPExvIp1MAWBiso2JyZbXZ/Nm7dVo8L+WPYkvPf1kY71jxfiobrlE9gKgHUqseVOGb+EIUtVLcdjr4+Lzt0m5b+JRGokTnON7qaYX4T5qSofoqPsSQ6ZhnuS3afiWRZsCOurMiUMvQnQZGaapTOLGyqSBuHRYkYpB5XSA2dmTfV2bEQy1UaP3gVPSRKYaCZiTI7sUwHg3VQdy7aV/qR6O80berXGNkIcs0i7rI4Vv5BdCmtOX13PWw55MiGTD9lHZll18kXvaoZCRWMQeTf/I+A3rUzvYl99Dt4tNP6XljAdBOMPW7/KCTAp9Y988zzWNU7hoDyqy/9LoE3P2VX0RPJiMzMA3QKXsg0pUDBTyuh7xr1Ttyt9pqW8HMJ8gFsXcMnQGv/Ms2Ym6J7zI3paO7MDcyADW60zHMS01ol7Pkd8LJREp788csUxQTE80gAEMIA3efsP3jjYKHAh/HDyeBXp/rIED0PJ0v0zf2DoRJ2Yegp9y7PD4JN7xS18Nnv/+X96O637wWFB25b/9O9VPitMRACqPHS0gGBf/T98lLuinvKslTzaJBtS2BK1zkiDuiXl1Zal9aacXXcgA+gf+fiqcho4iMicwJE070QOlQHFZqPcPe7Tpp3UJbwADKGHgDDaAAUwTmgwWRaH+qRTWAYPqCCNZMryirySez3n/nw5NKkrT8OFCQbL8LTvPPMqjlXANBifHDQ/Vv4X3ttWrOiBdxOBM8MihFccmzqTM+nyuOz9aSWHjFVt31fz6v53+hr2ZBk8cMJ0YWAQdcGMsS5NkAYt8Jx0qy+HVmnClQBuOrSLtOC6wKpwt6dTrp8IHZB3OEVjG3OCdu399X6ahPEPb28SMhss5tiL+Wq++f2IC60cOGU9lH/N/B+o0kYbxDToCU/mkaBeWWgYj+Q1VJC0DzyRnigbFSbVPEK6RJsjJHmS3xWp64ePN6USTgweDXiODWf1K2lH87W2tpkS6LMcy6VVQj9C1it/xvhdzTpFn9xwSrn4qBhRvFYwjfk+jf9nG7KNhU9QOeHFocvjj/HEcrNSAfPQE/JRC11DMOrKO0eXtEBYqRyvnFD7MPq7OOOcU72hNVa+XV3tRMcfkAx80neR8qHIaYzTIUPBFt7nTzqJNUKWxTajL6tnfg11O0etXRrcqxuFtdf8RQaHbiJ/B4Zqn0clUKw3M+Q/Q71jSbNPIIx0LHecpwneIOKX0gVYOYH5Dm/Af8nJenpPIYH04r629cXQig/X6wN4Pem54zdjNdEb39OlXlhuRaw38LJDRRzOvk+kYewYwgAHMUyAO7yFIvvHE2/9MpyLnYeoop7oaQAE+HzM1pb/Jzj2j2LN/rPptnWeMr2G67qOp120CadvwgTu7xV/Eihwsx2zSG3LtQrP+36pDsyhQhR5REgyg7/Dv/+AGXeh9jyyfP9H0jgdItZ0Zd70UTPfL9HyppRzvKC+F+RTdcQDzEwbOYAMYwDRAKt9TbxJTZwPhkMSU/eUY9b8jRuMmo0kCjqrPwLjKDY3V+wv8pUGk47SzC1MW1gr+OO7cqYC9Q/iLGVLZN6S4oTQizfSA5SpPGq2AvROZoxRlL781PwglmgqxNHQqMh7q9ZIK0kDJbde8Q+WM5rTRo8QzdOZiThPpa1xGGpvLtcTGUhEWSXrH5htedLTgjyoXMJTIiDM6M95q4aZNGxvbziWw6Cq8YrF+rMhgcl2ZUega7Nf0DET/bsj5dLFy8IgZnStHDvF+OW/XTBe0oTvFUViWp0SdYYb2TBz4zPBe8iOxvnu1sTV89qosjT654F90rTUYCfoFc2VrTI36VtTloNMQTw956gxJHJ60k0fd3qjSN0j+/KKcnfdVn5negzQCXcI7ka2peO2SPjV9ppI+9vo1m48x7aDpoar6yipsamB00pKtFI0ILkFoOsUgpgTpZX74OJKWit/lN3AWTSL7gfHuSdGk42dIia1fXPUpvwfvnvQVNrRkVmnSKi/0uPIH6ZtBE31Szofir8RhAMcPtEmqJOn4lWUZUoNjX/PPj2Cq1U4eX64xFv17urBs3148tXdPGh4GcbBklNg20PyjUTGiK7EuHzD9jH0k9zaPHUUr+bcYRAccQAw2bR/Fkqd3HW00BtADMP7bhxPRF1TKKUwX3Bo4g80LkDyLhFxkRLDOdeokRvVT8ycymAX0oiEpCiKCMse31AtS02ALmC6A9ZsSjMAS8Q3xcAB9hqdX7VRlYWSwLPny6wBmD0xZZ5oO4JI+jB+ZwrXffbSx3dF2xBrQhAE0wYLpNvzkJz/Zc5ssy/D3f//30x1yAAOYVyBTOUmmmd6WFspwalgWjF7sRqVS0vd4yx1ori+dvywFWVkvNMjoQWiYXQ/v2G2Pun3dQZliJcQvmMH6RnrEYB1z8NE4cKMbiwpl9hHrOzE0M58rMT9O/uVGsl4cf04kkIxjHApxzDK0pezOUqBrcsCUURbKtjmJDFLcfA4Lm9I+JTm+SBwFLrMJMgWveo5Q4VHiGjLmQmjL9DtJqPeco+Uaj/RbGbLPLYdH8cePL8UHz78gqf1cgIywYBue41F8+Hom9aRBuTufsahIs7r6/DACxtB0D2bcuSaW2kjWlf35vw1UGnuVIKfVulWk0ruJM1g6LjQpMX2cciF1V1HAUpyeBeh1VeIq5lNi4WZHiJ6ryBPagd0yxs7sLamTEhtH0ALWTitj9fmmlKpA9EMxfnW6b0xT7RlOVQVe7MIBoX1kbtLwQTBFVRpbJhgI6NUZIXYWynqxMyGoKx2/HK/nPaqeS94kZUxZpdj3GefxjEXiXOFANh1eWclS/jMycdwBtlnOlPS47F+JmswXU5xbgJx7sl5NbCXuxnci7+28f4dVycUrIeMU7cg8kYhm/t8Qn4EK9VgD7YIfB3kWM17HOq//4QeP45f+1eVYuGAoAS99RqQ64x6emsLO8XFcdMYZZp3r16zCkXYbf/6Wt1dlz+zbh1c9//mqrn1xIAEZAalyTZORlclS1u5LPYdiEJM9BpHBBpAKT63ehzsf3oY3Xfaio41K32Cs1cKOscO46IwzjzYqswJMzhMlc4TJ/AF57jFd8EA3PD+g3Q55WgnKecv4bOyco5HB5pEzmMVvmPK3LEvSszXXmI6TeAYeqd+XZ2SEPnh1wr44p+uqZwOYa5AXFo+2A9DxBFLn50MsEIupF2fifiL4VfcdHMfff/dRfPLnXx9vM8dr4dDkJA5OTuClzz29xmFOMRjAsQbTdga77rrrokyCjhLgBs5gAzhugEdWYmWhw4IyYEsDJ+yb/VKJzQ7IpltPDFi0AoFi0I/lNFQ6Yckb7jIqkTaSxcdPOsSiTl76lmnl6GIw1M1YcCNgwQSmIGyPZn3baLfSyCoesndNFaBOdLAuHVkrNie3oEshLZ0nJLeiRWMr0hBzRtMREcpILTEcXBBxoncl/Nytpl4cJzsyLaRXhznmyK5LIU87W3BIddBlNHAom3/BW+WNJztNpKFULA23lPa6oJ5yMHQuGomnV2hScJZGdd+BNiWCIuONrXZN6fOc+Fv+SlH66JR2Rr2IQA1hyCvfS0ZX8PFhXfUiD1tGXX3ehpNXrS3BsIRrSCvd5vLc66deIKaT7GWY5GghRqcpW5Kdi6n9KCePhPEssOgO9y8h57D4HVNUqdYOmuev+D1VTeNNI0tJOiPWWOybJU5kgQ/jIUOZJuZDY6UWZLwKRVbR03DeFYde0YKQQEgn2uTb4HJwOR6rZpT7FZz/b8ZrCqdY6kxIL4+ItaIcbAk6pkwk5UxepvqivHN4bjBcqrXSw/qkHal+QdeR6m8gCB2bEDmImPGTpY6U0MQ3JYGhL0oxGN2+dTO++OTjuP9nP2LWWZgPYWRqKij79H130TapjropjbSsZJ2DNpNrmzWT0egZfOff+gxwauRBYLATB8ampnDqwoU9tVkwlGOKRBw8luGebVvxx48vjdKb2YZWq4MFC+ZG9yH5mBPRF7RwBqt/MxnrRJyX+Qgtj95w5y0tMzDgF/x0PXmx8WiCkvHKvwTBJqduy5EukJES5ygFLPnLF5ktXYKKnBzBYz7xLFOtdtJlieMBQrsC53fbnQ6G8vmn0z8WwNp2HQAzXWFSL2WB1JEPJRoj5pp+fm/9Wvxg/Vr88AMf7pYMsj4NIA7Tdgb72Mc+FvWOPnjwIJYuXYotW7bg7LPPxoc//GGz7gAGcCxCSFy96FP0edcIKbg4y6lMp4TUhg+mRFM4QCu4AH3g0WheVZ96JNZfbuAqcYJjhoN64KpqZcwRY4m2ssBilKV9TAq8DtxBjM1zUZcZRHq9m8whz/PGb1ZjQgzz4ntmnkDnwv+rIDVCzYkHXCBk51/pFMENbYkro9pDXts87cYQUAjvjDLotHzNSoPQZZOh6u/zo+hgwQoNB1F5g0fd6PEkb8rjWMYU40EvN7VkD0PzSLAvIVUpyJy5APtMYlHoGC1PcQbxFSwzBZ3aKy7cORiODzLsSrdy0/vI89Aak0HTt5IKKe1IrA15Jj4NE55KD9j8ATqNmkMZoccvc8HfAi2NGHWomKMblf28MRjDWUWhiygPLYxSfMHSDeI6mhB3xIjx0AZR6QH4O0y/L/MbECcvgKeVtNaoGozUEb5ONM286srpKElNkDLtxZ6MRBwjDrJhex4pkTrSG7JTbEhq7IhdhImUJ60Z5WzO+YRaHtHzw87EoK0jZ2fSWiHRwwC1RwG2hptpJXcY098b0NF3S5mROmk6/Z1rR474IcmiyVmXNOaTUWUAaRCTYdm5Kw2G1BgX2eg9RZES/bAoEGzJpVwIOSnPMUUir7Y6HSwQxqfUs77CKbIRUviDoo8I32M61rJx+aWFJP7Zg0BfgvBixSC9z4kJ77vxhz07QBUp2WYJoaMEQ0f54Nu5dxy/91cP49o/unJW+m96vRMxApbk2Rm9HuiG5wf46a6pPJOFNMniUbijE9EBk2ipRw0MhiNmGwmb27oFQEfIo3YkoiNLgQzCqYs4n1ug3s/Q2cyXz1TC+z5xHf76c/8Kr3z58RM5s4TYBVozm0IHhdJyAD1BbL/JjE+NqVihz/jYpUIyYI1XIq8012fnQkMeHMAALJhRZLAmcM7huuuuw6//+q/jzDPPxJe+9KXpDjeAAcwryAB1asgIWAARPIUyWinfiZGmun0vFfLGDfpej53SECy6MXG0bnyXePu41mlr/PGcwp0ZV6abwiYTTlqWgUw5w0QMAxKoAQY9GIkidR1Kp0E9JsOj+BsqN+XC83Gl6UvBjZQD6O1GXGXglm2cixtJBUhDQUbCRpj7ENLg5XTaOscdLgTKkehj3ToBPs3Cdj8h5sBa4+OXdA2PAf3NNG1T97BCqBxOEi0hyhnWgF4cVP7NbTfjb95xFc4+5ZTGfvsNMt1fLHyzGSUG7F0F3a7OjlBQk3R7tiH8Lo6e8z5U0cuUAZ3rsli0EtqvONMCLMz24lxQuBZ/y7SbTMEhFcM8Mpg02hNa18M3444ErI+06J4qxaZoRx0MYC7fGQFbu5/5yyX4wv/1pp776iUymO2saoN00jD7MNZO1c5pHpZFpE1J48ZSxPVqv+KpI3t3cHFVmT2OusRBnJQzQTDqFLvhnBJxQjsBEX475V2agJvmST2L5jN+JSP7nNxEl+IP4+n1enIKR2n4R9fZaLbUZoxmOfG8/E3Pf+IQKC8GWHRKO3qxiy6yklybjLaWe1KXhX3r9aG+YzUOw7VsIx3IbAh5OXpcCCW9Q0YuT1Tn8gCOG6BOQVK4IzJRjG1JdQajZ0QiH5vinDGUZ2iTvqaIM5j1QtPhqZNlIKJ/ifdrOPbC4ldsviS1dqUf8dvbKA7gBITvrF2DQ5MTeHtemE7mWhY9EWCqNbdGzB58f49bkDI+c1Q+AadlXgLTxfiQ0yjBpB+yzey0k73hOFtgrcmYbcSHRnZNXpixqk2DMWD2IqDUk2bl8BRkM9uWwG07Rwsmp9o4OHLkaKMxK9BxzuTNrQhvJ6KjcX8gciFlGr1JOsB1ElwXPh1aONep58vALAMYQCrMqo9qlmX4xCc+gc9//vP48pe/jO9///uzOdwABjCnEDOusue14ShOpc0UU7Iz6wa9qkcMLrHbnhI/ocBn71Ar6ZxSfDInkcAcUxmwSuON6JsoHENHEPJu+hVEFzwyghUlQwshhnMPaW85g2SWo41D8m0cq0o4vzwqjW47s/RLxytYt46sHWQKajGrcdBz6VhRV7YMhWyvUPpBFmaTkF85jEUqBcY3hEPMpeBD95cor/4pkY7hSYQ686ZdrA97hBAVRad53W1jhzHeaiX02n9QglR0+vgL8BS9aZESUuhUuXaboNEBxOk6SU4U5P3ynNP0xshg1KkBSZYq/1txx2N9jiv8lNMF769pLmPn2dKnt+KhJzZX/UraxJ1XnXKwc+ofeos7sFSjNj1fvekg7np4m4l7r8CUsHsOTE9hFk2vHXFCSYUUQ0nBvqWcJSn7JhzEib91lemfLeY7qDKnjH00UpPhVG3RII2/TpfI9wBztpPOstwRVeEGWzlN63c/oKoveXnw9OkAc+hiDoJ8TbNvzmgE91iL8C8oowv2tp7YFNN3hly78izJqsZWagl9JmpmkM0tQ0bNF4FUJXaTMy0D9R0NHMp9l74+y78N35rKhnpdDwz8xybESB9PExkexkwciNGG1IgZjCYygzuDlCh8AF+z7Ha4ve9jffNyFT3GeCNLr+I1VP2wiI3TwZ3XZ/xs8Y+5NtwMYH7Cyv37cevmTUHZswf349E9u+sCsURHDk/he7evnwPsZg9So13MFqSmXpouWNFJrd8nAqiziOi9BjzR/AApE0qQtoOUyGD1BT9db6by9nRg2b69+N66tarc4rdSnMHkpUtLRhWClO5XGqASQep3mW7DAprJx5QV55M72NE/T2YLXMxn2XjnAW85fUhNd+uvt7g2wPtFaCG7XKMvEad9zzn/6sL+IHWvO8bG8PVVK+caqwHMY5iTgIWf+tSnkGUZvvzlL8/FcAMYwOwDUayrNEbEsCENGMzQqmTh0pAmDh6Welo5QHj9poK0qTBjOIM8y/Dqd78UL33JmWFnsn9iOaC3QHvAOYieoKIxOIqKMsChTBljMxeyA2YQT1UmWE4FlaMas7yRuoDAQylWhTORo9XM2wzHGtzzcH+VcTI6CmAzd5aTYbm2kgQ/aAMVk/1i6W0UHco1E5vyvWNK/AxybuY2zWjTUPI7lEKDLzxYqT6r5z04SM48TSRPjWcBW5dzAalpVOyIYXw955lM32KkBkyYzr4qdL19Ujl4NBjOaDoq0q5yOElAI+Z8FaNHTXUAIVCL+dXRXMq5CPmWJojVueGOFbh+0VPVb+ZQa9HAcBDdN/9czY4w5eOV6w/ihns2xCv3AP2kkbGtoOiDOWzEoSyVl0lw9Epx3rHOtGrOqrMsfNZrik9C9Y16zY6ahQOB0Z446bBLAIzMpzidMqWwvBlOptmjrelr0cQnuJlhR8uwHbpkGfkaLKqcqid+ufBv9e/ENWcBm89U0K58NdZ0DZBbADLKa+1pGZdbqAGB0HoGcn4YX0KjjFH5SANT6DqUe1sjo/m26clcztnRb+cqbfAA+gcx1ozRJJYmUrezx0uODEZoIitjvc1kFdLUmCZfbp9hJkgWw5iOGM/c6/v1miaSgZQpfPSOBx3IAGYO9+/Yhq8sXxaUnZQPYbLdrn5LHeKBkQksui90IDvWgJ3tO8UOW3/oELYeHp0dBGb52G3iHE7E7S8diJiu8mjpmwYQgn8+2c5bXn2jH5oOkTqXpTu9Txe2jI5izcGD1e8HdmzHt9auUvWsvZqS8lLJeaSNlInpa7vpkqgsvJzZ/asd6jXovRe7gDYt5GYNjld+qmlPpDgoDiANprukLZ5efofkzyIQSaWLRzv1vFT9rDt0ENeseOZooTOAeQhz4gx2+umn44wzzsATTzwxF8MNYACzDtSwATCLbQ1OplIqnjPDh7z9oQxp0GXdpj2DY+YN0VGT0ch/Kg08NC1OzCATYfDL8pj3t7rcAaLgcNrRoGycyrAxgTkjCEW7MxhGdjsuhpdKlyPeV6bUYcsk1VlpvsN/+Yvb+tpfTwy808J4CUmRUYK6YYGiN7lhdDUi4ynHR5WqVe/5LOLgJaMsNN7+7jM0hUu3tCKxVOrWjSsfmJGZ/Q6exbtM6mPanfYZUpQXMSjTHjdGtSzri++cC8WldeSlHIWN51p3vOB8g7HevF51CmJnOl/E9piFa0pEr2LceC3Px6YqoA7sHafbKH7Eb6OHi71jntdj1BGZZP/acd6iqU58seB3SaOD+SzqScgy4KSFOaam+pe6ZLYVqyVohQcfN+Z0lBT5o1zbDfRP73kjDLtsSPCdCZh73nKEiVSp1yAfh8kEij91IOe7dhojXLqxJ9L4uISjLgBmJKzeUfVMxqMOsnIuHHWA0uOW/IeYW18uqGib2PsCvVRnXDlOSkQJ5lBkjWWdD1IWVPQMxPnYGCNsx/AlfCKpyWQs7ujGaLPGh/Vf0R6D7gd9Mp6MnQ0GndIRdjHrRukBzA5YfAZ1jCJKeroWDJjJTf/kiyYJ69DknRvoiQ+9RN2w2pgOZQYuVbtUfnZWhJ5Qzk2howM4/mEoz1V0iIV5jglPgSD5gAVDc2JSmVVgl62+jnbw+6+WPYmvPbtijjDqMzR4g52QkcEyeUlS0/JBUJv5AT7PQZ0MJG9sfLign+6ap5Hr50Cx+801q/Anjy+tfk+02zg5H1L1enFkb4pwTLvKskaejvXb7nQa2+VCHmGXKi1mT2Uzh8HbUXm8/3BkooWJybTMFMcr2Yhd5LC+wfHqGDfbELNrR2WQkqcXz6RzpbyEzvot8SDdN8Jcf3Wmiwl+D3QbAxAwJ5LLvn37cODAAUxNTc3FcAMYwNGBBAqrIoMp7yPDUE6U31YKtxRlu8LL6qB8JgVmJoOU7yZeSR+gIcNaGYUMJHu9Pcv6kgb8Ak1t0mAOUVzQKL+JNkZxGYMZmm0nADOFpEKk+COZGfU9Pbzqv3qSBsyqBq5k598U4Mbhcr0lfVJX1g2VM/pzRSKDUcOyWKtNTiiucDiLIe0z1cxQPpvAHFR8kPPDhW8oeqz2hVKK8X4saHYeKkAqC8jQIR5HScxWSo+IEckMqkjoZEYs0cxhV+6j2Z4Ffz+VkX2SGqkyPVWxOfLrAOI9HcQZaqztBuUXW2/KUVtGZyvx6XGDx6rnuVTCpaUMtVJ+NClmhsg72Wu1v2usn3QxtnZSDazxPsRvtoZcwa+kMJkpfCgL2Q7vT1Pq4hRIOauc42tHR6yzJ5BfhND1OZ1DMGEmfxz0zyN+qjEdv0xiQclTagdDQYfKeqwTwi8zJ0LKvyc49ljfy3f+Lh3cNb69radeHOmCegRBV45vzYWSMbRCUtZjc2FGqwz6lo5XPMW8NhDp2WBzJNcm+5cE6Rgcg2iaSKdla+e6lyJUs4EcdLwBM4rqyGDEeTOyppIjgxmO5imO4SkR6hjNBywDfv/WdvI5HDGyMjpRnmNWfYVHj++knEvB+dqBOuTEhRyZcgZjOj//59DQsW9lY+lZJbSdoylo+wKzvOea0kSeiE5PGeQFO5bd4AScmHkITKcZq2R9tU7DBb8S5OXL2YBThsKIix3n+IV4421YqZI98ua50xYhrVcrdRA+/PD2lXj4qS1RXJXekun1TNC1jiZv8qfX3Iv/ec29aZWPU7IxHafBuboIejxCiv6LxPygf6M2LeFA5kMmlJip8s+8SA/qoTCIej4ACXPiDPa7v/u7AIBXvOIVczHcAAYw+2Ap5MVB4R9OzIHINnx47QCukKdoMaePcEwJ1AAcwYfdikfXwas2ttRMtDKIQTPT/vulHLDSmUx0JrzDbecDXpagIIbDUJbRGxsq5Qn4OxV1VXHXaKHbcIOllijk9yz7U1Ypgvs8YFnmHfTCwDuUjgbke/fAf8nvxZyULAOAZViWtjspHEso028577caJ9a+D6vpAzf+kKYjeNm5z6O3OUL8BB3t/ohFldKOMLpfZwgLZuSdxO/O9l/M4etoyZX6Jg6vZ6Hn0I02wpwTRV02dTnzSphDaKKT0riEbn3m5F3015yKruhXKqRYXY1LCkQFYOJcKvFJgWhksCxDu1PjkAs+qZo/gYXiuaqx5NiyHU8lHbSpynpLIwcAn/zcPeaz/ioGbOISm4OmunV5Gq6NDjVdRwzFp6iOuMdYwH+SZ/246cYN9s2OZ2ZksJLvpIexC+rJ874o4w4Eka4qnCUeFG/054xW/ZpGfBLpjPAwLEKWalvyyNIByud7tQqQzkUvqaDrNukQ69u3dzA5QRsutSOWFSWaMTdcNgwLmrpxMNaO4p2Ic5thENFyVGGAcg46xTl09MpUw4qWrXXESR//ARw/wNZGm0UGU+emvap6lQ19YE4XlP9K6NviSa2LbAxMZ60IAhaPoWm63YeV9tGKqki7Msa1QHGz3jlEndEHcMIBc4LIBR/SdFFkxfr9+POvPzU7CPYJvrJ8Gf73M09XvxnfKaFJ9zMTmGuDudbjnHigop8TR+WBI8P8AP87MH9MeZ5a57q0kaiyqr/ZV7cN5cLxNuO2EemcWwJ7R1lm6d98kGY2y0lOy0TNE2Tp61PsPEo+ipw7c+Ho0W53sPfgeFLd45WHYna+Rjg+p2LWIaajScqqIfTbsgU72yxaGLRL1OUejT0QjKjs7XOKygCOAVgw3YZf//rXo8+PHDmCzZs34wc/+AFWrFiBLMvwiU98YrrDDWAA8wosxX1T1AAWzUcqx5lyWqdYcRFnprBvepMycjhpxlZEKQIXoK3zRTHBxEFMHk6+sqFJOSud7hijLiN+VWXSOMWsIQTKutRBp7l5UZdEa6r70YqoWMoV9cSbEIduGi5hxNdf+fhIEynhmdW7cO/SDfj1X/zpabW3FPRU+d5dGUxJbkXy4n2I8ZhATpy+SuRY6qhQyNXp7+i43hpVe9ZoU/c3cxidmsIIiSj68f/jivAdabh0md5OK/uL35jR76ZyIHEuUrx7eu1zFsCKPqUcfyNeYpZzrv8ZbUNtM52q1vwMwSHcO+XvJscamYLVOVfQYLZMkaZMIruzsY7kBaz6gSKY4UcUZGrLNUy338dnv3Q7/vtvv6duKr4zo5VsnuJ0uOybnXW8TOKbodyW/dttqUr1RfdtwgUveS5e/fLnm3X64ZQSO/elrtlaQ01brXLqUOeSwEU6+FR1fRrTf+U0419ZmYqSBxc91/naIxEriQOXjvbEJgxqMmi0LYFDjF+3gKZGVLJMyVen8TDUcY3hL9t2aSzjiSSovvLwWa/rqeL9E/iClDl2cNWZofl4bohoShNpvVBTFRmp2iHtckHJ3zaBNdf0ffx/y/NHDMVST8uLUYwPrnCS+Lhaxh84hR07EFuD3GAYnnBMrxMjDcmRwQxdTVJksKTlxyuxyySWzmE6R6qVokUeVSk8swT7vW2+twNAJ5ci4wX/Ds/w+XCJfwBHH4bI/swyEQ29QeF3cGQSz6zdP1so9gVWHtiPMxaeVP1OITc5Zs85aK7tpoyHPdFA8pTcZjBn6AwgAinOyikcTHiZtj63JfQjEncT5MgCupoT2wqQrotloG1oBA8h41Y2KE9iZmJ40X/D+MQGVfxt7oNfEiLzE0ehbzA0lKPdDnnndZv34e6H1+OTH3n9HGFxdEHy/uF3NPjxARGdFsS2VvTCvPhbl9vfrk4lafWp9ZNN4H/2by16Cq++9Cfw6kt+IrF1/yEl+usATiyYtjPYxz/+8SQlWbmxPvaxj+E3f/M3pzvcAAYw70AplISimwmZmYjFp9NygEdQMAwpTTe9a+cy3Za9B+tH2pss22g5jo8rO4w7gpmWgkjXHhQHZkX0QAkvxGjmj12On+zM5ewUZqksgvWKbA2UY7K6xd+4gKjTkxJ8jlP+YNWGPbj+R09O3xmMrhsbWLo/oEyNmro29E09iYaO9uatHdUf2xPNVlBj23SbNzi3kWd3bN2Cq889LzqmBJ67PUw7YjrQkXK/nSYj0qDIDIUu+FvjwKExHWekk7iz3dERLJUQXBlRimiJspwBS8fLaKcyOkNHfGOQOjPJBmz5O+F7coduvWaaI+yxMr72pMMIU/gZDWl7hre1/sM2ZH94v+98aB3+u6jv46SOP8LHlM6Cfk3TwQFOtdMsgr0W+qrDSezroad24uDIZNwZLLJ82RlE+4g809/YPAwa5yiFM2IRoNhYM4EUZ5Re2ssodn49ZrZm/AF1CE2ZU+mc5rTTnaU07jW6g/X9MkHz7VTp4h0dd/ZlfA0/y4WchDD9fPlMpT0UX8UyPHhd6HcxylU9gwcxgRP7sE/laFwipM8bH1T0OehUbLacSdAK+tLA6AqjxayDEi3H1og+oircm6Y6F1HGKjmO8NFZXsuzAzh2wFoCSWkUe7yQkWrcofI2v5CIcwABAABJREFU4YFjJ3RT/1TWibB8qjziBWWno+I/feNpiaB58Y10xOh0WR4D6jBt1TNwmO+RwW7atBHvf+n5SRGcTjRodTp4YMd2XHnOuTPuK89ImkhyWTR2vi9cmOKaeHSh7RwWyBClDZBlWdQIOxOY7T0XMwQX48/q8McE8KiMg4mZD9AhF1x9kF/OyubK0kRautZ+78k1Bw9iZGoSr3vBCwFoHtxSTWv8bF1UU5lvO6lkpUyms3ZBXbvf8De97GqMn0JHqVM/qScDI/QDvnvzMvwf73tVcME1J99n1fo9+PvvPKqcwaa7cr63bi0+ctHF02w9+xDTbwL29xnAdMHSUUZalI5dQmctRR3q4GXoHmP01w44UP/+xg1P4N988NVz7gw2OL8HEINpp4k8//zzo/9ddNFFeP3rX49f+ZVfwe23347rrruuj2gPYABHF5gjZMptAekYQBXYQt9QR/Ehyn5F3zkn2HQM+MIf0486UcAE6rz7VzLyUmlVKPpCUCF8PeVhr0eYjBhQ4KaNZpbTTApUhpQEZatlZLaELOdcNzVKOjDft6A/fz4r+wtTiB5/sHBBTtOBpEIvSq/CABz53on9aIMx3/9ceJfCK9R6KlX1TU4oObPMVhgZTHT1W7f73NIl9oAGsHfMSZQZjV/zTTALzxhU/ahmxjwlOphm0GsttmyPllxpOYM5oXSyDewl7Qyf55mMDMacHcrUpd4ZauDZL3oW0GnHz34fHJyO8uJsJ7ZUuqCinNCxNS7mQ+95J1JHR0PS+FB8xe8mw2l4/LMoq5RV4rg14NJEu2TdfkLqUTSUN59bvTiwxXqyaWNzHxV/Gvm+1Z6QzonK8ZDjIlhDbbDtQQNaOxGGwPl34ZRN8IpGVGXzIgdy3NGRzakcn80Fu6RAUUNvvDWPmqt5eftL6PaaV3E0Apl2/ALyXNM3K+WY/28tk/U2D9XFn/QGJvg8Cntv6UxW0n3tkKhlHjUWm1e5/0hbRSudsX/ImKovY94k31Pytg6JTotO71VWyVxvCUa1Acx/iB0D1DGqo/ebqhNZVb2kfNaXA5p5KCBtHZrnJsG918hg0WhrljFEyAK9Rh236jL6XZS7aLto/yVrX/2Ny5VHG/748aUYJdGyBwDsHB/Df33kob70lROHpywTkcGgdS0+DE3bwjJ3kCGkjUkXpDB7e2PW91yD3uZEMJru2T/Wc5v5SAtPROg0nE/q8p6lhxN8cLcy6W/m0TIPTU5ist2ufv9o43p86eknQnwa9N0MvVoXpcdsdoR3ZtuqhqVQosEH4nTT1qNJHBnPJvoiZWWfM0kTyejCX163GFOtdlCW5dJpDshzfthN1wHqL8X6OFrQanew/5BOiSmdLKUzI4MBDe0/TO+8Dnm4kKYW/2Y+tFI/YqfgDX/7/S9cMISplhV3rD9A9YTe78FFkgFImHZksA0bNvQRjQEM4BgEdQ6Q9C9+daedMnSXhhFIaNEro4DRh/8r4Z6kcB4KjSryNrdpPOkaG5QhV2ngEXJLXT7aZ46blIfMoBO+kXwf3of8XswIzcABGGLKIsSZe9+QYitweX772E0XFf2ARHfRbWXJ8ckgzDTNS68MPPuupaiY0ldRRd+UUnY88DVhRQzUa6SZkY7hrBwx3NytoEJB0aQUCcvL+gEDz5wRZIGA3o0pHFqdDhZ4AjSnHTYctchg6v0dLS9+cuN8oWgPwXIA0k5jzYZvFSXGgKY5ZGs6hZxohRzflzWeMY0UVA19hOpzoMRfdMO6DuZBvl+eIzSaOmDISHlZ99Fj1CGPFjFH6/JsFoXK4bN65BUyB54UYbik2dY5PV1IVY5lebOxOfYWapf2SqAQX0+peJTt1Dnc094q17eRTq9HUMNQWuXUuSkdY2hffnvlfGI5QIm5JjyrddbL18jFQWLSR+p0ZbyJ4zeOWWvL4Ue/D3fg4ZGMGT7xKHL0libhzVMiTTJoijABNDua+a/F6AxNlyvPkWpNNa/LoErCRyov7siqxcUff42xKGN8Z7DPofr3vol8t/osCPGUzqZZphX2lDc2nEvq/XF8ykXHI1gyEQAa+Yo5qCsePMaaJZ7lJf/nQwbNA6fQTQaWviTl/aq607D4GqKAPiMzPv+iWfDbci6N0bXk76F487oPeSFlPoJvWB9ADf3k04fIZTsWsV1gENY/BoxujKdtbGOe7en9dDouiDZTlc+yxdwgWfXv+brp+wg/++v/iAe+9Ws9tZmtSHAD6A2YTjNa3zh3WVvr4u1MN8Vv3Hc33nve+fh3r/hJAMDJQ0OY8NIMat6IDykjNSJ27ku9oSHodZyr0qbJV60DEjTLVv4rMPyl00ml0/B1b6TfuqY/ln2uTPfEaXc6Jl2QlxJZFgdGy49FaHc6GPL08vct3YDPful23H99OC+NkcGMtTaA6YEpt8Tks6qOC34HPJz4LdtMB0duCymgD+S0Z5D06PjYqQPoJxwD91YGMID5B0rp6IwoOoGXVWnc9h8bt8GJMUQpsQnzJYl+YRyKG32oI4VZ23Z4yssBRd+yfrvjMCRw185LNoJaWUsUMMwZRr1H2tzbYBhqjLlmhh1rKPa9Y2gxg6P/O3SgsPA7PoEJKR/4leuwcduBpPa9KsqstEO9GF8lyjR6gSEQ6htIXOmmQnMrAxuqVDnmOEK4bUo/Ox2gCoqMh/MO8RMGy9IZLLLBebTFECrDg1GeAusOHcS7f/QDPbYerRGPuQbLWKaMSYblpjgTjKiIop6MclN2OaeOcN4+qRyGoxZC7rwpI1YCjDaz7or0m9rY7+01Y036CtzYjUP5fnIcv2WHGN4lyPSN/hj1b18JFs4BTSNq8UVihTQ6QYA5strh9Xuh2/2EpmhbzSD5hwgtMcqlAYA5WTadEyWk8lYyEpL/Vz2YBrCWJh+W0FfM8ZHd0mURttj5zKOXScaA7Yk0R0wpi6RAo/Msyvfj9XRKyLBuMZ9G34TPj0ejK9vZfQC2Q2kMcvJdp0MjfDrEHFm4E5xUXjpVsZdLAhKYE7M/oGOIJYLFG3NbjgOcvtgi5ZsazzhZKM9a1k5XPjpK2wHMHMyzjDpG6f2QcgmrhNSI06UexIecyPgMUiP1sDePvbMeu3dZw9JRcL0IB/bM5MccTx8J1JHpVRNj3Pp5cWrVKWuDA6Oh9dGB1jzF62hDf32vrEt14YCx5TIffcE+fe9duH/7NvN5Ospx+b0JPvVH9/Je+722lVoiLpcOnJ44zDQ61AD6AyoqNq3j/dvqh6SJtOSjmTqxTHY6GG+3qt/SJlU4SkE8Jzgn8xucB6EXiL16Wc7fVaaGY5ewFK7EthQ8t3QbCX1FYZpnjozm6kO7HT5k8yttelW/xxjdeOcv/Z0qY+9gRcWNwjE2F/MGomaZ2BMX1GA2IHZx22/rg3QotSOD2WtjNtLuchzqf2u94TxkTAdwVGHgDDaAAUwTJDm3bjMEdZTxUrRx2pDKFGPVjW1iPKAoNJ09Qf9xId8y9FYMvHgscep0Osr45RumZOoONqfyKAsimSlGVUdBcOBpu5iRh4FzpcNOs3ElwMurn+cZvbVT33LXY7K6BRaamVFjB8Z38u7HKYPA3mvk8CRGRieS2qcqwoHiO7A96Fz6YVunwquBOjMSgcxBf2sfh6C9SqfKFAG2IJohDKXrIHxf1fptZoB/4fZbVBlrlZImUkkQlvDdgCeL5sTKbdAG0MlOh4YhVnQ10uvRumXUEeE2LCe7WHQupjfg0U3I7WzlxEjAEQFoGlCkXet26A0YNzrrVG2xdFSid7vfhF+q/4aOpeDLDO2yXxaVR0IGHZVFfseO/IjVWVbgEDqykVTPVpmYe55+jURui8V4msZWs751L/u2kW2LLPF06pT+3lafjBeV/UjnNqZUlTSbGaxTU9TFgNVXTm6IG7ErfMDPSOeKqHohL6/TG5ZrTzotyfOd7U3tmEdS1ELTwoBfTwTmoGnymrRcO6lTZzYwuUbSU82/S/6jrqvPFB9klKtUSGmRmh7NOdDLPaCRrIgzoZwLcv4xGZIMp/pm61tVc2WpGEOVcBx0/8W8OVcYGVKiFiU5z9I9ZaSJTLgYMIBjB9g3luuKOybZfaZG07J44RR6mgQGTxrFXck5dt9mHyplPJeNLJk01r3JlzD+FJy/tvpWtNIr9OelQ3Rv8wHaMcvtAPoCjPxLWYLxjEH9Ob5i2ep08Jv33xOt88z+fTgwOVn9TkrDLIDpo4D+6CRm2+lIyzS9yczHKzR9uhMhfeaxAI16T8PpSPVD+rT6m+m2XpjnmOrU0SwL56+6UxawgK03y1GTyQ9ab6j1WLKtvMjERqM6MlHG9QtGmsiEfSVpoq1zmP6H6iUdep7p+Z3NyGCtTgefeeiBWes/BkNG+ks5J1LfyTbNIDLY9CCeqr65fb3XWd9Sj2TTQrnvtM2jHE/g6CGZJ+ozZgJNgQUGjj8DkDBYEwMYwHSAKbcaeKEyBaQPeU6MIcatBnl8MIchGb6VGQU0XvHDVjq5xXqTSjlm8JPhwZmhnBklrD7ZHCjHL+v2v9beJBvmmaGnuH1C6mYZcWIwIo44/m0pHrVEofCo67hg/dT9nhiMqbX+U29198rAs8gfJR6pXSmnUUITLOOXMmI57jyVlQ8NcM4VBkpXoSD2qBCcG5RsKa++5fBoQq0CgnQehmGT3fjwGXH1TgJPSoc6XFiIOc3JugsyzXoxBWts7R2tG6xS6K3oijIM8fZ1Ot4QtGOPo05jMgJAClm3ICnqgrdvU50olLOR40p3h4TIndBjWrXV+hG8gNXCfz8JLOrTkHGDMmgj9790BvP3oXTgYue1pIndsqaPofV2PPWZ1ZbRgBQw138PZ0BjHWP9MppTf2OiRExUssLp+QS4gxZDSq5h5QqW4MjcFAGoESjLZdPuGC4FPrF3Z2c+cWYjknhjBEIQRxbyja0eekoTWSDE6YPPa8KO3CLXZE1LfRrlurQj3rY7cPByUklf9s/ew//d7PBH3qVPem//FVIcF6o2kpejlmvSl1gqLHWdclQk8yP5JraXGRDWVOEFFM5t1fmiHN2c+gClM11su9RncFiJ8eW1zHR0eKwB1PC3y5f1UDtiNKAXr0hz5SQV4cFnoNRPjfyZtK8Mp1MmI1R8QIOzfuOYhORYfKQlE9fttKxILyVE8BnKdNpNczxIGuDrl3y85t6hJwUGNkUO/ZwXbtDXvGiIgKg/x0un4xye2LsnoaYnewHqzG8C7Zzvkts2Ytbvxd3jNzgRz/yUdeqfDz/csH4WsRlADHz9GzuzFUky9hONhkPqTidCueTZhrIMLanvMfQTgCHvGWUASwcPTYtlX0afwW/Cz5jytDcCe78sC79XSWc6wXvzjZg6/y7Shw+HxyfxwztXBmUxXlZdmiCBDCxnsH7Q87ZzWLxzx4z7mQ5Y72VdhABsndBsOwEdz2Dpk5suoRZteTnAdfVsvG5lSh/kbyuCIRuvH7B09y6sPnjAfK71rPNPphnA0YU5cQa79957q/8GMIDjARjDnUTkFZOojSHSaFwq+zlDKpg0EMW6qhUHbXxgtzY0lHgrhwqEh2ORJlKQHjGh0sAExBU9wdmWYCwsHfNkSiIrjQnrgRn32Y2NGPNABR5wRzFuxCXPCCMy3ZRTO8bGMDY11XO7+QTGxY6eBCwGjKFiBs6iDzuCCBtPOkOw1KfUIdXxiHfUcTEltZdnkM4QRgJjNypiTOZ0b8VYaSIDRzTSjikshxrS20mtGBOsrdbFd+NdyjYsWl1qFJESZvOWkXMO67fsN5+FBRyf2Dyzm2X8Zr92EGORKecSmuQoB8NhJSufJhXX/Tl9hpZl4ahxoTeOs6/ICJ/JdEYphnf2TrK+dMr068lobOXZHDh/wKnz2jL4S+D7T+Bblgt6fnBkEuMTLTSBhUIv53AzfeaQZxlN8Vj8JX0Y4zDdlZW2LY6qUzSbgY4eVfZd84AsSlTPug32/Y0+Ykq+cq2yt6LRvWBE/BKOXw6Fg1hM71TiLOWC1IsEOdLpA1CuNYN+CaDdEn5F8dDOcBxQgo1L2udZLuc6jPTiEJ8HyxmQOlsa7WMY+ucbv9yjO7AuoTTxltQRSvUjp9mpizQOeg9aoPoHdyLWuNerTUUUJP3W0TjDs0Dho84yR/eveYYPYM7hG6ufTa4bOwbYt1Q8KHHejS2B5MhgznK8TB8rBpZsydAr31ntw9jgbC+BRTbnfavLTUE/ZDjLgG3WN2RkA4KLRAgvp0jn6vloNxmksuMw2/PSdM42pQabbWCYrdi/T5UF21bx3M1zyJzBi35nPv+zfeY2ycgDe30BsXn6wpOPzSkuA6iBRbdKre+DTH0IGM5lifKkD5JnUzolhLRa8i/WBUk7mqmku7w9s8X486MjLDtVh00Gk6tYtLKwUfkn4Rs21qjrpRw5G7YcwP+8Jt0eLy/OZ9B00oqgdayTUytjTnMGkQH0C2I6phSxpSP2sYzuyvifFD7AigymHAUDR1jdbsuOg82DdaHtHJYLnu5vnnka/7JhnagZ4VMHio0BCJgTZ7CrrroK73rXu/Dud797LoYbwADmBLgjULy+VEZTuzZhZLVB1kjVJJnZLnvYiwKjVPZ7XZI2GkwmVOApI4OVbV3kt8bPxkXOqeWgw51Z0pQRlZGC9MkVp1ohmhleelV0hB60Eh3xvkr48gS66q/EkXzAX7v3Tnxn3dpkPI42cCaHr8zUyGBW+kReN/wbtOkhAoUUSimZIIaL7kB6HoT1sjSe9YKHdNYpHHr0MNUYjb2ngTWXAUNt7Dkpw+ciopGKSEQM1rZzpxjUGc5g5OuZTmOmskPDbDqDjR2Zwi//znfoM7lvek+baa1nTpP0WajXnYTK+bIBpyTFd+bTzuoQt/t0pQIhPF14Og6XRBcao3s6+Y+yd2/Ps3aiWckviMEV3k2OGMyxLxYZTKPOHB7YOOFvK+qXogOCfrjSw0P0VWASwl/+49P4wZ0bNDJyTOOrpm6TlNtbVlds7UvFSD1OhNdqoIV1H/H1UDlxNfApmmaXTmQC3xnQPktJLJW19T4W+Ik9FY2qS53O5E1EnVq64lnFhDVFcqrHbKZ7vUY+Mm8tN+Ed4BXWZZtVptEs2+px5NjhgirXDnP4CPvunVdpnuG6YmyOPWwB6Hlj51/h4EbWT4QXq3GpwXaW8upAO+ayvkvZqQlMvpmxq3CVLCSnkJ8F8Xp11GrWTk+GjKY7gPkPWQa0p9poq5wtFt3X+62pTuozObZ2jEzj4RlOY62WrkO6ir2z4scMXKx9nRE6HfDJQR+ZTqMTAcKFVv1bF3QKA3MvI3j4ocY9MJJbQt1RhkG6IQ7WfmwlLj7p+K+c1xEeFZSngf38aMCv3ntXqLcBccRo0KVI0Od//2C2z9ymdHTHW2SwsSP9ucw7cECdHxDqLXgdfw9ZujKqPyV1gyi9CUBlPyGnSl0YjZpPhmwbeGi6S1IbNkSzB6DsLta0KLqPkE+y9JthZDDeOcOwKVq6Xy/lyOkw/jgyNbI+lUuNcftBz+daDgvOSysymOKf639bn2AQGWwGYOyT+Lkkz/buX8HDMZpK7X7EDh/078K/9bg+v6VXx0d/+5+tF1Cwf+IIfu3eu4KyoTwP7DJNNvvBKhyAhDlLE+mcGyjWBnDcADNI0VQdsp3qR996zqUzE7hSwY4uk8ak+QMwRWVQJaIAKbqojUtSty55qY4TaSIRzkNp1JFh+00hnRh7QoOdUw4EpVJRGyHSHHac4xHXmGG/VASraE8RJz16W51z/+qZTNXDotZJo2uJj4QMGdoyn8Q8BsvAResmMOaWwj7Wkjt99KZTlg5ENGoSWyNkfBZtsMSnl0iGUsDNqhE5pBobGoEalsNi2rd07ijpTgQNafeMGYek4cOKjMb2miFf6rEiyM6mQaDdTv+utRFF1IMxf+AOC+zGjKSZzmmHDI5jWjrHFFBOvIgrTgCo25TOcWVUfY5E5hssNSZfa/rMCNuo+tXZanRA2qZEQS0UiDYucqhwjrvRWgjuTKBtOoMtZ7sU4bg8E0P+B2i1ms9Ea3pS9UEzcWakDpPyWycA64LxhtJhi4F2eAr5vKISGGMS0Nx+pG3qxZhlTGNYZvAIjFZRRTF14E7zrkk5642mvb1LgtMUWx/BeNK4mklevajJeBXdYUqkK843hW16TwfIHLxNFqSh6/Ixm19tbNZpOGueL6TRFOeGuQCdC8VIUSN40r40lKkxh2/l0GfMp1LUEsHWmmNmiJoPhvwB9A6bf7gddy9Zr8qZIYamjmwsqCH1QhGDVP6U7av3LboBh4OI3bwvKiNUcosotng/ozzPMpVqsqpLjjKbxsZODIWNcSz25twsefPiL+ExHdezHW0Y2BQ5WPNy1Y9+kNbe+7fJp0V1HqJ+0qj9A0temPSEc3apz2+V5vSjo64Dx0hksER+7HiB9378a9i973Bjvcb3Pt4m5hgFFtHLB8XPJjhQlf+kkcEadD2qX1KmbUJEFwabJlm9W3jT1PYCCanHBYjtiNlXXIJoTgQN+U5WpHYG/ByaPmREAR2j3SpNJL14YxlaekZPjz/zLnobzz8fzTSR4e+USyMDEjo9oLYusjclVLYJMf8BrZFtRNsAD6N/PW74QK8V3i4FcsJVDmWZ6SjLYLAOByBhwVwM8rWvfW0uhhnAAOYUnPx3A4NY3XL2IMkwxIyvXasLVT6QsgSfj8iz9JQgrtuZvGHnI9XudDAk5kEq3HxjsPxb/EPMY9MNvaK0fg5uiGK34BnUt8yZMpm3l8YK40J613EgT2IYrPbB9LhwrFoIaR6gXw4VcwXcm58v7hRFvmUwjWEQdVZJ+qZc4Z3qzMWctJQhHl2HlQZc/DWr17twsEScBE53HTFBUEZtMAUCIcTned6osGzCkzm5DcX2SYIRvVuNCDx2/dkUkGM3mHREJ0MoiwhK0tkH0EYvh4iBPFDgWAqoPjmDlch0Ic+bDAKOnrlW9AaQuuIpNUIIEg9AK/Ibneagv52kPYXRLzwnh5pSB5DDTTkRBlfp6m/qwNM1U0d34jiSF4N5dcJ5KM9+2bBIh0ac7ETVoaEMrYizZDWOqYSNz0uAeOMYRlOyXurw52pHmf0z50V6njbQOObEAnipxTMf7wBp1U5+OvrNYrgk1ySOhaovHokuaKAOXjZOWK+kkWEZcWTSfjpqfqxzhUYWboCkc8ygu3o8HtGKne06mpqWGdg60POKYP6d45c6mqBwXE6o18PlkowcGuY5ovAhzllkLuS+0f0gnC9YaccjdCsCuTQii78BHnCAI5cbwJzRXLOsUvUVrq2cOKpY0dYGML/BOWBi9wRGD0/SZxL05QPSZ3S8tAXCyD7bQ5RuGn2mKP+pfqD7t5e07gxUdGbYPEbKRUnZj3VhxvpGMp2txEnWZ//OspAv7ZW3mCsYRAbjMNNZUdFFxXPJS+mlQdb9HIKlEwiM2+KiiOQxUgyclizbq1M921+zvbYVL0xwOt5gdGwSL3z+aebzFEf+QWSw+QGNlz4EP2vtJ+ZUZjlA9LIlrPFkaRidUMvZ7N3YBTd2EY3RJyX/lH8TbTJ1O3IhR5wbGfR+YTYokHoMGJ86kwiG0v4GxOmetJWwi63WUTeTCxMVzBJN/vn///X4pz//P3HySaErhOug8hJic1WgFOefw+h83f0l5uJ/PvEo3n3OeXjji35iOuifQGCfT0n6leofTrXRckxXhkmwJZppImNrY4YsIXvfwhnMtggp+fM45HEGMDOYE2ewf/fv/t1cDDOAAcwZMHqewqCZqd26UBlpRDkzntM0hdLpgxgF1JgV9hbOzeBcLVAGRmpLyGCaUb+vXox7kukn6T0Yk89HSDeQMX1ITHDSRmYrbHHpLCEZClaznF8baYfydkMofKXAdI0+RwtKfihFictCJUuYzq0oK2IP26/muGIdUgOgEeVKRSUCeQ9H0m+RW1G5EHD94aQRzQlLqxL+p7mO+PxnjSGXVWopOAzlYTu5X+m3E8OUzR35y88Fvh5YTW0cst9RzufWw6NYvGMH/s+LX262SYXouMa8cwEothdCYOHoZQQWBxYli0NFu2agkGfRi1J6y3K5l3j6tHIumkAauuSarM8BWW63YfUY3aTOAA0OcZYDioWbOmfIlKhoYU47bzP+SVSh+BU0MhSay7EkKnneTHv89k3lTfzgdCCHraiQEONbdSkrcXRty1a5SG8H+IrrmndUkXKl03LMqzIRGFWyHL0Iwn4le/8az6Rh3HJkSUofq86M9Agp1ne3+KY0npHMWdUv+WqCzy0daRmy2iGI8PSBHKHnlTkl9uo0XK5Wq00vDgT+O1iyod4z8ua/Id9IcYPhrBzGZKRqR/GSxpte58//d5F6S5/7HdcdP9cjqL3qNN9LQTq7OTKfXWiiaQOYfxD7WjTCc8J+6+ViRBQxttfSWvOxAwcPTsuZQaPSyRiXOiTESJl1AYTpWpr4g7DfXuSmAqg+zBxPnpnGeREZ72jC8ZbKbjrw5N49GJmaxNtffE5VNtN5aTtXGUVopHyhs2PnUFh/RuhMA/j7twXOep6a501qyySfDvQesa7TAYaGZL+99dE7WDTLzZgmz1eYmmrPuI+BA+r8AH+PMRW2dlSyerJ5g6C/PqRLl3o8ecFDXWBi+kFouuUAmq6aOaormYU6hjTzhKZ9R/yb2bxkdhrZX8mHqPGT+Zo0OT1Fz+0DjaCbSOz7IUPNFuXZvnsEU60OTj4pLG93OljQ9QazZHk5J+pivO9UXtqlxJvcvW0rzjvtufPWGWztpn14dv0efOjKS6uyW+5bjec/7zl442XnzSkubO8DcT1n+W+51/1vJS+oSfuOwsP/zkb6C63j5TzHdCBdVyvHt21zFvxg/Vq85uwX4OIzzkzGbwDHJsxZmsgBDOC4AsLtNd20d4B28lEGTpIiiSgSqyKt3Q+N0BHjTC/Abk4zfGoG11M+NDmjGUyxd5SHfxwxdHi/maFXG9uI4O+44dsCy4AnoTQ4lP/28WSD1QYKm8nx68p+webHN+hYTI5hGDx2kkTWjGFT/mwgTZFP0201tQFTbjdEEPHrir8AXw+FwUzuS56m0jIWSlohwRdOpXGMGQR7MhwAWLZvr92gC8ygkedij5OJVcY8p6OOKHwFfabKgUqwCOlSSVMYaPpJq5F2Nshvv+bgQfyvZU+mddw0bswARtYcQCKGwd573DiklTXaCbo3Z4fmOimKEx+nNKMzva1oROJrUkBXZytReAWVCPjfKnZ+lHvM+maMR4nRzyzTDlMxI6s/B85ZUR64q6VeRZp2hqDPftMhh7RP5afMG7KJmz/lvLCe03TV5bcmDll2/2l72lKiilpqHUme2eKhKz4HPKpgL9BL24w0YPvQNqSzSETkLCe3T7VjHHNk0u+T51mjorbkiZPBWem5wvVQ8R8mk+mCf1KDK0uxaznV8a79StRo6bXq24WHBvaagv/+9Bwg78gMBsyJSw/GeEiJD20m+ETm2JdI0yzcCR7lmDrtue63WM/x71jTeHKO0uk6Pg3DxzpsHDmEneNj9Fk0YmtKmki6FuJryof7lm4w8WJ7LYXuWDVCpxQup1LDYrdM8gG9yrns7Kkv/8l5jfEqur5Vt6jGdSw98QWhWFjpR6R8yHQp8wF6SQlzvMLNmzfiumdXBmWpDisbRw5h08iIKo/qBtDM+zeNvnPvGEYOTzXUmj5Ye9iPGiFTtEkdn733fHoT1qvTMPW2LtvEm2W2HbC1XbZLD+do/NmElet249DohCrvxxsdu7NyfEEYpT2BfzDWs7/1qB2hC0yfHB2PlEl6oWgQNF/O5Ww92FCe6zSGiPM+VhmLQO3/LcdsOghyYpzT0e41zbQiSdP5N/i9FH6F26nsjyznV13QK3rlbfsoW88GtNvsDGpu1xG8gooo64/R3WzyuFuY55hKCEpwtOChJzfjr77+YFB23Q8ew5IntswpHlwnXcoafj1pJy/3mGoddM50J1yHIuvyXi0bCcB1+b0AW5tWAAr/3wnmAgVfXbEcD+3c0Qt6AzhGYeAMNoABTBOYwSIqSHYpstY1aoWkNgIJ4t61CjDlvtbDNRmb40cDc1pih0/J0Ace8S7NUOjPnev2lu4wIYUGgi8RNpjAkBoxy/re7NZd+f2k0tNiCoo561EAixgNnStu12vFbfw30GxgmW9QKbpTIrck9NVLNK+ijW0c7uWbynFNZy5D8mZRiSDKGp1XSR1fbJHrWcrITQp+5xz+/X132wiUY1KePFPCF6mknVhybTRRDm7B88gNKlfiV9Mt7q4C9fKpKyomSPfi1NErRM8LJei4aDkDdiZZ6Mt6KWm9qjS+DfWaoHZuqMFy4q3baAeDMnqSdphrSCvr4+CvZauu90TPk/5OMqKYJWhqA1mcdrC1GFsf7Gao7wTqwBy1ieM8tMNM2T7Aj+Cjoyzxd0ldV9b8yHJrj2cJjJO1bnLmKEy+fwzPAjcxHqsrNQ0cURWdFCBOk6KbkmbHLhf0vsdJmjnSL+tfuxXG6JbjRnD1jsTxyznqFMUGk2e9jojJsWuKUpwKdEmYdCQsk0rlci50WygapFL+AUr2UA4CzgV9OcTPE2u5c2dVw+HD6Nvvr9xCNHKe4vtItDOyzpjjIIL1ZK0Mv47hsFc+lGUNoPqqzkpRr7tWyvXcEXuDW+qbMZBrsJp3ebKIdTKA+QP/47GluO7ZFfRZ/CzTD+l+U2shvc/f/bNbOV4gjpfMYZu25Qjo99H1uINY+TflcLdxiOm76H42ZHLr1KUGIHBjZ83vp+3XgLd0NZ1W9MFpXmFisoXD4zoN6VzCgC4VqXFiRre6TBf+v888jb9Z/rQqD/QbZEzJM7G0ZTF8/uzrT+G2h2bPkJpCK5g82+hIDu18msr3xYClEJvtpW19skp32MexjrRaaM2hsf/Tn70Bty9eo8r7QS9iuqixqdlzcBxACIG8Z5ypSm6kdbSUaF4I72H9sLryXM0h0kQKOYc5oOVCJ1TiTdl+Zp+yIpx5RezylqpEumciiZLHlK6qbtsE1DGO1kuTw2ikrwgi0mk3g9ZlWuJXagSxGMxmJNQWcQaTjl4MpN1ArXuhi5BtAO0UORcw2W5jsp0WKXLhUI6pVljXddCN1j23oMSV6m9k/lwYeZztZhkZTNp1fJB8j2lnFG0V7zSDT25GBotPA3JhE06B+e6sOID+wcAZbAADmAbwW9wp7UJCzNNl6Y5ycu2RpbJmDKmVQiBoF8U5xfhZM+XKsIuE8aVN0PdiLhkp1Ae6MtCqG/YhQ8+irbE0cim4hnXlexBnkwCvGqwbNw6O37ygymz9SAomtUNDd/5MI1Az8zPfgTLdCcw8fY6SkexhfGNdVH0l9aEdTqgzo7GvWVQiECNYShocf83mYmOrteGEE6LoSwryFpOZ4lQkoyyxt2DG4qGEqCmyNznHVj54ayrZ5+iHcCvxyJPUAIl995Aap/yVnDHHOQwRw40UjKs1Kg03Ceu23rtN9ZqR9pd9Fc0o0s45vT7hDGcTZ58DAQ6AWO+hsYx9A+uWo7HrwsE8UNES0N1HEaRTIltqW2Z5vhfntWzAHbrF+gB3qlB1CM7S2Sz2SZIiepiGUoNBEMDohgRrz8UcGVS6F3CHD8CgvdKRqstfNWErnT4c+RDK2cqJMqf7mQ6wcWg98a7WPrTQsZzHGN+odIlGn7FKJe+XMj8W/zATqGl283jV2pLvrc5tHUGuuuDQgA+jXToNbn95XMb7WZB5NfglFt1XJjYA27/s+3MeUm9AptNW6xWa/0pJjSn7Ymd8Fw04uEJ2IeGa1VCuOVVtNT5db7ou5aMHcNRhQURBHefL9DOelly2s3FJ1ZOXfKsPLC261ZZB23tX6wyyLpsBGveOS4sqUY2ZM4dzPm4TjaWsoIELdxKzHHSN8fyzxGMqhnItg8jxvvrPS/Gfv3hL2kCzBH2wrx7zwAypdL2TttZ+adqPTTxTU3QbdiGon2DSCm9MeVEklRcOioV8YUUbbAJH6OdsG8ctZ18nC/oA/9eD9+P6Nav71l8T5Hk2aw52Md7qfTf+cOYDDCAJfPpBSYnY0NZ+Ci9YdP+SDqW8MV0I9p3g1TMI5zBZvywjeHDHMY0yzbiDkK5p+T6sW76HlULY/zeXmcic++9t6G16OzJSmLjeaESKTGgBo0ep0KRb7wewyGAyawGDoI4w7mgbnAv+lsAubc42/NmTj+OLTz6eVDfPidNfzs/t2YTYemtyggqyTkCvpyzTKT6b+q3HFpVK2UoWu3CPJ/VlAA+OEAenFKlpsCDP59SZfQBHDxbMtIOJiQl873vfw/33348tW7bg8OHD5qLOsgx33HHHTIccwADmBfR626aMNOQDM5rmuRS0w7/lv2O3A8If8VNAMi60TorR3GNsQsVBnHNUB5VzVGlvKikko0rLtNGYOdMlXeWv2nMDHneqIsJMxHghHW8A6/119Cp9c757u5XzLdH+59Pt+H/3me/i//rE2/Dan3qJWadaf8E0T89JpvrGPVqEzPRLzNpHByZRjaiBl+8r+c2YM2TZPIpGhbKrqscig8k+m9ZXK+KsMBT85vuJ3+CqQTkXOSDP86jwlbJUanos9if0LfIS27RoAzxijQVyXqa7znsFK/2fVCRFyUay0RmqMHEXJUdwSuhJ0O2UFuRsMGhp0/vQqAfyyPTEXavfWsitz4eyrFM/pOsoVIah8bYo+5axtJHyW2nFmeYJKvokxxYfiPIDyhG8/GZiT4E4BCVus1R+JbpGGxewzT8wp6/ir6LM5pKWNMZKO96cIp1EugI3rskbyyqFInMe6YH2WWimsoNNa8mvl5OUstrZCYrQOYfue4s9n8CnpzjFOEduREb7TdclhZTFLzcc0sVONHzZaX9SKAoUsNDr0rnSkbWmUb3bOhxft9BzlLEDLHiH7lMHTeMrnFlZ+FvKjFXnAhdmDAnr6INZ0sV6vcb7YqD4NnBHEY2rpst+1B7nmtPE0fXm+H4p919/+IcBTBfY2p/ubWXWhBk/9flsr4J02ZhFDSRyAW3JIcWIRKOhVQYRveaZ7FqoZ3S5VRcg8xrRIzC66WBfbqGO686KHJIGQZpIGXFavGfHOew/dGRa4/QLpvuexxNQZzAyLWymLJ4t7I8Y/BE/l5SOTZ3T0zP+fvavH8Fv/sKr8BNnnxqtZ9EqX9ci5dCkFNOQ0S0M2ZK0+9I/Po03X/4TePNlL4r2WfU120vboO+zERnswMQEDk3ptI2zBUPEeA/0ck4VwHQVA5Pw/IAo/QGRlYxP3wnOObtqht6ckSwdlw+56FPaJ1jaa+uiPdNFUf0UuVCk8CVyB5Ob5Byn7C+tvyrH94fXehvLMW4mQHnhyCuoyGCZvlRt67vSFs+7f/QD3Pbhn8OQN7mlLWA2I4O127rvjuQBCchomzJ6daifLcvDPpiebrZhrNXCWCstkiNPwTo3dgY9plxv3f0Tk89QXDzviL0mU7MGujfY/aqLeAb715MtxKvj05V3/f/+Hnd941dYTd4+IktKGSt1Nw1lmWmnG8DxBTNyBlu8eDE++tGPYtu2bUIxVyyeMGWDZSgdwACOURBMY1KED3mmUeZTM71FpCjN8Gr9vz40mWOV8RocZzQfZqUyvl17SlR9p2x7aXDwDSMsUpBiSPyfxNjGHQ10vWQDmSvpWwKTXiIgBR5rXlxh3GG3HrUQApUCkilXfeGePS/7l3C0IoP96TX34nd/7Z1B2ZpN+7Bz72i0XfmOUnhh0HRDs96LXLhlrWumXz9NjQxW1w0VeKoOiXpRRy4S+BKHwZS0lX4dabxg0SEEMsFPNY/G4O1OB0NDQ9FqyshO6qh94Zxu10CcuP+e8/5f3BBifYAJDRphti9jgrQWLM2qPUM0MpghAdGIadxuQ+ksd8bRayzlnDWG7hnk+ZUyvgNz6Ob7re4v/kLUKU46KUEolox+HfnhxJqW42iHdXKgyjYN9FWGYpc3Ren6aCpzOsKXjmSl6WuFQ9DVDJgm2DyTtX8kpDg9WmNYKS9ZG2cxBAZuTNecknKYOVbLvWRFyPIVt5ImT9dZPZBZ4XSZ04pYml4ygoPiMR0xohPZwVVt/bK09+xJzu4zcxfFkSxormjnAouK7kfSaLLUiDpyoIjQS5wymoA6CULTo14czdh3Y7ycdJ5y5QZu5OWInEDEKEkDGann53cKaNyp43T3m1TOjUGb2ql/yNu/Kc7f0uhk0b6mfT2AuQE2+yw9XFW/W8xIYErEBUp6Iksg1bGD8lXxrr22vFbIP/Hzl+JX8nyG7EjrM2fcjKQ993QMQV3YdLCi+cGQVjpIG7isxsukTFGOySKySzwWDOVot46ua8RcR5OYj8DoAHOSs3Qxba+cGRYtV8S48VGOLcbNs+Rogj5s3TWG/Ycmm53BrD0m9DYyHSa7fNzUh3IQB1+X67eN4OKXnkH77IfjUq9g9V7RgT6OLyMNzjawSC6A1oOVf3uTFebuPT73V3fgj37r6jkb71gClTK9AZhsK9uWdajeL0E/FeBn4SHkfAha26jvFnWKTq3oz1DrVY5R73dvDPmupP9GnZoBzPkfkHRV9x/LIMPKUnZ06qWj+ln4m1+St/hUYNvhw/jRxvX49CtfXZX/3pLF+Pyb3lr9nux00FK6f6ec+PoNzFaUch7K6GEqoizZa1TnOMe83MKhHJOTaUyIeZ70W3HUAJa+BZBRvTReVO8e0KKwj/Lf7LM02WfKn1b2GOs3UKyn3DPiTE7xVJ6pkcEC5y8X6sYYT/Lbi+/Dl976jrCPo7A+B3B0YNppIjdv3ozh4WFs3boVl112GT7zmc/AOYfTTjsNv//7v49PfepTuPDCC+Gcw9lnn43f//3fxx/8wR/0E/cBDOCoATVWNhBO123p16BEXGgkS2VZ2LUzxwsVXS7JwSnm7Z0qMJaGEG2kTkvfAe8QDhip8q+tpdB9iccyhQBL71PNcwKjU8yroXtU8kpRoIzUsJUhlnJXGxebnRBrQyzHq/6tITWVRb/hR3eupOUtoYS9+d5V/IaTz+wZY6S8lbV3Ym3tNElpQk25h+p3cXQPZTAYQ2LQYJHhGp1QXBh1TvZbjC8EoOh7hWNZ4ohS8Irf31+/lgpfEmRKBuecSm/HnSb933qOrDSJ1vszR1TLcNNTZDC1Hqbn/rT/0DieWLE9eVxN37r4GPOi2sOms/RMbVCgWJDmZNU8Z9zpKr5v2He08ElxuG1yvGQ0nhn2IXC3olj6oBxVnO0kW/VB1rw2HPpjxp2Civkr/1W3zzP9PnJtWTyWfCczEoV0mEhwOij75OXiN/kudGDWl1GeZ/psqG6+S8UE9D6ob8mzPc2cVhL2JGG4JH1VzjtOO/7O1MmT8aiA8V3pmR0WWJFALWdYy7DOPj9VwkZpj5ZDGAoVPUpU6rE1YvVv864MV+JoqvZmLAqv351a8MT5xylHVkarYhCdC0GjUlZrWZs6okijBtkzAJQTQ+U0KTpr+t4stbA6e8gaS3ZUJHVzQjuqb+u0QrqQeSwe18aD4V20499fOhsOYO4hxkP2Ug5YUWjYWpB8inE+Awkp5/2+paOqnWYxHJ/31xY0nu1BJmOVY2r+wHCiA3fMium7VDSBKC9DDJjGO9eROuS8hREAmsZlUXYdpTWagg8NZWiR1EJzCQNnsIInaIt54JHwGHB5Sl5QUa3EWREzMrLRZ6JPS1lzVs9hFBPJHzZc6qv6qP+t5qakkaRdbOsfjchglt5TOrL2wwi6IMvRmsOcrkNDOTrMuUHIVEDv63AuKd7ti9fO4WjzF+7YuhkHJ8PIcj7PwR0DQh6+PM+itCqyFFL0aHbHXZwadFNcl62FIaq7IMY4U9cuZEFZyKJ20/fvxYmybAJ+dgTzYHQbS/cty5JQo23tbyxpCksVyGxZeVZcCt0wcgjfWP1s8Oy+HdtV/Yl26ACjv1D/oTEymNEu1FcKWUDK3yXNFXPEeJgfrJ9d2rcwS0/9x1LBN4jZSXBodAKPLtuaXJ+nBC//at1BVceFTqQs6pe+DNiVj4wv76PRdCmJ1jM2aPrFouZ6DlJHpaPmS1i6e5cqY34OAzg+YdrOYH/xF3+BgwcP4oMf/CAef/xx/Omf/ikA4LnPfS7+23/7b7jmmmuwZs0a/PVf/zX279+PJ598Ep/73Of6hvgABnBUgSnCEpgwqsiSynd12LJoCLadqfeDOt6gJ95S4l8q7xraM2HBVgiGSEllJZsDbaThxr/U+SuFBBae2EwTKZxTYmk+czJpzkFFO6r6kZZz1c53LuL1eASs3qMmzBZkmfaW/+//+26MT9QhbysjdoICJkWR37sgzBmowqErjZEDiIGVfHdrsTJjoTLelfs06I5pP+shJNOsnC5d2IfETIf45nPRdNv3L556Qglf/EabVoKxNA1SMRp0wZwqvP789k4SpqBPKcjwd9c6Vnu9yCdmelIPtuw4qPbQXQ+tw2/9jx+HfUf2hrxJZTmZmOAKw412dJBr1FEnXpVqmQ2BtEghKeA7f1U31ZraUIM9UciBpxwL6jjtuMHq+3VKJ+FOOHn+n+DfHe/9MnnTku2jBsdW5rzKaGI4Rl2PC6FszLQzXM6dnk9unLV5rITzxeRfJP3h9VPGsemIPrfr+W2mRZLG1bjy6KSMX5Ht5FnKFJcqGpYrSn28GL/Tq26WrS/m3K/OYfG7aRnouUpLO1E5/UgjTsOLxi4SBPVQ0od4vRRw4kcsAqpyBBLhLMsjlGxzVY/dCFd1jDXXTGviYLWRtKep7/K1qvNK0QDCT3A2TfN8hJcJib/BM0kcpidUUmCKZPbe/tlFl7xy8tN987mThm/HaZcr+Yz+vPcApgfMESuqG2jgoyRouUGvhdhN8Zk45ViUXB0FCXJSL5HBpNxSl9spwq00kYw/YCAv5gRtzDKCS9mX0Ufq15AyRUk7ZMQSNidWxN25hKM9/nyAHNr5j64lMlfSKauWg/x2bEwuP1kl6lwTaUh7gZRPnkaPFNMtHCCsfRqhreXfRH1UCcwmbU2Pcw77Ds485aJFs0pUqihJMx6JG/v7BfsOjBEdg8HTe2WVrK9esEHWHNCcOYfPLX0YT+zZE5SFOh1jr5Jiqbtl0a6oQw/TPUfAlIsitJpHChN4GCqGMkpwMB5xumX2GkC8myWfCLwVZ2LwTrKfpgsJGXF4Y3K67eRu6PEFMDxix5Kk0wxP+t3zYk2lBpRoC6JUjzF7tIdeovD3hsW3enVY9Gqpt6rLa8jJPP75U08Ev4+0Wjg8lZbWMQV60YsPsXQjfeB/H3xiE37rfywKyrbvGjHr84jF3XNMF6m2Useq9cP63ymvaPVj6XjZeHWdtDlN5QOl85fQtCWNlWb9H8DxANN2Brv11luRZRn+6I/+KErof/3Xfx1/9Ed/hB//+Mf46le/Ot3hBjCAeQXU4YgYJn0oDWJBG7J3mEMRVWyTg1oZkMAdoXqF5EgscMoQ2Wt62Fo5V57czW2syBbdH/rbuFKpHCpBUhwqqjHZtyPoVgex/A6GkcW5rvOW7MkxpwASxhhOGdmkUYw7UBDjJxGOfJgtRQeDoTynDJPv3MKMBxaG7aY0keimIiDPrFVSG5e4UiwFHMJ9zIyagM3UM4ciM3VkgxIwWKLCMUoLhPHbB/rGPUEeQFvUY59JR19rXofVXpEOmUo5iOC5xcnXa60uTiUfXFnDDEE2pDiuSPjob/8zHl8e3sjKuv8Lx7VHtuZL7U0XD1mu1iM7P8mESKWOhWmKKbfxXCssYWJNxDtmhunS0MT2QE69H0Kg/QXvwRwRuBIrTDNQP6vwEfNbOF4KfHLyvYPnxDgpClR6VWHclJMilYEshVnxjiwKpsBPo0P7ImgnQ+qtMUtBwRSTujNebCk+6TjOpjsp0UMBKIMSrUKWuTIoc92TUhzPlOtgfjFWND8JckZi+Jipb8W5K3nmch9SvJ0sI7yegY/sa6ZygQUp4fqr6LxqH2pnP+3UpZ2nHDlAM2Ick5Hmenb4Bz/nJU320I/0U38rZjAxzxG5BkjKTAbaMU7IowR3KnsyJ9wE5oemfSaOqyUMX/UKPOfkhYqfV1HtXBkdLdxXwbuUa0ZG/iHfv/yWA/vn0YVy+gP2g/BRqgF7xAyGKZeGSkNpkyGxR8iIkY91Z42R4vhBo5mV7xOJ1Crrc4dMlg4FtO+CxTX4EbCz15YdcnKm1jKy0UiNGdKTkvoOiTR+BW4c56MJc6l3ma9Ao0Ww9U7a6miXTrWnM6yckIXOo+Gz5FnWqHeyIOkCilEeM9wrScukN34bI7KaoUOyXjklWmMJ+w9N4nf+4iHe0QygGq2i83E8eoHZ5LH/1b//Rzy7PnQUKuiX1liyS2GBjJ8wnhUphYFzbhC9sE8wpS5f1v+mF7jFx2SRwSwdGv9ivaU6tWhA+DsudwD8ggg/97lM3CQj1XKljQe7vAWn59iRMv3Ook2p3/frEB0JlQthQWKaSPI54xermFwqvgUh8kNdRz3mU8TA4mtmk5QwGSCMDMYHD+inssFB8AWavwA4bynhK8uX4fcf6d+5J3XAMZB2xP7hoO21P/9b10fq25fyo+k5IS5JV+V1G3ZhUNapEeF8o0RKtky5zJTKF5pylDji/UwXxTP5uxlY1PYBHJ8wbWewTZs2Ic9zXHHFFUH55OSkqvsf/sN/QJZluO6666Y73AAGMO+BMUi6UkiIlbIfPE1KJohyoaxmhqYQSmNzDK0UUt9Up45wgsZ3ZKDmzrihWo4W5uMWfcmUKeDCj2U0SwrD6YxIEoSbLw0OKhVW5Luwm7Q0eoDTxlFplHIIC2Q4dL8vHXUnblj8Vzf9GE/v2xup0V9g8zUxWTuDlXJzrzc7rOdJe1pAZtxc7oWtlt8vyzJt6AQRyMAjZug9aERE8Gu4UhgoKuVCbcgdMfz2WnAPMWgWslg/QDEQSw8aBefoLTJVzcOL+f1Y+MW+sRIOyLuzW+jxyGDhs1RHVqkslKlRijqx9vptWDkzzpe1uXOjOOPA07SmOHkV9VK8aRL6ER6OTfNcR57yylwknW+DL5iV6plGLPCEXpZCUeFV1vfq+XgWEQ11GO3myGBCAGaGQ4m7N6a6gU/x0N/YVd/HH1s6oXCHItaX9XIpy8o2rorf1TeL83IMLAU9ne/S2AH9HbRys1tX4WooTBOwpc5AMm2vsWYh6swcOO9My8h8+ZCTdlV7pqhmTnGEmZT+kBU/EqEWruorpKOsYsPxL6qn1Sz3FgPGS2klqkNG54Io96VWzQkFLHQ0uop2+f3o4aIQp3u67xiUz0sZgSHCzj+/lNE8QO8TJu8oAwadL9mzXodS5rBAfrP6G2lcOw644lXnYOHCISHzOBqtICZP+eOzOaDH8iBN5KxDq9PB22/4nvm8XIt+NNrYOosZrFmKll6MnIzGz8Tg7acv8YE5ZDJIcQiK8pWEP2DGHwfQQ5depDHGbdIBUb1V7BwhWFpOpWxYpV8r/yonU83xNKWj7QdMtNvxfTGrox+7wL81KS0/uGgX0g++N6UTcmx8da5ZkZsSIK0dr9SLPtZ6pPj0ADenxqnrxiKDkf1qIECjlETgU390Hy039U5ejfr/ZwapFzP6BXmeU6OyP89+FPBeoJd1+7VnV+CPHn24p/6PF3j7Dd/DWKvVt/5UpgTvd0q2t+pMDvZvFlzwq3Qv5CMT0SI+nkEDFK2M6oP0PmURQau+peyTkzIxpgOKS41ePZYmWjmL9CALSzylHgrQTrYSrKivZurIBDIZuyTAQNKUGO8X1utGKTKQiq1t/3cvjqi9QqMzmDG0v1ekvc5yEk9PY11DyzkcmJx5RMwSetGfsaq96ktScGg6itTlL/h0zS8LnSEr3bkLWwW0RvyuIoMmvKS20Xb/KltIyDsxSI0Ya9JXMZ7WhWk8dd+SZvYne8AA5j9M2xnMOYezzjoLeV53cdppp+HQoUNqQZ155pk488wzsXLlyuljOoABzCNQSu3SkJ9wqPmVlIGzJOJBEU8hwm5EdLsQyMZxalLkp6SdKYaxo+w03Trw21bKOe95Ux/+wcecANj7MWVw6u3S2jFLjxMz0PrVrbDHtdGP4MyigJH1IkM0KaMYYa4Y3tKhQMKhqUkc6aPgGwOLiWq1fDVOd60k5HyXjNw/3vAEHnpic9COOWHEoJTFmKCbYqwC/PUerxczVkllN41+kWAM9nEuBDvRgRrTpiRyfaXeFuXrMlz0afNaKBSjdaVxlDjWmU5uhtAr9M4A+Lt39PDR7xMLHb7/0Dj+78/fSNup44GkzoyNbL1/inKgLGcCJRM8mINYyjlbksCZyjHV3pE4NSw4ZjCy9mssMgpQvnNcCVUIvd6ZCa48s6Lg+CXyjJGRdJxrTtGmzzrCGwQR+sL34ynToD4oX0fh2LZCQ56jhuMh4xFInxp0Lbp2jP2TEgHLNJwYDsmsjat2pO5DRyflNM7iZXw8aco+hO3UGemgUlzL78uxj4NSRoEoVOj3k3Xs71Qal3Unup50TlPRcVHv6aghr+rLrlOjMTuGKrZPyyfBpyXfv8YrnAtrnEYeSfyuvonHY8XmYTrrqtc5rd6BOcuBlCl67CBFHn6rtbkOU9IyHjjveWZKFLhTHzP8lGXcgYs7EYZ0n9EpTYNoxAHoVMID6D+0SMrxT91zZ/27+1dGMTF5yyhtFGvMvDTD+X3quDADTbllUNM0i4+RMifWpRPZvvzN07FEeChb4SPq9kYv7O/LHHwLsM7GZgex+qwdEpGjO67rXB2MkyZvzgTkvpAwiAzG909PxlZvrbM9kTLDpWxmNern+ZHivGPqVBDSCh8k/2M5uMo+uBzJ9qW9X3pxSsimba2S/fPxpBG4X5GtZjNClpZN+TnVFo4KQDwqJqPXvTiPbRodxb6J/jkwHGsw1Wk3V0oESetDnqOUYwLGN5SfSGQweVlM7gEfenWatyCgH5zN8PAxLqYTvbqM5lnUJakNicOEvBDNLj7KDDxMrmd8m4QcQpft1D8KvOWeRgoP0xtwupteP8Yn+1A6SVlzI99VrfWKn7Rxmyk0Rae0+e/630pX4yQN5e+RwhcvzHMVHXCmYE3nr/yXHwS/eeaqSAcG3HjPKnzjhifM5030hel66CVaIasUdKTed2UfHUkvxbdT/Rqgahh0NOXzNUUGu33xGvz9d5aaePnlHbH+CvqU0bphHyFktHQAxyNMm70+99xzMTIS5ng977zz0G63sWLFiqB8bGwMBw4cwNjY2HSHG8AA5h30yh+XTGTQjgjKLJ0UcwKSISvrtt6Y4q8FsRQf0nAaqwfo1C8pEWty4dEURCcRdUsjUv2bMarec2hFoZWGoBc+xzYey5rFWMroEbkxlxPrKls/ztlK7boOjyimsHRMoMkab2UcbVbBj3RUCr6dYI4sZj4s/5fbV+DJlWEKPUsQtt6ZCbElNDl0yHGrvWs04cr4Ml2OHpvh2RR5yk8HJwXlPNNzKHwQxZjNwiNAotGQalkGkc6jeV47zqm9IudF7hMqhJR0qTIolwIAqEaApgc0NqBO12hD1ElzdAJLntzC24kJZjdu+Y1dR58VdIlHIrKEXdvQ6oJ/UeMx0r53r46cJniLoNwJ8e+izyDA3m+srkYhfn7V+7n8rSMqlfSdzrrXzm9mnS9NtEM5yBDlkZnGEHp91GXxcWQUzKDc6ywTnrCxuZkumOltNcnu4mAcytMAS3EKkMhgZMrK+abfiDJOaVF5VBmLDCbwU/u9Ye1NB6qUhRK/BOerGHdLHVkI0y/P7IrXYx1GoIzuEnMCALq0dXr+PApClaedNpMpETNpKXTGOpEGDue0UxTCNO/O6fVV0cmgTX9uHjOZoums8utTJ1OxgKp1Ss+WSOdVB3JvMaOf7kfKU7KeM4ZjINe5dU6X/bPUjix6trogwHpVW08be8r+pqP0Pt7hOzct62t/UkfeAbDywP7qN3PSSL2cFuuj7Efysox2+byQhJkYSVP5WKuGklNITcaDVAaRRPuSA48Yxi43UGMLuPGwaVSrlNELxjMCBl0E4zGKPovI0V49IsNkfTKOx6DpPBqkYOPQdNHFKqx4Y6/cMhIHRjUnshRYHYedMIwaIcXv1I62btdr2pt19Oi6TOspdB2vsvnKjAaZ79mnJc9oB+DR+epdZj5garT2Jlh097MYHdNZd9T8GeNJ/glg+hrRRo7Vw3zMUnaxYwammwqWgXIs8L4DSwGpdBvlX8FDse/J9mMmHKSbgKauTG5dAJOlCn0zqUzOfapHEI6StT0lZKSkXDFEMidwFUj8LeUlVj+Kf4i3P34hWTHelfM1aQ5GVlsLeuGTg3pd+duaG+n8ZWUPmE1up4mvt8ieirQn5Er/M1g0NwUW5Fnj5YBegOkGS1i5bresrNtP45LUstU7cddD6+wKDd0xesXkMge9D/19x9mT8OJsjJdRTn9GZDD5uVLsP038xjOrd+HOh9ZRGkg0GGEksKbDvQtqfSbYJgZwfMC0ncEuuugiTE5OYu3atVXZm970JgDAV77ylaDuX/zFX8A5h5e97GXTHW4AA5hXwA1HCUxLA3Glim42niuV1ZpJVQqxBubQcozy+2wEV7+/H7bXMs42QdPNkVgDOVe1YS3O0ErcY+BQpt/Ufcr25S8ppFlKmNp5SzI/Tqf+6hr/lLAg+vTXZqHQYuvQKeUFrxfCXCom2XwFwnHJdPsOYgZ+WsDRwuZ0wryzFeQcT/UW66NpHVoCoUp3VtUlAnMTE+7hLOvLG6VNDK+V811CU+joAhexnxMm1jnQvRII42wcsg/L/oK/pD3r08SPVI4JCOYtKsSVkPrcYqIEaWcItKWxSIdGNsZ3PEVpmRoqxA1qjaXsySqyTtMeSvg6kgY2GrYclENG7WSl564RB8dTsmo8pbOmjg41JITqmreo17S/5usImN7YDt1ocjbKct/Eooay59a5k5KaLCVVG+PVTMff2GaIgOX4Z6aZbVj7dAyjBnPUhTGOg+a3Kh5BjafnMxatI+hP1unyurGPJZ1+yn00U7Acv1LqsToMKiUo4deCqXJ8vfOU4M0IsXNdfbMGnl+Cc3qNeGipsayoU4omMmdfwtfwiJuSxkIhKee1dHAP+HD2Eg0Qo9lOdR7rx5MP2HdLUMaWr9101unUxQLvco+KvmV68ApXv23iBOZyDSB24cJ5Y4n3VU5+PHp20J/T8g1gnzWx9FYnInQ6Dl/6h8V97bPpgkj5S5tC+Hdhivwq1YzoRNFh8LVQ4WDI6tOFXqKQN5WbKWZN/QKbe05vrMgOVkQ9Tsd6dOADJ50lvWC4swhE1llERUdHjD0MkRQ93wyhaa4GEQsNPQup18seVecM618UZqqCjU+SjtjCLUnmMMp9WpGgDw5/F8DSy8txmRNjNE1kDzS1f0cxfw95dvQynHMOWw+PqvIMcSe+Tsdh9ca9jf3/yVfuwar1e0h7cjKS8XznJJrSM0EYUHst8kFiDgcnArRc/5w3GJ9e/bv7N6aDpw5jgnjWfep+Yvo25xw2jBwKy8y63vikXqbqSlmOOKF0z31ZbPJDckypflD6B2InIoxS6lr36SP7dlLWcigjtAu8jf4tuX7F2tDJh/KFEUJFowg28O5AzeNajgZtQb+Uc1hJk8UMtDodrD54wMS3F+BpIr1/m+eR992kXtUZevVp0MShTF9QkHuuF2iK4u9DaqaTLTvi+AzlGdrtelLl1KREBrMgFkXeodhTch35tZRNtcSJ8TKC+bfxFngEWTC4LNQ0BwsXDGGq1YnIg35fBbb+M3/O07Du44X6Acx7mLYz2FVXXQXnHG677baq7FOf+hScc/jrv/5rfOhDH8J//a//FR/+8Ifxuc99DlmW4Rd/8Rf7gvQABnDUgSiNmgQgpow207eJsoyc4JZiO6yXZhRvghQepjTCKqcRYhhmfQd/fYN0g9JSocYcX0S90pCsjVNpUClU5dAEH+c9bDKQl7hZAhi9oWvMpz++jBLDXpR6nCcpCeaGXbBul8hc7YCMDMb7k7e3qOHWcPyImQLNmxMplmWUjJv3/bXs2cWXz71MlwNoBrRWcsfoFQLDqRTGC6FA7zOzP8kgGx9GOTlZCgry3cmgwY8hxohrbUv1T2bY0Pu7pFO2olX2YUWbk467seViKW2B+L6Vc8Uig/Eb1t29Rbz6hvK8p1STGbSwpQw3rnSUCs9Z5jSmcbXpay9QOkPV43ODsgTq0EBoemXEiu1D6Hko+6vr6LWai/evHekkjRORckRaPoZfc2QwoSxpSrfqvV5N/0IB3YzyoPgiRmu8f8Op1JzVGem3YXhCz/PEZNswumpcaWooZ9dvOi+sT8BS3/nfWD5hEQmHqLHXUBA1bAkHkm7UUFyqdmLOdKo3++apBYpXd910DKKsGb/icO6VBwp4UZDoRMaZn5K6Tqe+0GOGT/oHFe9K2R9dnueSL9fOBDaPjKCx5N+dM6Ia5nmoDOxR4WXVZXuj8QxS1mb73K0eM+NHwrdkzpjKsC3nHpack8jMaiwUT2auc5/vFN+ZR4nU8hXvN5xPlgoczpbBTlSQhpt+gE4dz3mE5DSR3Qpqz0Abzml0DGLpqNIsNRiNpgPMwSKBJBRtExYnM2jUNFrPtUlFyCZlDudm372ej86W97NMOweWPDJ9X9a/HKvbx1CeC9w1b8Eie/YbmgxDg8hgHFKjuEves2zXFucjcwZTTgsRXSQjL9OGhE9uRwZLXy+mKsXnKTW72q2jG8fSRHInA2P8Pp3GqhehM5xOZLBdR8bx0dtvUeVNUVS27jyEj//n7yWNcWSypcqUDtNoyy7H9uqYENM38fonLrT6GhkshCAjQiflW2oeijmvFH1Twc1MKeoA/PKdt5HSELTOTOsbArpqyAWKvkJf8C3lA5VuUREip2TVDGEUsCraNNEBBXgwxk0Ai2asIBO2CzTr2kJEuN7gU//1Bxpf1dQeIyUyGX2d7neweLlWTCfo4Sn7XnXwAD5x9x0mvr0ADTAQph2hEGwJag9G8Nv/6zWzB/Dq+N+m7ZzacxPtdg9nfDoXQj8bWY8f/e1vRfsZGsoFTZQ2y4Y5yDRvX9kjxJ6SlIVmYxB6Ahc2ScKJQU1Hw/IgpajRNpa2Gaj1FAbZCPFAGBmsqJMFzykOVNd9Ip/kJw5M2xnsox/9KK688kqsWrWqKnv729+O//Sf/hOcc7j55pvxp3/6p7jxxhvhnMM73vEO/O7v/m5fkB7AAOYFCBrJbppKkA4cTPmulNBEwcaMJkV/hgJ7BvQ8xdDmIBy0pPK2YXw5d2zE+E0k799KW2xHoqG64Diq3R5tY4HFFMtvw75f2d5PzxeUZyRksTSyEobaZ95NZY+h+GwU+ueQV2BDtYlTkK+455GltHI/z7KwL/T2jas24HMiHRBi4PdhRQ+yDI3sBhVb1ynOMr7RPINgauWNKQiGUzHg4rcxZlNEsRIZKTQXY9gvVBiH82D/NEXF4uGJXVjP+wd32rMdM2S/WskaE9B1e3/MVGAOprYBXtOfOtoNF+RVPzBor0WPpyFAF/01Vknaj/6ZXRqPm/pkRmd2BgFp+7BZkRQ6epXnsYqkJfuBnmOJO0vH1hQ1hX03+TumvOD0SvRXnuv+O6I01nntmEJenb3lvIUUrezdMn4AwH/58sN45BkRXh2cFsWE66bIpSltSmDK0PJXLDKiHJ+l7GWK0NQoOqpGwzsW+yZsafFNPYFlzKIV44NZ5321B8W+pWcE9LqQc1pG2Y29exVJTe0JiJU9e2BRR7b2pVNeuX9Zig8fHAwnHlGLRWHzbQLlN+qXm4u0NzStnpK/Ls+HFB5NGQecjnZmDEbO3KAbw9FZnz2Kvrs0noPNB3PG8xXgXM4N+feKpwhQ0vwIk5W402vzXjvRYDbmokkmKH/7Thqxc9E54HkXnw4X5v2gfbOLPlweKOqkRrFJVZ73MzJYR1tBurjwdkxXVdBCzsebcg3hD1L0YE1gOYo7VzjyswEYf22nU3Lq3wV9IOe1aNsX/qMBmgx7A7qkjaSAIVcncDsV/yf4LUkP5HooHChtnQfDaDa/nSlzR8bUEd5F2+7fWCRyVDSSj9CLk1qMtvcDrDOndpLq4tZDnyfl3JTWpPuearWTx2DOyKnnD9MdsEtO0fFFt1H5/QQ3Irf7GBlM7gh17gNCpxl+q9IxQet04vxzVTeCWXIkdYG3eidXSqn2uFYEYaYbYyms9aUSPQ9SZ1YiEte91f3H8GeOxbI/He3auPgCfq45OpKG1BShPh7B+ESVyehTKaelaqMrh9ySFnu8mQ/9Sr9bjNlELw3+OxLtSTozmjJEIi/ZVOdX77kTP9q4vrkjlHacNNrM+f6kpgHIy/vUmTLWntSpdTi2DFfrVUIh0G8h5cA6ilgz2E6yMV6pt75KGMoL+6T57Vz4T5XOPMDH6EI9GFyIO1FgwXQbvuxlL8Ndd92lyv/n//yfeO9734tvfetb2Lx5M84880x84AMfwMc+9jEsWDDt4QYwgHkFFjMWg4pA+80I8ymdmUrFtMLBuHWkDUEzZ5ySjObV3/AwbjISlGJAPYZxk8A//ENOS+DBo37wSDQCj0QFLRBLE8lBKgao4FH2zfBwxODheJhTGc1GOSGCj81VGvEJYbdx5xI6geNX+VdwRgKYU4sEh26I2R6VGpaxwvAFIeM6pEQbycjHomu4ayBGsEa4QUB2VqS7K0A6XkgDNnNe9EFFAUhUENoKAH/suu6QvwcDY2ez05LcvpQMCSm+CrsPSqa50tpQgiqFQeT7xBThMWGZpUdVfXMLCp8/dG/nCWUC0e94Y+oHjB5rA69WXlOo1u7MaFN5foUKm4bv4ogTCOwUpU10oawThpgnUXAEzdeRwbhDauBE5oChIW9+nd5rqM4cgmgXpJKNrZugvn8+lYKrpGGEJlKnMc1iqWFZ6mzTOCv5C7F2D45O4vC4vrXNI21yA6r/N3zWfEYxYLxFsSb4OGybsvRwAFfsNRsS9A1bx9YWA7n/2Pk6DRZXr5tMPU8x/MYiCHHHbBKdSI2tIxBa8yUdPvk67rbz+ux1ymYsRzDDKkkvnIsoyNb6YEZMdX4T5bqca77O6z5TS6cD/sj0TCSGCOqMSWQRNlbQjr2HNOKVtF7JqHEDsolDFvJz5fvQm+f+vyVOudhz3bXUhAiVewy639ON/BMAZmMurIsW1fOKL2nmn4Hi277wlWcG37jizwmdYTKgOvGq81nXpUY1KYMYYDmzpMoAilcm9NkydA0NkUi+rpYJQydR68xn+6P5okAqlP0oep3p9Od1OeMP+RywsXIRGYzR2xQn/ZlCk05FOuaciMBSgaU6J6h9Vsnyfl+MRxKRoqH3SnTsGRixU7646XQVaa1RsurafViG2bJ/TWq68002sknb+7Tklexs/O1X9L3ohb4eIkixmrK5pX9uk8hgVF9T9gOylhPwKeFETy81m5HBuFNg/e/ifPK+t6fbKUHpv8uzn/Rt8UkMNyCSKla0k3tQmnSUc5WUTdDlTZRjm76MWXTAZWVZJxyAR+Nm50JTiY5u1N2HXhlLeVlEYFXdUygjAjG+KahH+7MHYREIm+gDUOtGzKwuhi6jpsFhuT9+v4BG/PXwss6BMNIesTkxG2Xqd/S+n9w7DJ/9kxM4ODmZ1HeqHWouoTFNJNmDbErZ2e6rBaq/wXjapmrhJPWqLDKy7l/8NuSjJpnJos9VnwIvtfxsk3nQLugWcf5lAMcPTDsyWAze85734O/+7u9wyy234Nvf/jY++clPDhzBBnCcAYmwoSyYtFlA9FmKP6ZM44YPHklFDdlkbHYJTkyR9qyBi/zmRgib8beMl/7tgcD/gygfpAG/vvU3/cOvV6ZKCjNWXvtaKZsg+FRG8rA9U6DWCpvwbwkFI9A7m+2j+ZdPPdFzewtSFSVhSN9yzYRzJCHPM5r2JJg2x8NNA/YsFYY5QM5uKdym6pf8QA9MIY1uf2yOyLI2HViSbs12G2ZIiAwWaliD9qmRo3xFd46IcoF849j8OhS3K4KUM8TQGYxDjKzWezjJcVd9QH0PY9ur9hZmOdKc5hik1LLWCnVocsW8MicFtk8cuk4pAhMrBRpzlm561XLsfuhzw/HSjF2MfjNlFhB3RqjaqkNVr7Rif5ZnIp9P6cRV3TwMZdU6/UD1vmIs5tzlvZ+kdT5uJYSpn5jDDzmbFc+lI70wBxw5u8q5zun58s9J6V/qv/tQnqPV1mcJ/dbE8cFKS5JyEtfnjRgHPJUqWxOM/yvXBckIq3EA50UlaMcWHt2W4eGfITqdc3xcioscx6BVTTvTpwv6mVNRFx145BRJG0pWbDprginCmQNRv0DRIcNYzuix5LctZZqST5wrUkwKBkTeClWRXqCd5aZzTvBzLeTbqr6j/IX3b/a9mSMWMbRleXydFn1xubLGX58FTtQp61l7pQmYHMsc1/3zgs6LcqjUKZBZ6lsd5ZI7cxZrp58mB+DAxAT+afWzfe1zLqEXw3Vyn5InEM+ZYr7pq8jo2ZXxW21yth9s/p45LrA5SZ2n1ItnVhWZGonJiJacYV2KYRcoyvNdAjfOGudbj3oF5zQtLXGxop5a5wvtX/B5ZT3Jn6mLhwj545nCkic3Y+nTW4OyJ1Zsx/iRqWi7gYGmAL0+CB+WMFed6m94OtELAqKgF/8uRl9SISm6hFGlF8cei+cPUx0JA3Upw5CxeUrass/0ubDe/6b7N2H77rHktvIbSv1Ux7meDWPWvDdFf2R09Qe3Lsczq3epcuqMnJinmJ2HMTsE4+Gb9E2hwbsZpw0jh/CD9WtV+fHggC+ddb+yfBla08gpHeh0qvVZPy+/azSFN5GpmLypLliglmHN6KRcUWjU5f8um/hLRjozAF2dBuk3VddWnNtorBfi7Gg0YRoxsmHNM/1V+I+iVkfwJpZe1B6Hz5MPnJZE5iGB36HzmDX0K96r3DfhDOj10t/IYKSsx/eVtjx5gcKWQfh28b+f0pGQ+kOGnYpBir45HF2X9KwvEXoMtX+aUiSCzZ0+x5iskiHz9OKaT5GX3Zz4q94jZBEpKPqWMF/0YpLXsJR7Uu2R/uUgp35zhCTdSI1ePYBjH2bFGWwAAzjugTkcNRFOp0O+mjepwmY6+pPjTgbls7BenJlUCg6JjzFO2EcoaNQCSNneFjxpGzKXPvOsorUQ5tz/NxNuGVMTi/IQ9u9oZLAoKKWi5SFu4yFvjjh0HTEaov1IgcZnkPy+dJ7pZrbR//bfW7+2b7dWKXNLivxbKyxsNjWKJ6ay6CXdnt+GykWJXZXrtWniqSOT08JjadhyYuFYaessnKWDBjN0spQJZQ0rBLQEKWSxPcIcC5hDUtBvR99+a6LZGXPecPJv/T6mQUbashl+0HnerfdhTLr/MyYY6j410tGIAkaaSB1pwBq/a7CT5ye0skSvUZecbjUpgth0oGEfVw664hDntKQ4IBvYhuB2E60D/b56ezsVPaFsF95OrPupziJheGTrzy9TtIntC0M5WQiuggcCPxOZooSlagsVNSS1APj6K/EKeBbxLguGMrTbfL9IoGmoBD2p6zYrEUzHDGaAgUU3dB/1fDPaZyiI4ohyBz/muSz7ljxJwrw0AXPybXKWsfGL1+G4hvspJUWuS9A4O3DHIDbLvbI2tmHd/zd39C3HUxcZCB/GjBIWRk38N0sN4vdfrvNezDTmiK53p4eimQPA1wA7HJhDU1LKb8UzsTppe1vS9/pyTQqIdoZTTv1vLTNLJ78S93BeyBokqBROhZqnmYnhnsGWw6P4m+XLkuou37+vb+P2C/oVKSXoU8kvfAy/XmyVlekSqeio6AyJrELlwi5fQnliXZbsDAb9/iUfEpZNf96t1JZDRrSPIp2LakAnnaeR5sbj6UTRp05fTkfM9MsZfyGd5oq/YdvyrC0ig4WIyNF6Nc7G4Ns3LsP3b3smKLv1/tUYHY87g82CX+ZxAbF9r/SnvuN493uGjoBkL4ozvqitdR4mPv2zYRtg0E9fHhJ8mDzn7MhZERrsynEYU2Hz69wAyuta5d+5bT3WbT3EH4LwL47zOYon7OG8i+vXe9usX/+Xx/HgE5tUOXc8Dn9bzi0yGqsqU3o8vZLUbzFO6MDQzJs/vGsn/vqZp1X5LLAZfYEn9+7ByFRa9J2WOET/cfWzONJOTwlagv8dKB0Tz0B+S2cygPPKpoN4REfKilmZlAlV5GupY4GWpay1zdJEWg7pTGaJrTcHqDTyruisZ1C6qvJ7CroqeRMZ4R+w9dZMX8eA8rKR+txWJG1u1rexe9b8Y9iXFRmsn5BKL2V9nx7L88JB8hdQbQBbX6Auv4g1ISFHpuxum0dHsGOMOEn3pD/TFVPk/M3bD+LQ6IQ3ZLPeKgbsPKrXhl8meZfQplLTS39+pRxTZlDgWDHaKvtXAQcSJlxG35NlpX7S6knNg7/+nIgUZvFjlC7M0wN5AH2FY8YZbMeOHfjGN76B3/qt38Jb3vIWPOc5z0GWZbjqqqui7V72spchy7Lof0eOHDHbr1u3Dp/85Cdx3nnn4eSTT8ZLX/pS/Mqv/ArWr1/f5zccwLEEBV0lAlQD3Ww6R0slhTSasIbs5rKlzJ8RJCu/uOexjI6ggCjew4OLCDNhc4GuZvrz7r/8Nma4/4RXLZm9XmZFvSO4Uq8SUqTTBbRys+hIGEu4PgbVizlH31EZvRNBjjedG1AMUtLZyXrl0FKgkpBnPDKYD6Ug2KtSiIVIrxTOCSvGQa5vw9BmfSrC7DPa1MSkykgRsg8ZOUbdhlF/XfjbGLodGaPGXdLIeDjzclxpaGbpJoNpzbQgI53ZLLrkj2v10VjPeBeWEiWkbw0aDg+oA5thRFowZBiRcu0kFgNJjws8jGhQPg5IE0aLenoMCY30zpVKj/JbpzkMa8cHrqAqv3n8c+loV7qfMg1fXcYUFEyxN+S1Kx00AkWHMJaX+4il9qqjuWSKVkQNJcTjh8+JC/7Jo8qQvhrXlVNlqoHf1qsYU8ypbhjNdbx++jrX9fKMGZqL9FUpaZ2ts486vDqdhpj1J9c/K4u1L0HTCZtvseigfIeS7qs1IZxeNF526k2UbHsDva32pcCbOUU13tQreTh1/kulbDqtLmr3Ut9yhm9+H8sxTuHjtFyhjJjluhSj+kYPh+kpQcydqac+OnOB0xN1uJBrmDsp0TS8aix5hnDndR+U0cbrKyDFicuDnZ0FrdL1qrOEhAhSfBv0hSkFjhu8rAsHqbQpFU7Kh5Lr/tq9dyUpkAHg8HiagXLG0Me5qLoUfcp1UF3uCZmFqEJcfs+Sl6H8Skr6GxfiEuJHcEicp5QLP7H+tOMKc3DgfLyZstyI/Gtf4NN9qBRU0wCL7gCl3oSPK0dl8gNApr27ZuSFIiZ7ZxmPEnfgkK1HtoA5tXYcgCw+f7PhmHmsAdOnMN7WVc9sKKdTGvpY+m5pVAt+K547DiOH405/DMcYmJHBPEyanC4KWsL69oUeLRNawEQDdmlT9qUvs9ijMKdUD9Uw7ZfxjfyUxL06fFrfxtJfVbgYfEebRJq2HHtTcAkvx9pzXwKTU2POXxK/jDxXY4DrVuer8fk/3H8PHty5I6kuNewLB7GRqUmlK5fOZj6PUDmssqinMb0noW1KN+S4HqN2mOL9U54oUb8gdcXS5iNpkKWL15lRuKypHP1dsy7POdZO6xvkOcDAuqzSEd9F8is0wj/ssy6qx/LqpRUWINdXp6NlRyrzd+fOdqyJn98WLZhOZLCxVouW0zOI0MvqGdlPBU8o9hNpkwqhM1G4JswU6WKQLzz5OL664hlVt5dL0paJrEk2/Q//7Uf4zk2eo2+DA1qjvEBoUFJGBRfq16u/YddBSccV2R5S5sjS5fqN5TmXGXPBy+rCIpuRo3Mvd4N2iuNoqvGg53J+nsYD6Dck6UG/+MUvYnx8vK8DL126FDfddFNy/W9961v42Mc+hi9/+ct46KGHog5cDF796lfjbW97G/0vz/k0PPjgg7j88svxta99DWNjY7jsssswOjqKa6+9FpdffjkefvjhnnAYwHEMCdygxXBLYN1Qowks4u0L6QmpeKAZb91nOjBlQ9NB5zM8pVOSeWA5baRTRhU2nvi3uq3SgxKgYNIbqwXjqm9veA+WS0kd4E5HZKnL/G9OnIlkZLDM8GpXdvQEw5z43bfIYA1hU3m94t++o9d0DT21IMafWWAZkHtxtGOOMSlQ4Rysh266Kkk/xLtxhX/dF8dJ/CaKUd/wCng31Yz3k0olVo9G9mmkvw5DwmlJCXGsnRRQpWDhCRjUIEMUG3ScHhVjSpAOvq/ZLFHI4WXUocnxSAMFfsxAZShrxLj1Gg1rslR7DNiNOo1LwmyI85MZwcI+DcOUYayWYaopCgIHFonFpzvMsdc5qKhqTrWTzm/cOcOODFbSCn2+x9NEhvtI3yRNp8VyxWl2oJwbua44zZWsHZt3tquo0J6xNCzOrN/oEGA81rfdbP6zLJeFlq2a+IIlhRNX0+RMFsjrOzy7UseqxoycCZT+qLK4wb672s0qfF7JTV8hglrnmUVDvO67kcH0uSy5pOk4/jdBilI8wMFwgGr6wLVc49EI0iRXSlqtxGa88HSA0a2UuXDozpty2DPOSbWkmp26ioZkjryG9MwvcVB4GfuHyRSqTlghNzTFrmrTbLiiMo7pIOqPwaNcWjzKTGChoWeyYDLhUo1zDu/7xHXTxKg3mIvIYNZNa1+mjNJAp3mN8l/ychWLWmDxtwC/nMTSmzRdMqrGgu2YEJYZ6dY9RFlapaKc9UciYHX7k1EwyvqcTvNowOzyX89njTMig4HzgcV5psmI5DnKen6h858xuTIR5eFf+3pizRpoCr1O8yE6cAazeVkJdZSR8OBpdHgC4XVJ39L4GENIrtH/+IXFBAsOKV88RafS2JeQB6r9Ic7WcDbZHHfrsnPUcbzKgZjDZVROULqHEFf5LDSUuqCNQ+l4Yo+nxjdm1NJf1bjoZ4WjLqury1LpQMADd8r37WFNgJxVMXm+QU4B7Gjn85m0Jc83eTPZ9t/deTt+tHF9UPbBG3+k2vnrR2U/cPoMkfYPRv8y5fRc9M0cX2jU/3p4XWaxZgqnehd2XLhPHaCIL7MJFfiF+9/B8WwpgHjnhEtsjthXKE/VzCkwWsCiaGt9J794yfeXS7rAzvhWFkFOPhNINNYp59ziiC2aIs8czdf1rrt436IbaDl737bQGQT1ib5OZyaSTuNchrBAOdY6Gx+Ar5GFeY6Jjo5G2HhpygN6dsVVYsXYQzlankOzZZP1R4oBSxlf8RB+keQHAXEBNlxfgNaVljoBvoc0L0FQErRW8iN8/ptsm2WwA2um1B4R6y8TXA8DuTwHaSJPHEjSTv3n//yfcdFFF+Ev//IvceDAgRkNeP/99+PDH/4w3vSmN+GRRx5JbnfGGWfgPe95D37v934P3//+9/HZz362p3G//OUv4/7776f/nXTSSar+4cOH8ZGPfASjo6P45Cc/iW3btmHp0qXYvn07PvGJT2BkZAQf+chH+u4kN4BjA5iDleUEUoJDipDEldOsnZXLXPY+01Q3CbaZ8HAN5qY8fCVjThyjjEElY1jiWzOKzYwyn1PhIFMOiwRwOlpLE0gDSszYUChrCXNN8kQqRwHnFKPuMyDOFe2UYAUEeaWrdg3vKJkmeQNqusAEIAZBmsiO945dYGu3iGTUFBksPZpXgCfhlqu9n9RDQ5SapvGpoY5ExyEOJgEWYhlJOlAIKX57DvJ2P2OYg3G9niymXBlwnZ36xAcZGULuQbZ3YvgVv722BjADru6X1eP95ZkOC+3jFVMGpAiklrCS5zlVGLEUnSU9Jb2b9Jg6N4u9rNIhUvz7Z8z1jfTV+A0dq8h1hoDJ3sfCQZf5HSGISFgJwQIHldrHlXiFdXw0ddQirUwEwsh8co6Yg4dUYAa3oFKcBcEUdczJVYPi3xzhB1x9bjZF9qMKQlJG0zdWc987dMCNWjTFY6ScGb2sEP+Un2zifbuKV7W/SVnYjtCFmRyOft/i93Rumxbt+LsX9LyZpsGVPIM+nxGs7TSaJmlrBmMPNPQz3QbRz0PPPT0/DU2KesQhKHBughWJymtH9nYTWO9mXQCInRUBT8tkShBelhgnUtLyKN4iWrvumyliGV+cet5qZ2Tm8FbTYir7kj3HLkHId6EXGpg9yOn9N1MY6pG+pDgVTbX6I2ulQGx9/d6SNKeG33rgXizbtzepT/+5UqZb9aEvv3FnENAoWMzBqSQrTKdgpVNPAcugx+gf5XEb2hVtGWPCoyg7ZzvDmTyUctjgvH2vYNFuwOZLqDO/KKsv/IVjlXyeNHwzcTAltXUyENqT4nAwcAbj651HGur+jcnEJY2QZ5Psi/ELvtHNGLupLAlm8M2b5KFwP/BxYql6yyemasGQedgR55zhJBl5/dgeUroiyBRKoVNGJVf28KWs925MQ2fIiOwBTxOZxoOFcnO3bXCmSr0vd/Qt+tJ7peivt/VpnX+pjgpHAyRqv3rPnQE/UwKbCxktbKzdMqMVleCfVeX5rKK9izJTV+ENnytny3gEMAsshyQJOsKiPFeF8wy0LcLak5ynN/TdAocGXzDarizrFbS8qnkcLe856jQpde9VfaTpMTiN0Lx2CeyirxqFtCt5ZGtdyXcof8vzWNKa1EAMKdAYcVHxw7odzUpCvgP7jmxNy8hgsT4ALouclOeYojJkul6cOQ2m6EsWLhgKnMGA8D11pLl4f5QfqP7h00Nxtpe/BQkMdc1ElwA+z1LvoNeO3kPaWZfPX8qZoXkZ3mfHhZGVJb21aF6vAQkGcPxAkjPYf/kv/wWHDh3C7/zO7+AlL3kJfv7nfx7f+973sGvXrsa2U1NTeOSRR/DZz34WF198Ma688krceOONeOMb34if+7mfS0b0k5/8JG677Tb8yZ/8Cf71v/7XeNGLXpTcdjrw1a9+Fdu3b8fLX/5yfOUrX8Epp5wCADjllFPwla98BRdffDG2bNmCv/u7v5tVPAYwf0EydhnQKOmrqBLs1hJT9pvGUUfKdL0o9Iiz1WdVJg8/QmXkwRSE8oTFbDvvufKsCvDQTL8UDrjDTUokLL/PFEf/UObxmRDuvFIICfzALtoIPIiDmOpPpBxiyu3kCAMSXzFga4YpIkpIvkURRAHrlgmBWUKe81DePpTCGk1TaLUBFx6BMlJR2jvJ0La9fBfq1CBuJ1R7otGAWK8buYfkbwdBzxQDXvyVTmESgigAEcFF0UiSViusr29dqn1A5lrRaOFwWP0G/05U8DZwlAoQ68YtvR0ffPPoTJjtYu0dwCOAAaaTGNso5VmpBHzwmykSpC2Gv+n0HDl1LyRCkrG/fYRUSjxHzqyyuwbbEju/mAhaCIrhb30Ohq1Z33nu3xLs7quEqBq+Dlvqs5UTGvRzv5ylyk5JI1qX2WvcASqVb1HGbvRmal+zz0j3OBXa0wVx6xwJ2xh7BFxRwW68s8gjDuWNOl2ucECzAbg28Oh2zfynR2uhv2+v5yMA5XxVK410v017PZbuSzsmQDnAlXyXsFdRR6Km92RpPdS5DHsNmv1G6vs9F3uFEzQazYnMXVo0LNtZwEcmMyKi+vhair/pQK+OZf5McWcGqMlnMl5KpFsaecz/Ya5hpozW46XMI0u7xRTZAS2WbYw9l0Iv7XWkWx7tW7GthMH7YTh1zuH/+XxzlP7YUKkuaY/t2Y3No6N1O9GnFcFGGjstVEoeR+tP9FzlWRpfUzsJhWNZxtNUuZVRScYysyiwgJRxuVMrTSXkXNcxUY9Oo4BIBqgLpmM5TUHZ2zp1KNMv634o3XfGBRPot1T0xrlKdyf5EXqxjuht2DrYuWcUf3ndA8YblvjpOew4B5dwzg9Ag8WfAnGdEKMzklco6zHdpf87hhDdx4n0IqWWmSYyQrwlbSxoaMgjFX3Y+NTPDJlH4tMtsfCiaWyNuoy2+wMyfTDjWaU82tvRarwHOA0ugX17y+DLxmAyI8XOq1eN2bQmJK7lPqr6FM+lbrtJtwhLbo42m3V4cu8eLN6xnT6TdHfFgf04NKnTdDNHfsnPpUSfC2w8Xb7Xd8AueRMVGc/DUzrYANzGNMRkCH38yccKLH251hXD/k1sERnpu6RVUsZm9hPKrxm8v2wX8ATQPFrTPJX4h3OgLzPSlJAEbz96f4CGS9t73Amz+JuSjraSwRr6LANWpFz8pr+rw4c2r2D3+Dg+//ij8UoGMEekIK2wcbaoYsE7ML2cilZnEMHQBiL3s26QZ/qcGcoySocsvbil81ftM/0eCp88Q7vtv0M4Fyn8swSti3SqXNOR7n6o+A127hhOmikHkVoD5V9JaxO6YvMfiXgaQ4bRKElvGfAIhLExB3C8QJIz2P/4H/8Dq1atwi//8i+j1Wrh+9//Pv7Nv/k3eMlLXoKXvexl+Nmf/Vl86lOfwmc+8xl89rOfxW/+5m/il37pl/DmN78ZZ5xxBt785jfjT/7kT7B+/XpcdNFF+OY3v4mHHnoIr3nNa2b7/aYN3/nOdwAAH//4x7Fw4cLg2UknnYRPfOITAIBvf/vbc47bAI4+sAOVRcvwgTG4/KaDJtZaia0jYJQHAE8RE8HLfGLXUjKD0UmpLGHPZTqV4AANnGGsOTIGZYIAwVEalx1Kgtg8I4UQkl63Gs+rbgsPjq6l2jgpmM5cOojpWzahd7wDTSMF6rvRCLKfvkUGI2GeGSMs3x0ImShH8ttbkdckWEyh1dI5p1KxVZBgrCr6KNdGyFCmAlOO0cgRDX1WNCYQjBrq+7+rNiXT7qp6/l8JoVLJECSlsw14aHCJn1SccANCw7x4/1KONGSeaWQhshI6paQStPWeecBTqHjfKTIPOv2CrRiQ9VgoeRAaZPVbguUEwiPsuODfqREZm5ysUkHeNEq5eZeaWiv1fZgiTAt74QuztSidWx1INEiBqHJEczz1tL8m5fsHSs0uMKfC8l92NJqwPjfWaMW+6o3wD6ZzScMaspYDVYoaxubib+9jWxVo6jPHlY2FIlPTJ8a3WQ7jSccTMdLLMgkO+gxOcXxpREXx4dw40bQ36+ih5Fn3PIw64FT4WDeZ5b5rkjHSDEImItMAuk/p2td1zch+okyNWX0wPWcaF7HPVcr0LGqw04PbjyRKqUdQQbcsGSUEebGjHKFpHNW/8Y0kZilrmDkhUhzAZTONR/2NpGGn5PV46kj/zGle4DFjGo04MAPoaY0hTY5KdSSI9uEcHnpyc1I9CU89uwPbdh3qaTzf0NFsDHKqTeyzsnXAZGRAXwwBuCHeARjKc+04ZkQiTr7wY/Ebsj80k2qL7jNUOia/jshe0P1YTlEy+vJ0oOZVjHLyjTKwCBJSTrT5SAfuhKL4bOYoQd53685D+O7Nz7DXq/HLMx1drcnQhrgcfiKBRT/k2QA0Oazqdh0YZ5MYL9wblkzjF4alydEdE765dXksNgKLJMTeO4gMpvh2Z47D5Yhun9Zl2FzTLoukWLJOOL5eDz7uQ/5Z7wqZOHZe37J5U/A7Hhks9uH0M8sAS50WEvNJUr1pBC/2/aU+Xjmx+usDKfyooVslZUue3NLQW/9gZGoSu4/wjD9sutk6kVH7i7byXGl22gHqebT43iHCx4Rb06kyqT90zrA5IB45mUdiJGua4CQvAPqrjs6K4fQp+Y2CB9H6fYlDzUuwwby+iP6LMURNOnqpw/P5jnDMsI68uFiOZdH0FL7S0u8CVgRCURd6CkwnwAZ9hQ/taq2GNCZ2uRMAto0dxqJNG6rfrU4Hd2xNoxlNFzrkY5npBNA6BZnp25E2UZwCWqrTGEqgqUSNSzNMz2DhRp2VLZx92VvqYaQML+lMk96AOdaxtk7j5+sPWNRPGRmslP2TaDORQ4pyH3cxt4YdkM21H7CipF9WOtYQD4eQnoZ0PCX6azWmqHPTpo207QCObViQWvHcc8/FP/zDP+Dzn/88rrnmGlx77bXYsmULNm3ahE2bNvHN2l20CxYswPDwMD796U/j/e9/f0+G7X7BV77yFfzZn/0ZxsfH8eIXvxjveMc78G//7b/F6aefruq2220sXboUAPDOd76T9veOd7wDAPDII4+g3W5jaGior/g659BqCCE7gLmH6ptkxb/L3x3XAZxDu92uykqlTlWn0wFc2E7WabWLv34/5V+/rN1uAwjHa3eF+E7HBW0z0Vbh5TrBenNFAvf6tytyflvtC3xacM7BdRxcp4NWqxiv3W7BwaHT6QT9AcDUVAtuKEe7E75Lu9VGlhVzUfTRRp5lmJoqf3eQddtn3b6BcL/44xVzVfdX/Ft/r3a7DQeg3e4EffH3bcN1HNporltHEnLBtwcZq2jb7uLWUWNmWYbWVEu9m/8eHfl920V/1Xx2++840j8yhU+7o3H0oeONDQCTUy20Fsycdk1OTaHVqulqnmfVuvLBn9Opqe7fVjhH8r3yDJgSfRXrNNw7Ofj7s+8MlHs8XFfo9sHKWT+tdvj9p6am0Ol04DrObFvvreL/fJyLv07siXrPxOmVh7O3hgB06UonrA+flrW732IKC73yyVYLC9Bd52QO/W+XIVNzVrYJ924HWZZ12+b0fQo6UuDl0/GgH0FLXMfBCdrSrmhbG1lez3+n00GWFe/npwSS8wLj3dudgq7JPVnOCfLad1/SdNmnNbfFOHY7f35V2VQLWZ5V7++3z8V5WL53eSbQ9S3wcE7sv3ZbvWen4zCUu+Absj3UcQ5wDlPtFp2Dsl2WhXSBrRnABd/cIX7Ol218WlWdQWSO4DrBPlI8ATnDy7kNaRyqMVutqaKNOAdzhPur1S76LstcpwjpXtDehZiamirev03GamvaMTU5hdaCQoT0IzZmWabOs5Buuep9ynfT/I7Yq9U56fFKZM1I/qXd1u3agjfrdDoVT9ep+Co/AmX4fq4T/i77lGXFeRLWLW/vsfqd7jjlnJQ0PO/SgoIX0me2/Pb+3CgeRPB/5bfJM00rynmampqq5LhOu6N4G7aG4UK+rDxfYnu54Hn8dd0K5qGuk0V5L1nmOq5Y8913KNe9X1Z8/3ps+l7dtdTpaB6hpBX+3LZKftjbC/WZI88hKWO4ot5UC62F9Rnn0zD/PAzOsKx4t1Lgb7Vb1Tyk8DatVgsg9SntE7S9rNNut4P3brXacK6jeC51DrRa6hxpd+lWSN/C87PVbnXlCMknaEVih+xfVM/knuxUz/1nHVcYhjtiHwe0QvZZHFNwYn/7OPhlrUrOknxX/Ewq8QjOjC6/Uu7lqVZb1Znq8gZtsm+VzFG2yzn/xd6nPksIL9CVrZxzmJqaCtezc0oO8s8/f479ddTpyHWk368o1/xxrzDV6eDg5ARecMpzFB4pMDE1hdZQXEVXyju94Lhr72E8/3nPwYKhvNtW86epY33+K/fgza89D+7SNBwyFPxxvb7CPtXvdv03+P6GTFruTX8dtFotDOW5+pa54P2BLj1wggdvtTGUZ5hqTQXlkraUMDk5hVYr/G7FvoqfTeVfKQO0SrlfjDMl+EGJd9FWr992u408zwI+sCjvIM8yTE5N4eRW7pU7hVP5/pJelTymvzeLl4WSo4J5yML+O66r4+nKjlV5p4OM8PW+7GTRkXLO8ixTvF/x23XlGMF3ZoSOKplG7yHnmveVE7K6j4/VNsuyqFxzokBxZnK5enJqCgu651BJU6amplDW7Ai5frKkbf6eIt+gPGd82daXDUrdW/07/Au4iqev+ux00Ok020QkX+GXl7xDp3qf+v3Ld5DvUfOVHXQCWTLkPUteyacX1Rks+IRWq4Xcw6d6Z4F7xd+2mcxT0KFWu42F3ry01VwWkGVadmp1CnwKx40uX1/KTJ1QH9hqFb/L92t19URTUy20Fuo91up08N8fewRXv+ScuqzNz+HMxfWn7Exlup2yji6T55emyeU4LW8fyDLJe1ryY6vVQqs7z1NTLbTyoYqHnpxqoZXVvF+TDct1OoFcHpuT//vzN+Kef/yk2Vc/Ieu4gEfxgZ337FtNMb5A8A9MvgbkWqjPqqmp4twO5ZnuWe7zx1Lm7O5Nv06WhTJisQf0epqa6sqwRE4ENL8mxyt1BA4I7A0toess9qT9u5iLek3W7wqFd6tV6svEPhD8Sq1bsPUW7XYHWR7ulUpvIehpO9JPCcEctAr7gtzXPo5THq5SjpJnX9k2K+UlhBB+I/bdavqQZ6ELiOYV9fdhPEvW5bGnDH5G9lvOhb+uiv/C9pLeOsF/7Z+YwOeWLsGVP/Ficw7kmAFexMZWz0+LtmtHeIeW8R2dcT5MdmkrAHTEXmB7DrQfF5zrVSmxaQCch22R7+ageVYAmJicqmTKAu/Q5hvwC4LGN8mxpk4KgmdzhTtTQEdcLQdROucELWy3kRt2J/leSk/nEP5GV/cdjMfl1ykpMyG0gRayraPfpNRRB3QLnKcrfqftR6bb/OPHl+I9LznnqPjxDGB6sGBBs6tXsjNYCeeccw7+8A//EH/4h3+IZcuW4d5778WSJUuwbds27N69G0eOHMHZZ5+NF77whXjlK1+Jd77znXjb295Gna7mEv75n/85+P3Nb34Tn/3sZ/HNb34T733ve4NnGzZswGQ39OvFF19M+yvLJyYmsHHjRlx00UXm2H/7t3+La665JgnPFStWAAAOHjyIRYsWJbUZwNGB++9/ACvPLLbQ2jUjGJvo4IHFe7Fx9UkAgJ279gNA9R1XrjyMXfun8OCDB7F1Ha+zbtsEtm07gtbYLizKitu6u/ZPYd++EaxcMVqVbdo5iT27D2P5M4ewqLUBQOHVuwcdjHj97YTDCNp48qmn0HlqWbesHYy5BW0cgPPaFAdm+Xu3qC/bA8AhOGxEB4cAtNeO46TWFqx43kLsG2lh164RTI3txaJFu4v2Ow8gy4CbbrwReZ7h6TVj2L53Cu7ITrjR1Vi7dQKjoyNYsmQJdm48Gc9uOgIHh9tuuw3POTnH6tWjODx2BDfddBMWDGXYsOEQDh2cqvDZu3c/xkez6vcqtLEbwH279mB11zv6KXSwCw5Ld+7CITxezCk62AOHZ3bvwcnLV1Tvxt53AzrYiOIAXrR+U7RuWXZkw2HceddOPO+5xZrZs3s/Fi7I1D5ft20CW7ccwciBISxatLUqX77iMMbGxnHbbbfhtOcUDML2vVM4PDqKxx9/HJMHVgIANm8+iAMj7arfp9aMYffuCTzyyCj2b3saB0ZbGG+1sGPnVDD2SnQwgU5QdgAtbD5wAIs2bwOAyqPc9zJ/7InHceSJJ6vft915B57Xh7ATt95ya/WeQGEAXL58BRYhvJW3ZMnD2LOlGH/3gYJpue+++7FmeaFGfmr1GOCtb6Cg288+uwqLFm2rykZHD2Pd2rVYtKhIfzwOh33oYP2+fVi0IRxzFwrHwR8v+nEwF8vRwW44LN26tVpXALAObUwAWLx5KzZ79dl6WYsOdsBh2Y6dOHn5CkxOdbB9+wgmW+G3kbSjhE2bN+Hgvq04tb0BALB/pIVdu0YxcXgPFi3aCwBYvXoUhw638eCD+0xatGzVGHbsncKjj+7B4d3LsRZtnLR2HZZ38T+AFjYdOIBFW4o5XIM2xr15XtW9u3TzLbfgZGTY3l07N99yM05Ghj3d32X9cm3dv3gxNnTHaKGF5StXYtHKVUGdu++5G+vXj1Xv8/TqMbSmJnHLLbfglJNy+j7PbjqCHTuO4OnOXiw4shYAcOjQIWzYMI5Fi4q6mzcfxH5v77A5fuLJJ9EeWYV12yYA53DnnXfhrNMXYBXaOAKHG29cFERbWoM2xsT6W9edG79Mzh8APNutd+NNN2KB16ecF7/uokWLsGv/lOq/hMcffxyT+1dWv59ZP67qbt0zqcomJjs4Mj6O5StWYlFeR5LYsGMCY2OHseTheh8CxRrbt/BkjC7MxXt2sBMOT+/chQXLllfle9HGYW/M9ehgLxye3LuvOrs2o40FAO7fuAnruvNh0dxRAHds2oLTDVq0c9d+ZMiie2rZqjHs2DWJhx85iH3bnsLWPZPYteswVrb3Y9HQFtrmmWfHsHPfFB7FHozuLiIDLFs9hu27p/BYthfje+uz5anumTOCDAufWU7fZwscDqCNpw4cBJ4u5mEH2pj08UQH4+jgnvvuxQpkmOie+2tGRrBo7XoAwNPo4DA6uOvuu3BWd042dGn+4gcfxCZk2LlrP0YPDeH22/fhuc8ZwuRUB3v3HMT46L5qrKfXjWPPniN4+OHiPCnn4OSFOW7u7r99+/ahNXEQr7vgTADA5OQkVq5ciUUL6tt699//ANatXFitlfHxcSxatAgru+tj8c7dFa3c0J2np3fvqdbMni6/s3rPHixasw5AcYYfQgePPf4Yxh5/AkDBv/j8zDPdvrB5CyafeKrbf3e93LkbZ1brqoMzAezdPY6Oc1i1qthrh0dHMdWuf3fabezeswerVoW3iTdt3IjW4ZOCsla7hT179mLVqomq7ODh4nuvW7sOe06rzzs5DgCsWrUq+L0MHXTEmQ0A+9GC27+/os1Ase8m0cG999+PVd6ekPwfAByBwxjaWPnss1j07Op6fLQxAYdFNy6qzr2160aw92ALd91V0EFA74nte6ewdcsYTlqYVTR7w4ZDODDSxm233Ybnds952e7pNWMYGRnHvffegxXPW4iDh9vYs/sQ2hP7sWjRHgDA8g3jyLIMOy9YGLQFbNpwEoBbtm3Hyd132Io2pgDceustQZkDcMe27TjDoDV74bAdHRwAsGhjGF2nfOe9J+UVrht2FLzd6IEdFe+xfOVh7Nw9hSVLDmHXppOLeusPYWS8g7vuuqviFzduPIT9h1q45ZZbcLJ3xvk0bP9ICzt2jOLgvrw603aijYUAbt6+Ayd132M/HDaUeIu1w+ZsDA6b0cFYw/w+hQ62w+Hx7Ttw5PEngzq3b7odmzaPVHV37JvChg1HcPhIvX4PHW5j69ZRTE7V63FyqoNt2w5hqu2C99yzZwTZ1P6KX9u48RAOHqp52jVbJ3Dw4CgeeeQRHNhe0Kk1a0awf38LcGcU/RzYjw6ABciwasfOYB5Gu3TD328AcAAOB9DBqHi2Cx200MGadWtxWneex9HCQWRYNXK46hNeu/HuebZ+wwZs2DCOg4fbwfzu3bsfhz1ZZt22CWzcPoGFQxkWLSrwXblyFHsPtfHQgwewfT3n5VjZhg2HMDJSzFfhrOuwY8dBdDp1nYNw2Ic2Vu/bV9HYZ9HBETi0N27ESJfH3Yo2xlHwKUORc3k/Wsg8nnEVOhhBB0seXoJdXqB6X+Zcs2YU+cRmPLus2N9bthxEu+Nw2+234/RTC7qxfMVh7Ns3gfvuuw+rn1lI3/fAaBsbNxzGAW+Odx8o1tGqzgEsWlSnBtq4odh/JW83HXgGHdyEDn6nq2bbLfjdJrjtjjsqumPBxKTmI5vgC9fvxL9+x5m45LxTAACtdhpeo+P6ex4ZP4zVa9Zh5HmnJePw9LKnMbSs4Iv2iTkZFb9Hur/vubfga4CC9zli4LsTbYwdmMLKnXsq/mx8ogPnOnj8iScwdfDZqu74+DhWr16NRYt21O3Jvlm95QjanbZaC51OB88sewbP6epfSrjVO898vByaz6bSBHfLLbdUZc8YZ/zDDy/B7u6eWYs2DoszHACe8PQ+/vuMj4/hgQcewMZVNX+yatUoDh8+gltuuRXPObnei5s3H8SB0bbqe3RkBOvWH6nO87LvIxNHcN/992P18tqNa8dOzWv78+DzZ0DBk0yhlh1LWIc29gK4XeyNlV1Z4f49D2CtVy51Vy04tNHG08uWVXzkSnQwggxDe1vYt28Ey5ePYpErbr+vWTOC8bGJALflKw+j1Q7no0320NbdWoZS777zAKZa4XfbsuUA7l88Aiyw2roA/xMVVhF91YpSBvbk5UOl3uHWW3CKcTaVdGfxgw9WMsfy7nke0IKujF+e33v2Hka7065+b9le8PXl723bjgS/x8fHsQCTAd+wetXqip+LwfbtO7DqOQft+Vi1CjtXFfTNP4cB4MElD2F7l1aMo4XVa1ZX5/lWtLHPox2WTLH4wQcrmXuTkBkOdOfvgQcfxLndOmvWrAFQ6NoOHOwE7zwxVXynrVu34tSsph8AsHPnGJzrYPXqNZUuBwD2HGxV7xmCw85du7BqVZ1+eLLb/8jICEazDm697daK95X0dG339113343nI8Mz6GAKHdx5152VLOhDm5zj+42zfRcK51iLBjA9y+HDo1i3bn0lM5Qgzy8AWProo5WOAQDGxg5jjafDLOHJJ5+CGy3kuENdefPOu+7C87vn2ShaWD86Wuk5D6OFtevWYtG6DXUfTz2JzlNPV+9/6+234TTUUVZuue3Wiu/diDYOkvPIh2VEBwYAk62ivx//+MeBwXmu7GEb0cFuACc9s0I9e+rpp5A9HZ6njyxdigMiydIS72wu4c6778bZ3nqaRAsrV63ColXFPnFkDXXQxrLly3HK8pVotR3a7RaWLXsGp0wVOp0VG4+g3W7h9tvvwBld3cGO7Qcw4clPG3YUNOmOO+6o+OUjR0rep+B59x5qYXJyAo899hiO7Kvfu9V22LH9IFod/i3HYnvB0xHs6co5lS2su8cq3ayg5WuJznQULawbGVW6+IOHDuJhT/c41XI4NHIQ69aPB3uo1vXuA1DosSaOjAf7QPJ/T64dw+HRMdxzz71Y/ryizuZNB3HgUHj+r1o9Cje2qeJ5GG8n9VDbu7zIgw89hC3deToodOqTcDiMNlaPjlZ6vLJ/yU8CBV0+COCWW0O+SeLy7OYjqmznvkJnfONNN+OkBWHbJx5/Ai2P9qxdM4LDgi96ep3WIxc89hocOW27egYg0EUCwOKHHsQW5JjsrqE77iqeS1uBlKW2id+HDXrM1vCShx/B3q1PBWWLH3wQW9YWvPHyDeF7TXXp06OPPobDuwsebOzwYaxdtw6ljXPN2hGMefNT0tyHHlpS6XgAYAQtbBgZUbqjW2+/Dc/tzovkc9i7VfTbs0Vu79qclH0RbYwS2lzysD7dfWqt/qYHDhzEZhwmc3sjFgwV7UZGRrBufX2GrV07gsOH6/mQ/Y6M6f3iA9tPB7vz4OsOtqONlldvWVcf/EDXplTQJoeHH3kYe7ptDqGFDYcOYdGmQl7cAYcW2njo4SXYKWj4vn37MHXkQN2/sJ2U8tuDDz6EjasXdue1jWeeeQbP6drjDhw8iI0bx7Bo0YGg73vuvRcrz1oYlPk20JUrDmNqagqLH3xQzYXkM9YJeVDKh88YZ+8dd4Y8j9TXlPBjYeMawPyGn/3Zn22sMz0tVxde/epX49WvfjV+4zd+YybdzCpcddVVuPrqq/HGN74R559/PiYnJ3H//ffjD/7gD/D444/jZ37mZ/DAAw/giiuuqNrs27ev+vfzn/982q9fvn///igO27dvx2OPPTbDNxnAfAJGBlNJo2t4xsLQ09CvrN4M8JoJ+HgEIUEdCUOOMjWW6MP5fdUvV97+kGMEkNF/Rssk3rEyBhKn5no6TaTVPsv5Q2ttpCARhjTlbZp6WowO9gP4MGplt/qOzdgkAVvbLHKrX2Sm3BIvJlPPsHps3UW6jLbpZU7KPqYLLKy3tdZ6wUvtQfHb6ss1/pUhbGtg6eLKwcOww3Z4fb9flqq1aQ50GgW7vbVe5BexvkUqnWqiPdFn4iGta+yzIn2D7oDPvY0Fwz+lrGlPNvWnMeydWsl0jLpTZ6Z6ZuGwU/Z6yl6TdZJTLVI8w98+OGOh+vRZZmakKYwa1kdY1z7XU9bRTM+kTP5wYQFNd8H6sQ4NVj91obNxjKZsTcRoUWydyTlpRJXVaVj8FT+cQmR7gF7oTyN+EXSK7+0fVGQ/RcYJ3ruksw04MT5pNmUAxoqbZ+B017MkKGRcu53GI0zD0D+elY2VXNfiScPlE8E3/hYq5amr10qMP6T8JO0/hZea5nmedOCHWOkUr64q98v42WTQ6h4glT+2ICV52HTXbZB2hHTy94v24H1vPAMvfdFJ0Xqx8hRoOoukrJDSn9zf9Awxyixg8qK1bmcyHwys86HXs6pq5/i7l/IRA2svsHftZV5jYPFxTXxJDGJnLaDP13KuRCX1gpzXa/4i7KzulYYOoAZGL3qhITK9TpPcrr7dND5ML7QtFToAfHdUyT43QXhCNo8fxS0ikFlZDptSP6ruVWpbr02DbOKAwOTbxJP08h0a92oPZ2pqGdXdeBUrPXuPa1Wug9i6YO/9RbTwHzFUOeWZ69DT4R6N4CNDyCqHNx/M856UMd5NljE+JQb1ue1/S65rYgiGOh2ts0jRhRpd07KoXEueSZqTIlc6x8uZrCnP2lJn3EQclAwvke0BGJ46pVtYvxd9VknLOF/qpeZkNMKrJ1+Q8mFML2jglEpLU8/qJt7XHk+nPeWpahP6CvaTeH/KW0//rI90HS2fTt2OA4bKZdLDIaF0xqqpT+v6w8E2ydhs/zT9jp3/il8313z9INVG1GTb7AUs3KfTbib1BnDswIycwY4FuO6664Lfp556Kj784Q/j6quvxtvf/nY89thj+MxnPoPbb7+9qnPkyJHq3yedFN7sL+Hkk2vv3vFxnl+8hJe85CWBs1kMVqxYgfHxcZx55pkYHh5OajOAuYNWq1Xd2nzrW9+KS172QgDApkOP4NDoEbz5zZfg8p8sQpPev/I2AMDw8HsBAPtaT2Dh5v1485tegStedQ6t89ATmzHSXocLznkehocvBwCs3rgXT29+GK94xTlV2WPLt2Pj/mV45SvPwfAHXlXg1ung/qVLcMrQAgy//o0AgFUHD+CBpx7HZRdchOHzLwAAPPDIkmLMN74JAPDkE48iHxvD8FvfUT3PMmD4DW+i9eVvANgxNobd69Zg5/g4Lnr5Arzjp1+Gl19wNjZvP4iVOx7BS154OoaH31S984IFOT74wauwcMEQ2nesxEkb9uCVF78Iw1ddisWPb8IT6x/FT7/pp/HGy87FqUvW48aH7sF73/MePO+M52DH2KPYum8DPvCBD+DkkxZg5a7FGGvtrvbLHU/fjDNOOxnDw+8CAOxatRL5oYN428svxU8+7ywAQGfTBkzs3o0rzjkXV3XDfT+2Zzc2rl+LV77ghRi+sI4IyN73kd27kO3ehalOB8Ovfk20bll2zkXAVVf9FM57cRGV4N7lt2LBghzDw++BDw89sRkT+SY8/3nPwfBwTTcOuqewcfcaXH31e/CCs04FAKxYuxuLV96P17zm1fjAOy8pvufme5HtGqnmo33nShzubMEb3nAJ3v76C7B15yH8ePFi/MSLzgrw3L1qJZ7dtBHD73l/VXbjA/fivOeejuHLXwcAeObJx7F/9BCG33YlAOCLi27A5Zdfjvefd371+8orr8JLn/tczAS+cP21eNe7rsaLzj6tKvvqom/ikksvxfDwa4N6r3/96/H21xdre/XGvfjH236Et7zlLXj1pT8BAJi8bTnufuLhgJ5+/fZv46KLLsLw8Buqsm/e9V1cdNEFGB4u9s6BiQkseeJRnHvqaRi+7PIAv8VLi2/6wdf/dJAScGTtGmw6PIIrXvgT1boCgI3Ll2G83cabzjkXrzv7BVU5Wy+Ld+7AwW1b8FPPOwvDF16MsfEpLNv2AMbGpyo6AYS0o6RLDg4vu/AC/MTZz8Xwhy4DAGzZcQgrdzyCF5x1KoaH3wIA2DH2KHbtG8Ob3/xyXPHKlxS4PHs7nHPVGEcWLsfC9XvwusvPw7vffBF2PLsCb3/xObjkzDMBADcvvg/nnHoahl9brNEtK5/Blu3bMfyuYj0/d/s23PDYI3jve9+HM046Ccv378M/Lb6v+r320EFcd9/d+OCHhjGUZWg7hz+78Yd405vfXM3R391+My654EIMX/IKAAWN+7ObfoQrr7wK+8aXV+8zsXA5nlz3FN7z3vfieaefouYHAJ7z0DocyTbjJy96IYbf90oAwA0P/RAvfenzMTz8dgB678g+vnD9tXjNa16D4asuxUNPbMaPH7oLV115FV76kjOx/dkV2LJ9K97/jnfhZC9t9Mbly7Bj1w4MX1Xv88U7d+D7S5cEa3LLymewefs2DL+r/sanbtuKHz6+FO97/wdwqhfq9e9vvxmXevPi1x0eHsaq9XvwDzf/UPEQX7j+Wlx22WvwoSsvrcrye1fjxofuC+o+9ewO/NPtNwZlh0Yn8KMli3DJpRdiePh1VfkjT2/FY+sewRtefwXe9vrzq/Kto0sx8fxxnPqck0J6uHM79m/dgleddTaGL6wjqt7z8IM4ZWgIw6//aQDAkl07sXH9Wlz2knOrs+uZpx7HqQsW4K0vPhev7jrkWzT3Rc85Be+++BL8xHNOBQP5bVnZxMLlaA3twBve8HK87YrzsWzVTmzc9zRecdELKjok24wNPYOTN+3D615zLt795uL9Jm9bjqF1e/Day87Fe99any2tjeuxaXS0oDHduZDv89S+vXjm2RW47NzzMHz+ywAADy19GBOdNoZ/ulj/Q1s2YcXaNXjHa6/AJWc+D6NTU7jt4cW48KyzMfzKVxc4bFiHtZs24Mor3ojzn1tE6n1k9y488PSTeNPlr8Nrz34B7l95G17w/NPw7ndfjhedfRrGxqewZO3deO6pJ2F4uKD5uHsVRlqbcMUVL8c73/iyag7OeO4peO9734gzTz8Ftz15E84642QABW98yikn45JLLq3WzReuvxZvfctbKxq9Y+xRrN2xBsPDw9i3+lkMjRzCmy64sKIDj+zehS0b1uFVL3wRhl9WzNP6kUNYsWI5Xn7GGRj+yWI/P7ZnN55cuRyvu/BiXH3ueXQ+x9evxabRUbzyrLPwge65terpJ7F/cgJX/dSrcM6pp6HT6WDro48gPzSCs88+DUND47j00mLPnP7kChyZaFW/FyzYhxe84AW49NJ67QM7cd55L8Ul55/5/7H35+G6XVWdKPyb692JEEAEQUOQXlEUAWkMSiuteJ4q771W3bIpOz6/Qv3uta5XS8uvyu8+VZZVJVBS6i29NjQCloqgBIgSSOhCAiEdaYAQ0vfdycnJOTnN3vtd8/tjrTHnaH5zrbVPYpmEPXjCPu9asxlzrjnHHP00a+744/bjUY96NJ7+9CeXZ7fvOwLgDjz5yU/BYx/1kPL8EZ//Io5srvH0pz8dfd/jlltuwUknnYSnPe1p5ZrIQ1ddic9c/iXs+X67zz/6mbPwmIc8BHu+63nl2advuRmf/eKl+N7veh6+/VE1mOXznz8fG4cPY8/3vLg827+5iVM/+2l8y4knYc/Tv62O6stfwrU33YDXveyV5Rqaa+46B8fdcjde/rLvxhMe98iyHoC6J754xW3Yt3U5jttYFZp9+e1n42tuP4hXvvLFhZ/x9dZnXIarbrsML3nJS/DNT/p63Hz7AVx8/Wdx0mMfgT17XjjM6dlXYtUl3Lm63XxnoE0bHn7cBl7zHc/CI44bIvHOv/A8rPuM1zzr2XjEcYPMd+GF56NLwPc9/Rk48YQTaHvXHLgb11/xFTxsYyPwCF+68nbcceQynPCQ4wqu515yIw70V+Ebvv5hhbc7mC5Ff9xt+O7vfjq++1nDmv3KHZ/B3rsO4eUvf0HhF790y1nYuP0AXvOa78MjHvY1Zb5SSoWHvOGW/bhq74V46EM2ypl21rnn4ISNDbzmmc/Cw8bx3nDPQdx17dW46Z5DZm6kfEbGnhe8sDzbd/Qorv7yF3HX0c0wl1pWyNddi/XeO/Ccb/gGvPrxTzBz9upvezauuONc7NkzyBlfvvoObK6uwm133lN49VvvOIgbDnweBw5uYs+eVwAADh3ZwiU3noXDRyr/c8Mt+3HpDZ/Dk056JPbsGc6Ly249C4fXe8uZddYF1+Gymy7Cc5/7nYVOXX/gXKxXdyDnISPDI7/uUdjoOjz2+OPx9K/9OjMPD79xiLJ9+uOfaJ7fvrmJq+66E+utTfPumjv34mv278NTn/BkPHI8q0+4/ho8YmMDT3/cN9E2H3bDtdg+uoknP/nxOJiP4oZb7jbywMcu+TAedsLxZS4++/nrkS65ERsbq8Kn3rH5eVx/y35898nfjOc/8/EAlp1tX7njMziweRte9wM/gI1Vh82tNc6/5pPY3u4LDjcdugfnX/x5PO3rHlVo7O2XX4aD21t45qMejZc/bujv/AvPwz1bW/j+53134X3Y3vM848NuvglXXHUFXvAt34oXfsM3lnK67q1HLsCLn/tEPP0pw1lw4XWfRM4Zr3jFC4p8sD9fjIPbN+FFL3o+vu2pj6Hjvem2u3Hn5hdx8+0Hy/iuvP5OXHbL+fjmJz4ae/ZUWnn57Wdj391H8PKXPw/fdKKl4UvhhJtuxKkjPwYAX9m/H3/66U8s0uu86dRT8JKXvayc0y3Yf+AIfvd9/31HuqI3/vnb8JznfFfhTQ4f2cJb/updpo03/vnb8C3f9my88nsqf3bb3nvwB6f8pSn3N2efgic+6bHY+w2rQEd+7qxP4fe/9yXGKea//O0H8MzveCb2POkpAIYz/G2f+nhp87bDh/H/fOwj5fcthw7hDz/+UXzvi15UZPfzLjgP+zePYs8LXxTGdta55+BAfwjf8rWPKvzZXXcfxp+e9j5857OehT2K7/2LT7wPT3nKEwr9APi++dS51+Bjnz8bL33Zy/Ckk76uPP/9U96Nb/u2Z2DPnu808/aKV1i5FRjkxZynz6bt7W185rS/QwLw2te+tlztcOjqK3H2l+0Z/6ZTT8Hznv8CfO94Dc5VX7gEd+69HXte+opS5s2nnoJnfud3Fp5R4BHnXoOLrrkQL3zhC/GcZzyuPL/96IW4df+1eNWoZxG48LpPYnXHwbDG/ubsU/CkJz0We/Z8r5mrz172ObzoRS/CM572WDOv+pzS4M8QALjgwvOw1fd49Xc+B1+rdLBXf/ESbBw8iO975rPxuBMqX3/XFZdje98+fO83fwu+Q/E2gffb3safnPERfMe3flvhI++64nI8+9GPwWrfGpfdfAG+7dsehz17Bp3O9QfOxQ13XmvGfnjjCzjr0vPMs6Ob2/jt97zTPPvSlbfj3R/94OTePOfKj41y/WvNs+998XPwZ04mE/i9D38Iz/jWZxgd1Vcj3HXF5bj46iux59WvK8+Ov/F6/N1FF+I1r3ktTtgYeJ2bDx3CH338o3jVq16Nrxv19p7Huf3IYfzBGR/BC04+Gc9/zDeU9j9/1ZXY85ra/k2XfRHX3HQDnv6Ep+Cmm27Cox/9NdjYOFpkgaPpTgB3ld/7jt4GYH/5fcJnLsYjHnF8+Q3ciqc+9Wl4+Ak2I0SEW/EN3/CNePrTTwxvjGzwmK/HO88+E6997ffjoSP9eNOpp+AFL/hunDyer+/82EfwtMc/AXu+9RkAgIsvugC4556i/9X0Znt7G39z2ocBACeffDK+8zHDnr7skotwZP8+7HnxywEM/OSffOIMnHzyyThh31246aabcOKJJ6LrOjz0kxfikY98OJ7+9G8pOB86so2E23HiiY/D059e6QQA3Lj/Jhx33PV46lOfikc8rO79h956D4C9au4G6Lrb8dhv+AY8/emPN+0Dt+OEhz0cj9wAXnXy9+Brx29/z1VX4LOXX1bo6Vm33ozTL7oQL/2el+BJj3gENm64Dud/+TK87IXfi296WNRjHl2v8ZYPf8jszesPHsSffPKMsF/PPu8crLPlpTUwPctfnfk3ePKTH1dkBmDU27jz641//jY8+znPMfqEP//4e/HUpz7RnGlv/ou345nP/E7seeUgx9182wH84Qf/Ci996cvw5Md/HQDgvZ/6GJ7y9Y/Fnu8YzrL3fPIMPOWx31h0B2869RR853iWyPhf8cpX4rEPeSi2+x7/5e8+iFe+8lX4+ocM8uuVX7gYd+/diz0v/b6Cx5tOPQUvf9Wr8ajxO3TXX4sPX/z5MGf3HNrEf33vu/Ha738djj9uVcb6P8oe9oV9d+KCO243ujUA+G3HuwDDmJ773OfhZUrX+6ZTT8Fzn/c8vORE++xFL35J0Z0CcR/KPOpx/t8f/hC+/enPwJ6nPg1HN7fxpx/5KzzjGc8out3jz74SZ33hHHzfy78Pj/uGgVc854qPjbLScKace8mNeM8nTsP3veIVOPExw3r+s49ZXfc1N96FU8/5CJ7z7OfgNS/+5tL/0c1tXHjtmTi6uW14IoE7jx7B759+msH5uoMH8NZPfgyve90PFB3Bpz73GRzXdeWM3+do923O9sB0pqec+Qk88esehT3f+Wxjh3v0ox+F5z//Wfje7xpkqsNHtnDaBR/Gk578WLOHTvnsKXjiEx+DPXtGvvGTl+OSay7Cy172cjzxJK636D/+ZXzlli/iJS95KZ72xIGvuPiGM5Fv2W/GfMvhC/CSFzwJ3/KkrwcwbQeSZ1/cdyc+cO45OPm5z8dzR7r6d2efOegCR/nonq0tfPics/DUr38s9jzjO5ptCXzhogtx59GjeNVznotHKr7pjX/+NrzuB34Aq/F7PPSzV+GUs6wsctlVd+Cdp30Ar371a4p+Qeo+85nfiT3fV/fDtfs/h1vuus7Uzx//Mj78ubPMsz8fbSrPfv4Tgr77Taeegpe+9GV40nhr2JtOPQXfPZ6/B7e28Lsf+dtiS7rq7rvx9jOrnHDF3fvxp2dW/C+7ax/efdanym85z31/YmvQY3ve856Plzz/SebZyd99Mp73zGH/bnz6Cpz6mdq2yEua9r7nU3+NJz/5pLLertv/Odyk5ufm2w/grae+Dy94/gvwPd/1hNLXX3/q43jSo7/e2BDfdOop+L5XvKLore+64nJcpPiQvUeO4A/OsHvur8/8OJ786K/Hnu+o7Zx/4XnYv7mJPSdX/hwYeJjrb7oRe15h97PwsN+v6O76jMtw+vmfMX196HMfxBO+6VFFvyRz9prXvhYnPGTgY/7qzL/BU55Sz7Cb7jkP19x+VbVJnnEZPnLu2eX3rXccxB+c8p4mjWfr/eZD9+BtnzgDL3j+dxfdgT9v0/XX4vrrrsX3POM78KxHfz1uuOcg/uzMT+D53/X8Ijt98NOfxBO/9pHY86znAAC+dNc+nHb+5/D8Zz4b3+OuGT3j4r/DIx/xkKKv6j71FfztOWfida/7AfT9Gv/9PUOmrZO/+2Q8+xnD+vFy4gfO+QCe+MRHh/l70YteXHQX8kzbQPfni3H+Vy7GySefjL8452wzV58+97PoUir09eovXoI7br8Ne172SgCDfLj3jtux52WDfLi64Tr87UUXhv3xspe/3PA8f3f2mXj8wx6GPc9+rin3mu//fjxk9aB3H/qqgq/ar/nQhz4Uv/mbv4nXve51+PjHP459+/bhUY8alE0PeUg1yGxubprfAkePHjVtTcEb3vAGvOENb1iE1/Oe9zxccMEFSCktuudzF/5hICWgW63KN0opoes6rPSzbmA65HfXdQvKrLDqVkipK89WqxW6rrPPug5dl+w66Xusus4861YrdClhteqafaY04KXfJ/3el3e/AWC1MeLYDfMgc9MV3JOdh3EsGxsrpK4bxzM867oB564b2+g6pASsNjawsbGBNI59tRp/JzsPnf89tp+6lfsWyYy7W60MHuVbk/F2qw4bqxW2kWfLyrMB55X6rh2AuM+7boXVyn7vYVxdaGNYLx2S/n4poevcfHddmc/VagMpDXhZPLtAd/y3W606ZI+zwzOptfa+q67ADz21Cpc7Af8dulUHMLpo9sUKq1Uy3xopjsvvk9qnGut6XdZ07DOhw/gtus7U52uowyr35tsNz8naGveHtLHa6CkerG4dm6UfHqfUdVitBlzrPMHtow6rVa23sVq5tWe/R0rDPjV0CzC0AOR3mcPx/nW9ljsk81vKrDZW0HsndR26VYdVN01bN1YrJFVv1SUzVwP9Ss02hnEmRdsqnUopYZU68o3jWkvjmrHtkv236uoc6bJ+XlRZPbeUh/D7NbE1GOuvVtvD2kKkEatVF/BJKQ1nSefLR5oFDHQbhtasRlrfmTW26lYD/Z36Rl08j+M0tGl1pJ3jXiRncTxPk9k3Muaui3Rhxei3a281nuG+TJf9mZrK3lrlHl2yNKPrVlilzvAt3Wo8B8dnaaRfMm+rVY+uS9B7Tb634X+6hA31rEtDHbMWwh7Q9eval/WhadOwt+38rVYbAw/UWVqXUjJnEPumkR7acfd9X3CW/8QBS+Kay+9xrPJbjzk+Q8FBl2Plfbvnbm3iB8scdXUdkHNs1dm9xL61wdOfj+s1Vons6XGdrTY2yrlX9sgEX7tabYQzN43nyxQ/XHjDscxG+eaRv1myn+VZcnR6mHsUnnJoV+Zl4kyRcREeYWNjFd4V2mfOZ1mPFh+9HvV30jgOvLprfxXpU9elwj8DwMYE3pKVVj/fWG8HekLnoyNjGcscN56Rhq6tPH858BgwfEQ/0r9k1lPnz27C967cuuzS8EwiG+uei3sVaZCD/HPhieH39/h95OwpbST7G6rNoZ16Zuhxl7709yXylNAuNudT3yqlhG6VsLHawMZGh3UfZadCTx3vOKyFuF6FT2zh4HlGWfuRztS6G6uVld1k7sl3nZJzu24j8GJy/no5jK3jncLGhuWhVoQn+7vrrsVLH3dScdI0sKDvST5vAvS+6VY9byOcH7Ev0UEwOvKlu/YBTj5KcPy9a7P128rukZco7Y/8gKcVVJ4mZyTfNx1Wis+v08Px8DyelPV7uyW/yTNNxxIpZ3hgcoYPe5ngUvh1wgc0xsnG5PnCAafVyPuu3FxHeUfPQxhfStjoVlhtuHaS0HQiXzPexvMhGGU+R88GPVSUnSlvtFohu/Nxe7jFxjw7/vjjmmOu47Fnlu6jVdfLAl+twNZU6jpspIRO8Ugyl+a86BL6HOlM52SSLuzZruyHIhckLwtU2iC/p2UFwnsQyKodD4JTT8Y6/FY019Etv8ZFloz0xs5f53RMAJAUf1L48pQI7gmrVUJuyE2rVQLQUTkp8mkt2QllvFY28froFVYpIYns2q0oLRHYHv/6+fXPhr47rPO6uVeZnoWdS9LW7DNCGwKf3Mlan14TGocO9dxey3cY5yeL3k6vsZHH9vj2itZtjMbkQPs2+jI3RgZx5Y4c3cYHP34Z/un3PxP3JXzNccehp/Ofgu4MAKfFjAcg+i495/16OET82YtxzrbX8Vt241moz/IMt99FN2T0UVHX5nUpAGqfTAcOoNtmekJFg1Z1rdlztQs0x8o0DZ09Oysdn77ayKE96dPrt2ftcYnoNsiZLe222qFtj3o93fbKy0c5Y5Wi3aPFO1bbmFoPY8qhVTfIecN8s+/W0DUnKy/UOfB0hp3Hg36ixf8lf06JjSqPNGBcx0EucPgfJzSlIUeU9p08InM2xVt73LtRH+H3k1/fQddB9peXIeRb2bN2WkYCOK/fpcaZ1EU9A1B52JU7K5ncwvah1V/ZNbNarYxOKY22TM8/tM5JboONenGkhA52nXRKv9CtRAfuvq/jBzqnJ694RFs2MNq/+5pV2NMLI/OmxM9yug5XYY4SmSt/Xvv1l5zM3NqPgW9syLhedtyFBz7MSyAPYvje7x08Zvu+x1VXXVWei1MYYK+M1KCf6/K78NUCMeniXFr4ktJ2Jsfi0IzNU8quSelcf3nEwafgZFcyhj5n3i8pL8/8PLSmxV7943BU46XpfJNLc5z0q0RSKdt5yRjmj6ftnYel31KjlhICzixdas4ZXcevnur82JALo6TrBxxM3xzpnPPsdRSrlNC79nvXns7Y/pZLLqJ9TYHg6fvpUkJP8srrFPF9zoPDmsvz69dg1yWsSVv+CplhvBxPtq4zpvZbWrZgfNs7ycmaG+varz3IPpnBA7aM/tbDXvG0RqOSR1xsmaz2NVC/c01TXMt3br3pFdy7b+z3RoQ8KoFtPmNzxUAm9CuklVZlYeeAX+NFUlO3V4iBIWVzCnvMz4uUrTg22k+IVyqw9MQlVX825VarLuybnBHntbQbN0lrXUTahjHleXZ157fEoHKfP/eWgF4OGbKXpuv4ay5yHsYc04fHs0nK63/7849doaH3Pb9qI4/rxtYb9rhew3afdW7AZQ7cOkhd3Uv+TGL7IoyxtD/sF36tgh2PB+GB5sB/w0K33TNgoDOmSdo+O8dZv+3rT0J5189V660wJ4I37SesKaAje4ItZfnuYU8jrhfZ/1ObTda5xSePR+LsIVTaLleM38uNzT5hpNH3joaUK2oIk8mvbWHns6OH3TyHys5Bf2XefZWmfyeQHL/bug6I8tVk7bA1Hvsk/LKjpc2rqBvP5/rU33NORpijVH7OCn/i52whL+fBn8OMdtL1ROTRRXTX/a7XvLT5SDh5OGM8X9g1N5q1Y3TR949hT8WziT/fCXSuN8/DAcBvXngerrx7P63vaS8DfwYDwBXX7p2vN8FLtNpmfc0t4HVvT6zI3/rzhf+2csd0p543EZmwd7igIU8GkLXg5dGOX3O25LtNdEX2SDw7h+e2nq+ZwNdczoNDFLtareu6MCbZox5aPJ2nuUPbO58Tz6sKjq25YP2ygoHPU7yF/86ZfRAC7JuzapdffcdsW0Of7XF0aciivQv8PPE6qkJDtIwDe3oNvLEtw+TXnK0s79dH1s9dH6VfKidPQ9ctK1d0Z65nvY+YPkPrknunB9Ry0FwZts1b8nJHaFDBh+oTJgWM0MaAJ+E7EfVUmp8pV4k1umNXALYwm9NVsPOnRcfYM6+LIWxZmMuq21H1nJzj5QXNX3rdUNXXttsTMHuwaReI+5XBbXsP4r++4+zJMscCG6nDtucVwPlUgH9fhvt29rwQ121q0PK66JC8bntF+XNVpPAv9r1Gp9oc3NgavIdu24Osg6mvN+wx148rwfg8RhNSOLPzSC8dv8Z0Pt00b1L0jeQ8uS/Afzu/xqp+cBkw3arMmebFGS2R156mUF1zn8P+DXoyVZfxoYKvb2PAT97zcvG3a7dBO9i+ZGdQb/ZGQDqcXdFOkcMeXBEZws8XO2vDPC+cyxa0dAXSpz6TPL8TENX11aRRHl39e933geeYxLnxnNkRbN/Z2sNy5EeY/sfvedOfkR3G9tV6ScnOIbW5kLHMrc2iH2eyRvAFcN8tO56nxdtQHWQstyt/PPjgq9oZTF8Bub29Xf795Cc/uby74ooraN0rr7wSwHBd5JOe9KS/Ryx34f4ITOhigj6raIQsomwIBw4I05D5gRue5IZxxRTZOWGfquHnhgmGHvVB31+FS8+4a2eWIDjMGAUyomJ+mBeLqDA+S+7JzuBON62ywHLD4vC9OTOVuqggZTjr+qLscSUW9+v78kq1OYV+C3LO2CJCd1HkeKGk48p7r+hYuXL9uKdMW8QQ0FKSsfEkcMO6tB3X0DInlqGkpSXyezEQ7RszxM8ZU6ugPfz2zixeSM0O0zJ/TrCTaRehxgtAQWnrlJDqhcG1I3vDjmfMbKcFATcHzCFSv9flvQKl0ASi7GVK64AfUYAU4d6V544aap6YxhJ83XPF49iOE3CZUazMwxLD2gjMpYEpPeizBTS67qE5PKZ3ltDEqDidEV69AhZcwQ3M7+3h/Ip0lTpdu7WtFQeyPuGerdwcp+QUHcQozs6+LgEHD22WMXmBeGrdeX5Gn/flPXECCjQo50GomeR3OO2mjhekLf+9Ar9BlO22bDwbdD3dT1AUhj1PEEI0bAkwZ27OS2b6jQt/GruchhwV0gB3Bgr1XH+MBi3wQ7HlvXNUJt8fS2jI9HxQHp2cxX6PCT4U75m1TYkrIk+8E66ihU/sP9N5hPRH9m/sp6Eh9a2FfRdH5J0Uc7b0rHIsO1vRfCoi79D4FPZ9bq+xJQ5cw97CTE/T/bdgqZwpcz93LreCcuw38nswOm9wGdk/43SWAuFpGO33cETpjXLOOKR+R5mdN9bqYp0bTJwCxnL95K++b7ae5RU5BsHpn8pBDUv/CNsTvCXAjHu8HeaU3ITkAyNGHsdNJ/EnpJCB0Zks8l9UHp3/bDuCHpzeeINfoH0TTgVNZ3EWhMYIK7iRA5kbvXYKwx5n/E5GB85Ht+Rxh97I72oaVJ0/wvjJuZf7PDpla3zJPJP+f/rX/trVi2WGNdU+bLuFOqoHO/TkbMoYMqloY1WRZa2U4+YwB5laHAFs+/7LeKcG+5cIr2QctdD2NiceLQeho5trWn7KkSqlKNebsuB8xwwbTIPWAL6SBwddvo+Bth6FA8G1fIcc6+bo0DfQFPU7tY3uDJFmwOjMXqVcMjmXmL5nQCXySqw97gzWXhOe90mo8yEr1Dv9WLsG5xdMoGeLixb8+oinBslkdF/DRsedbdsBF/Ehq++feX1wK4hbB8t6HWfVe9rva9d31NvRYEym2wsYwb1vn3txvVq+3+AImG1MZbnG/DO9Av1WXk7PXLfqITXb93tvZ5AhOof4XKFInf2mGg2yUV/b0u3GqnbfCTA+d/he3F7iKiPnvJivr2t9pDWBFSX0HHHvtJxVGA2do6tsTwRbg/tGw/q1ZwxbRy1cPP5eV+WB6YVa9qaWTkK+u3UGQ+B1WzrzWXnR8ByWdxOZaVFwjsZtZv9mWF6COUuygEGvOxfw9pPhu6q9k6O8QPc4O49nbJt6TOxdkFtcHWMTDq1Kmw73RrldZ7AHH3xVO4Ndeuml5d/f9E3fVP69sbGB5z3veQCAM888k9aV5y94wQtK+r5d+OoCpjSaPJgyi06gJ/si5pYZIVtG9r9v0HgYHORwZMxnkdiJwT3Zo4wZvg0vpo4tZqxnBzL7XqwcB57dZgrSVAoC3fIopDDjuc/SArqmmMFaMUQTjDk3ZtUK3pjMMxQtm5OP3XQjfvxjH6F4AI0IFap8j8xrYLa8MxiLPCRKscGoHnEX4ZVnTmkx4UudAfPisgyvsB5ybiiYpukVYL+/VggBPJKWMaDF6csrocY/U+tnYMrZOLNVimA+M1ifR0dBrwTTUUDN2rW8NirptZbzmEku4IqwIVk/EsXqCzIHjkFZ6Yq6b85gyIhnazJnySqgWFyYw53MPdtP1IiVuZI07htikBUBkI7OQdMpweK4oJlangjHzToz57UU4Zn8/Hnn553RHbXXyNzJ/vTteAcl7/AYvlXOVEG0Xmf8yP/5noKvfhuURA6PgVao8g2lth9zh7jWF0VSusnJE+vK4wbXp+cZCnkje5Bmu8j2r+9boxyKkDN7wIlE+aJNI5lzR7OsWy/lfFmwl6zSZf5bxQhiWmjHEMlsI+PYzFYv5z37dpk5yDS+lzSmnxFHx0QyRATHIMKXcseyNuxEZog8I1fQRUfISHukHKuroawdt550QWH7fAZRI48Ir82HRqG13DydkLWxdIHSGSe8HHu2JFsec/7wUfUtvHwJntFtnu6yM545LZs6DeOod+JfIo9RR8yGQjl10+3tO3oUrzr1lPL70n134p+d/uGKo/uiLT13a/6XKFyP2SlkAa/on/c9fz6FgndoY86fFi0uC3iefXLU5HxarTrCQ7edESyOUW5gQUcF53vhDVbPE8dvTTg8SD3PY0WesdYbAqv880wduYTWeqCZwRrPdwrVaBM7YEau4oQ88z0ZLwfUs8nPCw/Q4fySh50Ytmz77UwawCj73dsJfhAAky9zjs6IzLDM+IlV14VzqOVco/uzbWXT55LPpHH9F7/B7Q1eTwEAm1tr/Nxvfto8q/TSlvWZFS0X5va3U+RI2aDrMcZFkrVIIR8dTNGkn7m8i89b0Mqs3ffRSXTgE+28awdRoaXN83oHTxPR05hapBOaibXj9CQ6KMe58MFd0rR1/iIBYQEn20DrrC71GU3UDxsihsevdUavFuhhjgVamcFYQB6wPDtofGb5S7ZOtO6vnk+WRrFsltQhIaO04/U3k/I+wauOiT2t+LbaoDyGcw6LNzREB03Zq94Wx7MZI+wD7tRlZch2+3Y8O7WzDYGLdg20An+XHvcZo2OrXldkH1G5ZnwU7C4siDU3vql7KDaGFv6+2WorsHgWmtDAv6VT87DU8Ys5z+rfnsdo2Vw0eBmilCV4Tq5JUoPafdGWb5Y6cbJsb836LouV7jo4bDb4pp1kVZbAkOmEBjbzl9AZfwyxueM6Ab+PRr6xrz10yQdCOz6nIQOzm13Y2mtlujXlXDfRtruTdbHkLNuFBzp8VTuD/dZv/RYA4Nu//dvx+Mc/3rz7J//knwAA3vGOd2Bra8u829zcxNvf/nYAwD/9p//0fwCmu3B/hEAOZ5jBjHilH2uTZqsJDj+tLFYxOto79LA+7xOHMaNPsIdhKEqcu3xbXpjQsqjx9o5TEBSl4WqjwkhYmIou/cmPn47NdY3EaxkBWzDFnIWyTOFZhBf9LKPrOnhh0HvlJMbxNPr1YJg6Z7hhSpPWGI9sb+N/Ou3U8vvg1iZuuOce0h9nhJZkBhscfqLinzLmTBEFu0amsme1dgy9GjEzY2gb9PffqaDZzLAU1sh8VEVSmvclWUk8g9+pOlJ1LcysUxo0DT/u+wo2XohrXa2qEfQZrEKmCr934BTCStkmdFOPr+0U5VlxKgKGcj1yiGQXnKJCpS3ACvBU8IOQ458BLOseuW4n88wJbC4FfDaqsZkA/NrjRaSMKvJ3DLlhMJ9aZjkq6JDjHrR1ps/njnTqV5RXJEUjezSYD8Ky+xbK8FDHEsfn8dncVmejf+0E5NKQ+neM8rf/5nwMoXWkXKAVwUCQQ8aFbP5RcYtnM7dO01u1yBlQ6LxvNdCh2M2QNSSucxbZVs8zxOfhWSOLmDx35WfPBqHPvt4SJsrtG+qIcgz8a2zDrbmyN6bxm+QRJgzPpR+AXvVNrwOcoWmtTJKk4N8LRB6gQpsv0fX5NWO8Pf+9Yh3Wftd1njTtiI+fxAmO7N1Lxwg2l8yxdolTl4cSXDJVBu0ygX7OOemAz3XrWfm33195kKP9VR4+2KZ1vXfMqsbp3Nw+OqyygAHAVt9j39GjBm/bJm+sZSxeIises8MJ5amn22aGkjnHrO2QfRnQNUq2EdK2lPTnUHCWcu3Ha4zJ9fBYvmfaPFBH6987WhID+hz7UaCPpQy0jNcAd/oCQB3IJMjQA71qMkeD9YD+Dg2l4Bmw6r4k4yV8SWyX630EO+9MIXK7aYM85E4t87x+i/xOLaGlTowPdhhkgigzhGsiGd2HneM+W13FUI98UyejZ7c5S1/l7zx9WELCl2bKKrLERFkvH+Uc1IV0twaeVb3rc3v/8bbEiMrGkMcrePn5E9qnxmrBa6BdwYCr+LKBZ9XfftqxnDlqtr7hkgDFAERGXHUdvRKy5Uxny/FrU2PX7ozVv52znMbdX+3G6gssc3CXvy08B2BBef/zz//ZbPtz0HLaaPHy7Puy+jQz2Ay9MbQ+E70SvDPCOO/aFuPaGfYesyPws3/artXeC/6N51as/6nNwsh4DupgmIkciJG38/WJLB+GlqN8wGwuc4EiS8HzW2zfMH639UWY/F8dY9UambCjMLtLvOYuOgkN54h9KHS0KWP4M9mtHfkdbQWub9dOy5me0R99BpU5IM6z+rfXd0caC7e4cnDKBeJ8MWduvzfavN/y9UivYCWZGHMf9bJdFx3TAedESBw5TV/Ztit97ygzGJZkBsvBVuz1FOzbMfvEMI646C0di+cE1WcZEkPmXda9W2NAm74ybHV3yZ0JDOg1kaTckqzlu/DAgge1M9ib3/xm/N7v/R727t1rnu/duxdveMMb8N73vhcA8O///b8Pdd/whjfgxBNPxBVXXIGf/dmfxZEjRwAAR44cwc/+7M/iyiuvxEknnYSf+Zmf+fsfyC7c78A7ZwHLjNSLjWYkKxJTUnkmeGAaiIA4i9d9Bz5iTP/1/9Zg00wrYX08yQyj6AavDzqmvGsd7gGXCcvQlXfvx+bIBdVDf/mRvBNnoK6RtmmICrWMS+ezRThGy0fZtnAYFCeOiQtOe8ThYIGSCgC2co87RjoqdRkwRghoRKj4cjlGPfd9NGilhjOYv2e7mTUADYcckcMJ79dKi+4h57GsVobsYINSYzNZ//7KONoWalteUR6/fVSUsqsDvJKnRvvI73Yfhop4xtUrM4IQF50hUoqC8ZQRT9Pv0p5W7oNAjs9bEftBN5G5w6WnA1J2qn1gMGD5zGDMKMwUA30GVqsUrttpGdsml9YCw/GwD5gSidNG0sV9YuTXu6Q6Zs/sG/fNZI7m2qdA1q2n5UUwVopeNv7m9VpOEax6oApIlllia0s7gxEDrhtWKwLNj6W2EY377BqXJc5ClH8ja1KUc0xpaH/asQz4kfOF4Dap9NY8DlpXPMZqTIEo9HiRAdzxDBpXfzXYwIPMtxuuFMvzjktC/yrNJefbsWxypkAu/1LFZs5dtgZrm8TBMfM14I1GGfG8RSbPCNBrLZYowidgqse4Zxg9ifSI8dD1+870Pa6LKcTqueZol2o/Y+eOCs3+SlvTdK8JTX44frcpwyyrW/Yt6VLvrVAfzHgcA4zK2BfSltpWjHwf/l1xpTyaKlmfxYAfD5RWso80HqB+7n/r8+c32195pTk5myg05uy+ygz2e+/6DO4+eNQ8M/PdyE7SMsYbBfUMDkxprEtPGZSlz+gM1t6veUTK05mWTmWZ8YFl5ODXM+mxHAvIfgsyPhlz4OPce8+D6XotWZoa/nLkn4b2uQzC+NwdG04JXSg4Mr4Ech5M91PPXzu/8nfVdc4QyBms+Cj221oH67Wlfwym1tCSa+q/GoBl38DIt671GYO4LxnJD9n/wHSJdp9R2QBtmkjloAU0qH1FHe83ZFsPOhVVBy77LiyNlaI2Sbjb9+DOmwPuhK4T+qkb28mVdUzO1TKV55mrTiVXXJKdo9XEfHOUj20/sraovofoK6lTKJHvvOMPM7z7dem/WadwLfTS/TbZ5xqk2GfpZVD5DPt7Cdx2Zwwu3imsUqLXW/tzWWDJlZDDM8sL+UAjfsWqXqfx3C68zdQUyZlcvhfhXdA4P/nxV3Ge2Assi1fFOxuehp3nvt+WEzQ7sxkfE+VKon9oyQeIc5V9MMoOxcihHdu2tOVxnMoU6usyWyHgnMEadX05gPOR0o99RnScI4/dtPn5c6r8rrRZI1zfTp8NUzauKRzKHEzol1jgedBJez4ht/lZv7YAuMxuwJwBiJ0ZLfVIzBJle1+7dRKdwXgQTCt4SPer3/n5YXUmIUfHLlLE6M6Ft2H6KY1bi9b4DJ0D/a2OgUK3NO3xptzAU450RM/7dFbM+C6qp2MmsHBtKWvZryFSBti9JvLBCA8YZ7Drr78ej3nMY8p///pf/2sAwFlnnWWev/GNbyx1brjhBvzCL/wCHvvYx+KpT30qTj75ZDzrWc/CiSeeiD/6oz9C13X4rd/6LfzQD/1Q6O9hD3sY3vve9+JhD3sY3va2t+Gkk07C85//fJx00kl4+9vfjoc//OF43/vehxNOOOF/2Bzswv0MnOJ51kidI2PJIF4PI8xGLOf7Y0bjuawJ9wVdN8wZOfyoAK2EE5NhxzHWOUfFumYCfNM8Y5pj+hCNSRnTmcGAKtBJ/a2+xxfuvHOihupiobTQFvByMPQV5aZjKENPC5xWmAAWFMywTIhPSQy0ozKCo1mLJc2RKQXayvveCYJD1EaV1KhgybIBEIGOZUcp+FNGlGdfaZfncG8ySrSulIVb/35fcmNhxSOkkgfbexZYZGSNbHBMbWGALU4mu5GUIQafjZl7LzNiRrggoDUFpbG8WzeWDkXDlfS7xHjQotXMgYNdybQoM1iKQltPon+oAiHzrHsZ7egxBoXOLjp4SGYXzO+jhGWOE0vBC/6TAmjmV2awqxWnlQSqLuLS9vW8Qp9llGPOmX7b+LOHZtch4/OZwbLZJ7UT5vxUeJzmeDOln8diGMuNeiEzACqeem5nHcssOYtlPT4T5XXH3LGk5eTRNpiy62UD3cnRCUS3kX3ZGdaGnTe034DbkCVAj/y+uIaKzlmTH5nAbwqTHPcOwOZ6mGx2lvr1yOQA0lTAi7X19wVRMcVfCF/P5ofhb9skWVvZOmw4hghWw3pu86w7Bb1HM8GbwVTPPngoAwMv78u1aKOiLWSLR2d28vGazrWEx5w9xzyfgfi92bnpyWt0eOSZB00JJhOCOx4DPFjlg9deo9qz77wzmP/67eh4Dt5pn9ZdwEP9xamX4La9B80zXY1msCTXUlFj0cxH95nBfN/yT22YH8rU/UkDStpdUmdJlu1jaQbCvo8GkJyjLDHlBL4T8Oc8d3rx/D4x2oBn6in6hVZWL8q4kEfUYSLvwMmuDS0jqGRmYhlM2uON/G7v3gut9MuZ0XBmSKEZjhpzsL2e39dTa2g3M9gAGdFJcqAXXdj/gDeeWcYgZ2CDyUakfS9o6W1XdBsNnp7xu0s+JQv+4pntx3duHDFpR5t2tAKezO/sz8d2wC2VRfIQWNYaAzNuN3UaxFGqnlWRhwKcI0q2OpZhz+9Mrmx9wzkZhzrPkec02+LC8yuRtQPErCN+f3gO3Ad2lzVGzr3WleHaiNziubNrr3WW/H1dlbtKHXVib813yPhFngFRnx0DBhkuNoi7I45PqYvfToM/14fz3/MzsR1gXoaZ2iNeh+Tb1Q37YJVMep6yWVh+ievUYoYvzGaH5Zm2jl23GCWEGFxPg2V20JW/RpoG9k5kMvVrgN2iwpzkGY4i37f2aszwZZ+XcxQWN99cOBub/RE6SAQS/70NjpnbAYKDtVvfLYdeQxPJN/BtLb5daELHzo6k4nzr6QuxCc6fJ74/KkDUfuT77igzWNtpS0Nn8I37OTm+b+A/uIzp+YKMbGXLHPVvMWFAbANw8kLhX+y3AOo6Y7S6lkXznfTJ6GmQkUlbrNwuPPBh4x8agaWwXq9Dhi8A2N7eNs8PHTpU/v3DP/zDAIBzzjkH1113HS666CKsVis89alPxcte9jL8/M//PJ7znOc0+3zRi16Eiy66CL/xG7+Bj370o7j44ovx2Mc+Fj/4gz+IX//1X8dTn/rU+26Au/CAg8hszgv2zAGDRex74TUoODOPwGw6aEzgdV8ZhoSZD9Hx5DDkxuI2zqaNbDPyeC9z9h1C9HkmQgS4wVmDVlonAJft24c3XP9xfPoHo0Oph9bB6kGcCbzwKIKBx3AuanCopxnrKRy9oTuFiC8NVEnVQGbOwKfxBRqZwWauY8ggKbD7KFiuqGNGdgxq20AMtBUeHREUh/XSLd5r9itzgz+DqnyyjGXLoDeVSaEqBaW8+7a+PmFAjbOU2jtANACJ+kULRyuvMKldh8xCwZDBjM9e+E9O+EEUXGJq4PpPrZypSoj47T0ybIt4OiZ1V6kjDjzTGflaQhWL6iFyfVMRx50oRSDybbQUOC3HnuHZga1NPOK448v6ofSOjk73MbR4b082UZL5/ueAGd5bTl9zSt1a1wmsGL6F7G27Jng2MW/EH5zrfKSUVRz6vSY0xuO8tVUVqMGQnmybw1+7saVKztyhlmV+CQ5GIuzPfHnOD0yslzYJaDq/tBwMWt+aOc3qtjvwaFuqZ+E98OtmGooBT3sLHsRotogHaThrzJ+JXnmDQECXnY6xZ/3PmDVv2bk7df13SlGhw5TXQXFH6I60N0krpB4hrmw/TYHsw6Xlh0ozcpD/bkShHI3v7bmd+l6FbpppzWGtMplpDloz4dvaEd/G2iO8pD8SC88X+Lv5fk3UbGue4dYreYYG/YzGj6jo1lknDO651qHyXDiT4L4rcyqMhjKWSa/wchMLw9PADXfX9tJ13HruDYoHt7bw8OOOszgsvK0hypKZ/luAXUsl323tlP5T9NsbVf1+98YPaXqd8+CckQfjrDF2LljX1sAzBAjFNbTMoBwU/sPDIEu05NadgjVe1P0W8Aq0T79rZ7AdxkOCOsiYSlukf8YDTp3zO4GBdkf8RZfBKPbc2TjUyiEDSgaG8zFnE+UvL/16E1nTt+uhtQy0M1jrrJza1rvOYANkcmjmPPCt1sBa3xVwx2UPMSyqZ7T9yGPYbPLZ9EW/UuDz578l35ftpltZHQHhV9U7Tztg5SP527syrE5zLAR35mQguE45eHngmWuy+RuNvS7jkvr2UZa2QLPLNCheP/I3AoePbOGhD6lnOHe8jbwcw4dfxxvXnC83BP9ZnFt6Go2Sl9/9dVXrMJQ4Nr0vm0tF8HT9hXJ/T95gnn4IMGfjBJLxq7F2uKHd8sJSTvQnfm0zPRu7rllDhqMfmQSFlrPf1Z07T9nZ5Xg6gPH9iHTUkdGYAIBnyKKZ6wlvEnjV3HAaYzYQ11a8mnMZ6HIlA5Hbh47NpNd9T/Xn7W+yNub40qrzde01+DymM2ZOQDlPZAZzz6NNoNJo837ifNP1PMw5MbWcsbQ+k2eUS+FqSXs7z9Q6jeOIa0C1lWtZdguTBjYLgWdxfa/dOLwut2WHm8xU5XF1+/tYr4ls2eB0Ic/LeP0w1T80HOmijczqXob2nR5iTr9fztO4Dv06MNc1e4bW8Tiennp+zQcAsPG1nnndwC488OEB4wz25Cc/eZYx8fDCF74QL3zhC+9Vv0972tPwjne84161sQsPPmAK6iVZDuYcMKSduehohoNXVAD1MJ8zuB2bMa0NlWFpGTk816jrZhOxQVOxh9/JvAuZshrGsDljgYe1koBZxDIDOaaXXKUk+DItoTAe4Zs7DQCNNvOFCLD0sV4xHbJDEUGp6QzmHreuiSwMuWM4WHS3LyfK6JAC2+XATDMC9FAvN79xWVP+Gw2tUyF50kh6L8ouquvXf553fBzaqmvWpxFlV/iZfYwclG5AjO7RmcJ8Fiw/x1pYs5EU3KinoSj7VaHoFDLNDGt8hLZ5QWOJU9TUmjLlMlcuMSOcp3kMuo4bBlnK76H/bJ61onlbRiQGOfNrGOTn6/72g8W51tObcp4t2BwNm9GOIbnNM7c3hdYzJ5BYcT7TmRfcNB61TIan8OGK1ZyjQ1GOComkEGLKAGBYR34Z6Gsi4ebIOiNH+u4dOZIgV3CfOsNhy2H++3hFbMEx8AORr0rSkUXWdtDCgayd3CrvFChs3bX4KwY5R5ot6LIhtJQYUWE5nU2x1vO8L1dAezxsmejMcyxbvDWGsL5mnB2AYd1EQ4ji91l9v/a6+Jo7vMwb2leEFgcF8UwbUlq+69QccEMSB8svRHkIaNG6hlxDzsVaJl7nUNaTqtMxT7kJmBqbVwzO0SLAzl+QPxoK9xhANKW8TGWunfAQ+Ct+RXbcGa3zaImc6UvwK4HVv4PTDXECZvsl8EccqGP9iMQUn7FTh4wle0KDN0h+/99+AH/xytfimx7+8Fp3IQ49uRq89NOSg8JZE8/tmHXFAs0MBvstAZIZTJX2BtAp59uhgMWJBopgmQwoyPhMWhnSpipGeObJZt35PnZFDCl8v9mMydH4NDjRTYzHf1/EQKqp/hkPVcrOyFFzUPZzRJ3LWJgOtjD4EQOSlPAOaIVueuS8nm0mSE3D9rZ2BuN0e2oN+cxmX63QI56XPFvE8G9NT8NqztHpNNP2nVHNPcjleVYFQlf29xJZNkV5a8opqZVxBWBrPO6RDs5ZyuHZ52njrsedjXljNX2NbUtO8tB10YFByvZ51FsxXqE+MTwINfbrttmzVlkRXEd41U+9HR975+vxNcdvNBtj/BDNKtMwyvs2vYOrnIfsOmABz7cyvi06bOTJ8tI3+7cp4xwDlgYX31ew6mIgNsDlb+qk13AG8/ycl+V0xhfRuehg67ovLP/UzOapypibVzBmGNNlEAPyNZ4tu0j59ooeFBo48X2Yg7l1Voi2rASyFjI7QzNSF+lq8g47DfkzZObywVV5aN8NaNb+52GYc9i2w96PTsrTbebA91EHpxy/Wz+SKi8rtHTGTGfkdYXFGayBf9N2VI7PuvbV47CyPD/U2g9rsiZZ9iWzTnqnlyf7MGZ0c/MjZ46nH4iOyh7/PrssY0pGqnwrC/YPQy3tsbPaO1DXvm3hpjPYxHnSO/6A8Q/yfCnkzG9NMWVgA2CFT4lkhNDwJedLjnZJr1NhQUdWdxHnndpfekvH/VoONNA420a6yX4yJ2g2vbvXRD744AFzTeQu7ML9CrxArRjtyWqzDmORoXLypDwdGUff/mTz9xmwbuRZdNziSBXGjswdS1MNVd4ooRecSz4t/MBk+0N53tC/1oxYSiGNPAMr8C07RJlhGuCZeXyUb1AMO2EQGciMGUT8VHNRqBstQwqBpcI7MzoADYUIc3hgxiP3nZoCv8FXlHAcb6ogcUyvbmxxlghY4y3f/21gGU5a19bNfRJDi5JnemcyqTgBSISXqifN7m+8lpNdQyq4mN28QDAAYhSdv7ovawmLgIkyydkZKnlWIrav2JBYBrGWMmBQ1rabbBm5WGawniww/43kWStCmUbyggynQEtdqOtHo++ymmO5BcbpJaC3iTjOza0zanBqKJjnsioB3InHz4OJXstTDj72WYxO1IaASE+5As5eE+nBZvKsfRt8k8aTffcWvxPp2txXp1nTEOem4Gs9NiJeep8oBWnslz2vc+2fGvKLuAaWZq+S9uh5TghUydhD+qPBBXNKGVGgZvcM0/wWctzH98k1kezoY042IOU0eiORa9GZYEdGNHSxtcfqtp7FMksCR2bawDIa66FG0cZ5HPr1e9XjEntt4rpATgr7LVu+p/B4Ox0t5fGIQ+HfgzzWCgiZOm/YHBZZk9DjUgZceTqM09K8OcegESlH+PmZ5J1vKR9C6P4sJNt2dutBw9z1zZH/IvyP/t2YnBbtYArXI2t7xh5rhiAz303DZ+TzAGssmpvykEEyvLd/pbR2RPAywdxX9riX9bIwuMhDzpJJSz9DuLJJ+N+ln6S1Xr3Rs+lsHfZMhT5nek34gF/DgNx47jMjaETZHrhvMldl45BinjfG5TPc8lZFt6KeKf3AIB/pd4SPJucM67WV5UBnBms5w0/N36wz5FcJDLKYe4ZBJ0X5+An6zHQk3ODNr2z1jbbOXcIaLcru6PUUrG1A01FfVtPPGADnHTH8lY8JxJnF1Wnte8bjCx/cGjujza3zcypLetElOl4lONmoORFa2qYlhKY2ymZEI9umCpqi85XimhjmKmbZjLpg4vSMyAP788zzOj6IxcjvqPOm/y6hSSYz2Bytlv4adLS1dpY6yLdguCaSr2P/7VkWMc+vCITrJJ1uWfDW5Xy2d38Fc0sn5yE4RHjn9tbZ7xkLD/LtyTPdFLUXBQcX7bzAynMHdnaNI3WOIe0yemzaF9nKrFuE73AsMNAGH5gU0VmSzMHj5h3aAJ8Bi9DNkc/180Zvk0DkX73j64D70FfbodOCDxT3ZzdznDGD5D9D+wFvV8/z38askYdMw3o+mUOyngumR734y7dgvbaOcnJOTV1Xza4J5PbYKboQa9R267PcR35niTNYSHqSnVNZjtdo+jbmQNbgVI2BqiSzjlhCC69PYcHqpbxzsjKJSzI5l91ceJ0X25/lbHXZB7sunr/Sph+3B5/dzts6Wb2WjLrrDPbgg0WZwV7/+tffJ52llPDWt771PmlrF3bhHxIYiZy7VqIKmfONh4wA3lCZidJzosn7mnRPtacPOxbFDcT5C04j7qTqXKSHvypgSkEjSqNw0JGvyAQ+DeJA1DKWTgE1OpAGgvNWKcqzgFEDMzWKNV+XHrqRgRQmYG5NJ+KowpQ4rFwrM1hljpzygylEOiAHxUkXoz3CfMS2GB6t8ScIkxlftp4Dy9aLVzgy5fMkMKN2WDdESdRqayzj13tQmLlpFmG3CDbZpsWWmjqy0CtX/D7QTirheseZLDN9T7IMcBtHGxxjv3KCAF8v0WGDGZ999MxQE9Sow5xxdGa/lvDdESfIzPotwpnDxV+jMpZdEYVBa7Fn8GgZ3a9AK3vjEuXIbArpBSBnUZ4nnqqSOL44gZ58R+EJpihDpZ/tNZDJb3bFarxuUq7N0e36s9ZnWsw0+5DOeBBAnz9M0CVzFa/2QJhT5sA1SypzdEJiTk4a3WgUMkhQ4Z5tQebYSa+xCZ1wA8VO1nfLkYsZm8taIUo2rnydx4Xu5RAa6/DIdn0yvnds/F6BnFUR5htuDWFYN5H5pXxnuHaqwfPPONzU+XHtU/53ClJQ7rZ4kCXtprEBg1eDr6H9kPOJK9WMhYE69Pi12iFhu7EG55wwpiHTPdssS/g2ihPZl82rCObYO2L0DWW88RgIVyvIOTkFOYvM5Oi6Q5OPjeDk6LenC4HeNOaCzXvOGd2K8DS6jKsTo3/d+1Y7jS4YD7c9keFrCib5YvKS7RspF66J3EHbnlT6CGj212fsmfcGi4p1di0i46kYZPCMHO1M1ceet0l4Db9H2JnhHRyYTqUpB0ye7fE5m3N/3aIg23JwWuq0PjbT1A905Axs6ZlYy76+0K7BII7wnaOjfKR1revuGJhrIjGd4SkY0TAfoPdghe11jyNHt/HwE44H0NgX4xq210QKLWm3ncEz/YclmG2fPpt+lRmWf5+43/g3Z2ueNEYdVEywT/LGbq6P7XPGCvqMtvTGQzObBqUp/KracQjUeVfX1fPDjNP6mzODsQ4cFFqjs9J42dm2veyZ4OrpmHYGawYMOYxZ8Cp10mdZgelNCc5A7XAJ60Eb1Ms0kXNC9cGot814QwooPJjTAyvnYd0PWeeOFYb9w85wto66wJOtUodtxhfM6LaKI0jgYQco+8J9y1VqO1WWdtQaYLxL6+wfZJj2XGqcV+M6bzm06F8D3VTOCdnpjnODJhH6wuRAGmDZKtccnbRPnGfDsx3q6MdK/iyPTjSNsbSbJEkOxu/hohnklodVV+uuVglrnxksEUcnckZJ3wbG8bTOw1YiAb8X/HPfWsgMtrA/lkxA/x3+bXnRPrMMuuy7wbbh9u7nLr4B60f1YR96PEMWLUYnGuuYPfM8S+1b1kmdTTkbNYSbd3LEh+tr7H6H46NCG7MgCT3adXKOSQI8nWPZ2VoZ/RktjNdCwky878+3re1H/plZBy4z2FQSDkZPNQhfNNUfwHXOQLwaeRce+LDIGewd73hHW9m4AKTurjPYLjxYQRxO5raIPyhYOzSd6JL7pll7aKe8Pve2W/GtX/eoxYzmFATGSGHTdvqpjFdQ5BPFfqk3WpFaQmnoB8ygTSJzMO9A4D2+txccivLJlxhMBRFmbK/GLceodlFYsV7gtl6bMa9GAKntFWu1xfE9ooDGjCAr8rwlPInQ4pUfTEHTJSu8VIefNjMPCEPrRkUEula0cVZ17HOe7aQy1cs22/KSrK5daFWg9PM/E1WRLY3xbdDsOsYWG6Nt9TfMdQMDGIWs1DnaEfeo/PVrnhpnHH3sug5rlcGIRdx6IddkqVA0vggN6jdTWFC6TCeeOI0RhQHAIxL1vm3RdBbRxpTPWnGkkV41MoDxq5aswFP7yHRfJcQIQ78fJap39pytKN9riEqrZZGYgQZ1KTiuAgsVUojryDzLItTKT35FnY9aFaFRl7IRXKBaXaag0kpuDyYylSh08tCoGls8LPmVob6YrLPpGQ1lBgRiufGdnhJP31s6QKbs9nxN7Zucm+4cT6RN4Z2WQuuKpWDzym1aRtfiAvkwOOvmyMPSev7cIbgeC3g+ii0b+f5TbUwauRu0il0pECIpg+KfZOnz7QqdJWWYo2MTbWIEXQJDMUbPWnuSRzEvgTBn4NfJWxkpBloscyLwzQ4dnXnXPrzk6x41th3X5r3h45p9txwzSLkyt/QshUGYrSvZF0uycM1l5hE+wZKARqZNNXGJyE2BjhJaQpW5Ae2GfJzn93644gTTv1v7dieZwTZ7lxlsYST1tOKYzBPLAOuubxpLFpnHn1cAGwPnM6Vc4aW9zLBwLgHgHz/pKbj0lptMWSZPTzkc2L5A+V5Pi+v1VlNtzV8n1MFF5+e6R9jVKsMPp9wHd+iTd8M1SqRvxt83eAzvZFBwbV5TvDNgznoZozML4UuWZNDIZZ5atI7o3pL9bsN5PT+elmHLZNZrrMHiCIFBdxLwuc9Plfs/3HL7AfzNR7+I//3HvwcAX5cSqMKMwdHBsgLLlOIdFkq9ZB94o1rXaToWxxGOGveg74GV++hMbmBt9+AZ0q28QnSIjnaYIDdE2WOYhxTaYDgx2jHQ1Nb5JZm73Nhypa96fqYydfc94a0hsk27jSlawvWBrbIRjm5u1/e0WmR4fBbK4VnjikJyewLNAuUzuWgM3LfU30PGKmd2+S5mf3EaaZw0kenVRIX2jXSyyTc1nq/XPTZWx37pEdOtAVxOYFnAWs66847xsZxuX3RIoT8WiOnaXTkmOp7RmTpxt/j/OqaIM6N9nt56Oip7sv6OfJLfx9IHtY017GUweDZuzIClhU17nL9ycgFPEOeAjNGV8dnDpqBkaFQ1mC63JzSgz0PGqyCKpRg4L1dK2mfkm43nVtPx0/3Wa92Um5AP2O8m7+W/tUsmUPjL3taJZ7y7wYTeRgNSRz+LzjbMKartcG4hrvdWoAHXF1RnsPqs73MIVPR7htoKHH5+vWQAXRcLL5HHdJs+gykDrz/wOmOfpCMDzcxgzAG6c07tyc17cryMv3ZW/um/+dA+oVeYz5bt6WekNY01NXNGefx24cEDi5zBfuInfmJWgbELu/DVBEw4n9shVdmkiTgxirvDqpXqn+3JdrarCL/4mU/jzS980djnvd/fXkmiEYjKfjtIa3CPzJc36ngGfY4RZwbE1rVTU+ecTtHZAdheokwubZP0qkxRAmI4leLkOXf+sQ0mxYC0xqdTvQuz6JlVzxwwYThEJebMoy6b30yY0ij0xvvso0Okj9roidJwRdpiUVFTxupm5HKDQR2EWd6WxUMcTgSL5VeBARhTFnua4tKLo5FRzuOsltacYTOk+s62fhGsZQ+Nz3tVIty/HhSXta6P/p+99jLHyO/oXMkVzKa8YtRtRsPcVMQu+XoM9ZZg4vdlxb0aLPwzYMrYQ4y7RDm+WsVo3mIAokawVDJ/6B5YfxnsKgpGo+cFQOnv3oos1SlD9z9RdvxWNJsJUaoVhcAMoszBQzulFeGvLsZIuzK5xgzxOw/KkCiMapyZsm0qM5hGjbbt9khUijWuQms4FU7TqZiNBiCR1mpfT+1gj1eNMI9YTGX8pGsg6X/GsQ5jWXg25BbdYPsxN6LjG9fpzNDegVbaMUr6/UlFNtwZsqCvJcCcDaW/ivO0IrzgB45OzoRHyAjf2p+TFcdlQJXXrh0qF0zw/PeGdjJ6Jl3FdcPqx7VI++mmz4EyF6bPURlXyuSQ5WoOdNF33HKjcQYz/E3me7YFS2Uwv6ZqMI1rbwEPGQwsvu1Gfwh807zsNDTP5RdPdgOv4BXdPpOenNPT3QdonWXSx1R7wRmM8H3md7Md/pxF3/qi9aixPFzfZztHrYrgBvlEnldjfByYlxt9Hdu1WjeuXDE0iwyYSZAHPa8qfMejvx6X5BtNf+xKMpatmgFzcJJ1Y2WqOD4Nmg9uOwY2DIKj88LKPFffkMgCTWNQbmT4BZcDhI7F9hkvE2Vyj+tSYEEf5UwlzS25pjZLu+6Z/KWBZKOxRzKfCK3RwK/N4TiY64VmHAeE1mr4as0Mtu6JgYs4a/lMgvLP9SQNydhw9EB4T9t+DvyWL6O/j3dQZ/uLnSMrNy7mGNmirYMzS7sP5pDtyw5Bnqp/eN7NntG96D7IxmT8YM4YHQ84fWpeWVfw8DoN34acH4Se5hy+0SolE0g1ucd2yCv6b76l5GTWB3dkicGxrUBG7hSgcMox2HhOz6sdaEu1bP7E9UGOaB2423SMLnwGzN9GMdLHvaONrW/Pgh06stda9YNuy5XzTnZDGcsbrbyeLUfHFA9yXgWnMu0Ek7lT5fwxE3EumYu0fEBqGuqbY7Yi/5sFsgHEEQdctx3nG8Zx1+MvhXxbZa7ImObA8x000MHhMpf9yEOwB0mQghuDd/wSvtBnBvO3aQxlSXYpIs+vyjpr8Lt+vRluTK99+963FgJxGvM1mxmsJ8EMC9ZcwrSzNBBps9A/X491qZvyATTS/9IVQr8d/Pla/x2zvdk9I/Roiu5mJ4/6gIoyph1dE7nkSnp31mei74ZbP7kGN83iILKh0mnHTGH2gabpAExdhTYAOx9ix2zZUz1M0dOwf+TMDY1wWeteHrG7cD+ExZnBdmEXdkEDN1JPHclycJhnhBFsKb8jcys1SgcT+DaYsfF/Sw1P7dbtYaeh5XTlChHhU9q2DgAiaGqjyxy0cbCs92x0u3rVpRRSRE/iMLM+ah9yr7UXzIghFhijfN3a8MokLBAocvS0n3O8aEXvalj3PY5jd9E3Fp1MaYz2icxiYAaz3Oduwz1YxAo1grh116UoaABiYOUMI/vONVPPMgiRiUvt/Vm+WWTot13nc8bHanjPIwoLsr/oenCZwMY2fPRLjS4DNlJnhByvACj/jJIoV4poe1gWxb597wXiKcc7oxjIbu9lLpQxI0vLSEOGRTP0tDL8iDFOz/FK9c0iR/vsonQw7A1JI67xo4bTHI0odjzWUDgIZJwSsuyNIaoXy5QjizJELdhYqfRc5zgus1TOJYBE/2R+9W+pO3XmgEcHejnNOzj5sywjRo0XfsO0q85a8r6UcQjp6288sixLGXNOBdQ558q3rgbzLNDybFMWXb/PsvqHngJZlwZy/Df91kyx18DZ04NBadEay3zGkfr92Zv4hJ5jmStCGzqDiCehY1P1qiF+up2dOojF4pznWkQfGkYw3g/HNRhxMpBWbm5yY/04YDyi/Uf4EfEGoRPNsqrVHHkX4ZXA6KZbs62xcUcmf3gvU8CG9TRBf1uzNLUqDHsRRTleZ+HazeOHYPPI5MNJR0syF+3C9mekV7J/ppvoXGNeliu4qxn2fHZRontDqDSo2rDn38QeDSQ507VjygR67fmq6d9zeDHFeKsPz+et+x5dt6L1/Hi1EUD2D3OEk3Lxmsh6NZlXKIZI/MTf1+AFhxNipo4pWiR9eCct5ngwlVFGQ3Emc2vBn6XM6OYwK3ywjIGV9LJ6NTBYRsQb+EN2nwY/wPQI0gbP/EsCZDKXBSr/tYPDuAHc+T1jhY4aUJcYSJgBqRimirwL8y5euxTXH+u1NQd2/3D6yzJECExdYfdgBlm35TfI9eaZBDEhB5mxd3UzRgeZGf4vfPtcHQ/kW5ozddHZ72g6+bjUaaHRts+uDlgdFtNbeb6pyIlyHsDKHmHuc1vu4s4q3EF3bKpJW0BwZ3pBnX0+0FMZXxHUrM49Y1rvyWjMTpwzzdmksm2KbSABYX93xHmXBfaxjGoxcxTJbJM8T2z5Eo2TPNVBnHA4D0EW8fyx17fyc1zzI/qvh9acr9fLdfIMpmRS/5zpvViANMACHS34zGsA7M0befyWjn9m68DjbIJWhe9n7RC8p9QK4ZYH1DnyzjJwtFvPQIb5CX+NWX3NeJMoJweH10KnLf5LMpovyTyW7XAWQaVNFh9biOt/pzSb3mZR9qtTpEfH90Hnu2iOBiLpxsN0hcM6ay3PKCNZnH01lolOP9foMfCOm8xB0F9fLFnUSpmcAz1OC5hExhd3bizy3l9zbfgesueoTqyxIOV8C8+F53Q6/0kCgEqvdFYvr5sJmarc/MzR+ta7uUDYDDsP7FxiN2xNnQFTwZeFd3Bna++/FQki8ln6ADunwqcM/Au/YrsUDfshh/dTa6DgSuoCnAfahQc2HHsu1V3Yha9i8EycnJlLZMK5IqEdOQRm+mud21OC7TpXtvzeK/BS7c8cfry0PUDdAzgm2feUpn/bfqJxWZgCKzDwA9K3JSgOUUE7cQZrRzmZPnIrYoVnewmK6nDw26j5pnBNFKVzwKKPW5nClmYGKxFSLOptRiFShWPVXo6Gcs/wUzxydEBwAwj7quwl0lYH4Lcv/jz++EtfmO4XXuE4WZyhFXGmBvR5eqXLtBx4Cpo5MtE2U4Y1oNTtnstfb2DxzGgp6w0+efimk8IEbBRHwW9i7ww4WJcM3YW9/q6tCFpkPEDMrFCiVokQS/e5/Jte6dNSsvLrMAanyjjHfl9mtCJ5h9/ecUYEtLmsEYAYhBzMOJAM9aYVJhWX+c0V9gl18LBnQ3DIRGPuQSKvWjj4ZyBCqPnN+IM4d4/+mq/BI44/XvUVo94MzpmfE1P0VBto/f6XZ5pGBxqW5YyfXh+V/k7RAU5X+NWUkR57BUlwGhj/0uhiYjDpMwanUkZ7puYE8i24k5iHViRdOG9QaTmNxGVKrRmlavm+2T7TWT6mHIE0jY3ODDs8IMH1tmwfztKQ3DhvUelqjAaNjVAHMcSxtbKR6va5sxDoPmnCzFlv+oxVSV+y47J7Ttry5wWd28gj+4jX6vRg64bsXTsYKzBNW6Iq/L4Hmu2M0HWrfCUyUqG5hCCrQrRtUnJmaY44x7aCMtbzAOQb0vU8IwcNeHMDBjM8s/NTQ8iA7N778q110zRqLqBrJarYdT5lHPSyMIvKZrJWNRbUzuq1FR3Flz3TT4YsNCoTmMh+iklYJRtI1BN5TgNzMGX8qeZJpkD4XhdfFK4HaWZOG8EnaqOG8PG5N+Zp5X9dq54X0jhPy/LU8JujcYw2jlEuafD8Lblyp1dFJvAIdO44HwMDKGSOhyyZqEuJzhSMlvKrHjkyixwQ3V+H7X2gq3vggc922GfGD0UdAmT/Ot7T8/T8mkjfevxts4NbXWb5bfpy54an3Ux/QM8ovuZagVm2rVDVtKsdEIQmzepWEJ0WpD8WgMbwlA5XTocneAFxvqhMo8oymXegp6U7mxksRyO9Q2/RsxZoZ6V69qpBEYGCO34xJ5V4naQ/5wbeuYvzq0bh5RHtmFsyP5XzaBwLbB+M3AcdPDnHY7Dozujo0quzdwrDuebmG9EGMNgF5s+DGOgax+vPupiNlF/LrKEGfdT9TK85JAJwK6Owx9k466t+ajkLA+1u98McfakdK0cH9jJeorv0decCB7WTr33m1kKOy33JGb0kw9iS4MbaZyzfE13wcE504frYEEiPYa1EnW/UY0jmIl839zlcCcvWiLQh4zDlAu/rwZ8vDdpA6Kqeg77PdD15XmHlgmVigIHlMweaG/Vp4UpPxHF6Usoy7zEdVCK2OanPdjSjt94Bn4HMVQwSUn32LlglR/2EbmsJMJ6NlVk5XobrQMnZuuRUz44m5zh2fxXpINdEeunXz/Cs1iuBRDljg2Xrc6gZOTjHNaR/t87alki1ExvxLjwwYNcZbBd24ViAnL5Logx0GWqEz8RxSZhPU5A7qjDlxdRRXuovYEqXgj5AiuLMMDcxWssbzTSznTOs530eeykM40KcwmlJGCjww09AR+8kLLsmUuZfOwzMQYzmknlwjGKOCrGWLndunoRxmnIE8ILREsZqrda7bauBx4QjC33m1pZPge4Fz1ZbfnqKc1JTJctXS0t4Synh1sOHcNXd+2l7uueUEo6s19h75EgRSJcCTxXPDfGz9Ap6/DOMN9zeRzRIWCVjNs5TImT5zGBrt96HvzkKXw0jhC4TrqFkAhMxfBR8Oj0+74DTuDqF4MTWFCsnCu8grIBHQ8k6kVdrFwpFBfuc45hZumzZW6Q+U0IKeMevlhIwIaabD0bfjDED1jI6ep/ILPqbyl6kZ7+p0rjCgXYwORpRlDFhX5+R1jExppIe5i46P77wG07Ecx/zWNdurROMGbAGD4FXv+ib9ZDcCLXgP+LYULjodezbsKuRn6lLMjCy9rvQluI/ksV/khpP0CKmUEaDboS6iGPNiGd2E61CSwK6sWzj7MtAyECXhfBP9Q3ELH9jPRuBTr67k1J5Zr6dQ3RM8usrUx4x4Dd1NpNX8epj5tzCs5Rgbp0QflDQWEozG2g3nwYEqKcQl1cW49Ocx9hPwSSDZjjyWRtZ1sVjAb83dtLmgi1UgDlCtSprfolneEQ4tzxerWzJHodu3nWSrnOaBVLj4RXLhHctCvoZ/i+OIdM1MuBgxzMn5wQjP5HfGLRESGpQDHWHMv5ql22XHSNkw3XBMoDlV6acvQ1fk6rcyAKj5hzaemRsdB1aRiC5fowpqVvAAoRYxqs5I2qp3yjrr5z3uHvQjlbiGEnxl05HkKxvmq4MBgWNI+MLeMBTzg0+vsjOFC3XRpufZUE5O3UEA9qG0pYeZVlmMJI1BFU/EvQJRQ7S5SNTrAOedF0GwdA44TTRygy2xFH0wQbh6ltwZ62YSZBdq+OvnBydmUw9dh76DBew6yP7a4msjpftAqbn89ClZU5jMn6jc3Fl507pskcMj2SNz94hl9XRuBORh9Lk4RXPXFjeBzrMdBL1LzO+elnZ9mfpbey/jdMSI2nIvOKeMfmVOjOTZyxLWsxwOvLAmO7TOBtovi2bP6Wcz8bHaH4r481fnHoxbrrt7oLf8NfyG0Ff2+Kb7mVmsJ/8lffS554+ADz4kzmDtXiY7OYDQFP/WZ26ahv1zJoeE8sMZuq09mObTSn9a9ylin9Gatr1kV03/rdr2wKTa1qyvDt7STZID96eUOWPyWoLEgssCKJD1BdMtxlvt9E6Qv1stbK64JwxOJl4Z1tCX/s+8nQDrY32o4wof0oX4ZwSPkpoii9fnjt83PQsdQaLwQ/cuVI7SjJnwyCjwvIOjOfmwYIRz+AoScowaJ3zwruz50DkT5cEK0vZFnhHwWEP2ff6b2gbEWeaFTDUc8EpOfL/kVZMO5n5veUdbb2O1+/fFGj4yDO6edd/geG7pC41r+S2nDH57ebPvwfivhpwCI92ncEehLDomsg5uPjii3Haaafh2muvxeHDh/HWt761vNva2sLtt9+OlBIe97jH3Rfd7cIu/IMDO2iX+GvMlhkP6hDdw9ryqX5bfaItOGXk4YCcQYu1adtxvw2fxAzZ7mCycsHkwQVE5awuzo1tRMD25dAy1lrcpM0uJWwvyAwmdZZfZRSvJig4EyGHKmXdfC5RfGeMEZQE9xawaEAvCJfMYK6xVorXkgrYVWDZvHhmsC4of/zGo05ABKaYTbavtILJPB/Le4eXZr8Arj1wN95/zVX4n0988mx5j3N8Rtb1LCNtGde5zGDQSrVxTfpMYFr47cP7aPiJKXzLbnI959lsb4NANpM9LC4VAwl1vRWlisp4RDN2gQgyBAVWDmROgKjgkza78u/hnTcS0msi+0Hh4XHx89lSPOXcviZSFj0jTwF/sMiUSAiX0tGp69t2Av6LNJeHrGNRNpt36qofB11C03A0Vh0F58gT5MbvYeqJoiMlS9/JejeK8sZeCcrpDPzcj3w3rr7+Tlo+OToQRwODiB/bQDvivokZ7YYIxM31Gqdeew32POnJAZdBaeXaz8wZSN7lyUVAHRwa5y07q2VfzTvmxjkThfpS4bwV8dZ0vvO4FgUMo0fTfbOzlEUHmv4yMSQ3jME7g4ZjIVlf02fktGOg8ycZz1SgX/tyRLFKnH70Gdx0OqBrKYX1PgXxmsjl8+0z7KXwj4oDOe6iAZauixzG2cTQnWHBcRfTPP+OICXcsbWJ2zY38W0nPOyYnBSnoOAZzsQ4hjlZ0zuvsxko69C97NzCbu0fDwylDp7Hm+uLO0rG78qdzCjtcnySyHdTeM1lxvT9tBxVtkm66A6gzlXtDCj2uQ8C0NH+Q3ZXlZ1EIrvXPXDceLUk41XGnz6DGDLnURm+7Nw1Wa/Gt9o5bKOzWcd6zAfHeKMfdVBaem7m8cp016a/KkbLNQwCv0YOdGGZ+bXwuZTxGQUy/FnKM/qNw2ny8XNXTukOm1mGu/m9sKB5Wm+QcbhD+xJnYxaIKI55lK4gGoNB2EHZTuK4J/9msA7GtrZhjssL941c80CDPsfMYIxv8o5fElAVHL18PZc9DGDBur6ediRKStdWy5sK5IwMhmyy/xit4jqEHDIpJjcfSxwQPL3xuq4MuEwvO1uXPaGppi2iT2gZjFkGY/lOkt3NnDmw9FNwXzpHU47xfWM/a9Bnb9XTqDMVcd8zvQ17RgNBWcCsq+u/r+d9tC5Bj1U/8DSSORG09uCddx3G5tZavYHRs0ldrTNufR92vfZO4Irr7sSJOCk8p05e3TLHL1Y3OCGMP6LjZp33oGcb+SOfzclAhgkiF1oXHKMIvzAXiMwcAf146jjsu+is4H/PS0/DnLjzfKwbMlwRft4HSbP2Gc1me2oJvnbMbR5Nl9mJ83el3fWZ/NvSnZhwYHAQi2uJnj3I8InWgHrNpExFGh2g4nmbSzu6n+C45uVd99O31/otEPelO9fyeCOGnr8+Zgbj1+y6/aTrANFeO9JImh3Q8S96adU9V59xXTdfjy2dFXNo7v3GJMCcdf1+j87jdlA1AcRkVxZfYDJZg4DJBC/8/0SdnHMIeJ3CIZ6VjvY5mYpmdicOpwAJHBk79YE+faCnfv35/SuY2g5Z5jo2E7vOYA8+uFfOYPv378frX/96vP/97wdQGQfvDPbsZz8b+/btw0UXXYTv+I7vuFcI78Iu3F/ACz/qTygnjI4xiuaGAYoakGzBlse2KC+uO3gAT3z4IxSTz4m3NLkkm8YcCDrBMOH4bcGxMnwIjinGsO3nDVbAl7Fdf/N+PP4bv5YefPE6uIZxcoHxT7e5tQPuZanyeVgXDUVr8tEFDUY0xXqz/cJHyJExuN9M8PXVxaixPJsPT3XPFNU+BX1h1InC1cxDIkZmMk9zhl4/orLWaPk0OhBOz4N8/7VSZO3EqOj3X1lPDtGWc4ppayw7/HuZEtFsa2eQs1ce2ojdXphcp5QLwgkGgai3UlTImldeKfoR1tAEDaW/nVOOj44NV1SAC1/aKFGzeeXglNtq0ysvpb4MqBVN2bzO0a37mi7bluNOK6Nil2QMS4jZqJDbe0Q/K+ejGyMXT2I7x2yID+exEiYzQmTPUCYqNng7EZaMZ1DGxme1z3jOM2flQBvQcLYx57enk/x8msQ/aQNvXJt6Cdazmexlxxh5wVtw23f0KH730oupMxjAlf0841QiiqyYfckrlFo6RjFQ2DEtjDR1/Ri8p6uqNuajiGu7xIEhR2Vj5UUnGnY83FDaOr2HKD7BWa/HzPfWTqE1l7rh4btMt5MR977th0XwJeTsFLNkPVIHPScHhMAHtJwm2by2B3esU1z6dzilEYlohCd9E8rNUA0GyuzHxCLp82A86BVuxzBWqkwdn593990498B+/PY3f9sOG112YgXHy5G/ZYOYpdH+3KJFmJzE52zJOWb2WI77J/SVlvExPpPXXOYu6YxnS4y0aN75C+69a7MxOUwmbDn4egex4oTiDafB4V/xBY4HrtnFLO/gu/fnN1DXy4pknGVj81lV+yxXXmRTXmcIiJnSp3m7pdkzll6/U5T1Tt7wvHCZn8YBa7PRtMfgnZoqf1Dnf+X2uzg96DotB72MaAiUdrtumRlEnB68/kPm6r4AnnW8vTeW8EE107JtU86SVZewtW2dNTy/7w1btRWRm6Qux8FcS9RYCCILMu1SwrKAsgcb9L11tGnJ1X7dlyy3Tu5h9WjGViej+z5tZjA5xvmZOmWELeNka5tlsqe6jpgZzfOWCW3HZGlXz0UG4rWJwjiVnznIBXPQkSw0AuyaSEHZP08dyxplHRM86l6n0kHLITOZQSb4rHXOs0a1tTt7N1bWqZjpF5q3IjAHsXDmwmYCJdkOvYHcr1OjT/Z8lYwlPIur3cuNsq+0wVwHV+o6fZ+BlW6L74d7mxmsBex8YfPNnrHMqUG3KWeIevaQjQ087WsfCaDKN9TZz1xhzc9MzT+ETDRAI1vojB6tfKPIB3ln9VAtrKlp2t4Cz9sN8jSwds+8k3oJ5p04S6tTvT1P0nxkNG/PtB33HSvP9HjNGoW/Ufi6/TT8O9pYBr6Q88k0Y5z7Qn1fA/HFaVPWuLfBFJqhabA6Pzz/U2lMLu9N3+G3Q1fRZzM2NwficJ7d3vCOTJ6fCHven4+lXVfE6W8kQD4E8RonWDsmgMvjrbUlPLCH0i5zQJqAlpN20Pnr7GrewU7a2qE3WFuPV0EHm1VaOFOnod+mN3npzGA52nm9Pi4EJmRCw4msXcoRHhdwTujZrdnsddg1OH0IFrD9lvE2ZKpdZ7AHHxzzNZFbW1t43eteh/e///044YQTsGfPHjzkIQ8J5U444QT89E//NPq+x3vfy9Ov7sIuPBAhCGzMAIwodJX6iEolYTyi8pMcYK4/XedHz/gI7dPDOufCeO/EuDtZ0jFB1OhEFCY5Dw4e2nlOwBuYklPAAAk//It/iWtvuoujRHD29ksxTk5BRSnTaJ9W3wWHBVNclM/kXevamyhk2IFog2pTSZljVCU3eqn3RAHkjQY1M1gUNDkeEqESGXdvcIhMW3RYyRk0CpFFHRt+yv320HKO4nbx5cKttKGjDIM/RktRBWIsRFSIAQuM6sLoimpnvrhjdH3mCStYF8W8Ku+Z3CjQjGuLzIdXcAGW8W+V8e2EZ6p/2553qJPMS1FwDkrrLFEt9hlL6T9k63NMOuL31PJnEdAWKBBzzkQ4FGWqFYrZvhzoFTEuCa5u3cga5cZOP85I71pGLg9L6S2tOEKhAe4M5w4etU4XFE9ckSdzMQVFgCW7zwi5DoemEty1HhS/hGfx1zyG64TG19o51ygrNDIFNz0/dQ2KMcJHzDEFBqNJCXNzOkT8e7WD/67qqA/O1bZe5C5a1y0xOoxxvcyt1ZSi0ku+6SInc6LEapbNXGmSIZ86HjBL8A8L0huqPE+boxMZc2Je4uwecNG/wZ2QgEGJPzW/rQACMSQDwNHN7fqMd+OUtTyCkF0XEPoktMIbKJc45rN9xYDsSlJ3+K5UhjF9LiPYGYhXfDBeLCjy41q5t9dEVkdFe9XtiMHCRqS0pbOsGFXQkWe6HONlZY2hoM95H7/f84gpOyPmDBvsWZj/7K/WavFJtq1WNmUDfr3lHM6iWtTL4bZM68rGZvkGcswwv3LZsOb6WHsDqlOqG0cvbwQidRif2PfR6V/WWEsWjvxcNBrbzGB2nHK+hevDQ0+uD89bEENnSjFzLgOWdTiDGM7GfzOnuOHctEp3dt7I+dq7dbdKll/x2X4Ar1tq84yDXMfXfNcti86XfRMzs7aNLTu9KrKle2CGGjFazZ8fE3xkoSuWR2H7xeuJWPDNksxgyFw/FmVpjesyJ0YAOLpezxd6gIDXJcr38sAyhPv9E9uOfHS9jseCx0HLerL+i1G7MsxN8PoydtkAc7Rijlc9RtnM6SxCFpGJ9SM018fMBYeIgKPUtsDXNw/4HN6BZretc2qft5xGpf14U4SlFV4vxXQztu1xr7vzwD9rgQ9i3NjojAMT08UPztbzWd4TOec6lwm0nl3TuFrnsHZmsDpvlvbNZQbrgeLkoEXD0H4jsNGjL3R1ez3/DY4FqOMXeGaw4HRC6obpEf5BlXv4ccfhf3nK04bXmTlxRX13y2FB0ySmI1+SEODOI0fMb3Ztn9CP6cDh6OCi10uLtod2ssgwnt9z+kgp54DqxYPtxDtqxAxtTL6axR3zjinS7tLzHqRNRq+o01Me+VxPZxoBxEGeJGtR9Bri5JRVff13LKposs1eV2mC1Hd9h9/u7Ch/3TmQYpDHkBks8mjafjZkBVYdBF2rmx/CX5R2Yev5s9dnQGXfk+m62+uGLyYWFCS0YxLG4jbI3taJmcHsmPqeB4JOd9uwtzjUtN608NUTGhrZl4y/YvKFtylp/SRzJk1dXCurVczSB0Q5Vng3r1/u4ddIBP/eJm6IdHyqrak534UHJhyzM9hb3/pWfPazn8VTn/pUfPnLX8YHPvABPPKRj6Rlf+iHfggA8KlPfepYu9uFXbh/ATXoRAY4EQZ3zhhHFd2dF8aj0MialXItyGOrOzWm0Y5GYEoCbkBVZbqEj332KvzUv34fb8QrgeAYyfF1TTVtkYvRxfEZ79i3VJmKpcpN6YFf38P78BHUgnM0oo9MH1F029/OeENQr4rWWRQLtBQxgGLAFROtYSrybrXqqPKDR0XZ+Vj5SCGMgsUCJbfl3+eZTMp0NYxiO1kvMq+tqy+m1h93kHACM9r3rUdFe21jVsAnDGdgxJUSSTPdfR5Tnqs+Wimv29l1/D6wSiy65618Nu0AmHTf4x3uIqBiUA6xIKro9BtThBdBkJVjyiU3DpNGP4Nm62KZvQanPIvzcHVkvAZnRZ3JeESZaMKZswRjPL0RbxgnO9fm95E4BC11LpiDrNZs29lSn0fRkS6mVa+4Tp8L3IHE7LUsDtO1jnfsFZrhHc39dGrHJD1ug3ODj2ldMzTsG8EsCtAZEQ9PxZJ7Mhgk7NO64qYhOe0J24+mTa0MgqMRfu9kvmcBPm95orypSxzYKh8zD0wRQtAfyhba7Oksc9RbrtT04NdwxMM6u2fk4PjClCix/9aXreDXl8Avnn0m3nvVFY12p8eeANx+5yG84ifeph5Guh8dbohyLNtnQeEILWN4PJiDVhsiv9AGh2JLNFrsF8WUzBzHuGYM/yY00W0amhVhB0yvL+l0wlTeWd62X5Nx0nz7ZZxBxprGg8mjNBsdNYgTebS1gUp/bHG0z1M7EPbe7vswloULrmNR/jkGd7WizWsVx1ct5D2YHNS6GsY/807/TKGv3wMxi1e9JtKW2XYZNnIespiYtsd118KXZc0wSuw8ZAaTrqsSvP4OWX3ytL7CZ23IAOVbF/tp9sTANvLCNstTNmPwXWkekfM7A+gsNQV/L8fA4xMNRv6c1mW7cCVe5HPmoPUNlmZAX9L+0gxgwoMsyUw0lfWHGVKjU3ZkZuStkZcayHinCc5/jToLQkM8Xz8Fr/zQ+xeVeyDAkHnErvG2Ic/Osb9WxwPLKCZnQDD6w+5jH3Cm9XxVRhmA7S9Rc8ljnhmMZ78iA4mZwWDPpuR+hyacPJLHNjzPr+e+znGzWdcHz0QkrTNHMdF/Bke/RoDbajXo/Bif6B32fFaaKRrGvtMU7fegHb9oZjCq/289y+HZnA5lmHtrfPbj9Txfl/QYpR17VnvnOMZ/ReM2GYv8cTzNrLN9cRq7DzKDLeTJWldCUmdUz587Oj515WJpmzhxzWe3IkG3JGMyDxSFcfr+rYsuMO/pt8nzOgl/hHo6yWh7i11r2sv8OU72Cw/QjN8z6gri/C1mKFVPTYd9BUuuwqstRqd4nz24tOuuQ8xZgub1M1krfo6Ic12OtFjW3XC+kqAP2LKajhpnFXWe+nq6PQG/T7lzjdiZPK9gx9tn63wj86TLzAbuIdr/PB1t9S/Oy7oMnwOyRhGhuVIpPqygBRZ47rfM8D31b6+rGRwRlwTnaHRZAhZTJtus6S17im13el96/bmmvxmAVp2V93punB0t95HfqdkwoZ5VvOaujuX2x8i3xjO92aSB3cxgDz44ZmewP//zP0dKCW95y1tw0knxfm0N3/Vd34Wu63DZZZcda3e7sAv3K4hKiPb1VTaTUi1DZflc0zfqZ4z5bCnpI7JtJlUOnRk9/iIwzL05HPmB7ZmhO+86jOtv3l8ZBfXeC/Q2Oi/Tf+t+nO2gvnM/lhhQgBo1uBPYidGppdikmbCIcdEvUP192wbT1lq3ikIAAQAASURBVLWPbZwZU7IuDMbwV5jtOeZV97dBHFmYIigq62J0Sx4j2ucYTb9Mh39PGB3IGMr+9WOC2h9kPt/wqY+TqCtlQAjK50aGkcwjpdgW9A4sw5is0KMFaDYuJrBHZy7NgKo2shV0mULWz7H8Owp7DeWY3i+ZO0iZdsjesQNUgoWb6/J7wToXZpwZuYITEaJQ5udZygrufc44bmMVM+mR7HpylnicWUQ8i7ouZVnkZorrbMoRkQsZTvialv9MjXt7pomSTAPbd+F6soZRvZWVbQ7PljOH3SvOYQneKBqv8uD92ig4lr20pYDUEcy6njGEjjTa7NVslYHR+BqF6NKuwU0yVrRB9pSn9UwxmEbGw+Dj5iQYG3LDOVLwdc9L3xM4037KWHZiwMWiTSHthudCo7ziyTmHxPZIFGQmDk9A8OhJbuCTzlcp4UdOP63ZXH1G5tvjMtKauzY3sX9zk/bHlK8KdcqzBF60nF1xLP5j+XlmBnkWyMnWzsJjbsdAvymG9qLC0pVpfVdXUuiyoRGI8xHWqtRTdZY6U7bw1vxNSsk4bS6VEFqOfaGcLCpH12m2D8Or8Aw0c/IoENdOkcdYOd5EE4Qn9JkFNKaMT2U0gEVZe4hy+7C2WoZnJlu2jJPBucb9bjlw7MQZLPTpDaDZPhfQBuiuS+a3jEs7f7UywPrnsjZWqQvXIDF8GT+/oYxEIYAIPGPPlOKSyoQ+2n8KwhmbQ2ZpkTcMXj1fFwUvd+Y0jZuIc2Qz14iMacu4Y7Np9CiGUeIN1srWE9poFcltY8tOAzMoXc5tPQqTvUj1QKe0MzYz2NGz2bcr63dBZrBwPTo5sHPONLAImHZmezBD3/dGFmPXHYnzqHdMmc9UE7OHFd7aP9PrMkcngygrxL48zsN44hqybUZ67KFH3H/x2qJpp0kZY72Si9Ck7HSwguPCPV7pZ+Ndg4dsOUXRs6pkBmtkLlLjY9d+zRmD2R5cLxi/oRF9dLBmstRwjWIMjmU3JcxdHckcfzxNDPp256gDaOf4rP6/lmHnmzd4y/7Va9T/LXqDGWdIr2++N0DXHqG77LxsOYP5hGX+6tVWoGvFKYc9w5zSSU3rREt4F8HbUyeme2agedUeopuawkioivz277kulGHSujI+0CviQM/0dAaPzOnL0sD+2bYndBljqYD3dGkeuABEvsM7efXCJ/c9eebWRZ/Dx+iz6PXqM9kLGaNu0O9pR2NswAOav/2CYTppPy++XEZ0dGPfWxy8jaOaW3Nez+O3TXWqsziy1TfIUm7dp7hXfLbPpSBORey5/gugXCk8Bdl9U9pn77O6ZsP3DrLl8nUudZZkBuuQgtNhdmU8LN1z3nEehXeRdTtkKTRt+7UCvuYAODsmio5ylXigSK3v1KiQLGq1fXqmzwy6nLFfhfLHgx2O2RnskksuQUoJr3nNa2bLHn/88XjkIx+JvXv3Hmt3u7AL9zughkMHWknPGNxmHf+MWMBbRpfQHtoqsoxcGOW/ufpK3HH48HyDjXYqXjHyPuA0w7v4qw/NPPqTDpUZmopW9QxAjAKdNwwVpmKZjDT0Pf6du6JOI8IMIKKA8QLNnGAiDK7tnCggEaNQwjr0xjYQxtsxlWIkWJLmXvANzgIc5VFJEhkreze7pGHl/dXGiNDXKjr+P2UkGwKetMXqfGHfnTi4vVXwFYX3VHaDpgBA6AK7fpAb1NxeNvi2s8AJ2Ggen27fKmplv+kITR/NziJzvRJleC4p1B0+an30WdKHO6Q9LZmYc6ZorfQ9OtsIzszo3boC0dApEbBdyZbTpjhwDA6V9vqBgv8CZzBkFoXInb6Qo2JhfDz06RXqOc6jlA9CEjsLsUzpHJwujhH0dxIazNo1Z17yypdpp68pNLMTMBViFS9Yh8+WoEyz57nVGa4daPAoDNqZwbRjQjzfvPKEOhu4ac/gQjvLoEUQIusqti9/9VUwLJtDwIvsM4AriofzeVqZUvFrtLlgoecdlEVj/WQQJzGhHzPNUuWuU6TQeuobl3UywXtff8/BJi2qbdom9D7yfd8bSClhY2XFbH31su4nu0Xk+fs6X+NvOl8xQ9LYgS01963A998csGx9CcP4Wgb02PmM9XR8Rq/xMwpYzi8bB27k4Bg6B75syAwGjArwe3/4pEToM/kQbcfBATKYIxTJBEzWCTVOEjkAM+ey4ODxiE7LFigPQPhCMgW2/6z6U89acpmXGX3mhkAbA82xv3W2q9IHuGJ1RQy9ug3f57p3uPnMYKoPn/G1d21IGR88Izwly7zRpWXOa34/DtmA1brJNqNpiRiPhDD0VfsgGQAWOjkxGNZI587zaBACOH+tUdYGpclrIh3N0nKRnONBD2DaiZlhNdDMO8jj9TcLeInMjURT+2mnIDKwxZHTA0rLCDDZo8hiOcoxrLw3bEk5IF6xw4A5cAQ80XZgIuzPjuCNn79gvtD9EPpxbVXg+6wl90waDXPkzQdjsb8e1mbvrrKMbkf9dv0wsuWzM/DMYDyQiI1jlTrDk3ROb9OSIzSwayJt91EGWnpdPcb+mZPB8I6PVzK0RGcn7ogtWW4Crz/K4ufceis+c+stKDyz6r+VVVHe67/AsqxOAv4awyFA0Tpr+2YYP9AKfgxn7oIMYl5X4tfIVGawjKiTK3oSB/G651Ta9+36q3djtlPXdslweu8zg7HPyOa2Swnb7tng+EUc94izvGVrRvwnlpB3/Br4ivnMYFpPXvgZsiYYzzkl9lEHkpx37qxAfnfArB6nynP6GecFvBzT1Gc68LaoGojkv8MMsvA8GkLWRg/DedYOJAnlhV9R5ZlMIE5enl9ZuesPC+/szx7E/V1priUkOQ/9baS65qQLTQ/8uWpsCYjXDFp84llhf8vaV+Pt45WQEjjieeuVsr/S9RVUFjG4i8msSHYeB4c6J3dmn1Ur7jnGE7aczVogAVD+Gtq5bMGM96VXM7sJMdlH8w4DdrCM58+lH/97ejxLs/HJPtD8n//duTllOhZ2TWTU/9WgoCVZkMO1nLBntrY19XlZxuGyH5d/pl14gMAxO4MdOnQIj3jEI3D88ccvKr+1tYWNjY1j7W4XduF+BZ5QD88ah4yioEbxw4qKEOXe+UhQwCtGRhzI8c+Uarq/AXfgdy+9GJft30fLLQHpmzFBLLuPRknGMuDpvJZzbNOnMRdoKRe8cCvP/ETP2BMqQ4j5qJKJ6tNlRNEamLuoKGgJPr4975TY7JcwGVNZUJiArCMKgSrctpzGPAyCShRM2dr2gopEMtjoBhF0ZzKD+Qdk3Wlg0YstAW8oNxNNVCWfYlyRLR4Nqe1m4n5rRCARb5ngvKrWYZeA7dzj/NtvM3UuuXMvcs5BcV6Z1rrf2XuTGazr7H3u3uhBFLStcQ/PrJJpzig05WgkEfnaec2vf0anBTfXGs94EJ7xLBHM4TCjKu36HuH6AaCtZA3298yVtc0odmZcylUY5RkiInihPTptNLIJEbjProl0/XHjuBK0RCBU70Uh5xFfIpzqshYtO4teCeS7k/Vh8CIKA634Z1iVfcCcnRrGRKsIyeGaonoeKwHb8zst3sYoHaIxOOKPeBVTJue5plteQa+Kkq1NszPRsmOFJYZM5rTSZ0krP1239EOc53hJfk0kwB1051ghUYr45qLCj9RzzlNsb0X8K1BaQ/AN2afcGdqCFh9YxjUz4UOUJMeHzpfiE2Jb/GwYisczpAX0OtmF4Od72M98DqNCudER+170G+p+c3CyrLTFtrPjU0J15JWyaVRq631x7ZHDs+sgkhFePho1+N4Kcl/YXBMyq8KBOp+N9WP5aYgZ3jjPlByBjU7ptrMM4sTMzovGOmKR5FHWGv4KLxYMDq6NluOWfjxFY5nxMF4T6doe/3rZSf8OUcg+uxgGo8567ftiWUyGOW85AnhDaUeMBDoSXvhdnSlsw+3XucxgXn8yrBeibG+ZShgv3MiSa66JJLKnbXYZPzqMTdOsmO0nBm3ZQzhnNPmCekbk8HwuC0DtjxuJS9YxJp/t0LF6yBRB2m+stYR5oynjd/NYucoxrr8Fhl+WHaGlboiOZRzPVceNM4sd+hvwgWuvPua69xVcfvUdOHJ0e0d1+r43ZxHNDAaSSbAh9/trVYPTXyYOeTnqHv01Qcb5hvHG4Vywz9m6YQ5PLWOgCbjLNiOEjHtaDeX1MlGn1cPNX27fjNHopK2LyQ2H0oaewQeECj6DbhAD/+B4+S4lvPPyy3Da9deN44vZ09o6czn/I3+8xJhtMu9IZrC17dvrKplcnYjzTnLX40l7PjDNZ6lh8rZtx8pp1mE7ZoxvOSJ4J5Wi36R6qdq+4N1qC+BOY+ddciPBYh7Yd2R6OL9umuXImdV02mmuu+jEJ/vI68g8eDk78jMNm0PmGYVV9xTnOcdQf4ZGZx+SPb4BXj+QM0iGT3b7QXT0AiyfUmwnLqtW0NcwOk/AVmlkdNZlWF/gvJe0Gmw4bP8IDXBKOO+Yynjn8pzKZbZNKRNkBCILGR0qLI8q/Gxrj/j5YfgC0Rk1OFeSM8bz/2XdTB+iACw/Hs4UdvTlSD+00yxQHem8TozJnzwDWCMAQei4kQ2jw5zvmznaeR39MH6Fg5OVcuZOh6U9+jTSUDYow8vkGPzH2LOp7LtGjgnrxd3slbnjrUWRZXyMtL7vx8zFWEJfa0IJaU87f+Xs9eR50gG+4DBzRu3CAxeO2RnsMY95DO6++24cPHhwtuzVV1+NgwcPzl4nuQu78EACw281aGNKwP6DR8zvwpyBKySjsp9zmuHuYXIoaiZ4c70O7weirgS3Gaaq9j0N9dDhxns9xqzaK+US61szirbNWp/PKY8UcUZFzHvBV0enmoVn7rrIMiQnVEyVp44MIpi45ywrgAdm8GD9hsxHjXICLCLcK0ZqZjDHrDbwyTlTR5aWk41X1AZBtwiWtLvQt67HriYrfRPlvny7o+s1jmxbZacwwy00YnRL3bsscxNvgxsGmYGj6YBg9lUdf0LCLYcO4V+efaYp/nNnfgJH1mulNKzN+PVjU9VapjvnwfBjlHJwAtxYRp4dPFSv72Lp0oOzFiljhz7FtDsBFWJsbvcn5VoCR3Zji8pnfu0KzdqTx6jgPGQlYQ6Vg6LR1SOpoEsUrsOvRQ9i5oQKjDx2KWFzvcYhtUe0MaeH2n/6LIRVbE3BjpTTDZA1bBy9iJOGiSweBTlfqLXflpylTHj3XegMK3I+BYcqopBIye4jrZRpEc1ElGiAXBMpc6X2ncJVFAM2Ss/yONTZwNfJfF7YtV+hjDszW0ZG+fY6+jTuA2d8hk0r7/uNiitRXk6iHBwjgXnFhS+7NHpfzhH2xtnaR9wS7r7naFOZk4Vpc8+S+6bRIcvyepWfnB6DHSM/w40yDXwfLtmb7LuU+o7e1jPEtuGVWsxBTMZu2/dlOK835ejm+9BtLQF2xgf6SPta1h7/dszpg7TlefycKd3ckdOwKypXA+WxLaZU+ffXXImtqQmdWD+sHD1/Jp41eVjTfKMMQXWgnoxW0iaawKJc59r1fJg8nLsmkq4j4bEJTfZ1vCJ01iBBZANfr0WPV4kHPHgHserIZf96Y7Kmy/qMHvAZ29YGaRI8wwIMhDYvvdbSP+uRsWGMAk4pPf72MsCUgZI5K/vr4YVOLoEMucIk8h7eob111UmCO8fA+5e9RTODoc5RzGJk9+mU0xQyDwopRomFmcHYANj5dqzAzrEWz1eeL+g3yg/VkYXxx8ExJRPD8vieXfXiwfAD4MZ2GQ9rYim/N4fHPyT89K/9NS667OYd1fFBS9ThJMu1s7qcOG20284QmmufekeqHtkZ1fwV8vY30yl6NLxz0eLMYETOKvgVHQXX6c3pOfy5xLKxmzqknynIjTFhxI0Hl0XHF6Chcyn7lmd+XaWE7dwPWSmzN5TmcLXU/s2jBnfAOYONT5dcnxSy8TgHa8Yss7li2di94xdAdKSE/vuzzMsjfs1onsw7h0kfjK7FMyvV/mT99+MeEp5GPdfg9U3hymwA//I3T1U4ZaPnmIKWQ1VweiKBqYkY1VvOYHP8kcVpdArMdv1MOaAPZZztwTMLUGtih2dF4NdQg1qnm4p2Gua8EHWpEVLy2YzaZ2djEK4P/51iv0t0EPP9LstAxPR4E02G8v2oN/A8v19Lg9M0yYpF9MiyXjwt822m0eGkxyh3jHjJVaJWR6jXUR5sAUq2nvqmXhcegmbU/JRn/Zh12MkFMUuTc+jJ0WnKQ9TV5MhHNsahM6gJzrapHM5jLke26Ej7Ct8gJ43yGYlLqmUamRt92+ZaSFiZTNbeEtlDt+GDehl4fc88/8x1nPWtWy+d5bdkzUtZbyOKAXEjz+ZomHeGHWSCGgA8ez2m5mmCPGiD/GjgQ8HXtgvsXhP5YIRjdgY7+eSTAQCnnnrqTEng937v9wAAL3nJS461u13YhfsVDMZKxzSSwz4h4R//7LtRis8asnm0AFOIM4a+ZdDqAbziQ+8nveWCJ8AddJboTHWtlNLkCZ0QL40RwbHg4xSnfm698R3k3xU3ckWXKAnIPE9BwUkJu3POYAKzXuyqj0GoZ20gMA1d145CLWUWGIZEqF/PMBkWn7hWfaRAvSfetdXoRhjyJYyhd24R5YqP5NlwES+0rRBhNQ0t41eXEv7gi5fi351/rmqrGquaSmK93kfGrZso31523kjKHYrYNvUKeM0UpwRsdJxlGJzBHMOZXZQqIsOpo9eLUskJiD4CXhvKXvv6d+Do5vYgfLEoL6X0KutqhpGdvCayY3Srts+ufmS9CWOfTbmofB4EHvtswDGuC5m/jIFGsCt9WERTn6NipkR5uXVEDVhZHMf8i7HP4NA19Pfeq6/Er3z2rICL/sv6m3LQrGUqbvcWglKTKIL894gKwewiceRpdFjwII5dVHFolCX2/GaOEH59ZgAH7j6K177+HaZercOVulpZa543jYk2yi9k6kBdW4VeOTz9daNDq/Ebd2SeNZSoKdaW69OMy33f+m9XL+9MGVnLz6/pyJ9NXz8a2pgoy43dcb0GJ1YMc/CvfuvD+Nhnr2z2HQ2t1hGjNfx47fgCpZpTSIY2Z5zOdN8DbhP8bIuvyzyDHlUku0VU5tkpnnQ0yVTmqPAMdmxT0yeOC/E5PxeX8EmtcrQf+iw+ZGegKZc5neqcUnJKodjiBHzmYmkrpXYdnyVpDpbuB+TGGkyClZTx7Ue+kO6LGefnUk73R8cTlaxC1+HXuekrfmdG89h68EDPsoYRzPN6UoJFQgMsM5jNYMWi01kwDTBcnbjEucobelqGU5v1y/KFsg7WoUw8a1pyWftay+nvlrN1fMuAuWJoMCItyzpSwMvIOWZC0YE2szDyK+b6HJCMUf30VSeaD56jvz4AwmdLY/OolfuFpyA9lYwIBInFDh2Enshz7+iv+20BpeWE35Oy9PrqGQMJUPlZz+vUrPb+HXG8I2MvgW/G4Mpx8boJKlMhOqQIzDnmeLj/Gm4W7r8R+r7HSukfmGxS1oHjM5njjKmXYyY2yuvmuPc0HRhkm7rW5fta/tWPq7YtuHhgZ1TNCmmGig11rW6lHap/xz9EKu8d2tq6Lt3GkswSGs9WJpCW/NTLNyL8HM0MZq6JtOdHlxK6lLDdZ3i9Vf3uQ/kb7zmIPX/3IYMfgOj8hOk5KuPwuskNfvVyGCPhdcP8Of0dIPJw/Z0R5e9U3tTfZo2rb+vPFva9WPbOBEuL+lwN0taALuOV/ixvU+vb9osj/JrzZ1dcd6fRc0xB62xckgGr9czTYf9s0MNN0PYcMxkBMRAzXrsuV8/VeWllyYr7KOqENZRMrm4vzNk6ZF/GOhXnJXqNslfdc4+zjCNk9ZnR02QgZhkD0Y1iItPsVNsLdH/uc85C0CvnqAsW+hiCkVlWrBXPbETru2cyJcLn1zMlOrTooKySvaq8zoa/Y4HQ5rfDlclefAzxjJHA6mJHQJw7D/JtNX4h4xj5qiUIW73TdBKoMpGf5qjXbwdO8ACE+K37XpyV69rx9tuyZ0mQkG7b4JKt81fOGauNHTqDyf6d0jnAriv/XTT+CrWmYxQDw09lo6Iruu45Z914m1FchyKzZkRHMdYmO8PLe8DYFLLbX6Yt9W9dfhceXHDMzmCvf/3rkXPGr//6r+Omm25qlvvDP/xD/M7v/A5SSvgX/+JfHGt3u7AL9y8gTOQUK7g93mOvD22mCJKDgUXyeKaFKr99e0DITuBhKFP78u+OBezhGBnn0Hiqh6hWzklj9jdRoAn+DONyMNp34Tq9vJA5H0FsBYzhIqiNTgSTRWudLjI5OSM6vOQ4Dt7gvESRM0JUQixj7y9ngq9WRAHKQOEQaDFIO4kSYM4tIb1qac/WZQ6JVoiqzykQIVn2JQAc2t7yxSc/gXeCWithNdCJVks5h7TZwxgccw6+brThT5QGMr/RhbPCZr8Gsmc4bX3PcGZYBf4gCPnIIvtN+gyTSQAAjhzdrgz1hKKwOjhNr6tm1pRxPKWP7JwswYUIJnxVhavD1zk6DYw/c+QjTme5CvN95o5vPppLOmHXlAWjIdpCJJvXMo8JQZkqNGTvkSOqvHUGy5k4AGUeqRdwghUCjxm8EAt+bZamr+zbZrdWTFWQc7zdvKqnHWmy27uRH5H16RUSeR3Xls/+YdqZOCeH/daXdgz+ig5458Fw5oOd107JhRxpNoZ2ljh8RtaJH9CyXltNMmeFOeOTaR9j9NhMucEIGnFbqrgo4yA9+bOp0jLSBnPKG7/1gXtakdftDLFTv6viWlUkPG7sbRpahhtvhE/q3wyY46LpJ6V4DYE/C3KDBpBNr/Fu75lIn5hCv2HLH9952rl0LRO+mrbX+G4LyXU5c9wztp78+eGz8M3x/KFv91sHTyQ4uqfKzUVytvhMtiaDczU7khyNo60ne2YwxNqOV6Q/OoJpYPOvx9N6742qwVGfOLY1+yfMVDzDh3+v3V+BwFY5vk8MpJ7Pp45oxHgIRJmpGnpy6ROIzmBT10T2fR4N0vXZquuwXsfsYuGayHGOV11Hr7VsZdrU7zcUz18M/kVHksP5NrVXgIajlFfI72ChUv42R2eGObk1aaO812kotLxBOEu7qq6XEwDrIFd5PTYe7lzQes5ADNcRf7lWaLYJBzHgpeVUxvnoHOgdAx0wY3ofWQwfxZ+BcH0WM/xmtV4FtNypwQev0XWQo2G24rqzDC73V2ewpfyxQN/bc4FxOnXd5/hs5vwN9TKvZ69htLIBk/M6d8YyHlf/5UGg3OEJiJnmdLaZQj/VGDq4oCE/F2TcCdP8C/IOnGsFr1XbeazlKMboE5PNMqoMFunpMJ8dhuxgw3lSt7j/HXBHPasEJCPbosxg6lzt5fyeqdfKDDal1xdI3oEoNzKvmUp2ApIqUYM2UX5HB8x4Rken2sq32qAg62zhs57q+vb9MK8yJzGb0XJ6Q51fCN31fJrst3B+q6uwBZi+eWoNCT/pHfua162qQoNOR/VNGmc6i9kZyzY4t+DU0HXVMjnwxj5wuBUA6RFM0fuJoBlvVVnE72TuMOZ1TMdyxGbwhAQeduJkNtAuZ//o400rhb8ggfRMrvJ7SbJqhfpunVW8srnRg5+T1tkkQdkKcnRINfgEWcydqbC/yxhWLovoOF6znHpLL+eug5d2kvvtb4vwZcanlA+xbcezhsnoraCZ5vMcaYk8s6SdrQU/H8nNtePdsg04yhljls4d0GgssdfGuVl0hS2RR1plQ2Yw2PXHrt8Nbfh9hxhYpG3+S3gNLzdrulD2n0JCO2u2oAS93E9lil04djhmZ7A9e/bgh37oh3DFFVfg+c9/Pn75l38Zhw8fBgD80R/9Ef7Nv/k3ePazn42f//mfR84ZP/MzP1Oyie3CLjzQISjkiTIIqAfg5taYOafTigEuQDMFh/4r0MpkFCMs4wHu2xcD1dLMYIHx0GPy9ZkBMtk5E4ZX2hnQybT88NNpYEbox0ivMIYU54qNa84wX79FvSZyg3lSkDpLjP4Yy3TEc8hH7NWyM94RY3vUCY+0P6df0MIJ8yavUd2WcfARXm2HJtAoAXqlahBo4r5Ajql/Wf8pIWRdmxLDWkJaWcvu+ZzToBhTtLKpmY0jT/WPMP7m9aJ+W/p9luy7FhN4VK6J9AJ9Ukx1FiFafkYFwByTO5SxTPJAW/n8aoNeMdwfIx/rGeic7XVwrf3TEr7CFRQiTLtzZfnVbtWAmXM08EmfMYKIGz4HBaRqv28rfFtRhUgodFKDPIkOohUnKRjPs2VOXjvQTc80pM+qqUhE9zvsLUbUo0NTfVXpdTT+RQW2X//UQYDpzSYcKFqGr5ayvqWg9oJnYoqRZMfiFRAsIxzjbVKaMVwgOkUN39XNjfqbuoRPnn8Tzv/SHaGtwFvkmBpcnlMQ+jyzx9n4K41dTh+ogZE5eIGf7Z7GaQen7XVbhUKdhBw9DTiP3+Xj51yNj332qhEv3rYG41CMeBb7vZHG/z+Wo6FFZmRvhfkmFaJjE+cXvVNC2OPNAUSnWorziB5z9pmC37v0Ihzc2hp7arTt22t0MBe5WcoR47/N2MWuaMqRFk30Ie1MQevz+lo7VqA1igfjB6ozQ3g20dRAO+K5dfi4Hr9zyUX1GQiNdbO2ZM3QV9kaAWz7glOKWSjDGokZtZfwCFXWinRVi5gAkWdIWxrkupz6HsbxCZhwBkNa5FzlDT2tayLDFZDqt/CKmnb7MoL/ymcxSZWPZ+t7zgA6XItieWjP7y41smvcWWR/ds+W8ofeQQ2o/LF3+PfXrGiIEeoN/BH5EJOJBZEHDU7iiE4gBvcGv9HKGBbb4A55g/zNefaEhP/6jrNx4613h3rM8YvR5Uq/49psObrb+kR3V9qI1xyJPsFG7SMccvI6OHql6JSg949k9ot4crmvyoOTwzSwRayzRn5er/EfLzxveYM7gLMvuA4f/tTl9N1OHNqAuufMb38OZJ5ZI14BGduOTqfEMOv5BwjvVumXzxTm+d7Iq1bcBV8PTfnalRf51GQGc1km565xLfRF63HA96evs0QO0Xg1M4M1MqEx+jSV5aTP8cwx9DMP/5lv73QuK6fflbZ61yi7MpCBpxEbqy6ctR5agY4sO3eoS5wLfIYpP0eeRmonJLY+Nsi57mEwkusyVTdk9IZ5dN4WniZb3qaOw/I6RXckTmFOFj1uYxVwagH7jMxBP2T3wsDjbSverQcMj9OC4crsrrmHJIjO6k0aAa7G8WKsp/iH0LbMeThwp508y/V/HidHC1q2FjU44pzA9T2uWiNz5zxzl0FsBYh6dZo9mer3ZruMDkIzNFP0ADsBb43KQLiKtgYYOLqwinzuhss8N7QZrxSXNcT4SgmUqDQjOhH676gdCsVZsK7hiA/7Xa6HZGcl5Ayy/Jinq8M6sY4yQ5kwTIVANhnlynxlXYTNU3TKkTXufzMe1qHQ5NGbZ6Z38EPMDEbrOWcm33xw/sw221qfo/PTElilhINbW/gNdQuPxc2fLfFWiEhTpu1EXsfk94G/tSrQJ79W+xz2Xd8T+35GSQbCAlrYGMyZqsY9vK9rsEdbN2zazcvtUbvwwIJjdgYDgHe96134sR/7Mdxyyy14y1veggMHDgAAfu7nfg7/+T//Z1xyySXIOeP1r389/tt/+2/3CcK7sAv3FwjMoM/ahHrobm6uF7fpI9cBFp3ID3R2DdSUkt4/18zKGTdev1C0l74HnLTyI0MctyyOHvdqCM5VgSLCZ/aGDZtlQs8FVS6MuF1y515ce+Du8owZ9edSE1eHJltnCSy5M1ygZRwOThtASGMMRIEmXLVEFZDzd9gPjiO6HwQGXoSOqiC1wvqazKHvY4MpvwheTEm/0XWUwZ+LomNOJu1sDe1sMa3l0FolxTHGC0bCsLH+84QxgynWPa4NITOkNlbrJiEqQ6T0Zsl8GKMwtNLIXHeS7X6bMmBoxFcpmSuXtrbXAGHKAaZkmmZkqcMhCnEaMmhpJan1nGmmLaZKDESBLjrBzNMk3+aQVWtQMnrnDDZHTBDLOSpjBjpL+s2NqMIsZ0LEs9BrV6fShqzmSNfN1PDtoRinp4stBoMmM7xD7bkcnTbkDKP0gvSnu5g+660ArvdSHEMOaw5AUGpo43tTIGbeyrBKXD+g2maMrPPGWeqAQCbKr4XqNMbxrvXYumIOURhoS0o46/O34oIv3h7aYlngmMGlyYMh7nuOc5zxnTq4tuYmhTOj3e7wHcgGALC9zZVG/iwR3H2/dJ2nhDM+cyVOOeNLAOLeYkh65S11NPPri+A9d01kDv9w9eEdE+I30IZD9TA4iAk+Hz/natxzaLPUiw5QDI+IY1thPiq7NTrg8yNt/+WVV+C2w4fqegx4N+oGYy6fyHB+urMY4Psrtg+bhQDc0Knh3AN3u3Mqsz/QASIMZux9dIJb35LTG7YP5C+5GibDOOVK2UPH9/irq64YnokSN6wd18+I2FzQEctkx5/Zvhhd9nPQcnCpZRpri+wzIPJdUl1nsdIQry7x2Zqi09TwO/bNsj0kROeqnIdrpqqyfsRtwgGl66xyv88Zx21Yg/TGKspLmchlYtBvOWyxMRild7aZwQa+U2UKQ8ZGWm4kYEF5uW9c9YepXMcWooOZGE91m+0rdYYzXu1HcHpaaInjjULWjJSC/MxkN5oZDFwXwZxn25DpAMShqhV49VcfvhS33HEw1OPZ/3j2mta45pxcpAEWaFDbBvymZ06mgf7JejX7CiEjx9ikQ5yiSfkvuZbL09lD29v4zK23xIYAbM84gx1Zr/G3111L6+4ExFnfP3v/6V+i5b2B+ba9B3H5NTHYQkAycpT6vFWaUWZJNgifvUdkYJ+JR58LNZCqFrDrkwd2mr7decIcfFJimScjrS86FHXuhwwRmDunicMbpjNlDPO3AyNhntLF8GCalo6HNp+tw5OXbUz2NPCM9fI+7nX5a8+DpeMPGXpmjO2ABFnZMvSaSAKejjLHBE+C/JI1ei05o1Hnlp+vfgwk08lYSAf1en0Sm29AO39Z2tvKJObhyNFtfPp8TvfYGZgQeTyW7cw7fjHHG2lP99PnaV4nN/aMD9oM9eDnlztrMOdCVta+H8Y7txfIVo4Op4bHkT05AyInu/VNdY4Edxag6YMEE5tzVy/PTZTCQwOTrTwuKXH9cQvCfm9lBgvPojNQcdoJZw9CRsNKVyJ2fk30OfIxWtdb1odqYCozmP+t9ciCm34u87JadUb/Wc98O1cbbv/MOf4G/i1zGSIEFRAZ0Tu9l6DxGdLPruqVPqjskeNVjZI9bepYk7N2yrFPZDCFhJVpSKa5ORD5+tZDh3DaDde1SgVdOrOhemjZcYbykT7odZtmdN2sPX/VL5DDzSzFUTEvc8jytjU/bvt+3vYLVGfnpWzeLjxw4F45gz3kIQ/Bu971LnzqU5/Cj//4j+NpT3saHvrQh+L444/HE5/4RPzoj/4oPvGJT+BP/uRPsLGxcV/hvAu78A8PCbjtznsWGZ2A4VAYDop5E7UXEopCytWLfGQ9gHyLiyO2VN3/67zPKYx2AN7o3ahuioi/Rba/axMucsnNR3GoUQfqHfsOjf0MB+FfXXUF3nf1lRYHxxTMjVSXFhznnMFS+bsww0+O12gNz0Edv1opYk09J3gxEMXWHJOrZ4mlq/WMeGDIRWifYkoXKEiAqBDJQFB05MzveA+GgOCswfHTFWLmFO5QNPXZpbROoSxGE1Hwt4zkoR8QI1arfiMtr36kjfVdIqnXx7+D846NNpBxtBlSZ+TIMeuXB4kO1WXW61yVf/4ba4UgYkTkEjACq1PQ6/kZ5p4rPkKbmThb5CiEMOFUFTdQMhigbYjoiFIRGSFKd9hHPE1xHEssO7TRoqgS5WVBn3uyF5hSh11Tx2GpYasNopSov0cHFn8Wd35dRAMSNcCBC56eS2Bcw0AjVDvK0cvTaYGQ1Qk57AdtLMjkEwrO9DoTp9TV/WZX3zihZYtvdByKPMBQY3h24z0Ha7nEs/DcceRw7Z+sjVb0u5wp0r4Hb6gp4yOFGasw7J/pM0LjYupi/goci1dcu2xPtdZlzmT/qT0yyd+Qsc87sg1n4KrrsN7u6zqYGa5ZmvQQbzgshTU3D61MhcOeJw4RKa4zf8UdA6E9f/SX5+Kyq24f21rGF3ia1VR0Cd09Bldas34Ir8XW0qJ2G+Vi4Iv9YAPfg0BHYjas9nmSAPzhTddji9CFuueWDWQy42mWdrWxm/FmDadV+myajkt/np+xDkyR7ogymdHiOaDnuedXXcNBHgZ3/EhpMPAdPiIZ6vjeiBkhWdYVcYKrz+t15vZvC2/JSqJ/eyNCS95apS7w2szhqjjyFwPo+Dw4g9Xfnn/ue2BjYxWviXQHfD8aC8w1keN3aGfN8AZsO86cYa6PGbJjWKPPquGsxyClRDOmr5yD0mQwjQMZn3c+9FlqqpGmTU2qw0E76/NwjZtu156TImcxuqMzETCd0fiywa/zYBEGcg6TptsBTFAf1YHIu/5Z4HeyRLhH3JcYM0qwgKssursg8yDKlWzs1DGnl6w/LkvfAr1GkfvCmckztXxl/134V589i7a1TVJYbDsjU+w/F355Kfz6fz09BB9NXWHmn7/3w1/Av/ntjzbbF/1U6zdQv9fafcMp454tQ565b28cNrINThCeQy91FtxrxuUCb5ZmBivBld7Ib5wqJLCwwuy12HIm1iHSM9hUYfqMyS7a2aWFtjInSp9Bo40Pig41ZFpU9DSPq6JLCQc2t3BozG47OBTW8h53gDg1Kwep2lfElTliz9FcpjuYvR5Q1eW3J7Tr2mBs0euNOCO784jorRD3Zuf0pXr/Gscg951rtlP/IYbfQnOk3PY60mL2++ob9uFX33QaHT+bmvY1kfV7Cq/hy7HMYGz2N7rpLKgsWwz9lu6n0b+IkkQXz8vXk+8mONHK+pioVzLRuDq6XZbRh/VPg1zY+UzOTeOgz85BRAdxcdDaqeMKbXuRbW45/zuUtv0J3+4dv+JayjGzbUZwShEI9ft2ZllxYFkrmXll+PxsnNh8piKZq5rxq66L4X08K2Tsw9+YTSmDOVfGgI46V2otEh2OH69uuzp02bn1IMExejwsO7/PMM2RaNuI2PO+j9e71rN4h5nB3JnTCxOhxmCuicR0VuXG8BZljfZOp0yP7Bvu0owuUxX2NiUt/8gam+ow59HZ0Mjkwh+pcn2VXWaDG3IcN3N41+uzFYCmYeBzdpapexceGHCvnMEEXvziF+Md73gHLr/8chw8eBCHDx/G1VdfjXe/+9146Utfel90sQu7cL+CBOCNf/zpYpQBpgMDRJDxxgkPxWhM+vOMm7kqEcIEO0PYyLg0o01K+6Mxb4EwO9WOxkWAGUb9eICaLawoMouwmc3VKMLXMyZeMxM/+HPv1q0bvMph6fBuKlDLuCxTMYyvWdy27bUSzT4QrtGSTv1jYUynmCgRaJZ8yTmFTlVE6/LZ/G5FY8hzfW0kc6RrKYM4vnE+mOJsMG5EplrDAl69lh3/Y4VkfuIeTvS5sFzR0DMIQIs1bNJaih+bXZdEDXpGyBk2mmLx6dU1A+6jod6Uj8YRw5AGhjXPKkMyYvTcuu8Dzaj9wQicNBW6a3/qnb93XSt+JDMIc4piV1+x9MExEnlIp20NmG0cZW5YNBjQyAiAKMyB7CP5vnFeGvt1/MkU9i1DkjW4Nq4GnBGEarllNG+n7bSyx2VH11iWwVbEaXxs9wWrmzQBKuf8+DJHQU7WnJ+VcB2vd2wLGEfnEoFWBkZ9RhUFplvT2iGGOxvEtS94/LPTT1Pl+Bn+P532t6YxXSIjGkmy+oegxtZdUAxl7tylnXs1VEPK9Gpl42/RPQo5OgPqxllkd+DrwOlWGZbHz+8J34daj/4cr2WG+Sw8dEfObofnnOLdn9112/B2wzyYM22KzlhFkXbm0UYh/20zuOJfaM/mFs80nNHYr9SRsoFxatCkRgUptu65+6/wSmyNMhrVwsmXpBlxtcJR6Iwr4zPXTLHlMt/bBHl5Yq7BTva9Piva17/of2eDGztrwnmac+CDS90pupDHDByy/8a/P7rnWbpIQyaKZ8SsGNQgUt4RJMtDeU94lnC2j3j+9tvPwn/4/U+Y8diG46P2VRqcJmnHJQ2M7+vc7w3Hy7WMQT77LcAdx3K2fF7BUTllrFyWr8jXjU4rva4TnVhyjgEGMpaWoTQql53SG/ZqpJytEwyLlJ+DkBkhy5hjuSVQMia4tRDkzIwx0wDn8azhsdEXmFxpr48Xucl3Y68BiYYdOx4SFJN5wALFMzOajLIPp2T3LZI9lOkBWjwR01G05FmCXnCkG2jA8O+UwM/r7J51ngYPf31WjQ3i6LFEr9GL3NeQFzwc17VV+SwzmN5PbG9df/Cg5ZcXwtHNbfN7yrnQywkbG5HmaPCZwQDCP+R4zZI4aU47Y+dgAMxu38mzENiigw8dzyHrbVqnWHEYxhnLcD2ZlLf0dGXo6TLZwrQL61iZMTqozjTBnDSnOmnpGuVMjrLOTq6x1VcvRedgEzg1njlvueTzeNPFFyraafmi2vbw15/b1JiaUuBvvMNo0L0Ikgq6dOyZwcK1ZxmzWVi0pnKYQTtfxuCdmUNQPF9Ztijhb7Xuoujp+vpb/xVgzmIbynElXM+b4/dqAz93mMN7dAqMz1ZdR2WIcHXaksxgxKlnzjHAn2uMbjJZacppXXD2jinCn1g5xnfo9li2/GLhAxUdbWFBdY9EsBzk2rqPckbI+tUKIGH72s/43Gpq6tEmtvByql0hBtdE/l7oo3mGSBckwDjwWzkHJ6Ea8BqxzpCMQuOezeSM0edvhjtnnS2h0GCU9mx/eTyzKu0IV7qSbFTCYxgnHKFHai0uyZbVKSG18Am6XbIqhnkg8ouiEzkvcyJsJVvocztjmE/CUB29JvrJMdkCpVNuDF5upefgBMgZw4IddBmbYS7aWJgOau4aRj0O4/QHS2tl3FM0hjpmAtEpEXWPbHRcNqhlY2ZF48CdbUC+jJmxIX5+5hI27MIDE+4TZ7Bd2IWvVrBRsgjcm9DbnHMQgJsKNXkJXc4VzJyRDIZJLFDSGzzt88GAScrTNpJ6Vw9DZpT3bbI+tPAZDEwp4X/9l3+B879wk+mbGaJFeK1Y1TEYprnBPGnQd5BL2bmI+KzKLVHKVOHbP+dZAZZklTBX40wImxtpmsksDkrStxHgrPJMPsW2YpQAe00kU3IVJeqCuerclZBeGQeMTP+KKL8deCeCue6ZQ0Rx0nQgTKL827cDWKWsGE1kj4ftP4GbxyurdjQwxb9fX0l1NhUtIbj7ayG1U4wI+Fqe09cPVCVCe2w5IygfJDMYU4qYjHiZZw+bA+1IqqM8siNMTAki42QCh3ciKAIyFQBie8wBQgTeliGCKRWHeSFpxMNcEUI8FmZKf6nLqhR6TM4b/defHZqWRzTsvC0z9S0AtXkyJozT2f12H629NphTsiqTucOJr6cdvYyDjuorZAbLnF/QDqGR9xgNDISeNqPIjCIgh2ws+ntV50m/D6KzVrhyD/N0KmdynVu2tEraKm1OZgbzOFinUd1ga02yAIBQBs7RH4qmLlBdiEKNOvEFpRR3XAMa+28sa5Usdl4YbWf7BgBe/CN/PODheAQ5X7Nbwx6s8oWj+6Mf+wiuO3jA4mtKtefgJR/464pP0+g+9BOuVk7AjbfcjX/8hnfXNsik2n1oB7M1ZkljfcpYpmButTC6OweyrqhTJaFfrTW7k6sj59YBc4LXdvNc8J0e4LZpw/01/Iw1EuqRtIzRIi/JN9Nr30MeCaWneWAGXyMLcr40ZAZDwgkPPS7g5+c58JhYZtigRihqWEnm38wh3Bg4MfAgW9tr7Lu7ndGGyrJEZgbieSDdeYOExkGDz1wjtNpnUuaZweJz9qyX7EOSGWx8r+XgVWedLLzDtmQnCWXWcTwswGDArQuBIswBw/MxRWYsU2oNosOc7Uz57L+nGL68I/JSyACVH1Pn1we/UkfAX9Hd0v14GpIR5QJ23bcNVGlnKRN+JjoW8ucMGH8p/bb0EbKnt7ajIzPLmt7UgZCxV/56Bu/c4NfGf7MshT5LO6NjXm4Z6opxrX4TX0bGGRHlDn995nR8I7VV+ezcsc5g85nKPLzoh/+IPj96NDqDtRy8/JXiGxtdyCymwQdTtLKxMqeT1czVNsMe80FXcU3V8yqXep2iNxIsaZzDZtalpnX69xyU8m7KLD09NuNdNGDG+Q5n9oL9Z+o2dd8IWTGASlsWOVNmyQLPeBWfuajuqXu2tso31s63Fj3Zx6o/su4E/HN/9rbOVANkrhZnBgt48ZsSPOiLp32mOB/06x2PBzrlhuDk8oE/UjKUDxZz9DJeWz38FT4lZ6vzCplNyfndAjY13LndyuTDudvZZ+CZwUKfmPum8brJ8i28g77RHw31svod5dqokxnKDoNsyZPCmzAn2uzK+Xp+Pi2PY3UVxamTIbFAVpUzOyPjpT/6J2bMUpnJzsxRA2A85oQtT/Vvn5FsUaQi0/VOQQi4IBm7+hwDO4qdxI2LOen0OToJtcoev7EKDtneSaaevzLseMuIPkd9ZjB/JeLAt3XmfXSuzyHTZEZ0wumz0/v38w6YQOSlWTAkkBFkFbKf9PcfHL7n6bfM2VLI5fvrNuKaYHayVWfXQhyr1XF5J9aSCWtHglmmDrquSMwMluRfjToiYzTatfSB2fS18xm3swUcyS0sfj5yn8uVlN7RK44BNpFEtt8tw9IJ2Z/M9qufiHPo0pvGduGBA8fsDPbqV78a7373u3Ho0KH7Ep9d2IUHBBTHDiXAMGY1OCk5Jp05eQUFxKh4+8o1e/H//PnnyvNw5cX4N0TfzByYGi1/GG8tSGlvex/6e/cHLsK5l9wQS7kDT8AwLYSx1gK9OLcAwN59h4rAAoAaomUO/FN/DUjFK47Ov9QC11KGywvDU9B1wOlnX4kPfuwy99ziXJgP0u6fffAinHfJjcpgOd13Tc3bLuPXbFJMSQ8Ehj8hKkrXag65bwmPEuBZEqKjDBOYWWYwDz617ZRBXPBhQm6hDUFxkOhzAa1c6UYjsqwtHrHUwCslfPyzV+E9f3uJ6ntQwv+f/+lvRxxaODoBTDGyCW06ss65MtFAre/Wk01Vmx2jnkOEoQeWKWDd902m219bt1SZ6PuU+p7melq9Ykx6Rvx6mUXsZjM/0idzEGs5HBYBODfWfMOA41M0i3E1ZAZj/WaubBeyHCNhGD0eQNMK6S9+LWIIQxTvqDPFDkHGoJth7ZrzCcQhIldBzgMTTv14WvtfyXrUsG/GMtJjv5aCkdMJtx5yRnMs3MgY17p3ftJnOMC/JwO2CwYhl5eXLAnMAcB/5/osK2ew2HDn2vJ0s2JGES6KxLmlOiie3dyi7VDA2+BlGW9Cz+Yyv2685Mzze4I16K8jaSBdepd2WTsez1q9zfsc2JQr5Wa6bkCeKeOdVgSObm7jrgNHDI4f+8xV+JuPfnFol8gGVXk8ZAbTfHApQ57Vd/zfrfEszvKg6hZ66d61jAlLHb/8oGSPhWJI+K9/ejY+/6WbFd2xSHqjZYf2fEi3PvrU8EmOUleabBtd72w6m98yEULFZBB9BgmNMe0D1rF5/KsdQ/WaM/3R77nMKdWv6iiHxbP17e+7AOdcdL1pwyukU0pGzllybSXYGpE+QrTu8EOcJ+Yyg/Ww67tkwXJyL+N3mSMV442907//C4y0XTuHeeNhn7GxsTLOX+w6rurcEmXsVYoZQfm5FB3sTHbdHDNCzF2J4SE6cJDr/yboZIC8zPhTDYftc0zLeFPr0xqjrFwenRkG0Nc3C19AHWYaeGbsIFimwcNnxKwAsf/4jPJj5BnAnWuE/50zUmTErAp5ZE7kTGGZVzC3dnLcZ+Ko6a85W3QNJ7jjfkaL/2m3te0yPQDWAYzRn52e/QJHWGawRlPeSey4jRXNGldwcpnBWsGEkV7YLCG07Rwz+tTsCv6ZdvayzgJVtlX7vHG+6HFIWWDZ+hCcffli1Cv0NDpmzLYLeyYOe2Zm/oAwV9O4t/nmVoYZf1ZMt18dcwe5ySIr8qjwrLKOBqf/eDOFx33Ax9KQlu5Kn/Er4hy5WhEnyAVnk9dXNss59qpkv5mYR8loBii9gTpdokMkd5TSwDJKb4xzZtsbr4oWvZ1zpi31y/qvmcCOU0HEMSNjvMK2BezcYXwIy/jPZLIl17r1uc4HxykGOgPxCmwGqVPySmY4NnR4bp8G/VEmziu5zdeWMo6HqVkY5XfUHbMzTvry8sMS1k7qajlO6yxqv1aiTUizDr6BPcg5PM0Z5jpaimPBabp9i29sg2Z8ItkBtfN6LcdpRQi6d3yl/P0Pv/hq9G4PZNgMnv789eeJ52cDDXb8qM+MNKxv4iTXuBLSjNfNQcY8nzzoe/2eiw5SHvoswe6qLbixZUzSCT0H9DrI3LiRB2Iz0Osk2hFYAgR/lSjLbpZMHes4mBG/xRwMfEkMbrdlbMZgRld8jyKDtjAJjuVuLWg5IIPTbNtfTFYh8+55O6FXszLxSOPtNbww+83LkEsyyMqZvdPggl24/8MxO4OdccYZ+Mmf/EmceOKJ+Kmf+imcfvrp9yVeu7ALDwjwmcGYgREYBJrKAM8x7lzouPqGO/GuUz4/tAduDKHtgTMeKC3pX/b3Oi9jrKWfAVfggi/chIsvu0UxQWP7Iog45iYly8SaK05yVAD6KNOk22KGc/d3YCTs6EU4uO7gAZxxY3RkA2y0VL0mckawlr9Ltc95UF4DwJnnXWPwi1dgDGtq391H8IEzvmSa+au/uxQXXXbz2Dew7+7DOOX0L7WFmJFhZg6GAq3Us4KLZvh7ZBzX1Yhxr4hsMqWOUay4RMSTS4Euig7DWPXxHngG3Ig5U5402XIObH1+eawVtPKdW1eetcYie2nvXYdx6icvV88SNjfXOOeiuq4pnkTylJ8J7ewW61GxtkoJF9xxO76y/y6lVKyMcYKNmrWKy3h3uh9rzo3MYK6vOhwtnM7TzDT+rwWdU/jbFMHcwTSPnLl3wtHGm/LMG7IwRvbqPZnbUfkyn9VIOO/MK/Oy9sLIiqR/JxxjcRwL3w2Aouta6cKMyXp9yXi5w1zcd37vJmCY8/awFZ6x1Cmnf6lceWLmOvN97K/koo6JBG85r+J4nPMUVbaSCPWKJoVoRMzwiQHMnm2sNRZFCowRTuNzfd6ZfZIjjUauigvPMwieXUo4tL2F066/TuHGnCDahoutvi9nt11VhDfTdENwI22mFBV6VLDObQerJYI4P29iVHYLhL7wtmPUIi05zsVX9u/HHUdqBh797fSzU07/Uu3cNyXrQK3hKQcoaXuRY7vBA/jw9dfh6LpmJCn8Y7+ufYPNb8WjBa2VIXPY24UWvoGc2Z+96Hr83afsme3HWevWPRZwY3uCYNh00JIzkNAkXl7GkWs5rRwr/yLng4cGfW0BcyA45fQv4SvX7i2/sytvnKRGfvayQ/fghqNH0AKWGax3v4UGt07cWbmPsmPsWzoantuy56S+MMuV73qzxPVJP4eb1wS+xhyaYQ0Jz2izKzgDVAKuvekunHvJjeoZj9aX+kPb/qQTXK3s2XJg9vPng1p8//4MyNnyOUyJ6x2JBVZdzLRFDWxZlMZWxrI8qnNAc5nCJDuJuUoy8QyyzcxgZA4Zz+J5IK9c9lHvU8aoFoQguSxZYuweXn5NJMLVsrI+fLmpoKPOrbtW7wmRhnhDGNU5JLs2h4xAvI925p3pDEq67OSV16wO6jf14GUhgNA5yNg5nenmCNCIRSLlhH56+ZDRBzmbNQwR8zG7sr62zBtJp6DP/NoWoH0Ot0CfXfLJ9Rpl10iyK82WwNFNm/XNZyXU4DPEzTkRrp0zWDH0eblaGZEBlXF7ZnGwrMkbKV7VYzOYRD5NO8CJzDxpDDQBxcsDRvtRNlv3BL8ia3PH4inIOTpMzp/tme7hqRpN+ts4k5EzVt00T6NBnGTSWFc1bxz68rg+gCGwsPAkjXNeOy3pZ0x3Bdhz26/xXhyYdhigyNpaWi6PzzR7MdeKz+hvss+R/dWT88HzL9XxIY8G9LG9UV9b+S2ub2BOtsdtrIpjXSw/M0gFOTPZYn59y/lnnoFnBov8Q3sNyfugXswZ1OE223rGYbWFN+3bfkf/DTNGXsLV8g5alFdSc1K+saJbTHfMwOtf2PlMg6syQlAjKzOsvdBp5Ae1TYviaX+XMU6sqmHcOzvvvVN87nn2QR8ALNcmej1Q6/q+QUbQE2+DSAYet2pHNA0ZEg/AOHsZhyuhyWXNxkQF2mHH26X8+hrkjOjYveEdnXK8dtTPQQkumQl4sFmhRY6x5aI8HGXEPrusZ2jz2BrEETrgBv687webgZd5WRZJjXfN6lXfs6AK76w3XFM6zum49uYSNvzply8zNKFLaZZXtZm7FtrgmXzFIHv7ttWpSH8hc6NuIkf5mQXslHMS89le635x9BTu90J50eC6dG524QEFx+wM9s//+T/HCSecgIMHD+Jd73oXXvva1+IJT3gCfu3Xfg1f+MIX7kscd2EX7rdgI3ATbr/zHtx5V8yWt+5zMfpUBocLBDp17fBsINxMeL7n8Bauvemusb2RsVZtCTM5R7rlcPeHwb0h+lIzjVr1G27Zv6weOQg98y1KITHYy2/uJa4yLDkrgx9dAnD2rbfgjZ8/v4nb2GT5dlMC3Fi09L1M0RoNG9I3cxbpUsLnv3gzfuuPzwxj6XMVji667Ba88U+GMi/pHxP67UeFjh5LWHGOyfXjNIr9bKPl6v3uWsDjCmXPpNP+MmMgo3CcwSPdfd9USTzRf0oJVx+4mxrhAq7gDjAaDytEVWUnazSjbcyohnm9f3wkI88W542nJtNCajuDSSanLiX83qUX4/3XXFXGJjVKtHNgUN37CaMBE5bWfV+U9sx4rgVCL+gxmDT8K+VBVc4ogTYl3Hr4MA5uban25PkhlRVvwO2e7S3ccuge9cwpGRt7viXkbXQd1qjOYP6qHzreTJwlswh0thzruTX3ArLu1249MvxNZjBEJXQGNxwBTGCdV3IyRywAeOOfnImbbjtQ94lqie47vQ4ywt6S/crmyO+50t7MWLyxWjv0sDHJmvNZE7M/M1Nsl7XDYKWcCo0TphGYOR7maEbchwnArYcP4zcuOLdZThRQ2vHM4p5VPTsmduWkgPAXjHZ4R4yBf4nfS5xCA5T9E18BwK17D2Hd26yLAkWJOrvS+bwLeANrK6pwWMfA2bfejFvGrNBW+Wrb/i9vO6v8OyhDhYeaIgsZJkOP9G+/UxyPH+ObL74Qe49EZx+f+TbQGqfQI+hNGgkGI0cfnrE2UoJxWGDzpSeo2SfFw6741hmnz/rr7zk4W1731+cBSTo+gK9vTkpnoZ45EXftaMro8Mot9i4l3LR5FJ/Zf1cTF4Z6brxrOuo3R6PmZnYb50BvgLZzlD2TSHO0nueLY4BIkFvB+Wdbpv2S4e7x2dxam/dMNmJtmXbZs8ZZ1jnvEmlXWKoibxf5xirtB9oMIw9tdNaYxgz1OccsNQCn3RmAvppQ/mqZaGNljTYhC2zGcE2kplNkSnymIw1+HDIGz3766w2HjAHeCNQZPvlYrjnTUOfI4rfUGWxw9CFZcl194blZJkih8Vr2bfHAHTw/4a9+m8/WVyLBG3uuxYvq9ToFjAaUNrqE9XaPa2+8i75n7SdlGDTPaFm2D2IWJw3XHzxQ9GHekKZJb3ScyFQOYkbjYFwVGUw5KwDkurPG6cKMVmIQinxg+5tpZy8ppw1o9BrJY3BOAbiDF19nKWQBmwuI8I4WOY+OsK5MoEWI16t5YFcvMQM0MpyOgjh/ufN5lj90ssryzGDRcC34yT6Q6wuXOCCqJoIjxnxmtWWZJXT5Fvmt/ZM+FjpAiRG7z+LYptuvVyLlbOmplNN7j2VjBuDOO+vsoEHrq7xjRc4Lr4kksESXBRB6Kftm6beC5QH9t646OVvHGxdD8GOuujyTUQiWbuRss5+aPpLVN5hMjM4J1cthkzQut4M6poCdixni3M/Xkf7tnU9j29HR3QfWsUz8cwHrfs5bEDP+xEwxQnO805jtz+uC43lnMkPlQf/B55brsU25BsOiabU0YXuJ2cKqE7LFYwl4TdpCFnRHMJwp9XefEfaPv15+wAbGQQeoZ24zEF9/9ywO8dJeHZ8/l4XPL2ee68fzc4W+KpmLXTtZx2Kz7IktyqzdnmVkig5xMeMZQsCKh8o3qvXc2F/eidA71rJzcNm1s43EDQNBj48zuw0krhPWnM8M5nl3oUH696qrspKsPSY7afjjy76ATRVcsUqJBjPccuieEvgb6Io7hxhNaQWceKj2GVVa7T+hz5NtQIJwHD+xirynJBvwSTv8OGTcuj3Nywo5lBbkVqg5Jznhk3edwR58cMzOYO985ztx66234l3vehde9apXoes63HjjjXjjG9+IZz3rWXje856H3/3d38Xtt99+X+K7C7twvwDN5MjfBOD33vVZ/PF7zgsFK6FfkAEiOAQMz/T5LQqp08+6Av/bv/vg+NAahIURainVxirutxdY+HUGTJAp+Es0gGKu777nKP7Z//GXECNjgpu7Ca5YFJsMxNmhONS0FLEEtw6DokwMgiL0Am2nl1z+VpyXpGwFuBKT99FO4+qNIACQOoQ04wlJMesDk3foyFZp6SFYxfYzV8Jo6J0Ao7EMin2MmcGcc0Bl0Pl3zZlHIwRcSLmBibKMaYnKmFHCsojyKUgA/n/nnYO7tzZNmzpjXKjQaghVOSHrsKRPb+Ax01wcb1g4ZC1B70u7HryjoO5LshikBBzXddgc16OPsLSpn230gncelH1rrtrJo8OTwmO9zoWGhPEkFRGYY5YED3MGS+2omwtzbt//5oXn4V2XXxbq/ZOPfhjn3HqLefbXV1+J13/iY6UsS2HsjRyiGIn4VeVaJsJ+mRPi3LPho9pBlOO5obzIDcVkPQAAVKNEBoJjZFZrANBnV8thMT6L40RY4EfdNSasLQGhqT7yh68zK2B6g0BR2oW1l4OBtOBeSkRnDo+78AhZ1yFjYlmJ/GfzhgAPTGlQ6k48NwaSkIFBZQYTHByeKaUSwS3lwnWcgIk4BOIZJWPsc65r0s2frjvs1YqHB78eKt309LfisrWlDXRxvWj4td89Fzfceg91kCtOxotkc5s6v+CP0YHOKDwr6IxaosQ9sl7ja1aVh0hkfuTZ4KzLEUwzSjXBz7ZLlBZusTOjsF77fm/IOTM4NRMeMsc91ecM5JqGPiqlcoxaHgYQ2k8pRl3PZT8SmcPiOTGHpM9W4QTgfz/rU/T14e1t90QMaXmyr0D5CKqtZcxQ9fshjx9IR7gz/snTjOT+sn4Zz8AcbxOsEcnKbPXf3glRYIl8EOhNUeSFgqaMnPviVOXpVHGmU03Imvdttwy/c8pEaVPT3c6dbXHtsP3Cna01DuyaZIZvIrRXzhv9uBjY3XfXxnyLa3YGCP+bG+l6cOMhi8jtJYtGscDk0SFbXdnR2aup/FUwfR6yk7Qy+NQ5ideJa1nHZ8+jTlzeUCXllEywodayGH2WXj9G8e5Jxqs8Qf98/cK7merR4NhPX79lz7H2NZF+vw1zaY3x/MoqnxmM49LkRWXNNwwyxkDWV1ngyNFtVWZo49IrbsWP/tJ73LjaOhoWlMH44lYGIi+rerx/5IyP4PYjh0e9j2+3nqPR2B2dQgFmbM5hXw1ODCuVUUKyjCyjkS3nT7Zupp3Bcig3d02kvhbZy0xTsO0cvLxxWWBjI16Nl1KURTQMa86eaRvkHFh5h4qyF9ptD/ulCw4M3kBWztos9cYMJ0V3k23wgpxvjb5TQsnQ1Genr5iBPueQvVscMVo6l2UQneAYD2Br7CxjxFSxnLk+QZ4v6aKWzaOey+1p901Evkvqfa++sQYWaNSjfcWfPgc7dzbnHM/jpbBUn+x5NWrARhynBpsZLJvMcYX26gklB2S4ThCj3smNZfh29uprZoDOvQQ81msitdOLn9MQ6E7mXJ514IHlUzICIBmKIt+5kXh2Pu904nWbtnBEIAOc50i2jOGXA586FGK6m+z4JO/kJVefU8dIPoqKt9NFeBptsve5MemGov6F9SzOZKmUERvO3BbSTisFtxnHuSCXg/B1EzyaLrNT6FxPzOE0g9hJRlnCO0e1DA0xQMLdBJK1TCZ7vZ6T/nvrzETC52T122c60s6EveqrvDcOppGGsL0j/J53wrEO3xneAXzOATPnHJznMtnP3slNcNe6q8EhZ96ZN7s50fWZ44enu+XZige41DLj+tJFyLgMTco2M1iRYxcs+EOj/knWBKOX/+SjH8bpN1wPAOYGKKnjeUYPU47tJrM44hqyddu68tJGFr7AngWdozviMDnIzCSIzLdp7HXWziC2onomtGmR+ZQZu9dEPkjhmJ3BAOCEE07Aj/3Yj+G0007D9ddfjze96U141rOehZwzLrzwQvziL/4iHv/4x+Mf/aN/hPe85z04evTofYX3LuzC/QJMFqVRojx8pGaFkbO473NhIgp59pw2NONu+xkyB6hDKIviIOOuu4+ocvVQ0IatpjNYtnj6A2Yn6cUrEtJ2BkZlu3hH1/7suAcHsco4mr+e0cu6vdERZKRkfZ+pQaJkBnN9vv3LX8LvXHKRQX1K8VEjE2pbc5nBirFpgsEwfTSYOCAKIcKAR9nOMubR+MklK82wM+gJ46vBOPPkwTFIR8575zDKrPY8NXFguPuoSCmKJCcc6miPpUbnVnaUUn58t+3xVIol1dhEZrBSxDwrUcBEHpsURNXe0C175Qg32jrakxRmySqRNc7rcd91SNjoEjb7tVKmVvAZgoyRwysyQcYNEZb6Um+97ovwF7IpOGeDJdFvU+vbK+BMamsltHmjoHz7TeWZ1qWE7d46RHpDhQi93qGALctaNo/zwa+JDAaWPpPMCeSayDCu2h6b1+z+sSVrJ1d67JdaHgXVnNW/XZsdMRwxA5o3+l91/Z14xU+8zdZjhubxWxnjqGqIGY817aiCP8GRLT2yEU2WLzUnoYxC0K8dlirfO3RmZHddozUq0k0IBMWGwCD4EiVqUvMDGAMKZGyqnwQ+x96Zjc2pyQzm8NBD/e9f+TL+v5/7TMWdGB+HNuL1QRqC4x+i8bjgNjbzhv+gs3jy9WJwyDEatfa/3Njjs45ovMzj8cy56Z578MoPvV/hMczv5nqN48Y7Y3UEom6jOJ9srs3v2gUxiLM1q4yxc4EDup7Ho83VSTngpz5xOs69/bZQN6syArLGUko4sLmJl3/wb2KbKe6HgP3Iw2k64GWFgE9BKCohW/OzhJXXs+ZBnrz61FNo3ZLN0dHdOvtk3ZF2GN2KeLZobCrZCVsK2E5dNZRR53SKO2MOlJW70vyKddrwOAv87OVfxC2bR9W7Ks9pXMO4Mz/7KY0mxQDg+378rbVMsrsiONdmHpDgj6xBbpoxACncZa8Uw6Lju+fGEc7g8btKP6ydoR5X2rNv5c8gwVHze9rI12d7PvnAheF3VBwHI2ce23X8Or/uy15PVxwEVF2v4Pdn9GBUXc06qeQMGmAw8OTOKSGLkdBl//H8bbYBRH2OWUvu7bUULEq/z42o+UYLweBKaRJCVgEB4V2M8z7tqcp+tat45QdzBPDZWqaco0LGI6h5oviTtsa1/sqfrDy1BF5tuusCNTSzq/p973kSCO/IZY0W/+bldN9uodsN3iJc80K+HbtiyWfSW/c9zXDDoDhBhgkYdAKh/8Z3BrjjlwmmIpW1Y7uXmWq9yOfr7I0AmtcpbRDn08Q+uALJ0Ccg+gNPEz1NlawHUzxyWVew39lnysuwmbeGMSb8+n87D1+8al+RbWuVIUtwi355gzHLYN/EOQ9ZH4Px1um/VguvfvVj1HoZT5NYLeqQ3iw9lRWH06FqhJ/vpcxDz3UDNijRZdGAdUBu9eYdBobr8mLpbtRXATZz9tCGBO3tPA/VUsfS1MU1zOTTttwQ94/R4yHzPUfwtddEVhqXEtR1qfY7i6NtuPYxW+evvs84/rhVoSvxmsjpTGG6TsLyq1XNMsiRPxe+YD6TT6QtHkLbeZlO0+tdWTssw5YPPA0OfZk7+flnUX/taV8814M+qzW2Tnqt/TPnHM1jbK/7UWawDhHDH3fWuyzv/iYPKTh1TaSfR43nNFWtNqmlMOjvbN/+BhV2dWRxmHJOYywxwdBPpD/m/FLrrM82g5ysG5/pS+vqbYYse74UmUOdUVq35fmn+rviKjybd2gL2cIwyDL6Omeb1YqfZZ1KL8XO5VYw3wbJEuXtn0uyfU45fbXkTp9coSdrx6/jXuwHM2eYniOZQ32F+tJMl+sSVD7MO8sMNgSsbheePjhrTbRfdRK8VOARnfO/tQVEZzHmLLxy2R1Z4FXuq85rCHiYGAT8/olyj9b1+CCCFiwttwsPPLhXzmAaTjzxRPzSL/0SLrzwQlx88cX45V/+ZZx00knY3t7Gqaeeih/5kR/B4x73uPuqu13YhX9QEHLOblawB+dYLmfzG4Bhlsqj7JUJQ8Gui9dEVoO6FVq9IbTFcIrxfQq8R/cSEDQLU5ESMuETonKx/jMIqwn4i1Mvxoc+fpkpOji81blgiq1hCMn0IQqOdc645sDdUrLOaeOwq81XBnCpp3QiRv/JshiY6zoQRIey8RmPnh/wHQQay0wy6MG95u1c+HS8qn7O5hoUYaKNMUQpRnpwB6kMntWIRQkHxhmMsbJOY7IewjWR3nAYMLMgh6fJnKLWWnBcKGvPQhQuq3JF5odFcrW0afJU10mIEd+DsOKwScA//1d/haOb20XJI0W6CQVJNYzXzGDMiOEZSZ+61kQgZhGF7bB9iuR13/O9ASuw9kUgm/6yLZoYIp8gfdYysiY01jIuACYLoSgJTcaalPDWy76Iv7vu2tJnVMC0sjWqzGBOUTY93uh8KVEofh9RA1Yelf7ZPx/wDBk1EDMCypcWI6J2tAjADEcg3x7Avzz7TNw1E4TQpIe9nC32jGVk3BunPT7FMcH3DZgoW9Oe+U0cQ1Sfsp5ql+QchB2LHqdC3NAVpugoc0LmLV7bq/aJ0ox0XTdBX/OYNe8qvP3LX7JtuEosct8bLsxeHPeGRFhdc+BAqenPZz2VskepodQbVsv8uHloDLjwfPz10G8/4BdyT+X5rAcKLaSUcPqN1+MPv3ipHQMSfvj008z1tjQDFwZcN/u+OINJ2QEfNe/jxB/dXJdW7jm8iZ/8lfcW3M06J2MQnKU8HRd5zubDLPPCO0fYN9ILf8T6ssX5CdrJ1+I1GDn0sxyiAAt/Fo9iMzihIQMuucmgUJIZ9kmbrT8W5TNgZZzIVsTxDXvOPm866hP+p6WkFscPSqeyM/hnhLPI4l2q6SqNv0J7eFv+8RGyZoLDfutbemWxR7K8U8xVoy2oIkCkcVFOHBpjw5wTgxjfEs6k7MpRFoD1XwRP2ncLt1aQjj+vS/BBrjycCTKBVe4P8okNFthIlk+i2b7yGDTjnrMo6L63Dlp9H6+E8Y5QXune5zEz2KwzGLlOXI1DO51k8CApr5AeZEIdQBQDQu71NZE58v0Dbebnm+Dh608ZaACVwaQxj5o2+LPFlzO4IBrfV6Syvg6tzFuLD6SG37bjSNcl/Oc/+iTOPO+asSx3ppPzerWKqmUdvENxJ2dGwH+k1y2ni6llMgQoxcxilX7GvVIDyWr53p8hEBkq1t1wegfm1NACxtf1aMhgZD5kT9krIWsWHf+M1Z0CnwWMPfNBHwIbq47Wn+WBtR4LOWQBE8May1Qz58wUg65yMLp5Xl1+A8D+g5tlX1ejdkOGReUFWxmR5sCvr4qzNYLPXfEY243GYhZEklwdT9unO+G8QOm/i23tZP8U43Jmjmza8WCUB0XPNpbQep7oNDvScrVae0SHaIEu1f3EnA+O9ZrIwUmFcUHT3Luem8ly6q/m6WU/aZ0IcxJi9gofiFauiTR7ShyTht/iMMf4Dj13/uq76Dxm6679HdZQDq45H1MgvJwvtl9uQB9ULcmU25hwGmPBU5mcWbGiv4aTOyZRHZ4gOoLnQfm3j1eOeeyKbhkVJ68Hs9ni2jfUdOpqwvJwRoDd3h7001qv1tZ1xfntnLx+3dccwUX77jBlEtQ5IA8MmnKV9xRYHOvTNvirRPssMoHmz1km0xgArDPAeggOoL297k6vs+Jopt55R2jmoFv4ZaE55qy0mcMGftf+Fs1TztxO552vxfkpjsvinrROmNC64WxXzm9AyPSkMfnh00/Ddt+XrE96OYtTl55XX4ZBK7iBBe/IOPzYy1WaM7RwyB7Wft/3/opvkSVV3wszg+lvygOk6tqRdaT3ONPNavA83hQwZ1zP/81eE1nG7p75dZjlFoIcghQYmBtN4IKRYB2PC4/M8FP/Lja0yZ534YEI95kzmIZnPvOZeOMb34jrrrsOH/3oR/H85z8fOWfs37//76O7XdiFfzDwjgH6GdSzIWPVMoFZMxoa7JmirlVSRTUDKodk6+DQyrPCaLtiO4lSY89yHnCqQtYwPm0DknnR9RKAa2/chw9+7LLCKJ51/nX43MU3DOPzTE6xA0REmPMBEI1JQ79zZjD1vceyk6mdXX+L5nNkBIBB2K2PY/TdwGTGzGCAGHqG0t7AJ+XfdflluHuzXnPIlLIa+uza0bhky2RW57Dq/T/MVS3PvksuSvVplqNGJGguCvBXAQ7R8ilEcrAMBP7zTK0G+UZHzDVa3Eip10t0WBrx1IIwtNKZrWluTJD1oNutShVVLovDiq2fkLB33yEcPrJd2ig0IsFkddOwzrkwlCLUDXOh55koAIyAl8P1OFE4r8KavnZEotr9eFiq5imY2v/D3BpkXNaaiW8/Pt7q7RVNOovRgC9w2vXX4aoD+2uf3vgL/u37jKJMKlHpC+hNUaCHfUSc0NiaE+WddwIaFr2hBwJMGYXR2bDQ05HW3L25ifdc+RVTN4zKKVV063eNGViaGYUaUyTFWRbLuHGc4pMosztV74PXXl3oLs0ECmtwiAb5OA/ecYWNll2r6Peyd6Bge6J1RYU2hpZ5c8d1UeQ4pbg/V64+cDcu2nuHeTabAStHIViDdloFoByXeVSu7G6f2dSUccoFyVoUFavtrFa+DQ99Yw14IX8KhD5/Zf9+nHHjDaH/u7c2cXC88ljao0bnlLDd9/VdnuZ9hfdLaXAMu+K6O00Z/a04HyPvc1hLpYwfqz5LE3kWyjfq6qdC0EidKWBR/y3DmjUiMhpicZaxvelPzpzEqbHqGk8rPzmnBNStSFlR/5oyROldmvZoEIU87ZfsmZRGJwJFg7xRwp+nUxwB483khTbiGpwa68yvgkg/I03kODHFM8/0UJWtxIEhR6ON8J2lDOlPyvkOOac6D61AFgHGUyWXMlT4vwF/wadNKN723vOHerKlyZrrUsIHP3YZvnz1cAaJMlZfcx8M7964F+Qh66DDHLyGs6gLNJ1elQQrA1UHgfa1kNEZNcdMPeRDUj5R+kgx48lx5NqsaKjyDnNOSQ0xIkV8lkJ16HGcT2Pje6einKMTAs8GYA0cHqaczxRWwXnDZ0FA5rqEpHhtH7hiO4kZEWScXZdw/qU34jMXXheqnXnetbhyPLtztvu2Op1mHmSkgF5dT2h5RwiKyIxxGofvcdld+3DmzTfRfiVoy8vUeVwLwuf5yP/hOhvj0R3pRR8dc/oszgo1U81Sx48WP8oM+UNfsU15onGXciYzGKnLsi2UNkb8t4gz19a2zQzWkhOOI9dEijPlVL/6PQvuyoC5ZlYgXB3p284TWW8cd+jpg+gEtrd1tpmKT0vvV+QgdUb7TF9TkDPJDAbrBJoxGhUXyQeV5loD6kiTpupimKtrDx7Ap+/aN98X0KS/sg8DfcLy+ZF9O8hNUdegr6iT3/q95iM8sWHOPbJW+DWRtay/sjlnYLUwaG8pLJEFgwF7przJ4gOXWbLsHYuDb9PbIURftc5yXZ+cXfa8HW6KiHxHdf5S9FVlOPVyl9cns3NIZwaboqkaDI+fOT87OLzPXMONeEWceZ+Z7Gsd51r17A0JIPzuKEMQbzAt08SrdKPzjNCcOZuIXjNCPwxdVWxEBpchPX6CU9Qb27nbHm+T6FLCldfuxYc/dTmAUfZ1k9OSf8xaTrnefKDLuN8e96nr6MYis3vTg2e/aBYwoY9eDiB84eJbamD1f3rOy1mq97g7Y1ZpuCnjD794aeFf4WnOWN5nKOqzzWwnQSXFoVfkCC179PFazHp+23H5DHIr7YBIPl8928vhToKe6te94Z6DOLJeBxtabas6umk9/xS01o7MNQtCCmsCXPYx9fr5ayuFx7btVr46k75bUGxQGPYr41X1/hxuElFrEmlyXwpdWHKOApZXGepGXmr6msiYlbHwgm4d6Mxg85luYfhAbdstjrBZl593+gPy7jWRD1L4e3EGA4Cbb74Zv/3bv41f+qVfwvnnn//31c0u7MI/DBRDsXokhgNCKMszLfTUZnDFtXuHZyORvuvuI7jhlv3js4Ehi0Zpi0ArQxjLmuLrJPdbYJ15BGjL0Cz9aTy0UUsrs666/k7cse9QrZtNYzj7wuvwe+/6TOlvtUpFgVTmenQE0Y4hDOpVMCk8M04K1b5JQUcqSEtLGDMZxJJiWpgJV4O6UBJZL9xgP2avyNY7XePwh1/6Aq49eKD87hJw3cEDxkEsuTXWjHSEzdqUM4xBoFwTKZnBGoJzxqggWTBXgVHN0VNfmHeTGYwaoHjWtRbUq/+cAlSNgz1vtWmixkfHGBHslhjAA36qUkpRGZI64PZ99+Dm2w6YcsCo1M3WgOGvX9P9b2e1D/PwHSqDOY4r82gfzbCa9UPGKGV0UJ9E+LHvvlOl1xSUaB+13obMY9KdNQZqkOfbRWioKZztOh9pp2LavUJ6SgToxrlhUcNT4/JCsTwL9LSxX6eub5AmzPomyiihVxvKEJpSwg33HMTvXnpxRUEa0WgRnCp9p2iV4bSzQ9TG9fdoKYe8I0xw3lJr+yv778Kh7e1xTxBaYQRKNAxgMHvL7E9Wtihx7R7xCsCUptsBxOAX32hlt+VzooKNZuoYzyuZY5391Ctoq8HT4qAN9t6BpzipQvajVQu4qan9dG3+wjvzCZ0L85M5/ZHzedIJux/4sL1bW7jt8GHVJPmmCi69c6/FlfA8gDrL5NvBzqPub3heMxoO81OGSHEXB35v7Ou6hKuuvxN77xr5QFe3rovYrvDMrFPjUCx4kEas05ilvbq2Yt9NH1KUG/syXRv+egXNU2XyzNfVBaXE+0//Ui1EILlXTXlAyQwyxtJG4/DUZTMpKGuJZjEgSnvaBzkv/H4dyqXBEbME3yQcObKtnBjs9ZuaFvCxEbyy+VPHlWWc9W/EOTRjfswp4st5EWgeO2+cSAUC5mwbcXDtMOeYlIBD29u48Z6DDtcp7oRciwHm/FJxvfTOvY3zNuGWOw7gwD1HC07FYbfwk4QAj/DW91adVOvrpwR86txr8MnPXV2eaVkvYzQAK/5Vt5UBlymZZMYFcfjIjWtHmIEyO8NpjoaflTNAd8k6t/Q9cNxqwTWRkL74tRyGR83cQDDweLrNkd+TtZe9kec+uCYyR/5U+CUGgTdBdKxi9ft+OvOw3h1Thga/i7KbgxZ9MVfUYiLSe5yPg4c2cdX11TFbHCo/8LHL8OcfutjUSanqEwoOavjbheeLzoYaP6DhDAae6Y9mAGN7Znz+0Ruuwx988RIy6iF7p9DPPgPnu+ugfUDC0G50tC3fw53hPmve4Jygr0ayv6eAZaiQvhltmNI5bisjdXUGi1dHavDPtOOW0I6trXgVqHcQq0ZdCxurLpTdXg/XaLYgyl4xQ0ZGdLCthuNm06jZNuK+1/Vq5o76TYtsv86VVmieoHEsFrpUaHe8SmoK+hz1XyXLkl5zM/RTzmBdgtGbOWNvlxIuuXMv3n7LjbO45zyhi8kIe07qtJyRSRMl4EjTLWnHGIjhnMGyvWKJdceyXPlbCgS0Aw27rvhYrokcaNW8NosGR2cEPRaDyvs6OSZbY/ngaGGd11nLQX5HzYRlDOo5O+elMTOYdwYbn19x7SA/9n2P45Rjnc8Q5qeYZagszmCZZ0xkYM9qfoawszhwp3nalkCD4BGDnyN+zvDf2Htz2eK+8JXbuEMfoZvescv3J3yedbBxmcHUOT+1UpmuJTqADvtFnms70lkXXoffeednjI1K14vOQfW6Ng23HTmM6w5oXXq0u3n5wGcpbcHO9NYx4MI7U8qeog5ijodpOoMlH0AsWaRqHyUZBmxWZHHuMs5aKeHoeo13feXLSlaStp2zSo6B3tqRUuqv9foKTlbkmkjEzMlyHmn6JLbIL15xG6jzIeycC821WeJtnaPrde3frTd7Hk/r/PT4puwRuvZ1Bw7gyrv3R3taP59FkjmRzUKO2R9jwA6HSpeH8W2TOsKjScKJ/Zub+PJd+8azHuZsIcgFvm8KfKZYQxvcWTk8sg1ntOyY0SYjbW0Q/PyX7lLCdQcPliAYnxmsK/8a/q5IZkgP94U8vgv3T7hPncEOHz6MP/uzP8NrX/taPPGJT8Sv/Mqv4OKLL0bOGc997nPxlre85b7sbhd24R8Mapaf+C5cuyTPcoxyFmbpJ3/1feoZ8NnPX49f/s8fHvtoRzro56MYY7zls3lnwRx4iZdbnBlMM/HOguKNy/L+1978Ebznby/R3Y9lhgNcsphkDAesCDQZ2khs+wxXVBUczDALU6DbyNDftSGQlcO0vp9TtghMOeVZnKthIxhPE3DoyJZRHnQJVFqQzE/asUJwN0ZN1VZKCb954Xk45ZqrKG59Q5AERoa/s85fOkIoZ3clCGJKbWBUonbR6EDvKieRoeHe+yKkVMGAtQcnU85FBvCrw9qpeTU+DKwziQjttq27Dx4NZV1H1fHPGbet3DYIx29/3wX4rT/+lOkXADa31vV3ru+0sKWXndAaHe2DbK8JlH2b/W8lPJqoVqLwYkamtSj5vdCSohBHr9vcARiDTraZzzRdmrvSV57l8X/12Zh5R11FFBxeGorAnGsEZ86DQyVTeLFU817JSoXSlnA5zv3m1hqHjmyZ8gDMeST9sfmQfuWKJFljPjsRdbQitLX6TbQFP5YdT2DAN4e2ZW8GnNQ6jgZ0a1TSwnwipj3/hF2Z49Nfr9xvRoe80j8jByWpjdJtpM5vKAiaVxYYPqU6uZpnan60IrriFY1UCQiOkskpJzX+gpo889kYGWhegYFWLpRnNIsL76REhvUZh49u0z621z0SgL+87Rb8ty9coupO4/azZ35C9T/yVYh8nZ8Peb3t+SlUJaClBW0kWkoiUZy/+a2fxoc+flnDcKGv7q7nDmB5ZlavYsbOaSlXsa+8ISnX6EPOqBavQOca/DrAnO2eSCnhwKGjNXrS8RAtQ0/L0T0+oygPcsX472mnUDUg1LXDbZ9R6d1SxC0xcgmeGRl3jo6EAl2qju/dqOz/ifFq0qFeZfQy1DxMdNvKGDi8U20hGR5ZjyWrugBfj5oXr+UXnH8kE+XQSOVN2KuQJS0xPjHuiYSED113DX7i46erZ7wfHVji57gYGvUz9etnz/wED4RIwH9521nGaaUUm1ircW1NZWscngsPNTiqK7qerYGBZQbT773BAuBZY3qKZ7yKseCkjMk5Z2MQlXEwnUSZgTw4qZhMPWRKWGajkjHC8Y89opEQZVyqXHYyIvy1fPyKpZ2A5mGEP9V6CA/B8avPwVk764NI9dO6xkzOTb12ms5o8M6RPlOPdVYo9RRPlXObnGUM/MlHz7oCP/6v3mteFJnWjaGcwTqSR4E49sg4fdYnPQ7mTEh5KMJnC38Xno/nXkrtzCrrvldzmfEvzz6zvCv0mvHMLPNJuE6JyFCyN8dgpVZmMCa7ZHCjiw581MDcFso1kao/wc9kBiPfY9vRGX2lo4zHZwFjz+SKJQ+rVcwMtr3dm0z4HjzPGfYUKo0Nzj9kvxjIUc6W9n09b/yT8a3XudCVus35NV8FV59xhGRAaqKch+wRvrx35GIBMx68jpZlT51zZtcZZRdg3yRQGY0smBnLM+sJLc6RL9FBe3ls2Os1jKOB11Fkfn1o65zSbYWr2XpLI5ZCT+RyBpmcM2HdzbUBfy2kc07InI/xz/z8FEeikQc07anv3+d4pZ0gtrHR4d/93x/Dn3/oYqxH51udKcz+lStyexw+skXXkfTBZLSlc+W/iwQ9z30un+2IwSCnKhqYWSajuG/sfuKBRlxnUc+bf/Hr7x8dG3Vmuza9nXVAVfyhdw4CLA1q6R6FH/D9C9xzeFMVrHMzXBM5jHnVDWdRKwhjaN8982d2Bv7s6svxnz5vg0zqOSF6Al2FBRnEbyfoL4WgW8sNx6/OOqF6p0zpt8knu3XX57ZjYlmDSvDeUNmuBB+t906G5lj6Ua7lVe+DE7TCZXBGi+vEnzP1qsuKey/00owz4ebbDuD//W/fD4Dz8t6ZZ5Ct7dzqakdLZjBi03L0kfH/HlqurAlRl3rz4Xtw48F7Qma4jOioFCDHKw2bRfUYOi23YnHwurYndonzr0a/nhJOu/46/PynPwkEWYrhKJ9leLu1be0afjw+o6KW3/KUICZt9DzYKKzNXHFnWbz8WBISfuGsT+GTNw/O+d5uoe3/fRbbwPT8i3y+6wz24IP7xBns9NNPx0/+5E/iG7/xG/ETP/ET+OhHP4r1eo3HP/7x+NVf/VVceumlOO+88/ALv/AL90V3u7AL9xuoyj3lBW8OBvssJRiGhQFVSHmFueckSn+KAUXtkxFvpuT30OcdGGeAcKCJko5lH0lJnOQyvIFDhKdchLNkldojSrm3mUT8nK7H9+JQoKe2lU2rZdQYOrBjAOYZIXnDrg6j5fMouTiExXDyf/3uGfjA6ZeNz1AyIZhxYBiIzEenLXwOjHHC4RxNJ+1og5xtZJMI+yVCK1vnrSmFxpJIgwwiCOcYVeiFFHGGY0o+XVF9BY6jGEGDEmT46+u25s0bq4V/XOfKJEqZ1/3Mn9YyM+2ZtU6U7XJlon5qrl7MlkntoCJvsp2ddR6uSLBZ5Gzqb69EEsa8KgQsA8xIXBGMFNYiyNMIMSdEzSnQaPaSQmzGOdPrSGdIyu1v7J0ehaEXvHRf+sqdDGtQlLqsmxp9lYuRkBumnBCRY8YH77wEiFKLDg9dl3D62Vfi//jNU027WjDyUX/67/DvAXTEUEKKDtSI0br+0yfVnrTFszrx8ejyoe24zGIZomxNQCkkSjXJlsIEOe3KzbPBsPVqhVLzJhNDJ+K8eKGRRqMSYRSIym7pN/nfhG5LVOKwvi1NFGODd5Zg0cbMsChQ2gfZe+y7DhpEGqle6xHHP/K9EOah0rkuJVx780H8f/7jWbSP7bXiw1QjS6MEBbwTfRmDP4NGJbB3PpA1tJ17rFKNLWMGP1k29eoN4gQ11jvhIcePdXg7/nvOZVBirIPxh/DKcER6occg73St4vyUeH8ZDd4sJUdrCT4jrf23bzkdH/30FRTvFg/QImlzkfvmOeVtpg/PkZUPxkdNiyOu87IFw7XQiAz8o599d20vDc/XIld0yV61LntZtTWdGWzcF6ZvzQNZEOdwlulm6rfwpP4absZ/yzgCnoT3UeJpdOqF5b+98/YU7ikNZ5i/ooGRoR/4uw/iwNYmfaf5ID+iUJZszHp9bzb/HlqIe2roM4dnrC/BS0d3r7yBQfOrIseqebQGiSgr+iw2te+IEy9rZSW5+sRkAms5aI/QZzGizp8h1ChbcLP8I8ty4Xm3jJhN2kT4Z35d3k5AaEXugVf/1NvHZ23Zs+glVP14rSLJAJJzyKxg2oVeg5z3lHMou2chU0+K/EineMZWMIDg2XWJntmDcTQ6c4XMldme+eIsJG23Mt0MmWPZ/HDHwUAz5XzxMozSS7T2tOf9dJtT9Tq/HopsZL/SxoaVobyjZpHJvL6AZTvKLnOKwpWuG4K89GMcv0Cekboen02VBUxoy+YWuSbSZQtbr7kz2MZGh7XLDLbup53BNI0XYLyvvxJS9s/UtWXUESMjPEsYjWZqH/uMlPa6KtH78TNVO5mW7BgLnVCYc2GfbRY0lvGMgaY5ciabaxTRNi5LGXalfLN8butKkPkVt0Jfl2U7r3qEhDj/Ejilgxj1WLzDn4aip3L8dGuN6XPbZ+nMWKbrLIUVTlO3FtQqcc/4dbek22TWlAviRA5BZgBxBiPBhRI8rOXl4hAufFcfsy4ClW8Bqr7yuI2VyghWnb+kDACc+vEv46d/7a+b10Qef9wKKYNmnJkD7rTEdTyx7lxmMP4sZDIKhaqs1G6HXxPpzxvqqOKuhJTMNZ6H8TjZQGCYa8wAyysKX0SkApK5s/J2r/npd6hnyZSRZxurVPgXFizcacYNYovidEGDCaoEkb/G75JdHdt9+yYCRtcEP5ullzivZ+FX3Hnnyg2ZFTmd8boNv4b02hkCaazsZJy3xnOqyJM5u3M2B5psaUY8s7Ttoc9R9uqzzWQmNT0P7/m94XdXs+FP8Y0a/6DztDLEVr8uOvwpWipBSXPXsALtM8Lzln0eBsIyw83dfCTzOHeGdeZ72MAZHRDLQD/VCQlamcHE7jPwLlUvIHTGO7ozXAWVvzj1Evxv/+6DHK9sz7Wy5jXdCvaL1nls1ybLSIwU9QotkGO/Ojhb+dAmZmg7Invd/dLkJ7vwwIJjdga79NJL8au/+qt4whOegNe+9rV497vfjYMHD+JhD3tYcQi79tpr8Z/+03/Ct3/7t9+XOO/CLvyDg9B37xFs/2ENYp6xE+Ie2/aGOWHmLQGmh4Wq12cowwQ/MKVOK9OZ1tu96kPvN++4MUR70NvDTeqII5hFhhjrpa3xgC3GbyVw5Vq0tq8mtbZpzXlaYLAG0Gmlh72DeYCNVK8KmYZ5b35pW3DzejQR7DdLBCa/k3owiomzXTW6lg7UHOko0JLyvqHMFeUKxzu7a/6GayG1YHJc11lmjrRWDBpeMPUK4DGKI0SG+rTrI6Op77Jniign8zWZfIFiLDL9S0sWdFv0ulfotTVGyiFTmoKpZ9BrxyopfeYnuyPsj+p0aYVVbfDRw5C2O7envELIKpEs0y0KcK981ZCdUAnYayKZY15VOJAPukB/aTJ/OSWajyAtmcHm2jQ0zM0PKl3rR2Hjozdejzd+/oKKx9jDKz74NxrRopBk0WBT4xuUbfZ5MCI2lVSD8g4A7j5w1LQL1HVtnQBlvAX1Qrfl+2Zwo2hKwFsu+Tw+csN1MyOz52j7ij8+rt45Gut2aR0lEMbMYAMNLgYDJcwzxZJqjiqNBH7uzE/gS/uGq368w3hoD26/jW0zp7UpYbngQzprKSb9HK6IAk/ShA/KZXu+D20whVt0XpArdhn+2kE+4IiEf3vuZ8vVinrfyxVoS6Kpc45OyqU91fG6aopoeQ3rMTNYGM+453/ls2fjAnXtEcULdY2EFS2KAz1vSpmlx9ClhO0+GwMKPZ7kfBz30YCvPSurATeH9dQrJUapIHX18U5WPXvGssDZ9RXpcZnzhNCi5zsYJPj1mUeFjn1U+BEz/8Oz/QePqmcO76C7Ht7ctvdgyJzmMWTfrHLLlnZ6YGd0icSEnUN1vE/iI2WW2hTj3EYamBCvJtXKOigeiwaHFLwijdRRzRpaTtOi/PXzZeqqwImlwUL+bKnl3D6gPK975s5DoRm6GTmrvdPtlHFSrsCgilBEA5MuNeXw6DNgSf3h7/Cv//Vf/kXJqEvpPv1WVnYHoK65r+e8vgKqZsOq47COTjE6nWcG4wFYPFsKuRbSyU5BHoL9Dn0/GlFJNieDF3E+KH2kLjiYbHRRhvOOPF6xPciQ9cqpjHi9y05Brgrb1FmLMt/vAN9fLOiIOSBPOXPYTAfRmayUc/xldfBw/CXZ7954yiDnYS2tnOONdhJjmb10Fl2foWp7nFuZl1amm5ZjYmdJTNHPxO/ecLSHliV43+ucx7PWyoQDfzfUpPq4htHTOOH0cuWQwrTPWG14R804fu8gAowOJ25PjRhSJzl6lmRnYFXlND0QY5ruyxvYdMYvWRvb6/lrItd9H9YZABy3scKWq7+93aPrpjODhYzb5OzwTrNiaPzIDdfhzRddWJ4nAC8+5X2jvDzM9xk3Xo9fO+czABoOYrD7WOsipa+uSzjt7BvwVx+9qpT//b/8Ij7/5TvsgDKCXmrKmdRDKc8cV1Hb3HFmMERHxA6cx9XG/JYc28K9+Q5CJ+Lz2SwlCi/RB4WMPLmeuyJX+4zuPguNRz5kmWmsFd/Wtz7lMYFuHLexotkSpwfY5pNN5ijSrMzNHf1R/L8+ccaCvrLJGsLOHxYQzXR/ei518KIO9O57myHPOw7ocYjzaN/ncS7VNZHjGbStMrsCwL67j+DOuw5Rh2W5anIn10TqzyA6W+9owfUNru887eShbRblGbjjpIeuczJbaEe+YewT6jz3Do+MpxWdBBvHT338dFx34EDdL4pb99mOvLNC6zaElIALv3gTfvE//m19MSEzAJVP6lJC19ngCZt5bQgoomeAns88YOn7q6Pj0OJlfDst9T9boZ4O08DgHHV1zBl5KvjfO8mXNpW8o2Uylt2q8Kvjb+E7SvkGzSlB0rDt6UAce21kNrJZqeNkI8nwGpyHvYzVJRMAYXUKA9gbFsg57Mqvc0afuUzoHeeWnOlT4HWkgsxq1eGsC67Fv/qteiuV5zFopkkS5OD7M8k8Rt6lfK++ZvKcA2NvQQxYHfqroyrZjkdeP2YGizoJvZa2tta4w2Wf12VTSnjn+y/EO/5m4C213JLzMlvQ4AhnGw6OmYrXXOLgLzp0se9aucc6SwLLsrsJT7zEEXEXHlhwzM5gz3rWs/DmN78ZN954I1JKeOUrX4l3vvOduOWWW/COd7wDr3zlKxdFLuzCLjyQoRwqeVoZLsauhBlBOFcDeGFIcmTwpgzlui1AjCakLKqAp9hfU6ZXAsgRpbwhvA8A52STK540gkExdyGbQKqZw7QDmc7WYscoB77tY3DCi9maNJOgqzCDqwbBsRcpBNPRPKbNhMVRf6WuV36Nv2sU/KjI8cr+lIwSxI9HN+sFdoBHi0rZlnAgyvBiHMliEBiFcTGmqEhZeqVi5pFgoRziNZo8o5EVhnyUUAGm+Jtg5TSTqXHSDi6sfOi24G6fyVyXx6bBTJ6NdZNb7OMPv/Z4Npfx+4/fSNMrJqTIryHHkXU8rYx3xVUrhIIAB3vNpHfslDZX3aDgLs5Go7MBE+KSU7ayMZvyE99bmPGWgCdCxNCOBU9rpuiPdx7YSAnXHTyAT99y0zBe9X7TZUoSYbzv22mXw5z2ebzixGarWXUJZ553DT74MZWFkO1X1H3oDX1QgpFxboYINWN2ISU1HWciDdt78toDBwIeppwYc8f6rWwFv/qm0+hzc9YoIaq1b+z5Zc+88m3GNrViRGd08LiX36UV2+eh7W3s39ws62laCJX9ZNdXyNqp6CcjwSXKjRCfjhi2shuPrCPmGCSP/LfLGKPT3Zx6pUblsWo9DeJkUZ2Qawnpc++RI+ZVNSy0lXp+vOKg/Ufv+1LATUAUrBloZuoQGDKDjXi6L7tKHfYePYI7BO8JmMtOWTMSDri2FC1DZjDNg7A2BxDeRCtJhj4qb1l6VctTvlXqhFesZ3dUztq+TYSxW0saN6YOan3jEGiQ6zxRxUzhzTz9QjT+JEQaoPr1zxg9GMoOfd5zeAtXXLvX1nPFW6stqVGuy5exlbWB2V6tzpX2iSHQQCKsJUKECh8egiCqoDTQassjiuLtgq8cwi13bhl+bQrYyaF5H/ktUdns+/SqTHxr14p2xvcQzpbcyhyp6bjj20QeJdmK14TGZmT82jlnq7ZlrDDPWo4YWy7rqB/P+bffhvdc+ZXxvS3HaJbQyhDgkSKfe+Otd+Pug0f5WTbu6fU64zd+/+MOL9uvRLcbA0Nn59hfG7nx/2fvv+PsOu47UfBb595OiARAACTACJIgRVJiELPETImU2uF5bD97PdZ4gsPseNb2Pq/TeLXjsPZbP3v87LHHY3sky2MFywpUYpMgQBBEzhkNNBodgA7ogM7ppnNOvT+qflW/CrcBy3pvLC+KH+L2rVun0qn65ZAk7A6FBh7RVHCyzpojtBAZUWfs3PiKn2Ik8pAbHe3aHAckQuMDof8LlISor9gMeDPGE5Dzg5s28h8mfKYzzKMWEb0ZT+9Sx/jHu3OBQjXSjopAyCvEKbQ4PnEVvm70n1ibxbdLKTjrRYyJ4Sw/6l6eu9NPvUh09dLTxwwTAXW2/+jUCUxoGkYIoelif+Zxepn6WKyk0joa0P5WDR9JUYTCPny+UvFGXpo4hNGVc+mmtctziWKxEN1bRzah58JTE9mx40aEMfojlxKNLPUSUCdNpP6d43T/HdWcNJEUGcw15iqwCCt8Dr6MBlD7ErTVxnL1CvGpvPgGJgoGC7T1XcTh0RFVB3U2emZmcHB0OOh3Ia2ZvlIpcUQ7VVj5hNs+iJrFwukT/XXx8hy6+2c0LAe6+mcwOu7S5370BwWH6xtSBvshKZKHV8f5QFxb5GAnWob05DSoA5PA5Bny6vfPmTtC+GnXEHfsI9rtWkSoUpKyOcZ3hLDSNwBx4K03HuHxwACmjhy4IAT+45FDkFLip3/k8QC3+OllY2MCcOBtPeMY+o3/HdASen/LMsX56aloH34JIoEx/EOGFz5d59MrQRRvaeVV5GxFI5BjGLUrRs8DjDFYlufIPKN2A+tYml5Awa0kiPQJ88ztG27AiqXN10xzSO/vUGZZx5Ap8v2quoQ679Lhd+HianIu5nAmZtBRzyFNwMJ839BWRcf1cWFooEajdc1MY6xcUnSeY+ASypedaHSLvIpCkmBodBaHTg0E49k5ucXIJJgehc+fl8CxEzLgwWJjhHsQnot6tIxpIxfh0yN3DgjpI4qs5xt+FYsFT+YbRl706TxnnFikLXZvc0arEB3v4yU/UhEZiBvdB28POOeh6P0e8FaJdSqhuQWBA2Jn14MNlOqa3x/fYSKeXjzUPSz2rtXc40bFCeO1F8M111IU/vLOiBoahUTgysQC9h3vs2NdhTdU8PnqEU3998/5VgniLa9ugOs40YrFI4U6+nQwWEjnLsbHEX7TbYrFxDi7RAZAkgh0dF/B6fMjgSyGjEkXK2aP/bvk8dq5VLLQXMteF3v9EjD3tmZ0eZym8+6frO9M7uA3ujOLruh6+W4s/6A0kffffz9+7/d+D319fdi6dSt+/Md/HEuWLPlOze16uV7+0ZaYomYxxYYJ1egAXE2US/+ZkECNCegg/AhblvABtIGGhIP83DUwYyFHKWcLt/L3nw6V9L7VtV1zkB4Ido0xhl0IdzuFgBb0u8y7bxzmY8iMIUKnHXzFmlo87X3oHWyJFvqkFn6kIr/QL1eL3MIfMPY8bB6SzU96RGYaM/rQDIvvyRoqhtgzAcMSlvpGjzJI+VF0jMM8T3pGqPnz8XOXx0qeh5wSFzA4dQWXMI8VRx6BxQVWgDX8iRHu0f7r9GMU8eyMkcKb5iSEK3A3d2ARmMPTGwbzrLMJVoGvjSiZgED4c9RtE+joL7CMswQRmIwwhi8AcL02fSGFBIL9J4UcX0uW5yAjAX9ZPkN5LWmp/Db8uxMlQ8JJd+cLFZ0+ItU8Ko5fZ2G5qvOVbbH+eAQBFe3r2pgrxYglEQVYgh0He/DGjvO6XVwRQfAlVgQsA+97hQHx1BJFzTTT+QmiQUXHcbXh/HwSA1SPaTx8ejAqVPEV7s74ISpmgg1EzyJ/zHmfAlhIU+y8POisJ+jP6yuW0vfS7CwuTE8ZptddDwIlogRCYzAIHD97GVMz5SizTOuNRniICSmCjQgVFMbATAOPqMFEHSMgX2jrCyxdQX+4Fr9dLIJU4l7LxYuB1xIHTrnRuvheEjz38bOzFj2wYwzmKQV8r3YqMWWKaeG9U/rqpwGOpSWjyGCOkqHeIYE16gLCsxY8wuhKMvKtlzJmseIrIfw62y58Nk7SC78ioDFiRQh3zUSvudEc4inHYkIk7mlL+CY43wJBuiWfB6i7f4TrRbhGPhv+tOFxvGf5c7FoJrG7VH8fY3sRh0GqH2lhoPesEALDEym6L+toUQbWxGlo6s+fNofP9CnYJ1B/z4Lv+gs36qknmSPcsuvwRWdNwTsV9c6ylzrAv1vekEKoyF67h4f07xIIt3VRyqqWKVM4RQ+4dKiAwJnJCfxdN6VDVTjHRKdZpOMY/23xoX2QothEdGkAgEolxZZdF9z1CPdTAl5aSBeP5xKRKFcMnkkyHnPpvTD6T5zOiraVXppIGaZ/uXqaSJ227SqRwaQxNAvb+fQpOQZFjZqcscPIYE5qeRk3yBC4Og7YfeSi7kOdJ8cYDPX52JixsZ9CSd3xUEZQXMSJSQCOI0y9Y53QAKZfbXygvxNPEBoPh8L+WCEe2f89hpv43AEOb70UN6k1j0lEnNY2hn11PBN3Dw9hrlazVfWUnRFaWEoOq8PuATcygIG3ht50+3Cm5tOqdOd4XR4qb6SkqD+WpoqniUyc+6toPop6EMJmXzamnouvt7FQcGRDZCDmGIOR0QQ3BmMwC3DvjokMlrqK5MaGoht9D8oQI2YMVigkQfQ5UrrWK3mEJkpEaOhTEAJDCwvYOXRZ10lz3lPvDgM2aiXN0zpAuEpBO6YLnxwZHZgzoJQA48Oi6XV9fPL3UPJKGTp80frHyiW0T0wonCVCOMyLgDpTOy4ParqJDHncNgEM9u5FPXhj58uBWn1ZCYAonKB7d21pIm02AKLJ+G8uDJHgNogE2w289fYucNLUbYqRswIo57bumWnM1mpIEje1tiTc+/d0Es7zxWWTvP8YzZMkQkczuoY+oN813HftO336NozcaBKI0AiwsrwkgYkEZ+GrbiclCkU36iLVE58jpYavRW58q43CvMhglWpaN4J5nkvcu2kt1q9e+vd+J2oe6r04tIWMw+zgWYSyTff3+HgqIqW7OT6MclLXAuFkFsH9gIX5BU+X49PAVBcY6fK+NFzkBoV0hvjSfee/2HknfMijT8a2T5p3oGUBOcEBklHKuvI6nmLTzM2nQWScHjVvhXhjb07XohOqR6fGjOVpED4V6wzvpXGPwJ3QCX/xyGAeK6dpIPOoIwPiZ5vwlM9L1Tx8Innfniyf80Pmd1i6xU83T7zYll2dZg+CSK3SjVhFcy0mCS5cHEPf5SmrczPyO93Q54cd+jWU8XGDJEDRBz4PafvijrH1cc21Fh93U1+FQuLo5PxACnzevM214GWuw/b5VmXoXz8yGN9acm4gmJF6DquE76krP0BJzJHGKdKV3zcUC44zhC9vKySJS896fIvA4rRO3NlI9Ts1U8LR9sumnozf/NS8NA4vpIesMWdcX1dlcITmN65Geyp6UqCSZdg+2L9o2+vlu6t828Zgx44dw+nTp/FLv/RL2LBhw3dyTtfL9fKPv5CyhAtdYwoLUjRIinAFLJSqxqtOeIIzLlzghlh+Oy7AYlWuElnaqcaQny9IiZV6v/syG2rGCTJOJMXyiNPazN+5u14iHgjpKyTPFgXLBPI98y3euVEPR8rGQIzaor5Aw5J0lsOilsVr9Vz2iOd6hRvF+Ao88kJ0hTCoK8i3Z8Dz6GbrzLy+Fis5ZF2kERh7wU+rotNGMoYgEQIXLo07gsV6xCXtyej4HK0uFGjDMrUTLLSr62kmHcaQ918vOkesxCOD8bPmlqtFyuRjC6j3wg3LfE/a+syxCH7nhKCZf1TZrD5dYyuJ2fmKMurke6jnRkwZZ25JEJpAoJbnmKlWDQPHBQC+d5hHt0cLhcg1RnRZbt97wES5DGf0hUr/q4x+lxLaM4MzpHxfbeq0wEDF01RKqUPve2OT4QOHNwWhFP7Wi8ZL0ZJb5sikWMxdRcRihZjb8akFLJRrpi/y0nbWr+c3NOpG5aL0Hv56HOOOCPDj0dFoRRyGiMhz9QwD/N59I5B4+kL1GUuLQ+ntyHBpZs4aR8UUcY4gy1fWSekoocydgTob56em8OuHD7D+3L2sJ4zXnRsB95d6uvCfz5wK1qJaITr3WIrhr79zDnuPXfLGsR3Vw5NRIX6kDx59jD9Lc0k8OESegc69kjIQGPIxVRP3N3o+FqmPZsjhkx7GCASvAX2DDNv8M0VTof1JKTKYVGv3U+wA9nxmWR7Fu3zePjiPKRJjxpfqWVcRRmclFlFGnd3cngEZFxgaXMIcIYKoMlyRRvueu8/BEwr6dFSMpooJypz7RO/fE9rQGoNFIHz3ZHCEOkIUoktDpwlfaUxG1+4Ygv3ul8AJIvKcXxd0U+csqGqPB/HHr3Pn6DxKAJOViqkXAMbKZUjJ6bd6U6hPJ42MqWfrRcARInzPLr9hz3q15u7hYrR5NDKYBydo5rkMUxPxOcdoLDMORc3VfA+1nZ61UUWEUNENfu0/bTXjx4yFBYCxyXnrEMM2wpwfL/oM0Z18kTEYm3jUs5lDnT1M2dpjyntAKeXtPAR4dFq/xHhk37ie3+NaaiPJBoLZOnAuZlxbEL7hUmjIVN84LBT0x6K25BIhzoXrWGPmKd0oylIiEN4nEWWh00eu0itdTZivHAzi7XwPbZ/X4+2klBgrlXR0XzfKipRYdI+d8a7CTP/qH2w1fwshUE1dJXw9KBMquciIhzXiiFeXXBINE+/XpRHrK/MFXHijUnO45zpBeNe4nGex9QF1zoSUId1qOhcK79qmzhnlirGo46IZt47Re0TeofYhRktGDN0R8k5+yWRueRheBwtnY+8kEaESL2YcGIs8wY11Yt7+gEszy5zWF490XTfKTAyXSInGpOBGBpMkk3HrBNzUkKnMURQC5TQF4KaJpEg7PDJYlks0NRaCCAp5nTSRschgWX71NJGxyGCjpZKz79TGhymJEE6ESiqVLNPKavUc56djsEcAmEhrWqYbKhtN1EpJ9IZdHy9k+MflUoWCiKb2ixWlqFXnaShLzdkviARbB/rxKwf3qT4jOAYAhhesfCwRAr9z/AhKGge7TnShYQYQGiMsZgzm02USqAuglKFCGCFN4TaB/Boip0lzf0K5noEV3neaEtEk9WhMIJIGz+CtsG1DUgAATFTKgRGSwS2RSMFXK9eSeYfLxqlQStvFjMFcGZSm0Ri9658HP9IMEOoXeKQnwBrHZ5IcOS2c5PDVGApE8oYWixZeZLlr4BKkicwlGhsKOjJYPHolGaReC31h1uVOKYDPJKu8Wm9Kfn61NJFu3xKEU705OXJPd38h43guim90WyuX8Y28FH1WyzMMzs+ZORWEeg9XSqVgHKL7EiEwU6samOz37UYnrLOHGv5yWXY02o9eiDEWyi0tEHtucrpk1u/LlZXcIpSb+acpYUCPaIyAhNTvaUrzyuHy7PN+idFBAEWR8miMQsSIz4NFeS6jdXXp1MR1Niajlpg8X+qzPVmtoJymxliLRsr1OXJxL48k5Z8HC99pn2K6BZ83y6XEb//Ze2ZOvpMcGfo6qlYNE/7wM3vx168fAxkac2fOunQjwyGJH4VMAQtTUplbfB3AUi5HRzDHv29JhKcTlmoqSSJCg/tEYGR8DuVKGu2LIs8t5pzjR4ZTMJ5l6wFFr6tP/NCseNRo38DftGPngOsB7JZLt70zVzhpkf007i4tod59sZAYPRSX1RvY6z3jjEcwxqMLConA/uP9+LnffsPOVd+ZghBYSGuYqVadeY+WFpiciWS6+jt8mseFL/XoRF5IxztWLuE/Hjm0aNvr5burfNvGYA8//PB3cBrXy/Xy3VWs4sh+GoESRy+GGLIA+k8+ewCf+epRgzBiylgAjrDJTwVoorFEBBWmX7jIJVxD3MOSFyUoEgETEntWCNfbVGjOWhkE2HkILVgE7P75SjOKemTmLeAhMis8JGQKIBCk5HmuGIYId20FgGzO3qfphxFiNAd67lrTRMYiXMQKP0uuEDIUAJDSInqGmHBUJG4KKD4vN+LQ4gKGxdZpvPEY01mMGIeljCAsigR/+8YpY4Si+lk8NO0P/OwXMDVTRp5HmFpNZHZeHMP3/tvPqXE0Me+kwIoJL7yUOVd7U4lHbNFDV4sMVm+H+b7xaC/ECPuRwa42L1/h7Sug43pYYdrSvXrj3Q78xK98VSkKGbNGHVgFgmsUQPf0bzo78O/37HQEcxQBKMbw80nGBCv8vgmhhT7SNbYxe8GFSjIecYGX+qoEmPXxvXfCr8PufeCtQgJhn7mtI+CxzIQWdgjmEeO9O5u+10ZcyvUduqaUE1Lt6f/yv76Fd/Z2mbpECBQSK7Qn5nV4bA4/9HN/yx83Anie5kOyew9w2GnPCTdOoXddZIabcWMK95P+lt53/35GU9foNjFDHK6833usD9/7M58zzwT3j6NiSWHkeV+keNcMprBCSyEiRjoOvltESQetdIDdPxK2xQoXwNC8br3tBtyx8QY7NIMb9fqpp9Sr53Er3GsdxYUiEYxhd2EXzSvAP16dwYfOJYXzuz8fv10Mx5HC7hrk7wau1TMwoP2h80iMeRq5q4ahz+IG7SRU8+v5OqQHc/y2nN5wI6rF00QmANLcjsufd+auPylqJJ+Teo6lEeDwnKWRpr1RbcK1haO5/TnziLzXGO0TO/MxmJNp2lOIuPEZrcfHu4gIkknAzBVQfmoufwJxGiDE9bH29e71YrSh29dieylwemIc37vFCrEggM92dmCuXMUP/OwX6vYRgzi82T/7919gfcaNvxkYDg07YPHtLWsbtOBP0zyRddI+XJvBKRkKW+WnA/fqPE9/C9j3Zoy19O8f/6m/MWNdS5pUVSfws7/5LRw43u8ogqgf8oznymh3PZZWDqJzCj47vo56OMp63udOe4v/qnlm68AjzdXn3XJG05PyJXZkrZGCh3ekC3MWK1JKx/FHIlRYuJHD3NQlxO+4zjfhu6T34pd4WwRpIpVhl5e2bxHNQSxyQHT9eWhoRsWPPkORUmLwI4fE//zOFhwaHXEUwvRbLGJAzLniGihbSCmNQosbqtRT4ABwUsvTHPwUStzpx9Tl9VMtER7jwneK6RjQQX6djClKw7vmRmsJ+Qq+HiFCBwgJjXMiG2twsOewR4XzCPUU7QDRjfXpcG6QFIvIAcTfPRnI1YsmBhCdLB0jBXIejDmC6Y6D8wAZKoiVUYenSJVw7lWeI3rPOC1tow7FlYI+TjFjReaeQ6LRM95UdQWnLpU5mgoFL02kRHOxiHKVjMHcFJKJcFNC5rlEc2MR1Zpn4JXFo30Vi5HIYDIeRcz2lQdrTyDwb3e/h9MTKiU2GScArtKwIFR0bZ8vB2xkMOPcp+upzjdeToTAfxnsw6yUAOz6JOy9I1pOAka5GtD30jUelYg70ziPOGfOtt9VLas0qNIajlay1PQZuxI/tO0ta4ihcbnaC9WHA28QwhuHXsXiysRgH2V9ORgANETOh5IvXj1jgJmPji4lENKAjpxKhoZsrmGBdwcRGs7kqJ/OuFEbQ5azTBllsHUpA9FrW5Mzhzpw4NrauWnP6hXDm2n4aOU4bqqomMEhGee7tJAIzi/RDc758OAr0Sf+fGnvzHfPATLzPqVUxmC1WgZR555lGocXPYPZWOFnn88p5qC8iLjB6c/PauF3FHvnMZpDMIEY4XV+nmMZQGJ8BfEbJEcsJkloVCQEOqen8CPvvG16KwiBjqlJ/MDWN4O11sgYDAI/ufNdfLVHyRx9AxfHILUOvKC1+XLnKM/grIvRO+wHIRRV9j0/81ljAO06/Np2znfpGT7q/50gWWZsc3NQEAK7hi7jeziv7K2vXolFdVZzc+FdnlsY40QQDiI+henq6u0lEDo+KJ1kop1opSNvVzAzwW8dPYzPnD+nnvfufEEIZgym8DifiRvtTgZGb64Br5u+lPgkDo98PGDaFZLA0D9JBJIkUU5FUhl2GZq3zh4p2Q+br3eO6Exzox3L/7h98dSfZm+uBsAXKT4+ziE1PeK6edHZ+eQfvYOtpBtABPcvElXQPMPbSPcZmZOuZpHnmVEXYPcvpOlcWp47/saMBqPpW/02i/BS6mxo/Zx04cW14GkyhHPPhsZDRddEh95bIgT+8lw7fuXgPuf3f7b1LfTOzuhd8Hcl1MGYVyZdA/lF53oNtMP18t1X/kFpIqmMjY3hy1/+Mv7gD/4Av/Vbv/Wd6PJ6uV6+K8rV0t5QoWaEGGbnq1aRVMfgx7WKr6Pg4X/rLzYVgfUujwmLOEKvlyqlrlo5QiADrlcCT83oM04GUUnYOeYWgSpbMK0cJgbLERQG04nOn6fn5EURqiERUC+cp/T+4qNcLU2knfM1GoMxCsIXqhqBFaNUYop5nkaThB2OcSG4wo8pDuqt3yFu6u8R3wtluBOG8rXRRxTh6wuPyVvOv1v83aZZbgRvAPChH/1LO4Yn0PaJLWJSQmbKJXIkHcQ6pV4UKHrEuZtsrj4DQl95Nzbqlm2Tet4J9BytnQYlgxzXMDNyRmKRwfQnV0bOl6qY8yKDZXluzhARqIrBp9nZ913OMpQyJVQm5vdn9+w0BKmBWx7hTHCBF3uG1EN09qWEMSbhhXvAEOFed9FXKXT2DVOm+2P0tNlz3wPZpgJ1QxxnnvDIRFbzGD9PF+HMmSJq5MRgaZhZ9JSC9UouVRh+AChp7x9inrkHFDHklarrIWQMk+GmJyMw5huFAfa98mgeVMcjSgiE9ysuWIt5prp41Pe84X3FlFcZQ9q1WqZhzmKCJsaARgR0/KwrwXFung4ZN2GNKSTqRoLgazEe6FrSFQgbSajrCHskbrppBTauX2H7pX4yGVdsSvJ2CkuSxNNNuaG140pTvj80B2uYRsysi4m5h7ISQHl13jzIcM5EoqDxnDr3WeXFZpVgVyu5hgsx5Q9gz6H5XcYjiQH2ndayPGqQpNrE50R7EDN4ip03v23sO53/TOauIWdUGKb301OQ1itccAfofZIWb5LBsYC4Kt3t/GzwsfSromc4ZkhmzqN3ju14kXui2wcRTn2aX0po/aXdA8SV+Q5dhzBKIeEoH+5fa9RTonhoaNez37bLnL20cFbRmkA1cyOECAjM1WquQB7ufsbGWawOCPkvAQsH1HPuXiicDTQ3CtywrGie8dfqr83/RYDxWaxviv4Tm27OnuXfeeFRZCwcipwthyDQQvc6V6Jayyyvaeg3jf+ESyvXM7526vQ6OSlFf/78vt14Z6A/qKcIPGq60vlMGIznn74xGJ9CyAepO+ReezvBjAA/WzufQ9w4032LOVyjJ2XI5CoYCjH+h/XtG3jEFOg86i2fZzyKGKVGsl7qfvQu5dns3lcfjjUUC1FjZGcOiEc2MmP46a/qRgYDqnmO+TSFhDKQ4/xlsEdJBHaJ+H31S7WWGZzFIxmZTiLFN1QneqWessPwnqgfOU0PGCgyFByxheCvT6NxHoD4+ZhBqMUf9dkaJdBPAgcIs04Z0n0uDg5hd8aUeImobwxWz0GFeuIGSRzG+nOJK0GvHhkMwbxduBbsmogYfkjpRBoHYJSIDl7PKb0ZwZhcK2DdIXhEBOMsiXhUqnoyqthdyGUkClhO0cKkU9dcCCOINSUFlGvaGMxLE9nc7KaEzHOJpsaiE0GM+o4ZeDUWC0FksKumicwlfvb8PieCpM9vE/1B66c6Q6tGDofqzxqR8ZII4N/t2YnOqSlTRzOs6c54MDMaX+i/IV0elxcJl08kecJicO3f/MYuNpaVkzVAoKJxLBnqSFjjlHpyXJ5CiPaC4IsPSwIFteCyD3VuY8Z2gJLNuD/VIZKg9qEhEjlOQkUGu9Y0kWTsEKOROe/i3ynCtfRMDOeGxk/1jeEa9QEpp6kTDYWe81N98nkstr56clh/LaHsG4HRUUDf8v2RCAy5+FpzhIpkcgznbaJpIpMEP7NrB05NjDP5vwtfFWwNeZo8l568yTWEz/NcGRXqc5TlEg0NBZTKNTQ6RmPcqDVHIRHXFCVFIlSgcvjD5yXE1cWMFB2p3rgxnF4PZsSM68D2M5Srxg0E6Svhp9A4VtG4bipiGONbvx9/jvxTwOfRXYMM1NnDmG4nVpxsKCpPpGP8zmEZQHwTRVUL+/INxAMnGsZzcxjz7DdfZ22AchaPuESNiE70qo3jkVMvQ8N2Mvw6dX4Y/+rX9Nh5mCZS5pqf8WUTdQ6uT4cp3CPwyT/ahm9sP+foiqS0kTdLGUUGc3klbqydezSuhOvskMPN9mJgMqNPnSjNUOPTbKu1TOEGfVmt/ig0yCSeqlAQRu+UJII5QMSdzP0oaYlPM3pvL9PR6nzaUu01HD1a8Sp0wmKFZJ0/sPVNE5FOSt1v0XVWIOMfAEbuT7wxd0CKpT/3SyIEXv3Xf43R8TmjnwiMExfpw8ilPTwU6AfYvTCwl8g/6Z6juHzbbaPWXKewM07bJgSw73g//sUvfyXOp/i8fR5G5CN+wqeHiQ8lw8mFtAa/+HCVgJf6znCCR7/FeEp/7VIqGUjtWsPXXi/fNeUfZAyWpil+8Rd/Ebfeeit+9Ed/FL/yK7+C3/zN33TaTE5OYtWqVWhubsbFixf/IcNdL9fLP7riKkuurhAjRMCFJq6gnXmaSYawhMsEG+IooFKtQNDosiOKZFNv5mn79dcXVc4A+Lm9TDChnwwjj4QpLrmCzUTq8JTU1rvOflf9eQyu1IR24ikHaP65G12Cxqb943V8H/xiiU76bp+7WppIvsd/X/rNZTjsOh3DpojwVWhplNknxrz4e+oqi8M5JGwNMW8KM1d4Xt7STRUSflcKAyKyTT9SKR2uTM7jN//03ehYlWoKmceiKoWGBkb4wThLoa35nXMpIgzdIhy8b2xCz/x9I4P5ingeMYXfXUeILvVzkfNU8FItcMKY11ljTTsjbogq9Xkjww/B5phKN02kjeJCxkxWQMiFBYkQmKiUcWpi3DBsZycn8F/bTwNw02LSmO5aXAVcIUmcsOMxpt1VPl5NJBPuFS9BpDHvUhvjDd/722NkSOCYytxZsz87EqzwM+HvEzeuVMpKxtRGFJ/hWm1kL8fbp6DuCOEqEqxWqq7AXwJRYzBaEb//Zj9ACo/wfVBECWssGLzUuuvgpeDdz2jaWV+pzLqXZHAB/46EYzkR4qT7HbB3gSvAraFzuBajcGDCev/tcY8nmgOtN2pM4jGA/lh+v5mOqlkvNUHMICeqNI185Z6qZh4aR0nvfNt5xhh/V+Ds1/nrM0aGsT3XdY7Rop6wEMq4iyu2/tPfnMLcQsiMQ+MgHycTPrFpIplhaCIC5QetRQh99wy8Zn1K+75s5EB3P1LrnlgXN1n45Aq4ArpG2rPLBX1RmoD61J6ifnTbIE0kpKPkz83ZD+G6L6zzi/sOQzon1o8wdcESouOQfYkmtaJFeD/WE7rEaPQYTW7lO5Zu5oXo7XrRhu086hduLMIVCu44Yd95nTmpOg3LrgbKIxOrp95noq2gQ6n/icEjpZCDiQRbj/fhxU2Noj9lOAcBMuaJFWnaqOf9zbDvjadWNXNgBvpBlNd60QGAaERZY0DPBYL0m7fWeoYnQXRBAHO1mkkPahYF92xYAT3tIefK9PsWFm4xFsbv1j2H/l1g6+BpVbnSkZ7zzwh3tuBRKnlkBKJfuQLC4QWlNoiCpX98Ib5AxChQhvdCAvFIW9LlbWIe//WiMfG9uRbHAUUnLpImks0tJ1o0gHP2vVSyDJne0xPjY/irjrMBfZ9rnBWjfa5FGVKupOY915w0kfWjBMei2MR4yiASp478VJd3YDQcnfGYYZMPU0gxxo1DY3ScEz1ARug/M/n69EaMh4pOii48zdFzTosZXAJaeVPn/ABwlMr15iIAfKm7C3uGL7trMnA8vv8UoZTfWTJgpnnG6cJIpDhvHRSlxq8rFhK88d55fHnLGaVIqRMZjCvWSLlfiKzf23ZnTsF6pTb8yl3ZSmOSuFHATDt37s3FAsraCMxPE9nSVHTOT5bnaPbqqD6W+rFQEKhloeHYYsZgRE9z3tqPfq7eb2LWoOrqp0qk9XM6mhfqn6JWApzedtvQsbNpIq3Bvpqj27eveFZK5/pGp0GkYQmj0G8QAtWcIoNZeQxAjkTxPukcEF9QZWkiuSI+7kwg8O/37DR3iEd28UvC6Hqa+2KOt8Vigl3HhnHs3Bh7JsRt9Qo5xtGQ37p0EW/1XbLz8cb2ZcF+xE9/fr6BnW/UzAuliSxnWTxNZDF0oPJTzobru3qUe7/dv/kPX9NjaphzDfjzp3a+a86wpROliw5k/H4lcM82p4WojpxFp2tV17CDR42R8chgQCRNZCFxaOjGhoI1VNbfS5XU0DtBhEOpYNBi6Rp5W/8URw35EZcJ8/1Un0Q/xseLG/ZF5HyerAlQMOrk+WH8xRcP1TWAiEX3MfoF/Uxg0Ce1cUDEgKQe/UFnwI/c79Ndil6yFFM9eCE82ELr5WsIDHEJdsNtx0cg54F6UWH/4NN70NM/oetCOj4mJ/TnkIh6q+Jj1XG8jNGOQgTjEt0xMV1C1yWKoIkg9apEyC8vBqd9GoiMWsanShgcmVE9Mpka6SVq2ujJNUZR58+eI1f2S/jFrMvAHDZ3LguUIZ3HozRXqqmjw7PrtfSXX1fQBsoEPx3nTX3e/h9eSj8uPyn4Mk8J8N1NJaNPvffK124iKS4qsVi80N0rMxpMaLllNQ3pU8CVOXAHCTKWuxpepn7mSzXzvjl+WMzhBrAwlDvUC01zuBlGfHrQpaMDviJyvBMhcG5yEv+l/VSEPxP4X/7XN3X/OlIWfdNnY3q2jO6+CSNjWazQXYw5IPm6PIJ1RS/6LS/VjJxebP/q2TAiGnfuiaV6pvJTO9+16xUh7X69fPeXf5Ax2A//8A/jj/7oj1CtVvHAAw+gWCwGbVatWoUf+7EfQ7VaxZe+9KV/yHDXy/Xyj6d4Spm6giT9SQwzOZ+ZyEYRQbTphnWoCC/f4CdUOIefWjkUAfKKaHTrfSKEGy+4cxQ4MzkR9OkIVOxCnH2CiKSd9ISNAh6OFqqREeB7QiCrYHGJVxNBoY6Cyu2rPuHLBUt6JPPcdzoyGJ+bH5LZGiDRLEKinMayzymDg8wRosXHqCcQ416W9ZCGlO5eSMAJty1BnqqMiBSKyN595CKGr8yaRRWSBGOTC9i6h4WmZe+mXEm1kDycQyFJHILWJ1ZJQOIzv/UE8/VK3BiMRQDj82J/+wYwlmiz++Z4S+k7E0SOqTM5ExkscZsGnp36d+fKEvPmGa/K3FViZ9KmbOBCHyK0aR+Vh1iCWp4ZJQb3lE2ECif+t12dan5sLrF7q86YHY/eq/VscxfJGQzprTVWVMSLuBJCvwbnXfoCDGN4EDM8gku80731I4N5o2ohqz1XuXTXwYX4xEjmWgBwsmMY57qv2PnreXz5rTPOKL73NiklJKxggRiIas3zZGNCKt8YTOEe3afk70E463XuR5I4368pMlik0jcGC9K1seLDAf6cEMIx0ObR4fj4rvDN/a6YRODCxXGcODfkKHYXi45T1SlM6qaxgbonUkoDb0gREJ6kUIBk2vHG+m9SnsX2tl5I6ULEc1v6/dPzEYMVM7fomKHhrYJrFq6bOmc5jB7QexWPhGrpAH/+iY6uwpVV7d2TmC+FXp0EJwKlp1QjWGMwe7GikcTA4TGjV7gAEzZdow2x7wpEUnbvDF4J9teFW1I38mlOMo4MZhqlfZk4gpbK0wowYSEXztK5yHIbaYoaGFgUCEHdseMC7/p3PHJinXYxQzz1rJtCJTZeQBsKX3gPa+Qf9IKoRFkPHR1vUZ6CdRCDo4G3ah16NWZEJ/V/EC79qUl3lQYhYiSQpRJv7uw0dYtFRPOfDQy9IoczZhin8K5+BiEd568tMFyFvXvS2wvJnnSVDbYWcGGUEfQyRZY/nYyl/40ZE168PIWj7ZedOkAp0am13TdmZOzhrZihZSyKRIgDQ5hKr5KMu53n9SE2kVy89SymjIumjIjQf1Sc9G2MD6DamIGKfwqVEJYL+P2UhpHIYMI1bOIKibrjEEyREl+/2GOe5bwTlSAalXQjDQERBQ+k846krJ/+MVh/xHOc7kHmnZtiZL6k2CoKYaLQFBOBUxPj+FJ3l1LGMvq73oyu1RisWssMfuXRjRSOjjMDIhH45vZzTrSrQpKgvWsUZy6MmPX5MovFFBpCr33rQB/GyiVdJwJcKkHOV25tLOpBTAHqGnDEC83Tj+IkpVXY+CsIFH9w5V1ccR8zhDeOQ3UME6krHlmIYKxfEiHQPz+H42PMUAQIor36RRn9uJE+iDYivi52JoKzJpXRjszD8+4rdIqFBAdO9GPnoV57f7z5FRKB3Ucu4srEvDGyp3cc3HcZlzNG00RKbfjF+sikRFOh4Cjvc6lSR7qRwXI0Fwoo6WgQPP1jmuVobmpwIu2pyGAFJ1oY1UdTP8bWkIf4lBc6f3zuYXR2ljad0ZYxeEH8EqVnit0X3oamTWckhT07AJPxauEa0Wj1nCfpvnFY50eh48V3wlLGhgreNACoUmQwJoORMqKEZsU6G6k5VvPcwPMdlwfRNzdr9iF03gHOTU1iIU0Nb1GrM1A0e0F9AIUGbeTTeWmaV+vUj1eH+5BWqZ9A4Pj4GE5NKHjhO7TSntGkaC17h4fQNT0doYEi0dolRfuO0Or6nFR0mkhuMKeeS9B3eQoHT9qIqiq6ooWpgYxAIhrZn4/nt+vouWLXfxVjMyrnpiZRy3Nwx3F7xjg+Cg3huMEC4Xw+Zi6VfBggvpw9y+6FNbQNI4M1FAvme5bl2vhLPZjlEo2NRYOLslyisVhAuZKiQUelaWwsBOlukyRZ1LDRXaP7PeYYJTUyju12Akv3GmfOOu/Fwglvn+tEEnJwshBo7xzFl7e02wZu74p+rkNxUV/K6D80/OLRGun+OPoG3pd067iDJF+Gr3eI8qsSIb3hLYHkCAosk5wjN3Wu7Ms6QlWroWEsn9uly1Po6BkL1kffEyh6j+hc3i7VcDYJJhCWer+qLDzxet8Rxs+0QpHBfL7IN0aWUtaFM6GRHIzht8oqwPQHEiYyWI1wjG8Ize5cRrwVzQ2uARRFGgyjLNvZFAJdlJ1vqZwaWpUXKa1O4fPfPGHqrJya5IeuAwSVY8R/62fe2NGB8akFAAj0S/zcqzXnxtDHp+cEBNr6LmKhVlNzrKOjuNZCY5KRu0oTKVQmEI+Gi0U25Q4SBi8vwj+SXgXQEfdyN+WzRJiiNNIJAC6jtHwnl2v7xpM+7kyEQClN8a1LvXX5pEQI9M7O4G+7LtCCzW8SEgdPDhgY4keAg14LteVwJ1aoD5+eKCZJgMsTzVMnwo3OxrYH5Sx16FT+++7hy5iqVJjsyo5Xz2FCQtEBUkpjqF29Btx4vXx3lW/bGOyLX/wivvGNb2DdunU4cuQITp06hdWrV0fb/vAP/zAAYMeOHd/ucNfL9fKPqlhCltdFlBhGICHDNhoT5R5zSMSXR6OGymxPkE/9UzPrjR1THlC9vx63XeAF5K3LL1GPVT8qk3AFNWTskuXWA0kktpEhxqTbByLzCozbyKiFFD+GqOOKvnBd9VKBWQbVPhdLh+E/5z+/WCEmZefnftJNvYH4vivlVoicA8aKMYdUB3iRwSKKsQQCQwvzmKlWldAsMomBuTnFzDICnwhbm/oGjmc9hQlPCgL/6a/2or1r1D5XDMPE81Kq1My5cRetCNMqS2VHwgSHsdTEVFyRB6fuaqWecsffJ6uI93plwkS/cKOw1EulCUS8RWEJUfIq4EIV9/n6qzPMf2IF5YBdKzcaSEScKVXzFsaYiQhO8tyVUN+Fft6PCMS3Y2BuTs0LrpKpQIIA6eWgZ2fchz1XKzFjn4HhGcO8c+EtB0uAYjj5PlGx0ZbYvkEJVjg/yplnwEYFqOUZGhLLYPBio/mQsEYaZv+9Q7342rZ23Zdlfv/ov9tc82Qs6RYZpDQgfBVEBmP7yj01ebpiviYyTuX7ItnaSelJ64nhLsC9RzFjKWOsqetj0ROpi5gyWKWpc9uZ8b3mrrA0HtFMQOB05wj+6itHHe/txY5k1RhRxscE7L7G4Dkvvoeveja8FD5eDMSGGn7GIoMVkgRplge0kDOEhE7pFb4vUqjEI1jFmVXX2NA1Wo3RM3w+/FcaMTAQkvH3GfZga7gw39arvTbpKTIKiV8/tZJJt5GzaJEeCUnnvMaMwfhecSOxWCQ+ASvU9pXJ/oxoPN/QMfq2qE8WPr3eXWYTtzCSDPkT92X5MPdqb8V/r/Xr6p34+Dh+pINo8YV2MkKP19u/RfgJdU/cBx3jljpCHbevRfB/5HnfCNGv5/yGd931nMLIYBAC03Nl/M5/fa/uXGJ7a2BQREjPnWH8e0WKkVyGcC5Gw5j9ZhOX7DPxvpMCg0cBopLD3isgvsfEC2Y+YwZYetjnBaHotLd2duL3/tJGawa/NlI6tFCm71bM8CY0fKsThUjyNvXOMFurdGFAZvAf4bE4XRPr2PJpdu4emHDPK90XsJR2HC5F0qrGImJy2pNSlfDvXOGZS9egg+CvA3Mid5CcXOZqNfzByeO6Tkb5TJOigxm4+WmnFk9dqA3NioW6qf34BhSSBAvlmlFwmDGEwJVyCTPVqllDLGI2wb7GQgHVPDM8ooB9364RTNz4RSnC6q+JSpZL4/zDDVXUXY0/IwD85d8dwbyO+knC+uNnh/CpLx1hDUXAkxUWiQwmAHzjYi96Z2YMzqznIOaT3Y6iVEa826EjadBdXmRrJGzUHN9Qp57hSiwyGm/rOtz4kcFgFCJ1jeUMf+Q6rMWObWyG3MCjnkKb4I2T4ky6zoKxvtWc+VikuGJ1MlSI0d0UQhvkSlKA5Tpyhu3/P/3VXhxrv6z3VdXH0qMSvAxpkcieSKChUPCigOVoKhTc1JG6zo8M1lQoolJLUSwkXmSwXEcGc6OFNTaGkcGUgvna1Ax5nqOBGXP4xThRRIwMuGzHGIMRXgHjIzkfx/klGYcHRoHJU1PSfODeAzU/hfvJIF/hZpdP4yUWAane+ssVj+/O1fPj0xWIXKKa58bg2CrNZaA056WWk8GD+m54UiHwzmA/3hu6bGiWIHKF3kxKs0kwPM4LuPAq1/tdS3OMTpTcdQHGGGxJsw0wQHfs2tJEkuGYrbPyEy9NpLSwo6jhsRDA+ekpvNHXy+giF6/7TqD1DHkoUkclywKZCsk6v7G9A3/4mb2mnsPJXFoc2DswadZwDaIsg/vczQnTRC7WV5q7fdj7ZMeIyQC581ZOsE9KXJie0v3YCCdkZAHQu2Py2jweGYzuC/2d5yoNpDX+UsZhhKPJ+KtUqRl6p6mx4EQMpbS2DUkhiO7vF7W3LiyOwmFEjPl0cQxW6FzVpWtk8KJsJCO33o+65Bu9RGU6sTkSzU7yYE8Go+acoJJzQ3sFc6qe7oIK4Xgrn7NzGlqYt9EJ2XOL0WtBJFKvreMMA7vXyijSpat4ISfj0KjC7lSlolPn+WcTCub90emTuDw/r9ownrCmHXtEZNd9Ays1plsW4yFDuklqI1QXXoVRfmVgkFNPtgNEnEyklS87xnY0HpNT5dI1Wsv1OaoZHO8ZhksX5pi7wuR8BWY8k2sYN14uY75WM3jRZDbJcrtOh45Ta5iaKePPvnDIjqWN/6W0soeMydWEcPuBAEQi8IVvncLZrlHdb/zdUhXx5BQhbWhh3u61EPhUx1lcnJs1cPNaIjvGioLf6u+ypuHUutT799PHC/NOicZXe9TTP2H46phBKgCcuTCi2sCejXIlNTT08NgsSuWakyoxzXOcGh8L+rKRwewdptvDDQe5fI3OHTdKFgB6ZmfweyeO6fY+n18/gwIvlapNIwtp32MieKaVuG7CGU+GziWkq8n8KG2ax/PxN60NgIG7wqtPhMCnO87iyJVRQ7dyWdliTgPUr6Kdkqvixuvlu69828Zgn/nMZyCEwO///u/jkUceWbTtE088ASEEzp49++0Od71cL/8oiyvYdT/5F0K2wofQiEWRoUcZQvGYaavUCJ91CF6pauN0A0dSLmHur+9qXkQc4RDiJeLXFySY0RmxR224UM5RwHuCfjOutH058yRGNa+vXI4K/uoIBckTgSNPToj4hFnV85ShOV6LNxYRGMViEizYD2dOZyMmYHU99L02QoRhV6U10vAjGP32sSP4q/Nn6zIHP7r9bWv8xQh0nhZSGYslDjFXTGxe7MaGgnmukCQoV92oK1zgq8L1SqMoByhygiKiKjVXcKY8HnJQNAJogs25e0yYTvNYrNDPPvNEc3S8D9m++QJ3LrQ0bQ0ssW0dpSbqv3cTdYkJAIRAYLwRS8lghfIWLtA4CTvnbppIuwfcuEfCCiUoFoGKDGbXmQhhiBC+bj5vQJ0v6pjfN2JIlaGLm/LIKB8YDFMRiRB4xVMx99sDhD/yC19UBhnaEqFUrikG1dP6ksAx8zoQ5l7xu2a9Wqj4Ck3reZcbwRn02qyxh14frDcUKQUBoKmxaJ+LXF4ylgTsGTPC1JynuVB/VyNpIqnb5qYGu2Z9Qrjyl9oHaSIZbiSBLOAydnYvw/slgADH+ZH7fOEtPQe4ymDqlqfqMuGaDS72BvOEAUFqO2mZ6kIhQSIEi0oQw01aCWEYu0h6R5onXKMyMqjyCwlQopHBWOFGq/UiLCURYy7AemnyJfmCRmOE4Ac6TCxD7G8JGcT50Udin0CcLlP17vnjS/CNB7nxXJLEaSBeZRTDGi74kRwJBxjPZWYsliRALRIZLBEAhHrG0IVOnwwn5ha2cMFjlEb13noQuVDWiRwlLUx3no+dYSYItHCZzSVicKFwMOFzadr544Uwof7v9p5E1mOHjfYlIm3td33PxOL0cSwiwrVESWCgkdeayRAN4Iyj5xMaaob3norj1W3IZxdmWp6C6sP5Ul3coEAJo+MGUIvDI/14WCUiRryMMJYa5oaGCcIo3V0QXf8dBtPWgumCdxcE1DmL3h3GF8G0swyhgJ2roVNZSbM8SnPSyNzgiY9DfKBg9K05HwLBOLG7Vc9j9GrFhyucF/Q9o02/Hpw0RoYc3xs+iHhkGeBczqNxXO5EBtMbE0sT6b9EpVBwoxXEFBI83Ts34LLRg9x+Y3AlgUApcx1aYgoACdcIxTcOA8gBp77wVkpKVbX4GyWa8itb2vELv9MGwO5/IgS2DfTjz9pP27XXSRMJAE2FAqqZjRBA9BAZvVk+O867X2tksCzLzZ13DFUWeZbotArxn9LySimjjwX81JNw+I3YnE1bkMe4D4NIKOvCRMfAHfE0MQICNZlb5UsUDlsYCMAx1IlFSuBzVzSIvW9g8hALt8KoINQmSUJvdjt3VXgUqyTYHd3Wk4HwNeWob9BGvJcf4ZpwTr0jERq/h1GoSZHm45piMTFnL8ttNI7/+ee/6PQPaAVlrozfSXlZy3OXb5H1ebhwvSoymJvWq05ksEjqyKZCAeU0xZKWhsAYrLmpwYm+nuc5mhuLAV+dZjkaikkY1VwXHl0syyWaIgZlfFzAjQxmo2pYeOE7PHC5E//FGnEZiSXgPU/nPTamxUuq3qReVtZgDt4FXNqXnncMOSQZh0WXj1LFlYcR3/71HZdw6XLZ9OOm0wppfV786NSZzB15KRlQqghGkqVuFmZd1TwzuLCmUzb5d5zLiPRmAEKgvXsSv/rHh5y2UlplaktzgdVrfOrj6jr8H0VZs3yx7d+PDOY7atpoy8yInMHfGB9dz5CHDO5iaSIhw2jqAMkmGa7R8/nx/9eXzVoXc+agO8SfBchII25A5Bf6OZN5AGy5IhkgJbX/zsPIP+Usw796b7vpn94zyazobw5fcxmPPMPPSZrmyLIcDcWCmyayWHAirDU2UGQwZXTa1FB0YBNFxG8suAZO9faHtpY7XMXoWQ0SnCLg4kqifbI8t1Esg2cifTO5iWnH6qS+CyLh9BCCfmLHiXCj5cU9GYy+C35ksMUMBgzMIVkx4wN+/fAB7Lg8aH73+c9YSURolM+Xkqa5kmcwmVOujZWMM7EufA/MmjUs52OIgB6sT9NIuAbnZg8kUBARfQCHTYvc0UQIR89kx3XpJkpf7jjI54o2qdUyh6YtePB1MZpQCOGkYef3MctcGjSX1jmdoqKR8Ukls1lD6B7VdApXA7M9mOtHNjKRwrzf/z9HDuK/nlU8Cf891Q7kvpyO1lAq17w90NkqJKzsnt0vXyan3o/tUwLaEFgZQ6k9oef0nKR1gD4xNoYf3rbF9MnpHOJDF7sTvMTOJvVHPCbd82KizgRllwGYwwinzROBn/z1r6NUSe098vCagMDPfPIbhm6hO1PWgRwKicDvf2oPvvJ2OyTUGU2zHJVahi/32IxAVAydxWg9Y8TNeNyYIzI/N/WchekuEbzm59qVCVr+kHAYyQKpLe2fpI1lJXDwkGGkTikRGuYJGN6AnM5iMJvzOf4a1e9k8M/kQQj5HL+oCIdq7OvGYP/0yrdtDHb8+HEAwA/+4A9ete2SJUuwcuVKjI6OfrvDXS/Xyz+qYgjZnEHTRZgz7nFFxQiwPYt9Ir54b1H1ivAUKUQYERPFRByh4BCOwtDqUDyBBWzKCj7vmMBNERO2rZOeiSFwgTjCNshN70s9QT/fI2dwPm9i4D3lMicCQs9vi1xDhs71oud9xjy2X3rj6/CLiMs2g+I0YdOQ0kbJ4AIm8m5xCBaO6GWoSOd9cOYsls5OCKjQopL2KE5kVLLcERLkUOeBBLy5lGjw0qYUhTACaRK+Sy0gqVTCFFw0di3NzJpJ8FE2hKnL+BDR///+o3ewfX+PFuSLgIl2os9Bv4er3Gn+aebofdq516nXn7EIbYSgOUHLnwuNwewZ9j1yfSFUPZgCIGqUoQQBFMY5d+6KvfPE/JIAyH4HFPNjI9jYcLf03TcaCb02XKaOwsf7QhG6y5zAJQXGvuN9+Mn/8LXI6u16YpFPqtVMp1fJ8cq//IyBIfz918vlHni16HWk0vVCsYJLy4gkEKjmmQmpT6iG7pU14GChsKUVMrrpUV3BII1BDF8tdetCw6GIRwqDpQ1F98ypFGr0PIcprvCV80wETwlf1rtfjpKQ4TIqfgqRmFGAMSLOw/fNz7QDBiIXRwi7PnMW2e8k/ADUe+EeoQk8ARtj8siwi/cfmydnjEkZGI0shFAI7ON+vlbaJ78oI9xwH0i4FnhT+ug6IsxQCgN7zvjc7NzDPbD0jmVqOb3BSyCsF+Gf/mpJQBPD3Xw+P/1buzE7XwMZrtVL+0jCaa5AJWPlsL01qLSwgc0NTHHh4A97pnxYAlhBlb92nlIyrmwgRYBb7Nnjfbo0soB3Bxmu4oYs5n2SIX/C2+i74G9CMMuwRA2RPDqnXonTtDDrqieYi/3mG3FzmipGYEoEVQ5sMvNhODtm0OPPkHDxyx6tKoSrOOOFvkaNRBm/4cxZ/59LGSotgLqK4sVKvXn40RKDyGAMDqtzpc7gD9y4LqocMzA2MjjBWO51SnMK31y4l4sZxnFDSCrcWOdaBPaxiFsBXwSuOCY4alMOS+85VUf8X529dyvN82YY6hNWeErnwzwmXFgUrC2Kg2OR4sLx/eixQL00kS7BLqGdW8z7dtNGSviRwdxIyQSrubNMrOSanioxwwoVhSxcNEXNsLScNCmQqERTdHE45vVRr5AHMwA0NhSd3yjaL99vvnYzrt6fxqSASp6BIgIoQ8g8UOrkilkLClcULVYUbFF9VK8xTSThMlLaKJhh09/QXnDek+qKSRIYuas+3GXQ7YtHkA2NbbnRKZ0j//gIAD+x4x28NzQYjOfMRVoYyM+UwrVxkbBIBPI8B0dTAnCUq9Q3pdTm/Vp6P8az2j13lAwi3AdaZ6zQzI3TDCv8THE+1tDXIP4wMl4Sytl8ow4pKXqNC2uL5PiR5eyuuouyZ8s6uNE7/nTHWfzOMRuNjnBOSKNGcAnUPeNGXjFjsExKNBeLXppIieZCAeVahpamImp+mshmLzJYrtJE1jwnvPwqBl4vfuLTXttCXUctwuNpxDDLMdTR+2n5GrA9tWeD8+TKUUzVGz6b1fnOkYA25hb2bJtIYPRdSoDLy/wFSZfHNkYvEf4aAEqVzPkuJVAkpW0ukcGm8SFqrJ5RqG/gxNfpOF1SFB8Ax8fH8INb3wr2TynziadTbX/jU93OeGGq4vr3GLA/uvKg+pHBFFzh67OGdQZmMbztGwxy1MrfYSZzQ/txOYtv+EX7HovW8tzNG/FDd96lI4O59Ch32uOPFphBd0zeXg9WAWrPnv/xTxncx/FcmqpZL2a07BduBKyXH/DYsfTXTvQwKLjsOp4wYxEhDS4hPMqNLXwjFUDvnU4TWUszZLlL+1AkMCdNZEMBpXLNtFOwiae7zZEkwhirL1YUna925oVvfU3vhbS4hPpc5LQ7qfKg1v3XnR345OEDnrOIpZX9EnuXvrF8oaBpLI1jFtN9BGtkPJRKF8vPvYKX5TRlz6jxOY7hXRtjBdYHvLXSGiS7czGnMEWzhLIT1wBS433GF+dEFgpm1EPjkoEikyvvPnIRP/oLfxesxxqguEWAwx1LL1HJpXVgXqzUk+PRev6nrW9G6x3xiFRG6C79q+DOf/n8QfzZ5w+aOfn4ZzEYkSQCv/S/bcHJjmHTJ987fuyJV7Lrso6pL7/xdbM/BFPT3NUlqa5cZ+8C58WkDGAS0YEVHQVM8SMaFui6RLhnRxmiJp6Th3TwtNTr4mkSBTGx4OdNmLGIlujouYL/6d993ixCCDD8kqvMJ0IYGsTste6b8HEsMlSs8DS0vNCZ4g6kUtMftTS3zs9sHRxA8KAMuT5fPg1K747210RZrWnjcY33KEhDoSDw168fw3/843eieNTM2dCpjGZj8nRffp0wmTfBJqdf/ZV0toTf+Az4EybCWTkFGM9knf1cTm/xG85oFS5j0fvh08IEEwsiqSNxtMEBDIwyNB5/517ENCnrRtumfojOU2kiFzeUvl6++8q3bQw2PT2NlStXoqWl5ZraK0HC1a5F/TI8PIzPfvaz+Lmf+zk8/fTTaGlpgRACL7zwwlWfrdVq+P3f/3089NBDWLp0KVatWoUXX3wRr7/++lWfPX78OH7kR34EN910E5qbm7Fp0yb8/M//PK5cufJtr+V6+adT6iEMv65exAslmIqDda4oi+Xtth7uIngGcJXEobBIOEyLFeK6rWIGL6SgdIr++fG169FccEN7u5/SEE5C1xMxJXNLHDsIHa4yS8pQ0eF7gNvpakQYUVTQlroRZoTTnvcSEqeqNF5rmsiIArzuM1HOjM01QpjxtyL4hiFUQArWngtXuBCE16UyDwUS3pilNDUCoX++fashWngaO+WhaY2BeGQwI3zXhFClGhqDcU8wOktEbFZ12NYkEW4qO2HXNTVTsgooz5uBR5ay66tfqK3rKcUF35z5YVHv6uBBe0ctY86NIGOGn9HUYvrTeieEdxhAHKawM0EMltBjkyKnqBVagj1jCXE7poU9tCptAMWEBK5yzFOYyHD/yXvOGNLod0hMOzfIEcKmWPP3pm9oOli7aSNcwRydz1qaqfOWuXeDw1YbGczbayZs5XUZo4voPAtYhoeI70wzs6pOp2TQ+8jbUrQxYtCoX/rkQll+R4LIYLDeKi7sDveLmONHH9jgbaT6sF74FnYS4RkjQHkEjBh+tJHB+FACP0bR42hNjlA+fld8Bl71r+et74AQwqb6QMgo0vh8mr6RtzOvgtDvKTcDuufCQlVzzoXAhelp/MaRQ6ydnjtrw/fLf1dGAMNmT3/xe+ri4MglpPVFcFkShJ6nMRgslAjupenTY1zd6Khx4RTVWMVefUFJ7vVfLx2l0zFCgavZe8/gq5Zmass8oT+tASDvYzhCyFgkMTVPi7tpplxpx+m/ambhgDqP+txbysm0LXgKUyO4kryPsKi769EBUkIwgy3bqV6vtLAtNAay94pwJ085RQJb8x22T2f8yJz84rw/M26IG2JFzcU/18zAJHLcDNx0lFTSEUBTiRvz2GdMHYNp/hINvEJI7wsAf3jqOE7q8Pv0axoxAHENLN1+YvUcDvl3ncYictR9b+qTR5qkew4AP/ErX3XaxUrU6I3hqyicSVzYIiDw/A2rFxWExQySFTyFCycAo8Tx75BkzwLa0YbjMMEMt/M8WHfKFDlulA3LSzlzdHgofS6YoozafPrLR/H27gtmT8gYyT4XFm/ZznjOeaW1SrotYYq2BBQ91s4VUPjxnpUrWcqF8B7wPUj0/lF73+CJ5pP5e4CQNlBRC70hJDwlpVZIsPPmRw7jtIxPu3I6yC8CQNmLDJZE1EISruI4l0CBReIxNN8il4gMyK6WfktKSyf68IUUPSbtk0RUYE2pf5oKSjGcS6nTgms62N9DILJqMhxffL6AjYQR8q5xWhaw57jMnJNMxAMnNYyLs2PKNKdfLoOQHA54a4OLl2hOn+pox7uDA8iJfvLGoTWSB/di8lbCNzytOzeUDdoLl74lXiD37hL1HU95HcohzG/605E7QOB/O3kMx8dcWWu9dZmoPpE1UGQouqPGQcQSvXX79vfaRIpw6sLoCEqOkRg5Q66/+4prHnWOFJQ0z5GFBQzOzznjxFZv0gKyOeVSorGQOE4CmZRoSgpYSFP8i3e3qXGlRFOdyGCVWoaWZj8ymERzY9FRLue5RHNTMUgxJKUyyKhn4OWsQRtn+AZlZly9tzVPNqXmS5YkXEZGVdb4x4n65fGndD+LThvqP6Qdc9OGzU/jIZKZ5JLxqd6xJ5mFvQ8yMJqidkJYHEWviRT61MZE8RJCG1pLBzf9wNvWcIDTkXxNgeKQ8eFztRrGK+WgjzR3DchixmfRyCF1wBOn58M0vALffO8SDp2xgQWIP//1Pz3kGI8UCgJD4xWc751y1hqbY/Bdj1/Lc9Mnp3053tfDKXwXgf0bli7FixtvQSXPgtRsZKhBf5vxmUEtj85O32M4zS/lSuoYwwHK2c/Aqgi9+1M738VISaWA5vymT8e6xslKJhg4d4HTQgq38EhGQghzHyXn2aVNy0brjRobsL2rpblJE3np8hR+8f/3lokUxmmhxoYCFso1HQm1fprIpkLBMVyLFeJreCH4nQiB79/SZhomIqSXpd4j6yxtYU/f7KzBsX/4mb3Yf7zPyq25LAWh06bQypWf/c1vYXq2bOEMo6mii4lgFqmZGG4Iw/GJiQzG00TqOp+3TPQIxliBYBAI5qh2BMsFLIyN7TX9ovhpVybCF0r3Rf1GZ8pmEeFGl3wI7pA6NDqLscl5sz6bDpH2NMLzEp4wNIb9ncNqP4uEX2jd/3z7VqeeYJS/z9xBicYvJKExGNFJtC5o+v7I6UH8xp+8a+oWixYLcL0Nc0AXlG7X7gGXORF9Q+dGwpWLkL5ptFTCz+7ZaWCWOYewdBKfD3/PPC0l6aLo7BEvDeHjGHLM9CLd6bFVBCjp4GOHmIett3oD+p6gUk0xO1+x/TKcQXqMYhJKJbnxFu3l1y/24ItdndF3w/ckxo/wvaG5AND0aebQ0D49zSP6p2kGMtb1s+xQob30oyuTfso68ycoV1JcHpkN6G21FvWd64tsZDA3CInUv9P99XnuRWEhrEMGH98vqXnPGuZIy1daGi3kKaIBDrzAFLSnAa8gKGpwfdzPo7cCblR2QN0tA58sytV8d91uUc5Sc/auRwb7p1e+bWOwVatWYXp6GuVy+apth4aGMDMzg/Xr13+7w+GLX/wi/sW/+Bf4kz/5Exw4cOCaxgWAcrmMl156Cb/8y7+M9vZ23H333VizZg3ee+89/OAP/iB+9Vd/te6zr7/+Op588kl86UtfgpQSDzzwAEZHR/Gf//N/xkMPPYSenp5vez3Xy3d3MYKEiBLZbccIQkYckbGE34fD5DElWFQgT81MBivLVPBPwf7mxl9RTwtPncM9e5yxIzMSQuBDN92MpQ0N7vwE6mHdQHjFlTnR8WhN3vBcEUEEG0Deeq5yw+/TyGqYgMJntAkBc2KTnm+oYwwWEOkCUUFoUOoQH7F5cUNBrt9VW26JJiWEzR0C2me+aI6AZyAGRaT7PAG9LyqlLDXhVS/NzTJBvxWiuJHC4EQG4+FzC4UwTaRDhDIhPxFlpi4RDuMDuAwNMRJByPbI+xF6j//49En4xd436dTWVfDUod+sUJJ6sIwejc+NwmDqAN+bn7dxmDiPcaqn5DMKfOqX3SsBdS5IIUZecVwwJPw5CBtCl75XGQOSCBtinL7bOcIRRFAhL0QShpLQTEUG4w+r5//r3x4ye3MV+Zk5YzEGIM1yHfGHKYS8CFDk0ROm/iXC3I2KptJE6jZaiCTY88TEAkADKdp0jyYyWG7PIXl70B1S9TDrB4CqZs4q3PjSE26QECCQUxilCa9UZ+FPPvk9IaJyBEl2In46Bi48KVJIbg23Y1Etab943Wyt5rTzoxX5kfF4cfF4fSGO+l21//O/dQ2z/uKLh0zfSvjn4XVmhEC4RHnkxAzC3TkICFwplfDOYH+wD2S4KUBw3/5eyTKTugmaUd03MowDI8NmYhQhjSvH+b7FDG1iqQkALUjx0kT6gn/zvPe4TQ1RzwAh9LwWIjRYF8IKGAP6xmOMPRDptoWFv3y+ZGQChNG/amlulLWhct0KvHg6C6kF0PFIYsKcN/6+eZ+Jd14D5YUnMAPCVDrxvsOiYHRYH4tCFIsgGhhk+XeLt5FWycSFgMDi4cyj48A9Cz7OtaPH12VGZk1yEv6gvpE/P5+8zlckXwUthUVaGsDMJ4/zFGodQPfMDC7Nzuox1e8+jerTNJwmcesj+8vuVmiMpiBT7gjtddphX1GsF9V1adyZvztRe3f8R6VksFfEcLEqXEFTn+/Qw/GhGV0dGAZTn8J8NSU0rAuWExoqsQ4coXUdAze3ktFSGphZz3jb/4GT/bjA9poL0mkVAX8TO9fhDBjdY9v6EQt9ob49a8DT629GY0FFf3AMtr1xJKQxunAM2Qg2MoUQT8tDNGE0TaRXlNe2lwaS0ScSbpRoxe+4xl9+1KuY8QnVl1LPGEyftT8/e8bOU7pRMyj6EI8G6/A+MoRXuQSKxULUIC4W/Ujtobs/hFfIGSJnOPwv2HyJD2kuFJUxmN7DSpYppyoo+r5nZgbbBvrh6Vmc8a6GA2iePp+q1mLP5n/70hHnN9ovckbie+inBbIGGuRZH0YwsXPWc/LxsXf2FQ70noXAxdlZtE+OQ/GYIc4xwv9cmn4A97zQ3MmbnUcAkNLCEV8BGCo/4ShhOe1BDjrOoqD2OxEi4Fn53B12XNf1zEy7bYOn1V2MGfyY+Wva0cyb3p+0Jt2+Mpiv3cfXvoEl8Vscv+W5NJGSKTpE0ZdrSKYkS1X0MOIplYzCVbzUiyZieBxvTg06fQ6dATLymqlW0TM7Y9o1Fgq4ODuL13u7TV1TUsD5iQkkDYljzJVmOVqaihgYnsEXvnXSrLVJp4n8y787bCcmgIZiAV/Z0o7hsTmzz7yYM5QrI7Ovv3MOlwangjXSvYqmiWTnkt4/p/v8s8FpeDoDtKvEwwshWPQwLrPQ8/HmQLJHBxfLOB2sfqKII/q7DCPOUT13VHTSehXsZOjd86jTdI5KWYYr5RL8wh2G1T5qYyFPDhOHwbYPSKtMEhE9YbGQ4LNvXHD6pMJTUlERAvj1n3wkVNRr/NPdP+PNRWB0omwNqDRenJlLnZSJph+HNpKe3MnlqWiu3Kk1ULJL14jZL01JwUQGC6MMhhJD1Y7LZe38ytXUkWUZuQObP6AzJcBdWy3NDPyP4c9zU5OYrFhjBUDdt4B/Z/jXGid7axACX+7pwpVSSUebFY4hEeA6FnG+lafNihobQO0d0SMqMliOxmIBY5PzOHCi30QC8yODlSupqtffwzSRiYlcGisES4mWqnmGSCTDI8PJxaI7+ZHBuDxM6v3Zvr8bnRfHIWM3UcYdXhIh0N03gdn5KpNfMDwX0yMIFe3mv3z+QDBPwy9IF8fQXXIjvqk6P3oMyTf9NGa+IzEZ7Ph8vwhXb3UAjtGEdPg+A5cZPZtLC1d5xFOSt/A1W2cUthZPd3Q1+Ci9dtzgrV4wCDuWOguX5mbdet2ZnyoyoQd0IbjJnesVze9GJFQwU+Di4CTe3W/pAJrz//7Xe71xhDOPgNdg65USTrQrwjkLqTUk47KfVKcbvlIu4eT4mLkbnNdyHMmBgBczgQN0xOFiIpCnRLdbg1o/Chhl/zB1OcFLki24zqyclwCY8RenCxid5+wPk0Gkkgy9QjmncfTIMxM9+cL0NPaTHLdOSYRg8l9VBPhdY/yMpj+qaeY4iVinOVt4JhGiQ+rxY/5+ZDodukkbSpHBdJ955nI2dI5840pO1xVFYoybhaA7o6CoCWahn0qEcNL6Rp2NWF2eW10KXwfpls3ZgNT0ntWfEVwVEPjDz7j3x6xPn6+p2TI+/80T+jl1Xmo+T67xRczhxcIWCz/5fjmZRAhns53mwU5ipab5yoII53W9fPeXb9sY7NFHHwUA7Nix46pt/+qv/goA8PTTT3+7w2HFihV45ZVX8Gu/9mt4/fXX8clPfvKanvuVX/kV7NmzB3feeSfa29tx8uRJdHV14Rvf+Aaamprwe7/3e/jWt74VPDc4OIhPfOITqNVq+OQnP4nBwUEcPXoUg4ODeO211zA0NIQf+ZEfuSaB1PXyT7c4xGpESENVdEycaEEGcUjvmRD5WkWyHddEsWIMBFeUabMoraDQRHCd+QdeDD7i9T79569WuLc0RKh4takOaZ0O9wmRWCUTb8eN20z//BOeAIfVxwh4qosZXfmRwahxEiHeAETDJMd2K9zTcH/UszYCB9h+2pQP3BosTGmZ5/Z5FX3GpqCiYrxNPO9LRUDRWWH9sr9LaQoB17inwWPqne9Qhi4kPONCrpixgFqjJUJzzUHQczXjpRAh7lhkH5lLfQZ9jyqvaKZ5Pk2jOczrRc+o67l8FZWvY6jIzpY/Hm8UD5kfHycQGCwajcQy2vSdznnRCwnPhetcaEkwihtSOoS4vlPVLHPS6yykKdonJgDNwJMASTF1JOBWSh4V7j03Qi97P20al+6+CTsfEgrX8XbS2xrcHUCdOR7xR80f+Nw3TpgxTDQq70wkQiijH8ZAEtPnRiak/bTMStGbs9pHC1/4XTUpFiXzGmZCkSQRJhIL3RtuOMbXVvAYj5wZhDbo8Pw0nzpHTu8FzDh8nbQvap32t4ZEON4s/rmnPebEKxdIUOHCfpo/vGf8iJLOvBm8c70HBeYWqvjsN044ne0+cokp2UPjTT+Cp0njLELvQNpnYjITEeIkn/lThnP6Of05W63iC9p7TELB97OTE/jGxV6nHRdKxhTofvHTYPL6LMsdWEdCj/D5EG4aA3avPeFwRxBpPj16B3HBHUCCOQsHYlFB/XkZxpntDz3mK9CrtRyAivzlG3cZoVsu0diQOL/7UUZsPcPdEdwswc858/Jj58tXDAEh/PPvymJ0XmgcaJXIMT040WwQbj9+dBZDs+XuvGOwxT8HRpjL6sx8Gc1s14BIS/83DlfC34zjhIjgZoR7aOYKwDeyiEf+pU8XP6j5sIsibZ01Eg9pBT5n1VecbhVOO3fPfCMxd04WzsVgvUR4PoQQTiSQOD8h3Q8O7yL9wcADEtqGThmA9ujUdfVC5Pswxv1NogA3DTLROwnCk2VeGSmYERofWCEiAthLCg/1Htx5+IbP1I4X4p8Afj4sX0nPZoxOku7Wmzq1Tm8Apnw3NQQnpVVl+QaHXCBOHdBZKwjrACJjh07wKoLp/rxc4zfJaDDuNBSsxsdB0lfe+Yp3Nd+LczOYrKiIDE4aSSlNhCJ6PhaZkui7MlPycIOmz10477QtsqheuXSNwaQXGcRX2NDai5HIYLHUXqS49+8UdUkKH1IQSynxWTZfGxmsgHKWGiVRNc/RkBQM3blr6DL++PSJ+nIVxCOb+CXLcpdZB6NrhHpnf/36MbdvRv/QwgNeSbo4O8utQqOeQQDNIdP8ihAEd8JWVzP0inlxEz1MjjI0Y35eAE9m4BlimHpvzxNhjdJVH+694YqxRISpeYVQeygixi7UP82d7wMQMYyLnAf1OlW9nyaS+DQ3GocHg2jMqAzPi/gFaVLQ8QmoaDbuuOYu6j6KxcQ4vZn1kPFhLTNOd+QEpBRZnFaIy60yLVvxU0I2JgXMp6k5A8rwK3EcZ7JcGYh1Tk/hD0+dMO2aiwV0T00jaUgwX6qho0dFaMuyHM3NDThxbgj/RaeYyrQRarWW4b9/7bgzt4Zigk99+Ygx7iZDHYpMXSqnuo8cjY0FfPorR3HqfKjkjKaJhHtufOMXeg/GGIzdY/4s52H5+aFo3K4hsoYPjP6jNnT+Od7ksid3Xq5RoZTamDRCe3OakfPtlCZS5BIZ1QlloKKcqtSztTpRjvwo0n6aSNqtBDH+0/Idkv1eiDi1FIsCJ86PO3JkumvNjQWnLS2/WBRIU/fs03r9aKFG8Z/xvRSoZcrgBwAzFPCNv7gBoYVh9FvM6dM3/FLGBmGqRCqNBWsMJiHN+eayF154JDVloGSJpIo28qL9/5uvn4iOWa7ULMOhC9HaSRKnd4EQvqQeAKZ3zSFizDg7EQJf7e1G98y0NbzQd9dXWHN5Cd0LbhwWiwxGtA79TZHBFko13Y+KSmjOhDb+qlYzNDUWUSrXjAGr6VPvdVOhgMOjI1E+2MBSROg0fd9c2i2+rwJhZgTjTCqlkW8bA1EZp0mjjnW6Ia3NMTJlbekcSqh3MDtfwRe+dYqPoGitjHgPV1alcGGCcpax1PIK3vrRYyiyLY82qNagz4L+bg2lXOMeeuLc5ITbr5Y5cR6IG35lnN7Ta881vUaG63wPnaiEnBcysxAQ/pX13jGHnjWdli2QQxGtFKGHTnkRvKMG9Lq/sgfbBQRmZ8voHZjU+2FxM88WQvoiTrsVCoknt9SyHQl8ZUu7M47vIAB4Bl/svOaQ4EbaRN/UjGM1OUfnZs8KghswenhVutGbjCM0+70g1A7VZB6Ml+kIW0K4Mm/al5oXGcx3BuW6F75OgPHpTCjly39pTwhuEhwgnZhvSOkYvTN6xi8xGPzlnq6gnp6nuyj1QgrauZ7zO4mHawEr7yM9XCyNL51PGxlNmP2RYDoH4p3Yd2efJDks2+80H+tALgJa3t4xlnZUnyMjQ43Ad07L0HwcYzBz7m3wCVfm5DnNQOH8r77t3h8zJlTE08GRGfzZFyhwgTRR2nhRMvAwswONBfDIX3r+Bte6YyYMHi7Gu9JjqX5PxK9fL/+0yrdtDPbP//k/h5QSn/zkJzE3N1e33ZYtW/Dbv/3bEELgJ37iJ77d4fCv//W/xrZt2/C7v/u7+IEf+AGsW7fuqs+MjIzgz//8zwEAn/70p3Hvvfea377v+74Pv/zLvwwA+I3f+I3g2d///d/HwsICnnvuOfzWb/0WikWV+m7lypX4whe+gJUrV+LIkSN44403vu01XS/fvcUSspHfIoiaeyEDrmAg8KIkGkJYJGyUl8wgwE93QvPiBJKqcwXSfP45e47PiyNeruzKvd+5EAbebyBizmEUGVFsNBCusIOEh77iiu+ZVfDBKX7kAjtuhKDx9xmLKxT8KADUhHss8BIYgwVaDyKM3TqPf7f10iMKqa1hqFm/wq6V2pBC2TA9IjRki4bFF0BzoWC8ONx52kGVMRhQMsZgrvIjl9qCn3nnFBKbgq2WWqI8JtBTVviWyTUCBv2cIjLjRk4kEJLkNS1EELreNw6jv+Zq1aA/NScEe1Xv3QHxMwUw4SJjfKznETOuCojtuBIrPoavgK7TzpwvxtAwwRelK3SNbly4wiMekACooIVgymMs12HlYb43JAX9XoDOqUn8zO4dRvBNnk+pJr4bkkQRvLmKaECCEjfkt9o77oUdg6P19iAW+aSWZgHzLoTAfKnm7E+0T92WKwIFlGEcv0NkeMmVFTaaj81NT8/yMY33lLSMPdVTX0LYqHmc4bXCVDdqG8D7seeD7hMQMsP+uqW3N7wfR4Cj+yhqr1WaQz0vqdhO87ZBmkhPoQNwQX4YHTFnsMKZgkAQvtkwTBkp+tQ+l8pW6cLxuUqhYOFFEPHKU3KoqAruWi2s1sw2O0dSS784XuL4g9MhdDb9aDTE7NL3hXLN6ScaGUwLE5zzIF1BGM095s1K8Lle+sZwn6ywlfbTOTNee9+bn8/Lp2mcuSVuV1w5ywtXCAVpIvUYWS7RWPTTjbmKDz4OGb0UIvMjGOrX832JpeEN0kTqzxjca/SUHDFlrKEfcxnWsWXVi5hIjYRwhZOSNo2aRF6r5IeU6iLQIQYvHPuS+igBMtJjvfnwUl+5HEbh8ScRcwqxdK8d0I/2hMjdrLe0IDKYd2b8K84Nn/wSM9Tk40vpGpFQGz+Ka/TmM7xLvJSarwzamXVIBKnAeRu+v5xv4oXqYmQWKYP4HMjYJWb473cRRNbSsIGnmnOPD3vnEQO3el6dku0XTzHF++c8AYe/EvG+Fc6KG9nFCl+P1UlZWM/hmG0njRGKmnsIgziMIT0ERT1SUV7t+PUMWDhdZtdHp8LlhYsiQU3mmK/VjKE8vyuFJMFvHDmEL3R1qvZ+pDBGW8YiVlE7bqhJvE9MAUBCXK40KfiRwfRzpXItMA6jPhq4AZnuq1hI3PQ7eahAArShECnQjMe1ooH8VEuk/GgpFFDWaSJpXQ06ImxRv/M0V2nOYseKK4oWKyoCgN3nxgaKyFknMjIYj80UVUQfc9pTCEtDZ5mNxiulxMycm7lAwPJ/qZQOjAgMm6FSspUZv22ftRGx6xmMUSSKek5BEpb/8aPSGGeZgl+vPrlCmdNwfsrrTPN8gM/P1jG81J8xZ44Y7OFzojFiBj9UjNGmlE6aGGMIhPo43I+CK/U993FwIXHvSy5h0pEB6v40FG2EjlwfbhPdpsai9uh1JHDTbfkG9Ly+waPTMqkMv7j8giKDzbK6HMpojN9VSic5X62hpbmIM50j+Df/4Wvqt1ylhORGbXmeo5AkmJ6tBHMjxyFzHjQMmplVd4R4pDyXaGpQcvaW5oagH9pbNzIYzZdFy/L4IuIJAEv3Og4dGr7SGeVwltpz5yTuWMrpUzrXyshc41wGe/j5Klcyo0g0tAyka7QBqid5nvpOfILD4+f23vNoGT49F+yprrdOoK4y1NIDIb2SCLcPo+xPab22vY3gFDrItjQXo+stFhIEaSJJ5s1gC/+eOsYF6remhsR2bPpnvDJcek2Cv2ObapNnOPBlvnTu6kYGKyROBJ//+3/8pnmQorBwmUqSJJicKZk5CFg6uVrLjEPrYqVUSR1ZHECRXOSixmCk6KWnVJpIvj9hOmw/yggQGtQJsDus98KcGSHZ3rnGtjKPpBkFTBRUKlmm4Ot8ScG2PJdoZBFPcymxpKVBGbo2FbGgjcE4n87TRO4cuhyVefN9EBAGT1M6ukS4UV35ffILd5xR58qV2SUQKkpablPEAxZmKpl44tEQ1rmoUk3Nec+y3Djx0XToHBoc6M2PWGvaeyElylnmRNahyK5kCETr9Y3BhCDjJy9SkOEN7HlRvwMz1ZrhX2gHf2rXjqBfMujidZbOz83z3JmJ5qkMsIn/trSRhecEwNmYcOcaGJXAhY80vkvzkbMzi86ky7/bs5PVhXvJ+w+MwQRw9vgwfv532sw6itrIy6YVtnCH68r8KGhkcOOnfwYszCUD05y9A4qEymU3BbbHincWJuUzh7EJdGSwhMvLSWZq6Uwf3vrBGgoi0VGMMguzyYE6zQ0Na2h4crQohNHCijrylX8WaW78etdMWkRarmB0MacZCW5qo1DN7xQTgWoQpVmVVObG8Dh4HwgdS+hc+8Y71F+N8WtAnC8IowLzSMkKFxHPSSkweZ+pPp/WQNWmKqZ6/j2aYh4hv8ThKuezKbsL0UMUFZj0tzywBeDyESm9X1bpG8dxXsgYJUorr3QceyXcwxIpRMfxPSfZgn/vbrlpJSBcw0rVB6P7c+n8ZuU0HnyFe19IJ+EX2otanpt750SUu17+SZRv2xjsx37sx/Dss8/i2LFjeOqpp/Cnf/qnqFYVEbZt2zb8t//23/B93/d9+J7v+R5Uq1V8z/d8D1599dXv2MSvpXzzm99EtVrFPffcgxdffDH4/Wd+5mcAAMeOHUN3d7fz21e+8hUAwE//9E8Hz61atQo//MM/DAD40pe+9J2e9vXy3VAMg8+IkUUMDHwjLFO3iOKGIyn6248i44yru+GReOARLi7CZPMX/u/6O6RTz58H4p6cUWGVtJ9CcCTG21ikKyAcD24nshMiymW/PzaeYladaqOQ5/Pmcw+iX+i6mFW6HwmBim9kRQoOXmIRUjjT59ZzZZddYLLI2eDr4sS6ENZTJ2ZAwVOPJRBoLhZQSlOXGZYuEVzNM/D0Jsr4SzhEpBJYWkKiKBIkBZepkD61DStwMEKfNDfju2kimVcj64N7kFH3xGTzPXLOo97Hkp/GSBf/btA866dxiMMHrmzy6+ynCPYeuDZjMO5h547rEpTOXIwhjG1P51ylaczNeebebeTdQ0rRgia8XUJcCY7pezXPdHoZdSfnKXS0Hp97E5IHkYT1DCSFj+85JAQcgTXjTaPemGpMSskZwvU0Vd4l3BCIwvnHPNt5sUZeVp1ORiuOEhSa6WTPmkhYjLEWgDYkY2k2pFV6SGlTlPA0Cfy+1Lx1ADBpFohBAVwBAp0ZHkbaxvzw9xJ6XtL5ztcWuysNDmMXyFnMPjiGHIEykreTem2hAQY/7/6cuMI8y+0ecoGWr1SnvU0S4J193fjl33/bziex+8HPmB95gNatnrNG5CHOs/35d5W+1zOEMO00vIpFBlPCEQvjP/IvP+P0w3EplYJWBAbvlc9NxhV2Dn4U/mNSe0UxWEuMLIdvkgwy7Jlz9sUT5vh3j/fHT7UQwhUGeu+bCk9Za73UCSjBKFAbGpjyXQtXYpHBEgF9xyUKwa/uvLnxAMERsy+wQnzARhu069H3hynQqImvZPQLPyMxpwCpCVE+Jz5v048/XxnCdeq3nhDC3omwzn1GwwZE3jXHh+bZkO7MGeRbLKqUu0Z7Bpx512cd3N8YDiD6jFAKh5n14Ynblf9eiUyxR9biAz6GQ0uwd09wN0znGsJseh+1GH3ltNNj+0Y87G/OX/GhE2HvpD8XDoLq0fAWjkR+k3GjVXMWPIRnPcupXYg1reA+ND/kxkt5ZH/U3+H9o9G5kTvvi56j8XjqappvQBdH9it6xpgAl9Nmqg4Ove4bf2SaR6N+fSN8Z3UyfK/8vnJDSTd9DNzfYZ81PCeT6xaTBG9euohP7NgGwFdIWGeHNLde3twYtyASC3PY2oO16L+Lur9Mw3Q/wgt5EPN7wI24DE8tgVf+5WesgR2HY1I6aSKJxvEVsBIhTQgoXCd0M0qtlEul1PEVVQCMMqOmI2SRYoPoPoqIpGjluPFLDHa5G6M+styNWtPSXGRG7nGga43B7HuzBoa6ew17ibZWyi+1F5cGp/Cxn/ybyJw1n6vH52M57QD872dO4TPnz7E6om8tDxQaZ1iiieZXrxilD3uPXBkYSxPJjZh9+tIaielU2JkrwxBCyxwixi58fa4xuir1cEnQh672I4MZ3iu3+MkxBiOeDz7MtM+7PL4M0kRKqXgix+FKw/JaLdMOVOreEE9qlYbCfM9z6whZECJItyXZXvGSy9AYTAJoTApOFLBcKiOvuZqNnpPlOZoKiamjfWkqFDBXraKluQFzC9Z4jNJELpSrTr9JIjA96xpBAjB8aKVmYUMhSTA7r54nJ5Ncqkg+fG94MXKeSJpIHuHCN+BScDeke3kKSE7/cd7EKCgllxMR7Uhz0HuQMzzESADLt9t38+9+dw8A1/hL8dxexDl6jvGLPFUtRcqCtBEBac5FLVuM0WNUMo8OMDwUkw3R3oR9WL6D7hAAiJTmadvTGVCRk11ZjB8ZDBrXBcZgsHgn8WALvYOaI+tQlU3aGNE6CIVpImOREGk/CJbm3nlyaaLF00Q2F4rRtIO5tHvDDSALBYF/9auvK+W6BARTDNdSF6cBnvxCv5dKJXVk3wDJTePpSKmUPQMo33GF6APfMMNfup2fNuoW1viDPqlJBm6s7xrbmshgESPJApNDZXmOhoaCgVUUiZGnoV3S0ggAJjJYY2PBkYORLI/SXZcySmOnxiaDWR5NkOpKaWro8hJPmwjNpyEsbmQwaSIRKiNEG1GTcBet8xUti6F3GTjF6M9qLQM0TKimueEtBG0gzVETnb7xAa2RG4H/1tHD+NMzp8w8C0JFpDTGYNJNxUYl0fiMOzgCVubA5ZuAOi+/efQQDl8ZRT06kHgRACzqFczc1Kftz0Qdz+35y428KuS3OBxxWF5vLovxPmREQTQQQDAzTHXIu+VyvVgkntDYQ5VEy1mqVXt26Z5YWa79O005PvGjqiq5JU8xacbxYS7jmXgUa/rNkflJN3ocwTNlwF5ALQ/TyvJgDKQ7srI6lybO9V2Sum+C2TaSL90vVpflOmWfcCODafqf+EVf7+XDURNFj3AIi0IXRnpSwpYiObgjHhnM18vF+IYY/iEaZ6GOcWrK5Nr8TJhzIJn+IwvpLsJFhYLAxHQJr/2b/x7Mi84HkeXUj4lKrOddMDo693mieWP8AB0pnq1GCNd4nc5NQSTmnDhyTjZWLom/snVZbuGy6t++CxrPl7twRyIftMT0vVEHFu8cAsCPfe9DaGwoBvSKY7xm4KldE/9O79q5TyCjvBBL8WxRBO/pfF4txe318t1Tvm1jMCEEvv71r+O5557D2bNn8fM///OYmpoCALz22mv4t//236KtrQ15nuOVV17B5z//+e/UnK+5HDigcl8/++yz0d83btyIO++802kLAP39/RgcHAQAPPfcc9FnqU/+3PXy/3/FjeYTFk5ISiBIByPgKjSi3t2MOedGUdawx2WMDWEEi6w4wWnHDlM9+cSEckCyFue+sVisX/rVR7JOCyvDUHunhWvmGeH3qdvT+K6zl1VISZuqhb6TVwF/njMRTCxgSI4gMhUUMjUMGWPcguha3po5wfGpLx/BF9t4GGbgxU982lsj4ocJoZU+2DrqGiNq4jEzgkY70XpzJw8EFZFGGAKA0zVEpFGpZMo4pawZ6DTP0ZAkuLwwj5/Y8Q7IU5572BWTxBGG0vptVCI679IYLQDcGEwgY0ISvSEA3FR25HVXqaaGmBfCUxoL1zDPFwD4JaoYRd1Xt2i9u6/2vBJj549DTGrMiyI6BhPWEJMbV0QI04aeYzoGfe4TpFKaiA5FTWTzNtz4SxmHCQPHKAQ0dB+VLNOKIHeTSJnnGINJCzty7WltFD6eUITPHXDv4eKRwYAf/YW/w+i4G/G0WsuM1ztATKJwIiFtXLoUP7H5vmi//K6RkC7zGEsOYwCYUNKAZQglFLJJZY7mQoEJwq1AkpTKQBhxj/aInx0/Ihw3zHU8/PVcHWM6Vh/sJVzFi+mnTlvAMnZSus9T8b0n1fzVp5/elo8bi4xnBCqOMFUV8vz2jTe4cIzmaIxpUlfReHlkRg/IhQPasAnWmMQX6NAkTGobiGCPeRTHmIBAePvBjYHsliqcy9P38PultjiCC5NwDwBtBOV51fl4nOB2LG0tGWvFjCxiZwEQjnI9EAqx32iv1BpDPM/fezC2cOGvEaZ4hiZuZDC7P4AVCmcEt7y0yGmWRwQLAtDnrVAHg/hMv6T5IsQbBpZEPAvdPiwt1lgoRA2VeTF0bu5Umj4t7rE/O0Zk0j6Tm7bueVTtwrsM8BPq0nlOXTg1d6/DZbFnJfyjZ5+9tig1fGzenMML4bSL3QFVuOEmN/CR3t7V64t+jSmvBLtTuXcWOb/D2ztzgruvnK4JHF/YPQEsbAiNWF1jsKghKKzAnQwJo1HY9FYkwuKiBAi8avk6/d8EGL5lbYnOojvJ6W0/mEMUluWucY9gYlBSTKo94DDW4qgkIrQ0uI7BFhP51VsnGWxyRR4QCjBFZP5m5AisyLVYnsNw34jZiboEq8gOHGDYMzaaAHMCiXnxsmd51KzYflIxEQLYfBsS5awwWaloJTKL/CVhlIiZzEFe3r96cB92Xh40CpH/fPok3uq7ZPgrv/C1rGxsMukUEyGMkrG7bxyf+vIRowz000Q6KaaEMIYYnK4z42ml6Zs7O9H23nmjJFFRPrmi1NKUPIpJIUmsMVhmDT64Y1BqlG/C+aS084CNDFZI1JnnEbQ6Jifxi/v32DFFqHzmhdafZbmJwAQAzU0NxmnIF9JTIdlCjBYWDi1s+S+e6mSuFEaSJjqP9oK+L3aPZlj0Jn436Lu/fv5WJeL8HU3eeNQ7xmD2zEeNweDKqvh3J01kYqOQUFuA+LF4WqTYPfWNRP11Ojg0xicxfET0kI/3CAbxDscnS/jR/+ffOWv3eQdltOPirYIXoYUUXJVqhoaGAvI8R0OxoNK3wSpMeWR0MpSSMkzVqfp0ZQV8TkWROHxELiUaE9fIK5VuZLCaNjRtKhQwn9acqFrNhSIWKimWNjdibHLe9JFlOZqbGjA9W0FLU1HXqTsyFTMG07CCRwATApieK2NpS4MTPZlkNpTqzawll3h7b5eZM5UwQq80EXStMYKNuFOI4EeeRgywxoSSwSaulDYRp0H0BscTnqyN3SmfJsulK7MgWO7DA6InWp+9DffdsdLwHATroaeegQwM9Fp1ZDDFX/p96j70SaJtyYxCWt892isgYtyhn6F0SYYJ1x+OfEF9Vh2HT4En378Oy5e6UeCIJigWhMNfKfgqnP4Iz9DWZswBh9o0+mko4Sp71Vpc6GnlxWo+fnpnX/FO97WeNK6pUAjkiISHmhvVHWpushHSaD4LOup8IoQx7kizzMpi9BTqGU9K09C2Uzg2iTqwAKG8M2V7+cobXzfyCHPjZNwQzqT9MwYMNuUkpWvjUa195yjO18TSkPnGKxQJjPNATQ0FA2fzXGKpMQYrmMhgaerSOEkicGNTMwCgTDJpvR66A5U0NXJaMvKrZJnBQ05kMBnn5QhH/9C2t9TY0jVkJl0GLwKugyskoqmXBYM5Cl9po+SijYwYcw72jVWIAqP+i/qtLjAjuUKiHBasfBJaXxBzvrQGPsaYKHN5EZoX9UdO6KSL8CbIDNhZ5gSHX8xBF8WeKRiZHOEuBStdB1GCFQGn5vPrhn+ynwYc5pbyILhinNKFG1WVr44iCcZgL1j/UYMMvn52Twi/clhKsCOXoZO01IiRUjrzQvvNz4ybuYWn2GRROQETDcuJJKzX0pgUkMrcMSgkmPvF7k78VcdZ8zznvX2j/YJgBlzQegvfeUNYOowb2foyCYqoR3NxI0fpyIkGFrvGjfR+E+FGejJpImEdLsmILbg7XNYLOHfN7L0Q+MgbX3eeozmQTs6vJ/lwLiUEe/+G/hehcwy/I6l+zwW2t35JjdODPi+aJyswBxuifdTc3OfJUNWn3bkBOo8MlmjOKvfaFLQwRkXbtXeOFy5vN3WZmybSNfKjc8f31k1XLSACh0R3fXQ23HTFlGXDGM1Re4SyfioUfEHPVM3fM/g3UF0wuSXh8AhNYAz/KDIYO5/XjcH+6ZTi1ZvUL6tWrcK7776Lz3/+8/j0pz+NgwcPolJRYQKLxSKeeOIJ/PRP/zR+/Md/3ACC/ytLZ2cnAOCuu+6q2+auu+5Cb28vzp8/HzzX2NiIW265pe5zANDT04NarYaGhjCs9T+kSCmRpqE19vXyP7bQOyGwmmU50jRFnksjUM5zVSdzK2xWbfKgTS6lETpWazVkWWa9FvRzKatTkWlS5FkGASvgSNMUtSy1xL8QqOlnJZtbtVZT80oUiZTp32Vuwzir3+16c2nnXUvV8yR0qtZqaATMvNU6ieHPdf+52Ydaqoxxch3VJs9ysy8kkMl0rnYjaM0yANIoeHLWX07zlxQlKjNtAKBWU+MRh5iZd5Mjzyyjp/Y5hwVT9v6p/pVBS5ZlSNMUlTSFMFpLiVqamXdOh6OW1pCmRbOfWZZhoVTDyY4h/NCr96s9TxSRxe96rudG/dFveZ5DEhLW46VZhgZpGTxz7mD3Sglrcms8Q+dJCxlqaWqfozC6WY5araalIXo/pVWK0nmT0ir4yqkK6UyM8GylggTAZKWMkVJJ7S+Ao1dGsaqhUXlyFawhUbWq5pGmNrd9S1MDypWqPk/SUG+Vas2cJfKWL1eqam36e0MxMeui90pjkDD7//tnO/BH/+Fj+pVLc5/VWVFnl846f0dSSmxsWYIbGhtR0+/Kf0f83Ul2h5z6XAlBBNTZtXAiM3PI0wxS5mafa7UasixV9yt35ybNfbHjpGmGPM8cOKPmQ0wgh1d0z1N9t3LLpGcZUpljSVLUfUgV5UsoQwY6P8TA5VkGyFzna1drgZRaAaSVtFKimmVY3tCALMusAC9JzHuqaEamWqshzbRBYq7gZrEgtEe1OuO0h7VaCkDitptXmP3Js9zsDcFM2lPzbqV6txPTJYxNzOnfVZtKRa85tXCJ3l+u4eYNxQb8q3vuxX84fNB5x9Dnrarnl+l9TfNMedbpuRBso3eX57mxoEj0PNNUjZvmOZoKBVTTmsFBQkpU80wzqPpe1VKzJxw2lstVtgd0tuwZpLpE7xXVb1i3HEV9t2gfYvCK4DUxDDXTR4Y8c++CustsnVmGXOYQTMFhYZROG8rGpPdYqdXQIhJ9l912tTQ17z1NMwMjqW8OO82Z0feZ9szguYzfOws3y5Wqg+ctfcDwDd0Twn1ZZvbIX4/ZL1imjp8VQKVc4HDH4vXcMIaWRiEBkzTnMNN3qqZpAxtKXdMPDPYQ7UFrpD4IX0qZa6bWYxK1sDdNU33PXVhLd0SdUQYrNR1MuJmfBYJrJASoMhqL9qpWS80dpbPA3wXRWPxeEI6n88uVNYCrOErTzNbp/iHpHRAszdBQTMydIjxcSy3to4RSKl1XmlGKJW20DAUrE9A8PNqEnQN7l+yaq+zuUluCJdQf3RWiY9LU0pwNIkGlVkOD3gSZuzgnZ3PIcnYnzZnOLE6Sdc5wmgXvITVwndZt6cmcnUel8NewWNj3bGAbnZksRudo3M3fP1+Dd4/B6B2ir9UZhJkPlYztoZ1rBi5v9fG9uUfsrlqaNTyjHNZUqzVDrwf7nLnP0T3waRuijTO4MDvNUkNL8npOM6QMLoQwW9H3nF4hvOG+S02rZLxdqmGuVrpUNZ8kc3vHqqlzVzMNW/2zwvdQ0RqaFxFkRM2tFaWjkLLnIzdC5gRg/It0nsl0SjfCJ/a9EC9ixctZTrBAwYBaLUVac99lrWbhtbMmmZv9dXgA713xs2LgogzPk6KxLJ7k8NTwTnluU3p48IafV4s3MoVzZe7QA3meQ1I0TVg6Q9KYMkcuPXwv7XnmvLblkfV5lnD3TsOOjO1Bnqm9I2GtQwfm4Z1JwHBQrvgZ2t8sz4wCtJapcRIpkUqJ/tlZZSAjJUpZhp6ZKTyzdp2BJxxuEPwGgJWNjZivVNUZYrxVjhxz8xU0FASEKJp9S9MUhYT2m+hgoKwNLipVGxHI3PksR6LhZnffOGq1OwzN/7t//h5+++df1nudgcwiGxsK5l0AErsO9qIhSVDWc6hpWEmRweYqFSxraAiMQXORQ+j9LCaKvxaMfyV4MF4pY3y07Jwront5ob0kuFCt0ntXSrDmxqKGk0pOQAJ4nw6hZw3elC4cJzhLyp1KRfUpIFGtun1SvwZvZAqeErxI0xRpoWDa+7IlTvNKzasJLTf6tQP78NuPPeHhqkzLgkL+EICGNZr+STget/CBaH5nT4S9g0Q/Z3mmo1/RHcgBmZu0TeY+63PC+Vx3b4iGsXhF6PcgfH6Z6Pqc89223sjIjNxHK76yTO17ngc0Y8Zw4vxCBf3DMw5+4zIakl3RmqlvISTO917BF984iR967QF134VVxta0XIMiYZUqVYf3qlZTbfChcZKUyKHwiR3Hylx+88hB/PrDHzT7VkwEKrUa0kLRrK0AGMOvhUoFaZqiQQhM6ywes5UKUp3ia65aVc5Fei8aBLBQq2FJcxFjEwsoFNS+Vqo1k3pv+bImpGmKaq0GAWkMuxZKFTQ2FKBSy6r3PDdfNm1Vmxpu27ASs3P2Xhe03c78QsU5IwulmsmTXuH8Lr9TaaoMTwxtl5u1UMeEY/g9r2WpirjHDFQIfwiGqwLcIzXd79AcieZtyBjMOlU4Rqj6HCUCqGXS4QOIdqFCd/h7n78N1VqGai01tIKRV2p5QJZlRl5QTIQ5LxwOGFmrXpfMpfGAqWq4SHtIxpIJrEGcv3/VTOE+SwST3CFDS5Nac7miZXRVPneJn/pn9+JP/rbdWa+i4xS/l6au3IwUxdVaxuCVZCkUbf+EQxtYSAw6NzRXIx9l/GaWW5lLLnOkWaoi9NUsLazgmL3/WZ4hSZIobEvTFAUpDW4kPDA7V0KW5Sa6WxPh1NyekbmFMhqKQuMqK7dpbiyos6jXuFCqoJDAkT+XK1Uj86ExS1rmU0gSRzZATljqDLhybPouc4XPlbxAOnQRGazE8GiZ0QM1jXfKpIeg+5vnSKFlY6mWDzAZdyFx9xtQeM682lzJDpJEv/NiouQ9hYS9twwtTQXz+0KpipXLmlGpWjqC5IY3NDTgE3dvVvCxuVnJNKU1ypmrVmwEJpI/16oKL+Y5Hl1zIy4vzJvzIvPcnD9+NhK6h7Ua0jyDkGp+KjUf8aXSyGtymZsMGvQdmg+K0zCKVyoWhLqPzQ2Kpvf6STUvVq25tIsv76J7UdBtsjw3MJjwbqb5B3rXBv9rWFhLXd6gouWoBgZlLv9C8gspc+N0YNYK68jBZXt5bmUahFO5XKmW1ozcSuFpwe4Bwa+agSPkaGhwABnREP9Bl4et16wvrSFLlezb9K35BQgbpahWqzn3cK5aMTxLNfdoSsneMaNDZC4xdmUOZ48NG3lbmmZo0gaxhMNp7YDFk5mW1wPKWJJoN8jcRAbj4xBNXDF0sq2r1jLzzgzM4zK9TNGwRnej1w4o2X81TVFMbGpdJVeTuDg7ixNjV3D/DasASIe3TQC8cbEXszdXkOaZSnunx6ulGYSU6Ng5iEJBoFqtKXjJ4Wql6vDAtF7aK8KLxJ9SMXqBjPaj5si/arUUWWPCZKMWDwsNw0lfWwSA3MIUH9dWiDbTNB7xcTKXQKJ4Tf6OiH6Zq1SQNjaZs0N3o8JgYy6tzoDrR4xOqObqztSe1VCrpRDC5aUUDhOmDZfDVauWH9AT0vyIpveFcHjimn73XN5tzqu+YwV9D+xeSUPPS8MX0DnKDWyqeXeVdPA0VzLSShJh5OOGXq+lHgzRbBLpsGkvpHueSC7BaXp1ll3ZGL2LYsHqhziP5b9/oQ33CH5Sm5rR8Vv5FZ09K99TezxVqeB3jx7GLz/0CADNE9J7rNXQmCTmTAFAuVpF4Tts+3K9fOdLsXh1U69/kDEYoKw9P/GJT+ATn/gE8jzHxMQEsizDmjVrrmkC/2eWiYkJAMDq1avrtqHfJicng+dWrVoVtejnz+V5jpmZGaxZs6buGH/xF3+Bv/zLv7ymOZ87p0LDT09Po62t7ZqeuV7+x5XTp0+jWO7GwMA0CukIAGBkZARtbW0YGZ1EeX4MAHD06DH0jVQhKsMAgMHBy9i+fTv6Ls1jTudZbnvjTZzpLmFwuSLc5hcW0NbWho6+Mqo1EjhkaGtrw6muBRYlqYa2tjaMQ6IHOcqQyAHs3bcPC5AYgMQVPd+33t6CEeQoAihDoqunGxMAKNNzV3cXxgGTkujYieMYhMSkRkxvbVHPT+nft2x9Gy0QGILERUi0dXaho095B3Z1dSOb78fQeA2lUgkAsG3rNgwMzGKiSSG4vv4+TE8UMDJYMOs7ffo0JmczTE0pgVVHx3mMTNZQKtcwPl5DrTSF6fFEz7cb4zMp5maUR1Dn+U6MTKYoVxXi27VrFy6vSnDostr33ksX0XapH13IUO3pAQCMXbmCtrY2nNb7AgCVctncvxFkmIdEBcDpM2dQPHMWXciwu/ciAODM6VNoADCDBCPIDKH0zvbtWA6BUSglwaHRAQDA0NCwOR8UXYzf9fPn51Ce6kXv+QaMjE6a3wYGplFMR1WbzgtoaxvC6a4FI5ijczAyOonphgQLC1VcunQJjQ0Cpak+pZzIJA7sP4DRqRom8mZkkDjf3YW27l6MIMPRUdX/4PAQ3nzrTYwgxyyAKUhkMzPGK7WtrQ1VSAwhB/lwnj53Dhkk5vRZOXzyhBJGagXC2Y5zKAA4hByXr4xiOQSaAUz0qNN3oasbbW1X0N5bsh6ASPHGG28iSYCR4WlMNqj6U6fPYG7sAnp7S5ibUwKT3bv3Ymi8hokRRZzIPDX7cfDAfnWWzl9ASz6Avr55FAsCx88vmP0dvTKJRAjz/SJyTAAo6/nzdzSCDKMjY3gNEu1nz2LJ2Q4AQB8y7OtX73lkdMQ8cxkZDg0NB/UjyLCg++zsuoC2rh60I8eArtu7Zw8wkeLCYAXlsrpXb7zRhrlSjkuX5jE9o+7I22+/beZG0SppnL6RKkYma0ZZ92bbm+jvn8HhRMGmK/r8j4xOIi2NA1Dw6spUispsv1Eo7dq1C2VkSFDB3gP7MQCJGSg40jM7iykAZ0dHUUWOsStXkFy5gnHNkFXKZZw+c8aQ/2mthnMdHUqIBIlKqYRjJ44buFPIc7yzfTv6kGNaP/X2O9vQB6WAHIFEZWwaANCbz6JSkzh6dAKTsyna8kuo1nJcvjyD0vgC7t7YpPahfxrvbFd4vlqtmDXzdzsyMoUmfcZ27d6DkdE5NGpvuoOHDqF/qIrJSXXiz507Z8JN79q1EyMrhPNe+d9ydAQ5JPoHBtA2MIReDSdmINGgxx9BhvbRUeTs3Q0iw34Nu6YmJ9DW1oZJSFxEjlmtXDl05AimkOAyMpwcGkIVwOW+ORw8qKD+0LCCN6VKjsHBWczMqPnv3LUbF842YmR0EidPqr28ePES2tqmcOHCHK4MqbcxNaVg0LlLZeRS4sdfXoLXd03hjTfegBACnRfmIBf6cOGsC69GR6fQNFTCFMGDI4cxiQQdyDGPTueMKjyl7ln3hQsYhoIzBbj3bwQZdo+qdXV0dqKts8u5Q29v24ZlEBhBhv0jCpadOHUS+anTON25AECira0NaSYxPDSNRv2ud+/egy49/yb9vk+dOo25Uo7hJQnGJ9TdO378OGqpxMREycxpeHgaWVndm61bt6GndwF7MQQAWCgpPNJ7cQZ7EvUeR6+M4tixCmqAwqtd3aghc9ZI+HjXnj0Y1WekxPZhFBnOaVjdfvYsFiAxqTHP/Pw89u3fjyFIzLFn+pDhUH8/AGBYn4nzyFFCJwYHZ7Dl7WmMjE7j0KFZdb47zqM02Yv+0RpGxqumn+7uWTTUBnF5aF5H/5UYGVH06uhkDV29ZcyVMmQ5IDfDyo1oAAEAAElEQVSvhJTAwMAA5kqZaTMwQPs3pc/BJNLyOHaIIVxaIdDUp+Y5MTFucHMBQI2tp1fTIbTGd97djh5terGg697ethWXkaOk9/PQ4UPog0SDxt2lkoL/w8hwWJ+XM2fb0XT2HCaRYQEJ5hfmMTqildpz80ooWFVnpH/gMubmysbgo6+vHwICk5NVo3g/33kBjUWBydkUk1MlZfhULWNoaBidS6YxOqpOr4oYBpw/34liQWBubh4Noow8zzA1NY3KghpjdHTUgS0n9Tno7u1BW+8lg5dn9Zx27d6N8xA4jxw6Th0mxsedPrIRRbueOXcWS851oAc5pnXbarlk6LwRZDih94meHx6ewslTCo529/SirW0MI6OTWJhV8OPgwYMoVZTBDe1JW1sbRkencPq0GqWjowMN1UuKHp5VZ+29995Db+8CJq8UkWYZZmdmsW/fPvRfqWF21t6/s+fmMTHSgJF1NnYawRoOG44cPYoZHMcIMhT1np1pb0dj+zlVp9d1StN4I8hwRre72HcJW/v6MYAcFPtiz759hi5MIzTC+f4yajUrOGlra8PpnpJN7aPrLl2aAcoKXszOzhm8RDC5o6MDbaIfI6OTOCfVPp871wGxcBF9ffOYmFFnc/v27Rgar6FSk8Z4h+DJWVqvXlsvckwCmPHmPQ+JfuQg07Q9e/eiGwJjkOhGbviA93btxI36PFD8zLMdHahBYhwCUx6sykdHsAAJMTdv6jv6ykgzq9DitMrIqIU3EzMpenpKGJtQZ2fLW1swNF7D+EyG2Tn1dtvefBMjI9OYn0lQq9XQ09OD8ZECWpoSQ7/Qvh45rGYshMDc/DwudF0wdCo5ggHAHDLjeTw8OoJOjXcGIDEGiRQ5qtUKBocuY9nQMKaRIYdAGTlSAL29vZhCjjkoZerwyAjmIM3ejoxdwRwkUgADlwcUjSYl0rSGnbt2YVlzgv7+OZQqan927tyJofEULU0KNtCa+vuncUTTcgsL82adsqrkGKdOncb0yHn09pYwqXmqnTt3YWR0Dg36PPX2XsSOHSO4eLGE0TVXkCJXsF7T/7PsfV5Ehoa+PlQ8vEz351xHB9o6OjGCDFr8jKPHj2EIAheRG/7gnXe3oxM55siDVfMvdNaqkDjf0YH5cbVjAwODaqyRKRw5OqPnreDNwMA0jmkud3JS0SDDI5Pmrh07dhxLWxIMj9cwN6d50W3bMHilhlomHbgEAMMjkzh2TI3R09uLtrZxnEOOYUjDX3d1XUAFwMG+PowhQS87L5f6LqECoDA0pPfkHKYgUdVr7enuxpbuXlxGjgp83kKtHwCqszPY+u52CAB9yDGh927nvl3ovLCAFUsLWNqcoGuwgsZ0EJOzKUanUswt5Ghrm0SlmuPy5VlcmVJ3YMuWLRi6PItKmuOP//J13L2xCRc0/QYo58Y33xzF8LCijU73WD64o2MOs2O9AIDpqQnzLhqLAp/tGcDPv7wKXx8aQltbm5EH0Ll5a+vbaAEw6vkeFwDsHFK4Z2F2FudnOzECgQUog5szZ89ihLWns5YCeK/3ItZ4kTOI7ia6fv+BA5hdyNHcqA1JynPYsmUrStUcPT0ljE6qfSFadmR00tByBw8dwsTlU7h4cQb79qqzPaXP1tB4Db1DFZRKChu8vXUb+kerKFUkpqYXnLNE8yJccuLUKYxCoBs5FgBsHRjEUrYO+qtvoB9tA5cxggzH9LMD/f3Y3T+IHuS4AqBL07MjyFDQbU6eOYMBAOMAhvRuv9H2hoky0t01i+bsstrz+XlLB4xOYt9eFX1tYmzMqc8r48jSDJcu9jnrn5isQAiJI0ePYu5KO7q7Z1GZ6UOaZigWBd544w2kGTA0PI2CEJiZSTEwYMeUkEoexfZGnjqDEWQ4oOFtu6bHaB/36fru3l609apzexkZdmv+empCnc1c950ACpZc6MQCBMYBjOtzuf/AfgxDYsuWt3C6q4RlLQXMMtg6MjqJ48dnkGUS1akOsx+yOoGdtQGcW6VkDSe7FzA1m6H9Yhnv7u9GS3YR/f3TaJJqrjPTkziwfz8Gx2qGl9iyZStGRmfQqGFwV08v3tUwWK5agikIVJGjnKZmv65oGd+YfvcPD6o1n0GOKnJs3b4dK/V7voQco4DBxd/Y8hZ6Nb0yjRwtANq2bcUF5GiBwCiD513IUIaKKHhlfAAL5RqWNidK9thdMvQuMsVHD0/U0DWouJYlTQm+8a03saQpUTKuXK3v+IkzaKz2olLLMTSkeIy0uoDde/bjcm8TRkYn0QzV9tSZc1iZ9Js7MVfKgAJQlMBBTcdxHujM2bNoOduBS8iwS/MOQyOKx2lHjiXUz8y0uS8U6+zEqVOQAFbo7wtzs6bNcd3/aUYnntR4bqFSxvz8PIaHFQyZnJpGqVGgpVEbBdWqmJqaMvBucmoa8+XM3MMLF3owO7uAak3RHQNDFUxN1TBfdumQSi3H7OwsOjs7MT09h56eBcxPNeDK2BwqC4rGTmsZBoeGMAoJaN6mUiph95496IZ06LxRZIYG2bt/H0YgkY0qKHvk2FEMQeLYsPre29ONG4zbMUwfnEc9cPAg5mFVu5mOfNfV1YPlSwqYm5/DyKjCud3dFzEzXsTQUAlJItDZOIW5+TlnvTMzs+jq6kIugfGJWfPb+MQsLg8q2Do+PoHOzhRpJjE/N4eaNubu6u7FzEQDRq/Mo5hPqbZjI0AzMDA4gLbBIQwhw1HN74yOjiIbHUVFv5ORkRGUARR7LwEALg8P4/DwCCRyvPveDqyGwDnkGIHEieER5KfOAADO6/s0DIn0fCfWUn8aH0lIDGqaanhEy5zefBv9/XPYt1d9vzI2amBOdUHhoG3vvIcblhUwODiLSY3D39u5G8taEvT1zWNmPjN9LV9SMHgPAPbtP4gLK4vo75vHzIJqt2v3HoxNK6e4MZkDq5oM/0vl8LGjGIFV+B/QPPOs/n7o8CFc0nK4tp6LuKDh0Qwk2voGzLoTfXcOHzuKYQj0IUdJn5Kt727HCHKc1m1Gxq6g48ow2kQ/zvSWMDmrop+1tQ3jzLl5VGoSI0MJGqu9Zp7t5+bNoRsZHUEhm8DsuIr8JSDRfqYdE7MZjtZGUJ44h3Pn5rCkWZ3ki71d6B+pYX5FATt3j+D40QQb1zaia7CCuVKGhkoPLiHHu13d6IRApnEJySK3vPMOigAG2Jq27diBEoBBSDyJBB0Q+FbbGxpPK3z9x23fwt36No0iM7Lzb73ZhnZILNffqwvz2LL1bVxGjoVSSdGaM5dwebyGsXGFP0gWU6gO4lJf2ZGllOYK+gwcwMhEisYGZQzWUJTYs2cPeocqGGU81qnuElqaBObnLV8NAINjVfSP1FCt1pAIoP3kaWAp0NfXh7a+QZxDjqV6zmm1qvhxLavhPOCw5gUySJzvuoAxAB363ff2XUIJQDvJs86dwwikORtHjh/DZc070Bnc8vYWA0ePHDkMwPIPg1eq6B+tYXxcQagdO3aocXpLGNc85KGDh3FxqIKFqQHMLywgyyS2blO6KbJ727tvP7oHK5ibuIRSuazPo6J5T59Se33u3Dm0oQ9jYzPAzUuMvGoEmZETHDxyBAMQuKRpfQB4b+dOXIREE6xMi/QtxEO8tW0bpqFouEmPT+f9v7d7F84xeHP0wmVMjM6joajk0WcuLKClSWeJ0HLvoaEpQ+uNa1lQd9csilWVEUtoWDVwpYrBKzVMTrnngssnjp84CcxfwOjoJE7pustDQ9i+/V1cujSPtrZJjCDDIf0+h4aGcGBoGJcBjOl1vbdnDy7qv2uVMs53d6EJAhOkOzp3ztyzkfExNIyPowTgQP8AhpGgW+OjM5Dov3QRCawOc2xsDIfHxjEBYGxgBgUBHDh4CE0NCYYnalhYUGt7++2tSldZkY7MYGhoCk1yAmma4crYOI4ePWYiPxUS4J3t76J/YMHA4vfe24mR0Vl0aLru5KlTaG5MUEtt6s62tjYMj05jdmABM4nSgbR3dKAJig4hXEpniWDpydOnMA+ghdY2bs9bo677ZtsbKHiyme27duFmdkYEybraz6Ch/SxOIsfIxRJKFI1Py0VHRidx4rjigy9c6EJb2whGRqaMXnv3nn2oVHNMz2cYGq7YOTM8tHvPPoyMzht5RHv7WYyM1XD0qDorXV1dKCTAyqUFMzbXkdW0PJPe55n2djS1n8MZxkvOTE3inR3vYkTLWzJIdHV3oQag6aLiEdJaDSdOnkAGoKrP1datb2OQ3cstW99GB6ShBYWU6OrqRmmhomWW00Y/tGfPXly6VEZpehBpmmF2bhZY24JEWKernTt3oftiCaPjVr4wMjIFCYn/9F+/intvbULPUBUz85kDe8/3lTE1T87judlTkuMf6Vf3dH5+zrx/NSuJ0+3tGIV04Os8LLxtb2/HCCQmAIz09KAdAlOQuAzFMxwA8MCA4g9Jdw0oOqABiq8ElEzrLS0Xvl7+cZfv//7vv2qb76i1VpIkuPHGG7+TXf6DCinPGxsb67ZpalLiSjJW+fs+5z8bK0NDQzh27NjVJ3y9fNcUshFkRrJRkGgDM9JzYSvqQ3r1vCn9bcbldd54EgpQS6/OH0MgHDNnv/Hv/vOyzu/+/E17Gf7GH4ylyQn6i43F91+E81Ce+TZktb9+vytR5zeqMwIPKGLzF1BApxWNOc/mdZ7l6UliA5F1eVDP2pszI8OzQX9L9iCFrPfPjH8G+B5TvZ9CRz0jzd/0G0WTSAE06M8iYBhe6ov3nwBI9aDEhPH30FhUIfdVuhi7Bu2oBYDCg6tQ1vzZYsGGQSXvVIqcR16bag+VF0PsPKh11S98/byuXtvF+ql3Nv07RGcaMM42i5bg+cUaC7eNgN0nWqt/Hvzv1IZ19/f+3sC+0/5bXya7nmJB6HR+Ni0DzZ+nEKL25twv8jJM+G0vigFF8Y2NsVh/ah0q8ZF/j3KE8JsXFya5v2YAmuHCYOpTSnUnnL6kDcms1md/o1DAdsnW69g61loBoUoTqByuJZ9kpNA9v4ajqvpGHHeB1al+w5PMxwhwFfMsNuCXzsgiiIHfAXvO7ANC8DPjPluPPvD/rrc3sk4bvuXS+86L3y+Fvw7pErYn+lcDY72ODe0RASQ89LTTRNh+zDn1iAJ+Nv1Cz0ivzv+sR6f4bXw8z6YXhcP+/a4HI/IcSBJKT6f7y+2IAuocFos2XZKUFj8VKf0QMxgij7N6sZXr0WqI1FPbwiJt/FJEiP/rzQHevfCqnC/8/i72XkFnU8TPAR+/Hp3796mrVxYDc9FjW+csR3FFpC7aLDJxN3JdnTHr1F8N7tQ7S7HnFoNV5u/InY+O77fzcLv/sA9n+bXMg32xD9I7Vdg5Mg/v0//bp9MEEMAXwn/Se8aH4VSSxMdP4fv198c86/EA/nPw9pDvhEPXeP3G7pvfbrH7sxhs9mExf8bZ3zq41LQl3kaE7fz0bX5/sf3094+/R4nwvdJ3sN85nOW/+/s3D+kYBFFpgkANih7mtLAsCK0AVzRN12AFQgAP3tnspGzKpVpHjaet0MO8vmsKv/x/Ww+V5oPvBXSUbXcuErA0YUJ1EpQald8hWht1EYkVatrRHpEwMoHiGVsi7akIAOOQWI2QLgZ4iiDdXjchfpJ4YpNOMgd0Bh2W9o2txaPzDQ0t7Xfan1gaRH/NFu5cHZfxOjOfRZ7Lwfdfrw92fyUsnPATNpg7FNR7e8I+E2H3m9rmmqahaqH/ESJO98XWXIjU+evkJfE+/Wf4vlOfPk8JhO+P4x5epPfFppW1v9O9KiRE5wnUUnvmAJbmO7PnkmBFihCGxArdI58PL0A5ehYBVHU7ksms1J+StWuEutNV6PuXAyu0AUVLU2KiEZEDYnMTpVS061i5LEG1JrHEBqIAAFRTBoP0HJsbhIFNAIwTYLXmvt08B+65rRmDIk6LxupicDmGr+qdI/43p4+lV2dTpEtACiOfEjoFVELnXsMdGriaSkPbA3oPE5ViqFTJjQKfz5WnBOZ8Q55Lc5b5PaDh/DUGa2DfeR/XUji8AQCkEk0NQvGPUqW6owxSLpyI90epDQvCvYsKvqqHqD8DhzWiydiLovOoDMJDmFPve0B3wL1bPt5XdRIFCJyBchL4Xo/D4jiK5lqtSSPDctYOu+5aZuWVNvKqraN9SDMrU7b8O+OwaJ9ye1fr8Qv+WYnR+nxHaT9yuHQMrYpwP9EDCSxdYM4dn4+eXyWVWCjn5l74UUUhXfyV5zbVGOGeQiJQrkpUU7VnJBMrFgSqaY5ioYiuwQrOXSobWohkYQ1QhgjQdA2/RwSXBVg6TLhnh58Zob9/DTl+id0uE0kW7r0r8L4YzSYQypgSAdRSiflShqUtBdOO9gSwz/OMYzEyJaBd9CRUymNhIplxGOvCG2n+9uXmhOfr6Zj4eeGFwxeaHekYXP2HS/g7dL5Ht/EU9UQjQ3q0SB7p15urf7/o7vFzwOcfW7MvA4bXBlhcB+Hfz4JOeUmBBjhuTmJ1tDfs7wZNLNJ+mdTEuU2ZbtMg2rH5Vvlw1Mel/IxkDJqSvMnHWzEcFaORM9C9VC9VsvaQKvqoQcUMx+jgfeZvXtT5YLiL5lqwKQItbSydveCqPr5XND7HL/Vwr7t2m8aYF3qO04z17pRfTysT5pywtkSfss228EVq+OymdOaF8JYvMzU6B32movcYcZrdnwdPWwyvnYh88v3wcb3bL0wqaoI1znsl3Ew4Vc/f0jnS/O6Xb+6dxi/80FqL3x3ZqL2LPvjh92oxejaAUex36mMHcsxC4E6IujQfPZ/ByiEAdU8Xg0vXy3dX+R8buuv/5NLcrPJ+V3VI7FihtJYtLVb09Pd5zn82Vm6++WY8+uijV58wlKV5qVTCypUr0draek3PXC//15U0TZ0oPPc/8ABaP3o/Tg3swiPv34g39u/ETTfdhNbWl7GnYxs2rFuOo51n8dBDD0OeG8Kj79+Ib+17Dxs2bMBLLz2GoflTGBjvw+zCAj760VeR7bqAW29eiS+/9zaWLV2K1tZWtBzoQaWa4a2Du9HU1IjW1lZk73agubGItgO70NTchNbWVlycnUFpoB9n+y6hmAg89ejjmKnV0DI5gdrUFPomxvCRj3wUR08eR1MhwdTUJDbdtAED8/PYuHQpTl7swZ13bELj/DyaCgnOD13GBz7wEDAxjoXpKYzOzuAjH30VR04cQ1Mhwbmhy3jp5ZdxY3MLzk5OoHnsClrvuRdLD/Xim3t34K677sLj79+I871jONV7BiiV8Morr6B34ihuWNGMUz3ncMutt+Lmtctx680r8K1976GhoQEPPvgghkZnMT4/CExNYvO996LYP4Gx2WGsWb0Sa9csxfo1S3Hw3ClsuusuFC9PYc0NS9B+sRN3330PRN8EZuYqGLgygg99+MPon+zFs5vuxuf37sJtt92O1vc/hL5z7XjsxrX4yqH9WL92HVqfeAqy7yJaikW8cfwolrQsQetLHwEA7D18EGOVEpJaDfffsQmtd96FMyeP49X33Y8bGpvwzuAABICXN96CvYcPopgIXBgewosvvoiblyzFviMH0ZgkeHrTRnx5+xasW7seH//4K9jXuR1NjQWc7+vFxz72cUNkj1VP4IkPbMT77lqLPR3b0Nqq5nG8bycefegWtO3fiU2bNqG19XHU3jmHVSta8M2976KluRmtra3Y07ENK5Y148rMZdx++61oaW7ABzavx9d2v4PGxgY8+eST6BmYRP/GFD2XB3H7Lbei9YH3Y+/hg3jy9jvw+uEDWL9uPV579DGcOHkMq5uaMTF2BeuXLNVpq4CPf/AJlNIU7WdOYapaQe/YFdy26S60FArYf+E8VjW34M7bbsf6lha8ffI4AGDzvfdiZWMjtp8+iZU3rML6lhbc1LIEWwa6AAAbNt6C1tZnkey6gCXNDfjG3nexbu0qvPTSK1jS0oCjF3ehUEjQM9yHTXffgw8/djuqxR6c7evAsiWNePSxx9HTP4kH71mHv93+JlbdsAIfffVj2Hv+Xbz00uP46y2v4/Y77sSLLz2AkdJpFfq48wI+8tHX0NRYxJ6ObQBg9vvQlVEMzM9h17l2IM8deLzvyEG0PvYk2icncHx8DK13bwYAtJ86jg/fdgc+t3cX1q1bh9bHn1J9HT2Mp26/A18+uA/r161H6+NPmrN1Y3Mzzg30Y9Mdd6L1fQ9goacbG5cuxdeOHMTzzz6LdLyGwvF+nLl4FqVqBa++9homZ8oYLZ3G0FQ/MDeHj370o9i6dSsggaeffgoPPZLh9a1n0dr6ERw7O4SuS+PYcfwQAODVV1/Dmct78dRTd+MrO9/G2rVr0dr6KvZ0bMMdG2/AoXOn8dBDD6N3YBKP3n8zvrlvO5BleOH5F/CFPe9h9bLl+OA996I0MoyhhXnU8hy3LV+BK+Uy3r92Hd47exrr167H7cuXYdPyFXjzxDEsX7oMD9xxJwoiwTtnTmJZyxLce9vtaCoU8N7ZM7hh+Qp8YNNdaC4U8c1jh7F62XK89MTTGO7uxKXhIaBSwQsvvohTE+NoKhQxPtCP6RsSLF/WhFUrmlGupHjyiXvQ0z+J1tb3Y36hivbL+9Da+oK5Q6cGduGjH30Sf/L657Fcw1Z65x//+CsQQpi7c6b3Ah577ElcHG/H0pZGnLvUjfd/4CEUukYxVRrGlekp3HfffYAEdp08gpdefBHn+s4575X/fd8NN+B0bzfWr1mL1g8+jq4zp9BcKKDv8iBWNTWh9cPPY+/hg3joppvw9qkT5uwcOnoYL9xzL/5m9w6sX7sWrU88jf65Ocz0XUTnQB9uXLIEH7jzLnxk4604ePQQnrzlVlwplZEMDODjH/sgPtX2Rdy0/ia0tr6CyekSeieOYmJhGI3leTz++JP44IMbsKdjGx5/7B58a9+7uOnmDWhtfQEDs4ex6dbVePPATqxfvw6tra+icV83BIBXnrkLh3t24KOvPovmpiKGF47iuSfuwN23r8FuBq92n9+GH3j8A/jU+XOYnp/DIw89ihdu3oDJrk48suZGfGHfbnMXpioV9HacxZmBPjzwvvehuVCAgEBLsYAdp08CWYbW1lbsPXwQrzz4fvy3d7fh7rvvQeu978PewwexrqUFJy714gUGc5+8YxO+dHAfHnjwQbTefifmxGkcOHcCra2tqFRTnOjbjaVLGnCquxNPP/MMHrxnHfZ0bMOypY04e7Eb99//ACanS1h/4zJcHOvA0Pg4HnnkEaRpjq7hsxieGMfHPv5xHOh6F/fcvgb7zhzHc889j4nqOTz//L346y1fQ7PGzRfG9uP55+/DX2/5GtavX4/HP/ggZmpVDM7P49mbN+Cze3Zq2KPWeMvSpTja242nn3kGvbOzWNbQgK0njgG53YcH1q7F9vbT2HzvvZip1XDX8hV46+QxLF26FE++/2F0Tk/hVHcXUK2gtbUVZ04exzO33oYv7t+DDTdvQOujj2H8wnk8vnYdpobb8fJLj+L4xb146ukH8Xc73sJdd92FJx+6BWc6R5F2jqB7sB+tra3omzmM5z98N7quHEVr6ytI0xwHu3egtfVlXBycwkT1LOYWqqjVMkipHCVuu/VWjE+V0Nr6EVy4NI7J2nmkaYbW1mcBAHs6tuHOW1bh2WfuwujkJTy1YQO+cnA/1qy+Ea1Pf0jh5kIRb508BkiJ1tZWHBwdwXBpAae7L2C6VMILL7yIlisjKAiBo50dQLWKl19+BV0d7RivVHBx7Aoe/eAHUZyYwIc3bMTn9u7C8qXL0PrCy+q83H4nvnJoP+573/vwsTs24cj+PVhSTbF0SQ0337wWwAyWLVsKKYHlSxoAlLFu3U0YnBjTAp8J3HTzBjQUE8jiPORZFYnuzk13YdmSBoyMl3BxbAi5XMCqlcuxdu0N2Lx5A/onB3UY/1m0NDdi0113Y0lzEcuOteOGG1rQ2Jhi6dLlWLZkKbAw4+CVvYcP4tGNG9F2/ChuufU2tH7gYczXajh75hSmpyYxuTCPp595Bg+sWo0rnR14aPUajYNsH/uOHMStS5fhUE8X7t68Ga333IsDoyMYKS3gnTOnsGblDXjpsSdwY3OLHu8WvHH8iMGH+zrfwSOP3om2Aztx+x13orX1Kezp2Ib1Ny7D8Qvn8Pjjj2N2vopCQeDtw7vNXd7TsQ0PPXQ7thzag3vuvgcvvbAZl+dO4crsZUzOzuDZZ5/DVHoet928AtuPHsANK1fimWeewunzI+ga7sTk7AxaW1sxi9N4311r0Td7CQDQPTqMRx/9IJ67eQP2Hj6I9S0tOH6pF48++iheuHkj9h4+iPetXoOdHe143/33o/XOu7DvyEHcv3oN3jvXjvt13d7DB/H+devwzplTuPXW2/CR+96HnnNnMV2tont0GE89/TSmKhXMpym2nj5hziWVpYd6Ua6kePPgbo1jPg6x6wJamhvwzb07zH3vGNmLx96/Ed/Y8y6WL19u9ubhh+9E24FduO+++9Da+gHs6diG+++/GTuOH8LmezfjxQ/djZHSaciBSfSNDuOFF19EZ+84Fso1vKXHNLDixhvx7tkzeFDDwoOjIxhaWMCZHnV3aN7j5TIudXaglKU4d3kQz+iz0zM7g+rgACaujGJkZhof/vCzuGflSuw9fBCrm5pwqv8S7tm8GWme487lK3D6wnmMzc2a8e9asQI9A/1AcxnT8/OGr0nTHG0Hdpm5Eq0yNn8J/aMjCt5cnsasPI/52ggGx67g5Vc+ggsXx9E3NI32vjPA3BxeffVVHOreiXVrlqJ3pBe33XY7brlpBVatbEHbAQtb93Rsw1NPPYDPbdui3tGSpbhn460oCoFlg33YvPE28/6WDfZhSaEAzEzjxrVrsXmVjv69MI+0XIIYv4KWxibctHoNNi9fiX3Dl7G2sREXpqcAAHdsvA09UxNYqFZQKJWwbu16jMzPYnmhCMxMYfWaNShVypgplXDrLTdjzU3N2HH8MJYtXYIPfejDWLt6CS5OHcPUTBldg3340IefxYWL47hheTP2nd1v9vFE/05Dy/Hzs/mONdh35gTuf+ABPP7gRszJ8xifH8To1CSeeeZD6Bo9gfvfdxPeO3EYt91+B1588QFMpeew9J6VON9/Ca0vv4p9I8MYr5RxrqcLE3q8jtMn8eTNN+Mbhw+iCIHWj6l3fP8adX/uvfdetN69GXsPH8TyhgacHezHQw89jPevXo2J3h4MjQxjqrSA5194AeWBfjy0eg2+cmg/mpua0PrKa+iZnUFlcADHe7vx/vsewP1yBT679Zu46aab0dr6EvaefwdPPHEvvrprG+644w60tj6F45d24vHH78TXdr+DG2+8Ea2tH8Pe8++gqbGAjr5ePPTQw1i3eik6L46hve8sMD+Pl156Ce1dV1CtZdh2ZA8AS+PvPf8OnnziPnx151bFM7Y+g4aBfvTPz+HMxR4U8xyb7tyEXAIPrlqFZ2/agM7TJ9FQSHC8twcbb7kFC2mKR9bfhLdPHsd9992Hgfl5fPDGtWg7fgSb774Hr9yxCd0dCp782egw3mv9fgDA+ekpJCPD2H/hPDZt3Ignbr8TKxoaMdN3EZcuDwKVMp598Tl0XzqKe25fgw3rl+PNgztx15234dFHb8Xl0Vn0DkyhtfVZTM2W0TV2GCNTgwAW8JGPfBSdowcxMVVC9+AgWltb0T97GC8+ezf+esvXsGnTJnz01Udwsn+PShl0qc/syZXKcTz24Ab87fY2rF+/Hq2tH8He8+9gSXMDihPzaG39uKF7z0xMYMnEGE70dAG1Gp578UWsa27BoWNHTJpQQAm8P/r+h/Dn77yN9WtuxF2rVmPT8hVoO34ES5ub8b4778I9K1biSwf3OfBs04oV+FxXJ7700kexjsnfaPw3j7yBgSujeOTRD2JqtozVK1rwtd3v4Oab1+PFF5/BQrmGUtKFudowcOUKPvKRV7GkpcHQIQfOnsLDDz+Cl57ahHPDe/HiCw/ir978KlavXo3W1lac7RpFc/tlHOo4iUTkeP6FF3C6cxSVaoqjF44DKMHnFx++6WZsOXkc9z/wAN6/eg2yocuYrlbx8j2bcWNzC9I0xetvv2mE7Tdv2IjWRz6IvYcP4gnNl99+22340K23o3hlFJiaQvfosNmT+1evxq6Os7j3vvuwafkKXF6Yx9DgADA1iY+++hpadKaGS9OH8MIL9+LTb34VN65eZWQPezq24bnnP4i/3vJ13KTfL9Fmd9++Bqd62rFhw0a0tj6Pdr3+oeleVLMSHn74EXzkQ3fh4tRBPHr/Bry+axuWtDTj1VdfQ55LnOzfg2IxgRyaxrrVy9Da+hIApQDZf/QQ7l+9BjvPteOBBx5E6x13Yu/hg3j+3vvw2d3v4X3vux+tm+4y7/fZzffis3t2GnoHAA4fO4wXNt+Hv9r5Lm7S8pw0z3Ho2BEUEoHJyQncueEWPHrjWgzMz6F/oA/D09N4/PEnMNJ3CR9/9DHIHZ1Yt3opdpzYDaBs4Ojjj23GzHwFrc9vNvux+Y41+NCjt2Hzncr5OdvegfGpBXQNXcB8WcHJwz078NSTd+Nru7fhppvW47HH34e+oWkcvXAcxUKKDz/7HM4MHMaD79+Id48fwE03b8SHn/0AyoVuVO5owuaVK7Hl5HGsWr4Crc+9CAC4MD2NfPgyMD2Nrisj5owt9HRj4HI/nnv4g7htmYovQ/Tx9jOnsLZlCZ587AncMDWFxkKCt08cw61rbsQT992PyYF+3Ll8OXa3n8atK1bgI08/i33HjuC5Ozfh9Znd+JcvvIR3Dr+O++7egOdffBa1pm5sWLcC39q3FRs3qHNy5sIoms4OYc/po9i86RY89fTDuOu21djTsQ0P3HsTdp86jFtuvQOtrU9ieraMztHD+MWffgAXLo5DAvjYc/comueh27DtyF6su+kWwxsAwOXRGQxVz+ChO5bj7hUr8LFbb1f02dp12N5+CvdouvXsqRP46Ob78Bfb3za85XxPF25eshTfPHoIa1evQevTH3Z4xvvvfwCJELh5yRJ89fABrLlhFVo/9Bz2Hj6IZ+7chK8c3Id777sPrXfdo2jHtWvxdvtpNDQ1YenSpdi4YR2AaSxbsQIrljRg5fIm5HIOLc1NWLliOYrFBIkoY9nyFUgaUq3kq2DjLbdicOoKJmcquPuee1AWk8gL89h7+iL6RlP80S89rd5tOcXBzm5s3rwZvWMD2LBxOTbfvhJnBy/ilnVLAcygKBKsXb8ey1pa8OzGW/CFvbtww/IV+NAHHkbjlVF09V8CNJ239/BBlLIUl8bH8NjjT2Dw0kXctWIFDnR14v0feAjTI0N48vY78dVD+7Fp012Y0BkUqPg86iMffAyztSqKIsFbJ4+hgAKKTQVsvOVW3HTjUiw/cQ4/9rG7sOK9Pmy8ZT023bICY6URNBYTbN68FsuOtmPz5s2m/+WnzuGee+5GsZDgvdPnzG/Herpx7+YNwNsTWLZsBTZv3oxKLcPys53IZ6sAqtiw8Rbcc9tKdI3049ZbVwCYxB233QIM9eOWW25B60OPYt+Rg3jqjjvxlYP7sX7dety2bBkeW7tWfV+/HutbWvDhDbfgb/ftxrp16/HBW27FnvZTePaJZ7BpxQo0DPQjHbuC+1etQuvtdwIARjs7cFPLErx96jg2btiA1kcec/AR/3vLsTZgZASPP/kM+qbP4rXXnsafvP45rF+n5ML7L2zHmhuW4PiFDjz88GO4d9ONSm4zN4TG8gIef+IpbFy3HCOl00gvjQMjo/jws8/jtptXYv+F7UgSga7BS/jAQ4/gfXetxWjpDC6PzqL78gAee+xxXB6dxdIljbjY3YPLWDDvE1C804MfeAiTw0MQAugaGcZDDz+CZHICo6USukeH8dhjj6NxYhyZlPj4+x7AsuEhDC0s4GuXevBnpRLea/1+zWOtxu6Os7j/wffjyXXrMNLdhbP9l7C0UMAzTz6D853n8cGNt6Dt+BGsXr0am29YhdbWhyF2dmJ8agFfbDuDC4Mz+JGPPwgJoKFYQOvHHzTnZCo7iebmBuw4ruTVd9yyCi89swmf2/Z1rLphGe7cdDfK1RR/+8ZpNC+/GXffswHv27QWb+zfhocfej96Rs7hwfvvRHvXKABFC713qBflcorXnrsHed9FrGlqxjPrb0I5S3Hi5HFUZmdxZW4WT374w7ixqRn9nR0YG7+CuYUFPP2hD6GUZbgwPYXWTXfj+PGjePnBD2Bgfg6J5rfOaxkKnYe7VqzAwa5OPPfyy6gODuD2ZcvxjSMHsXbVarzy2BPoPncWl5vmsXnzvfjAvetxvncMPaOdwNQ0Wltb0Tt5EB9+ehM+t+1byJNl+MvfbsXe8+/gphuX4diFs3j0gx9E78AUVi5rwrYj+7Bs2VI888wzaDxzGROlfuDKFbS2tkLuOI8bVjTjrUM7AaRmjqc7R7Ds/Aj2tx9DS3MDHn3oYbzZfcLg3okL53HrsmVoO3YEy5csxWvPv4Tpni4sa2jA8QvnISoVfOzjH8e+o4ewoqERl6+M4PYNG9Ewv4AHb7wRO86ewU0bNqCcZvjAuvV458xJ3HX33ZAzM3jk5g146+QxPPzQQ3hg1WpMXerF4Pw8ukZH8OLLL2PP9ncBAE899RS+8M5baGlRsrbTnSNY2jGMkZmLGJ4Yx4effQ6FgsA8LmC2OoTRyXF88IOPQZ4ZxPs2rcWBc4eRFyQ+8pFX0DNxBJVqhrOXevD4E08ApweVHubMfsyXLE3w8CN34s2Du3DfvYo33zawDf1YwLobb0Trk89g7+GDuHXZMhzp6cLDDz+CD6xeg8tdnZhLa+i4PIgPffjDWDI+htVNTXjrxDEUhcDHXvs4jhw/gjSX6B4dxvMvvIAr5TI6p6fQ3tsNlNX4UkrsO3oIN7UswdGLPUa+Q2fq8Xs34I03tmH5sha0traiVGzHzWuX4+t73sHqVSvw6msfw56O7Xjl5afwqbYv46b169Da+lH0Th7E88/fg//+9tex6oYVaG1txcmOYZzrvoLj3acAVPDRV62u5NFH78K39r2Hezbfa+QTjz56F97Y/x7Wr1uPF198ClfK7WhtfUrh0k134e8O7MXadevx+O13oGtmGgODA8DcLB59/AksmZrE/gvnsWbFStyi9UM9/X3Awjzuu+8+zKcpDnZ1YumKldh041rU8hyPr12HJ9etR0/7aVTzDKf7LmHjrbdhSbGIFY2N2Hv+HG5cswaP3n4nxitl7H9rH5a0FPDww49g5bJm9AxM4sC5owBSPP/CC7hwcQKlcg1bDjH5yfl38PBDt+G9E/uxZs0aPPzwvchzibYDO7GkpQkf+tCHcaXUATE0jb6R/4O9P4+77bjKA+Gnau99hve9s65m6UqWZEvyJMvybGNjPOGZYDsBG4wDaRxIIHQIHdJJkxDSHwTSdPoj6TRO/5Juf/nSSYCEhIQwBmObpEloIIZgMNjybMmyLN3pHc45e9f3R9Va61m197lXJnQ+i77ln/zes8eq2lWr1vDUsx7AC1/4InzowV/DU59yA37h134Zd939ZJw6vsRmM+Anf9l8He/5yM/i2jNXI168gHa9wu3XXo/jsxluOXIUP/rv/51ba0WW3nX3k3FuvcJ1yx387G/8erZHij5zbNbhP33yE3jpy1+Bk/N50XEW+I8f+yie/dzn4pmnr1Zb5Mkn8/PE37f52P34yOFncdfpU/jpf/8+nCj4g/f/9s/i2c9+En78/T+PM7fcqr69M9cfx6/8zm/i3mc+C4erDc6eP8RHHvxt4POP4LWvfS3e99s/ixgCPvypj+OZ9z0Lnzr7O7jzttP4t7/5a7jt9icidZ/Hc597F37svT+DJzzhNizmLW658QT+5b97D44e2XUxsr3NBr/5G7+OBOD3HvgM7nxS1sXiJz6Gpugc1119NV5891Pxwd/+LZxeLPDhT38ST7j5FqyHHl9y0xn8w196L3YWC9xz591IAH6qxCRf8YpX4kO/9Zs4t17hw599EF/2speje+AzqgvO2w5nztyCcwefxatf8xr88od/AbvLGX7z/t/Fc577PJwfPoy7b7saP/MffgknT55ESgcFaB0QQsKXfMmLse4+ggvrB/DJhz6r4ymlhA9/6hN42ctfid/40IN4+NE9vP83/gOAtfrGPn92H7/wa7+sMQSNY/36r+JFt9yK/+Pfvg8njx3Ha7/kSzXu/OnPPYQn3v5EbB59BE85dRrv+eBv4oYbb8L59Vrl7Z133Y3Z+XO4bmcH/+fv/g5uv+12POv01fjwuXN44NOfxGfOnXVr1ICE3/vsg3jaPc/Aifkcn7p4AT//n34Du/M5XvrClzj7+0p5/JbHBAb7+Mc//gf2wjNnzlz+oj+gcvLkSQCW9nGqcErI+r5HHnlEWWO23RdjxLFjx0bnubzzne/EO9/5zsdU5/vuuw+/+qu/ihDC/9/TbF4ply8B5TuFgLZsLZVvF2JALBDrECJCCOjKN40hoGlaxBgVRdy0LUKMiFHye0e0bYsYG8hQiOXZMUYdH3JMngcATYgITYPY9/mYIL6bRusVylZN/R3sdyhbQ0PMv8V925T7FZ0dG3p3+XeUfshtkfbI/bGJaJpYdormdzdNviaWusQm6jtjjKUNpX4h6PVB6t9E/c1w6RgbIATMJa9xyPlzQwho6Z1t6fu25OLm+Rdi5vWJIeRr2hY9EpbdDG3bomsbbIY0/ualP6bamL9hQFOuzX1nfd62rT5P68EywY2Dxt0XYsg7LEtfBRqbMea+a2LM18eAJH0Sg3tWbJr8/IbGAoAm5HMNgCbm79SEgD4lbeOJ+Ryr8lvHSgiYl/onAKnMh7XmhU+jNu3uzDEka2tKwGLelV1gTX7+kDCfd0gpIAabF8tFl+ddDFguMstjPyQ0MbdLdp9uemC3tB+w/MoxRjSxUcQ+y2P5FjOd+/KNos1xmqMhBnSN/07apzHkHW2Bv1++tmtbDHHI80FYzppW2yC75QLNsbZt8fx7b8I/+7kPlvkYdUwCWQbEQOOx9Jl8c2lHvqZFPwwIodQFQBcjECNikQNd0wClHS21MYaoue2bMi+kD9qY55Kcb0sd5fyibXX86W61GMscbVQmdW2DlPKeq65r9bs07aD9r/1N36nrGj0HAK/8+nfjR3/oq0sbYhkrKN/C9hXHGHU8NCKTgPzu6rvyv0XeDqC51jToU/L1VBkRVXbMOuujtm1Vfm6GhEXTIgVr3zOuvgZDSvhg+CR2lnP8kVc8GQ99/mK5r0HT5PVmPmsxJKvLcpnnxyByLER05b1d2+j8a0od2rZRWRj0WKtrEZDXoBfecCNi0+CXH3zArqexJ/3U9Bsdo7Mmt0VklcgPqeusFVlO80XkaONlbn6HzMOga+qmz3PY5C/NAV6zi9xOOgQbNG1wMkHWKwBIKOO68+MghKDHYpGzoY9FvppcGa8hNi82Zauitbmha0x2A1AZ31M9QzT9Q75jLPOpbRrVDWQM5vGexwzLxhj9XEvodU2bdW3ZKRYRY66v/NZvHRu0TcRmM1TzpSn3BVuHeW1uvSyOTe4b1RPK7yZE3fkUm0Z1mfy8xulhDc0zlV0yrmTNp3ESCusK77AEbFdbgl2vO/hh+lUsuza7riksYtHpjl0b8y6zGPW5TZPfuYgRr73qajxS6SaLMh9EDjQplXU5oSGdxeaBX5sQApKwG5BeIeNr1jSq5/Ha5PSSxq8/9TzSb1XNG5MDEbFp0bh1rinPtjrLeExuXEfVS3VXZhNRy4bg2mDfc5u88HMs6+uyXkt9mqZBm5Krj5RcVwM+NE2br6/7yukPNL/b8frc6L1RdQBReGP53Ux8i6ZaV2LRw/uq3jK/0QfXF21Zi3VXbzMhL2Per1q/n/VckaNi1zS0VV10FZa3eS0v7xYZXOyKpuiDuT6NfsMQUNaP6OwtW2PJrg5lXOWbnJ6EQLtNq/EhMqUpNom8N5Z7mjLXZfdrlG3hRZ4AZfdzyLaFn1eNfqdG7DKIDC22EfdjGNsW/LyAoHYXr2PummKPig3YhOjkgPSDyv+mxZASuon3Ta6lMao+p2MoNk4myTvbRr5tth/ass85weaLjjH6rirTy9hEAMnt3EdNY2uIzJe2sd3LJhOh67W9I2LetjjseyyboiPFAEgbYsi6C7LMTwjZPkCZE2z/iA0VIzbw75Y1+U/c9WQMKacVjU0+tkkDZjEiNVkPDdH0w/k811H1xbLWNk3EwarX75B/b+idAV2xj/shFVu0wbmLq6pPAubzrjzH5GaiPtfjTdFZhoQ2BAwhoCnjeUi2tzsBWHRZ95yVOSx9NqvGx6Ix+d2KPCE9m+s1DAldm2VjDBFN2+Ab3nIfPvvwRaCMhdg0bo2WZ9OebtPBZ5UuLLZJP2A+b/Ne/ZD7ftObnqb1ojUyBbPBm2JzuWvtpkm7QMaNrEOy9jX0/FjG+kYmfGP9yP6A+awFQiz6fNhuu7aNfmsZVzFmHaZrG6trMNu9a5syx82WFn1Nnt0XJhZdE0mezFSvgauLyG8+jjCe/2kY8loW8nhJ4oeJmdMl5oaaL6WMk/XG69lt25R2WR2atlF9Ih/LOn8OBFm9eL6EGDGftThcbbCzzP4K6VtA5l7uv0NqT8sysugPh2UOiY6EGDCLpqcBZW6Ufj29XOKw0IEsy3w7tVhgnTKj1E43Q58SrlossSoUKYvZDOFYgyfcnAFv1199DHsHPdabhJ3lDF/zhnvwiQfOFp03omsbfM0b7kEIAYfrQfvvBc+8Bat1j4ce2StyOWI+a3Dnbdfg0fOH+OQD50ZryOGqd3MCiNhpZnjGtdfi8weHen0QOUB6nI1hk9vSx9KXtQzh+zqSM/Xz83gSWy/ra2r7lQOi04hu30RhCzPWISCzj7RNwKc+u4dv/x9+GV//FXdCfID7Bz3pz1mPiKUdMk6y3C7zJmV5hWrchCg+LLgxnQqlg9qONP9CMF+V6EBS62ZCJqGs8/p7kxnjhmQ+yKtOLHHd6R21bURX439byfpi9u1AzyVk38yXPut6HKz6orflPjXmGqiMke8yq/XoYOu06PPyG6H4rUgPCE1EFxu1KWQtBskE0LrVVLKz/vdmI37H5MYd+1ylzZshFb2l+Hvm2b5uynXS7gS7V23RFFReGKsYnF4cYDqd6rox+9BVTxX7V1lj8tr+sXNn8ZU//9P4s09/Rplf5iPg+ZX1lwZtjNgMA07M5hiKX1bmZYgBGEzn7NoWKaWsg4SAWdu4daPc5PyN+4cbHD+aE8Ie3Z3j4LBX+bt/uAEQcPRIJnpYLmY4OFxjd2eOvX3ThVIKmM06tG2LRduhL2tMU9ot9tIGxcZsGnzzU56On/3kx9EHmwdt22LetkjR9M4F6WVSZ2VaDlmuyBial3uaoq+ZL6bR8ZNlaa4vADz48AXSj23OxBjQ6rsj+QHzu2UsNU2DdaGDNV00X9v3CV3X6Dw5GAaTrY3pZ6Fp1Ee7GVLW6YruG2NELD5Qlh9Dqn6HoOuufGfpC2XuiWYTqGyneFnW8228Zvs1G2E59hRUVxE9ummyDiB8NxKza4vMbeJY9omOKP4g9dGSzYuiL4j/NNdffNkcD8x++RCFMtTavSkfS/zzMQRj5ankjeiqs65VnWxexshy0QEoc68ca9qoY0muW8w7vbdpmrxxHkCCrZ8iQ4ZhOn4kdWe7QM7FJs9x0U97mN9g3raZhYh8niFabCDJ+Ankgw4BbRkTGxS7qFzfxByvmBWbsI2xyMsyTjcDZl1T+sX0V0idAtwxlrGzLq8DHJ8JRTdv9J6id1KmDpaRCUAXmzLuyUfH16luD7fWcKxZfFWJxqmsI4PzMfm5JjqZs3M60d3tPtFrWS/K63mDWdfmzUOAmw+AxVFUzy3rnjw3z/+ockxsEfVJlRjJkLItaXZRo7GarsnrM8dasvpBMSiJR5MOJvNSPmgs8kt9McVf27TFZozmvwlFhoifoImZ/ld8xE1jdpjzL9DaKmOjbb3dGNmOb4KfQyFgXmwj1mebWHzf4rNu5NujGkNFTyQdL8/HBqvkbdcQA9KQ/cg6Pst9i6ZxsudKeXyXx8QG/IQnPOEP5L/bbrvt/+72uCI7Sn7v935v6zUf/vCH3bX879VqhU984hOXvO8JT3iCOtKulP/nFKPNZxLGMWjQ0lCl0SVKe6m0355O0xZUcyLwIivXiVPQaDRToYo1Ok6lzCXSyBA8LWaYqENfaL7lOKef4N8uZZcao/Ysc7DW/ZLvrdMwBORFKLfb0pPZM32/hnKP9aVdL8EZPs7PYLCn/CtWnzLB9+NqGNTYDQhuHMitA/d1NTY0dV353Ve8tGE8lJSOFYBrZ03bm3152YGUcgfrGMkOXfuWXWz8Tm2qZ4I9Z0ByfZ9plq0NsxhxOPR69/HZDAebzeh56iAoAdSGHDli5A6DjYfdZYf1ZlAq1X4YsJhlh4rQt/ZDwmLWYi3Hyvt2lp0qWKKIbjZDGW9QAyc7Cib6u3yH1565FbtbFJ4Ygus/9x2mHjZRhtIPPIZs/Nk90j/9YG3oK9nha2KFx3gakqND55QgPM8ScqpAcWJK/7fFKSLzoaW6h8AywfqiKU5FGQ95bBKtezC65Rt3d7HTtijQCtc/KVEdS8BH5o6TczQOpFOGYtADxYijslr32D/YFIAstJ+5Uyz1jM09ed5UqhouMYScTgV2byhjp6FvUz9nINlvq0G+rk8DZo3N35SAI90MJ+cLlZ1/7hteZPN9KGOmHzCfNTo3ABAAzuS5tq2Mj1TuBzJApe+pr01wj8rzr70OTz51yq0VI3mYbHq0sciolMdLnVZG+mtK5vJcvGqxxJKCv5s+OfBBCNCXunUB/vl5TPN5SneR/D2Sgqj+Zvq+UqRd28SCHBM5GwJGcsZdk6qxI22mwCto7oh8URkfLf2IrCcKwuQFvDzazzV7d9NEBY8K8KlueyrvGKULojk+nfJnQr+CvUP7ocggWbdCMOps/aYkh6ROUqqV2NU/xuDWp76iRtc0xDGf61oD+ydqwYzkFmgN7zq7Ptc3z81hSOhCwFdefe2oD2Q+9OVbsy42Xle2ySmv3yVrOmYxblmbyp00d71+RU+W7+LSvlg/8nEpkk47mE/VvTP/TeqAqes0auHEQUc5PzEWVPaXRvAc4xRTW9ddfj+kPVN2gq9DvnfKxrBnyX2cwpafNVUP7v2AsUxJU+OAylSKvVCWTJaXY1mV139/PE1N6fyewcstPpblUqlHpe9nP1cwkDzNW6uMf9eEqjUq9ScIMP1Gx6Ie932XYPoPv8alB6HnNwXoU7+T5wj3o6QuHhVaH/JPsuMqeyPJJIXITnpMmG6/6IDyW9tVrZX5yUl/ax3KMZX11fwbUtZBLB2J1XnKDppUQVS+mDWmehw1qtajXX3o+iZk3XfeNBCw7Y/f/xH83Cc/kfVBeR8SBiS0sqmqPFt0qtXQq263v/H2h/TfO+68G6fmCxwOPfqy5m6GhN2uw4rWDnH6dm0sDvsMUuI+FFtnteoRQsDegb2TbYHVqte0HasCIJN+z/ou2bxFH+TUMdaGEqRPA5Zti/Ug9pq7zL1b7Arpw1kBBMotS7LB5J5NNY6l9EPCrGvMVgLw9W+6D0d2Zuj7Qe2IvthUAgACbE1X/Ra0PkuApyyQ/ZAwnzXlmQlNE7Fej5NniJ4lfSPvDwj4s//u/e7aWkfj9uZxVLWVfCD2O6eSWQ3yDVle2Dozn7U6VgCM1lE+zuu3yBwB3fFxCUC1dFxU7YDg5nGeb4Fkh9VT0hxdSu+1B411G0lRh5QDQT41VEKrek1Sv0gANCAuJdJ64o5VMrhtouvnfkg2XiD2Z8R6M2Bn0el7ZE6tN73qllm2lHlNQBmRYodlA53IAWlPT/r+QHPp5HyOvc0aq34otjVwar7Aft/jsO+xWwJPJ2dz7Jd6deQYOHV8iWNH5zh34RD7B2ssFx2+6a3Pxc5ihr39NYYCvPumtz4XV53cwT7Jl9vPnMJbX38P9g/WpZ2DyqzFvMPB4Vqv3fQDYgg4XHuZ2A/ZdmtCdDaNjAG1gVHpnbD1F/QXgNn5Mi7KYb5mUz0/P0/Wr/IY0mETjcMYAaQsG8VuANWvH6StPc5fXLv1waUMorWtbYNL2SX2bEh5bHBb1T8ZxjpkX7VLZYdsTCYbm/umpbHIczbBfDshAruL4l/gujdW98QPrYqXCHwiz42vfvUd1gflmPgy1j1tQArAiaPtpExz/rBU/YZ9wyGlbIPFKj1nMD+q3CN9tt3GymVFa04asj1w6vgygz42g5Mt6/WQZUIJynZdg9W61/VV1prNph/ZWFmeAAjQ/tkUX2pTgEh1XZsQsBkG1deB7EMQfRcwn9SF9RqPHB4We338xeTZ62S+2gHAom2wLuuS+YetzYl0mpTymGybOJLBkrJWyt7+Gkd2MtD1yM4Me4drzDqSnUPCzrLDTdcdw3zWYu9gg+WixSPn9rGct/pNugLIbGPEWnWf3OZX3XwGTz55Cqu+V13lS2+4EfdcdVp1HCldDFgPvc6fWfQ+xwCT36s+z16ZX+LXCyF/q01v+qv4gcW3L7oJj2H14ZQ0oyJXYoyqu8iYsLSjYeTP0L5LCV0TIXub9nsBB9mz503Rt8r8WA9544L5Z0uaW7UTQx5vyc4D0D6XsSHyGeQL1DUgGVhUQaOkmwBFLosveRjKZjLTVfqeQLpk64heFENA39uaxT7i2g+ocSZgpNPw/OiL30LarPZhGF8D+HVeniZrfR07Ep1jNmu0P8S/u1x0Ctppaj9EMr/4fEbAq5DB2YDXjWSMse5cg525PbyuDslkjbRPzs4K+I1BcGxb8f0ajyz+6raMO7ZVRM9rQ1R7abMZnGxczDMYR2StFF0PYyh+zVBibqWvO/Ojy5o0lQYx6/tjG0nkbFd0t7yOQuut/Sr1SX6N5yLjYT2M9aPaTpL7tX+Lv136TGwngGVJAebBdBmxe9o26riSIlNU75P1YOPHn8ifRm0s7/WVucT2t5wRGdHS8YL5LLFl8gGJjl91XYDNIbGdgs7LLB/aIjO8DyW52EdTANV6bzSAINsFPA42bIvydxus3xVUqqImubiZlBxjsjnFOoy11MaJzdWka/iUPS3+jnzO2jsnsOaV8vgvjwkMllL6A/mvdkD+312e97ycBuX973//5PlPfepTuP/++921QGYvu+GGGwAA73vf+ybvlePPf/7z/8Dqe6U8/grb2LVD1F9nCjcgATJDEeuz3PPGKA0FfiW/yJW3FGXFg0v4HXXMrQ4gMYApX187W6b/8jMY6KXvcYvhuJhJKIaNKEulrdG0dDH0AZCDJbiYtbXXOzdMjTDhF+iY2QTjWopDEchKlDjp6oDrVBAviDe0vFDGAgOgtEzbY2W8+HZL24FxkDb3oW+jOpWD5ZXvJ56VX5fUgeuCwQj42IXz+JWHPquggFnTYNUP2vZjsxkO+l6fJ4AhCY4I+KcNEWERcMM1R1VJ5O+ws5hh0/eqdPV9wnze5mvLOBBwy3rTuzm2u+zUuFUwmCpfQQ2cwy1gMOm3/+YZz8S9p6+eDCbH6ttPAV2s37aXJkQDCsHGUP6m+ZnrjRlG0oap8VO/navdNPa9p8Z6Pb4EbCEMFuJg7slBlI0texb3kjFjBO8oLYp5S47LVJxM//jlOaWJGAF9Goqx5MEzDJTIhj0FZpMfy9ImA114xwxg4EALPlof5N/ZGHTgDplPl5D9dR/LveII8bLa38dGcC1Xh5TUcJanmgNiuk4hBNx25hSuueqIM+IbBYMxm9O4zoG+F197Gf/nWEZe4voZsfFNObKnADzScJ6jtx07hu997gv0/n/+c79l91bPTBN1c+BXMpp5DMj1o3kzWptprCCo/JXfddE1BNuvqZ1lkd4p38oHMTioSP0QCnCrUg4c+KBWHKg6DEZoYpbRgc7xuJFjkRdraU8gWVU51rl9+lyaB/kvVIbIvGFwqDjwncE+8X2mgLVs8OedbdP90hdZxI4NvUYEGrL86UmOSNtmbRzpAtkRha1F5RXpR7L2s87CgXcufIT1PDk+bxoXZJxe38bzisfYlFMEqOQAOVkA0xlVJ6QNDrV+N5Kb/PVkPo9q6791fcxdBwvgM/gq1YPYNaeSMR5bTNeRbJj4PpP1GQiML/NguFRtxjp5rde54/D9q3qz9Dt8naRfsl4dRnZEfkYayZhJUDCmAQAMOJA+66sxkzcvTAVm7T31HLjU0pXb49tbjxk/rjyThlwfqW2mv9R9kQsHvriqbM9xP7Jc98+zb16D/AznW/VFkZn1GusCn6Xva7mOiWs1aJJILiHRMXMuKkBZxjOEeW30CozGczLdToNjCNTXdqes5TJGMNXHCAY4I5koAJV5YR5oY8T/9bmH8J7PfMoF8yQozU73AQbwWPWDgu4urg0MIe+R++ZNg8PeAE2roceRtlMwyJDyRhggO42HEjh98OGL+MV/f7+CS8RRv1r3GYBQbJ5+GJxevCqAlEj3cPAxUB+vN30BkQ+jwJIGqwcDg9Xrzzw2WBVABJD7cjX02vausIPL+Fg2YzDYegJEDIhN2Gow1Fi0oq7RIVgga0NBLg50SLuVcb2xNU2aMp+1+szcL9OLNc970SNDAD56/vzkxgZnl2m/jm1MC4LQWCvjeuOCHBjVfVZtCtkGZMjNNyCXyJzMJBy9LlMMXWHU8JsCJ9abQDYW1dNA7v6ecZDD9D4uKVdZ523WYVKR2ckDxLQuAeu1/34M5AFdVwN2mibicNW7MSJBWMDbn7s7szxOaGwOKSkDSUpwtjE3KsDAYCYHUALvVqeB1r+T8wzyOhz6vKMfwKn5HAf9BodDj93CNHBiPsd+v0Fm2rD3/sQPfy2O7QoYbIOdRVfa0eHi/gqbftC27iw67B96mTaftTgoMmezGdQfs5y3bjPeph+UHYtL32ewWRt8wErWEu+frJVBk7t1X0q/8xDja6YC7rw+AbUvkjbuljXSNtJV87TPH9NtLtOx46pvdncJZMvxlgAKfZEr2lZZoxGc/i5tjrA5ZDaED9zWc48BguwnYV3r6J1H8IQbliZ7qe4MsN0GPFVFqSp5PBdwjMhY0akQMthsYzpiCAHf/tW3Oh2+rrvUxf9Olb/YB6FF1gyVTJVxczkw2HrdYzlvsV4bUOgnfvhrMe8a7B+uEWPA9VcfRdvE4tPMMktY6wXQhZDXawC6EVZlchOLHEsFzJJBu3ljbZZDQ2kn2xcZoOG/eb2GyLdmHbGJwYEQuB82BZwh82TRtHqt+ba8XcUMLPUaY30OpwfvHayxXGQd4ejuHHv7a2VXyfHHDBD/x3/zqzCfNQpqfeTcPnaWWZ6x/JnFqHrcgGzXvOPOu/G6M7fisO+dntwV4BiPpS42BoJHwLwZ+xwFFCfXtSw7Uu6fzMxlfat1kvmu+m7pF9IPBPiu4IFiQ4dg+k1P+mVdkijtKGxBydY2qYP49GeFiVRkUGaxLaA2FJ0atOkQPMe8nxVgGTToPJdeYLmkvrZqB4u8x8Bu7DMeVFfpBWxJ40/7N+Xnbsr6I8WAPqWuyR931yTvs9Vn0zXTm2rMd8ZzUL+ftK+S0cqW1AoYzPpmZ9Gprju5gaPIsGVh1EuD2WfLubEa8v2sO6vPOeX/4zfUMjYiy4wIYNX3+v1nTVOOm0zx+l1eZ5sQ8NuPPoKPnj+nc0VsjoFkuGwKbVWHNxtA5tmygMFqG0WBTMXvF3WcBO3jzSbHQnqyK7m9A40/Lgnmo+yK7iYAMaACg4ksTals8JnQkco4cPpRGRrrav0/MZvjWGGDzdclp3/MZ/atpzZjyb+FlIE3HNXXSAYekUFibzDITDbSAOPYjOgwKeV45STZAB1nv/hIH0ve5ytTp6/mpW5ujqEAE4OuSzrv+qT+WW6P+jNiyHIrhNHaJUXGXJbHlT1D4zU/GKWOtLnBgfODA1hKK03vtLbyfMo2Ze6fVbWGS58sGlnL7Lnz2Ix0hSvl8VseExjs/vvv/wP7779keeMb34iu6/C7v/u7+IVf+IXR+R/+4R8GANx7772444473Lk3velNAIB3vetdo/seeeQR/MiP/AgA4C1vecsfdLWvlMdBMcd1EYbT9uvIGT11Tc04I/fIIpNt4yL85WSqFh15H0zJSHRM4QLk7J4CbjCoQ+otzjPAL5pSt1GbpV3JzG/HIjLZUfY361pBA9XaLnpXDYwIoQqS0HcBOSqSf4heIv9g5iIu4iAw2IVX5F1wrPrm2ryJdvPuHH0XKYR1qR2hjuEpWGcpaLAEDU1R8YaJgGz0+a7NuT9kXDB720987H789V//VR1v2bHf67w41s2w32/MAVBovwVAJzvr2xjQ3LLA//GDf8zaNFibjhSnqSjJwgzmjvWZPj0rrzZmdndm2r8nji3wk3/37QYGCwb+WW3GO7mtB3KRNJh1qUEu+RtNPWn7NxXljodsvROcHekKqg62y2KKWYWLvDkrjx6gwdViQERKcMGfEKBpIjcl2lADTx1gA7zzyTvKJJWbHBdQE/eQ2Fw9jVN2dAxDdiqLw8MMtdKLVXezM75mBgOgzmrpD90ZFu1+NsKZteAyWLAcoHafqDjpBj8HY1Vpdu7asSLTU3LMYLwRawr4IYHB7/32V+ItX/5Ut8uLgxbykhEYjLo0xvDYHLulbGNP5DYBwM+89o24fmfHAmaYml9eBsrzAaDe2Bjp2Q8+fFHbJHXWtaoCd8kxkcVOlgcGBKbqnmEkbwE4h1wIZTxAHBLYWpjNYFQqHUTXIwIkuCBG5SDRfoA3WI0ZbNAxfjmwMusim34odN1BfEKjMskMVuZvXnfg6pmba/8e7KB+A/0WgO7aFUfsoL/9c0nt0HeO1m2QTlYcSeqorIznvh9cEM4zg5ns6lrPrMfgsY1zCsj32C7frS5+PoijeBvz5+g5sGAQSOesdYTx3OW0mePOY8C+f994/vGOdNVfCdxRLlIlJg1V4Eye56oxrpsx+2JUpkL5KUHnYa3TXkr0+V2DPjjGdZ5aR1h21M9LYLvAdHJek3w9xu0BJkCeqj4n/qnvrvX/qXP1eb6yDqBvK1P6jNSV7aREa3E+mE8M/BvWfgYI1XXbVmII4+vKM0ybssMStNS2oKwZ7kqgx3QftU1UoBSXRFGFKWBc/j2uvzIRhTxf8vQxWcnPkbpYoCaNbC++j+XJ5CYYeo64Wdn+AFgnpHeqfA6j+QKwjTXWQWyNJ3D8MFDfybGEegSY+BvLNHbC5sCerae6u7noFLJjVs7LbnUJ9m2SrRN7FTNYT/bfrGk08Cg2yJGuw4EwM6S86QWABo6bJuIDv/MA/tL/+HPqwAbybv/D1QaBHPcHBxsN7v7Ld31t2TGfA1+rws6zJjCYfKt512D/YKOpWkcbL+jaHWEGg1/DF6VtCv4qAVUJgnSUnlSul3I5ZrDNkFOhq7O9HGeWDWaU4V3tukuc2ddkQgc9pG02ZjB7/lSxIIWNOjkmoJ5tpQZ8c3dr8JSCIBJsE+c+7+DmmS+AOSnb1rKaGUwYFPpigw3UV8oMVjbqyMLJLK6bYcBvfv5ht/YBXnYwi7iri7S7WmOmN1WYP8wY2cpGtCgAGu9fGtkbE7pqvXmCA2IzCsIyE3E/WEB5Z9FlVp9A9jyg85V1dQ4KShDnsMx/DpZ2TYNHVod4YO9i6Z9BbcfM+LXBYd9jUUCVJ+cL7G96HGw2yhZ2pOtwcb3Guu9zClwqx44scP7iAfYOViXdFLC7nOHC3gqrVa9MJMtFpyxgMtDZNt/0vdqbi3mLA2IRiyGM7E4AhQUrKnsgYHq+tFXeV9+toOKqyNfrxUdWrUOAjYUp30+t/yngWZhsI7OIjFmSJU3gRkGnmAzysh7A7FpDSmiVGSzp+xlEKBtqJWjHYIS20uu5nSxveI62E9/GQGhmU+V6eqb+pqG2Dl5PTaO5PC4ShOfxITp50wR0XXR9Se5Q1/ap59YBYrYPRVYwqzuz4Us9JtnnJsp602NnZ4Z174HY81meCyEAX/W6p+Ov/pmXZXavhJJ2LhSAmLGJrNdlI+yaNswOSTfHis8qs99kNsIEk2ltjM7eaWNUJjAnZ4OfC00gYHBZ6w+HMaMiAAVniHyel8AyX5OfT/1P31jAbVMb+PgbCPMiABzZnWHvYOVYZlgnEd1gZ9Fhb3+N3cIo1hNrYRejgihkHkn9M1trDQbrvY1PzGIx5PtqQNhKGO0KOInPS58piLJ8X80Q0Yv8KWOVbcfS7E0v/ihhzwp6j+k503apPqv8nXXNpP9AdeLiw5W5sB4GzJromL9CIF0k+DlZ6zg1eCHwGNS1l5h5Gl+3gcangNpSSoWx1Fo3lA0JotOxbSxzqgaDqY+YgLxTfQZInY3YQI6xnSVsgBKX0/eXZ20qnZRtjE31cknjJj7ugWyA5bxVZsKxf5dkdWs2lOrxOzPnM5Z+Z93ZAb6qeezGThKWuAHzpnWxo1mRQZnlyPq3fnYTAv63D/02fuJj9+e+VBs465z1Ot4Wf2TXRvQbD/yaFYZcBmNlX5yXUwymlD7u+0HjUACBwdiPijEjlbCZSRxuk3yd2kngdWEQ1DnP+mV+L2+QEY9DDdR9+U0342+96MWkP8q6bcxgY9CWPVf+LeyfMcYJMFgqAEJJu1rWg433kYuN1pDd4Pqp9Ddv4AD8mGjpuPj1xePAel1tJyTkhtegOJ0HIei6ov4RlUG+HarvlZvF/x0DHJiXS85UNOETHGwjiY9reT9+S/eFIl9r5sUpgP9ovpRn1uNErp83DdbV+JxVm4SvlMd3eUxgsFtuueUP7L//kuXaa6/FO9/5TgDAN3zDN+B3fud39NxP/MRP4Pu///sBAH/5L//l0b3f8R3fgeVyife+9734ru/6LvTFWXP27Fm89a1vxdmzZ3Hvvffi9a9//X+BllwpX2zFAjVjA9Mp5eIMl91TbMgWg5UVW36eOaPJsHUKaVEI5qK45ZIdx7brkXcxiUErCwfvhJYFlNtQ7ySvm1szBLhC17qFlJU6ZMXNdoeTET4Ycj8UMEpet2y1rg18AxDY+Qw6ilWV0iWFX90WUTy2sUNdylmUnxcsMJUj2AA4NaJ31k46Q2BjwrMTlXpUoEBfh0p5DPnb5TSRZjSBFARRwnhcALZ7THbtp5QppNfEC7xsWxzSbo9l06JPRIMdBQxUnBKV0S71PLI7cxToAvxiFrAhZce/Hivv3Fl0TgkTwJgYeBpQKEGUUX/Ts5gynMvo26fLO4NG78F4p6E8gQ39H/mfvhqveMHtoLiWYwuzm7e/v2nMENbLJi43uWDXcl8IM1h2tMbROJM6+V2ypEgqFXT+vWjbTBVdyQYJBgpwSoZoQHHSlR2DopTn3dWD+3YqKy4HBltt8jgXpVmcLWScy3OkcPpVLnWXSjDY2ibO7MJ6Vu2G4+u8o1IcCxmY6pnB7H5xAnL9RVbMuiYzAjhmsPq9491HzAzBuxU5feS24liaJs7Lt95pWzcXQhhfLwbQ1HxJ1dU1SKGpZGTNBuXqxHXQBVDWbHI6k+t05FhzHWP/jrC1ZCqIxWDfbdfIEaW2JhmvgRc2IpOlnPG1Ci6ttK4d1BaWo9t2kQJGwa5B/OQDp1IPdrppnwQBgzFbjChaJItKv5i+Y/JA2iOpLJJ9Nv98VM/PHaftk3u4boCwdBmArwatMEshkNO6GOgL2ghOKcR64axrKuDd1GzxpV7r9fukErSg9lwKeBirOaoOL0q1CmByrlsdxseSPK+6h+cqg1EY8OKdK3av1+/oXdQHU/UYH/Njnt+fj9uY0HFRzalthc81DaXMmuo/WUcmHM5Ox63HXbD3DLXsma6Ve1btzJHvXm8ekTJMzA0gqDNdHKXbnOMuTWga94XM/TqdKNeF2WbqlH88F9hxpSlESLY8liKSfat+GIK3jYL0UXD1acCbc4qtxToKlaYhO8M5tK1OHNStLrO6i+iU/irzuyEGmXr9E2eiB5J7MBzPrUnwIj9P627zVIKJtbPWA39LX4QtPIQT8nfSDpL2Dfzbj1EHMt5if0u7xX5ZCDOYOliN+Wtq3ZCAqNxvzGAGBjPmDev/RdPgoN/YxpckYLBer52XFEeyS9vbUtYHx44scLgqzGBr2wgzFL3u6M68pKDK65wEeXTDCc3X+azF/sF6OzMYrbHLhpnB7JpF22B/s7GAaogOHDYrDngN4FKgVJ5d73iX0vdDSXXiZSIzCQOUPqsEJABiXNDNDuM0mOSCwEIZyGx3+1Rx8lzuL8fke5om6ec0s2TIPKp1PAue2oanNQV8rfL0HbuKGWyLgtDUcyHZJoG2ArzLIzIQXthS4NjdN8OAH/nI72kAVDc60fyTYFgN+JsCnaY0trv12QnK7JPyAwwIoXLPB/nc+8IEGCyM+7RpcqocZjZgdv8cVMov2F3O1HZfbwYL3A6WOoiBBvqM8koGEUhfdCHiX33so/iWX3ovAC/HTxbGrwvr9YgZbEAGgQF5rn70/Hlcv7uLrkprduxIZgY7d+FQmcGOHZnj/MUVVpteWXiWDPCa6M/Nxth3lswiloDXf9ld+P/+D390dE9f0kbVzEX1nBX95d0vfQVdQ37Fyr8FQEHaNu+s0s+/9nr8jee90NmQr7/lVnzLjWdymnCSLcLMauuZPW9qI0LfZx+KslnBdNyawEye1VKAWkAyABBSBpdLgBmwtSmCQXP2t97kAZgskR6o00hOsZVoeit6XwbFet2kacIk8LQ+vtUBCozmp+g13/rWp+KPvfL2UfrIXHep51iHi/BMqPJ6AS40hbG+CcSEXtrHUknA2vy+beVw3WN32WmKRwV+zwozWMgAoOWi01SSwpTVNKGsx4Xxc9OrLBGZPwzFRyqgZ2T7XTfMJvPHdTE62SbzK8B0/LxJ0/wo8ntF/dGGgFW/HQxW6zRjMFieIwJeainFlgBBR7Z2Snj6ndfhn/xPX1V0WvsiR3eEGcyAuTXwDjAGpKO7c2w2g2M47IgZTMDVgLC19u6bGwuYzVUBgw3FMPjym8/gqSdPqW2SYOn/1kM/Hofld9MEZVfL8qIwttImWOnDuu/7AsZ2gAVA126gABW2zDnemN62EW01hZilaF42pjrAQDQGdGGu4Y2v/Dipfr0xVgBmPAY5LbBLgQmvm4D+yrEmBt0cIqyfjPVXXURAPSHLp2bCrrAx6TuG5aGtL5yhJ7l1SYEqwcaPgIPyM+SYsUepblfpwG0BcunYp3G/s5yp3Bnp7MNYz6WQTpZZEykhWX9k+Sz6V3299ImweC3apswDm18SGxDAW55/cPfLuMuMwbZpepDzBKYSHRCpsGsOxq4I5NhQ3yfXVwL04nY1JW5lmz2z/hwCMe3JeFMwmIwN0QuKDhJsU7ysxbyhm4HXvIbxpiSf0rrYMhNxqnUFRoohYKft9FplBuM0kb2Nf8ADmiRe2feZzbZto2bakdJvhpLFx4PK1hUzXd8ntTmlT+tiGzhqhk7pqypNJLXJE6mkUd+xXJF4sZScJlJSy4rfoJIr6mMSHbPcW2QLA29rP5Ixg1W2Cywm03XNhK1jGZakCHGHgm/FTtI+zEXiY6IfJpjvamrsDCkVFjCTw0Bex7dtxrpSHn/lMYHBvhjKJz7xCZw+fVr/+87v/E4AwC/90i+54wLwkvL93//9eP7zn4/7778fT3nKU/CMZzwDd9xxB97whjfg8PAQ3/7t3443vvGNo/fdfPPNePe73422bfE93/M9uOGGG/CsZz0LN954I37qp34K1157Lf7JP/knX5Bj+Ur5w1dc8GvKkUYLExcO8lraCjhhy2NLHd0qwM1x9ejdlj4hn4M6262estj5qvngOQXh9Vl+R8YoGDS2r83hgqTOv3oR1LYlq4u0kwNKbNAnV3dz6ri2085uwBw0smj6oGa9AE+wbFFh5rTxcXouBRBdm7mNsB1bQEURyoYZ+0hIadDXVYaetc2cmNlgtLqaQ9ezftROKwma9ym5XQqsmAq73Cw2WPV5d8e3PvXpuPXoUefoPz7LTGEuLWCqQFBaLxvby3mL1doc4OzU4OsWRekUh8i3fO3zMjBBDF1Af8t9f/Krn4MvedYtel8MzFUCdRwD2TE9lR+7/vYJVSoCOr51pSjK/WAdQOPevvW1p49gPm8NEATgO9/5YjztSddu3fWYH2/nhCIbmB7jLnjGYysYo4bkZ5e52tCuSRaBPO9qRiLZHSjjatE0hSq6qg/du0l+h6Ht8jKg7b/+xQ/hT37Xv3CB5liUcdkh9a1vf/6YCQvYTossMnxITl6nxI6IsTJft6MGEYhjZMqQ4cKMT+WzaNCIDRn3/jQRwGJDt23cLq9bbzyJb3vHC1z9LrlzrPHsWJdzgIrz0Z5TXV9/r+SdsvWzACizVsA4OO7ey87OxhxGQBWgK4VZMfPvcdC5r34HGiNcR959I2IhsyzktaT+cjWYpU/JAodV4aBYomsMUD2+a1YCPKPxGcLIuOV0suP0fiQn6ZQEh6VPvBtE75gEVuc6+OuDO5//urSqAGSnFIPfeW2RuaeOyOQDNajeNTWfagNfyqYfjwuWPV0bq7Flx7lPDTw2TvUjutC2wkEZwPQHcYhNseeMS3HUDhN1HTGDbddzJ0EzU0qT3Eb6jOma0n9+PPKaqPO9eraqRROvnFojp3RKXuVVTU12jZxnJ+/2BuY/smvQadvUZ9NzVtbi8TdxTE7V30t8HgMuld+TYx3k8FL9Hfp7nBbdf5MpFkgBf470yy1dN5I37Egfxu+RPoqxMNlWu3M9aOnSa1X93gA/JqwkxzwJwKWDJBUdhIPQ6yR9CuB1XgaK5vtt3dTvIGtviUhPs7yWa1lWppTBZry4lTrr2kPj0cZWcn9HYF3wGLPg+mj+hEpeUx/UTKZy/RRARes3jOus9jOCVooDhbLTV9dN1llpDKueUY7devQYbtzdBWDMxu6aNA6wODBYSprqMDOD5QCjsHwdFlBYPg59Tx143O06Dbxyu1eb3u0olv6R80d3Z5kZLFjqjo3ukC9B+SEzg4UQsCrOfQkeyTj7lq99HubzVlNaTQaRkuntxgzm9b5F0+Kg39g600Ss+sExhTHwnMFgYotNbdABChhMGbtsbmXgwVD0zVCBwcQf4+VM1vMnNkaUZy7mrdoXU3aFFFtfDPAu+q2MgXydvMPuladKsJV9NaOd30PSfpMgUG27St2lj7iWwITvovYNFPtAACkMbGfgXT8kZRFjmSibqBK8nvhY0kRO6eyYWEvs2Z4VVtaqLnjdzKSkLzGMU6jX/TEUuQpYmhsHIkwSbC2pFJed2l/1eitpIhuyva2OeQ6tCgsPB/PaGHE49Di/WusxA4MtsL/Z4MPnzuLanR0AGQB2drXCPEYc7TIzzrJt8bEL53H9zi5Ozef4jnvu1XcfLWkif+GX78eC0rGdu3CA1brHrDOA116VJpLLmsBgi7mlj0TIQcjrTh8Z3dP3uX9lI5r1RzlPdlNAwG3HjjlPTr22MAOtrENTykgXI27aPeLeOW8anOy6wvhZjZgEx6Yu8rnWfaRNLIN4HeeAKNfNp0KE9mMakto2nEJoKPdqOk0GD0YLMrq+ANy6xrWeZCsRG5VsqiaGEuRNTh4wc5c+s5lgQ574FsPEJ0rFljt+ZIaju51LoalL0oS8kH83IWCTGMglbbNbU4IDjgo4rLYnZL5O6dRW34T12gBcvGlPUqnK+OnaiPW6Vybq7/gTL8LrvvTOwt5ZmOU3QwGNGZhIUiTrJtpoflNhD5U0kW2owWDi57SO3hQdTcbOujApMSthE8abZb3uY8cZDKbB7AD8+M/9Fv7MX/tXSIOtLQABjqt+lfF/47XHlDFNypHdWU5nu5zpMfH/5b42FkMAuPaqIzh/8XAMBlNmMOuSeRNHaSJlszD76Dl1ZAjA9Tu7ODqbaVA9wuT3VBptGe+y8VJ0BmmnpleLfuwCpAtIunLZxFlkUQgMBjN9AfAbQ+Xa/9effQWeefcNaFLAtz716QaGSsZSlNNEFmawaH3AbIMBxEBfzWUFL6iNkY/3bPdUOo/ocfkbmM0i/qx6E3EqOtqQTIcROVzb0ZZK0uR53b+Xysjh7KFiE3JaY7YfZDMVP9uAuKV/owHaA4ztsbaVlVm3rMc8TkUG5PZMZJxQg82OKjPYYuY2EDOznJQaVMuDcorZaz0Mxfc/6HiYFWBlzVTkbNLkfcNsb4idzL/Z1m5lPlG/SJrIesPLiH0vlm9erum6SIQOBDQEgZIqR6/Mrz4kLAsjq41TL1Os7fmv2I1ij0yxmE5tkJk6Jmxk0kdcN2FODDAmTv7O8u9NJYO49MOgJA1SQsj2pH9uBmaa/lyPS/l23veUZajNfSYkYEIQ3UwaDHAJGDgszyUBVvrv3YaguqfMD/bBsJ5uLNnlfbFYPMHiuzUL7YZillyY5XJOwDwADvDv0kQGqA9X5p7b3CYyC74O9Ua9uvQpaerWIXl7vGYlvFIev+VxAwbr+x4PP/yw/nfxYqbC3mw27vje3p67b7lc4j3veQ++7/u+D09+8pPxoQ99CJ/73Ofwkpe8BD/6oz+Kv/E3/sbWd775zW/GL//yL+PNb34zAOA3fuM3cPXVV+NP/+k/jQ984AOj1JJXyv/zCjvJx8uhv453pWdnhBn1gDngdLES5VZF9bRCWjvcRfnLOkjygXjn8vKpJLOy7OttKcisnfIOd5zuUWcdBZfHwSH/nppJJbhF3wLp0gJO3SbXB1r82HmXkjkxuM9rhwMrCrVuIw6KAePFrw6OMTLdjo3TnWTDaKxQTyHF+Tm53cPoWg8eLGOnUjBDNAVIdwdSQIV3ym6GVFIpDLpDX8ZWGwMOC/hrSJlGdDXknY5/9PYn4vhsjgMC9xyfzXCw6d0u10xjSsxGNG5ijLjzCafRto0yd4XgKdDZ8bwoOc4lwPhVr316dhySo7spQIVU+v6pT7oW9z75BqzXvTqt2PXlDOTod6TqM6tvD/idvFy2fVMxnl3QvpyzuWtGI7M6vOpFT8SN1x1zgYtLvTs7VbzT3l+X/9ZtCjHQbslcB2bX4UAwt4x3ZSSY8SKMVmLA6/gJdv2mgEpcUCB5I4u/WQwBn3tkD5984KxTdoVmvS9OrD/2mqdNGqnDIIxG+bjtCgr2O3iGMO6DKSCE9kQ1p5UBJVEKzDQNqpL2yviVOdjFiAFpclyyE5Z33Su7W1s5z3ZmeMuXP9XVV51C5CTR70M7MRMP2C0lhMrQmLh+POanCzsF5Kpt6ctqAK9jbmBDehwPy86g0ma/syeM0pO53eGJWNmoC3m94fRi3jiVYJXcl1SmjfvBns39soXcAUAOuAIMHMrPlrE1aku5zzGDVZ/GBVvVucbA4/G3DBWoCrDgCWht5jGsskQC+TSu2zIXpC6ZfSYfQ4AyGHr9xxtAcozn8U+/9yFXD3EeStVrQJf0mQV16kAp7DgxhsXqej+GLj255KyyOSHL4ZT8jjlgO2tlAMquMq8nAuaE1Gun5i453qQk+rtVRlTrTa637Nj1z3Pyk+bflNwdLlNfq+P4uikxlTc2wF1Q4Wkmny6Fmffs2TaBp/ROlh2jJ5d5FagNg3hJq/v5Xa69GMtLB0Kt3h1gTty6f1lfD4DTk+XTJ6RxWsqq92Sc+NRZ5W85xAHKNPoWBXRQzcOpFB/y7KnvN2K2mqi1yXTfprzrufRt+ZuZweyZIRiosLa7OAUZ182DRO2bJ2qflxV+Tsp7mia6bwVqgQDs3DiEfc96l+kUeLF+tvSJvGRIFkxlndCc99uez6/y72LdhG1d2zjA9rGtNdzvDPRlIId8i3uuOo07jp0AUIBJyXboDimV4KrUAa5N4kg9Pp/Z76KjCjuE/B3gN00c9oNuvAGAIy0zg+W23Hz98cIM5sd6T8Hmo7tzHK42iDFgve5zsFlTSZl9Ks9448vvxm03n1Q9cUhmW81nOU1kDAHrtTEbid4u1wIZYLIeerfOhdK2A04TGSJWQ68O7o5SczzjqtMaOAGgYLhtO5P7IenOfpYDTYx0LLNsaJrHomfZDn9r96RJJ7ZMV1LMDJdmBqvBhSIHpL762PLXsa6X63R3NunTGlwtd26EGQwB6zRkxo4JcClgG6S0jluqHyt9TeyZBEoHWY4rMxGxsMlmImm72IzZBiQWmGTPkWDYSKev5Exu0wQzGP1tSWcUJrJRmjxah0dtr+sQvV2R211YFQjI05Bc7vsqTWSZVzXbU4iSJnKbH8HGA6f5sWAx6cUh4PnXXodrlkvsbTZYti3mTYOnn7oKy7bFpy9exDXLHRzpOjytHPvwubO4brmDRdvijbfepu89dmSOj37q0dKuXLfjRxf4rd/7LP7q3/oF1Wd3SprIbfZwT4CL5aLD3sEa3/I9/xKfe2Rv8nogBx2bJupGNGkzMzPm72D38Pef1ntz/xjjAZ1hnTmaz0WORtBaSLpv1gnKNQoiqMZq+bcwiqh+Q+OP09vxesiAqiElzLuIpz/xFEKyNYhlrLSLZZn8Fd9eouPM4gPAgQ+Amq0kF/E/sP2qKSGpTW3D/Zjc8Y2zL7dsEqh8KNI3UhgQxOuP9OQY+Cmg1EFB2nLWg3LyODHmzrG/h+frtjWpK4Cp9brXNLHsp5nPWuwfElNm15SNqlmmPvtpN+GJt57WVI8Ikv6x+D4LkmEYJFOCBG9z/wrgIeuLmZFm1nhGrTaa382+7+Bk9zoNaEJms3L9UbW3ZnYynaZVucUxjLPnD/HxTz+qutdKGUmTW2O0z1NydvOa0tUd3Z1j72CFo7tZ35LNi5H6GsigXAC45qpdnLtQwGBl7rXEDAYwM1jOesHMizNhAaPrOJuEjEEPEAsO1J4heAFPPH68vDE/S3WWZN8cMIDBlO7PPsyUEgFUPeMaYEwxU0BUKS95zhNw7ekjGFL27zv5WMa9ssck6wNOJRaCgC/L70q3r0FQcUIGGRjM5LGxKZruHYKBCNlHkEHbzFgaFCRYyx1hVTMb0gMvuA/rwc+6ncodkvUCcDPQaT7JfVIDM1xfwtK/1ddJP8gazb7nBTE18RoDQDM8POnWq/SYyzAR4IA9On7IjxysQSN9qt4oHhE0Bd1qsFjRrGSZYbBXXsOJIZVkdA2sEz1P9EfxTQj4p20jpYTMz5vPWtoYI3o9pUrUtc3PNblGwIcdMftv8wlrdp+YN8q87Mab8KyrrylAL3tHR3PVbfRIZmcy4E3l88T6M7UmtRTTGvJDTIedjdNEKpAbyekw/cRmoNxulFid6Wazzn4z45j4Jfh9UtQnBEvtXipi8p9AzTFA16tE8lj80RrHCgTsEvlQ+YclztHE6OYRQBt/eczDywuxw3rS7/kaJaeo+o7tKGaok3bX4HUAk8xgLBnkWgPjmrwUu2gbM5iwgPl1/Aoz2B+m8rgBg9166626qF/qv7/yV/7K6N7ZbIY//+f/PD7wgQ9gb28Pjz76KN7znvfgTW9602Xf+8xnPhM/8iM/ggcffBCHh4e4//778UM/9EO45ppr/m9o5ZXyeCvbglXj68o1sL+yyGmgefCBLd5VaMGioM8bLSCwxaohYzUr0fkaDrqxcg2gMM+MDS6+T3Xf6rdvnVZ71P4RKCJVihIZlcxkw059fhcHOni3plyWF99EwDqr29TXCu4L+TIF/JE6e7BbZQTAHDO5rtO7UHw9xtVgZxHbIDULjbyDr0N1jYBo6p2WbFhs0qDOtyYGNWRDyOA6TlEwi3m3VCBF4aA3x8YxYQarvM2zJo7Q5RkMBvy97/3KErCwHVd9P2Axa+lYvmc+b3NaE/GSAGjEyVopafzx5fnsoOSi4Jng+4nP+8BnmgSDTc1XbW8xnknHNScJgp//24JYTg6N383XyhyZAo3IIQYF5mttZkhfyJh2TD3VM93Op0QpRCpmsHn0zGBdjEodLUZgX5ydQMCZI0dHc9jtxKXdO5zS8FJsaHWg2miSS58Mnn68HwaIfcrBtLrknUljh7TIuk7Sbobg5nDdh7KLVZxQQvE/NS7FQVcfY2czO89G92PbzrH8b5fa4RJjW8rl00RaEXk61QbAnBxT4IP6HfUaJ3TP48DPeB1XkRz8HIpskJbrdd4oKiHo++rnylo1BVzT9alyem1breQa/jbC1jiSA8hsCPxccUDymmSOrkEbzoBhkbsPPXwR/+LnP+jkVYxRnSOApI7zdWEnmG8/8OM/90HsH64nQQAmfwhIAUkDJCkgoak/3JhLqewe8/KVDWL97tRf+weSyiMfM/aUhLbxAVIJGvG61LXsxDaJVQdQjbEvH//pf/tJXNzfqKPgEqoljnYz3LzLbAoGEqr7YBu4IgSvxyRaRxdN62TjVJDSxj/VQsbYlt2zQbVQAMnriJKeJcshmzeiBzgwTAJSMB1L2l7X7rHoaBjdq9UzJ7Nr33Tb6vdEYRaYWKfdJpFJp9pYNrGTUPtNnFP6TnoWqT7cxmkWA9MRtum7qepL7vMp2SbvdiDaS3RdPWZCsOdzikyeQ3IsBHHkc5rIsW687bfUlefdNpBjg+BAmOKAk7SQDjAv7wNc6ibXSBDYtTqvADHRb2DyuAbP0uNAYhyyq7h2SnK72NEuz+G5Ke3hv/w+mxU2v3UzFASkSkw9l7Bf1sMw+X1qPRUYO5G5Tgp0LnXh1HYm2ysWx9qGojoK+FiC4xLc8alJrB8VDDab6/W8Y38WvT2lDteYAyXrYVAg95Guw2HfF5mZK/cPfuAtWK1t00xujwFrgQIGW2cbbdMPmZ1kPbhrgLzuxxjwjq98Jp7/jDOObUW+53zWYu9glYO2642yIU0xmWUwWFI2YYDkdLJ+zsxgvQY6xEYNCPhbL3rJZEoUDnzwfJE0kZt+cGnMm4bA1sgsRctFRzu0gwbA1AFPayG/S22VLgO7eTe3Z9cwPVW+fa3V+Y1A3h7hccRpmMRu1tRuMtZJH1z3PZYlfZPVh+zaGgzGdieVLNNNBos9mzeN+EC9ppIvgVgdz1mI53NljRAfg9SA7c5tzGC2w70utcIr8ob0oKKLDqkKLGk7of2i74sB/+LnfxuffOCcq8Now2HrGTnkXiAHdA5WG/VDLRbGmHD65C6ecNNJIOVvrsxgE3JP+pKBf3K8LYErqZXYiT/wvBfmNJEbY5/7n7/kS7HTtvjkxQs4NV+gjRF/50u+FLtti/vPncN1hT2My7Ejc7zvVz6Kb/s6Y5C+6sQO/uNvP+C6f2c5w4W9FX7w7//SCOD1kU98Hj/+cx9UwEFbwCi/+p8+jd/5yOdG75Qi/dJEH7ASf9LG6UjjPnOM7zTXeK3VNY3WdMADGKTwxlD3PpKlEnwMZdyb7pYvZTYsqY8BMur5V9rbeOBg1zb41rc+paSJhAt2ij80A55MVoieXLNCAQaqm9rQCkynibSNOSI7oGkiWb43TVRWM+ena2xjjPTP1JpPLh3qM2YeC7TBZgwcc20hPaZPSddWqRrbhdJuZp9jpkGpm6xbq8FYO7nMmwaHQ59TO+7MjBmwVDMDrNc6frrC3s6AMfFXihwTxq9VAYjFwIws5iPt+0TZEwqDTSq+PFLEheFLxggg8teniYwhaKpaBmJwidQfvLGWmcHqtXFDwABhZBH2yVGayIH6hUAGQN7cuLe/xtHduT7Xp4n0zGAnji1x9sIBPvXgOZVNmaFoIkV2zAB91nG6mFlN2bchG17zphC7TlnAYMxHxioG/P0vfXl5Z26f+NoSjf/5rFEQl+gc/AUc2AATGQzIhqvZUx0QlZ5ZA8KljqIDz5qITdmEo0CGGFU2R4Rss1U2hD5f9ZdqE26xs9murP1vuX7eLyFgMGHKyXYTiBlsYsMd9YuxS+dTU2kiFUhZmXImDVk+kg2bPICJ00TKs3Tjusj+QJuGqetGOkwlJYcB9G0tI8Ss86A/0S3+/vdZXFz67cl3XKOpVO25RR5M6I/SVq5LfU5k76KAQ3UuR0sTKX3DNhGAMu69jNbsP7C4hNaV+5qYKBkkJ349TiUr7WW/jNP9OU3kMLjNn8yoxWu7+IT7mJmiv/qOJ+E1N99CoLb87FlsRjquxEB0zoegax3L57o4O6n85Ww34o8Ru4UBSMzgxWx7QJEdw7T8T0iOGSylpPoeP3fTe7az8XOgejzrLAwobzjDEXxs288xE6KSopPMEt2gJkXGXojmx2bGSp7DMnWlTpINoL6HWceVkXoCACfjZNb5zTycArXWcST7RcDYx+4A/onno9lFU/5AAYOth0GJQYArYLA/bOVxAwa7Uq6UL8bCsnBiPdRVRh1RpIwDZQGp9ckJ57gU3f1ABiIrXLIINsqUkc/7IN+4viFkRb1eCzTerzZ8WdTgf0+B4gS0EugBchktQ+4eOS67MYNcRAs2O6+ZEcDVk4Ml8Du4ra/GC7Du6ht1/XRqq3ztdKo2ZzcFahzMEGGqZn9uajDRrgLHDFZeUbEfhGDt52GXaEw2VHdmWQKyUtkVY64JUQ1ZRpxrmkhiBgOyorC/6bVux2czHPTGDGaK/3gJyjt1yu6sYryIY6DvB3RdNoTFQQgIM1jv+oN3dFrneiVSjKMNpS7ga6XkHe/T397v+pwOlktf1UXGk0sTCRsq9TBQ9pnKkL0UXTU/UJ0qW8aYZwVKNG4M7CSOMXY2ptE89Apn/XdWKIrFuai7gSrnSgBw/c4O5k2jTtsmBHzzU57m2iD1iDGoA8TYAPzO03Gb89/a+KmBPcwIJn9lnG7bUW996nd/sLO/DWZA1l8kFWNZrhPnUhMCbto9spWql3d08bN49x87z0YleecHgBJUM8eLgpixXV5JqRm6AoD3veEr6XXmPvFMc+PShIAfe+WrNU0bMAYr83tZps3a6Ay+OiWQvNPLzjFr3zhtDEbPAQgMRmuWzIuaZYWNSmPi9H4m3hEk99U7oMToHY0lEDMYrY8h2Hqb21LGOznzxwyWAR/66MP463/3fa4NMtdCCHlO6BTyjpwYx87dEAL+9Xs/hHMXDkfrr5vPwQB9gBnHGmQN5gySnXbiTFLAStXnfGxqjZcia8qQkmP3AqCsYdJnACZSKOVrHWMYbK7JM//Jz3wEn3v0YGtghMtdJ0/iH7zsldZX4oBIHnSR27v9ObUeI5cu29YBTttL1Id3Daoupg7MqfUm/613z06xIzl9uNJL9bpqPeL7nToWxsf00e6g6JlJ55Q6i4t+PSmkqudIgDe/WxbVcX2mADFet7Zn62GVfcmNMUchX/5qPyfT3Vyd5brqN8tQTpXpjpFuX8t6AQF5EN8Eg2KxF2Reia4j/9b+UB0W7lzWe0lPJ/1FyqXmwFSZbq85/tg2yvMuufUu0fX+mfn60blAQTJ2aCcLKgxVn0DHDz+HdbGirw0+5c5oSgYfPK+/fx0cdjYk17N6fqqeJayNbueuvjNfudO2usu3LvrcCb2X00S6+QLrM88uWdaVxpioAoIFG6jNHGBgXV8c+RIYq2WWgMHmTYNfLHrPQPrxsm01iOzAYE3EQb/BQd9jUdIkHunGzGACUmZQw3LRQVgPgJw66ZAAKZKqrq+c+cyg0bZRGTrEYQwUFpODzDK22QwaQM2BUp9CabftCjNYQg1wkZ/ve8NXog15A4g6uvMrJ+erfPZNFeSQS/shYd61FoiRb1zqK+vqZpMD58ICAWQ7IAd5vI7EhdflrrXArAUOfUCVbxc5Ddj3n9LhOSiq7UqpAPgpTU/FtGFpIrPcWjStA7Nwe1raKCPvmirK2kptCOVYW5g2pF+UGaywjqchWZrISq4J+/h480OeEz/6ilePNrssJphLgPE4EfkMWJDEZPE4RRq3jwPiIQR87NOP4oMf/qwdqzZgcTCLmVWYuebgcKNzcTnvdDPOC595Bu/+/jdn3WcQPXUaDJaQnfbHZzPMio0s75/FiP2+11TwzFyz07Z46GAfR9pOn3VyNsfvnn0UpxZzPXbVYoGHDw9w1WIxeveR3RkODjd4+l3X2fUnlvit3/ssvvfbX4lXvvAOPfbZhy/gn/7Mb+GBh87rtTvLGX7i3/w2/vV7P1SlsvVsJNJvzFjU95mdoQ0emCWpY+s0kXVR/YrWcmF8Yjvy/W98k2NJBqC2BUByHWN9LgRLJSTvTPC2lbwXyIFAH+DmILMHFas90QaVSwPJG5BupTY6LDAob1+Tj64hMGQNsmBWG5Zf7YRva4C/JhbbT9lX5F5iAOO5WTODXaqM5BOtSW1rTE6sByuToL8t90EQlvv87eVez9JdxgnZNQwGlCfudnlubQZrI/fWrKQX7PukzIC81i5mbQUGi6NrMuip13GeGb86TR0ZomVP2Mi6HUJhEDOZI+yDs8b7Q4QtjufQpowZab+s0SuS+dNgMLnfpwtdtAYG620SIQQGBtjaKmCw0eYIVLohnd9ZZsbB3Z3MDCbP1c3KhRlsOc9/j5UUuJ/4zFnc+YTTpS+iA60xI8rh4HUcSbnGunNbNrTyOOgIIBZCHmeyEYD1FOvXrEvkMeXrr0xGtFkK5RkOiJJMH5HNwAEgQIf3ijhmsMQ+v0B2ltkHygxWQOe8dslGV5GLZLqNdCoGKwCkGxFz44n53F3j2qaZDEyWiW6i+sUwlI0gGVA5tVlIhtFAepT0ndUV2r/8m0cog2WlfWz/Aiab1KcO8/2JTaHyOlAKOCoj/ajx+hH7Z3kTcC1LU/Wt+8E2UvzwX30jnvP0mxwzGKcK1H6p7CN+hbMx2JZo/EbweQGeMIjH/S2yi1lBRWZrH5IMAeDmvmwOZ+DXguaTXDcrgMu67mJzSX/2vW1y4o0RNfOVrbsCBst6mRzbDIPGVQAoG5N8GwDKHsY+uAFZvsiYmmIG42O6HkfLylNCQuqvFtB5DfSVPktD0s023I/iuwjI13RtY5uJ4OeZ9U8WCryBhovIq4Q6XbO1htdn2yzi/WGiV/MGPW0XyQzWw7y9b5tsc18UGcKGR7J1T/3wgWw1JSWw/uRNuuxz0I0ks8aBMGs72vUPxZJqx6TZmoObP2L6BkyDwfrCLr0ZhhwLlvSVsZm8/kp5fJYrYLAr5Ur5fRRT/nhhGhc9P9Q7uOug0ziQPAn8IjS87fKo3+kpMGWBrgEnAIOpzPDl9phT0SuxU8wBUw5Te4+/bpvTMVCTEjkca2NT+58aIGAmC5lYHeq3MdCFj3IggdspBu/U4jeVNgdABe4Zu6g4aOXTRE4HQHgcOH1PHEXkVM0O5LHxxo4qMWb5W3D71iWFg6DBu5LLPQSjCJfnZMdk78A+B/1GjZ2j3QwHmzEzWBfHjl3JvQ5k8MZmU4BfJbAujsS8gz3/W3e9URvbNjolivuXnbTrzYD1ZswM5hxWFYOalCm2uC1De+ysLt8zQXbq+bEGSBA1ue+nqchIqeWg2GisU/WaZkw97CtvdeNrYmQjIugOU+kDcyLSe1HvyjDjdxabAjIUZT46qujMDJbBhN/73OfjTU+4Hb3SKFN1yf4PMSDGaClEpb5ksE0VNUrUsDcnBHVJZgILflcMg+UmupHqWaUVwbg/6/6T+2bkyGFGib/+vBfgj9x6m3Nc1/dKe2oGka4jZ+FESUij9cU5JghoyfKKZQ4XYWvK1ycIG9VUf9i120FmEsjJ45QNY++cqcGabdso+FoMKGmDlBC84yaE8do8auNoDJX3EQCMg/OyvrFrh0G2CnJIfkfoJBNLNVetz7yxm1JmrAG8AymgdvRB2yLfnIEY9ddlJ20GRA1FnwiT1+d2APUZR/Nfrb/cGg5iqG4TS9+lihac9DNLTUYsAK4/xTi2cV0XSYOZd+X7FBuSZqzeZWupx6y0be6n9WYoQcJ8fNbZM43pZbourl7VXMp/0yitzlgy+Wdouh3YOFgWIK6UKce/jm2SoTUobOrNPIblOtFt5XuGaOM60bwAZFx68EpD353L1DG/dofRdVxnadlYt9zep9I+YenhouwDvN7zeKzew+9iMJXVx89f/kw1uKc+r21MpnvzM7k+MYyPx0CBw7ANNJRG4NsxK1TZAS5OSgJk67dnOVXVU9YVkXdT83yrgjZRrFakn9P5LLN9W7OeY+uljslkLH8hwAWY3TqgcsS/kAFuLFNcO7cAABP9m9MhOjmrc8vkidp/lV2ozsuJvtTQEsktXseETaAGpNVsHP/45V+OV950ZlIHqFm72HnqrpP5QmmJdL2oxIFja4TJHV7rbc568JfUmzeChGA7gCUNUATtYCd9bB4bzwxW6i0piQ76jaayUmawYMA97g+V24vO6XxHd+c4JECKbAiogbrs3J+RnuiCqV2Ds+cP8o566nsNlJJMPtp1FgCF7y/uq1lhFVMwkbKUTIyx8vHqHe+qq/dDDuZUrBeN7kzPg3FeNhFtNpQmsgQ6bLPDWL/n9THvovdMb2xnSb3Yh1LPK79JrbRh25qbPDOYpf2w+1gnX7R+Z3npcK2nTxM5XgPl/aM0kbkqBYhIur08u833ZNCjvNb34yYNukNf+4b19Qmfy45L6UZNwsQ3Kn8bDUrnoxkoX4HB6Bm8MSzS2OH+cOt5ShrM4mC67u4n8CSQ56ZsxuGNVv0w7fNif1sImSnv7U+6a8QMdnG91mBwT/b10W6Gj104r8F0QACoA24iVtnTiyUA4NR8DAaTINA1p3b12MnjS6QE3HHLKW3DctHhtz/yOfzRVz8V//tff7Nee+LYAu/7lY9hPmtw/uKhHn/03D6edOtp/NgPfbUeW8xaHBwak1lOwRoUYCjly2++Bf/Hy15pDBeY8vVVtkPFLFYDnppqzNW/gaLvjHpI1uL871AWwHpzgvy775OrLM/ZUZrIcrxtIjE1ejazTUpF7lpbWX7KBjxA0pCGyjaYTtHGhf13fA/XsYFnBpMx71gIqekZDHYZAwdwctz1jT7H9w37OkfPKn+zHBV4rZxLThcR+cGMJLXfb0gW2Pcsh/ZcYc0EDIid61fWzlmLvf21A0Ktiw0Yq2MK/FLGr17Hg0sTWXypkk5SfGMxAClk/6sD7EnGB+ozYfSsmcEYiF0DNqRvgcwMJhsYgQxOZuC7fKMYMjgbNGa6snGhbeNoDePNiet1j9nM1gXpS07Zy35lAYMtBAx2ZI5Hz+1jPmtM92G2VtJn5k3EYb/JGTPEnybMYCC9oIAt3CbMELFOBvz6rvueg++455m6WUBkR0ROxymbEvrKjy0MO9wjXTcGIYv+o2CNaGyFnOEAyesz5u+Zlp0Rkl6XmMFiU1JUJwWNdgRyqkusjrLfKbeh/CbfwF94xn146x1P8uyQrfhHJS2itU/9L8n8B20TkQbv4/TsPl6v4hSbWvfaNqjVK/p3bftom2BzX8aKgIp8u8vcipbWl3Wdel6cOXpU+3MoYHydT12D1dr67l++62v131lW538LiCdBwL0hg22nmME2rD+Cnpec8PXfm22cTCTgN4pTbKDIXl1fir5odpRsCA1uTjpmsHJcvr+AQ6XMSwpd1uE5TaRXv0k/bc1OGJJnMHQb62kiSerSPiYDg5W6c/0VXEn2u/hkpxioFWRexQOWxMTIhcFg4qswYOV0NhVJmTgwGKxan+T3kLKduCrgw+wbpPFAtgY/A0A1Usyn5HQWXvtjDdgPqtc5UCHdI/7hQD4c9ZXQ2ON+FvmZ+8LHVLSu3L4id2RzY1+NDU01WdkYvCazLSrvcEBHsF/F2N62bXqs+0Ui5tv8mH1KmDUN1mnAZhgURDZrmhFj7pXy+C1XwGBXypXy+ylFbjoQBi3+UmTh2LYTe8pgdYtJfWziOn4XL3Tm+gpKk8oBI14EAf+7rncdIL3UEiB14GC33Mdqa0rlP1TBMFHmqT3SP3KP/K5BWHXaGFn4Fm2LP3fPvZXTdbz4yXP5TAAHeMZFFDEOSI3qxs+uHEAARov9tqKo9wnlriGD2frLDCG5n/umZvngOuddu9GlpVsPGRi2GgZEmPEkzGBScppIYwZbNC32KQVIU5wJszhegjgY0bYNVpu+7AwNWK17dG0DAZ3UlL6142wKKMNGiuy0W296dG2sghXjXTl12QYQ/O5nPad+6/R4gwTfjJUA9N4yHZxM0G8UJo5tKdqOhpTkSwbPREm1eckOjb6AAmXu2t4yu16cZgCBwVSRjAo2BDgtJOh3j4CA04sljnSdGkLbKIl111uQv6XN0Xa50A3WZnKccGdNMYVlGSO7PJKbV74+vkTIThXvUAR8CtLaQcL1a0u/y3w8vVhit+smWQW4WKpVa1tXGfZ1ScmzG8gxcYwwowADsqao5IHxTtpJp26wa+ud2OPnmezMhmL+dz0PGGCV6+1ltazf7r4QRgAwt/4FZtaCq+dQGCKkNI5hwJ7FzDEcWLe+NKcR3+uZrIJdw2s/1Qswh1wij5+cll6e2vXpAugjEIc9nz2gTSzAy4BMrV3OuzUP3qi2/il1S1uc/jQPGEY3gMCB9BwB2MoaxQB5KewEVL0F4yLfStJWWAoCOZ80KDpQXV2ayNHalPCT7/s4/tX7PuHSV4jj4HA1uOC+r8/2Oa8OjgQHMpZ25v7097/ltjvw1579PBfwCAj4vuc+3zla+BlcbGxj1MdTTGt2TL55fmso5wxYx7qhvYvBSiY7bO1hEcS6Y92GKRD/9Pc3h27iYxPXWhvt3zFGrau9z9rOO3LrSqaJirOuqTr54IP4DhhU3XepeodAAa2JK0esCMWWGOib1vdJvzGIr7YFuPQTcpltEdZhHZNk8HYA7wY2ANTli0hhYZeaWNL0fXwqIPedYwZLqbIdJI0Bz0e2deqNPKX9BBDTeTra7OHrZveZXtRMsCzwPQz6sffZe3mt9qzUwV0rchfU9lDW9jbYfKh3gMtadnI+RxunNCK/Vkg9p/RCuZnlUkomx1km14DNKWaw2vErTnkJWLSVTi3Odts8Y+eHMi7+5gu+BC+87noXeHQsFP2Ag02vjEjHZjMNKjvjAHApOxaz1qVSOrY7L8DjiL/5F1+DFzzzDDabHsPggzjeuR81eMRBzfmsxaPnD7Ccd+g3ltLF0kSCgChdAcOZD0LHOlW+i5k5RWzEzMzRa/sCTC+Uv+M0kTZuW0o/ZnKAUy4F/Pd/9hV45YueqMxemo6kjVV6zKrQmFiUQJJjFegIPFDqJfOCdToG80iZ0kOUNS+NmcF0I0m5RnZ+y+/liBnM3sF9dKkyBoOZ3elBlDSfS9BI7G29m163GYayiS3/HuADYlPs3ou2xX97732jOtbTX8CH4ucQ2ZXrn0YgH9Y7W2b3UvZne0HdH0Mi4BelidRNbV2Dg8O12lQ7C2Pp4aK6D5LaxgyIk4DYsdkMO21rzDXI8+fixsBgh4OxCbYx4hMXLuB6Sv8oY/Wa5VKPHZ/N8F8/7RnKuFWXv/DOF+P4UQOKdW2D/+ZPfAmuO33UXffg5y7gKU+8FlczcOzYAvsHa/xPf/G1eEVhEQOATzxwDtdfcxTXXW3P2Fl22D8wMJgwg9UpG7sYcc1yx29MkvZRnwZaY6wvjUmhXoccGGxiDIpdmdJYv3UsM/CyNb+3yLDewB/iu9AgZA0GK/9uKcUVy/bn3H2UQFlmJ22KnwaQDXjld/JpInVTqrIRln4Xm0reX61fgOhq1F8hIDQgmSh1N9BXBt6abvZYmMHYFmI/ivryWmMYYwCq9eO0Lsvpi/m43ofxppoaDCby9ruf9Vz3HH6upBcEMktePf/nswb7h2uVN+Kb7Ae/HiuIFPkbzEqKRAFMDEMGiOW1PZVg9IBl2TDL+l1XgSslA4I8u6lkDyBgMDhAl46P6MetXM8gi2VjcmvDO/Po24osFb19mhnMnrla9zpnvvtbX6YgrxAD/tq3vRxIRTcSVpOSJlKAu8eOzPHRTz2K604bMLZrOHW3jSfRcZh5UVJK8rrLzGDcP5wS8kjX4eis01Saulm2vCMkKHMp691T67a0JZEzSK5R0BMx+LAc4nkqKfPkWVPMYMLmxCA/YY9xgJoCRCnai/Oz1MDwGoBqvwetx6nFAsdns0mgvKUNlA2Mg+omidosoDbRYQAoALs8oNgHkobT9x0XZkQFvJ5oDEXSj96udptzG0rZBz/f1D6RuUjfKlB/cfmeb3s5pZnNz/irf+Zl6NroNgGfPLYs9U8OvCr6r4uV8Ob6ZG2fkt1NkSu8BtfMYHJy0TQqS4ACMiGGYAHKyTgTe583kIHWb7G9GTDF1ytbP31/nWOD9fesNV9czQzGev5mk8GzaajTIJZ3Vzb6rMTp+pgB+QCBwYZBgZQZDDao3Q5AN4MzGEjYxERvZpvobXfcie+455mT6fwyOYj1D+sqDNyufU0h2IYZYaR04N1BNikml2pT5mD+NwFUxeaqUjXbv5NdUzJeyRmVhwTWZkY+XiMU/EXzSR7FaxzL65oJnMeBsPR5uVDJS/k2tLmR2z4Mg6+TyKsEjbXMutYzg8E2dcv3mVrP63ijIz1IU2MakyWlslmtH1w2n0UzscnoSnnclitgsCvlSvnPKObw9479uqRkgVf7f6/sud3gYOQ0H5O0U+MAgDOwKRghSjAHKKQO7n2B2kMKqd4Ppuf1CivXsQ4ksDIz0pqr32ogFOUqBKNe90ExW/Drx0nKGt793YSA15651do7sfhlJcAUB27X1G4w7Td48II8dhRolO/FATzpR/4wtLi7+pGCMDXu2GAOOUI3MihYAWP18Dc//zB+6YHP4PZjx/F1T7oLgKWJFINvRgAdofGVMTUvxjAHMQ42G8QQ8LIbb8rpTgoz2KtvvkUN6ikFpHZ+bHSHW/5318XRdYtZi5WmiSxzoJlgBgu+z2SnXd8PmTWIRnLuOjPsp0A39ZwSxfVlN948unZqvMk9Y7BMGYekgMv7mMUBGANwxmPHzmXjOP+7TgPo7qjGTWaaK8/QvqDxLHXxenEF8jTHgTgmeffPYd/TTrtGKf+BbNgpDTvJFxeMDAGrVW+7amkc9JdwNqrjU8BfrDRTqVlN+mFwzoRLlZH8SuzEoB3q9Rgpx192402FQcw7WxhItq1IqlU2jNomOsrvuvBuQgl8cBBPgmqlKWbMVDuvpXDA/nLmg9A5i9wHGCiVC7NVSn2BMUgmBFSOfTK2ArP88LNR5ERSWTwGuHnZXgPB2Wk31WYBXvv119Zzlg18t6XSIr0BfqeP9J86NSil50gylG/KwS1dvybABxJAr3uC1xdNExksLYCTSclYtLjEiXk9xZTE63CABfZS8vVnNrohEUA++b6qC49T/a8ca2IoaS+EIt6MfNuFakEe3tHMjuKELF8u7G9cPTIzWL5+irUFgAtMTJayXvzR2+/AvVddPQr4vObMLaNbrlnu4O4TJ92uOwB40XU3jJkRtnkN6Ea+RMA7jgmQdFO5Jv8OqtvKjkh2rkgtVBZXMiXBgLdaXQGpeC11VPWtehs9PwQvK6afROdoXmwR8d4xFvher0e7e1ItI0Re2Rum0lrU+v/Ek+1ZW949tiOyrpnUwT0lh0uaSAraih721a97Om689pgeD2G81gKg1O/23pQI2AOSwxPOTanTKB34ll4QNt8A1CLP+oJ0H5HBIo801S9MJgNiI9j5+jvo5pLyu96IEzAe/6ynadHxk1QmDMkzYJnhZLfJLmvWAVM1LlTGcuVlrqhD1ds53E8CUpXrpN1Wdfv35KYFkRsTA9ptcKrWZVnXGwVnmlziMeLZtkh/oHWDmXeUvbXasS1Bjtp2yKCerI896+prcNVi4VK+1YHHn/rEx3D7seMAMmBDwGA+KFLsdWIfSin336tedAeOH13goKSJfPbTbsLpkztYbWUGs5R3EjxiO2Qxb/HI2X3sLDu87svuwovuu9XVl/X0HQGDUbsA4NlXX4O3PfFJ+lvsy52Syk7S4KmtRjvZn3PNtXjeNdeOdiYHGoPC3Mkp05uiC0lb7nvKDbjpumOUIqawBBSb0xoOfNnzbqPvZ+N1uehGaWfmXeuCtbxuGLuDgQUt1eN0cepTqpjB0thu4W+V0zwnd7/2RxOcbVTr/NuKft9UpZoku0HZS2SMsuFdSj8kBffLcwUsCsCl6NM6hoDXnLnVHWM5Eqpr83O8zihgq5E/h2SB9UmpK6dDin5tFBAXUKWJJDDYPrHy7Sw7HE6AwdabXuVQS0BTZg2UdnbVcWUGKwHGw77HgljU+pRwHYHBAOBVN53B1QsDg8UQ8Kbbbh/VS8rrXnrXSB6/8eV3j4699fVPx1OfeI07trOY4eyFAzztzutw8/XH9fgffc1T8Zyn3+SvXc5wcX9ldR8KM1iI2FTjkgFi2za8SO3a4IPuwjLMa0YT/LhoMN7wF4IF9utx4Fn8JjaKletzsLWMzya4enYuMMprVLav/uRfex/OXVzr2Lzp9LLYKn4D4yYN7pkcoOdNVwzsEnsQGKcgq5ky5F6ef00IhSHapwdsW95AxjZyeEyA1Cm/aJbD8pyI9cZ0JfOhVY+husdQ/Ih14BR2bz+kkj7Rnj0Cg5X2vOxGG8eJngMYgAbIjCn1Zrz5rMXeRJpIx+wjvpzyvqbJzFHrda92U06RbAAxsbU1MC/tCObL0zETgzIUGRgs/1ZmsDLGGYgqpSOZOtD1fbI+XrbWDxvS2/s+aQC9oTVkGIbCwFPpUATceNWXPBGveEGWWy9/we3YWXTanpeWdTv7i6HPBbJ8/rLn3YZjRxf44IcfwvXXHLO2BEoTSba7APQZtCwyeqD53hWfOOtoIrNlwwhgvlAGO3Yx4qDvMWwG7Cw7A1aWOsxmhbWI5sSs4/SOKG0etB/kr9oVgzChiu5R2jdvJ+cjb6hZlM3evr2y6RBOL859WDb3hy2+Ynh/Vv5t+kyuX6kHya1E99VZL4Yh+z7Zd5mGVJiZvIxoItUv2aZG1o0nU9xVdXPtEb+Dyomgc2+o+qkrKdcC2c7Sl9r/wfo3AHjVzWfwultunfT/ftnzbtPYiaxJL3v+7ejK5nouAtzycoZT1KIca8xnHMb+cQAaW2ibnI6S7dIaYOuYwShl8rzYAfLezDjHPm9ZZ4wJTmxsfn7NDBYB3Pycq/HCZ55BL6BY7YPMSsgbYXSOwfv32Y+e08nnNbZPqaQgrcfvoOMPyCDfYUjoNsBVhYFVryXZl9NE2jgHykaP5NM1q78hpQJKtfFw05EjuPvkyUlmMCnv+uB/wj/+8O8i9ZYCUHR6v8lPYh55nnVdUza/0gakYjvFUNJEdhZnYN2IU9nmc17nluul8cXUcOsu6xycJjJA7K18kQCnGpU9pQ7B5Ie8qt6EzoAxaafYTwIWrdtR+/wCQAB+b+cxayGQQcp1rGUuzGDs6nBjXXxUSdMVS/u4yE/Rd9nfzn1ZlzZmX0hmBrMNb089dQq3Hj06ec+V8vgrV8BgV8qV8p9RXBBZnRBpdH7Kac8LBwMqeDHJz4BKcll3PHuGd34AvGimkk9aAhey2AUN4FjdxylP2LBrYqzOekdIVR3XN0PVT/XCE/Qc1OhhR0Ldt7qQkeIV+J1pvAM+0P218ihtmVbqoe+c4oKQvmbnE7dfFtr6XnYQ17tu64Vc2i7f33akeEc3gxFEyeGFP5AxyMHyhw72AQA37h7Bf3X3UwBkmmrZldrEqIZsDAHrorxnsFLCrPGO+3lsSlqUvFsuM4Nt0ISAv/jMZ2Ehu6smDQrvWM274zLw5ml3Xovbbz6FhFQMFVLcBQxWnqM7QOp+pD4T6uP1ZnDU/PqNyl9OocUlBj/O+R73TvhAkRzjseWV3OlnSRCKdxM8JmYwMaAaC4JNBdlMXkk/BW2nGmMloCLzaXome2dYBkySA6TshGI68VUBkejvYaj6P2mqHUAcv9zGLGe6tpkYB1OgwC1Oh3JjTZOcHaXBBWIvBSpxLBPBnA3SN/Vu5SAnqMh3/e5nPVcd4bwbT8Ap9fu4MKAyuHl1OWYweQcH0MQxQn1K8oodRlwuBQZLZZ2yoPAY5Mu7mOrnBZgDqe4DDmqfPrmDnWU3CbyrwZQCKJbfifqYwWE1aJJZa6Tv9D5Xf4zqUQd1Ad6Zbd9b61k5m/xYJOdDbEbygdeqGMRw9ddIUBHBgw9Y9tRty8DUMo8D17W6fmotpT4cTyde5/K34QAigwt4p6g5WFMVEBS5ZMUA4F5nyHqFvDsaMxitL5Y20u/Or5nBEIAz1x3B8SOdC1LLX6amByzYwf3RbgFcqoOhzKV33Hk3nn7Vab+uBOC/vfdZI2eCtK1386AcrwKyU2uNB+HI3ID7y8/1eicgLEG5Pj61DuvIVodyLQW+RZ+K5MBxxTlTtrfF1VWVWXuA3JFBmNvvdwFGHZ/j/uUSJ+bMFDhtMA+OFgPdybX8Aj+263rXQFt+pr076JNqvdpviBjrI5I2UQ6z7PvTX/M8nLnxuLvepTAp7+DAljy9HwbP+lX1qToL6RoO1m8v/nljHW+8Vmk9IYBEe5L0mfw7hrKjtzxpAK+tAvj3a4xjD9a5VQUsJgaV26xQgupT/eXkaTBANsBj3usuk+MVZQ0M9bpsjBNtiJAwW1Otf/XYnPpe+i4C2k61na/jsTelMzdNdEzfzv6WusSINgRlrpX1OJS1RRylkoJjVe2u5jIOEhroyjODbTBvGpw5kh2vu22Hg75XQL82O3mH+3Leqg39XX/6y7CY59RrHGjdbHywUvqKA0Ca5gPe3nrk3D6Wiw5v+fKn4rn35CD4LGa7TupxYjbHkTaDwYRJQ4KoT7/qNN58mzEEtcUGYLaEw753fSTgqRdedz3edNsdW9NEppQUfMDgtrY1lmC1AWkXfAgBd912Ne645apRmsjvKQwj8u1El95ZdBbwUad+68FDsLlgOmLAWuRcJUP4L+A31cj6LvZozR7bp6FKazVOMxJCwM6y86nbwLqT1+M5SCYPEXuL9aCUbN5IYIyD3OJ3knrITnPWd3MqGpMvl9vsonWn9kmdRRWIxX4QHWhIOXAyxWAJZL2ttg9dOqQQ8Pd+7P/CJx84W9ptbDacrosD9fsHa00lubPssLe/GrEvHxxusJh36FNCJ0FJCvCJvg74+ZCQMIsR+72xgR1sNo7h6/qdHZUhUv67+56N2RYWsP+c8qfe9jzH9AXklJIvf8Edo2u//k334cl3eODY7nKGPQaD9Xmdb+IYHFgDc+pVQPyJTQjKSC+b7PI6VHRIsbGqMec2a5XCvtSRbuCnycjPItdvepNBXRudHd11HOy1RmX5lbBaD/j82UOz+YDRRpe28qlIGjfxNdegiin7yIBe0GdK8Sw33pfl0kSqnA0OrCWllkHbCr/D9Y08p/VsJvYdJhTtUgzsZIXl1bJtcXGzrgCCY184g4XsOb7CkkJZ6iob9PT8rMW+A4MRMxjZk8zu1cSIEIMeiyGDe+eFBUzWpH5ImM0YSJbHQKdjvYyZApYUW8rL5sIEVDZxWs2tr3eI9YtlK+sYkp4WAE7M53jyyVMKBGCQlvSBbGD4qfd+CO//vz7mnilj+0uedSte99K79NzJ40v3HPH3iR7AttH3fNvLcdXxJX79g5/BDdeYzPLMYD6l92Hf47DvVb4K6InHnTAaMYNYR9eJb1QZxKrrDvseaZNwZGdmKSFJL8spIElmcEpMkTEV2F90ItlsJWAWHss78850H5r8kfwOC0kHnjwgrtfUkQZkFia52lc8Yq4Z/c5FADAG7KYNsIl8LZ35X4AcI5E0ozLmJY4l9XRsUb1ku0jOppQh5Hxv4u+4hO/V+QTLMZFykmJO9Y1IaSLlmpQ1FpW9QXz/ue9eduPN+LIbbtq6MVCAX8wgKWxO/rriH6ax1CqrmB877DO+4ZqjeNF9t7hnST9kRuHezTOOXfK4FWYwBToWxiGOFfSD2QXG/BVKP2W/iouv0PkAA7Be97RTuO+pN5b0rVAdPiVoysOpvnJAMxOX6Iq/TnzETMgw3pxhMq3vB1xzvtOUnlJy2nSTk31JuypLiYCvRkC3MrbnEykhWU8sXePKLz3waVzcbDIrmaRcbUJJE5qcjS2xuX5ImTmtYgaT9MS6vhCAUHwCUtjeT0huk94I8Anb8DCVJpL1QokF16lYxafIegrKsyX+MhS/i4FEjXwllfhJSmQfVbaz2BeA+XFCsHitxJBk3NWAeQF+sR01o2wRdd9JvzrSFLmmkqfBzReLR9Z+SXmmfYu8WSfb8Baze+KxE7jl6DFcKX84yhUw2JVypfw+SteIEkFCdMLm1LPJG+rQP9k5FoIEtsgZzY52DRQY08gIzMGLY6Dgbigp2yKnpsrvTvw7jINjoveI8lWDsabSyFiTLZgsl4kSGAIo2FEHriywl/9yUMbOAxbosPPmcK0d/iF4RoNLlVFgIXkAQn0tO02kj5yDN/g21swL7DhmxwKDT7if5D5WdqZ2JdTp/nTIBAtQAsDBpsdfrSjONyWNX945Vyifi8G0GjKLkyqhsSj0otQUI5kppHPaSG9QT7Ft1cbrejOg73MQ6y9+05fiy1/8JG0bp9eSVHi822fEDFb12azNCr/syN1WpB/qwrsr5dnbSlONKQkIpFTteGCRIvNY5z8z4AR/TXWvvYfqQM6dZqK9NTjRFFu7VgCCKsqcgk/Pgk+D0Ccz6MTBraC/GHE49COniY6DmIFQPDbqtjIAw42DZss4SLkPx2AwU9S5fX2f6aDlOk4TWYuLCA9eGjFZwafQFECXXJMBvMkFCyQf/MCOJHKMSF3e9ysfxaPnDvQ+ThOpzoeucXThdRlScoZhvUuOmZ1YXsW4PZ2qd9gHayd8IE/lqXMA+fuZdYrLaAc3ARP++d/5GuzuzErAtzJ++B5ajwEzwj1Yy+5juV6PITZwPcuVD7ZLG+V9Kt9pfeZr+JgAo+RNCjSHzaWeHPbvf+ObqN352wnIlNuQHX9J2w+QXNhiaFqfCFCWDmy5XortVBo71vmdkmJMjiZAwQXOQRA4YONB2yrX1CHh+1P6Roo6BqPNhbYlYCiBwRjMJsf4HX/lm+7DE88cz/Kj6o/srLUdzOIocDI8TLNUJvprc8nv7qflfwS45MCrG5fRjvN9XOQZpp/xmuSdf02M4Owgcp8DMpV1jmWO8/WpnifOJKpLGKcpBKZ1VXcfBcCm7k0Qndk2WHAAL1K9+KnWZi8bVJ7QWjU1LyaBWqXdgXTrWver0xNx2/IfP2f571WLBXZaYxVhvXuqf2Wuy9ir+1Ac8fq8ytbhtgYEJ29Y13X6T8iO2eyAtfeY7DTARkO6sdtBf4kSQtEPALeWc63Z4TYkGx8ia3hu+fs8SItP1il73VpQddkwePuIv7nOrSG578I64HhTTq2PWooGYEJm0P3KekjrsshjWePzMesfp6dNyGLpj7ow+FTfI7KD6yRrOdU7JQN+8bsyI4+9Q3RTBsXEEPCeN3wlZjHvZm91d3oBIoPsmxLAmE1NREyBwSyIysCEzx0c4MRsrvfttC0O+w1mbYPVqne9xYGfxaIdAbsOVxvV5SW9lDi5Xb0q8JQ9O18znxVmsMLAIWVeAFw5AAr8y1e/Djfu7pZgp42remMMkIOnh4UR4P1vfJMC7qQwQxKQ7RAX5CC9IcFSKfW0uUgYHziyKmAmmWdv+fKn4i+888XGfEvzmN8l3+7o7rw49c3+mROrAM8F6d9NysDBDQWbpYxHe+38L+t6GZfyDGl7nTa8DcHrC+XfP/v3//iINZltpr7uW15rkgG2OXAqMlr6dUhJGSd4jkrZDGmUeu7zh4c6j0aspFtKAEagpkSyizcTykYPsWOnbOdZZxsopD2bqp8++OGH8LFPPar3MqChBuvPZw329td6ze5yhrPnD9z86ZoGF/ZWWC5aDXwBGI0Ttok5jZm0X1IPffjcWf03APzIK149AoP9lywvf8Ht+Cvf8mWP6drdZYeLe2v9nQGCUcFcXEI1N0ZzFXnc/eIbvhJNDFgROKEJ4811dVrIqY2ATSAwVDW1PFPEGKQs40zAB4DJIPVhMDNYIqbhJmCvpM88f3Fluh4sKM71ZmawWQmYBmk76QEC4BA5oZtOk1+P2+Dblq+p3ouAWBjMnC+PZM0YjHv5OZ6/Y60nU58RWIH1CvNTWd27GLHbtua/I3uQwVE7bYuLmw1a8pWKL5xl9jAh2wA/FoU18/jROXaXswlmsAb7BwbW7trMrsMbN8VvI0H50yd3cOzInFJCwqWJFDaslBLmJd2UzAeELHN6Wtc5zdgAY6EOMN/KhoAZ8l1EXi/ahtgubd3Ma37+97JpsSqA8WeevhrvevFLTdYVXV58k9mnPaBpAs5fXOFn3v+79l4aW3WRVLa8wZfbWZdTJzJj4rVXUZpIYgZzKSELeGXV95jHkm6yEcYvTvUYcdgPIz1vU66TIkAyB+COmT1teWSGP/+NL9aODiG3KQPEvP7KAFLeTMMyqWuIyUh8FlWaSGE6zX1M/hSSi7OmwcHGp8oUPYOBOuLnNfID086nNm9MlbwJmOQL1cO1X1nA8kG/YS83JKWEpiV7UfRC1mFSYSsUvYqukSJVr9n0uTibKYntkUzvoD7oin870H0KIkLA0a7Dbtdpykzti4n1UEpXwEw635Hn06piJFXATvKydLPxaTKZJRgA7n3yDfjr3/GqyTY7FjGYfZT7LjifsYx1tS1ig5VLE9lgney3+PWkXquhd/UEsg0lvnMBVgqrk+i8bC8IQ25iEFpnmyh4qDKocVaAXXlN9QQEobIf5Rmz2fb0epltmtLwVeuzbPRoXVttM94UGEzAptuKsoMOtqHBb/Cgda7o8led2MFy0Y4AdLLuiL4/K3E5JL8m5+fC/ZvlAa+vnGjXM4PZA1ryScUQoJk3KAalm6RprTP2dgM+85dRfSdA7bsMFjVgZr1JRt8ndn8IJVY0ZtPTTfbl92w27tNZSRfNQmZq/a1133ptlHr1yWxxwMC2KiMqm+vkfI6dtsVmGDQmDPj5dqU8/ssVMNiVcqX8PsoNpzu863veYI6ACaM/H89/atBSXhzJARiItYsWoPxodkbbMd6pnx/pEc28Y0t24+pSF8RJb8psVkR99Z2zIHAQQZs9KlPn5N+iBAqC2RTE0r5oKa4097S0VZ5BD2ZgTB04idHuAYydQOoxctLQxfSZ9C+n3qxBe7Z4Uh3oWcEdMceGBKZYSRBjRvrDBSMEUa6sPKQQTTAk2JgqdaF+ZEfrehgwq8BBm5K/XAJIwtYUkR1qkr+7T4bYl34TMBgb0PubjVK2yi45drJlQMLg0j/K7gyhp+UiTBGAMR3Vhs8Ugwp/u7aNWG16bEqaSHcdPYtTEXBpMA6MThqGmFaeQgCl5eFnBKR1wmcfOu+eGYQZg8d1qFJ6TDmlyPEm908F2Xh8s7E6YgZL4miv3lMHF0UelbFWO0UaxwzmwWB5t1Cpd3GID5XRwFNYr20bPw62MMTJ/XKdMYGV39XY4WCYODZN3/ftZqCl1J+LGPn5XMRBvykgl3J/iCMjX0BjD+zvmXN4Anz1nX/jZ/Cbv/ugvbs11ryaBnxUZL0iw9CMZ5oP7NhNXn4PE3MuYrvsdKBhvdavM3XqDnV+k0FP1afnexCIZxSj+6o+FPCC1CsDC6B14jbyusmsNQBRX9fzJPgAtfZF+bdnkeD28NgP/hoKDCR6sDiyWT/Qdpf2McjCr68CSLBz9Zzf9pvXeO9MmS68k24C566lCUHBbdJ+A797tj52KHCKhCkZbWAG0RG4TfkXB0mbaOlN8k45SkFa7mNmMDd/yrytnYltcTIwsKKW0xwcnCruPRWrF6dkm2JvYki6ATa9jLn0u6fGhz/QNON31wBnBhJy6ipxWI7GKvW5sJVam+UdGB0bJg5Ojc+UzDGe13IPSIQcczfZP0Wvdc0ONt50AzuvZ8HGQHWLk2ED9YWbJ6QvTY/3Ujd6nrTxLz3z2fjWp94zCaATxxPXqQaIubkDrzu7+m8JCIh8ZX02lTXJmHXK3K/GEwf3LYgaCzgruKDJtlLL3HrnpMnses7k3wwGS/BzK9sDWYYFAIcp4T9ePK9PaSodbwTEEp2qkVSqxPy7dX0wUGlTAepyze19wgQs4zVgDJCdTOM7GptmZxkgNIPkHZMjyaS67wHg6lO7+Om/9w7f/zR3pNT2gVTKgM58bWGXJL1D+nP0jok5IJsXGJydUlIbYdE2ONhs8ILrrsePv+q1k+Ocg4TM/lMzdT24v4cbdncBAD/1mjfgtmPHMSAHew5XFjxGkPWC2khAr66NOKBUdbz7fxsz2KxOZ1Wum89aPFqBWQCz63jDQleCPTL/OBWK71NJH2V9siqpSvJ5v+4xeAHwOk9OB9Romkhps6zfHPxsmujSRALGhgtUa7CM8RI0+rn/7Y/jhmuOZgf+YCC6WddUYDKTUcJ+1VbBZmnDpXSTfE1+3iYNqgcD7Ksx/4K2hWxXmYfAGIhhejyx9SS6R/o3iS6ZHPjJbRhphBnMdq7XpU+DA6UMKeHjF87jzhMn8jPCdjBYrVe0MeKnXvMGt95Xn835oST4w7LE23f5YpkbHNyU8cD1FntJGSVSZiP+F//L12DWtTh7/gDLMl92lzM8cu4AO0ubP7NZg7PnD3AWaxz2vQZdOgrmTQELpO4C3hZ5e9D3o7SQj5eyu1OliSwp5GRDVF2S/vV+0SEllTuABc8FyMjMR2ZrevAk+/fk6DZ7NmEMcqhxr6LTbEjPl82M5qejdX8g30sT8ej5Q8xn0aWJzJs+ZMyLX8FS/gEZnLIW9plkTDO5DRn8oiln1WNZ6e60xsoZZuTI/ZfbnIOaHhy67hPdLMd9qtq6sK7v7MjkWQe7IsflXD33pQQAT7vqNP7Ry79cvy3bRezH3Gk7XFyvFRQlfTK2n2y9c/WltwsY7B//za/Ci599a06jxufnFTMYpXpkkMZqPWAo/tD//fvfjNe/9C5do0PxBTqgd6iZwUwv7YJPEymbLmW96qKBFKVfJDsEQOm5ygOWxAzGQEiWW4vWGNKkdAQ+Z7+u+O7Ej8K6COs6dZHr57NWPk8GldEN/+pdb3f3/NgPfTWeQqltu8brZJwiHAAe2N9TAK74K9n2npUN0onuFQAvz1NNHUljtmtymsgRAwwC/tW73o7n33vziPWLN7nwhtVsr4rOZ367YZBUb7Izq3yfeUv2vj0/EluoZPZgPU98lvzd502jMQNu3xTAvl7n5XdfEKksn921tGaLDyiU+1oCiCkIPGaAIQM3HIA7GfMPfyf2w9QbiKeKnDLfWwFYEuiEx4CAUgWKuknGBvfPXvkavPC664vP04AcU6yVUpR9kOMpFUgLMNCY0y2aYhtU9sOlskkANgbbNmK9HpzdU8e4dJ6UeSZXZkCT2VYClLON5bF8u3xgU8DcvJmI+0jYimMI+Av3Pqv47SQlJPCv/9e3476n3GggHI09tbqe1CAmZr/dbMqaOiS36UzKMHgvyqxtJn3kQEk1Kc8WtrggG16zXiJ6iz4/MTPYWD+qmcHqIrJ3qNJEHq56zSgCmK8pxoBve8cL8Ff/zMvV7tHUlsQMhpSUbEFsU57z7MMSwoOf/LtZJjudS3wQ8PoaQHZMNL9QXtuSjgPeUJ5gtpTFFAqrdxiDwTIrFko9yqBNZttwTAWo7a6g9emHoYBVy9o4iG5X6hzNru77VNbt/MxZlzeSLMpaxrIzJdt8zCDF3K91KTKryEgDhyXXL/MCQhQ95q89+3n4pic/DQnAemASgyvwoT9Mpb38JVZSSliv1wghoOu8E+gHf/AHceHCha33fuM3fiOuu+66318tr5Qr5YushBAwnzXOc70lrgEASinJASB2XoZQdnlve5/8dQqpP8mORAnYpGCBiRE7S6gDZISUJkUWpATI8SlHuVbHBSH4OfQuMgr4HjOOfVq1YKuff4ei7EofkiFeAzJqh+TU55pmaAhVUMMH1Y3JplICU/U26hd5/3d+44vxj//1b3gFkg2fmJ3XbcHt1gGTRH3EQbERQ0LVrhDgHBzroccsejDUehgy2KSki2TldD0MWLbZ8Oe+YeWM3zcvxq39zjuLXnTt9fj7X/oyAAXQtR4yMIt2hq3WvdvdnfsujOlp131xkpihNOlkImVedrtsSprIKac7MEbLS6nnVJ4u04KgZgbL7cj1qXcpAAAu9PjZ9/4eXvzMW+0ZUdrNjvsA0/XHdeRxyQGvqYBMHXg0+WQ9IzTdbVGUHRODe5a1uQ3R7SgUh6s6P6JPCykpDqTksbr2Cm+id7tvGgEai/Xud7s9t1FBKJI+pjxTjDxm/5E0HwLyGLG8aB/leSuG1stvuhlPv+o03vXB/6TvZmaw/ZLSg3ddHPS9Y5UQR/hf//VfxR+59Tbtl7UL9KSRXJ+VVD8OnFZ2nY5KacYw2By0NJF+9/SGgl2geT/NDOZBWYHG1QiUIvKUrm/jOFDLwGYp9RwVSnH9TeBa53Cv74tmoIoztWZn0LbT/bUjQMZLYqEOBn7V67EHWdb9ECfmmjIYuGcnN19rI5cBT6G0V9l4JtZq22nqd5FCnkK/xUAW1hquaz6/Ze0V3FwaM4PxPQ7MUNrQxGDsTTJGGUCYGGQ4diZwJScZpJK9W8DKzKbm00TyDv/gHKvyEjm/Eucazau+T3jSLcfxxpfeip//5U+NlpO2AniNS3LMGlM76cTZ0lJvbGNYkL6V8oyrTuN/ftFL3BvHwBN7bi0ONFUxjRsGMolOI2O/ZtOVawDRq/M3F7a9moVpWlfdrr9OBZ9klyGCBTn8Hl2TW1NgZQfql2Mkf0SvjxP6vQeskf1AOmC+zjtZOU365LNKaWsQW8jrcRfj6NvJs8ZAQhtn2xh0pbdk/tYBAbaJhglZJEEiBe6SQ5ztiClAD6dGXMxavOVLT4wbNlFSmUvcnFoek4iB7D/xzKDJA8oqW2UN4LOrQ+f8G+i76fOHak1sxqnMpsaeB1uXndFVHyb6mTf+GFhLlVQIU4jNC1Yhdf7ob2YZ89e0JfWAf5bX77kc2Zm53/V4Hq9J9j4eE6wTjsAkVYrrSzEXdDHbMx3ZOUNKKpczM1gOaBybzbSOVn+TVfI8Zvnhd3/+8BCn5pnp4gj53bquwfmLhyYzEhzwQd6pG2a6Bgcrzzwiu/+5qXVaRdETU7LvPZ81mRlsOQEGK3q0BWOINSNYmsipPmUbQDeElAP1Dvcujjf78BgUQE9mFrGNDYer3jnt2ybiYLXxjvwmODBXXVLK+spy0el8ynqP9E/r0kwimNwYkqRHtA1Gzk8xepufZwKAECYADZpWstL0Pw/mdjoSAzHSdPsR/PO0/UVOuwAYjV0DtZJ/gJ4RkNP3tCFgVcZEnzKgkoFNlwq41uVI15neUWy5LPpkvTfZW28w4e8P2OYgARS4NJEV6wOSD7ivSwAshMyiMOsaPMpgsJ0Oj57bx5nrj+szZ12DT3/2HD527QoPrvZxvMtyg4N5zDzThoiDYa3Hd9v87FmRTUcqH/3jqewsO1zcZ2awhNksbPXDSOEzrCezTSCpaEVG9Sk5vY0ZcuW3rWnQ57G+qu8nGSDnxsxgSfV8ObUQMBiAb3/70/Bv/v2nMQxA08AFqNsm4uz5Fa69agcf/8wFq3Px3Q7F7vsbz3sh/v1nH8R6GCiVXVP8d6UvYnQ+p+zrG9sKPH/8xoEidwbm7sjyJhb/AG+gY1nDMuhSzGBZxkg/eH1aNtMoMKkNCjZzvuOJ5zYh4OR8rt+/lpXynp22xcMHB1i2jRt39QaBIfHY8LJGyjzm7AhHd+c5ljZiBmuxd7DG6ZABnOL7ZT+n+CvFBt1ZdCU1V6/XCYteQmFpKvq2pPAS+yoF2dgpgMGkm14XIeug4nMKyN991uRUo6y3ZFsx/14WBhEg+49FP+KNoDtNi4PeA+mFCa9tsu+OwRb9ZlAZzGtxretMFZc6kfx3AHDi2MJdW6e1ZZ8sg8GkvO8zn8Zfe/bzABhwfTX02Gnn7hiDDTVNJOm9ciyzZAoAOANY3JqLPJ52d2YGXqKJxyz0krKuHwZ0KZr+E3OWBAUNtk1hBsuP+Tvf/Qb861/8EOk+0zbsomlw0G9Ubv7tF70En7hwXgFMxuokGR68HAkhjORi7XdhvcYRHTAwk3wt4ptR/0HxyQyD6bgZsBNGfhphZBe/ItuLBoaTeW3fbhuoR67L7bK2p5QoNTGzqsk8K9dUIOVF2yoTLoMvLwWW7woga3DtbEZyR1I68rcWHcbVkcC224qAwSRFpbpuQsA1yyX+9otegn/4ex8C+9kVMCj2QgGH8W/OKiIsUDIfZXyxb5TtD2YGOzmf45HDHGM6ONjgqpM7OHZkkTeE9IOzcWad2Rdus4wZ0xn4XzKGDCk5G5J9pqwkdN047Z+UTWFA+9svegne95lPu40eTcmIwG0HoGyfAzwzmMjKrjCrbSuLJsvWvuc0kREPP7qHIzsz8/PD1tu2idhZZgZBthfn88xsJX6QrqM0kUgufs2yXOJ7wujofZxmP7D+xzqHgClFrrDJ4DPokA8i2oa9DBIVpmDv+3zFS56En37v72oMIKVLkyqwvNS1NvkNQpyFg+0iYaNj30DbRJy7eIid5Uzb4TahlTbyPOd6SGHwV6Dn5/XaE3kocyHg2IUf2L+Ia5e3lG906bX3Snl8lS8I2veOd7wDy+US3/iN3zg69wM/8AP47u/+7q3//aW/9Jf+wCp9pVwpXwxlHMgeC0dRCDl4CYwDZLLL0nkWJkoNiJFnjtgXog+miVNenf5VMCyE4ILjokzxbtOWgoIiOGrHQH6WNt61OV8HdZJJkMI58gMDGjyIKQfjgnOwpKr/HStABSDgwgasHqO6TgUCJAC4SQkdoaKbQAxrgZ2+tYPXHIhSr1tuPIHrTh9xRgUbPmyAcX+wE5ydKlNAB76GA5BsSKzIcJd3rYojSQz5WXHOxwCs+h47bYt1MXZz33iFXN4BQOm0dXdY2UG+03V44vETAPLO2IPDDf7BP/91NeLF+cG7D6SP+sF2niyKEuqdQ9GldpDCju2uy0bPepPBL84JRkOn2bK7IgRvjE2xCFhf+OXWVF1mtpHnogQQxvPAgFpljFRy6JIp1miMTDGDad0mDGED+onDLMssfgpPG1Zo65QFjTgJyu+2ZgYL0aUdFfAYO23ZKBeZom0kmZKBS1MMceUeUZKlzaVfNkL/nOS87bJtCx2+MnJUmlRtpB/tZrj92HH9LTvU5Nq9zQazJmoQJB9bqyMXMEAdADyyOtR+2wwDfuwjv4dfeuAzOH9xhVtuPOnqovOADJduwinApR8SlvNSF0kTCfqeVSoUlZsxTBq6PEadnIWwR/nduSZPzQE0VM9LyQeec7/6d8dqXhlw19evXifEmaS7gJXqPuk5utjt9EH1Pusj/2/eGSV9UQ4YuGzUD2NjT0Apjh2G1jd18pORa0Zj7vdIbWCWNNudXp0j2VOvpQLmigF41098zuaZ61+Miu4ipl2A+kxaE/MOLn9eAW/JM82Iw1j6J1V97upU/taA+fz+8h4N4mR9yYx6cyjWTrUpZjApq7WwjJkTZtMPmM8aPOmW484Z93P/4eG8DoZplkopA00wlkOpOr5tR6m2V6/1AM+drsPTrzrtb5B+SuMAWL2WNNGn9dO60XN0fld9JtcNgzmIGIyaLtG2qeZOxZm9RhncMR1LEPnjA0n+ffYkBZ/Qw+PEDuEpBqFtYATVm+X7Vg5u3gxRtyO/y+o9BRis7QGtN6bSRLJtcWlwQ95VKe/wckQe2w++TdIPcQKg1oz0Xu0llx5FdOwQAp5w/RyXKjJVnn30OF516jRGs431aQ2oWj83IsOLDpdTiObbOPWk9g21qWsbKFgSnn1G2qjtrufIhFzNfWMg40iAOpZ5GtxN5niWdVnaX49FbyeZXmaAUGOk5jGkcilxn9n9lyv1NHE2YT02KUik7yegyjaA2KVAKLMm4mCzUR0uO+lt7REWEKvf+Fl9stTOXVOz//hrT87H47Vm+pL3hBjwVa99mj5LvktX0kpyoHW1tiCyFNn4BVCKinJc7a1Zi889socTx5auTvMms3v1dO2sybq86O79MFTjprSnOPQ50JwDovZ7zWzBwaeN5HslELjpPdO0sALIXAQqZjA65plvfX3ZDmliQF8xuOQd3l4/luE0pJy6kgN+0+BZKy7Qpf2Yg/M9jRs5D+Q58g13PRl3HDvhGdSonW1DNnIgxoMKaMe71+VdyljAKWVYTyu6jwJCEkYTdyPAhZT0+28GS5XDAfm6TK2Vrv+SrWG2lpkc7GpWjfLvt73+Hlx7+oi2SQBcbEPWbGFDShpIm2LfEDDYzqLD215/D44fXeCRsxUzWNfgsw9fxImdBS6ss+33J+56shvnWc7l67toG4GGBOx22V5bNi0eOth/fIPBFjUzWPbPNHEMAHWF53XMwXNSe1V3FoCXrEN+7d7OtiIlblkTR7pvSiM/y5AycEn8CwAwm0UFaTzl9lMqu/QZ6tsIePT8CtddleWurl3wDF3Pu/Y6bb8xgzUqB7TtBEDuoqWvMhxo0Uul3ZUdD0CBDWzTix/AjVdmlnHyd9o/k89Nsw62TcBm4wG4DFZgn/KUn1dKDMEB5AQIyGNhkyxDgtxfgxJZ7umxNM0MBhgrJ5d512DvYK3AHbHjazDYqvKHCoMY2+ryDPZXzAW4ANFLU04dWpBsGaRYNvyWOjFAcEj5+s1ggNRF2RAs1++0reox7FNmAMOybXF2tXJB5hnZvymZPdw1ecwIyIT9LvWaVJe3f8UzHKNnP4zn4uUK68S1zrLTtjhR9DJhRN3fbLRdqvdQ29soupCt6aLXZIC4gagO+s1YT2L/W7V5lcfakJID+xszajTwypDUNyjz5el3XufYw7hwesZ502YG2OIfu+eq0wrSymAm04NzhoesAIgaUD6J6+da5spvAZixDPds5+Wv0+mhaSIzZq4cSwbYSSB9x8kZ2QCbnPyWbyhZaAAbj2FiuagZW+XfPKc4pajMO5Evm1TZTOwvIJtpOxjMmAAVWNWVzR10S1vmmJcz0ZjBRB+fkFl1OXPDCXztG5+RbYuVZ7ZrY8Q9xW/E+rfIRWWTK7EBsY1qmSPgGtERNxXTXu5nqC+dwWDS3s1mwN7BWpmNZcyzDu+YwVhukL2dgV2D6pesC4u/wXyCZlNtW+8O+x7zpinziZk7k8Y4BBim1UlZvnzDnU/Gq2++xdLGkx1Vp47kInqiAEiljy7ur3Dy+BK33XwS3/zW55Q2JTdnjBE5PyuniRwQSuyV/UKcghMATp/cxTe/7bk5ltcPLr7Hqbll7nMGImk324I5o4L46JL6Lzxwyga+pkCWb6f2AANPA55/35msoxTm1iEVhnoBCjr728dje9IthIWRY7oGVBW7sRkxPrZtxPmLh46F28XFyV8gNZmSCHXmC+kXAcDJzfMCvmTfgZQH9/dxepEBe8yyeaU8/stj/pqf/OQn8Q//4T/EkSNH8IM/+INbrztz5szov6Zp8O53vxsPPPDAH0ilr5Qr5Yuh5ABq/veEnysfJwcgK58SyRYnWVRFduzkqsEgcrtzztG7AFhKyOJsN8COBQHqNG/s9Nf2QZDTFiAoFdF22wPGDtNxf8iCbQsZF96dx0HhAAsA6gF6Rwg+ECSBo7oKvFhOfa9QX6eKhzlCMmOWic4RO5S0vwqshWAOU66A26kPr1AwNXP+7evLzRMQTK6//7YcbBTH172nr8azrs602LyLC8jj56Df5N2ERdmUVCYRhRlMDMLEz/f1UwW/gFoa+r3qK4dp2+Djn3kUQFacAHMg5ZR8vvF975VXQAx+YjS6FAgIwkbWY7Pp3c4qKarYbTG6ahAXMBmP02f4epCzKPi5F8r/JZUJ+XgMY/ahQMrllF3oxkhrY2QqrY4xcuQbedxI7bto1PKsL6aURrtz1GiNOcUh9wU7KtVgk9/NGCymOya29LD0UdP63YoC0tjWMcwMFuyLFGctpXehHaOd7CQTRpfq29bp2erCOw0FDDZvGly/s6uOlYubDRYMBiMnwh0FWCZgsE/v7QEAHjm7j9tvPuneJXPIgSDbiLXMvylHRp93kh4/OqddUzYQJagG1PJqS5rIUAM0TF7wDrh87XjtqAEeAajWMmlKPRd9MClwIJw+WV3lJjILZhVwBwUAaH3PzxnTiufr/fOljW7NjrYDfQpQLNdIm+X/pwxYXt9ceufRGl3WJnL0sXiRtUIdzVU7Wplrrm+gjgt7Cp+fnhfMLnUpoLbbNUnyeUjm9JN+GMo1Cm4f1aa8GwRGUx3Czt94zQ6e97RrCrNiccBUuwCFLZAdSsIW9q4f+yDOXlihLqvCumJpMQJW60F3MA/Utw88nFlgxFE51YbcV9Z/U/NGjvfVvONSgzMvzUTm9SXVV0V3QnKdKWsQy9qh6MP5GVBnEjAeswEWZPOsWeVP8N94UjaE8bEaUDoVbC7qugMB2do8BqEx00qS8VnOZZarSn7SO0dAOWoLA8Jlrisrmzy/iagxg3Ug797TV+Pa5Y6bkwxOdbKT6uVkRKn/ANvBndfp6WLMYL6feE4PlSxyALehAnM40Nv0t8/AhC0Vmigib+7ePYLnHT++FaAkYOb6fTmVrenhNbtILDZZPfnue8oNuP6aowaWQ1An6njDj9ljcUIP4fHj7SJi6hI7ig5IwGIoHSHzDShrLuuF4mCEH5u2jvl5Yd+MAaG+vnxse6nXh+lAn/ZBtebX7JKAt5+AzN5z793XT769DVlf7Sod+qYjR/CS628o9k3FWjVhH2uQJubUKPVxKdNgsJwmUlNRBwOLfMvXPl8DybK2zDoPHptxmkgFS+VAiUvttRYnh/WNMHVce9URV6d5YbTYkD3ZFbtR7MRLMYMBZiOO2IKD/91En86tZu+QgCmzSgu4gMECHhBl/WDMXmPWuRpEuBn8RqTZbJwmknW6TVVXbse29VjbWdbmPg2YRwN4DCmDC2XjXETAH7/zbly/s+OYjrjUrMk6P4gZY6pe0n4JIE35KCQwxvZ23Y+bYShMD6anStAHmF6DL1dEXrEOY/U224HtKTkXY8A3v+25OH50oYHA5WLMDCb1OlwZa56m2CmBUC47yy4z6S06fPPbnlvSRO5jZ2GMh/OuxUOP7OHEco79zQYhBLzjzruLvc1AUZsf697G6E5hBlu0DR7c28PxmWdTfDyV3Z0Oe44ZLIMGRYevi9N9S/+0BE5QfTiGzAwGnyaS5cGlAuxSWP+7+tQSz3nq1aO1mFmEuUjQODNu5HPzzqeJbEgmDYOfl3sHG1xbwGAy1zJjl9/omEGEnn2dN7T5jSJ+PhzrOjzl5KnSp1YcKw9sw3ACTHaGgFjSRDIQwbEtimKBS/hngJJCUupoeoeA5dj3OA7KTsscLtaecZ8ABijkVLs5+O59yxOq3MjHvNt1OLfONuCsy2ztLNfnsxbnLx7mjCNSgvd7Sx/WwI3Nplf5Fck3I+OvHzLrS6+6cwBCSa2ZeI0Nmkq0T8mC7KVfxAesacFKSjcFiTeeGUyyTbDc2m07nKvAYLeIP6voYC5VZt9jVvqk9pNfCtv1zq96jvvt4gdfYKl1snq0CgPW/qbHsjDtzEuaSK/nZWALyxvRjzaDB4MdUors3F4el9Mbnfnats2gE9aNRa6E0h+zrtE0drzx1wEwyQ8g/i3J7MFtkxSjAhADCstTYQoakl/P2R6qN1UDPk0kn3JAdbadxTZE8fulVOw+SbkTVPbWrD7qzw3Sd36DUX6+6fpyzMbjeFyZz8zqn2Bg43otnwSmyFwFAZdp7FzKNyMbfpmdcWoTcNc22FAad6Bsdi4+Y8d4eokxBwDHjy7wJ7/6OejaiMPVZtomg7FZAWWe0KaPWdO49UT0n5oMQPTnDBb0ZAFDSjg5X+C65Q5mTcThYLEF0ff39lcKxm8FXElylUFbGrZFcmta58BfMrZM9ubjAtqEPrfWraWsemPybEjvy/4U85u0VVtjCHjR9TfgmaevGQG/JNayrYhv4eff+2E0TcC1p4+gbSP29ldYzFpcfWoXb3vDM/KaMAEGk1grIGkiewOB0eevfuLYkTne9vp7INlXFASN4HwG8hzZMOJ8WCR7hE1OfGHip6pHIIPkeNM1p4lUG7PUQ2KJMSt+xELoxx1VCV1hXVQQYGtgdY4pMeB03rV+Aw3yODh/4RDLRU5Z/UsPfMbeBWH68kylU6ucHFP/nPhG9NuUOtCmgHq57GK09lwBg/2hKo/5a/7Yj/0Y+r7H133d1+HkyZNbr7v//vtH/33TN30T+r7HP/pH/+gPpNJXypXyxVBk0eHfdVEwUbULuQbt+BSM0+8CPCOWAaXCyPklqTmy0PeGu6s/BdRHO6op6CPoc/ktgmM6sCt1BDhIDcAtMhwAqsFEGhAKno0llLZYP1gfSL9mhc0HiaSQKXlJJoc6MJGV+Nx+dnRL3TmwOrXbNyKMPiwHJryRS84JOscODr5WFRdmSKBgR0pwaYjk+KvP3IJvuOvJADLTF6eJbELEfmErOjWf49R8gVkTVYlYDzmVw7o41nnXDJcaDKYGQKEG5tJ1DT72qUfz+Y6ZwYYRxTcAHByusSjsRaLUZ4XcjJe+TxPRf9MQxThabwZHKV6ucv0xpVBPBYC3lVppLPZp7jN2Sss/gmc/AgwcyM4nDmyV28aFFMuUMKnE8rt5dzmQ22k0zdEFF5iGV94jaaPkFU3w4C9R3tUhGIrBJop6qMBgwZjBpE51tzMLGRsi2xwnEuSpDXv9relTzNhTA7XsJNrG6CI7W/75Rz8yei/gd0o2MWZmsNjgup0d/O0XvQRtNICYFAF+vfC66/GOO+/W9wyA7jh9+NE93HbzKfeuVneImRxw9Z0YL5Ju9Sf/7td5+nVpH8maOjA2Zeh64y6Njqfkx5qsXTzGh+o+C+aSk2A0Jio5XJxSdaCo3t0dgjnEcn+U4FepJ8trceAAY8cV963vcgIH0JyRW+RcbZyyQ1LmVn2NrOXyW4xeXt+Z8ScgOBkykKNNHizNVbCbPLuVoJ21TerC83QkkyaElDxrmLjejbEwTtHHwAh27NdjrQYATInKKeDHLdcfxTe++W6fxo/Oy07cfkhYrwfMuuLU7fJ8+D8/8Fk8en410a5SNwog7R1sMCt9cer4HFef9Owr25jB3DpBc4nZAOz85dctlr2XvZb0WglUqAPUiEfyux0gUwaJD7o7ueDaaLqVpiKlZwsg+XJMK3Y9t2GiXXy/u9aYy6S0wQODvP5gjjx2uhtQzuu/rt4Ta3vN3id6HT/fpw3P1w7VvP+hF74Ytx8/Ptk3wkxQlxh8nUw3TuP7J/pDwICJ6sUsb+IcFLlqOgkmgUzCJgCQ3pu83isgsi+smE47bPmw3BduDSvBtEhPqjeHcHoiKf/v/+51uPn64/otAdmJOsFu1YzZrcKEfOIxkFB2mFegZR5PGQwWte95GIyB27Zmsbx336zMCzc2ZX5X7dd3TkpmK5dieHAMnMFsSRdMa8aA2twv9vvksSX+1l9+/eQ7ZoUJQoJ3opvddeIk/vvnPD+f7y+9i94FFWLFDFa1/8TMg8EeOTzEg4d7I2YwBiLHGLAmYFfXNdg/XBvrRmfBIg6y7x+sFWDGzGCb3lKHS8D62BFfL2HI+Gf3f0SdxV3MqdkErCTMc6M+Lde7Pukt1Yz0KYM92Cbj4FpKKTvjh0F1WcDAbgB0wCogqppbLlVSpSuKLAIskDQMtjlEWFg+98geDlYb5yvK7FeDpoSSugNlHo16Bg60kecUsBkSZo3ZYo4ZjdtS+RdA89AB4cBrhweJ8SYr6ZMSF3Hgg9wvtkFL/FK2sdC3bkOyRnT8zTBMggUvVWrdJqf+szoKm0cCIIGlOt02A2l4U8tyPsEMVrqCmYjEPzHrGpy9cICdue3kP7qb58miAMu6NuLC3soxg83nLS7urXBkNsPexoBQaivDB21aYgZLCdgt4IpF0+LB/X0cn12a/fKLuewuZ9hzzGBj/89UqW1GZQYTXSFkFh5Zf8Q2GuD9B5cFg8FAaWeuO4I/+ZbsR6vX4p7AWKwniMxQf9jMg8G6wnwFmK4L2Py87vSO+x0ACLSI27EeLMg+1xR/0PMsk9ivc3q5xA+/+KWjdjcEGBvS9KaSGIAooCXqD5Y1LFPbSzGD8SYlCpAym802Nl05PDI96d/CVMn6DNsOwkjPNpCMlY+cP4df+9xD+X2YsFmrd9129Bh+6/Of1/ozMA/IYLBz5w8VaM1tqb8/B+V1w2zpi1tuPKFMWrqRYIAGssWXmpD9bLJuhFAH4QUgOGjQWRiMmAF1PZjcXLatyqTdtsWZozn1Iq9NsyZib7NW0BQAfPmZM9qWlMxXKqm15Ldn/5n+9tvKFHvb5QrbtU317qmNF/t9xQxGmTOADPwStrA6deRmSA5Af9hvoCJP7JvyU1JgT/pWIGl1DXSizONlrZbYi6as4zEfI4E27aV1msjDAiDiTa3C0mQZQaKCC9knlZ9tcuNSzGB98gxoDsSaO9/aVjkOsw44ZguT1H0GsvQM7rppANNgU2ag5e8CsG/N2iFVEttKjtVgsNzewpI6pGrtKj5w1xfTcYnc9mh+X3lPN2b30rTWgGa4EL2fdVrJ0vJYimxUmbLThOnU2AWzzcBEAYDFGGdNM9IJxeegv5MxhUk/77YtfvSVr0YbIi6u12arFSAxM4MJO6UD6HUMiqnlDvSazWZQHwGDCPmv+wbtdnZTxyIY/AbdGPIz8jXR3WOyJIzAYPLe3/z8w/jo+XOT70XRNdom4p/+rbeiiQEX9laYz/1adLja6PokbGourfKyyzZnCKP1b5usAmBAq1KHAGKHh7GT1wydKg9jYXxFyCzs8k74l/p7ogKpZANcrfcJWFyyy8hGG5G/AhQDTD7KkJdxpu8rskjkUG530vSTQNlEVIFzMzNYthXOrvyGYokziY+m7m8uNRDaxxsIrOjSRNIah+0x8ivl8V8eMxjsPe95D0II+Iqv+Iov+CVf8zVfg5QSfvEXf/ELvvdKuVK+WAuDmYBLO7DrAEZ2mJux30RJpTEuLNQtb7l3BNRBH2EBEwNIlHZ5lMrx6oV8OMIUnwHQOkrbARhVOj+jcn74thSDLEhayuomt3Ab+5AABOrLhqL8i9NfKqJ9ugWBn5ANrvoYqE/rIgZNZgazK7YHNuzfe/0G/+5BY0asnZc+TSR9RzLAGATH72BnCxsn/H42ItmpIqVOE9nEkMFgscF3PuM+/Jmn3aNgsRACVkNOE6kpQar3cN8AUIajRp0ILeoyaxt84jNn8V1/6qU4eTwHwIXB6JFz+6O27x9usJh3eM8/+AYFwLBSqekBaycNOaLEYFpvemUjs+ssKDOlKAKe8cGe7Z9hfTHBPAYfbJN7VJZU74wRCuayuXCZYD0HBmjH9xQYjIFP7DzhqnOayPqtjr6adzQWun1n2BYn3M+85g0aMDJnaHSBH6Gv5wAaM1WVjihtzOaAnKkDG1wkSJAVdB8glXtqIAwgiv0wmkdSmhjw6OEKP/Aff23yPO+4akLAfu+BX00IuLheu3mSAXHDpGw66Df4p698NZ7yxGvw5i9/qjtndPGPfWck7zyV/vMMEgRSpftiDGXHsy8M0GCjZTLlGF2r3zBUO1/KelCvMfU8YEBzrl9031EeOWZd4TR1YbvTWd47yF+/Dut1I8MMozXD0dBre0QelPuccRZcmx37I3nxxOitjUVpQAjWRnkn7HY3NwbvN8wpzWopQONE61p1yNQobAsY18m/UgZUY0HHh80hTWFNMobXJgkSTonKBGuXAuAn6ihzNlWdaQ7EhMN1T2Bmc6zu7W+26ohNDHjXf/claJqA/cONrkVf9arb8bbX3OGubaNnWazLQJWT1ALSosfM9sVzJhhl+7bCn7d20g9Vn7dxrIcO7nsm1eUSxqlANE2ABJtFt6b6pup6foe9pz6G0TH3jWEAJQ9+sj7dxhIqLLVuVy/pdpzOZFQfBzw1/V90jRw8GTuPJRjPdZwqXG9nawQDMLn+nJDZqgOTPhqqe/S51O5tx4Y0ZpxJyYCEHtgTSO+tmbqKDGyn2fQeS4nAqL1+/eJrSR7ReidMJHydzcrqfazPyXhrItkyti7X4NZpZjALGuWxUoHbQEB4mKNd7EfA7Ee7b/s3tg1Gec02+8he2rJ9Sn3SJw/431Ym7TMXHKh1BQ8yE/AwB+8zy+VjGyNdjDjYGDNYnRZyHnOAY6puQB5TawpwzIjlp2bO+jev+wrcdMQzcP3WI5/H3tDjoAq41CmlOCDTtY1z8Cs7CfVB1zY4d+FQ2ZA4ndVmMyh7sgQE6nV+3jS4uF7joxfOq30tqYIk0JKBB+Mv2EkQSPvEp48RZjBjovDr0lSaSGVRURvZdnSbTRwKgwYF3mqbQY4XOctrnKz7rF/P5y36YcDf+7lfx29/8mEArF+kwnQQL7kO8VjkFHAyjvuUWQQsYMT6fXL9xv3kWHmqdiZaj6TvlJ2QbMCUkjJSd60PpEbuwyFpQJEZjrRdg6VgE3BWn7x/5Qstdep5Z1tDWNV8mk6pe4j+m0pf/J3vfsPkOixzI1FQaDZr8cjZfezuGDOXgMHkGrmfU7/sLjtc3F9hp20dUxyn+anTqG4UJJawW9L9LNsWD+xdxLHHMzPYssNFZgbrh0umpdG1lOel6PvsCwiF+SgEDbz2qUoRG8JldYVaxwTsm+r4L3NonCYyoW0l3Xw+JmAwXtuNGWxst199cjH5bpYZbfTycl4YiETHZvsoIQN9tm2iCAB+8lWvcembgJK2afC2ZUBAKL43dtFkOWtygmXtlM9AzjFrGKc4NlYSf8/F/TUu7luKvUtJEu0Dshk35ffPv+4r1E/F6alQ1udf+9xD+B8+8Gvl0Nhm7dPgfH6nFgv8+XufubUu81mDzzx0HvPO+0Y3VQotINvjxkSYsxv0QwZrf++3vxJv/yP35utETpPc2BQfacJEOuDyn4xvZoLrh1QyRdiYWjZtYQZD+d2orHrzbXfgf3z+i7QeDa1HF9cbxwzGoBzAgMfLRVeYSi3gbpV97OAuBjj9fkqdJvLCej2Zhveh/X0six9jVoBfeU30el7NCrXqB68PNhEH5P9EqOcMpbsux1i/HoaEWduMrlFmsPJ71vE1QZ+tax3dG4mRfNE02O83rl/ER551/rIWSppIacbE9xJAU71ZNLP1ENiU5qjfjGz1Gyo9TMA5CeYzFLYwOQYYUJUZJAcBjEXrF3tp1Y5qaAXUpAAWh2tpY6sM547mYYLpbH7tKnoc61hsK1ZFQF5urAnwi6ovIC+nJ5fr0tS9VZmKWrZtxOG6V32fRXRTgDtSh8wMRsBoijMBeR7xRnLpU89s5G0mDz5tcG61wk6Zl8YMtsbOcqbH+j659XpnYWkiR6A26hOZT6IDMngZgAIUbc61j0kWSUrZqH0c9HliP0WgpFUPes82cOD3//qv4se3bE7HOuGVL75D9dS2jbi4v8aCgMkJyYHBZJM9r0WLeYfNps96dJIYkc1feX49ZpgZrGkCQjK2ZPNzVXoQ23BFhgio2dn/4Fu8nicbQIZUgGbwvkrxfeaNVb3621SGJGi9baOijQ0B3gIeOMgbrz0zWDNi/mxixLkLOcX8Qd/jzbfdrvVrxCZG8IFjbPdZcdusY+xWlyZyy/L686/7iukTV8rjtjxmMNgHPvABAMDzn//8L/gl99xzD2KM+owr5Ur5w1BiCC6YvM0uEUWhlq2spFuayPFucRbpnGaSgy5ixLHiqLtIYcZgHRBTx33wwQo5VrNb1UH6qUVXjZM0DrxKm0O5vt5ZEdXoCd4JEvLCqewsKGAy6Z2QQ+h9cV6aIjJdUhqn7XNtGB1LuiuuTqloLBbeIcDB1v3NBh/4/MP0/noXKtV0NC7GTml/cf6XC4o5nckUi1FqpVLWw4BZY21qQ8R+32PWNGhjRBujnpfd3eIgYVro2mnFuxL5/LwZLz1dF/HRTz2CW286afUojo7f+J0Hcedtp931B4cbLBetMnoliBJVdlcVVrG6MMuYGDirdY9ZGzEEY1kivU7BTFNlq1OwOud3sljAbJKlpUyQbEfSXA82Htj5uI122OqU/7YUQJ9ME6lKqh9HzAwmDiKeK1NMYmyQ1cCMVsBhCNjpOksTSQ4SZgaT+wf4wDKPNg5CMHhHdmHWJanoyG3rewPAxRDMyKNdHFr/8o5t4KomBDx0sD95DhBAgaXFOdhsqjStmS1szmx9hUGsTk0EAAd9j+OzOeazFkd2Zvj//MCb9VxXgn4Hh5vLBlllp+xq3ZuzsVAk98QM4YJl7IDfwsDCwALAj5OUvLHL8pT7w69FFHQOeusksCxV7x3qxRIGusrN8SnoxLHDaRy58PgXx1NdmPUo18PXy/rC5AJAQUKaR/xeuUbW+bpeAIHB6HUMKgkQgEBpvwNgiEOrvKtOsdTGsgR5R01AUMdR1dVbA+6ym3kKrAyWJTGi1zED7RfZFDoJyEjw+oDoKPSK2hnJYHQpso6+7bV34Bu/8m43Zrqy/h6ujBmsI0r483ur0fot98eY+7JtIvYPer1f0n4A5Lisgrt14f6OqJlFub+SXj/5DLr2ckwJ3DB5T9LfHlgs8tk5r6vxqfMveZ2Cr2kbAjEFa0sNyqp36vp28tGw9To7bjIqVWCWJkQfeJ5oT+5Xk5WliaPxLiDlrfWm9TnBQFJOFjNjVrmP54PWDR7QZCp3mJQZoqNbv6TRtfm6MTgOIJAay3Oxf+j9BvbTkeRTQpI8cPpHMbTceI+XB/o4GUXfNYzay31C49zJo8zU4fqM7g/6l+S56HhqC5brkwG4XLC3iSb7J5gTdE3UuRY0uFEz8/H7AAOvic1qm4l84HeKwcd0VmideHc8YCDVREr2FLvc1jJxgbOZaIxI/bkCU7ZSnSbyUqWLEQf9BruSmq0Gg1FQdKq0MeLsaqWp3bK+m+8/6DdYUKB01jSTz9iddzg4MLBXTuloOvSsa3B4uFE9bjlv8fAjewpAmc+anM6O+rLrGpw9f4BluYYDQMwMdnR3jv/lu98wqtO8afDpvYvaDmvboHZiT8FkLh3pw3LfQd/T7+BTyRNIBvAB535IGZAlaSIrvVX0AT1W+V48I7dnpNF0MjSW+pKyTB3qsxzw+Sgu4uHNQa4fRJdKGtD58894Jv7UU57m1leTO9ZHNQNaCNC0XcrUQwGxIfk5unE6nckdBp0AeWf/u7//zZomUzaA1ABv9nUwaJfXeUmZk5LIP6/XJQgzGAETUsJmSI417QstNdtwDiLZS0X2tpUvhINNNZvactF5ZrBynQJ2+Nt3DT5/dh9HCAx247XHJuvKzGBHdmY5QNl6MIiAvjaV7s3jf0g5aPrul74cx7oZPnHxwohN8PFUlovOM4NRcEzK1Ho+wIIa4mNw4z2Ekk5INhhBU8czUPhy60AEMCXdU4Jj4Wc/hAQpUyLwgfjDugyI0m/bBseiVZv8R3emgX6i/0pbN7RhLbM6mS6sazCE5Stu1fMDgJ22y9fQpiEJoDpdDkAswK8pVqt8L6ebCpN+OkDmobHvSRHmNE7DJNf83X/62/j133nY6bF8P7dQ/FRuk0wBHsybJvuBKjAY97H0J/tApWyGNAK1Hu22AzQly8Ezn3qDO75a944tTPyc+l1LdgPxz3Rto+s0+6jyJuzi/4wRCJKCbQxkE51JmPNCaeOs8X65RckOIffvdJ3btClsPKt+KPLpFbhqscDDhwe4drlj73P+I5Oly3lOO8a6nZQhmc/vckWA77/fUjOBnV0dTjIvPri/p+2alVThA60/qguRriJsqrx+CxDe2SSVbVenaEN1rQAmkQyE3MSggAQgj50RAxUDk2hsKEAKwNHZDOdWa5clReRtlgvWDmGBYp0kPxv6XNkEAthYeN411+F/e+nLJ2wHnx5cishb3kzCKSGD9EtDoDHdKFH8mUVfYDA425n6rpG9Tu2ivzJv2ObT9MVkY0oqRAGKMAMj20f9kDBQb/jrfJl1GeSV5YdlWtk/WLu2iI7PuptsIHZsjFvAYFOFN6LsbzZq56C0X1I1A7aRhsFbrh1FRtW2Zs0UZvvpQgHimp3Atpa0ce9g7dJEbvrBZ5tZzHQe1D4o/W6SSjLkscfMYL3+9RupmbGPS4AfR23I9o6kJJZNsDnFucznbDfWcZOpEsMlQO7rhGNHDWDexIiLe6sRS+Xh4UbHkqYsJt1X1qIg/SSDHsBXvfbp+L4/96oRMDch20OajrSJ+g3lvNg7tf2gtkY0XYc3gKda5gBaWQGyAzVj35iFMBbgm9hCuimoAm3x2iWshFKBeWcEAhJPsJSQNjb6YcgbrxpjWL6wt8Jy3uKw36he/7++5MvQxBw7mjWxMMRtL6MN2dX84VityJRRTIHWrCvlD1d5zBb3Qw89hN3dXSyXy8nzV199Na699trJc7PZDMePH8fnPve5318tr5Qr5YuxhJpFYCyKsyOMgrzkfOciCj07Kd2rJhRSM5g6CpqIUWsBXPn3VHCmDhbZCSi7GBsDcrelIxgb2PQIV8/8PuuHhLzQe7aEqEaPOvNgoIF6p4yrfDDHbUoWdNxaqkbXToL6nKSfu1SaSK5XHeyvPyt/U5cmsurzOsUD/2VHl2OC2BKI0wBhVZn1UKeJFGYwayfv2JBxPaSE73zGffiyG24avQuw3OaWJjL/Xkwwg3Vdg89+/iJOHbc1RgyVj3/mUdxz1/V2vGlw4eKhKu5SBlIqmyaOKJEBv9NOaJM3myG//9gGv/q5zwK4zHfYUsbsRfZbjBMBiW0LTurRMp5ZodWgIF0vO6LsvfWDrDQU8JqicJYqjVg+grmL2mK4SkA8BLqOnGq8g7DuP0l9wY7tvAumfJfgwWGy48U59uGHsSqqs8btfmvE2Vj1h8iKUPpCnK8h2D2ci53pkIV1gFlr+HvGEPDQ/v7ouPYtzGHSCPDSgcEC9jZrB5psQ8DF9WZy7qyq+zlVZNdGHK42+Jbv+ZeXHcNNjPjghx/CL/3qx92OuH5Ied4UEGWdGoaddVOO9EnAI6CGETt7ZN3RCyCBG74vH7clQNaj+vkVoJmYZRiQVYOwwkTAfGJZJrBU+Uvg5j/1tufWrbV6QOaxHzPyHnlXqlYR3iEsxweMA21cLMXFeCet8qUEc/Tdfssp/NfveIG+I6dtk13qpSXqNGpyH7g1Pjd1teqtorUzZaKykiZyGzMYtyfBOyHUkGeHaYzOcSZMp9NwPQrWwo8XnjPyjY7tznD8qDn2Rd9QZrAZMYMVuXF+b7PVWJd3NDEzg0maSCkh2Fjbxlygz6Z+aaLNJTb4L7WjNF/72ByOU0UCEFNsU4CBfHK7dKBTO0FpDyd2f2vbjG0LIdDaM5YDuR7jNfKy17mBTTJK5i/dX6cldXUtwLU0eF23HrP2KnvZFLut6M2lwip3JXADVEFN382uD0QG63up6pMyG+OxYywcLMdEJ/Al1wsj/aJ+Jh8bscHRdZJ2UtrC+jc7smsAYl34jFvTME7/yeOAg4z1+AiwQKG8XerF4BPuIw8KLo7DpgK8wcCE7gmsD2lbksqEBLKLEs8D/2zf92aDifxsqm/MhddztX8Bd30bTI/Vfpbnp0s7Nbe9l3VPBnoZuI4YQBqRHXZ/00zbTFNl3jQ46Htcs1ziTz3laZkJjMBgiwlnqQtmx4hHV4ea2i2nD8qr3P6mn7yfy/c95/m47dRx7FFgZ1YCMMx0driyDQAnji3w+bP7GgCZdS1W6417btdGnLt4qIAxSSUJFDBYayDlp9153bhfYoOPnDuH244ewxOPn8jXlu+vzGBko7l3y2Yj0S0KO4Zn0PBMYQxyqgO2y3mLfkiFVcjbITzuWmXOJZt8S0ozuV8YV/KxEpilwMB81mjqyRRgQb6QgxyZGSzgxHyOU/PFJBiMx8uNu0fwl+97Tj6OzFi9GQZN/ab9Q0xR8qAMZCD2F9abKuadEAJuP3NKAz0S1K935Q8DCkt1lk0KVksg+5uDs1OSDpouU2SKsKa18T8PDCbBVkuFYvaCrHeTaSLp+zNjGgfCAei31+BoWYO/4S33YVbAYJ4ZbIY//TXPG9X12tPG+CcAzJrRSwJ8X/+en8d7P/NpF+TcUNA+BuC2Y8dxYj7Hx86ff1wzg42YQodBAZ1StrECMbBkOk1kDhT/sdufiK+/825dY5ltZdvGP61fGIPfAQ8UigEuTaTUTVhPN7S5rE4TyWxZNRDz7a9/Ik4em+GPfNmtvt1ybfndxOiAOiIrArXTUj76zBHWHq8xxQB3j4CFErydHCNGAFn3XJInzBhWl2bLubaNWK17fPcP/+rIjyXyTOxJlTwTFYkUdLbfFUtc8kzACebL04B1GvuMNxUz2OVKCAHf+vbn48z1x+0YAg5XPWYzrw/0AuiC9FEOINdzhEEI8teliSxrg+p9EHvK0tVthEkvJWXpkQ5aNI0Dh+20LVbDMOprSZ9427Fjeu5aiiUyCz3r7aJ/aCou9iMME7bhlrKYtTg43Fz+wi2l1i3OrVY4PiFfd9rWsYAdDn1ezwKlzB56z1xU5inbgV2MuLBZW9A9+W/p9JAAfNvXvcDZqsOQNMUm92cN/u6UGcxnUvCpo+W4yeST8zkeXR3qpnDAWOYYVDRroo4HBj9xySCy5OYdkBkubz2aQdQc2+KNoeIrkD7RNYN0YNb9hYGoH/wmGpfeL6UKyC5yymzIetw1A/Dn7rlXPhUAYQHzwGJmBmO9sosNNsU3kECAMRJ9otcwCPJSG/XatmwCPlgrG3DXNTh3/sAxkk6BvLrCCCzAFzl2yTSRVI22jVitesQYcHHjAe4SP5AuFPY4A4f5ua6paVn/TGSDlnc3bo4Nbi6dX68cEyEA7B+usSz90jTZBuDUkQtiBmOfooCCgGxzbfqhbJDzbOa8KXqg8TsrWUUuV9oiP2IIeOkNN+K/feZ9eo5Ts64GS/3ckSypiwGfrfQFqPlHbnwCTuwauLUtacw5vhYQ8Oj5AxzdmWufZGByls/f8Jb70DQBq3WfWbZL/EzG0JGdGa6/5mhOQVoBczfE/Nq1jfM9id+S9Xk5bv0RsR7ymAgwPxbPVVnb5AmSaUXiDZKqVcbWn336M7TPNB5UJqjIwoTtRBsCqAz6u9FnpEFsDAGU5WuENU5YPoH8rr39PIf3+17XhLtOnCxx2l5ZuJ1UmnZFamFNgQG0MwG60bEr5Q9/ecya6uHhIdp2HISU8oEPfACf/vSnt55PKeHg4OALq92VcqV8EZcaXDW1S8VYRvJvC2InDWIBlfOjfg6/Q4Nkdvqu26623W3k9DDmAknXQUET+EUTE/+uA4b+/nExd19p45BGSomkHeCgDfeLKFXmOzQHg2PTqlapUJ7BCr301VQdpa0vus4ARpgIziQ7pcGK7EzywA0G6Ch4JHF/+j5zSn7l+HKBqAroU8d++Np6N4sEgRLgFZYJRXQyTWSVum5G7F7C/pIAvPC663Hm6FG9j4sAzARIVueF53JkOcOnHjyHE8dsh4I4A4aUlDkGKEGLC4dYzs2oEWY43u0jO6OkZAYoox3vCvPYat1j1jUIxSjNnWvf7FLMYO670r+ZSS/3jaWIMAcatB+nnlnr9La7lGXCFlCmjhGuQwHDYDogg+Tlms63aEwlkibS6mfPYUcjO1Aigu58kvO82112XqpR08RRiphNSjruXN9UsnU+a7Fa93pd28QReEKYTNQ5WyjVRS6GYMxgw2C7/9UobMfMYOwgaEJ25gDA3mZDx6cD6fubjUtb28SAvY0HfmW2sPXWXRnbHGNd2+CRc1n32qPUG9wXUto24pGzGcRWp4ns+4phgXYZ6zyJ0wBct1uHnEI6R1jm0fzgtk8ZuCPndTUP+L3yewpIU9dZv5MT3HnRcjuci0PSdoOZIf7W198zqujtZzJIT9az/FRZ+yhoDnE2j4Fy8rga2OAcpRjPxXoNAozRgA3Zk8eWmmrUnGjSXs+9lo3+auyVZx6WQHMdEOC6cZGxdfzYYqRLpUoWC7iNWcAkcCGrWA1AnEov6fuCZVp5Bu1MBzCZslDubYuMOFxZmshZkRNHdjqcv7gazdEQAp71lKuxI2m5moi9g41b66QeMkTbGPGZ/Yv4s//2fW5OyL8cgD/4nfWR5tgUuxgDuHiOXg5E6puV1GkizyRfmGd3kjrTmmYBaNFdpt/ZNBXTreqIY9a9XCuqrx5LE8fG18m10ixxIPFYzsfo+mrtN3Fiupj0zRRTDveNtbGMtwE671IyYJCsadI/U0Dkuo3MnshfRQBM9Q3ueDnHx2zcUFuoeZLy0K0DAeq0l4uFJUBfI7ZULaujT6Ho19ftOsBjLQEeIMrfsKm++SQTaiobAEhfyazM1XuC/c1VLd+EAxh0/TaAWF0y8I7mlsy/QGOs3pwUQN+TZGwZY6AxX9efA8gJxEhdjSEFKFfHEj9sS5k8qzYTgcEQVJ+VeQuYDHJr2eU2D1FZlN2zMQR89R1PwqzxaSFrHa0LPn1HFxs8enioqd2EceMv/PK/w8996hOjwEVdXnT9Dbjm6C4u7K3M3ukaHK56cizn32J3HClOfAl2KFsGNblrMzPYDjODFcc9M4NtK7PCDPb2J901AqMoGCwlTAXJxf6Ub5vZMSzdlwVH8vkmepssp6OxkbGYdyWNyTjlOSrZnNdIW/QcIw18MFWCp5HkbN4hT2kiZ60CxFLI/o4nnTiJtz/pLgyAY79iPWXb6Ds2m+EVN92crxG7pfS3yLUnnziFV998iz6HdaNNSrj/3Dn86uceqtoTXOC37hPpu2Hwuo8EWSxwmuuQ/S62o70fEjabPrN3TzRO0mUOyZi6tqURfaxFfEgSzODXyjdKaSJNJI0TYUPm/uDUWfKdZbOZ2KVf/6YMBnvkUc8MFkLAV7/u6a6edz7hNG667rj+vu70EbzxZXfh1NwzzkiA72MXzuNjF84ZEwszg5HOd3I+x++dO4vTc59K8PFU6g2Sm97Y3AHRKce6GxcLqPtNfeKHePLJU3jG6avVlqrZIH5fhXTsJoqvKdSXlDSRGVTzpFuOYzlvHGNP10R8/DMX8F3/86+M/Axf+qwbMOsavP4lt1yyKhLslFvnsbHMCdpOGz9sW7r6wtteek8yBptanwwxf7NtgB0BkwLGyjLZhhgU3MXPaZuIhx7JPo3aB6ObZkq/16/nn5n5i+RhGIPB1oUZzOxD850JGJlToYXSN5lR7AuTY3/sNU8b9dcj5/ZxbNfLBF7T5Pqp9TnR2JHr+wKsSEHS0wkDtq1BU3OhH4a83tB8WjSNS0W6aJrJNGX7G58W8qU33Ihbis84tyH/bZrCNF4OCLuR+cPHa9BjKYtFi4PDse/rsRYGnwDA+Yk0kfU1IrcPKYAv4DoGn061YdZkNiP2/7Gd2LbMUBrwllc/1dlkwlLUDxMsqL2B+bpu6hqbc25e05p4cj7Ho4eHrs6iZ+R6lnYIM1iw+stYk2e3rk8m7ODiF5NTbfD+5xgygN2y68DpiLYhKowAO/I2yR4h9poAy/i9TcubTCo/DgK+4tbbXH9xDE2qwHE4frYAUaRvWN6oLIpmM5lut50lXsAoB5Tar2sjHnz4Io4dmdN1BeRFldc0kY7p6DLMYNQlsgG5iTkl7C7NlTYGrHrzz89Jhjzp+Akd8/K4LjYOPJn70eIpgGfFZZA8kMEtkxk1aMzL998/2GC56PC0J12L3eWMUoXnW5oYsFptHJlAlk9BN23JHLnzCVfjTa96ir5LntF129c7Z4/GiMM+98uZo0fx3GuuI8B1wO3HjhvLGtlImYXZ+19S6YcDsqcAYL/vsdO2+PIzt+D60yaPmyZib381YqQ8ONzgyK636wSE/PVvug9NE7F/uC6bhAGEDM5mv4QyFlLh9axtI0KCj8MF4Euvvwn3XHV60j8n5AOh/G/KnspsYzyuorKNMXBT/ARf+YTbVdaoLkcyROxDrYPYSdpOYQIrY6XI4xDyWiq/2WZaFDZr6dM7zpzK3+JgjXmXmcF4o1gmEshjm2U44H1WU2UcQ5c1vM2MutX1dbrXK+UPV3nM3/bUqVM4d+4cNpsvHF2/Xq9x9uxZnDx58gu+90q5Ur5YSwjmU6wFsZQEYyORe+R6IC8ct9xwAiePLTFevujZ5d85wOMNdHF+gY61pISKs5EDF+IksxDKGJBSI8k5x/LNR46W543ra0EBezb3B0LpKzIq9Z2VEyjKdaFQrm8z8ANUkRbjwe+c93WSen3fc19QPccb2OxIkqAZ74aROrLizmOCXzzyf5OB68FgSRs4ea5+jBhJmn4HanxJhQzIE53CIiXTeHuAW80MJv+Wfrj5yBGcOXLEPadO7yCpJRlIBsClv5Ny6sQSe/trTfsIiEEz3o3Stg3OXjjA7rIyyGkHqRhD7r6m5LInxfPXP/gZ/Ntf+7g6UhzIZcIAvVxhBZXvMGaw4OZeDGMGjlAidcLEEGg81PTVeafBlIpcPQ+FFaJcOsUMJiDKmkabmcG6YoBOuWHESBXZoUZrMVLYaFkNnsqZ29SFHPhRQBft8pVq6046mUfl73zW5gAWOZj6yvjwzFZJGXykyO44cS7WgcKuyYr+VB8C+VtfXOcdUTUY7OHDA7z/gc+4wORBv3FpWpsQcXHjwZhtjLiwXo9YIybZc6i0bcTDj+wBwCRTnru2iTh/ceWOyS5ElybSAQL9+JwydF3AK9l4DMGMllCNnXxM+mN6rZH75LpRmsjgZaYCMOBnCQOsE3LgawyIHL9bguq2G2zaWSSgqnd//5utP5C8AyZ6hhu5j0HKHEStlwK/zlIanxhHoDKqGSLCJMjCHhxKiubyTnpxvfta+iSGvKMZgNsB/3f/ya9MvwPWd1ef2p2oqU/hk1mQ7DJ2WqtTM0hKaQPOPBaSe2bSisEDJcYgNWYize/bO9hgZ2nOt76Awc5dXE+OoW/+o0/WdaxpAg4OLU2kvpe+TxMCPnz2LP79Q5+d1jmTnzecRgoTc2xbUSeoMqxd/lqAWEPKPSOnZnH45/tEz/IPMtBzBXKkarj0gDR35bvrPRP3Sm14yLs5By837C7SP1N+ugPLVP3EctFYwKDHyE+9vVyijvl0Mqd38t/N7Iyg147bUrEu0rumtIqAKQZG0Kyxtk+B4xjEpzrMhK6umzno20qfOaBdw5ttqAo8VprLp4msi9PjeDzxN6xe5+ZdATolmC7I1cPEb3kfpwIfUtHtaxDcFHiJxpHOLQ1qGHCw7n/HNAcUh6qsI9ImkwPGuAN3DwC6r7wvTKdUNYCyzZ8e29apqo8m9C4OevLGqlB0dw80HI+HODEGt5Ua7FWniZw1YztoRQGKLgacXa00zaQEDj+9dxH3nz+H45dIJyVluZBd7blNGfxFzGBN1FQt0j5gAgxGRTfZKBiscTrj5YKv86bBhfUaJytAS0olOE6+iLrMKhugjSGniYTZCD7w4W0yfu7pkzs4fXJH03CIs30qTaRjBiOZyKUOlOZ0INbPChArfZzTRApiN+tYTzt1Fb7hricDyIwy4kOogdmhemfdUxm4Ufqb0kTedfIkvvPe+7S/1XYtwK7P7F3Ex8+fd/3RTthGgNmZEqSp2foU5JEqVo0ShJa+HoaEn/zFD+GBh867Oq3WPT778IUCijPmsYTMFtZMKUqXKFw3YwYrfi2a1JI+aMB4Yw5vWhA2ZN8fQotr14l/gUQLZrMGnz+755jBpsrf+96vdOCNp915Hf6b/+rFOLXwIC4J8D3x+Al8+Nw53WDnmcFM/kkamet3dy/5/i/mUtsjfTUmfvqTH8cnL1645DMyyKAK6IeAFTEFSuHv958DBhPbUdrQD16WpJTnVFtSNsYQ8J1f/4wJZrCABz+/j08+eBHrzaB21uXezeOgqdJxzYQZrFwnYLkA4PRiiTNHjo6eWftnW+qbhMKuNwjLjdwDpGC6wBTAw7PwGfikLnkejuVT1wbc/6nz4z4ovhxgu/zkNzUB4zSRrFsWELdvt/nyBIwsoHfAwC0Z1Lr9u01tSJoqH/n45x3TO+CD51J6Yu7U65JnsARAaZOT+gbE/29/oX5uGSMDjMVK3rxoSppI8uPVacoi8obIJQGbvufZz8M1lCbS6W7sr24yAMX8kNwHl7GbqCzm3e+LGUzWjsPBM+/fvHsEVy98lqSzqxWOUepIsWE9GCwDX2q7Vq6X0sUG51crY1QKtvEQgDIUMVsYF5ExYis5tkTKmtA1TZl7NoFHaSLpXlkTj7Qd/tMjn8fDRPAhegYDk3O6dANMxxBG8lU2Bl+1WOCeq06PP4L0D13PczHEgHd//5tVz3fjh5nBYCzLsrb4TQIWO2pbY0xlFihJIXup4nxCgewoseXEH0dyp9XNIpIym3QYXZeEucg6ow3b1ypJ1fiRTzyiesb/j73/jrc0q8rE8Wfv9z3n3Fg5V1dXdc450NCJ0N3QQNPEJqkYABXDl9ERRJ0xjKiYcAyjzs8REGcURcc06oCOqGBCQUEbEBVJ3XTT1ZVuOOe8Yf/+2Hvtvdbe+z333uqq7qriLj5N3fOeN+19dljhWc/qlQUeOriAHVtD3Maz/yp5be2YwUKsZAVmsPjZLs6yVFeeAZnayquCUCxIK4VffOoz0kQanTKDEctu+BzWZM6Qaz8X4nNOCJC8PKwwPdXDz33fvXYM+PhRGCfjmseYCr8+mRYijnDJedvxLV91MwDJLNjvlVlfa3ykp7UtAai5zzfY6e942h1ONwxxkp4vjZ0CK+f7fRwcDkXCzLhp0C80Lr9gJ55124X+eKE1FperpPLOcFQLgJiCEmVIC60wGtXo9Qrvi4r3Kuoz2XZO4mCv5X5LBYVXXXQx7nAJMbYvwvXarSGcsdwzolObnJ3F11Caz5zllJejJF+JjwdpNz9zawgljNDa6uxKz2ztmBrJD9MriwS8OjUo0bStZwZ7xw+/GGWhsTys0O9ZNnJJEOBiR9ru55NWpjQ2wuYPu3ZQWJZCRGPI7mOTk9TW5fSVVVvc+/btgzEGH/zgB9f8kA9+8IMwxuDss89e87Xrsi6nqvAspEkiy8HYY/y6X/7Rl+CW6/Y7Jq3JRqJnFWIKr2cpYA47cqyRMulpwKPAXJcYONAKD6ioAAZ73WVX4PVXXBWCQjyQQI6AnMLjsrBIMbdBCOls5YoM9Re1QSEPfuAMHfScHDOYfw+T9kEu8GXcB8ryaIwR9ciBlIEkDoL680SAgAezdOLw8L9j7PCO+pQH93w2pQrjJHe/mBnMGIOqbdCLEed1Leq3B0CXdfJ8zcWX4j9eda24V1rXPWSx2muDkRjL5o0zyTFyBsTSKzWOHBthZpqV6oIRzGCe/pi9UllYenl/TqFx8PAy/uyD/+6YwTgYIFhdlFG6orCfRynJDqeVwvvvfZEfywSGjIGYYswaBupz9zDWuvQiSjBmhjs/1CsZ/XXGiUABjfAKtMYwpdpnVHRTf9Oc4EwZNTMAS6VEyRcCg5GhUmoqCQN/fWNaYejHEpjBCoy5Y5UAStE4oDnXtMb1S3Aw9Fj2CpVCiSmAednIWApl6bG3DKYiMJjGPz56ULyvn2tRmdaYBazU9p65uTNpH+qVBQ4edmCwKPj3uS8cxac+dyg8t1BYXIrAYC5g9A8f/wIrTcCCSGx8xuVUSBLwCftdjZHrGLGoSKdtR1m76Bh9DI5pCSIL+6e8TQzCIlYabqSSEcd/cj9myHCNX5xNSz5uFdtbvWOOOWYDM5i8Ns6O4+3m05m3T4LM5ICln24SGMzu1c4Aju5DDkdxTxdZGY3tuG+cE9O0wNt/80PJb0YyCXTFX42PGb5ekONTs76KnY5d+g85v+2z2Hu4gA7/LNsa2kzPbZoQkOj37LoyP9PD0YVxNjDCxZeJjMBgnCWpVBoHR3mW5aWqwr8ePSLGS2MM/u3oESxUlVhPW2PwoS8+LPvBXcf7VrCLdby3ACJGa7QhRZS3hTlC6Rp7nwD68XtkrOu5fzloWcwtJUFZIeM954DjOhK1PdyHPzqourZvPDMYtUt1g0mKQvm9nDvXY4eSaGek0/K2c6cg7eWebStyhAMcQB23JgLMcgcb0jXXsvoqAR6KZ5RkkjKQo4MBcvmzMnNTMDwpame6BnFgT8xa5vWNNTKD8TM1Ukea318iG1Dxa9i4pHEdnycNDXetcyyLtUUAuFybVgAT0rEcGDPHQi33GXT+RpxZSLBy+PtIW4jYOcV+rmkMsT5TbM6nzVlR/Ds5fZjsTKXAbGvqAze22G9URjreJIl1sEEEBtNRC+Lve7qwZSJ71rnad2Umd83M4H33vADbpmWgMSfEisydzeOq8e3p9woMGRjMX0dgsH5hSzmzr3u9AoeOLDMwmLWhHnpkAZ/4t0dWfCfqlxgMBtiA6lRR+rJbscSlAfu6EGPSZsqHcjJlxNbM7Y3//TOvxNWX7IaBLW9O+3EoE8mAiS4xxAa+JrePAggc+EX2Ow/W0npjWoMWcn4aY1CbwH4Vyniv7Jex14cVlZeJFOdArsO1CeUXOQMWBTk++okv4NhC0PsJJPaRTzzkz+NspR/+2IPBr+TOXVga418+86gH2lBy2m++5378wye+IH7L4ajG4aND/06FVt7+qdv8+FiteIZBE5jB6Ha231lZK+634T41lizkP8dJigjJNfzafq/EoaNDzE0fX5nGuVImuFEwlBjDKBmopzQqzuzkzqe5lzBhnEYSs742ETPYWz/y9/jMQgCD5VZt7jPgfoilyNa2e3NkN3T441YSY+DHPwEI6Wcgdl9jgF4EgCI/l7cFS41ji45ZfJjaA13SsnWt1MQMFnwsNQPuEEu2AvCaiy/Fd1xzXfaeQsdlegiVEWydp5nfl366tsNHwu2lScxghdZZoFhZaHzhoPVpUNIRAAEcIpnkTycgLtdBGoYy0m7tJCCGfffg16Q1QQBQHIt93ZpkTzseOXhkCTu2SmDnuEpLR8bMYLbEZB0C9W7+tI7pxCgL7qoZ0xvpfcr9WzJfHwBfJpJ+UwL7KAB/9rwXJqw8gF1nj47TMm1cuE3E9TQqreVZzRqpW66WGWx6UGL5OMBgdP/7Dx0S6+kvPf1O3Lp7jzh3sZKgF5J/O3rU60XEABuzmALSzpsqrH44xRKjDdNPcqB2Dnzma561m+x1ZaEFA+GgH5hFRSnsJox1rlfzZMfPLS7gNZdc5t9PMoPReAkAfmJ3IrAk2QkEfLpt91785M23Jf1HbQ9rUGDDEgytLrYhGbmVZD4zQV/jezb3B1vmvy49T/r7YiGbmfaUmOHLOL0vYQYrdADqIoDDRFKnW6uEbybSS7j0So2DR5ZxxUU7/bF+r8Ajjy7K6iultnqMQXRM6rQrMoMxoRL1WlGZSMkMVrUBpExzg6/B/F/ScQX4C9L2BNu/4zVoNXoQlQEcVbW3Ffi+xEuRjplNxQE/BpIxigsfa70yv6dVUXWeklifJrAxl1qJpHpKHPjIowcFKFchxIQ5ED72w/n7UpnIfgQGG0swGABfVQeAYwar0XesV9rNI16+OCZ4UFBi7JWFYwZrwxqUFwZUVcqDknP+ByDEkP1zCAxPdgyzGwo2Bhtj9x8q+WhcwkvMWFo4/S7sXVrEnYgRTsEmN5QuhtQyncwyYbb4u398wO/XxAzW7xcY1o3YE6w+26BfDKP84wABAABJREFUFIkOzPst9uX4fs+ca1nPLbscHxkWiJavSrMup7+sWlO99dZbYYzBO9/5zjU/5Jd+6ZeglMKtt9665mvXZV1OVeEBDCANtAIAmIHlzgJAZXHsBqW1sucgKN+/8uP3sUAyCypwJ72iOwa2MIiNyRrpxETk2UgyQsGWuH3EfAK4oHIUWM+1X1I5Z+7nr5XP9+/Nsul8AJ79y8/vagO1txMMlrlH/K7+vuyYMUic2QU4k00A9iSBtEJuvjnjy38n+iOuPR6/dOh3316mX1GwkM7JgVi4cxrIO81K/pt0jCPu/Hj3nc/Cpn7eIbp1Ki1hsGVjGgChMZZkKJYaC4sj7+ggIUeHPadImJAKZ6TknDS9XgEqNQlIgEWpdGcGjhF/SwU1N/7kPAhzmt9PKdjfMFLilE4NyRQYmb6jH0+MGSyXfU3GQhx4VDqUiexp6+yix/DnBUMOgtqZlHVuuNdGgjn49RQc49mWFMSha8KKqhyddVCox2NWXiZjfGk355Ryyj0LkBrjnAN1KPHrs0jEPdvIIA1iWbxqbJ2awnLEDPbQ8rJ779Bny00jy7S6+SfAYMrec60Kea/UAQwWGfO/88cfw+cfOhqeUWgcWxrhP3xlYEyk4PFHPvEFsS55ZjXmsMiylcCukbRm8G8JrNW5T9B76TBuY6E5BGQAuEoGFQTogO8XLQtiGwO5t0nnBBcqe0zP6Cz1HB3SKn1XHhT04I2ob2SQLNpfuHHn2vdbz3w2zp3f0BnkJj3CstGk5wSnfuvnCL8VBfzirlGADTQDaBp7IATO8roSd6LEjlLpFKPMSrauRb8zP8bXyRgIKHqTOfvpX61ikFr8XkEvyC0F5FCamSqxuJwG5uP9wZaJbGxmHRMOBim0wrGqSoaYAvDez38W3/N3fyMASo0xeM2f/Qn+3+c/J5gbl+sG3/wXf568szEGS3Ut+na1LGIAL8Uk2xgA/ykYJdnnVBfQhTl6C+1/TwEmjeYW14PStqbH5DjKO0xyejgBXJC5uosZDJAZwuJa3ze5d7QNIwd3uL8EQHk2Lhe88kB3I8e+1OvpX/YbZvqXNT0AgZjOJAJo7Fk+g5LdQGfmZlLKz7ggljd23HmFSkBj9vRwEgHjJibadB1X8v25k0y7z+k1wTFIOku8/9nmK3+Elw+1zIehxGK23SUPNGTGT8bW9Aw8mevo2GJViX1ZrrHSES+eyvZg/zwEPVjYPHy9jscA8ntt3L+Zo/4+vKQ37W187vG1g8/RmH2tS2Jm4xjsdeXWbXj3nc/yn0mfJelpjcOjkQ+STJclFtyavtoAMgG2vN5bEjOY/b4sCwxH6Z4zMx2YwYbjWoyBfq/A5x86ip3bLHMAMYP90V/8Cx5x7LKTpAsMppRl+Ro4R3Pu9+1HfdqLbIKepjKR4XPV5sFgvM1VHRhTfHklpoOUjhWCM2Z1CQVhuV5R6MAsxu2bpmmBFmiVXHcsg0VgOkp01IlvINs5YGUiuQhmMBdYrFrj2dQ4EKNpDb7uu38HH/nEF1g7rX30LT/4+3jokQW87DlX4Oe/714AFnTwe3/yCb/Hk232O3/8Mfz75w4lpeRvuW4/fuo/Pde23d2/rhsPvCi1wldddCl+/Mm32O8Ya9pqRdgPCCXDPdOb+9f2e9AjhZ7A7dXIjonZpWl8SWYwsj81Hj2yvCIzWJcopfAbd93tP5cqMF287anPwBWOPUWUiTTB77Cp38cvP/3O43r2qSKxPdJEQJepDEPBqGkwZLY2jUvph7ABVm5XG8TJJton1/JzViMmWoMsC3/widA+RKWS+Dys2J5VFArHlips3TTAI4eG6K0SDAYwPVtpX6LNPl95VifLJksJjta3082kJRk9uX+s9LoKBFso9RcH4nKRZSIV6gnMYHVmfStLjcPHLHiVs1t+8dAQO7dM44df/6TO/uFCIBXV8blga9RCVfkEZr7OU19wxkrLDNauWO62y4/q388BcGJ9Z5QJyi+PahHoB4DFpcqDUmn+eLZHhN+TdEO+T7WwPuGaMYH1C+3HDABMl6HEGwF9Ymawvi5wZDzGTNntt6Lm9crC6m4ioTfs+Rw0yEHNK8nUoMRwuPYykRrWj/m2T3wMn19cDMczv2vOTlZK4YGlRVy4cROAoLPwsqwA2ZLh2rleDw8vL4t1LmZM8zoLO0b9w88VYNgiMIP97595BW694YDXh3w72F4XA6R5LOIXb38Grtu+w3/m5R5J+rrA2DEX0XsQWJLOi0H9OTG2M5N+5vZuSCBLfQ1kxxgTkrDEnC35PJD7v1zPIz9fJNyuaQ0YwMTOmBaBxZvPfao8QvMwBqrzdku/V3dcolda4NfmDSGuQu3cOC/BYLkKKlXdSH2JSkd2+SvYsV5pE020Vq5MJGczkmtEwX5XeT93Lx1YNIGQaMXPb9n1lhmsm6U5JzR3NItzeGAX728H2ubVZypXJtIYmYDnxYRx+hs/9fIs+QNgS+nOcAY1nZa35Ps0YOcOTxCnMfLNH/gzfPzwIfkaxiRJ59y+j/tjaXksmMEULOtXzBY2GtcSDDasUJaFf8+mket06djV+Ge+rpelrRzQmBYLVSX8TP6ZTYNR04h9uma6jkLwwZDEe3uIY1m2QgU4sg/O9q/RGHgmRr9vMvbEMDaUJ+Ow7XB7Ge1tReFK9Np1xDKDtS6+pPAbP/VyT1bxiU89EqqwFIoxg0VlIrXC0I0RA+kXofWFAKppbITOk+NguixRt3as8Dk9ivTmdTmzZNUWxste9jIAwC/+4i/iL//yL1f9gL/4i7/A2972NnGPdVmXM0JUvswMF2NsNrsxEpQTrlH+Xx7QOHvPpuRZAM+64tTWIWjsjVpYB3xrgrOxEJujZPVxJq14b6VkkChcH4z+HLiMlMc44Kc0Mzj9pi0dEDoq36FUDgyXDwbwPgSA+dlBp0POZFWMjCPE8H62AZIYDMYzUe01/BnhbxUppcKIaXnfRwYY64+EGYw5fRVnmqCOilqWcy7wMUhS6BSgQo8mZTwn3MDdNTPbEbQB5ns9/OfrbhDH9uyYx5u/JXViHlscJ3XK+z2i1Zf356X7ciUwykJ7IyWWXllAG8Yux0EuTtlcSfioilmJSALDgvuMtESrvUE4zp1Vfp2gYxOyg4AoKMrLDSngja+5NTm3LCXTBv8XIMOVOcF5oMP9S040HhiuGMU2ZWcnzGCkSBMLgArn18Yqzv5V3Dzp9wqM68Yf9+VvmEMgBgVSOUMyGLiBZozxxrBifSLKRDqK367xTWUitwwGWKqDE6rQCktVhRefex5rm0rooAulsVjFZSK7mcEmSa8s8MihJXz5vVfjy+69WnxnYPCqF1wTnltoLCyOcc5Zm8U7U9apLeFHxlDeIZMrOyOZCiMGyzgoq6iEotx78sw+8WcjjhMrCQlnE4JKwQ65dZevrwLsydZb8mURYDE0HL6PuPCAlW+j1uCsKwAQB6w5wJTf04AZd8aadwoK26amJzqMaI3rYtEUlPeCGcx+78tSCMem0x3cuY0DYXCHU27WXHnRLvzAt9zZub/7tUTzsmPBaI91IAr2EeCCM/zEtzcIoA5eJjLOvEyucz9OjrHwm15+mS37OLZlH+sIPMpZLEmKQvnMOnGcvUepNBarKhsQ8/gKtm63xpaq6OngoNFQODhaTq4HgA889CB+4qP/IJnBOsaPF+6Yi8DmxCYU2mLbxoMq4b0DoIj2yC4WWCrLaQ/afciDXTKvKGcbOWzlehH/raLjCgHgYoExcgzytUZmKOukPVrbkt0mr4r6g9mEEzYPDYwvg9iym/H+0fIyMDXe6Yp0nD0Lef2eg19zrx0zg8Vzpih4+Ur3r5b2DyBtAer3mC0MkJT9fE23H8NaPYk9k4SznXEgQXxpKMsgx5p/dwA1THhvZivacW//svpFdG/aK42zmVpZ2iQkkbD+yf8Q9nlsvwPyfUiNVkrhWfv2s32TjW9ad5nOJ5Nmorns+o0nISk25mj+kFACwWrYuXLtjXUQGtYeKIkwHqq6Sfo9Zn+dJLkykbwUyaAosGsmsHnMlCWWmwBU6GmNw+OxZ5KYKUt86thR7FgFIxgJlYn09+wVGI2DztzvWVuHB4h/8Fvv8oGgQa/E4WNDDyoDbAnJR48s+1KSvV6BqmrwyX8/iDe8euVkzkIpvOnq67Cxn5aJpKxm64vIJONEACD67IM8yrIFe+d7tC+N2kYwWZNUPHPdMc3wNZeAGbnSW0n7fJlIHoRl5YkYiwTd0447eR+efEWMGiTzAL79qmuQk1LZsiCle87UapjBXOJN45gHeDuJESFpJwt2LLvSMFs2WeZuAgXSGxfONqJEE57RTrr2ts0zYr6R7U5MXTNliU0OQGjLsq2iLN4EHwSVU4pBq5IZbEKZSC0DdjHjMV0mg+/2WL9X4tAqykROkp2shFpPaxwdjzDb6+GCjZtE0LNidnhgQFA4ML/huJ99Ksgkvw4AwY5A8iv/8s/4u0e+6D/bedUKJv9CU5KjHF8xwIfYjI9HPHtPNGZ4Mopl6DFsDVJ2Trhze84O37dzDvf/2yFs2ZAyLa4kxMCioPDmG27C7pkZG/yM1s+1NJOYsowxFthApcu8TgOhf8dsVSTcXoqBlgmzT44ZrNQ4dHSEDXM9jCoGCHasHds2B7BDV4IGQH6qMPF9n7Dn18auR7/+b/+CP3/wAX8eEADMSZC5be069hiZwfq9AlUl12cFhfG4wSBKGDq2MEoC9QvLY8zO9PFj3343rr3MMlk1jQUzKNc+HvyGCnuHMSl74kAX+TKR9L7uey6l1nhgaRGbB2kCMEkor1x4v5tvfx3YTvlvyVlYVpLpQe+4mMEGRYlRXWOu18Nz9x+YeO63XnUNXnDOueLYsK6xfWpa+DnHbSMAWgDw8PIytjPdb77XR2MMds2EfcC0KajL6hzwxyrH+sWTonk8gUANUAo7ts5h0CsZc5a7Dwc9RbEI7gu5cNMmEQchPYbKi9K9CJBKbab54f0ZDuwzSbiJHOtLIdE9AL+8H5nsJubT90mNMCJWENZqE2wk5osiMJyB6QSDBcCJtTc9sBisPBzprcyOor3K+8d1JuHR9T8vw0nslznp9TQeObSETQz4RWvxZsYMVpa5cvE2vsJZn3KlI/3vE/l4eqXG8qhCWWpXJpIzg9k5EIPAUgZ4WmNlmUiKJcQ2BE8c57GaOMkkJ7mE8aIIIDmeJDCuLOj2Da++1ZbObAL7J4FZo4b4ebRr+3xn9YylusJMwcFgCseqsSivG0uhLEiZAEK8D3kSOs29PbOz+LejR+LXS+9bKCwsjQX7pNYKS8O0dORo3Hhgcq8MJQ1t8poRgEKA2K9YYlTEONcrNWAM/urhh/CKP/6/AFJd7H98/H68/Z8/Ht7NzZ8UpBsxdvKEfh1YQek6AmnysUnMYFXdeD95wcqBcrAo99UTyM37inqFB+JSTMkyg1m7cdf2ec8CZn+YsDbZahG5MpHal4nk7Il8dHFyBy4xsx6952zZQ21avOA9vy90Q17ueF3OPFm1pnrDDTfgmc98JsbjMZ773OfiN37jN1a85t3vfjfuuece1HWNZz7zmbjhhhtWvGZd1uV0kYQZLHMOBRRzwZM0yLNyIJkzlsSOdQgjVqNFAFKZ6H3Td40DaIE20wdFlNxUZBCJ3YmMEBjxReFAcUrBgyx8AFeHDVWwefhn836KxND9lQ9EGmNww5V7cev1B9Lz3TWJ2pAJIpEjlxyLFHDLgsHYewKyRKANSuSfFWfc8L4kA4dkx9Y5vOKeK8W5POBV1TbjmN6ZtwGIjZ5uKZStV843/61TU7hn/wFv1OSkartryj/zrFAmWCmFu9hnABj0Szz1xnOS644uDLFxTjoScqxfBDgggydHa1xEZSK5kNEjso7oeZlMnfDcIOJ3VR1KGJSbm/baeF7xK4yjAIlBKiaahwTwip8WmOKcYllKQMfznnGJON86EXQSLBTZKK4vckF3UYLAyEAiz9wgQABnGwNCkK2nlWUB8MaxzRDlmbfWAU4Os+AworFBbzzol56lyPcZOXxdH/VKmWHvnQFuzpNT0s8jYgbrCB5ppbBQV9g6mMIyY4Sw5SNrPGPvPnFsuZGBLOu0rkQWSBcIZCWnNTGD3XDFXuyPQMZHF0Z4ybMuD88tNBaWRpga9MSxpjV40tVn+cAhZ2PJOSxy/cHnD1/XPasiGzttdKwLkMKdRECGGQxRwDkO6rjv+DtTYMWXlmL7LBcCYCgVnkvreJI5xxcTQ3Oe+sJKydrIjVPeD6Xb16ntvB18n+aP61qH+Gtplf/daH9pW+5EC1KWhTBC7T3tekVtcL5HjIkZLAvVATbOT+H2G89hYIkgXA8R2ZY07tgerDvGTAAgdAj9huIaCcCO+9GY0D/xWnDNxdugtcJwFBxq3H9V1a0ovQS4TK9RM7FMZKGtA2g6CohZVlKp39lgjQvqNrVYf4+NrdMhBjk/tGSDvZxhoDEG9/7h/xHMC/LZ0WemIzifUPitBJOTG+et3NOUJpCo7Ffe/YWW45HUUUqEiIPFJvO3AD+p9JgUXvaPs4+491Ep4EiCkWwDcgCleG2x5Rjt32LMsWO+DYaND7EWZ5jBmFOcg504AJIDfTg4iiSeRzLpIbxjzNbHQXxxZnSu5CfNvQB+DU56/j4CpApk3zne33OiIFm+/PoJCYoj++Q5W7dj/9R09JurcA1bFwUzmOuk5HXYPmPaiBmMAStISgGG7NYBJEBRBnv4ZWQnPHf/AQ8yjMc3Abh8Bi67Af3Vgv+2JlsKmo+NHFvYJAa3+LnhmP2X9jIqP+F1Zhfg/7J7r8aBvZt9YEcphbtvuxDbN8+uCjAIICl5lAMhcZkpS+Gc72lXGpzKB2mNh5eXsG1q9WCwmSlZTq7f06IsZK8ssOQCMiS33XBAZBx/8eCiCBbNzfRFYIhsqCMLI9x7h7QVuuQ5+w9kmTMeGS5jY39gy27lknEyZSIBGeQZNU1n8GiprjGXKdNk2WlCqSwL4InKDrngZO69uPDyQTGYoaoa9EqNm67a50Fj9biBLlXCdMqBAikzmMKzItuYpNQay03jAU2DosgmKQnbVdl3rtoWb33z+/Cpzx1KykQSW5xvJ/MTDEeSUWVp2TLyjFxwnZIRyyLsGwD5Gih73gGD3XOruoXSyAImbDB58u9A98xJ8MfY35iz2zfseT0twZ+yfKYEocQBPPI9eP+CCe3u9wo8emT5uMtExtLTGgdHI2zoyfsJZjCYFVbM01vIL0Fy1uwc7onAGcuRbloqhU8eOYzf/fS/hzJKyiZjxTa0HSLhnCajP+YkPqM1kQ8k8inQvk4AVL8GFRrjKvgTilJjYbnG7m0zuP/fDuPsXXMrvkv8+4cEPOD2PXttiV7ByKIF69NqhIMPWmM8+xrpKjdu3+H0KNvuH/ulj+KBLy6Ke/zFPzyEP3j/ZwWYtm4M3vATfy3KHNt+scDub/zBD4h79AqFw8fG2LJhSvj4nn3L2bj03M3i3Hh1jHXZpEwkK62poRyjoh17Y8d8xAGZ9p48gGwTF//nJ/95IihzJVYwwIKjlkcpo9XhY0PMz0qA4LHFkWf0JFlcsmCwm67eZ883ELaqBpUSDb4U8mk0xiQVEajMIWemrBrme3PgHy49t29PCiR7P2CU5Nsr7bzICttPVpKpqW5AxSSZLgscrca4btt27J2dPAev2rot+b0/s7AgAF0EluNshQBwcDQUAODNgwGu3bYdO5g+2JoQJ6FEZ+4PLRl4xTCkHP3ed992oV13ar7u2H2OJyEK5qLInpwUOyA9g5f0K5XGsG78ONIIY4RA7JMATV6YLVVqnrgrbeyWwBWxrWmCT4L8D/xa6k8PgswAxrhvs8uW9H5O5VjAIt2O1sw4XmTX4qCvUJUAwermfDmCwbTDLwpY/f/g4SVsmE9BmJvmw7jquQR5fpvSlfLjQB8qZWxaaTfmyvyWhcbi0hiDfoHFuhblU0ulrB4fMf8mPhD3sadlmcgAMJTne/1La5GYc/7GjfjKCy/O9hGJB0lGbaBxxkGDtE/fe8clAYDJxlsOvAxjhM6dS5geRTEAWwkkp6swH4B252TsHh53WHSA1uecfQDP2rc/3CvxoIe2GwNRJrIsNBaX09KRMahyeVijLDXuu/sKPPmaszEaSRbL0gEN+WcODitLDbTAQjXGo6NR8oYKwINLi+7vMHaq1gh2UvtuiPb2mPXTziXOosjjz3RN4drVKwuxPgBM34uql8RVmKg8qCV0yLM7Fg5wBwCz0xRrsSxtAQwmy0Ty2BHvJxomtEbEiZ08UYbi27fv3oPpMtiUnM08JkFZlzNL1pS28Pa3vx27du3CoUOHcN999+Hyyy/Hm970JrzrXe/Ce9/7Xrz3ve/Fu971LrzpTW/C5Zdfjpe+9KU4dOgQdu/ejbe//e0nqQnrsi5PjFDACpDZF/TZH6fAFtKAob+Xgg/mJJszD+zqoMiSCJAXUxKJicAHAJVkKprk66CgqgjmQGZAxsxHwbmqxP39+UoGt2WMizZUyVxl2cR41iP89cmDo/fNKTm8fem+liLQRdDJ3Z+XeABSoAM5muP+FbTQzPhKmJ2igCH/bte2OXzDK2/ip7LmK1RV45z9cmwWzKCJA9fkAOBSKFvWgztqN/T7eOPV14lM/1iW624w2H+67vjAwEcWRtgwJx0fOWpjkhgUxIVoWPPMYK5WeSaYaJnBVhMo4sHMTMAPYR5QQNY7rOkOBHxQ9iV4IJ2YwbghS6Uj/f1FMFc+2zOU8C/iYGHB2JoyhpqvtZ70Uqp4h2ucAQeF6aIUWfFAcKqR4dPTBcaNZBarTSuyoijbhpjAuNI9Yuxv04MSS6NKBBh9GRfXn5z5i9ZyWiNsn1CZKdeegmjF0zWf2rVYVUk2ZOFonaeKQhgAw0bSQefKRBbO8IudavHeE8vUoIeHHlnA/FyaXXx0YSScimWhcWxxLFgnCp2yBwgqeWZyEXAslkJJcEh8PHbQivJgkMAGLjSHzt+wEWfNziUAKxWNQw68VPYGdCO5H+k0MO3XdLZuB0r44CTK7asGbM9SxBQTMSZ5JivgvA0bcfnmLQyiYaXHMoCSjGc2BLga0ZUZFN6Lspoy/Uvta41ngODgLwosS3pq+/nCc7baPnEgyqqaXCZSSroP0yXE+GVgBFjUJoCmTDZ8LIQ2ps+f7/exe2aGnWMS8GC87VlnnSzFwCUBd7HrbdalNMGoP+PjokyksmUi53t9VBxoqpUPiHFnYWsMyy4Mx4mphhv8gA2q23vA36sxBgdHQ+Fg6pJQhsQkOiS10YOUWOKAnyMmlJnkuh8Jd1pLJqfwvqRKczCo3GPdu2Z0ULEORHNKPMPrsu59lARHCx1dh3I6XO8ju2DSfMjpycaP9QCS8uC5xBEenDgx85dtC/J6CvLASVp7jFsMuX7C71tohYb1vfbHSQeR+kUOSBfbCxIwBN9OI84La5ZfM1aRBGHB7TSe5J4RX6kAvHD7Tmzt9cR3fK0hACuNYYPQnyo5n92DA/6dDkksNnwdLLRO+kKI32/Dmk02aJgLUn/xYwIhiAIxvuWeyFcpeq+EzS3zm5ENQfbLTFl2JtWsVrgNyZ2wcamYr3/5jbjonG1+fYECvut1T8XsTB8ZXE1WtkVl7uOykbGcM78BV7rybkAoeejfXSkcHo+xqb96BpiYeajny0Qq//nosSFmpvKgFKUUDh5ewvatgcEsvieBFnLsLmuRQmm893OfxXkbNqBpAyuWeFYHM1jMqtEFFFyoKsz0etnv/Ht4MBe3E60t2TTSrs9eT8xghs9DO96WhhVmpnr4sTfd7QNJTdvCqHQ8W8d6YD5bLSNd6ZK0ePJMzi5tTGhLqS2TRtU0OPToMj730JFQ+sfp8bMRcElrhdHY6gGcUUUrheGIjtugBQ+G8M9kI4GtCwr2NxhXdQi0RJ3TmNUxg3WJB62asHbTmKnZ8+IEr5itiAcHdcQURr8X+RckM5gNGD0WZjAuPa1xcDjEhn4/OV77oPjxM1mdDtI0xjPOAbaM2jdffpU4Jw6Ilq7fAK4PayzUVcIsFgcAxxnmkVgu6/Wi4JsRQd/YdlBOz7LJZ8TQY7/rFQpVxUAwrkzkzq02aB+zQOYkXgWoXGEMHJCsMvmSX/F9va5F1yiFs+fmnY0aQAs/etPNTucO7zM3I9fkf3/gmOsf956Fxqhq8MihIQ4dHcs2FBoPfHEJS8Pal4UE4EtPXnbeJpy1M+xfT7txDy4+Z5O4R19p7GJAGy60BnFAAl8TKImRwKl9V44pgKEIDBbWPWLsG7cNnrpnb/a59t4r66TTUz0sLqdgsENHl7F1k2zT0cURNszJ8m+Hjw19UJmEQM/Ujtqxx3l9FUHH72ntwHLU/sInUQKBEZU+27ZLG7GfKR0ZCwc0Vc6Xp1QKFODSZXPnZHowWS/okqmixAOLi9gygdVskjwagbx62paDjRPKD41GnhkTsPv6T958W+Jf1NH+FOsxxIh7+YU7cdkFO/11Sil81+uemoBeLFNqKxxGHNDC+zjxhURCegYHXJfa+hlKx3qvlXL+4xZbp6Zw446dCTMY2bRcWuST/LitEN4v6BwhYSwG/xt3DV3r+sG6H6xOyIDsdE7rkkzajvFcKFlW1a/57rNBiMPxBEcCoULZc0o371rm4/JlIvnzdN7fCtg2fPFRmewBWJDJ5o28dGSBR48sYRNjC6PKK3/54c/44+TTieddWWh84YsLOLbA1+cCxxbHGPRL/PQ/fkTo5aUDa8UgsDgkE1jSotLmDsRcROdTL8TMYLtnZvHqSy4T58YxMJo7XDxrrpLHqioA2QiAqZXCk646Czu2zmVLQDI12FUlWVnfL13CZpL0yfqe4gxTUUxgruzhkk2b/eej4zE29Pq4ccdOvOS88/3xq7Zuw7kbUsAylcHkLGCFVlhcqjBgx2IfdFlqLI0q9MsCL7n7clx9yW4Mx7K0ZK/U3hdM19QROMyY4JfMVV0IczP0A+k6wgeH7phUXxf+85N37sKB+Q0JozDZZoVWGLpymJdfuAMXnbPNj5fYDuSf7fghezzofK3TAVuXWMSBgsvDCi+861IflykLG8/q9wpH0MGZwazPl8pE8sFKbQtleUUXCr2PmF3ffOOTfawNABarStzvsTKdrsupK2uCy+/cuRN//ud/jnvvvRf3338/7r//fnzsYx/Lnkub+WWXXYbf/u3fxo4dO7Lnrcu6nK6iAOk87lBmOICLZ+mKIIKiEhx52m4P/FDBSc+dF220LfuSjgZCmfRBJBU/H0lQnpeD8e3lAQMVAlX8OnIKxgq9ZzBSyj0/dURwdi/eh/4f3w8ID1YskGHcNSvoWrlns8ewE8lAtgpJixQhXUT9T4YLzy5MfL3MiIudAuK3XcEAozJV9j4Ko6pBUWirXLBgEHdQNVE2YOGcX0iONYmjFgiBolg29k+M8zOWo8dSZrBeaY1q8V5ayYyDIgWMERgslwEemMEC944PJurAsLIS44icH2k/eZYIE41lJkrBK42CBcyDNsLvnguk2nukQTgOesqNf6v42gwHDT4OwznkIANzHPFnAmnGEtFgQwHvfe69+KdHHxVtn3NZz4EZzGYTBopfe7+65YFt+7yeA4P5oFGpMRrX/jeeGpRYXBqLgBYZ/8r9RjyLneYfOV+Icr1pZMaiNVDt/erIeWwZwCpsmZLBvVIpHHblH8nYKVz23EpgsNLdMzb8xm2L+QlBsFnnjI3nEOAy5dmeVLiMLmEEFrY/exEwrTt7MFcmUpZk4+t761zHk9x6XcBKGmIvOvd87J6ZxcNDWfouZusp/F5sxPyI1zPP5MPfVUFMdmLjUWyeZ8tvQQbaqd1yZw2AJgWFF55zHq7YshV/8sDnxRwr2TubaOFJwMbIz0XxXu68SaVmqZ96mWwoyiBL7msMvuGVT8Kn//1T7tlybZ70Y8drCt2PU+i3kAAWouMHIvA7G3Nhn2Z7LXvGBRs34dfueBa+/W/+MlyjZRZoUWjMzTCzid2AxgF3XGhtyz5umu9jdrrE4nIIrI6rNi0H6TxcOcYw2u5KByg9Z34DFhkbArEOiuvcbz9dFoIZTCsL9gZSMBg1KcfY08kMxn4wwe7EQErB2RxALKSXxGMoBgLxe/M+aV0ATikVAhkqMLh2DbQY9KMy3/E+iK/1TiexHqSA1bB/al+ujzsFKWgd+1h4soBkEJbHCCQlS+HZc2huKqXEnun/oHcDA0Gx10+TQVRyPNbTqW+AYG94u8GvGXwNDu2KWfs0W4PDsbSPYyZTcQ8fPJmsR9t+cGvKpI0I1HXKtzsXFtAARgB6ioESM7aS/yz6ncB+bi0zxrXbncgCQqZjv7FnxnuSfRlRflPMW2lnWnuQ7yM6a3uSeJA+tdW3nZdEdmMIcry+5zn34ic++vcu2LEKlpvMT8ltJtLVDFzgM5p7SqnEad8FiM5JDNrKlS3jcsvuPbhl9x7/eWO/j4UqDfJuGqzehoqDPL1egeEo6L29ng0Gx6xPXBaWxti8IQSGZiJQUKE1Dh1Zxu4d86t+r5zMlCU2DwbY2B/Yshu5ARsJ6b4cvDNq2iyQDAAWo3I0OaEkBr72UIA0x+754MPH8OnPHw7XE5islYHZpmkxZBnwVGJGGaBu06C1LYWY6md89NG6Kd6fBVepj0ZNk8yXqjWszKZ954eOLbm5kYKeZqd7+GL0nIOHrS49HPIy9zZYAfAEPZUNkBYO4EJC64tWyoMWcyUh63Z1zGBdQrbG+7/wgA8s092I7QZAwnrDz4uT8GL9mEAXIcEh9CkBd2Znjg+AEEupNR4dDXHZ5i3iOA98rWLbOu2E62FxAuY4YhrKASpj9n46tljVKdsGuJ/UAi77KwBgr+4N8C8IrFdeF/N+PTtmqB2kN22aH2B+poeqlmvIuG4EQGqRgcGOR0piBmP2UN2SzyMAgcrIBsnpJ35eqKC7f4VjW/n2v/4LARDg4PmrL9qK5z/tgLgfgbo4W+OhoyMAwMEjQ3FuUSh85sEFbN00wCOHg20/P2v3qRfdIcvy5WRDWeLX7ngm3vTBv0q+y/mp2ugzB6fSN/S5lwGBlxNsaS5KISkBmdwrwyKjFHD46DI2zEsd5OixETayY2VZ4PDRZcxxUKoC6rpBWYa9tRF6UTjRshjJAHe/KFAZXmpLMoX1lPXbcSbMMgMQy/UF4Hx3jh3u/b/yWrzr9z/qz/nAr74Wb/iRP/SfuR66ksSlzVYrU0WBzywsYOvU8YHB9s3NiXWEWItiFqDdMzMTy8EBMrklx8BfaO1Lar7Ysf2/8Uf+rwM3uHOKUELdf3bMfiFhXDJveTtxRTCYva5FWHvJj0tsWFopD/560o5deNKOXXj7Jz4mmMFy8QjJkMX0Jbbe0h7Nj5U+gZGDulQAYUTXAvA2AzH26Ez7u8yEGFzq1xNnB9t755jBLJAuZqckfzw/h4NVPIgsIxvnpvDAw8eSRPr3vO2rxOdeactJcv9wWdo4ybYtM9ixVTLixT6ustD4h48/iOc89UJx/ZFjQwz6JQyQZwZjbQCQsOeGvtGoTMsSP7UrdyzPp3U7ZgbLyXBYY9uWACKOwf/ULjpGv7dNZAiJ5n7OaYUff9Oz8cDDR/Frv/+PyfOoFCC9fx5MKNtTKlsmkusqxOToz9Eax8ZpKckrt27FD990s/98dDxOkgkA4PVXXJ15j5CUKuIAZZ4ZjEuvLLA8lGzUVR2YmYEQgwzXaIx5mchCA63BIgMBJ/7g6LhWoUwk9zUCbN4rCGAzr3Dz3dfdiA998WH885HDGTY+BwYb1ZgelPiGV96EhaUx3vq2D4j7+3gA83PyWGvpSohSCdlAKAChBy4ujTHoyfgLYMvPj5pGgANLbcuw9rSr0KEBbWxfVM7GDJU05KLFTSwOTKUqPACwwPy9TcaOXZczR9YM8zvvvPPwd3/3d/jJn/xJXHzxxd7RH/938cUX46d+6qfwt3/7tzj33JUV9nVZl9NNCClPwgNHft01BNawH7lDgytVSoE59uWCy5/hAwXMRPcsCpCbo3H/44ojBWXiIJeKngMEQBmdaYCICSzPEMUDfAmQxT2LAFsWFGNYhoby2RfULx7ghaAg5rakGCg2ad/KBrBz57n7cEWVZ5fy58K1i5gYPNuFf3eF3/25LwMgg2Np6TL2O+ruLJT4+ZwZjDuSuSHkGY7YO3MHDz/WBSAgJpRYfvWOZ+IZe8+a+K7HI01rEsdHWRYiuwCgrDKpZFpQkBbnjMa1V7C49HoFlIlAKx2Aiq6hxX+7GEzpr1UB2KJUDAxh92f9HANLxbHIgcUDdcTAwdtPgcZcY0xrfJBRzt0QQPTMYH6eqeRWnpKXGXQ1o/ElZ3/B+peuAwJzQnCs2myfYVP7wJtxirRnBiNjqywcMxgZND0cWxz5bFLqx7ppfd9xRiu/dLtIdvw9YI2etm39M5bqGrNcgVcai1WNzVHQkMo/DopCjK2EBcwBPgQYTNt7xsxgwzp1bnOhrP+NUfAwl5laFhoLS2ORSUk0xYN+ZNA1tL5IWnZPVc9GdQEe8OL7WWCw5BKzsZRKJftTOJddEwXV+FyLzwHgg3qGNlAEkKEvy8XWV4CvzcGop36MWTv9c4ycJ54Fhc/NqGxNkZu/Ol2r/TuLiczes2MdojaTMWra3IuzZ5da9BMAy9wJuddy1kbNAHN+XKzkJ2fOLtE+d6hkgFgJPGHsUmAAQrEeuvfueHTMcEZgUJJLztmE7/+GG5Jz4vNIbEaZzeraODfA0jAY111lIgGIuQZQwNmtv44hcNvUFBbrEKglkBhvH63DVNYsMPoEFrFx5KinLG7uqOSlJnPC+807U4wE9HAHNDlNgq5oxNyl60VyhP/tgvOFSrkKFlS2digVxlt+DrA2ZI7lziVnM7F6ga3j/FL+N2XiC12MgU/yiQn2WG5c8bXDgv11sl5x5jTaX7OA3Fh/QDge9kJqU9S/yZuxNjO9sgULtmbWMCqhJK7XWqynxhg/duj9gJSy3//ercy4pAzxLuGMt5MCTULHUxFYzx8npgX2GUZcL34DqOT3kKDKjI5e5AGTyfuaAOAyJgSA0uvCpqEVfIILncHLPfpyDGw/5TYR7UceUB/N5VDWV86fxo/ryU7HLJMSs6cC0J+CW2lAyDj0YVgrZRlV0ZjkUQq/f/c9/vNKzGCxdDFNrIUZTCmF3/v5Lw/v0Ctw5NjQl/LulfZzXE4yls2MEeDKi3aKewLAA188hn27Nq76vXLyjZdfgf9yg2W0jlkxuPzes57r/6bkIgI19bXGuGk6x/pSJcvRkAg91JdFCusrsQLkwGD/491/h8994Si73gHHjBElm+rGzhYeJGoc40pt0lJstWn9Xp8yi7tn+TkSpIwSR6aKwpeCi+/fI9CTtu/wL48cxq7tMrBXFhrDUZ3aBoXGoSNLmJ8deCYwwM6bpWGFV7/kejz7qRe597d9HJfzyiYYKDjWMcv+kisZWp8QZjCDX/j4/YluU7eh34ltkcQYyN/PM6aEcUNy7aW78Ts/92U+wYHvF5TRvxLL3GqlpzUezTCDceGB7TNRmqYVPhvOFAOEkkpcCq09y23BdMZcQlUb7U0xU3euZ3PA/6blvsyo5LzThb/1y6/Es2/dJ0AZpQNOchBD3Rjs3z2Pt37bkyd3TocUKrCxU9sJcDBuG8yUJaq27VyLs/fU6VplIIOJCqE0I09EJSG/HfljeoXG4WNj7N0xg4cPLos1Y6pf4JHDQ+zdPouFpbAObdmw+n1ykmglk2PtZyM+121Yo0ZNI+ZaPzPHS8asMUmOLY4ToEYs/V6R6P+9ssDRhVGyrx9ZGCbMYEeOjQQzaFloHFsaY9oF+en35EOAwPjGxFUAAuuZ/+wAhzTGekWBY5Vks5mUjEbC/dMVY/mvm9YD12JZCxvi9HGCwabLEv9y9Aj2za1cpjUnP3fr03A3K8vWKwpUbYMHlxYxYGPnF25/+oq+c15OLMdkVLqS3rEYBkQh4Dvvb9J9FLOVAjBGMq3nWI9IAqDJyu8967lWX2kalO67UmlR3hgAYmYwXgaSRAKstPAlSjCGLPNGgAvDDBlvC4r9PoAe6Xg4R4tzDEwAy0XGAQdnjZsWU0Xp7Ryy6wIIPQaftz4OVzKbhfvG6fnBt4fOubVlkwUSc8avnPRKjYOHl7BxA187ChxbHGUZ9eqmFWt6WWp84ZEFARqjUtm7XNlanqRROj2e++6ofVy4f7xm+1RPR+xrkGCXmV5PMBrlZNkBe0iIxYm/A/e5eVb+QlkyAaeLkL+bxynyc0QytufAwvTbk/Q0lYDkSdhKsJ6VSuNYVWEmY/dwOVaNMbcCazIXAoOJ8o5aY2m5Er7J2G9VljZZhPs167oRYLC45HcMxCtL61RerCrLxGmk/mUQWKS9PQ9iBnPvFW0L73nOvYzV1D1XSeZU8slLMJhNRNDa2knUDvIx0N/0r/A305hy3/fLwiYIqfDe5LPj69DysEKf9bGvFtEvcN95F2AbKx1smcEaz1iqEMZI1Vo7kUD/XWUiAWk/cMbhmBlsvUzkmSvHpSENBgN84zd+I77xG78RDz74IO6//34cPHgQALB161Zceuml2L179wl90XVZl1NNFAugxsEDyuwnByFXJuQ97L9xGREudO9fePPz8e4//CdrHLLnKXLcc8eD2wB4wCGm0OSqBwUnwjcyOEJCzCX03JweSptKyAVnm6VHwcTXBmWqZbs/ZXeT7sBZuthlmRatLPG+FgcGfXDZt9We0JgOCvkokE+KBb92i6P2tgFFe24CBjPSwMlmmeX6XVtFtSy1+G240ePHImt7zsHT+VykQA2S+d7JYQYDIErZATJrg8RSGzfinOVRLRihylJjPO4qE1lAc9AKm2OcenilESbACJmzNY0HFeaRcEqzc03rRjSbDzHgROkQMObHBXCMGccxqweX1sj1Shja7lhJDiSk8z8AZpQPhtD1PEs1VuYB4Gduud3/3SOD0YPHrMOgMY3PgqG1zYPB3LX9ssDC0tivtdODEscWxyg4AxaNbzdPqJ47dSIFlXmWR8uQsYU7n15/oZKsBIVWWKgrQf0OEMirdmUi6VimTKR2ADHNmcF01pG93NQTjUEqVxJnR5aFNe7E+xUKxxZHCT300rCK2MLC+sABw7l5CYR1HIAE94JKZ6QBbb5MTQKnBlBkWu5MQwKYtbZsnjT9/HiP5gkf797xEoG/6RwqBUZscfw+sg/Ye6mUXaeMQLneycEdckoHR3ti3LnjtG+xfT9Z390xKruqOrI++X1CRmNsncvreHneQrsykQBzkkxmfmmRGp08eEvgNj7u6LcwxogMfxGMIVBc1MyYtY1LHNDUWmHDXNjnCDAqxouS1y+PGvR6Gq+771KUZfhyXLXoReUgac0aRCCxkgUjKcizdWoKSwdlCaelqnbvIPUHWke442OxrjHX6yXMYOSo5UEk6oPlDmYwLgT+o75IAtoFFZIJ4De+35BzJLAQ5X8dyzAWngMwvZXpbvTsWL8F5NpAgyBX+txew0tAw5ei9OtDx35v3zWUsIjLTvD355I7xnU6QrIYBGAZrZlv/Y5n40//5lMJk5+/3vaUb0s4HsQyZbG+UAEIF/+m4QVZliNb4zgQiIKifHXNAaBsiXj3mZ7t2xk6pyi0fxfFGinGnKPkn1QSifailYSztoWRLIX6juyVAnwcBpsgtruAoLdRwogxdvyY1sCo0AIPzp0g8fzjTFnUZt8usS9LgDQQ9hG7J9BaHE6Rznzj7KbYFgzn8ox5fszO4YnNyrab79NUwpvWEgIP84ShsHawMZgbAB3vwsEZay2fsKWDaWIS4CMnvNxLr1fg8NHABNYrCxxZGHlwWJfIAHIh7gkABw8t+cDS8Qovl85LJMbC9WXSaX0A1CWIzKt8Hy3WFWZ7ackTLpRUwhdu0lmbVgJOACS6rAeT8YBBhr2ldKVQFCzTVbzuWParUAYz1jUBq7+MG8nOXWrr/JdgsAbxIK14qSanOy+PKuzdsQEPPHSMtccmf8QlxwpnO89MlTi2OJLHhzW2bpr2djX12biKWEkTxnPbZ4W2zGBadzODcYDYatn6SPg+TMkzVJKVj71Y3+YJen6/5rovC8IppbBl4zRjUAnXxr6Kxyo9rfHIaIgN/e55bHm6z1yJy0TGY6LUCgtVhf/AmC5KZW1wgOskOltWqW5b9J2ObNn3JFN3Tloj/blaS0BXrkykMQa9nkbTFqgYKMOWSgyBw3nHKjfoa0wN1gY09u3XMTNYAPL88E03Y8fUNP72iw+vGOCLddw6E+w2gC/blfqZ03OBAAYrC40jC2NcdGAT/ulfD2Hv9rAWDRwY7JqLtuEjn3zUH9+ycYBv/YorJr73asSuFcxe8gHjMF64v7eKfOq5MVJq6+PpF5N/t+VhhT0rMG6+5FmX45m3XiDv70A/sV20uDwWJSF7pQ1gc5aWXllgYXEMpRR2Hik9GA6gNUSWfQ++YXugrwsBxLAl3xo/QHpK4/B4hBnmCxtFLH6TpFcWom1V1YgkTi4c9LOSbNpwfPrLVFHgswvH8Mx9Zx/X9TEAg0BRP/Dhv8PXXXq5P75xhSQAD+KKQF3inIKAXvJaAW5gyZp0n6ZtffUDOseDYFr42MukkoS2bXau0BmbBgMcGo0wrC2T6euvuAoaCv/3c5+JAC0R25Era8ZF6Fs6AK64XmX1d1nykpK/U+CVtIt9Agnz94aERtZ+1+c5Hydg7RbS977m4kuxVFf4+Y/9k19DWxNA6NynVShiu6JzrG7CgZi0FnGfiFKq0z9CYNFcRQguZVngkcNL2MiAqb1S49HDy1m9v6paAQgqC41HDy8JYCutOTu3zeFnbrkdG5leXyjtyjAHXxT/lyTsW0qw61KZSL+PaI1hVXuWxm2DqRVjNMOR9GcrZcsAbuXlM10VGZ4oSyXOOYueZeNz71rk5wj3iXEgUSx82JfaAr0461fTylJ9pbbsYdPM/5/zKYzbdkXmQS65CgVFobC4PBYAsVgoptBj11lmsPDOdSM/90qNJi4T2RosugR5Ee+laxhb3k/dfJv3ieaIFQBrS2qlMG7s3vULtz8df/7gA8Ivbv0bkKVZ3TwsCoXFpdq3S6whvn+ojCz8tRUDU5G9o5SzOevG7b3a631lobE0rASbp/8tygJ7pgKbHb3zcmNZbGk9IXvvufvPwVN27ca7/vWTWb83JzjhbIME4AUgko0nJXGty+kvjzl1affu3XjGM56B++67D/fddx+e8YxnrAPB1uVLQuJNl6+TpLBR8AQu0CGyBXkcimUi5JdbhUvO2+Ed3CJrXHHGC3bMvUcuOKqQB3KF9w+MKbxdcXCVnPwxA1imif7dlaL3k44SujYuH2OYcu/fJeokAY6J7p1tH1IHrb1tCIa0Hed10WWSk8A6RlgpJKTl9CTgS9Y45ydrnbL3iGcyY8GDwQrt7k1BschxHTmnNdKMH1/WLyNdTDMnS771q2/G2Xs2iWNN0wqHMeCYwYRSaamKZ2eizLhFmVV383XW0O/3CsCEMd6y3z7NblOZv6TkwCn2/FCuTEHh7n378TUXX+q/9zS3KpR6JQmgBz5nNPhPJQLxEcMXBRA754dzcMbBXg+GglXEGxOymHLtj+nn4yyMXDbQVVu3hfd09OKBQtr+HrxuOc0hAoN5hbrUGLIykYNBiYWlUUJVTBk9lnEkVyaSwENE6RucBf2yCAx7l03jQ498UQCytFKomiYpW2NBGBWmilLMfwPpWCyVSpzWpbal3RJmsBWcbdODEvc+4+LkeK/UAjwJBGOOG8plobG4XKHfl8e8QWskA0vOGOaAJB7snQSg4MFbXrbRfxuNY74fkcRMYH7/9PdwgXZ2Lw9GcUBMaht3wADM2a/smkF9shKriH1XIJ6FcYkKCzghp1U4FliQZD9IVquwiXSVUAksLBLMxIXvL4JyHwovufty/x4xbTw5y8jA5ow9/nwD3Pyy/555Zg4YKEv2+vWTGbAxMCisQcHBbeL+hP2JeMtN/BtM3H+dQ05bxqK6MQJ8bOnFG/R7Gru3z2D75uBsyu1h1J6pfgwGC/OKWBU3D6Y8+IvaGzODFW6vocAEvVmhFYZ1jQ29vjf8SQIzWDp+ljrLRDLHQtt6PY470vzvx1iayLkdl/YO848xC8hTPPOVd6sqprfC6chMSxcBRDZ3fBuo1yaoNl7XAgNfsfFm5EAK76rtSIudggZSF5QPs8dymaaCUcxQ1nFYu2688izBDEZ3F8xXrFVhDTZinYuDrsa1xdsgGecbd7qTDiUDEjpJaInZGelYa+TsFMe8A1YJ0JtvCWcG0zqri3HRUJ1AQNEH3NaI2s/HB0E0jG9f+D5cx1nWgk7E+4cAXDHQmJfo7QoIeNuQ7RkcRMkbaaLfw76CzKQ1MA7wF56bA8EGe9SeQyAyEjs2gs1k709lKLtts0lrsWLv1DQhYEn6rJh7ypWK4WNLKzmv1iC7ZmZEcG8l2Ts7i6+66BJx7FUXXiyyftcqczN91E3rs/kH/QKHDi9PLBP5dS+/EXt2rlwCcvNxBlNzQvNhJckFACyjQP78OCEjJxzMpZQ81rQpS1Xcd4W2zvof+8UPhMBAxBplz7PMw2jhy5dw4aXHbBnHdFwXWuFYLYNBpdJYbmoPTugTM1jUJ1XbeNYaSqRpxy12b5e/delYf+fnBnju0y4Szx4Oa9xwxVn4lq+6WRxfHlY+IPTal95g/VJQScmzGAxDwfvADOZKsEV9blkgVnZNKwA5EB1n5F6sK9x33vm4Y+8+f++S7QlxmUjB8MACdrkSWULfZnv43GwfL3nW6teClYSYYDf0ugEDa2HJOR2FM7rlhBKlnrpnrz9WKI2lqsbe2Vn0WMnZxbrGVJQ8NWbgyUJZ3bjPErFIT+MjoIl0fWJu4SwPtI8D0gYqC4W6ZjZNqVDVwd+xYa7nrzle4QFS+ty4teLiTZuxZWpKMO50SbAkHXAjw0TIAVQK3b5l6pPbr9uNfi+wqxxbrLBn2ww+/eACdm0LYDBiBjt7t2Rm0lrhsvNk2dTjEc3emT43RjKFVW3rfTNV2wgWtJzfpVSOyW+F5NhXPu8q3H3bhRPP2bJpBgf2bhbH+mWR+G1IhB1eFqhj/w5jj3r1U65yZcdkJQ5nTfl9ujFhfxkU2gW0nd2tJftcqTUOj8aCoXPcrgys9O/nABjUihhIwMX651Y3P3ZsncUr7rlyVedymS5L/OvRI9g9M7PyyasQ/vtcs3X7qq8rtFwfsgB013cxI6UEOWvB7CT1obBuSearyN/VITHDF2B1tmVXJvLsuXmcNTeHQVEIn0MZxT/iz9QGLdYx8iVyG5vKRPJ1NS0Tyf0GiS8PIUGtadvO9l94YBte+9Lrkz4gFnWtgO3T09g3Ny/8anXbYqoogg/fHdd+XVXeN964dyzY70LJmKuZTUop3HvHJUlVlVj6vQIHDy1hwzwvE1ng4OElkShC8l0/8V78wZ9+MrS50Hj0yLIAwZOvfdAvcdXWbUlCQ65MZD9iVy6Uwj37D3jwH9fbahNYW4mtcN/cHL76oksE8KxLxlUj/NkAbJn3yO+9PKrQKws/3opCY8xA21orVIIZLA/0MtEczM2jr7r4EjxtT2AHJL2PxwDitbRQyjExhvfmiSAkX3/p5bh8y+r3S9Jr+HpVuPjapDWXykT2mF5UVU0CDuNJN71oP+uVGmjh4h9l1h3H580127ZDKzumqG9yb+ir1UDh4k2b/d42mRlMhTKR4zroLIwBTrGxwH9Wqp6ilMLXvPg67N4x79hglY05wPqWeaWmolAJsxr9FnE5b3o/yxRdeKcexdrmej2cPTcffP3uGu/TY53UsjWl0IFlVzKDrY1Fdl1OLzkuMNjDDz+M3//938ev/uqv4j3veQ8OHTp0ot9rXdbllBfFMqzdkex5tEkYky7oiv3rS+VEt5FAK+loB0IQnDvWQ1Y/z3JiwfIosOatQCY5eueYtYs3nzOAxbfm/WCzGWjvUkJRp0BIzMjDA4Jdjnq6Z/jcvXFxB0c4xgJBin6P0DYOEuraFOl3pGBHV/ZSbHzFTtOu7EL+oM8+eAS/9Ft/Lwyaqg5gMM8WlXFQ8XfKMoNlfvu4bx4veeFdl3m6YZJtm2dx83X7xbGmNShZpqYHg03LkndHF0eYmQ6Omm/7mlsBwLO0+KwkNhUpG8UdXpV0geaIiYOm0uVbtuLmXRJArdz/+eAUm3PBkA33yz5HcxawYEjFbCFcWmM6ywfSsdKVfISScxcI7xsUb5sdVyiNitdrVyErPic9bTOleNCR35/+JjAYLxlK5UGJ3nt60MOjR5YFLbQvD6CozWy+sAC2L/tayHlTltYYKLQCRi0eWFrELMsCLJWd//2IaYDT+ip2DIAo9UjZU31ROjLvgOTOypwopfCG19yWHG9bkzAhhOxCbgQqLC2PMdXnbGG2/T/xjr/A/f/6RZHZQhl1fJ2mMn4AjVVpgMWgQs7KSNfnQGMiwM4D01H7w3tLpqdrL9uDp1xzdgASeadoCizzAX0V+oqvseR4ojvJ90wDSU30rkqRUz08jxFphmMI45T3A3eW8RJlnHmCt6Vha0snKwqQ7FPWCQu8/lVPEU5kElkmEgIwF+6JJIDq25LZX0VAwgE7+G+fK8ucgutSUEKO5ZKzKBU6DfSK93L9TH0TO6+1VtbJ1EuDBk0rg0lc+n15vGRMfBQone/1PPMB3Dss1jVKMd5toNmvGUwXXGpqzGeZwexnegOtlN8Txx1lIvjPReUvDZyODIhNU4BY3G/F9Vc+x+w5TAxAcWI+HkUAA45tMHovI25Da1Hali5wKo03CpK0rmF+T9M6WTMCy5UFC4p9W4cylzkHGx3JqVoc3ELj1LOI+men10r92L0HNQpynrHDvl1P37sXF27c5IE89uSw1vAVjes/rWHzslCJXqPZ+hP3j72jtRk4g6Hvd8Z2CsVK9rIgFzGDTRLeX5N0PIOw1pL+EG4CcZzMKgL/AtGeFf3r282cknZ8MACeyrS7s00qDYYwlpsYQOz1TIQykWDjO2aqpEQXAMmarZS9UlGnsXbyscFBcH59zqiFnLF2ZrqPKy/aJX6oxJ5ifefBp5Etytea2J5di2ybmsaXXXDRyic6me/1RQIIALzmksvWVMojlk0umENryeaN02iNmVgm8svvvXpFoNfN156N3SswmKxVVhnDFQF1Wzq+FRnNXOJS7TkJgH22HjmWjVyZyLi8VFkoLDimrNqzn1pdmOsJxCyhAJ8NzqVpWZCvQ7ctlMKxsQz0lFpjWNfoabIZChGMB6ztMawbAW6pTYu2Mdi/d5N8RqFcWfgSb/ra28NxrbA0qnDu2VvwomdeJs5fHoVgxatecA3O2rUBBgbjCHiQMp7bPtfa2WdKMqT5vjHyWCczKNPvTMfx5brGbbv3evu6ZgGNMup3WSpL2gldpX1E28gu0Bqv/8qndJ67ViFQ3yRmsDMZCAakpYViKbRNnprm9rK2zGDfcNkVYq7l2LU5eNKyLaQAFtrHSeqIrYwYKT3AKLKpeGIJXSf2csbCs2H2sbPsEzMYD2zWRrKjcl9jl1juCrB7pAmAVJ4dAG7csBE7OuyaolCoG4NXPe9CEVAHgD07ZvDI4SG2bgoAhEG/QF0bHNjz2PefnM8y1lmoffwzL48UEmXg/k39UqVWODQarcjy+bQnnYurL1k7cQKxTnLRWqGpZft6mbKBPQYQu+nqfaJMZEj8IsZa4xnZqZf6uvC//1yvh1Jpx3Dn7q8VjoxHQo+5fvtOXLttx5raRv1a101nmUheNnElGfRLfMMrb1rVuVxmyh4Oj8edZb2PV27etRuXrQGcQUAMvl5kmcEYSxFJnBQjwCueFVUCoXOxA7ufd9tQxPDFAQSlUhg10icxXZRYbmQSWxPNnxgM1lUmkkvQ8yHaFxin3fOYD1D7Y9qX7b3+ir245tI9Xp8TNoO7bu/ODXjVC65N30EFwAl9Ngh25dP27MVlm7d6oFdIZlR+rX7Sjp24YOMmq7PxOBHZR2b1+/0bXn3rxH0TsHPuYIYZLD5Gsrg0xpUX7wrXF7YcLWcz6gJw2rZaNkG+JwN5X/kbr77O/96DosDO6RlXxs543Y3AYBv6fXz1xZdi1/QMrtiydWKbczIa10n1i+GoRr9XYMPcADdcsRdFYWNs1Kdez4/AlbEkiQaZeXTXWWeLNcGWgBwL4Hrs67fsYWOhzwybJmEBe+UFF2H//GTWZC45v2QOgBr7u8pSY2lUC/BXHSW9tq2ML5SF3UP4Z9MaLNU1pstClAj196T56204CQbLCQE1aTPjMSr6voVxLFnhnNoYx5RciTKRrV9DlDjG1xliavzqF1+HTRumPBjs2sv24LILdqBprd1E9y10WmZzErM3VZXpR2OiETqM/Xxgft4nxQAQRhMH85dKYamusG92Djfs2OnPueOsfTiwhjG0LqeXrAkMduTIEbz0pS/Fnj17cM899+CVr3wl7r77buzYsQOvec1rsLy8fLLec13W5ZQTBTBnlHQM+OCKgWdHsBneOj4FAAUA3H0zih43PuMMNV9iBWkA2CrG/Bi9u/JtoH+TQBbIyJXOA5V8L6XLQOMsEdSgpHyIjmmqtXhmeLf8M2LWlLWKV/xZkEMpB+Bx989lENu2hH81+51y7AmtyRsZ9jsJ3upyQn72C0fkOyuFyjODyfeRGTDSOZ0DfpUdCis9Z3JY7eTLXbecj+/+xqeLY+OqFuxPhbYlMGYZ8CsHECOAZqE1lJFzWhiQfmxJMF3XUIvZ70gCMxiyQS9+BTF7BaClDSTwi3MMHvb58IFy3tZJ2V2tsaAWE51jA7jub8EMlm2Cz7qAUvjDZz/PZ6nStKEsn0lrhW1hHGDkRoVtY88xg9Hv2CsLjBkzWL9X4PCRZQEALLQz4txEKVmJP7/kuaitDbbL7H0KKimtgJHBg0uLIhuSABtTkVFGWRtKqYQlbUZcn/YPBUimo6xmHlxeiywNK0xPpaUjYyeTdmwInB6asl5+/Q/+EZ9/6KhkBusoE8kDN3zNYnF8ITyYH5f8o3vyOcRLVnWNcD9XnPHzgjsvxcuee6WcEya9xrZNgot8mUjXNs54Ey52t4wcOKHdRh6DdCTFDH08iB7rC7xPOQiZA79IqESOzTJUE5jB7L97dsxj4/wUYxoM+3e8xnEntA2QuD3Qzy/7rwgeRt1P497wNZdACVzf4Q6WCGBSOAYxr1uAytNFYIYJyoJfb1eQLRsHmJ4qEjCYzShrknKQgHOSFPmZG4PH5mZ62LKh59sPQJTiABzAq64x3+/7vqB12Ae6qF2wAeP5fr+zTCQvlbIWJtBxVaPvgvIEzGja1oNzi7K7VLHQXwnEwh1JfE0oeJk86dQBGHOVCdfCny2TI/g+lgNM2XMi1iwCsNE7Q84hfp+S3pUtWDzTNxa+7wkANIw4TuxiHihj5DvGv1toL2MDgBKMYSTcXqC3/obLrsTT9uxlDEqp+N+B2LgUMNcrsXN6mh03ol1KS11l66ZpzEz1XaY3fHuo3fw9OShXvI+wIyZntQPu9wuXdtsY8Zoi2h7WFb/murWf35v/YeTRYM/Rxm7C7yt0uUInrHux0HHxzprbgaJh/ojfe5huUVBgg91XqTCv+JrNWhOAZcywC/YR208zdiwXDhjctW0OP/u9z+sEjdVN61k0fbJE1L6g4+aOnX6ycV4GLLdstGwWcXnwtcoPv+FZuPDAtpVPXIOslnnt9599j/+bgFBdwa3FOmUGM618FgVikrK1MJ7Rkksu4LroSqv7YIAbbzEj6NKw8sxdMYCtNiF7PwfWB+y+e6waC7ug1LaEBwU9BkWBcSOZxwolzymd7bJh7wxe+mxZWo1Yf+PSL0WhMRxW6EeB+JwtQFJVDX77Z79M9EHiQ1DwZSKVCx4nZSJNK4LHXZLTa+Pjy5Fuw8vsxD4c66tz7x7ZMXztyQn32ZxooRKray0heyZJ0wQ2iVySXaEsmwFPnip9SUiexJQybivYBMAQnNY2wBYBxuLytnHJJh8MZMkKDQPoc2YwzqIFwCcx0vFBPw+AWYtYn0vD9m/tSpgFWU3pH67jUqkyvvEqSL18W6+PaaUxHDUJmJb7dmMhENgeViaSSmRu3XRiS6+ScOAefaYS00DQeeiVqTxZ3ARu2/e0xsHREBseA7B7kpQZkNfmDVM4fGwojsWMK/aYDLx7tjgEndeD8k3KBEeADeX8erZMJEvy1BpHxmNhmz51z1580+WrY+UqHVs9raUb5gadpTS5PXayZJsr571a0NnJElv1ogklCzOgk5JYi6J35bEGArPE8QXJlBr2PjH3J8Qi7Pc2YVokxTJmMBICsPNzBBhM6aQqCU/A5/EKUeGEkmjaYLQEFnIG/i/ShGgO9n71S67H855+MYgFObSP5kr3WOjSScjefv2VV+OmnbuyyYxUOeNrL70cLz7nPDQmZimy/dR22EfHK73SJudx+6FXajxyaCmxKQDgrF0b8eNvutt/LktKsOcxle79K6n6ocivF4PBQjIDgQF/4667PeiQhiKBnkm2T0/jZ2996sQ280QzkuGoFgnPxAxWlhp7d27AT3znc2yZyDGbPwXZmswPmYmbtcyPRb7zTie1k57z7QhmsKbBQEsd59i4EjbCUl1hekL/r0amMgCkMkMS0NTGs64Crs+GlfCB7to2L1jjtmycwbbNYY+fnuphecgApC7+tFhX2DyYwkJVJQkjtD7wOIm1eYpO300M/lKAqJIUfB6SGYzm4IiB3HhimvA3s5++8NVkQt/UjrH8q190HV7+3KvQNC1Go9rHYSzorBasdTx+GQvZen1dgIK+cTyXQHAXbdqM77n+xmy8oGFJAz3HDHbTzl34gRuf7O/zbVddi5t2BhDoupxZsmowWF3XuPPOO/Hud7/b0uu7SWOMQdM0+MVf/EW84AUvOJnvui7rckoJB3ABEk1NQBICidHGwYN/MbV7V4BFBIOZk94HwRU805APNLHzNNvsugJLZAyK9mUUW8nuEQVCmHM1bhMdzzG38APegaiC4hQzWfFnTZJJp3QBKLyi4AIIIWgWnAaxU0heT+wUQbFQKvNbT8i44RlPVM4kJ+QU5/cZVQ2KQgXHkxsXvNRZ07LBA+7gYffuMGqojaeiVHWLfuREW1yupJFSaBxdkIYLd3iTggjQfAiGCjdQV9MDqqMP+TycxHL33ufemwA/bUlI4wPB9lhspLvfOhMA7feKiYF9GpdtWFD8M+g6m7llfDA9FwRMFFKX7aVZfwIrKyCTHJU0p6b6paBHL0uN4agW/bM0lOOA+owCr5z5DCZkdIXvJYiyV1rHqlYKGLd4YHFRBKLIabZ1agr/77nPZ+3RofSfX6sJOCaBjGlf5AFmW6emMGrzZQMmydKwwsxAGn250pGFVlhcqpKsqaYNATBeorNuWtz/Lw+L/cWW+SSRBpkNFEuHamyw5EodhnsxR+4KoJUc06IPTOdvn7k2jCsf7zehlCh/73AbuYdxhi8OyuDvH97LtvF997zAs5dQUF60I9qjSHLME2QgUmu6mcHsRvkrb30pbr5uv3ccyj1ermO8PEWh4aiyI3AylCxhEfVXT2v80XPuDQAQSKPbMuew4B0DF8TMYKSHKRXGGgC8/94XCTBD2nK7xk0KApID8vWvvAJ333x2lhlsXLUi04ukafKg8p/9zluSwOJTrt6Jr3rOXt9+AAJ8attrg+WzZekBXrQOe/p04TyxZSJjtq8xK/HJ77GSPuWvr+w+zOd0ywD0JQNx8TkhwUFBt+TO7TiIH0AeANzvrNkcoXGXMM2ZVOelU3iCQn5/NqG8aOQsjoU70mkuc12Mrs9dS+eJ4cn+5tncvqwmc/zH+j6/F9d/OehLAN4gwXJg6xRPKpGvZ+ScdN8+/5zz8N+cg7YoAotZ7Iijp/z6T74ct914IBknCkgYncrIuc8ZKGWZyBX2BrEWyHP5rxNrWi0MjtY1RszxpxTQwHiwWLyb09hjO54EpxBjHOlY5LxmdkRZhnKPcQAoW2aRjRXD+su3i88tPzZjpspum5LvP7QOK8XAbay9cZlifn+Y/PvzMo45EQFdxm7KQYR+HOlgn4XrZSLI6SabNkRgsE0WfHmmsAb1lMbRCBzFZbGqk+/GVSOAFT4QAyRK2qc+dzjZ64ejGr/506/wnwutsbg8xn13X44nX3N2ePZSlSQYHVscYapfCrZXkro1HvBEtlEspVYpGEwpLNe1D45MFSVGbSPmf6Ht3h4zg9kmyxcpCo3FpXECGKSgRAxipzKR8XEFhXHd+DIqANOPmY6slfJlIrVSrqSNfKcmU+YmJ50MIUp5/SfuVw4+iwF6goUjCurlmILFtWtgqVmrEKvrXKbs3OPJ0P5ESsNYuEqd2nmlVqLUIx1brCvBpE2M29yG9uoj7avKJkpwtgUN4JHhsmDibVqDsgy/uVZRcNHpZJTYIfULeqZ7r8iOBoCf+65bVu6YCVIqjXHTBhYT7ZjB2DjlrFddIpjBvN8kfG/gygxF91ke1kmy2XDcYKoD6DY/Y9fPjXNhnNO5ZaHx3//TrRPfcyXJMmR7nTacw32h1KYtgyn89M23oYqSoYB0DhZK49BoiA39kwNgyyXsbZibwtGFGAwWGLr9uxUSSEbMJ8J+VzyxSur3VMqNzrZlIkPp5r4ucGQ8WpGhs0t6ZSEATS9/7lX40TfevcJVJ08IDHYiZdTItWU1UhQKNWP04r4mEgsGqxPfgQA3RAxjBPyyrKhhnSAdScSZMmAQ8Y5K4eh4HCXF2r2YA31ikG0MAiL/MpfWMH+EDvqM8DEyP7hon3cGQHxnP7BrmzbRCXncxtvYE/SAkOybfhf7MrlPi3Sh4C+w7819XCX57KJY0mMVSqDnJSHL0iZYb8gwg42qWiQDBABQ+F13bZvDn7zza7LPK7Wy+xKrDvLHz30+ztkgWYfIJ0L7Ewec1m3r1/JepqzoSqKQ+vWGY1km0iZE1FHJPpvIwAkE4vKtuTkSWBcZ8HCFn9AnfzNdJV6PyUbg5yzXdZIoulbJsUmTz5/L8kjGBXqlGwusz97xwy/CnTef7z/f9+zL8dbveLb/HI+xXlnAuDKRmwcDHB2Pk+QQnuwKAAUsGKxf6MhhFkRDCf2MfOB8DjbGCGY/io16eyjDeMcZybluRGsKtyksAQH8+W1rsMxAiGVhk2367Dncroyl0DYBuOfslX6hnX4s9/icnbRvbh5/9Jx7LbsnA4OVWmMhw567Lme2rFojecc73oG//du/hTEGt956K37+538e/+f//B/8zM/8DK666ioYY/De974Xv/u7v3sy33dd1uWUkZiRR7B+kUPbSCBFXJYLbCOy+IvMRsYCHwTw4AohZxoSznxIZZkHhZW7b5cYdg8f4IBkFMg5N+jZ9F72j7BZ0nuH4I5KFHrDg7yaQBhRsKNDkfIBwBV8ZIZ3KruWt4EAAoq1HbC1k3OZq74dzsHSGutIiVnY6NxQpkKCeVKgWIdyo8O70r9V1aAorIvDj6UoyBOD64hphUuhdOfwOFUDJRwQRLI8rAQjlKU0Hgq0PVdctZEsGSJ4tUbWAGImiMUGnYBJE1DBGs0xxTVdy20JHiTLjWGSt/3QC62iPWFyaK09gNA+zz6lVxahxAGUo3nWvo9ihgzPTuQ+EzMYV5z5/TvfZ8L3tJZs3RSyTP7Xj92Hfq/AcCwZBJaWK2HgaE3OFccewIOiMH4N0XbiM0eIU5hdfygFzww2wxxgMwIYJktXBIeFPdbL9MVMJrOHgiZxwOt7r79xTSWKSIajOqEgnhr0kozDotBYGo5FUI2o5OedISccNXWL13zXb+GhRxb9+bJ/8yCAWGwQPRhuubP4HO1iyOMi1nXmHIqzfOhfy+ZJa7GW+70z/BUsS53PQsy8QwyYovVZzpmoPWxfh7JGmlxT2J7BQBwBvNPdxzQOW9cRXEfJvXdZaN93PNOUzuGbG9FjUz/S+XE5tTi7ORaiRzfeQLdC5X34HkplWYXuELW7UDwzH75vuvc5hDKXHUKZ5L1Soygs8IsHiDw7YcaJEJeZIcmxAhRaYdAPwV0AIgPXv4sx6OsCYyr1qBTGlDkGCfBabhrM91N2MQqkcodL3bYTnQN8zFtmsAJwYJy2NaIElwDeRh4xDugwrdz72En2XYtQetHeSXmnMZ9bxDQkx3fOoarcNx1tZH8H1j457yT7WLRWRPs2lUtUUIL9LO6LLvHMYMZ4ljHB3KsgQFJAKIHJ28J129ALUr+XQCF7vgTS8LUt7Y9CKR+U9YxhiNZgZtcM+qVrE+8PBpRi/R6DC4PaGxam1TjyY/Cb1NfZ3ywwQc/70c9+Ch9fCvudBn93I4B/PFFI0bNM6MOg43FwQlrWkLc7CQBF7eRrtMyMl23kjCUpaJ1+z9j2dG2ObuadnoqBM93XhQ72hR9XCGUic0Ofgj1dvyF1gQ8KKfi9k9rHbSUTPWslsNmpLnMz0qk+M9XDz3/fvU/Q20yWFZa2rATWEQbkMAZ126JuW2uXx/ZfFKwgFjCuZ5G8+Wffhz/74L+LY6NRjTlWso1KpvOSOACwuDzGHMt+LxyDVq+k7HD5NP6uOaYjAL5M5CRmsOmixLhpBKCD9nA6J96X3vGWF4X7FZY9eypmBtO2RE4vArFT2et+FOw3MKiqRgQEKeOchID5Fgxm7TMeFPTnYbLdx9sZJ7HRc4dNg6fs3IU33yBLg3HwS8KgEvldJpUHj+VkMoMBwM/f+rQVQTtnsjRtADWVWotSfoBL1osClYXSWKxqmWTl+nAwQZe1unEtSg4VSuOd//wJ/O0XHw7v1Mgy73HiKtlUF5y9Ef/lG663CQ7xPCf/ShEC4yS5BJK1SKEVRm0TQKdKAg4AWX4tJ1oBDSAYhWuTMh1a9gx57XDceGYvktEEMNjcdA9v/sYbxDzaND/At32lZZUqMzbUWiRrBzN9h86JS0cB9meaKXuoXQKVVsD/evpd6Kl0LPa0xsHhaGJZ18ciNtkqAgJlgF9AxpZh9jHgfk8HXiEd3wP1vT8bYZxGSUU9F0jmQI3D43HC0LnqtjlAE2fReay/+2ORXTOz+IXbn77yiWuQo+MxNq4RKFhojTErn0nl6cQ5hUJVtcKWtIynstJIXbfssyubbUI8oWBAMw4kmxSLAOy4icuj0vtunw5AoxgIFy8/ucRrznRfdoDACVzB35n75GLfnr138O010drIn/+2H3phFgwX63W0fsTrI7d9uO+AjhLAzfc13G/H7sWZJrtW7OOxX0hn2zgvy0QCEiDWJVODHkajOjnetX9RmUjui8rtx54JLtpYiOHynA0b8I6n3eHLRK5JYn8kgOGwSpnBIpBbUWgsLAd9mUCapMJ6UGH0M1SsFCBVFVlJcpVAposCyzUvsWrB7bz/luo0KeZ45Fd+/D7xObfmDKPSmr2ysGUOWZ8N+qXY0wutBZjw9hvPwf/v+5/vP1vG8xa1MdgyGOBYNe5MDuH2PNk8XfYDAb2571cCv8K8jBNhtXbMYJm4DA0jqoIhYiEMDEYM0ojW0xEDIRaFfQ5n1pvE7O3LRBYa333djXj9FVf7+cHP4WNdI6wTU6X1s3G9sFQKC1U1UUdelzNPVr1i/Nqv/RqUUnjFK16Bd77zneK71772tbj77rvxx3/8x3j3u9+Ne+65p+Mu67IuZ47wAKcxSAJ7ZGDx8hNcsRGxUdqIWFCAKxSiBjkFPtx34RgPBNn7NcaIDNEuXVFF39F7x0xeXBfWUfCEt5u3kb8TBTMC44dtc2C50gL8RSVNugJ3/jlRW+L3yLY5+sxLUQHWKUnBBB5k6nKgUNsMnGHiUDU5HyEjP0uMjKaVjAZdIKSaleKif6lcngdGKHLUhPHTtjIQSgFtLpMcj9bYOfXka158HcZVypDEkfVTgxKPHlkWLFEx2j84sJkBqmMDVbG/8yIDgvJ4V0DCPtXNOZ7kIH6/qMyJUsK44Mc5OOXCA9vwmQeOTDToqVwisYz44yyAaAEGrWf+UErZAASBSxDGVHCqaTdvwufVyCQAArHNXHzuNnzn1z8VALB/7yY88PBRjEaNWI+b1ggAoKdCVwrxq4hgslsDY8Bmv1eEsjIjg0dHI+EAi1l7/HNZAIPGUAzqANIScEDIoIudKXtn57LPWknislMAkkxewK5lcSkZ6r+5mT4OHVkWgfmDh5cAAAuLo+xz+bj3jhGVjsmWndhVxhCIxjuBDLJnAooFlHkGt2HzhH/H92MLPpGlY2lOGGPQK4skM1E+PPyZ21vjoCAHY/g91AHErINM3l7z9YDNvVxmED+m0O3o4+ADzZxtsn2SNYqz8IR5w2jZ3T9VZq2OhQAC7/rXT+LeA+fYeyqd0uxrjaZpEgBhy9AA3AnHnXWTGINS1sX0e/51VbfCEUJ7cz9TJvKbXn4Z9u6YndD6vJA+Fzt8aG0ZFD3hDKiM8cEmPiYsi1gKBiNnU+UAZaVy5Sd7fSw3y9l3EmCwcYNBr/DgCyqtzfUUE13Hyzl6ndntkSkLnXtXDs5UfsaGpAemz+VAf11rhGC/FY0kEGdeDy8zAHruvCdmsLCmabFfykflWeO4UJ8agDGGwgcD4ixS2baU8SluM2f94g5oYh6kGJG0G8KJXYxyoi+c5MCoARAY7u1BY62BctMsYQYjm4QFOLrmcTd7Zbf9wO9CIPiYXU8reEYg4+9tn2a7KJQ4Nu5l+e9BJUWpf4k9mP8OJQfox0lG9K6879yxQitUmTUv3pc9WIqex8YrBZg5OLkrqCzB1hTsUC6wmiuL3FEmkoLtHTOXgobEfmyTscL5vHwMZ8JU7NhaEz5OJdFa4XWvfJI4dvmFO5+gt5kscbBsNdLTGkciPVsphd/59Kfwm5/6V+yZSffS0ajGVMR+a7eGFGR84KzNeM1918vrq0bqvVpjcakSgTMAWFgaCzuzcIGk/nyByrToK2nHiLJ05CuIpFA2QzthBmtq9Bib8KhpsKmvxHUcMKaUZU2adrbU+fu3sve04LY44GBBX1US0CsKjaXlcTZDvqpbmVhFOiW9mltMikLbZJ2eTSpaDQtYjg2jK5GEdJitU1PYEjG71K0szynen4HZLLB/9WuBOYnMYABw2ZYtJ+3ep4MIlk+VMlTE/hl7zDKD5cBgPMCqkAL9+fwB7BzdMT2NJ+0I62nTSp+vT4AT9qE9Z++OWWvPRTFg7w8pSDdeuS9WK4UD6oRyWzph9eK+wZyUWqNGpDu0baI8c+Yekhzwq6rbrK7y/KcdwPRUgZnpGXFca4VLztk8uaGrlJwdHCclxjorT2ymcmSkn5w9P49eoVFFpWinigKPDJexIcPkdyLkObdfiGsu2S2OxcBbgPm4mIwrCfAtXIk+0kdDmcjW64NcH6O1kz73i8KWiXQHaM50+b8myetecSPKUruk3pO3lq5FCqVw8aYTM/5IDo9G2LTGkr8E9ovLO4pzCo1x3aS2JNs7C1du0vu1i1AmMrAbcWYwmZAyST9WSuHIeIxNGaDbTjav+9H870WLnmV+Cs8xsOD5nkto44nZcZnItg3Jiv/pdU/FBQe2uSoFMoYWrsHEttGRCw9sw/v/9tOd7ff3duDKvHobnt8Yg8KEty8idh6y3XPAFF6SN3nCceggG+cHeO1LrxdAFwI5x3puDok2M93DEivzt5IUmtjiFF598aXdQB/vxyM91h7vOeBcoRTO27Axu/evJP/xq2/Bhqhtw3GN6YFk910aZdbLJsxDX76Vz50M61dVtZ5NN7dW54T8/VxX+bILLxYOl1xS/YkCg529Z5P4nCs7PBo3wkYg5sG1AHjnZvoiuabXK9DWto0b+wMcqyqxpnB9jcc1h02NvtZY7Ii5xtVqlAqlWekerTEYt62PsRCQypdvzAAcZ6Z6eMOrb8XScOz1q6996fUpE1hHSdGmCRVWCm1tI25fKaXw9S+/Mdt3thqETfbdwkoa8ySZMoohF0pj1AZAYekAhfy94lLq63Lmy6pn7Ec+8hEAwPd///cn3xVFge/7vu+DMcafty7rcqZLDKASZSIl0iuU8xC7VFDqyOlPARZ7ML2XUlQmRTrHQnA0KI4GNmu2x5xfMTuHCX+Cu0QMwkYogkaInQl0ft6Bny3rk5wE6UBhp1AQZEUd10c9eAsmnz5BX7cbowfYyd5p2jy1OgU2eN9xZrD47Jh+mISDtSZl4xD7ig+yKgcGK3TEkMAAco7phL+RUmlvTTLGV3IgPVFy6fk7cHXkJAEk5e2sUzq54SMMKBMYUWJgAT/OpWuk0XyJRZTNyXQjzWMCcwEsSMfnBzccMy8h65qH8ZRnLrLHrr10D267fn/ClMSvs9TyrWP6s+9G5V0pO9dnXTBD1rbDGVGr9HpOyk54yd2X45LztmPLphk8+/YL/fFeWWA0TunSOQCQsja0UiE7zgeR7YJE1M4tAX2asA6VpXbl7xQwtm2e7WAD48LHEb3efMZpmDPmShbcORFy183n4/rL94pjgwy9vw0AxWAw6zCajxgSylLjiCtXsLA0zj43LkUWl5ACWICZOQSyzFXsb3Jcxse5xGx5QNhT7d9hP6b3CHuTZAajOaEUrEFXah+wX0k8c6dQE9zY4Pst7fUc1JLfQoVDir9FrsQmL9OlMHmf4Xtz44Co8fovmIEYiJUCIHyPadx+vhIzGL3n0Dnbg0M6z8rU0H4t+o+DPaxOJFgVM+Mhfv5kBygCyA0UEJVBJCAPBrvm4m3YsWW6895dQkCM2FjnJSG5M4DrgLy/lpvUaUSZhkAoF1lojaW6wvwEBzbvwnHVoNezDJTK7RG8TGS/V/g+k2OOgTU0YNr8WhEc2donUEBxNkfldWntPEcxa+Cqw7xCNTDeSWv3dukbLeJnRLZBYK/ic9mBE2kziNaDWMT9KQBtWGlnxGuFia4Pj8mtKZHZkgWJhZKs2W6SAM0MeIeDaHmWpAd++TEQSvlJhizjfwOAyiUyfUXYJKyNmXcRwYSOfojFgklDW/lzuOlGoF2rR7LrhQmm/AVxeSnSs43/faXdVxYBfBjrOqnNIR3IsV5o34tlzyMwkfnrfICCBwXDXsP3BPoZ6T8CZ5IQ0FnOH4SEqIzNtBIzQb9X4snX7HNlblpoLcHMvL30HR/EPGmrK9hyqssr77nqiX6FVcnx6LCU9R0Hmv/lyJHO34uX4OBiondQUNi7cx63XLdfnMdLoQMOPDWUujCQZ6CmDPm6zftGhO5CSQXs+0Ip55SXzGDHxhWmyhI3bN+BTYOBcOTTdbyUJGBLU8Xl5YGwRg86ykT2o0z4QtsSj3GwR0GJoAaAJMnN27VaYTy2Af9x02RZ1rlQQkDy7h26GbWf2FD5fcZtK5jB+P5Y1SGwtVr2BpLWIMvuebLlTCkBuxZpjEkY4MvMWCBQ5ICNewosl9FeJa7Tttw6Hz+FUiiUxn3nhXJHlhmM6Q9awbT23/PP3pDuyRk7jO/lQDegejXCy8EDgUncl2dXVF4tPKM1k8tEFkoJZjBinYj1Pc5gQzIaNwnL8e3X7caF+zcmz3neU/ef9LGcs4Pj/ualruka+9km4VVtK/STntL45NEjAhA2XZZ4aHlJMCSdSDl7zybcdPU+ceyqS3bjOU+V7PD9nvWDcRlVjS9bCkCUtSN/F9eDyd6hXuozvQ8IfirqRxp/M5kEx5Xklc+72gKaxs0Zva4dHo/WPDaoHJ1fLzJMcGWhUVWNWHfIZuaBfl5ukgCDxoABzQIzWMv0Z4rFTJIjmbbdtGMndjEw2Nlz87jzrDB+Yx8vlQEk0ZClNQvn32gaI8CzHmTjBu+zbrsQG+YGSfK0XKaCzWX9ubI93B7Nlcnz57ldpHCslbE+KioKRP7/c+Y3eNbGhK2U/3auZJ0leDhx80MphVe94NrkGLA6ZrCZqV42Cb9LKGlOK4WvvOiS7P5z867dvjJAV5lIkp5jmF2LXH/FXlx4YJs41jQG/aj6xTAq2ceBknROzcqudgG9ODNYVynJWOg35n6+a7dtx7Xbd4RzMkn1Vuc58UCeqUGJYcQAV1USDEYgplyZydXK3EwfY/ecmbK0ZSJ51S12LtflLTNY0UEeQnGruExk8OWQnVExfymBRAutLEgrBoMZuxbfe8clbn20vo1X3HOlB3+F9VOCwziDuW9P4RiZI7vry+69OttXhQplIvkxPrxiEFw8Ru3a03jdp1Qai3WdtRfX5cyVVYPBHn30UczOzmL//v3Z76+44gp/3rqsy5eCxM6kOONJuUW5ZHWMYycGP7crKElKI51H9+JBT+/Xjpz5FcuELLQsyZh7TtK+pD0m+t45McXDlbufEU5X5QMy7BgCuxAQgkK8znLbppt7zlbkJU46T/JtTTNNeVttQD2AxowJiod1RuUCdfBGNQ/0KZUmVLStzMSpmTLLsyApAPILv/63yfMqzwym/blVTWAwOZ74WGkjBYQbfCQ5JVO832lkrM8ywMpKSqpCAIPxsR4bIKuJFXVlLodA2ASDQJEjRjJ0BbaMiL6bR3npFhQ8mxDglY9UuOuW8/FVL7ouCfZyYJp2hmvB5j8Fx4mu2ddjd9fHpTlWW/KCZ8W0RjLSfe3LbsQVF+1KrilL7cBgcgzHZSIJ3BUbeDRXDcJ6VJRUDz44bxuaw84OnhVlIsvsECGGNCA4HmOmL7o+ljiD7rHKy55zJe54ynniWG4PKlwde1km0joReWkce1zj2MIIWzfPdIPB2PLjA9MZA04AsTr2R8Hs0jHfuAS2PAjQVReIA4jBUOydipBxs23LLPbv2cQyFuM2Z8rd+Qewd+MABrc38v2fGGfithMIhu7TMAB1LmhGjqXW7YN8fov35v2rQ9/xtsT9pXUwNrUO84YC7XVjy0rEWWbZrlGBocqDP5T2/UIzgrMyCdpvBlIPjEahAbTPizZHgL9JEgPcrdOHZ3XZfx9ryZecxGtE6bK8KYOdZMwcqd7x4Zwn26amhaOWHJWXbNosHP2WGax77+R9xgPo3vHJQCy9svB91usVolQtMYRx3ZJ+gVCGJwS5PKMf2/7oWppLNE6ELptvBYAYACWDhnZfYPodmwxxIgN/UFEEMA/ft+lROX0qt9zz2zdtANvRvfjcVCqA7WbLHrZNTQl9nfvGQ/lIpouzd+Lt5KUB4zLvvM/8/IuaRuUx+TuEtTuyL1wf0zzkDMq+bxlIiIIfgEt6YHr0SqxPxN61kkibyIGjIttDw7Jv+QCpkkE13iUGBjCKmU9pKeOCMb/5/UJ3MU5Lvd+z0Hp7QydJBuIC2H3GIAXcxkx23eBk+6J+PkbAL81+x+RYeA0hXXsUydSgxI++8W5b8sXtMfyZFOyUz5cMoSvpD+tyYuR4YllkM/B9r6c0Hl5ewrapqWypmOGowlSG7Zb7GICg56wUhC4KjcUMk9byUJahLwqF5WGNXlGI7POcTGK4WqxrDDgYTWnruFcKb33KrZjv9TBuJBsIBRa5jbVc15jOlDghSctEagyHafCj0DobrLA6VfT+0ZpLoGcLKKs98DxODIp7qosVmPrtnf/8cWGbF0phyZVOEfdRDnzWxQzGGA0Krb2euhrJJUg8XvLBhx/Co8PhE/LsJ0K4PktCDEdcckkTOSaNWCgBhdvbVgeuMGAAsaaNykQ630pZaHzH11yTAYNlbEt6Vwcqeyx2gmW0SFnQyJdHNjt/K1s2tSOJ2V0rmMG8X0fqxTmf4AX7N2LDnASG3HbdbtxyTeqzeTwkt87GALa4DdxvZe2qRvjZe4XGp44exe17QlLddFni0dHopDGD5eS6y/bga18m2UN2bpvDWbs2imM2eM/KJgtfHgAV/BDuo9AdQ0KivZ4CxjTG6Pu54ywT2XPMYKcIMdhJkV0zM9g2tbYkMCpH55kEGWArnEN9F/vR4KsflIVNGI8ZxnhJel/qzl28msR0ktqYpATmjz75FgEO3Ds7h+++LozVGHQQQKuuXRHTqYaNWYxrg14Exg3+Ka7TuxOY/Qp5qBvoJtqvJzIT23eVfm9/G/4sb+fYe73z6XdaoEqmTKUEg1n/FU/uO9kSl0MfVw16EdBoeo3AH1ojekV3G97ypKd4Pd+vwXR9VBI6Liv6WGQ60uHjUunxvCO/gp6gV5Cvk7POVvXKuuV0IYG2OekCBcaJECdCaG3mkoLB7N888X6tMjfTx7IDg02XJY5VVWc7+dwYu3kRV37g53K/eGDx474MaQd6Fj9tyzfGyTH8MVrJ+EAoNR/WWh7nLTLraVFoVyZydfO70IERjb8S13N4NRq6huvKpXZlIkmn0Xq9TOSXoKx6R6mqCnNz3eWIZmdn/Xnrsi5fChIb97kSkCGr2znRo3O4gmgomtP1MEgnuv8KzJlJ7+Lux1HOvGydYdd2tg/wFNK7Z2Yx0IUMlLH2dznwEyYV2I2WzvWlgITybhIlfRITSe55vH/yIILuNr//3hd50Ay1a1AUXjltTItcmTtSQgwC6MMGO0jJiH57T1EsMwU4UIwMs7f9xoeS51Ew3Tu4tEJVyexcuh8H5MVlInPK06TA72kHBmMZ2yspqcpEweDIEAPy4yknXYEyxeZhziDI3d0HeDOADB705edK5TYcW8mgp7Fv389dx9YwX97EATAUlC/d4FkioFC3MiONv8dqmcF4/wybxmcLTZJeWWBpWCXzgJdApPrtSinv+CehNduz1xjj5yi9Ta90AUc2D3hpx7Pn5vG+570webdBEYAanOnrz6Jzc4r4oCjwvntesGL7H4uUmYBRoRWWowAYBYtiZ0FZaiwsjbFzS3f5O75X8HnFZ4JSEqRTRJ/5zSR4arIIh1F0jAtf3uJSb/Je1pj8hlc+Cd/+tbcl5VU9SMWkc91CH+wJf/a8F/pggr+/UkmAg5dmjrO66S+lgIb3C3PuxvemexCAK1nXmeebnGExK2kMdBPAUe2YwVhb6bvVMINZ0FLk9NTh3SUQR/Y9L2tG96KPvK8mgnJX8X587IyrVji5qJ/iDPkTIZsHU3j/vS/ynwn0VzoHP4nVAQvxPoWyYLBrtm3Du++6W97DGPzcbU/DdS4DkZg2cgyGXtgAaBrj5gocWCmUifzAr74Wg37p59FF52zDe37xK1PQMwf4sHvzEuIFY4SilTmUN48YmNhe6I4krFeGzdWciPdDymxk3yP/oXBURBx4X2hin1TBLhDTb7KOZZyTykCO/6AXhOvP37gR77rjWYi6wJ8XSuTyrxmwir2NVui0VeK1PQty0BGTV/QOYt1qIxARAwDyLPkunYa61ZdQn+CApnFj25F3KAIyOEa6XAxut0E2g54O7Kl0Bi/zy0GKXEdrWBuN4YCItKwiEPSrwIrHx7YSa3S8j4V2SeBsrAPm2Dm5rhgz79GconFQM7uJB0S4bUtg3S5msOS9Mz+71vAZtxzEaAyE0z6+FwdnrsvJleNhXqM5xwOLU2WBxQllUZaGdTYBqMtfsZIUOg8Gq+o2CiQ5ZrBe4RztKwUQ8+vkUh0zg9nsdhLOVBnOSYExw2ZypnfcnrJQWMqUidSUIT8BWMbPbVhZFIpHaK0wqhrblhWAcsCE/lEKDQx+/mP/hEOjUJJeO31loGMgW8QMBrlHNm3rfSlFoRKWlUnCy8c/3vKnD35eBNfPdIlBT0AKIACCfZ0rE8klPuKZ5cR12pWcDPOkaY0sExmBH+Oxk2Nq9f4QF/wb9I8/yF+bmBksJGTQvzFItDGT51+hFWqEQBHZDXFwtkXqE/zml1+GJ12+/bjbc6IlxzAYj4ecHgfYMdLzSTZBN+xpjYOjoWBDoiD+JCblx0OeftO5+IU3S39Rv1diw1wA63BGIvLlWd2UJ6syv1dUJpIAxp6FzvXXbIZhfjUSWP0fH7DLEyG/9LQ78fS9Z63pmkLbEpDK708dzGDsHBKZeC6ZjIgZrGWAlpIlOXI/GU9+nCQb1zjuU3ZyOU8LTUyfkt3cgnH5+qv9uBXxpNa1z9uC4VmiBGZjEj2N61bedzjBXxQDQrgofo4xqJ2vhtqcZQbjz3f3/uSRw53PP5Hy5//rNckedmxxjPk5CfabHqxtrlObp1fJPOT7hOx9xxBM0i90NhHkeIQnRShl9VSuAw/6ReKnonO7xMBYv2BJpA06W4I9lq7qIly6SBtOFlgwbidVASAhQpS1AgS5zM/2MRoGZrCHl5c628PnBmAT6xsWn4wZ+XgJaALH8wRZShCLr9GufGMC0uI+vkKuIdoBB72OV2hwQoFcGWcqEznJTyXOdzE4DtAkEgneR3XUJgkWs8x6PtlaO0bqVdh463LmyJmrca3LupxkiRfdlBmMBWwy+iMP3FjHtQw0hPMk0KNtpQ9cONb5MVgHfE8FpwBnAODBDsqi9s+EdF789C234Y6z9oHXK5flqPKlEMDaw+8Xsw74QAiBwcA/I/HYdKlehjqJnZNV1Ez+HqHcC7Gy2Pf9yZtvwyvOt6XoGpOnVqdAn+87ENNC6nwWJWwiMAIvG1RohUNHl7NtrT0zmMK7f/Ll1tlZ1X4cUrvpHejcOOjPFRSSOLtHtvP0AYP9rx+/D+ectdl/7mIG+92f+zIA0mHEh11cJrIrUMiFnCqxeEatTptSzqVsmSRhLPMgXbRWRI/pLhPJ3jujSCudBucJcKpVWINu2rELv/3M5zgFtBXnAqHfVsMM9pt33Y2LNm3yn4d1vao65r2extGFUQL8422kUkJKUXaczNRRoDlrJ29ZaJE51isLO4/ckv9LT7sDmwcRS1amjbMskMWzOeL5tHUwhd9kIA2S1YLojleuv2IPfvtnv0w+0zOD8TKRGguZoFhZaBxbHGH71klgsDCzAmV6PjgdDJTuMpHcV7ASsweVHhPHIic9/9oY6QziZc/svHOBfqUk/Tdf6ynA3THkqSSsL4PnjofAvnxXD9DgRi/ikomtuE/OCd4a4/cyrZRwEpJwYLbMImXtgwzu9sqCARZCYJ6mD1Fn55jBqrYVLAdEYU1/A44FzNA6DHbMCCYiWpPCZxu04A5ODWJUkgFW//wVplvMBtUrJbCUZOoEgsHO27AR777zWclx0vlKLZ224zbNJNXKsh/EQTVykPC1SyvLtDGptAUfNXUTgqo0htu2DYAVHcaC/czWXRXGsgfusd+TO1pLHcYBFGMBY3o53Y8DRePsPxKuG9t/Ux0xlHUPbLyKfZeyZLl3JeAaG2dc78uV+cuqrez2lM3NwctcV4iDk7H+z9/Rf+Jzg6+nHCiEbgYn7ogPzjd5kl0n40QRZ9dwPcQRKguGL+aw83sDAzdxvZrrtR4MNiHjUiGMAVlMKRXN/jUw6KkwLuheY9OiyNyF9ArxGxg+ttyeEf++JgL7MV0uZhIGUqxezt6QoF5mqwHJ+C50BlTMxrywH92H2lC2LmzwgwUN6XyuY9P6nBOa/ysJMYNpp7tRE1MgtxzDSgVGy8cCEF6XleWx2I88eDhVlBg2deevxfcdLqtlckrXLoWlpbRMJCCTTQrtwFSlxridXAqR62f8LCoBwhNDckGR2B8RZ4IDwLBuJtpOcXuKwpXIyYDBxuNasJ/a91aJPauUBOCSDqy1ZW4uOnT6WCaCwdx6cHg8Ysd1AuYBQj/HASQA+MIjC/6dqZ1VszJQjcSWwX5i3OmPDIfYNTOz8olniIybJmV9i5nbEewFPg5yLNzxyCqUxnLEtpCbi3UTMYNFfry4ekCuTKQPcDtQQzyv1i7h/hQo9iWPHBOf8P1l1g6+T1pmMCP2aCrHxCXnE9RaTQySP96yqjKRHZ+VUuhpWyKTJ3T0dYFHhsvYyBJlaH96opk1lFKJXfENr3wSvu3Vt/jP5KfTlDCAsN6SXc97zIPBXAcQODJOjp45Tmawfr/AcFxnWZHPFDkeH15ZuhKQzOZp2lboqfacVqw7MZt2WVhQGQeHNU0Lw8BgvFJCa4LtRX7SlWStYLBLNm3Gb9317PDOmTVooaoSRqqmAfghYtrhlXC5z0pHY9f+7Z6ZYVoDJMg7ZjrNiYbze0d6o2AlhtWFqjawbBHbFV9/FCD8gZQE+dP/9FF84vBhce+TITkg/OLyGLORX32twE0a/6udB7SPeV9K9F4xU9hjkSTJI0ogiythkPBXinXBwum7BJoqtGUNXg0L6LvueObE77v68GSAwXKjbFzny0SuJlmkS+ZmBrj7FhtrnSlKfOTRg7hw46bsuTFTOcUJelon1QCCnRX0/5qB4el7vj5oZ0sVhcraQ1wsa1wYC6FMJPPHRWUiU2YwKhO52rmhxL8AULetAAnmwF8xMxhfs0qlsRCx4K7LmS9rgvQ2TYPPfvazEzeflc45++yz1/aG67Iup4EYYwQYjDNUxYv+f/yaW/CXf/8ZERQnBbgraOwVSQoA8KAPBc5YQIGy3JMykR3zMg5AwBn3tGnsmJ7BVHEkYU3i7aRnb9s0gx/6j3fhd//k49LZTv2gQoN8AM8bHDopBdRG9Lm5kgS831fjf+DBc36t7I/wjjwQ2gUGo0CUcd+3xjkOMi8bl7ARSgH7U2uNw8fyJQA8GEwp7N4xD/UxhbFjBuOBdv7bqCigCtiATewk2zc3hx+48absc225vlPHyTNJ9u/ZJD7v3j6P7/mmpyfnbdlknamcGSxmSiCJx1hXT+QYeeheBNLqCvgKsGRyraTCVgq+/Kp9Hz6uWvGO9OycZp9dd8QakzrSamMNH3IglVpj69QUCiWzLgqlxP0A4DuuuS59IJMd09LBPWqaVTnYemWBIwtDAfz7gW+5U4ACNZUBUcojOMP8BaAUjMvqoJrxAojg2Ejodzp3w8YV3wuQ9M2TaLKVUkn7Hw8ptMa2zfK5RaGwtByDwRSWlsaY2r0xOlfj2OIYF507ISNYAA7sGOrSKEWgOAsGi8FTKzhr/Lou98+YVcrfnyGHqCwdSe6zdQSw52kOaomCA8m7RWxFCmkpK7Yv3bJ7D3bNzOJ3Pv0p+x27T8PeO74vIANs5DSOQcLxXpyl4ac+Z4356hdf5zOe7LyRukLTWG96VaVgsEeGy/jY4UOiTyjrj+sEVd1KkKySTGd0LKzl8HuzUXztVB5UE4uBBZZOEhXt3bPTPSwsp+zIgxNYJlIrhV0zKdiS2ldqSZtP7LD/6dobxD1GrGQSP56bZ+OmmVwmkv1tGRMCE2RrjMg8zrHyAAy8YuK5LMefXxMK965+fjHgl5F/83bZ31o+n3/iqhgfFn6VovdD0MP/2y234y8f+oIEkrK72rVBAm6U5gkDq9OneL+1bl+CCYBwPififuZ9SoEeOh4Y1tj1HEAHnoWZAoXC+4X75pikAIQykUD2XVVm3VLU3sKBC1lArogz2RU8qxhfu4bDyRmXnDmQ/06xcJ3OqQ4ZRgmgMi1KlWerVOxf6nkemGijoKN2AE8OBuNlBjwYjNYzB9ij44Y9VJQnEONbAqN80gFbT3OxbJ4kEX/3lRdegp7W+B+fuF84KXMAj5DUlNdFs6VccucpeF2NgwOlzuz26iI8rCtpa11OvDwW63GWBZqnywLLdY2vuPDi7LmTg3yxPhbPYVk+HoAvE5kDg81MBR9BWWgsLdvs6lEznBic6WRQVDZDm9s8OSaAGIiRu9/SBPY0++5xgM8xgEV6S1no7mBF9KMWWoLBtNePFcbjBoXuZUFe8ZHOfcQB1wHg6Hgsjg+bBpuj9mrIfuF99uNve390b426XgMzmDHoIGk4qdJTGseq8UlPEjqVJMcMlmp0IVDKf+dJSY4klCjB5yyBwThbQl0b9Nk8iO3PeOhwn2J8Dt+Xjlc4sym9MwD/zlQmlesqo6aJmNM0Rm3tP5daoUGwLWlu9WL2IYNTnlkgZ9usBAYrGBCBmMG4Xt/TGgeHQ2xg42p6Fez1T5Rs3ijLE9oxEex+pYIuznVN2htp3lEv0d4UAzRyoMvViGWNnjwPYmbyLwUhn0dglcnoJlpZ9jDhw1EY8RLKhRL7Gvk1C6ZDiFJ4zLWzmj7/kZuegrNmuytI5UQphW3TYVzm1rFHhsOESaom+5euc/pFLRLPtPdZeWYw1o6uxKn4/fx7rQA6CoCScMzvCdEaXxvGDKYVKmOSNbRqWz/HCMRx1uwsXnHBhRPf42RJXA4dAC48Zyt+9I1pcmKXrFVX8ZVv6PpI0eppC3I+ERKDweqmFQCgGAhHwgFxTWMw1Q8DoCxstQzSg70OvQqf4N4V5lIuDvmjN92MSzZvzpz9GCUzPepaViLqn4CkV60V9myfBz4ObJ+eRtW22X749quv83FZD/zXGs8+ez+etGMn3vWvn5QlPWluus+lstVrSHiyZDimvR8ly4jMup+IS7h/pmm4v1K7UrDdaw6V+s1VaMlJLq4Wl5GNwV8J86LSgu210E7XXS8T+SUla9JaH3nkERw4cKDze6XUxHOUUqjrOvvduqzL6S6iTCSCUcVLrAHAC+68FH/5958R11LQDGDAHWSMMu+k54aaY7wAD6RYR3jdGm+YxUq2eH70t4HdLNvIudEiem6Ij/mblKXGrdcfsGAwtvkSq5GCCg76KD/cl2fzQRAlAomhv+RnbuMrrJwtkQ1ksbb5jPfMbZo2n1XMf5PgeDCJU4hEc6WhQ5ktClur2r8gEwJ88SD5uLJUpuOIdYX0Z62QoNFzMl2WuG333ux3jXlsmd1PpExP9XDnzed3fm9gfFa1HdOZ33mFzyRdgXXKDOJAFi4tC2ABSAK6RFXNMxpaY1BE72LPzV3fJoN/JSYElRk3hVJ45fkX4pqt2/DA4qJQMOMsCzLgeGDj2WcfmPjMWJabelXU0raEoxHMYLffeI44RzNF/bYbDuDYwggf+PCnAQSwHzml6rrBoF96EAsA9HvFik6rnOyfm/cMg3F27akqhQtEcwptrRUWlytMDUrcdsMBf5yYwXasskwkB2LFY97OHRaIXgEylmPAioWo5AG+p8KXsAk/ZwiicyeZDNBLIBGVGy10kYCNkj4w8c5H+ynLREQwTkV/uWM7p2ewc3oGv/PpT8lAN8I+C+SDgzF7lNaWGYzvs56JiZ1TVY0Aw1JQnQuBLuu69iW7qG0ALCMf8mUi42wkDeUdPZucw52CevyphWOfadneRIa87AdwLLrXk7pk77YBnvnk/D5I1/O+feEzDmDTfBpwKsuTv19Wrc3Yf/qes0Sb7HGNZ+4LiTjkEIid9jmHCGCDRpOYwbiTtHHMYJYVVwMGvkwk0L0vehZVA6Ez83natoGNoSi0B2PSb2pMaAMxyto53L1Pk6Q6aeYcsW6F41du3Ya/fvih5FpOCQ8YEbjnYNJc0Dm3lPm93ISgSOP6xAOsQO+Y6sX+V+JO/gj0xa8PIDHZJmJzJPA0Z6H1LKBKMvPB3zcflMuVuTQOSKiUwqvvux5z030sjSqRDMOZwaihSgXmTyAAE3hZp1g0EDEny75D5jO1X0fH7boVmLD49SJwqlKwsKso6hNy/Pg1xKCpcNsNBzA308+Aszjotg1Oah5c4XsgvzgDHJTg2hSUIQF0/Ds7Ni7bssUfqY1hpat0sG3ZvRpnM3WViVyF6eKZwahvaQxwfTvHsJvby9bl1JJn7D1L7EN9XWDctLh4Uz74URbpb6qUzdjmjv0cq2OhNcZVFR0Lem8sghmMykSWBYYZ0LW4ZxfYSWksRk75HPtUXOqtcAw2XJabeiJbS1zWpdDWhupHQQkKiqwmWEFsjAVjCxi70oujcY2e1mibledbjukMsOvFofEIpbIAFZJS2bJSO6NkmlgP9qy6ub4vNKpIH86JAiVIPDFs6fP9Hr6wvPS4P/eJlBwzWBwAA/KB0g39Pp4RlWgjfydJqRSGdS0DatqVzmFzcVy3mJ/mzGDdjLf8WV1yzcVbJ3y7sth2hJbQmjPjfCaUWMPH6XIty8cWWqGpGHhE6ahMpMawqZP1jLPcnKqyGjBYV9lIDWIGa53ubI/3tMYjw6FgQ9rY7+OpHb7TU03smJAAwQDKN2Ju3L1vP3Y40A5PJAEkQOPWXXuOG6xFPqaudZd019VUFjiTpHAAEgKmELMw15PLUmM8lgBmy/zFAv9aR6AyVyay1MkxAMK/tRp58s7dx99IJnEi1dK4wtYp6Vf566bBDFtyyIfVNK1ngKb4Udu2oXwmaw63B5omw4zPEoBzTD6JzqggfGaAsyuQX/s50KyOyokbWL9L39tMVg/aP78B57HkY6UUfu/T/46PH34084QTK6Nxk4CYNm+YxpOvWT3Jy9waWQNjwEu895woFqwX3nUpdm5LQUe8vbt3bMBL7r48c054hzheWWhrb3D27mGGXfd4JGdX3LRz12O+b06uvHgXXn3f9eKY9fWFd9g4N3VCnrXFVVk5ML8Bd561L6tbP3f/Af83jZFeUWDv7Bz2zs7h1/7tX4Rub5mEmU9I6YQZLPGTO59EWdh4z6TkYA9a9D4nVyWCrR+cGYyS8vgaTvdY7diI2WcBFz9U8p4pKI7reNZeonlE/66mTOm6nDmyptWImIMey3/rsi5nqsTMYAqUza7zYz8KfNjrwtcUEOMKuWJBAVGyxhj88D98SKDnW2NQtcEB74OoJg9yiiVkmZPknGkheJJTdkWQWinfZrG35wLsDBzGP08S9joejLdYVfjAFx7MvldoVeoQVCqU2Iv1kBYmm6Hrg2MI4AUOluMBpIRxpWNttI5T6+hcHkkgbcXKRMK1t4qQ+gCEwqGIaY01aq2ZFadTmci1ijL5MpFc7PFVjEfkf9cQTEX2CcbkskrDWKEgGl2qYkYDNpd8wI0pqhm/eh7Y1BFADMcUvvzCi3HJ5i1JtgEFMUkoK/2xOHFWywxGgYqukqAAZWXYefD0m87FvXdc4r+jACWt4Reesw0XHNgqgK1077U256y5ObzusisA2CyWSdn6p4rQvjZgWT9aKSwNK0z1S/zgt97lj3swWKZMZK6UV6mY4zEz/DxgVuWBXnLY51lYuBAYNrfP8vdjLy3o83OlpuLP/B26GPU4Y5U4zq7m64TYO1bQo0N5tvR5/FnjtvF7oy+ByX6DmImFzrHrk+uTzHVJW1tad+w7UJ8RmJn3YZyNRAGM+8493899YmXiASAaR5y1MgY2kQM1Zj+aBJDfNN/DS+46N38C0jFw89W7cNl5aWD68chkphJIz9x3Np61b78/bpkU8oGy2JlUKJ3NkB06ZrCujO9tm2dx09X77Hs0bWAG04HdzmefZ5yqio3w1pisk4PAiXSqZ8NC2EsJJG0cWEo6EuNnIvu56yyahwYO0G1ycz185n+T46dmfUPvT2ViY8nZDJzRiQB2bds6pkokegHvZ6UUa2NUPjWzHvFShoKdMAOc8PdlujwF3+OWFdqB+DgQh70rtwUaVsrvy++9Gufv3+LKYTJHPi/P65+hQqlA15Zx3UxkBiOnve0fOT743cdtiwGVHIF0voVR7JjBovFj/80NkjQY5+0+Y3yGO9lKP/itd2F2up+MkcL3mcGWjTO49rLd7jEMZMz2Mcl4C9GOFjLxIwcU1VAMQCf7SwREADRt68FxIuDI728MfuDDf5fdT7LMYBnhDIICDBbZor4P/HWrS5RZl8cm123bjq1Txxc0+N7rnySCP1XbTmTYvfHKs5IAz9SgxNJyld1juGTZN1zJ9KmIGWzf7o0iEEJgsEG/dGXVJjMSZssgaoWlWgJQcuUm82UiTXLOJMaaGNxGoNm4LEpRaIxGqytxQ6AvWnPPP3sLDuzd5H0ahZ7MmujvQ/t+JIWyrDz75+eT4zGzk78P19+Z/8w+l/VhYRMfVtLbqCx41n5+HGS+18exarzyiaehCB8L+/lv2LETZ8/J3zxXCj3no9NK4Xuvf1L0HKlrFdqyVfcjxixbJjLMk7oxIjgYJ/6stL4AEvTyTS9Pg8xrkYtnZnHO/Ab2zvbeA/K9aJtYw0v6xf7NeO0olWUG4wk1ubnFWW5OVdFKoUnAG2riZ64/FsqWU+J9FpjBAhhsuizx/R1VFU41KVQACIZEbav70ZpGuuN3Xns9Znt5vxe3I3/wSU8+7vehfajLv1wW2lfE+FKSLkZSAZpyFUF43xEAW57T+jKcRWH31qpqPICK6z1PBAtbrqzZkfFYMMICwJHWCIZCshcpGQ0IdnfbhvU4ywym8n4sYZ/ovG/k4OEljEaNv09XmchJvm+ah/E54zaU5O3ygQLAxw4/ir8/+Ejn/U+U3HbDfmzd9NgqVlDlkNWK9+G4z0mZyBMEBvvWr74l2zaeNLJr2xxe/6qnJOfwpAnu/wIkuJI+D4cVBr3H7vvf2O97gO7JlovO2YZX3nOVOHbDlWdh5/ZgX62WSXcl2TKYQl9rDIoC333djeK7WF8DwjyO2VzjeHXsF69b+TnHVs5Ly0+ye2jv4rG6um48WC5md8ytq2QrrbbMZlyeGUAArXe0q4zsqVJbZjC6F+nNp0Nsal1OnKz6137b2952Mt9jXdbltBZjkGadqxDYymLBTAQI8ugjf7kFbvDzeMBJhX8MgEOjkb83PZMHTCnYzCmh2cuC35YAL9z5T0EjHvDwe4pJATKKvyC7Pn42D0zRe4fP1sCJ97x4GzUsIMGBc59fXEReooAwZDCDgvg5kFvTtnlENgORkOLuGZxYMM2CxPhvHwWzuHNGawzHFgS2uBycflrZrNuf/d7nYcOcY0zx7AdaNEYG/lSSubJ5MLUmStCpsvDI/TNNlLGO83989CC+uLyMyzZvSU8y3WxvXAqVx1zyOZy7TZKNxeaDKNXG7pcLkvFSP5qPtexi1PGZrUXxI7gimhrwsmXz/bVlA+VkuW5WRcFPWRUz091MNgUxIXHHAM1P1//kDPu2V98KAPjv7/ogAOADv/pafPj+B+w1j8FRUmqN9zzn3uO+/vES2tcGLGCklMJwVGEqZhQobKBn+5Zuemu+vnNDhe8fcXC91DrZQ1NmEawIlFJ+/kgwtSwhlw8g+3Jk7HOcORhDPHPZhJb9kgEHWF/ExmsAqfEgetouA3ldY9psH5MUSuHBpcAoQGwZfD4Qe54A37QRmEq5jMoOcCwxg3H9om4s9T29Eu+fOBtJK4UqYtag9vByMQF8zZiXSP9SSoAT+N/EuHO8QuvEJPnF7739uO+/Fim1zjJo2DKRab8CaVZlV2DawAY5/t89LwAA/NMnH8bWzTPY5QLt55y1GT/27XfjDT/yh76sLoEGjTGCGSznzPEPoffIgIMIyK6VXYc8G5axd/XanPtNa0POVeMSITggNZXcUs4PJfMQMVATCVhGKbtf/NYf3Q9jrKOwLILOT+8TO9H4HOPCmbaMB4MxZjAjGUO7xjZfpTgwhgN1qc/i/lHKJUp0/IQCjMnWWX8fDxCUznhaWyhHjViCDUucUDxBxvVZWehQcpb0Ku/cD31dkW7cIRo2qPxPiwvYWvY69/altsUUK5djTJpVZ8G2JuuoNu57Ai8bwNl44d05IzTZlgRwjPtC9m1gm7vrlvNx1y3n440/8n9FAgMvT5DYYez9iRnM/54ZZi4+xvhY46BEktq0GCirL0wVBVoYAWShvW0UlbLiz+rEghl5HmViixkq9GirzwrgqlIwhsqqnxin9rqk8l9vvu2E3avUemI59e/7/+5Ijs1M9bCwNErKoceSKzFZaI3FpbHQhQHgV9/60ug8heVhjUFZYjRKmcHijPU6s2+XSmGxqkUCjAEwG9lAw8gu6mLenJ4QYIgTZ2hOxGVfCMhVriJz3TKrNZiftb6Cr3mJZRV4x//+kAWJaZ3oGrngc6ECiCNmuX50NMTZc/P416NHxfnDps7qNnEZ9knvXtV5Pw9fa3q9Ilvu/PGSmbL0jLlfKvJ1l6agqZ3TM4KdCVgdGAtAUhrRs0xkykQOisIrPlUtmfOKyNZLdLrMnrjad1yNPH/7Tlxw/gX+c2DhJH3MBgm5jTcoCsGql5QU0hp8ZSqULS+fK7fJ9chTUUgfjdcQLl1MYQqufZA6ck9rLNTVqpIUT0Wx4BUZE+C+a27bcIn1oxPF1DVYkRnM6nZfWiuetXEWl8cCtN00RoATygwYbHqqxPIosJta9rA62ALOf9My5n9eJtLGU05my1LpF4VITifmz9g31LYSGER+8LoxXj8htl+rVzC7Eibxq3PADgn5MAACyaXnPPTIAq6+ZLd/hxyobCVCAwKDxefwMr6TwGCLVW2TtE7y+vsdX/fUx3yP6bLEnz7vhas+n+IMORZCIAWHnWhZTeIDZw/jvi7AzkvJzqewNKomskytVg7Mb8Bv3vXsx3yf45Uf+/a7k2Mf+NXXPub7cl9jLDRXctLP+InjzxzYztn4chU0aM5p5msiMa2M+cfsyjYey4CphRbMZICNJXPgl08UneCnit8vlvleH/O98C6lkkk3hU5jdaM2lIkkvfFULne9LideVv1rv+pVrzqZ77Eu63LaizAkRRAlX+Iq9g20iQHWXTqF71ncyUVKdKk0WhhUbesXd3K+iQCXf8c0QOfBX+SsR8TaxdrVbTRw54hmGerhZGPiQEUrlPRsQCnzMCqrCRUCVctNd1naOCAsAAIIpTdjUzjOxOVtJUakwgWJGxZMCaA4V6LOB9m769VrrTAc1VAKWFquxPFx1Qg6UQp4BUOItZUZ+5yVDAC+/IKL8LLzghNpJXnxuefjuWss8Xe6CI3xN/3NX2JYN3jqnpTu3VI+y9+/NQYLUUmRrhJxfmx12G0GbMwgYj8Sxm2YMxyU6dvCAno+K0rnATN5Zibp2IwBZzwTNKaejZ1qcVbX8ciwqVfldCPlmpdticUHRJNgaJircZ/YNS4E0L9UhDJb4qzE4ahOGBLIWJqb6eP3/vuXi+94KTHhjKLgfmb88fPyQC8GxsKkUpLw9/H7nJLH/JXsFnxf0yoE2gEqtZhzIMmAU/za1mHEStGK49H+aqSeoGD7JW4lnfO7z3oufvmTH09KbOaM3KW6wnPcOk5OQcWda1pS5+eAbZ7qumM62O/DvgO4MpGKZ9gzx18SwIPLZlfimDHAUl0FCn0Hco3L8DXGoAxT2jrzRRPyZRFXK6ZdHTD48RBybsRSNU3CnsIBQ/E9coAyAKKczEc+8QVcfO42DwbjkgIsHEOuDuOoa+8Lep92IBnItYLrTQUDhyjj35+ASva316gcMJJDjXLPXwkAYoGFAahlTDfbEBCtAwigOOqbSf0AABefuw3vedtX4nt/+v+xe4bfjJyO9p4h0DWpRK1h9/H6LyACfsHWkOC5oC9zZqmIEYo9P3Y6kWgH7BVrq04d2Zw9KgG4sfcvywBwpz2DgkZKAe9521fibz/6eYyrycxgGsCD4xF+6QsP4L+cc74YDQrAqG0xalsM2wbTOoxvKKCIxo6GYwZLFIgw9rSK+12us1RuwlBftm20X8hx/Hv//cvx0+/8K7GHcKFXKVl51cQO88FP5cBazJmZCfYqFRKCVlpH6zbYTYOiQGtSMBg5b3NBj4nMYEqe5+0pZju30dwwxjL1lWw+8nG0Lqe+fNn5F675l9q5bQ6ff+gozt3HSpjWLQYDaVv4MsdMysLa3bHeGwutSYNeYZnBosSZERvHFHAYNQ04x5MtE1kJNqIn79yFX7vzWeJZS3UtsrhzZfQAYLqYwAwW2Uo059PykQqjqklALPF8ec/bvhKPHl7Orrlaa88Y1lUuOH5mAK+G5xbKguV2zcwk98ixsSVgsEnB2ULZJMScYssO9UqdLXf+eMl9512AF55z3hP2/FNFnrXvbNy2e484NjVhvAtREBtpLlGiUJZJmdtSD3xxhAvPlf63SWAw+6hI355QtvqxSo71yrLPhGPTRYlhHXykOrIhiBmMf59jBjuVQWAknv0q8lvF5+Q+C8ZUplMMCru+n67CGYlCLMD6J0jnz/nAeTf91jOffcLYeVYEg5U6Yev8UpBBv8CRY0MBBltarrBpg2QjHY5qAeyemeqJuMHMVA9NaxIWG4MAeKAkwEcPL+HIseHjDgaLfbzWj5PxszUGXLWg9ZeXriOdvmkN+nFDFNh5WpTyI4mTPWPbqnC6DMVhCNivo/liSRi622wZ8BtxjoIEg03yOS83NfbOzp2RLKHc/gRSH+HJJnNeDRiMn8N9XQCx78kKC6NRWm5zXVYnXQmrgNTZKJbHr6vbkIVtGWBb4ddKbQ8tfHZ8DlZ1gylGipHYSgTOZSyFdZQ4XVWtWK8Lzwx2/GCwV15wEe5j8dzUx6tRs3aWWmNYN6LKBjDZXlyXM09OjAa3LuuyLgCA//qdzwEQAh28PEcsHOSldYiqJCXhwAIxjEEsBIiDIUeIaWJS4WCwsNmtVE5L+aCOZAaInWmIgjAdbfTBPPK5KAmyMFzh1v4c3t5Ej5+gWCsWcWmMwXXbtqfvJe7FmWHCPShwHD+qCwzWsHaQ06hqWvQLLYM4DvAmgtZNGxwqRp47GtfYtGEaSxEz2Ghc+5J4dC53vmYBc9RW9lWp9ZpQ4IVSni78jBMG4Gu7xnQ0exSAv3roC7jnD39PHO8CsITj+bWBO5sANz/c3xRgTRhAonJQAELpJRbki88Nz4gclWweAPnA9aTSJLECeiLqjxsAM6tQUGdn7NicHkwqE6kTJiT+HIAyzXhwP/wuJzKj91QXMnTjAFhVt5nyMi6rZKrE5g15+mq+n9lM5FYcI+HzgDsrSShTNzB8rewYyJVylGxh0bty8DPtRexePIAerpHzLQl46QDycm/g/79la4JCCIr7/bFjTSHZPBgk7I/Zd1A2050oxrXuYAaL2puU96NjHRuyVvAMPbRm8Xfp94pstiV/z3ErmTUIqPDZhQXsnrXlSEunq3DmUyp5yEHrVjjTKq33xycqw5bzRMnzD5yLtz7l1uR4C2AQMYN1ZXJPyj4dMM/rpLnmmcGcg7k1Adhirw2AHhIDmbFfEMOR4uAkGn/u92VsWAT6oN+6hfHvATigqAmAkMbIcjnUplj4sRYMRAe2h9O5yDGOsb3YGMcMloJPAOAnv+s50bMVZiN2S0p2gCGwQmAG84yhzKbI7fXuTkmCSSx8rnIrRIGx3joArvJ3hXdo+3K1Ub9ykFiyRhkk79W24URi/GoNK9/LmHWpGYrWLteHWiuMV2C0UUrhoAP0t6wd1K4/P3wIP/yZT2G5aTHVAa7kbJPjlkonpQCqEGizQQLmo/TtruoGvbKw66bWHuTIz+PjZ/OG6U57ybCBYUEY4V3COaGftZvfxKwI2PWUA75+4im3CgD21Vu3421PfYbrLxk0MYADlmn88tPvxCWbN7N3SPfKXIB1JfCkP08FEDMHJwo70z2rrls/JmJ9b11OfZnp9dZsi154zjZ85OMPCV1nOE4TG6pMWdlQMn2yHUJBxplBLwFPxDpQ6QIO/+MTH8Nn2PyyZSJlAsygKBJWnuWmFo57DojnUndMnh9947MS0Bt9jvvErrUhQaBLZqf7dg3MgsEcu1iGpTobkFH5YDAxgG2fknZGoRWWM4CVWLeZ1IQ4yNslvbLw5c6fCJkpS1Gi7kyStQByS62TftgyGOCnVsFCGM8X0gu5zpzTi//uE0fR73XP69X4CE6mH0Erhbc8KZS0IgYI3tYfffLNAkwYv40tDc0/awzrOmFnOR2S47oYslfzWf5MQd+d653ecy+AUIL+2tcW4BZiACmQhet226ZOXJmyGKQUSxmVXPtSkZmpHo4cGwngwNLyWNiHZaFxbGEkKiLMTPewNAxgMOpfAVyITBRisPm5X/0bvO03PpTVJU6mpL6KfHnGmJmHEgLrJuj0hYu1GG4vihJ+ZBMpNHWe4Z5XcGkayeyjlU3WJ2APAdFzgKVJ/WjX1ZT9LMeIlrPVjTHYOTONI+MzDwxGe02uFCAATJ9kVsYY5JOTvmAGa4U+nSsTuTyqMFgHgx2XTPKB9yKdTdhZ5I+i+0Ayg+X0Aw0lEuK4VHUr7IOYfKDQrFIT7PpUVa1Ys8jHw68BVg8Gy4Gwe1qL5KCVEn6J7ZXm2Toz2JemHFcMpG1b3H///firv/or/PM///OJfqd1WZfTTshxcf0VlkmIAstmghLIHfQKoXQKiVJIS4OokC2vlMIr77nKM3gBwNgpHT1iygDLvAZlRvknsHcJwXWSUOYF7voURGXY9akrQQIoeFmTxNijgIMLZvAslZjJapLEOkLTtrg1yhgEIqaDDDgusB+kgZVcIBEAXvpH/9cHqiy9uixl5QEQWjuGi2BktK3B9/+39+F3/9/HxT0LBwbbOD+FxYgZLHZWaqUwrhtXoklEWsU5HNCwLrEEdpmkXCOdEWEfFKzzOadI5pnBQnmgnPEZM4MBkPOfwCyZeSVAh8pmqcSMCFlmMCOpjamd4V72ulecf6E4Fn+f+47kRScgg3lqFbXUC61x392XT6xfTwDM3LJiXPZXHKznorU0UM9kmZuxzqVcf8aGMgV+Zqa6naQ8oM3HjRLnENCCAXuy41bea6UMZfE8Fvg2fkIqGRzggLSIyYDYeOQLQdzbg6U63iEu78hPpdKHuWuTX4IB0Ais4d+7wwm+XNd+bwqsS3JO82xJcqyJ9+EsLBmhclykC8VU+9NTZZZdjb9D1UrwNeklpdbeMVQ41tG4TKRvN+sfg2D4aChUTZsEQ+m8laRXaoyrU8M5vaHfxwUbN2W/ix2KXWAwCkznhDOUdIGKgcAMZgwlORhb3jFOSogBKwi/kZhbXk9CljWWzlFQeMX5F+L23Xsd65DV07hua397hVt27cF3XXu9eH6y50LuzzS2SKen+/E+4etBvBfbvjHeGUR9SHP8ussDC6komRv/7W5MenHrMheJ6cgzj6luwB7XPXgsgOvFvEw813lCSVapl9jr0zU71nF8+ccoMN+20tFNawcYwFNe6xz5pU7upaP9vdDa6caTmMEUjjqWDDs85XvXpsXhusKwbTGtO/QQGpsAxowZTLGvg1PSjqU7+tM4Z3raszLS7zYaN+j3LRisKFi72fiP5yCxTk7SS8qy8Axb8jQGbHR7aROtp3wbuX77DqFPDopCrD/xG9QOHHdgfgNKpZO9rVAKYwcCW65TRmfOqDlJ+G/PxzPXMmhfTpjB1sFgZ7zs3j6PR48sCX12NK6TxAYOFCQhZ/2gP9kOoTV+dqqXBAfjIAUBmGMdjdaJ1ZTg4s7/IrOHv+7Sy3Fgfj577ZOvOTs55gGSkc5v9be8TRuLD4Zk+pCYwRKbOaur5nV/Yina2B8IZvNCKQzrtEzkJNZTQOriRWGDvPHv30bMIAQGW2cSPPGSS05b0/VK4ZpMImgsjZEMgL5MJAcNZICLANAXzPykr9Dn+KUzY/gkJ5XdvGu3/5uYg7nv8rwNG7FlKrALVW0rbIUyLhOpqWTb6ccjkGPIXokZLJSJDLYj1503nOZJscQMRnuQAvCCc87F8w6cI22BqF9O1qilfbUrZlIUWjCJf6kI+dn4erGwNMbstGSVObIw8v46AJga9LCwOAr3cQmyk6omEBPn4pKLNzzOPs5LN2/B61gp4K4ENRMxMJH+/lf/8Fls3WgBijRum8iPRcKJF6yvq/u9Cp3xkWmFIYvDdLGSxuWv49aUSuFYNcYMq6Bh4NjNV8m6t6HXx9EzEAwW7zWxPnzhpk14zcWXnbTnT5orAPDNX/FkUXKexy+BVB8vtGXw660ilrEuqeT2cZI1lYnUtkSyj8tm7kuJi7myjTGQa2YQsyhrVIxFmcg6+Niom1YwxJEvYjBYHRBrNRV3Yr9mvJ6WSmPIbFRau/qrXHfW5cyQNf3aVVXhjW98I7Zs2YIrrrgCN998My655BJs374db37zm08LquB1WZeTJYnBpFSiBHZeS2whmexlFvfwgWtSOF73yieJzP6qtc70XCCZyiZ1vY0N2BrvRI8ZNWIgSRx8z92Xl1qj4JdSMuAk4oIqw4SUZQbrAq6E91fKbvZdzlRROtGYyPi1AZk3/vVfJI5OYhvJCZXpJMXi0dEQs72eDAxGgSoyYv7y7z+DQ0eXxf0oi3bT/BSGI0bnrnWSdZtjP0hKI6wRXPelJsqE37du22RMv+GvPoCHl5eFgtXlZNYqXzqHwJuZeDgAiCArEIGyKADOgrME+vJt8Ofq8BweQMxs011btwe1uLn+usuu8N9xB2oMIsjNuf9w5dX5h6xBel1B2Ej+v1c9ZeL3ZPzn5sFF527DU67Z50GaXkSgOqwdq8kcOp1lUvumI6Nl4DMPu40ZwwZv6fc4kzid+KEyBrhyoTHKwAtdwtny/DF6B4T9NS6XCASASrxuT1pKc2wjfg2Wrw8qCy0C8oB30tL9svMXkVEbgcxyAbblpvZsT7QncfuPyg4XE4LlnoWlq/0EFnP7ello1MyhNjXoTSz7oGEzl2k92Ts7638v/kwycDl4gfY+7fqDjnPQkVLKlXM7PsP3vH0bcNl5m47r2sdTBpmSSTmZRMHOM3Y5ADmecgROovu1fk911yoZNAMkMOnOm8/H/r2bA8sTnaNS3SXe9+4+e79ngv0/n/k0/uSBz7n3gAcLKgWcNTeH2zMloGPxQBJ3LTEUakVsZnlQlb+e7Z9ta/D5h46g37NrY+FKYa5UnjJ+IbIHiB3rnqdfhIvO2YbWQIBb7DPb+HLXnjyIloOsqOQmINcX0o0t0598vXjNzgFXSYchkB4dC6Unw9w0kf7inw34tYozXZG9ReDWUOYHVl+ekHGplQVwKTiGwajfbNlRhQYTbAr2r4EspW3Yd8S20AK4tNfH9l4/XKvt7/bQwQXMTfctiJYFo2XJovzewiWMU+DKi3Zh9/Z5NrdSmxWAZ8ZtTUhMyAdT87pjvJ0rWDAdZ6nOAUGGDgyWK3e7WrCWZ7SkvdIP+jBmaMwLMJiaoGMA+La3/OGKz16XU182ucQq7pRfHtXoRyxYufFG56zEDDZwa/zMVA/jtklKzuX22JkoEzuXcNYlPIv70s2bkwS4V1xwEXbPzK76fls3zWSPd83BHBjK+yMyLIrjKs8M1lXSPBf8IWawfqHxjZdfyY7rVZeJpPleFhpNHQXsxnVSIqhpW9Ge8gkuE7kuj12MkXu9Z2dYxZztMWawnH+Uy75dc7j2kq3i2OPph1OuDZMYamoj2aFLFYHBlGSROJ2kiyF7NZ/5ca47b5uaxtVbt534l32cRCuF5bpBXxdej7tq6zbcddbZXj/P6fAna9gSILsLJPklyww2nfrgFpcrAfwqC40jC0MBECOfiz+nJOb+bp8e9TExXp5kvGoi26en8YoLLgrvo3XWHjANkjKRTWuwbdMMtkT6y7hq0O8VeNqTzsGu7RIUv3fnBl8pYtJ6rLUtHS1KADodh0AhhVJZNi9uR+WE2ExjHXAtXT9Tlliqq5VPPM0kZoqLwXHbpqbxqosuPmnPn1RhBABe+uwrsGPrnP88qmQJyKJQqJmOWGiF5WG1XibyOGWSB6DU3bFP7eJ0NMUJHB/7i7mQ3pdbL6vInxTHPPx6QcxghUZdNz4plu7BCT36Dgy9kn1JMr8KMHq8plHlEBIL8K9938UJnuvypSFr4oF7/vOfjz/8wz9MHGYHDx7Ef/7P/xmf/OQn8fa3v/1Evt+6rMtpKTRFLINFd3kLHgimkpA8e5mywXn5EWL7CSVr4A12KgUwU/YSVoBCKYzcvSZlMsZBapLAlhS+p+faAGvUB6Cgewj4ENCFgu1UHogDxjhrBAEy+MbUGTxTMghhAzjtipkVMghAgRbbR/969Ciu2CKNfZtJmH+Hcdt4IF1rgEeHQ+yankl+Q254UCbO0nKF6UEvyjyxWQQ7t0lHLmXdCjCYUr60BcVAtFYwzD7wzGDr+3xWKOg31yvx0HI61v7ioS/gmfv2i8mhlcJClRphcZlVftzO9S7msTjIyueDXRNaNp4I9BVPCwrU5ZgFc89M5m8EQouzzXlANM3CSNt9IuREZSsUWqOu2yhgaT88/45LAQAf+NBnZJlIQMxZkj96+1edkHc6VWVS9nJsJBE4LA6ixMKBCE0ExAXcOGUsMwToiSVm1poQywUAz5rIGWw424xSCoYZiPzNyggc6EvmTMhg5yAHfsyz+/E5ptLgPiBZagioMEnI2AsMPfmMJ16CKAeOLLTCiO0xOhO8W2k/0Qpo2rDulKUW7C7Tg3Jipq9WCmPG3PWuO56FD33x4YSVKbAV8bJmIfjRBbzVCpYZ7Dg3xFuv2XVc1z3eEjsnuwJCk3phmpek5joTv8gBkmie2fnkSgoSEKQD2EmHvuebno77/+Vh/PU/WCAXB1TFpVwJLGTYHklj7R8OPoIHl5bssxWV/U6ZqnzbJzReBtKMLZnn93D5XN4X/PrWGMzPDUTAo2XMYKsRnqDROtD6G15zGz79+cP4zANHUDPq+rjMKxeR5MFAtFyPVyqcx9cgKg3o1yHRZA4eyuslNDbi0qEEyOVtbY1kNqVxZ/j6plPQm1/PfFamzdKMgQniGiiM2hZzRYFhJhGgMkaAu3LC9zUAyfkKCvNFicoYHGsCo0ysW7QtcGxhhN075h3wLYCmOWgsnkadYA2n3/3s9z4PVd34c/jrCX3P6Y6cWTrHjjIZgM0CqHDMYJoDr6J3h8KosQkvU5kSBbn9h9omz2MAZfYd15mVsqDCug5Meiqj4/Jn/MWHP9PRznU5nWR+zpZZ5HrtcFiJEkyAZX1aHo3EMSrLtBKjDwUJ5qb6CbtDjunKIAcGW71Owq+9Zdce3LIrZUNfi8Qsaf6dOuZgTmwmfN1RJrJGr8iDwXIstpOYwXIMYLnjCRiMdW9ZaCzUgVWjKBSGwxplxN5g14twYb9X4DMPHMaH/vGBXBesy2kgbWZ+AvCsyfZY3m/C7dx4743XiBsv34EbL98hb7B61e+ECLePclJEgOhCx2Ui83PrdBDy7XGJ+6ITDMbuwf1252zYgJ++5faT8bqPixRKYaEaY7ZXJj58SgAhfzaXScCWxyKT9HP6/kuRGSwu1wzYMpEzUZnII0eHmI0AYhefm7IjxroO/zk9+6c79kSDVqaLAkuNZAqu2gaqlYw9RYftA7gkqbLA9/+HO5Pvfu2/vgz/+M8PWWawFcBgvCQkP+Zterc+bo50OZ6MmL23+242ui5uTc0qzfhrAdSwMb/l5okrWX2yJPZdxeCwky1rTfZejmwJywzGy0TaMbOSj3xd8hKX9eYSM4NNSooulHaED8G3ZCs5pUkAcdI74MpEst8wHifW/mGMhIXCOLIfxrVMLqFxs9I+SDK3CjDYVFIVQot+KZXGuD1+H/i6nBmyao3+13/91/EHf/AHMMbg/PPPx5ve9Cb8zM/8DL7t274Ne/bsgTEG73znO/Gnf/qnJ/N912VdTk1JdFDDwEn5RZaDNLQOfusYGGVMyGhWLhgVB1LIgK/bFu+75wXYMzMjsvkB5lRjYCnprpflYmJRiB3qjFEA+SCbAHrpEMyL4ocSrNLyfsmX6+vatqgP6b2aduUyCzYLPipRo8K9RpGCPal0w7hpbFkX1zfHqjHm+zF9qCy/pV0wa9AvcXRhKByxVFJhfmYg39llpHBjiJhcSlcyCEolpVWUgvu8vvHnhIJbG/u2v3Ogv6PjkRjrNruuzjqWckFvAm92KbVtZi7xIFZDwBUaPwqiXJAP5lKwmQNHo3NJ+BwUz+VzdwIYLHbYTzJ8H4ucKCdkDvwSB+VpLRLH2PX885ku7+0AvMVBo9VklRgjM25zYDB7Yhh/HliQkWDMpc7e5FxFcwJs/nB2MohSXHzvLQq5N1HQPn5xE82DLgBVeCf2bibtCYNwKHc/uy9H92egga6MJ1EmkpjB2O9GAAqf2ZQJllvASXdGJV2jYPuyLAtHtW+/HwzKJNP3j5/7fNGWqm0EqCLHKmNcH/C9udTaMzZ26ScKCuO2yQLGz6S5HYNSutbnScwBnH0kx3gHAHD7U1FoVFWL6UEJA2OZwSLgT04E8ItSI9jeRSxzJK2hEhBaOHWMAe46ax9+6ElPptcK7K8dP+xKAY5QPlqCWfw8m9geJEp1Fyhukiiml1I5Tjoel73LgefkvUK/8p8ytCcqPy3WKXuQQHYkfPWKaflDuzXaFikrEwGU6D0YiyPXQwhIS8cMXIlJtoMXERAhlzyR9odl9t1Y9nCsrpM1jZjBuuS/XXhpaCMBiDP6xYt37MJrdp/l10T7Jd8PHGtV3aJXujKRmu1bbO/MMjW2Kcg9sbE6QFV+vCIA8USZSKTPyy0DOYBjw8pmdu1Jw6bB3fv2494D5ybXa4Vse7sAccSsSUBibjOTPtu0BiUv29oBOlnjNF2XU1hoDeAlPkZVk5R+nJ3pJ3shZ+JYjZBzvxcFKXJ6amsMXgIZ3FytnAxHfk7n73UwK5o21Sn8mpuUidQYjfPMYF2MgTmQJpWDjIOjxBgW63SxjaoQ1tqyyJTyGdeiDCAAt15IppX3/fWnsDxKy9quy+khLZAwvQNIg4LRGPyOV52DzfNhPYjBCKuZv13g45MljTE+ASgnCnJfLpQC937S3DodwWChTKa0JeNzcp9jpv4zxTbs6wKLde3BxFxX5yMzae9J6oCV2EgIqPTQIwsYj8884EuX5Ngnm9Z4cDpg96KjiyMBEHv+HZfix950d3LtJCBKDF5ZLTDhZElcdQIAluoaRZsyg3WBwcZVk+zlXLS27E1qwppNJSH7PClOa1vyWpSJrJOkZevz7Ly1ByDzMpG500dNg6kyTexr2hZzvd4ZCeiI1+jVsCGdSMkBgSbJ0nIVlW+VpdWLQlsm4nUw2HHJJDBYr+gG8JMOx5OkeZlIDThG4fQefE0lsWUiwzwf9Eu8/sUBeFsW2jEJch9ULfTCOio1uVY2rqmyxB89597J58RgMJ32SyzcB78uXxqy6l3+l3/5lwEAd911Fz760Y/izW9+M77+678eb3nLW3D//ffj2muvBQD8z//5P0/Omz4G+Z7v+R7LRjThv5/7uZ/LXltVFX7kR34EV111FWZnZ7F582Y87WlPw2/+5m8+zq1Yl1NakoCwM6xYICMWI75zjmgelHFOaB4q19oGPkRwDdJwK7XOOvxpY/PBFvZe0vCjIJJKgw+QzrRQniXXJTIIwYMXodSJEhd7Rz69s3fsR/eesGny97ZlIsMyl3P2KxUChQTa5hnvwygrpYnuyWXUMGYwGByrKsyVff8camMlGFdsG2emenj0yLLIAqIs2rlZqYwQBSk31JSyyHMyTJSigCO7TikRjF8XKaQokgIV0+ErAEfG4wRkOWqaxADkwVRx3DmgqVQQvzcxncS09P5ZWodySnSdzgfkwnMigFgCJnHlW9NbiHvF100XDLQYfX8yMgf/59PvxCWbt5yQexXEHtG1CCJ1LphonQLWrryfrpJkEjrJZU39jx94wcR78T3EO9kzgF+76xGwp7u8KQcvrMSyw4FfYR9k5cjc3uGZwdjfRaEFAw2BeLPvRPtbBkTJQSD8Gw10lHHmJSVV0sJAf63YZzkXGwK7OSEwmGcGU5JJx/YLBIDCzweuo0xgU6F7tG3oDypBQE+ZHvSSTF8erKBsLb7fchC67yFjoSAcDEb9EAA8qYPNgs1alJGnzhizIrDwdJK4JV1sqZMcLVNsvVc6r/MBDqSkFb7z62/HG197G5rWJi+QE4QDf8Q7MoU4Bz4mICefm8bdWxdsPwT8WAh7lPLP6AQqr7CUhzKRVOLPiDUq1rlXBIW6fXulMpF8TePrUdOwPnX7elU3ns3Eg7EEICnTbDaf0nUxvEMAednzcqB1nrhB5Wr5Gb/w5hdg17Y5+BJ9pKt65ivWP0JPCn1saP1WCm/7wRdi66aZtBymslmZJWN9WrFMJICxMdhUllhomiRhpTIG/QnMOAOtWd/Zf3PgsVIp9LS2/Uj3j+0sYzAmZ6MJ84GD4DhgMrQbzn6KfhdmL/KgNW8KH8sE8qsYSyYvG+qfhzzwK1isQeqWlYlEynBJWfWzvTLroNRM9w3tzYOtKcuf245ivLnvagao7Aom5ZIC1uX0F16KYzyufflekq958XX49tfeJo7NzqwtEDXtnhGXnMsB+kdNg2kBSlmde/btT70DF2/avKb3Wo3kdP6pDjsgZm8H2JqbYQZrWqsjJMCvzF6YY1Kzx11Jpg5msIRBg61fv3Db07Fvbj7Y0jEIpNAYjVJmsKpqxLn9sviSZKo5kyRmRae9J7ZDaiN/5+lBIcZCUpZohen7g998A849a37ySSdBYgZCLjG4vzEGfAZ0lWBda1LDEyFkS3KfXhcTGAnXyUi4Dna6CzGwWhBKyrocGMmjfnmc3i8WYgb7ije8Gx/86OefoLd4/OXKi3bhV9/60uS4AJ1ohaW4dGSpk5Jjv/yjL5E2YSt/3yIqxVmfEmWQIzBYU0M3IZEDoCSj/LuOxs1EhjNKDp6UxFxojWFU3q8ggFgv2NzLdbo+5pKixL3dc2d7k4FHo6ZJwB1kHz9l5y6842l3TLz+TJD5/toSMh6L/MKbn58t0TpJlocVplhpyZjN0LLJrZeJPF6J42NcJlerkWUitZJlIpXzBUtbzSYU58ZA5ZL1uPRZ2XCK8xITGFWj4WUiaxavJVkpfhJLjkWdyzXbtuNXnnGX/xwnNuR8wZMSBtblzJRVQ14/9KEPQSmFt771rRgMJEvNhg0b8Ja3vAV33nknPvzhD5/wlzxRsmPHDlxwwQXZ73bv3p0cGw6HuPPOO/H+978fRVHgsssuw+LiIt73vvfhfe97H974xjfih37oh072a6/LaSgU12onKIEiEKwV6jouOwMPEBMBAGPLpGgeXHOb3jP2nsWOyefRZtiV6axUGmgW34OCV1Z4pniXgSyC9b50EM/qj7PdpWORs4mFfjOpNWoy3ymbjc4VhBx4w5e9YYEs3qfDhBmsm1KzdoEqcviO2xb9QssgdeQkLVzmy8y0BYPt2BpKQhIN8VzEDEZZt5xy1NavryVbWOKgso7Yk8XcdLpLjk2Py4Z+H0fHY8m8oOCo8zPO58yMouzLxkjnt3KgjRZGoLSNmP8WgMmP8bHK57UPYkXjOmG7cutUPIFpbn/ty25A05jkukGU0SCyDdaQ1b5a2T+/4YTdKxj/8rhwCkdAF7FOnYT2nW7yTV9+E3ZsmU2O52jphUR7iGfs4acYWo/t5y5g5cQybRlRyjq/xPxxAOvMFAAvCVFojXEV9oLCsQmkW5Fk4ovjyDFzlyiFmWsjA4wUNFcn3E/DBi4EKCMChRRKY6mu0WeB8HElM50KrbE8rCIwWFSOTeWBPeEeSrA5FRGT2FTflons0pEIrJWwUrH2vvHqa7Ftatob/rzdBK6j3zEHpBu3TQL6/ZMHP4+PLi7gJfMnPsj6eMu3X30d9s/JoFNXQCh2hnRd0zVWgcBYtWXTDHq9EWAkGCUHSPbXeZBtmDfkcPHl3/x8tPexDh0drQPwLADKja4WJmGB4LJaZjCAWAYCmyD1SQJWYUCx+LuyyCPqJgXWnnLt2XjL1mfit/7ofguu4eAWY9BEyQDdZSIliJaXiQRfu4JiLQJDLYwHWAJy7Y7Xdr6mXnLednzhkWMYjmo0rEQfZ+KF/x1J15EgQQKNKQVceM42/PO/PxLWWBOSIDj7btCXoyAmWxG0smUid/X7ONbUSaZcbQw2FCWW2m5GglBK00o5wabiLBxCx3PAr7q2AQwqsdoakyTOVLW8O9kS8T7WxIxx/vc2vu0tW6dJJ/y3o0exyTnfc+ycnetAZi+tI6CuZ+Nk9xo1TacjUuuUSSU352gvK0oLHqMxULOSDLR28PnSxXZIe9a6nFnCmcCquk0y9bdndNteWeDrXn7jqu7/zV/xZJ8VLvfOfDnwYdOA79Krdcifv3Hjqs47ETI9yAfGLLgrKnOpZZlxEkpQy9nHubXSgsbS+VconbW7C20BK3GQg69VF2/e7J9XKu1LW/Nn5tgbPvyxB3H2nk3+c1lqPHpkGbffeCDz5utyOkjso+XBQZKuMpFcNDFFs8+TZOfWmeN428cuMbMMl/vOOx+HWWncppW+qEKnYAcqU3aqi1YK46aR8zzSjrv8oon/+QmDQ51YIX1spiytDh01SzN9kMtKCSyPRSbtrwRUWlgad55zJkpZauzbne7zHOhFeuzsCuCVc86SPo3huMbWjdP+s7UrbIzgP73uqdizI2glX/ey1ek+J1rilXeprjFo5RrrfW2ZofnIocXO0tcA9y10vwMBv7iPzCbrs1iOB8vKNdZAVpOJk9I0m4fhmlSGGfto2DSYLXuYKkscOIE+8lNVBkWB119x1ePyrEvO27HySZHUjSwfGPu7bEI/BMPcuqxeGmOyLEavveQy8TmJfYKYwLgPT9oVsf+TWImn+iW+PtqXqqpJwGBcKD7A2cjHVSPWrKpO77Fi/GSNUmqNfcz/WyhpT8WJ0OvypSmrBoM98sgjmJqawiWXXJL9/vrrr/fnnapy99134+1vf/uqz3/jG9+I97///TjnnHPwB3/wB7jooosAAL/zO7+D++67D295y1tw880345577jlJb7wup7OQQ11rBeTiByxAq8BAHlFwWJSTdMdEcM1tcrfs2o2LXIYoBb+4xJtj1qBzwS0Cd4mgUeTElMH37jKRPlhG7C4J6IQdigJItBnH9L0y+BQCiBywAVhnxkpKFwUPDYwICFJcgIPBFPJlInmZzhYGpctmbRyryVN27sLOmRnfpphxpWlbywx2eBlnM6OPykTGzGBKWYOtYIqLckacLRNp39WX2vH30+vMYCuIMbzUmDTg5nt9HBmPk6zRkWM04CVFRYCTCTFCcNAIQODKFJglwCUOkMHXhJi5IA6W8yC21qlTM5RmzfWGwlc8/xq8439/eCIzWJxdy1lkTkXRDqSS0P9zA12ngUYe+OefvxTlZc+58riuEwArFxDKOT7k3pMHVjr4jzunm62IhILqbTR/iFlKKxXAke4B9FNTmchwL5UyIlC8ngFTEoCIDqXOYjACB7eJawTQJdrXI6Ac7dOi76JriD1h4JxWSlmnFqfZ1lphXPPMppQFjPqqiyHPBvDD71iWWlCme3r+jnlUODCYyOaGzPC+Z/85ODoe58HvLWM4zdxfARg3KTPYQ0tL+Rc6DeW5+w8kx7rAYOMM0wYJP54b1yRNxAKW6qvpPKVSkgEcFO7f74cxSkCXF9x5KXZtn8dwVKFpjHQKu/vVxjiWXPcMA6Fbiud3Heftcvso6ehUltCrrrAlh3LXet1UZGDnWY2MybMtARagsH3LLH7rj+534DnZXxUDvIREivBM+suI9SECkft/OTNYDD4n4Lxkp+J7aBejC4Fu4pKWOXCQ1XVCUMqCT4HYJgpMxvZ4DFz1bLzR2BZBYNgykZvKHo7WNbb2+uw8C2aaK0p8fjRM2hT/XB40KEZHdA67TDKvuUSSqkWvtLp8Ubg+Z/2bY7JSKi2laGD7OmYIAMLvTkzDft6633WmLDHjynIUOt2DuxKL4rK8Co4ZTMnfmwvtSXMdZUBs5n8K/IrZKsnpOuiXItDftOl4E2PQ6cb/63f/AR/4u8+Ed1fKZ3aPq2a9vMcZIDddtQ9bNgYwxlp+1y+/9+pVnffSZ1+BsbMHua0UVToGYIfvuG2EQ/bxLoezGukKqFZ1mzAdaK0xZiWUwnHb+p7WqKJgDNdb/fnKgvq/42/+Eg8uLorjwyYkNJBQEkDC1J1Zc5q2xaBXiJLLgF1vh5l3X1oe49x9IZje7xU4eGgJb3yNZJBbl9NHbtu9R5TnygGCcj6/WAb9uBzqqekcmJ7gm7lg4ybx2SYEBLEs+LIE66TS8qeSFErh0HiE2SipJT4nJ56N2P3fqd/atUmuTGTLHBmxb/9kju1J+2vMsvOlLHfefD52bpvzn0mPnc2UNJsky8MK0zv//+z9d4Akx33ejT9VPWn3ck4ADrgDDjjknEgQJEACBJYkGCRRkhUsSyRe6WeF18rST5asYMskJVGWLYmwJcuiZCpZgfKRBAESJAWSyDkDh3wZuMOFvd2Z6fD+UV3dlXpm9m7vdnbv+fxzN7093dU9XaHr+9TzLUVEUSRwcLyNlUvn4b3v2GTtu+Hk6cnMMBXOXrLUSxs/mSRoJYDZPfdyBkMGLFrQqjxH4drTox3TC/NNx1QpBdqGaFyn0XXHHqkzt9xNU8wzxnelKLP3mG8yib259XaSYGmz+trmIt+x4fSZLkJP7FSAKerO2BLonaqVVOPGzTQ/sOks63MoTaSZJjoSUonDjEN1U1vort2LpRT4PqdfmmjHGGn1FpgCZbscFWkjyxPqOZ7jiX4/Kj/PvpTfZPoZ+Clot9tY1GMFmv5b21hVMpvZtWtXkTryT/7kTwohGAB84AMfwM/93M8BUCkoCXHRAZINJy3BSavDan0rAGMID4rAr5kaxNgvTTMn4KY6Mdf+2g3WlU4ZptDED86pz764qwgA6sAMylXvVcFW/T39b1pcoxHIMQPsWoGmy5wHAHoN0rMiLFdeiA52VU3i2EEn7UTjBLzyv0/G5bq3DHmw0zlmJ38JSXKhQU1K5TaGDJEAvveMM3H9upPVsR1XLz1oGB1pYO/+w2gaE65SSkx2YiwY9dNEumlvXPeDMihmB9+TJPWXepGC8TguXtTMgVI3TbG81cKBru0MFgmBiSTG8tYIDnbKFWva6ctF5PXQTcmlhRVJlgXSC5n1xUnHZAi8zGBhITpJUdZZp77pbWZq1gInwOZ+zxTE1aS0Vln0mnAcBiIpkcR2mkg3AK/FJCZFwNYIwpOp4Yq8Ei1uNIPHQgCGOFfXjWCa3+LfXFjm7GOn91TB8pDAWhdMGH1QZtUzaYm/IsPp0j2fLd50+uHANl3+UHthbgk6oYjSAavqc0h0Mmm4J0SB/kRKgU7HFC1Lyz0G6Cck9QVztUgqlxWhzrlgXgNdpx7a90QJlGz7b3jOD5aAz/iuckIthe0ukfDTUKrtc/sFeX7FpGM7TdCocCRxhbJVqdPMwKoewyZp6dIUEiQX3zP20W1vw0h7qM/5Mz/89jw9YIa0OHY5zsyAvB9VLYj6/TNP8G9e24J6wxOimOXU/XWGXLid/8lKrecJrcvje+IXKZUjofFkhvarWoVviud0X+8KrJKKgXlmFs50qDL2MdsNS6yEPEVmVorcdHtnpoWMKn5nLVIzy2o+T5YrsCP8MkVj5n76WdFnM1OC6c/t3C1KcxAZHjt8qPgsINDJUiyu1fDNA29hZ6ecy8igxGBNKZCEWhJH8yWNZ9HazW07zRMU16juaZyvGs2yss8wxcJVrlihlG2mK5ZJIQYTAt1uar07uNW7Fnq+4S86CqHro67fIbdKLe6ociYMtTnFNuNy9WIbLaDTTXlsOdH5z2CUL1b6+n0ve+fQjqAHDs2N+a0Tnd/5xZuweKEdQDsWwRndLo5Yjg/h+YzJxBaDLXEyMAwDoyN1LA4EVU3nQY12zXDvq24DmlFkLZ4qvufcm1reVnxjx3bsOFyKwVSqcz8lU7mQy97eCaS30/NDSZpZ5Y9yIZsbqJlsx44bS4Q39o17zxI5eqoE8dPNRzacjptOWd9zn0j4wkUX02kQ8Pv+YWGkT1ohk2WtEZg+FTIfs4wY7whxcL5q+JBC4LVDh3CK4ZLRL02kxvwt04r2ezYzWqt59c1dAGLSTxh5rNBisEULhq9vPN782o9fZ7mFFS6kU01r144x0rLFsIcOdzBv9Pil4+vFuUuX4cfPtReeZpmax4usNJFCLXQPvPBOdmK03MUwzvx2nKSe6YCJErfb6SalFGh3y3TSUuRZQpyxkJo7KD9309QSjOn6VPXuowmliZTCT2FMZo7T1y+zhIedbuKkFlW/MdNEHhm9Fh+bhNNE2u7+ncSOm/tpIsNz8oBOB1o9ljLnMgElAux0bQMP7f5+PHEXac6GsRs59sztiMdR8PnPfx6dTgdnnHEG3vWud3l/v/XWWwGo9Jlbt2493sUjw06mggs/+YNX49bvvjwciYQdFM+8lfFqRYGVvgO5cMlItaRyHWeW4lhN0tvoNB9uYDSDHezRfxOBf81OxAzAZuaO5rEzOzikP5eiCmGlshEClmOPDhxaAZA0PNFSprHRx1KDZPfFNc0yvHLooL0tFxEUFvFAYaXpDrTTLLM6dADFRFGcpqjLCK0oKgQ/bmC5zCVtb282Irx1cNJKxaBfcNwXs0hqlbnt1gEgdwZTv4sbMHLvN7EREDjU7RRBYXOCZDJJsHJkRKWJNL6jncGWNps42O0W2800qnD2z7IML+zf7zj6qGf9gT27rYnszBBbFIF0Q7ioA+6qvIE2xZi8Uu4HzjWL8ADbTLEjhZ+ix3yZbUp7Yn9kyC2QpVSrRMxLzhyNpLakL/5urqbQLjesSFPiYLeD3RMTxWf1gqb+795L0/Jdiy+8dt8J+GcZeqeCK8QEpduMrj+6DgjY/VrRrtbsNFlRJP000EVd0tcUcm8pt2VW+cNppS2xCEL9ei7+cgQTuhDuS7H+TtsIvIvcgdKywBe5W0whEPBdZ4q2A2FUu1G2SbVIFhN23/jfH8PJaxb3tOeXWqxljm3yl3g7VYnf1pbXLQrXIMCux2rs5DsGuZ/nGq1aDV97/4e87Z0kDTqDfeMDH7Y+90rJGnIGy7JyUkQIJUi3hNBQdaJwujL6ND3hq5+/cmyo6o9yOvWngOP8ucmQPx9ZdRoJQE06b7nJdnk2rzDNA8cZssIlyRSDajFq8V1nrOyKqVW9CojHBoyBKnFL2T9nmd1n63OG2kJ7nGD+wRd95ZuLbxSCrFxYl8IYOxhtdJnO1RVE5Wk8EyNFnykG0+eXRgph4zc300Tq/bK0XBAiiuM5zmBxKWzdjwyPOC2pFEA7zbC4Vkc7TbF1wnYHVGIwP1WidW35v41AUMH9lvqpzX7GuO40Q6dIIaDqRXHdsOuDdQ3ST2koICzRU6hU7v3RC2RcsVYo5XFIoB1yP4rTtGhXQ2IzPY6ucibU/ZF0+gJP6Kxd4PL3IN3OeC5gaaZEcmaq1TT1Jni1ayYAvLr9rWDZyOyn18T+kaLnHkwBRshJRwBoJ6klBls3bz6++r4PTnuZjobTT1mKz3/m+7ztaWa7cwLhBQZAuZBGibDstsp0DS6OYwQ7Jyzn7bB4VM+3uO1IJ008F7FCDJakVmA5iiQmJmMvhUu7E1vPSbMRYXyi2zc1F5k65pj9eOOOdxc2GpWLJDStRlj0OGxUuQKHeOeatfh+o1XSdct0sEmMfn2YkULgzclJLDZEtp4YrGreIP9XO1XPPTFYHcicdwEYixqc/WdqsZSek+vl8nSiokUFIQfgXriiBiEExg93LAesYSRzYl6RFDg82Q2K+l0Rt4sWg/Wq12WaSFvY0+7EaNTLRSbtgOjcXfjdyeNEmlA8Szkp29snYj9NZDOK0Jnjbnmhuaph5U9+60N428WnFJ9d1+HSGWz4+8xhJM3Cc1ouoQWB5r+R9OvqVMRg6hjVv6H+m+neH8dumsgZcAaTvkiOkOG275hmHn30UXzv934vdu7ciQULFuD888/Hd3/3d+Occ87x9r3nnnsAANdcc03wWOvWrcNpp52Gl156Cffccw82btw4rWXNsgyx4UhEhgPzN4njGFmaWf8CapDa6XQBUW5LswwiK7+vVvHHSLM0/36KOE6QpimSJFHbAHS7XaRpilRvyzLEcYKJdjf/jvpuu9uFdMqX5i+tZblSxEmqAt+5G4sOUJmBkzRN81RaKQC1bxzHSJNUuf/oa07KsiZJAuGcP8syJElqHTuOE2SZvy3Rk3y50C0r/m4fQwvh0jQp7mORTgZZ4RqgVo4kSOMYyOzf5qX9b2Hb+HhZ1gzoxrFK8ZhfD7IMk7mwp5uk1ve7IkGWJJYTknYPi9MUv3PF1ZBC4BOPPYxukiBLE68uT7a7WDCvYR1XCIHJyRj1mv2bAcBobkdaHidDp5MgTRPEsb436l+B1BCxqPtnfk89Z36ZiHq+DnQ6mBfV8Nlrr8fyRrO4TxNxjNEoUqk/zPY5zTAZx1jRUkIxq76ldjuh9k8RJwl+6+EHcOXKVcZzmOFgexKHul2kSYIU+fMWJ2jUpaqDaYI4ThAnSVkv08SyTi/ajyxFN06s3ztNVV2zygOg0+lafY52c0niGHEsi7/pv//NdTeUdRZATSiRiv57Ix+sD+szlmUput3EuuY0TYEsKj7XIoFOt7xmFWzP29xMXbu+16Q/WZrhfz3zNJ55a596dtIUSFN0k9h6nvW+cZIoJRGg+p7APt0kLn7DNEmQpAm63S4EjOfb6HfV72f2pfp7KeKuqjMZdB+U5X2lfs7LtlPT7SZFH67LBMDqzzrdrlXfBDJ0424uQDP6+zRDkqXFM6aPZ/b/SDN0jbLrcyTGfRG5Q1AxZkhVX2WVIcswGSeQWVbs0+7EiCJhPM8Z2p0YAvqZ1/cutc6t+nR/vBrHMXTsLc37JnV89TvFcQwhMky2O9ZvZCKyDJ04LsoJAFmSYjKOEaH8TpL416h/V+TuYN283YPxPZFlmOzGEE7blznjjZlGj9f08y+nKfgSO9fWTmLUhAj+FlYKxPxZODQ+mYsqjDrZTYpnOElixIkaj6RJgixVz3enk9lj0yxDpxsXY+Y0H1umaYYkSfC53/0O/MMdT+dtgH6uVZsQJwmyLPH6r04SA2laCGaKOpK55bXrZzGmz4znID/eKGrFWD5JU2fMWLYtAPLyl3Wn3Y0hpfHsQdVl69nP4LUXWVFHnXIb16LfG6x7kGXodmNkkdnHlW1e2T6k6Ob/j42xQaLbxfz/+n1D1yvdDiVpCqE6R8RZgsSoW91A26CP0+3qe5b/lvnvqdvDVP++xbgn3xYn6MZx0cbrvkG3lZokMe9Fik4ngcifr3EA9yDDx1auKb+TAZ0sxcJ8sv3nTj7V+FuGbpaigRqSzH5f0ope871Fh1HM72f5PdLbtKhf1euybidJiiR/btVzrQqn34OKMUeo7c1/c8D8zVN0unFx7fr5AdS7l8Z8JzHfFc22spukTj1Lvf4oSzO0Y/t9VPXVqj+Pjecmg32sCaddt8lwaLyNZj0y/q7eta02KEvR7sRKiJyoRVPqOhIAxjOcqPGxeh6z/D0tKRxeiusWGQ4fbuOy89bhpNULON6bg/yfP/huLF7QOma/bc2oH0maBudKJpO4aDf039w5nWHBHTeoNs1u5/U4WQr3GtLyO85YQ43XnLFklmHfxCSWNZt4s9022jrVXkivf1HnFcY4GlBiUAn7fHH+W3S7CUZadaMNUe/UZn+dpRnGJzqoGdvm5yIw812YTBe6L4NXX44H5hN+9YqV+LN3XFeMQczxuKaeB3f1NiH8udVjUs4pvBv8xTuvx0pjTqsfVl3Jx7gA0DDqdJymxdx21b2ZCdz7gizDoW4HDbMNyNsKc27O+pyj63dNCEzm44d4DgVR68gXWTjvHcW8e2q3pXA/HyeEyNDudLFwnhL0DWPfOFOMNFW9n+o9mZjsotWIrO8dnuyi1YyG9v5KoapuJO25vfGJDhr1yBkPqAwtaZro6l1k3DHfPeLYn3uDsI8/MdlFLbLjMBOT3XKMk2bqHSazxw1xkiAzxjqd3AXWLOffXX+D9bmTJFhQq1vbJpMYTSGtbQ0hMZnEQ/tbTRfumHOYMYeD+j3Uffc2x5ZkcJLcVa/fvROZmk93+/bMmPeaSOz5hm6S2vMWSYq4IlaqHMjLeueOlXSMKMvK76sMPGUfqwSox/c5yJwxjo5z81mcu9QGWAAyJTHYrl27EPVYHSOE6LmPqAgyHC8eeeQRPPLII8Xnz3/+8/it3/ot/ORP/iQ+9alPWeV+7rnnAKCnyGvjxo146aWX8Oyzz/Y872c+8xncdtttA5Xx6aefBgDs378fW7ZsGeg7ZGa4/fbbsWv3PmzZsqX4FwB27d6HO+68E6+/Nl5s2717HwBYn++95yDePJhgS/wyXtjWxqGJBLv3xfjqV9/AwnkRXnv1AL7ylTfw/PMTqHVew7NP1PHMM+N4c0cd37h/Hy459XbUawJP5NMWO5Bhy7adRfl2Qwm09Dkfe/QRvIoMMdTL3wFkSA8cAAA8uXs3EqTYs2cPagDGkQH79mECGZ5/4XlseeFF7EaGV3KvgC2vb8cbyPA8UmzZ+hKegppUm3zk0eL8u3a9hUcf24fR/CVl9+5deOLJfUiSDLu3qaZn584dEADuvFOV46mnn8Kbeydx/wP3AwBefHEr9u9v4+GHH1bH2LUL3STDffcdKo6JDGiPv4FDh9roTAq8KseRpimefPJJpJ0WdgDYk6/t2oUEX969x/otXkOCr7z6Gl5Giq++8ioWQuAFJIhfUI5/+w8dLH9bqA7+i1/4gvUsvAnVru07sB//cscdSJFhO1IcAPC1l9UxNa+8chC7tgssW1RD561nimcGUC/kzz7zJLa0X1TH3a+O+9AD91hlfvnlgzhwsI0vfrEsx/Y3VKd+111fxdMvTyKOu3j99dexd18XW7ZswbsvWYDHH3sUb+49jHvuuQfbXhwOG+hhYteut/DW5Hy8+vzzeOz5rXjM+NubiLHtwAG8hQyvHDiALa+8DgB4FQn2IncVQ1r8Rs8gRQJVJ3YhKbY/jhQj+TG37d5dbN+BBFu2q/prtiUPP/IWRpsSB3c/if3jCV56aRzd8W0q2Ln/WbyxP8bWlyZw0oULkGUZvva1uzBvJMLTzx7Gnu0R3jyQYMerEfa89ije2B/j+Zcn8Mb+sjw7dryFO+/8CrZtO2Sdt1GT+PKXb0ejLvHMM+PYu6te+cwcQoaPQBbf7+SOE8Pah72ys4PXXz+M7vhubNmifsc9e/ahURdFmd944y1kyIrPuk1pdF7CwcOqHbjjji+jyRU+A7ELCbq7dwEAvviFLRAQ2IkMW5HhAIB9AJpPqvHPbiR4C8BXXt8GALj//vuwD8Bu4/fYhQRf270HLyLFlhdfRgcZXkOKLdt2YKdRD82699ruDra/2cXBN17ASzva2LJlO+Ikw7Zt+3HHnXfitdfG0elmGJ9IcLAu0KhJfOXOOwEAL7zwPN54K8a3vvUWAODVV17G/jcjHBhPsGWL6lN2Of38K68cxF137cKu3QettvurX92FXQsEGgDu2LYDTah+PAbwFjJsefm1ouwTAO56+VUsgsBTSLEdwC7jPmxDgr3G56eRYicy3LPnDWyDwDgyvIwUh41yvYgUB5HiW3ffjechECcZDh46jOefe7aoDy++eAg7d3fwja9/HYvmR6rteHECu/bF1rW0D27D3gMxtmzZ7v3mesXjE48/DgA4eOAAXn55HNnkDnT2PYPnnhvH/j1bsXPnRLCteBYp9iEDXn0V43gkfzYyvIgUTQBbXlPPRxcZtuX3Tx/nW9/8JnYjxTNvvIk2Ujz33HPY5bRLzyNFHUAHwJbntxb3/PHduwEAhw4dwgsvvOCVa6Z47rnnineTY8FpyJCgf7v95MsTkELg9/70G9g/nlj9xlv7JL5y51toNiSSNMOO7fuRZsAX8jHTky9PIE2Bnbvaxfd27tqH++/fj26cAYeex96DMV7YOoF9B8tn7aWXDipHqfHXsW/743h1Vwe79nWxY3cHX//G1/GiyLDlxZdVOZCgs3sXRre+hFeQ4hAy7Dh0CF/euQuvI8WW17YX+235whbsDrQXu5Dgvl278+vahYd378YogAmkeOnFrXgLwDiA+gtb8Uxef18B8EY+1nzqadVnbn+pgedem8T4ZIpduzplPX36KWx/NcKuXeWzv3PnW/jiF7+IXbvfsu5N6B0j6+xFOv4Ktj5dx6GJBC+/Mo7xyfK3eGLrBOotgR3r6t61PYUU+yHwOgSeRIoIwDgexitIsQfAlqefKerUlu1b8CxSdAGkjz2OJB/b3rljF15Fiv0AJgA0oAKoekz6zFNPQSJvs199vXh2Xtzexv7xBK/v6eIrX9mPZl3i6VcmVYrsBBhpChzc/SRe2dnGnv0J5o8oN8HkwHM4MJ7g5ZfHsasp0T34Ml58po59B2Ns3TqBfYdiPIl9iJMEL724FYcOlc/Xrr1dvLX/IB579BF09j2DxXlZxO7deC5/H9iFFDEy7H31VQDANsPx+1A+7r9iXGIRYNVB/TezfXntxReLbQlS7HljD8aRoWt8t40Y+9ttHEKE3bsP48HxN7Fv++PIsgw7duwHoOpMp9vFM888jZ27O5gcfwPfkDuwZEGtuI/mM/XiiwcRdbZh+/Zx61l5/PF92PV6HbtfbRTbAOC++5RD8o4d25FN7sbCeREm3ny6+L3NfuapJ55A29n2HFJMPPc8djn15+u79+BFZNjywovFtgMA7nrtdYzk70L6XarsxzLsQIJn3ngTW556Bi5PP3sYLzUEdu3plmPX7ftx++1fxu7d5XzJC9vaePnVCXQP78LOXe0iXenEoTfw9cYuLJoX4eBhVV8OTSTF87r9jS5e2dXBm291rXJt37YfX/nqPsSTE/j23V/1ykVIP8z5gteQ4IBRhwBVF5Rbo5qDvP322493EY+Kffvewmti3LomLcJ+9JGHcPiNp4rtz746CQB4/IknrPcrQI1lzXEqADyJFJMA1iHDlcY75jNIMYEUX/vKVzBqzK+8kbfBX/nyl1E3trvjZEC904t9+zC+9wCyrDyvdqR6/DHVXwDAnj1voXP4TdQ6r+H5p/L5q712W0Gmj1271Bgoy2C178OE+W7wRj5Xp/v38YnE+nysGfTd4NG+e4S5/fbbi3mdb3/963g8r1u7ESODKOauNMPy3qTvyzNI8TIyPLp9B/bnY/Su8z64r2LeyhzbHALw5du/ZLUts5mbIPGlL3wBhxDjxZfGseWlVwCosfwTT6j39ocfedia2//KHV9Gcwau/5nnD+O1lyS6k5O44bIFQ9kmzDRTvSfjh9vY+sKz2LLltWLbofFJvLT1eWzZsm26izct3IQMj6ZqcaEeK72xP8YLL4yj2RD22Gr3PiCz78vOXfsgRLntrUMJDhw8hCeffAL1PPbizuW9truD17eNoyX2YUum3hFffvkg9h1M8M1vHsAzj9fwElLsQ4oH7rsXu42Y0yO7d2MEwEGoONZexHj9wAHrvdhlN2J0nXY1A/DsE49jyxNPFtsGnbMhM8OyRoK3bRbe7/Otu/8Fzyw8ofx4poWdSDAf/Z/3F/L3g2IuPo+T35n3XW8iw2EkePD++/BmXlfHEePF558v5oLbyPAqUmx5fYd3fCEyPPbY46hN+pnhbr/9duwfV+O/b3z9a1gwqt7rkjTDE08+jsj4ztNPPQ5x+PiNlbReoJjXcT6Tucctt9zSd58ptUQzZdl8tKxduxa//uu/jhtvvBEbNmzAggUL8Nxzz+EP//AP8cd//Mf49Kc/jXq9jk984hPFd/bu3QsAWLp0aeVx9d/27dvX8/w7duzAQw89NA1XQmYLaaqU371wU7Xo6mWlLsvsPYWRek67bggAMfrnfK3KQCMq9nH37/U5C5w/Q2Z9QeTXaF6f1CmzilQ7djsjdLoS9xjG903LS/f6EvjW3+76ApFvewQZrjS2JfnRBlnzqZMDuvdOpSyz0Sn3qlzk60a6An2vmg0n1YLxvLj72im1yjJdvGkUT+WBWBImywN2IRPyBOEOU0JNKs1z0yFB3fs/Q2w9c2a9mTSeWAGgDeASN01cVlq56u+a9UjAeRYKO1ztZgWnftnl1yl73McxM04iROCBM5gPgfnGEYb9FUdIP2VYv9FN4BaTKaLl9mZK3zwRmJ9WCmXb6SdUK+uC99wGtgFKWDQv0Am6fd45p7bQjTM88fJEuRFl3TH77LRPyl2VRrH3NmH82+8ZDO3j3hvdn/U6rh4z6N9DCiBOYKXKEbqfkuXnbpJhpOm2T4HGwz1f/neZ1zthtFG9HO7dcprbRp1toXuXQqWpuwISq3PxoXuvQmOnE9XnYfmAE/x6Lz3hYZKmGYROVYi8v3L6uSS10yYI5H2QMabNnIqsx4buWFD9X0A4T4A59nLruElVe+FuDx2v6hzB72ewLOKlDDyzvbpZZ3uWZUa6Yj+lkm5n+v2i7ji+aN/8U1r7d6AcQM30jGng++759c+eGs+A0F92dtQuv0UbnN+fJMmsVM2hMY31zAkgNsbcWow/z/iO/h1HAZxZcdcWQmBh8C/5efJ/qxKsVP0WZvl12YseUT/jUO9Kss91h9JYpqmfAsikSOdr9HXq3cnYB+F+JPSMuN8NHc8rA1RbXDV2FALoxBnqNbPd0H2wUa+EWpktncKZ9yB871SdqtcEViw20uYAiBM/DR4hg3C6+z6H0Gh3dhMaAobmI8ztQLgvdpFQQZkFEDjbaEF0l+G2F0VKN2f7aZBoOGfQXctFp4/icLvsgPT41Cy7FEC7m1rzM3qhI5l+ijFW1rvvGhYaNbuQrYbEppObFXvPTkLjG/f9bFgRUO1I3WlDTPrV5ghqrm8u1fpz86sJtb1V70wzVR2lAMYnU4y2JC48fbT/F04wTl839fYmSVUWBJM4ARr14W10T4LAE2kZAwPK94N5I4Ha6VxKkgCtpt23J85cnhQCiTFRJ/P5L/ec3dh4F4WKBUXOCRPYbaT7OUTV+5L7brlqjo0l5xoL50VYOM//taOIv9uRkGCwNJHu3ISb8lhCx/TKY7n1stec/FXnzMOaZdWpdPV4sO6MC922NpQi9ljilph+YASYQsz2V3/1V49lOY4pH//4x71t5513Hv7oj/4Ip512Gn7+538ev/d7v4cf+7Efw6mnngoAmJxUq9cajWr3nGaee35iYqLn+desWYOLL754oLI+/fTTmJiYwKJFizA2NjbQd8jxI47jYiXCjTfeiLufuQtjY+/B3c/cgbGx9wAAvvnsnXjHtZdhb/cZjI1dAQC4+5k7AKDY5+5n7sDll2/G6zsPYOyGs3HfY69j264DePH1t3DddRdg5bJ5eOHNe/DOd52Dg9mzuPZtG3HaSUvQrj+FdasW4vW3nsb736+OJV97FYfiLuaPH8LYuRcUZf3m/fdCCGDs0ivwyS3/hMsuvgSd3WqVQUNGmHhrH5a3VFjk7GXLcc9zT2PlsuWIhMC+dhsnL1iAXXv2YNPJp2Bs01l4+eAB7HzxBURCYuz8C/HaoUM49OrLGDv7XNRffw11KfGutevK8z97J8497yQsWzyKf/iXO7F2zRpsPmMlAODUdYvxd1//Mk5atw6TnRg3vOdt+K9//79x7rnn4rW9z+GKyy/B//n6l3HWmWfi9b1bcemll+CfvvlVrF27FgfG27jiyvPwN1+7HWvWrMZkO8ap6xZj98HX0WrUsH79Cjzx4rM499xzMX5qhAuWLse5uXDzm/ffi8tP24DP3futon5tffIxXLTuZOCb38B7rn83lrVaeOP5Z7F58RL8zX3fRqPVwtj1NxbfB4Cxy66wnos/vfNLQLuN0XnzMfbO6wEA37r/XixuNnDDmWdjSbN8SXvt4P2I4xSXnLMWV110MgDgX565AwLA1m2v4eqrLseVF6rt23YdwP/Y8nd4743vwZ9+4a+LMm8ffwCv7HnRaiOee+kNfPbLn8dN770Rna8+g4eefwynnboeh7t7iv1G7nkRT73+KK6++iqcf+bqQR75E4q7n7kDL+Iwrr7kUlyzeo31tz+980vYvP407Ni+DaevWImxs88FALzy1BPY/+YbeNeZm3H7/fcU93rBju0Yj2N88bGHMVqrYexGtT16/VWMRDX800P3Y/PqNRi75HIAwOOPPoQL156EaN9ejG06qyjP2Wevw9qVC3HFBSdhz95xbD/0CC44S/127756I17bsR8H0qcBvIksA66/7l1YtmQ+Oo2nsXblAry6Yz82nrwEF5+zFq9u349x8RxqO/ZjbOzdAICHX/k6rr32Irx+4FGMjV1TnLfZqOGm916DVrOGyfpTOGXNIlx2Xlm/+/E7W/5paPuwx57diVfefBxnn7UaY2PnAQC+9sTtGGnVMTZ2HQDVfmVZVrTZn/qr/4nzzjsPY9efhbcOTOAP//FzuOm978VIq/qFgJR88/57cebixbjnuWeK5+LFAweQbH8d5y9dhp0ThzG2/jQAwL0P3oc4zfC+Sy7DH96+BVdddiVeOHAAk2++UbS99z54H952+plo73gdY2edg3aS4LFHH8KN51+Exx5/BGMXXVqcd+yyK/DN++/FDZtOwyNP78BFZ69B88kdGBu7AHGS4r4X78J1112J7YcexY//0NUAgF/8nTvQatZw4w1X47/+/V9i8+azgK17cPXV5+Ev79yCM844HYsWNLHvwCTGxi4DULbj+pl57eD9eMc1Z+Dp7fd7257d8SwaMsJ7z78QI7Ua5GuvYn+ngz2TExg757yi7CtHRnD9xtOxamQU6asvY1mzhZ2vvYKxS9V9eObxR9Devx9jb78WABC/8hLe2L4NV525GecvXYaD3Q6efeJxTCRx8Z2H3tiDv7v3W3j3u67DmtFRpGmG3/vbP8OF56vnGwDe6DyC3Qdexg03vAdLF43g9Z0H8OpbD6MWyaKdeHX/fdhwylLs3HMIY2MXWr+3OVa68MIL8PS2J3DquiUQArjoolNw/VUb0K4/hRVL52Ff+0WMjb3Le2YOv7gVj+97E1ecvB5XrFwFAHjl4EE888yTOG3BAoydpVK8x2mKBx56AHGWYuyyK/HJLf+Ea6+5Bg8+/ijOWbMO37lBOfy+fP+9yJBh7DIl+z649Xm00xSjUQ1j+T7fvP9enLF4Mb7+3DOYP38+Vq9ePW1pGY+UNE2xc+dOrF27Fhs3bpzx8ozc8yKSNMM/f+vrAFDU57ufuQP1eoSxm69Fox4hyzJ8+/mvWO3oyD0vYv/BSaC5B2Nj6pn95rN34oILTkMUCVx35Qbs2HMQb3aeRHPPweJ7rx+8H4cnu7j8olNwxQUn4bFnd+KJ53ejI3bhHe+4AhPbXiueB1VvWnjPxk3Y9vwzmNy/HytHRvCuc87H9heew9h5FxT7vfeSy3D/ww8U/bBuL771wL244tTT8Lf3fhurVq7C5uUrcMr8+fjqow9h08nr8fKhg1g1Morr1p+GdfPmAa++gkWNBt6ejxv2p4/h3E0rcf6Zq7HowVewbddByNabGBu7Fp/43J/igvPPx5KFI9h58NniGh946S7ceOPbce8LX7PeFW6++d24+5k7rW2nrF2Md127CaesXYS3Dk7ixTfvx/6Dk8U+0Teeh2hIdJpvYeyiSwAA33rgXoxdegXeeuE5nL90Gc5bugyt7a8jy4B3rzsJD+zZjVcOHcTYaRtVncrvy+j2beimKW446WSkWYZ7HrwPF60/DcsPHcKje9/E4STG/FoNB7tdjF1+FT71hc/jgvPORydJ8Or4Qeu95P7Ht+G1HfsxkW3H+953HWqRxPz7XsbEZBfdJMXSRSN428Wn4JGnd+DZl97A8iXzkGYZ3nP1Rry57zBeP/AwRlo1XH/dZpy0eiF27DmIPZNPoPnGIWzevAb3Pv0wNm06Ay/uer54Ll96fR/+/u4v4IorLsOl56zGHXeo97FNGzYWFuoHDx4AdryOzZvOxGbneZ+/Ta0E37TuFK8umH8bbU8Cr7yIszadCTz3FDZt2gT5wjNYsXQFdh8+hBEZYdPak1Q9ePVFLGg0MT8VWLlyPi44Z0Mx7r/7mTsghMDY2LvxB//w5zjnnHPQETuwbPEIbnjPRVi+ZBQPPLENL297CxPZjmIst2vyIVx67lrsPPQMxsbeWRzrjNNX4OJz1uKc01cW2wDg8ss34+++/mWcfPLJWL1iPs7asBxXXnAyFu3cgd0TE+juexNjF1+GT275J1xy4UXYPTmB7t69RR98cOvzOGvxErz60taib/nm/ffiig0bsfCttzC28fRiWzOSuPmCi9CKasU2oHyXenb/W/j6ww/g0jPOwvXrTvLuc7f5NA5PdLFqooOxMdW3P7n9brzjnRfiye33FeO2+x57Ha/sfRIXXngqxpNXEUVKRLd4YQvvvfFSLF44gn37J/DKvgex78BEUV+efekN1B5+DW/sO4z/8P9ehGVLVLDxyR1349LLNiJpvl7084QMivsG9MBDD2B/p42xK99WbPvWA/eqFIl71CLUG2+8caDUDsPC0zu/iY2nLMXYe+yW85N/9ad429VX4uJz1hbbFj/4Kv7x7jvxnssux/grLxVjMQC454H70EkTjF1+VbGt9vqrePqtt7BmdBRjG04vti/cuQOff/A+vO+mm1E3xkPbD4/jT+66E+8fe1/fcv/Tv3wN6xcvxo87Y1cA+MTn/hRXX3VF8c770CtfQ7eb4qabrsbiBWq5WLsT448//+dD+547m7n3ha/ippuuRaeT4Ilt3y7GijNNmqbYunUrtm/fbr0bTLRjNL6wF5s2bSr23ewOJI5ReY7Vu4E7351JiU9/8Z/xwZvHCiH/X33tTpyxcjXGzj638t7MBO59SV57FS+98hKuv/BibFy4SO2TZfi9L3y+qL/j3S5u+/IXrPr8SWMea+uTj+Hw3r0Ye/u1iObYisDPfe1OnL5qDcY2q3eof7nvHrxz/Xrc8cB9uPCii3B9Pm795JZ/ws3vvQnNHlmCjhXyG89j95vjWNmJizEgKTmSbugTn/tTnH/B+Ri7dpO17aorLsW1l586fYWbRuI4xpZv/w1qkSjGSq/t2I9HXv4WNp+xCmNjZbzVjb0BwJcf/gKWLx0t3pHe2HcYf/P1f8IFF1yAsXeq+3DvC1/FxGQXY2Mq9vP01j2497lv4pKLzsF733EGAGDboQcw8exO3PCed2HF0nl4+I09+MKD9+GdV74NmxYtBqDGNJuWLsWGBQtx6Qr1/vU/77wdm09ZX8zzh/j7b9yFjUuXYezc84ttn9zyT7j80stw9SrGbmYzn/jcn+K9N6p5VTI1vvztu7GiNVLMaVXx1gvP4bEXX8DYDTcDAB7b+yb+6tt3F33XjsPj+B933Ylrrr4aZy9R8eFPf/Gfcf7mczB26gYAKlXr73/p/+KPAw2ru8kdKwESf/D3f4YPvP9m1Guqr/zE5/4UV195Gd5+yfri87nnnl+0J8eDTfv34/FHH8TYO9R8yeJdO7Dzxa0Yu+rtx60MZPg4IcRgvfjpn/5p/P7v/z62b9+Oz3/+8/iJn/gJAECrpV72O51O5Xfb7TYAYGSkd4N+66234tZbbx2oPJdccgkeeughCCFm1WTQiUitVoOQwvoXAKJIIoNErRYV27RTgvlZyghRpPap1WqAkBBCoF5Xn6NIQsoIgCj2qdUiZBDWsWtRhCTuoh7VrGdGSLX+VG9r1GrIANSEhJRCuSnk5ZKROrcUAhDqb1H+Ii+lRK1WQ71WQwYBmV9r3bp+WVxLcX4hEMkItfylUV2POk8UGfcqA+r1/FpqEbJM/Wt+joxjwPwsJQABISSkU+4oipAJgUa9vC9SCqTObxHJCAfy9LX1/D5HUiLN3/WXNlvW75ZlmVc322mKupRYMTJi7wv7/LpcE5Mxms16WS4hAKFWC8wbbZa/WV0JTUZaDXztL37EOoZbjnpD7dtsNhAV9zlSv7l+Vmo1dOMUzUaD7UsAXR8WtVre/emmGRq1GqQQyASs+tdJE6wYVcGj8l5HEKlyTjkcx9b+Qkq8bfUa/Mcrri6OH8kIh9MU84zfRpVHotFQz1CjUQeg2g4p1blU3Sknpsy2QkiJB57Yjk2nrSj2FRBW/xJFEkLKop7r85ptUb0WQQg5pWfm7ls+MvC+x5tGvY5unBb3FVBtoFlXWs0a6vWyTcuQIYqk8TsA9Xqd9WhAhCzbZn3P6rUaMiEgI6n6Cl1HZISJpINWvY673v8hPPzGHmRSWP2slNL6XipEfqwIkfMs6z66Ua8V/ZL+LaVUa39kVG7T3zPrSS3SfVNe9rzeSaNe6Ha8rFuR6vOs8YHapvvZRr2OWpT3k1IE62GU9+0147tm/2W18VGkHBPy/riRZehkKZrG+KCR/ztiPL9Jmll9Uq0m876inj/zNUy2Y6xcNt+qM0JI676FqNVq+PNPfCc+/5Wncf/j24qxQr2uxxTh79eiCHGm2l3zmYmzzLoekVtTCAhjvzpSwPtNkdn3ajxJ0HDGaqkQ+JX1GyH27lXP2QyLrwA1ntL3aabLo8YfpZOG2ecliXqOdF2HgF2ParV8NbJxz4UaK+nxVz0f97j1JkNcjH3rtRqEUHVLRjXUpP0bJgAa9Rrm1RtYmffNsQBaxjOvvlvRXgiBWmSM5aQo6k0tipRzVX4OXTeFdRxZjifztqNujtvz/tm6Rikho8hr59JMoGn0VWocCjR03czbIvN7tVqERMK+tvx30M+RKncNcZqq7VH5TiKzLH/XqOHhvW/igmXLUavVCsfQdpZhfrOhxq35s5kBxW9XjyJ0stSr2/p3yzKg2ajnZYogZAKRZsU9K9+JJOqRMdYRAkkKtFqN/NrrxbuMer8Amg01zjXb6k43KdoyAPhZ1Ky6bb7vuCjntfDfCidWKa1j/MlZarFAhnJcKUR5jLqQiA2XRHOsod7dyudQ5P1KmqK4huL5d/ooIfyxnPk9GOXR71G1WoQ4zlRflI8dY6F+Q7PdhSjf//T3hZRWHyikAKT02tQEQKveQC2/fveduFGroZ2kVv00qddqmOxMYqRVjo9rNYkkgTWOq9draHcStJr14t4Jqe5dIx9b1+t1QMC6T/r6kjQrni11TyWSFN57HCFHhPPcAXnfLsq2pWj/Zgm/cGu1UKfZtOca9FzP29auw9vW2ouLEmRWmwOoejmRJJhXd46TzxG18vZfM1JXC3gHuX/uONIru9FmNuo1vHVgHPNHW0b7U8M3/8pfbEyOniiSiKIahMxgznfONGmaFvOY5vhh3kgDf/wr18xImY7Hu4EeHwLlvKQ+tx53Vt2bmcK8L/VapBYtNJves6Q/LyzGQ+G/N6Ia2kmCRj4um2uY/dKnrs6Dww/cZ73XzOS8XqNew+HJLhbO939DcmSsWjYPrYY/5p4/z58DHyZuvlJ5NOuxUr1ex8RkjJGWfS3uewagRKBmn9Ko1xAnqbUtiqSaR3PfK1rmHFmEdifBSKtZvJNNJol6zzGO08kyjBjz+t0sRavPGC9x5r0AYF5+jmH+XchgmO+xZHCWtloYHSDuUo8ipJk9vwAAzXodNSlRr+WxVbNepimaZv1y4hWDYr6/jbRst8YFRru6bPEIZHR8x7ably3DZ6+7ofh87bqTce26k4/b+clwcsK3RFEU4YorrsA//MM/4Pnnny+2L1myBECZLjKE/pvelxBNnKSePX6IIn2SEMjSzMpdIXWaFGRG+g6hBq2GV60UAnGa9l2ppFMq1kybW+i0c8oiVxTntPdB/rfUSb1ipbsKnN48kk4JGUXCSBuVp4nMz1KkjURp02+nRlFpUIo0Y/lnHaDSqXL0bUyyzLovAgLdNMX/k7s6qXMCnVy0U6avEojTDO9ffyp+0nA10NaiLsubLVy4fAV+3FjFAaiXDuncmEgKtDsJ6sYPkWZqEvQf/9u/wqKFZZJCfd164tM8hmlhrMsMqOBFmmf4U/ezDNpKKdDtJrSorUA/VwvqvttTN03QkBLz6nUcjmPjOyoF0SLHRVIKgTiQskfCTmFU7q9EYyPOirskn2DTx0zzNkGbSAvnuTef4SzNcM8jr+H7PnBBsa+XRihPj+NObqVpua0q/dBsRUqBTjdx0oDYqbZ+4dZrrbqr9CZl4BcIt3mkmnZit56RVH2SlxJOqDbRepad50/Cfib1PmkPG2mRB3vNdlmfC4E6kBmp3YTT5kaRQJxk9jPgnDbcTiPv42D1p7r8bskzwOr/E+c+RMK/D+69m0wSLGnUrH0AoB7Zk/VmPyOlRKebFGMNKSXGJ7poOcdRbQd6EhXiA4k4SYv9a5FEt5tUmn5LoV7Qa9Ie73TTtBQbQbWEKWzLbSlU/++mZLL3EeikiXUsAPl4qvc1ncjIiv5ACCCOU2/MY/4GAkCSpF7atTRNldgf4TTY7lhRFJ/ttkKTpBlqQuLHzjkPaZbh3z9wL9pJ4q1oD43RzLKWx1PPnG5bsiyzxpdS2IkqM6cOxs41h/pULfJyaXcSNBv267p6Dyj7oyzL7LTs0h77VV2bAIpyWGNrqPF7O0nw+VdewoXLlhflBoDDcRejtXqexkktJDHPpt83vPon8+sWxlgl/y3VmAPFtix1xjr5tjg22yW7jVWCtAjdbtnXSCHQ6STWe5NLvUcjJiHQ9fJY+rjpQXSBynttiPbz8WGKDLv3TlamjjOfzTgp64jI35XsdJj5c+YcKkkz+9rzatTJ75GUAl3znkKgkyRWu1sLPK9lX2OfL85SRMK+1+67WOg6J5PEcvmx/i4F2p0Y80bLcbYQAu1ujIbZb+Xb6rUof3eWQJblwR79zMDvl/NnUIkIpXWOTjfx3sEIORJqUiIOtMuhd8K5gDnPAcDr962/BdqYSEgcirtouXMgomwHTeYF3t2riDN7bOnSaJTnrEUS4xMdNOpsB44XWZaplNAcjA8FoXHyvFrde68fRiQExrtx4Uyq+cJN7y/+L4TAP954c+Ux6lIiztI5KQTr2fsMSdcURRIHx9tYtWz+TBdlzvAn/+nDWDDPTy85b2S4Mx64dTCSAofbsTU/VUWSZvacktTzUuUxI2N+Qe0jMNmJrfcAN5aj33kbxrEjITAedzFitDuxM38VopMbDJj81btvxMLG3Eo9fKLCceSR8csXXTpQ/1uXURHXBWDN0wFqPkP9a9exhoy870wnZiaZz/3uR5lZhgwFM7/cfQjQqSBjI8CvrZ5feOGFyu9t3brV2pcQIA/8xOWkfRWZGXiR5SSYGUBK08wSIQipgm2miEFADRx7TWoB+eA2P6cWjbhdnf5ciEvM64ItxDID9MpDwAmkI7PFKbIMduv5Pn2NRbBb2sEF/Z2iDEILXoy/O4EgIVAI6GLnvkS5yGth3Qgo5AIxfXx9H7ppiqaM0KrZwe9QEPQ3L78SP7DpTCvQWAYL/cnQtvNS0e0qgd/SxaN2kFuLweruMaT1omLuq9Ki5IFLKSzBXpQHffo9myc6TekP1PXL2UithsPdsq/Qz4T5TAFlQG3UUf2rILB/Ti1McF8AkzQr6rsOAMIQqUhhB0PduqS/B6ggmPfc6DrolCdDGSQvRZpzgyhSQhezHkjn5X+0VUer6f525b7q89ybFDyWeGKwQtxoCy8iYYueQu2uKMQ++rOqV1kWnrQGyv7C6nOEFneExX16UzE5JPTnvA3uFeB2+ie1TZbXYpRVX49PeY2RsAXZ+nuWGAxKHK6/I4VQq5kjsx8s3WlMzMCdEkzGRWA8kgKHJ7potWxHCzeoHqLom6RAkpaTbrWaqoeiIkBYCL+MeyxygZi9zf++zIVzvaqoFAKdJPUmBNzjExstxBpx2sdISuv3rfquKWrRJIkv+re+J9S4pmiDjfFnGhCaqIUPEnUpi3FZO0m8vj3JMu/3B9RY0ixDnJ9Di77S/LueqFR/PyvbitA1myLuYhuUUM6dKJ5sd72+KLGEQQgKdZKKYHfm7Kcx76PIr3Nve9LbDwAm4hgj+RhWybXs6xECQXGrFPCvO78XauGHMbEeGOukmRLsFBPwUihxoRCqfUlST9ir29xe495Gj/cn9U4RxviZg21Glrffbh/3favX4iMrVqLbzXDnvdsqRRJClGO2xBI02e9jelu3a4uZAFS+j15y7lp85jduUe1gNym+J/J216wXkRTePRBQ9cJ9NuI0Qy1wPb3aBQmBdmD8a15bu5PYwi+Zi/ycfqvdjtGoR/jFW6/Fz/zw24t7YAqb/X45F4N1E2uivnxf4zsTOXoW1Rs40CPjwFzDbYt6icFqQhZzMZpICIx37WCq3h7CXUzVi24g4Godq1kGarRTbq/yk+lD5HN9gy6sJceH33PSCf37Sy7D951Rne5sWJCFKMNuHxY6iziXt6ozvTSiCJ2k/6KA2Yg5jvX+dlxLUk2tJnFwvIMWA+jTxpKFI8FFMrNNpFCrSYwf7njvyQC8B9gVGEsp8kVssLYlRl2PpMRkO0a9bi+YnOyU20KLLKUQOBzHaDntTr+3iXaSeN9Z0mxxXmqOwMVFR0arVhsoRfFILULHeJeoS7uO6jFlw2n7zPkyIQQ+ffWRu73+3i/5wvJRQ2Q7b7TB9wkyFHB2C8ATTzwBADjppJOKbVdeeSUA4O677w5+Z9u2bXjppZesfQkB9MAy6TuBkQHF25cWOZkxEiHzfUzxk8iP7QSV4jQtlM5VRELmwYP8ezCctaBEUTpogfyzElWVwS6rfCgD05UvkkYERLsemAEB4QSHpUDhNACUq/6LMhQB+eqgoVk+zxlMKBcwc5sUAt180G+uNlWrN+yrqjrfqQsWYuXIqLc9yfygspRq5bo5SdqNk+BKgcJRRfoTqiFRjy5jkrupFY5zxj6dLifXqsiQ4XtP34TlrZb3tyTLUJcR5tVqOBx3i+1a0DISEH1NJgmWNO2VPDIQuAXU8+q6MQB5ADCyA4BmPTYFk+ZRTVeiUgwmDWcxXU5Y4pjiXnh1d1imhI4e7YThicH6XaOzuqRKdETCTCYJ3r56TfG5LiW6aeKJiV0HLIFceAG73bZFUKr+hpxKin0McaznAhYSNGeZkeLLbnPrNanEKT2u1xVqqm22M1hRjyEsF7CyXKUYPOyc4DuDxUa/FwmByTi2Vzxp63ynrTH7pEjqvqJse8YnOtbKSyGQ9y+964G+11EkkcT2PYzj6ntYisGm7oSqBTJVjjtAKQS3xgMQ6FAM1hMtxBp1Vg+HxiWA7xDrLmgAtPNWOe7zxzdKGG2OcwpHK/iiozgw9orTFHXnvK7zHFCKlTYsXIQfzV1ktbjMrIOm2N90/PzHO5/CbX/9QFlW2Is4/vWHLy4XNpjtntTOTuW2DBn2H2pj0QJ7TGKKxItxnnFpQghMpr4YXV2fsR9sZzC3T3tzUonB3N/rcBxjtFYv2h+/PRZIAk2D247q8if5wpciu6gWiDljHS0GqxmrsfWq7mZDpfJIjeOo76l/XWGCSaOXgBHhMRugUpuVba3/90IoB7ttX9VoYkW9gWZDp7V3nkHjTUz3AWZgPCw0FujEAadDx01av+jNG2ng3DNW5eMho60Xul6UBa4JGRQchtriOPUFtv1a0ygXLfcSg6lgjCP8cly7pA7a1CSWLR7FssXqvSxJ0yIAJITtaq22qeetm9gOctpFttezQ8igXH/Syfjwho0zXYzjhhv0inuIKW46ZT3et/40a5t21vCdwarEswLfteH0gcrmOoS4jBgLH2q5qy05PugxZhyr9F1kOLhs5Srr88nzF2D1qD/3OWzoBWbNo0jJpOYr5mYbYM71uwxLVoBIChw63MFo64RPanRM+cEPXYQVS4e/Tps06hEOHJr0HLTNRWbFttReHKMXEZmLEqNIes5g7U7sLUZpt+PifUGPScyFRdqRsGl8T70L9n4jSjLfYZ3MHSgCOra4JhxNZ36lEG464393UeClK1YecRkuP/8kb5u5wISQYeGEn93asmULnnzySQDADTeUeVRvueUW1Ot1PP/887jrrru8733mM58BAFx00UU4/fTBJh7IiYNKCdOnehkiL0uUpbfBTBNZBsC6cWqvasgn7t0AgJvuMTWBDBcAAQAASURBVJTSQ7tnlMK0Mk2kK/5SaWAM1y5jQj30qliIyfLP2pnM/IYZGNfXl5mpYvLAkSm+MN0GpFNGLTbT21wxmA5eWOpvqBzuQGkdKgEvCA1oZ5bB0L+pJwYTajW77QyWWCtOin0rnqFg+jFjcHnaSUvwris3QDhOUIUIpt+zeQLzo2efi9GKVBMNKTFas9NERoZ1vLnqMNJiMMfWOSRAAJCnK/WDaGaaVCudkrnNqFZmsFynSmp34uIcpiOh3i/kcGSmf3Mts2c7kfTTRilhS+/vmUFpawPpiwAwmcT4pYsuLba1ohom4sTqCwFVd2xHyLBox0wPVzh89UgTqfuPJPUniEzxo/sdQAuT06Lu1GtRLlSuvmbX2VJtk8G0rlVCY9d5xnUP0/2y+TlOU6vPdNNv6fvoBsLMPkkILTwvr//wRMd6mdVtR785KzNNZDcu00IWnysOUKaEtPtwV9Bd9V01odajXPnx7TSUKiVwMOUbAVCKKUZbDWd7f0GtEPBSJmZQdTIyRM+u0EVIgcRIy2ruExIxhQK9ceZv66aJJxAbj2PEaYplrRb+1RlnFk6xkbClha6Tli7yy9veKq5VlzU2xDYf+65Lw2n+kK9Qdspz4OAkFs63xxEhlygTKZW4xhWpAwHXT5TiNvc+vtVpq/2c+qBSWtdw8YoVuGTFSs+dzE3pbpbLdwbLnXTNdiu/JjOlqBa9xXE5fhbFeFpi/brFuPKCk5Gm9vuX/n+vcW8vZzAt5gqRZFnRVoQm781FP72oSmGZGu2fleowUNekUO8SnjOYKwZz+jrlsFUuUFGC2MR2BgucT+TCWXM/gXA9c0nS1BN3A36fZP693YnRqNvOlGa59T2Y7MRoOEGhNMsMsVv5bm3eA3fxRHkOpokk08N5S5fhg6dusLbNnTcrH7fedLrVKeXetnoNrl9nB1AiIXCo2/XSu/VyB/iJ8y4YqGzdzH/fNnGdweJ4+NPhzRny/qYT226QhBwJhSPIUQgsRms1jBsLQecSvZ3BhqOHquVpIhlQP7Z8/KOXYeF8f0H0MKMXAjUdZ7B2x08defVFp2DjKUuLz3rsb76/me8D+nPHidPUa2r+ynw/BUoXIkC1N4dj39m0H+9aexJOmsd0qHORxQtnV92ajbjdfCNyF5Pk2THcBdHHMDZ62klLsGA+07yS4WPOKwKefPJJ3HrrrXj00Uet7Wma4nOf+xy+93u/FwDwvve9D5dddlnx91WrVuHWW28FAPzwD/8wnn322eJv//zP/4xPfOITAIBf/dVfPdaXQGYZskgJ0/ul0wp254EtU+ikXbDM9FVuUAnQ4pLEcwbTK9I1oUCyDsJYn2Gndyn/9R1IypfEcEDYDHbX9EoLQ8Cl0x0W53ACDkWqO1Mc5v49NV5VnWtRzlzuvUo9gVg3SfET555fpITUaVLciQP3HvQjFFzT6U7MAEbHSHvj7htCiYJs5YoZwHjXFRvwUz94tZ2SDOp+d40AP7GRhpDQZXmrhQWNOtbNm4cVI6WVfFPKwjr+jvd9sNguAEzGccAZLJwOUgsfQs5gZjqoLM2sF1wtoATsFUdSlCKw8cOdYt8qVw73icgcYdmwrA6cDgoHjchuBwYRMujv6++QwZBCYMKxSx+p1TCZxF4KLSn8NJHd1F4pp8UH7i/g6hoFSpGCEEok0m7H3gpC83k3t7nCZP25Fvmpet05UzOta3EtEtBNtxKu6ePrNJFuP273f64IONQvm0JmnSYyJAZzr9dNE2m6cuo0keZkWyH46FMPzDFAYjgY1SKpXDkrvq5FCa4IMNROeufMhe69nMGkUKnJTAecqr6flGhRjusMNohoWDs5ucKcxHQ9Cgpd8jFP0SeVixHufP01b2wbcgYLObWqdId2W/D6oUM4e0k5WSygHZAk1s6bh8W5wNs8nhZa62vR31RlFZ4ATtUJV8ClguWNhj1xNdGOvQCImU7SXABRHh9oZ2lwEtpcJGGKuFL4ixe0E8JEElvbO2mCZiTx4dM24ntP3+QtlJAi7NgmDdFced2yeNcxhe9ZmqHTTYq2Wo/3u7HtltruqlQdF25eg9/5xZuweMEI1q1cWBy/cELs4e5U71HfhUDlIhAlRMzPE2hr9OtLKGWmSdWYfNXy+Vi+ZLRwvTR/cz9VvJ/+GrBFZCGkENY9LdJEmn2GDDmDwXNQ1u+j7nPktgpJlnkiX6CHGCx3BmuYzmBCO4PZwr92O0ajZr/3uccKjYND7rfqHEwTSY4dcZ90hbMZt97UI4lli6tTsblEUjlruP3YaO3oBQHdgFOoiZlyqhYpF1tyfJD58EgtlJybdYMcP6ZjrmZxo+m9Z8wVVoyMYFUguwXgu6jOFFEkcWi8M+tSGJJjj+4jms6i+nY79tKKfvyjl+GD7z67+KzfOc15LHcuo0grZ/RF9XqErjEmCLkNRVKliTTF6+vnL8C8PuOXn77gIly3zncWIrOfLbf9wEwXYc4zr1bHGsOxtCnDzsJ1Z3uvRYFHy1986jsxyr6LDCFz3mu12+3itttuw2233YalS5di/fr1qNVqeOGFF7Bv3z4AwDXXXIPPfvaz3nc/8YlP4MEHH8S3v/1tnHPOOTj33HNx6NAhbN26FQDw0z/907jllluO6/WQ4UcAwTQ4Ljr1B2AHv4QVXNKBmnKw6qU3E3laIze4lqbWwFiv7NaOXe55ddntTyU6vZ3eqp1ZDnW7OBzHWNTwFc+Wu1BUpqnMrOB8GQzWTmHlPbCdwYQWzRnXXhzLPbkQiNPMCvSWLmpO8DdL0XTcwkLBxNDq+F5k8CchIukHF7rd8MrzqmcoFMwI7es6r0W5uwadwcKIQuDo38u/fvd70ZASl61YZVnFN6IIndRfMaydwRY3XWcwoBNIhyORp4l0A9iGi5EOyE2042KiWtdLIK9X+deFFGhPqHIdnlSrGXu5cgTT5hlt0VxyBpNCuaZZotpAcNXFFMaoz8eujHMNKQTG49h67utSItbul5ZbnR08Vg6WthhMQokPfBGjs8LPaLO1wGCi3fVeysy+qtgG203EfD5qNSVgcIPs5nUUbpimOE2UQl5LvKmdzuCjj6kF3eY+rshbB+jNe9BNU2tlVJXQyUxVHOVOaMVxpcxFKeVrgzsmqKJsv4QVUKtFEt1uUjlRX6Yhsx38+om17r7lI9h5eLy/c5tA3ubaQrlO0j/t9omMFum7dUinWuv3XVN4AuSCRsMZLNQWFy50+Wdz7Pc3L76A968/1do/NPaKU3/sc6gbexOz43EXCwx3UOXaqUSDv3vV2yGFwANv7LbE/ipteu4wawiVVNmVIGfEcDWSUqWwcNPjTnZ8oWpIzBMbInElErUD1VKoNJFLA+PKHYfHizoVGUKykMOaTqFuuqFmWZYH0g0nQdi/vRaputUoLGIq33XMtPRplovj8nZJt+UZbLfUTidBfVFZlvdddybe+44zrHMC1e5burzVf0Plc22niQwdwxDq9zhH1djjf/72RxBJgS9/8wVre8gNTgiVct6tW4n7PuoUQ696L1wgAXSSFIsadrvollCJxhyxbt4+t+q9p5e6aWqnUwkEUtwyTnZiOyWkUG5h5mp9KYF2x17BLwRgDtFD7VTV+E+dI5l1Tglk9hCnKeYdRfqyYcYVg1198Sn42//yPQN/XyKcJnJ+n/ZlEJY1Wz3FHWY/zDSRxxe90KQbp3RlJEdNq4eT4KC4c3lziT942zt6vFMPx9xf4QzGNJHEQb/XtxxnsIm27wxW9V1rPsN5R9D7mH1RoxZZTqdR4B1GL4I133X+4G3v8JyKCCHTx9Wr11gpHl0n4ar5hpCTPiFznTmvCDj11FPxm7/5mxgbG8PixYvxwgsv4JFHHkGj0cBNN92Ez372s7jrrruwePFi77sjIyP42te+ht/+7d/G2Wefjeeeew5vvPEGrr32Wvzd3/0dPvWpTx3/CyJDjyicwXpXLzP4XExOG+9chRuP4U4ihArOmKvIBdRkoicicVIUFmIwKyYgdGEg8nMiC5tClw4kpTAtzYBfe+Be/JcnHgteo5niLopkcX2FmMtxHxG5WEWXUTtQlJ/zVUo6uO+K2Ryxi+sMVgjnLFFBfk+dAbybTlJdM6YkBgshpVTBCjNNZJxMyRkstEpfBPb1ncH0b8FAdxVVP28ziiCEQE1Ka8DYjCJ0Un+SWAjlyLO4EXIG81eCF440nqgzs8RHaZphYrIUs2i3jOI4xnnanRgXbV6Dd15xWrFNGRWZDnr9U72Zqe3mAiGHvCgQXK3CTU1I+uOmddS0k8Rz83JFtyEBUMitLoMKzptBdzPFl+4vJia73qSRmz5VbUMpVC76KvW5XpOeACMUZA+JdkNx/0Gc6aQQKiWtk17L/JrMxc1mE+86EbrpjzXmilslnLOvBYDtDDaAExRQBgSjPKBWiDNqEt04rWx7dFtpjm10akf3Grx0nGIwZzDlgGMLcgZJQ3kio4VY7grtUPpqAN7zarqAacx+rnDXtVL92fXPrVumWKmKOJCG+XDc9cRg7thZFKJE1f/riSRzP+3a96lHHy7ES2Zf7KaO125h1lheCuVqVLdFVnHsi8GSJCu+K6Q/bpFS4EDSxYpW6cKSQY1fv/Taq6UzGEoxqetkK2A4gzn3t+uMYUpnw/KaQ4F2JfwKuL5lmZ0SO3/GJiZLcVz+emIhRC7+Me5PJKUVyC+cwXq8ky2r1/GfNpwR/FuvNJFphsKBOdRm6C4kvMSg5PBEOP1QLZIQQqg6ZDlM+qlUlcjdfvfULqjW8+M+K0JYIjIhdJrIssQ1EXAGg98WiwHFtJ7zmO4TegiDfeGXn8JRv/NYdcjpW0N9bdX4r0gPQ2cwcoyIs2xOis//6D98AIuclDhCCE/s3ItISiRZ5jmDLWuN4L+/411HVb7fuertGDvl1ODf/uJT32nNv9RqEZ3Bjid5X9+NbWEvIUdC6wiDvLcZbYw7lzeXqElZOZ81LOtAazWJQ4c7GG01ZrooZEhx5yQmjYXTVeh+3hQZtjsxmo3I28dKE1kPuw35i1btec9WrcasEoQcQyIhvDidiZ57cONwDcmxJjnxmPMSyMWLF+OXf/mXj/j7jUYDP//zP4+f//mfn8ZSkbmMFH4qx0r04DFPHWWlhCpcsGxxVBzbThqlwMkJFmWZ43ihXFjMQLtK5VKuWtdBC0AHMOyAvD2hroI6RdqSwOWlWVYEwGraGUyUQY0i9ZZxLbY4DHlwsRRfWO4DOiDiHE+Xxw3qyTzdT80JXrhpNkPpJIvjH6UoRgig04mt4Ewcp8EJryoxmBYFmVQ5g5kBI0uYRzyEWQEGxLWf1UghMJnEaEU1fOysc6xzuGnb1P7ARGC7mQ6qcAYzxCyRIYC0nIZyJ4XT1y/DvJFGfu5AADEPvPcSNpmp7eYCkU7VataDwL1xofjryJFCBFNtjdZquH/PLpy7ZFmxzf0ZSgGQ7UCSBMRlnUSlL9PofivLskJAMtGOsXLZfOt7Wab6mypc4VO9HlkulsVxYLe3iZMm0nQGs44vfPFyUa7imtXxzKbe7ZN0gN5zBgu4sLhYYjDnuLp/MVdZajegftVCB/+iKG9r8u0q9U5SKdgqUl56acj8vjnNMtRN4XcuPuxl0FqKzWxRiysYJzaFgFgCP/EDV5XbK8SBrvg4jm3BSoYMiSGWEkIFAe3f3XawdMeC492wmMYkyWynWAA4FHcxv+6KwZxFBMifE6dvTp3xb5yl2NuexOJ6KdTWF+S6BRf3wXGkbXcTNBwnjDgQEE0M4bjrWqiPfziLsaxlB+O1uEuXRTk+ZcX1uOOPbpbihpNOxpWrVlvH7iSuGMwV3OSuv07dDol49W9picHyZ+nAoUksWtC0tpntaZSnRuzp+qWFRj32kUJgZUWwTwiV8jKEJQgM/D30buXyvTedjlNPWlx+J60e+5tlSvL3w+IapEqbWHOco7uB1JEmWlRVM5zm/DSRodStwGRii2mL1L593n+r+qReaSJV+kdD5BUQahVBG2M/N+VLSDxZ1Xapc8Q902wScjSERMpzgfPPXN1/pz7otnXUEXNEQmCzkcr5SFg9Gk6LBgCnnbTE+lyr0RnseCLzyZguhbhkGhgNpEsfBDNd/JLmiSlCCi8PP/4UDk4jTLVFwrhisEGMGfQ7w+hIWb/bbduhW+9jvn80nPTFoXm1qWaTIYRMP1II/MhZZWrYkHCTkBMVvmERMt0I5C4A/TsZvYcOhiSpnZZKm2AJQwzlBtIE8slE12nBFUIFHDVKt6/ycwZYArQilaWTlkvkKx6W5AGUkFDCdHvQE/JClM4AUiqXCCvAZ4qXhOMUlgckdJGlsVheiPI+3nztJqxft9g6vz6+G1wO3ZcinaRzTW5KriMhkhJtJy1kp8IZrCqgEknpBS4aATGZkHZ5y9+CTX8Itz4MQpXdsxKDJWhEEj945lnl9jxYFk4T6TsqqPRZpTgy06mTCrcMo8yGw5JOb1Ovm4GysLOdJ+jw3DfCApbZipR+ut1B3gkGaNJJBVWTIlevWo3J2E6z2k4SK62DgBZB2aKg0PHaSWqt7tEiBSFEUVdMZz2Ncme067KV5ljqOiBw+fknFeJmE+Vk6X72xZdBZzD4KSABLfDMyyBUukzPaclxPXFTK7ouPlXph60UkM4+5epJ0z0sF2v3qTxmmluzv69Fqi8MuVrqa/FFgH4fDuTjHVds49wr7/hQqXnd46ttPS/phEYaYoqP3nyesX0AdzsJdGN/fGz2c5GU/ji3GD+WkzjmucYHcQYLiC0n48RbNei1NQKFM5hV5iwrXqKFCDtrqbLmk9LSOaa7TerxfbktQ6bSRDoT2mlWCqfK9NYlUgiMpzGWGKltBEoxmPnuoe9j6rwzAOq6bzp5PTYuXGRvzxwxGOwyFCuiYVPZJqaZleJXj+UPjLeLFH1FWY2DCqFWcfdKJTUdjrhV7YhKE6n+HwmBVQ07YKhC2lnwN9K8+8p1WL5kXvE5TlJvPG8uFAJUHfEc1qQSftVcZzBXLOdcinYPi3qJwQLlL4W5AVflPn2C67w8SJrIdidBw1ytn//2rvgNgJMmMuAMljoOoiLsCqzO4Y8NCJkuVBpvvpOH0P0R07ecWAihFqAxTSSZDkam4Rla2Gji3KMUoM42GlKiMyQiWC3IdwU/hGjceb3Ecd/uhTn/NdGOredMv6dbzmBOmxISllQ5ZBNCji//+szN1ucLli23Pr9zzTosPkEF3+TEhrMPhEwzOiVMvwFo5gg30ixTqV8KNwEUARIdLJXSX+lQCJycIFfsBEwjIayAlhDCCqgpMZUKgGsBmjmEDU2oZ1m5Yj7kpGGu9K8XqXPMc9op6oSAlUpMCDs1kBaL6aCE/n5ZRnVff/lH34nzz1yNOPNdP3xBnJ+ypCpl33SIwdQq/NgSf3W74WBDlaCwcJwxCFkhuyvitfMG00SGkVJ4AbZ+VAX4BJSoxbWd1ekj3ZXghUuNlybSdgBJ0jSfIDVEo8ZcjZly1Q2SmqlnzWtOkj7p1CoELLMV9Tv7osh+l0hnsCNHt+0uNSnRSRNLTzSRxFbwR4pcyGGJePO+wjneZBJb4g4pBHZNHMY3d+4oXPQOT3S9CUU36OAGjM2+5vd+6eay3hgFcFPXCd1Om/sExBD6+K4IBdDtSy5mEAKxI9z0RBjCdwZLsgx1ox2qcr2yhV5O+6RXT1r3LU/jHDyaolEXliOl6a5Qq0lMTHYrV/6H+uuQ2A3QqZYch68kQb2PG5Dbzxepz3pe1YlNlUNqFEhd56KEnb4YzBzXCuELxlR6SXusaPZ7S5v9U7gkqe8MFnILG2QhRXE9WpyGcnyt00lZ41hn3F6+JzgLO2LfxSlOph4QFQIYz+JisYammyrhbbGgAqodfWjPbvzvF57zBM+ukFTjOoMJZ2ysxxpuUyMCY4nCGSzzxX6mcFcvDjEpnMF6uIcMkiayF4kh+nMx00RKIfAfN2yy/q4dMZUobDC6fa4H0P2pLVITQnj3Qgj0vT+uiExAtZ2moKspI+93C4t1c2fFAZzB6o7YDEClQ5IUyunWTQnZ6bppItVxGlbaULtdCoonpUSa+uLh0DkImU46SWKNz0jJsKzgj91Uu+SYIvL3GqaJJNPBvHr9qN/oIiHwx0eZmna2cfaSpZUC/ePNwnnqXaZf2j9y4uI+G2maDfzeZzqDuekl9XyY6QZWlSbS2haI1RBCZp7/9vZrrc+/efmVWDlS7RZMyFxlOEZ4hMxSQgIKKUQeyOpdvdx0h2maIU1Ta3W23sdcxd+N/aB4dwBnsEgKL/2RPkdoqFqeszyP5dIFJQTTA92wGEwF9L7+lz+CkWYtmNrQHCgHncDS8l7qAFERyNJOYaY4zLiv7j0IpZgKBTQEwk4Q05EmUq9wNwN+3R5pIr/+lz8S3O4ScgbTAQ73e0wTOX1UPQ+mM5hJJIRyL4p8kZhKV+o4gKS2AwigXYzywJ0UeTomX2Da6cTWcxFKJ6VTz1lNmescEQjCzmbK4LDfFvaE+pAjpqrtrEuJrhOEnYxjjBhpHbQ4V8Juy900kQLARBxbKWUkBJ7Y+2ZxnDTNcOhwBwvm2SuAYsed0RUi6zRZloA7Ta1HIpKyqIv6O+4zJYw+z/ybFH7aSwHANITRYlDX0cRLzxZw+GlYgfdw+2/a4rvOWzoY13Lcw1KnzC4/+ZEVOGO9SgEaRdoJND9HJDHZrnb1kRDous5dCF+f644q8tR+7kS2Ne4SyqXRTRutnXxIGDdFo7k9lGrN2keG0iMKy8VVpy629hHIn30U++jn/upVq/Hrl13Zt9zu4gC9LZRi3RpjQwTH2NZ15ULNKBd56TIXf3PcgpXLb2IL3qRAN/GFNF3HJa0SR+TdyVJLVJtBvSu8f/2pOGXBArVfLlZ6+M038PLBg9a90PuHUvelyKztGXynJeV06LcjnqNVLmyyxzpK7JckhjNqQFAsJPqKdfRimiMN5qdZtRgh1BaZSIQdp3rRjVMvVah33PzdyHx7i7TjqfVMKQFuLzGFdg8z3z3dhQm1gBOZEL7Dl37H6usM5tTFQgxW8d6sFzfY49ncFc4Z4wKOM5gMt0u2iNpPT623u4t3CJlOQuMUoqgaqx5vlKvt3HkHHnZEbvvf6SaWsJeQI2F5awR3vf9DM12MWcfvv+0duOXU02a6GACApYtHABz5og4y9xlpBtJEDpjSYaRlOoN10QqliayX29x3tKAzWO6QTQghhAwjHFERchQEZVQCSOL+A1CV/qlc9ZjlzmCm8CPNMss5S+auA7UoNPkeCGg5k+3dNMnTi+jjASl0KsrSDUxflTn3r4PvGh3cjzPbBcG8NzrAV4skoINAAsXEvNDBbe2gkLsGmOK3NM0KtwK9Gl4XQwUly/+7gSbXaUUJ55Jw8CKQYuqYiMGEH7DpVqSJBMIvviExmBACf/3p77a2mWmVADNNJAPdIYSYeuCuyilOirADmAA8AQKgOuOgM1jiB4Jjw8VIGnVAeQiVgVOVJjIQFDN+fh1U7PVEuI5Hs53SIc9OndRfC8Z6c6TIirSOdSnRSRLrzk4kduo219VSbws5g8WZnSZSCGBBvYEPnrqheI4PHe5g3ogtBuvEqSUWKIXJRn8ccP1y21dL3ByoN1og5rbqEqrPMbfrvtjs/7tpKabS26xUwHm74vZdpkPW4kYD//u6G6y///Wnv9sTq5joz5Z7mNGXV2HfH5UmUlOLJCba1c5gUS5UcdM/hq4vdsZAkVT3pe62v84z1Ensvl+JWHpe0gmPdlYMbe+3ClaK8ARtargJaaGUm87bdg+zHWZ7CXI0SeoLd6rcwtwgdJUzmHVduSOf6wwmBYJpiV1nMEA7gznlSdL+QqbSQLA496XRUq8ed9PUE9qmWYbDcRe/fflVuGzFSm//QYQKsXMfq9L4Ct1mmO8WeTuZGM+FNETuZhvsotJh9xbrFOPeI3UGQ7XgK+3xNyC/D3m6zEGHUN2AC01IVOc6ugoh0O2mTtpEvUiguoxRIQbL773zTvnX774RkcxdKc0yILzAyH3HCl6j81z1SxMZSZELh406lC+sMbeVQRvbLcx7Fl13Omm7TpvbldiQ02Xk2OCmFyYlw3Jf5o00cHiyM9PFOGFQ/WWm5jvpykimgX5jEuITCTE0C6PMxWqEuPzV733Ue28KzZ+H+N+/813WnKC7cFq/QzYb9ny6ScjddTpiRoQQQsixgiMrQqYZHbQajarz2rsDTR0gSbNyFbzMJ6dN4QeKoJI7+e4H15LMD57rFds6bmQHbIQSwwD4yfMuwOJGA3due81yJUkzO21WlqnzACo9l0uWZoXwQk/u6HPoa3TFbqkhDitSgQn7ntj3sQwuu2IeN1BTldbES0VVCMR8V6fpcAZzgzNZ5uef70XIBQwATlq90Pqcpo7DBZ3BelLleNKLy1asxCeuuNrbrp6hxAtuSSHytCB+cK+TJH5g2vkNAS0ezMVgbqAr3zWSynXHXL2knSNqTppZVzToMojjy2xC1wNXVNsvkdOQzInNSno5g3XS1BIytB0xmEDuuuOIgkLHc9ttKQTaaYLTFiwo6vfEpJ8mMo79dFN2il1Y4q8iBa8nrPQF0yZl+jS779IOfSFRte5ztfDLFQCY59AOYG4QzU3ppp2BNG7fUZWi2Fw9ieJagrt6RJGw00RGEpOTcWWwpxR++aIBTzTrpPvTIjDLvchL/xd+XuaSC+KxwH12NYPcO5GLpcznK4O9EEL1U3aq9cJRLOCcOwhZvnDBf25CzmC2oFSnJnXdjsyzizxNpB7/6++Z1+yJ29xUmNJf7AEguM3tqpI081xAV6Nl7SPgP+9Rfh8PxzE2L1nqOZbGFWIw994nXkr2sFg3lIpbvw9NtGO08pXdepxclYa7uCahnpV+aRAB3d/7z20/sqx65VyvFJJA6TilSjDY8zpIaiwZGMsph6/YFjU77sAF5pBR30MzTWtajkXXzZuPPRMTXkpdkdcLy4lTC2xNt0X4jm7quQo4elUEbLV7mfmMaxFbLSAGC6V8NnHrS1U6FyU2TChIIMeMRr4ggvgMIvI+Hrz90vWFMw059oi8/+90EyxqVc+lEkJOHP79v33XTBeBDCknr1nkbfvUL9yE1cvn9/3u+nWLrc//7ofeZokP3ewcALzVw4sbDfzihZdY2yJnsSYhhBAyTFARQMg0I/JJeiuY6q5CdkVPuaAjSct0HjqI8H+/9mwRGJAilGIHwfRyrogkEhJxmjmBVT1JnxXHyrIMFy9fgQ0LFxlb83QngCcOi/OB7uHYF4MlToq7wsHIcAZLU1NgBqRpeRI3vUcZ+M7K/Z2gRij4XlxvIE2kTkHmuoPEARcJ14XlSKgKsk9l1dOgNtlmik3z3HQGC9NfDuSzpNnC1avX+McSQDvxA6lCKMcwdxVRkZrHrcdGmiSNchQpBSI6uGqmiRQCaHdj1Ot28M5NqVQEbXs8EkFnhVlM6RRitgNTd4Ujg2OKgE1qwk8T+T2nb8IVK1cVn7Vox3V5rBKDWY4j0O5PMk/1qPo4tx3udB0XPeN5uO7KDXlQ3emL3JSrgbS8obSsae5YaZZf5H2LK+JKjW3aIc3cxRUot3LXH1fU0QysWuxFqI94x2Wn9g2y96IWqZRluk+u1SQm2jEa9QoBgHHdvbYBvqinnl+/+Sy4YgYJJRQ0RT5VjkakRLl7ZV46w4GcwaTwHLFK1y9DPJU4Yxdhp0g3x4aDiMK0cMUVdIXS/LkOYkL4z453XUIJVh/5vy+XgseiLw6kvZR+yncB4aWE1Nvqnmuhff7EcVsTFX12N02tlLHa8fdwHFspJc39B3EGM+/ZdWtPgoCf9hYwxuiOiDbLMrTbcZGGtko8LOB3JN1+aSLzMlQtouhHJKodYJNsEMFCVqTjHIRuN/WcqDzHqoAIThbPlLktf6dyMfsQR0SmXG2d9I/Cf8+UwnezLRbXOMJH97dUz5X5fhoW+ZrHAOzfUI1nY69P0vei1/njJPUWRYTaES1CozMYOVZ858bTcfHyFTNdjKGkV2rm48mKpfNw7eWnzXQxThj0XGQv13xCyInFjW8/Y6aLQGYRF25eg9UrFvTf0eHs01di4ylLi8+h+MxJqxfhg+/eXHwWQmBs/anWPma2DkIIIWTY4BsWIdOMQDj9i4kKotrpnzIdPzLcBPTktLamDQXSQmImoCpNpB98AspUVO6g1RaX2EIoARTpTy5fsRLLmrYLAWA7U6nguu1q4q7G1iK5UhCngl7SOUaR5lLnQEH5OesRjCzvlRkQVkEO2x1CeG5hgBLUDSoGU+UMBxdC6CDYIFQdwyXNAHNXMw0T8RF9np+pEAmh0kG6AXOoAJonEgukKwV8QV+xv24npKpnr+/p4IVt7dJFqEihYwfKOh3fSSFO0p4vrHPNLUe3n5ET7Ox3iRSJHDlVooK61GKwkvecdDKuXbuu+KydeSTsvst1ycoC51GizAQNGZWORoFHPQ4ILvTv/Rs/9e7CvdMUQydp//4scSLxWvggYYsDJBB00jEFYlEuGK07LpZmn6RFYC1HDDaIoMMtp8t/+mk7tWRxTwbsT1SayPIa67UIk+1upetKZFx3cU7nbxo3TV1IXBBnmZeaTLkx2uOkdMqS4BML5dKVeIJBnQK1FzpNtu+IlVjtcZpmngNubKRa1EO/DIM/f0nmC9hCov/EcSGUuTNhrxokoNyOknaCbpwU29T1KbGWlYYV/nuCEPAcxDJkQeGK2xelaeYIYPz+TLePnjMYVBvpthlAtTOYt5/huvbrl12Rt59+U2u+65jb0kw5g43k4+AqcU7IKSxOfPGUSfkOcmTj3l6ru1P0TvG2aWQeltUblX8P0Y17i9sAPZaLnZSQAl3HKSvk4qfFyMX3pFQudXpMCeGlMtd9j90W++mbi3GsswjH1aNVpYmsvF7t+FX3x7OhNJHudz1nsNgXpIbGdzIgOCNkOvnwaRtxpbH4gZSsaI0wlHoCovv/rpkZgRBCCDnOSCm8d5RVy+fjZ3/kmp7fU4s5j2XJCCGEkCOHaSIJmWa0uMKalBb+Pp6DiJs6JQ8sv/2S9cVkiMgDaXagyk9zCPiOBypFYuJt0+fVW81SZLCD35mxol9/zgD87tXhAbEboNIpIWs1icULW6W7inHM1BGg6e3F39NSZCXygLy+dQK2U5ifjgZe8EKnjrSCF4H93Pt1pFSKwabgDNZq1gdy92rUJRbMa/Y9N1EITN0ZrPpY4bSPIiBAAHKXhcD2UJpI+3uqTjz43OH8+OV52h07iCUkfGewQLo771pEf8eX2UQoXWplOiWD6RIKnohUiQpqUqKTJr2d6XTQWfrBW/d7cZpiXq1MKxIJ5f60UDZKl5TAz+i677jC0Cjg+pUktkuXG3SOpO/go/t1Ie3+SYmtbfcztTq+FDYpxxa7jXDFCFrQ4U5cuU5h/Rikr9ABm0F7lWCayHaMeoVwXvfJrngFgC/qCaT7A2C5IMWukE6EnEIp+uxH4dLl/G6DpBMWQnguVvp45jOXJE5dkEDHGPtqQVSGwVNJhYVf/VNHFgsZjO+6n2VefwGBJM7TRBbXo1NcOgI4180rH9+7KQLjxHGACgilUiMluz7WQM5g+fNuOhBa+wfuj3vtgP++oZ3Y3Putt1upbvN2c7LdRStPQxsS8JRf8Df1Sqt4tIsfFtfqmOwzNqjiJ05eDwD45v59AzuPuuI/QI0nTSGcdgEz0/YKIdDu2qkjtRumdfw4xUizbnzPFvVqdy9z7KpFXmbfGmo/lVtY4rmKhZzB3PS8vQi5uwmprtcdz3rfDTxLnsBS9+fOw6XP0SsNKSHk2NCq1fCND3x4potBjjN6cVa32z9lMiGEEHIs+ZfPfWzK36EzGCGEkGGGs1uETDNCCG91v78PcleR8jvBwI0zsR8KmhVuV4Eglyt6SrIMNSGLFFtu2kMd9NKYaSGV0Mp1BqtGQFgBBpE7EADAVReegv/1n78jD86rgPpdn/1hFVjPyrMW1+mIw/RxCkFaHpAWITsEp0xe8Fdvc1LndDP/N3RTcvWiKgBV9VxMRWxz2Xnr8M+f+f6++3332Pn4r7/6/uIzxWC9qXKjOBJ0Cp26I1DQ6SAbnhisKk1k2vN3089Zt5tZn6XIncHqdvvRcdoUHcCXTp0wBTPRNDqmDQP6fpr3Qaew68XcuQPHn5AbHgA0ZIROYuQGDqD7ONchqpv5YgP3PFqUWZcSUspw/c58NxY/jWPeRmvhcu6C5IrBksQUjCnHFXMySLtXun2v/uw6nZkiDS0GM9uOVhShawgVmhWiL50+clD6BecBX3zdj0jfDy3oilSayKqV/42AsK34rjveSbNgijFzW0iAkAF26jP44gliI4QSlLiClcHSRMJPdZ6Pa83jJWnmpUuMjbR4uh5lAl6fWUWc+a6wIcGSGieHF01UoUROqj3Q/YjuZ6QU6DppL8v3hFC6TPe6nfeAkNORIxqvcskN1YGqaxMAuoFU1yE8sS7CqTWlDL/XZFmWOwmX7rVTGYsdS/eQ9y9fgR9Zc1LwbxKDpSkFwq5mIWIn/WPwvFIJB93nInbTjAbuo7tPJKXzbqee15ornHUWNwj4wi89jo2E//uaZJiaW6V+ts37Ekm94KG3M1jIsTBxBJZRRTrIYhxNMRghMwKdzE88dL/ViZPKNPKEEELIsEJnMEIIIcMMncEImWZ0oKx/msismMgPTZbrdDp2yg//2DqFVij9jbs6201/U5PKzaB01hJ2uELnj0QZrNaBs34TdEK7a2knB+RBEyFQq0ksXzIKKWWRaqtRl6VriiiPoc8N+EEw4TiveII1p4zlSnbz/iHgDKYFdkc3CRW6R6GUf//jtz6Ik1YvGvi4UgosWuCn5XRpNmpWrvtB3MROaHprCadEIb700kHCc/cBDFFnyBmsR1ui6cS+s2C7HaNhOoNpMVjNfv5DDkfduBSYiIBz4WxG1wPXqaWfCMRse37nF246JmWbq1SliawF0kS6SKGEHNJpo2Onvgj4DmRaQFWXsqfrkysGc4Pous82/+4KX6JIWtukBNodX/iQ5mkizW8L6JSQdrlSw50zEgKTSYwlzdLt8R1r1uL0hYuLz6FUbwAwOkWxxEDOYLnD6cBpIrUzWL57rSYxMdmtFD40ZHWZvTSRAWEgYAsOqlKThRznSDVCCOXSFTnjqwFEw0JoYZTjkuUcz3UPE3mfpH8r/TtlYvBxTeyM6URgPAjAc8nyxsUIjC2hnkEBFH1nmXbPT/+oRWOug7AripPS77O1a4ZVZi9NpP8cC2hnMF/0WlWHu5kvaA/tGwcEdN008RapVL3XpObKEyBfsBIsUpDRkXrPvx9Nf93q0Q4J4adADOG2970IOYOFztvtOu+C0q+XIYGmn3bUHttody833bK7WCESvvubDKSJrHq+6j3uq4t+b3JFpCrteR9nMDGAM1g+Nh5p2c+RlCodJ1OVEULI8UGPcZQwmm0vIYSQ2YW7wJMQQggZJigGI+QoKAZ5piBJ+OlfvO85qdlCaSyE9B3GitQykR0A7wTdDfxJ+sTZryYk4jTL00H6Q1YzTaQ6pj2w7TXE1emA9OS8npA3v6OEKKb4S1gpaIpgmvFvlmXF/ZZ5ECNJUkQ1mf+9ukyFyCvgrGalBULYMWI6XKNCMbfNG1ce9XEHYRBR0YmMmMZEkfrZdQUwyjkh8bcjd1lwAqpuUHzg82vXhEDKKdtJIRewWO47QGZEOPsY7s06CnchVwQyhVRQV1548rSXay4jAcSB7XWpRAO99EQyd92RsNvtkMNexxWIGYFtV9BV7pSLMKx6kaeULD7bTpeRVP2p2Qu6gXcpJTrdjiN8KJ34UkdsFjuiOC1udtNEmm3HkmYLS5qlMLhVq+GWU0/zLnGqzmCDVPfifg7YPOn+R+9epImsEIP1co5xhdpxmgXF2+YxYqfv13+puSIaegD2RIpcvOW5PtludyHccaHephxvy+Oljgha5uKp4hkSIh87ioFF+14qQ4RFhLGXYh0DXVecL2zIkOH9152FxQtH1N8CKSGl8F2civsa2X1xyEHMFXqlWebd05AbU9dN4Ydq8aPaP0V9gBSzSZpaqWhDKQQBLa7xHa1cEaGbprcfo63eYrBj1V9nAzZ/Qgw+shxEDBZJgXY3dlzAELy37rjGHQOqFMi20Nl12IxCrsrCd7Mt3qeM72ZZ2Ibebd9D/VZ5HYFtIuAMFlyA4z/j7j2ucgCTgmkiCSHkeKIyCWTodBNrQRshhBAyG3jHmrU4Y9HgC/0JIYSQ4wnFYIQcBaG0HwJ50KpHIFMHUbWwKiS20CkhbQGPWlXvBpWCjkKBwFcKWKKnmpSITdWH8NNEmimqkiz1gvZVAQ4d7CoCfIXgyzhdQPxlCsZKIZk+pnIL0GXU6TW7caomjPpEZbQzQuSkhaoUiIVEOEe5yKPXc3GsadQ5qdYLVwByVMfKH1q3XkoIdBK/vkqh0tnVHOeDZEDnHfdR1U4HbnArjlM7HZ70XUv8FHlTE0rNFsyg+3lnrrJSaoYIConIQDSiCIfbbW97XUp0UjuVoouAUKINR8jTTVKMOiKn2BGIRUKgnde3wlkycKpuN7HaR/eZd4VehbjZOFbkBN6FgJeWVUpdp+E5jyUBB5UMdmrEycQXkppEQuBnL7jY2z5Sm6IYbIBnXTvKDNolun2fvi9VK/8bPQQRbt+sUgD6JTHbUyWQ94UDNUcIPpeEr8cC7dJluo4Cvnte8LvCF2JEAbFUkvriJlMopfqtBCJC8HcPkWSDjfMSI10hgFyE2if9ZS7m1PzCx99h/S1xF3EEFo2IXJQaSh1p3YvA4pHUSxMZHsu47nhRH5FSHEhBH9wvyzBivW+E30uklGh3Eyw0nh0hfLHOVB36+onBjhUpsqDQKciAlzNImkidZrTmpHt0U0eqe2t/1xc+OyJm+GPXkHOtFLb7s97mppNMHKc9TdNp30P9VllG/35o17x6P2cw+GM3JSy1hdydTuz1RUpgR2cwQgg5Xqg2O3dsZppIQgghs4wLli3HBcuWz3QxCCGEkCAUgxEyHRjzz1KqlcQ90ywJtZK+0ElVBEPciX0pVfocKwAgwikNlRjMnswH7MBZJJwAt5PKxFz1rl1KBrW81UFvHSiQwk9X4gfY8zRehlOY/i7gp6uTuYpu/mgDK5fNw/5DvtjAOl/IrUD4LmBFkOMo00QGyzCDqRpbTTb5vdCuHtN1LMB3sBFCpYl0HY2kEAFHEt/do4pazXHgEEAnTjxnMD9FU55ayAmSm8GzaIAUirMRMzh//VUbcf1VG3vuPwdvwXFjzei8YHB/sDSRqt22UrcJERQAuQFrASWybORisKr65AXInSC6dlgphcoonInsfcx6I9ENiMG6sarnptuQhPCC5sq1xxCkBZzBBsVtb/qxfOm8vvtoJ86ppInU3wPKvrBKpNycQprIJCA8AWCluHMF8iHBLtNE9kcvVBgdsX+DQR6DcpGAK/Syt6WOu5BOXay3aTGVqMlgetAQbur0MqWdO3b2HZD69X/aZSxUFO3u1S81pr4P3raAq5jbjqWp7awWcgaTADpJimZki14HcT3rx/JWC0sNh0Kdft39baJIOYNFi+w655Y19E7UCze93/HCTSlahV6MMwghZzB3XCqlGt+56R67jotVFHBY89ylnT5U1xE3pW4nTZwFRr6rsgy4hVUxyH0rzhXYVbt2mWKBkPuxKajWuEI6Ldx2F09EUqpUz3QGI4SQ44IaK6mFnhTiEkIIIYQQQsj0QWUAIUdBSBglhEDiOXrZyCLAo/Yp0qSY6SalEm64aWS6TrBIT9yHgqNuAEntJw1HMpUSSU2WI+B/4DihZPYEfr9QjRkAE0K5jVjBcycI5AaXi3MJY/+0DItogdn/7/uuBDLgZ/7zF3uWpxCDWQ4zAt3MFxCEAlkZwr/5VJjJiS06g/WhvwHIwOhHrCpNpCtcELBd8gBfXNILN1gmdJpI53lzncEiGUhXVaTAK481F12xXGebvlAkcsT8yFlnB7c3ZIRuH9c57brjCnkm49gT7HYdZzApBNp5feslMIg94bXwnLvMOiClzMXRJanrKCRzoWXk12lXeK2F0ObxlKDCEJdVtB39+NLNHxhYsKU587Tl+Oqf/5ue+xTi7QGpGSn+TCrTRPYYQzWd1HVJlgUdjCxnsDQsBvMEuJR99kSJmxJPsJKmvkOli5S+8EsGxrpJYjuDSSHQ7RrOYPlYWDb9NJFuP1ocM3NT2imBmOcMFkgT2U+UHUrzWp7HT+8O+A7COg28K1KJ4/5CrzT171dogUk7TTC/Xgqnoj6C80Frws9ecLE3lneFQkCZ3tB1rwotFAmOOdQg3GOmxGB1Ka30xVWo9n5wd1X3WclSOG5eUonqnPfDjpO+NdTnJbGbJtJpjwsxmCEahC+0Ll2pezvCSRF+jqbyLhVyVBbSd+0abdWx5bYfsPbLskAdDzj1deLES4kqAs65hBBCjh0Cqv9vd2I0G5y3IoQQQgghhJDpgmIwQo6CYJpIAS+VY75zgeuOUARuLMMqEVj5Lbw0MjrY4jqkuAGtcn9RFEefN80ySAgvdZUrfsoweEooHdgqxGDwgxKuyKTcV19vvl07g+XlNdNEZlnmBSWL8rrnA9BNEysgGHIwCIkPgOnRCY22Zq7ZFULgs5/8jhk7/7ATCrIeKVVpIgWUc4IvEoPn0KHq44AndPaLpECS+HWjG9vuB6pNSTwxmNtezUUxWGsKYjCZC1XJkVElYKoVTj/V35XIRRuWKwk8YW+GcMC6k7tp9XqO3RXoMuBCafVnwk89lSSZLfwSIhiwz7IsT3lsi83igPuZKR+QQqWJnKrLlyn+mAr9xJJFWucBBwX6PrjFrxJyNHo4g7UC6UFd4cmnr77GuvYUvhjd/Ff/n85gvXFdujSuO1WIkDCqHNeWv0OSZqg5DllqW95e5PWxHtX9cmRZsI64bUjQKRYBV12oRRO9kFDOniGBS7n4w3EGc9M/ajGP016048QTz7n62dhNqxkQUwmjLZzKtQ2CK84MpV9XZc+dlhzH48y5d6EFMoD6bV3BDgCMzNC4+udPOQ0Lov7nntJYDvCcqOIktYLi+j3Tc53sBhwuneegE/dOrViKwZy6kqThPtirU4nnrHe04+qgM1iFa9fihS3rc5pmnvtZnPipOEPpOXV/MFUxNSGEkCMkn4I4PNHFaKsx06UhhBBCCCGEkDkDfe8JmWaKwE/kTB6bQi8vsBxIkyL9lDFlapmy6uoJezfYnsF3vICzTaeqqnJSUJPg5ufBU0J56W0CrktuoMJNHxX613JrkfDS9/QKOqhAhSsqEF4gWQCeW9h00ZohBwPNhpOXzuj5h5lpNAYr3CJGa3agsJdjmJfWKSRMGLCARVpYJ7jVddLjaKcW10XQFcJMl0humJhK6p+puiCRwdD1oJdLiHaZcUU7oXRU3dQVO6BIraie4/A5fEceO72WEMJKCxlJiSSx08I1GxEm23FZRumnetYiMlccLfI0keZ9iNx6KAQm46k7gx0rVDrZdGCHl8LVySl/lRisVzrMEUcQksIXxF+6YqX1zKSu41Og3G76TuJTCrocEZUjSAIQHPO5wi/d95ljy8QRlun/FoLCfEEFpO+K66ZbLrengTSRiSciTAICl75pIoUSJIatwQIuYPo+mCnfZe5+ZrZfgfcAXe9MUkcYK+CPhSX8NLOuKDVQ9CNC34+QM1jHS50rkaaZtbhGu/66z1OS+C5PH/uuSzHSnJlx9apGE6MBcZrLVMeWnqOr0z9ppzzbLcxfQBQau022u1bKeDddYykGC6R/DDiDue9ObrpjCeF5ov3bc87DxoWLqi7fI+QMJgVUmsg+bstp6qfyDKXi7DqOacDg77uEEEKmBymUGixJfYEuIYQQQgghhJAjh85ghEwzpQiqV5pIWO4IoZX+snAY6+2gUJUm0vwbUAZ1zG1RHnDJ8vMF014a/8+QDawg1deoA3paTOGmwbNTcTnHcF0FhLpP+ituwN4ru3C/77uvhNwhVCArHFA82tBAk6kah5bpTIeonTJarmNG/kyFxGBuwEzI3s+3vTOwcrEf4HODW26aSCFUcHbeaMPa5qXIO9EFEtOpFCQFOrVfr3Y1EgJx1r/dBlRaRTO9lUqNVjrxpWnmC7UBz60oJIhMjSB34QxmnL/VrFtiMF23zMB7lKeXjIRwxA8qiG5ejk4da94HV8wxk6g+HQN3iqUTl719pBl+FalJWSkYaAQEGK7wxMV1fAql/go5mBKbMmWjn57RS8eWZlZ6ahESRgX6XTftYSnCFNZxZCQ9cWSchoX8oVSiIfeqFJkvrOrnDCaq00S6TsD6oImXLjMX+DjugiEhmTss8NJEBoSvQsBzJR1E6HYkaPGQ+zxIKdDpxo6Dou+apZ2v3PeokIjnX3/44ukt/DEgJM7rhTtuS5IUkSf8cgSAgXqpUn7b552YjC3xXJUzmPv+qFyVnfM59ScKPE8hIf13n74peN1VeCLT/PwqTWTvdj+02CmOQ2KwBDVHWBY6LyGEkGNH0WdwKE4IIYQQQggh08pwRJQIme0YExZFkKrHJLIr6go6g+UBpJqV0s0/dl2niQwEQs1tOmhepInMA9spsmKiPl+MV32ZjjNYr2lyIQWSuAxQ6SCrOSfvBtz1sQuHMOfz0YpUBJSowBV+uenGZMAtDJhaMEedz2ekVQ+KEcjMM52/ihaDucKNkOuCOndYeDiVJ+5f37Ss/K7UYjDHQSfLPDcJN62tK06dTpHcbEVA9BUEkKnjtvVV+8RpagWiJfLgtBOwjgNih06SFP1kSEwAqGC729eaj7yZHlJ/TlI7bfLqFfOxctn84nPIBUcIIEt1ymPj+PBTuEWOQDQSEu00scRuM4kWYw9qnuL275oqZzAA+F/vendwe0js088xLUltkY+b2g4IC1OITShdOZA73jm/revKU7rb2tvccVziplV0x4Z5vyUkPIGXEn2F0kT6oqrYEQgC+XPiOYP1fihCzn7F3wR8l99c5FULLfZwHAoTN52k9PsiJQZznA0DTqOeM1gP8ePRjIdCjruAEsN2Om6b6JdBpzz03Occ0e7s4ehGl+6zUgoHfWc5zxnMGbv575V22fSzX3eeJ1dMq/pgxxnsGC0cCDl0RXkf3M85Js18AbKZclYTx6klXAUoBiOEkONOYPxCCCGEEEIIIeTooTMYIUdBOPCjRFBewMIJLJuuAKFgk8wDyeaq5zIFpRkA8Fdxa/S2r73/Q6WzQu5IIoQoztuMIixttvquXjedUfpROhoYQXR3xbjjXuC7P9hCAR001GV0ncX6pfTQKXEsdzIEUp1UuM4kAeeLqbJi6Tzc+Wf/5qiOQY4NoQDqkaLrnvtMNmRYJBZ6rEIirCTJ0Gz2F4PoOhMKlJkCMZm7F9nuLX56urkmBvv6X/zITBeBGPQS8kggd6/s7UoCAJ3UTYMm1La8z1TuHy3vHK5TiBtEN/sg/dmtE++95gy8522nW8fwU6IJlQLPcUsJpb10HVW0G9rwOIMdWeDfDbC3KpzBqvja+z8U3B5y8jRJMltQ2AiK6ij67IeU8ARdgErhmCRu+kLf4csVkoUcXtM0s8Vmzk+rF0uoNJG+M1gwTaSbIlyE900yd7/q9LIaKYw0kZ4zUu4qGBR+Ga5KgbSyUvoLQGTgfrlCx+A7RZEmMuq5n6bqkrOKNJzWuXIXMleoV7SJteq2FtD3J0EtalrbkyTs7DjsSAHP+bUXnpOV4wxW3B9nWyhNZOLYTtdqErFRT913Gn1uV3QcO/2t6oP9/tZ9nqby3lhF0MVR6vfFPmIwJ+UsoMWZIWcw37GXEELI8aNo7tn8EkIIIYQQQsi0MhwRJUJmMVmWWRMW2rHAC944oicz9UsoHZxOLeNO9qsgXLlNT8SH00TmghDTbURKpJnaX0/cf8eG0/Ebl10BFQh1rs/6fzbw3IwWgxX3IT+X+X0/hUy+vUifabux6KBhaojBpiJSCQX19Ip3K/0JfLcwIHed6ZOKahDc1edkOBDHwRWmEYWdwUJBJxkQp3XjxHP7CqHrTsgFyRWYquCsHSC2HPjk3Ful289NghxfXNGAScg9TAujXAcg1xlMAEoAke+XVDiDuY5hniDSFShLgTRNbadMIbxAfChtV5ap8ieWkDkgZIMvygT8tmOmUGmbw25IPb9n9Kt//emPYr6RonYQqoSDrjDQxRX5NAPPgRTMTNMPKQS6gXrUbNSsNKkAkKRuKjv1r+uS5TmDOelc3f5Rjy8XooF3rV1nfzfLgs9CCsfxC2HRv3KPtR2Q0j5PhXKdzce3zql12W33TeGJvEQulDKvW8BeVKFxS+OL7pQDoVsOJQYLiGqnIHoJOX65yFwoFEoT2XWFt7mw1mxHZC52cgU7bsrM2UIEu73vh/trJIkv9ut2fQGzEsvZ73tJYp+3XpPodhPreyHcfkbVK/t3ayeOgBl+StXpEIOJQBkHPWbi1A0g7BCqUqg7jr0UgxFCyHFF6MU2HIwTQgghhBBCyLRCZzBCjgI9+W4GMQT8gIUKLJeRGR3oMF1GElfUJIBukthpbSSs9JJAGUQPOoMFU0cK/NCZm9FJEjy69w0kWYb59Trm1+teAMIVT2Ww3dB6TfILaae3EUCeUsoORLnnA8LpIfX2NCsniLxUW6H7aCABLyCjb6X7eyVZRZBwFgaiyOBM59zjL190qbdNuy249VUGBBWhIHnXEYgC4TIXwpGAcMwSmEr4qexkwBlsjonBpgpjgseWQdpVyxkMynnGbaNdB7EiYJ0fPxTwBfLgsCOSdFMSA7YwOe2TIlHKgFOLKJ1azK8W6Sx7uKyE0nfNJEKnypxi3TB/n5NWL5q28oTGOya/dflVOH1heb6QM9ggLlAnOqF0hgAw0qxhot21tmWZLeQohFGOiCUk6peOeMougxJGj4oIpyxYYP0tyarFSvb4E54YTCLkIDa4M1hVmkjAFmYX7wlumj/XNU0Kb9ycBcbdyv3Ivl9un10KTsvnPhICbSfdrvWdwLZBHHJDjrsa97qLxTGR89vEvmAnSf3xz2wgEkosOAi/+m+vwzlnrLI3uo7G+e/r1iMAqDluc+470W//zI1YvWK+9z0XVyCYwV50pPrgQGpj5zLTAZzk+rFkYQv//x97p12+AZ+Dqj7f/X6SZt54uV6ffc8aIYTMZorFOHzvJoQQQgghhJBphWIwQo4CIYDDkx2MtOrltnzFf81xNcgcFxA3haLrvKNWfid+0MQJkOggTihAHArwREJi9egoAOCxvW9412Ou6nZXeStHk3L/OE0xWqsjhBTKhcUMoruTO24Mwg24G6ZiZfkyYP26xbjl+rO8+1qvS5U6CMA9u3bimzt3eMd3V63r4J0VECyChPb9u3zlKpy+cHHwel0yJ3hDhh8xzdZgN52y3tvWyOtk0xEihJ6VkGNgHCdoOAErs56Vx1P/hgJmpjOdlBKdjp2OVgs3zWPNtTSRRwJFIseOfkIewG2jRZ62qrcwskgTme/XTcJiArdfdVO0CkO4Dagge9ynTkgh0OkEUqJlfoBc5CncapYo2U8TCfROqXk8Ecj73yn2c8eqX2xEvR0Tr1q12vrcDOw/iAvUiY6UuUOtM4C7cPMafOdN51nbXCe+MhV479RyALyxr4kQuQtSoC7EadgZzLuOfPzoLlCIHTezQcTQyhksDad7LgRwtguYmSpe7+e6Yal0svbxQmNLN01kKIVrmSbSbmO6aYpmxTg+hHLS7d0GiVwcF3Icc58JmQvSvQUZiS84TGapM1htCmKwG95+ur9RhN1ZXaExYNebDH7zfPE5a63PlQt6AtvN3127W7qpI913rBtPXo92kuBoaDZquOkdm6xt7ji4ik43QT3gxhxyCHXHBq0Gp8kIIeR4IgQwMRljpDn4uIQQQgghhBBCSH84y0XIUSAgcOhwB6MjdWubm/7FdT7QKWL0pL1K3eiu4g+nU1HBImPlt+OmZRISiNnbnAAb7FXd7hFTJwgV93AI0K5dpruXG8uQTvmELPc1P+uS6Pu44eSl+LmPvQN/96UnrPtar0WYmGwHrjM/XyhAFrh/Mk+X6Qay3r7aDqL0g1Kw2cXxcMCqEm+GqlEoENwJOIPFcQo3rlW2LYGAnpUSMncGqzkBRKv9kie8GOyy807C8iWjM12MOcsg4g07HZWfJjLokAclXtB9ShxwNAL8tFHS0YVGbt8kfMce79zSd1DSIg3XXUcK1Z/6Liu+M9hIH9HT8UJKnSZyavRzFTpSQuKunuUI/HZrRufhvCXLpqtIc5IqZ7BNpy3HptOWW9uSwFgYcIVRfkpDwBeMuSSOm1SxvYczmHUd8NsMAT9NpLsoAvAFWUr8lCGU8LRY3CADY3nL+VcvAHFdydy0e77AR6WJrHY21NtcwamEQDdJUGs0AyUP46ZbDSGFQIqw42PsjGG0M1iraU9JBFP5Vfzmw05NTC1NpEvVOoWQYNIayw2QojFOApWvgsh5dgA4zxO8MfQ7nTSu00VtQDFYqC4ACI4DXGcw95kkhBBybBEADk902P4SQgghhBBCyDTDtyxCjgIpBcYnuhg1Vq9JCSReANieyNcOX0UKRelP9JeBZGMiPz+Ou4K+ilDAZsSY7K5LieWtllVOOzwmrE8pMpjT52kPhwDlgGIL4BInjY4bJyqkX4UzmO0U5gbG3HM0GhE6XbUCPRQYFs71mOe0thnuL0dKVnl0MrRMrzFY71M5dTMUsAsFguM48QJWbupYQDkphM4DwHYBE8JLE5m4ItRA+3Si8Ymfu5FOf8eQQdyu7BSKuXtjnzbarUNVKaOS1E1TZguxilTFsvy3n0BSSoFOJ3bqkvqem2JZB9Yt1x4Iy6VK7z9SG5ahezjI3vdbx0gM1pqiGEwIgX/5wIetbdeuXYe3r1qNF154YTqLNqeQAp5rbRWJk8qudMnq7wxm91OBYzsCKI2b5hGoEn4FnGK1M5jjQuiWLwMQwd4nydKBx5OuO7A+RsfrewPnDjiDKTGY7Tzmtk9SAO00LdxJi3Om6UBiXI3rnBYi5LhblDXLvEUunW6CeSO2lC5JMk/4lSRZ0NFp2JlKmsgQAr57NGCLKss0kbYYrF97q9+ZTNx2UWMukNH/rTvvo8crpXhjwBSOixY0g9cYGge42yhGIISQ44uQakzQCDg6EkIIIYQQQgg5cjjLRchRIARweKKLkVbN2KZEXG76FzfdkykGk8IP3AiBPBVP7zQgveik/orvkags6zvXrsNFy5d7+5hlMAMQbkoo193Exb1mN6OUJ4gJuK8A5fW6QTn3vjZqpRgs7Azmr1oPinDyfwdxl6hCBWGO+OtkBlABt5k5twyEkUOB4G5AzNKNEzScoGmzUT2Jan4/kgKdbmwJzFSwt3+w/kSCQrBjSyidmIsbdO6mScDBxyYStttlyG3GPKYm5OZp7lOKm6upFHfkYjBTGK2Pa15jBlj7aEaHRAym7kE21SyRfZ1qjpQjaaOC6XlZ13tSOIMNICBSqRxtBzzAFUZVpMBz0qu6pGnYJSrO+qePVWURnvOmhMBkmlgipprwU8ImaYqmEagUUPuE6mvphua7YUVO29ANpEt0U0WH3J7cNJGus6EuY8d1BsvdwuqBwWqVq9RgzmDq36rFIm6b6DqiqWvyU0KGUkfOBiR8d7mpoNIv+rj3EXDfDwXqfe5XSChV1Qa64kUA1rPj9rfHEndRRBU//v1XBYXbg6SObDJNJCGEHFcElBhs0DaeEEIIIYQQQshgcJaLkKNAuerEVrqKIsjTI6CjXQH0xHMRDDPm32UecAsFxNygySevvNor22eueRfWL1jgbW8ZgeRmFGHliJH6LLODz25wPXWCQK6DgomU7jWr4Lm1j+ve4IjA3ACg67Dmiuj+1QcuxPhEBwBw2oKF+PTV13jHd4OOoeIXIrSjDAozpDy7UL/7sY9khepr1XPoBoLjOPGCWN04wYiT5amXo4E5wSqkQNtJE+k6coiAWJWQ6eK3LrsSa0bn9d3PTW/WSXxHG7caue5a3TgZyFkmkhKJkT6rVgiS8/MLLYSqbuVlLrT0XJDSDN+/6SyMd2Nru3uNKt2df/xhcQYTIk8TOcV+MiTsOVr+y9XXYP18f7xDph89xh2kHiXuWFiPYZ30iEmgf6kFHMWsY6fhxQhJD8daE3exg97miqFrUiJ28li6giiV5jUN9+P5v66QJo59Z7A4dtNE+iOSNA2liUyt8XTIoUm5gCWOw6JyBgulc+ymKVp1P/FlkqV9768Wt1cJBt33mlC77KaTBHw3tVlD4HecClXPes1xoHa33XztJlx10ck9j93pJAPf05ol/FL/rzlulkcjepsKITFXiJFWPbg91H654oPZ6EJHCCGzGSGQi8HY/hJCCCGEEELIdDIcESVCZilCCHS7tlOP1OlfIjtQlDnfixPbPSzNMtQjW1TWjRPPQUEdz564v2rVGq9s5yxdGixzr1RKKWyXD9flIM4yy8FFBcSqXVYsZzAJZE4Qyw0K+2kh8/PkQXk3ICiksMRhJ61eWPy/EUW4dMVK+/gQcL3Sgo5M+b9HIwajdGb24YoNjxWh+hp8DgNuEGFnsBTRiP39XkEsM+AlhXLlMLe57hshhzJCpotr164baD83TWQcEEu5T6l0BB9xklri7aovtpo1THZKsZZOV2IKltM089Vn5rmlGh+47i1ZlmHVyCgwYpfTvcYky4LpM013z5mkytGpH8fCGexip68nxw4p4YmWqnDTF5butrYLnyt6BhzBUCjdYJoFRUyhNIYhmbd0hKJqP5XOzzxqFBBWuWIwnV4yy/xxsxbASWkLd9x3ACmVk6DrIOalewykbU5TOx1g6J4KkafWNMsNKLewwP3tpmnQYbdKmGSfKxe3VrwfuNfYjX3Hr9B5XDe12cL58xZgZb3Zf8cKqhzRXKExYI/9ViydhxVLewutz9m0Eh//6GUDlcPsj5qRLwYLuS8fK45WKBAaI7uOussWj+J73nf+UZ2HEELI4Oj5z+C7GiGEEEIIIYSQI2Y4IkqEzFKEADrOinahV/c7bghuyinXPSxJMrQatiOA5ww2xTSRLvNr9WBwuRfmtL7rmNArXYyfgkcH1OyAlbWHFoEBOOPUZcX1jo7Ucfr6ZQHx2JQuJZwSsse2UKBxUKpSfJHhJeSmcbxwg9JA6bxjEpogVQ4j7ncFliwaQQizTRFCoN1xnMFSO81WVbCekONJ3XEgUc5gvdtot07HATFliFokEceldFiLJU3XyjSQhtlEiTsSrw8PtTG6rzBTbiVpuH+dah9+rBjEHS2E6/ZDZhdlmsj+v2Oa2WIw/agMkobYEi2HHMAqBDKJs2gBCIvzlZjR3qbFLOYzHRoXJE4KRZmniczSzBPJ6bpdc9w2u3HSN02kDLrZ+m1P6qWJ9EVkIVFblDuDhURfcRpuX+Mei0DK85fHD1FzREzd2HeaU8JdP03koI5Qw8QZo/NwxgDul1W4YzKNmcZQSmH9OyibTl2OTacuH2hf8/fUz4ybvvn4icGO/Dm4cPMaLFs86m1vOo6680Yb+Lffd+URn4cQQsjUEEI5VtIZjBBCCCGEEEKmF75lEXIU6LQurrjCdwazAzoiTxFjTtp7bjwhUZkOsByhGOxLYx/o+fdISC9djxlWyGCv9K9KYwXk1+wI4NzglBtE1vdDSIE/++2PFJ+XLBzB//rPH/Gdwaaaniqwe3hbLgY7Bg4mZHg5Tlkig3QSX1iiXYRMunGKulP/u92wS8v//cz3B89lTrBGUnjpGLrdFPW6n9qOkJnET2+WeM4zbi1whSZxkh5REFnXB10EndquVw8hhUCn44jFA/2g3hewhV4h57NhQqfZm2oRG7NQzEFKprIoIXNEU4XQ3hFGhRzmzHoTSvWWOK5jGpW+fIA0kVCiLnub78YZGhakjiBK5E6FWZp5oiZdpV03rCRxBFxSC8QcUZcr4JLuQgv/XkSRROyMKdyUubocVaIv5QwWEOEN0C5pAVyVg5h1L2R4DOOmGAXC458TgTUrFqDV8tfvmenAj0X6Xe98hrN0Xar/1wYQdh6TsvRIhd6P//ar78f6dYu97UcjMCOEEHL0SOHPSxBCCCGEEEIIOXroDEbIUSCEQKdrp50SAp7QSztolJ+1m48hBnNW9gvpp04pHauOzaS/e9QUfrC71qPM1rGknS5EFI4L5T6+U1cuBtP/umKxo7zskFNXKD2fdpU4qnRWWe8UYmT4UIHgmRE9ddLE2yacdgNQzmCuM0Y3SRHJwbtz8/sidyMxA9idboJFrTKlEdNEkmHADTor0UefNJFOauCu4+RZ4LTVrsjJdQbTrn29BMla3GGeL6oSg+X/NlznTUcMcfvNvQXdxxPdPk21mztW4xdyfCjTHvb/HVUdKT+HhGRSwuvnANtBbnTEF4O5bliaDIONFWVA/a3HqdZ5Mn8sqJzBjGNBoJuniXRFcqabYLF/QCAm80UirlAqc3TiIWcwdczye416hE7XHlP4br2KOJuaA1jofnhl6ZMm0ncGS7y2LuT8Fse+W9iJwH/+2RuDfY0piJrq4pgjoWWkKNZ9ldkHN2WE3n6Z08eKpfPw1T//N9N6zGORwpgQQsjgCAG0OwnmjTZmuiiEEEIIIYQQMqegGIyQo0AIoNON0agbq7NzZzBrUlkAZj4aodNEGoGOkDOYmzpFT/YHg9nTwPdvOhMfPm1j8dl1dQBsd5YU1eliXDe0kLtQ4gS09KH1Kd1zCyfCN1W3okHTROoV7+TEQjndzMy5O0nqWXWGUkQlSeatlg2lieyFlX5LCLQ7sbVNtWllSqOZTJ9JiKbuuGR2HEcbOwmxwhWFJEk2kJjATSGn61whZpESSZL2dMWSUjmDuYLukAtS0bebYrA09dLdzav7opiZQvfpbr/ci9t+44NYvDCcvpbMDso6MODvbjzDuu5ZqRClDNYJUzw1GnIGCzhHAWENvoAv8go5foUWB4ScsHxnMPX3LPUFnKG043phgi0QE94Ci5DTUpZllvBLY36vXpfoxrYYTF2vf5+7gXamF2ngvcCl3zNiugNqp2S3XY6TqtSRJ974vMqxqmWkiTRTRh4rRoxyNCK/TKF0o8eS6bzmz37yO7Bu1cJpOx4hhJAjQPgLaQghhBBCCCGEHD0UgxFyFGjB1mjLDfbaIqM0zYIpIHuliRSBfUo3gWOzenlJs4UlpSEQUvhuWlaayDSrTBcjHPGXThNp3pd2x3cu0N9V/yL4d81U5SmhooammkKpcaYKpTOzkAqhxvHgspUr8QsXXWIXp8JFyA0MKleNwZ7Zj3/0MiuAKPM0kWYgtlaLrECylHbKV0JmgrrR90gIJFnmiRg8cUeg0R9EDHblhSdj4fyyMyz6Lf2PUP1fT2ewXMhRc9K+hVyQdBDdTMOVZNX961Cg3dGm4A12zhkrj2GByPFgKunKs8wWZOq+y06FCASMrixnq0ULWvjx77/S+nuSZpVj4VA74KaEDAmtQmJN1c44rlWZLaDS15gkfpl0QNO6ZhkQiAVEY6ExSVV6zJqV/ll611aVwq8qTaQUYfHYIO6p+mjNioUVbtrPJPWFfaF7CYCpowxGjNSRIcHkdNM0nMGmIiCcDWw4eelMF4EQQk54ZJ5G+3ikPiaEEEIIIYSQEwmKwQg5CnSKNTM4EZofDwq9EjuVpJcmUsBzBtOB7ZArwLFABdztKJ2V2rJHsFpK21nFFYcB6r6YuCIwdyLIC7xPUbgTcn0IBfNDgbEjgdNYsws5g85g6+bNx7p5861tjqFggZsmUk2aDnaeH/zQRdZnLU4xA8nXXbHBCvjqlHiEzCS1fsIJ+G1uSKjkigkEfMHFyWsW4eQ1iwLfVXVPSuGlenYpBB9WSryw4FRfm+m2EgmJbiB97LAg83R1c0wTQPoQeq6rUKnBAyKoPm55N779dCya3yo+N+oRvnvs/MqymLiufkApHu27n4CX5k6law2liTTG6zCcwZz7Uq9rMZgpuPYFYvocdop5fwxQlR7Tc9Hwrq0iTWSFGEy1i/7+Ev2dQnU7NlILTzOY6Q0B7fjV3xkMoBhMc8apyzA6UqbRCqVSnU7OW7oM82q901JylEgIIeRoUItter9fEUIIIYQQQgiZOhSDEXIUCChXHjOIIQNuPu5KfqnTRJopoQJpIl1nMD35fryCIY1IouNYNljOYFlamSbSTS1XpJQy9lm8sIW1KxeU+0jXGcxxWHCuWwUaB7+e0MRSyDlmOlKdDJJKhwwXVSncZpLQI+TW/yRNvXR4Uz2+6Tb2oRvOtvYJuYwQcrxpmKnl8ufWdCdJ0hRNJ3VVqP64Yo0oEphsDya6KtJFSl/Q7aJF27WaLXx58MntmJjseu44gN0fnb5oEfZMTAxUrplA5I5O7OZOLEoh5mA/fKhPjZzxsNu//Pt/e91Axw4J0oJpIoVfDgmV6rxfeZc2m9i0aLG1LZTOEQgLtfQ439yuRU7ue4G7LZSiecXSeUGRVr+USqG004ASv9UD4/iqxR5R4PfyyqLFrRVj6ZaT3q9KWBv6fQcRIZ4I/Nlvf8T6fKxTav3RNe/su88grnGEEEJIL/o5LxNCCCGEEEIImToUgxFyFAgp0Ok6rl8BlxE3QCRz1y9zW+w6g2nBmOMqAhy/YMhoreYFnUyhlOuOYCIErNRyQiiBlBmpu/z8k/BXn/5o8LuAL9Rygx0qBdHgk0WhgNexEoPFWTYtxyHHl2EKZWVZOE1Co15z9gu7NAyCPn6vQKKYQcc0QjSme412eTSf+yTLPIebkGjBTbNar0U4NN4ZqAz6fLrf6NUXF4I1Y59ICjz/8ptod5KgGMzkh87c7LkZDROicAZjwOZEQj/7g4hPogFSHeuFAkeC6wwIAMtbLdScfrM6JSS8/dyS3HzKqbj5lFOtbUmWWU6zZimq6oMMiMFqgfG9+x03RfPHvuvSsGOo0665qjiBsPgNCLvhVi1oCKXcrKLqXngLOwKOakBYcEiX0mq+/hc/cnzP94EP2xv40xBCCDkKVJrI3ottCCGEEEIIIYRMHYrBCDkKpFBpIs2AjpB+ANoVdQXTRHrOYPp74ZX5x4PPXPMujDppXlpR+TmUPkfjBt9CjmlCCMt5wHMGc47tOaJlmFIuxnog2NSUkbdtOtJEdtNq1zQynAybM5ibYkvjbqpFEnFyZOUuxGA93AalFEhSN3kWIccXO02k//c0y7y0kHFQiGI/67WaRDfu/3x/9pPfYZzfd/FxKZzBrPGB2r/R8Pudv7juPfb3hRhqd0mdYpZisBML/XOHxqYutZpEnPh1y3XEclOGD0qo/v3uVddgcaNhbRMQXvpHAd/JSAyQAhFQbU0USFuLHm61tUCaSDslZFh4FRKxDeJ4OMixivIExrxJlgbLFAlxVA5Q//iH/wpLF41Y26pSQobGJaHniSh6jeOOBa5z3DvXrsP5y5Yd1zIQQgiZO4j83YJiMEIIIYQQQgiZXigGI+QoEALoxIkVXFbOYPZ+SZp6aXGS2BZ/uWIwIUTuHuY7Bxyv4OvSVsvb1jLcB5I0tdJ0mQjHYUELbXqVXQeeRPHZ/nvNdT4AprQSXQaUY63AMUMOYlNFgilTZhtCRYeHhpDLIAB0u3ZKu//4796Nrc88dETnKByOeopa/DaNkOPJz5x/kSVMCLXlgN/mdtPUc2h0RQf1WoQ47p8mcsPJS71tvetNfj5jfKD3d9OkAcCpCxb2LcMwod0+Ga45sSiFkP3HSVJKJH2cnOq1aCAxZoiQIG3tvHnBfd09ZdAZLOwm6JJmmeUGptumXi6d5vYo4AzmLn7Q3xlUoN4vfXzUw9ErNI5PK9JE/twFF2Nxs9m3PD9+7vnB7SuW+r9PkmQVC18CYrAjfFbIsacRRVg9Gq5/hBBCSF8E6AxGCCGEEEIIIccAisEIOQpE0BnMn7xIkgyNemR/L05sZzA3laQUiJ1UksPgEmIGh5KKYBGgAuFmehvtItIL123FDaq5QfzR0XrfY/YjlMpxOpzBGlGEDh0MZhWhFFEzSRQJJI7j1/veeSZOWrPI2nbFBSfhjdcfPaJzFC58fUSadAYjM8kHT9tgfR5UEJ1kvmC52bSHvvWaRPeInYl6Oer5go9Wfu65EOQQeXq/0JiHzH0GcqgNiAWvuXS99flohrUhsVCIUMpD5RbmO4MNMgbIYLdBwvjDIOP0qHDkjLxtVnkEMOgQt58rVE1KdCv68dA4+Ds3nIGT58/3tl+4fMVA5fnoxjMG2g9Qv88gzmD/+sMXY8PJSwY+LiGEEEJmDypNZDhNNSGEEEIIIYSQI4diMEKOAiGAbpxYAYtQfCxJUkRGAFrmaSLN4E/ipEmRIheDOW5hM0kzitCKDGewLKtMhSiclDRCCqRp2tNFxI1HuQFz1/nglDWLcd6mVYMVPi+vy0hUQ8M5cZXAbSqctXhJMMBGhhgBL5XpTOLWIQD4xf/n2mk9xyCilJludwhxCT22oed01cgoLlmx0trmunJF0WBpIoPl6FF/dP9uClZGmvUjOs8wIoQSsbN1ODHpl5YQCDtl/fbP3Dh9ZRhQiJjCdvICVBvium6pog7oDGY6feV1PEN1mkj7PLkYrM/4firOYK4wbtRpa0JOaJrQAoiPbNg40Hmni9Dz5F7Tx77r0uNVHEIIIYQcZ4QA0pTOYIQQQgghhBAy3VAMRshRIIRAp5taq/tDAZ00zexAh/CDZEnqpEnJ09WY20ZaM1tlv/K+D1qf06w68CVz15Dys3I46CUscV2K3FWBrnPA5o0r8Ef/4QODFj8o8lrcbOKr7/+QV467b/nIwMcN8aNnn3tU3yfHH4HhyhOZpsd+Zeygk60h1w5CZgpRlSbSqb7Xrl2Hd6xZa21rOc5gUS5UPhJ6iVGauejMFIv3c++ZTShnsJRi0ROUQYRY8+c10GwE0nubHMXzM2j/FU5RLjzXLRnYFiLJUms8Wfw/C7dN3/yrjwePY/arofupUjQPNiZx9/u1n7g+tFe4HEOwcCHk8hZKHUkIIYSQuYnIMwnQGYwQQgghhBBCpheKwQg5CmQgTWQooOO6gMnAav8kSa1giAwIopqN4aqyvZwGokgiMVJv6cBxL1wRmJcmMhBIn0og+uIVK/H5G8cG3v9oYIB89iGELyaZSbIeYsvpYtDJ1v/47244tgUhZAqEnlsBeGnfAL8trtdscYpAdT/Wj15p6rRQZaQ1d9zATIQQyNKjS/NHZi+DOIP93i/efEzHrW5driKtSGnubhrUiSvukSJ9KlZ55pg2NGaUU3ArPTzZ7fn3XsVyU+nOBKHxPUXohBBCyImDEGpOlM5ghBBCCCGEEDK9DJeyhJBZRpEmMjKdP/zgVLeboF4vt8tA+rckCaeEHCTgNlNIIYKpFwEliktMZzDZP3Bc/E3o79h/P9rAUCQElrZaR3UMMncZNjFYmmU9xSbTAUWLZDYSemoHeZJ/5xduwrLFo/4Xj7DeDxKscJ2RPvGz05cmbyaRAkjoDHbCMogz2LzRRv8DHUWnO6jTXgq/r8uQeS5eVYJSlyQNi8HSNBs4dSVgpz4PtSVSSmscXcXv/MJNOPv0lX33qzrSMKQ0D923YX7/IYQQQsj0IpA7g1EMRgghhBBCCCHTCsVghBwFKk2kKwbzgxedOEXDEIMJCWSOSVbiBJH0JIgbDLn52k3TUfRjjpBumkiBpI8zWOkIlh+jj6MLIdOJEALZEKWJfMelp2L92sXH9BycbCWzkUpXnj7V98oLTw5+Rxyh5mCQ+uOKmN92yfojO9mQIXLBN1uQExNzTHs0nLtpFX7637ztiL57NGlXQ25hvdxure8inMKo64z1+2GO70NtSa0mEcf9U9gG27Up0IxmfmwdEn71TTFKCCGEkDmDkEI5g3GhCSGEEEIIIYRMK1xyOwB33XUX3ve+92HFihUYGRnBWWedhV/5lV/B+Pj4TBeNzDBSCHTj1ApI1QMBDTfVy2DOYOpfd7X8L//oO6eh5MceNxWmShPZO8qmg2GhFJkAEEWcGCLHDpX2bHjEYOeduRrve9dZx/QcrFNkNhJ0ozpCMWea+Q5Bg1LvI0ZZMK85Z52zBFR7OVevj/SmMU3pHzecvBQfvuGcI/ruoAsEJPwxdwbfqbaX261JkqaIAgpSkWUQUxBYhxaAuH8fNE1kP06aNx/XrFkb/NswiMFCzr/HMsUoIYQQQoaLSArESTqlsRQhhBBCCCGEkP5QDNaHP/iDP8D111+PLVu2oNVqYfPmzXj55Zfxm7/5m7jsssuwd+/emS4imUGKNJG13mkiVy6bj/nzmsb3/AmOJMksYYYWQk0l5cwwkWV2kFhKWOKwEKJwBsv/da69Pk1OFISEOIpscbOWFoOtZBYSWjG+tNnEkmYzsHdvsikKOExazd7150t/8oNHdNzZgJRQwpnZOUQhR8kwuDYNmjo8Coi8QiLQupSI+zjY6u+GxuZCiCkNIswxcvB4EH3HzYNy9eo1+NVLLg/+rSFn/rcMCdMbdY5PCCGEkBOFWiTR6Sazdv6TEEIIIYQQQoYVzrL24MEHH8RP/dRPAQA+85nP4GMf+xiEENi+fTs+8IEP4MEHH8THPvYx/J//839mtqBkxhBCoOukiQw5hfzGT73bCl6HHABUcKn8rnYJC6VOGRbm1eoYdK5GCIE0q3B0KfaxP7sB/yULR3Dnn/3QVItJyEAIgYFSRM0lRlr1mS4CIVOmFnDl+YULL/HcfwYhw5HrmU5s5xrlWsRwzYnJoEKsY1qGAdNEhhwD1YIFe1tdSnQGEYMBqAXGslNxyfvnP/4+63OoLRHy+IxJhtUZjBBCCCEnDlEk0O2mdB0mhBBCCCGEkGnmRI5i9eU3fuM3kKYpfuAHfgAf//jHi+1r167F5z73OZx11ln4+7//ezz22GM4//zzZ7CkZKaQUqATp1aqmlBwquE4WlVNcESWqCzytg0bv/+2a7CiNRL8mxu/0qkxe03tuCK50L2keIUcM8T0uXDMFvo5GxEyjCxuNrxtNXlkfWVIFDIobt9+IqECNgnkEd53Mnv5w1/7wFAE6gYVEKWZcgeztkGljzSRU0g1G0ot+4e/9n4smDeYO+HSxaPW55GmP7YVOLLUt1PhD99+LRbUZ35c7b7rfObXb8HqFfNnqDSEEEIIOd5EUqIb0xmMEEIIIYQQQqYbRnAqOHToEL70pS8BgCUE05xxxhm47rrrAAB/+7d/e1zLRoaLQZzBXKrmN8w0KY167gw2xJMhGxcuwsKGH5QH4KnBhFQuIr2InKAynQLI8SSUem6uMzpSx8c/eulMF4OQKbG8NYIfP3d6RPjvvmojPvZdl035ez/6PZdjycKwGPpEoFGP0O7EQz1GIceGC85aPdNFADDYeBsAUmRe/x6nqScgFcDA7oJu2skf2HQW1q5cOLAYzCUkzBZSHHNnsPOXLR8KYZ/rjHbuplV8ByCEEEJOIGo1lSZyGMYlhBBCCCGEEDKX4CxrBQ8//DDa7TaazSYuv/zy4D7XXHMNAOCee+45nkUjQ4SUAnGcWCKuQZy8REXw1BRD1XPHkdmahuq0k5bglus3F5+lEEjTqdu+r1o2b7qLRkgQIdBXsDjXiKTED37o4pkuBiFTohlF+OjGM6blWOeduRrvuOzUKX/v+265EPNGK8TQJwD1WoRunAbTXhNyPBhULJSkqecC1kkTNFwxmBAD+XDVpUQ3TaxtH998zkBlqWKkVcemU5fZ5TmqI84uWrP0XYcQQggh00MkpVpoQjE4IYQQQgghhEwrnHmt4LnnngMAnHLKKahXpM/YuHEjAODZZ5+d9vNnWYY4jqf9uOToMH+TOI4hBdCNUyRJGRSKu7G3r0uWpsF9BMrfXeYhqTRNkO8+q7hw8ypcuHlVcT3qOjIkSdL32Tb//je//1HWBXJcSNMU8QDP57DhtkuEEHKskUKNUbIs9dqd2dwmpWmKNE2RZRnSIRh8mWWJ45hpOS0Ge1da2myiKSNr3yzNkLnfz+91v2OesXARFtTq0/ps1yLgv//mLdYx0yz8rjAXkfLYv/da9zav5zMF6zUhBJjd4yVCphshMrQ7MQT8d4uZ5ER6N5hqmzRM94ZjK0LmJhwrEUKGCbZJZFip1fpLvUSWHesEFLOTT37yk/i5n/s5XHHFFZXOX1/84hdx8803Y/78+Th48GDlsT7zmc/gtttuG+i8Tz/9NCYmJrBhwwb87u/+7hGVnRw/Hn7+ML72yCH8v9+5sti2c28Xf377Xvzc96yq/N5LO9r426+9Ze3zic/twoeuWYQzTmoBAJIkw+/8ze6ex5lNvLk/xv+6/U3c8vbF2Li2Oo1OnGSoRSeSHwIZFh54ZhwrFtexfvWJ6/ZDCCGDMNFO8Qd/vwf/6t1LsG4F20xyfEnTbGBXujRfXGG6g30DCbYiww8Z66IeQop7kOLHhmSt1FMvT+AL9xzAz3z33HgPqOITn9uFWz+wHIvmRTNdFEIIIYTMEK/s7ODvv7EP3/PupVi9NLwgmxBCCCGEEEKIzS233NJ3n+GY7R5CJicnAQCNRnWAq9lUgpaJiYmex9qxYwceeuih6SscGRo2ndTEisV2NVq5uIYfed+yim8oTl7ZwPdcv8Ta9kM3LcWC0TIQIiXw/Tcsnb7CzjCL5kcYu3IR1i3vPbFDIRiZMYQABkoSRQghJzathsAH374IK5YwWEOOP1NJT+qmiASAKyFxibNtMwQ2YHgESWed0sIpq+a+0PLj71+OhaN0byCEEEJOZFYvq+GmKxdh2UKGKQghhBBCCCFkOuFbVgWtlnJn6nQ6lfu0220AwMjISM9jrVmzBhdffPFA59XOYIsWLcLY2NiApSXHiziOcfvttwMAbrzxxoHs9wghs4OJ2pM4dd1iXHruupkuypRgu0QIGSZmc5uUpim2bt2K7du3Y/Xq1TOeYiRNU+zcuRNr167Fxo0bZ7w8hMxWOp0O7rjjDgDAhg0bZrRdYr0mhACze7xEyInCifRuMNU2aZjuDcdWhMxNOFYihAwTbJPIbIZPawVLlijXpr1791buo/+m963i1ltvxa233jrQeS+55BI89NBDEEKwMRlyarUafyNC5hC1KIIQ0ayu12yXCCHDxGxrk9I0hZQSQghIKYcikKDLUqvVhqI8hMxG0jQt/j8MdZv1mhBiMtvGS4ScKJyo7waDtEnDdm84tiJkbsOxEiFkmGCbRGYbHB1XsGnTJgDAq6++im63G9xn69at1r6EEEJmL4JpIgkhhBBCCCGEEEIIIYQQQgghhMxyKAar4KKLLkKj0UC73cZ9990X3Odf/uVfAABXXXXV8SwaIYSQY8CZG5ZjzYoFM10MQgghhBBCCCGEEEIIIYQQQggh5IihGKyCBQsW4MYbbwQA3Hbbbd7fn3/+eXz1q18FAHzHd3zHcS0bIYSQ6efcM1bhlLWLZ7oYhBBCCCGEEEIIIYQQQgghhBBCyBFDMVgPfuVXfgVCCHz2s5/FbbfdhixT6cN27NiB7/me70GapvjgBz+ICy64YIZLSgghhBBCCCGEEEIIIYQQQgghhBBCCDnRoRisB5dddhl+93d/FwBw6623Yv369bj44otx2mmn4cEHH8SZZ56J//7f//sMl5IQQgghhBBCCCGEEEIIIYQQQgghhBBCKAbry0/91E/hjjvuwE033YTx8XE89dRTWL9+PX7pl34JDzzwAJYvXz7TRSSEEEIIIYQQQgghhBBCCCGEEEIIIYQQ1Ga6ALOB66+/Htdff/1MF4MQQgghhBBCCCGEEEIIIYQQQgghhBBCKqEzGCGEEEIIIYQQQgghhBBCCCGEEEIIIYTMASgGI4QQQgghhBBCCCGEEEIIIYQQQgghhJA5AMVghBBCCCGEEEIIIYQQQgghhBBCCCGEEDIHoBiMEEIIIYQQQgghhBBCCCGEEEIIIYQQQuYAFIMRQgghhBBCCCGEEEIIIYQQQgghhBBCyByAYjBCCCGEEEIIIYQQQgghhBBCCCGEEEIImQNQDEYIIYQQQgghhBBCCCGEEEIIIYQQQgghcwCKwQghhBBCCCGEEEIIIYQQQgghhBBCCCFkDlCb6QIQQgghhBBCyDCRZRnSNJ3xMhBCppeZrtus14QQQsjsY6bHD7oMw8hM35thvS+EEEIIIYQMAyLjiHmoWLp0Kfbt24eRkRFs3rx5potDHLIsw/79+wEAixYtghBihktECDnRYbtECBkmZnubNDk5iW63O9PFsKjX62i1WjNdDEJmLWa7FEXRDJdGwXpNyInNbB8vEXKicKK8GxxJmzRs94ZjK0LmFhwrEUKGCbZJZJg566yz8Jd/+ZeVf6cz2JAxOTkJAJiYmMBDDz00w6UhhBBCCCGEEEIIIYQQQgghhBBCCCGEzBYoBhsyVq5cid27d6PVauG0006b6eKQAE8//TQmJibo3kYIGRrYLhFChgm2SYSQYYPtEiFk2GC7RAgZJtgmEUKGDbZLhJBhgm0SGVbOOuusnn+nGGzIePnll2e6CKQPl1xyCR566CFs3rwZDz744EwXhxBC2C4RQoYKtkmEkGGD7RIhZNhgu0QIGSbYJhFChg22S4SQYYJtEpmtyJkuACGEEEIIIYQQQgghhBBCCCGEEEIIIYSQo4diMEIIIYQQQgghhBBCCCGEEEIIIYQQQgiZA1AMRgghhBBCCCGEEEIIIYQQQgghhBBCCCFzAIrBCCGEEEIIIYQQQgghhBBCCCGEEEIIIWQOQDEYIYQQQgghhBBCCCGEEEIIIYQQQgghhMwBKAYjhBBCCCGEEEIIIYQQQgghhBBCCCGEkDkAxWCEEEIIIYQQQgghhBBCCCGEEEIIIYQQMgegGIwQQgghhBBCCCGEEEIIIYQQQgghhBBC5gAUgxFCCCGEEEIIIYQQQgghhBBCCCGEEELIHIBiMEIIIYQQQgghhBBCCCGEEEIIIYQQQgiZA9RmugCEzDY+/vGPY8eOHVizZs1MF4UQQgCwXSKEDBdskwghwwbbJULIsMF2iRAyTLBNIoQMG2yXCCHDBNskMlsRWZZlM10IQgghhBBCCCGEEEIIIYQQQgghhBBCCCFHB9NEEkIIIYQQQgghhBBCCCGEEEIIIYQQQsgcgGIwQgghhBBCCCGEEEIIIYQQQgghhBBCCJkDUAxGCCGEEEIIIYQQQgghhBBCCCGEEEIIIXMAisEIIYQQQgghhBBCCCGEEEIIIYQQQgghZA5AMRghhBBCCCGEEEIIIYQQQgghhBBCCCGEzAEoBiOEEEIIIYQQQgghhBBCCCGEEEIIIYSQOQDFYIQQQgghhBBCCCGEEEIIIYQQQgghhBAyB6AYjBBCCCGEEEIIIYQQQgghhBBCCCGEEELmABSDEUIIIYQQQgghhBBCCCGEEEIIIYQQQsgcgGIwQgghhBBCCCGEEEIIIYQQQgghhBBCCJkDUAxGCCGEEEIIIYQQQgghhBBCCCGEEEIIIXMAisEIIYQQQgghhBBCCCGEEEIIIYQQQgghZA5AMdj/x96/R9d53ffB53c/t3O/4UaABAjeKYmURVF25Ii0HSemHSev5UlkO69s1q2TmThqm1nNdDVO27WSttOZJG7TzEzWLDVZTe2kzDiunTZlGjuu6cR5LcqWY1GUSUoCKYoEARJ34NzPc9/zx7k9BwCvAs4BDr6fLK9QwAGwD3Auz977t78/IiIiIiIiIiIiIiIiIiIiIiKiLsBiMCIiIiIiIiIiIiIiIiIiIiIioi7AYjAiIiIiIiIiIiIiIiIiIiIiIqIuwGIwIiIiIiIiIiIiIiIiIiIiIiKiLsBiMCIiIiIiIiIiIiIiIiIiIiIioi7AYjAiIiIiIiIiIiIiIiIiIiIiIqIuwGIwIiIiIiIiIiIiIiIiIiIiIiKiLsBiMCIiIiIiIiIiIiIiIiIiIiIioi7AYjAiIiIiIiIiIiIiIiIiIiIiIqIuwGIwIiIiIiIiIiIiIiIiIiIiIiKiLsBiMCIiIiIiIiIiIiIiIiIiIiIioi7AYjAiIiIiIiIiIiIiIiIiIiIiIqIuwGIwIiIiIiIiIiIiIiIiIiIiIiKiLsBiMCIiIiIiIiIiIiIiIiIiIiIioi7AYjAiIiIiIiIiIiIiIiIiIiIiIqIuwGIwIiIiIiIiIiIiIiIiIiIiIiKiLsBiMCIiIiIiIiIiIiIiIiIiIiIioi7AYjAiIiIiIiIiIiIiIiIiIiIiIqIuwGIwIiIiIiIiIiIiIiIiIiIiIiKiLsBiMCIiIiIiIiIiIiIiIiIiIiIioi7AYjAiIiIiIiIiIiIiIiIiIiIiIqIuwGIwIiIiIiIiIiIiIiIiIiIiIiKiLsBiMCIiIiIiIiIiIiIiIiIiIiIioi7AYjAiIiIiIiIiIiIiIiIiIiIiIqIuwGIwIiIiIiIiIiIiIiIiIiIiIiKiLsBiMCIiIiIiIiIiIiIiIiIiIiIioi7AYjAiIiIiIiIiIiIiIiIiIiIiIqIuwGIwIiIiIiIiIiIiIiIiIiIiIiKiLsBiMCIiIiIiIiIiIiIiIiIiIiIioi7AYjAiIiIiIiIiIiIiIiIiIiIiIqIuwGIwIiIiIiIiIiIiIiIiIiIiIiKiLsBiMCIiIiIiIiIiIiIiIiIiIiIioi7AYjAiIiIiIiIiIiIiIiIiIiIiIqIuwGIwIiIiIiIiIiIiIiIiIiIiIiKiLsBiMCIiIiIiIiIiIiIiIiIiIiIioi7AYjAiIiIiIiIiIiIiIiIiIiIiIqIuwGIwIiIiIiIiIiIiIiIiIiIiIiKiLsBiMCIiIiIiIiIiIiIiIiIiIiIioi7AYjAiIiIiIiIiIiIiIiIiIiIiIqIuwGIwIiIiIiIiIiIiIiIiIiIiIiKiLsBiMCIiIiIiIiIiIiIiIiIiIiIioi7AYjAiIiIiIiIiIiIiIiIiIiIiIqIuwGKwDeZTn/oUnnjiCXzqU5/q9FCIiIiIiIiIiIiIiIiIiIiIiGgT0To9AGr1xhtv4Ny5c50eBt2G67r4y7/8SwDAT//0T0PT+BQios7i6xIRbSSb+TXJ931cuXIFN2/e7PRQWuzYsQP79++HovAcD9GDsG0bX//61wEA8XgcQogOj4jPa6KtbjNfLxFtFVtpbnC/r0kb8XfDayui7sJrJSLaSPiaRJsZH61EREREREQBg4ODHS8YkVJienq6o2Mg6jbbtm2Dqqod+/l8XhMREW0+nBvcXqd/Nxv190JEREREtBGwGIyIiIiIiChACNHxU+W+73f05xN1o04/t/m8JiIi2nw6ff0AbNxriE7/bjbq74WIiIiIaCNgbi4REREREREREREREREREREREVEXYDEYERERERERERERERERERERERFRF2AxGBERERERERERERERERERERERURdgMRgREREREREREREREREREREREVEXYDEYERERERERERERERERERERERFRF2AxGBERERERERERERERERERERERURfQOj0AIiIiIiIiIiIiIiKiblIsO5ieL8NxfeiagsG+KOJRvdPDIiIiIiKiLYDFYERERERERERERERERGtgfsnE+bEFvHFtCYWyA0gAAkhEdTy0O4MjB3vRlwl3ephERERERNTFWAxGRERERERERERERET0No1PFfC170xgMW8hHtEw2BuFogj4vkS+ZOOli7O4ciOHn3rPCEaHEp0eLhERERERdSml0wMgIiIiIiIiIiIiIiLazOaXTHztOxPIFW3s6I8inQhBUQQAQFEE0okQdvRHkSva+Np3JjC/ZHZ4xERERERE1K1YDEZERERERERERERERPQ2nB9bwGLewmBvBEKIVW8jhMBgbwSLeQuvXl5o8wiJiIiIiGirYDEYERERERERERERERHRAyqWHVx8cxECQLZoI1e0UbFcLORMVCy35bZCCMQjGl6/toRi2enMgImIiIiIqKtpnR4AERERERERERERERHRZjS/ZOKb35vE1ck8FAUQqKaCOa4PXVMQCWs4sDPVaBkJAMmYgemFMqbny9i3M9WpoRMRERERUZdiMRgREREREREREREREdF9Gp8q4GvfmcDkbAlSArGwDiEESqYDX0pULA+242Mxb6EvHW58Xb0wzHH9Tg2diIiIiIi6GNtEEhERERERERERERER3Yf5JRNf+84EckUbA5kwNK1Z4OW6EqqiQFMFfF/i1lwJpuU1vtb3JQBA17hFQ0REREREa4/JYERERER3kC+aGL+Zhe14MHQVozvSSMbDd/9CIiIiIiIiIupa58cWsJi3sKM/CteT0DUFtuPBcpppX0IIqCpg2T4WciZ2DMQAAPmSjURMx2BftFPDJyIiIiKiLsZiMCIium9528Z4sQDb82CoKkbjCSQNo9PDIlpTU7MFvHBuHOcu3UK2YEJKCSEE0okwjh7ajuNHRzE0kOj0MImIiIiIiIiozYplB29cW0I8okEIAV0TyCRCmJwtQaBaBFYnhICiANmChYGeCDRVoFhx8e5HBxCP6p27E0RERERE1LVYDEZERPdsqlzC2ekpnJufQ9ayIAEIAOlQCEf7+nFscAhD0Vinh0n0tl2+No9Tp89jZr6EVCKEnYNJqKoCz/OxlDdx5uxVXBibxsmnj+DA7r5OD5eIiIiIiIiI2mh6voxC2cFgbzPZKxJSAQl4voSqAooiIKvdIKEoArbro1RxULE89CRDeOxAb4dGT0RERERE3Y4N6YmI6J5czmbx/KWLODM5Ac/3MRKPY3ciiZF4HJ7v48zkBJ6/dBGXs9lOD5XobZmaLeDU6fNYyJaxeziNvkwUqlq9ZFJVBX2ZKHYPp7GQLePU6fOYmi10eMRERERERERE1E6O6wOyWuRVZzk+4lEdiiLgSwlFCMhaNZj0JVzPx9ySiVTcwE+9ZwR9mXCnhk9ERERERF2OxWBERHRXU+USTl0Zw6JVwa5EEr3hCFRRK44RCnrDEexKJLFoVXDqyhimyqUOj5jowb1wbhwz8yWMDKaqp3hXuY2iCIwMpjAzX8LZV8bbPkYiIiIiIiIi6hxdUwAB+H5z1cD1fOiagkRMR186DEURcD0Jx/VhOT4EBA7vy+DjJ/ZgdCjRwdETEREREVG3YzEYERHd1dnpKcxWyhiOJaAIseptFCEwHEtgtlLGi9NTbR4h0drIF02cu3QLqUSocbr3yvUFvPbmHK6ML6JUcRq3VRSBVCKEcxdvIV80OzVkIiIiIiIiImqzwb4oElEd+ZLd+JjrVgvDNFXBUF8Ue4cTSMZ0JKI6omENe0cS+N/eO8pEMCIiIiIiWncsBiMiojvK2zbOzc8hZRiNQjDL83CjWMBMpQwEcpMUIZAyDLw8P4e8bd/mOxJtXOM3s8gWTGSSzYVZy/ZgOx5K5ZWP6UwyjKWCifGb2TaOkoiIiIiIiIg6KR7V8dDuDIoVt9YKstoGsk5TFYQMFYauwtAV+L7E4b09iEf1zg2aiIiIiIi2DBaDERHRHY0XC8haFtKhUONjU+USliwL0+UyCo7Tcvt0KISsZWG8WGj3UIneNtvxIKWEqlYvkXxfwgss5uq62nJ7VVUAKWE7XlvHSURERERERESddeRgL3qSIUwvVOB5ErJ5XhKqKqCpCqSUqFgeQoaKh3alOzZWIiIiIiLaWlgMRkREd2R7HiQAVTTfMiy/WfhSWlYMVr+d7bE4hjYfQ1chhGgUgNlu83EsBKCrrZdOnucDQsBYViRGRERERERERN2tLxPGT71nBKm4gcnZEqzaATMAUASQL9moWB4MXcHIYBzRiNbhERMRERER0VbBYjAiIrojQ1UhAHiymY7k+82jjmXPbbl9/XaGyuIY2nxGd6SRToSxlDcBAI4TaPGgqah1Sm1YypvIJMIY3ZFu4yiJiIiIiIiIaCMYHUrg4yf24PC+HggBlC0XFcvF9EIFqiowvC2GPTsSSER1lE0enCQiIiIiovbgURQiIrqj0Xii0fqxNxwBAFSzwqoqbmsxWL2l5Gg80dZxEq2FZDyMo4e248zZq+hJRVraPxp6aw2970vkChZOHN+LZDzc7qESERERERER0QbQlwnjsYO9WMxZKJsuEjEd73l8EIN9UXzn3DRmFysAgIrl3uU7ERERERERrQ0mgxER0R0lDQNH+/qRs234UgKQLclgri/h+NX0JF9K5GwbT/T1I2kYHRox0dtz/OgotvXFMDGdg203F2p1rZl25/sSE1M5bOuL4djjo50YJhERERERERFtEBXTha4pSMUN7BpKYN/OFOJRHZFwcy2BxWBERERERNQuLAYjIqK7OjY4hIFIFJOlAjxfBnLBqiqeC19KTJYKGIhE8dTgUEfGSbQWhgYSOPn0EfSmo7g1W4BpuZBSwtBVeJ6P+aUyrk1m0ZuJ4uTTRzA0wBQ8IiIiIiIioq2sbDYLvSKRZkOWaLj57wrbRNIGlLdtXFhcwMtzs7iwuIC8bXd6SERERES0BtgmkoiI7mooGsPJ/Qdx6soY3irkYXouQooKIQSklJgplzEvBAYiUZzcfxBD0Vinh0z0thzY3Yfnnn0Sv/dfvovL1+dRLNvQsmVYjodMIowTx/fi2OOjLAQjIiIiIiIiopZCr2iomQYWDvy7YjIZjDaOqXIJZ6encG5+DlnLggQgAKRDIRzt68exwSGu8RIRERFtYiwGIyKie3IgncZzhw7jmxM3cHr8Ooqu0/icoar4ydFdeIqLBNRFhgYS2LuzB9GIjmLJwo8eHcWe4QxGd6SRjIc7PTwiIiIiIiIi2iBaksECaWDRUCAZjG0iaYO4nM3i1JUxzFbKSBkGRuJxqEJBxXUwXS7jz6+9he9M3cLfP/Awjvb3d3q4RERERPQAWAxGRET3bCgawwdHduJGsYii48CTEqoQ2B6L4Zk9+zo9PKI1JaVEvmTB0FX0pKN48rERDPbFOz0sIiIiIiIiItpggsVgwdaQwcKwMttE0gYwVS7h1JUxLFoV7EokoQiBsutgulzAvGnC9j1ICcyZFfzfz30fHxndhQ/v3MUDwERERESbDIvBiIjovtieD0NV0aM2Y+5Nz0PFdRHR+LZC3cOyPThOc6E2ETM6OBoiIiIiIiIi2oiklC2pX5FAGlhkWTKYlBJCiLaOjyjo7PQUZivlRiFYzrZwJZdDxXNhKArimg4hBHzpY8my8fWJG7heKOLk/oM4kE53evhEREREdI+UTg+AiIg2F8tf/RTjbKW86sfzto0Liwt4eW4WFxYXkLft9Rwe0ZrJF83Gv1VVQTSsd3A0RERERERERLQR2Y4Pz5ON/46E1VX/7XkSjuu3dWxEQXnbxrn5OaQMo5EIdiWXg+m5SGgawqrWKFZUhIKYrsGXErOVMk5dGcNUudThe0BERERE94oRLkTUkLdtjBcLsD0PhqpiNJ5A0mASDrWyvNWLwWYqFYwmko3H0VSphDdyS5goFlFyHEgAAkA6FMLRvn4cGxxivDhtaIVSs3AxEQvx5C4RERERERERrRBMBVMUgbDRLAALGyqEAKSs39aDoavLvwVRW4wXC8haFkbicQDAdLmMvG1DSgnXl4hqGgxVgUB1DSykqig6DlKGgdlKGS9OT+GZPfs6eReIaBPjHiQRUXuxGIyIMFUu4ez0FM7NzyFrWSzaoTuy/dVPMF7OLuFGsYBz83OYKpUwW6nAkT7CqorBaBTbozGEVBVZy8KZyQn8cGGB8eK0oRVKVuPfyXiogyMhIiIiIiIioo2qYjYPTkZCasthMiEEIiENZdOt3dZFKs6Nb+oM2/MgAahCge15mDdNeNKHKhT4UqLoOFA9gZimQVeaRWESQMow8PL8HE4M7+x48Ua+aGL8Zha2Uy2uHN2RRjIe7uiYiOj2uAdJRNQZLAYj2uIuZ7M4dWUMs5UyUoaBkXgcqlDgSZ9FO7SqYDKYKgQ8KZGzLfxwYR5xXUdIVVB0HaiKQFILwfZ9TJXKyFo29qdS6A1HkAmFMVkq4NSVMTx36DAv9GlDyhebxWCJGIvBiIiIiIiIiGileqEXAETDK7dcImG1WQwWSBEjajdDVSEAeNJH0XFgeR4UtCbhe75E3nYQ1lREterjWRECKcPARLGI8WIBj/b0dmD0wNRsAS+cG8e5S7eQLZiQUkIIgXQijKOHtuP40VEMDSQ6MjYiWh33IImIOkfp9ACIqHOmyiWcujKGRauCXYkkesMRqKL6sqAKBb3hCHYlkli0Kjh1ZQxT5VJbx5cvmrgwNo2XL97EhbFp5ItmW38+rc4OFIPtiMVQdh2MZbNYtCzENA1Llo2K6yKu6VCEgrCqIWHoqLguxrJZlF0HihAYjiUa8eJEGxGTwYiIiIiIiIjoboIFXpHVisFCzY+VAyliRO02Gk8gHQoha1nwpIQP2ZJkF2S6Hky32sotoeuNfYPg2nA7Xb42j+e/9BLOnL0Kz/OxczCJPcMZ7BxMwvN8nDl7Fc9/6SVcvjbfkfER0UobfQ+SiKjbMRmMaAs7Oz2F2UoZuxJJKI1JXz2gtapetHO9kMeL01N4Zs++dR/X7U74xCI6RoZSeHhPP4b6E4x/7pBgm0hdUfHa0iIWLBNCSryWXYLpebVFBBu6osCXgOP78KUPy/cwUyljdyLVOFG2UeLFiZZjMhgRERERERER3U0wGWy1YrBgWhiTwaiTkoaBo339ODM5gaRhQEo01t5VRSCu68hZdu3WEpbvYWc0Dl1R4cnqmrChqm0f99RsAadOn8dCtozdw2koSnP/QlUV9GWi6ElFMDGdw6nT5/Hcs08yIYxoA1h9DxKo70Panoei4yCsarheyOGvJyfwqQMPdWq4RERdh8VgRFtU3rZxbn4OKcNoXISVXAfjhQIMVcWewMVZO4t2Ll+bx6nT5zEzX0IqEcLOwSQs28Wt2QLG3srh1den8Y3vXMFAbxxD/QnGP3dAvU1kzrbwjYlxLJgmBKoLAZoQEAB830fe86AIAUNVa3HjAoDEXMXEcKy6iJAOhToeL050O0wGIyIiIiIiIqK7aW0TubJQJhL4WMVkMRh11rHBIfxwYQGzlRJUATiQUCGgCgFNKFCEgC99OL6PqKZhWyQKAMhaFtKhEEbj7V+Hf+HcOGbmSysKwYIURWBkMIVrk1mcfWUcH/vQ4TaPkoiCVtuDBIDpShnT5RIgq8EDtl/db3J9H//1rauQAH5ieARD0ViHRk5E1D3YJpJoixovFhoTuLrZSgWO76PkOFiwWlsy1uOjx4uFdRvT8hM+fZkoCmUbl96cw625InRNRW8mAk1VUCxZKJdtxj93gO17KLsOruRyyNkWNEWBLhQAAo4v4cnqqY7qwoGE7XnwIQEAmlBgeR4KjgMAHY8XJ7odKWVLMRiTwYiIiIiIiIhoNcECr2jozm0iK2wTSR02FI3h5P6DGIjE4EsJV0pI6UMRAhKyup7r+1AVBUPROKKaDl9K5GwbT/T1t727Q75o4tylW0glQo1CMAngxlQOF6/MYn6p3LitogikEiGcu3gL+aJ5m+9IRO2w2h6kJ31MFAqYr5iYqZRR8VzENQ0J3UDKMGD7Hv7X5ASev3QRl7PZzg2eiKhLsBiMaIuyPQ8SzWIcoJn4BAClWrFOXTuKduonfEYGU1AUgXLFxpXrC7BsF4mogXBIgyIUxKIGTMuD5XjYPZzGQraMU6fPY2p2/QrVqMnyPEyXqxfq6VAIqhC1tpDVi3kpJWStIExVqo8bTQhkQiFkQiEIAfhSNm4PdCZenOhOyhUHntdsicpkMCIiIiIiIiJaTTlQ4LVam8iWYjC2iaQN4EA6jecOHcZD6QwUCFi+D9N1UXQcqIpATNORMUIwVAW+lJgsFTAQieKpwaG2j3X8ZhbZgolMMtz4mGW7WMxW4Lo+bs7kkStYWMyWMbdYgpQSc9kyxm9m2z5WImpabQ8yZ9vI2TY8KaEJBZ4vUfY8ABKKUKAKgaimYryYx//30g9xObfUsfETEXUDtokk2qIMVYVAtRinfjHm+M3Ch5LroN63G1j/op3VTvhMzRWRLZhQFQEpbeiaCl1XoCoKDEPF/FIJw4NJxj+3Wd62MW+aMBQFuqJCEQKe70MIAQW1wjAJaIqAJgQ8KeHUir9kLSGsHgvcyXhxojsJpoIZuoaQwUsmovtRsXxcvDwDzwcMXUVPKoLFXAW248HQVYzuSCMZD9/9GxEREREREW1gUsqWAq/oasVgwTaRLAajDWIoGsOBdAaqUHA5l4WhqugNVw/+Llk2pJRYtCxUXBcDkShO7j/YkbZttuNBSglVbRaUOE51r8J1PZRNBz+4eBOG3nyeuZ6Pb774JvoyMQwNcN2ZqBNW24OcLpfhSR+aUBoBA6brQfoSHiRKrosbxSJUoWCqXMb/89wP8L+N7saxwSG2jSQiegDc2STaokbjiUbrx95wBJ6UjbQmAHB9CcvzEaoVf6130U79hM/OwSSA6iRver4I6UtIIWA7HmzHAyrVuOd41IBpuyiWbPSkI4345w8e28fN5XU2b1Zg+x7imo64riOsarA8C2qtEEwTAr4Aqpf6AqqoFho6vg8JCUNVkdCb8eInhkfaHi9OdDf5YrMYjKlgRPduaq6Al8dKuDHr4G8v/gCW66FQtGDZHkKGikQ8hJChIZ0I4+ih7Th+dJQLs0REREREtGnZjg/Pa66pRu7SJtKyq7dXVdGW8RHdji8lCo6NvkgEUV3D7kQSY7ksbpaKKDg2ACClCJwY3oWnOliIYegqhBDwPL9REOb7ErbjIlew4Hk+FEVADWuIhg34vo9s0cQrr00hmzdx8ukjOLC7ryNjJ9rKlu9B2p6HJcuEEug0AwCelMjWXnNUoSCpG1AVBRXXwaJl4RsTN/DDhQWc3H8QB9LpDt0bIqLNiW0iibaopGHgaF8/crYNX0o4/sr2j2W32iqyXrTzRF//uhXtLD/hUyxZMC23kRIW5PsS5YoDSMDzq4stmWQYSwWT8c9tYLrVx4oQAiFVRV84DFWI6t9PqbaD1IUCN9AuEqg+jmzPR384DFUoHY0XJ7qbYDJYIsZiMKJ7cfnaPH7/T3+A129Y8H2JRNxAoWihYjrwZfW9u1C0kIob8DwfZ85exfNfegmXr813euhEREREREQPJJj0pSgCIWPllsvyAjGmg9FGUHBs1JbWEdV0fGr/QfzakSdwcv9BHExl8Ei6B0f7BvDMnn0dTeQZ3ZFGOhHGUt5sfKxUsauFYL4PTVOgqgoqlgvP92G7PuIRA/t39WIhW8ap0+cxNVvo2PiJtqrle5BFx4Hl+1Bq+0WaokAIwPare4O+lNAU0dgTDGvV986eUAiLVgWnroxhqlzq2P0hItqMWAxGtIUdGxzCQCSKyVIBlreyGKzkuvClbEvRTvCED1At8vJ92TghoGkKtEAUtOv58P1q8RGAahGZlNX0MFpXfq3Vo5QSqhAYjEaRNEIIaSpSuo6QqiFlGFCFgCt9eNKHLyVMz0NYVWEoKq4X8ugJRToWL050N/kSk8GI7sfUbAGnTp/HYq6CvqQKQxO4NrkEy3aRiIWQjIWQTIRg2S6u3lhCNKxj93CaC7NERERERLSplc1gi0i1Je2kTlVbi8RYDEYbQdZqrn3FdR2aoiBpGHhn/wD6IxH0hMO1tV15h++y/pLxarJ4rlA9eAYA80sleJ4PTW22moMEimUbtu2iLxND2NAwMpjCzHwJZ18Z7+A9INq6gnuQrvQhZWDPTxG17jKABKDWPp6zbXjShwh8bjiWwGyljBenpzpxN4iINq0tUwxWKpXwW7/1Wzh69CgSiQTi8TiOHDmCz3/+87Bt+7Zf5zgO/t2/+3d47LHHEIvFkMlk8P73vx//7b/9tzaOnmh9DEVjOLn/IHpCEdwoFmF6bi3JqVroM1uptK1oZ/kJH0UR8H3ZGE80rCOVCEPXqi9bnlctMIrHjMZ/QwgYurpuYyTA9X1EVA2GosLyPahCIKrp2J9KIaxqKLguTM+FrijIhEKIqBpc36+1IJWI6zpiuo4TwyN47tBhxvrShlUoMhmM6H68cG4cM/MlDG9LQgiBXMlDxXQRixiNRR4BgVjUQMV0MT1fhKIILswSEREREdGmVjGbB1NXaxG52ueCX0PUKdnAvlg60A0koTf/LSVQuMP+WbscPzqKbX0xTEznYFousnkTilJtNRfsLFIxHaiqgsG+OIDqHkMqEcK5i7eQL5q3+/ZEtE6Ce5CzlTI8X0LKaiCElBIVz4VANSXMUFUoEPD8aqciu9bNSBECihBIGQZenp9DfgO8JhERbRZbohhsdnYW7373u/HP//k/x6uvvopdu3Zh3759uHjxIj73uc/h2LFjKBRWphGYpokf//Efx6/+6q/i0qVL2LdvH3p7e/Htb38bzzzzDH7t136tA/eGaG0dSKfx3KHDONzTAwGBouug4Ngoug5c38ePDe1oS9HO8hM+IUODUNA47VNPBQvXFk48KaEIgaVcBXOLJYzfyiEe0TG6Y33HudU5vg+j1hrS9n3UW0CmjBAeyWSwIxprPI4qngul1krysd4+/JN3HMH/7bHH8WtHnuh4vDjR3eRbisHWpz0uUbfIF02cu3QLqUQIiiLgehK5kg/L8bCUr2AxV278bylXgaYpmF8qwXa8TbkwWyw7ePNGDq+/tYQ3b+RQLDudHhIREREREXVIMOUrEr7HYjAmg9EGkLOba18po3kQUlMUxHW98d95p/OFF0MDCZx8+gh601Fcub4A03YbRWC6plZbzbkeVEVBImYgGmmOP5MMY6lgYvxmtkOjJ9ra6nuQHxzeCUURsH0fju+h4nrwASR0HQPhCGJa83lbLUR1YKgqErXXo3QohKxlYbzI7gJERPfq9rOTLvLpT38aFy9exEMPPYS/+Iu/wL59+wAA4+Pj+OhHP4of/OAH+Ef/6B/hj//4j1u+7nOf+xxeeOEF7N69G1//+tdx8OBBAMDp06fxiU98Ar/927+NY8eO4SMf+Ujb7xPRWhqKxvBoTy8cz0fRceDV2v/FdR3vHNjWtqKd40dHcWFsGhPTOSTjIYQNDeWKA01DI1VE11TYrgfpS5i2i4tXZqHrCizLw/aBBL7xwps4fnQUQwOJtox5q6m3Ex2MRrFoWbhVKmIknoBSSwjbk0xhOBZH0XHgSh8LZgWD0Tj+r4++g8VftKkUWtpEhjs4EqKNb/xmFtmCiZ2DSQCAafuwHB8hQ8Vq3SQMXUHFclEs2ehJR5BJhnFjOo/xm1k8enCwzaO/d/NLJs6PLeCNa0solJ1qTr0AElEdD+3O4MjBXvRl+HpBRERERLSVtLaJvEMxWFiF4/oomy4uj2ehKgKDfVHEo/ptv4ZoPWWtQDJYqDUVP2kYKDrVg08bJYXnwO4+PPfsk/jSX/4QU98eg+v7jc9Fwzp0TUEkrKPan6J+hBlQVQWQErbDRD6iThmKxnDywEN4aXYGb+ZzCCsq0qEQ5swKkrViVE1RoApRe+2RcHyJvlAYulLtBqSKamCE7fG5TER0r7o+GezChQv4xje+AQD4wz/8w0YhGACMjo7ij/7oj6AoCk6dOoU33nij8bmZmRn8x//4HxtfVy8EA4Cnn34av/qrvwoA+Ff/6l+14V4Qrb+CU62y7wmHMRCNoCcchqGquFkqtm0MwRM+1yezUBUFqqrA9yV834dpu9U2krWN5XrHcIFqqkg6EcaZs1fx/JdewuVr820b91ZSj+aNajoeTmfQG47geiGPBbMCrxbvqyoCEhJFx8FIPInPHHyYhWC0qWTzFYzfymJusYTFbBmNFx0iWpXteJBSVhdYAVi2BGSzkHs5IQQgAa+W/rkZFmbHpwr4yjffwksXZ+H5EoO9UWwfiGGwNwrPl3jp4iy+8s23MD7F04lERERERFtJuRJMBlNXvc38kokrN3IYG8/irZt5vHi+On/44v8Yw5nv3cT80uZISabu0poM1pqKnwy0isxtkGIwoLp/cOKpvcikIkgnwkgnwhjdnsbjh4aQiIehqSqkD9h2c33B83xACBj66s9PImoPKSW2RaJI6AY8SCQNA4oQkIGTpIaqoFoI5kNVBPrCkcbn6vtPhsrnMhHRver6YrAXXngBALBjxw489dRTKz7/2GOP4aGHHoKUEl/+8pcbHz99+jRs28b+/fvx/ve/f8XXffaznwUAnDt3DlevXl2n0RO1T/CEz0gsDqBaYf+DuVm8PDeLC4sLbTkFVD/hs2s4A11XoGnVl6mFXAWm5UCI6im7+uTNdn0oQuDA7j7sGExi93AaC9kyTp0+j6lZbsiuNStw6mJbNIrnDh3GB4ZHoCoKJopFXC/kMVEsQlUUnBgeaUuLUaK1MjVbwFf+6iL+H89/G5euzOKNt+Zx6c05PP+l7+Mrf3WRrylEt2HoKoQQ1QVWAKbjA6K6yGPoKlKJcMv/BAQgqsXDwMZfmJ1fMvG170wgV7Sxoz+KdK0dJgAoikA6EcKO/ihyRRtf+84EN3KIiLaYvG3jwuJCW+fNRES0MRTLDiZmiljKW8gVbax2HKZ+sOTqZAFSAtGQhkRM58ES6rhs4JolbaxMBqvbaNc2ozvSiIR1AALhkI50MoywobWsKZiBVqxLeROZRBijO9LtHywRNdi+D0NVsT+VQljVUKy9tpi1AAIJCcvz4EoJVVGQMgwogTfWrGUhHQphNM6uQERE96rr20QuLi4CqBaD3c7w8DBee+01vPjii42Pfe973wMAvOc971n1a3bs2IHdu3fj2rVr+N73voe9e/eu4aiJ2ktKiYLTnNQNRKL49q2bmDdNOL6PN3NZCCGQDoVwtK8fxwaH1jXpabA/jm29ccQiOoolC+94aAjziyV8/8IkZhZKCNU2nYWQiId1JOIhpBLVtkyKIjAymMK1ySzOvjKOj33o8LqNcyuyA/HbIVXFUDSGj+3Zhw8O78R4sQDb82CoKkbjiZZFA6KN7vK1eZw6fR4z8yUYhop41IAQAooq4PsSZ85exYWxaZx8+ggO7O7r9HCJNpTRHWnEIzpu3MrBMFRYtg8BwPclwiENmtp6/sS0XYR0FfFY9X1ioy/Mnh9bwGLewo7+aEvaWf3kYvWaRGCwN4Kbc2W8enkBP/Hk7eceRETUHabKJZydnsK5+TlkLavRjqhd82YiIuqcYAv5a7cK8DwJCMByPMwsmI0W8sGDJYM9YUwvVA+OuJ7fOFiSihuYXqjga9+ZwMdP7GHreWoLy/NQcZsFU6nQsmSwYDGYs7GKwZLxMIb6E7iUm0XIUKEo1TWHsKE1EsFM20UKIfi+RK5g4cTxvUjG+dwi6qRSrfVsygjhUCaDRzI9+J83rmOqXIbjeRBCwFBVpI0QVCGgKQpMz0NcB3wpkbNtnBge4b4TEdF96PpisHQtkebmzZu3vc3k5CQAtLSJvHz5MgDcschr7969uHbtGsbGxtZgpK2klHADF+O0MQT/Jt3096m4Lpxa4lPOtvHNiRu4VS5BUxRENRX94QjCmoqsZeGbEzfw6vwcPrl3P/an0usynsVaCpimKsikIvjoTxyEZXu4MZVFLGIgETPg+RK3ZgtQFAHP95EvmEjEmieYknEDP7hwEz/+5G4k46E7/DS6HxXbhqzF8WpoPg+iioKHk6mW23bTc2Qj69bXpXaamivgj//8FSzmKhjdnkK+ZGFeVE8jGZqGnlr0/ORMHn/856/gs//7OzHUzxNIRED1+fPiKxOYmS9iaq4IIaptIn0fkK4PKSVksNWqBGzbxY5tSWiqAtf1kS2Y+MCP7kE0rHX0dcz3ffh+dcx+rfi5WHHw+rUlxMLVaZOUErfmyihVXEhIbOuJIBVvLkLFwhpee2sJ7zrch3hEf9vjqY/Fdd3GAjcR3Z/g60r9ed4pfF53h7xt4+zMNL4xeQM520ZfOIzhWAyqEPCkbNu8mTYvzuGINr7V5gZ1N6aK+NrZCSzlLMQiOsK6CmnUD4tIvHRhBpdvZPFTx0ZwZSKPxZyJ7f1RVGyvMTdyPdnSFmtbTxi35so4PzaPH/+R7auOZ72uIe73NelOv5t247XVg1uoVBprvKpQEIZo+fvHFKXx+axpbrj3q8G+GN6aUFEs2xCQ8H2JkKE2nmMV04Hr+piYyaO/J4on37Fjw90Huj1eK3WnnGk2Xlf6QmH8zOhuHE5n8Pzrl5CzLWwLR5EwDMyZFcxbJiQkTNeF53uYKJXQHw7jR/oG+JigtuNrEm1Umnb3Ui8hg7OOLvT9738fTz75JADgu9/9Lt797ne3fP7ChQt4/PHH4XkeEokE8vk8AODQoUN47bXX8Pzzz+OXfumXVv3eP/dzP4f/+l//K/7xP/7H+L3f+73bjuH3f//38Qd/8Af3NN7XX38dlUoFe/bswX/4D//hnr6G6O3KQ+K78GFDYhpAHIALoH7mJwUgUQs6l5BYAhCDwPugILVqAPrbc2vewYW3KgCAWETB8UfjuDln429fLSITVxutmeZzLip29eIxbCjoTzVf9HxfYqno4X2PxbGjnycF1soEJF5D9XfeC4F3dn+3YdoCXh4r4fUbFvqS1dTBQtlDtlQtkI0YCvpSzSKQ+byHR0ZDOHqAKQ9EM4sOXnq9hHzZh6YAuZKHsllvEQn41e6PiIVFte2zBCxHQteAoR4DugYsFjzEIwre91gCqfjGaxN5t+uPdFxFItIcN68/iIi6Vw4SV+HjKiRmAHgAVAA6qnPoJATqr/ztmDcTEVH75Yoe/vbVAkoVH5mECgng5rzT+Pz2Ph0KgKWCh7Ah4HiAqgDxiArHk5herN5WANjRr0ME3h+KFQ+KIvCTP5JEJMT1NlpfM5A4X1vjjQM4htb5eAESL9Y+rwD4AJSWx2un/e35AhYLHmaXHIR0BYmoAgmJbLFaICggEA4pSEYVPPlwDNt63t5hLSJ6+6Yg8cPa60oKAu+u7S3NQOIl+ChAIgzAB5AHGsnLYVT3J5+Egm0b6HWIiKjTPvrRj971Nl2fDPYjP/IjeNe73oW/+7u/wz/4B/8AX/3qV3H4cLVt3JUrV/CpT30KXi0RqVwuN77ONKuRzcYd4iZDoWraUKVSueMYpqamcO7cubd1P4jWk1n7/3lUi8AyAApoFoNZAOoZOAICGUgs1BbCj2LtN27zZa/x71Ss+v1dr7qxrASahMejCiq1VlRKLcWnPilVFAEpq19Ha8cNpLt0/RsIbQkVy8eNWQcRQzTav7mBg63B7nZCCEQMgfEZBw+P+lycpS0tV/Tw0usllCp+o5ASAihbPmS1QwqiIaBiAyVTwtCqRWIhXaAvpcF2feTKsrEwuxELwYDVrz8CnSKx/FgNrz+IiLpTcIPCqn2sfjTABZAFUILEAAQiaM+8mYiI2u/Nmyby5eYcyHWbE4L6+qSAQCah4taCA9eTGKkdEgmuL0hUD88EPxYNKVgqeljMuzxYQuuuEljjjaxSXBEJ/NtHdZ9gI/XecD2JaEjB9l4dPUkNs1kXhbIP05IQAtBUiYd3hrBvR3jDrjcQbTVW4HUn+C63rXaA5ip83EB1XmUGbvcwBPbygA0R0QPZEnv5f/Inf4If+7Efw9jYGN7xjndgz549UFUVb775JgzDwMmTJ3Hq1CkkEs2WT+FwtX+4bd++H7plVZcAI5HIbW8DAENDQzh69Og9jbWeDJZKpfDTP/3T9/Q11D6u6+Ib3/gGAOBDH/rQPcXvbQavLMxjemIcs4sL6FVV7OrpRd52cK1YTcrThIKd6UzL5mfCNGELBe95x5E169GdL1q4cSuL16avIJ4yEY8a+OB79+PoI0O4eHkGr9/8AXYMJqE2VkokMktlpBNh6FrrpM7zfEg1j/e+5504fGDbmoyPgLMzU7BmZwAAhzI9+MnhnR0eEXXr61K7XLw8g7+9+AMMB15bvJtLgFp9jx/qT2Cgp5kC5nk+JqfzeOgwX1toa/uz//Ua1NBbeMfudKNQyru5BNcvYylfgpSAHgpB0XxUTBdCUZFOhpGIGQjpGlLJMI4+MoQffXxkw7Rd9X0fV69exa1btzA4OAhFUaBE8jh39RoSiUjjfppeBa6szhEikRBSqXDge0iUnQp2796JfSPJtz2e6elpbN++HXv37mXLE6IHZNs2vvnNbwIA9uzZ09FrJT6vN6epchl/8MYlhC0LO8NhXFhaRAJAWA3MQSVQdB2UVBU70xlEa4+z9Zg30+bHORzRxrfa3KBYcfDNV66gL2Mgnai+ppdNF0apBADQNQXpVHNuU7RKmFmsIJ5MQlcVSABz+Vzj88lkApraei1QccsY3D6MA7vTK8azXtcQ9/uatNrvplN4bfXgvnVzEubiPADgSG8ffmL78IrbTLx2AVYtSOFH9+7HUHRjpORLKfHGzIuNw1n/5088AUUIvDWxiD/9ywtQFAXxqIF/+Ml3IZ28894dbUy8VupOfzt1C+b8LADg0UwvPjg8suI2edvGG7ks/vv1q1CEQFzT8SuPPoawyscAdQ5fk2gz2xKP1v379+OVV17Bb//2b+P06dOYmJhALBbDz/zMz+Bf/+t/jf/5P/8nAGBwcLDxNZlMBgCwuLh42+9b/1z9trfz2c9+Fp/97GfvaaxPPPEEzp07ByEEX0w2OE3TuuZvVPY8lFwPtu9jWyQKIRTEjWZUuSclbOkjrDTvbyYcxkSxiJtmBT3R6Nv6+VOzBbxwbhznLt1CNm9iciYHSCBkqNi+LYmRwTT27OxFOhVBrmihL1P/eQLbeuOrfs/FnIVMKoI9O3u75u+0EbgQEKK6sBLRdf5uN5huel1qF88HpAB0vbmZ5zh+4/UvHNJaEoEURQVE9ev4u6atKl80cf71aaQT4Wr7RwC266NYsqHpKiIhBT1xFdsGByClRKFkIxxS8b//9DugayoMXcXojjSS8fBdflJ7+b4PRVEghKgWgikKtvfHkIjqKJQdpBPVc9CKEI3XCAk0UgUBoFC2kYjp2N4fW5ONiPpYNE3jxgbRA/L9ZuRn/bndSXxebz4vzc9izjSxK5FE1rJg+z7iWnW+LCFhuh5Mz4MvJVxfYtasYHciBWBt583UnTiHI9qYVpsbzC6YKJYdDPZGG3MAz292KdBUpWVukIjquDVXRqnsIpMMQQQ6GlSJltv7fjXRKKSrq14jtOMa4l5ek1b73XQSr60eTMFzG2u8PeHIqn/3dCiM2VpXnJLnb5j3K8t2IYRoHFyPRUKIhHX0pGN4+dIUcoVqptBSwUZfz8Y4fEYPjtdK3aPi+43XnWQ4tOrftUfT8KORCL4/Pwvbq87lc66LeGhjrSHS1sXXJNpstszV8cDAAH7nd34HV65cgWmaWFhYwFe/+lUcOnQIly5dAgC8613vatz+wIEDAIA333zztt/z6tWrLbcl2qwKjgOvdpQmVDvdrAql5aRzxXVbvkatXbTZ3tvrg3T52jye/9JLOHP2KjzPR39PFIloCPGoASmB7/9wEs9/6SVMzxVx9NB25AoWfF/e8Xv6vkSuYOHo4e0bbqN5swv+vQ2FEdu0+Rl6tbWDV5tcSlldVKoLGa0X9p7nA0LA0Pn4p61r/GYW2YKJTLL5HruULTdO5WqKQDSioCcVQX9PDKPbU7AcH7GIgScO78CjBwc3zftzPKrjod0ZFCsuZO0OtrSJDLSVlVKiWHHx8O4M4lG9zSMlIqL1kLdtnJufQ8owoAjRmDdDVOfIWctC2XXh1z7uS4k504TjV+dNazVvJiKiznNcH1jWQt4LrFFqamv7qlhUh6oKFCtO7SOiZS7hL+s5ny9VD5YM9rF4uJ3yto0Liwt4eW4WFxYXkL9Dp5hukbdtXM4uYa5SwaJpQrtNEV0w1TTvbJzfi2W3XlcZRnONri/TTC+bXyy1bUxEdHcl12n8O67dft1MCIG+cDPVb8E0b3tbIiK6sy1fuug4Dv7qr/4KAPDRj3608fF3v/vd+MIXvoAXXnhh1a+7efMmrl271rgt0WaWd2yotdUINTD5C2sazNqitbls8dqr7X4a6oMXREzNFnDq9HksZMvYPVxtM7WQrZ42EkIgnQxjz3AGE9M5nDp9Hs988BAujE1jYjqHkcFUy+JLne9LTEzlsK0vhmOPjz7w2Gh1lt98HIText+eaKMY3ZFGOhHGUt5EXyYK2/EaBS0QQEhvvVRaypvIJMIY3ZFu+1iJNorq80QG2jYDxXJzYTgaVlpOvKuqAkgJ29mcG+FHDvbiyo0cphcqGOyNtFx/1DdwpJSYXqigJxnCYwd6OzVUIiJaY+PFArKWhZF4NZFaFQKO72PRNAGsnI8KUS38KjgOekLqmsybiYhoY9A1BRDVtcf6nCCTCCEdN+D5Estqu6AqAtGQCsuuzp/qSUaN2wVuXz9Y8u5HB3iwpE2myiWcnZ7Cufk5ZC2rmvoMIB0K4WhfP44NDm2YtohrpXGf52ZxaWkJsvYgPHVlDFfzuRX3Oak3i8FyG6hILniIU9PUlv2M3kwUV28sAAAWsuW2j42Ibq/oNIvBYvqd3+t6Q2HcqrVhXrBYDEZE9KC2TDLY7fzO7/wO5ubmsGfPHjz99NONj3/0ox+Fruu4cuUK/uZv/mbF1/3+7/8+AODxxx/Hvn372jZeovVQsG3EdR2GosIMJIAFi32sZcVgWctCOhTCaPzBo5ZfODeOmflSS2FX2WxeEEbDBhRFYGQwhZn5Eq7cWMDJp4+gNx3Ftcks5pfKjTQfz/Mxv1TGtcksejNRnHz6CIYGGAO91lqTwbb8Wwh1gWQ83JI6GFxQMjQVwYc5UweJqpYn6gGtJ+J1rXVzfLMn6vVlwvip94wgFTdwc66MstlMCXN9H9mChZtzZaTiBn7qPSPoy/D1gYioW9ieB4lmwldc16EJpZkQBrTUhElZ/V+9WHgt5s1ERLQxDPZFkYjqyJdai2KEENBUpVosFpAv2RjojWCgJ4LphUq1ICzwplF/K+HBkva7nM3i+UsXcWZyAp7vYyQex+5EEiPxODzfx5nJCTx/6SIuZ7OdHuqaCd5ny/MQ0zQkdANxTYcCsep9bkkG21DFYIH16WXrDH2ZZrLe/BKLwYg2klKgGCx+t2KwcHNtjclgREQPbkvs5L/wwgv4xje+AS9QxFCpVPCbv/mb+Jf/8l9CVVX8p//0n6AH3ny2bduGz372swCAX/iFX8DY2Fjjc3/xF3+Bz3/+8wCA3/iN32jTvSBaH1JKFBwHhqqiLxxuaXERVlYvBvOlRM628URff8uk8H7kiybOXbqFVCLUkrBRrjQnlpFwNZFHUQRSiRDOXbyFwf44nnv2SXzg2F5oqoIb03lcm1zCjek8NFXBieN78dyzT+LA7r4HGhfdmRXY+GcyGHWL40dHsa0vhonpHEwr2CKy+Rhn6iBRUzBRry7Ywnl5Tko3JOqNDiXw8RN78OThAWiKQNlyUao4yBccqKrAux8dwMdP7MHoEDf7iYi6iaGqEGhNxh6KxlB925OIaCoyRijQ9kvCh4QixJrMm4mIaONYrYX87dSTvo4c7MPTPzbaOFhi1VKWAcDjwZKOmCqXcOrKGBatCnYlkugNRxpF36pQ0BuOYFciiUWrglNXxjBV3vytBpff57huQNQuXnRVQX9k9fu8UdtE2k5w7a410T/YJnIhW25Zq6DO2IqtWGkl1/dbug/F7tAmEgB6QiwGIyJaC1uiTeQPfvAD/Mqv/Aqi0Sh2794NwzAwNjaGcrmMaDSKL37xi3j/+9+/4us+//nP4+WXX8Z3v/tdHDp0CIcPH0axWMTVq1cBAP/0n/7TltaSRJtRsPhrMBqF60tMlgoYjiUQ0lqLwSSqkeeTpQIGIlE8NTj0wD93/GYW2YKJnYPJxsd8iZZCjGikOeHMJMO4MZ3H+M0sHj04iI//5GF86Pg+jN/MwnY8GLqK0R1ppvWsMzvQJpKtTqhbDA0kcPLpIzh1+jzGrs3DcXyEDBWhkAbP87GUN5ErWNjWF2PqIBGaiXpnzl5FT6raNrGlGGyVRL0Tx/du+vfovkwYH3j3Dgz2RfDX378F35foSYXwsz+xm61ciIi61Gg8gXQohKxloTccAQBsj0Uxb1bgSh8RVYMQAqoQcKWEJyUMIRDTtDWZNxMR0cayvIW8ECtbBi9P+urLhPHxE3twfmwB3/r+TZQtF5DA3JKJ3nQI7350oHE7Wn/fmpzA9UIe2yIRZG0LCV2HrrSucSpCYDiWwPVCHi9OT+GZPZu7M8zZ6SnMVsrYlUhCEQJWcH23dt9Xu8+pNiSD5Yvmfa/vB1P9gwc5AaA3HUG9H6vn+cgVTGRSkXUZO93Z7VqxxnQdI7E4HspkMBSNYTSe4MGJLaDkOi3/HdXuXJ4QTAbLOzYc34fOTjVELfK2jfFiAbbnwVBVvp7SqrZEMdiP/diP4TOf+QxefPFF3LhxA67rYmRkBB/+8IfxK7/yKxgdXT3hIxKJ4Nvf/jZ+93d/F3/yJ3+Cy5cvwzAMvO9978Mv//Iv45lnnmnzPSFae4XAqZ50KISfGtmFU1fGcL2QR0I3qhHmtVPNM+Uyyq6LgUgUJ/cfxFA0dofvfGd27SScqiqBj7mNiHQhgHCo+RKlqgogJWynOVlNxsN49ODgA4+B7p/FNpHUpQ7s7sNzzz6J/89/+S6uXJ9HsWxD0xQ4ro9MIowTx/fi2OOjLAQjqjl+dBQXxqYxMZ3DyGCqpU2kUssG832JmzP5rkvUS8R0pOLViXU6EWIhGBFRF0saBo729ePM5AQyoTAUIRDVdDycyeBKLoeC68BQFChCAPDh+j5URcHNUmlN5s1ERLSx1FvIf+07E7g5V0Y8oiEZMxoHZPIlG8WKi55kqCXpq36wZDFnYnqhAt+X+JHDA3jHgR7OJ9pkqlzCtyYn8JW3rsL2PWRtC0D1sGuPEULaCKE3HG4U+ClCIGUYeHl+DieGd27azdW8bePc/BxShlG7Xrn9Yd8V91lv3mfL82B53pp1ipiaLeCFc+M4d+kWsgWzsQeRTlQPnx0/evs1uGCbyOXJYLqmIhUPIVeoJgnNZ8ssBuuAy9ksTl0Zw2yljJRhYCQeh+V5uFUqYSy7hFcX5vGNiRsYiEQwFIvhaF8/jg0O8bq5ixUDLSIjmgbtLntLKcOApgi4fjWgYtEysS0SvePXEG0Vtyu2TYdCfD2lFbZEMdiRI0fwn//zf36grzUMA5/73Ofwuc99bo1HRbQx5O3mRVhSN3AgncZzhw433kgqnguvHl8uJU4Mj+CpNXgjMXQVQgh4nt8oCHPdZgtCTVUQ6B4Jz/MBIWDoTKPqpOBiAdtE0oPYyKcVhgYS2DmUQiyio1iycOydu7Bre5qpg0SrCCbqXZvMomzaMDQVEICERLHi4/qtLAb74l2XqKcFCtndQPtkIiLqTscGh/DDhYVGgnZ1ozSERzIZTJfLmDdNOF617YkiBCKqumbz5m61kecERER3U28hf35sAW9cX8L0QrnxuURMv2PSVzikNQ6WDG+LsRCsTeqFKdcLOTi+h7RhQBEKJCRKjour+RxURcHOeBwHUpnG16VDIUwUixgvFvBoT28H78GDGy8WkLUsjMTjjY/ZgXlsaFlBRvA+H870NIoxACBnWxhYg2KMy9fmcer0eczMl5BKhLBzMAlVVRrp/GfOXsWFsWmcfPoIDuzuW/H1d0oGA6qtIhvFYIsl7B/dnH+7zWp5W1JFCORsC1dyOVQ8F4aiIKZpKLsuio6DkuPgzOQEfriwgJP7D+JAOt3pu0DroBRo7xrX7/7epwiBnlAYs5UKgGqrSBaDEa1ebKsKBZ70kbUsvp7SCluiGIyIbi+YDJaonfYZisbwsT378MHhnfjPY6/hZrEEVQh8eOco3rd9x5r83NEdaaQTYSzlTfRlqhdxwQ1VTWudiC7lTWQSYYzuSK/Jz6f7J6VsWSwwFBaD0b3bDKcVHNdDoWTB0FX0pKN47zt3IZVgERjR7dQT9b7z8nX8169dQLFsA5BwNQ+xiIoP/OgevOedu7uqEAwA9MA1SrCQnYiIutNQNIaT+w82ErRThoF0KISopmM0kUBU03CzVILhqRiJx7Evmdr07aTWy2aYExAR3Yt60te73zGA6fkyHNeHrikY7IvescBLDZx8DaYr0/oJFqYMRKLI2jYUUZ3TOb4Py/OgKwoc38eNYhE7onHEaoUKau12dqBTwmZjex4kmvel/rE6Y9lh3+B9FkIgpKiYLRfhSYmX5+ZwbHDobRVwT80WcOr0eSxky9g9nIYSeE6oqoK+TBQ9qQgmpnM4dfo8nnv2yRVrCsHOIcuTwQCgLxPF1RsLAICFbHnF52l9LW9LWnYdXMnlYHouEpreSN+L6ToKtgPb97ArkcRkqYBTV8bw3KHD6DdCHb4XtNaKgTaRsbu0iKzrDbcWgxFtdasV29apQkFvOIJMKNzyesr5NbEYjGiLKwTiWZdP5JKGgUOZ3kYBkOWv3cQ3Ga9GPp85exU9qQgURaxIBqvzfYlcwcKJ43uZztNBtt+64c1kMLpXm+W0wlKu0vi3qipIxLjwQHQ3QwMJfPQnHsbla/Moliy4no+RTAnbMhp+9oOPQLvHBZ7NRFObE23X4wYOEdFWsDxBe6JYbHwuHQrh6dHduJLPIqrpsGsby5wvtdoscwIiovsRj+rYtzN1z7cPhjD5LAZri2BhStaqtoaUUsL2/UDbMgFdUWD7PiZKRTyUrqaDebK6Frq8YGozMVQVAtX7Ui/0iunVghzb8xBadti3fp8Ljo2vvvUmXpqdabTUnKmU8Z3pW2+rgPuFc+OYmS+tKAQLUhSBkcEUrk1mcfaVcXzsQ4dbPh9MBluti0hvJgrb8VAsWXj1jWmMMvW/bVZrSzpdLqPo2AipKlwpoQlA1P7PUBXMmSaGY3EMxxK4XsjjxekpfHTnrs7eEVpzJSdYDHZvqZg9oeZzlsVgRCuLbVejCNHyesqDatR9uzNEdF/ydjAZbOVFWE+oWQyxVJswr5XjR0dxYWwaE9M5jAymWorB6q0jfV9iYiqHbX0xHHt8dE1/Pt0fa9kpOP0ufd2JgM11WmExUAyWSUZuuyhFRK1sx2sk6vm+xM4Bu6ufP8vbREopGydbiYioewUTtJe3OEzoOv7fF15tHKBZtEyewA3YTHMCIqL1pAbW0pgMtv6WF6bEdR2GoqLoOCsOvQICqhCYq1SwN5mErqjIWhbSoRBG45s37Xo0nkA6FELWstAbjgDAHd9js5YFTVHwvyYmsGiZUIVAvJbmlA6F4Pn+Axdw54smzl26hVQi1FgzcFwfswslSFl9PgwPJgFUC8JSiRDOXbyFDx7b11LIZdm3Twabmi3g+69O4vzrU9XbCWByOo90snow/fjR0a5LL99IlrcltT0PU+UyHN+HL4EKqn87TVFgKApCqoqS66DgOOgJhZEyDLw8P4f3D27v5N2gdVAMFIPdS5tIoJoMZnseio6DC94C9qZSbC9PW9ZqxbaAxJJlw5U+ekPhxscVIRqvpyeGd/I5s8VxJ59oC8vbNq7kspirVLBomqtWEmcC1feLa1x9PzSQwMmnj6A3HcW1ySyWCpXGxE9VBOaXyrg2mUVvJoqTTx/hRK3D7EAynKYIaCwGo3tQP60wHEvc9bTCbKWMF6en2jzCppZisFSkY+Mg2mycQIsGoQh0e11UsBhMSm7iEBFtNUnDwKM9vXiifwCP9vQiaRgQQqAn3Jw7z/PkeovNNCcgIlpPgslgbVUvTEnXDjsbqopMyEDJdRpr0EIARm2OpwoBy/dQcBz4UiJn23iir39Tb6ImDQNH+/qRs2348s6POV9KzFUqKDo28o6FXYkkesLhxuEn1/fRG45gVyKJRauCU1fGMFUu3fNYxm9mkS2YyCSb10ye72NusYT5pfKKlo6ZZBhLBRPjN7MtHw8mg4WMZjLY5WvzeP5LL+F7r07Al0A8aiARDWFbXwye5+PM2at4/ksv4fK1+XseM92f5W1Ji44Dy3OhoPX6z/V9lF23cfi8/tisFy7eCKTwUncoBdtE3kMx2FS5hJemp3F+YR6vZRfxd3MzeP7SBfzW+Zfx1bfevK/XHqJusPyaBqh2/rpRLOBWqYSZSut7aP31dLxYaPdQaYPhTj7RFjRVLuGrb72J3zr/Ml6YvoWx3BJeyy7iT69eXnEh1RtufWOxvbVrFQkAB3b34blnn8QHju0FJFAs2yiULCzmK9BUBSeO78Vzzz6JA7v71vTn0v0LJoMZyuaNR6f2Wf20ApCzLUwUC6gEJoHB0wrBxMJ2CraJ7GExGNE9swPJniFd7fqULE1rvX8eW0USERGAXrYxWdUd5wSlAipec0N3I8wJiIjWkxpIUOahkvW3vDAFAJK6AVUocKUEIJEyDITVerqUgOf7cD0fk6UCBiJRPDU41Imhr6ljg0MYiEQxWSrctiDMlxKTpQJqJXKNAm4jcBjYqaWpPWgBt+14kFI2OoLUv1edlEBwdKqqAFLCdlr3I1ZLBpuaLeDU6fNYyJaxZziDVDzUWJtwHB99mSh2D6exkC3j1OnzmJrl5vh6CLYlBQBPSvgSt10nCj6mgOZzNXgonbpDSzLYXdpEXs5m8fyli3hxdhqARFzTkdANDESijXTC5y9dxOVsdn0HTbSBrHZNUwg8r3LL5s+N19M13tOnzYfFYERbTP1C6szkBFzfR0TVkNCNatwzxIoLqaRuQAssVCzZa9sqEqgmhH38Jw/jfT+yG4f29eOhPX145oOH8GuffS8+9qHDTATbIGwvsNmvshiM7m610wqO72G8UMCiZeF6oYDgMk+nTyssshiM6IEEk8E0rfunF8FkMKDa1oKIiKg3zGKw1aw2J3B9vzonMC2Mb7A5ARHRegq2iZR3SWmit295YQpQLUpJGQZUIeCjWoyi1pa+pfThS4mb5RJ6QhGc3H+wK9oWD0VjOLn/IHpCEVwv5LFgVgLFOj4WzAquF/JI6CEkdAP94WarKT1wIDhYoPMgBdxG7fCY57X+PYICf6rq7YSAobeuQ7cmg1WLwV44N46Z+RJGBlNQFNHSPtK0qpvliiIwMpjCzHwJZ18Zv6cx0/0JtiUFUHueycbrXcLQEdGaf0/X92GoKhK1pKj645IH0btPazKYdtvbBdvL704kkTQChZ2+97bSCYk2s9WuaYIBHpbnwQm8TzdeT7mXu+V1/24NETUEL6R2JZJI1dpZANWJ17ZIdMWFlBBiXVtFBvm+RE86iv6eGA7v34ZkPHz3L6K2CU74OSGje7HaaYWS6za2emzfRyVwwdrJ0wpSSiwG4ugzqWjbx0C0WTlu8zmra93//qAoAkqgUN71WAxGREStxWDzZuUOt9xaVpsTWLWP1f9tBd5LeYKZiLpZoBYMLhOG193ywhSguhZVbRcZQm8oDAGBkuvCkz5sKaEIgXf09uK5Q4dxIJ3u3ODX2IF0Gs8dOowPDI9AVRRMFIu4XshjoliEqig4MTyCD42MwJV+SwG3ETgM5fqypYjxfgu4R3ekkU6EsZRv7i8sLwYLJpct5U1kEmGM7ki33GZ5m8h80cS5S7eQSoQac/VwKFgMFkghVQRSiRDOXbyFfJHF+2tteVvSmKZBoFoQBlSv85rXhBKu9NEfDjeKDusHCHbG4x26B7QefClRdpvPw/gd2kQuby8fDCUwa/MDtpenrWjVa5plc+aS03ye1V9PR+MMW9nqbl9+u85KpRLOnj2L7373u7h16xbm5uZgmiZ6e3vR39+Phx9+GO973/tw4MCBTg2RqOvUL6R2JZJQhEAluOCqiMaJn+FYAtcLebw4PYVn9uxDJhTCXKW6mL1orX0yWF3ZbJ4OiEaMdfs59GBa2kSqrCWmuwueVqhP9CuBiR8AFG0HkUj1cqSTpxUqltuymJRJsRiV6F4FWzYsP7HbrTRVwK61deEmDhERAUBfoBgs79hwfR+awnnTanMCb1kaTtGxEVIjtc/xBDMRda/goRImg62/emHKmckJZELVtKv6+qamKNgRiyGpGyg6DmYrZUxVytgRjeFAKtMViWDLDUVj+Nieffjg8E6MFwuwPQ+GqmI0nkDSMPDy3OyKAm5NtF7LeFJCW97S7x4LuJPxMI4e2o4zZ6+iJxWpHrRangwmJQAB35fIFSycOL53xYHx5WsQ4zezyBZM7BxMNj4eDjWLTUy7dS0ykwzjxnQe4zezePTg4D2Nne7dscEh/HBhAZOlAvrCEYRVFWXXgQIJRQDVP7mEUyvM3BapHsj1pUTOtnFieARJg3tD3aTsugi+5cVu0yZytfbyYVVFvvZ5y/Ngex6KjgNPSggA35udwYnhnXzMUNdbeU0DWMta6hZdB+lQiK+n1KKtxWCO4+CrX/0q/uAP/gBnz56FF7hIrE9+lp8E2LZtGz75yU/iF3/xF1kYRvQ2rHYhVe/JDgBGYJE6GPN8YngneoPJYNb6nJiRUqISLAYLd6xWlW7D9tkmku5P8LRCb7i6uVNeVgxWcG30o/q5Tp5WWMw20xtChoZo+PYnlIioldOyEKsEOz11LU1TYDvV90WXbSKJiAhAyghBFQKelJASWLDMxubWVrbanGB5MVjBcRqf4wlmIupmaqAYzPO3wMRpAwgWpgzHEi2HXUOqCkNVkVYUzJkVJHQDw/E4JktF+LWUsG6UNAw82tO74uOrFXArAhBoTvM9KRubig9SwH386CgujE1jYjqHkcEUhLKyGMz3JSamctjWF8Oxx0dXfN6yA39DQ4PteJBSQg0cXm5JBrOrhSj1P6eqKoCULUVltHbqbUlPXRnDtUIBqmhtF2l7PuzaoYmMEUJU0+FLiclSAQORKJ4aHOr0XaA1VnSa+36Gqtz2NaPeXn4kkAwXrt3W9X3cKBZwq1SCW3vtkRLwigV88fLr+PiefV1ZxEsUFLym2RaJYvm5gqLj8PWUVmjLEUXTNPFv/+2/xY4dO3Dy5En87d/+LVzXhaqqeOSRR/De974XP/MzP4NPfvKT+NCHPoR3vetd6Ovrg5QS09PT+N3f/V08/PDDOHHiBP7u7/6uHUMm6jr1C6lgzLMTSAbTl7X9C8Y8ZwJfs2iuTzKYabktJ+KYDLbxtCSDsU0k3YPl0eCAXJEMVnKqz/36aYUn+vo7clphKddsEdmTjq4oTiei27MDxVDaFmgTCVSTweqYDEZERED1UFWwVeSC2dnWQ/miiQtj03j54k1cGJvuWCuklXMCwJethdRFx4FE5+cERETrLZgM5nEe0Rb1wpSeUATXCnkUHLuxBq0KBQtmBdcLeQxFYziQSiGq6bA8D3NbsOXzai2oANFSxOgG3sMfpIB7aCCBk08fQW86imuTWSwslSFrpWZSSsxny7g2mUVvJoqTTx/B0EDr9/Y8CT94YNnQYOgqhBDwAnsdYUPDjm1J7N3Zg4f3DlQr2hrfwweE2DLJ5p1Qb0v6jp5eaIoKTVEgASxYFlzpI6pqyBghqIpoPAd7QhGc3H+QBT1daKZSxqJpYq5SQclxkLftVW+3Wnv5hGHA8X0sWRZKjoOy6yCmaUjoBhK6Dgng+7MzeP7SRVzOZttyf4g6JXhN81Y+D9Nr7qtLKZGzLVzN5/h6Si3WPXrnC1/4An79138dt27dgpQShw4dwic/+Um8973vxRNPPIFw+PZtmK5fv46XXnoJ/+N//A+cPn0a3/rWt/Dud78bn/jEJ/D5z38eIyMj6z18oq6x2oVUMBlMX9a+IhjzvD3WfMNYskxIKde8UCKYCiaEQMjgZGyjsf3Wk3NE9yJ4WqE/HF2RAuBLiaLjYMk2O3paYTHXXOTrSUU6MgaizcpZ3ibSucONu4QWOHHsekwGIyKiqp5QGLOV6nVlp4rBpmYLeOHcOM5duoVsoTl/TyeqrZmOHx1dsbG63pansiyfE3hSouQ4WLQ6OycgIlpvwaIaf3mcA62bemHK/5q4gb8Yv46iW520zlbKSIdCODE8gqcGh3BmcgLjhQKKjoNv3ZzEoz29jRaKW8FqbTWB6j6Bi+q8v1nY/eAtqA7s7sNzzz6JF86N45VLt1AuO43vOyQEThzfi2OPr369Yi1r+RgyVIzuSCOdCGMpb6IvU01lVRSgv2f1hNalvIlMIozRHen7Gjfdn6FoDId6elBxXRQdB9uiEaiKgrdyObxVyKPiuTA9gZG40ngOsnChu0yVSzg7PYW/uTWJiWIRQHVf6bfOv4yjff04tuxvvlo6oV1rDVltUasAEKh4HmKaAojqvuaOaAyLVgWnrozhuUOH+Tiirla/pvnym1fwwvRU45oGqIZ4HOntw8/u2cvnATWsezHYL/zCL8AwDPziL/4ifumXfgmPPfbYPX/trl27sGvXLvzcz/0cSqUS/uzP/gyf//zn8eUvfxkPP/wwfv3Xf30dR07UXVa7kAqe5NGWFXcFY54zRjMZzPZ9FF0HCX1tJ8GlSvMNKxLWmcqzAdne6m1Fie4kGA3+ViEH03MRUqon9qSUsHwPVws57EumO3ZaIV80ceHyDOYWS1AVFqMS3S/HbRaD6ZqCrdBoQdcCxWBsE0lERDWdTga7fG0ep06fx8x8CalECDsHk1BVBZ7nYylv4szZq7gwNo2TTx/Bgd19bRtXcE5wvZCH6/uNIrXGnCCfx95kiieYiairBZPBfLaJbKuhaAzHBrdjolhE0XEQ0TX87O69jWKvqXIJk6USzi/Mw/Y9vFXI44WpW0iHQqsWLXSr5QXcihBQRWt707VoQTU0kMDHf/IwPnR8H/79H76AiulAVQR+/mPvvOM1SrAYTAgBTVWQjFcL3s+cvYqeVKTlebac70vkChZOHN+LZPz2QRW0NpYsC4aqokdV8WPbh/F4Xz9uFov4vYs/hCclVCHwq48dbelmQ93hcjaLU1fGMFspw5MSca2655fUDXi+jzOTE/jhwgJO7j+IA+k0gNXby0+Xy/AgEdc1WLX9KdP1oCsKfClhqCqShoFMKIzrhTxenJ7CM3v2depuE7XFUDSGx/r6UHQcFB2n8Xoa13XsT6W3xPUK3bt1383/7Gc/iytXruD555+/r0Kw5WKxGD796U/jwoUL+NM//VPs3bt3DUdJ1P1Wi3kOnsZVlxX3BGOew5qGqNasHV1ch0XtYDJYjC0iN6SWNpFMBqP7UD+t8FC6BwICRddBwbFRdB0ICOyMJ/DcocONiV+7TM0W8JW/uojf/P3/A3/9vbfwxlvzuPTmHP78zOv4yl9dxNRsoa3jIdqsbCdYDLY13h9UtokkIqJV9IXDsD0Pi6aJC4sLuLC4cNs2KGttaraAU6fPYyFbxu7hNPoyUai1JEtVVdCXiWL3cBoL2TJOnT7f9mvd+pzgA8MjgFg5J9iV6MycgIionVS2ieyorF0rTAmH8Ui6B4/29CJpGLiczeL5Sxcxll2CRLVoIaypGInHGkULW6UFWbAF1fVCHgtmpdFhUUqJRctc05Z+yXgYg30J9PfE0JOOIhLW73h7yw50rjC0xoHy40dHsa0vhonp3G0LLX1fYmIqh219MRx7fPRtjZvuzVJgL6qnVvDVEw6jJxxGfySCnnAYYe4zdJ2pcgmnroxh0apgVyKJiNZ8rhqqit5wBLsSyUaa11S5BGBle3nb8zBvmjAUBTFdb3kPLToOLM9DfzgMXVGhCIGUYeDl+bm2zb+IOqlRbBsO42A6jZ5wGIaq4kaRe1rUat2TwZ5//vk1/X5CCHziE59Y0+9JtBWsFvPs+asng60W89wTDiOby6HoOPjuzDTyjrOmMdllM5gMtu4vTfQAWtpEMhmM7tNQNIbdiQQ830fRcTAcj2OyWERcry6w9YTaexqvJTUhHkIopCJsaJBSQlWUjqUmEG1Gy9tEdqYpVnvpbBNJRETLTJVL+N70dCNRBABulUvItClR5IVz45iZL2H3cPq2iRiKIjAymMK1ySzOvjKOj33o8LqNZzVD0Rg+tmcfBIC/m51tOcEc0TT0h9munYi6G5PBOit4SLqeRBQsWtifSuG1pSUA1QQsx5foDUeQCYUxWSpsmRZk9QLus9NTODc/h5xjo+JWE7mSIQMndqxtS7/gYavgfsVqgofRgsn+QwMJnHz6CE6dPo9rk1mkEiFkkuGWhNRcwcK2vhhOPn2k7S2ztyLL81B0mns+mdra7/JD5rbvgxlt3eXs9BRmK2XsSiShCAE38LzWa++DihAYjiVWpHkF0wmjmg7b96qpYhBI6Dqytg1ICdvzEVI1DESa7WDToRAmikWMFwt4tKe3vXeaAFQ7sIzfzMJ2PBh6tY0vUxjXR7DY9h29ffj2rZuwPQ9v5nJ4YeoWUrWwl63S6ppujxUXRFvI8phnd5VksNVinqfKJVzNZfHqwgJs38N4sYD/Y41jsoPFYFEmg21ITAajt0NKiZlKpREN/pHRXTg9fg0V14PpevjWzQlsi0RhqOq6X6QuT01wPR9ipjoRFUJgsD8OAWBiOodTp8/juWef5CIR0R3YgTaJur41ioVVjcVgRETUVG+DMlMpA2i2QRmIRGC67qptUNZSvmji3KVbSCVCjUID1/OxkK0gbGhIJZqtdxRFIJUI4dzFW/jgsX0dWZxXhEBPoKWm7XmYq1TwjYkb2JlIcNGaiLpWSzIYi8HaLrhxmq69zywvWohoKipudQ205DgIq9ptixa6Wb2A+4PDO/Hlq1dwOZuFKgTet30HPrxzbVO1tOBhK/fO8+tgm0hDb93ePLC7D889+yReODeOVy7dwo3pPCAlIAQyiTBOHN+LY4+Pco2vTYLPN02pFvIAgFprPVrvWhM8gE6bX962cW5+DinDgFILoHBaisGaz/dgmteJ4Z1IGkZLe/m38rnq14rm7Q1FQdFxoCkKYroGBN5KVVH93rbHx1S7Tc0W8MK5cZy7dAvZggkpJYQQSCeqbXyPH+Vr71rypWwpcI9qKm6VS5gsFmH7HqYrZUQ1bcu1uqbVsRiMaAsJXkhdL+RRdGxoQmlEtC6YFeRsGwORaCPmub6o/VY+14jJThoGRuJxZC1rzRa1y5VmdGuUyWAbkh24aA+xGIzuU9a2WgoKB6MxpAwDlxanMW+aeC27iJQRggDW/SJ1eWqCWQm0uNOVxuJsJ1MTiDaTYDKYvkXeH3S2iSQioppgosjuRBKO7zeue13fb0uiyPjNLLIFEzsHk42P3ZwpYClXAQAc3NOHSKg5z84kw7gxncf4zSwePTi4pmO5F/W5Zdl1MF0uY940YfseJkpFpAyDi9ZE1LWYDNZZWbu5cZoJhVctWohpBipu9f2z6LjordUur1a0sBUkDQP7U+lGYY8qVk8ffTvUQDHY3Yokg8VgwWSwuqGBBD7+k4fxoeP7mE7TYdmWFpHhxh4UABiq0ii6dO6SBkeby3ixgKxlYSQeb3wsmAymLes4s1qaVz2d8CtX38RfTdxAwbabbSYVFf1hDZqiYF8yhZjebC3ryerPYZBBe7V0YEmEsHMw2ZLKyA4sa6/g2I2C2pxt4U/ffBNTpVLLHv5QNLqme/i0eW2No/tE1FC/kPqJHcOQAIqug4JjY7ZchqooODE8gucOHcaBdLplUXtnPIGwWu3tbXkeVKHctrf3gyibzYkck8E2puCJCoNtIuk+TZfLjX/3hEIYLxTwg7k53CxXL1INRcXuRBIj8Tg838eZyQk8f+kiLmezazqO1VITWheSmptkwdSEfHErNL4jejCOG3h/WGUxthtp2r2fXCYiou5WTxQZjiWgCIFwYPPBrM2h6okis5UyXpyeWvMx2I5XbXde20yVAAql5gZcueK03F5VlWp7Faczp+Ytz0POtvDa0hLmzEpj0Tqiaes+HyAi6iQmg3WOLyVydrBNpNEoWqi3jASAeCBtquS2vn+mQyFkLQvjxcL6D3gDCQWKtax1SHG6v2SwYJvI2x8oT8bDePTgIJ44vAOPHhxkIVgHLFrNtdTgcwyoFvTUMcWpu9ieB4lmShcgb5sMBtw+zWsoGsM/OPgwDvX0YDgex0PpDB7J9ODxvj4c6evH4Z6elkIwAI3X89E4E6jaZXkHlr5MtDEnVVUFfZkodg+nsZAt49Tp85ia3Vrvn+ulXqBddh1cK+SRtU3sSjT38IuOs+Z7+LR5tSV+5+d//uff9vcQQuAP//AP12A0RDQUjeHpXXswls2i6DjwpMQn9u7HwXS65VRTMCY7eMFm+34j5nOtYrJbk8H0O9ySOiWY6sRkMLpf05VmMVhYVXHqyhhsz0Oi1kLH8X04vgddUdc1PWG11ITbFYMBnU9NINoMghvJurY13h+0QDKYw2QwIqIta7VEkbCqIlf7vBmYQ61nooihqxBCwPN8qKoCx/FbNlOXtzT2PB8QAobemfftBbOCK7kcTM/F/mS6MVeouNXr8nakqRERdYLoQDJY3rYxXizA9jwYqrplW/HmbRv1X7kQQNqoHlRsLVoAwmpzXchdlli0VVuQhQK/E2sd7ntrMti9t4lcLRmMNo7FlmSwZcVggb0Fm8lgXcVQVQhUU7pUoUAC2B6L1db+fehK6/P2TmleScPAkwPbcGZyAj2hcGO+VdWaUlgt+LVxYnhkS77HdcryDiyrURTBDixrrF4MNl0uw/J8DMcStWuWarGX5XlwfR+aomzJVtfUqi3FYF/84hcbEY71ApL7Uf8aFoPRZpUvmhsulrjiujBUFT21i6wn+vtbLqaWL2obqgKBZgtuy/cak+O1WNSuBJPBWAy24UgpYfvBZDBOtun+BJPBZiqVRqHpWHapMekvOg4yoepja70uUpenJgCtpw4NbdnppA6nJhBtBi1tIrWtkRwZPLnsMRmMiGjLWq0NSuuGqdty+9XaoKyF0R1ppBNhLOVN9GWiqJitSSbLCw6W8iYyiTBGd6TXbAz341qhgIrnIqHpiBs6NEvArY2x6DhIGSEuWhNRV9LamAw2VS7h7PQUzs3PIWtZkKhunW/VVrzBFpFxTYemKCuKFgAguJct0bqftVVbkIWUlamna6llfu3dpRjMubdkMOq8pUAyWCbUuhcW7Dpi3+VvTpvLaDzRSFHsDUcgINAXjtz29ndL8zo2OIQfLixgslRoJDEv50uJyVIBA5EonhocWrP7Qne2WgcWoPbe6QPBELhgB5YPHtvX8f3xzW7JsmB7HuZNE0ldb+zh64rSCHYpOk4jlXGrtrqmqrZeLY2OjmJ0dLSdP5Koo6ZmC3jh3DjOXbqFbMFsTB7TiTCOHtqO40dHMTTQmchSM7AoHVbVFRdRyxe1BQQMVW2c/rE8r+Wk1Ntd1C6bzWSwCIvBNhxXSgTXqJgMRvcqb9u4XsjjwuI8fB8wVAUFx2kUmsYNHYtmdUGu4DgtiwPrcZG6PDUBaE1KCBaJAZ1PTSDaDOxgQeUWea4EF6sdLlwSEW1ZK9ugtLY+cZdt9K9XokgyXl1jOHP2KnpSkRXFYMHrXd+XyBUsnDi+tyOL8HnbxnS5BENRIISAKgQSutE43VyoFYMBXLQmou7TrmSwy9ksTl0Zw2yljJRhYCQehyoUeNJH1rJwZnICP1xYwMn9B7EnUNDczZasYIvI6vvM8qIFAFBE67qQDwm1lkCzVVuQBdeB1ycZrPm8WJ5mutyd0v1p45BStjznlieDBa+X7XVoPUqdkzQMHO3rx5nJCWRWpHm1upc0r6FoDCf3H8SpK2O4XsgjZRhIh0It72k528ZAJIqT+w9uqSLnTlutA4vj+nhzfAGO62N0exqpRPO5zw4sa2fJslB0HNi+h0yofh0nENf1xmtv0XVaWvSu18E02vjadrUkpcSNGzewe/dufOYzn8HHPvYxhMOs/KTudfnaPE6dPo+Z+RJSiRB2Diahqgo8z8dS3sSZs1dxYWwaJ58+ggO7+9o+vorbvMgOaytfClZb1A4FisFMz0MqcPu3s6gtpUS50lysjkZYDLbRLP+7brUTcHT/gidQ5yuVRusXgerj56F0BgCQ0AwsonaB6jhA46xq1VpfpC5PTQBak8G0ZalGnU5NoM7biOmeG01LMthWKQbTAif62SaSiGjLWi1RJJj6Um3V0Ly+Xc9EkeNHR3FhbBoT07kVqRr1//Z9iYmpHLb1xXDs8c4c1rxWyMP0PMS16rxfFa2L1gXbBgJ7OFy0JqJuorYhGWyqXMKpK2NYtCrYlUi2bMSrQlnRivf/cvDhdRnHRhMsTMnUNkdXK1pY3uXKlxKq2NotyMLrXAzWmgx25+eFbQc6V2yR9YfNqOJ5LSlyGeNObSJZDNZt1jrN60A6jecOHW7sNUwUi43PpUMhnBgewVNbLO1yI1itA8vMQhFW7XV6er7QUgzGDixrJ2tb8GT1/TIS2N8PzqvLbmtK+VZtdU1tKgb7/ve/jz/8wz/El7/8ZfzN3/wNvv3tb+OXf/mX8XM/93P4zGc+gyeffLIdwyBqm6nZAk6dPo+FbHlFr2RVVdCXiaInFcHEdA6nTp/Hc88+2faEsGAyWGSVhejVFrXrp4AUISDROjF7O4vall29aKhjm8iNZ8GsYNE04UkJTREoOw5Sy070ENUtP4GaCYVRct1q4afnImfZGMtmsT+VQlxvPt8d34ft+y1tSNf6InV5aoKiiJZTh1rgNazTqQnUWRs53XOjcQIF5rq6NdpEBu+nwzaRRLSKoudi2rLhSB+6UDAYMhAVW+M1citZLVFEC/ydJQBPAvXAi/VMFBkaSODk00dw6vR5vPrGNFRFQciopuLajof5pTJyBQvb+mI4+fSRjl3HlJ3qQbB6yy2lVgxWZ/s+PCmh1j7PRWsi6iYtbZTk+hSDnZ2ewmylvKIQrGUcgVa8352ZxlZY4Qu2iUwHClNWK1oQQGPl25MS6hZvQRYsBjOXtcBeC8FCgvtLBmMx2EYVbBEZVtWWYgWgtfUo09a7z3qkeQ1FY/jYnn344PBOjBcLsD0PhqpiNJ7YcgW6G8XyDiyO62MhW258vmK5cD2/UfDLDixrw5cSWctqzJc1pTXQpW55oe1WbXVNQFtWIt/5znfi+eefx9TUFE6dOoX3v//9yOfz+IM/+AM89dRTeOSRR/Dv//2/x8zMTDuGQ7TuXjg3jpn5EkYGUy2T/CBFERgZTGFmvoSzr4y3eYTV0xl1wXaPdcFF7bqBcASPZDJ4tKcHg5HWC7S3s6hdrjRbRAohEA4x4nmjmCqX8NW33sT/68KreC27iLHcEl7PLuG3Xz2Hr771JqbKpU4PkTaY5SdQe8ORxqlBIQQyRghhVYXpOriSy8H2PRiBC9bKshML63GRevzoKLb1xaqpCb5sSU6op/1shNQE6pzL1+bx/JdewpmzV+F5PnYOJrFnOIOdg0l4no8zZ6/i+S+9hMvX5js91I7zfL/lOWRskcXY+1msJqKtZd628a3FBXxx6ia+OjeNP5+fxVfnpvHFqZv41tIClnjyvavUE0Vytg2/tqmvLlsDqKaDNRNFnujrX7cNiwO7+/D3f/ZxDPXHoShAsWyjULKwlKtAUxWcOL4Xzz37ZEfSyRtqv556EYQiREurIKD5OwO4aE1E3aUlGWwdEobzto1z83NIGUajEExCYsEysWiZQOBwb70V7ysL86ig+9OOs6skgwHNooWeUATXC3ksmJWW96oF08T1Qh49ociWbUEWfA92fdnyPr0WWpPB7lIMFkiUYZvIjWtx2fNNLCtMDV77WWv8eKKNoZ7m9YHhEaiKgoliEdcLeUwUi1AVBSeGR/DcocM4kE7f1/dNGgYe7enFE/0DeLSnl4VgHTS6I414RMeNWznMLZZxfXIJXvDArAQKpebeLzuwrI28bcOTEnFdh6GoKDvN/bTgPpvny8YaBbB1W11TG9tEAkAoFMInP/lJfPKTn8SNGzfwhS98AX/0R3+EN954A5/73OfwL/7Fv8CHP/xhfOYzn8FHPvIRqFzooU0oXzRx7tItpBKhRiGYBLCwVIbteOjviUGvtSFTFIFUIoRzF2/hg8f2tTV5xgwUXES0lc+11WKyNWX1+tG3G5NdNgNjCesrJgfUGcF0J11REdeqfxtNCHi+jzOTE/jhwgJO7j943xft1L1WO4FaDpwaTIVCKDgOfEhUXBczlTIimgbbrk4MKq6LVOCE5npcpAZTE96aWELFdBupCQLYMKkJ1BmbId1zI3Gc1kU7fZVrim6kB9pEumwTSUQ142YFX1+Yx6JrI66qGKxtxPpSIu+5+LtCHhHXRcKsYH+nB0trZrVEEVURjfZfrvShS6VtiSKKULBnpAfDgykUSxY8XyIRD+Of/P0f3RBpt9siURiKCsv3ENV0CNRPNAu4gd9ZCNVrCi5aE1E3Cc4v/XVIBhsvFpC1LIzE442PzZsmbpVKjZ/ZV0uyBKrttW4UClgEsGPNR7NxSClbk8GWdTtY3oKs7Lhwa8XI20R0y7cgCy/bp7M977b7BA9CVYPz6zsXBtmBZDCmy2xMedvG+fk5zFUqUIXA7kRyxW2MQAEg01+7F9O8ule9o8bMQglTcwUYmgrTcqEoQDikIRLWoakqiiULmWSYHVjWUP16xlBV7IjFUHBs9IbDjUNWwXRT2/cQVrUt3eqa2pQMtpqdO3fiN37jN/DWW2/hW9/6Fp599lnouo6/+Iu/wDPPPIPt27fjS1/6UqeGR/TAxm9mkS2YyCSbb2jFko3J6TxmF0qYmS+23D6TDGOpYGL8Zrat47xbMhhQXdQeiEQxWSrcdoHifnp7307ZbFaHs0XkxrA83SlpNIv0NFVBbziCXYkkFq0KTl0ZY0IYAVj9BCpqRV91Kd1AXzgMx/ehKwJzptlyGiz42rSe6QkHdvfhuWefxPEndrakJtyaLW6c1ATqiM2Q7rmRBFtEAoCmbY0WaC3JYGwTSUSoJoJ9fWEeOdfBDiOEtKY3rocUIZDWdGw3DBSlj68vzPP6uYusliii1AqcpJRYqLQ3UaS+5mDoKnrSUfT3xJCMhTbMontIVdEXDsP2/ZZFyWB7zXamqRERtVNLMtg6TCNsz4NEs8Uu0JqINW+2poPVb+d2eTJY0XUaBcdAa5vIunrRwq8deQLvGhjAwVQGj6R78PcPPIxn9uzbsoVgQDXFKbg8Yq1x0q3akgx258eiZTMZbKOqdxj5rfMv43/euI6x3BJeyy7izM2JFR1G9GCbSCaDdT2meXWXYEeNdCKMVDwET/pQVQEpgWLFwVLOhO24KJRseOzAsqaCyYuPZHqW7eGLljRP2/PXZA+fNrcNsVvz/ve/H6dOncL09DR++7d/G7quY35+Hq+88kqnh0Z032zHg5SyZRJTsZzmv02n5faqqgBSwnbaewIimAwWvk2Kx2qL2vUWDZ70sWBW1mRRu1xp/k6iERaDbQT1dKf6yfZgMaCK5qbWcCyB2UoZL05PdWqotIHUT6AGT1gWHKfl8RPRNAxGo4ioGlwpYbluy+frhWPtuEgdGkjgJ350H448PIRD+/rx2MND+Ief/BH82mffi4996PCWTnvaqlZL9wSAucUy3nhrHvNL5cbHgume+aLZieFuCE7g+kVRlJb2Dt1Mb2kT2d0bJ0R0b14tFrDo2hg0DAghai10JIJnaoQQ6BUKFl0bL85Md26wtOaWt0EpuQ4Kjo2i6wACD9wG5UHMLhRXfMx2XHgbZKPN8rzGfKDoNucKwYQRV0ouWhNRV2pJBvPXfh5hqNVVu+D6bTmwBmx5Xst/12+nobu7NCwFNk6jmobQHTrSJA0Dw7E4+iMR9ITDCG2ROe6dCCFafmfmGic5tbSJvMv1ihVohxUymAy2UVzOZvH8pYs4MzkBz/cR0zQkdANxTYcqBM5MTuD5SxdxOZsFAIQC1332GhcXEtH6Wd5RY3gwif27+iB92TgsG4vo8Hwf2byJpXwZb44vojcT3dQdWPJFCzfnbIxP27h4eaZjewF528arC/OYq1SwaJrYFomu2MPXRPNg2twa7eHT5rZhSuf/+q//Gl/4whfw3//7f2+0ilLWMGqWqF0MvdpqzPP8RkFY8ETL8qhjz/MBIdoea2wG2rZFbpMMBqyMyZ4oNheW06HQmsRklwMFckwG67zV0p28wC5WcOFKEQIpw8DL83M4MbyTpzq2ONvz4Po+crYNX0oIANOVZvFMXK8mZEQ1HftTKVzJ5ZC1LVRcF1JKCCFgex5my2UUXQcDtYvZ9bxIrVhOIzWhLxPDowcH1+1n0cZXT/fcOdiMsHc9iVuzeUgJ3JzNoycVabwOZpJh3JjOY/xmdss+doLF7PoWSQUDAE1r3cTxfXnbJDki6n5Fz8Xr5SLiqtpI011wHeTc6jwnoxnoN6rzHCEE4qqKV+bn8KGRUV4/d5FgG5T/cvkNXC8UoAqBD42M4P07Rto2jun5lcVgAGBaLmKRzj/eLM9rzAcmi0VcL+Src89AmtqiaSJnWW2ZDxARtZO6rBisvhayVkbjCaRDIWQtC73hCAq2s+I2i5aFqFa9LslaFtJGCD1rNoKNJ2/beHluttGyrjeduuvXtKRqbJBi6k4zFBUVVOf/1hoXg91r8rbvy5YDaUwG2xiWdxhRBHCzlgImhMC2SBQhVcVkqYBTV8bw3KHD0PkcI9qU6h01dg+nG+ug0pdIxcMomw4s2wVk9bnvuD5sx8OjBwfwcx9+x6YsBKu3w3z54k1cGy9CSuD1mz9AOhXB0UPbcfzoaFvu11S51NijfzOXa+zvZ20LrvTxzJ49uJLL4dz8HAqOg1JtLSqm6/jJkZ1butU1dbgYbHx8HF/84hfxR3/0RxgfH6+lKan46Z/+afz8z/88PvKRj3RyeEQPZHRHGulEGEt5E32ZKIDWk17LJzRLeROZRBijO9LtHOY9tYmsW+/e3sG0NCaDdV493WkkHm98zGtJBmvd7E+HQpgoFjFeLODRnt62jZM2lvoF6WSphKlyqVrY5fvwfImwqiKqadgea15wpowQDqbTGFtaQkhTMW+ZjVQAV/prUmh6L4LJhBEWo255q6V7Vj9W/bf0AcvxEAlV3zc7le65kTiB65p2F7Z30vIENNfzYShb5/4TUatpy0bR8zAYmBu1HKZYtsebVDVkbZvXz10qaRjYl0qjVEteEaJ9xdKW7SKbr6z+uQ1SDFbf8EsZIeweSiIdCuHc/BxyjoWi01y0btd8gIionZYfIPF94A4hVfctaRg42tePM5MTyITCyDv2ittkLQs7ojFIADnbxo8P7UBoZm7tBrFBBDdOxwsFFGq/i9lKBSkjhGN3eI/RAyEFbGFXFVY15FD9Ha51Mpiq3Fsy2PK1FxaDbQz1DiPVQjABx/da0pENVW10GLleyOPF6SkcDsyB7DV+PBHR+lito4YEMLNYgqapSMZVJBMhpOMhzCyUMLdYhqErGOiNr3vBVL62vrKWe9eXr83j1OnzmJkvIRk3kImrUBSBHYNJ5IoWzpy9igtj0zj59BEc2N23RvdklXFkszh1ZQyzlTJShoGopkFXlOoeRi158YcLCzi5/yA+OLwTf3njOs7NzUEVAo/19uGZPfvWbWy0ObT9ask0TfzZn/0ZvvCFL+Db3/42pKyegHnooYfwmc98Bn/v7/09DA5uzWQF6g7JeBhHD23HmbNXG+khwUmM50v4sroh4PsSuYKFE8f3IhkPt3WcwTaRkdu0iVyu3tt7rbUUY4RYjNFptudBAlADmxZ+SzJY6+3rt+PEbeuqX5DeKhWhKQKaoiCkqLAtC4BsnESwPa8lidD2POxLp/GPHnkUX732JiaLpbanJ5QrzYVRJhPSaumertv62mbbzWKwTqV7biRO4Pejb6Hfw4piMFfC4EsI0ZblSB8SaKTqAssOUyxL/FCEgITk9XMXi2rNa95KYO693mYCqWCGoUFTFJTN6vVuxWrfOO4kmCbSF47g/7R7T23R+hrOzc1DFQJH+/u5aE1EXUldUQwmoaprmzB8bHAIP1xYwESxWQAVZPs+bhQLKLoO0kYIj/b04vKajqDzlm+cJvTqZE3KaqJzcON0tRbORksxGK/XACAc2D9Y62QwLfAcuFMymGW3Xsts5bWYjWK1DiPBx4euKI25ULDDyIFUpnEbFlwSbQ6rddTIFyxY9XmmALYPJBA2NGiaCtNyUSzbeO3NuXXrqBAs/M5aFmR1GEiHQjja13/Hwu87ft9l7TABoJSvjl9VFfRlouhJRTAxncOp0+fx3LNPrkvB2/LkRSGAm6VA8mI0CkNpTV480tvX6PDF5EUCgLYdT3zppZfwS7/0SxgaGsKnP/1p/PVf/zVisRh+4Rd+AS+++CJee+01/LN/9s9YCEZd4fjRUWzri2FiOgffl/ACyWBAdVLj+xITUzls64vh2OOjbR/j/SSDrbcyk8E2FENVIQB4MlDEeIdksPrtjLU8ykibRvCCdF8qje3RGBzfR7G24KgKBSFVhRDAlVwO5VphmC8lcraNJ/r6sSMex5HefvRHIugJh1Fw2rdRFdwU4+sPBdM965afPA3+d6fSPTcSyw62idw67wOKAgRrO5a3ASeirUUX1QZ3wQMU1eMVVSqWbfxKCQHB6+cuFgkUg9Wvf9thdqHU+Pe23jgi4eY4zA1SDBYsggzVngNJw8Ajmd7GfEDe7ouJiDa55Ruh7jps0g1FYzi5/yBiuo4l24bpuZBSIqwqyFkW5iplvJZdwnzFRN628cdXxnAOHnJd8uq7fOO0NxyBW7tGE0KgPxzBrkQSi1YFp66MYapcWvE99EDqs825HgAgpKxfMVgwnX35PkpQsBhM19V1KSyg+1PvMJIOhRofCz4+ls936m1s58xy42M2Cy6JNoXVOmoUy82i81Q8hHAtsTEWNaAoAr4vMbdQxDfPvokLY9PIF80V3/dBXc5m8fylizgzOQHP9zESj2N3IomReBye7+PM5ASev3QRl7PZ+/7e9XaYI4Op277XKIrAyGAKM/MlnH1l/G3em9XVkxeHY4lq8qLnt1ythZRm8uJspYwXp6daEtHyjrUu46LNpS0VIIcOHcIbb7zR+O/3ve99+MxnPoOPfexjiEQi7RgCUVsNDSRw8ukjOHX6PK5NZlGqWJBSQggBKSXmFkswLRfb+mI4+fSRtvdKllI2egoD954Mtl6CyWDRDdC2YqsbjScaE7PecPU1+k7JYPUJ32h88/X8prdveRT4YDSK2UoFOceGJgSEEIhpOgxVQcF2MFMpYzSexGSpgIFIFE8NDgEAtkWije85Wynf7setuWCbWraJpNXSPZ1lp1LtWrFiJ9M9N5JgctpWOpUrhICmKo3HB4vBiLa2wZCBuKoi77lIa9XrCS+wQrc88CPvuUhHIrx+7mLBNNyy254NrnzRxMuXbmJusQRVEXhk/zb4gSKDitW+orQ7sQJjMgIbCcE0tZKzMcZKRLTWlGVpoXKdphEH0mm8b2gH8raNedNEyXOxaFswXReKUBDXVDzW24+YrmHJNPE6JCbh4125LB7uXb9WR+2wfJ0KkC3FKSFVWdGybnkaJdtErhRS1zMZrPn7vtPcOngYLaSzReRGsFqHkWASjbFsI6F+u2AbSRZc0kaWL5oYv5mF7XgwdBWjO9Jbdh14tY4aduBQf7DrimU5qJgOShUbN6ay+OM/fwXJRBjpRHXt/fjR0be1L7688Dt4faUKBb3hCDKhcEti1r0mhK3WDhMATNtH2fLRW7GRiIVgOx6KJQsSEn/z3bfw6L4B2K6/Zo+VVZMX/dbkRbFK8uJT24Yat6m4HizPa3kPp62nLVdMr7/+OoQQ2LVrFz796U9j9+7dkFLiK1/5yn19n09/+tPrNEKitXdgdx+ee/ZJvHBuHP/jzOsolpsVuAO9wInje3Hs8bf3hvegLK+1b3unk8GCxRhs09Z5ScPA0b5+nJmcQCYUhiJEazEYWttH5mwbJ4ZH3nYPbtp8VrsgjWgawpqKoiPgSh+6UGAoAgICuiJws1SC68vGSdX6RfhAoDh8ybYa/d3XW0ubWr7+EKrpnhfGpjExncPIYKqlDSJQXXzsdLrnRmIHiuV0rW2hwxuCpgnU1zxcrztO0RPRg4mrGh6OxvFSIYuUqgEQt20TKaVE0fPwY339vH7uYtE2JoNNzRbwwrlxnLt0C2PX5uHUUkyLZQfpZBiaKhCNGDDNjZcMZgRSRlp/ZxtjrEREa235Acs7pSC9XTnHxp5kCj2hMG6WS4CUMF0Xota2zfI8JA0DveEwCgCWIPH/u3oF/zASeaCWShvBautUri9b1jXrG6LBjdMTwztbrssMFoOtENxINtczGeyOxWDN64OQwY3tjSDYYaRe6BWcB+nK6h1GooFiPsf34Uu5oliWqJOCc6xswWyEfaxVMdNmFOyo0ZepHuwPFukatVSwbMHElesLyBctKIpAMhZCNGJg52ASS3kTZ85exYWxaZx8+ggO7H6wAvSVhd8r3a3w+3ZWa4fp+T4W8h58KTH21jxiUQOFkgXL9uB6Hiqmi3/ym19HPGogEQ8hZGhv+7FST14ciccbH7NWSdmuS4dCmCgWMWdWoCkCbu0aM2/b6Gcw05bW1gqQ69ev49/8m3/zQF8rhGAxGG06QwMJfPwnD2NuoYgbt7LwfAlVEfjZDx7Gjzw23LFxBSdsQqx802gnKWVLm0gWY2wMxwaH8MOFBUyWChiOJVoWTerJBr6UK9KdaGtZ7YI0b9sQEMiEQii7LjRFoFjbzJGyuiDwjt5efGzPvpbFxUwoBENRYPs+pATmzAp2xOIrfuZaK7MYlZZZme5pt6R7ZvMmrslsx9I9Nxo7sBi7lZLBgPrp5eo11fIEOSLaeh6LJ3ClUsa0baNf1wGsLAaTUmJe+hjQDDy1bbBDI6V2CLaJrHjrV9h0+do8Tp0+j5n5EpJxAyFDRdjQIKWEpim4fH0BUkrs39UL094YBVbB08zBtYjost8ZNwWJqBsJIRptkwA0/v9ayts23sxl8er8HAQE5s0KVCFwIJ3BbKWMmUoFALBomeiPVBMrBAQykJitVO5rw3SjWXXjNPC+owrRUqRf3zgdLxbwaE9v4+O6Gkw5Ygs7YH2TwdRAjK53h4NWqxUdUGet1mEk2P42mBgGNDuM7E6k8J2pqcbHHd9ncg1tGME5VioRws7BJFRVgef5a1bMtBkt76ghFAHbCcztDBXlio0r1xdgWi50XYWmCqhq9eMQAn2ZKHpSEUxM53Dq9Hk89+yT9722vlrhd12wMBW4c+H37azWDtOyq4VgriexlDcxn60gGTdg6CpMqzp39X3ZCB4Y2BmF5/lv67GyWvKiFSiYXv6aWb+d4/tI6gYWrWpATda2WAy2xbXt+L6U8m39z+cJDNrUBHrSUfT3xNCTjkJ0ODgjuBgdVtWOLrDajtfy/I5GWIyxEdRTm3pCEVwv5FFwqsUQVQILZgXXC3n0hCIt6U60tax2QVqotXTRFAUj8Tie6BvAI+keHExlcCjTg+FYDE9tG1rxmBFCtFyUzpTb0yqSxWC0mnq65weO7YUvJYplG4WShWLZhuv7OHFsL5579sktNeG/nWALB31LFoNVsU0kEfUZBj7c24eUpuOmbcPy/cb1s5BA1nVwy7aREAo+3NvH6+cuFyxssj2/ZVNsrUzNFnDq9HksZMvYPZxGNGJAoNYmQhUY6k9gsC8Gy3Zx5foCpubyaz6GB9GaDBZsE9m8FpcSMJkORkRdSg20HFrLZLCpcglffetN/Nb5l/F7F3+I17P/f/b+PDiy67zvxr/nrr13Yx1gBhjMPiRnuA0lUdGMLdHRkNpe2ZapJPRvbMcVxzKtlOPEkfNLVSpyvbEi2bKTVMUxLcdlO/Y4cl7K78+iJZGyRlYkcySREofDWUhidgx2oAH0fvd7fn/c7tvnNhoYLL0BOJ+yykOgG31xce+5z3me7/N9lnBlaQF38nlYjgPdsdGlVscV6Y4DjXHCJqgWTHOm2bDjaiV1R9Y57HhiEUBwlFTlfSwy41zJncE8QgExWGOf0WsfE8k4g+2w/EOnUpkwkjVNv5mcjXtlZr2rTBh5rLcPvaHg6DQuuuR0CrV7rN6uiC8KEkUBvV0R7B9KYSFTwtkXLmJ6Lt/mI24tp06MYFdvFOMz2XJttxrHKLKEmXShPAmKIhZREIuoALz9XbHkxRaCQDA8kMRsuojzr4+t+xgqwu+UqjJfpbhbyOPK4iLuFvJgm/MqgtWxwtr+Vuw4zAqm5cBxKTTDheO6kEQC3bCRKxhwXBeiQBCLKEjEVRimjZt3lxAJyZu6VljnxQq9oRBGYnEMRCJI1gjbKq9TRBFJpXputmpMx2kcLZGkuK7bkP9xOFsVVh0NAFqbxzOwG/12j4hkR7SBEIRV3tXTKRxJpfDsseN4/9AwKICCbSFvmZjXNYiCgNNDw3j22HEcSaXafaicNlEvIC1Y1Xs6oShQRBHdoRD6wmEkVQWSIKw4/nFXOOL/u9Kp2my0gDMhX384VSruno/eP4hjh/pw34FeHDvUh0fuG8AHf/TIjncEq8DGOLK0s5KxslRNavIxkRwOBwBGQmE83bcLD0ZjICAouRSa42LWMiGC4F3xJE6rYYyEeFfmdocVgwHNcQd7+cIYZtNFDA8kIQgkENdGVBmEAJIkIhpWoBk2rl6ba/gxbISVupmV8tiyCnxUJIfD2a4IrDiiQWKwa5kMnrt6BecmxuG4LqKyjLisQBVEgABLhoE3l5agOzaizDNq0dADP2e9BdNOo16eKqUoOJpKYX88gYFIJPB6tnAa+DkC6wzG61JAZ4yJDDrQ8Bxep3ByYBD94QgminnPOYeZMCKV76XaCSOSIAQMCizeYMfpEGr3WPXYrJhpK1OZqNGTiuDW3UXohu27aFmWjcnZPCzbRUiVcXhfD1KJau4jXzT8fwsCQTKu4sKVKeQKer2PWpGVHLOWyk5YS4YR2HOuJPxeCXYcpv+ZpgPToqDUEzATQmCYNkzL8fbdogBZEkBAEI0o0HQbM+nCpq4V1nmxgiqKSKkqdoUjiMtBMVhFIDcSiweEYlkuBtvxtNmfiMPZ/lBKYVrBJGZRa+/iq9c4g7WTolabsOZjIDqJwUgUTx84hHf17fLdnX760BH8fx95DD9VM+aPs/OoDUgt1wlYxcfkoNMWG5DWo591BtOa7wxm2Q5sRhwbCd/bJpizs7Btz9WFdfdUZDGwGdzpsMnYnTYmkk1Y23xMJIfDKdOrKHgsnsTRSAQHwmHcH43i6b4B/NzgHvxYVze6hJ21Vu5UJEEIFJIbLWzKFXRcuDqFZFz1ixTBJgcvDq8kqhVJxK2JpXUn2psB6/zAFt8JIQERHReDcTic7UqjncGmS0WcvT6KRUPDvngCPaGQ36hH4QmbEqoCw7FxPZsNODFmTROMbsMX5a61YNpp1CucEkIQEiUkFAWJVQqnLDIrBtui56LRNHVMpLABZzCFx9SdwrIJI2Z1wggBVpwwovJxrJwOo94ey3ZczMwXkKnJBW9GzLTVqUzUePSB3RAEoFAyUdRM3Bxfgu24GNmdwrFD/UjFQ4hHq8/dfDFYF+9KhLCU1zE2mVnX59cTftcKnnJW9b9XEn6vRGUcZjZv+KL9km7CdigIvL89pRSOQ0FBYdsUhBBouo1iyYRpOlAUEemlIkzL2fC1Us95cSVY58WEogTGYXJnMA4Xg3E4TabWFQwIJmnbATtuISy1t4tGMxgxGB8R2bEIhPjuTse7u9c0W5uz/akNSPOMK5giilCYYmdtQFqPXUyHZlrXmzJOhyXgTAjuDMZZTr5k1P16Nr+zNvmrYTEiKFnaWVsLSeTOYBwOpz6G60IWBCQlCUNqGIciEcTa7MjMaT3sXltrsLBpbDKDTF5HV6I6YqdURwxWES6riohiyVx3or0ZGCuMiQSAKNNMwsVgHA5nu9JoZ7DzM9OY00oYisYhEALdcfzRhoQQzxGDemusZtso2dXnheW6AfdKp1xsXGvBtNPYTOGUhR0T2ezc1FYh1EQxmCStzRnMMJkYgjuDdRSVCSNP7B4KTBiZ1VaeMMLeZyZ3BuN0APX2WFNzecykC7gzmWmYmGk7MNgfx6MPDOKR8kSNJx7fj//riaMYGkjg0Ei3X+uNR6vjCnXDhsnkkUVRACitW0NfjXrCb1b8BQB5RgB1L4OCerDjMF2XolC0QClAiLfXFgQCimocRwHopg3dtFEomSAEMCwHhfI1s9FrpdZ5sR61zosAAs5gGbN+fYOzc2hpxGSaJr785S/jBz/4AXK5HLq7u/Hud78bH/nIRyAIO6t4xNk5sJuUCrUChFajOZ05JrKSsOZ0FpTSYPc2dzPgMJwcGMSlhQVMFPOBbtI4U8ipF5DWo0cNeYlL20bBsvB/piaxKxLBSCzeFAEiK8xVFCnQicjhAPA3bLVwMVgVawc7g0ni2rqXORzOzkNnYucQjy92LBFJ8juUGy0GMy3HH8cBAC71ks8VfDFYWXBACIHrrj/R3gxYhxW1RmwQdAZrb96Ew+FwmgUbGmzWGSxnmriQnkdSUfyRa3mzun4mZBl5AIbrICRKUEQBi6aBhKz4gp4c8/qNFEw7DTZPVRHI1XKvPFXQsYjv9YBmO4OxjVYrn+9sXsNipgTHpZieyyFX0JGIhVZ8Pae1DEai+NDICK5nMyhYFhxK8dOHj+BgIlk3r8s2BRjcGYzTAdTusYDgaMPFbCngdLVRMdN2IZPTocgiulMRPHL/IFLxEP7uldtwHDfQlBQOSZAlEfGYCnbypuO4ACHrzidXhN/nJsbRpYZAQVGygnvHgmX54qmsaeL00PC66kuVcZhnX7iI2xMZ5Eu6JwYTCARCIIqCd60IAhRZWBZrOA4FaDXO2+i1UnFePHt9FHfyOSQVBSlVhUgEONRFxjCQNU30hyMB58WkUhXhcWcwTstUIBcuXMDHPvYxjI+PL/vekSNH8MILL+Dw4cOtOhwOp2Ww9sUVSu12BnNYZ7D2Fm5LzMjMCBeDdSQOpWBzU1u1O5DTHKoB6du4tLgAkRCogoiYLK8akNZjXtcwWyridj4P03UwrRURlWSkVBUnevtwcmCwoaNJ2bWYrz+cehRWcAbLdIAYLGeaGCvkYToOFFH0k/W1X2u2kyO7iZV3mBiMdULjYyI5HA6LzhQNVS4G27GEmzjyUJFFEEICifaR3Sloug1NtxBSvc+uCJcppXApbbtw26U0UFRfTQxW5M5gHA5nm8I2om3WGWyskEfGMDAci/lfYx0gUqoKVRQxWSpCFShUUUTBsiCrQlUMZplQAVB4TllPDu/d0hMBNlo4ZZEEPr6uFvaZbbouXErrCu02QsAZzKWg1Bu5VWF6Lo+XL4zhK98axWJWAwDMpAu4cn0OJ47txqkTIxjs37oCxu2EZttQRBHdoghFEPBob9+Kr2VrDBYXXXI6gNo9lu1QWBYzirA8NrDi8LlRMdN2gc2Pp+IhjOxJIRUPYSmno7erOgHmyP5e1HtaLOV0dJXft15Y4XdcUlAbTVF4ufOcZdzToGAlKuMw//61O/jzL18EpYBtU+imDVEgCKsyQqoIsbyWWbbj54ddlwKkKnbezLVScV48PzONC+l5jBcK/vdSqorTQ8N4T03djHUG0x0Hum0j1OYpYZz20ZK//MLCAj70oQ9hfn7enxXNMjo6ig996EO4dOkSwuFwKw6Jw2kZ9ZS+bXcGszvDGSxX0PH2rXnMLxa9h2Jj9o+cBmPWdHvVjvLOk4ZEAAEAAElEQVTgcI6kUvjHBw9jTtOQ1nUUbAsLuu53lNYLSGu5lsng7PVR3C0WQEERk2SkFBUDkQgyhoFzE+O4tLCAM4ePBizFNwMXg3HuRa5Qv3Mmk9NafCRVpktFf/OXMQxQAJbjwKLeZlMWBMiCCAI0TUjJYjExhdxmgXmrEfmYSA6HswIG5WIwDhAWmzcmsjbRLhAvAZ+qqYNWhGKG6UCWBOzdnWzocayX2kJfret0ROJjIjkczvankc5gpuOAAt4oSHgNwOz6mVJUJBUFi4aBgm0hVl5nw6KEQtlFQ3NsiKDIATgcDm+oYNppbKRwysLmPi3XXSZO2onU1hAMxwkI3zdDwKm/LGAXy+f72u00zr5wEbPpIizHRSyigBCCwd44HMfFufM3cXl0Bmc++giO7O9tyPFsdXIFbxSZaTlQZBEje1Itc1Bj1597XR/sfVZbf+Bw2kHtHks3gvsR16XIFQykymMkNyNm2g6w+fFUIoxELIQTx3bj3Pmb6E6GfdFcvaen61Jk8wZOnzq4ofWJFX6PZpZgUxeq4In5KKUwXAe38lkcSXbd06Bg1c/pj+OpU4dx6e0ZvPrGHbgUeOBgH8IhGW/emIPrwm/E0oxqs7BpO4iFZcTKTnKbvVYGI1E8feAQnhzau6ZG8IgkQRII7HKcmbNMLgbbwbTkL//7v//7mJubg6Io+PVf/3X8zM/8DIaGhnDnzh389//+3/EHf/AHuHXrFv78z/8cv/iLv9iKQ+JwWkY9ZzDTsmE7bmC8UCsJOIO1weWp0s1z4eoUbo0v+uK4xZwO03J4N0+HYTAJe0I8oQGHU4vuODiQSGIoGoMsCHj/0PCanYmmS0WcvT6KRUPD3mgMU6USAG+krUgE9ITC6FJDmCjmcfb6KJ49drwhwhZ2TGRljj2Hw8I6g6USYX+T264xkRXR5JxWQlJRMByLoWBZuFa24KfUG9F6JJVCTJabJqRk2cljIgPOYHxMJIfDYWDjZz4mcucSkZvnDLZSor2WyvgK03YwtCsOVWlvzFs7VqrWdZqPieRwODsBdiTeZp3BFNFrBHKoC5EIWNCre9iwJPlijMPJJK5ns8hZFhzqQhEFqKII3bahuw6KAHpB8NMHDzetkajVrLdwysKKlSn1piZIO1wMpggCCPHOB+DlARslBmOdwQCvmC4qAqbn8jj7wkUsZErYP5TC9bEFaLoXU0mygFQ8hO5kGOMzWZx94SKefebxHV1TYGsumbzuixhT8VDLHNTYmDdyTzFY0G2Ow2k3tXss3Vi+H1nK6UglQpsWM211DNMO1FYqArlTJ0ZweXQG4zNZDA8k6+5TXZdifDqLXb1RnHx0ZMPHcCSVwiceOIbPvf4apkslFGwLIVGE7jhQBBGDkSh+6YFj2B2N3fuHrUImpyMWUZCMisiVXHQlwpAkAb1dEUzM5qEqngiNdcu0bQe9XSkostjQayWhKHiwu+eeryOEIKmoWNC9GkbFEZWzM2lJVvLFF18EIQSf/vSn8X//3/83Dh8+jHA4jPvvvx+/93u/h1/+5V8GpRQvvvhiKw6Hw2kpK80A1to4KjLgDNZiNfC122k898VXcO78TTiOi0RURTyqel09AM6dv4nnvvgKrt1Ot/S4tiO5go7LozN47cokLo/OIFfYmHiBtUOXBWHHd8Jx6nMnnwfgJSIf3zWAx/r68WB3z5pGC5yfmcacVsJQNB5wA/AcFLwsk0AIhqJxzGklfHdmuiHHXEkgAUCYO4Nx6lAoVp3BhgerThr5ktnysYCsaHJfPIGeUBiG4+B6NgvDcdClqOgOqTDd6td6QmHsiyewaGg4e30U06Viw48rMCZS2lmCh4AzmM2dwTgcThWdi8E4qBE2OY13uTp1YgS7eqMYn8muKCYgBChqJsKqhIHe2LLu9lbDuj5IAvFdPypEmjhak8PhcDoFtjDq1pmish5GYnGkVNVzjaYUS2Y199ejqv6/k4qKB7q60KUoUAQRWdOE7tgo2BYEAN0A3gsBh5OpTR1PJ1IpnK4nT1XbCMuFKl5hWWXEO0YDYxuxRixQccx7+cIYZtNFX1DgMI7cFTcxQSAYHkhiNl3E+dfHGnZMW43amsvegQQODHVh70DCd1BrRc1lPWIwmY9j5XQg7B6rXg03V9Rh2W5DxExbmUyuGm+IooBYxHu2DvbHceajj6AnFcHtiQzSSyVvRCK8UYnppRJuT2TQ0xXBmY8+smmBKqXAcCyOR3p6cayrB7987EE8kOrGIz29GIxElzUfbYTKOMxkVERYJZiYzcF1KQZ6YwirEoqaGXAQtWwHkihgoDfWMOHbRkjI1Xgna9affsLZGbQkKzk6OgoA+OVf/uW63698/dq1a604HA6npRhm/UC2naMiWWewVo6JrO3m6e2K+EkPQgh6UhHsH0phIVPC2RcuYnou37Jj205Mz+Xx/EtX8NkvfAe//8VX8T+e/yF+/4uv4rNf+A6ef+nKus8rm7CvHePB4eRME28spPFaehaLug7TcbA3tvYgPmeauJCeR1JRIBASEKi6lMJg3HYEQpBUFLyWnkeuAQFsSav+DC4G49SDdQYb7ItXxbCUblhgu1FY0WSl02imVILm2IhJMgghICCIyjI028as5jnsNUNIyWIxorgd5wwmcmcwDodTH1YMxsdE7lyaOSYSWFui/c5EBpGwgsP7ehAJK3W721uJwRT61DqJeT4mksPh7ARYMZizyXHzCUXBA6kuTJdKuJ3PoWTZcCiFQAhSatB9IiRKiMoy/tGBg/gXxx/Czxw+igdS3bg/1QUAWADFlcXFhuRbtjq1YjCLC1UABJ/dtW6fm0EUlzuD5Qo6LlydQjKu+veMw8TYrIBMEAiScRUXrky1PFfTCdSruVTOqSh67jWtqrmwzq5sXFcPVqRh8pwKp0Ng91hTc3nohg1armFSSlEsWrj41jSIQPD4w8OIRhpXU8iZJi4vLuC1+TlcXlzo6OdxhpmakYqHAgYSR/b34tlnHsf7Tx6EJAq4O5PD7Ykl3J3JQRIFnD51EM8+8/imRvtWztXfTtzFYtn96tHeXrxv9xDu7+qGIoowHQd/Nzmx6fNZmRCiyAIOD3mOlLcnMijpNg4Od0FVJOSLBkqaCcOyIQoCEjEVJd1qqPBtvSRVLgbjeLREBZLNZtHV1YVkMln3+wcPHgQA5HK5VhwOh9NSTKt+ArPURmewwJhIqXWF20o3z/6hlL+JY51VJFHwu3luT2Rw/vUxPP3U8ZYd33bg2u00zr5wEbPpIpJxFXsHEhBFAY7jYimn49z5m7g8OoMzH31kzcGWxWy0FV7M4pSZLhVxfmYaF9LzmNNKmNO88XmqKOLwXBJhSVzTaIGxQh4Zw8BwzLPrFQmBKop+Uklz7ECyKaWqGC8UMFbIr8kSdzXYdTjCxWCcOuQZZ7BkPIRETPU3gJm8ju5Ua+yVa0WTgCfUTes6BBDY1K2Y6AEgUEQB87peHtsqBoSUp4f2rqkTeq1YjNuovMPEYOwoC6vFTnEcDqez4WIwDoDA6KRmCZsqifaXL4zh9atTuDuT89qjCUFXPITTpw7i7mTGFy1rbXYGYxs96jUasQ4SRT4mksPhbFPEBjmDsXmZBV3HRNldXRRE9IRUGI7tizFcSjFRzKM/HMGPDQ1jMBJFt6ria3fHMF0qIgcgAxfX3r6KrlAIJ3r7cHJgcNuMjFwvhBDIguDnRC0uVAFQKwZr3DkRBQJ2BqXjupiYziKT17F3IAHAS3mwTqiCGHQT60qEcHcmh7HJDB48OtCwY9sK1Ku51NKqmgs7kebeYyKZnAp33+N0EEf29+KXnnkX/tMffBsz83kUSiYEAhR1C65LEVIklHQLX/k/o3j5tbFNj2Fln+cZwwAFQODVQTr1eZzJaf6/U4nwsu8P9sfx8Q8cx1OnDmFsMgPTcqDIIkb2pDY1KrH2XM2USrCpC0UQEZFlTJeK6FIVfG92Gmldx6XFNHpC4U2dT1b4NtAt4x/95Dvw/Tcm8frVKSzldSRinhOrbliQRRGyLEAzbIhl4dvJR5s/orceSYUVgxmrvJKz3WmJGMx1XSirFJ1k2duUOA3sJuBwOoVOcwajlEJn7rVWOYPV6+ahAGwm0K8UVdlunidPHtqRM7c3Qm0XELv5q3QBdSfDGJ/J4uwLF/HsM4+vKQhhO3MaYavK2fpcy2Rw9voo5rQSkoqCuKxAsx3fDvdbU5O4urSEM4eP4kgqterPMh0HFIBIqgmAECMGq+00rLzObEDMwFo9R8JcDMYJQilFoVQVg8UiCpLxUFUMlmtdt2mtaBIA8paJjGlABIHhBJN9YnnsUt6y0K1663YjhZQVHNf1HUgAQG6hwLwTkMTGdfRzOJztg0OpJ9Itw8dE7lzYAlgznMEq3CvR/md//Tpm5j0HiHY7g5n3cAaLytVzZjoubNeFxO8hDoezzQiMiVxhzO+9qM3LHE114criAmzqwqEucqaJN5eWcDCRgEspsqaJ/nAEZw4fxWAkyrxfgwtALf9vOBZD1jRxbmIclxYW1pTX2a6wYjCDO4MBCD679QaOiSSEQGTGQNq2C9Py8owVhyvqUrDaSbEmPhBFAaAUprWz/lb1HdQocgUDkZAMVan+zVpRc2GdwcL3EoOJfEwkp3NJxELYO5jEQG8MM/N5lHQbxlwOoYiEcEjGweFuCAQbNmCoUPs8H47FIBIBDnWRMYyOfR6zefFUYuW1JBELNUygW3uudoUjyJreiEbDdfDm0iJ+++IFGI6DyVIRiiBAImJ5ig3d8PlkhW8RlWCwr/7+OxpR8Id/+Socl0IUCP7lz70HA72xVX5yc0nK1XHhnewyx2k+PKPC4TSZlTYg9eZNtwLdcQIbp3CLxD1jkxlk8jq6mMDAdSmYOknAErorEcJSXsfYZKYlx7cdqHQBDQ8k79kFNJsu4vzrY2v6uWzCgzuDcaZLRZy9PopFQ8O+eAI9oTCK5eIWIQQDkQj2xRNYNDScvT6K6VJx1Z+niCIIAIdZDPrCYRxIJHCsqxu7wkHnpcrrGiFMLOnVxBV3BuPUUtItuIxgOR5V0cV0OrFdQc2mnmiyaNu+ALMWx6VwKQ10mTdSSFnBsoKdmzttTKTExC28U5zD4VQwarrauRhs5xIQgznV8SLNopJof+z4Hjx4dMAv8IXVapyr6e11BmPjkHp7y3BNsxofFcnhcLYjrDOYswExWL28DAVFl6oiKsnl4qeAjGng0uICLJfi9NAwnj12HEdSqcD7DyYSCJXzMjoAAQQ9ofC68jrbFXZUpM1diwA0b0wkENxfOy6FIosghPgNaLW3Sm0uxHFcgJAdl5eoV3MZn85ibDKDa7fTsGsa15pdc2Fjt3s7g/ExkZzOJb3kPfts28FCVkNIldDfHUUkpICAIJvXNz2Gtd7zvJK/FYnQ0c/jpXs4gzWa+jUpr8ZOCEFSUbE7EsH1bAZ3C3nERAkhUQIhBAXL3NT5zOWrrlohtfqsqt1/7x/qQm93DH3dUXSnIoHnWjvgYyI5FVpjCQRA0zT82Z/92aZe87M/+7ONPiwOp+kYZmeNiWS7dgip343bDGq7eYDgaClCgpu+ndrNs1HqdQHZjou3b6UhSwIkScT+PV0QhPV3AQUS9twZbMdzfmYac1oJ++IJCITApRQlq7qexWQZAiEYisZxJ5/Dd2em8VMHDq3480ZicaRUFRnDQE/I2zhEpZWFWRnDQEpVMRLbvLVuSasGwWyRjMMBgAIzIlKSRKiKiGS8ul5mWygGY0WTlaSAUy4oU0pByk5g1UICBQXxR0oCjRVSVqh9RsuyALqDkuSBZDVPXHI4nDLsiEgRBBLhYrCdCitsotRrzLqXQ0IzUNXqZ+or5CdahXGPvaUkCAiJou9mXrKtho635nA4nE5gs85g352ZCeRlKCgWDR2SICChKOgLhxESRNjUxZxWwmO9vYG8DJvXoQAEeIVrF96I3riiriuvs11hc+bmDtrnrkaoiWIwsWZ/PbInhVQ8hKWcjt6uyDJRfW0f9FJOR1c8hJE9qYYeV6dTW3Nx3Wq+ynEpNN1CPFqNpZpdc1mPGIwVXHJnME6nMb/oCYVm0gWYloO9g0lMzxf8r1fWJmDjY1hr6yz16NTnMesM1rWKM1ijqHeuWLerhKJgTtNAQEAphYuqG1LespBUPJes9Z5Pw7RR0qufE1FXzu8QQhAJySiUPPFYuwxhKiTl6tpvOA5020aoDfkITvtp2V89l8vh53/+51f8PiFk1dcQQrgYjLMlYcVghBB/48KKEFoJO7c9JIp1HUWaAdvNU9mcsI4ikiSAPZSd2s2zUSpdQHsHEv7XLMuFbXv/I4INtg7VlQjh7kwOY5OZe9q0sgkPtmOHs/PImSYupOeRVBQ/6C7aFirpGIEQf6MvEIKkouC19DxOD+1dsYiTUBSc6O3DuYlxdKmhFTc+APzRBqeHhjddFHJcN7A+8zGRnFryxWrXTyyieF1GjBislWMi64kmZUGAQAS4oAgLEuKyjKxpwHYpHEqhEgFxuXpdN1JIWYEVdYuiAFEQdlTHtCRV1yvL5mMiOZx2kivodcfjtQPWGYy7gu1sVFGEQKpOFiXbbosYLMyKwYw2i8HYMZEr7C0jksSIwbgzGIfD2X5sxhms4Ni4kMkG8jI504Rd/jkEwK4w6yxCcDWzhJxpIqEodfM6UUlGrvzzc5aJOFMwXUteZ7vCjinmrkUeKiN015voDGY7LhKxEE4c241z52+iOxleJgZjaxquS5HNGzh96mDb9gDtorbmohlWYCqMXXPtNrvmoq3HGUzkzmCczmV+sQTTcpBeKiEZC0EQCLoSIV8MViyZMC0XiuytXes1YKj3PPagsF0aeAZ12vPYdlzkmLx5Kt7cdbfeuXIpRYExKAiLEiYKBX/8rO44CBOveTpnmkCUwouS1nc+2WZwQQBUefV6epgRg7XLEMY/FkkKjLzOWiYXg+1QWpaZpJRu+n8czlbENKsbI7aI3AnOYCGxdQs/281TgS0iK1JwA7JTu3k2yr2c1xRJBBumrKcLyAqIwXhBayczVsj7gpIK+RpXMMJcaRXxylhhdXvkkwOD6A9HMFHMB8basbiUYqKYR384gvcMDG7yNwH0mhE5YT4mklNDoVQVbcej3jXPdjpl83rL4tOKaDJrmoF7JCSKcCkFKUsyvQ2xJwaLyzLkcpG1IqR8rLevoQkDi3mGyNLOEwvXJqs5HE7rmZ7L4/mXruCzX/gOfv+Lr+J/PP9D/P4XX8Vnv/AdPP/SlXWNaGgUrBhM5bHzjoYQEhB/lez25ABCjBis3d3JbKFvJZdytnBY5GIwDoezDdmMM9iMYSJrmoG8zIJRzbUmVdUXggHL8zL18jrsHjFrWgDoiu/fSbA5UIu7FgEAVGYP3GxnMAA4dWIEu3qjGJ/JBhrPCIHfVO66FOPTWezqjeLkoyMNPaatQG3NpbbmVOti3syai+26AZHgvZog2KZzfo9xOo30UhGFogHDdNCb8hzAwmEZqlK9btlRicD6xrDWex4DFDeyWVxdWlw2wrCTnsf5ggFfdUoIEk0Wg9U7V6xBgUgIXOrCdB2oggi1nC+vPDcs14VW88xa6/nMFpgRkYpwT3OVcKhz9t6EECQUBabjYFHX8f2ZGVxeXAg4qnF2Bi1Rgty+fbsVH8PhdCSs2KYrEUamHCCUtPY8CFhnsFZ2Jdd28wgCCZwbmelG2cndPBulnvMae36lmiL9erqA+JhITgXTcUCBQGLRcV148hMEXIjAvM68R4JoMBLFmcNHcfb6KO7kc0gqClLlBKZDXWQMA1nTRH84gjOHj2IwEt3078ImR0RRgCzxYi0nCOsMVrHUZ0XdpmVDM2xEWiQkPDkwiEsLC5go5jEUjcNyXUQkCYbjwHRdb1wkCCzXhSQIiJcT+o0WUrIEnuM78B4Kjon0mlda5bjK4XCAa7fTOPvCRcymi0jGVewdSEAUBTiOi6WcjnPnb+Ly6Az+8QePtfS4dKaQEeKuujueiCSjaHmCJnYv3krYcehtdwYL7C3rxw4RZmR8uwR0nUrONDFWyMN0HCiiiJFYvO3OABwOZ/1sxhnMot7er5JvsVwHebO6VvYEisrL8zL18jrsOmK6DizX9RuL1prX2Y4EhSq8+QcINpYbDRbviGL1vqg0Ww32x3Hmo4/g7AsXcXcyC92woSoiBKEa82fzBnb1RnHmo49gsL9xTuhbhdqaS23NiW1ca3bNRXOCcSYb09VDCYyJ5PcYp3OglCK9VPKf0ZWJIgRAKhHGbLoAwMsd7+qp1inWY8BQ73lcsm2/GWZe0zAQifiN9530PGZFcPGoGsiPNoN658qoEZ66vjaNlP9/cBStZtsIM8+wtZ7PDPO7RkL3/j0j4WpM1S4NQIXpUhG3c1m8ncnAdB1MlgqIy17d7URvH04ODDakzsbpfFqiBBkZ2XmKfA6nAjuGLJXoNGew1hYnTp0YweXRGYzPZDE8kIRlV4P8iqPITu/m2ShsF1BlVnnw/AYDlfV0AZnM5l7m7gY7GkX0HOYc6voB83Asjt3RGIq2hXDNmuJQ13/fvTiSSuHZY8dxfmYaF9LzGC8U/O+lVBWnh4bxngYGqOwaHAnJXMDBWQbrDBYrO4OFVAmKIsEsP9uzOb1lYrBa0WTOMiGWba0t18WSacB2Xd/qGgAWdK3hQkoW9jmzE8c6s2MiAcB2KGSJryUcTiuYnsvj7AsXsZApYf9QKuCwIYoCersi6E6GMT6TxRe/ehlH+h0kY61Zp3TuDMZhYF2uagtkrSIUYsdEttkZjB0TuQZnMD4m0mO6VPT3SRnDQGXICU/kczhbk804g8nEc6Wo5GUogG5VRcY0IQkCYjVNerV5mXp5HUUQIAKorNC64/hisPXkdbYbMheqLIN9djdzTKTjVO+LI/t78ewzj+PF74zia9++hkLJhEAI7s7k0BUP4fSpgzj56MiOFIJVYGsuteKDijNYK2ou7IhIRRDuWUdgGwM6QeDC4VTI5HXYtuOJtwkgMbW1eETBbPnfJc0by1opK6zHgKHe85h1Uabl/66su530PM4w05/YKRrNot65Mmocp8XyH4FSWpkGCVUUfTF3rah7reeTHRMZVu6d840we++S3j4HrmuZDM5eH8WNXA4UFDFJRrcawkAkgoxh4NzEOC4tLODM4aM4kkq17Tg5rYEPB+VwmozBjInsBDEYm4AOt3BMJBDs5rk9kUFJM30XDVEkSC+Vdnw3z0ap57xms2KwTTivsYEVHxO5sxmJxX0L3Z5Q2P+6SAgS8vKO9Ip970hsbffyYCSKpw8cwpNDe5ve8c4mRyrdPRwOS6HIjImMeNcfIQSpeAhzC55YMZPXWvqsYkWTX7p1wy+QphQFhCjQbQdF24LhOEjrGrqaIKRkWcnhs920yjWjtvPNtt0d6ZDG4bSDly+MYTZdXCYEYxEEguGBJG6NL0K0dZw40hqhhEGrsXOIx847HnbP3bYxkQorBmuvuMoM7C1XEIPJzDmzuBisksif00pIKgqGY7GAgzJP5HceuYI3Hsi0HCiyiJE9Ke56zwkQcAZz1icGG1AVJE3Fz8sogug16VFaFtwG46LavMxKeR0ZVTFYybYRL+d41pvX2U7IgTGRXAwGACrz7G60eKfemMgKg/1xPHnqCKbm8igUDUiyhH/8weN8fS1Tqbn8z79+HWNTWSiSCFXxpoiYltuymgsr4l/LRJqA+17Z9ZA363I6gflFb0RjLKoiGlaQKxi+AUM4LIMQb0qi61Lohu2PBlyPAUO957FZ47ioO7YvBuuk53GGEUilmjwiEqh/rgy3ut6ogoiYLEMRRN+1UhFFRGUZGcOb/FH7HF/r+WSFbxF1Dc5gIcYZTG/PXna6VMTZ66NYNDTsiUQxo5UAeMJ2kQjoCYXRpYYwUczj7PVRPHvsOG8s2uZwMRiH02TYQmkqUd1km6YN23GbbqFZi86Mpgi1cExkhUo3z8sXxvDX33jTd15RZBG7++O8m2cT1DqvmczfWtmE85rFBKGd0HnAaR8JRcGJ3j6cmxhHlxqCsMoG3aUUWdPE6aHhdYswEoqCB7t7Nnu4q6IFnMH4aBXOctgxkRVnMMAbFemLwZgNYasYjETxk/sPYjSzhLxpwaEUH9t/AMe6e3Arl8Nf3rgGh1J0qQr+xfGHmzo6yGKeM7LU/udDq10zJHG5MxiHw2k+uYKOC1enkIyrASHY9HwBiiwiGpahqhIIPEFYIq5ibDaH+0daU8TjzmAclnDA5ao9jgchZkyk1u4xkezeciUxWGBM5M4Wg7GJ/H3xRGD/xRP5ncf0XB4vXxjDhatTyOR1v6idinvNe6dO8FwXx2MzzmAxUcKJnj58c2oikJcRCVnW9FsvL7NSXkcBUNndVnLHm8nrbAfYHGhtgX6nEmqRM5jtLI/bHdeFIovoTkUQj4Xw4NGBhn7+VufI/l785OkHsLBURHqp5NdcbNtFV6I1Dmps3BZZkxis+jen1BNr8NoDpxNIL3niGUUWcXikG3MLJd+AQRQIQqrs1xaKmolwSFq3AUO953GtC2VlFGKnPY/Z0YlszbtZ1D1XbJORKEARRfSGQpgsFkEpxXA8hrAoIlN+jc2c2/Wcz4Az2FrEYIzpQElrjzPY+ZlpzGkl7IsnkLeqx8DGMgIhGIrGcSefw3dnpvFTBw6141A5LaKjxGC3b9/G888/j9u3byMajeId73gHPvaxj0HpgMWNw9kIlFKYTCdrV82DUdMtxJkCcyto55jICoP9cXz8A8cxNrmE9GIRjkvxgR89inc+uJt382yCWue1XMELVAghEAVsuAvIDBS0+IZsp3NyYBCXFhYwUcxjKBqvKwhzKcVEMY/+cATvGRhsw1HeG1YMFg51VDjE6RACYrBINRZNJUIwLQeFooHX35pGLKK0vBu1aFmQBRHdIW9Nfmf/LkiCgIFIGN0h7zgUUWh6gsBiBO/tHhPZDtcMQggkkfgisHoJaw6H03jGJjPI5HXsHUj4X3NcitmFgjdLAcDRA70Iq97zPRUPYXzCxWKuNaISw+XOYJwqgTGRbRI2hUNBZ7B2ui6wLiJrGRNZbJObWqfAJvJXasThifzO4NrtNM6+cBGz6SKScRV7BxIQRQGO42Ipp+Pc+Zu4PDqDMx99BEf297b7cDlthhWDOesUgwHAewYGcHlpccN5mdq8DgEgg6ASSGmOvSXyOs0m4AzG93oAAFVixWCNjWvEe9wXrFuYuIIz8E7HcVwcGO7G0EAShaIBx6XY1RPDL/6Td7YkZ7VuMVhNLGhyMRinQ0iXncEA4B0PDuG1K5O+AYMgEEQjQTFYdzK8oTGstc/jWsdF3XE67nmcK+gYvZXGYrYEUSCBEZrNhD1Xe6KxwLkKlcXw/eEwJooFgAB9oTAs5llScQZbz/mklAZc0CKhe/+u4RDTiNUGZ7CcaeJCeh5JRYFASEB06wnoKq3T3j4yqSh4LT2P00N7O0JoyGkOLa1+/u///b/x13/91ygUCjh69Cg++clPYv/+/QCAP/iDP8C//Jf/EnZNcmz//v34yle+gvvuu6+Vh8rhNATWFQwAomEZsiz6xdOS1noxmMZ0I6/FrrdZ2LYL16XoTnn2qlwI1hhY57XnX7ziB6XzSyXs6oltqAuIDayUFjvZcTqPwUgUZw4fxdnro7iTzyGpKEipakB0kTVN9IcjOHP4aMd2ppcCYjA+JpITxLZdGGY1Jq08q6fn8rj41jQuvjUNw3Rw4+4SLl+bbXm3P9vVE5ZESOWNXVSuXsum48Jy3UACu9F0ypjIdrpmSJIAu/yctGxeIGgGfNQSpxbTckApDYySKWmWLwTzOnWr+xxRFEAp0CpTJu4MxmEJOoO1aUwkcz+4rgvLdtsm4jbWsLeMBM7ZznUGq03kA17xYqrkFacGIxGIxDuHPJHfXqbn8jj7wkUsZErLxheLooDerohXJJzJ4uwLF/HsM49zh7AdDitkcen6xWCbzcvUvj8hyxDLgRSlFFnTwK18DgMdntdpNgofE7mM4JhIFy6lq04NWA+soMCus7dmBWKtnrSyVZiezwOA76AGAMlEuGX7ZzbWZZ1eV0IkBAIBKn9abzoJz9Fy2kuuoOPK9VksZTWIAsHu/gTu/2ifb8CQjKt+4xmlFOmlEmybbmgMa+3zOGOaEOA1n1JKsWjosF23I+osrAPu1etzoOX4xfybN3B7YqnpOXH2XN3MZaE5NlTBG4crEmBB15A1TRxOpgAAc5oGWRD8RijDcfzXrPV8FjUrIERekzMYU2cq6a13Bhsr5JExDAzHYgAAmRHYupTCoRQi89xOqSrGCwWMFfJNn9TDaR8tU4L8wi/8Av7kT/7E/++vfe1r+MIXvoDvfe97mJycxL/4F/8Cbp2g+tatW/jQhz6EK1euIBKJbPjzFxYW8Lu/+7v4yle+glu3bsE0TfT39+M973kPfuVXfgWnTp2q+75CoYDPfe5z+NKXvoSxsTHEYjE8/vjj+Df/5t/gfe9734aPh7MzMMxgxUFRRIRV2ReDaUbrk8Fs1064jZ0W+VLVcQWEIBrhycpGMdgfx0+efgCjt+b9LqCPPXkMxw73b2jzxzqDNVNUwNk6HEml8Oyx4/44tvFCwf9eSlVxemgY72nwOLZGExwTyRMNnCCsK5j3jJL9bv+xqQxc13MLUxUJewcSLe/2LzKuo1EmwRaVZBDi2et7r7OQUpsnOmfFT3KLOsHq0U7XDHZUpMPHRDYUPmqJsxKK7CX8HMf1BWFFxn4/EpbBrgSO44IQoFXTbLkzGIclIrLOYO0aExlM/emG3TYxWMB1eg3OYCW7vU5m7aQ2kQ8AaV3Hgu51p0uCgIFwNU/KE/nt4+ULY5hNF5cJwVgEgWB4IInbExmcf30MTz91vMVHyekkAs5gG9xDbDYvw77/tbk55AEYAGDZUEQRj/f140Mj+zo6r9Ns2BwoHxPpUTtlxHQchBrUbC4y59upUycMOINxMVhdZuYLy76mt7D+xMa6a3EGI4RAEUR/5KjBHfg4baSSg3rtyiSu3pjzm83Mr7yBf/DoXvzUk8dwbWwBr1+dQjpT8nPHqiLive/ahyceP7ChHFXlefzy9BT+n1s3UAo4Xol4/55hnBxsb52FdcCNRmREw7IvWBME0rKceOVcffn2LZybnEDBtiASgoliMRD7AF6u+PuzMygwItWhaHRddatMruoKFlKlQA54JWqdwVq9lzUdBxTwm4YkQhjvV8B2KdhHeeV1ta50nO1FS8RgL730Ev74j/8YAJBMJnHo0CHcuHED2WwWn/70p5HJZAAA//pf/2v8wi/8AkZGRjAxMYG/+Iu/wGc/+1mMjY3hj/7oj/Arv/IrG/r869ev473vfS+mp6chCAL27duHRCKBmzdv4vnnn8eXvvQl/O7v/i7+1b/6V4H3pdNpnDp1CqOjo1BVFQ888ADm5+fx1a9+FV/72tfwe7/3e/jlX/7lTZ0bzvaGdRURRQGiICASlv3xfcVS68VgWh37zHaQL1QL7dGwHNjwcTZPsWQGuoDe+dDQhrum2IQHt2rmVBiMRPH0gUN4cmgvxgp5mI4DRRQxEotviU507gzGWQ1WDBYJyZhLF/1u/wPD3Ri9lQYAmLYDIrS+27/AOIPF5er9JhCCsCj5LhpFu7liMLMDxkTWc80AKPKWBVkQArFOM1wz2GcrHx3SOPiopa1BzjTbEgOM7EkhFQ9hKaejt8uLdYta9bkeDQePIZPXEVYFdCeav/ehlHJnME6ASAc4g4mCAEWWYJbF5LphIRFrrUM54N0f7N6SdRdhYYXuLqUwGlho3krUJvKB4NjM2rGjPJHfHnIFHReuTiEZV32Bj+NS5IsGomEl0DAhCATJuIoLV6bw5MlD3Ol0B8OKwdwNjImssNm8TOX9PzawG3/5jTlchotEVwpxWcVjff07WggGADLznOLOYB61eWHDdRBqUImRFXg5dfbWrHByLQX5nUZRM/2aE4vWwhHhbKy71ok0siD4YjAuuuS0CzYHFQpJiIUVT+wEClEQAjmop04dwthkBl966QoM00YsquIdx/dsKg88GIniQ3v3YTSTQcGyfPemmCzjyeH2uv7WOuCWdMtfTyRJRH93FL2pSMty4oORKB7r60da11GwLPSHwzg9vHdZ7PP0gUP40YHd+M+XLvrn81eOP4yB6Npjm0xe8/+dSqwtbo+Emb2s68IwnWXNWc1EEUUQAA51y/tDAoEQOOXO8VpHWoe6/vs425eWZCYrjmBPPvkkJicn8YMf/ABTU1N46qmn8OKLL+Lb3/42PvWpT+F3fud3cN999yEcDuPw4cP4jd/4DfzWb/0WKKX48pe/vOHP/6Vf+iVMT0/j8OHDuHz5Mm7evInXX38dc3Nz+LVf+zVQSvHrv/7ruH79euB9/+yf/TOMjo7isccew61bt3DhwgXcvXsXX/jCF0Apxa/8yq/g4sWLmzk1nG0OWyRVFW/BjwSUwW1wBmMShuFWtcfXIV9kCtktHpW5E2DPbySkbFgIRikNJDyUFRL2nO1DrqDj8ugMXrsyicujM3UTCSwJRcGD3T14rK8fD3b3bAkhGBAUg3FnME4thVLwGVXp9h8eSHrP86rmyHf7rHT7z6aLOP/6WFOPL29Vr9+YHLx+2f8uWM2NMyy7/WKwimsGK3qb1TTcyuVwLZMJOKICXpd8xjAwVsg35POleySsOeunNtHU2xXxCwOVUUv7h1JYyJRw9oWLmJ5rzN+Ss3amS0V86dYNfO7ia3ju6mX80dtv4rmrl/G5i6/hS7duYLo8wqxZJGKeO1w2b8B1KSjKYyLLRBjHYdelyOUNjOyS12Tpv1ksSkFRTa51ijPYeuM7TuNgxWCaY/vjNFoNm4DWjPaMXjRdF+yvv1LCOSSKYM2VduqoSDaRX0FnhF5GjeiLJ/Lbw9hkBpm8ji6mQHR7Ygl3JjIYvZ2GYTowLQeLmRLmF4uglGI+U8LYZKZ9B81pO5sdE1nLZvMyCUXBHhDsBUG3GoIiipjTtHu/cZvDjjPmYjAPgZDAedFXESDnTBOXFxfw2vwcLi8uIGeuPi6L3Vvb9cRgzN9A6JAYu5NgXcFkNj9D6bLpNc2CjdnW4gwGBOMWk+dUOG2gNgcVUWVf7BQOyejrDuagiiULDx4dwGPH96A7FYEii5iczW36OLKmCUUU0R0KoS8cRnfIex6n9fbu3dmcuCAQmCZb8/bu31bmxAFgyTT8c/VQT++KsU9fOIz+SNg/nys5+NYjV9DxxlvTmF8sYjFTgqKsbY8VViWAEd+2WgMwEov7ue8K7BSN2rizklMfifHJC9uZlsgRX331VRBC8PnPf94f9RgOh/Hbv/3bePjhh0EIwc///M/Xfe8//af/FL/2a7+GK1eubOiz8/k8vvWtbwEAPv/5z+OBBx7wvxcKhfD5z38eX/7yl3Hjxg18/etfx+HDhwEAr7/+Ol544QUIgoC//Mu/xO7duwF41qW/+Iu/iJdffhl//ud/jv/4H/8j/uqv/mpDx8bZ/rDOYL4YjOlUL7X4QeBSGtiktdMZrMCMieRisMbDutrEohsX51g1CXvubrB92WnjuAJF4zAXg3GCsIJaSSLLuv1lSfRFYKblBDa/rej2L6wiBvPcNLzEfbHZYjBG9L5R0fFmqeeakS8nmSmAJcPAYKQa7zTaNUOSqhtqm4+JbAh81FJncy2Twdnro5jTSkgqCoZjMYhEgENdZAwD5ybGcWlhAWcOH8WRVKppx3HqxAguj85gfCaLvp5oVYxJPNdhwBOCjU9n0d8TxcH+1tyfek2hUCHtjZ13WnzXibCuCLbrNdq0Q6wTUiXkyjVCvW1isOCzV1lhb0kIQViS/LHYJdtGd9OPrvNgE/k9oTBcSgPxi/dvikqXAk/ktwfTckAp9YXrlAKF8l5C1y1cuDoFIpBA3Gw7Lr7x3Rvo7YryNXiH0ogxkc0gDoKKpH9O52Kw4JhILlKpoAqiL9qpFSYDXuNIZXxpxjD8J1VKVXGitw8nVxjPJYrsfbH8fNt29Wvtyj90MtPz1SapoYEkbk8soZLU1w27Jc40GxKDCazokjuDcVpPbQ5KZ2q6oXJNt14Oand/Am/fmgeAhojBVhLMLugaDiQSm/75G6GeA66xwpSIVjrgLjFCp+5VJmIQQhCVZGTL57Zg2egPr/6z2RzKrfFFv4aUzmjYndRwaM/qvxchBBFVRkn3PrOoWehK3uNDG0hCUXCitw/nJsbRpYYgEBIQgzlM86JLKbKmidNDw1vG4IGzMVoSNc3OzkKSJDz44IOBrz/44IOQywWsAwcO1H1vKpVCV1eXP0pyvRiG4XdeHjx4cNn3CSH+1y2mYPalL30JAPBjP/ZjOHTo0LL3feITnwAAfO1rX0Ox2NzOZ87Whe26qDwYWdFBq1XBtd06a7XrbQasWCm+CbESpz6s2C4a2fj5rU128C7j7cm122k898VXcO78TTiOi70DCRwY6sLegQQcx8W58zfx3BdfwbXb6XYfakOglAbWX+4MxmHJFXS8eWPW7/zJ5oxl3f4qs9nVjOCzvCsRwlJeb2q3f8FeRQwmV5/txSY7aQTGRCrtiSnquWbYjIq51h2t0a4Zge5lmxcINku9RFM2b2App3vFVua1bKKJuxy1hulSEWevj2LR0LAvnkBPKOwLLEUioCcUxr54AouGhrPXR5vqEDbYH8eZjz6CnlQEN8cWoZfHn4QUCaAU6aUSbk9k0NMVwTMffhDJWGtiWIMdEUmEQNKt1ey0+K5TqR1vqDntEWIFnMHa4FAOBAvGIiGQVmk0YkdF7lRnsEoiP2ua5ca+4HmgqDrVVBL5j/X28UR+i1FkEYQQX7hQca4xLRtLOR3ZvI6SbiIWURCPqoiGZVBQvP7mNF+DdzCNdgZrFKw0Ma1pHXVs7UDmIpW6sLFNrRjsWiaD565ewbmJcTiui+FYDPvjCQzHYnBcF+cmxvHc1Su4VqfWF3TdXn7tsc5gIh8TuQxWDLanPxHIW+lGa2I/bbPOYNtcdLletzxO86mXg2L3SmFmD1Wbg9qzqyrQml0obDonmLWMul9fMNqX76rngFvPAKVCK3LiQFAMllJXF2exefOivfpaWJtDiUVUxKMqYhEFggC8ddfAt9/I49qdhVV/TjjEunK3fu99cmAQ/eEIJop5uOURmRUq48ldSjFRzKM/HMF7BgZbfoyc1tISMZiu6+jurt/HV/m6tEpwIMsy7A0mf3p7ezE0NAQA+O53v7vs+8Vi0R/1+K53vcv/+ve//30AwI/+6I/W/bnvete7oKoqdF3noyI5KxIcE+kFtmGVefhorQ345kslLOo65jUNS4YeGBnZavIFPiaymRQYV5vEJs4v23ksEAQCB872YCeO4zJMJzCiJ8zFYBx498LzL13BZ7/wHbz4net4+1YaV2/M4/yFMaQXiwGBNyvszuaCm3JRFABKAzFAo7m3M9jy1zUDi0l0KFJ7OnPr2V/bjDBMs204zP3eaNcMNmFt8ZEGm6ZeomlusYixyQzevDGP9FIp8PpWJZo4HudnpjGnlTAUja8ochIIwVA0jjmthO/OTDf1eI7s78WzzzyOwyM9EARvxG9Jt3B3JgdJFHD61EHv+/t6mnocLKwzWDsddXdifNepiIQgxBS52iVsYsVgbAK/lbCjf9R7iLLZAmLpHkn77QybyNfqXDuG4/JEfpsZ2ZNCKh7CUnlPYDsubNtBNm/AcV1IkgDqVh35TNtFLKzg8L4evgbvYFhnsEpRrhOIAai4DZquG9hj7UQUofqs4nu9KuwznG0832zjiHiPMZHsvSLyyRU+uYKOS6MzeOOtaSxmSjAtBwN9sUCusxXTaWzXDVwPazUhCDjwNcjBvdOYLhXxpVs38LmLr+G5q5fxR2+/ieeuXsbnLr6GL9260dQmKs7q1MtBsS7KITWYc2VzUP29UX/dchwXM+kCNkPWqNbz2HG8C20cE1nrgAusLgZrRU7cdt2AkHI1ZzAgmDcvWCvX4+vlUOzymkQIQV9XFL0JEUXNxf/6m0urxu+B6WBa6/eyg5Eozhw+im41jDv5HDTb9mthFnWxoGu4k8+hWw3jzOGjdd06OduLlrXwkzYKCD73uc/hZ37mZ/CpT30KgiDgIx/5CBKJBK5cuYJ/9+/+HWZnZ3HmzBmcPHnSf8+1a9cA1HcTAzyB2vDwMG7cuIHR0dHAexsBpXTDAjhO82D/Jmv5+2i64W9UJJHAtm2oiuB/rVAyWvJ3ni6V8N3ZGXxvbga3crnyOCWCz73+Gh7p6cV7dg1gsDzCtVVk8pp/HiIhiV/vDSbLnN9wSNzw+S2ZJmi5qC4JIpxtuinbyqx3XarlOz+8jZl0Aft2pwAAruvCdigkkaCSBAS8rrI7Uxn8/Q9v42NPPlD/h20RpmYzSC+V4LouRFFASTMgS1zouJO5dmcB/+tvLmFusYhkTEUsLEMUCSilEAhBJqfjyvVZHB7pQTIeQjKuYnbB2+QXNBO6YfsOoI7jAhQQhY3dk2shZxj+2hwmQuBzwoLgfy9vNDfO0A3Lf9YQ4v2+m12T1ktEEPBwVw/+bmoCKUUBAYHNiDEogIJpIqHIcClFxjDwD3cPISIIy47PdV24rgtKKdw1dqSKIqobastd8/vWAnsstm1D2AEJb003QV0XhBC4LoVLKUqaCVr2BAsrYqAIQAgBdSk03eSxZJPJmSZem5tDQpZBQEGpN+5urFCAAE8ENhKLgxAvekjIMn44N4cnBnY31aWmrzuMwb4YgAEUSiYeOzaIo/t7sXd3ComYlxQ0mURh5T5vFppTTbKphCz7rFbd17XxXaWgVivi207xXScTEgRoZUFT3jDQp7S+GUqRqnmIYovyELVo7N6SkFWPQSXVeCbX5HimHaw1XupTVDxz4CD+183ruJ7LwnRdqILgPf8oxVypBAqK/nAYzxw4iD5F3XbnqtOJhCQ8cv8Avvm9W0jFQ7AtB0Xdgu24kCXBz4eXdAuCQGCaNvbsSkCRRL4Gdzgb2RuslUosBXij5tfy85sZQ1TWDQkESUlCtvzMmi4WkKgj6GjmuVkvzTwvhLr+s8hwXFiW1dYaV6cgA/55KZnVfdh3JicxWypiXzweuMZZCIA9kSju5PP4+8lJfGw/Oy3I9WMV07KXPc8Ms5p/AOG1s+n5PL77+jhef3MaC5kSpufzICBQZBH79qQC56sVsV/esvzrAgAUrB7rVZBQvZ40y/Lf0+rcUrO4ns3gf928jjlNQ1JRMBSNQiQETjk/9Y3xu3gjPY+fPngYh5Opdh/ujmNZDsqlMCxW7LRyDoq6Lnb1RDEx442IHJ9ewkDvxmusS7rm3wt7Iwlcz2UAAPNaqW3PH1EACAUsy4EoCqCgnit7OUenyELg/LQiJ55mzpMAUje/yxIWxOq+Ul95LayXQ7GYCQWy7MX1XXERswuFVeN3lTkv+aLWljXsQCyGf370fnx3dgZfGx/zBXQzAIaiMfzY4B78g7IuYCuvsZzVzbYqEFovKmswgiBgYGAAU1NTy743ODiIubm5VQUGa3nNvfjKV76C3/zN38Qrr7yy7Gf/h//wH/CJT3wisJhGo1GUSiW8+OKL+MAHPlD3Zz7++ON49dVX8Tu/8zv4tV/7tRU/+wtf+AL+8A//cE3H+dZbb0HTNBw4cAD/+T//5zW9h9O53Jg0cHPS66La3SvjwQNhzGdsXLjmuRpEQgJ+5KFYU49hFhSvwEUeFAKAIryNlwjP/lsHEAfB4xCwC60LKL71eh6m5S0/77w/gu54+0ZWbkdefauIpby3Zh7bH8JQ38aKcIug+AG8YCkE4L3gYyK3E5rh4qVXc3Bdili4LGRxKaYWLAiEQBKB/pTkPx8LmgNBIPjAuxIIq1tPlJAtOLgxqePmpIH5rANKAUEABntk7O2XcWhPqGVjpDidQ7bg4Ntv5FHUXHTFvTEv0wsW7PKmrTsmYi5jw7QpQgrBYLcCWQZmFm3Y5dEFqaiIeMS7dpp9n9ig+CaqCbb3QkCIeX7PgOKN8vcTIPgHTTQCfvlyAUXN+6wTRyLoS7XnWZ4FxbfhogiKJIBaL6I4gASAJQBRELwXApINinneGtNxd9bbUI8MKLhv7+r25JzVmZw38e03CuiKiV7B1KKYzXjFKAJgT68c2LO5LsVSwcF7H45hzwZjHc7amATFt+GgC17CDQBseGsOUP77MPeVC4oleLHjnibuMSyb4u8uVDsyTz0YRTTcvmf5bbi4Vj4nu0DwSGvM2APUi+9KhouFnA1RIFBlgp5Edb3e6vHdVuAVuMiUr4sHIWB3C/fdFa6N67g97T2vhvpkHNsfbvkxzILi4hpjlLfhYqx8zvaC4P423EudRBYUfwcHc/DW3gpJAA+A4GADYxvO+mH3E7IMjM9ZXiGsPMaMUoCCwnWBiCpgT68CRd4ee2zOxsgWHXz/qucEI0sEP3aiMa7FjeANuH58dwAEh3fw+muC4lvM3vsfQoDE11pchoup8jVyqPwM0kDxdbhwQBErnyMXgAWvBlGbKSiAQgTBUxAQLr/+zoyB0bteHaW/S8Kjh4OiiusTOm5NebHMnj4Zx9sQy3QKs4sWXnmriFzJRVjxunGW8p6DD6UEkZAA26ZIxkREVAH3jYQwsqu5++U8KL5bvl8kAP9wjTWEN+FivHw97QPB0W205rC5qi4ApM76Qcv75kbnqjhrY1kOyqaYXWJyUH1y4O9Wm4Oq7LFshyISEnBgUIUkAt0Jad1x3ctwUPGIOwYBV5nnz/sgQG3DtVGbW7AdiunFqtPVnl450HDWiriW3VNGAZy6x1qzlhxNvRyK5VDMLNbPR97r93zzjubtB9AZueLX4GCsLOHbC4LjzLOXs/X58R//8Xu+pmUVG8dxMD4+vqwjoCLwqve92tdshhs3bmBubg6CIGDv3r1IJBK4ceMGpqen8ad/+qc4deoUjh8/7r9eL1svKqt0Matl+0FN01b97OnpaVy4cGHTvwNn62Ez8+2lchKokvAB4IuhmkW2LAQrgqIHgAaCUvnBJwKIgSAKiqXy61oVcLouhWlXf/eQsn2C/E7BYK4tVd74+WUTzVyut/1YzNnQDBddjACqsm65lMJ2SKDoHlEFLBUcLObsLVd0ZxMlAgEU2evmkQRvTXrrroHJtIXH749iVzcfG7mTuDGpI1dy0ZvwhGAUFA7T1aQoAmJhAZmCA8OiyJVs9CZlRFQBuZIXo5YMF/GICEopNJPigRGlaZtedlAHAVDrLaIGXtvcOMNh4px7THtqKsmyqP0VuEiDwoL3zCLwnMHy8JLQFfF7I2Mdxik9cD44G6OSMCsZLmJhEUZgFClZ1glZMlyEVQHdCR6lNBu7vJ4IbCKU+X7tXSWU70Dvfc3bX2SL1VyBLHmFj3bCDh1oVzRRL76rrE+O6xWIWLZyfLdVYM+q2eR7YiVYF1x2L95K1rO3DJ4zThIEXSBQQGEA/lW0FwQneMNW20nGRDx+fxSvvFXE9IIFx/ViRG/fSVDSXbiu14gkiQQycwPwNXhnwkyJhNv8Pv11EYfnGgF4+6idTO3q6oDnRoHgOahIAhYBlMqClwo6vCZjwHuu9zPxTwTAEigWAewpf00INP0s/1z2a8IOrmFnCw5eeauIolbNY2WK1VFm0ZCA7riI8XkLc0sWdvfIsFoQ+210H8TeZ9ttHsnNskFDD+oLwVD+ehcoFkBxEy6P61pMbQ6KrefKEln2d6vNQYkCMJ+xUNBcuBSYSlsgBAirwroazyko2GGQSXjrZuW+KmJ5/rcVVH6Pt+4aiIZoYC2RBBJYt1uREwfg17cBILKGfbXqZ4eDOXWW1XIoACAK66uRKUw9ttkagLUQBkFlEGQShAvBdiAti1/T6TT27du34vdX+x6ldFMWiJ/85Cfx+7//+3jnO9+Jl156CUeOHAHgibg+/elP4/Of/zxOnjyJS5cuYWRkBAAQCoVQKpUCIyVqMQxv6QiHV+9CGBwcxIkTJ9Z0rBVnsGQyiQ9/+MNreg+nddi2ja9//esAgKeeeuqe9nvi318HVeYAAO9+ZAinHhtBNq9jKv+a/5qnPvAPIInNeTj+1e1bkKYm8HA8DoEQzOs6zPIM8oSsYCTudZ7tpRR38nmEdg/hwwF75uaQzesYnaueg5/88eadg50IpRTX09+HXS6gfugDj6C/Z2Nzn9/KLGFxfAwAMBCO4MOHjjTsODmNYb3rEsuFq1O4dPcC9u2ppmsWsxpKdhYAEAnJ2Lu3J/imyQze8c5HceLY7s0ffIuYns/jC3/5Q6gRBY/uTyCT1zE+4/2OsYiCg8PdcF2Kidkc7mbC+OAH3oHBvs7pzOU0j1zBwPeuv4x9wy56Ul7XqW07yGjz/mv2jfTDMBy8dWsO+ZIJm8oY2D2Ifpdi9Hbaf13frh7MLZZw9GAYv/BPmncN3S3kMX77JgAgJsn4yP3HAt9fMgzMXnur/F8EHzz+0LKxYI3i9tIr0A2vtHv6/Q9joDe2qTVps3ywVMJL42P4+uQ4zPJINAJAEUX8xMg+/MjgnlXHYruui5s3b2JqagoDAwNrGjGik0UslhYAAL19cRw5MtCQ36VyPDMzM9i9ezcOHjy4I8ZEAgCJvYlvfu8WhnanMD6ThV1OifV1RbG7v3pfuS7FnakM3v8PDvDRSi3gyuIi3nr7KoZiMYiVbkjLQinvjURQBAEjqWo84VAKWijgR+87huPd3U07rvOv3cW8Ng4AOLi3Cx85vfxaME0T3/jGNwAABw4caOq6lM5mkNE9F+h90RiOxBKB77fivq4X303M5mAT77h6uyLY0x88rq0Y320l5IlxXF7ynhUP9fXjRwZaf54vX5uF/vc3AADDgwl8+EMPtvwYXkvPIz89CQA4EE/gw/tWzj1cXlyAOend20PRGD584FBLjrFVrDdeKtk23n7ryrKv7+J79I7ig/N5/N7Z7+OVNyYhCAQgAgRRQjzmjQ2OhGWM7E6hJxVGQBTK1+CWkDNN3C0UYLoOFEHE3lhs1VHWG9kbrJVswcTVcq5NEAiOHLn3GtfMGIJdkz7wnlMwJ7xji0kyPlyz36wcS7POzXpp5nmhlOL6lUuoFJF/7Mj9SKntKMd3FsmZaZD5WQDAsa5ufGBoLy6k53H52tvYF6/u12Y1DabmxZ9Jpg5RgeTzeMeR+3Citw+AF6sU6cqxSuh7t+C+6fmAnzg2iB97d/NrGJ3IX/3tmxDVW3hof8p71gCwxhdBBa+Oubs/jr6uKEQ1izuTGYhqAg8+9EDTz9dbmSXMb6CG0D07AzrnSVDvT3XhQ8NefbaduaVGkDNNfP/SReyjLnpCniuQ7VKkdR2KIKBLVcGm6uK6DpMI+JGHHln12cRpPGwOam6xCMMtAABS8RD2lkcGAstzUNfuLOD71y9CswyEwiJURcQDB/shCgSZvI6ZvAF3LoqffvwhHNnXs8KnexQtC6NvX/X/+yceOA7cuYPJkncsx3cP4dGe3sb/8mvgxLu8uspiVkMqJkIvn59EVMXeIS/n4LoU47O5pufEAeDrE3dhLC0CAB7r7cf7BlePn8fyeeTueHn0hKzgw/ctzxnVy6EsZErQHC/fFYsoGBpKYWJ8AgCwd2QYmMqtGL9feHMa1vduAQD2DaXw4aeWx1KtJDo9BSHt6RQe6u7FP9wz1Nbj4bSelj1BWzCNsi6XLl3Cc889B1mW8fzzz/tiL8ATcf32b/82Lly4gG9+85v47Gc/iz/4gz8AAHR1daFUKmFxcXHFn135XldX14qvAYBPfOIT+MQnPrGm433sscdw4cIFz61kiwU4Ow1Jku75N7Id6gfl4ZACSZKQiIf9rwHeaJOQ2vi/dc408cbSAlKqClHwFM0upb6aXRIEEOJtkEUCpFQVF5cW8IGRfU0PODXD9c9BJKQgpPIAt5FougXXrV57qWRkw+uJA/jXSViW+brU4axlXWIJhxQQQQClFGJZkGnZrr9OhFQpsF45jgsiEH892yp8/41JzC+WsH/IS5Q4LrMWSp4NtCAQ7B1M4vZEBq9cmsTTTx2/x0/lbAcmZ9PIFgzsHUj417rtVjv2BIFAkkTIkojD+3px7bb3+unZPPbuTiISklHSLBimg+t3FnFopBtnPvoIhgdXjw03g+ZSf11OqOqyezFJiP99wOvUjTbpfmXjnEiddWG9a9JmGU4k8MTQXszqOgqWBYdSiIQgJst4x65BDCcSq77fdV0IggBCCARBWFMhQZZEv2nFcWnDCyGVY5EkaceIwX70Hftx9focJudyKGqmfz/Goop/vbkuxeRsDgO9MfzIO/ZvqWfSVuVAKoWuUAhZ00RPyGuG8p6m5fWSCIG1J2to6AqFcCCVaurfZ2ah6F8XQwP1P8tlbATWem9vFBPVRrawWP++bfZ9fc/4TpG3RXy3lYgqin9/6C5ty3mOhlX/725a7TmG4N5y9estroaYc+Zu62tzLfFSRtcCa2yFnGVt63Oz1Rge7MKDRwZx9fo8FFlEPKpisC+OWFRBJq8jEpIRiwTzX3wNbj7TpSLOz0zjQnoeGcPwnfVSqooTvX04OTCIwcjyBsqN7A3WCruHoNSLDdbSCN+KvcFALOavN0XHgQkgUnNtNvPcbIRmnhdVEv1GI1fg9RogGNdY1IspwooCQghcAGLle241/lQlKfAcc6gLQgjCSnXtU+RqjEppvXNN/O8rys7MUecKOi6+NYNUPARJ8s4npYCm2/65joa9fbMsS1BkCQuZErJ5o+nny6DVXFVMWfszLcxcTzZQ932tzi01gslcFlnLxDCzps7pRaR1b8qUIomIy9WYoCsUwnihgEldQ/cqTYycxsPmoFymZhBS5RVzUPOLGv7yq5eRKxro7YrCtMqTI3Qb3ckQ+rqj6ElFMD6TxV9+9TKefeZxDPavLJAqGoZ/nYREETE1hP5IBFNlQW2mjTH/8GAXfvYnHsXZFy7i7Vtp2LYLVRERUmVQSrGU05HNG9jVG216ThwAsrbtn6vecPie5yUZqu4rS44DURSXxVz1cii93VGkEmH/byswzzDqYtX4PR4N+deOYTptX7/CsnzPdZazvWnJX/xP/uRPWvExdXn55ZdBKcXhw4cDQjCWJ598Et/85jfxwx/+0P/akSNHMDk5iRs3btR9j2VZuHv3rv9aDqcehlk1t1UV73aTJRGyLMIqP0Q03UI82viuorFCHhnDwHAs5n/NZkSZYk0iMaWqGC8UMFbI48Hu1ZXqmyVfrBpyxmNcCNZoCqWqo6EoCghvQmxoMsUzReA2xduNkT0ppOIhLOV09HZ5G03drA5wUeXgtbOU09EVD2FkT6qVh7kpcgUdF65OIRmvFsBsZuwY60ooCATJuIoLV6bw5MlDSMTaO8+d03xMywls9ACvIFNBEqsD0VLxEI4f7sfVG3MAAe7O5GCYNgolE7IkIBqRcfKxERimjVxBb9r1U7Cra3xUXm6+r4giFEHw1++CbdV93WaxHTcgsJDlznhGaI4NRRTRXTO38m4hjyOpVMM/jx27ZfMxkQ1hsD+OMx99BH/yVxcwNpWFInkdlpGwAsdxlyWaVkuocRpHQlFworcP5ybG0aWGIBASGGsUGOtCKbKmidNDw01rMskVdNyeyODiW1OgLkUsqmLPrtUFn61AZ9bFUJsKo/XiO5PZlyo16/VWjO+2GmwRXXPsVV7ZPNgGNN2w/H/nCjrGJjMwLQeKLGJkT6ppMQy7t1TvMV86IkkwHQcFy0LONHB5cQEjsfiOdUpIa5r/755QCAu655qpOw4020aYJ/Q7hnhMRUiV4LpAKhFGd8oTUPd313dr52twc7mWyeDs9VHMaSUkFQXDsRhEIsChLjKGgXMT47i0sIAzh482Za+wErXOza4L3GNZbBkxSUJEkpAxDBQsC/9ncgLD8fiOXYMVoSoGs+rNLtyBsM9w3fFizJFYHClVRcYw/MYRg33u18TFGcNASlUxEqvu5SriJsDLN9RiO/VzeTuJsckMMnkdeweq+x7DsuG65X0ZAcIhL/8jSQJURUShZGJqvvlDX0t2Nb6MSGvPQcnMtWE622dQpOk4oAjW4IpMPq9k2wExWOV12+kcbBUqOaizL1zE5WuzICBlsZO0Yg7q+ZeuYDZdxP6hFCZmc1jMeLF6UTPRnfT2UoJAMDzgNZ6ff31s1cbzHDOhrPKsrTjKAcCioS97Tys5sr8Xzz7zOP7Ln57HrfFFLxcuazBtB13xEE6fOoiTj460JD+3xJyLrjW4dbI5cYdS6I6zbO9UL4dCAMiSALn8bPLXWQCZ/OrxeyRU/cySZtV9TStRmHWWxzI7k5ZkC37u536uFR9Tl3x+7YGOrlcXkXe/+9341re+hb//+7+v+9pXX30VpmkiFArhkUce2exhcrYpFdUwAKhKdaMUVmVfDFbSm/MwqBdw2sxCLwnBxEMrA85cgRGDNUEIt9NhxXaxiLKpMbumW70e5B3iSLKTSMRCOHFsN86dv4nupOdaaLJiMKUaJrguRTZv4PSpg1tKJFUvUbJaAqkrEcLdmRzGJjN48Gjjxr1xOhNF9rqBHMf1BWEO86wUxeD6qSoSertj+LkffwTRiIKbdxfx//7tFRRKFmbmC/h/vnYFiiIiFffurVMnGr8RLljVe5RNHLFEZRlmeZx50bKA1SeabwhWVAksFxe0C92unh9CvC5ZwBODNQNWSFh7Tjgb58j+Xnz4iSNYypWQXipBN2xMzmQBQlqeaOJUOTkwiEsLC5go5jEUjcPFcjGYSykminn0hyN4z8Bgw49hei6Ply+M4cLVKcwvFjGb9kYUqIqIQyM9kCWxrdeFvkrRq1XUxndEIDCZtVFh9qVbNb7baoQZYdN10LYIm8JMQloz7MC9lMnroNRztWtmDGMwuQZllftjulTENyfGcXEh7e9HF69evqeLz3ZmnslX7o3FkTdNX1yXMQ0uBusgCCHo7YpgYjaPez0G+BrcXKZLRZy9PopFQ8O+eCIgwBKJgJ5QGF1qCBPFPM5eH8Wzx463bG2p3We6Ll32tXYxo2mYLhUxmsnAdB1MlgqIy0pgDd4VasIGs0MJClX4fg8IisEqz/Z6jSNsjUFh3rNS44hY41xbi8MU4gWhM+6XVlOvoVE3gk29lfMolt37AEDTmt+MoNnVv3etm+BqqEzzubmNRAqKKILAc8Hz6m7UF08CywUZDnX993Faz5H9vfilZ96F//jfv4X5xSIKJRNzC0Vf9MPmoGobz6NhxReDlTQz8HPX2nietar1vGQdMVjFUa6dDPTFMNgfRyKmolA08MS7D2J3f7ypzUS1GI6DIpMX71Lv/bkhUYRICJxygrhgWcv2TvVqZCtBKUW2YODJUyv/PSNhRgymW/5eu10EYhmXC053Its+W1Bx7bp+/TrGxsbquoP97d/+LQDg6NGj/teefvppfPazn8W3vvUt3LhxA4cOHQq85wtf+AIA4IMf/CBijPMSh8PCiioUxmEnEpaRK3jJvGYpg5cHnEFnsFphTysDzkKJi8GaCesMFtvk+WUTHXwzsj05dWIEl0dnMD6TxdBAssbRsDxi1qUYn85iV28UJx+t77LZqdQmSlwKFBjBZK2ARRQFgNKAmJezfanX+eM6bIIx+KysdO4/cLgfM/MFXHhzCgXNBkAQiyiIRxXs6oliKafj3PmbuDw6gzMffQRH9vc27JjzFrPGy/VD+agsY6ksBitYTRKd19wjstQZzwjWcWVPNIaJgicUSes6ilbjXdJkVgzGncEaimm5ODDcjaGBJLpTETz+0FDTXWs4qzMYieLM4aM4e30Ud/I5UMBPahFQLOgasqaJ/nAEZw4fbXhB9drtNM6+cBGz6SKScRWpeAglzUusAcC3vn8bb96Ya/i6ux5Wc0BoJWx8t6svDsrUGiqxz1aO77YS06Uizk9P+cImkQgYy+dbLmxincHSS0X89//1fcwvlJCMq9g7kIAoCn7ne7NiGGOFojBLxcVnRiuBgiImySCEYDASRcEy2+bi027YAlBfKISUqmKu7BaWMYwdJ47rZAzDxkBvDAsZDYsZDbt6YnULSnwNbj7nZ6Yxp5WWCcFYBEIwFI3jTj6H785M46cOHKr7ukZTezyOS9F4L+f1MwuKP3z7Km7lcv4anFRU7IlGA05qP33oMHaKFEfmbhrLCNURgwHBxpE9kVjgfFWmTazWOHIvZzBWICbu0Ibleg2Nul7NgYRC1XhPEom/T7Jb0PzPOoOtR6SuiNvzHqt1y7NcF0xpbtnvWs8tj9NaomEF+4e6sGdXAoWigZ84fQzRsLwsB1XbeB4NB5tuHJcGxK1raTzPGqwzmFfPY8VgRcuGbtsItbEBJF80YZXdpLtTEbzv8f0BI4FWwLqCSQJBfA05XkIIYrKMbNl9rWBZ6AsvF7WzOZThgWTd+J1SisW8g8MHVo/fWWcwx3Fh2W5bm6jZvfd2Et1y1s62j5qefPJJ9Pf3w7IsfPzjH8e1a9f872mahl//9V/HN7/5TQDAz/7sz/rfO3HiBD7ykY/AcRz8k3/yTzA9PQ3Au9n/8A//EH/+538OQRDw7//9v2/tL8TZUhgrjONohU0kG3BWCDiD1YyJbGXAWetcxWkshWI1eIxv8vyySvHVurc5W5eKFXJPKoKbdxcDRVVRFJBeKuH2RAY9XZEtOY6LTZQA3igcq+zeQwQgGQ8KJh3HBQjpGJcjTnOpdP5k84Zv98x2m7Kb90rn/onju1EsWTj7wkUsZEo4MNSFkCqBEIJMTocgCujtimD/UAoLmRLOvnAR03ONc6UqMuKu2ArOYDHGkr9oN18MJopCx3Tmst2ouyNRxGUZpuNgUdfx9fG7uLy4ELBf3yxSYEwk31A3kqnZHABvHX/84WE8dnwPHjw6wIVgbeZIKoVnjx3H+4eGQeCNos1bJrKmCVEQcHpoGM8eO95wkcb0XN5fd/cPpdDbFYFW7oInhKCvO9q0dXetOJTCYlRX7RoTCQTju9t3F6EbNiilXpGN0i0f320VrmUyeO7qFbwyP+cX1eOyjOFYDI7r4tzEOJ67egXXMpmmH0tY9WKDkmbi+p0FpBer91KlmCg2OYZh95b1xkSyLj4H4glEykIwAHBB0RMKY188gUVDw9nro5guFRt2bJ0MpRTzrBgsHEZKqe5hMqZR722cNlHSLUTCCg7v60EqGcbtiQzSSyV/P+o4Ll+DW0DONHEhPY+kogSEVw6lKFrVnAfgCbOSioLX0vMN3SesRu3eiR091C6yoHgFLhYNAyOxOEKit8fVHBsiERCXFSQUBWOFHJ578zLuau13KWkFCnfTWEY9ZzCg2jjSrYZxM5+F7njxJwEgCsCCruFOPoduNVy3cYQVeDl1Gq0CLv/SzsxRsw2NFTTGjCCksGIwAYbpQFXElgg2SowT8XqcwVjBpdFk0VquoOPy6AxeuzKJy6MzvllDM6i45WVNEy4NuoIBQTFYxS3vsd6+HTmOt1NYyJQAeDmokaFuvPuR4bo5qNrGc1WVqu6edHm9dy2N51km/qg4g8UkOSCWXGjzqMjK+QGAWERtuRAMgN/4DADdamjNblsxRjRWWCFPHsih1InfFzIlpHMOYmEBP/1/PbRq/M4Kc4H2j4rcruN4OWtn2zuDRaNR/MVf/AV+4id+Aj/4wQ9w//33Y2RkBPF4HDdu3ECp5C1gn/zkJ/HjP/7jgff+8R//MU6ePInXXnsN+/fvxwMPPIB0Oo3x8XEQQvBf/+t/xYkTJ9rxa3G2CIbFjltjxGDhalDXrDGR9eyZbaY4wY6JXMmeuVnkWbFSjDuDNZo847zGncE4a6Ey9/0r33obX3/5OgolE4JAMDWf3/LjuGqdnxYy1YRlMhZaNiay4vy00sx3zvajtvMn0G1a3szXdu6/fGEMs+ki9g+lYLsUU/N5gHoJgZJmIRqWIQgEwwNJ3J7I4PzrY3j6qeMNOV7W6YsVfbFEGccw1j67kdiM6KpTXMGAoDOYZluY0zRcXlyA6ToYK+TRpaoNdWOR+JjIpmDbLmbK4/8AYM8WfP5sZwYjUTx94BDisoxvTU7CoRRHkin840OHm7aXYNfdSgGVHcEQDStNW3fXilHTYdlOMRhQje+ef+kKvvOD2yiUTMiyiLszuS0f320FguPJ4hjNeM9Nh1IIhLR8PJkkCRBFATPpAjTDxkBffbciAE27l+41JrLWxUciBGbF0cJ1AbF9Lj7tJG9ZgX15j+o5g1XIGK0Rr3DWhm54sXoqHsJPnn4AdyYzeP3qFO7O5Lz55XzkdUsYK+SRMQwMM9M8KChu5jLQbAdxWcaBRNL/XkpVMV4oYKyQx4PdPU0/vtol0OkAMdhNuMiD4lA0CosRyxVMCzezWSwYOkzXAaXAdKmE2VweDxEBP2KZ6F/DmKatirxNR9hthoAYzHUC468qjSMv3L6Fb0xOoGBbEAnBRKGIlKri9NAw3rPCPjywt67TaOWu0Li3k6g3ysxgxkSyTrDeqHgHQ7viAUfnZrFRMVjQsaY5IoV2jEcHgm55YTF4Tqzy77qaWx6ntSwyNYOe5MrjkGsd+giArmQYlHouYex9CKyt8TxrLh8TSQhBjxrGWD6HgmXhuzPTuK+rGyOxeFtEgwtLVTFYT3m6RqthxWDsfuhesFMiVpugUcmhvHxhbFn8noypeGBExcHdIRzZt3qsKAoCVEWCURbrarqFVKJ9sRI7jnc7OTBy1k7TxWAPPfQQfuM3fgMf+9jHGvLzpqam8J/+03/C8PAw/u2//bdres/73/9+XLp0Cf/lv/wXnDt3DmNjY5iYmEBvby9Onz6Nf/7P/zk+/OEPL3tfX18fXnvtNXzuc5/Dl770Jbz55puIRqP44Ac/iE996lN44oknGvI7cbYnrkthMWpvVikdZpTBWpPEYECNPXM0FkguSEJlZFrrA858gY+JbCasM9hmndcC3dvcGWxbM9gfx+OPDGN2oYBC0UAqEcGH33dky4/jYhMlsagScCbsSQU3LhXnp9OnDm7p35mzPiqdP2dfuIjbExlYtsOMPSNIL5WQzRvY1RvFmY8+gmhExoWrU0jGVQgCgSIQxMKKP6I3k9N8i3BBIEjGVVy4MoUnTx7a9HVFKQ1sWleyw45K9+542ixsR5vcQU56WjkBmTUNvDh+FxnD8N1YQpKE4VgsMOJks2OmJD4msinMpAtwywkKURTQ18PHX3UikiCiuzy6YH8i0bSEZK6gB9ZdALBsN+DCHGnSursedCapJoIsc2JuB4P9cTx2bDdyBR2FooE9u5J43+P7t3x8txVghU21OC6FJJCWC5sE4sU1iiQGCqqVf7HlwWbcS2wRvdYZrJ6LjyQI/ntst76Lz+mhvdveQYEdERmXvXgmxfzOS9wZrKPQmaL88EAS73xwCE+dOoSxyQzM8mgdvgY3H9NxQAGIzLM4b1q+i3DesmC5ji/0qbyuVW4JhBAIAvHX4nY7g+VME3cBhOCtsargFbcNx0HWNFGwLYRE0R/dq1kW8raFNygwNz+HD/X2YSS0cuF8KyMHRthxNw0AUBlRC6Xe8519rg9Gonhn/y7M6zoKloXecBhPDe+9p4DBd9YB4NQpVrONe7WNnTsJtqFxz66kLzYAqmIw16WYmS8grEoY6I0BlMIwnWUilUaibVQMVjOKtdGitWu30zj7wkXMpovLxqPPLRbxwrm38O1Xb+ODP3oEP/KOkYY+nytueWevj+JaNgPLdaAKnpDIclykdQ0500R/OFLXLY/TWhayVbFTd2plsVNt4zkADO1avuercK/Gc0opctZyZ7DpUhG381lcWvAaXO8W8khNTTa0wXU9sM5gtTWVVpAzTVxaXMC8pkEkJDCy+F4EJmisIgYDvBzKxz9wfFn8vmdXHH//7XNr/sxIWPHX52YZwqwVNpbhLqc7k6aLwd566y18/OMfx4MPPohf+qVfwj/6R/8I3d3d6/453/nOd/Bnf/Zn+Iu/+AuYponf/M3fXNf7Dxw4gP/23/7buj83Ho/jM5/5DD7zmc+s+72cnY1lBxfV4JhIBabloFA08PbNeezujzclGcQGnLdyOeiO7QecBJ49c7bFAafrUhSYLv4EF4M1nEKJFdttVgxW3WjL3Bls27OU1fy578cO71pxjv1WIlfQ0ZuKQJYFXHp7FqIAiKIIVRERY+6PWucnzs6C7fx58dvXfGEXCJCIqYHO/cujM8jkdewdqG70U4mQ/55cwcCeXdWf3ZUI4e5MDmOTmRXvqZxpYqyQh+k4UERxxSSp5jhwmC7t2EpiMHntm9yNworBlA4a0aDZNkq2hevZLOKyjEPJJEbL47cMx4FLaUPdWCQxOCay2d22O4XJ8ohIABjsiwdGhnA6B7YgJjfxbzQ2mVm27rI2+5IkQGFcmNey7jaDJctC1rbhUoqoIKLg2IiJ7TdjzxYMP7578L6BbRHfdTr1hE2EeAVTALCpCwnePdNKYZNu2DBMB7GI4o9fyuR13J3KQlVEHNzbE3iuNfJeypkmJgoF5EwTYrkAxlLPxUdi1hXW5RxovYtPO6kdEQmgxhmMi8E6BdelgaJ8OOTF5IlYiK+9LUYRRRAADnV9oddSzb1Ssm0ky/GDU15jWumILzJisHY7g90tFFACRVf5vwk8wXLWNOFQiohfdPWeEaokQbdtxAiQc2y8uJDG03270LsNxbncTWM5tYJuw3GWfW3JNKGIIrpFEQ9296zpWc0KvO41JpIVju002IbGG2ML0HQbqiJCEAgkUfAbGvt7ouhKhv0JNZpuNU0MZrtuYAxieF1isOq1QylgUwq5QTmV6bk8zr5wEQuZ0jKH6Zl0AemlEgzTwcxCAbfGl3DuuzfxnhN7G+oUVnHL+70rlzCaySxr2FzNLY/TWgLOYKmVBc71HPpWYi2N5yXbDjS+JGQF1zKZck036ze4JlSl4Q2u6yHNiMF6W+gMNl0q4vzMNC6k53Etk/HFTAXbQsGy1iSKi65hTGQttfG7ba9v8kYkJGEp6/2bdbVvB8ExkTyW2Yk0PTN5+fJlfOpTn8JXv/pVfPKTn8Sv/uqv4vTp0/iRH/kRvOtd78LDDz+Mrq6uwHtM08StW7fw6quv4pVXXsFXv/pVjI+Pg1KKvr4+fPrTn8YnPvGJZh86h7Mp2E51AH6BYnouj1feGMfFt6ZhmA6u313E23fSTbOlrQScL90dw1fvjqFgWyAAJov3tmduBoWSWc2CAwExBqcx5APOYJsdE7n6KA/O9mIpV930pOJbu1O51gK8VDKxmCnBpRQhVcKB4W4vOey4WMrpAecnPqpjZ1Lp/HFsFxffmoLjUpw4tgcfft+RwIbdtDznMJFJVLIujKbldaFXUgGiKACUBsRTFdgNredg5b1vpS6vAtMpJglkWcK1QsAZrEliMIsZidhJzmC642CmVILm2DiaTCEkSlAYZ5GCZaFLFRvmxiIxQjhKy24vOzgx3Sim5qpisD2rdFhy2gtbEFOa2J1fb91l3ZWjYSXgaLTautsM0qaJNwp5vJbPYto0AVDIRMCfTk/i/kgMD8fibS2OZvO6/++tHt9tFeoKm4gAi1ZcrryRhxVaJWyqFE4rY00s28X4dBauS6HpNvIFA13JEPP6zd9LbKzz5tIi3HIu4I/evor3DAz6sU49Fx+JKQTaNQX4Vrv4tJN5rXoP95add1JKdZ9fsCzYrhsQz3Hag24Gi0TNdGDhrM5ILI6UqiJjGOgJheFQiqxVTwzm3UsZw0BKVTESa10ugL1l2+0MVimsCkxEZToOHOpCIgJ0x4VDLcRkGQIhqCzPFMAuWcaU5cVC/3AbinMlXkBdhlhWuC8aBhxKcXFhHo/09AUE7ezIs5S6tjiYjfXdOg5RrEBspzcLVRoa/+pvr+D/vFIeBy8JmJgNjoN//qUr/vhi1rmy0cxpJSzqOhxKIRISELbci9qmItNxGtZo9PKFMcymiwEhWCav4/qdBWiGDUUSEYsoiEUV5PIG0otFnDt/E5dHZ3Dmo4/gyP7ehhzHYCSK4VgcYVFCwbL88/Tz992Ho6n1G6dwmgPrfLWaMxgQdOgbHkjWFYSttfE8w6yXIVHEkmng7PVRLBoa9sbjGMvnAQCG7UAkQkMbXNcKpRTpxaL/361yBquI4ua0EpKKgpAoQhVFUEohELJmUVy8BU3TtURC1WdfSW/e+rsWWNGtQ6m/BnF2Dk3fld533334m7/5G3zrW9/Cb/3Wb+Eb3/gGvvrVr+JrX/ua/xpRFJFKpaCqKpaWlqBpWuBnUEqxe/dufOITn8Cv/uqvIh7nRVpO58N2A0qSCFEQfFvasakMXNcrHodUCXsHEljK6U0JNgEv4Hzf7iFMFosoWBZCkoifOnCoLfOl2RFtIVWGLHVOAXk74LhuwHZ0s2M4A85gAv9bbXeWstVCQ/cqHTCdTj0L8ELJQkmzkCsa0A0btyeWUNIshMNyIFHChWAcQSD+pv++A73LOrcUWfSLqJVkpSQFOxkdx/W7Wh3HBQgJOIQCyze0w7EYRCLAoe6KXV6ssCsmKys6UMXkaohftK2muFVlchoWMyU4LoUsicgV9LaPu6GUImsYSOs6FEHwbbBjioxF3Ys/8paFLtU7zlo3ltg6ulcryDUCGMeh4KHNxskVdNyZzOC1q1OwLRuxqIrdXAzWsbAFsWaORKy37rKuQrXr60rrbjMY0zW8uJDGom2CUiAiEBAiIEREuKB4JZ/Bda2ED/b0tm18UoYRgyW5GKwl1BU2CQRW+bJlXT6B1gmbBJHAdhxouomlvIZMXg8UVu2aIvdm76XaWCciSiCEgFIKCgRinXouPmwB3q05Z+1w8WkHOdPE1cUFpHUdIiEIl3/fhKJAIECl1poxDPSGt+7+bbugM7kY0qLnEKc+CUXBid4+nJsYR5caQs40ULOM+CPNXEqRNU2cHhpuaY7UE7N4a1m7ncEqRUK3PDjYdBwYrlMWfpVHdLsuMqaBiCT5r698PyaKeLtUwOPJZEe4ojaS2hF2Ox1f5L0wj1L5Hloc1fFS5G6goY11rWQFzKtRO/rRcSgkqf7oSHEHj4msMNgfx8P3DSKTW3kcfEiVfDGYZjReAFG5Hr43O4Pr2QwAT1T6u5deX/MYO1kQAg66puuiEbKWXEHHhatTSMZVX6izmNHwxugMHMdFMh4K1KVUVYJmWDi8vwez6QLOvnARzz7zeEPyxJbrIse45VXhYoxOQTfsgHtTd3L1uJp16Ls9kUEyrqIrEfJHkK6n8TxnMlOUFAXnZ6Yxp5WwL54INMSYrgu3LIJqVIPrWilpVqDe3dMCZ7DpUtEXxe2LJ0BBMVH0BGmEEAyEIxAIWZMorhVN07VEwtXPLOntdQarNfmwHAfiBnLgnK1Ly/7aTzzxBJ544gncuXMH/+N//A98/etfxxtvvAHHcWDbNtLp9LL37Nq1C+9973vxzDPP4CMf+QjEbZ7k4WwvWGcwRRYDtrQju1O4MbYIwEu4iqKA3q4IupNhjM9kGxpsVijalh9w7o5G2zZKwR+9hc0LlTjLKdY6r0U2l8hix/+ofKO9raGUIpOvirG7EluzmLCSBfhCpgRZFtGTiiASkWFbDmJRBT/15DE8dnx320UsnM4hMP5QXh4qj+xJIRUPYSmn+7bYokhABKAywciyq2KwpZyOrngII3tS/s+o3dAKjFBrtS6vfEAMVn9EJADEmE2u7VKYrruii9h6qbju/d13b2KiPMpvbDKLucUiThzbjXc/vKchn7MRTNdF1jRhug5ikuyLU+KSgkV4yejaDjDWjeVYqmvZz7wXteMpLNuFqvA9y3ph3RwXlkqYnvc6H1VFxIHhLsTCChfrdiDs2LZmCjLqrbs2404o1YyqrbfuNoO0aeLFhTSytoU9iooFy4ZWjp1lgSAlyUiKEmbKr3u6bxe6W5xwc1w30IzDncFaQz1hE+u20mphU2WNvfT2LDTdhqbb/r48pEoIh2RIohgosgKbu5dqYx0AgeR9XygcSN6fOXIk4OIDeCMRe0NhSAIBqSmWtcPFp5VUiquvzc/hzaUl0LJAw7rlYrxYwMmBQSQV1R97t2RyMVgnoDGuK2FV5qPD28zJgUFcWljARDG/bDQt4DmDudTFRLGA/nAE7xkYbOnxdZIz2N5YDBEQlMprTcW5pkcNoejY/vmjFChaNoqwoRAgVF6bE+V4Z8YwcSiyvYqLrPstmyPdibAib4AgJnnrXH84Asd1fZH3/+fwkYDTTXKNYrBagZftuIE43+FjIpeRXir54+BPHNu9bCRxOCQjU54CoTXYmYa9HmRB8K8HiZDA9XAvxx5CCGRB8BuNzAbdZ2OTGWTyOvYOeHEoBTB6Jw3DsCFJAnIFA4osluNgAaosoqCZKJUsDA8kcXsig/Ovj+Hpp45v+liWDL3u11slSuHcG9YVTJGlNdXUKg59L18Yw+tXp3B3Juc9KAlZV+N5lhGDKYKAC+l5JBUFAiGQxaBY0nBshMs539oG12YK2tnzEw7JiIRWzkk3ClYUJxCCIjOmUSQEkkAArE0Ux+bQC1ZzmqZrCTPnqNHr73qpzTOYrgueGdpZtDw637dvHz7zmc/gM5/5DPL5PH74wx9iamoK8/Pz0HUdPT096OvrwwMPPIAjR460+vA4nIZhWtUFXlWkgC0t23HrOBQuBQTiuZE0OtisoDEPy0gbVb/5QnUzyEdENh52RGRIlZcVx9YL6/igcGewbU2hZMJiRDCpLSoGq2cBblouckwhdLA3jmhYxu2JDBayJS4E4wRgO53qiXoSMW+s87nzN9GdDEMQvPKkJIp+cti2XUD1kvrZvIHTpw4GrrPaDS3gjT+yXBfh8jO6XpcXmyiKryIGC0tSwC2iaFkNEYOxrnuu6yIW8dzJEjEVjuPi3PmbeOOtaexNWdjV3fzEQC26Y/tuK4QQiOU1IMzEPWbNuInNurEIAoEgEL+AU+uqwrk3tW6OXYkQCiUTlFK4lOLbr47h7VvphjvncjYPGyc2apRHPeqtu7ZdvWdlJt5dad1tBm8U8li0TexRVM+5DMzoGlIdxzegKJg0DbxRyOOJDYhON0OuYFQzx4QgHuPNOK2gdjwZgIDwu1YM1kxhE7vGSqKAaESBplkgxHt2FTQLuuEgGVcDYoTN3ku1sc7yMY+em0wl1rm8sBBw8REI8UTddXL07XLxaRVscTUsSYhKVUc1EdVxKLsY8RfrwMJpH4F9BB8R2XYGI1GcOXwUf3rtLVxeXIAiCFAF0b+fio6NG7ksdkdiOHP4aNNHLNXCjpRqtzNYQlGwF8Bb8NbYyp5KFAQkBBmG4JYdpwHAazZKyQqk8tpeecZZdPvthdgpCeYOdgarFXnfymWZwjwNNLT9z2tvQxEERMqChS51o85gtY6lfExkLemlqkCjt3v5GsaOK9Yb6AxWez1kTROL5VhEEcV1j7FTBLEqBmuQU65pOV7sVL6usjkd+aLh5fAI8V9jWg5kWUQ0LAPUW48FgSAZV3HhyhSePHlo0/vKilN9LVwM1jksBkZEhtcsFBrsj+PjHziOp04dwthkBqblQJHFgEPfvWCdwQzXmxYxHIsBAAgIQqIIrZz/0B0XYSbEZBtcm2n+wa41rRgRmTPNgCgOCK4NnrjJ+/paRHGsGMyhFLrjBHLFzYAVzLGuc+1AKIvnKiN8GyW65Wwd2rozjcfjeOKJJ9p5CBxO02CdwVyXBmxpJSzvdFHKRYxGB5sVSowYjLXFbDVsZ3qCO4M1HNZ5bbNiO5fSgAW6wp3BtjVL2aorWDgkBxIGW4V6FuBAeUNXzhkpiohYVAEBmrLWcrY+7PNbVerfB6dOjODy6AzGZ7IYHkhCEAhkSfAFlZbtwnUpxqez2NUbxclHR/z31tvQ5i0Tdwt5EBAcTaWqLiI1G9rCGp3BCCGISLL/+oJtoXuTPT+1rnuzC0UUNe/ny1LV4fTudBbT00W89+HWO3Votl0VYAC+i4gien4sldQx65TWCDcWWSIwzIoYrL2FnE4hV9DXlAir5+ZYcZwjhKA3FcHwQKJpzrmczcG6IzRTDAYsX3ctxhmsMt5jpXW3GRQcG2+VCoiJop8oZkf/iUzymB2f9K54a8eeZpkRkfGIsqzIxmkOtePJKqM8KrCPimYKm2rX2PnFIgpFA6bpeG4bogCRCLBsB9m8gZ4u77m+2XupXqzD3h8EQOV0sLHOzx+533fxGYrGA+esgkspJor5trj4tILa4mrOMv01JiRJ6A2H0R3yiquzWgmDkQgikoyM2d4CA8ejxIyJjIS23n56u5EzTRiug73RGCbyBRRtC3q5kGhTF4og4tGePnzswMGWC8EA+I0rwHKRcDs4CAETcDFRLCJa3mtWmmhUUYQsCChYFkq2hbAkYbeiwtW9PFLl+OUmjg1vFzIfEwlgucg7IGYs//0rDW3XshkogoADiSTCkrjmxrRat69l46uZ878VY9qcaWKskIfpOFBEESOx+KZiP9t2sZSr5nJ764xtCzO5Xda9crMsE/0zQlBJqAo01jrGrhnjWBXZ26c55ak8U3N5uC6te+1YloOCSyGI1abCrkQId2dyGJvMLHNcWy+LKziD5bkYrGNYYOoiGxE7JWKhDV0nOdPEW5klzGsaRELQGwqBotq4CgCqIEGDF7/Uing22+C6VlhnsFaMiBwr5AOiOAAwHHaCUfC5ci9RXEgUIRLiP6+KltV0MRjrDMbuEdqFLIiwXe85sJPjmZ0K35lyOE2CHTNV0syALW2ti4RjuwDT0d7IYLNC0WaSUm1yBssVdLx1ax7zi0WIAgkkPjiNocCI7eKRzYntaoMC7gy2vckwxcKtOiKy1gIc8MwwAhu6ZNg3GGjGWsvZ+hjW6s5ggNf5deajj+DsCxdxeyKDZFz1n2mUUixmiljKatjVG8WZjz4SEK/Ubmgt18HtXK4sVKKYKBYxGI74ozlAKJY0DWOFfFAMdg9hd0yuisFqRyNuhFrXPTYRW0kECwLB0K4EXr+6gJtT9ZNdzUSzHcRkGYogwg4UnQlkUfSTI4bj+ImDRrixeJ2m3vlgR9ftRNhxj5m87heQUnHP2enUiaBFfj03x2Kper1Gw3JTnXM5m4ONFZstBguuu0vIlwwokpfgJ4LXqZrNG3XX3WYwY5goOA4GmALOSmIwoDo+ado00MpycyZXXYuTfERkS2HHk9UKm9zyU7/ZwqbaNVYUBUiSiGRcRTZvwLZdCCKBJAqwHBdLWQ3p2ObvpXrJe4fWxg3V81FJ3uuugzOHj+Ls9VHcyeeQVBSkVBUiEeBQr0s+a5roD0fa4uLTCmqLq7pTjUtD5dilUly9sriAmVIJBxJJ7gzWIejMCJiQ2r4mzJ1OZczqhfQ8MoaBWa0Ey3UhEQGHkkn0qCEsGQZisoz7u7rbtpYExDQd0FCSBMHjEDCuqpgueUVf3XUQFiVQUL8AHVcUHE2mIBkGiuX35hwbcVHEgLr93BpZkYq5Q12g64m8JUaowMbAAiEIiQLmNB1D0RgGI2sXDRBCIAgC3PIeYzVnMGEL1RRq1yQKLwpKqSpO9Pbh5MDghtahhUzJdwAWRaFuLpcVIzTKGaze9cA6wLLXxlrH2LHNeY26z0b2pJCKh7CU05FKhJAr6gAtN+pEFRAQaIbl53AMy0ZSDfnN9aIoAJQGanwbZZGJ08KS5E/wyVtczN8pBJzBks2vi7DrwttLS76gck7XULAs9IZCiMvetSgx651d4yTaiAbXtcCKwXq7mh83mY6zTBTH5nlr80/3EsURQhCTZX8kZ8G20Ivm/p0jYXZMZPvFYIogoFIha7Z4kNN5cDEYh9MkWHt4QSABW1oAkCQBZtl9xLQchJmuwUYGmxVKbRwTyRYGr99J+64r+aKJpby+rDDI2Tj5BjqDGTVBQbOLfJz2ssgIprpasOlpBrUW4EBw/CUhQDfT3dOMtZaztXFdGhiXupIzGAAc2d+LZ595HC9fGMPrV6eQKxi+O2MsquDJUwdx8tHlz7faDa0siBiIRDBdKsF2XdzN5zFRKIAy48Zs18W5iXFITCF5NWcwIOgCulnr+Xque+woKYF5PggCQVghGJu1kCsY6E61LubQHBuKKKI3FMK8rsGl1E9OqoIQEIMBy91Y3A12RklMB/NOdgarHfe4dyABURTgOC6WcjrOnb+Jy6Mz/rjHeteV49JAkjoa9mKZZjnncjZHK8VgQHXd/fYPbuNLL13x19zZ+QJ6UhGcXmHdbQYW9eQ89QQ+ACDWzLarjk9q7RqRK1QLD1wM1loq48kqwibDdXyBrO26WNC1pgqb6q2xlRhZkSV0JQh004brUpR0C9SlWMhoGNmd2vS9VC95HxBL1twfbPL+we4ePHvsuF8cGS8U/NelVBWnh4bxng0WTTudesVVnRmJG2LyOJXi6qymYSgaQ8bkYrBOQDdZMRhPubcDdsxqUlHQH44ga5pQBQrDdbBg6NBsGwlFgSKKmCkV7/1Dm0SnOYMBwC4QfPC+Y3glPYe/GbuN6VIJluOAEAJFFDEUi2JXOIKwKCFXFjdQSlFwHDweTyEmbr/rnh0Tae3QsUr1RN4Bx9MacYIiijBdBwXLQmqNIyIriCJBZYuxmjOYuEWcwWrXpOFYLCByr4x+PnP4KI6kUuv62ezYtu5kpK5ALsTktDS9Mc5g9UX/1WtAqtkXrmWMHbuXbNT4skTMa0g7d/5m+Voi3v8RLxYm8NzDFrIlfzxkKh6CIpdd5B0XIMT/782wxDiD7Y3FMJrJAOBjIjuJxU06g62H2nUhJIkgkEApRUQSMV0q4tLCAo53dyOpqIGxuE7NOOZGNLiuheCYyObXjRTR2zE61PX3im5AeBx8/VpEcVFWDNaCey/SYc5gAdEtdwbbcWy/CJ3D6RBYcUFIlQK2tIBXYK6IwXTTRhLVzVEjg80K7RoTWVsYjIQVKLLrJcIFsqwwyNkcrDNYLLI5MRi7+RIJWbaZ42wvlraBGKzWAhxAwDI9FlUhMy6MzVhrOVubWmHgva6Nwf44Pv6B43jq1CG88Hdv4423piEKBI8d37Oie1G9DW1fOIxZTcOSYcChLgRC0K2GIAkCXOoiY5r44fwcdMfGrnAECfne63tUrob5bAywEeq57jnuyl25EVXAUsHB3akMulOtK9bq5d9zIBKB4ToBNxZVFH0LfsN1GurGwo4ZqE1Y7xTqjXusIIrVMaLsuMf0UnHZdZUvGpXmZggCCRRSuZtj5xEYJ94iB9nB/jiePHkIN8YWUCgacClw5scfwb4VRpE2C5l442dZ0SlbB6tNTlbHJ7XWxYB1fuVisNZzJJXyhU1/O34XC7b396Cg2BdPNFXYVO/ZLQWa00Q8MNwNw7IxNpUFdSlcSvFTTx7Dux/du6nPvlfyXqzZV9Ym7wcjUTx94BCeHNrb0HFKnU694qrONGiFa4obveEwxosFFCwLIdMIrEec9sAK2rkYrPXUjlkVCPHFXoQQdKkqDiVSuJnLYjabxQNdXZjRSm27d9h42XU7QwwGAIORCJ4+cAgPd/fi965eQsYwMBCJIKEovjCKltd0SilmLAvdkoKHm1yIbhfNGF+31agn8mbFOyUnmG+oONc4lCK5zue2JAp+gx7rBEYpDTiFbYUxkfXWpAoiEdATCqNL9UY/n70+imePHV9XTLiWsW2hgDNYY8Rg9a4H9t4Qyfoce4DgXrJRIoVcQUdvKgJZEnDt9gLCqlie1iME2hIkQYBmWJAEAbFotT63lNPRFQ9hZE9qU8dBKcUCIwYbicUDYrBKswinfTiuG6iLdDdRDFa7Lni5yWqssicag+VQ3C7kcC2TwbHu7kBjMOvCV9vg2izmFoqYmM7AcSlEgUCRmp/7GYnFkVJVZAwDPSGvThUQg9U0F61FFMdO2GCnaDUL1pnRshzYtgtJat+zS+ZOpzsavjPlcJoE6ww22B/HnckMlnK6P789rErIlzu19RplcKOCTRZ2RFSrnMFqC4NEIJiczQHwgpv+7igUWQwUBrlD2OYoMM5g8WjjxkQqW2CTzdkc7BihrsTWLBayFuC9XRG4FMiuMv6yGWstZ2vDPruB1Z3BWBKxEI4f3oWp8jNutVx+vQ2tZtvQbBsOKCQigBCCom0joci+fXzJtrBkGFg0DEQlCX/89pt4fNfAiiMFYg10Bqvnuqdp1Z9ZK5rzHFGXi+uaTSUJHZFknNq1G2OFvD9mqrLppZRiSddhOk7D3FhYkelOHRNZb9xjLbXjHvfv6QpcV5QCM/NVB5h4VAWbE+Vujp0FpbTlzmAVCiUTiiyiOxVBLKLioTaIAwdUBTFRRM6xkSqvt+zdX3s2KuOTBhUVuZYdZTAOSnExWFuoCJsSioy/m5iEQykOJZN45tCRpibt6z27wyFv9K7rUsSjCrpSYWSyuu8aYZg25AY0SdSLddixHrVjVFdK3icUZUUHie3I8uIqDTRo1Xa6R8oOPA6lcKnnLLZeBxZOYykxritsAYjTGmrHrAIUS8xori4lBIEQHIgn8L25GcyUSohIMtK6hv5wc11A6tGpYrAKh1MpfPLYQ757CYDg6F7bwqLrYpco4YM9vejdpmJdmXmO7lQnjXoib9apvGRZAVFlJYchEoKUsk5nMKF+o1Wt+5godr54ZvmatJzK6Oc7+Ry+OzONnzpwaM0/P71UdTbsXUEMFmEm0WgNGhNZ73qwA/vC4O+6FsceVWSFZZvb77MTajJ5HUtZDQXNQKHkNey4ousLWg3LgWU7EAUBybjqO/S7LkU2b+D0qYObbjgq2XZAeLGXiXct14XpulCbPOKPszrZnO5fE4QQpJpYF6ldFzRGTCsSApEIGIxGsGjqyBomZkpFdKvVekZlT9XIBteVqNxL518bw827iwC82OW/nf0+Thzb3dRpTwlFwYnePpybGEeX6sVvrBN7wKF9jaK4qNy4PPlaYMdEAp47WCLWvr1aUNzO86o7DV7d53CaBFuo6kqEceLYbmTzhr/BD6nMzGCm+FwJNk8c392w7nZKaVvGRFYKg8MDSQgCgW27YHLAkGXRLwzOpos4//pYS45ru5Ir6Lh5dxHzi8XAnPONwnbstMrtgdMeKKUBB61a0dRWoWIBXllrcwXd7ySsjBir0Iy1lrP1YcVgkiSuKGqpB7vJKzLC3FoqG9qsafpdTTOlEgzXQUpW/I5A23WRN01kTatsuU+gVjoYKUBAcG5iHM9dvYJr5a5CFnaTu9mOJ9Z1DwBMyw3EOdEaJ0rXpWXr/dY+O9hRSvsSCTx77DjePzQMURCwaBjIWyYKtgWbUpweGsazx46vexRDPcQdPiay3igywBPc3ri7iKVsVYzCjnu0bAeuS5FeLGF+sYSxqQxKWvXeGeiNBT6Huzl2FrXOCEoLxWBFRowajbSn2B4TJdwfiaHgOH7imO1UZbu7K+OT7ovEEG1xoj+b485gnUJKCaE7FEJfOIxdZYeVZlL77Aa8scZH9/diZE8K+4e6QVAVI1Dqlb8ascbWi3XYIq5YJ3n/WG/ftnb9WgtscRUAHIpg/qTGacMFhUgIXEqxqOs4PzONy4sLyJkrx6Gc5mIwriuhNTaVcBpDvTGrRdsOiHdSqrfGiIKAmCwjXW4QmSltPn+2EdgxkbVCl06h4nBZ2VONFwq4k89holiECIIHZQU/1dePkdDWzCGtBbkJxdNcQcfl0Rm8dmUSl0dnkCvo935TG2FF3hUikuQ/zymChfW8ZUIRRMRkeUNjIiuwYyGdGheTTh8TWW9NAih0x4btur7oCKiOfn4tPb+uZ/j84r3FYGyDY6OcwepdD6zov3ayyFoce9hxrJtxrLl2O43nvvgKzp2/CcdxsXcggVQ8hL5UFKoigYJAN2zMLxaRLxkQCNDfE0NXMgRFlqDp3gj18eksdvVGcfLRkQ0fSwXWFSwsSehS1YCQJW/xuK2d5Ao6vv/GhF9PC6lS05wH660LlrPcjCEiyTiSTCEiibhbKCBjVsVqpuNgQddwJ59DtxpuSINrPdh7STdsxCIK4lEVvakIHMfFufM38dwXX8G12+mGf3aFkwOD6A9HMFHMwy03v1SourOvXRQXa7EYTBIFKOzUjjaPimyGAyNn68B3phxOk2ALyoos4dSJEVwencH4TBbDA0mEGct4w7C9hxltbLBZwXTdwOz2iNz8okm9wqDFFGlFgfiJD7Yw+OTJQ1yYsU7Yjpc3r8/5Cfc/++vXcX1sYcMqfTPgDMYLr9uZQsmEzdyfW3VMJIDAWssmVBMx1V9zGr2x52wfWIGTqqxv3YuGqwXMorZ6MufkwCAuLSx4G9ZQBGldhyIICIkiLEphOg5c6iJrOl43rawAhIAQASJcmNRFUlXQHVp5pEB0E85guYKOsckMTMvx3HeS4YDrHit2UxQRSo3NdclwEVYF7N2dWtfnbha2oy4iiYExU1cW0/j/3b4NkRDEFRk/vu9Aw8Yfyzt8TORKY0TvTmdAXe8ZI0vdUBQRhaIBx3ExPpPFN793EzPzBdydzkAWRZR0CwLxxirt6o0jHApuVbmbY2dRKwZr5Thxdg2KhNsnHnk4Fsd1rYQZ08QuWQkWdVAV2MyYZlvGJ5mWg5JePVftFoPlTHNHjfyrhb1HrBY8K2odcyuoihiIcSp7dcN0oChiw9ZYNtYZisbhUnZ80PqT9zuBWkc11mWDAJBqmhRmSkU4lOJ2PgebupgqFf3C+4nevhXdYznNg3VdqY1jOM2l3phVVlQRk+WA2KBbDeFuIY+CZWGmVMJDbTAh7HRnsAr1RvdKhMCem0N2Zha98vZ+lrPFU7s8UnmjY0VrHYsq4+FS8VDTXVY2Qz2HFgKCmCwjW77P8paJhKLAdl1ojoM9kSgUUVy3MxgrwmBdt5c5g62jca8d1FuTbEr98YAAcLy7x4+JUqqK8UIBY4X8mlxRLdtBtlAVY/V11X/eRxiXSq1BQoR61wMbs7Ax71ode9iJJMYGRZe1E2oEgcC0HOSKBmRZRE8qgj0DcYxPZ5EvmohFVOzuiyMclnF7fMlrlM6WcJsAu3pjOPPRRxpyP7IOld2qCkII4sy9U7As9G5jQW2nwq7H49NZ31F7er6A51+60pT1uN66EHABZp43SUXFgz29GF1agk2BQrnJl4BgKBbD6aFhvKdJsX7tvTQ9X/Cb3cJhGb1dEXQnw02f9jQYieLM4aM4e30Ud/I5FCzTa44mBKDAgq4ha5prnvrQajEY4O0HTKs88eMetYJmowScTrkz2E6D70w5nCZhmMGC8mB/HGc++gjOvnARtycySMQ861kCb0zD9Hweum5jV2+0YcFmhRLjCEIIEG6BsKdeYZAtsteOn+hKhHB3JoexyQwebMOol63KtdtpnH3hImbTRcRjCiJhGYQQL6EA4Nz5m7g8OoMzH30ER/b3rutnGwFnsM7uuOJsjqVs1RUsElLWPBqvE6mstf/zr1/HpbdnIEtewasrEYbjuFjK6cjmjaastZytT/DZvb77IMa4Y2m6BdtxV+wmYze0N3IZlGwLSUUBQBCRJOiODb28BkuCgJJj+wlnkRA4lCJvWehWQyuOFIgy3UdrdQZbLTktEIKZpRK6k2EUmA1sNLzcFUwzKR4YUVpuf60xLqghsfr7JxQFj+8axHdnZ/xOsqxpoifUGGGEKO1sMVi9UWS6YaNS97ctB2+8PQ1REmBZLmzHRbFkIr3odV0SEEiSAEkU4DguipqFpayGTF73x9o1ckwDpzHUisFaOSaSFdzGIu0rQPYqCj7Y04sXF9KYNA0YrguFkHJykiJj2yg4DrolxR+f5LawA5MdESkIQtvO1XSpiPMz07iQnkfGMOB5XWLHCVYCYxlo86+DimPuufM30Z0Mr+h2Kore3tG0Hezujzdsja1N3huu48cVhJB1J+93ArXFVWtZYZVx3zR03MhmvfMpADFRRncohF3hMDKGgXMT47i0sIAzh482xAWVszZY1xV2GgCn+SwfsxqMVdi9kfff3t/HoRTT3BlsTbCje13XxfWFRWTbfEytoDbGtTY40o3N3ybjKvYOJCCW9z9LOX1T+dtWUCvyFghBXFEYMZg3KvJOPo+wKGEgEoFISKD4vhbYPSV7X2w1Z7B6axL7+xAA7KTLyuvYKR2rsbBU8u1DRVFYsemDfRYZpud6tR4H/JVgr4c9kVjAIVnagOhfaYAzWGVCTUUIBgALGQ2Vfh1VEdHbFUVPMoLR2wvYvSsO6lIsLJWQLxr+a049NoL3v+dQw/LFC3p1T9aten+noJCyvW5BO5Ha9TgRU+G61MtrSULT1uN664IZGLEafLbEZQW94TB+Yt9+/N3kJBzquQL/2kOPNiyfWY/ae0k3lzvfVqY93Z7I4PzrY3j6qeNNOZaKQ+n5mWn8v7dv+qK4OV3DQCSyLlHcZpqmN0okrPh5GU1vjDvjRmmUAyNna9LZUROHs4Wp5y5yZH8vnn3mcbz/5EHIkgDDdJAvGiiUTDiOi9OnDuLZZx5v+KavaAVHRJINdjCth3qFQYvp6JFrXEREUQAoDZw3zurUqvQTUdX/2woCQX9vDPuHUljIlHD2hYuYnsuv6+cHnMH4mMhtzRIzQqgrubWL7LmCDsO0cWCoC10JFQBFSbewkCnh7kwOkig0ba3lbH2Crp4bdwYDgJK2+saysqF9tLcPgDfGJG+ZKNkWQqIIkQiQy//fdimzUfOKqJVk20ojBdikq2Y7gU7NetSz0z8w1IW9Awk4joupuTwyOQ3X7qRRKFY7G1lxgetSjM/mkIgIOLi79WuJxjgchsVgwUckBAmmK5ntztwsMjsm0u78Qk6jqTeKrFIMNS0bSzkd+aKJkmYhpEhehzfx4mPb8UaOZnK6HzfGIios28H1OwsoaRZ3c+xQrEDSUmjJ/qJCYExkG53BAGAkFMbTfbvwWDwBAoKSS1F0HMxbFkQQPB5P4em+XW0Zn8SKwRIxtSGFn/VyLZPBc1ev4NzEOBzXxXAshv3xBIZjMTiuu+q44+2G3GJnMMBzzN3VG8X4THZl1xniCSzDqoTe7og/gqQRsOPFCLyO9rxlYtHQIQpCQ0c2bxfYcSgWUxBmXTYKlonLiwsghGAkFkdI9HI8puNAJAJ6QmHsiyewaGg4e30U06VivY/iNAHWdYWdBsBpPrVjVgHAZv4t1YxZrYh5REIwr5fuuVdqBlvFGWynUysG24ibRm3+trcr4ufLRVFAb1dkU/nbVlAReXerYdzJ57Cga4hI3jpHKUXWNHAjl0VMlnA4mUREkmtGJP7/2fvzIDvO+74b/T69nn2bBTPAYAcILqBIgrIoE5Qoy4IoO2X52pKdyObNVSXvta7kJXGc2KrELid2xXEqZZfjLLT82pXIl6+UxMubMDeSHNO2RBGSaIngAlIkNgKDGWD2Ofs5vT/3jz7d5+menpmzLzP9qVIVxNnOnOl++nl+v+/v+22NbZ3BzPFyBtttTbJfPyMIbXys1WSO9UJTxDqRiW27z/e7VLI1r25gr4cb5RIU03D3kARoO8ZO6jKONSihxqLAhu99ciLSp3IxUIvip3/yMfz0Tz6Gdz94CA+cmsLD983iPQ8d7ungcJ6JicxF7JqU16EojIkcJEHrsd7oRxJCMJWN9209DloXDkSjOJlK43Ai4cZZOzifNx2NIReJYCoaRS4S6esgXtC95B12aK4pbNpTP+OOHYfS907P4P5MDmfSWXzi1Gl89uFH8bETp1oeKkr4hqZ7ee7dDtadkXVtHwbedTYUg+03wpNpSEif0JjNNesuMjudxI995CyeeuIUnn3uNdxc2ATPEXzgsZP4yPtP9+W11AxWDDaY6US2MegccCWBRzopQ9OtLVOSpmkBhLTdfN/P+FX6rNhOEOzNJelCpc8evsQRn7hqFX/02dFDmdBhBEC+1HQGy6TG05ra72i0tlGFqhkQBQ4nj2Txkffdg9mpZPg3D9kRr5C7vW2yIHCQJMF9/tfq2q7OWLOxOD40dwRvFwoNZzC4FvvfzecBUGztC9jOj2xRNShSIO573tcMY1tb/iA7fQenOJ1LR3Hl1jo2i3VouomIJEKWeCRiksd1byoXw5GjGtKJwT/PFSYmMips/flZyY5eApyCXLonP1cQBt/gHyWCosgU1YBhmCiWVZiWBUHgQClQqqnQDROSYLsUEY5gfbPaeN9sMVg0IoDjCEplFTdubyIWlUI3xwajtI9hG2GDdAUDvDGR8SE6gzlMShKeyGRxR1VQsyxYlOIHJqZwUJaR4IdXcmGjY4YREblUq+LZa1ewqdZxLJnyPLccwUpW3j7ueK8hdtnk6gS/O3k6KSObinicSDaLdciSgNPHJhCLiDBNCkHoXYPVKd4rhoE3NjdhUorHpg/gw4eP7KuY0FZhHdXeKRWhmAZkjofIEZjUQkFV8U6pCIsCD09MACAoNIYB2HWZI2Rb99iQ/mBZ1NNkD53BBos/ZhXwuvDwPjGYYhiQeR4JUYRFgdV6HQfjg30GcWPmDLZfETgOHIF7LtdNC2jz9g5yLHJwHFMH5bLSDaxDy6X1NazUaqgbBgxqQeJ4PJibwL3pDF7b3ABg1ynaxesMZgX+m+cHO4jSCYFrEt1+TSqoKjKyjKMtxMqXKgpefuMO1jar4DmC43PZbT/X6c84ooe6oiMa6c3zybkevnz7Fr50+zYqhg4OBIvVKjKy3JZjDyuC0zoQKQQl1NTqmisoJByQyzTr3U5CzWaxjgfPzODGwiau3lwHAKxuVHCmh8PDm56YSMcZrLkHDp3BBot/PaaAx/lKloS+rcdB64LI8Q3Hpq33pbMunEilIfN33RSfmqH37Rzlv5dMi7piOcArBgMGm/bEEYJcwxHt/myu7fcgwdTJDYtCNU1EhP7Wa6KeqN7hOoOFMZH7m1AMFhLSJ9ioqSCBUyoRwSP3zbruGtU+ZgazMZHxPj/gHIIag+mkjHQy+CCYLynIJiM4eigzkNc37gSp9HXGEUViGtOsSv/D50+13DRk7ULlMXcG2yn67NwDB/uSAz+KBDWRAeCNqytuEcFxMhwn/PbOs1MJFMuK68C4WVTw4svzePqjD4dCsJAdUT0FgPbvhXhUcsVglVprz/WjiSQmIhGYluUWA9bqdQgcQVKUYVIKzTShWSYMi8KkFAlRRJKZJAyKFBA4rjGRqcCkFJfWV3FucjrwsLxTcdqB4wjOHJvE61eW3Wnduqrj7moJIATZZAQXnjiJx951CJf+5oWWfvdew8ZERgP2O1lZxs3GUF9e650zmMA6g5n7r5ETFEWmaAZqig7TtCCIHAjsArSiGCCEIBqRwHGc6wbG8fbwgCwJrqueZVkoVlR85P2n8cH3nhzKc7qkaZivlKGZJiSex9FEcijihVHcx/idwQZJ1RNVOxrNdoNSiByHNMeBA8E9IyBqYp3BMqnB738uLi9htV7bIgRj2U+CFXFIk7iOO/mLl+bxypt3cXu5ZMcKOc/ux0/irRuriDVc9lTdgCD0fp0jTPH+vg6K9/sJp7n6+Stv4ztrq6gYekMsUEFcFBEXRRyMJ5CRI55aj9oQVjtOI6x77IW5UHzXb/xuK343lpD+4o9Z5QjxCC8E1oWLUpQ0DSdT9mDIpqLghaU7eCA3MdC9Hh86g40NEsdDaZy12xWqBNVv76yUUK3rUDUTxw5lkIw3BsM6rN8OEkfk/eG5I5ivlPGtlWXcKBaREEUcTSbBMfudjNS+GGx7ZzDWVWv0B5YD1yQ2/pl416SipuHC3OEd1x/2THh9fsN168mXVYCQwDMhIQQRWXCdK+tqb8UIs7E4njw4h7vVGiq6jrgo4P9x/GTbaynrWNNqVCZLYEKN3ny/o7Loubb8CTXTEwlGDNY7R1XDslDUtorBkuLg4+pCgtdjw7A8zoMR2a4F92M9DloXtsO/LkQFgRGD9U/I47+XWNdbniMQfX3uQaY9GV2mGEUFARyTtFEx9L6LwWJREZpuolJV8ea1FWRTkaENdYYxkfuboZ5MFxcX8du//dv48z//c8zPz0NRFBhMEyefz+OZZ54BIQT/5J/8EwgDErGEhPQCVd89amoq12wSrG32z7q/anhjIgdBUGNwOyyLolhWceGJkyN50B1FgiZeWJW+4LvmOlHpswpxaYydwfxCoSMzKc80fL9y4EeJoCayrpuum1yxrLjFx0pdR76kjI1ALsjRaG2zBlC76JFMSDhzfBKLy0U8+9yr+PQnHhuL3ytkOLBC7nadwQA7MjFftG3oq7vERDoEFQP4RkGAUgqeEEQFAVEIsChFWdcwE4t5DnH+SIGlWhUXl5fwysaaW1hav1rH/15cwLnJKZxnpjMDiyGmZd9HAGanEu7P4TiCiGwfZO8/NY2ZySQee2jO41DE7uUHiWFZnsJ8JMCNJ8tMJhd6GBO5XcF6P/HEuaO4fGUZC8tFHJ5Jo1pToWgGOI4gGZNRU3Touu2YZE/WUxQrCkzTAqUN8SIheOTeWRim6bojFCoq3nVmZuDrtnMPXVpfQ0FV3dZ6Rpa33EP9ZlT3McMUg7Fi22HHRDoYTBNXGBGngiITA54ZsDNYSdNwaX3NFw9EcadaRYTn7eeaIICA7BvByrDEYIDXndw/GJKMy/g3f/D15mvTLaAPRsEK09iTW4xA2s/MxuJ4MDcBw7JQ0XXcm83i0alpVHUdf3T1bczE7IE79r20KIVhUY/oJcg9NqQ/sBE6JHS9HwrnZ2bx+sYGFqtlzMWTnqah82y2KMVitYykKEEgHF7dWIdmmbhVLuGFpbuevd6BPkc8h85g44PIce5zrF13z6D6bV0x3AEYVTNcMRgwWJeVbkhJEh7MTSAmCMg3ztbz5TJmG88noFNnMPa+CI6JHEb0eSdsWZNYZ7DGvtBZk6ajMTw+M7vt9/KfCaMREaLAg1L7ub/TmTAii66gQ+mxGAwAqroOieeR43nMJRId7Tc8IoUO9slBCTUGI3YQfH0Nf0LNgYlm3Wt1o9L2zw+ipGl4fWMdK7U6eEKQkkQ3ESARisGGQtB6rDL3hCBwnmulH+uxf10IEoQFrQtRXkAB9lpb72Pd1X8vsQLSSESE/9UOKu2JUgqdjf/uoAZFCEFcEFw3vqquY7KPe72l1TK+c/kOXn1rCapm4sZCHq9fXRnaUKdHdBs6g+07htbd/4u/+As8+OCD+Lf/9t/irbfeQq1W25LRms1m8d//+3/HL//yL+NLX/rSkF5pSEj7WD77zO0aypPZZhOpVFF6ltvup+Zxyhjc9PwT547iwGQcC8vFbafcLItiYamIA5NxnH/k6MBe27gTNPHCupH4DzmdqPRZhXgnavthU6oo+OtvvYPf/f9+E7fvFnBoJonJbMx9z5zos37lwI8KV2+u45kvvoTnL96AaVo4MpNCLh1FsaxgdaOClfUKqnXNjXvjOQ7PX7yBZ774kjsVNco4jkaHZ9JuQYiNvcymouAb9s4r61VcfGV+WC81pIeUNA2XNzfw8toqLm9uoKT1xl1T3SbiuVXYuLJ2HD/Pz8xiOhrDYrUMq+H8JXE8VOZwRkFRM3TEBBEHojHP17ORAlcLBTzz5ht4fnEBHAgSgoikKGFStt3Hnl9cwDNvvoGrhQKAZjEk23CNqdR0fPf6GlbWK1jdrHgiiB1UzYSmGXjs4cN49OwhPHhmZuhi7rrp3UMFid9ZMVi+X2KwfTpd5USRTWRiuLGQR6GkwjQpOI5AEDiIAgfdtEAAyCIPw7BgGLYQDLCfyTxHYJgWcpkYpnJxTOXiEDgykAlDFvYeMi0LhxMJHE+mcDiRCLyH+olf8DxK+xh2nygOcJ9oWRQ1Zjo1MQIxkQBgYPTEYAXGGWzQa/R8pew+mxw008K6omCxWsW1YtGdyAXgxmXMV/beXtyh2yZXL0glInjwzIzn2U2Id8Jb0/tTk1AZMVgkFIO1RNVoNFcjEbxrYhIP5iYgchwomq6wPOHcIQIAnr0jEOweG9If2GdTRBZGPsJsL+LErObkKG6WS6gaOtNrINhQ6rhVLkHkeBjUwu1KGRQUCUFETBS37vWKhb6+3tAZbHxgI+zaFXQH1W9ZF3J2IA0YrMtKLzgcT7hiBtU0cZvZy6U7EPhvN2i1k7BnVGHXpFvlEvKK4q5Jtou7vSbl5CiePn0mcNgoqLadTUeb8YeEYGYqueOZMMrEutXV3guPaj0wIfDEl3WwZ2ETahzYBBVB8F4z/oSa6Ynme1+uqp5nerss1ar4k3eu4zdffRl/eOW7uFLM47uFTVze3MR/v/UOlmrVUAw2JILWY2WHhIh+rMf+dWFDqbsDvia1tl0X2HvLX//sJf57SWHuhSDX20GlPZmUgpWPSB0OJAoch01FwVq9jtc2etdP8OP04157ewmWZdetMqkIjsykYJrWUHpvbH930MNpIcNnKDunhYUFfPzjH0exWMQP/dAP4U/+5E+QzQZnW/+9v/f3QCnF//pf/2vArzIkpHN0n1Xndg3ldFL2FF7X87W+vJ7qEGIiAW9j8OZiAev5mmvrbJoW1vM13FwsYCIbw9MffTh062kDVqXv4LGb3mXipRXUMXUGW1ot44+/8gb+1edewH/8wku48s461gs1vPb2Mm4s5FGt655CG7eHhUJBTWRVM3Dt1gY03UQ2FUUmFXHd+UzLwsxUYmwEckGORqpmuhOWgC0GA7z2zqWKEvj9QkYftqjyzJuX8QdvfxfPvHkZv/nqy/iTd65jqdadyyYrButkqomNK6u2GBMJbC0GlHUNOVmGZlmwqAXFNFDWdMi8gNPpNGKMsNuxDn90cgpVQ8ez165gU63jWDKFjCy7jSgTFBORKI4lU9hU63j22hUs1apbiiGxiOjeT9QCVhnnUtOi7ntkWhRzB5rTdMNGYfZeIscFTomxYrCSrnncArpBEJiYSGP/NnKcKLLHHpoDIRSWRWGYFLW6DknkkUtHIAhcYHNUFDiIAu9xRRjUhCHLUq3quYcmIlFPwz3oHuonQYJnP8PaxxjMVOYg94l1RQdbBYyNSEykzly7Yo8EAKWKgstXlvHyG3dw+cpyW/sXSqk3JnLAzmCaaXoEK4C3aC3xvOdj+0GwwjqDWZR64suGjSiwYrD+FIZDMVj7sM3BRGPvJ/E8CJqusM5/A+wYPMt3XfndY0P6B3uOiMij8Wzajzgxqx+YPQQCgoqho6xrWKpXwXMc3jN9ACLHQbdMnEylEeFt4Z69RhHPXu8L169ivU9NQiAUg40TosdNo73nZFD9VmL6BH4R9jDOQN0g8Tzm4rZYQTNNrNftJvumonQ0IMGKNNizIXuPsO5ho46zJn1o7jBAmmtSQVPBcxwuzB3Gpx84i3syGc/X7VTbvnZrA0ZjX8VxBJLE73gmjEaazyRF6b2IhBWDxTs0IZC6dNB1EmqKZdW9VlgBIbvXdWrg584edAdmEjHJ8z6tdRgV6R8sy0oykqKEhCBC5DhXbLxab/YAq4a+Zf8W0h+C1mN1B0OPfq3H7LrAcxwWKhXcKpewUKlsuy54xGB9dAbz30s1Zs2I+va3QfdSv/A/e9t1BnP6CReX7+K7hU1cKebxx43+Qi/6CZ6fxfTjDs+m3SERw7CGOtTJ1u1CMdj+Yyi5i7/1W7+FcrmMH//xH8d/+S//BQDw0z/904Gf+9RTTwEAvv3tbw/s9YWEdIvf4Wu7DQMhBFPZOO6ulgDYUZGH+tBY7cWERqc4jcEXL83jlTfv4vZyyW7gEIJsMoILT5zE+UfGI45ulGBV+pNZ2yFmJ8vsTlT6+pAcH7qBtc2ORQWYloVkXIYs8VB1E4vLRdy+W8DMZBL3npx0rW37kQM/CjhNZCc+EQCW1yuoqwaSMQmEEFimBVHgoRkmVNV0C5KHZ9K4uVjAxVfm8fGnzg7z19iWIHtn1hUsIguIMFMr42K3HxLM1UIBz167gtV6DWlJwuFEAjzhYFILBVXF84sLeH1jA0+fPrOlkNYqmqcI0P66l+jQGQxoFgOcaDqL2mKaDVVFUhQxl4jjQDS2RQjGWodfXF7Car2GY8kUOEI8h2MnwowjBHPxJG6VS/jG8hLuERMeC3COs6ci767Yh9GNfA0HJuIQeA41Rkwry6In7nrYsCKD7ZrMKUluRBTaW5GCpvbEElwMncFcZqeTeM+75vDW9VV898Yq0skIjh3MIhGXYFHgb15bgGFZiEgCeI5zHcEAoFLXPE2xQU0YsvjvoSD899DHTpzqy2sJEjzrhoWNfA2RiOAR9wxjH8OKdgYZE8murYLAj0yjjBX2dOsMFhTvTQhpK05gdaOK5bUSTIuC5wjIgON0WMGKI/TynEl9Ub77QbDin17WTRP8gM/m2yGJPGqNLXQ/nMEMy/IUnPfy37mXeIb6RPtaOZpIuk56E409zLFkcotDmAPrHhvSX+qeZtlo3Nv7ldlYHE8dPoIbpSIqug4Kip88fQbHkin878XbKGlaY68H8IS4z/C6YSAhiu5e72a5hNcMC/f26XV6YiLNUAgwynQT9RxUv93JGWwYZ6BuSUsS3ikVsa4onuipz731Jt49NY3zM7OBrldBbOe6zQ5A82M0sAzYa9LHT5yCRSkura3BpBTnpibxt44cD4xH3622fXe1BNOkSCdlpJPRXWvbkXFwBuN4aKbprtmvb6xjzueIvxtPnDuKy1eWsbBcxOGZtMdZzrmutkuoIYRgeiKB+Tt5AMDKRqXte9A/WMYRgoWGUx4hBLlIBDONRID/cesmeEIQE0RQag8ABF0LIb0laD3WmDVY9tUW+rkeO+vCh+eOYL5ShmaakHgeRxPJwGshytxbtT6KwYDmvXR7qYi6qgGNVYYVTA467ck/zNtODYrtJxBiJ2gQQpCRZNcRttt+Agvbj2OjedlnmiPgHWTvjX3P1D08hBcSzFB2Tn/+538OQgh+/dd/fdfPPX78OGRZxs2bNwfwykJCesN6vobNQg1rm1UUyyoqte2jiNhG6nq+P+4CNWaiNDbAmEiH2ekkfuwjZ/HZT70fn/nEe/B//Ni78ZlPvAef/dT78fGnzoZCsA4Imngxt7HM7lSlzx7gO7VeHSR+FyxZ5KHrFmTJnvrgGmIHVTOwuFx0hQ4O2VQE+bKC+TuF4fwCPSaoiazpJtbyNfAcgWlRGKblRsDxhEDVDVcMMw5OWn5HIwogX2y+1mwq4smyHze7/ZAmg3LrYQuxHcVERhkxWBvOYA5OMeCzDz+Kf/Cuh/FT9z2A+zJZ5OQIUqIEudE8DbIOjwsiLq2vIS1JrohFJMFFa44QpCUJL6+vITcV32KnP5GJuTb6lkWxtmlPLVZqGlTNhCzxOHN8YlunomFQ90RiB//teEKQlpruYAW1N5P+PM9BNywUKxqW12u4fruISm3/Wv2v52vIpqOIRyVEJAG5TBSSyCMi8ZibSUHgeURlEbIkQOBtpzBVNyGLPBJx+x4a5IShQ0nTttxDNUPHtWLBjRFyYO+hftnK+yNcAeDuagnL6xXcWiygXPX+3EHvY1hnsEGKwSrM2hqPiiMTw6Uz74dAOn8/guK9T8xlW44TcFwE/vXvv4A3r6/h7XfW8daNdfzbz38Df/yVNwY2dcoKVhy867S30L4fBCv+6WX2mhk2bFO6H/tkv+Nb6Ay2O4Zloc64njpOGylJwrnJKRQ1zXWRkDg+UAjGuseGDcb+o6jemMiQ4VI3DTdm9XAiiXdNTAKAb69HfM3V5t+QIwRpUcLbtQpqfVqv2bNU6Aoz2nhci9psoAbVb2Wxed2pejNsfBhnoG65Wijgr+/ewZ1a1Y1dTYoSMpIMSmkzdrVQaOn7sa5fbJ2bFfbwY1Cj3o5cJIKpaBRnMrnAZ/NutW3n/GxaFopldUtNJuhMyD6TWGFCr2DXzk7EYEu1Kr68cAuvbqzju4VNvFXI45nvvoF/8/qruAQTRbS2PvoTakqVZiwnx2HXhBo2KnJ1o9L27+EMls3Fk57oVAeZ512x8Vq9jg2lWYMLoyIHQ9B6rHpiIpvX76DW45Qk4cHcBB6dmsaDuYlt9+zs+bmfzmBA815KxiSUKhoU1QAFRUQShpb2xPYp+UafrxX8/YScHHFrSBYNTtDoBn8/jo2oNU0K1gh20L23ViKvS5qGy5sbeHltFZc3+xejGTJ4hrJzun37NqLRKE6fPt3S5ycSCVSr/Y3gCAnpBU7x/Xf/6Jtu8f3N6yv4V597Ydvi+yQjBnOarb3GY9crDq8olUpE8OCZGTx69hAePDMzNgfbUeWJc0dxYDKOheUiLIv6pqQam5ouVPqs/ao8BgV7f5SSaydOCKp1DeWqCkpta2jDsrCy7r0f95pQKKiJXKqoKJQU1BUdxbKCYtn+N2D//pYFVJjm8qgL5LbYO1NgMhdzo/oyKa/jz7jZ7Yc0CSqq+HGKKqv1Gr6xvNTRz9muCNAqbFxZpQMxmINTDPjh4yfw2UcexVOHj+xqHT5fKbvNdAevM5j3oOc06TehbSmG8BzBVLY5hbmyXsbqZg0ra2XUFA2ZVASnj052/Pv1g1bEYACQYcRgebX7w/Z6XsG331zFlfkC3rlTwls3C/jjv3gH//l/XMHz37qD9fxoimn7yUa+BknkMZmNQTcsT6THzGQCUVlAta65hVkKCk0zMZmNQxL5gU8YOgTdQ8v1GmqGgbyqbhEPOvfQfKU/4hq/4BkAqozIkI1wBQa/j9HYqJsBOsiyUdCsG+Ow6YUzWFC8t/P3byVOgBWSKZqBRExCMi4jm4m2JCTrJVsFK9Tj4Miu0/tFsCJwHNh+nT5CTpKSyMZV9X4NUZniPUcGKyAdV/wT/wmxucc8PzOL6YazxHYCEr97bEj/qTMNdtY5IWQ4KEwD3nnmBO31vLFL3vUvI0somybW+xSlwzrimmFM5EjDpiW0GxMJbK3fSowIm1qArltDOwN1g9Nkr+o6spLkxq4CtvC7kya7JyaSccwLqnmPG+y65HfJddiutk0IgaIZKFYUWBZ1a9uaL50m6EzIPpPqfRGDdR4T6cQqfm1pySMmPBiLw6QW3gLF12DhWrHQ0vdzEmo+dP4kLGrX5cpVFWubNQg8hwtPnMSnP/EY7jm+tZ41nUu4/15tMyYyaLAMABRmDyw31hFnsGxTVdyBiVAMNjjY9di0KFTGFdmJ8B3F9TjKrBk1s79iMMC+l37wA2cwdyAJjrOHp+fv5nF7ubTrvdQP2Jp2O2dJfz/B4/TZEPv3op/g4O/H+Z0s/WkSg+y9SZ7Ia9OtyQLNGM3ffPVlPPPmZfzB29/FM29e7kuMZshwGIoqhOM4mC1OURiGgVKphFSq99F5ISG9hLXwFQWCRCOCTRR4t/h++coynv7ow56HJNtsXdusujEgvcKwLO9hY0SiKEK6x1HpP/vcq7i5WEC5qoLn7AkhAnvipVhWcWAy3pFKn53gHnVnsCAXLJ4jdnOpXPcUEAgBElEJhmlB001XGLTXhEJBTeRKTQO1KMg2luoc5y1CjrpAzm/vTIi9pk5lY9AMC5Lg/T3H0W4/JLioopom7tQqEAmHuXjCfW6ybj0X5o603VT2isG6jYnUe/JMb9U6XDNNUMB1TAMAkWkw+Kd+nM/TTHOLnT7HEUzm4rizWkKlqkHRDGwU6lBUw52ofOPqCo4ezIyMu2edbfhsU1gFgKws42ZDP5FXt3dubYX5pTK+9PUFrG7WQSkQkwXwPMHMRAylqoaX3ljFtdtF/OD7DuPo7Gi8T4PAcbqdmUwgFtU811UsKuH0sQlcu7WBck2DKHAwDBPRiIipXKzrvUs3BN1DrOCpYmjIMs1D9h7qB6zgmec5UAroTJOyXFGhaAYijYLloPcx7JridzzqJ2xMZCw6OsIhnRWDdeiaGBTv7UBhhzNsFyfgF5Kt5WsoNBwfo7KAyWwMuXQUC8tFPPvcq/j0Jx7r+/11fmYWr29sYLFaxoFozI0rBpqN+V4JVkoVu4Dq7O2PHsqM5OCRyPGuQ8AoOYOJzJ5Z78O+X/G5IoyKo98ow0ZERnjes87OxuJ4+vQZPHvtCm6VS0hLEjKy7IlPL2oapqMxPH36TMvRXCHdETqDjRbsoIjjRhi014sw5wbV8okqGp9n9Mm1K4yJHB+6iYkEttZv00kZHE9gmRSUUqysl6Hp1lDOQN3gNNmPJVNYrFY852vHgcRpst8ql/CN5SV87MSpHb/ntjGRpq9WOYZ41iVh65ltu9o2AJSqCnTde+3FZBGVurZrbTvCDDoqSu9FR9UOncFYx54TySSqjCCKAJiIRFAGkAfFF25cw2ei0Zb2NLPTSXz8qQdwfX4DxVIdpkXx0Q/eh4fu29mYgHUG2yjUYBiWx9VnJxyx8eFEU1BmUstTY2edcTOyjJvlEiq6jhzPo6KH7juDgl2Pb9zeRL1uMM57ZKg1qZ1g05767QzmYFGKE4dzmJtJYzIbw/c8ODe0s3Yn9aegfoK4zdB0t/0EB38/jm+4gznulppqQBKa33uQvTd2iJNSe6BRIMQTo5mWJBxOJDznyl7HaIYMh6HsnI4ePQpVVXH79u1dP/eFF16Arustu4iFhAwDf/E9mWjaTYrizlPcbEykoupdOYkEUfcpxdud0AgZbdiJF4rmxMvKRrVrlb4nJnLEncGCXLBEUYCmmZ7sd57nkE5GkIhJUHXT44K114RCW1yzAFvxT8DYZBP3f6LAQRR473TqiAvkguydHfxCsHG02w+x8U9wU1DcKpdQ1nRsqioKWu/cetiYyE6uezYm0jDMnh7mdrMOl3geBHbBySEqCDieSuGedAan0xnP5zufJ/H8Fjv99XwNxVId1ZqOal2HaVJougFJ5JFLR8HzHP7m8uLAHGZaoVVnMFbMU9A6F4Ot5xV86esLKFY0zE5GITfWXErttTWTlHFoKoZiRcOXvr6wbxzCVM1AuWq/r7GohKc/+pDnujJNC5lkBPcen0QmKaOuGDAt+95ZL9SHMmHoEHQPsQWnqu7dU7P3UD9gBc+AU1Tyfg7rKjzofQz73gxyaIA9K42SM5jRpTNYUPMHsKNcbi7mkS/U3f8WFCfgdxFgnz/O88wRkq2sV3Hxlfm2X2O7OIKVnBzF9VIJimmAUgqR40CALXHHnQhWHGfuf/W5F/Afv/g3+D//+Dv4j1/8mx2duYeJp5k8Ss5gEhtX1QdnMI8YLBTJtALrEBEXt9Zw7slk8OkHzuJDc4d3dY8NGQx1hdmLymHdbdiwIlRH8BW015MZUYlqWgATR+Z8XqeOn7vBPu9pnwRnIb1B4lk3jc6e32z9VuA5KIqOclVFpabBtOjQzkCd4m+yJ33PKvaMxDbZd4uc8jqDMTGRzL/5Dgcvho3qWZe2niGDats8x0HVDSjMM4bjCFIJGamEDK2F2nY/ncEopZ5aTDtiMK9jD+dx1DIbazEBQRbAar3elmOPppvgOYJcJoapXLylWvBEpunKTCl1h9xa+nkBYmPWMY3niGdgiCdcQ2xh/57l0BlsoDjr8XveNQeOs2sM1bqGO6vlodakdmKQMZEOjkOeJPI498ChoaY96Uzfp9X6024JGnZNq/l9e+H+H9SPY4fNFZ+b4yB7b35HNc00t8RoTkSi7jrGE67nMZohw2MoVZgPfehDeOutt/B7v/d7+I3f+I1tP0/Xdfyzf/bPQAjBD/zADwzwFYaEtId/iptd7J3D/XZT3NGIiHhMQrXR2FjbrCIZl7f+kA5hN54Szw10cj9kMMxOJ/EjF+7HlXfWUKmqMC2Kjz11Fvefmupqc8a6YYx6lEeQC9ZGoQZZ4lGr6+A4iqgsIhaT4B69aNMFyxEKXXji5J4RCvldswB7Q8pxBJZFEY0InrVG0QxwBEjEm43VcRDIBTka+RlFe+eQYEqatsX9Kq+qqBo68qoKjhAohuEp7qumAaB7tx7qm8TpJCYyGhEbgiB7banV9Y6+TyccTSTdg+tExI5I5QmHlBgslnAOxEcT9pSbUwx58dI8vnlpHm/fXIduWCCwYxgisohoRITA80jEJJyYyw7UYWY3PGKwHcQ5rBisG2ewV69sYLOk4tBUzDPtSSlcRzhCCGYmorizVsNrVzfw/Y8d6vjnjQvr+aY4SRR5PHL/QcxOpfDipXm88uZd3F4u2W8SITgym8FH3n8ah6bTSCXkobv5+O8hi1JP/JZqmjAsy91L+++hXuMInp+/eAO5dDRQXJov1jE7lQRHMPB9zPCcwRiBxAg5g3UrBnOaP0dmmo7oG4U6FpaLAAVqio5MKgrnrc6mIri9XML8nQKOHspsEZJ5xWDN5xArJPvw+VMdXS9Bz+rtJmcdwcofXX0b315dRcXQEaUUC5UKMrKMC3OH8fjMbEdCMNaZO52UcWQmBZ7nYJoW8iUFX3nhGr7+nVv44HtP4OTh3Ei4hYlc983kfiAzxed+TCUruzQ/Q7bijVwK3ku26h4bMhgUpsEeOoMNnyBxQtB5SWbWJItSGBZ1G/YFVUOS5zHZp1n6MCZyfPA8v7twBZ6dTuLHPnIWTz1xCl/8/72O6/Mb4DmC97/nBH7wyXt68VIHht8JKemrO8i+GPmMLGOhUsF8pYwHcxPbfl+edW1hncH8KQZjhkVpoEiVJTDhoa5BEnjUdLu2LYk8EnG5KZxqobYdjTDOYGpvRUd10wS7fLUqBgty7OEI3O/FnsMJ2nfsqTFnRhDSkkib4wgms3EsLBVQqap44Tu3cN+JqZbOEKzY2KlJsk5ntjkDs+ZTCzwh4Bu/exgTOXhmp5N47KHDWN2ooFJVkU3H8INP3jMSZ8YgPLHWjSGrfrotU0qxulFx//+BicQOn91/dMa0otX6U2CCBvNvi1KYFHCSh3vh/h/Uj5MlAdWafY/7B68G2XsTOQ6EwB0y1SzL4/DJbXM9tevwGTKaDOV0+vM///P43Oc+h9/6rd/CyZMn8ff//t/f8jmXLl3Cz//8z+Oll15CKpXCZz7zmSG80pCQ3Qma4mYdathDzHbF96lsnBGD1XDicK5nr491MYiFrmB7FlVtOLZk7E3GuQcOdqUoNyzLnU4BvDaio4g/SknRDBTKCmIREapmguM5xKKie+xyHLL4hjBqLwqF/E1kjrOFCRFJQK2ug93eUVBomom5mZR73YyLQC7Ibj+biniagaNo7xziZalWxcXlJVxaX0NBVUEB6KYJnVpQDAObqopNRQEFgWaZkDkeMUGAwHFbYpY6desxTQqLdbrpYA21Y/BE95leqWnIpqNtf59OSEkSzk1O4fnFBWTlyLaHOMA+8BY1DRfmDnsKaU5xWlV1rOVrODCRQKGsoFJVwTH7mXhM2lbkPiwUk41caM0ZrKRrHnFPq1RqOt6+mUciKjREX96PW0wxgRCCRFTAWzfzeOzBaSRie3svtlFoisEmMjEQQjxNj1GOcfPfQ0ERMFVDR1qSt72Heg0reA4SPlkWxfJaGaWygkRCxkQ6hlJFGcj7yjrIyoMUg9XYmMjRuZ+6FYMFNX+Scckt1um6hbV8FQca8SVsnIBfSEapNwLG/zxjhWQPnplp+TUGPasJ7ObeuckpnN9G1DUbi+NUKgPdtFDRdTyQy+HhyamuBCt+Z252GEDVDJQqCgqlOhaWCrg+v4HZqRSmJ+I498BBPHHu6ND2g9vFUgwbkblG+hETqfpiIkN2h20KJgKcwVgc99iQ4VJnGuxs4z1kONTNrXFsQeclnnDgOeKKKVTThMBx9l5P1/BQLIFYvT8Ov+yzy+90HjJaiExNtJOYSD+pRAQPnplBsew4AA/G5aWX+JvsAschLgioNoSYflFQq012NpbP9MREMoMoYygGU3y/d5Cbub+2DQCz0ylsFutQdRMcR5CMy64ApNXaNhsT2WtnsBoTEckT0vI+LyhWkSccDNjvEysGA+zzxmK1uquY0IEdIIrJYuDgsJ+l1TLm7+Tx+pVlqJqJW3eLyKajyCQju54hgsTGFY+w37uXK6gq0pLk7vEqRigGGwb5Ut3tpz1w+kBbZ+NBE2UEpJTaa8pOqQjdUqlpqDM1hamJ4cbOs8/eVk0rgkSaAkfcnpjAcY2PNWJ2e+D+H9SPY4fENcYZbNC9N0IIRMJBa/yeG2p9iyh3XbEd6XnCISmKbr28VzGaIcNjaDGRf/AHfwDTNPFTP/VTOHDgAPL5PADg8ccfx6FDh/A93/M9+PrXvw5BEPBHf/RHmJwcHUvGkBCWIAtf77SKd7OZTUWQLyuYv1Nw/xsbFdmOBW0r1DrMbQ8ZL1iLUULsyL9u8Bc3Bhn/0wn+KKWV9QpAAUHgMZmLIxmTUK5pUFR7ckLVTUgCB003cXOxgIlsbE8KhZ44dxQHJuNYWC7CsihM00IsIoLnOaiNpiMFRbWmIRoRMDNpH8LHTSDnt9u/vVzCzcU8bi+XRtbeOaTJ1UIBz7z5Bp5fXIBpWTicSCAnyyjqGlbrdRRUDZY78URBKbWdwjQVmmVuWa86detRfVbNnTp6sYKNar230c+7cX5mFtPRGBar5S3FMweLUixWy5iOxvD4zOyWj5cqCt68vobZqSSmJ+I4PpcF73umONFsQVFlw6LOFFejO0RQpSQZTh2Q0s6iIpfXayjXdKQaTor+uqI/5iUVl1Cu6lher2GvwzqDTWa9xSKn6TFMa/ndYO8hVuzkUNH1Xe+hXsJGuC4sFd19DIgt2Ngo1HD56jJW8zVUqir+WyMubxDxeMNzBhvVmEjm/SDtvx9BcQKSyGMy07yPVjcqrkMCGyfgF5KVqyp0w/48QraK5lghWasEPauPJ1M4nEjAtCw8v7iAZ958A1cLhcCvX6nXIPE8cpEIzs/MBsYdt4M/FhOwAx4KZfsZtrhSBqVALhMF5zT6TQvPX7wx1IhjrzNY70VXnSL12RksFIO1D+smEQ71jQesM9ignIFDtkcxgh14gs5LrIORapnuXu9ANIqH+uQAC4TOYOOEvCVWqnvYPkK+ONyzdCcExa4eSSQxGYngaCK55XnfapOdvS+MbcRg4+gMpjDCII4E19n9tW3nc+85Nomzp6aRjMsd1bbZmEhNM3oqPq35XBhbdSoKcuxhBxr99SzHQatVx54ac2aMtTCQd/Xmun1GuLUBy7LPmcm47TzcyhnCERsXNbt+SSn19OTijFOzM1j2YG7CvR/Ku8SnhvSHfLHu/ntQg7ydIvO8p/bY76hIJyISAJJxGbHIcM8jRgdiMFak2YTg/lwO75qYwP3ZnMcAo1fu//5+nDcmsiF4HVLvTWSen/PlrTGaK/Ua7lSruF0pQ/XVK3oRoxkyPIa2c/rJn/xJfPnLX8bJkyextrYGTdNAKcW3vvUtLC0tgVKKU6dO4Stf+Qo++tGPDutlhoTsStAUN+ss4p88CCq+s2Kwtc1ei8E6y20PGS/YwmNUFru2ifU3J7pRxA+K2ckE7q6WsLRaxkahuZk/ejCDB05NYe5A0s2BL1dsl5uILOxpoRDbRL65WEChrILnOaSTdhxXvlTHZsGegjl9bAKyxGM9XxtLgZzjPPPZT70fn/nEe/B//Ni78ZlPvAef/dT78fGnzo7N77HfCMqmV00T14pFqKaJrCRjIhoBTwhKmgbVNMETDhLHwbQsFDUNNWaK1imqPDo51XaTWe2RqDYeY8Vgg53um43F8fTpM8jJUdwql7Ch1N2iq0ktbCh13CqXkJOjePr0mUAHF7/IXRQ4TDZcJ4GtwoIgkfsw8MRE7rDf4QlBWuouKlI3LIA293hbnMF8xVXn8xxxxl5mI+91Bhs32HvodqUMpWG/D9giv7UW7qFe4wie7zk+6e5jFEXHWqEKVTMgSwLuOTaB+09Nt1ys7gVsI2yQDrKsM9goxUTqTMNC7GAfHtT8AYADk3G3KWaaFHdWytgs1HDzTgEcgFw6ukVIxooyU4nIlucZKyRrhaBntdO44QmHiUgUx5IpbKp1PHvtCpZq3vNsVdc9LkcHot2tDUHO3LW6jlffWsLLb9xBuaIiHhURkQVwhIMk8dgs1pBKyDg+l8FGoYZnn3u174LJIMQ+NJN7gUcMpvUjJpIRyYy44/SowDpE7OYMFjIasO4Jw26YhXjXHTZCPui85KzNlFKs15t7vZ84dQ8m++h8EDqDjQ8icw31SsydTTWFB4VyfctA0agT1GSXeB6H4glPY9mh1Sa7xxmMuS88g/ctuDyNGh63Qj5YNOU4yhTLqmdNkCUes9PJjmvb/ujieg+jImsdJtIEiQl3EoM56SWt9idqbTyTWcfhY3MZRGT776MoOjiew2Q21tIZghUbVwzdjWIjAGINUfJ2g2VhTORwKDBnb3ZNHkUIIZ5aJ7um9IMVJiJyesgRkUBnw4h+kab79YQD4F2Du+kn+PH346p13X3GK6qO9c3h9d7Y2l3N8ItyqedZ6x9y7EWMZsjwGKoy5MKFC7hy5QpeeOEFXLx4EXfv3oVpmpiZmcH58+fxfd/3feDHQIAQsr8JsvCNyCLSSRmmRT1WvEBw8X0yF4emm6hUVWwU6njt7WUcn+tNdE5tB0vakL0DK2KQ5e6Xdp213+bIjnFjw2RptYwXL83j0pt3sbpRwWahjjsrZfCcPfmUTkaQTUVACHDicA4Hp1N45/YmEgkZH/vwA3j07MGRdCbpJU4T+cVL83juL99CpdFETcYliI24BEHgkS/W3ZzyC0+cxPlHhheh0w2O80zIeBCUTb9cq6FuGkgKTWFrWpKxUq9BsyxEOAKe4yBydr59Sbev6W7delSm+ek82zvB4wxWG/x03z2ZDD79wFk3ymuh0jzAZ2QZF+YO4/FtoryAYJH71EQC+ZICw7CQSkQ8xddOHGb6gVcMtvP5ISvLrgis0IEYTBQ4gNhNG7uJQ8BxgFOb8PdynEJut66d4wDrcDuVGz8xGNC8h/7L9Wu4uLzkacjLPI/vO3gI7z94qGMhWKmitB2XOTudxOmjExAFDuubVRQqKigFJJEDz/Ou8JRvFKtz6SgWlot49rlX8elPPNaX5/kwnMEMw/LseeMj5QzWXUxkUJwAYMfgTE/EsbBURE3RsbZZgSQJ0DQTmVQE//7/egn3n5pCRBKQLylIJWSUqs11bTK79T509ntHD2Vaem1Bz2o/HCGYiydxq1zCN5aX8LETp9yPrdSb4rSEKCLepbDFH4sJAGv5GsoVFbpuQRA4FEoKJIlHRBIhizwqdQ2VqoZcJjrUiGOpxzFTvcIjBjP64QzW/F0juzyjQ2xYZ7CwjjP6WJbt0OIQkcO/2bCp7TAo4j8vlTQN5caZUuJ5/EDjvHQgEsW11bW+vcbQGWx8EEnvxdwZRnig6yZqdX2k9ra7ERS7uh1Ok/3C3OFdm+w8c65g3cCMMY+JZF1SIzv0O584dxSXryxjYbnoccAFgFhU6qi27dS3mmIEo2dDNZ0m0gTFKh5PJgEQ2CE7BJQRirXr2NPOAJHjOHx8LgN2JTYtCk0zIUs8OI7seoZwxMbPXruCd0pFKKYBmeMRlyRYoCgoCoqahuloDE+fPoND8WY9QbMsqKYZOugOEEop8iXGGSw1+v2hKC+g2hBg1vruDMaKwYYbEQl4ndjbSTA6PzOL1zc2sFgtYy6eDHxW9cP9n+3HvfzGXVTqGpwFxgIdWu+NHU4jjf85MZomhWcN9AuvexGjGTI8hm4TRAjBk08+iSeffHLYLyUkpCPYKW6n2D6RiWIiE6wm9xffl1bLeOE7t/DqW0tuI/rfP/tNTGbju+aRt4I3XmDot3xIn6grrDNY939n1gZ0kG4P7XD15jqefe5VrKxXkU7KOHUkh1w6ilffWoZumChVNRBCUKwoSMYk5EsKimUVRw5l8PRHH96TTmDb4bhmrW9WMX8nD9Oi+MB7T+B9j9o2tO02pUNCekFJ07Zk02umiYVqBZppwrQoOELAEwKLUogcB92i0KmFCMdDMWyXp6quY7lWRc0w3KJKJyINVszUTbQLG1tWGYIYDLCLUB8/cQofnjuC+UoZmmlC4nkcTSR3Lb4GidwlgcM9xyZQVwwk494p33YdZvqBRannubVTTCQAZLp0BpuZjCEZE1Gqasgk7e/FccQVffmnuktVDcm4iJnJ8RRHtYqqGSgzIpRxdAZzmI3F8e6padfRyKQUPCFIiCK+Z/pAR2sMK2AvlBXQRvxtJhlpac9fKCuQRN6NBj975gBuzG8CsIvdNcVALGJf+60Uq7uFnQaUBtSQ8Ufv+uMPh0m3YjBg++aPJPIoVhTougWOI9B0Wwh274lJqJqJF79zG5pu2A0L3XQreLLEIxH3rvmWRVEsq7jwxMmW9ntBz2rVNDFfKcG0KI6lUu6ayxGCtCTh5fU1XJg74j5vWDHYgWj3E9dBouW6okPRDHAcccXcmmZC00z3+eQ02tmI4w+fPzXQfe9YOIP1JSaSdcMYzbPlqFFlGjwJMazjdEJJ09reB3eKqhkA8xzwu7CEDJ7dhBfseelrd+/ghaW74AnBsVTKFTRbfV6nQ2ew8YHd6/bq+R2RBURkEUrDpSlfqo+VGAzoT5Od54NjItl7hP2ccWEngSqL4yjz7HOv4uZiAemkjGwqAp7nYJpWR7VtQgiisoiaYp+l2B5Ct7D7lXgb+5UgMSFPgs+UFLaY8MOHj7T8HPc4g+1wZgxyHJYl3u3R1VXdjXhr5QzhiI2fefMyvpvPo2LoIIRgoVLZMpxJKQVHmsOEFV0PxWADpFLTYDBDMKMeEwl4147+i8Gag56j4AymmZ0NI7IizVvlEtKShIwsN8RPFgqq6hFp9tL93+nHPfXEKfzO57+JckUBzxH8xEcfxruGZGTACrkmIhGPKJd1agSa8bwOvYrRDBkOQzmd/tEf/RGi0Sh+7Md+rKXP/7M/+zNUKhX83b/7d/v8ykJC2me7Ke4g/MV3VszC8zwSMbsBO5GJuhEvl68sdyVc8TqDhQWpvYrSY2cwdoM1impv1sL5+FzGve/qqoFsKoKaokPTTSiqgVffWsLsVAoHJuJj7XjVCygFco3m/LvumXEPrqGTVsgwmK/Y2fSHE81DZVFToRgGBMLBohQWpXBWN5HjQKmJrCyDgKBCdVDYxcW6ae7qeLUbHofFLsRgcabQ5BcuDJqUJOHB3ERbXxMkcgfsRnGQ4Ktdh5l+oJgm23/bsbgKADlZhmaaqOg6Xt/cwGw8jqOJJBIt7pMSMRH3Hs/ipTdWkU5IIMRx0LRfBFuoppSiUjfw3genkYiNjnClH7DRdKLII5XYGg8yTlR0HRLPI+fbBy1UKjiRSrf1vfwC9iMzKU9Bf7c9v26YqNU1aLqJ9XwNR2YzSMYkxKIiag1XsLXNKo4ebL6ufgte2MlMcUDOYOyaGpHFkXIF6IUYLKj5I4s8rt/eBOE4EGLBpBQCJThyMI1kXEYybouQr9xcQ6GkYG2zilRcAs/zmMjGPOEHlkWxsFTEgck4zj9ytKXX9N38Ju5Wq5iMRLCpKogLIuYrZdQbhfOFSgX3pNNwYhYysoyFSgXzlbL7/FmpNSeuD8S6F4kGiZZrdQ2WRSHwHAjxaDKg6SZ4nvNMtmZTEdxeLmH+TmGg++CxEINpvW8sKIwoI4yJ3B1KqdcZLIyJbIulWtV1fCqoKijsFSojyzg3OYXzXZwXtkNRmfuGELdxHDI8Wo2QT0kSvmd6Gm8V8gAAxTBcwX6/YYUz5ug8EkICYJ/fvYxHyqajWFptiMGKdczNtHfGGDb9aLKz+3vTZGIimZuEH9DZo5coHoHqznUH1lHmlTfv4vZyyd7cEtJxmkM0IrhiMKWXMZFGZzGRQGtiQgqKPIDT0Whbjj3suXEnZ7Agx+FIRGyKwRQDGeZtbuUMMRONYSoaw8Mcj4qu4/zsLI4lU1tE6YQQxAUR5caer6JrmIj05szeiRv5foONiIxFpK7qwINiUGIwVTNQYFzTRs0ZTGzzPNltgka3pBIRnDk+ifk79l5T04aXrMG6qkkc5xHleuKYCQFhqkntOHyGjCZDWeE++clPYnZ2tmUx2C/8wi9gYWEhFIOFjCw7Wfg6+IvvfjHL/FIRxcYmRNUszE4lehLx0s2mPGR8UJiJl144g22qCjYVBSaloJSipGkj9aBnLZyd+03VTOSLdQgCj1SCx+xUAjzP4c5KGQ/dewCf/NFz+/rgQylFnTnwh9PKIcNGM/3Z9LY1OoBtiu8EHMfheDKNjCThtc11mBZF3TTwA4eP4KPHTnT1erxisM4bOLEhx0R2Szci92GhMHsdjuxsGb5Uq+Lbqyt4dWMdmmWCLxK8UyoiI8t4JDeJg1prf7OHz0zg2u0iljfqmJmIegqXTn+fUorljTpyKRkP3dOeKG8c2Sg0xWATmdhAmmj9hI28SEkSSo1rY7Fa2e5LAtlOwA60HuvoFCorVRWabrlCzalsHPP1gv055ToOGklPHGk/BS/s4MDgxGCMOGKEXMGA3ojBgK3Nn7dvrqNQUiBLPKjAQxI5RCMiKjUdyZiG5fUK1vM1qJqJat2AZVmoKzoisoCjh+yGIusicGAyjqc/+vCu50pHTPGXdxZxt1bFpmpfgxalICCICQIEjkPdMFDWdSRF+9nnPNPZRqnXGax7MZhftEzRiDak9v4hlYjAsizU6jpMi8I0LYii1yVtWBHHYh+cRXpB/53BGDHYLg3QELthbDJrShgT2TpXCwU8e+0KVus1pCUJhxMJjyjh+cUFvL6xgadPn8E9mUzPfq7nnC0JY78HGncMy3LPlcDuwgvWNVizLFQNA4kBiDBZd6PQGWy0EfsU85xJRrC0WgJguwCPI71usrPOr8Y2MZH8CA2EtIrSpksq6yjTC1EPWwP2CJi7pNOYSGB3MWFeUbABIAmCnzh5ui2hRq3emjNYkONwVBZQbPy7rniFc62cIfKqirphuINlFw4dRmSb9yYpSa4YrKx3L9Lr1o18P8FGRGbGICIS8N5j9T6KwdY2m+d3SRSQSQ7//fHWn9rfZ3eToNELJjJRVwzGXnuDhk2AUi3LI8pNM/th1hWsHzGaIYNnaFUYf3xKrz8/JGSQtGrhyxbf//grb3jELFGpudF0NuW9iHjxbMrDeIE9C+sM1o3Ix2n8fPXuHdyulAEAtyo8fvPVl/s2RdsuQRbOgG1f6zwqJJHH1EQCzoeX19pr3O5FDNPyTNLFImFTIWS4SDzvyaZnoZSC4+xms9lwCKMUEEAgcAQSzyMpSlAMAwa12p4KCkLVeh8TOWxnsE7pROQ+TOqmd/J/uwac0yC8W6uAgiIhiCCEYC4eR1HT8PzdRcQME+82Lex2vJ3MRvCD7zuML319AXfWalB0ozGsS2CYFgplFZW6gVxKxg++7zAms8MvnvQT59m8tlkFzxGcPDL+4jc28uJMJoNvr64CAJZqNRiW1bI1fZCA3c9ue/5iozlkWvbaKDQEX+lUBOIqB92wQC2gXFWRY+IN+iV4sSj1CBUGFSnOCmxHLUZHZydVt4k4aRWn+fP4w4fxG7/3NWTTUeRSUbsIt2w3DDfyVayuV6CbFiSBRyImQdNN6AaFwPPQDQuvvb2C6Vwc0ajYlosAK6YgsJ2cEoIIvSGmMBvRvGlJgsTxWKnVkEyLAIgbLeA4C9cNA0VGZNsLMZhftGzRhu8PsfcPPEcg8AJMk6Km2DGvEcnrbjmsiGOvM9jwJoL99FsM5nEGG0HX6VGDdQXjCQmjNVtkqVbFs9euYFOt41gy5RHq84TDRCSKrBzBYrWMZ69dwacfONuz2gbbWI+G5+yho/qcm3ZzDY4IAqKC4DZW86oyEDGYd5iEDsyRLKR92GEjrYdiMDaWLF8aTzEY0Nsmu9cZzAr8N9+BEGDYKEwc3XbCoCBSiUhPhnoicnNNq/fQGazqMSFov462k5gwLUq4DwQnweF0OtPe6/IMEW1/DQY5DkdlEaLAIRIRt5w5WzlDsMNjk5HIjn9v9lnTrRisWzfy/QbrDDYOEZEAEOP7LwYrVRR869Xbbm3v9PGpkdib9MqZvpMEjV6QTTfrIJvF4YnB/PUIVpQ7XylBMQ3IHA+e63+MZshgGQtlSKlUgjRCjjQhIUG0Y+EbJGaJRNgJjebmr5uIF0qpzxlsLG75kA5gi4/sAa8d2MYPBdwmeVwUYFpW36Zo2yXIwlkzLGwWm1ML0xNxVwg2rBiYUaOueA8JvYgTDemekqYNZSJlFDiaSHqy6QG7QcgRDhYoRMJ5prgV0wAhBMlGsUTgOKiWCYnjke7Be8Y6g3XTHGbFYLW6Dqsh3hgnOhG5DxN2r7Pd5D/bIDyZSuPNzU04UhaDUkxEoshIMq6tr+Hruo4juoZpeec919HZJH7swgm8emUDX7+0hGJdAyjAccCBiSje++A0HrpnYk8LwdjJ0+vzG+5+JF9WYVE61pOnFaYYezyZwmvr69AsCxaluFur4khi999rOwG7blhQVAPxmOTuV3ba8xcrKgC78SEKnFus5ggwNRGHqpmYysa2DAT0S/Did0QYmDNYrbW4j2HAiuP4HhVLN4t1WACOH8qA5zlQ2I3CYqmOYlmFaVlIJWREZHuvbkOQjMu459gEltbKSMQlfOzDD+DRswdbOkf6xRSGZWFNUaBYJhTDBE848ITCaMQEZCUZVcNAXtVAKUVeUyBwPHKNqVLWFSwqCO4zvFtY0fJkNg5R4MBxxHYua7z/gsBBN0wIHAeB55yjOYDhRRyLfWomd4tfDNZrQYLqiUYKhU27UTG8EZGj0IAZBy4uL2G1XtsiBGPhCMFcPIlb5RK+sbyEj5041ZOfzZ61e+HU3g/207mTbZAKHGlpn5KVZUYMpuJwC/u8bvELWiwLCJfI0YR19rQobWswZCdYN5r8EJvDvaIXTXZ+WzEYDfyccYEdYIsJg7/RWaFyb53Buk+k2U5MeCgSxdf/4i86e13MYOZOw9B+x2EASCVlPJCcDvz8Vs4Qd6pV999z8cSOrzMhiNBMExVdx+WNDSREsaPncy/cyPcbbB8pmxoPMRgrbmfXlF7A1vZuLeZRadRe1vJ1pBLy0Gt7bA1K6HL4bhhkmef9MMVgEr/V6dQR5f7X69fw4vISKoYOnVpYqFQGEqMZMhhG84TK8M1vfhP5fB4nTnQX/RMSMghatfANErNEGQGPqpswLeoWBjoVs6hhvMC+wSMG68DRxt/4WVPqbhNUJHxfp2jbJcjCeSNfc13BRJFDLtNU2w8rBmbUYEWmosh7pu1CBo/jwndpfQ0FVUXD0wIZWR4ZF75+k5IkTzY9RwhIw/2gZugAYwpLQaGZFuYScdcFTCAEmmXhUCyOXvjHsmtEN85grAW9E886aqKFVmhH5D5sWMeR7Sb//Q1Ciefd5rRqmojwAjhCMCNJuKmqeL1SwYd2EYMBtkPYh957CJRSvHWzAMuiuPd4Bk88MoNEbG/vu/yTp5GIAFHgQSmFyJOxnjy1Byqaz82kKOFgPI5bZds1daFSaUkMFrTnN0wLb7+zBtOkmMjEcHi2+bHt9vyOM1giLiOVkD3F6unc9s+KfgleNJ+j0aDEYJX6aDqDUUo9MZFij4Qb/j0vAXBwOonltRJM04IgcKgrBnTD8hT8JZFHJh1FOhnBzcUCNoq1lgeKgtbKyUgE75RLINSJcSbIyTLyqoqyroMnBK9urEEkHBTTREaW8R++exnnJqcQZ9bkA9Foz0QtrGj51p08dN2CLAlQVDsqUzMsaJoBnueQTsjgOA51VUcsIg414ph1MjVGSAwmMmIwSilMk0IQeidAajcaab9T1ZvvV1jDaY2SpuHS+hrSkuQKweYrZduBGBwOxKLuwABHCNKShJfX13Bh7khPBFHsWXvUhq7247mzbu4+KOInK8m422jg51W1L6/Lj39gyLKoJzoyZHTwu+DqPRKDsQKEfKkeusPB6wzGRkOaFhsTOX7vEesMNozIbItSbBZqMC2Kqzc38NC9Mz3ZB9c8Avbufi+/mNDo0PnIMC3PsGd8h7qM33GY4wi2u7paPUOwzmCHdhCDLdWqeHVjDa9urEOzTLxTLuLVjbWOns+9cCPfb3idwcZjgLNfMZH+2l40Yg+jUEohCtxI1PbYs7M0hufJHOMMVq4oMAzLdfwfJB6nU+YZOxuL47EDB1DRdVR0HXOJBJ48eGhPD4/sNway8/j85z+Pz3/+857/trm5iQ9+8IPbfg2lFIVCAW+++SYIIfj+7//+fr/MkJCesZuFb5CYRRJ5EA6gFgAKqKrhNpQ7FbOw0xkcCQuvexm2+NhJTKS/8WMxDS1nj9CvKdp28Vs4WxTYKDSnOSazTVcwYHgxMKMGO63cqXtcSG9gXfjSkoTDiQR40rTfHRUXvkHAZtPPxZMwLQsxQYBqmtCoZceEEzsuJyoIbryU1XAkifICZmIxT5xOp7DFIlnqfL2QRB6CwMNoFPuqNW0sxWBA6yL3YcMWQWIBhdWgBqHEc64YjD0AE0IQIwRv16t4r5lBosVCbSImIp2w/85T2cieF4L5J08p4MbXEUIwM5WEwHNjO3laN01YjMo0IYo4nEjgVtmeVP7O2goiPL+rs0bQnr9UUd3J9s1iDTNTCYiNItB2e/5io1ApiTzuPTmF67c23WL1dvRT8MIW4gjpnRPWbtRqrcV9DBrTJ0kWevR+BMWW2A5YHHiBc5uFhuEVFWVSURAApE2H6aC1EmicIantoijAdioSOQ4Sx6Gs6xA4Ap4QcJwtLjiTyUAzTXzl9jxqhoGMLCMlSnjXRG/jGBzR8n/98ut48Tvz9p4BwEaxjlRcwtxMGnVFh954f6o1HRFJGGrE8Tg4gwGAqhsQhN7cY4ZlwWAWVHkIbhj9oFRR+rY3qjKN1USXjdX9wnyljIKq4nCi2XSt6Jp77U1GvX+bjCxjoVLBfKXck6iYujqazmD79dxZN3YfFPGTi8juvwclBvM7g5kWxd4+QYwv/sEH3bLQCx8Z1hlM0wwoqrHvo2ZZoZfJxKd6nMEGNIjSS1hhfHSA/RnH7ef5i9dxd9UebLq9VMT12xs498DBrtx+DMvy1FJGJZGmrnjrg7HIznta1nH48Ew68IxtWbSlM0RV1z3PkLlEsJjLeT7fKpdAQZEQRMQbNYd2n89BbuS6YaGu6FA0A6LAu65E3SQQ7SUopciXmu5MmeT4OYPVeiQG89f2CCG4s8rW9hL2GXrItT1tzJ3BUgnZTdsAbAH41A6Dnf1C4tl6hLfuWDdsV8Ycz+NMJjuUOM2Q/jGQJ/StW7fw1a9+1fPfNE3b8t+248yZM/jn//yf9/x1hYQMi6DCPiFARBLdDavCiME6FbOwRcSoIOz76aK9DOsM1u4kalDjxxN1g+YmoR9TtO3it3AulOpuE4xwwETGu4EfVgzMqFFnBIOjVKDeb/hd+NhmK0+4kXLhGwRsNv2tcgm6ZYFvrDN100BeU0EpkBRFnE6nIfM8NpS6HU0ly0hLEmKC6InT6RRWfNGNeJQQgnhURLHcEIPVu39tw2Y3kfuwYcVgkYAmc1CDUOZ4lGH/bVTfAThOCEqGiWVVw6lYa+slO9Glm73wqhtt/JOn7HXOcQSiyIMAYzt5WmMEpgJHIHEcZI7HO6Ui1hUFumXh7UIeBGTHyd2gPT8rzqbULgI57l7b7fkL5ebU6nsfOoxyRe1JsbpT2EKcyHEDO2NUPc5go9Mo063+iMGCYksqVRWWRTGRjqKq6NC05vrlXGezU821rh2H6aC1UjVNbKgq0pKEoqbBgn1u1U0TumWCggIUMAFQQnA6nQZPCIqahrymYVNVsFSvIS4IqBoGKrreUxea2ekkHn3gECpVDZWqilhMwvpmDTVFRyohQxT5hoMwxfJ6BaXKcCOO2Waybo6uGEzXLfSkyw1AM73PWJkbbzEYG6FSKCtukzqTjHTdVHVgY4pDZ7DW0ExblsszzaGd4nudz/Nfn53CDueNipBjP587O3EjzErNhnhBG54zWMhowhFb+O6sK/4GaqfEIiIkUYDWcITMl+ojs4YMC4/Qi1KYFoXAE48z2DDcVLql7onMHkxNlnX7AYBETHLrVaZpde32U/XV4aJDcDwLgq1NSKKw6/XCOg7fXCwgnZSRTUVc4Ua+pKBY3v0MUdI0vLh0F2v1OnhCcCAWQ0rc2jdhn89HEkncLNvCG7se2v7zOciNPF+q4+6KLf5LJmRPRF2nCUR7iVpdh87UgLPp8ROD9coZzF/bU1TDNitBs1/NccOv7Rm+GtS4wXH2edExtNgsDkcMxjqVa756hOp5To33mT1kKwN5Qn/gAx/w/P9/8S/+BRKJBH7hF35h26/hOA6pVApnz57FBz7wAfDhxReyhwgq7ANANCK4YjB2srBTMQurEA+LiHsbRet8EjWo8RPkDObQ6ynadmEtnLPpKNY2m65guVTUYyk+zBiYUcMTJRqKwYaG34UviFFx4RsUTjb9xeUlfPn2vCvsigsiIoItKBE4DnlVRV5V3bz6yUgUL62uAECPnMF6ExMJ2EU2J9atWtN2+eyQbihpGq4WC27BjQb0UIIahDJztlB9jUD73qTQaeuNepGJ0/K79Ow1giZP/c8Y590Y18lTVmAaF0RcKxbxf996B3drVYgch3jDqVDm+R0nd4P2/Kw4GwA2C3YRiCB4z08pddcTADh1ZAIHJhJdF6u7gRWx+GNz+kmFWU9HyRnMoP0RgwXFlpiNRjHHcUjGZKiigWpNA6W28GEmE/fs89pxmA5aK9eUOixKIfE8JiIRJEQBeVVDXlOhW5btQEYIYoKImCBAMQxcq1ZRNw3bPYwQ6NQWjIkc6YsLTbmqQRJ55DIxPPbQYdxzbNKNOK5UVZSrdlM/FhHxw99/L873QKzTKWwsg96jRnIvIMQW8TpNEU3vXewIG+XMkfEs3jv4I1SOzKQ8a2+vIlSqnsilsI7TChJvnxlMajdSKahnT+gXg5mNPV6vYmY8+6AuzxG9Iujc6Y+g26vnzrrHgae1v0dGbu4r8qrquk32E/9yaIZisJFG4jnXdU7vkbsnIQTZdAQr63asXL6o4OB0apev2tv4hTumaUFg3FSArULKcUBhejTRAbik+t1+ihUV5ap9lrIoxWQ2hlw62pXbD9t3ivB8T6JTe0GNGSByjBZ2w3Ecds4Qt5dL9uQWIcgmI7jwxEmcfyT4DMHGMd8ql1xR/0q9hj+9eWPLIAz7fGbXEsOyQEFBQNp6Pge5kbN7EVX17us7TSDaS7CuYBFZHJs+Cbun0SwLRpeRxUG1PXZ4UZaEZmLQkGt77L0yKmtNu+TSsaYYjEk5GiQ71SPqHQxThIwPA1nlnnzySTz55JPu/3fEYL/6q786iB8fEjJyBBX2Aa9Aw5ks7EbMwm7KR8WqN6Q/eJzB2iw+BjV+PGIweDdYvZ6i7YSH753B1799C6+/vQxVMyCJPDiOw2S2ebjqtyvGuMHaZMf2+aThsAhy4aOU4m6tBotamI3HXavjUXDhGySzsTg+fuIUNNPE6xsbMCnFu6en8QOH7Xt3vmJHs7GRbLfLZVcMVul5TGR3z8wYI1JgnWxCegdbcLtRLLqH1oKmoWp4nWf8DULAFoM5//PvkexnIIHYhvU4K0TW97gYLGjydCfB8ThOnrJrikkpnr12BXlVwYFIFLXG/qeiG4gJ4o6Tu/49P+HIltgKRTVQV+z4uqA9v6IaHmFGKiljdjrZcbG6F/idwQYBpdTrDNZiYX8QGB5HXdJTpzR/bIkTKeU09GVRgJDkUCgpiEdEnD7qHdRox2E6aK08FI9D4Dis1mo4kUohLcmo6Bpe21iHSSksSpGSZPCEwLAsvF0ogOcIkoIIg1IQwoGHBY1ayMkRTEe5nrvQOGIvAEjGZU/E8dWb6/ivX7oMniNIxGV88L0nkMvEdvhu/cXjDDZCMZGA7Q7WFIP17pzHum/K/Pi6lfubqmwjmue5njRVHdhnUCIUg7XE0UQSGVlGQVUxEYl6XMEAgPPt6QqNAZOjid48J9nGWWQEztqB505QvFnYhMzxSIoipqJR8ITbk+dOpYOYyKzc3HvploWKoSPeZ5cbQgg4jriOYNYABGghnSNxPOpoiMF66O6ZTUVdMViBESjsV/zxqYZpQQZgjHFMpEWpRxw/CGcwv9sPW69wIjc5jnTl9jOqfaca4wzWzpmRPUO0GgXuj2OO8gIICGhjmMY/CON/PrNnAwpbEOY497T6fA5yI2drmpphwrKaAuROE4j2Evlic60dF1cwYOt9VjcNJLnO921Btb2ax+12dGp77NlZGrNngEM2EwXm7X9vFofzvGeHOTVfPcIrWh6dNT2kNwzlL3rz5s3Q6Stk3xOURx6RmxvUump0LWZZU2rYVBSYlCIlSShp2p4o7IR4MQzLMyHV7jRDUOOHLULxvnp9r6do24GN5ShVVaxtVqEbFnjetlqllA7MFWPc6CZKNKQ3BLnwbaoK1hX7ACBwnKcpOmwXvqFACHIRu8hyfzbnPrOCfn/WKaFq6Fsm3dvFKwbrbn1LxJrP2kroDNZz/AW3pCRBMLjGNUC3FNz8DUIASIoS7s0E74mqlCIp8JiRW98zicwE8153BguaPGUdSv2OGOM4ecoWtpdrVazW7YillXoNtbq9ZtvOLfb1tNPkLrvnPzCZcIvvLBv5GiyLBu75WVcwUeRdQXcnxepeMQyLfk03PfvdeGx0zjSsGKxXrmAO/tiSWFSAKHJQNROyxEPVTWiaiVRCxuljE0jEve9LOw7TQWslAcFMNIasJLuOipppgcIuwnIch6OJBBarVdQMA4ppIAIBimnC/izbkceC7biXkyM9d6GpMGIw9vdPJSJ494NzeP3KCtbzdjzO4kopFINtgyQKqMLes/RyvWZFGeM8YexvqgbRbVPVIXR4b5+UJOHc5BSeX1xAVo5scVhiaxoWpShqGi7MHe5ZfYx1/WzXqb0fBJ07a4YB06KoWQbqhoHpaHMt3Gvnzk6cDZwBEef+y6sq4i3GxXcDKwYL2iOGjA7sM9zfQO2GTKopRMiHYrAAZ7DG/THGMZF+J/J+N9mD3H54jxjM67LWqduPRww2QuJ1NiYy1oGbdCoRaUno4o9jBoA7VfvMQQjBwXgcMsd7BmHWFcXzfOaI7QLm9GF0RgwGtPZ8DnIjtwVi9rwYKKDqhrs/6TSBaC+RLzVrLGyE5qgjcBwkjnOfQTXDQDIgirRVAmt7zPAi26sGhlvb2xvOYMzzfkhisJ32MsOIMw4ZHEO5a44ePYq5ublh/OiQkJHBKexPZGK4uVjAer4GSbRvSUopKlUNNxY2MZGNtS1mWapV8SfvXMd/u3Ed3y1s4koxjxeW7uA3X30Zf/LOdSzVqv36tUKGgD9uKCq3dwBjGz8OJ1IpvCs3gQeyOc+EJND7KdpWuXpzHc988SU8f/EGTNPC8bkscpmo2/QpllX8zeVFXLm1AYHncOGJk/j0Jx7rKqJjL8FGz4bOYMMhyIWP3WjXDZ919wi48A0axWi9cM86JVh06/vXLr2MiWRFCmwhKqR7/AW3iUjULZwRQpCTIziWTGFTrePZa1ewVKu6DcKipu06cU8pRY1S3BuNI9HG4ZctSBs9nBQfRdjJU4d0QkYmFUE0IiDqe8aM4+Sp48qimSbuVqvu5C677tjxtIyTKjO5W9KaIlB2z39jfhOKarjRQ5RSKKqB+bsFZNPRwD1/gRGDpZORLaJXp1j96NlDePDMzEDs+jXG6WdQYjA2cpcQ0vZ+t594xGB9iK1xYks+dP4korIInuNQrqoo11RwBJibSeGBU9PIJL1/e8dh+tzZgy1dFzutlWy0rknt+DXdopiKRDARiUDiCBTTBEcITEptYZgrAiLg0GxybHevdIoTeQMAqbi85eOHmEnnhaVi1z+vG9jmzuiJwZjCcC+dwUzWGWx8ngMs/qYqBfDmtVW8dWMd1+Y3Pe8X21QtVZTtv+kOeJ3BwkJ8q5yfmcV0NIbFatkjWrYjIu212aIUi9UypqMxPD4z25OfW6oouH23gLXNKjYLtZHYBwadO8u6N36UY/YTe+3c2YkzGABk5eYzJM/Ux/oJ0391RWEho4n3Gd67eyXDCBEKpc6eG3sJjhCAWZ8cEZjpcQYbrstoSdNweXMDL6+t4vLmxq77WYURqHKk/642jtsPK3IRePY9pWCXm2wqgnxZwfydQls/p8bEWo+WM1j7MZGd4MQ9zsWT4AhBzTDc6gBHCCI87w6NrdZr+MbyUuDzWeK3F2e08nx23MiLZdV9jhACSGxUZGN4r93z4V6FdWHMpsbHGQzw7mu6rYMH1vaSEWRTEURkYUv/aJi1vT3hDMZca0NzBmNTLXx7GfZZNYg445DBMjpP6ZCQfYg/j3xptYJqXYNlUcgSj+95cA4/9H33tiUEY90yNNNCQhBBCMGBaBSmZW1xywgZf1jHJ57n2p6Q8k/Rco1iKSFb3Q36MUXbCkGxHEtrFQg8j3SCRy4VxcxUEisbZaQSMj75o+dCEZgPRWUnO8LH/zAIcuFjG+r+acFhuvANC9Y6P7qLEEfiOAgcgdEodlQMvatpRLaR1+3BNs7GRIbOYD3FKbgdS6bcJpZzrwD2hFiQS9P5mVm8vrGBxWrZLdb5sSjFsqYhzXF4F+Ok0AqsM9hej4kMmjydzMbcf/sZx8lTp7Bd0XUopolMozkYYxxazEbcBzsxt93krrPn/6P/8Qq+/foiKjUNsiQ03Lw4TGfiuPfEFMpVFZevLHvcvVhnML/YZ1joQ3AG8054i9s68wwDg12D2oiXbQfWCe7lN+7iT//3m6hUVZw4ktvixgd0HpfeylpJiL1/SYkSDkRjAAhSkgxarYJH0N+FgmtEkTn0yoVG1bwxqskAMdjhmTRee2sJALC4PGwxGOPK0IjZDHqPh4HEiI76FRM5rs5g/ggVy6KNZ70FVcMWkW43ESqGZXnOBLHQGaxlZmNxPH36DJ69dgW3q2UopgGZ48FxHExqoaCqKGoapqMxPH36TNcxtaxr+Xevr7oN2P/0p5fw+LkjeOJc/+KadyPo3FlhxApJ35lpr507ax04gwFATo64ri6FAYnB2P1MGBM52uwk2OgGtjkcisHsZyrPEVf85bhus2IF1sVmkCzVqri4vIRL62soqCoobKlxRpZxbnIK52dmA58tNc/QY/8js4PcfvzvmWla4Bo1jE7dfqr6aDqZ1hQ2JrI/vYugOOYqI46LC3ZcJOAdhDkUT2x5PkscD6URQesXfbX6fA5MIJJ4qI2ekaoasOLdJRDtJVgXxswYisGKjT1dt2KwcantOedmh73gDKaoOuqKvmWYtt94YiKZ5yqlFHUjdAbbywz1rnnttdfwUz/1U7j//vuRSqXA8/y2/xNGSF0eEtJLnML+Zz/1fnzmJ96DJx49igdOTeHh+2bx6NlDbTuCsW4ZEaF5wJB4HhOR6Ba3jJDxhxWDdSryYadotytA9WOKtlWcWA7nQGNZwEah5n58ejKBqVwM95+chqqaeP3q8kBf3zhQV9joitE5pO8nglz4dGbjrVsWKOMyMywXvmFhHzyY9WyXKRRCiKfgVNE7PwRbFvU0k7t2BmOmD6v1UAzWK4IKbgD1RAE5Qgy/84zTIMzJUdwql7Ch1N3CmkktbCh13KqUkRZEvE+KYLJNq3WRna4y9nYjJ2jydDvGdfK02liLzIZQwynU8oR4JjFrbTg6zk4ncfroBB6+bxYPnJrCD33fGTz5PUeRSUVRKCn4H3/5Fv7PP/4O/uMX/wb/6nMv4I+/8gaWVstbnMFGAe9U5mAax8vrFWwWaljbrKJS1Tp23OkH/YyJ9JNKRPB97z2Bn/t/fi+OHMzgznIZ6/ma2yAzTQvr+RpuLhY6cphuZa3cVBTEBAHT0agrVJE4HlFBQFqWERMET4HWgl20ZsUHvXKhqfgc44Km/+dm0u6/i2UF5epgGvxB+MWTo+QOxgrhNa13YjB2wnhchSb+pqonDpoAgq/B2k2ECusKBnhj0UN2555MBp9+4CzeM3UABAQVQ0dZ17BQqYDnOFyYO4xPP3C268FIj2u5YSEWFZGMy25U/PMXb+CZL76EqzfXe/BbtY//3GlSy7Nn8UcK7bVzJ+s23Y4zWIaJiB+cMxjj1hPGRI40/Yp6Zp3BaormOvi0Q6mi4PKVZbz8xh1cvrI8UvvkTmCfq85Zn3Vd5IcgBLhaKOCZN9/A84sLMC0LhxMJHE+mcDiRcIfvn3nzDVwtFLZ8rWoOVhgf5PbDcQTszAZ7ju/U7ccTEzlCvVt2ILNfyRhOHHOGcZSsMns4/6Aq+0z214U94gzf2tLq8zkogUhs1FQppVgvdH4+3GtQSpEvMjGR6dGosbRKrIfOYONS2zN898WgBhJ7TSwqegawhuEO5nUGszwRtWxPODqm5/aQ7RnaU/rf//t/j3/0j/4RTNN0YzJCQvYzTsTLykYFl968CwBY32xPrOV3yzACspSD3DJCxhuFKRR0KvJhp2hvlUtISxIysgye9GeKth38sRyAbefrFOE5jmAiE3P/7cRyfPj8qbFqPPebeg9EgyHdEeTCxxYRKezNt8TxQ3PhGya6ZcH0HDx2v06TouhORLFTeO3ib9bJUneHnkQsdAbrB07B7TDj2mVSNqjP21DxO884DUJnmnehUvF87ocOzeFgTYG6ttb2axOE5s8dhXigfhM0eeqnU2eiUcBpxvPOZDozuTsdiYKCIi6InkIKsPvk7spGFZLII5eJ4dBMGq9fXcHyegWSwEOWOcwdSIPn7InL5y/ewOUry5jONa/39IjsawbpDOY4r/zVN29gcbkEAIjIBfyrz72Acw8cHKrzisMgxWAOfofp28slgFKAEGSTEVx44iTOP9LZe7PbWvkDR46iqKn4m9VV19mKJ/bsu0AIREFAFAAFhWHZAoTpaMQTr9QrFxpW2JWIy4FOC6mEjFQi4jZGF5dLuO/kVFc/t1P894tmmSMTnSiyYjCjh85gA26A9gO2qcrznMcBVOA5+C+7biJU2P1sVBAaEYch7TAbi+N9swexoSio6DpyERk/cOQYjiaSPTlX+V3LLUqxuGI/nwghmMrFwRFgYbmIZ597FZ/+xGMDf075z50VXXf3yzxHPNEve/HcqXS47mSl5j5rUx2MmCZ0BhsfJI8YrHfPyURMAs9zrnAnX1IwM9maSzXrUFgoK6CUghCCTDIyMvvkTmBdrIKcwdjIw0HgH773x+xORKLIyhEsVst49toVfPqBs566ucdtZQCiqSC3HwL7bOvU3NiBuk7dfkY2JpJ1Bov157nmj3ukoO5AGQAkfO+H83kix22pC3tcB5nnV7vPZ//5kB2CSfPdnQ/3EsvrFSyvlWBaFDxHhiIu7Qa2Vs46oXbKONT2/ALscRWDEUKQTUexsl4GYDvUHTqQGuhrEH3DnLplQeZ5z94ZAOQRWtNDesNQ/qIvvfQS/sE/+AcAgM985jP4W3/rb+EHf/AHkcvl8N/+23/D8vIynn/+eXzhC19AKpXC7/7u72J2drAuNCEhw2Iy2zwsrLUhBgtyy2DFYCJzUGHdMi7MHdkzBZ/9isqIfOQuRD67NX4uzB3G49tYXvcTfywHAGwUm65g2XTUUwjoJpZjL6MorBgsnDAfFmz80mws4RE/AbZFr0C4obnwDZMtB48WCvesW0JF71x0pflcxaQuxWAxxope1QwYhtV2hG/IVvwFN8BbiHcKnA5BzjOzsTg+fuIUPjx3BPOVMjTThMTzOJpIIiEIuHbtGu508NoEjzPY3heDOZOnzz73Km4uFpBOysimIm4jI19SUCyrODAZH8vJU2eqNyGK0Cx7cnciYlu6s9O/fnaa3K0rOsoNMUqtruEvv3EDiqpjIhOFrjeaP8UaDkwmMJmNIZeOYmG5iBu3N3H6aA6xqIR0an+Jwa7eXMezz72KlfUqDNNCIibZDa5UBKZpuYK5pz/68FDjwXXmWS4OULjBRkfO3yk0Ykd5T8xox997h7UyJUlYqlVxq1xx4yQTogiJ46Fa3uhU1TQRE8RGnGSTXrnQVKpM7NkOzZ65mRS+e12Bppv45qu3UatrPXuv2oEnBBwBnP6bf8p5mMisGKyHMZFeUcZ4FpX9TVWD+Z38rmBAdxEqbORSInQF6xhnzcrxPE6mUl3F0fpxXMuPz2XAcQS65nWK43lbHHt4Jo2biwVcfGUeH3/qbM9+fquw507C2MHYrmD2/x+m+3u/8LtNt+MMlo0093gFTR3I8LrHGWwXV46Q4SJuE63ULU5z2BkIzxfrLYnB2H1yOinjyEzKcxYblX1yJ3idwez3mhVLDjom0j98H8ROw/esS+og3FYct5/nL95ALh11xR0cR9x1xnLe14bbz4UnTra9Jx5ZZ7B6/53BguKYjyQSqOgGaoa+JeabHYRhn89z8aRHaKox13snz2f2fPjty3fwlReugucIcpkYPvbhB/oeUTrKOOLZiy/P48btTQD2PfE7n//GWIlnox5nsO7PbONQ2/PUfQnGelhmIsOIwYbhDLbNcFrd4+bNjfV7HBLMUJ7Sv/u7vwtKKf7hP/yH+O3f/m33v0uShA9+8IMAgJ/4iZ/Az/3cz+Gpp57Cr/zKr+DSpUvDeKkhIQPHIwbLV92pnt3wu2VQSj0iA3+Wst8tI2R8qavNiZdIl9FmuzV+hoE/lgMAFLW5Ccz6GqPdxHLsVSilnuskFhmdQ/p+g3Xhe6dchGIakDnbbYBSijWlBkoxFBe+YeM5eHDcludWEAmxNzGRKhOHJAh815Nh/piqal0bmXi3cSao4KYwxQ+Z5z3Nrp2cZ1KStGX/Y3XRlBcZsZ9pUlgWDZyo20v005lomBiW5YoXJJ7HuckpvLi85E7ubsduk7urG80hj/VCHbpu4vhcFqsbVSyv2wL8zWId05MJENiFybmZNG7fLWJ5vYITh3PIjMg6ojHFOLFPzRi/88riSsmNvJYlwSOYG5bzisMwnMFYHIfpvnzvgLUSCHYVzskyluo1SJwFzbKgmRaigoDT6bSnIdJLF5oS4wyWjG8v1IxGRLyzsIn1fA2XvruEv3l9cSjOGYQQCBznNpH9UTDDhHWx0nt4jmKdweQBN297hb+pysZE+sX+3TRVAaDCuGzER6ixOm6ozHOql/GkQa7lpi+6zHkKDNu1nF2nL2+ugyMEMscjKYpDd3/vJ524TTtkpOZzxLDoltjWfuBxBgvFYCONblnYVBSYlOJGqYhHJqd6VifNpqK4u1JCpari25cXYRjmjoJ1/z6ZvY54nhupfXInsPVfZ41ln738AM/ZQcP3ddPAWr2OhCgiJzf/RtsN37O1rkEJ44Pcflh3U6dm0Y3bT3UEncEopajVmb1UQIR8L2DjmCciURAQpCUZaSn4PMIOwqQkyXOOigi82/9TDAMbSr3r53MqEcF7Hz6Ml99ojjrWFB3x6P40hGDFsxwHd8gsIgsjNWTWCqwYrNZFQgbLqNf2PMOIhBtrUWM2FXX/vVkYvBjMP5ymmxYg+iLWx3SAK2RnhvJXvXjxIgghrjuYg3/i5uGHH8a/+3f/Dn/n7/wd/Jt/82/wa7/2a4N8mSEhQ2Eq15ya1nUTpYraUgPZ75ZhUG9hWSDeImWQW0bIeKL0If5vu8bPMPDHcljUW3D1x290E8uxV3EEdQ7dOMiFdI/jwvfczZv4izsLnqZPQpLw1JBc+IaN0sEEd5xpLle7KNazYrBerB12ZBDBRr4K06J4+c27ePfZg2F0bZf4C27AzoXVXjnPtILoawYbph35utfppzPRsGAnnAHgyYOHcLVYdCd3gwRhrUzurm7agi9NN1EsK5idSoLjCHKZKJY3KgC116JqTUciZq9tpkkhCjzW8zXMzaRHRlSqm/13BtvivOKLZQPsBuqwnVeA4YvBhoXfVdiidlNpQ1WRFEXMJeI4EI1tEYL10oWGjYlMJoKbL1dvruN/v3gdiyvlRiQrjyOzGRDQoThnSBzvisH0EYoVFvvkDOYVg43vGYRtqkpMxB4riO1FhAq7n40LoTNYp6jMvSX3cD8W5Fpu7BBdNmzX8nsyGfzEqXvwO5drWFcUVAwdm6qKkqYN1f29n3TiNs1+blwUXIe+TVXd5Su6J3QGG32WalVcXF7CXyzexlLNTilYrFZwvVTEuckpnO/yHlpaLeOtG6t49a0lqJqJm3cK+OarCzsK1v375CBGZZ/cCawzmGFaoJR6apqDdAbzD98DFLfLZSimibyqIsLznr1u0PC9MuCYSCDY7ceBUorNYh3r+VrHbj9+F8ZR2bMoquG5VmJ9Ej/545jbHRpjz1HfWVv11IUp0JPncywiQpYEqJr9d8oXlX0pBvOLZ1c2qiDEfr5H5dEaMmuFmMcZrPuYSIdRru2xYrBWBsdHmVyGEYMNwRmMEAKJa8ZCOoOeddM7aB2y9xhKJWZlZQWyLOPo0WZxhOM4KIqy5XN/5Ed+BKIo4s/+7M9CMVjIvkCWBKQSEZQaMTJrm9WWGj9+twyR4/BgbgK6ZcGg1hbF9E5uGSHjhbOpB3onBhsltsRy+CxwBcF7DXcTy7FXqSvew0E0jIkcOrOxON47M4M1pY6KrsOkFDwhODc15bGT3090cvDwOIN1MRHFxkTKXTosOtbjr3x3yW1Sr+Vr+IuL18fKenwUCSq4eeKnmOdBL51nWsEfE2UYFNI+Wmr76Uw0aNgJ5wjP43AiucUBKSPL4AnXlrPGSsP9q1JVYZrUdTaVRB6JmOTG3W3kq0jEMgDstUmWeFRqGnTdGhmhO1uM64foMch5hd3/sU48w3ZeAfxisPEuTraL31X4nWIRf3V3ETXDQEqU3Od5v1xo2JjIREBMpFP8r9RUZJIR13WlVteQSshDKf6LAVEwowC7vmha78Rg7HO6l6KcQcM2Va/cXIeuW5AlHoLQ2wgV1okojInsHLVPDY0g13JWDOYXKIyCa3ndNHAilcZcPAGeI/jw3JGhu7/3E3/MTbtNw6wku2KwgqYitsvnd0voDDbaXC0U8Oy1K1it2w7uCUEEIcR22LMsPL+4gNc3NvD06TO4J5Np//s33GreWcjDsuy9TCJuRz5uJ1gP2idXajoM00QiJnnOpaOwT+4EnhHWmiaFaXrvjaCI5n7hH76vm6Znb7OhKIglms/roOH7QcdEOvjdfspV1R0oz6ajXbn9KKYJdskaFWewKuMKxnEcZKl/77c/7rHdoTH2HPVbr7+Cmm6AJwT/rzP34r5sruvXR4gdD7m0WgIAbBZrmGPE7PsFv3iW7aNJjfrvOIlnWdcm/yBjLxjF2p5h9X8YcVBk082dZb5UbzkVrJeIHMeIwez3tpMB/ZDxYih3TiwWQyzmPU4lk0mUSiWovqkbURQRi8UwPz8/yJcYEjJUJrPN+2Nts7rDZzZh3TJsiG0Dz/OB0xmDdMsI6S8eZ7AuRQyjiBPLUSyrsCwKTffGcrBDcE4sx7nQgceDwkRESpKw56PLxoWyrkHieeQiEUxFo8hFIiPVFBw07MGj1UIS2yTrzhmMFYN1Xiy6enMdz3zxJTx/8YZrPZ6My5jMxFzr8We++BKu3lzv+Gfsd87PzGI6GsNitQyLUs91E2kUVnvtPNMKPE88a+soub2EtAfbiI831hhncvdDc4fBcxwWKhXcKpewUKmA5zhcmDuMTz9wdscmkBMTaVoUgsB5GsYTGbYgpKDWiEPUdNMtDEVGKOK535OZjvMKGwXORsP4nfiyqQjyZQXzdwo9fy2twDoy7ydnMBbHVfiHj5/AZx95FE8dPtLxvdIO5V1iIp3i/+GZNJLxpuihUmuKyJzi/8p6FRdf6X/diS1gGyO072PFYGoX0dt+1G1E2+OI01Q9c3wSHGdfRxuFGm4vlyDwHC48cRKf/sRjXTnMsYLkeCgG6xj2uuvlACTrWu6g7eAwPAqu5bfKdhNY4nk8Nj2DR6em8WBuYk8KwYDuY26yTORbfgDOYKEYbHRZqlXx7LUr2FTrOJZMISPLzYYtASYiURxLprCp1vHstStYqrVWv3e/P+NWc/RQBhFZACEEmma4UY/H5zLYKNTw7HOvYmm1DCB4n7yer+LWYgFvXF11B1Achr1P7gR/TKThO1sPsqbJDt8DQNG3LhQ0DRYzGBI0fF8fgjOYg+P289lPvR9Pvuc47j0xiQdOTeHjHzmLjz91tmPxOrtfcfpPo0Ct3tzjxyJiX0UWThxzTo7iVrmEDaXu/v1NamFDqeNWuYScHN1xECYlSTiVSrt1YZP27lmQSw/XhWjYBIln2WQItv7Limcdk45RxOMMZvZeDDaKaHtJDJaKQNNNbBZqWFot4aXXFgd+vbHPJ6e2xw7ohzGRe5Oh/FUPHTqEt99+G4ZhQGgsXidPnsQrr7yCb3/723jiiSfcz7179y6KxeIW8VhIyF5mKhfHOwubAGw3kVbo1p42ZHyps2KwyN4sGLOxHCkmAoZtBvYilmOvwl4j0T3oHjeulLWt4qXCAArOowp78PDH/W1HghE7V3S944kabzGgs3vEbz2+sFxEvmgf6EyLYnoiPlbW46OKU3B79toVvFMuoaRrkDnetbreUOo9d55pFVEgUDW7cMdG2oWMHiVNw3ylDM00t7hjsNOVrODU74AU9LXbYRgWNgr2np7nCGSRd+OvASCTjGBFFlyB/52VEk4dnYCqNWOeRyUiEgB0i2l896EY53deMUzLG03pE5QM23lFZwr24j4Vg7F0c6+0C+sM5heD+Yv/saiEYtneZ1WZRhEwWOcMrzPY8NyC/LDNkH7FREZGpFHYDbPTSZw5MQVJ5FGpqnj07CHce2KqJxEqJU3DO8US1pQ6eELsnKCQjuiXM5jftRwAVH17MdiwXctNSjFfKbv//1hy7zuCeEQXHTSzMrIMzTRR0XW8trmOuglQ2r99fRgTObpcXF7Car2GY8kUOELsdbmB86fiCMFcPIlb5RK+sbzUlss761bDip10w4JpUfAcCXSr8e+TKYAqI3KXfTW/Ye+TO8EfE2n6xPODjIlkh+8nIhEUNO8e0qIUBU1FriEkDRq+H5YzGEsqEcGJwzlXLOUfrmmXmm+Yc9DONtvBOoPFY/3vkbBxj5fW17BQaYox24ljTkuyG0Nb9F1j3ZBlxGD5wv4Tg/njvSl2ToYYdrx3K0R9MZHDcJYaNHvFGcxJErl8dQW1xlr1+//12zgwmRhokghbw3NcLPfamT1kK0PpCN9333148803cfnyZTzyyCMAgA984AO4dOkSfu3Xfg3PPfccIpEINE3Dz/3czwEAHnzwwWG81JCQoTCVa24Q11t0BgO6t6cNGU/UPe4MBnhjOd5Z2ISiGo1YDr6nsRx7FdYZLLpHBYPjSFnfesCvGYbbNN1vsAWyVg8erGOCSSkU0+zIzrgXzmB+63E2wtYp7o6T9fgo4xTcvjR/C19euI2KoYMAWKnX2iq49RqB56DC/lsboRhsJFmqVd1CbUFVQQEQ2IXac5NTOD8z63UGC1hPHAekdljPV5uirlQUhHCeRjIhwKEDKdy4bQ+DVGs61jaryBfrKFdVcBzBzESis1+6D/R7MpN1XuF5znZxajTdBIGDJI2W8wo7vc3v8UJsO3Ryr7SDYVqoKawYzCs08xf/2RjJmqLDsgD28h1U8X9UncFYkaXew4Yxu78b55hIllpdhyTyyGViePTsIZw43F2Uz1KthpfWV3FpfQ1v5TfdNeX/un4FtyolnB/CnmbctnlHTgABAABJREFUURmhZafXXaliO+louglJ5F3B37kHDuL5izeQS0fBccQjsGCfQ45r+YUnTg7FtbykafjO2gruVKrgCUFaknA4MTp7iX7BumRE23QjXKpV8cr6Kl7dWIdmmbha5PA6IRB0HQ/lN/BIMo3JHoua2bpt6Aw2OpQ0DZfW15CWJPdv5PlbMQJBrnF/vby+hgtzR1oSvvsF6yLhQTjA+baaZiIaEaDpJipVFRQUf/3Nd/C9Dx3esk/WNNMziBSPen/+sPfJneARSZrWUGMi2eH7qCB4GuYOm4qCnBzZdvi+k8HHfuBxge0yErzGCGqCEmmGheOwDQCxyGAMEHoxCJNmPq+o9W5ImHUg3yy2Zjixl/CLZ/3rib/+Ow7iWbbmbVFbxDNox8FB029n+kHgxEKvrFch8BwSMcmOck1H3SQRfyx0v2B7Tk5tr86mboy5m3dIMENZJT784Q/jj//4j/E//+f/dMVgP/3TP43/8B/+A/7yL/8Sc3NzOHPmDK5evYrNzU0QQvAzP/Mzw3ipISFDgY2J3CjUYJhWSwcd1i3jVrmEtCQhI8vgCQeTWiio6tDcMkL6h8f1aYQihHqNE8vxn//vS3j5jTuo1DRQSnGbI8gmI7jwxEmcf2QwCvpxo66wzmCjc0jf75S2mfYqaRomo9HAj+1lFGaKu1VBV4TnwRPiNs2qut6hGIxt4rT/9UHW4yI7zcr8boN0H9nLzMbiePf0ASzVaqjoOjKyjL919FhfnGdaRWCma0NnsNHjaqGAZ69dwWq95jZE2T3y84sLeH1jAydTTdeMWI8K2ysbzeGOQwdSOHVU9DSSAVvIkk7K2MjXUFN0rOerdjy2YUEWeTz/zRswKR3YtOBO6B4xWO8LRX7nFTbSLxGT4JdbDdt5JXQGGw6sKxgAxGPetd9f/I9GRBACUGo3WzXdQIRxzxhU8V/itsYyjAJsg7BX74FhWTAYcYO8RwrLVV8EUTesgOL3334Ta4qClCQhytvuGo6A2Hk2PX36TM/iVfcD3TiDOVP7l968i0JZcR0XMklbCHbP0QnXtfzwTDrQYWKYruWs8P12uYxSYwApI8n4H7fe2fPiQo8DTxvnQmefeKdaAQVFQhDBEYIDHI81TcO3yyXcUBT8wMQkjkZ6d1bn+dAZbBSZr5RRUFWPgJILcAZzyMgyFioVzFfKLQnh/YJ1Quw6hDPsu7BUAM9z2CjUXKdgVTfxG7/3Nbz3kcOISIK7T2afSbIkbHF8GvY+uRPYc7VhUk80LwgZaEwk0By+v1Equs8EgSPuHqdqGKgZOtaVeuDwvSe+doh7oV66wNaYmMjYCAlRPDGR0cHWv7sZhMnITYdjv/tcN7AxkfmSAsuiA79/holfPEsIwdxMCqpmQjfMLS6D4yCejfC8e6YFbBH8XheDsQNU/XCm7zf+JJE7K2U3OUA3TBw6kBpokogY4AzmdbDc29fTfmUod87HPvYx/Oqv/ioOHjzo/rfjx4/jC1/4ApLJJDY3N/HNb34TGxsbIITgF3/xF/GTP/mTw3ipISFDIZeJufaelFLk28j0dtwyPjR3GDzHYaFSwa1yCQuVCniOw4W5w/j0A2fDQuIegnUG6zTebFyYnU7iXWdm8PB9s3jg1BSeev9pfOYT78FnP/V+fPyps0Nvjo4qdWYyKhLGRI4ElFKUGfcZtnfcy4P/OFHvwBmMEOKJcasYW6M3W8HbxGn/0O8Uc7OpprCLdQbzC4OyqQjyZdttIKRz1hUFEs8jF4ngoYlJPJibGGr8tSh44yxCRoelWhXPXruCTbWOY8kUJiJR8MT+e/GEw0QkimPJFDbVOl5YuusWt9n1pRtWN5pxEQcmEnji3FEcmIxjYbnocYFIxCTkywpqdR2WRWFathAsk7KFps9fvIFnvvgSrt5c78nr6hSvGKz3xWTHeaVYVmFZdIsYjMVxXjl39uDQxLUGIwYTQjHYwChXm1PzsYi0ZXiKLf4DAEd2Fu0OqvgveGIiR+dZ0Q8xmOZzz9gLzmCGYUFjHGVj0c73HUVQvAQLm6qKY8kUMpLs1oEIIZiOxtxn07PXrmCp1rpr/H7HKwZrvfR99eY6nvniS3j+4g2YpoUjMymcmMviyEzKndr/0//9Jt737mOYyMTwzmIe5armivd4nmA9X8PNxQImsrGBu5ZfLRTwzJtv4PnFBXsPwfNIihISgogIz+P5xQU88+YbuFooDOw1DZpOYiLZfeLJVBqRhijTAoUFIMlxOChJKBo6vryxjvUentfZpnzoDDY6aKYJCrjnBcDr/mr4okOdz/M/97b9/j7BOgCkEnLjYwbm7xbxzmIelmXvfVOJCGSRh25aePE7t1Eo1bG8XgnYJ3vPLqOwT+4EntkrmablOVvzQxCyOMP3lAJlQ4diGpiQI4gKPCilUEwDVwoF5OToluF7i1KPW+WoOIOxNbBO8MdEjgo1JiZy0GKwbvA4g6m9cwbLpqJuwdmyLBTLSs++9zjADpkB9voxmY3h0IEkjh3KjNyQWStwhHjWEfZe3KtoY+4M5iSJHJ5Jg+OIx+leaQynO0kiK+tVXHxlvq+vhxXUObU9j4PlCK3pIb1jKH/VTCaDX/3VX93y33/kR34ETz75JL70pS9hYWEB6XQaH/7wh3HqVOt56yEhewGB55BLR12F8Hq+6omO3I1e2NOGjAeUUtTV/SX0qdQ0N5bj4XtnRzbDfZRQtP3hHjdOKKbpaaZPR2JYqdtrfqGHluDjhHdasvXrNC6KKDYK8my8WzuwzmCdiGqDirkeYZCv4TwO1uPjwLrSFMtPjYCbHusGFzqDjRYXl5ewWq/hWDIVGKMO2EW1uXgS315bgVjjcCKV7klhu1RR8NrbS1jbrILnCOIx0RN/fXOxgHRShizyuHWnAI4QWMSOHhR4HumkDFEQcGAiAVHgBjYtuBP9dgYDgCfOHcXlK8u4dbeAel13BRIJJgpwmM4rLF4x2PgVJ8eVSq25X0omtp5x/Q5zACDwPHS9EefrE+0OqvgvjWhMpF8M5jhfdIPCFJU50p9Y2UHDRpMC3TUab8BCGRSn4nFwhHiaxRwhrvBgLp7ErXIJ31hewsdOhPXRVtA6cAbzT+2zIh2e5zCZjblT+1//zi187MMP4NW3l/A//+ptV4yxsl5BNhUdimu5X/hOQbFYtQWEhBAcSiQgczwWq2U8e+0KPv3A2T3pEMbG3ERb/Nv794kix7l7Ha0h+iGEYEaScEdT8VqljO/vUQwye52FzmCjg8TzIABMarlCL7YBbVoUFBSkISUwG9eJ1OI153erAYDZyQRKZQVrm1WYlp0QopsmZCLYz2SOIJeKIpOK4PrtDRTKCm7c3oTOCCBZl9RR2Sd3AiveNy3Lc2/4nXwGRS4i41Q6jeVaDeuKgopuQDMtVAwdEscjK8t48uBBlHUNlzc33B6MappgjgodOdn3CrbW1U1MZEnT8HYhj7V6HTwhXe8XewnrlOePTB1lWDFYxdBhWFZPRC+CwCEVl1Gq2GKofKmObHr4tbNBERTvvR3Djvduh5gguPsdVgS/V/E6g43XcFFQkkiEWYvZIaNBJYkEOZWzPZlWB/RDxouR6wjncjk8/fTTw34ZISFDZyoXd8Vga5s13Hey/e/RjT1tyHigG5Y7hQrsEzEY4wKQiMs7fGaIg9cZbHwmo/YyZb1ZoBA4gtlYUwxW3LfOYJ1NSyaYGLdqh85gqtadM1hQMVcSeSTjEgSB2xI9OQ7W4+PAWp0Rg0WGX6wRhGZhSTfCZs6oUNI0XFpfQ1qSPEKwmqGDAogzawhHCETCYV1RMBdPdOUM5sZMvXEX372+CquxX1N1E0trFTxx7ig+/YnH8OKlebzy5l28fXMdhZICWbInzGMSj2hEhMDzAAFEkQdHgMMzadxcLODiK/P4+FNnO359nUIphc4IFvpl0+8I5v7jF17CYk2DJPCIx0TIkgDTtJAvKSiWVRyYjA/cecUP6w4ROoMNjlKluV9KBpwJgor/osDBeXKwQu1BFv9H1hmMKUpTSmGa1PNc6wRW3CQ3nHbGHdZxQpKELY50rVLSNNwGEEEzeszYZuqdIwRpScLL62u4MHckHPDbBYtSz73VqhjMmdr3C8EAO4qHkObU/s3FAq7d3sD73n0MC0tFVKoqZFnEx596AEcPZYbSRPQLmtgzpcCRhjCK7HlxodKms0HQPlHiebc5plMKZzdICEGC5/F2rYLH0mkkeuDww4fOYCPJ0UQSGVlGQVUx0YgF9Qv+DYu6DrkFVUVGlnE00dp+NEiwbu9TeFBQCI04M00zUYEKkechizwScQkcR3DqyAQ0bQ2abmKjWIck8JAlHomYNHL75E5gncEM0/LERA7LFeZKoYCYIOJEKo1zU1P43gOzKGsa/uTGdZR0Dat128UzwgsgsGP/zk1O4Ww2534Pjgw34qxbF1g2hvhGsei6+xc0DTVDH4kY4nF1BkuKUjPOnto146zcm71ELh11xWAbhRpOHM7t8hV7C2fIzIn3DhKEjZt4lhWVsikbexWdDv8Z0Cn+WGgAkGXvWmxR+/kA2Ekit5dLmL9T6JsBBjvI7JzXPfvnUAy2JxnKnXP8+HGcPHkS169fH8aPDwkZCyYZJ7C1zTAOICQYRfUKH/aFGIy1QB+jKZ9hUmeiRKP74BoZB0pa895NihIycrOJWeihJfg44cmnF1o/eMTZmMgOre67dQbzW4/b34fHySM5HD2YwexUwvP542A9PurUdN1jhz4VGf50YxgTOZrMV8pug8ZhQ6njWrGI68Ui8ioblUDBcQSaZaKi6x6hWDuwMVN1TUcsKiIZl5GIS+B5zo17LFdV/NhHzuKnf/IxTOfiOH44i7OnD+DsPQeQjEdsIRgAUeDd4hA7LegUdQeJSSnYXqXYx+n8e45P4vFzRzB3IAmOswtltxbzuL1cgsBzuPDESXz6E4/hnuOTfXsNrWBYYUzkMGCdwRKx4AERfySrNybSfvYPuvjvjWUYnUluv0Bd7TI+CPDHte2NonKVaTJ24zhxu1JBDRQx5r95XBd9a4kjSpivlDv+mfuFTuJJg6b2Nwp13FjI441rq1jP19zPZZ/DS2tl17X83hNTePDMzFCEYEGCprLuPW+i4WDEigtLe3AIiW2KtrLuBO0T5R1EuyleQNk0saz25r0LncFGk5Qk4dzkFIqa5g50cIR4BkucYQCLUhQ1DY9OTrUs1vVHogP2PnezWEMyHvEItDXNRLmqYjIbd5/VHEcwM5WALPGYmUyA4+y6352V0sjtkzuB55n7wicGYz82CEqa7fT113cWsako0EwTD01M4sHcBCYjUZR0DStKHRQUEsfjeDKFw4kETMvC84sL+MO330Kx4f4/bGG8RwymtbfP88cQJ0XRjSHmCB2ZGOJxdQYTOM4z6Fro0TMGAHKZZq1ss1jf4TP3Js6Q2UQmhpuLBazna+6aYprWUOO9OyXGiNHr+yAmUjdZZ/rxEoMFJYlIouBsy0GpN7Z3EEkiHmcw0zYa8Trrhr3DvchQ/qpLS0uQJGkg8Y+3bt3C8ePHW/rcT37yk/hP/+k/ef6bruv4nd/5HTz77LO4fv06JEnCww8/jJ/92Z/Fj/7oj/bjJYeEALCdwTTdRKWqolrXcc+xiaFNGIaMLgoj8hFF3jM9tRfRDdPj4MNaoIdsD3udhM5gowHrDJYURY8leHEfxkTaB48OncEY161qxzGRzXukE7euvWo9PsqsMRGRMUFArAsHp17hFRmEYrBRIa+qqBo68qrqxm7dqTYHLdaUujt1a1IwcS8U8Q5iPPwxU8WK6hb9I5KI6Vwck5mYJ+5xs1iHBeD4oQx4ngOlQLGsoK7Ya5PsW5cGMS24HbqvKSr2ORaxXFFx4nAOczNp3H/qAI4eTEMS+ZE6F3ljIkMx2KAoM27ByXjwmcAfyWo0ip2EEGi6ifV8beDOGayAcpScwUSBg2tJALtwHe9SZ91JVN+o420ydr730BpCQA7NNWOnCF4npswvdArZiuoTWbYS2xY0ta+oOsoVe52p+4bwnOfw9fkN97+lk8N7JjmCpsMJZwCFoqx5z5ssGVnGQqWC+Up5z6UJsDE3rcR9a6YJiuY9BnjXK516BVqOGIh1qeiG0BlsdDk/M4vXNzawWC1jLp4ERwgEQqA1rgnDsmBxFIvVMqajMTw+M9vW9/e71VSqKlTNRCImISILKFdV6LoJ3TDBc9wWl6NsKoKF5SKOzqZx7FAGE5kY3vOuuZHbJ3cC67ppmnQoMZGsC9Z6vY7lhpO/xPE4kkgiwvP403feAQiQFEQQQlDRdeiWCZHjMRGJIitHcK1YQFnXcX82i5w83HSLTp3B/DHEHCFYU+yhJEIIJiJRxAVxJGKIa0wyRiwy/BpRO6Rl2RVy97IunE03Rw/y+1AMBthDZqwr++3lkmv7mk1GhhLv3Q2sM1htP4jBPO7J41VvCUoS4QgwmY2B5zjIEu975vU/ScQ7nGbBoBQms98dZpxxSP8Yyl/14MGDWFtbG8jPikQiOH/+/LYfVxQFL7/8MgDg8ccf3/KxCxcu4MUXXwTP83jggQdQrVbx1a9+FV/96lfxS7/0S/jN3/zNvr7+kP3J0moZ33rlNl59a8l1K1lZryCbjuLcAwfxxLnx2ZyE9BePyKcDN5txg3UFAyGIx8brYDcs2JjIaGTvXyfjgFcMJiEtNYtCRU1zG5X7Bc2y3IlbAI0Yk9ZgnXsqHcZEsoWwTpzBgL1pPT7KOMVHAJiKDt8VDPA5g4VisKHjFPD/+u4dLNVq2FQUgBBopgmJ4xETBAgch7phQjVNyDwPw2rGbwsc6agI4o+ZCnoGszFTF1+Zx/FDWc+0ICHAoQNp3FjYALWATMrbzBnEtOB2bBGDdSnwKFUUzN8pQNPNLc2rak3DRqHReBF5fN97jyObGo373cGiFHYb2UYcs+LkOFOpMnupxPbNNbb4/1ffegerG/bX6YaJzBCK/6zIxxghMRghdoym3lhX9B6sL0qbDj3jQK/ih5yJbItZP1ihl9910WwIT1oRNu13VOZ9lDjO4+SzHUFT+1Gmicw+y4Hmc7hQbu5HM0MUg/kFTYbljcr0x17vZXFh3WxvwEjieRDY95jzvkR4AVGBt+9Tn2u3c2btlRieC8VgI8tsLI6nT5/Bs9eu4Fa55HHeo5RiQ1GwRuuYjsbw9OkzbYtf/IJ1CurWgSilkAQeiqqD5zikk7LHmRKw1yFVM2FaFJLI43sfOYKH72tPkDaqsGvxlpjIAYjBrhYKePbaFazWa0hLEuKiiKQh2edEAnxjZQl/fXcRFoD7Mhm8XSi4Z6S8qmI62oj+JARTkShWlTqWazWcSmf6/tp3gq11se74u+GPIQZ84gxiP2uHHUOs6aZn/zpuA+QZScJi49/FHjp3TrDOYIX9KQYD7DX3xz5yFk89cWrb+sO4wKZp7AtnMEaAL7Xg+DtKBMVCA8DcgVTg5w8iSUT0OOCaW66hvTLEFeJlKB3hD33oQ/jDP/xDvPLKK3jkkUf6+rNmZmbw4osvbvvxz3/+8/jkJz+JaDSKv/23/7bnY7/0S7+EF198EcePH8eXv/xlnDlzBgDw3HPP4cd//Mfxr//1v8b58+fxQz/0Q339HUL2F1dvruPZ517FynoFFEAiJoEQgslcDJpm4vmLN3D5yjKe/ujDY2n1HNJb9pvjU5URg8Ui4p53QusViicmcu9fJ+MAGxOZkiRkGGcw3bJQMwxP/OFeh20WAkCkDQFGwhMTORxnMGBrMTedlJFNRcDzHEzTQr6kDNx9ZC+zVm8WsSZHICIS8BamdTNs5gwTtoAfEwTXEUMzbeFp1dChWibSkgSJ45HXVMxEY9AtC6pli8Wmo7G2RblBMVOeqGamsczGTM0dSG2ZFkzERNx7fAqmZW2Zah7EtOB2sIV/vuG01glLq2W8eGkel968i0JZcZtfmWTEHX4plJv3eTIuD7XRvh2mzzGERygGGxQeZ7BtYiIdnOL/sUNZ/OlXLsO0KCazcXz6J94z8OK/uEP82LCRRN5tovVCbMo6NO2VonKv4oeOJBKIgaDGisEsttHhPec6MXZHE+H+cTc8YrAWr7ugqX323KxoBiwKN7LZeQ4rquGu+sN0BvMLmhTmPeA5ssVpbq+KCymlnnMl2yzdjqOJpBvDOtE4U6QkCSnJFn6ULAtVpilfMg0keR4zcm9EBqwzmBmeH0aOezIZfPqBs65DVFnX3WssLcu4MHcYj8/MduyCxArWv/qtd6DqJkoVBYQjkEUeh2fSqNY1CDyPclV1xQtAQ/himO41dGibxvI44ndJYZ3BdnJh7wVBLlhXi3kAtnB+JhZDWpTwrdVliBwPxTSRi8hYqdnnlk1VxXQ0CicDzAKFxHFYVxQQOtx7XJIYZzDDbGkINSiGmFLqGeZ0nHrYGOILc0dajk3tFTWfYHLchqH9Q8K9Ipdu1ssqNRWqZnQ8BLsXSCUiA3dX7zVsjN9+cAYzPM5g49ULHMUkEXb/r1mWZ+8scdzYvcchrTGUv+pnP/tZxONx/MzP/AxqtdowXoLLf/7P/xkA8KM/+qNIpZqb5pWVFfze7/0eAOAP//APXSEYAHz0ox/FL/7iLwIA/vk//+cDe60hex9vrEwW2VTU3ZRrmonJbAzH5zLYKNTw7HOvYmm1PORXHDJsFI0Vg+39jXyZcQBIjNmET68oVRRcvrKMl9+4g8tXllGq7GwdbVnUe52M2WF4r+KPiYwIgscxobDPoiLZiEiJb22C34EVzVV13XX1aYdeOIMBzWLuh86fhMBzuL1cws3FPG4vlyDwHC48cRKf/sRjoZi7B6wrrBhsNAQiotC8bkNnsOHhL+DPxOKYikRRMwxopgmecJA4DpRSFDUNhmWhoKoAKHTThGZZmIxEMNHBdeXETGUZJy+vM9jWeJd8WQEo3GlBFlniA+MtBjEtuB06I+4QOywSXb25jme++BKev3gDpmnhyEwKJ+ayODKTgmlaeP7iDTzzxZfw0muL7tccOZgZScdMw/fMCZ3BBoNlUY9j8HYxkX5mJhPIZWKYysWRiEtDmQJn75tRcgYDAImJ3u6FGEzpMAJ8lGGdWbqJH0pJEo4AUNB0GmLFtmyR3mo8rx6dnBp4Y3UcURkHmVZFiOzUvvu1sgDnsUMtQGXE3c5zmF3xhykGYwVNgFeIGQlwUNir4kLVNME+lltZd1KShHOTUyhqmkfcEASlFBXTxL2xBBI9WtM8zmBDFoqEBDMbi+PjJ07hsw8/iguHDuNMOov7Mzl89OhxfOzEqa7j8BzB+j/9/zyJe45O4OCBFB44OY2H75vFvSenmsJjCmwwrj7La2XIIo9EXEZEFj2OI+MOzzPn6gE7gzkuWE40qGqannpVRpJRMwwIhINpWVip15CTm+u/apqoMuIMg1qQOR6aZaIyZNGGZ5CoRZdpJ4Y4w0RcGr6YXIFxSnSeRfOVwfesakrzbBCRx2+APM3s8XoZE5mMyx63PX/NIWT8iDEJGXVz74vB2IGZTmtQw+SJc0dxYDKOheXiti6wg0wS8QynmaZniGSvDHCFbGUo1RhBEPC5z30On/rUp3D27Fn87M/+LB5//HFMT0+D3+FiO3LkSE9fx61bt/C1r30NAPDJT37S87HnnnsOmqbh9OnT+L7v+74tX/upT30Kv/7rv45Lly7hxo0bOHnyZE9fW8j+xB8rE5EFd6rBEXP4Y2U+/tTZYb7kkCFTV/aXGIx1BttvYrDtHDTSCRmSVcWpQ8HFZ1UzwFZEQ2ew0aDETHk5TZ2UJEFpuB0VNQ2HuqspjhWeCe42C+sJ5hCsWxY0y2rr8GIY3uKiLHV38NlL1uOjihPL4TA1Is5gbEykHorBhkZQjEVGkvGOVYJJKQTYTfaMIGBVqdvFfI5D1TBwp1ZFlBcwE4sh3kFEpD9mSjcsjzAw6turOTFTosiP3LTgdnRbiPMOv2Q8vyvPc5jMxpBLR7GwXMSN25s4fTSHWFTCkdl0T15/r/GLwUJnsMFQrWse8XcivrMzmEOcifWr1fWhxHKzjk/+2NVhwzYJ24kP2g51DxaWa6wzWJfn0ZPgsAgLi9UqDicSnsg+5zqxKMVitYzpaAyPz+yN+K9+08l1FzS1zxG7xuLUXOqqjmhEcJ/DH3zvcczfLbjfwx/pPEgcQdPziwvIyhGoxvbvgSMuvDB3eM+JC9mISEJaj6c9PzOL1zc2sFgtuwIQP5RSrOg6coKEh3ooovM4g4UxkSNNSpJwJptBvk+De4dm0vjAe0/g+Ys3kElF3D1yLhNzh8E3izXMTCbs83ChjslsDJLIY24mNZJDE53idQajnnoN30cxWJALFjuoGRV4yDxv1/OIvb6uKQrm4gnERRHVhlN9SdMQb9SpTKu512xn6LEf+AcfNd3cdRjSH0MMeIcZeEI8194wY4hXNqrYLNRgWhTZdBSlijJWNbgM4wxW6KEzGCEEuXQMa5sVAEC+sY6EjC9Rpla1H2Ii2TWnVzHdg2TUkkT89Qh2gCvaQR00ZDwYyl/2+PHj7r+r1Sr+8T/+x7t+DSEERo8Xts9//vOglOLIkSP44Ac/6PnYt771LQDA+973vsCvPXToEI4fP46bN2/iW9/6Vs/FYJTSnv++Id3D/k16/fcpVVS8/MYdpBJ2McayKGSJB23EBtQV3aMcTiUkfOfyHXzwseNIJVorfofsPWp11b0uRKH36+SoUSzX3d83FhH2/O/rcPXWBr7wP1/H6mYV6YSMuemku2HcLNVxY1HFnXUdj7x7BfedPOD52kpVcd8zQgCeC58vw4ZSirKmuk3MKMfBMAykBBErtAoA2KzXYST3z9+poqqgjelCufF+tIoEAJS6z8uiUvdMZu5GtaZ5nq8815tnfCwi4L6TXgew/XDv9XOv5FDQVKiMgDAj9OZ5YFkWLMuyYw86aNBzHHHva103O/oe/tfjvBbDMMCN4QTcoClpGl5eXUVKFEFAQSmFaVEs12tISSJKmgaDUsQ4AkLsIkjd0CEQgquFPNKihLl4HFGeR6TNtQiw1w9C7b8/z3PQDRPRiABFNcDzHHiOeNYb07QAan/dex86hNfeWsLtpSLmDqQCBWGWRbGwUsJULobH3nVoKGuKouvuei10cEZ/4Ts3sbxewbGDGQD272Ra1pbJ7emJOObvFLC0VsHxuSwOTic6/n3Zr3Pu815hu5DYf1OB2I5zOzlUhvd1byiUau69JEs8ONLa/laWOOYepChXFMSigx2UIBZ17yHF0EdqbyDwcN8fRdW6fm01Zr0QsTf2QZVq8/wtie0/JxwMw0AaBI+Bw21JwvViETXTgMxxIISAUGC9XkNR0zAdjeITJ05iSpL3xHvYb2q61tF1F/QcjkgCag2Hz1pdRyouu8/hM8cncHPRjg4TBA6yONx6zGOT03htfQ0LlTIM03LPRrYbqv1+WJRioVrFVCSC90xO77nryXumFGC2KEaYkmR84sRJfOHGNdwsFZGWJGRkGRwA07JQsixsahpygoiPZHPICUIP9xLNfYNp7rxH6eceot0zXLfnpl4yyL2VTJr3U0VTe34PBa1D2aSMpdUyKGwnp0K5jkJZhShymM4lYFkUs1Od75NHE+o+azVdh6Ybzbom+lfTfKdQQF5RcDiRcP/OBVV119OUKIFSCxyhALVFCTXDQEnVkBJFVBoJAEVVxUzUHljTLQsWtc980Q7Ol/3AeS9rdRVReWfRLE8BUArDMsE3RF+GZUHgiH2GY+4JADAbZyGedr/va3VdWlor4xuvLOCrL93E4nIJFBQRScBv/N7X8Mj9s3j8kcOYnRp9J8w4z7vvZU3XUFXVng1TpJMSVtbtv/vqRgWnj+Z68n1DhoMEMM+i7s9so45qGO7vS6g1tN+3m3r3icMZ/L9//FF845UFvPLdJdy+WwSFHSicTkXw/d97HN/bWKv6/ftxFEw9wkBFa+6fpT7ocEL6j9CCiI/QTrJ0uqTTTXkvDxeUUpw8eRI3b97EL//yL+PXf/3XPR9/3/vehxdffBH/8l/+S/zTf/pPA7/HhQsX8Pzzz+NXfuVX8Gu/9mvb/qzPfe5z+P3f//2WXtdbb72Fer2OEydO4Ld/+7db/4VCxp47axq+9loF2QTvNn8U3cJaoeEIRggOTgogTua8RZGvmHjyoQQOTe2tab6Q1nnzVh2Lq3Zx8tiMhDNHxmfipRNev1HH0ob9+548JOPUob0vhCxWTHzttTKqdQvZJB847UcpRb5sIh7l8ORDSaQTTNxgxcRL37UFRqJA8MFzo38A3uuooPgqmnuaD4KDCIIrsHCrUWQ6BIKzw0nzHgoLoPhu4z2ZBMGjbf7uX4MJxyfqe8Ah14YzS1Wx8OLr9oQcIcCFdyf31FTtXmQVFK80rpcYgPdhNNxGVvM6Xrlmu/slohzOPxhOWw6aO6D4GkxkAXCNdWATFLXGx00AMuxYLqPx/3UAEQBTAI6CoND43BMgON3mWlRXLXzlb0qwLIpEtHldUlCYJiDw3rWlUjfBcQQfeU8KUZnDyqaOl96qolSzEJUIYjIHriEgq6kW6hpFKsbhsfviOJAbjtPnMihea9x/aRC8t433KOj9UXWK9aKBbJJHTLa/l2FSFComNssGCIB7Dsv48PeMpjNYHhR/03g/ZAAfGJH1aK+zsqnj1evtr7eUUjz/chlOaenxs3EkY4P9mxVB8S00hSofDLhm6qDYBGCAQgBBDkB0AK5zl67W3PrDvUdkHJ3p7qz1MiysN/a294HgyB7Y2/71K2Vouv07vee+GLLJ7mdsi6C4DAtvgsKA3RTIAIiB4AhsB7F06DrYMu/AwrXGdTcDgofauO78z2GTUpSqttCEIwSyxLnPYQDuOhSPcnhiBPZ9K6B4CRbugILAngCfAoHU2AspAJINEeKBPXhNrYHiUmN9jQN4os1nchEUN2DhNoAamu2Sft6Ld9d1XH7Hvo4yCR6P3b+P7MHHkCVQvN7hPrhVgs4Dm2UTNdWEYQIcAWYa54CIZP/8994f99QBxx3/fTGTE/D2bduhayoj4Nw9/YnEnIeFi7Aw0bjPKex1xfFomgGBAHt/ttj4uAlgBkAEBMvMuuF87jooyrCf7R8EwekhnxX+6lIZumG/zlaumzoo/hwWTFAkAtY/R8zgUAEFD4KnwA1k78reL5ZFoeoWCCGISgQRiRuJ83OrUFA8D8utFj8ODskevYfXFhW8c9e+kmcmBDx0cu/Eyu5H6qD4K5hQYd+D7wGHSZCB3HPD4AWYcEKS2635jyJ11cJmyYBh2sNYuZSAqDy4c3IFFBcbKw0H4BQIrjaeXwdA8PAeOLPvN374h394188ZijPYzZs3h/FjPXzta19zX4c/IhIANjc3AQC53PYqaedj+Xx+x5+1tLSES5cudfhKQ/YLhmknubEuACLTMLIohWXZzgGA4z5hf13I/sUwmgdNQRjvjVArqDoT5Sbu/d8XAK7fUVCqWZhMBQvBANs9M5vksV4yceOugnP3NAuIOnONiPvgGhkHFObfApqbsRgI4LhBDvg1DRudKZp1Up6RQaA0vke7oQ2GybiC8SQUgo0BFeZ6CSpIDgue2beFMS/DwWhcGxxzXbDl7SyAFAgMUKiwi/dLsIVgaRBXNAbYwp52icocjkyLeOu2inikGQlCQCD46uyUUtQ1ivuPSm7h50BOxJMPJXH9joLbqzryFROU2kLVqMzh/qMSTh6MDLXZwx492i0RbZYM1FUL2cbr101bCGZRio2SATXCwTApKnULim7BbJyP5lc0vHzFjsQetUYXO642Wq9sb6PozTVWllq/EgkhkEWCuuq4TQx+rWavE/9RfhhCBM9rY15cL9KO2ZlicYSe151CKYXGnK1ksTeF8jQIToJDsdHUiYLgXeAGJgLca7DXXbtFb/9zuFK1oKj0/8/enwfHld3n/fBz7t57N3aQAMGdMyKp4XBkjTSkRtbCGVuTjBxrlMr4ZSy75Dd6mdSvXOVNqjepclZHlp1K4p8TRV4ixeEvkiPZeT1OJCumLVkejjKWhsNZqBHJIUEQAAECDaD3vvt5/+jt3IsGiKX3Pp+qqQGBRuOicfvec77f5/s8IASQJYqH96nVe9GdBSY6rIUNnM0YBcH7QPB1UORQ2hdlQCGidB15GL0tLrSYj3dyzYmB4DREPNxCQS47L8+3D50PO4ptojl/sHr7AcumMK1STyCoEowNSJhdsuC4DoKagEiwM65BjYJ9Xzgu9bw3mmmqK1UG8EEhlMfxR0Bgo3Q9lZjHhUFR6QgKZeGXjNp1SC+LpxyU1ntxAOEOaLBLIqnWidla2EYEymvQtwCEQKsmBRXYf1FQ6AAeRmvWL+mcg5ffyiNfLNXMU3m3uk4TRQHhgIiQVhqefvmt/Lrh6U6DgCAAIF/+dxFAo8a5Q1rt3CvonRVTz9keaVDcgIs51Na834GLUA8PkeymBtWJBFShreYu7P7IhbeP0tmSWc5uaIsYbGpqqh0/1sOXvvQlACUHsHoRj7peatUqysZvSlUttQiKxc1btuPj4zh9+vSWjqviDBaLxfDMM89s6Xs4rcO2bXzzm98EADz99NNbst/bKm/euI+35r+PvWNRiCKzQLOX4LoUmiphfDwGrZzl7jguqJjBk+97F04cHd3oaTk9TvHPrkGZTwEAnnziIE49PN7eA2oyi8UrCKdL19xzH3oYh/b1tq1xJmfguzdfxP5JF4PxIACKO/NpmJYDy3JwaGoAiixgbnYOhBDsmxiFQUS87/1nq/GxP3h7CUn9JgBgz0gEzzzzzjb+RhwAuJlOYeHuHQDAgKrhbx19CAAwnc0gf+c2gJL9/DMPvaNdh9hyvr0wDzO5DAA4NTCED+2d2Nb3m3du43Y2U/r+sT141/DIlr935l4K97LXAADRsIpnnnnXtn42x0sz10oV/ufdOzDTKQDA48OjODvWmHuf67q4desW7t27h7GxsW27GSdTOm4uzAIoxZYdPXpw18ezuLiIPXv24NChQzxObgu8ubqKt354DRPhcDXGAgDSpok1w8BUOAJW7+lQCiOZxEQ0grAkI2dbkMvuH+/ZfwiPDg1v+xhOvzuLL3zl+1hNFx8Y93jsUAA/9/feVTe2IpMzcPdeCqblQJFF7NsT74ho+FeTy8guzAMADoSjeObA1s/zK9fu4fW7V7B/bwIAUNAt6M4abMeFaTlIZgwIgoBgQAUlFigFTMtGPBbFYlaBuxTCTz3+ThzdP7itYzZNE3/+538OADh48GBDr0t3dR1vp0uDZHFJxtHBzc8Z/r5uDN/53h0UaOk8PHF0BD/2viNb/t6U8xoWlkuOoO969xG84/DW1wyNIGOamLv+g+q/f/zEIxAIwc10Cv/t1k0sFYsYLkeUiaTkTJQyDCyaJtxAAD916AiOxOJNOTb5xbfx+vX7AIBT79yLJ39k/66eb+nGD7FqlGprH9x/EAcj0d0eYlvJF0z88P73qv/+6LPvgSLvrKnoXy+9srqC9P0FAMDhaAwfnTqw+wPuU5T5WbirKwCAdw2N4P3je3b0PJmcgZt3kvjqn12DIAgIBxX8X3//cURCpXvxpZduoUgWAQCnHh7Dh59YX1tuB0m9iPs3r8N0HORtGz8xdQCaKGFfOIzoJjXuXuBKchmZHa5R6rHbvcFWCCzmcGe59N5PRBUcPbpxz6SZa4jt7uFa8dpslVaurZaKRSy/fR1AKR78mRPNra9V9gO6aeOP//cPsJIqIpXR8YNZF7ZTkiu5ggZTPdg1UXhb4dbdVayZbwEABuMBPHxoGDq5CwB4+NAwnvnRo035uRnTxOzrV+FQF4Pa5skbw7aNqytJWC7FgeERaJIIpVDAkl6qWauSjMlIBIvLy4gLBA/HE/jQ4aM40Oa1UNK8iuXVktzoPU88tKV91elCAb/zw2tYNQxMhEIQ6gxQVmKIj6kqfu6h4xgP7t556kHXpT/63z+AqN7GOw/ES3vueylALK07x4bCGB0sOXZOuhR37qWgJQ7imac6u86qT9/CnVwWAPDO8b14bAf1iHosLGex/EevIlcwQQnBvsPHMbU30RH1Bc7WqewXl4tFBA0dcjle/lAkBsOxW7JfbAdvv/k67HKM4dNHjmFIC7TlOFpR724FumPjzg/erP77cDQGZNIAgHcPj+B9YzvbO3E6m+48W3dJLpfD1772NQD1XcEAQCsv+EzTrPt1ADCMkmYyENj84vOpT30Kn/rUp7Z0bI899hiuXLkCQkjXXkz6BUmSGvo3OrhvEPFYAOmcgaFEbcH80MFhSJKwTs+9mjaQiAVwcN8gP1f6GMNyq03GUFDt+XOhqNvV3zcWCfT87zt/P4l0zsC+sUozmaBo2LCs0kyE41AIjBvCQDSAuaUs5u9nMRAvuYOZFq2+ZsGA0vOvWTdQcF0QUvq7xdTa+3YwEKx+PufYIKLoETP0Mial1d89pGz/PI2pGkiu1NgtUndb35/OmkhlimUnJ4KCbiMa7u3I3VbR6LUSUCrQ/iCdwppuQCQE4R2cLxvhui6EcjFFEIRtNxIUuebgaDu0IY2IyrFIksRFI1vgYDyOhKYhbZoYZApEcVVDXF3/vk4bRcRVBSu6gVtmFqZbmzn8b7ffxkwhjzNj4xgPbj2yZ3I8gZ/+iUdx8YWrmLmXRiyiIhHVIIoCHMfFWkZHOmtgdCiE88+ewuR4ou7zDMSl6r28k3AFUr1eq/L23uMBTQERBFBKS9PaQQVH9g/ih7eXkckacMr3R8dxQcuD6oQQjA5FMJwIYnYxja/8rzdw4fnHMT6y9WaX69amn3fy3t70uQmq73t5i8/N39e7I5PTcePOClZSBYgCgbLN8zAS1nB/pdQE083trRkaQQCovocAgAoClg0dX759C2umgQPRmKfJJhFgKBDEgBbAXD6LL9++hQvHT2zrurTlY9OU6r7BdrDr18ak7q7Wd52GYenV10cUhdI1rQFrdUmSkHec6msV13p/n9tMbNTeY0FF3vFrORCX8PipEK78YBHZfKn+u5LSkYiV3nvZglU9HwYToY75m2Xs0rmkSgLGQ2G8Z4diuG7ExO72lH52uzfYCpJU2z+4FA/8Ga1YQ2xlD9eK12Y7tGptFdO06jnmAHAJgSI2z2mosh+4MZ1ENm/i/koeiiQioMoghIBSClWW8Jffnca1m0s4/+wpHD0w1LTjaRWqKlevry4FKEj13/I2133bYUCS8NjICC7NzWJAC9QVPVUISDLiigpRIFgoFhBTFEQUBcu6DkopVg0dBIAqijgYjSIkK4io7a/baxrz2rpbW+tNRqP4+0cfxsWb1zGTyyFWHVoQ4FAXKcNA2jQxEgji/JFjmIw2XvDmvy5lcjquvrWIeESDJJXfk27NuUyWxOrvKQgE8YiGq28t4seePNrR9b6EFsBMvrRPyTl2Q86XhaUsXnxlFq9fX4Rhluodn/9KEYPxIE4f34Ozp6e2tbfmtIeFQt6zXzRSLqxynYMQ0rL9YquhlMJBbW2vyZ2xp2xGvbtVBEXRU49g96Ehpf33KU5z6Mu/6te+9jXk83kEg0F8/OMfr/uYRKJUlK/ERdaj8rXKYzmc3RANazh9fA8uXb6FgVigtsmR1m9iXZcinTVw7uyhjl7AcpqPYdZCEFSlty/ppuXAtGq/bzjU+9MrpuVUG6YVFFmoisEsywECNQNXURQASmFatWa2zpwjAY2bvXYCWasWYBGRa9PZUUUBIaVILEpLopeE2vvnOQAUmcxjbQebjpBcO7fzlrXJI2ssLGXx4pUZfPv/3MbdhdIEjKqs4V9/QecFkQ5koZDH5cUFvLK8hGtrtfX5l2+5uJPLbluw0wzYNZvrUrhuTYzLaQ1RRcHpoWFcmptFQtU2LeC7lGKxUAAhBKvlqcqwVGusAMCluVm8vrKC80eO4Wg8vuXjOHpgCBeefxwvXpnBq9fu4e5iBpW8x0REw7mzh3Dm0e68xphOTVilCNtrfk3tjSMe0bCW0avDL5oiIagpcGkeklhqKlaK1I7jQpZEJKIaBIFgciyG6bkULr86g+eePtG4X2oX2JSJOe4TAXe7qNy3r1y7h5t3Vqr7oEzeRDpnbPm+HQrU1l754sbDf81C9jWpTdfB5cUFLBUL2B+JbnjdEgjBRCiCO9kMXlpcwMcOHm74sbEuV+y+a6cYTm19pzaxWd4qCnptjRkKNEYIViHNDKLGety9qdl4zrtt3qfqMTIYrorBllbzODxVclFJZ/XqY2IdVJdbMWrHNfAAZ5teY7d7ynbAXvNdnhPZ8QR851XBtpsqBgNK65+LL1yFSykiQe+9hxCC8ZEIQgEZs4tpXHzh6raHJjoRkVkrOQ6Fzew/RLG56+0zY+N4fWUFc/ksJkKRDV2w5vJZTEWi+NjBg7iZTuNKchkruo6CbcGhFIog4uTgIFZ1HQGpVK/SxPZfl9i1nmH5A8s35mg8jgvHT+Dy4gKuJJcxWx7GBIC4quLcxCSeaGFNZmY+hVRWx76xmvDMZjLOZcn7vkxENdxdzGBmPoWTx8Zacow7IabW1oApY/f7lBvTSVx84SruJ/MghCBcvoYMJYKwbReXLt/CG9cXe0ZI2sv494uSQGCVT/mKa1Yr9outhq23AOv30pztUzl/7PK6M8PsQ7Ue2LNz6tP+FUgbqEREPvfcc4hE6i+Ojx49isuXL+Ptt9/e8Hlu3bpVfSyH0wjOnp7CG9cXMbuYxuRYbONYmYU0RodCOPNo+yNXOe1FNxihj9rbQp98gdkEEYJgHwibKi4zjuNWBWGlDW2pEWHa3o2747gAIZ7NfZFpWmhqX972Ow52kc1GdUhlIUJFLJY2jb4Rg+lO7Vq2k41HmBGDZbcgBmMLIhS0WhAJBxU4Di+IdBo3UilcvHkdS8UCNEn0CHZEQnYs2Gk0kugtSli2C1XhG+lWs9UC/q1MClnLwqCmYTwYRI4RPhBCMBooiZXm8llcvHl925OV4yMRfPzHTuDps4cxM1+Le5zaG+/qYQ6LcdmStlmIqzf8YloOUpkioiEVpuV4mj0OpRiKatV1jSAQxCIqrrx5D0+dOdwRryNbnOwXN892wN63YxEVoYAMRRZBKYVAsK37dpAZpCgUtyYgbyQiIRBIyekCANZ0HVeSy4gpSvV6lbFMuC6FKBAERKn6XhMIQUxR8EpyGecm9jU88k1RWDHY1huE9bBdt1pgBnpDDJYvMGKwYGNf+4zVn2KwjGliJpeF6ThQRBFT4ciuz2tWDNYIkcbIYAi37pZiJ5dWSs1vSqlXDBZp//2owhorBqvjitqrZEwTb2dSWC4WIRICSt0Hf1MHwApb3O445L5GIAQBSawKDwu2jXiTazYvXpnB/WQeByYSmJ5bQzZfu18QAoQCcscOTewUdl9tOy4ch9b9WjMYD4Zw/sgxXLx5HXeymQe6YB2Nx/HI4DCemtiHmVwWlxcXcCeTQViWMawFvCLVDlgLsYPk7ID5VhgPhvDcwcPV37WR9+7tUm94mt1HSj5zhXrD051IXKldT9KmsavnqghJV1IFHJiIw6W02luxbRdDiSAGYoEtC0kzOb2n6hrdRMY01+0XJSKg5FFZ2ndVaPZ+sdVYvsXRdmtQnPrIggjbLd0DCjbbk+G9w16l7/6y09PT+M53vgNg44hIAHjPe96DL37xi3jxxRfrfn1+fh7T09PVx3I4jWB8JILzz57CxReuYnou9cBYmW6f9OHsDkqpx/Wp14U+lWlcAAgHlL5wW6nnoCEzQi/L8i6IU1kdiYiGqb3x6ueKBncG6zSyTLMnInv/JjFVZcRgrXeraBdFZuPhn7bdCiFp685g/oLI0moeuXJBVZaEbRdEOM1loZDHxZvXsWoUsT8SRdo0QUipyRWQJQxpAQyo2o4FO43E7+ZqOy5UtL/g229stYBvuxQRRcGhaAxp00DOqk03C4RUi2y7nayMhrWOnj7eLmwxTtlBIc4//JLLGzBMB+GgAk2TkM0ZsGwXlu1AEoR1199Om+q2uDNY0/Hft4lAML+UAVASbg4PhKEq4pbv26wzWK7Q+rUWIQSSIFRd9qZzWaQMA5PhcPUx9wuFalF2XziMBCPoiKsqZnM5zOSyODkw2NBjY10UdtssYwU5QG8Ulgt67Xxp5GASpXTDYZFepeL4eiW5jJRhoBTWXjq/Tw8N78rx1WTuU40QIY4M1t6bS+WI2XzRKg1ilYlHO6cZuqLX6iYDfTBYxJ5Lb6dT0MvXnoxlImWaHeEevBns0ILD1WBdQVCSPWKwZpLJ6bhy7R5iERWCQDAQD3rEYEEm8q8ThyZ2CiuSdFzX894QmywGA3bmghVVFJwcGERQkvBHt0sGEneZ7yOkM4Txqrz7tV7ld20n9Yan94xEYNkubNv1DEkD9YenOxF2ICBjmqCU7tiJtiYkjUMQCFRFRL5Q+lpFCLgVISnrzpzK6tVjikc0nqrQImbq7BdZUZTfPauZ+8VWY7ne6xR3BmsMiiCgWOfzmtTZ10jOzum7d85/+S//BZRS7N+/Hz/6oz+64eM++tGPQpZl3Lx5E9/61rfWff0LX/gCAODRRx/F4cPdb7fI6RwqsTIfPnMIkijg7mIG03NruLuYgSQKOHf2EC48/zh3KuGUInSYxV6vi8HYGJdGT2J3KhUHjXTWqEYGKGyThpkwo5QinTNw+sQeT9FHZ53BejxKtFvYrNkTV1hL8N1NgXUTurO7acmwLMF0HKzqOm5n03hjdcXzOrNUCiIVB06Hca0QykWkSkHkfjKPy6/ObPt4OI2jYoVecXhiXeQC5cZyxQp9qVjAS4sL7TpUCALxCJUtmzd02kWlgP/hiUmIgoDZXA53shnM5nIQBQHvGxtHQlUxFghAIARRRQVbY2ULTOxk5UbXlX6CFYPtpBBXGX4ZjAcxPZfCaqZWUAYFFFmCSylEQcDQQNDThAc6b6rbZpxHStO5nEaz7r7tuGANX2RZ2NZ9m91HtMMZDPBGrOq2DQpAZM4fh9nj+aefK48znca/B9QGOoOxYjCBEEhtFEtmcjreuL6IV96cxxvXF5HJ6Q/+pjrki2xMZOPEYEXH9lxbo3Jv73VvpFL4/LU3cWluFo7rYjIcxoFIFJPhMBzXxaW5WXz+2pu4kUrt6PkbHU86Mlhr9qcyRRimjVSmdg5pquxxWmknlNK+cgbzn0thWUFEVhAuDwrt9lxqBezeweFbh64gyAyvFezmriMqUXiJsuA0FtE8Yih/bTQR1bCWLbn3dDMeZzDb6wwmtmgwuOKC9ZlTj+HC8ZP45EPvwIXjJ/GZU4/hYwcPbygynQpH6u6RNFFqaLz0TvG4wJqdsZ/aCezwdIWBWACjgyHsHY2sG9Rby6wfnu5EYowzmOm6nsHZ7eAXkgJeVzid+duzQlL/GvnGdBKf//LLuHT5FhzHxb6xKA5OJLBvLFpNVfj8l1/Gjenkjo6TszVMx1m3XxQ3EZM3c7/Yatg9ksgMbXJ2x0buyYEeGODi1Kev/rKUUvzBH/wBAOATn/jEpguw0dFRfOpTn8Jv//Zv45Of/CS+8Y1v4NixYwCAP/3TP8XnPvc5AMCv/uqvNv/AOX1Hr8bKcBoLGxEJoGMKkM2CnX4L94kYDFjvoCHLtYW/VW7SUEqxmnVw5OD6+FjuDNZZuJQizxQMI75mT8xjCd4fogNKaV2Bz1ZZKOTxl/OzuLqShFmeGPqP195Aoo6zQL2CiLtBYbGXJmu7lXpW6Oy5wjb4OsUKXZYIDLN0Ttk2fcCjOc1ksxiLmVwWl+8vYjgQAFAqKkVlpXrd9YsWemmycreYzGTmTqcyK8MvL16Zwbf/z20YloNMTgcRCFRZxKHJAQzEA4iGNfj7PZ021c1O4bZT7NKr1Ltvs864RKg5RGz1vs06g+Xb4AwG+N87BASAQ91q4Z4VGfrjR53y1xoRf7fuuCTWgXh3zQO/0L8dDdBGOxmw50sjh5MyZm1voIhCR8RINQu/4yvb0BGJgEEtgMQuHV8bLQaLRzQosgSzHCe9vFro2IjIom173nsDWuccW6Opdy4tFUseB4QQDGoaQpLcEe7Bm8HuP12X7x26AVYMlm+yM5g/Ck8gwPBAEIvLOYAA8WjA8/hOG5rYKazgjVLqif9rhTMYy3ZdsCRBwIFIFDfSKZiOg5xlwaEUCVVBxjTb7v7pGTC2mnv+NpPK8PSly7cwEAtsmh7iuhTprIFzZw91fF1PE0UoYs1BOG2ZCMrbr+VXhKT7xqK152YjQn09pXru2353ZvY1FkWeqtBKFFFct18UN3EGa+Z+sdWwEZhKi6//vcxGtTzuDNa79NW756/+6q8wPT0NQgg+8YlPPPDxn/vc5/De974X09PTOH78OE6dOoXDhw/j2WefhWEY+MVf/EV89KMfbcGRc/qVSqzMYyf24uSxsY5fsHJaCxsRqShSz8cmsjEu4VD/iMH8Dhr5fMkmGgAMy8ZKqoBkxkE4IOCn/vY71228dKPWXAhovS0Y7AZylgW2xrsuJpIpDKXN/nAGM13X85psJyayMg3+nYUFUFCEJRkRWcFoIFjXWcA/WQt4J6j8U6a9MlnbrVSs0ONMxI3OOCL6hYNxVUXKMDCTy7bsGP2wE6jcGawzqBTwHxsewcmBQUQVpe5k5SDTMA35rs29NFm5W+xdOoNVqAy//H//P+/H0alB7BmN4vihEZx6eBwHJxOIR9YLwYDOm+rmYrDmUu++bTH3AUUqFcYrbOW+zTo6FQyrLc139r0zrAWq968S1ONaKvoc5yr3xalw45stSgOigyroDRbkbJdmOBkUGMflYKCBYjAmQj4qKx3hHNIs/I6v9diN4yul1CNaVoXdn3uEEAwz7mBLKzmPGCzeQWKwFcYVLCCJHtFKo2iU095uqXcuee/JQse4B2+G4BODUcoFYZ1OUKqtI3bq2rNV2Ci8CqNDYRzaN4CHDgwh6KvxddrQxE6RfA1/g6l/i10QERZXFdzOpHF1JYkfpFZxPb2GKytJfPbqK/ja7bexUMi37djYQXKji53BgNLw9OhQCLOL6Q3X865LMbuQxujQ+uHpToQQgjg7JGzsbHDFLyQFvD0B03I8faV6QlK/OzMF4H+VeapCa5gKR3z7RW/twe8M1sz9YqthncG4E3vjUDa4l3JnsN6lr949X/rSlwAATz75JA4cOPDAxwcCAXz729/GZz/7WbzjHe/AjRs3kEwm8f73vx9f+9rX8Ju/+ZtNPmIOh9MKMqaJN1ZX8Mry0qbRYp0GK/Lph/g/jxisgcX3boCNj1VVCbmCiWzeQCZrgBDgHVMq3v9IBEf3r59WK+q1zZ2mcmewdpNlmj2liS9vkS6uqNW4w+upta66Ju0UfwF1qw1Ddhr8QCSKsCxXm2eUUgxqAeyPRLFqFHHx5nUsFPJ1CyKehquv6Ngrk7Xdil+w41AKkykE+CeWOkGwwxauLZ710rGwk5UVIrKCA9EoJkIhjAaCnsf30mTlbjE9YrDdvx57x2L40fccBAFBPKpt2ryqTHX7I7HbCReDNZd69232niz77wNbuG97HJ0oRVFvfVQkKwZTRRGnh4aRNk24lHoiIgFAYoUClCJtmnhsaLgpzhIK2yDc5dpnVdexqutYLhaRMoyWrmf9TgZDiWD1HKo4GewdjeDuvRR+679+F9/6P7e3JGgpFGu/Q7CBjsvsaxNrs2NIM6nn+LpmGJjOZvB2OlV1dQJ2HtFsui7Yt1Cj7tsjAzUx2PJqHinWGSzaGfcjAFhlmoSJBkdELixl8dU/exP/+gvfwX/88t/gd7/6ffzHL/8N/vUXvoOv/tmbWFhq3TBGvXOJgsKl6x2fOz3u2z+M5PLtQ8fjjYlsrhisXhQeARAJKdDU9XXgThua2Cn+uozJiFYksbPX2zdSKfz53CzmC3nPwOKAqjYkCnm3KA2MBG83/uHp5FqhKpx0HBfJtQKm51IYTARx/tlTXeNaxa4FUzscEq4nJFVkERojCEtna8/tF5LWc2c2TQfXbi7h9uwa7idzVWHYZjGTnMYQVRTPfhHwCqPYmkSz94utxmrQMCLHi1KnlicJBBJ/jXuW3lcPMHzpS1+qCsK2iqIo+PSnP41Pf/rTzTkoDofTNhYKeVxeXMCV5DJShgGK0qY6XidarBNhYyLrFQF6jbzHGUzd5JG9ScVB46kzh/Cvv/AdOI4LUSD4uY8/hmuvvVT3exzX9dh+B/rgPOl0skwMjH9TtlDI468W5jxxh8lrr2NA1VpyTcrk9LZEE7Oxf5oobugS4KcyDV6JBZEFAXb5datsFivT4HeyGby0uICjcrhaEKkUGA/sTcBxXTiuu24CtVcma7uV9VboFKOBAIqOA9N11k0ydYJgh3UGs7kzWMfCTlYOarV4laisAHX6+700WblbmmHT74/Erud226lT3TYjKJa5GKzhsI2Myn1bVSQMxAOwLGddBPpW7tuKLEKSRNhlh7F80Wxo5N9WYAvZluvgzNg4Xl9ZwVw+i2HNK0atxES6lGIun8VIIIgnxsabclyqzxmsEqu4HSp77G/Nz2E2nwMAzOQyWLtqtGyPXXEyYCNtKnv9QtHEYjKH5FoBhulg/n4W//G/vYzDU4MPjI7MF2rreNZhbrekWWcwpXf3uRXH18lwuPo5w7GrAp11QzI7iGg2fAMBjXKlGxmsHfP9lZxHiNpJzmCrjDPYYAPFYDemk7j4wlXcT+YRi6jYNxaFKApwHBdrGR2XLt/CG9cXcf7ZUzh6YKhhP3cj6p1Ljs8VhnVV7OS4b/+ax3UpxA4Xu/Q7IY8YrLmC8l6NwnsQ65zBGNFSq2Mit0NlYDFtGhjTAigw9yRFEBsShbxbWGewbo6JrFAZnn7xygxevXYPdxczAKUAIUhENJw7ewhnHt1eLHi7iZWHhHOWhasrSYRkGVPhyLaEPayQdChR21vEwhp0vbQ+z+QMjJadT/1C0noxk/miBdt2kckZMEwHo0O1e3C9mElOY2H3ixOhiGdgqOIM1or9YqvxOINxoVLDqCes07grWE/Tlr+uIAgYHx/H/Pz8lh5/4MABzM7Owm7ytAWHw+kfbqRSuHjzOpaKBcQUBZPhMEQiwKEuUoaBS3OzeH1lBeePHMPReLzdh1uXfhODZfO1iZVIH8VE+olFAti/N1GbttmkQcOeI0B/nCedDusMxkZEstcklKcHCSEYCQRh2HZTr0kLS1m8eGUGV67dQyqrVxt/8Uip8PjIsTEYpt00kViRiXvSthhlUm8avLQpLIvBGLcfdhr8PYdH1xVEBKG0NpXrGOb2ymRtt+IX7IhEwNgmxdJOEOxIrBiMO4N1LJXJyktzs0io2qYi1Mpk5bmJyZ6YrNwtbKO9UZOZlanuiy9cxfRcCrGIikRU8zSa01kDo0OhjpvqZqdwRS4Gazj1GhmRkLLhXmCr9+1QQEY6WzqXcwUTIy3WBnjFYC7GgyGcP3IMF29ex0wuC92xoQoiJFGAQylSho60aWIkEMT5I8ea1jiUWREdpXAcCkna+nnNrmddWlvPRmS56obR7D12PScDw3QwPbeGaFjF/P0MioYNRRIRDiqQZRGu68Iw7E0FLZTS5sVE9okzWL2IZjbui3XrBHbm+Mo+VhJIw67Lo4NeZ7AA47gd6yQxmF6rmQxojREW+p32WDFKxWlvIBbA7GIaF1+4igvPP970+3S9c4l1TxEIAaun6gT34I1Y5wzGYyI7HjYmstnOYEB3D03sFL8g0mTiDP3vmU6CHVhM6joKTBxk5TrkH1j82MHDLT1Gdnit22MiK1SGp58+e7gtA66NZKGQx2sryeqQ8K1sGq+vJLdtXLCRkDQWVnE/WRKD5YsmLLs0aO4XktZzZy7ojEOubyiCpyo0H3a/eCebgSaJ1fq96bpY0Yst2S+2GlYMtlG0IWf71BuiDjQhXp7TObTt3UO3ubnZ7uM5HA5nI9hosf2RaLXBDJQ2Z/WixTqRfhKDUUqRZ2I5Qn0WE+knEq4VdlmRnB82IpJwd6O2kzFNvLm2iuViEau6Xp1o8V+ToopadWFwXLep16Qb00l8/ssv49LlW3AcF/vGojg4kcC+sSjyBRN/+L9ex6987s/wb754uWlRIKwzWGCL0/uVafC4WnsvyKxFti9foyIoWoWJ08f3IJ014Lqbry07MY6s36hnhb4RnWKFzhZXLe4M1tGcGRvHSCCIuXx2w/OrFycrd4tNm2PTz0ZiS6KAu4sZTM+t4e5iBpIo4NzZQ7jw/OMtcRzZDp7Xg/DiZKOpNDIafd9m9xKFtsREMg5c5TXL0XgcF46fwLuHR0BAkLMt5EwLs7kcREHAuYlJXDh+oqmDSv69grENxwj/ejbExHcrotiyPXbFySBRju6jAGYX0sjlDVy7uYRMzkA4IENTJRBCoMoiTNuFIos4MBHHSqqAiy9cXbfONUwHLrO+bKQzWNZinIPl3t3n1oto9kTc+N7jO3F8NdxaE7JRrmAAMJQIVYewHMdFrlDbg3eqM9hAg5zBKk57G4lQgJK71eRYDPeTeVx+daYhP3cz/OeSQynuFwvVrydUFSUvQJS/3n734I3wv6aOw/sfnU4rYyKB3o3C2wxCCASBFS3VXudOdQbzDyz6xd2siK2d8bUeZ7AeEYNViIY1nDw2hsdO7MXJY2NdV8e7kUrh89fexGsryWrEaFguGRjsJGL07OkpjA6FMLuYru6jAgG5VrOiQCar1xWS1ouZLBQ3dsjlqQqtobJf/PDEJBRBRM62kLVMZC0TAiEt2S+2Gps7gzWFesI6rQPXyZzG0RXqAdM0PQtADofD2Q3+aLF6tHtSZyvoJhv/17hidCdiWg4sZrok3MfOYAAQCW1NDMYKBgOavO2YF05jYCNpb6XTKJbFTynTgOW6yJiG55qkiELVecV06scdNuKatNmUd7ZgYmE5C92w4bgucnkD+/fEoSpiw6NAisyE9lYtietNg/tdNljYafB+nKztZvxW6PXu250k2JE8YjDezOlk/JOVMUVBXFU9TrG9OFm5WyynOWIwoDunui1GSCjxdVZTaMZ9m42FZKPoWwVbfGUL3OPBEM6O70FS15GzLCQ0FR/Zt3/b0TA7RZaEkuClfF6bloNQ4AHfVMa/x3aY90bl3t2KPbbfyaBYtJAvmijoFhzHBSEC0jkDoYAMRS4JwkBLEXMVQcv0XAqXX53Bc0+fqD4vO5hECGnoMFaadQZTe3efWy+imY248Q9z7MTxlXWvVIXGNTQkScBgLICVVMH7BUI8g1rtxHZdpBl3rIS6++Oq57RHaen9oBu2J3pKEAhiERVX3ryHp84cbup9238uLeuFqpiQEGA04L1wdYJ78Eb4l1LcGazzCfpiIncSqbxdejEK70GIIkHltmB2QUykP75WFUWooli9L/n3Ce2Kr2XFOtsR/XOai3eoIoKb6TQAwHIcCITsKGJ0I/ftaERDcjUPw3Rwe24NDx8aXick9bszuxQoGqxDrrcPxVMVWsd4MITnDh7GB/dM4HNXr8ChFCIh+L9OvBN7QuEHP0GXwdb3G11/6meUOvfSAI+J7Gk6/t2TSqWwtLSERCLR7kPhcDg9QL1osRIURdtGjpnKbeekzlYwGKGP2uPOYLmCt/ge1Hpb/PYg2GicbH7jc5PdqAV6/BzpVCqTXZfmZuG4LsKyjIisICzJEAjBn92dwZ/O3IFISPWapHjcImpFr0Zfkzaa8i4UTdy8swLDtBEJqYhHA9ANB4vJXDUKZDPnhO1SZKZpA9LWmjb1nAU0UUJElpFQVYRl35QaMw3ej5O13UxFsDOgBnAnm8GKXmRcAEpW6HeyGQyogY4Q7MhMpAWPiex82MlKURAwm8vhTjbTUieeboJS6onhlRvYaGfppqluNiZS6uDYmm6mGfdt1hksX2y9Mxg71Wz6BDC640ARRQxoGg5H4zg5MNgyx0tCCBRmLbZVx4h6e2zHrR+h2uw9tt/JIBiQsX9vApbtQhAICCFwXYps3kS2YMBxXYDUHDtYQUsmV3NZ8rohKA1r/FugnvV+LzuD1XN8Zd8L7PV0p46vHjFYg6fbRwbXN9giQQVShwgTUqaByttOIEBc2b0YzO+0Z5gO3rx5H2/PrGL+fsbzPgeARFTDWlbHzHxq1z/7QYwFg5gv5HG/UMD9Qk2kN6IFPOuTTnEP3oiSAxLjYvYAF0xO+2HFYC4t3bdbQWVo4jOfehL/8Pl34+c+/i78w+ffjc986kk89/SJnqtbsNdWNjGoU2Mi6w0sVoSpYj2nsDbF17LOYI7jltZBnLZTGaqYCEU8Q7IUNbF8ZahiqVjAS4sLW3reeu7bubyBXMGEIADDAyH8v//uj6wb8vW7Mxd1C5UyABEAjTEl4KkK7WFA0zAaDGI4EMCApvWsa5ZXDMadqxpFvdey0XsnTmfRks7w66+/jqtXr3o+VywW8Qd/8Acbfg+lFKlUCl/72tfgui4effTRJh8lh8PpB/yTOgCQsyzM5XMwHAcBScTRWE182q5JnQeRyel4++4KllfzEAXiiazoRXKM4CkcbFzxvVuJ+pzBNhrY15nYG63PBXTtwB+XIxCCxXJ8BSEEQ1oAumNjNp/DUrGI4UAAQUn2TLGzUSdA465J9aa8gVJD9OadFWTzJccEx6UltzJZRHItj4mxKBRZ3NQ5YbvoO3AGq+csEFdVT2wki38avB8na7uZimCn4rA3m8tVvxZXVZybmMQTY+NtF4IBPCayG6lMVj41sQ8zuSzMshCjVU483YRNKVjDinrW8v2GRwyG/l6fNpNG37fZaJNOcgYDdiaSbySKLMIsO0WwThybUW+PzQr2xRa6YfidDADAcUoug6ImoWjYpc4aSmI3XbcRCSke5+lEVMPdxQxm5lM4eWwMgNcZzO+GsBt05mNJIB6RQS/id3xlnVJcSkEpBQV27PjaXDFYCK/90EEub8BxKUSBlOIjO4Q1o+YKFlPUhjQF/U57JUcZAqC0HsjmDU9MpigKAKVbvnZsF9Zxe6lQwJpuYCGfBwFBQJIQUWQMB2puZZ3kHrwZgkCqEV48JrLzUUURAiFVUWvBthFo4bW7MjTR64gbXMNYJ+5Ogh1YrAi9EqqGsFwSyvvXQu2Kr1UV788zTQcBrTNf036h3lCFJJCq46XhuFXhBjtUcW5i35bqFX737aJh40/+4i0EVKm87q9/z2bdmdlEmqAmo1JG5qkK7SUgSbDKwzXFFsQWtwPuDNYc6tXyWrmW4bSelvx1/8f/+B/45//8n3s+l8lk8LM/+7MP/N6K1e4v/MIvNOvwOBxOH7FRtFilaFi0HRiOUy0ctmtSZyMWlrJ48coMrly7h7dnVqoxgJm8iZVUEWdP96Z4gXUGY2Nd+hU2JjKXNxHYYOi3yMZEcmewluOPy6GUVjfzQGnhXbRLTmC64+B+sYADkZjHqtewvdeeRl2TKlPe+8ai1c+ZloMbd5JYXs0DFMgVLABet4xc3sRAvCS+alQUCLth1bbY9Kw4C1yam0VC1TaM/AVq0+DnJiY9hZJujCPrZ7pFsMMWp20uBusqoorSUcL/TsTy3Xt4MY47g7WSRt63PTGRxdaLwWSRdQbzvq8qceLA1kXyjURm4oMse2vrzXp7bDYmkv08++9m7LErTgaXLt/CQCwAQSBVp52gpkBVJOQKZvUebbsuFEX0xCbVE7Tkfc5gjaLIHrvc+0NP/ojmqKxU676UUiwVC8jb9o4jmtlBmkY22BeWsrj61gKuvrUAg3HMu7+SRySsdkQdZtWoSQsH1MbsZVinPVEUQEjJpTyVKf2sbM4rBnMcFygPEjWaG6kULt68jqViATFFwaFYDAlVw2sry7AoRdYyQQDkLBNhWe6quG9RACpXfh4T2fkQUhLuVpIlCraFQfD6QaPZSPS1We2nndQbWAQ23i+1K75W9tXcTMtBgA8Pt5V6QxWKIMJ2y8MZrgOg9jfa6VAFKyS9t5TBjekkAODtmRUc2jew7vFszORbt5NwbBeqIiKoKXAcF2sZHemsgdGhEE9VaBOaKCJT/ri4xX1bt8GKwXrV/awdKHWcwTTuDNbTtKSyFI/HsW/fvuq/Z2ZmIAgCJiYmNvweQRAQjUZx4sQJ/IN/8A/wvve9rxWHyuFwepx6kzqqKCIgidVF05ppYKw8TdiuSZ163JhO4uILV3E/mUcsoiIcVCBLYtUu+9LlW3jj+iLOP3tqnb1vt8OKwSLB3ccddDvRcO01yOQMDG/wkqymilhNFeC4FPFoAJmczkUuLaLeZJflc36QBQEiISAEkAjBsq5jIhT2OAKYrgvLdasFpEZdk/xT3gCwkirCMB24Lq0bd2LZDgzfxFg954TtojNNz+3k0/udBeoVBbcyDd4vk7W9QqcLdtj3DncG4/QabEQkwMVgLqVwwYjBOrQ51Ws04r7NOjsV2hATKTPiKP/6UGcK+e2YzmVFHMYWYyLr7bFHAgGYjguHuusczpq9x2adDCbHYtVIKUopREFALKyhoJvI5AxIggCBCKBA1duvnqCl0CRnsCJzDekkcXsz8Tu+Fmy7di0lZFeOrx5nsAZFyVTqMAtLWbhuzam8cj51Sh1mVa85gw1ojamZ1HPai4bVqhgskzM87521jI5ERMPU3nhDfn6Feo7bAJC3LSRUDQXbhuk6MFwHV5NJjIeCGAkEO8o9eDNYp26Xx0R2BV4xWG+6sbSbjeIgxQ6J5vXTiIHFViAIBLIswirX9gyTn7/tpt5QhSKK1WuLf3CkEUMVh6cGq2KwmzMreOrs4boDCRV35l//3e9gbjGNXMGEohRh2g5PVegA2P4BO1DUS3idwXi9pVEode6l3Bmst2nJX/fnf/7n8fM///PVfwuCgOHhYUxPT7fix3M4HE6VjSZ14oqKol2Kb0sZBsYCAQCkbZM6fhaWsrj4wlWspAo4MBGHIBAsreQBlKbSBuNBhAIyZhfTuPjCVVx4/vGeWojnCrXCJhvh0a+wzmCm5cB2KCSxtiCuOMj92XduVM+T+ftZTM+t4fTxPR0xudzr1Jvs8k6zEBBCEJZlKIIIFxSm4yBrWRhQNciCUH18wbYQU0p/80Zdk/xT3hTAWrpYEpdSQCo37VyXVgWnlX+zNCIKZCcxkcB6Z4GYoiCuqhCJAIe6XTUNzukdZKl2LbZt3szh9BaWs/4+1s/YPvcOmXRmc4qzHtbZKdeGmEiZEUH5xWBFj0i+PTGRFbbqDFZvj11Zu9aj2Xts1slgei6FYECCLAswTAeqIsKwHFi2WxKGRUrHWSha1fjQeoIWVjTYrJjIzV6zXoN1fP33b7yGjGlCJATnjx7DiV2I/g3mPtWImEi2DnNo3wAMa7nqKkcIwdBAEPGI1hF1mJUmOIPVc9qLhNRKUiQs24Wu2whoElyXIp01cO7soYYPoPkdt4GSECxtmpAEAVFFwZ5gCIQA9/J5PDIwhE8ce7hrBJas6MXhYrCuICTJqHg75rkYrClsJPqqN7jYKTRqYLHZKIwYrFmxvpytU2+oIizLICglSkQk772sEUMVhyYHqsL2VKaIb788jWhYreu6HI2o2DMSwVAiiFzewI+//xgGYgGeqtABsOKdXo2JtCkrBmu/WUevUG+wkzuD9TZtkfr96q/+KiIR3oTmcDitZ6NJnbiqYqFQEoMZjoOi40AVxLZN6vh58coM7ifzVSEYUJ5YLiOKAgSBYHIshum5FC6/OoPnnj7RrsNtOHkeE+khGJAhCALccvNIN12EA6UFG+sgZ9ludXJ5dDAEx3E7ZnK516k32WW66zcwiihiSNMwX8gDlFZjIULlaAsAyFs2Yora0OlB/5R3Pm/CtJxSY78c/yGWNwbprA7DtCEKBLLs3Sw0IgqE3bD6nSMehN9ZYDaXq34trqpdMw3O6R1kiTuDcXqXevexfsYvBhP7XBzXTbBiMN2w4Lhudd3TCjZzBvOui9rrDGZu0RmsE90wKk4GL16ZwavX7kEUBKQyOkxbhKZImByLQTft6u+YyuoIBeQNBS1snGijYyIrP6XdNYd2EFUU7I9EqrWY3cZ/eZzBGtDQ8NdhApqMbK42qKbIYsfUYdY8YrDGCQv9TnuyJCCoyVWBZCZvQFVEzC6kMToUwplHpxr2s4H6jtsAxUI+X31MQJIwHNAAEBAAC8VCQ4+h2XBnsO6DdWMp2K13GO0HNhJ9daozGNA9A4uKLCGP0rqGi8HaT72hikFVw+AGwu5GDFUENBnRsIpXf3APybUC3rq1jEhYBSEE8YjmGSRfXC7VWRVZxMR4HE/+yP6+HwrrFNh0jeIunOI6Ga8zWOde/7uNemLS7aS1cLqPtrx7vv3tb+N//s//iVu3brXjx3M4nD7nzNg4RgJBzOWzVeGFIoiezfyarrd9UqdCJqfjyrV7iEXUapGIUu/EYGWSUBAIYhEVV968h0xOr/t83UjWExPZf0VyP4QQhJnXQTdL58LCstdBTlOl6gZNlkUMJYI4MBHHSqpQjbrgNAd2squCJBBEZBmaKHqmLcaCQWiiCMN1qxEbIeZ6lLethk8PVqa801kDrkuxmilNtcqSAEWWYFm14xYEwKEUmirB1/duSBSIJyZyB03PirPAZ049hgvHT+KTD70DF46fxGdOPYaPHTzMhWCcluKJiXS4GIzTW1hMRIXCC3EeMRgBAZfHdQ+hoNfZqdVRkbK4RTFYGwqyHjHYNhqE9fbYflrthjE+EsHHf+wEPvOpJ/EPf+pxHDs4hKF4EO98aAwHJxMYHqitEdNZHY5LNxS0tMIZLCr35z63ka4GjRSD1avDBFTve1JRSv9udx1msVDAfC6P5WIRq7reUKfKitPeYDyI6bkUkmuFqiCSUoqF5Sym51IYTARx/tlTDXdGqzhuxxmBW9o0PW5Me4JBVMIqKw31mVz31Dq4M1j3EZRZMVhvurG0m41EX6LY2SKUysDihycmIQoCZnM53MlmMJvLQRQEnJuYxIXjJ3A0Hm/bMe4kEpzTPCpDFWnT3HANXaEyVPHY0PCuhghuTCfxxvX7mLtfisCWJREHJxLYNxatDpJ//ssv48Z0EveWMtXv2zMS4UKwDqIfnMG4GKw51Kvnadsc0Od0F22R+l2+fBmyLOPQoUPt+PEcDqfP2WhSJ66qyFsWDNfBTC6LkwODHREtNjOfQiqrY99YtPo5x9c0kBgnkkRUw93FDGbmUzh5bKxlx9lMcvna9C13BisRDavVQrNuls6Hl16d9Uwus+5xlXOkUyaXe516k10RWUGkTpMnKMkY0QKwXBerZTewSlwipRRrho7pLMFog6cHK1Ped++lkS6fS6IgYGQwhNV0EaoiAgQwLReSICCgyZ64oEZEgVBKfTGRO994RBUFJ3cRK8PhNALWGczmzmCcHmPNMLGq63AohUNdZEyzL51sKrCRBSLhsZndhCyJUGQJplUqmueLlieGvek/nym+mr4pbs+6qA0FWUVhGoTW1psKneyGEQ1r+MB7DmLvaBQXX7iK+cUsYhEV4VBN0JLJGrh5ZwUTY9G6gpbmOYNRxMsfx9X+vJ56HXZ2KQZzGycGq1eHCWg1ISARvOu+dtRhFgp5XF5cwOXFBdzKpAGU3NV+683XcHp4BGca5JDsd9pbKRSQLddoVEXEBz/4EJ78kQNbEoJlcjpm5lMwLaduHJWfeo7beebaFJFlhJk9duVx/mtrJ8OdwbqPRl63OPXZ0BmsC8QAbBTyTC4L03GgiCKmwpGO2Dup7FrP5OdvJ9DKiNFKBLblOIiU00RMy6nGqQ8lghiIBaoR2JPjser3jg/ztK9OIsCsdftBDCY1cNih31HqOP1r3Bmsp2nLX3d0dBQ5JsaHw+FwWk29aDGbUuRsC4ogYjQQwE8eOLTlSZ2MaTZtg2daDiilnqkoNnqKCN7ikSgKAKU9Y/VMKUWOcQYLczEYAHgaVrpJUTRcXL254JlcttkoUaZgwk4uP3Xm8I6FPJyN2W5cjkMpnp06gKii4EpyGUm9iJxlgqK0QP+R4RE8M7W/oY2zypT3f/h/XkY6Z0CRRAQCEvbviaNQNJHK6hAIgaqIUGQRkijCKl9X3E2cE7aD4TgetzFuSczpdlhxts2dwTg9QqXZ/Ff35qtOG0pWxGevvoLTQ8MNazZ3GxZzA5O5EKzrCAbkqhiswAh9WgE7icuKCm3X9RS821GQZd0iWKfYrdDp8d1+Qcvicg6GacO0Ss2vYweH8NMffbSuoKWg15zBQg1yBrNBwZ559YZG+oGgVHs9d9vIYgVA6i7jjOvVYcJBBYJA4LoU4aAK9srf6jrMjVQKF29ex1KxAEKAsCSDEAJNFOFQiktzs3h9ZQXnjxxriANNxWnv6bOHMT2Xwn//+htwHAfhkIpT79jzQCHYwlIWL16ZwZVr95DK6qCU1o2j8sM6bleEXntCIcQUBQuFPMZD3utJxZm7XvxNp8KdwboP9rrFxWDNYSMHsE53BmPp1IFFlXG265XeQbfTyqGKWgR2AjfurEA3StewdE7HSNk1tzZIvoaVVBFTe0qCsD0j0Q2fl9N6PM5gTm/ei2xmb6x0cExwt1HPZW03A/qczqctHbcnn3wSX/nKV3Dz5k0cOXKkHYfA4XA4dSd1/mphHgXLhiKKWDGMBz5HpTl2JbmMlGGAomROH1fVhjXHFFkEISWXp0oh0mI2a4okeoqQjuMChHgK+d3M8moByys5OC6FKBDw2liJSJgVg7lYzdhIZ3TsK2/QKPUKEfxTdb3oINdpbHey68f3TWE8GKpek745exfJYhFhWcbxgcGmNM6OHhjCiaMjMEwLybUCXIdieS2PcEiFbbuQJBGxiFqNxtENG8m1AtJZA6NDoV1HgbCbVUJ2P8HP4bQb1iHCsvkNi9P9sM1mMM3moCTBcd2GN5u7CTYmUuJisK4jFFSQKsdk5wutFYNJHmew2nrdX8QP7iA+e7coEhsTuf2mQqe7YbCClpn5FF774SLevLGIcEjFUDxYd11rWo5n/x1skDMYGyYoECAsNy5+spsIMOdcYZeNLG9M5O4aRvXqMLIk4PDUAPJFC/GId6CqlXWYhUIeF29ex6pRxP5IFIvFAggp7dcCkoRBLYCEqmEun8XFm9dx4fiJhu0lo2ENjzw0hrv3Unjr1hIA4PbsKo4dGNrwe25MJ3Hxhau4n8wjFlGxbywKURTgOC7WMjouXb6FN64v4vyzp3DU9zz1HLcBICTLOByLr/tZlUjJqXD3uJewzqLcGaw78DiDWa2Nmu4XNnIG2+jznK3DusByMVjn0IqhCn8EdiyiQTdKPyeTNapiMKAkCAsEZMwtpDE+HIaiSBgbDu/8F+Q0nH6LieTOYI1DFgQQguqAvkgIj+HscdoiBvulX/olfO1rX8Mv/uIv4k/+5E94nAKHw2kr7KSOSAj+99wsAOB6ag0f2LN3Q0cftjkWUxRMhsOeiY1GNcem9sYRj2hYy+gYSgQBeDdrsq/YuJbRkYhomNq785/ZCVQmR//P1VncmE4CKBXJ/v1/eWnTydF+we8MZjsARW1y2bQcVI0GiHezD/Seg1wnstPJrso1KW0YeOn+IgDgXr6xjqqVeI61jI5bd1cxMRbDxFgM7310CvGICkUWoakSrv5wEZevzGBpJQ8AKBQJxocjOHf2EM48uvv3oD8ikq8JOd2OzBSnXZfCcWhXTS9zOCz+ZvOKoSNrlhpekiA0tdncDXAxWHfDujvlWiwGY2MZHErhUgqBEOhMHLckEI9orGXH1qAGYae6YVSIhjWcPDaGifEY7i1lAAArqQJWUgUMxoOex1aGIgAAhCCoNUa0VWQ+jsjKpk7CvQzrDLxbhx2zgTGR9eowABDU5LrnQCvrMJcXF7BULGB/JAqBEJ8IrvR7C4RgIhTBnWwGLy0u4GMHDzf0GA5ODlTFYNOza1WnLz+VOKqVVAEHJuLrXO39cVQXnn/cs8fcruN22jRxbmKyI8SnW4XdK3AxWHfAYyKbj9jFMZGdDita5jXhzqLZQxX+COxYWMX9ZKnenCuasGzXM+CoSCIM00Eub+DoSBSqwtMcOol+cAazuDNYUyCEgLoUq4YBh1KEZAlZy+qq9TNne7Tl6v3oo4/iy1/+Mn7mZ34GZ86cwS//8i/jiSeewMjICG8CcjictnI0nsCl+Vm4FFjVdfzl/BwSqrpu4e1vjrEFKZE0tjkWDZds8y9dvoWBWACCQDybNXYT57oU6ayBc2cPdXX0Hzs5KssCwuUMe0kqTY9uNjnaL0RCtcWZbrqQRICgNrlcNGpNC1UWPdEDQO85yHUqu5ns2hOqTVzdK+Q3LLBvB388RyarI5MzoCoiJsfjePjQkMf2+8j+ITxxahL/93/9btWd75c+eRYDvibZTinarBiMFxU43Y8ked+jtuNC5I53nC7F32x2GfFTZe3b7GZzJ8PFYN1NiHF3YiMAW4F/6tZyXaii6Cnitys6W5b6q0GYiAYwPBDG8mppjX5jOon3PrrP85g8EyMaUCWPmGU3sM5gsT4uvDcqJpJSWlcUtVPq1WE2opV1mIxp4kpyGTGlJiA0fAM2FQRCEFMUvJJcxrmJfQ1t8ByYTKBiKZArGFhezWNkcL1jSC2OKr7ha1iLo0rh8qszeO7pE56vb9dx+4mx8cb8ki2C/X14TGR3wIrBdMeB7bptEXD3Mhs5gPFBq93DCnoMszcFJN1Os4Yq/BHYgYAMWRJg2S5AgcXlHCbHazXhYjlC0nFpXw/kdyrsftF03J68F3mcwXrsd2sX1aSrleWqoF0WBHz26isNS7ridB5tqS6xDZGXX34Zzz333AO/hxACm09acDicJhOUJCQUDd9bvo+kruMHqVXEFHVd9KO/OVaPRjbHzp6ewhvXFzG7mMbkWMzrDFYu2LsuxexCGqNDIZx5dGrHP6vd+CdHU1kdq6nS3LQqiw+cHO0XoowzmGG6GIhKiEVrk8tFvXbP1NT2Ti73Ozud7NobClUte4u2gxVDxxATjbFd/PEck2NR3NRthIMUhungfjKH//Tlv1knshwfiWIgEap6BzdSuJ8sFrGq63AoBQFBxjT5FAqnq/EXrS3bhapwMRin+6jXbPaIwZjHNrPZ3MlwMVh3EwrWztNWx0RuKAZjal6BNkREAvDcs/pBDAYAxw4MYXk1B9Ny8J3v34Eii1BkEVN744iGNSyt5rGaKsBxKQZiQWRyekMEP0XUriExRd3kkb0NGxO5GzGY5bpgdTSsA99O8ddh6omZWl2HmcllkTIMTIZLwitKKcxNRHBxVcVsLoeZXLahjeWgJmNsKIzF5SwA4Nbd1XViMH8cFQDk8ibml7JQFRGhgILhgdKQUSmuSsWVN+/hqTOHPe+xnTpudwvs4B53BusOWBErUHJkiQj9sf5tFfVEX4IgcCOJBuBxBjP7Y63HKeGPwCYARobCmF8su+SmCxhMBBHUSvuQXN4AULpPjQ/3X++l0/HvF3XHQbjHBFMW4/or85jIXcMmXQEEYUkGIQQBSYLjug1LuuJ0Hm2pLlHKNzYcDqczuZFK4fXVJOYLeSiCAIEQ7I9E4FJajX58ZXkZecvyNMdMx4FD6bqYs0Y1x8ZHIjj/7ClcfOEqpudSyBZ0UFoSZUiigORaAemsgdGhEM4/e6qrxVH+yVHLZiYAyhvWB02O9gORcK1hYDuAJBI8+o5x/OV3pzEQC0A3mGaS6r3d94qDXLex3ckuVRQxpAWwXCyJIefz+R2LwerFc+SLFgzTBiEEmirhoUNDuJ/MrRNZCgJBJKggWy4CZHIGErGdi9KA2hTKX87PYa4cgTmTy2Ltqs6nUDhdjSAQiCKB45T2O+w9jMPpJvzNZgB1ncEqNKvZ3MlYtPb+5oXJ7oONecsXW+sMJhJSFfwDlSK37InPbpcYTJGZCfM+EYPFohpuz64iuVaAYTp4e2YFkiRCU0QENQX3V3LVCB1NlfCvv/AdnD6+B2dP7zwyPWOaWABFDhSrhg6pQW5j3UjQF3GzUzdkw/Wer7t1BgPW12FiERWJqAZRLDmWr2X0ltdhTMcBRcmRHgBytlWVFQqErPu9K49jBWON4tDkABaXszAtBy+9enedkNIfRwUARdNGUbdQ1C3YjlsVgwFAIqrh7mIGM/MpnDw25vlZu3Hc7nQELgbrOmRBgCIIMMuOJQXbRkTmYrBGUi8mkruCNQYeE9m/1IvAHowHS2tgwwYocO9+BoemBkBdWk2SCIdU7OniXlOvIgsCJIHALq8diraNsNyYOPtOwKHUM+jBncF2hz/p6u1MqprYIguNTbridB5tqS5961vfaseP5XA4nE2p3BAt10VUkgFCQCmQsyxEZKV6Q7yeWsWSXhIsVFgxdCyVBRvDgQD2MDfKRjXHjh4YwoXnH8eLV2bwR3/2ZrVpsZIqYGwojHNnD+HMozsvSHcC9SZHLZt1Qast+jabHO0HgpoMURTgloveuuni/U9M4trNJcwuplHQaw4Hmla73feKg1y/sDcYqorB7uXzeGRwZ7Go9eI5VtPF6tfDQQWaIm0osoyEVEYMpmM3sFMoNnWrUygxReFTKJyeQJYEOOWGm+1wMRinO/E3mwFUi4zA+kJcM5vNnYrDiONE7lLQdYRZZ7Bia53BCCGQBQFm+R7BNpMraG2KGGYbhFYfNAhvTCfxlf/5OhaTeQiEIBxUEItokASCt24lkdctSBJBSJOhKjKiYRWO4+LS5Vt44/riOkfdB1EZiHhlaQk/BIUNILWWQt52kDbNvhyIYB12KAWKjuMRiG0VNipRJKRhDSO2DvPqtXu4u5hBeTIPiYjW8jqMIoogABzqQiQCslZNzBqWZRB470dOWbisNOGaEg4qNSGl5eDGdBKCKCAeKUVsxsKqJ44K8EaSsVFlQFn8QemG4oSdOm53OqzAhcdEdg8BSYJpltYPBcsGdjcvx/FRLyZS5EKAhsBee02LJzH1E/UisAUC7B2J4PbsGgAgVzCRXMtDN2zkiiZGBkKQJQFDif5an3YLAVFC1i2tBYtOb72fLV9tSeH3gF3hT7oSiACg9BpXnO4bmXTF6SzaIgZ7//vf344fy+FwOJvC3hDvAkiXN/Upw6hOeAmEYFALYD5fQFIvVj/Pxhn4Y2Ia2RwbH4ngJ596B65PJ5HL6XBcir9z7h04cXS0J8RQ9SZHWVcVWfIWMDebHO11SLlZsVYW9BgWxfhwaXL5D/5/r2LmXhqKJEJVRARUuW2Ty5zdsTcUxtWVJABgPp97wKPrU09k6VIglamJwQbKTl8biSyjYRX3lkqPzeZ33jD1T6EsFPLMFIrIp1A4PUGpcF0Wg9m8ocPpTvzNZgAwWYt+XyGumc3mTsViGrYyF4N1HaFA+2IiAXjEYHZZDKYzBfyA2B5nMJkRgxk9LgarOOeupgvYvzeOpZU8AGB5NY9C0QIFxVAigLW0jkzORCImQFVEDCWCGIgFMLuYXueouxnsQERUlqGgVJQNyRIISN8ORFQc2Svuk0Xb3rUYrBGuYCzjIxF8/MdO4OmzhzEzn4JpOR4HrFYyFY4grqpIGQYGtQByVu36FanjBpEyDMRVFVPhxu79b0wn8bVvXsO9pRwkUUA4oGAwHkQkpGAto+PS5VtQVRG6YVfjqACUnEfKaD4xmOO4ACEeUWo9tuu43elwZ7DuJCTL1bpxYRcRt5z6cGew5qEwkeAGj4nsO+pFYEfDKiJhFWupAgq6heRbeTgOhUNdrKaKePPmEv7of1/blSsupzkEJKk6GLCbuPVOhHViB7gz2G7ImCauJJc9SVesMTUrtm5U0hWns+DvHg6Hw8H6G2JcqUXwpU3TE28rkZIF61KxWM2t3izSo9HNsVzehCIJGIgHMTwQwrvfOdkTQjCgZE/tnxy1rfrOYMCDJ0d7nUiodp4WjdJ5dvTAED729HFMjEYgCEChaOHeUgZ3FzOQRAHnzh7Checf39YEO6d97A3VhFCrhoGCtf0Yo4rIMhGtXScyOb0aYycIBDHma4mohrWsjpn5VPVzbCxpxSFsJ1REtxOhCARCvK4qgncKZalYwEuLCzv+WRxOu2DvVTwmktOtsM3mCpZbO5/9U5nNajZ3MrZnf8CbU91GKFgTTRim3XInR1lgInrKP1u3N95TtgrVFx3E7oN7jYpz7uRYDPFozdJlpdwICwUUCESAIouwXRdF3ao6lQgCweRYDPeTeVx+deaBP8s/EJFQVVTOOEIIRgMB7I9EsWoUcfHmdSwU8s34lTsSQohH/FWwdxbbajDv4UaLwSpEwxpOHhvDYyf24uSxsbbUYaKKgtNDw0ibJgzHqQ7WAFgXU+dSirRp4rGh4YY2clgh5cRYBJoqgRCCTN6AKAoYSgRxYCIOw7SRShexuFwbamKFB6ri/TutZXQkIhqm9sYbdqzdgChwZ7BupBHXLc7G1HMB485gjUHpI+E/Zz2VCOzBeBDTcykk1wpwHBeRYEnMnSuYMCwHggAMxYOIhlUosohLl2/h819+GTemk+3+FTgM7J6x18RgNlN/IoS7se+GmVy2WrOrIDEpADLx3l8rtcCZXLZlx8hpLnwFxeFwOFh/Q4wyKmmH0nXW+wFJQsG2kbUs2NT1NMf8kR6Nbo5lcrWmXFBTIEm9cylXZBGEkNJEaJnBRBCjQ2EMxAPQ1J1NjvYqUUagY1i1oiEhBAcnB3Dq4XG8711T+LmPvwv/8Pl34zOfehLPPX2CT/F0ETFFQUiunffzO2gM1RNZrqZqrmCxiOopQNcTWUYZ4SF7DdoO9aZQ2I0d20hnp1AyZuvdOjic3SBLtXPZ4jGRnC6FbTa7lIKCeta7rJClWc3mToeLwbqbYMB7rhZaHBXJCior7y022qMTYiJBac/GHfudcwOaBEUW4bgudMOG61IYplNzNSIEuuFtsLCOug+KUfcPRLDXUwCQRaGvByKCnkbWzhrTZhOdwTqNM2PjGAkEcTuTrgo2FUGAyuz3XEoxl89iJBDEE2PjDf35rJAyFq4JKTM5A5U7oyAQHNibgCQJmF/KwnUpXBcwbVYMVvu7uy5FOmvg9Ik9PTPsuFW4M1h34hWD9VYDvhOoV+uu5xbG2T4e4b/Jz91+pBKB/eEzhyCJAt6+u4ofvL0Ex3UhiQTRkIJELABFLom9R4fCODARx0qqgIsvXMXCEheIdAqsm3TPxUR66k8CCK+57BjTcUBRS7ACgCFNgywIUEURCUYkBjQ26YrTGbRn1NDH0tIS5ubmkM/nN506fPLJJ1t4VBwOp5/w3xAFQhBhLL/ztlVtbimiiGEtgNvZTKlYzBSzRIF4YnMqzbFzE5MNa46xQoxoRN3kkd3H1N444hENaxkdQ4kggFp8XT36dXK0QpgR6OhGbYG8vFoSDCmyWJ1c5nQnhBDsDYVxI5UCANzL53EkFt/Wc7Aiy0rxbGIshrVMEavpIgZiQc/j64ksIx4x2ObNro2oiG4nw+Haz/K5LrLEVRWzuRxmctmeigHh9D4S627JncE4XcyZsXG8vrKCuXwWowHvvaKy3m1ms7nT4WKw7kYSBaiKBKPcBMsXrJYKEOR6YjCmmdwuZzDZN2Rjmg5kqfeENRXn3H1jUQAAARCLaMjkDbguheO4yDMCQVEUYNnOOgeNRFTD3cUMZuZTOHlsrO7PqjcQYTq+5gZqDrn9GMvhcTXYYSPLcPtHDDYeDOH8kWP43GtXkDV0KIKAhBoCQOBQFynDQNo0MRII4vyRYxgPhh74nFvFL6SMhJXSG4iW1r1F3UZQK/09BYFgz0gUd++lMD2/hrHhCCpqMUJq4lPXpZhdSGN0KIQzj0417Fi7Be4M1p1wMVhzYd8X1c/xmMiGwApxK8OjXGTRf7AR2F/6oyswTBtjQ2HcW8qte2wwoFRdcafnUrj86gyee/pEG46a4yfQgIGKTsUvBuPsHEUUQVBKsKr0v4OSjIcTifIu1HsPaHTSFaf9tFUM9tu//dv4rd/6Ldy6deuBjyWEwOYLaw6H0yTq3RBDEisG815/hgMBzOZyWNZ1DDE9g5Iav3TzbFZzjBVisM5QvUA0rOH08T24dPkWBmIBz4Skn8rk6Lmzh/pucrQC69akm+vFYAAwNNC4wi+nPewNhnAjlYLpOPj+8hLCsgxFFDEVjmypQVRPZKnIAkYHQxgZXH9+1BNZsteaTN7YUbGo3hSKXScmsvpvPoXC6VJ4TCSnV6g0my/evI7pbBa6Y0MVREiiAAqKFV1vWrO5G+BisO4nFFRqYrAWO4N5xWCltY7OrHk0sU1iMEkoqTTK57dpOejFd3Y959xETMPdhRRAseE6V/Y5ldRz1PVTbyDC3CR2tx8HIlhXg53GrXmcwYTeb1wcicVwJBaDRAiSuo68ZeFONgOgdA6dm5jEE2PjDb83+4WUkiggpMnIF0t/t2xOR1Crnevjw2Fk8gZUWcL07Bp0w4aqiNBUGa7rYi2jI501MDoUwvlnT/Wlizl3ButOglItbprHRDaeus5gXAzQENjBT1p2ge1F4T9n6ywkc9gzEsVQIghCBMzfz1S/JssCFKkWk15xxX3qzOG+7cd0EgHmvdtrMZGWJ02EX/93w1Q4Uo1+HNRqxhsE9fe8jU664rSftonB/t7f+3v46le/uqkTGMtWH8fhcDg7od4NMejL3Kag1Ruk6Tg4FIshLMm4lU3Ddl2ogghNlJo/iZlnnMF6cNF99vQU3ri+iNnFNCbHYnUFYf0+OVohwgh09HJMJKUUS4wYbISLwboeWRBwO5NGUtdhuS7eTqdACEFcVXF6aBhnHlDk30xk6X93bSSyZM81y3JgmM662NYHUU90G5MVmKIDh9J1Uz58CoXTrbCF616N1+L0D0fjcVw4fgJ/fPsWvnVvHjnbguwKmM3lmtps7gY8YjDenOpKQgEFq6kCAFSFDK3iwc5g7Vn/EEKgSCJMq3Qsm4mcupl6zrlBTcb4cAS5gglZ8kaRUJQaYKrsXf/Wc9T1U28gwmRcrBSfcKkfByK8Djs7+72NPoqJBIBlvQgCgoPRGCbDYTw9MVVy29rG0NBOqCekDIfU6jXUfy0VRQEBVcLf+sAxvPbDBbz82hxyBROO6+LuYgaJiIZzZw/hzKNTfSkEA7gzWLcS4s5gTaWe8EvizmANQVH6wwWWszX8Iu/BRBDJtUJ1YCYY8K4ntuKKy2kd/RQTydk5UUXB6aFhXJqbRULVqm7V9WhG0hWn/bRFDPaVr3wF//2//3fEYjH8/u//Pn78x38coVAIY2NjmJubw+LiIv78z/8c/+pf/SukUin84R/+IT7wgQ+041A5HE6fUO+GGJCkits9XEphOA40UfLcEJ8YG8e/ff0qbmcypeaYqcNynaY2xzwxkaHecgYDSjbF5589hYsvXMX0XAqxiIpEVIMoCnAcPjnKEvE5g1FKkc2bMM3a4n+Yi8G6mhupFP5o+hbuFfKQBQEhScJIMAhNFJEyDFyam8XrKys4f+QYjsbjGz7PbkWWQU2uvgcBIJs3ti0Gqye63RPa+PzkUyicbkXyOIPxhg6n+xkPhvDukVGsGQZyloXRYBAfnphsarO5G7AoU5zkzmBdSShQc/VovTNYrelmuaV1vM4U8ANtcgYDSkKpXheD1XPOBYA9IxEsreTguvCsdXXThqCICIe817x6jrp+6g1EjAYCKIDAATCkeQe8+nEgIuAbxNsJbEykIvZ+w+hONlv9eF84ineNjLTk59YTUrLX0qLuFYNVBJPjwxFYtgvDdJDLGzhyYBjvPrkXU3vjPTnkuB24M1h3wmMim0tdZ7A+uLa3AkksCd4r5huGaSMU7N89Xb/jF3kLBJgci+LW3CpAgcFYwPP4rbjiclpHI9bQnYrtEYP1z76oWZwZG8frKyuYy2cxEYrUFYQ1K+mK037asoL60pe+BEII/sW/+Bf4yZ/8SQQCtRuKIAjYs2cPPvGJT+DKlSuYnJzET/zET+Dtt99ux6FyOJw+4szYOEYCQczls3AphUAINGYypmDb626Io4EgxoJBnBocwjviAzh/5BguHD+Jz5x6DB87eLgpLgmZbO/GRFY4emAIF55/HB8+cwiSKODuYgbTc2u4u5iBJAo4d/YQLjz/OI4eGGr3obaVCNOMcBzAMB1PRGQkpG5bsMPpHBYKeVy8eR1rho7RQBCaKIEQgrxlQyQCBrUA9keiWDWKuHjzOhYK+Q2fqyKyHIwHMT2XQnKtUBV2OY6L5FoB03MpDCaCdUWWhBCP+DDLOBRulYroNm2acB/g+FoR3T42NNzXQgNOdyIzE8s2j4nk9AgZy4IiihjQNBwfGMDJgcG+vz47bNQxF4N1Jeyke6GtMZEuDMcBqwFgC/utRmZcrqwdujR1OhXn3HTW8IgvFFnEUCII03aqTVIKCtN0MJQIeRzAKo66p0/s2VTMwg5EVBAIgQRAhVdQAPTnQERA2n1MpNFnMZGVSEgAOBBp3bnCCikrBLSaGMyyXU9MOiuYXEsXocgiBuJB/MjJvTh5bKzvhWAAPM047gzWPbAxkXnb4qk2DUasM8DIxWCNgfgcTbmop79hRd4VwiEF7zg0gocPj6zrPW3FFZfTOjSxd4XJXmcwXm/ZLePBEM4fOYYBNYA72QxW9GJ1CMmhLlb0Iu5kMxhQAw1PuuK0n7ZUl1599VUAwPnz5z2fd11vsyQcDuO3f/u3cebMGfz6r/86fvd3f7dlx8jhcPqPyg3x4s3ruJPNIKYo0EQJxXIh+H6xgJRheKIfV3UdtkuhiCIGJREf2DPR1JgYSqkvJrI3xWBASbzy8R87gafPHsbMfAqm5UCRRT45ylBya6othrN5A0srueq/uStYd3N5cQFLxQL2R6K4XyxUN3WlBklJSC8QgolQBHeyGby0uICPHTy84fNVRJYvXpnBq9fu4e5iBqAUIGRL8RzRsIpUpgjA61C4HfgUCqcfkD3OYFwMxukNslZNKBOR+1sEVsFimn7cGaw7Yd1scoX2icFM10WREbIQ0t6YO7a5Y5i92yDcyDl3bCiMlVQR+aKJYEBGoWghoEkYGwpXv3czR10/PJbjwQQb0Mjqp5hI23Uxm6vt+/dHoi372RUh5aXLtzAQC0AQCGRJgCwJ1XVvUbcgh9WqYPLc2UOIhjWspovV5xnwOY30M2xNhzuDdQ+skNd2KSzX7StHx2Yj1RF+1ROIcXaGqkjVGECDi8H6mo3ccuU67nzA1lxxOa0jyBhZ6D0WMW9xZ7CGczQex4XjJ3B5cQFXksue/UQzk6447actYrBUKoVIJII4E2ckyzLy+fWOFu9973sRDAZx6dKlFh4hh8PpV/w3xKxlVptfAiH4W/v2e26ISzpTzFK1pgrBgFIx3mI2aZEeFoNViIY1nkG/AevdmkwsrxWq/x4ZDNf7Nk4XkDFNXEkuI6YoEAhBSJIBlK43edtCKcC2VAgTCEFMUfBKchnnJvZt2jjajciSPdd2KgarJ7qNqypEIsChLlKGgbRpekS3HE63Ie1QDJYrWFhMFmDZLmRJwMggFz5zOoesyYrB5E0e2T+wzmASF4N1JWwkTr64MzeincKKwWzX9UREaqK4qWCo2ahKf7hFVJxzL75wFdNzKcQiKhJRDcGAgkOTCbx1K4nkWhFBTcKhfQkEAzIcx8VaRkc6a2B0KFTXUbce/oGIen/dfh6ICDYiJtJhYyJ7u2E0m8tV70GKKGA81No9Uz0hZUCTYZX3iAXdQjioeASTBd2CbtSuswkuBqvCYyK7k4AkgZDSfB1QErL2+rWnldRzAasnEOPsDO4MxqlQT+S9EX6RN6f9sO66huPAobRnXMu9YjB+/W8U48EQnjt4GE9N7MNMLgvTcaCIIqbCkb4aRuo32iIGGxwcRLFY9HwuHo8jmUwilUp5RGIVFhcXW3R0HA6n32FviFdXlvGnd+5AJARRRcZH9x/0CL6WmWvZsNb8YlYmV7PiF0UBQY034/odNioymzew7HEGC9b7Fk4XMJPLImUYmAyXBH0h2Tt1ajiuZ+I9rqqYzeUwk8vi5MDgA59/JyJL1olwJzGRFfgUCqfXYScobefBYrDkmo6r11fww+k1ZAtWVesZDsoYHyD40eAgjjTxeDmcrZC1ag1cXiAqYXnEYLw42Y2EWTFYW53BHI8Aho37aAfeBmFvxY342cw599C+BAIBBcWihXTORDprbNlR149/ICIqy3BBIYDAoRRpo9jXAxEeMZhjg1IKss1GlsGsuXrVGSxjmpjJZfE3S4tY1XWEZRmHY7GWN/3qCSlVRQJggFKK5dU88gXLI5icW6zFWqqKxGtZDJvFRLLDIqJIQHo0urcbEQgpp0mU7pN520Jc7f2B3VZRTwzGYyIbByv8rziEcfqXjdxyWbbjistpHQHfvlG3bYR6ZHiPi8GaS1RRttRD4vQGbakw7d27F1euXEEul0O43OR8+OGH8dd//df41re+hb/zd/5O9bFXrlxBoVBAIpFox6FyOJw+JqooODu2B99fXoJdLsjcLxawN1RzW1pmnMGGA82fiGDdeKJhbdsFUk7vEWbcmtJZ3RO9MJToryZCL2E6DigAsdxcFokAVRSrE+8F2/I0OSqPM5toCd0IZ7AKfAqF08uwE8u2vfl0/8xCFl//61msZgyEAxLGBoMQBFKauMyZeONWHsvp2xgcGcdDB0eafegcTl0cSsuulCW4M1jpNaHgzmDdDitGKLTYGUxhCtqW66LINPjZCe92IDNxI5bV+3HHD3LOzeT0bTvq1oMdiHhlaQlrAAAKmsshoWk9MRCx09cq0IC4NcNlYiJ7LEpmoZCvDtKkDAP3i4XSaySICMkyFgr5lp83fiHlci5fHRgKBWSc+7BXMLmWrjmYJ2IBXsti8MZElv6/0bCIJDh4dFlEOD6GvaOx9hwwp0pQqonBdhpxy6kPj4lsLgozcGr2cCQ4Z2ts5JYrisKOXXE5rUEWBIiEVB1jiz0qBmt2GhOH0+u0pcJ0+vRpXLlyBd/73vfwgQ98AADwzDPP4Dvf+Q5+6Zd+CRMTEzh16hRee+01/OzP/iwIIThz5kw7DpXD4fQ5AiEYCwQxV46xXSz4xGAeZ7DmuzClPWIwPnHGAaKMQOfOfAq0vPgXRQEDcR690K0ooggCwKFuVegVkiTYrougLK3bBDnUrX5fs2CvOaxL4a6ek0+hcHoQeYsxkck1HV//61mkcyb2Dgc9TTFBIIhHFMhCyY3k/3nhNfzDn3oPL7px2kLOMsGYYCEic9Fu2raRtm24lEIgBIbrItSjTjS9DBsTaVo2LNvxCKGaicycL1admMh2orBuET3uDMaykXPuThx1N6IyEPHBsT34yp8vwQbFkw8dx8F4vKsHIhaWsnjxygyuXLuHVFavOnvFI6XoobOnN3dR03wCyKKz/bg1Niayl5zBbqRSuHjzOpaKBcQUBWPBENKmCVWgMFwH19ZW8PlrBs4fOYajdZI2mgkrpPzB28v4o2++CVEgCIdU/PiTRxEK1M5pdmhtMM4dzFm8zmDuhsMijuNieTWLl99cwuLa3+Dvf/RRHD0w1MYj5wQlCSvlj7kYrLGwIsna57gYoFH0SyQ4Z+ts5pa7E1dcTmsghCAgSciVndyLTu/ci2xGDKZwMRiHsyvaIgZ75pln8Lu/+7v46le/WhWDXbhwAb/1W7+F6elpvOc976k+llIKWZbxj//xP27HoXI4HA7GgqGqGGyhUJtmNBwHabMWJ9IaZ7CaAIOLwTiAN95maSVftXIejAch8oVy1zIVjiCuqkgZBgbLEbR7QmFMhgFgfVEsZRiIqyqmws3blLPOYLmCuaP4Fg6nH5Cl2vvC2iQm8ur1FaxmjKoQjFIKSuGx5CeEYGwwgKWVPC6/OoPnnj7R1GPncOqRNWuOSUFpvSC5n0iaJl7LZfFmPos7uo6KVcd/u38PDwfDeCQcwVAXCzr6jWBAhmk5yOUNOC7F996Yx4kjIztyfdouMvE5gzGFe3/cR6vxxkTyBmEziCoK9oIAIDgxMACpzW5wu+HGdBIXX7iK+8k8YhEV+8aiHieJS5dv4Y3rizj/7KkNhSsiIdBEEXrVBdlGTNlevcPsQTHYQiGPizevY9UoYn8kCoEQrBmlmhAhBFFZweFoDHP5HC7evI4Lx0+0xVkuGtbw+CMT+P4b8yjopRrZ/WQOBycHqo9hxWCJGB9aY2HdjnIFa9NhkUhQQjAYxEqqiIsvXMWF5x/vi8Y8G5cpSwLGhoIIB9vvfBKSGIdRLgZrKHWdwbgYrGHIfK3HqcOD3HI5nUmQFYP1UJw0dwbjcBpHW6oNH/nIR/Ctb30LwWBtEigcDuMv//Iv8TM/8zP47ne/W/38vn378B/+w3/A448/3o5D5XA4HIwz16qFQr76cZKJiFREAdEWuCRkWWewEBeDcTYWBQ4PdG+8CKfUIDo9NIxLc7NIqBoEQiBuILxyKUXaNHFuYrKpjgLsueY4LgpFy+OoweFwSnhjIuuLwXIFCz+cXkM4IFWbPAXdxr3lAoIBCdGQgnCgtFUjhCAW1nDlzXt46sxhXoTjtJysVRt+6GdXsBm9iG+sJLFqm1CJiKBAQIgASgEXFC9nU7hZLODHB4cwpfFGd6dTcTJ6/fp9FPVS8fz3v/p9jAyGt+RktFtkceOYSL9LUquxLQerqQIcl2J6dhWZnM7vPZy6LCxlcfGFq1hJFXBgIu4RtIuigKFEEAOxAGYX0w8UrgQkqSoGK25TVGG7bjUeB+gdMdjlxQUsFQtVIRgAZC0mtllRIBABE6EI7mQzeGlxAR87eLgtx0oIwehQGNNzqwDWi8HWGDHYABeDeWDfN4vJIkzbXScEYyGEYHIsijvzqZ4fFtkoLjMSlPHQgQROHRvEQKx9a9Mgc7/mYrDGUk/4xWMiG4eq1M5dw+TnLsdLI11xOc2HdZXuJWcwi9bqqTIXg3E4u6ItFSZJkvD+979/3eePHDmCy5cvY25uDrOzs4jFYnj44Ye56wSHw2kr7GTlmmGgaNsISBKWmIjIES3QkmtVhsdEcnxEQvULX1wM1v2cGRvH6ysrmMtnMRGKeOIjKriUYi6fxUggiCfGxpt6PKoiQZElmOW4oEzO4GIwDqcO/pjIei56i8kCsgULY4M1wXm2YIFSIF+wQYCqGAwA4lENs/czmJlPbbkolzFNzOSyMB0HiihiKhzZVDC63cdz+gdv47n9LgztIGma+MZKEmnbwl5FhU4p1uzS+1okBHFJRkyUsFh+3HPDo9whrINhnYwEQhAOKiCEYHggCMdxt+RktFvYgrY/JjLYoqhKPxWB3F+8dAvz9zMAgJl7aczcS7dEIMfpPl68MoP7yfw6IRiLIBBMjsUwPbe5cCUoSVgzSvWO7Yoq2IhIoDeiZDKmiSvJZcQUhdkHUp9Au3RPFghBTFHwSnIZ5yb2tW39NjbMiMFWctXPuy7FWoaLwTaiInCxbBcrKR3jjBDMdSkyeROSJHiEMIJAEIuoPT0sslFcZuU1efnNJdy8m8aPn5lAu1anXjGYtckjOduFO4M1F+4Cy+H0DoEeFSazSQvcGYzD2R0d6UM+MTGBiYmJdh8Gh8PhAABiioKAJFantRcLBRyIRrHMiMGGA8GNvr2heMRgkd4r9nC2T3gDh7iRQS4G63bGgyGcP3IMF29ex51sBjFFQVxVIRIBDnWRMgykTRMjgSDOHznWkkiQaFhFcq0sBssbGAdvCHI4fiRGDEYp4LgUkuhtkFq2CzCRkJRS5AqM4MYXeyKKAkDplgq1C4U8Li8u4EpyGSnDqAzQI66qOD00jDNj457rxXYfz+k/MiZ3Bnstl8WqbWKvopZiXZnIgkrDlhCCMUXBvGngtVwWHxoYbNfhcjbB72R0e24NuXzpHHddbMvJaDd4xWCOxwlJa0NMJCuQIwRVgVwwILdMIMfpLjI5HVeu3UMsolbXM64LzNxLYXgg5Ilw24pwhW1kbdcZjBWDCaQ33ANmclmkDAOT4XD1c0XHge3WHNDCcu01jqsqZnM5zOSyONmm+8/oYO1Y7ydrYrBMzoDDNPR4TKSXyvunoNswLRdRZuDPsl0srVaiQYE9g7X3SSKq4e7i9oZFuoXkmr5pXGY8oiIWVrC4UsTXL8/iyXeGsLcNx8mdwZqHKK4XGHNnsMahKjUxGHcG43C6mwCzd9S5MxiHw6kDfwdxOBzOAyCEeJqgi8VSVOQyExM5rDVfmGU7LnLFWjOOO4NxACCgSnApRV53kFzLYzVVgGk5GE7wxn0vcDQex4XjJ/DhiUmIgoDZXA53shnM5nIQBQHnJiZx4fgJHI3HW3I8Eea6w8bWcjicGrJvYtm26frHSAJAStP+QKn5U9GWEAKEAl4xmOO4ACGeCd563Eil8Plrb+LS3Cwc18VkOIwDkSgmw2E4rotLc7P4/LU3cSOV2tHjOf0J60IS7UNnsJxj461CDmFRrDl1MF9n3/GEEIRFET8s5JDroUJsL1FxMpoci0EQiOeaXYn2rTgZ3U/mcfnVmaYch98ZjI2JDLRYDOYXyCViXtfroUQQBybiWEkVcPGFq1hYyrb0+Didycx8CqmsjkS0VgtZWskhndXx9swKZhfSYFdAiaiGtayOmflU3edjz/ttO4O5tfePylyruxnTcUABiKR2rciatcGBoCR5vlb52HTa5/AyOlQTg6WzejWCdzVdqH4+ElIht8n9sFMRhZoLGAX1uOzZrCuGTxyznWGRbuPq9RWsZgyMDZbuRy6lALx7KkIIxgYDWEsbuD6Tb8txBqXaupiLwRqLQEhpY8zADl1xdoci1+65vXgN4XD6id0MVHQytsvFYBxOo2irM1ihUMDv/d7v4Zvf/CZmZmZQLBZx69at6tfT6TT+1//6XyCE4Pnnn2/jkXI4nH5nLBjE7UwpKmOhUACl1CsGCzR/sjGXN0sWI2UiGzhCcfqHhaUsvvP9acwtWzAtipVcEgQEQU3G179zg0e59AjjwRCeO3gYT03sa3uEW5S57mTyXAzG4dRDkrxF61ITx9v0GhsKIhKUkcmbiEdUZBlXsFBAgiAQUOaen8roSEQ0TO2Nb/hzFwp5XLx5HatGEfsjUU+0rEgEDGoBJFQNc/ksLt68jo8dPIg/un17y4+/cPwEdwjrUzwxkX3oDLZomMg5DsaYey7z9oTfpCBajotcNEwcDnakGXvfUs/JSGJECWwURbMjuNiCtu1ST7xUoMVCCX/UH+u84ZRFy1uN+uP0D6blgFJaje0yTAf3V2tuUIJAwF4eHyRc2Y3DDusMpgi9ITRSRBEEgEPdqtArIImIKQpyllWNiKzglN0TFLF9v380rEJTZehG6Xq2tJLH1N441tK12hl3BVtP5X4kCAQUgOu6EMr3CK8YzNsI3eqwSLeRK1j44fQawgGpKuxMpnRkciYUSUQsoiAWLq3JCCEIBWTcvlf0uCy3ipAswXQc5CwLWcvEG6srbanT9CKElNYjjlNbdItcDNAw2OuGYXIxGIfTzfSiGCxjmpjL57CmGxAJWRcJz+FwtkfbKpNXr17FRz/6UczNzVUbHf7JrWg0in/5L/8lrl+/jtHRUXzwgx9sx6FyOBwO9vjilNKmCZMpygxpzS9oZXJ69eNgQFlXCOL0F5Uol8VkDgIBFLksEKSAIBIe5dKDRBWlbZEfFVhnMPaaxOFwahBCIElC1WHGst11jwkHZTx0IIGX31xCNCQjzzQvwr6ISEop0jkd585uLka4vLiApWJhnbCLRSAEI1oQb2dS+J0fXEPWsnAkFqs+PmuZCEoyxPK/BUIwEYrgTjaDlxYX8LGDh7f3YnB6AtYZzN987gcs6oICnveVy7hTCPC+3yqPY2MNOJ1Bxclo31i0+jnWZcL2Xa+bGcEl+wQrOUYMpkmtK9XVE8ixrjRuCwVynO5CkUsOXI7jQhAFzN3PoHLZkyUBY8PeoaQHCVdYMVhxm86KK7qOVV2HQykopciYZteLMabCEcRVFSnDwGC53hSRFURkBRTUI0oGgJRhIK6qmAq3bxiMEILRoTBm5tcAAIvJLKb2xrHKiMEG48F2HV7HUhHgBjUJsiQgnbOQiJb23TYrhPE5g61tYVikG1lMFpAtWBgbrJ0rpuXCdQHddBB2vSd/NCRjdrGAxWTB/1RNZaGQx1/MzeLqShJm2Z1wRdcRV1WcHhrGmbFxPkizSyRR8ETMCjwmsmGwMZHcGYzD6W5Yd91il4umFgp5XF5cwJXkMt5aW6sOO3zx+ls4OzbO760czg5pi5JgZWUFzzzzDGZnZ3H69Gn85m/+JqLR6LrHEULwyU9+EpRSvPDCC204Ug6HwykxFqgVIfKWjduZdPXfMUWB2oLpS9aFJxbhhfduJmOWJgZfWV7CG6sryJjmg7+JgY1y2b8njqAmVAXVhBAMxUM8yoXTFNh42mx+e+cth9NPyEyzpp4YDABOHRvEQFTF7P18tdFDCBBmIiIppVhcKWJkMIQzj05t+PPmczl8+948KICUacAqNyQMx8GaYcCmLgq2hduZNF5fXcFysYhra6tYKhbx2uoKbmfSmMlmcDuTwWwuCzaGRSAEMUXBK8nlbd+vON2P7brIW7WmfD86g8mkJPdymc67w3ws+sSXlcfJhA9udBp+JyOgHNtbxvYVz5sZwaX43C1YYUcrYyLrRf0JzLG5vqb7g6L+OP1BJqcjXyg5l9+9l8bKWsETIb9nNOpxmAMeLFwJ7MAZbKGQx9duv43/fP0H+EFqFdfTa/h+cgmfvfoKvnb7bSwU2hMd1wiiioLTQ8NIm6bn/gMABMQrUKYUadPEY0PDbRfBsVGR95MlpzhWDJaIcmcwPxWBiywJSERU5IpWdXCejZtnxcuuS5HOGjh9Yk/PCXMt2y0NOTLXEPY+rMre+2fJUXnjPVczuJFK4fPX3sSL9xdBQRGWZERkBXtCITiui0tzs/j8tTdxI5Vq2TH1IqJvCJrHRDYONibSMHvDSYjD6Vd6xRmscm+9NDcLx3URkiVEZAVhSQallN9bOZxd0BZnsH/7b/8tFhYW8KEPfQjf/OY3IQgCfuM3fgPZ7Ppm9TPPPINf/uVfxne/+902HCmHw+GUCMoyYoqCdLkJ+vrqSvVrIy2IiASADFNcjfKIyK6EnW5IGQYoAAJse3KQjXIBsK7QHlAlHuXCaQpsPC3b8OFwOF4kSQCMUtOCjXdhGUpo+Mj7JvFf//QmCroNSRIQjyoQBFJq8ORMrGUsjA1F8P969pG6sb+V+8q37s3jZjoFVRCwUMhDEUWEJRm6bUMUBNjUhek4sCmFIggISBKKjoOgJMJ1KW5lMiAE1bXOclH3RGDHVRWzuRxmctm2OxRyWkuOiYgkBAj3oTPYmKogLIrIODbiUun3dzaJicw4NiKiiDG1/4RznQ7rZFRpMIaDCvZPxCGJIhS5dRFcIiEgBOvcfQBAa2HMWz2BnCcmktLqngVorkCO0/ksLGXx4pUZXLl2D6msjuW1PNIZAwCFpkoIaDIS0QDiUa84pSJcOXf20IbCleA2G1k3UilcvHkdS8UCKAXCkgxCCMKyXBVjvL6ygvNHjuFoPL6bX7ttnBkbx+srK5jLZzERitR1fnUpxVw+i5FAEE+MjbfhKL2MMWKwxTpisIE4F4P5Ya+5gzEVtlMaBhkbDPhiIkuPo5RidjGN0aHNh0W6FVkSAFK6bggCgUupRxTnvye7LgUhXnF3M1ko5HHx5nWsGkUcjERQsKzqGI1LKQa1ABKqhrl8FhdvXseF4ye4i8kO8Sdi8JjIxsE6g1k2X9NxON1MQKq9n7tVDMbeWytpB/PloQ5CCAY1DYog8nsrh7ND2rKC+tM//VMQQvC5z33OM3FYj2PHjkGWZdy6datFR8fhcDj1YRcYS8VaMWu4RWIwVnjBuvNwugP/dMNkOIwDkSgmw+FtTQ7Wi3LxJ4ZqWqlRyUa58Eg/TiNgrz25ormhyIXD6XfYwvVmU+qTo2HsHQlhZCAAQgDLdHFvOY/FlQJEkeCdh8L4+LmDOLp/fdwve1+xXQeqICKqqAjLMkzHwWwui1XTQMG2sKYbyJgWQFF2My3dP1wAuuNAJIDjukibJgQCRBSv4EcsOxyZXW45z9k+GSYiMihJkPqwCRMWJTwcDCPnOFWnDjYmUmRiIimlyDkOHgqGEW6huxNna0ztjSMe0bCWqa2LFVlEPKIhHJTXNZibGcFFCIFc5/0kbvD5ZsEK5CrIkoiD+wZwZP8gjvni5pspkON0Njemk/j8l1/Gpcu34Dgu9o1FceLwCBRFhGW7yBZMrGV0REKqJzzXdSlmFx4sXNmOGMzfMAopctUpWxYEDGoB7I9EsWoUcfHm9a51CBsPhnD+yDEMqAHcyWawohercTkOdbGiF3Enm8GAGsD5I8c6oinGOoOlMkXkCyayTC1iIMZjIv2wDliaKuHDj+9FLKxgfrmAXKHmEiYQgmzBxvxyAYPxAM4/e6rusEgnkStYePtuGm/dXsPbd9PIFawHfs/YUBCRoIxM2YnctGr3p5LoyyuKzOQtBDURY0OtObcuLy5gqVgoCzQFz9rYdmt/q4lQBEvFAl5aXGjJcfUifmcwf1QqZ+ew6zjLctY5wXI4nO6BdZXWHWedo2w34L23EsAXiS6UXXH5vZXD2RltqU7evn0biqLg1KlTD3wsIQTRaBTpdPqBj+VwOJxmMh4M4oepNZiOg5xlwaEUIiEti/HIcDFY11JvuqGCSIRtTQ5Wolz2jdXilT3OYATQlNo5mYhquLuYwcx8CiePjTX+l+P0FawzGChFvmDy2FoOpw6e2DF740LM/ZUiBIFg70gIY0NBvPedI9XvHxnUkE0lMZRY/x7z31dShoGFQgGUUhiuA9NxIQsCLNdFyjBKogNS+7dEBLiUImda5QZGSXzgAghKMjTf2qbSeFRa6FbD6QyyZq1p148RkRUeCUdws1jAomliTFE8BdbKuo5SikXTxICk4JFwZzdn+5VoWMPp43tw6fItDMQCnga8n604Ge0WWRBg+oT1AUmqilpaASuQG0qUGumCAERD9d/vzRTIcTqTTE7HK2/ewx/972vI5Q0c3DdQ3W8SQUBAlWCaDmzHBaUUd+bXEA4qUBURaxkd6ayB0aHQA4UrbMSN7jjVeks9Kg2jyt6abWJXvqfSMLqTzeClxQV87ODhRrwcLedoPI4Lx09UHcZnc7nq1+KqinMTk3hiiw7jrSAe0aAoEsxy7NgPby9XvyaKAq9l1cGv/907GsLHzx3E1esr+IuX51A0HYACqayAoErwnneM4KNPP4a9o7H2HPAWSK7puHp9BT+cXkO2UBpIAQEiQRkPHUjg1LHBunscAAiXH/Pym0uIhRWPE2XJwdMrws8XLTy0L4BwsPnutRnTxJXkMmKKUl3/SeU9FwDYtHZPFwhBTFHwSnIZ5yb2tT3CtRvxO4P5/83ZOX5Rv2k50FQ+yMLhdCPsGhoAdNtGsIsc3evdW/36VIFZ3/N7K4ezfdpyh3ddF9IWC1yUUuRyOYRCnbGp5XA4/YtICG5n0kjqOky3Voz4yts3MJ3NbDnib6ekmWnKKBdfdBX+YnU9tlqsrhflosikWg4LBxVPMZFHuXAaiSQKCGoKCnppSjeTM7gYjMOpg8RMrG/mDHZnIVv9eGo8jIcPJqr/dl0X2VT97/PfV8KyDEUQkbHM6kR6ReClOw4ISHXv5VKg4FgACNtLQahcLFoxdOxzw5CFWoE4ZRiIqyqmuMCl78gyzmDRPhaDDSkKfnxwCN9YSWLeNFAsix5IOecvZVvIOQ4GpNLjhnhRsmM5e3oKb1xfxOxiGpNjsbqCsK06Ge2W0nXW64DkL+Y3m04TyHE6BzYS8u2ZFaQyOlRVRLZgYigRwthQGPeWslBkCYkogWk5EAQB6ayBa28vYWgghEREw7mzh3Dm0akHOhj5h+x0266uTVjqNYwcnwCD/bgXGkbjwRCeO3gYT03sw0wuC9NxoIgipsKRjvudCCEYGwrj7r0UAOCtWzUxWDyibXqN6VcIIdWYeABwXIqhhIYPvnsPZhayyBdtuC7Fj/7IOEJSAUcO7cX4cOeuyWcWsvj6X89iNWMgHJAwNhis/n6ZvImX31zCzbtpfOR9k5gar/97nDo2iJt301hcKVbjMQGvgIXSUpxmIqbi2FRr+kYzuSxShoHJcM0BT2KuObbr3ffFVRWzuRxmclmcHBhsyTH2En4nMB4T2TgUxS8Gs7kYjMPpUhRBKA1HlAfWCk53icHq3Vv97mbs+p7fWzmc7dOWFdTevXtRKBSwtLT0wMd+73vfg2EYOHDgQAuOjMPhcOpzI5XCH0/fxnwhDwqKsCQjIiuIyAoIIVuO+NsplFKvM1iIT1N2C/WK1UXbRsowyqJCr7NEpVidMc26z1cvykUUCIbjEsaGwtg3Hvc8nke5cBpNhJnmZq9LHA6nhswIdv1xqpW4lGu3VvHa9ZWqWGxqTxhbod59RREFyIKAom17omQCUik2SQCgSZX7AIULQBWEkpgFQFRRoIkSVFGE6TjIWjU3KJdSpE0Tjw0Nd1zDkdN82HPBHx/ab0xpATw3PIrHI3EAQMGlyDsO0o4DEQSPR+J4bngUU1prIuQ5O2N8JILzz57CYDyI6bkUkmuF6rracVwk1wqYnkthMBFsegSXUqepqbXBgfHs6SmMDoUwu5jeMCaoVQI5TmfARkLqhgXHdREJqYgEVVAKzC9mcPWtBaylCwAASRJx/MgoTh8fx6F9AxhKBPGJnziFz3zqSTz39IktvY8UUYTECIUKG0RFVhpGcbW2J3HoemewCnFVRcowMJPLotuJKgpODgziseERnBwY7Nh1GRsVeW8pU/14IM4jIjeCFclVrsNFw4YkCoiFFSSiKt5xMI6g1tl1neSajq//9SzSORN7h4OIR9Tq7yYIBPGIir3DQaRzJr7+17NIrul1n2cooeEj75tELKxgeU2HUR6KVGQBrkuRyhqYXy4gFlbwkTOTSERas0Y1HQcUJYf/Cp6YSOrd91UeZzp8OHMn+J3AeExk4xAFwTNkbJj8HOVwuhVCCAJSbX2g2931fq53b3XhF4PVPub3Vg5n+7RFDPajP/qjAIAvfvGLD3zsP/tn/wyEEJw7d67JR8XhcDj1qUQxpUwdw5oGTaw5GwYlCUNaAPsjUawaRVy8eR0LhXzDj0E3bNjMQo5b63cP9YrVq+Vi9Ftra5jLe8+XBxWr2SgXFlUWMDoYLtvm1+BRLpxGw15/snkuBuNw6iEz1+KK2Cu5puPS/5nHl/7kOr7657fxtT+fxg/vpHB9JoX55TyCW5zE9d9XKChmczm4lEIkAmxKIRAgpiggKJl/UVBIREBMUeDSUtOiJAATIQtCdaK94jNZmcJzKcVcPouRQBBPjI036NXhdBOsOL2fYyIrDCkKPjQwiJOhMA4GAtivBfDUwCA+Mb4XHxoY5I5gXcLRA0O48Pzj+PCZQ5BEAXcXM5ieW8PdxQwkUcC5s4dw4fnHcfTAUFOPQ6ojBmu1MxjQWQI5TvtZWMri4gtXsZIq4MBEHKoswrJcqEppKEmVRUgSQS5vIp01YDsOYhEVsYgKRRYxtScGEIJQQNm2gxzrDlawrbqPqdcwYp3bWWdTgDeM2sHYUP0Bh0SMi6U3gtW8OGUxWEGvCSIVWeiKiLyr11ewmjEwNhjYMBGGEIKxwQBWMwZeu7Gy4XNNjUfw8XMHMToYACFAwbCRzppYXClAFAnec3IEHz93EPvGtzZQ0wgUUQSB142wci8nAHxGJtXHKW0QevcCol8Mxp3BGoqq1O65PE2Cw+lu2DV00ak/UNGp1Lu3KoKAdw4M4sTAAN6RSICNNeD3Vg5n+7TF+/Pnf/7n8Z//83/Gr/3ar+Gxxx7Dhz/84XWPuX//Pn7hF34B3/jGN6CqKv7RP/pHbThSDofD8UYxzedzMJya+KHisrHViL+dwrrvSJLIrZu7iHrFaraw7Z/+f1Cx2h/lshk8yoXTDCIhLgbjcB4E26yxbLduXMpySodhOjBtF6mMiT/59symcSkV/PcV3XGwZhiQhJLYK2dbEIgA03WqYjCXUhjl+0pcVTAWDCEiy6CgeDudQda2oAiCx6VmRS8ibZoYCQRx/sixpkZhczoXNiYy0kVRA82GEiBWFu0cCYQQFvnavNsYH4ng4z92Ak+fPYyZ+RRMyykJWfbGW7ZurucM5o/KaxUVgdyLV2bw6rV7uLuYKXW1CdlW1B+n+3nxygzuJ/M4MBGHIJCqMAUACroF3bBAKSBJAkzbQdGwsXc0Wn2MKAoApTtqLAcluepIWdzA1YBtGIlEAAWFzuydNcm7v+YNo9YzOlgS55iWg1zegONSiAKBxt3KN6SeMxgrBgtqnb/OyBUs/HB6DeFAaYDWpRS64cB2XDgORSJaqyMQQhAOSHhreg2PnxxBOFh/jZmIqhiKa4iGFBR0G+99ZASJiIqxoWD1e1xfNGMzmQpHqgOcg2Un2NFAAKOBIEqmVV4BXGWAZyrM7507gTuDNRdFFlEolj42zO4Sj3A4HC/sQNFG7rqdSr17K0BACCCCwH/p5/dWDmf7tGUncfz4cfzar/0aPvOZz+Dpp5/Go48+inQ6DQD4qZ/6KczMzOCVV16BVS4A/Pt//++xb9++dhwqh8Ppc/xRTEFZxqpREz+wxXo24u/cxL6GWvanczUXqFhY3XDCjtN5+IvVLqUoMovykK+xupVi9dnTU3jj+iJmF9PYOxKt+xge5cJpFlEeE8nhPBBZqhWu1zIGXvlBshqXQggBpRS5glV12BgZ0KpxKR8/dxBDiY2FCP77SkCUMBWJYCabRULT8FAggeViEUldh+7acGlJDCYQgj2hIEYDQQSl2r3nHQkRi4UCkrqOdNkFKm2aGNQ0nJuYxBNj41wI1sewMZGdGkfVaiilMBlxhCzwdXk3Ew1rOHlsrC0/u74zWPvEEp0gkOO0l0xOx5Vr9xBjot1ACEzLwWq6AL/QQRIIBN/nHMcFCIGyA+FPkG1kbeBq4G8YWY7rceNRfc5gvGHUenTTxsx8GvdXsp7oMd18A7P3Mzh7mgtL/YjMWqIiwCzqtdeuG8Rgi8kCsgULY4OlOFDXpZi7X3PCj0VqEfcAEA0pWFwpYDFZwOF9sbrPmS2YoLS0t4pHFJx+aLitgqCoouD00DAuzc0ioWoQCPEMfrK4lCJtmjg3McnX0DvE/7fuBne8bkJVavdL7gzG4XQ3rBhM7zJnsHr31o3g91YOZ2e0bSfxK7/yKxgcHMQv/dIv4cqVK9XP/+Ef/iFoeRcfj8fx7/7dv8NP//RPt+swORxOn1OJYpoMlyYbg77YDs03uR1XVczmcpjJZXFyYLBhx5FlBBe8EN9d+IvVRduupp4LhKxzBttKsboS5XLxhau4cy8FveggqJaKIo7jYi2jI501MDoU4lEunIbDOoNxMRiHUx9JqhUvpuezWM0YVSEYABQNB45T61xGQgpiYWB+uYDXbqzgQ4/v3fC5603NxRQVB6IEIUmGQAgisoKJUBg5y8LbmRQyloV3DgwiUqdYEpRkHIzGsCcYwtuZFB4dGsaHJ/ZhKhzhxZU+x3Zdj4Cdx0SWcEBBUXv/qhs0ATmcB9FJzmAs7RTIcdrLzHwKqayOfWOlgSNKgZW1AhzXBWitMU8IoKkyVEVEQbeQy5sYiJfWJGsZHYmIhqm98W3/fLaRVdzA1cDfMGJdwRRB8DSQeMOo9dyYTuLiC1exmMyCUiAcVKqDEKJIcOnyLbxxfRHnnz3V9CjebuKBzmCB9t8bHoRll64Tld9F9Inlbdv1iEQrj7PsjZ290lnGoTYkd4Qz1Jmxcby+soK5fBYToUjdprVLKebyWYwEgnhibLwNR9kb+GMhBR4T2VAUmcdEcji9gicmcgN33U6G31s5nObS1hXUJz/5SczOzuKLX/wifu7nfg4f+chH8NRTT+ETn/gEfud3fgfT09NcCMbhcNqKP4pJE0VI5YKFQIinWAk8OOJvJ2RyOt68cR/Lq3mspgoetxFO51MpVqdNEy6lyDMRkUFJAsH6YvVjQ8MPLFZXolw+9N6DEASCtZyDO/Mp3F3MQBIFnDt7CBeef5wXWDkNh3UG4zGRHE59Kvdqy3Zxb7lQjUupkCsw94KABFEgnrgU9ut+/PeVChHZO22viCLiqoqorGAiFMKaqXsez+JSiiW9gP2RGP7e4aM4OTDIm6YcT0QkIevdTPsV1hUMAGTemOLsEFlY75ykSZ3f8Of0LqbllEU7pevaYjIH3bChKVJZoEIR1GQkogEENbnUqKc1JyPXpUhnDZw+sWdHQ2xbjbg5MzaOkUAQc/ksisz+mo2I5A2j1rOwlMXFF65iJVXA3tEINLW2/pUkASODYRyYiGMlVcDFF65iYSnb5iPuHNg1vFNHDBZQO//eIEsCQGpiNkKIR7zl+NZPlcdtVuNM52pr0ThTh2gn48EQzh85hgE1gDvZDFb0YtXh36EuVvQi7mQzGFADOH/kGHdY3gWSxGMim4nHGczsPvEIh8OpwbpLbzRQ0cnweyuH01zavpMIh8P4xCc+gU984hPtPhQOh8NZhz+KiYBgfySKVV1HXFUh+lTqW4n42yoLS1m8eGUGV67dw+27qyjopSLnWkaH5bjcWr+LYKcbbKYAFmKK3TspVo+PRPCxp94BmruF1YyNd/3IowhoCo9y4TQVVgymG1Y1QojD4dSQy03Ugm5DNxxEQ6ywiiLLiL0iwZrAho1LOTix8T1+O1NzE+EIfmxyH/5s9i7uZDOIKUp5DSPAoS5ShoG0aWIkEORFFY6HrFk7T0OSvG7d268Ybs3BQgSBxF8Xzg6pJyT0uwZzOK0ik9Mxu5BGvmAiuVqAIBLcX8kBAIKaDJdSiILgEfhQSgFScgByXYrZhTRGh0I48+jUjo4huAVnMKDWMLp48zqup9dguy5UQYQqSnxt00ZevDKD+8k8DkzEkcoawFqx+jVVkUAAEIFgciyG6bkULr86g+eePtG+A+4gWJELrecM1gUxkWNDQUSCMjJ5E/FIqWYgiaTqhmw7XjFYJm8iEpIxNhTc8DlTjDNYLNI5gypH43FcOH4ClxcXcCW5jNlcrvq1uKri3MQknhgb59eeXeJ3BuMxkY2FreMZZveJRzgcTg3WGWyzgYpOht9bOZzm0fk7CQ6Hw2kj9aKYQpKMULi+M8JWIv62QsVa/34yj1hERSioQBQFUEohCNxav9uoFat/iNdWViAJBKogIiTLDSlWB1QBe4cVnD6+BxJ3E+A0mVBAgWW7yOZ0OC7F37w+h3ceG+UCRA6HoTLF7LoUbvneXcGwXE9EZJgRg20lLgXwNkG3IvA6Go/jQDTKiyqcbZFhnMF4RGQNk9ben/Vi/jicrVJPDBbka3lOi2GH0JKpApJrBSyt5EEphaqICGgyQkEFB/cN4NbdVWQLJhRJhKqIMCwHiiTAtBxMz6UwOhTC+WdP7XhozSMGczZvZFUaRv/u9au4lckgZ1uQDR2m4/C1TRvI5HRcuXYPsYgKQSDrxEuqUvu3IBDEIiquvHkPT505zPeR8DqD2V0qBgsHZTx0IIGX31xCLFyKB5VEAQZK6ybbqa2fKKXIFW285+SIZy/kh3UGi4U7ay06HgzhuYOH8dTEPszksjAdB4ooYioc4Q7LDWK9MxhfdzcSHhPJ4fQOrLuu/oA1dCfD760cTnPo/J0Eh8PhtJFKFNOluVkkVK2u80aFSsTfuYnJXS1OWGv9AxNxCALBYrLUtCWEYDgRQjAgY3YxjYsvXMWF5x/nDmFdwNF4HM8fPoql4mtI6jpytoXlYhECIbxYzekaKs2iN24sIl92Nlr52isYHQrj9PE93LGQwylTmVoWBAJQCtetCcIMJoJBVQSIjFBsK3EpFbY7NceLKpztwsZERhQeEVmBjYlUuCsYZxfUdwbjZTpO6/APoR3cG4dAgFt3V0FdilzRhW46mBiLYSAWgHZ4GIvJHJJrBeQKJnTDRjyqQVMlPPHYPpx5dHd7ge26GowFghgPhhCRFeQsCx/cO4HxUIivbdrAzHwKqayOfWNRACXxl1B2jCv92+t6mIhquLuYwcx8CiePjbX8eDsNoc5+oNhlYjAAOHVsEDfvprG4UsTYYMAbE1kehqGUYnGliIGoikeODm74XJRSrxisg5zBWKKKgpMDG/8enJ3D7pMBHhPZaBQ2JpKLwTicrmar7rrdAr+3cjiNpSU7iT/4gz9oyPP89E//dEOeh8PhcLbDdqKYthPxtxGstb4gELgUsBmHEFkWIXBr/a7EphQHozFMhMIQBYKnJvbxRjyna2CbRYIgIBwsTfsOxoNwHJc7FnI4DBUxV1CTIEuCJy6FFYP5I1a3EpfCshOBFy+qcLYKGxPJncFqcGcwTqOod/4EeEwkp0XUG0IDAFkSQUDggkIWBYiigNmFNKIhFcGAgoOTA9gzEsXtu6sIh1V87KnjeOzEnoa4O7GNrIJtbfLIElnLgum6UEQRA6KI9+/ZC5W/h9qCaTmglFadewgBQgEZ2XxJzBPUvKJyURQASrkAoYx/OMS2XZhWbb3RLWKwoYSGj7xvEl//61nMLxfgOC4opSCEwLQcpLIGckUbA1EVH3nfJIYSG1838kXb46bcac5gnOZjmjZWUwU4bunakssbiEUC7T6snkFlYyL5tZjD6WrYgaIHuetyOJz+oyU7iZ/5mZ8B2eXELCGEi8E4HE5b2G4U026cnfzW+gBgsRsyUhKDAdxavxuZK7u2KKKIRwaH8NjwSJuPiMPZGv5m0d2FNFIZHUAp7mF8OIyBWIA7FnI4ZWSp0lAVEIuoyBXtalyKYdYaOxozjeuPS3HdzaMiWbjAi9MMWGewqMydwSqYLheDcRqDVM8ZjMdEclqEfwgNAApFC2vpImIRFemsAUoBTZVQKFpYTOYwtSeGtYyOdNbAvr3xhg+BBHyuBhURyUYkdb36cUSWuRCsjSiyCEIIHMetCsL2jERxbzkLTZEQCauexzuOCxCybjCiX2GdwRyXeiIiCQE0VQRA63xn5zE1HsHHzx3E1esr+N61JaxmDICW6gaRkIz3nBzBI0cHNxWCAUAqW1uHhgLSlpyTOb1BxZH+0ku3cO9+BkCpN/jZ3/lr7kjfQBQmvtcwuXiEw+lmvDGRDlxKN0044nA4/UXLVtGU0l3/1wi+/vWv4yd/8iexZ88eqKqKsbExnDlzBv/kn/wT2HXsEy3Lwm/8xm/gkUceQSgUQiKRwAc+8AH88R//cUOOh8PhdAeVKKYPT0xCFATM5nK4k81gNpeDKAg4NzGJC8dP4Gg8vqufU7HWT0RrRRF2UlIWBbAu2YmohrWsjpn51K5+Lqc13Cvkqx/vDfE4SE73UGkWTY7FIAjeor1ll65RFcfC+8k8Lr86065D5XA6gkpMJAAkogoGogoWV4qg1PU6gymlx201LoXDaSVZi3EG4w6mVTzOYIQ3Jjk7RxG8IghNFHnRntMS6g2hOS7FnXspUAoosoThgSD2T8QhCgSu62LmXgrT8ylIooBzZw/hwvOPN9wNmHUGcylgOJs7lazoxerHgxofjmsnU3vjiEc0rGVqAr2AJuHQZAJ7RyPwX9nWMjoSEQ1Te+MtPc5Oxe8MVjRqPQpNET1isW5gKKHhw+/Zi7/zgf04uDeK/XsieOhAHD/z7DF86PG9DxSCAUA6Z1Q/7tSISE7juTGdxOe//DIuXb4FSl2EgwoiIRWRkFJ1pP/8l1/Gjelkuw+162GdwbhLI4fT3bDu0nQLa2gOh9NftGTkcHp6uu7nKaV497vfjZWVFdy+fbupx2DbNn72Z38WFy9eBABMTk7ikUcewcrKCr7//e/jpZdewmc+8xmEw+Hq9+i6jnPnzuHFF1+EKIo4fvw48vk8vv3tb+Pb3/42Pv3pT+Ozn/1sU4+bw+F0DjuJYtoufmt9oCa0ANbHSXFr/e6haNtYYSaXuRiM0y3UaxZ5xGDM9Yc7FnI4JdjJdU2R8L7TY/jmS3OYvV9AwbChSAIIIZBFYVtxKRxOK8mYNUeGCHcGq2K6tUE1pcuas5zOwu8Mxl3BOK2iMoS2bywKoOQ3NLuQhlkRrBPg8OQgwiEFpuUgndWxmMzhI08exQffe7Bpa3xNFEFIqYkFlGJuNntfrBi1/fWgxqPD2kk0rOH08T24dPkWBmKBTcVLrkuRzho4d/YQ3y+WEXxiMNYZLBjo3ntDIqZV4x01VUQ4uPX1JOsMxiMi+wO/I/1quohcvjScIooChhJB7kjfQNi6nmnyvgKH082oogiBlIYpgFIfKsD3lhwOp0xLrgZTU1Mbfk0sK1Y3e0wjuHDhAi5evIgf+ZEfwRe+8AU8+uij1a8VCgVcunQJquq1rP70pz+NF198EQcOHMA3vvENHDt2DADwwgsv4O/+3b+LX//1X8eZM2fwt//2327qsXM4nM6imVFM9az1Pc5gPjEYt9bvHhYYV7CgJCGuqJs8msPpHPzNIgCQJXaC0Btll4hquLuYwcx8CiePjbXsODmcTkLyxZiMDwfx8XMH8e3v38PLby6hYNgQCEEypW8rLoXDaRWm40BnpkkjMm/CVTCYmEiVO4NxdoE/ZjTAI+44LcI/hEbdcm2hzNhgGOFQ6bqvyCKGB0LIFUxMjseaKt4hhCAgSiiUkxsKto3EJttmdthqiDuDtZ2zp6fwxvVFzC6mq47SflyXYnYhjdGhEM482txeQDchiv6YyNoaLKB2bzM3oNXua4bpwHXpll3OMrmaGCzOncH6An98MRsTXPmw4kg/PZfC5Vdn8NzTJ9p0tN2PymMiOZyegRACjVlDFx3+nuZwODX6onL5rW99C7/3e7+H/fv34y/+4i88QjAACAaDePbZZyEz087379/Hf/pP/wkA8Pu///tVIRgAPPvss/iVX/kVAMA//af/tPm/AIfD6RvqWetbdq0oywowAG6t303M52tisD2hkKeoweF0MvUcC2VfTCQb5s0dCzkcQBIJ2Mu8bVMMJTQc3R/Dsak4Du6N4vTDQ/j4uYPbikvhcFrFQj6PVV3HcrGINUOHS+mDv6lP8MRECn1RUuE0CVkUYDpO9b22ahgeRz4Op1mwQ2gAIAjAwX0DGB+JIBJSMDoU9jy+lUNorItBpaFVD0qpRww2qPJ1VLsZH4ng/LOnMBgPYnouheRaoXqOOY6L5FoB03MpDCaCOP/sKe7ow9CrzmCskI1SQDe2ViOglHJnsD6jniM9G53t+ZhxpM/k9HXPxdkaCo+J5HB6iq2uoTkcTv/RF5XLf/Nv/g0A4Bd/8RcRiWxto/nCCy/ANE0cOXIEH/jAB9Z9/VOf+hQA4MqVK7h161bjDpbD4fQ1FWv9dPb/396dh8dZ1/v/f92zz2Qme9OkSZvupbQItEpRQEBbFkHqhizigpwfFUU5Ho6gl4cL1+9B3OWowNcjfBXEg3xdqigIWJQi1C+UFgslXUjTLaHNPpPZ5/78/kgymbRJlyTNTJLn47p6XZN7mbwnzf3J577v9/1+J2T31XVNDaoMNjBs95fWX7Z0BqX1J4C9PZHsa1pEYiI59GZR7zKHXC6HAn63QkGvcu6LU7EQUO9TeYNbPvceJB1dSbldDpUEPTp5bpnmzyo5rnYpwInWHO3RI6/v0He3bNKrne1q6OrQa50dunPzRj3y+o5BlU6nqkFtIqkMhhFqjvboz3t2a1Nba/ZYe+6NFt2x6UWONZxwQz2EZkmaXlGkubPKdehzS+P5EFog50ZW7Ag3sqLp9KAKlhVUBisIC+dU6oarVmjlWfPkcjq0u6VbjXs7tLulWy6nQ6vOnqcbrlqhhXMq8x1qQXE6BlcGi+Ukg03kymBul0PunIrJscSx3ZyOJzKDKpCXBKmsP9n1V6QvKx4Yy3On2Yc+UFtW7FNHOK6mfZ3jFOHk4/EMTgYzPPwDTGj+Y5xDA5h6Ju7ZxDGKx+P685//LElauXKlXn31Vd1777169dVX5fV6dfrpp+u66647rE3l888/L0k655xzhnzf2tpazZkzR42NjXr++ec1b968E/tBAEwZh5bWT6UHLnB6+iqDUVp/YskYo5ZoNPt1bSB4hK2BwpJ7s6iyLCBJcjkdWrqgasjtqVgI9HK7LPVff0n3JVO259x0LSvmpgYKy7bOTj2wvUEHYlFZlhR0uftadjmVsW09uXePXm5r0zULFmlhaWm+w82bwZXBqPSK49d/rO2P9sjIZI+1cq+XYw3jov8htCef3anyEv+gqkSHjmr9D6GtOnveuDyENuhG1hFa3LTGY9nXRW7XoP2QXzVVIV1+0VJdePZ8Ne3rVDKVkcftVH1tKQ8yDuNIlcGKJnBlMKm3VWQq0jt3OtZksK6cFpFej1M+Lw+aTXZDVaQP+Ny9f5SM5PcNfoCKivSjl/sAp23bymSMXC7ObYCJKuAcmC/kPjABABP7bOIYbN68WalUSpL0zDPP6MYbb1Qyp+z+H/7wB91555267777dNVVV2WXb9u2TZKOmOQ1b948NTY2qqGhYczjNsYoTfZuwcn9P+H/ByfKtHK/rrzkFP3i9y/r9b0d6grH5XI5ZFmWLMvoYHuPuiIJVZUX6cpLTtG0cj+/jwWuJRpVsu9CtkOWKj2eMfs/Y1zCiRbwuXTa4mo99dzrKg35Bl2oPpRtG3WG41r51rkK+Fz8Tk5BE3lMsm1btm3LGCPbto++w1G4HFb26dpEMq1EMq3uSFL9D9yWhtxH/D65saTTaTloR4cTqDka1c+3bVV7IqH6YFAHY3F1WUkZGXmcDpV7vSr1eLS3p0c/37ZV15+0RDWBQL7DPia5Y1H/cT4aiczAk/Ouvvc8VhzXGHSsFQUVTfderzIyclkT+1jDsSuE+dKZp9Zq89Zm7W7uUt304iHn+LZttOeNbk0rD2jFm2rHJVavZcn0Jd2GE8lhv+eBnp7sdmXusTu/xtgJ+FxaPG9wBbCJ9P801ucGR2JJ2blFOmOrJ5bKfu3zOA6LZaznEMc7Jh3Pz8bncarL9N6L6Ymljuln2dEdz37+kiDnTFOB0yFZprc7Rn9CmMvp0Ny6MsUSKZUV+7MdNKS+ivSmd7+JNK4UEqdDg36m0VhCAX/hVC0vhLkSMJF4cubQkUSC42aMMSahULmO4aEoy+S5/mdNTY0OHDigzAnKVP3tb3+r9773vZIkt9utZcuW6a677tKpp56q3bt364tf/KIefvhhud1ubdiwQaeffrokacmSJXr11Vf14x//WJ/4xCeGfO8rrrhCDz/8sG688Ubdddddw8Zwzz336N577z2meLdu3apYLKa5c+fqO9/5znF+WgCTSVcko+1743qhIaqMLRkjlQYdKvI7VT/drXkzfCoJ8nTcRLBbtraq989tqSytmBpdmjGJdEUy+uvmsHpitspCzsNK9Eu9F6/bwxkF/Q6de2qI8QlT3t+3RBSO9l6IOXW+Xz6PpQ2v9laJdDqkdy4PDXksAfmwURltlVGFJEuWOmTU36QuJKmkr1aMkVGbpMWytExTc5x/Shn1X/p7mxwKHVZHBxhe7rEmWdqngUtypZKCHGsYR2+0p7Rha4+6o7b8HksBr0MOh9VbmShhK5Y0Kg44tGJxkaaXj88N4u2y9XrfcTFDlk4Z5tz5Vdna07fdLFlazDk2JrAd+xLauS8hSaqpcOuNjpT685/etrRIocDE/TuweUdULe29M6f5dV7Nm3H06shbm+La/UZvAlldlVtLZvtPaIzIv1jC1mP/6JZtGwX9R/99j8QycjgsXXRGsfxexv+RMMbozy+E1T8VPedNQQV8/CyBiWqbbDX2HdC1srSUuTEwJaxevfqo20z6ymCRSCT7OhAI6E9/+pPKysokSfPnz9dDDz2kbdu2adOmTfr617+uRx55RFJve0lJ8ng8w76319t78hKLxYbdRpKam5u1cePGUX0OAFNPSdCpxfU+vdGRViJlyzbSmScXqaLYxYnuBNOZ87o0TzEAo1ESdGrF4iJt2Nqj1u7MUW8WkQgGSC7nQIJIxjYKRwdu+IcCQydVAvkQk9FuST71JoJJUu6jWrkjuiVLvr7tF8vIP8USoWwZ5T4DOukvqGBMDXWs5XIot1Xf1D7WMD6ml7t17qkh7dgX1+4DKXVEMjJGsizJ73Xo5HrPuD+ElnsVNnWE7XpyXhedoFiA8ZLTGU/JlK3cQlhe98Qe/72egQ+XSB5bhbVIbGAmGiQ5ZUrwex2aVeXW1t0JFfnMEc+VjTGKJY1OrvdwfXwULMuSy2EpnemvSpjXmiEARulY59AApp5Jf+3S5/NlX3/sYx/LJoL1czgc+uxnP6uPfvSj+vOf/yzbtuVwOLL75baUPFQi0fvEjt9/5KdTampqtGzZsmOKt78yWElJiS655JJj2gfjJ51O6/HHH5ckXXjhhcdUfg8Yjab9ndrd9YokKVTk0Zor35LniHA8upNJ7Y5E9MKunQrZGQVdbl06Z54WlpSO2fdgXMJ4uvhgWH9/aY9eerVZXd1x2ZIspzSjwqdlJ9forafPVM20UL7DRB5N5DHJtm3t3LlT+/fvV3V19ahbjOzp2Cfb0VsJrKZmmjrDSZWUdEmSFtSXaOHCqqPG09LSohkzZmjevHm0PMEJs6W9XX997RXNDAbl7LvxEu/slMvuvRFXFwypJOchqYwx2hOJ6KSTlmhpeXleYj4eyWRSTzzxhCRp7ty5oxqX4rat0oMt2a9PnlYt93EcmxzXU9tQx1p3e7vsvie464LFCnkGqi9NtGMNx64Q50vdkYR27+9UMpWRx+3UrBmlKg4evYLPWHuts0OxPU2SpGp/QJfMXzjkdk2vblEo05uee8mceZoV5BwEY2uszw2OJO3q0BvdrZKkQJFbaav3Nq7DYWnJyfNkWdYJnUMc75h0PD+bpKNDnbHez1ZaHtTChTVHjeflpkaVWL3H95LFMzRj2vApn8ytJo9lZ4R1zy9fUHtX7KjtixfN8+tfrnwz159GaW/4/ync03v/8+xzlmpmTUmeIxpQiHMloJBtaW9XfN9uSVJtoEiXzFuQ54gmF8YkTGTj8tvqdB79CbKjbWNZ1oj6sOYmfy1evHjIbfqXh8NhtbW1adq0adn92tvbh33v/nWHJpgdas2aNVqzZs0xxbt8+XJt3LixNzOfwaSguVwu/o9wwsUSmezJb0nIz+/cBNEc7dGzLc3a2HpQbfG4mqO9zy17HE7NLSlRmd+vmsDYP7/MuIQTbWZNma6oKdPFb1+opn0DN4vqa0tVHPQd/Q0wpUy0Man/oRDLsuRwOEZ9I8HjdmWfaM7YUmc4mf26otR3TO/fH4vL5eLGBk6YjCXJsuRy9J6T28YoadvZykVep0uWNfD757J6fzczlibEMW7nlNcY7bGdtu1BlQo8zuOv8sdxPXUdeqxJks/lVCzdm3jpc0/sYw0jUyjzpfJSl8pL819jK+j1Zo+DuG0P+bOJptOK23Z2u+lFwYL4GWJyGetzgyNx5cwneuKZ7Osiv2vQPZPxmEMcy5h0PD+bIr87+3niicxR406mMoolBn4GZcVHP29ibjU5zKwp00fec7oeWLtJTfu7VBLyqqzYJ6fToUzGVkd3XF3hhKZXFumay07TzJoj35PD0fm8bvXEepNPM3bhzjcLZa4EFLLcOXTCGI6ZE4gxCRPNuPy2GpO/EqMnnXRS9vVwLR9zq4f1XyheuHChnn32We3YsWPY9965c2d2WwA4EbojiezrYNHwbWtROLZ1duqB7Q06EIuqxONRmcerSColY4xsY/RMc7MaOrt0zYJFWlhamu9wgREpDvp0yqLqfIcBFDSXayBBJJm21REeqDhcVjz+lTaA4XicTlmSMsaW03KoJ51S/xm807Lkcw1+cCtj7Ox+U00yJ7HMYzlo94rjcuixJkm1gaAOxKMKuT3yODjWAH/OjZXYMA8Ft8Vj2dc+p1MBbsZggnPmtJe37YH7KAHfxP/d9nkH/obFEpkjbClFoiltbexQR3dCDoel4qBnUvwMcOwWzqnUDVet0PqNTXrplf3a3dKt/v7FZSGfVp09T2edXq+aKiqCjQWvZ+D4SqaOfHwCKGz+nOs2w82hAUxN4zKbvv3228fj2wyptrZW9fX1ampq0uuvvz7kNv1JXT6fTxUVFZKkM888U/fdd5/Wr18/5D779u1TY2NjdlsAOBHCPQPJYFTdKXzN0R49sL1B7YmYZoeK5bAs7evprQpmWZYqfT7VFQW1tyesB7Y36IYlS09IhTAAQP65XQNPpXd0JZRO997UtyySwVBY6oMhlXq96kwkVOHzK5xMZdcF3e5shbB+nYmESr1e1U/BllxJk5MMRuUJHKdDjzVJKnK7Ncc9dEueqXysYerKTexK2rbSti3XIeNtWzyefV3h85GYiwnPMczvsN878ROhcpO5Yom0jDGHHbOtHXFtamjTa40dOtARV3ckKVm9VcWe2rBfpy2qUGUZ10SnipqqkC6/aKkuPHs+FelPMI97IHmEZDBgYsudQ8cyQ/+9BTA1TfpkMEm64oordOedd+rBBx/U7bffflj5vp/+9KeSpHPPPTe7bvXq1brxxhu1fft2rVu3Tueff/6gfe655x5J0umnn6758+ePw6cAMBVFegaqiISoDFbwnm1p1oFYNJsIJknR9MAN1YDLJYdlqa4opF3hbv29pVnvn8vfEACYjHKTwQ50DFSwCBW5B60D8q3Y49Gyyml6cu8elXl9CqcG5p9Bt3vQtrYx6komtapupoqHqbw9mSVzqnV4ubCK43TosTbczX+JYw1Tl985+JptNJ0+7BhoSwwkg1X2JVYCE5nDMfTfg4B/4ieD5VYGy2SMUml7UAJKU3NYf3xmj9q7Ewr6XQr6XcpkjIwxcjotbdhyQNt3d+ld58xUfQ3J0VMJFelPPI9n4FhMJKkkBExkPqdLyUxGkVRKGWP04sGDWlhayrkkAE2JuxD//u//rpKSEjU2NurGG29UvO8JMmOMfvCDH+j3v/+9LMvS5z//+ew+06dP15o1ayRJ1113nRoaGrLrfv/73+vOO++UlP9ENwCT26A2kQGqiBSy7mRSG1sPqsTjyd7YsY0ZVJa3qO+GqsOyVOLx6MXWg+pOJod8PwDAxOZyDpxqpVID1YSoCoZCdFZ1jar8ATVFugfNXULugQuHtjHa2xNWlT+gt1XX5CPMvEtQGQyj1H+s7e0JyzZmyG041jCV9VYBM2qPx3UwFtNLbYefMx9aGQyY6JzDJYNNghaJPo9TubnPsfhA9aHWjrj++MwedUWSqp0WUGnIq3Sm92+jZVkqC3pVOy2grkhSf3xmj1o74oe+PYBR8LhpEwlMBs3RHv2hqVGb21v1ame7Gro6dO/WLbpj04t65PUdao725DtEAHk0Ja5eTps2TY888oj8fr/uueceVVdX64wzzlBtba1uuukmWZalO++8U+edd96g/e6880699a1vVWNjo5YsWaLTTjtN8+fP12WXXaZEIqGbb75Zq1evzs+HAjAlDG4Tyc3jQtYUCWdbufSLptPqv8XjsCz5nANPXPW3iGmKhMc5UgDAeHC5hr6pU17C33MUnppAka5ZsEheh0vhdErxTFpOy5LX6VDG2GqLx7Qr3K1yr1/XLFg0ZdtcJ22SwTA6/cdaudevXeFutcVjyvQlGXKsYaprjvbokdd36KXWgRtZ/6fhtcNuZLXmJoN5SQbDxDdcZTD/JEgGsyxrULvLaGLgoYNNDW1q706ousKfbWWVzHmIxuNxyLIsVVf41d6d0OZtbeMXODAFeKkMBkx42zo79eNXtuipfXtlSQq63Aq5PaoKBJSxbT25d49+/MoWbevszHeoAPJkyly9XLlypTZv3qyPfexjCoVC2rRpk1KplC677DKtW7dO//7v/37YPn6/X08//bTuuOMOnXzyydq2bZtaW1t17rnn6pFHHtG3vvWtPHwSAFNFOm0rnhhoMRgq4uZxIUtmMjKSnNbAn9bcNktFLpcsDVzg698umeHJKwCYjIZrBVlOZTAUqIWlpTqjqkq1gSJZspSybe0Kh7UnEpHT4dCqupm6YclSLSwtzXeoeZPMrQxmTZnLKRhjC0tLdcOSpVpZN1NOh0N7IhHtCndzrGFK67+R9eTePXJYAzeypvn8g25kbWlvUyQ1cJ2EymCYDIatDOad+MlgkuT3DSScxPuSwSLRlF5r7FDQ78omgtmmt41kP0/f+ZRlWQr6Xdra2KFINCUAYyO3ZWtuIiaAiaE52qMHtjeoPRHT7FCxgm5P9m+qjFTh82t2qFjtiZge2N5AhTBgipocZxTHaMGCBbrvvvuOax+Px6Nbb71Vt9566wmKCgCGllsVTJalYID+3oXM43TKUu8T/f2JXrntLHLbLKlvu/79AACTj9s5XDIYNy1RmIwx6kwmNbe4RHVFQZ1aUakZRUXyOJ2qD4ZU7GEumrQH2vp5hrlxCxyLmkCRPjB3vi6om6WmSFjJTIZjDVPWoTeymiLd6k72JnzYMprm86vM69OucJf+a8vL8jgdCjjdKvd6FXK78xw9MHrDVQabDG0iJfVVBuu9xhntaxPZ0hpVOJpSdUUgu10qJxnFsgY/XFNc5FFLW1QtrVHNn1UyPoEDk1xum0gqgwETz7MtzToQi2p2qFgOy5LLstR/RzHdd+/JYVmqKwppV7hbf29p1vvnzs9fwADyYnKcUQDAJNSdkwwW9HuGvTiEwlAfDGVbP1b4/EraGcVzqn4delOnv6VkfTA03qECAMaBa4jKYF6PY9CT8UAhaU8kstVWPE6n3llbpwA32QehMhjGWrHHo1PKK/IdBpBXh9/IGhhfM7ataDqllmhUB+MJdSYSclqWfC6nit0e/d/GnTqruoaWqpjQhq0MNkmSwXI/R6yvMlgqbUtmcCJcMqcqmNvlGKhuooHtciuHARid3DaRyRSdK4CJpDuZ1MbWgyrxeOTo+3vpdOTOoQceZHNYlko8Hr3YelCr6mbx8BEwxXD1EgAKVG5lsFCQllKFrtjj0bLKaepKJmUbM6gqmNfplDenAphtjLqSSS2vnMbkGwAmqaHaRJYX+wbd1AAKSVO4O/u6yu8nEWwISTsnGczB5RQAGK2j3cjqSib1akeH9kV7JBl5nQ4ZSX6nS26HI9s+cltnZ17iB8bCUA9/ulwOud2TY66R+zBMLN6bDOZ2OSRLsnNuVucmeh362fu3G+ocC8DI5CaDURkMmFiaIuFssYF+rpzrjWkzOHm6v4hBUyQ8bjECKAzMngGgQIUjOclgRSQMTQRnVdeoyh/Q3p6wuhID/3+5CV+2MdrbE1aVP6C3VdfkI0wAwDhwOR1KpW11RZLq6E6oK5KUf5I83Y/JaVfORcHZoeI8RlK4cpPBvFQGA4BRO9KNrLRta08koq5kQkVOl3xOlxyWJdvYyhijCp9fs0PFak/E9MD2BjVHe/L1MYBRGaoyWGASVRPubRPZK9bXJrK6MqBQwK3unoEHKVOHVAbL1d2TVKjIrerKgACMDY/bpWQqo/bOqJr2deqfDS3qjsTzHRaAY5DMZGQkOXOuS7hyK4MZM2j7/u2SGaoAAlMNdyMAoECFcy6IhIqoDDYR1ASKdM2CRfrZttf0cnur3A6HvA6nStweZYytzkRCXcmkqvwBXbNgEa0sAGCSau2Ia8M/D6ihqTPbAkWWFI2nlUhmdNqiClWW+fIdJpBlG6PdOclgs2hjPaREzgVVDy3cAWDUhrqRFXJ71KKooum0MsaWSw51pZLyu1zqLyJkGyOf0ymHZamuKKRd4W79vaVZ7587Pz8fBBiFoSqDTZYWkdIhyWB9bSKDAbdOmlOmDVsOqCTokWVZSqWGTgYzxigSS+vMU6oUDFC5FhgLzQfC+stzO7Vpa7MSyYycDkv7D4ZVGvJp2ZIZOntZvWqqOCcECpXH6ZQlKWPs7DzaaTlkWZLLcsihwXOLTF+lMI9z8iSbAzg2k+esAgAmmUFtIkkGmzAWlpbqXbPq1RqPqTUeVzST1oF4TJZ6y/Guqpupt1XXkAgGAJNUU3NYf3xmj1o74zJGCnhdsixLxhi5nJY2bDmg7bu79K5zZqq+hourKAzN0R4lM70XB52WpZnBYJ4jKkyD2kRSGQwARm2oG1l+l0v1oZBePHhADsvqm0dJ0VRavRn2ksOy5Ou7meWwLJV4PHqx9aBW1c0aVJkbmAiGrgw2eW7b+Lw5bSITA63oTltUoe27u9TSFlN1hX9QZTBPXzKYMUYtbTGVF3t16sKK8QsamMS2NbbqgbWbtLelW7YtBQMeuZwOzaouVkd3XE8+u1P/bGjRNZedpoVzKvMdLoAh1AdD2daPFT6/JKnK71OV3z/k9v2VeOt58A+Ycrh6CQAFimSwiasrmdTc4hKdVlGpi2bO0r+cdLJuWHKKPn/acr1/7nwSwQBgkmrtiOuPz+xRVySp2qqAvG6nrL5WRw6HpcpSn2qnBdQVSfYmjHXQggGFYVd4oCpYbVGR3A4uFRzKGKPUoMpg/IwAYLRyb2TlythGHqdTIbdbVk6eTMYYOSyHPE6H3M6Bcbj/PZpyqlwCE8VQ+eWTqb18bmJbImkrk+mdT1WW+fSuc2aqJOjRvgNRRWIpmb65ltNhqTOc0L6DUZUEPXrXOTOprAyMgeYDYT2wdpPaOqOqry2Vr+/htYxt5HA6VFkW0Jy6UrV1RvXA2k1qPsDfVaAQFXs8WlY5TV3JpOzsdYqhq5fbxqgrmdTyymk8NAFMQVy9BIACRTLYxGSM0c7uLkm9TzmfW1Or5dOqdEp5BZNtAJjkNjW0qb07oeoK/2FP+HvcDll91S2qK/xq705o87a2PEUKDJZ787w+VJzHSApX2hgZDSSDuS3aRALAaA19I6s36UuS/C63Sj1eeZ1OSUaZvvaQRS63rJwbXv1VxZKZzLjGD4wF1xAJ5pO1Mpg0uDpYfU1Il6+aq9MWVciypGgirZ5YSm3dCTmdls48pUqXr5pLRWVgjKzf2KQ3Wns0s7pkUDtWSbL7ejE7HJZmVpfojdYePftSUz7CBHAMzqquUZU/oL094UHz6Fy2MdrbE1aVP6C3VdeMc4QACsHkOasAgEkknbYVi6eyXxcHSSKaKJqjUUXTvRe2HJY0hxuqADAlRKIpvdbYoaDflVMNTOrvKuf1DNwEsSxLQb9LWxs7tOKUKgUD7nyEDKg7mdSOrk5tbj0oS5aCbrdmh7jZNpSEsQd97aUyGACMibOqa/RyW5v29oRVVxSSw7Lk7JtLGWPksCwVuV3KGFsOy6Fij0fVgcCg98j0jdEep/Ow9wcK3VCVwSZTMpjL6ZDH7VAy1XucxhOZQec/lWU+LVtcqebWqKLxtDwuh1aeWavqygDnScAY6o7EtfGV/SoJeeVwWJIZ/HBLxjbZh9ocDkslIa82btmvC86ar+IglfmAQlMTKNI1Cxbpge0N2hXuVonHo1KvV07LoYyx1ZlIqCuZVJU/oGsWLKJbDTBFTZ6zCgCYRHKrgsmyVBQgGWyi6K8KJkm1RUH5XPypBYCpoKU1qnA0peqKgZuTDsuS3VdJKDcZTJKKizxqaYuqpTWq+bNKxjVWoDnao2dbmrWx9aBaolG1xmOSJL/TpfXN+3V2zQwuFB4iaQ88aeuyLDmoDAYAY2KoG1kBl0seh1NxOyNLUjJjK+Bya0FJiUo8h1dO70wkVOr1qj5IQjMmnkMrCkuTKxlM6m17mUwlJfVW/zpUOJqU2+VQSdCj6RV+zo+AE6BpX6c6w3HNqu59cNlh9Saj9j/zYmdsKadaWFmxT7tbutW0r1OnLKrOR8gAjmJhaaluWLI0e31nTySSXVfq9WpV3Uy9rbqG6zvAFDa5zioAYJLITQYL+j1yUnlgwshNBptfzMUrAJgqUmlbMr1P0PZzux1K97Ur8nsHn3r1b5dKD642BJxo2zo79cD2Bh2IRVXi8ajI5VbCnZExRi6HQ0/t26t/trfrmgWLtLC0NN/hFoxkTmUwz1AlPAAAI3bojaw3YjE5JHWnUgq53aoLFmm6P6CA6/AqQbYx6komtapupoo9PEiHiae3lbyU2+Hp0HOHiS7gdakr3JsMFosPkQzWM9AdIVRENTDgREimes/5nM6Bcxmnw6F0XznzjD24zZzT6ZCMUTJFC2agkNUEivSBufN1Qd0sNUXCSmYy8jidqg+GmBsDIBkMAApRuCeZfR0sYsI2UXQnkzoQi2W/nkcyGABMGW6XQ7Ik2zbZRK9pZX61dcXl97rkO6QymN13odXtIqkE46c52qMHtjeoPRHT7FCxHJal1s4OSb03ImsCAZV5fdrbE9YD2xt0w5KlPEHaJ2nnJIPxoAYAjLlDb2Q19/To0d27lMhkVB8sHrIio22M9vaEVeUP6G3VNXmIGhgbtpG6I8nsuYQx5ug7TSB+38C5UGzIymADyWC0hgRODI/bKcuylMnY2YQwn8eljMuWw+GQdcjf2UzGlixLHjctmIGJoNjj0SnlFfkOA0CBIRkMAApQdySefR0qOrwFAgpLdzKppkhYr7S3qT0eV9Dt1vRAQOU+X75DAwCMk+rKgEIBt7p7kioN9f7t9nmcqp02dCJNd09SoSK3qisDQ64HToRnW5p1IBbNJoKlbFvxzMCT3kG3Rw7LUl1RSLvC3fp7S7PeP3d+HiMuHLltIqkMBgAnTv+NrFPKKzQ7VDyofWSp1yun5VDG2OpMJNSVTKrKH9A1CxaRvIwJqbUjrk0NbXrt9Q7FU5lspeGf/X6bTppTptMWVaiybOJfW8qtdBaLH15lKEIyGHDC1deWqjTkU0d3XJVlvdch5teXD7t9R3dcZSGf6mtLxylCAAAw1kgGA4ACFIkOVAYrDpIMVqiaoz3ZNhadiYRa4zHFMxl5HE4ts6apOdrDBWkAmCKCAbdOmlOmDVsOqCToOeyp2lzGGEViaZ15ShU3OzBuupNJbWw9qBKPJ1tdJZIauPHmcTjk7XtC3GFZKvF49GLrQa2qm0VrAR3SJtIx/PENABg7h7aP3BOJZNeVer1aVTdTb6uu4bwbE1JTc1h/fGaP2rsTMuptpWhZltxuSxnbaMOWA9q+u0vvOmemZk6f2L/jR60MltsmkvMj4IQoDvq0bMkMPfnsTpWX+LMVzYdi20Zd4YRWnT1PxcGJn5AKAMBURTIYABSgcE8i+zoYIBmsEG3r7NQD2xt0IBZVicej2qIidSeTclkOJeyMtnd36sevbNE1CxZpYWlpvsMFAIyD0xZVaPvuLrW0xVRd4R8yIcwYo5a2mMqLvTp1IeXbMX6aImF1JhKaGQxml4VTOa3J3W5JA7+zpV6v9kQiaoqEaTWgQ9pEUhkMAMbNoe0jk5mMPE6n6oMhkpUxYbV2xPXHZ/aoK5JU7bSAUqmMUun+NvJOlYa8Kgl61NIW0x+f2aP3r5yd34BHyXeEymCJZEbJ1MA8K1REMhhwopy9rF7/bGjRnpYuzawuGTIhzLaN9jR3aXplkc46vT4PUQIAgLHCFUwAKEC5yWDFQS5uFprmaI8e2N6g9kRMs0PFqvD5FU2nZSRZlqUil1sLS0rVnojpge0Nao725DtkAMA4qCzz6V3nzFRJ0KN9B6PqDCdk97WWs22jznBC+w5GVRL06F3nzJwULV8wcSQzGRlJzmwikxlUGSzkHjzn7N8umTm8lc9UlMipDOZ1cCkFAMZbf/vI5dOqdEp5BYlgmNA2NbSpvTuR8wDJQEKGy9n72rIsVVf41d6d0Mvb2vMU6dgI5CSDRQ+pDBbOaRHpcjnk8zgF4MSoqQrpmstOU0VpQI17O9XaEVUm03uek8nYau2IqnFvpyrKArrmstNUUxXKc8QAAGA0qAwGAAUoHBmo0hAq4kZxoXm2pVkHYlHNDhVn2yx1J3P+zzweOS2H6opC2hXu1t9bmvX+ufPzFS4AYBzV14R0+aq52tTQptd2dailLZpdFypy68xTqnTqwgoSwTDuPE6nLEkZY8tpOWSb3mpgkVRKKdvuqww2INOX/ORxckNOkpJ9iZ0SbSIBAMDIRaIpvdbYoaDfla0knFtQ2OUcSDq3LEtBv0tbGztVP614vEMdM7ltIuOJjIwx2c8eiea2iHQNWV0ZwNhZOKdSN1y1Qus3NumlV/Zrd0u3ZIxkWSoL+bTq7Hk66/R6EsEAAJgESAYDgAKTTtuKxnOTwXjatVB0J5N6taNdf9m3V5bVe5PUYTklGXXntFkq7qus4bAslXg8erH1oFbVzeLJZQCYIirLfFp5Zq3OfFOVWlqjSqVtuV0OVVcGFAzQ9gT5UR8MqdTrVWcioQqfXw7L0qxgSJJRImPLdUi1q85EQqVer+qD3ASQpKShTSQAABi9ltaowtGUqisC2WWDk8EGJ0MVF3nU0hZVa2dSC8YryDHmz6kMZttGiaQtn7c3QSw3GYxzJWB81FSFdPlFS3Xh2fPVtK9TyVRGHrdT9bWlKg7y4BoAAJMFyWAAUGAi0YGkIlmWgiSD5V1ztEfPtjRrY+tB7YtE1ByLyutw6GA8rkqvT07LUrqvWoQlqdgzcPGq1OvVnkhETZGwTimvyNMnAADkQzDg1vxZJfkOA5DU215rWeU0Pbl3j8q8vmx1U8mS95DqX7Yx6komtapuJsnsfZJ2TjIYbSIBAMAIpdK2ZCRHTqVRr8epRLJ3rpGbOCX1bmeMlM4YTVQet0MOhyW779pZLJHOJoOFe3Iqg3ENFBhXxUGfTllUne8wAADACUIyGAAUmO5IPPu6yO+Wk5tNebWts1MPbG/QgVhUJR6PKv0+dSQTCrrdiqfT2tndLcuSSjweeRxOBd1uOXOqRfS/TmYy+foIAAAAkqSzqmv0club9vaEVVcUykkIG2Abo709YVX5A3pbdU0eoixMg5LBqAwGAABGyO1ySFZvhaz+hLDKUp/cLoc8bqe8nkOS9G0jyzq8YthEYlmWAj6nItG0pN5ksDJ5JR2SDEZlMAAAAGDMcAUTAApMuCe3RaQ3j5GgOdqjB7Y3qD0R0+xQsSp8frmt3otyyUxGsUxGTkvK2La6kklZkmqLgoPeI9PXUshzSMUNAACA8VYTKNI1Cxap3OvXrnC32uKx7FwlY2y1xWPaFe5WudevaxYsUk2gKM8RF46kGajG4XFM3JuxAAAgv6orAwoF3OrOuf7ncjpUUeIbMhmquyepYMCtytKJXTUrt+JZLD7wwGSYNpEAAADACUEyGAAUmEg0kX1NMlh+PdvSrAOx6KDKGQGXSxm7t3VS7z1BS+6+6m1FbvdhbZY6EwmVer2qD4bGOXoAAIDDLSwt1Q1Llmpl3Uw5HQ7tiUS0K9ytPZGInA6HVtXN1A1LlmphaWm+Qy0oVAYDAABjIRhw66Q5ZYrE0jLmyK0fjTGKxNJaPKdUAd/EfshwUDJYordCmG0b9cRy20SSDAYAAACMFdpEAkCB6Y6QDFYIupNJbWw9qBKPJ5sIFkun1RQJy2FZso2RQ70l/YtcHhkZtSXimmUH5Xb0XqCzTW/S2Kq6mSr2TOwnOAEAwORREyjSB+bO1wV1s9QUCSuZycjjdKo+GGLOMoSMMcpo4GatlzbuAABgFE5bVKHtu7vU0hZTdYVf1hCtu40xammLqbzYqzctLFcq1pGHSMeOPyeZLRrvTQbriaXVnw9nWVLQTzIYAAAAMFZIBgOAAhPuIRmsEDRFwupMJDQz2Nv2MWNs7ejukm2MAi6XEpmMbBmVur1yORwyMoqkUgqnUir3OmUbo709YVX5A3pbdU2ePw0AAMDhij0enVJeke8wCl5uVTBJcg9xwxYAAOBYVZb59K5zZuqPz+zRvoNRBf0uFRd55HBYsm2j7p6kIrG0you9etc5M1VZ6lNzLN9Rj47fN3ArKp7obRMZjiYHrXc6mWMBAAAAY4VkMAAoMOGegQshxUEqM+RLMtNb/8HZ1wbIaTlUEwhoX0+PXA6HZodC6kwmFM2k5TEOefuqgaVtW23xmLqSSVX5A7pmwSLVBIry+EkAAAAwGkkzkAxmyZKLZDAAADBK9TUhXb5qrjY1tOm1XR1qaYtm14WK3DrzlCqdurBClWU+2Yckpk9Efu/hlcHCPTktIgNUBQMAAADGEslgAFBgwrSJLAgep1OWeiuC9SeEVfp8iqXTKvN6FXR7FE2n1BKNqjUeVziVUsLOqDUe14yiIq2qm6m3VdeQCAYAADDBJe2BFpEehzVkKycAAIDjVVnm08oza3Xmm6rU0hpVKm3L7XKoujKg4CRLjvJ7B25FxRK9yWCRaE4yWNHk+rwAAABAvpEMBgAFJJ2xFY0PVAYjGSx/6oMhlXq96kwkVOHz9y21NDMYym4TcLk1t7hEdUVB7euJSJaljy48SSeXlavYQ1U3AACAySCRUxnM2/eQAAAAwFgJBtyaP6sk32GcULltImPxvjaRVAYDAAAAThiuYgJAAYnktIiUZakoQEJRvhR7PFpWOU1dyaRsY464rcvhkJG0srZOZ06vJhEMAABgEknmtGbyOLiMAgAAcLwCOZXBUmlb6bStMJXBAAAAgBOGq5gAUEDCPQMtIgM+t1xOhul8Oqu6RlX+gPb2hIdNCLON0d6esKr8Ab2tumacIwQAAMCJNigZjMpgAAAAx83ndSq303Y0kR5UGWyytcUEAAAA8o2rmABQQHKTwWgRmX81gSJds2CRyr1+7Qp3qy0eU6avTVDG2GqLx7Qr3K1yr1/XLFikmkBRniMGAADAWEvmPBTgcVhH2BIAAABDcTgseT3O7Ndd4aRS6YGEe5LBAAAAgLHlOvomAIDx0B2J6+WGFh1s75HTYamuuiTfIUHSwtJS3bBkqZ5tadbG1oPaE4lk15V6vVpVN1Nvq64hEQwAAGCSojIYAADA6Pm9LsUTGUnSgY54drnL5ZAvJ1EMAAAAwOiRDAYAedZ8IKz1G5u08ZX92rWvQ5GepCTpYEdMbrdTZy+rV01VKM9RTm01gSJ9YO58XVA3S02RsJKZjDxOp+qDIRV7PPkODwAAACdQ0uQkgzlIBgMAABgJv9epjr7XB9tj2eWhgFuWRfVVAAAAYCyRDAYAebStsVUPrN2kN1p7VBLyqrjIJ0uWjDFyOKQnn92pfza06JrLTtPCOZX5DnfKK/Z4dEp5Rb7DAAAAwDhK2rSJBAAAGC2/b+B21MGcymChIlpEAgAAAGONR1oBIE+aD4T1wNpNauuMak5dqSrLAkpneqsOWJalytIizakrVVtnVA+s3aTmA+E8RwwAAABMPYmcymBe2kQCAACMiN870ArSzkm2DwVIBgMAAADGGlcxASBP1m9s0hutPZpZXSJHX4WBVDqTXe92O+RwWJpZXaI3Wnv07EtN+QoVAAAAmLKSNm0iAQAARiu3MliuIMlgAAAAwJjjKiYA5EF3JK6Nr+xXScibTQSzjZROD9xocrt6n5ZzOCyVhLzauGW/uiPxId8PAAAAwImRzKkM5qEyGAAAwIj4vUMng9EmEgAAABh7XMUEgDxo2tepznBcZcW+7LJ0TlUwSXK7B0qnlxX71BGOq2lf53iFCAAAAEBSMqeNkafvQQ4AAAAcn4DPOeRy2kQCAAAAY49kMADIg2QqI2OMnE7HoGX9XC6Hcu8zOZ0OyZhB2wAAAAA4sYwxSlEZDAAAYNSGqgxmWVKRn2QwAAAAYKwNXZcXAHBCedxOWZalTMbOJoQFfB4tmlOZTRTLlcnYkmXJ4x76CToAAAAAYy95yLzc4yAZDAAAYCSGSgYL+FxyOqm8CgAAAIw1ksEAIA/qa0tVGvKpozuuyrKAJMnhkPw+l/y+w4fmju64ykI+1deWjnOkAAAAwNSVtO1BX7stblYCAACMhNvtkJHUHUnKto0cDkulxZ58hwUAAABMSiSDAUAeFAd9WrZkhp58dqfKS/xyOIa/qWTbRl3hhFadPU/FQd84RgkAAABMbcmcFpFuyyEHyWAAAADHrbUjrk0NbWrY1alYIi0ZSZbU0Z1Qkc+t0xZVqLKM654AAADAWKG/AQDkydnL6jW9skh7Wrpk22bIbWzbaE9zl6ZXFums0+vHOUIAAABgakvmzNM9R3iAAwAAAENrag7rV0+8rg1bDshhSQGvS0V+twJelxwOacOWA/rVE6+rqTmc71ABAACASYNkMADIk5qqkK657DRVlAbUuLdTrR1RZTK9lQcyGVutHVE17u1URVlA11x2mmqqQnmOGAAAAJhaciuDeSwuoQAAAByP1o64/vjMHnVFkqqdFlAw4JbVV2nVsiyVhbyqnRZQVySpPz6zR60d8TxHDAAAAEwOXMkEgDxaOKdSN1y1QivPmieX06HdLd1q3Nuh3S3dcjkdWnX2PN1w1QotnFOZ71ABAACAKSdp5ySDObiEAgAAcDw2NbSpvTuh6gq/LMuSyzl4PuV2OWVZlqor/GrvTmjztrY8RQoAAABMLq58BwAAU11NVUiXX7RUF549X037OpVMZeRxO1VfW6rioC/f4QEAAABTVlc6pa50WrYx8llORTJpBZ1cSgEAADiaSDSl1xo7FPS7stXAnM7Bbbfdrt7kMMuyFPS7tLWxQytOqVIw4B73eAEAAIDJhCuYAFAgioM+nbKoOt9hAAAAAFNeazKpzZGwnu/uVGsqJcnojWRSB1IJLQ4EdWowpEqPJ99hAgAAFKyW1qjC0ZSqKwLZZbmVwRwOyekc2L64yKOWtqhaWqOaP6tkPEMFAAAAJh2SwQAAAAAAAPo0xWP6U1ur2tNJpY1RwGHJshwqcbpky2hDuFPbY1FdXFGpep8/3+ECAAAUpFTalozkcAxUA/O6B7K/vB6npIF1/dul0gNtugEAAACMjOPomwAAAAAAAEx+rcmk/tTWqq50SrUer3wOR7atkcvhUKnLrVqPV13plP7U1qrWZDLPEQMAABQmt8shWZJtm+wyn9epilKvivwuVZUNTqrv366/dSQAAACAkWNWDQAAAAAAIGlzJKz2dFLVHo8sy1Jm4N5l9gKKZVmq9njUnu5tJQkAAIDDVVcGFAq41d0zOHm+osSn2qqivspgA7p7kgoVuVVdGRAAAACA0SEZDAAAAAAATHmRTFpboxEFnc5sNTBbA9lgTmugjZFlWQo6nXotGlEkkx73WAEAAApdMODWSXPKFImlZYw54rbGGEViaS2eU6ZgwD1OEQIAAACTF8lgAAAAAABgymtJJBXJZFTsdGWXZXJuXDpyksEkqdjpUjiTUUuCVpEAAABDOW1RhcqLvWppiw2bEGaMUUtbTOXFXp26sGKcIwQAAAAmJ5LBAAAAAADAlJcyvXXAcpO+BlUG0+BksP7tUsYel/gAAAAmmsoyn951zkyVBD3adzCqznBCtt07v7Jto85wQvsORlUS9Ohd58xUZZkvzxEDAAAAk4Pr6JsAAAAAAABMbm7LIUuSbUw20SvgcCpjjDIyg9pEqm+7/v0AAAAwtPqakC5fNVebGtr02q4OtbRFs+tCRW6deUqVTl1YQSIYAAAAMIZIBgMAAAAAAFNetdejoNOp7kxapS63JKnG6x12++5MWiGnU9Vez3iFCAAAMCFVlvm08sxanfmmKrW0RpVK23K7HKquDCgYcOc7PAAAAGDSIRkMAAAAAABMeUGnS4sDQW0Id6rE6ZJ1SCWwXMYYRTIZrQiVKujk0goAAMCxCAbcmj+rJN9hAAAAAJMevQwAAAAAAAAknRoMqdzlUUsyKdPXBvJQxhi1JJMqd3l0ajA0zhECAAAAAAAAwJFNiWSwL33pS7Is64j/7r777iH3TaVS+uY3v6lTTz1VRUVFKisr0/nnn69f//rX4/wpAAAAAADAiVTp8ejiikqVuNzal0yoM52S3ZcUZhujznRK+5IJlbjcuriiUpUeWkQCAAAAAAAAKCxTqpdBVVWVFixYMOS6mpqaw5bF43GtWrVK69evl9Pp1JIlS9TT06Onn35aTz/9tG699VbdcccdJzpsAAAAAAAwTup9fn1g2nRtjoT1WjSilmQyuy7kdGpFqFSnBkMkggEAAAAAAAAoSFMqGeziiy/W/ffff8zb33rrrVq/fr3mzJmjP/3pT1q0aJEkae3atfrgBz+ob3zjGzrrrLP07ne/+wRFDAAAAAAAxlulx6N3lldoRUmJWhJJpYwtt+VQtdejoHNKXUoBAAAAAAAAMMFMiTaRI/HGG29kW0f+93//dzYRTJIuu+wy3XLLLZJ6W1ACAAAAAIDJJ+h0aX4goMVFQc0PBEgEAwAAAAAAAFDwSAYbxtq1a5VMJrVgwQKdf/75h61fs2aNJGnjxo3auXPneIcHAAAAAAAAAAAAAAAAAINMqUdaN2/erKuvvlotLS0KhUJ605vepCuvvFJLliw5bNvnn39eknTOOecM+V61tbWaM2eOGhsb9fzzz2vevHknNHYAAAAAAAAAAAAAAAAAOJIplQy2adMmbdq0Kfv12rVr9fWvf1033XSTvvWtb8npdGbXbdu2TZKOmOQ1b948NTY2qqGhYcxjNcYonU6P+ftidHL/T/j/AVAIGJcAFJKJPCbZti3btmWMkW3b+Q5nUCzpdFoOB0WdgZHIHYv6j/N84bgGIE3s+RIwVUylc4PjHZMK6WfD3AqYnJgrASgkjEkoVC7X0VO9LGOMGYdY8uree+/VG2+8oQsvvFBz585VKBTStm3b9KMf/Uh33323JOlzn/uc7rzzzuw+S5Ys0auvvqof//jH+sQnPjHk+15xxRV6+OGHdeONN+quu+4a9vvfc889uvfee48p1q1btyoWi2nu3Ln6zne+cxyfEgAAAAAAAAAAAAAAAMBktXr16qNuMyUqg11//fWHLTvllFP04x//WHPmzNGtt96q7373u/rkJz+p2bNnS5Li8bgkyePxDPu+Xq9XkhSLxY74/Zubm7Vx48YRRg8AAAAAAAAAAAAAAAAARzclksGO5Oabb9b3v/997d+/X2vXrtVnPvMZSZLP55MkJZPJYfdNJBKSJL/ff8TvUVNTo2XLlh1TPP2VwUpKSnTJJZcc0z4YP+l0Wo8//rgk6cILLzym8nsAcCIxLgEoJBN5TLJtWzt37tT+/fs1ffp0WZaV13iMMXrjjTc0Y8YMzZs3j5YnwAglk0k98cQTkqQ5c+bI6XTmLRaOawDSxJ4vAVPFVDo3ON4xqZB+NsytgMmJuRKAQsKYhIlsyv+2Op1OrVixQr/5zW+0ffv27PKysjJJUnt7+7D79q/r33Y4a9as0Zo1a44pnvLycsViMb322mtasWLFMe2D8WOMUVdXlySppKQk7xcCAIBxCUAhmehjUjweVyqVyncYg7jd7uyDKgCOX+64lM9EsFwc18DUNtHnS8BUMVXODUYyJhXaz4a5FTC5MFcCUEgYk1DITjrpJD344IPDrp/yyWDSQCvIdDqdXbZw4UI9++yz2rFjx7D77dy5M7vtWOlvTxmLxWgtCQAAAAAAAAAAAAAAAOCYkQwmacuWLZKkurq67LIzzzxT9913n9avXz/kPvv27VNjY2N227FSVVWlAwcOyOfzac6cOWP2vhg7/a08/X6/Fi9enO9wAIBxCUBBYUwCUGgYlwAUGsYlAIWEMQlAoWFcAlBIGJNQqE466aQjrp/yyWCPPvqoXnnlFUnSBRdckF2+evVq3Xjjjdq+fbvWrVun888/f9B+99xzjyTp9NNP1/z588csnl27do3Ze+HEWL58uTZu3KjFixfrxRdfzHc4AMC4BKCgMCYBKDSMSwAKDeMSgELCmASg0DAuASgkjEmYqBz5DuBEe+WVV7RmzRpt3rx50HLbtvXQQw/p6quvliRdeumlestb3pJdP336dK1Zs0aSdN1116mhoSG77ve//73uvPNOSdLtt99+oj8CAAAAAAAAAAAAAAAAABzVpK8MlkqldO+99+ree+9VeXm56uvr5XK5tGPHDnV0dEiSzjnnHP385z8/bN8777xTL774op577jktWbJES5cuVSQS0c6dOyVJN998s1avXj2unwcAAAAAAAAAAAAAAAAAhjLpK4PNnj1bX/va13TJJZeotLRUO3bs0KZNm+TxeHTxxRfr5z//udatW6fS0tLD9vX7/Xr66ad1xx136OSTT9a2bdvU2tqqc889V4888oi+9a1vjf8HAgAAAAAAAAAAAAAAAIAhTPrKYKWlpfriF7844v09Ho9uvfVW3XrrrWMYFQAAAAAAAAAAAAAAAACMrUlfGQwAAAAAAAAAAAAAAAAApgKSwQAAAAAAAAAAAAAAAABgEiAZDAAAAAAAAAAAAAAAAAAmAZLBAAAAAAAAAAAAAAAAAGASIBkMAAAAAAAAAAAAAAAAACYBksEAAAAAAAAAAAAAAAAAYBJw5TsAYKK5/vrr1dzcrJqamnyHAgCSGJcAFBbGJACFhnEJQKFhXAJQSBiTABQaxiUAhYQxCROVZYwx+Q4CAAAAAAAAAAAAAAAAADA6tIkEAAAAAAAAAAAAAAAAgEmAZDAAAAAAAAAAAAAAAAAAmARIBgMAAAAAAAAAAAAAAACASYBkMAAAAAAAAAAAAAAAAACYBEgGA47DunXrdOmll2ratGny+/066aSTdNttt6mnpyffoQGYZL70pS/Jsqwj/rv77ruH3DeVSumb3/ymTj31VBUVFamsrEznn3++fv3rX4/zpwAwkbS0tOjnP/+5PvOZz+itb32r/H6/LMvSeeedd9R9RzPuvPTSS7riiitUXV0tn8+nuXPn6qabbtLBgwfH4FMBmMhGOi7Nnj37qPOoeDw+7P6vv/66Pv7xj6uurk5er1czZ87Uddddp8bGxjH+hAAmCmOM/v73v+vzn/+8zj77bFVUVMjtdmvatGm64IIL9OCDD8oYM+z+kUhE//Ef/6GTTjpJfr9f06ZN06WXXqqnn376qN+ba1EAhjKacelo86Tq6uojfm/O4QAM51e/+pWuv/56vfnNb9aMGTPk9XoVCoW0bNky3XbbbWpraxt2X+ZLAMbaSMck5kqYLCxzpCsVALLuuusu3XTTTTLGqK6uTtOmTdOrr76qRCKhxYsXa/369SovL893mAAmiS996Uv68pe/rKqqKi1YsGDIbT73uc9p9erVg5bF43GtWrVK69evl9Pp1JIlS9TT06OdO3dKkm699VbdcccdJzx+ABPP9773PX32s589bPm55557xAtvoxl3fv3rX+vKK69UKpVSVVWV6urq1NDQoJ6eHtXU1Gj9+vWaO3fumHw+ABPPSMel2bNnq6mpSUuXLlVJScmQ2/zlL3+Rx+M5bPlzzz2nCy64QJFIRGVlZZo7d6527typzs5OhUIhPfnkkzrjjDNG/JkATExPPfWUVq5cmf167ty5KisrU2Njo9rb2yVJl1xyif7v//2/8nq9g/ZtbW3V2WefrYaGBnm9Xp188sk6ePCg9u7dK8uy9F//9V/65Cc/OeT35VoUgOGMZlyyLEuS9OY3v/mwdZJUUVGh3/3ud0N+X87hABzJaaedps2bN8vr9aqmpkaVlZU6cOCAdu/eLUmqqqrSn//8Z5166qmD9mO+BOBEGOmYxFwJk4YBcFQvvPCCcTgcxrIsc8899xjbto0xxuzbt88sX77cSDLve9/78hwlgMnk9ttvN5LMRz/60ePa7zOf+YyRZObMmWNee+217PLf/e53xtCsLTUAABqSSURBVOv1Gklm7dq1YxwtgMngv//7v83KlSvNF77wBfPrX//a3HbbbUaSOffcc4+430jHnb1795pAIGAkmdtuu82kUiljjDGdnZ3moosuMpLMm9/85uy8C8DUM9Jxqb6+3kgy69atO67vF4lETE1NjZFkPv7xj5tYLGaMMSYWi5lrr73WSDJ1dXUmGo2O8BMBmKieeOIJM2fOHPP973/fvPHGG4PW/exnP8vOeW655ZbD9r3sssuMJLN8+XKzb98+Y4wxtm2be+65x0gyTqfTvPTSS4ftx7UoAEcymnFJkpFkGhsbj+t7cg4H4Gjuvfde89e//tUkk8lBy19++WWzdOlSI8mcfPLJh+3HfAnAiTDSMYm5EiYLksGAY7B69WojyXzkIx85bN22bduMw+EwkszmzZvzEB2AyWgkyWAtLS3G4/EYSeYvf/nLYev7b6AuW7ZsDCMFMFndddddR026GM24c9NNNxlJ5u1vf/th69rb201JSQkJrAAGOZZxyZiRJ4N997vfNZLM/PnzD7tQmEgkzLx584wk84Mf/OA4Iwcw0XV1dR02LuT6+te/biSZ8vJyk8lksss3btxoJBmHw2G2b99+2H4f/vCHh71JybUoAEcy0nHJmJHf4OQcDsBobNiwITv+vPrqq9nlzJcA5MNwY5IxzJUweThGWVgMmPQikYgee+wxSdL1119/2PoFCxboHe94h6Te3sMAkC9r165VMpnUggULdP755x+2fs2aNZKkjRs3Ztu3AcBojGbceeSRRyQNPb8qKyvT5ZdfLkl6+OGHxzpsABhS//ncxz72Mbnd7kHrPB6Prr32WkmMS8BUVFxcfNi4kOviiy+WJLW3t+vgwYPZ5f3znXe84x2aP3/+Yfv1z5X++Mc/qqenJ7uca1EAjmak49JocA4HYDQWL16cfR2NRrOvmS8ByIfhxqTRYK6EQkMyGHAUL730khKJhLxer84444whtznnnHMkSc8///x4hgZgCti8ebOuvvpqveMd79Dq1at122236ZVXXhly2/4xqH9MOlRtba3mzJkzaFsAGI2Rjjt79uzRvn37JElvf/vbh9yX+RWA0br77rt16aWX6p3vfKc+9KEP6e6771Y4HB5y20wmoxdeeEHS0cel//f//p8ymcyJCRrAhBSLxbKv/X5/9nX/PGa4ceWMM86Q1+tVPB7Xpk2bssu5FgVgtIYbl3J99atf1cUXX6xVq1bpYx/7mH72s58pkUgMuS3ncABGa/369ZKkYDCoRYsWZZczXwKQD8ONSbmYK2GiIxkMOIpt27ZJkmbNmjXs01bz5s2TJDU0NIxbXACmhk2bNumhhx7SunXrtHbtWn3ta1/TKaecos9+9rOH3YTsH6/6x6ShMF4BGEsjHXf69/N4PKqrqzvifq+//rpSqdSYxAtgavmf//kfPfroo/rLX/6iX/ziF7rhhhs0d+5cPfHEE4dtu2vXLiWTSUnDj2n9yxOJhJqamk5c4AAmnIceekiSdOqpp6q4uDi7/GhzJbfbrZkzZ0oaeq7EtSgAIzXcuJTrpz/9qR577DE9+eST+j//5//oox/9qE466SRt3LjxsG05hwMwErZta//+/br//vv1sY99TJJ0xx13KBgMZrdhvgRgvBzLmJSLuRImOpLBgKNob2+XJJWXlw+7Tf+6jo6OcYkJwOQ3Y8YMfeUrX9GGDRt08OBBxeNxvfzyy/rEJz4hY4y+973v6Qtf+MKgfRivAIy3kY47/fuVlZXJsqwj7mfbtrq7u8ckXgBTw3nnnaef/exn2rp1q3p6etTR0aHf//73Ov3009Xa2qrLLrvssAt3/eOSNPyYlrucuRSAfi+++KLuvvtuSdLnP//5QetGO1fi3A7ASBxpXJKk1atX65FHHtH27dsVi8V08OBBPfTQQ5o7d6527dqlCy64QHv27Bm0D+dwAI7H9773PVmWJafTqdraWl177bWaPXu2/vSnP+lTn/rUoG2ZLwE40Y5nTJKYK2HycOU7AKDQxeNxSb2ZvMPxer2SBpffBoDRGKqn+CmnnKIf//jHmjNnjm699VZ997vf1Sc/+UnNnj1bEuMVgPE30nHnePY7dF8AOJr7779/0NeBQCDbLvLss8/Wxo0bdcstt+jJJ5/MbtM/LknDj02MSwAO9cYbb+h973uf0um03vve9+rKK68ctH485kqMRwByHW1ckqTf/va3g772+Xy68sortXLlSi1fvly7d+/Wl7/8Zf3kJz/JbsM5HIDjUVtbq7POOkvpdFq7d+9WS0uLNm3apJ/97Gc688wzVVpamt2W+RKAE+14xiSJuRImDyqDAUfh8/kkKdsyZCj9/YH9fv+4xARgarv55ps1Y8YMpdNprV27Nruc8QrAeBvpuHM8+x26LwCMlN/v19e//nVJ0rp16wY9Hd4/LknDj02MSwBydXV16eKLL9bu3bu1fPnywxJRpfGZKzEeAeh3LOPSkVRWVmar0P/mN7+RMSa7jnM4AMfj8ssv1/r16/X8889r//792rRpk1asWKGHHnpI559/vjKZTHZb5ksATrTjGZOOhLkSJhqSwYCjKCsrkzS4bcihcks/AsCJ5nQ6tWLFCknS9u3bs8sZrwCMt5GOO/2vOzo6Bp00D7Wfw+FQcXHxmMQLAG9729sk9Zbkf/3117PLc8eo4ca03OXMpYCpLRKJ6KKLLtJLL72kJUuW6PHHHx9yvjLauRLndgCO1bGOS0fTP1dqb28fcu7DORyAkXjTm96kRx99VJWVldq0aZN++ctfZtcxXwIw3o40Jh0NcyVMJCSDAUexcOFCSdLu3buVSqWG3Gbnzp2DtgWAE62/1Gw6nc4u6x+DduzYMex+jFcAxtJIx53+18lkUnv27DnifnPmzJHb7R6TeAEgt1x/7jxq9uzZ2XXDjWn945LX61V9ff0JjBJAIYtGo7rkkkv0/PPPa8GCBXryySdVUVEx5LZHmyulUint3r170La5r7kWBeBYHM+4dDTDzZU4hwMwWqFQSOeee64k6cUXX8wuZ74EIB+GG5OOhrkSJhKSwYCjOP300+XxeJRIJPSPf/xjyG2eeeYZSdJb3/rW8QwNwBS2ZcsWSVJdXV122ZlnnilJWr9+/ZD77Nu3T42NjYO2BYDRGOm4M2vWLM2YMUPSwDzqUMyvAJwI/XMoafA8yuVyafny5ZKOPi695S1vkdPpPIFRAihU8Xhcl112mf72t7+pvr5eTz31lKqrq4fdvn/+M9y48o9//EPJZFI+n0+nnXZadjnXogAcq+Mdl46mf67k8/kGJZRxDgdgLPQnTuQmUDBfApAvQ41JR8NcCRMJyWDAUYRCIV144YWSpHvvvfew9du3b9df/vIXSdIHPvCBcY0NwNT06KOP6pVXXpEkXXDBBdnlq1evltvt1vbt27Vu3brD9rvnnnsk9Z4oz58/f3yCBTCpjWbcef/73y9p6PlVR0eHfvWrX0mSLr/88rEOG8AU9o1vfEOSdPLJJ6u2tnbQuv7zufvvv/+wJ8uTyaTuu+8+SYxLwFSVSqX0/ve/X0899ZRqa2v1l7/8RTNnzjziPv3jyrp164asdtE/V7r44osVDAazy7kWBeBYjGRcOpJ0Oq1vf/vbkqR3vOMdcrlcg9ZzDgdgNNrb2/X0009L6r1O1I/5EoB8GG5MOhLmSphwDICj+sc//mEsyzKWZZl77rnH2LZtjDFm//79Zvny5UaSec973pPnKAFMFlu2bDHXX3+92bRp06DlmUzG/OIXvzDFxcVGkrn00ksP2/fGG280ksycOXPMa6+9ll2+du1a4/V6jSTz29/+9oR/BgAT31133WUkmXPPPfeI24103Nm9e7fx+/1GkrnttttMOp02xhjT2dlpLrroIiPJnH766dl5FwAcy7j0zW9+0/zgBz8wra2tg5a3traa66+/3kgykswjjzxy2L6RSMRUV1cbSebjH/+4icVixhhjYrGYufbaa40kM2PGDNPT0zOmnwtA4Uun0+YDH/iAkWSqq6tNQ0PDMe976aWXGklm+fLlZv/+/cYYY2zbNvfcc4+RZBwOh3nxxRcP249rUQCOZKTj0q233mruv/9+093dPWj57t27zerVq40k43K5zPPPP3/YvpzDATiSp59+2nz1q181jY2Nh6178cUXzZvf/GYjydTW1ppwODxoPfMlAGNtpGMScyVMJpYxxoxH0hkw0X3ve9/Tv/3bv8kYo5kzZ6qyslKvvvqqEomEFi1apPXr16uysjLfYQKYBDZt2pR9EqG8vFz19fVyuVzasWOHOjo6JEnnnHOO1q5dq9LS0kH7xmIxvfOd79Rzzz0np9OppUuXKhKJZHuR33zzzfrWt741rp8HwMSwZ8+eQU9BxeNx9fT0yOVyqaSkJLv8lltu0S233JL9ejTjziOPPKKrrrpK6XRaVVVVmjlzpl577TX19PRo+vTpWr9+PZUMgSlsJOPSv/7rv+r73/++LMvS7NmzNW3aNMViMW3dulXpdFoOh0P/+Z//OWgcy/Xss8/qwgsvVE9Pj8rKyjR37ly9/vrr6ujoUDAY1BNPPEG7bWAKeuihh3T11VdLkmbPnn1YZcFcd91116Cx6+DBgzrrrLO0fft2eb1enXzyyWptbdWePXtkWZa+//3v69Of/vSQ78W1KADDGem49J73vEe/+93v5HQ6NXfuXJWXl6urq0sNDQ0yxsjn8+knP/mJPvShDw35XpzDARjOb3/7W733ve+VJFVXV6u2tlZOp1N79uxRc3OzJKm2tlZ/+MMfBrV7lJgvARh7Ix2TmCthMiEZDDgOTz31lL797W9rw4YN6unpUX19vT7wgQ/oC1/4wqDytAAwGp2dnfrhD3+o5557Tlu3btXBgwcVj8dVXl6uZcuW6eqrr9ZVV10lp9M55P7JZFLf/e539eCDD2rHjh3yeDw67bTT9OlPfzpbphYADrVr1y7NmTPnqNvdfvvt+tKXvjRo2WjGnY0bN+o///M/9be//U2dnZ2aMWOGLr30Ut12222qqqoazUcCMMGNZFx6/vnn9ctf/lIbNmzQ7t271dbWJqfTqbq6Op177rn65Cc/ediNh0Pt3LlTX/3qV/XEE0/o4MGDmjZtmi644ALddtttmjt37hh8MgATzf33369rr732mLZdt26dzjvvvEHLwuGw7rjjDj3yyCNqampSUVGRVqxYoc997nM6//zzj/h+XIsCMJSRjkuPP/64fvOb3+iFF17Qvn371NbWJq/Xq9mzZ2vlypW68cYbNW/evCO+H+dwAIZy4MABPfjgg3r66af1yiuv6MCBA4rH4yorK9OSJUv07ne/W//yL/+iUCg05P7MlwCMpZGOScyVMJmQDAYAAAAAAAAAAAAAAAAAk4Aj3wEAAAAAAAAAAAAAAAAAAEaPZDAAAAAAAAAAAAAAAAAAmARIBgMAAAAAAAAAAAAAAACASYBkMAAAAAAAAAAAAAAAAACYBEgGAwAAAAAAAAAAAAAAAIBJgGQwAAAAAAAAAAAAAAAAAJgESAYDAAAAAAAAAAAAAAAAgEmAZDAAAAAAAAAAAAAAAAAAmARIBgMAAAAAAAAAAAAAAACASYBkMAAAAAAAAAAAAAAAAACYBEgGAwAAAAAAAA5hWZYsy9LTTz+d71BOmNdee01ut1tLly6Vbdujfr877rhDlmXptttuG4PoAAAAAAAAMBIkgwEAAAAAAGBS6U/kGsm/+++/P9/hj5vPfe5zSqfTuv322+VwjP4y4Y033qjKykp95zvf0b59+8YgQgAAAAAAABwvV74DAAAAAAAAAMbS9OnTh1weiUTU09NzxG38fr8kadGiRZKkQCBwAiLMv3Xr1ukPf/iDli5dqg984ANj8p7BYFA333yzvvCFL+i2227TT3/60zF5XwAAAAAAABw7yxhj8h0EAAAAAAAAcKJ96Utf0pe//GVJ0lS/JHbRRRfp8ccf13/913/pU5/61Ji9b2trq2pqaiRJu3fvzr4GAAAAAADA+KBNJAAAAAAAADCFNDY26s9//rPcbreuuOKKMX3vyspKXXjhhUqn01QGAwAAAAAAyAOSwQAAAAAAAIBDWJYly7L09NNPD1q+a9eu7Lpdu3apqalJ/9//9/9p1qxZ8vl8mjdvnv7jP/4j245SkrZs2aJrrrlGM2fOlM/n04IFC/S1r31NqVTqiDHs2rVL//qv/6olS5YoGAwqEAjopJNO0k033aTdu3eP+LP95Cc/kTFGq1atUmVl5bDbPf7443rf+96nuro6eTweFRcXa+7cubrgggv0rW99S+3t7UPud/XVV0uS/vf//t8jjhEAAAAAAAAj48p3AAAAAAAAAMBEtHHjRl133XXq7OxUcXGx0um0Xn/9dX3961/X3/72Nz311FP685//rA9+8IOKRqMqKSlRMpnUjh07dNttt2nLli365S9/OeR7P/jgg7ruuuuUSCQkSV6vVw6HQw0NDWpoaNB9992nRx55RBdccMFxx/3YY49Jks4555xht/nKV76i22+/Pft1IBCQMUaNjY1qbGzUE088oTe/+c0677zzDtv37W9/uySpqalJW7du1eLFi487RgAAAAAAAIwMlcEAAAAAAACAEbjuuuu0fPlyvfLKK+rq6lI4HNYPfvADOZ1OPfPMM/rKV76iD33oQ3r3u9+tXbt2qbOzU93d3friF78oSfqf//kfPfnkk4e97xNPPKGPfOQjymQyuuWWW9TY2KhYLKaenh699tpruvzyyxUOh3X55Zcfd4Ww7u5ubd68WZJ0xhlnDLlNU1OTvvzlL0uS/u3f/k379u1TT0+PwuGwOjs79cwzz+iTn/ykQqHQkPvX1dVpxowZkqS//vWvxxUfAAAAAAAARodkMAAAAAAAAGAEamtr9eijj+rkk0+WJPn9fn3605/Otkn82te+pjPOOEMPPfSQ6uvrJUnBYFBf+9rXslW5Dq0MZtu2PvWpT8m2bf3whz/UN77xDc2ePTvbmnLRokV6+OGHddlll6m7u1vf+c53jivmF154QZlMRpJ06qmnDrnNhg0bZNu2Fi5cqG9/+9vZxC5JKikp0dlnn60f/vCHWr58+bDf5/TTT5ckPffcc8cVHwAAAAAAAEaHZDAAAAAAAABgBD772c/K6/UetvzCCy/Mvv785z8vy7KG3ebll18etPxvf/ubtm/frsrKSv3Lv/zLsN/7Ix/5iCTp8ccfP66Y9+/fL0lyOp0qLy8fcpvS0lJJUjgcVk9Pz3G9f7/KyspB3w8AAAAAAADjw5XvAAAAAAAAAICJaLg2i9OnT8++fstb3nLEbTo6OgYtf/bZZyVJXV1dgypyHSqZTErqbel4PA4ePCipN+FrqCQ1qfdzVVZWqrm5WStWrNAnPvEJrVy5UosWLRp2n0P1J5r1fz8AAAAAAACMD5LBAAAAAAAAgBEIhUJDLne5XMe8TSqVGrS8v5JWKpXSG2+8cdQYYrHYMcXaLx6PS9KQFc36lZaW6qGHHtLVV1+tV155RZ/+9Kcl9baIfPvb364PfvCDuuKKK+R2u4d9D7/fP+j7AQAAAAAAYHzQJhIAAAAAAAAoEJlMRpK0YsUKGWOO6d/xqKiokHR4RbJDrVy5Uo2NjfrZz36mj370o1qwYIG6urr0+9//Xh/+8Id1+umna9++fcPu397ePuj7AQAAAAAAYHyQDAYAAAAAAAAUiOrqaknH3/7xWE2bNk1Sb0Wxo1XtKioq0oc//GHdf//92rZtm/bu3atvfOMb8vl8gyqGDaU/Gaz/+wEAAAAAAGB8kAwGAAAAAAAAFIizzjpLktTS0qIXXnhhzN//5JNPzr5+/fXXj2vf2tpa3XLLLbr55pslSU888cSw2zY2NkqSFi9ePIIoAQAAAAAAMFIkgwEAAAAAAAAF4vzzz9f8+fMlSZ/97GeVTCaPuH1/Ba5jtWjRIk2fPl2S9I9//GPIbRKJxBHfw+/3S5IcjqEvLSYSCW3evFmSdO655x5XfAAAAAAAABgdksEAAAAAAACAAuFyuXT33XfL5XJp/fr1evvb366nnnpKqVQqu83rr7+uu+++W295y1v0ox/96Li/R3+C1oYNG4Zc/41vfEMXX3yxfv7zn2vv3r3Z5YlEQg8//LC++c1vSpIuueSSIfd/6aWXlEwm5XK5spXOAAAAAAAAMD5c+Q4AAAAAAAAAwIB3vvOd+tWvfqWPfOQj2rBhg1auXCm3263i4mJFIpFBlbve8573HPf7X3XVVXr44Yf16KOPyhgjy7IGrbdtW4899pgee+wxSb2VwPx+vzo6OmSMkdTb/vE73/nOkO+/du1aSdKll16qUCh03PEBAAAAAABg5EgGAwAAAAAAAArMe97zHu3YsUM/+tGP9Kc//Unbt29XZ2enioqKdNJJJ+ktb3mLLrnkEr3rXe867ve+9NJLNWPGDO3Zs0d//etfdd555w1af/3116u2tlbr1q3TP//5TzU3N6urq0tlZWVasmSJ3v/+92vNmjXy+XyHvbcxRr/4xS8kSWvWrBnRZwcAAAAAAMDIWab/cT4AAAAAAAAAU8JXvvIV3X777br22mv105/+dMze929/+5vOPfdczZs3T9u3bz+s6hgAAAAAAABOLJLBAAAAAAAAgCmmu7tb8+fPV1dXl3bu3Km6uroxed+LL75Yjz32mB566CFdeeWVY/KeAAAAAAAAOHaOfAcAAAAAAAAAYHwVFxfr9ttvVzKZ1P/6X/9rTN5zw4YNeuyxx3TGGWfoiiuuGJP3BAAAAAAAwPFx5TsAAAAAAAAAAONvzZo16uzslMPhkG3bcjhG99zowYMHdfvtt+u9730v7SEBAAAAAADyhDaRAAAAAAAAAAAAAAAAADAJ0CYSAAAAAAAAAAAAAAAAACYBksEAAAAAAAAAAAAAAAAAYBIgGQwAAAAAAAAAAAAAAAAAJgGSwQAAAAAAAAAAAAAAAABgEiAZDAAAAAAAAAAAAAAAAAAmAZLBAAAAAAAAAAAAAAAAAGASIBkMAAAAAAAAAAAAAAAAACYBksEAAAAAAAAAAAAAAAAAYBIgGQwAAAAAAAAAAAAAAAAAJoH/H236rdKsWlo6AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "meanBPM, stdBPM, rangeBPM = [], [], []\n", + "\n", + "fig, ax = plt.subplots(nrows=2, sharex=True, figsize=(30, 10))\n", + "for i, trial in enumerate(signal_df.nTrial.unique()):\n", + " \n", + " color = '#3a5799' if (i % 2) == 0 else '#3bb0ac'\n", + " this_df = signal_df[signal_df.nTrial==trial] # Downsample to save memory\n", + " \n", + " # Mark as outlier if relevant\n", + " if i in drop:\n", + " ax[0].axvspan(this_df.Time.iloc[0], this_df.Time.iloc[-1], alpha=.3, color='gray')\n", + " ax[1].axvspan(this_df.Time.iloc[0], this_df.Time.iloc[-1], alpha=.3, color='gray')\n", + " \n", + " ax[0].plot(this_df.Time, this_df.signal, label='PPG', color=color, linewidth=.5)\n", + "\n", + " # Peaks detection\n", + " signal, peaks = ppg_peaks(this_df.signal, sfreq=1000)\n", + " bpm = 60000/np.diff(np.where(peaks)[0])\n", + " m, s, r = bpm.mean(), bpm.std(), bpm.max() - bpm.min()\n", + " meanBPM.append(m)\n", + " stdBPM.append(s)\n", + " rangeBPM.append(r)\n", + "\n", + " # Plot instantaneous heart rate\n", + " ax[1].plot(this_df.Time.to_numpy()[np.where(peaks)[0][1:]], \n", + " 60000/np.diff(np.where(peaks)[0]),\n", + " 'o-', color=color, alpha=0.6)\n", + "\n", + "ax[1].set_xlabel(\"Time (s)\")\n", + "ax[0].set_ylabel(\"PPG level (a.u.)\")\n", + "ax[1].set_ylabel(\"Heart rate (BPM)\")\n", + "ax[0].set_title(\"PPG signal recorded during interoceptive condition (5 seconds each)\")\n", + "sns.despine()\n", + "ax[0].grid(True)\n", + "ax[1].grid(True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{note}\n", + "Here we are only representing the **interoception** trials, as the quality of the PPG recording will not affect the exteroception condition.\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6v7Ky2LAHuha" + }, + "source": [ + "## Heart rate - Summary statistics" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xvbtqjNOHuha" + }, + "source": [ + "This figure show the evolution of the average and standard deviation of the instantaneous heart rate across time. An instantaneous frequnecy was derived between each peak detected in the PPG signal (also known as pulse-to-pulse intervals, or pseudo RR intervals). Rapid increase or decrease of the heart rate frequency can lead to larger standard deviation, and less accurate estimation of the average heart rate." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 352 + }, + "id": "UeLCnS0tHuha", + "outputId": "28139328-debc-4cab-ef2f-f14df676b441" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPAAAAHSCAYAAABinzWZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZwcdZ0//ldVdVX13T33mczkvkQiiIYFZTldwcUDA7ruilGBXfWHiue6uLi6u4rKul/wWFgBv188E0AXTFBEQMUlIsFwmPuaJHMffR91//6o6eqqnu6Z7p7umU7yfj4eeTxmpqurPl093ZN69/tgDMMwQAghhBBCCCGEEEIIaUjsYi+AEEIIIYQQQgghhBBSGgXwCCGEEEIIIYQQQghpYBTAI4QQQgghhBBCCCGkgVEAjxBCCCGEEEIIIYSQBkYBPEIIIYQQQgghhBBCGhgF8AghhBBCCCGEEEIIaWAUwCOEEEIIIYQQQgghpIFRAI8QQgghhBBCCCGEkAZGAbw6eM973oNzzz0X73nPexZ7KYQQQgghZB7o/3WEEEIIaQSuxV7A6Wjfvn144YUXFnsZhBBCSENIj09gbPduTO7ZCzmRAAwADCAEAmhZvw7tGzfC29a62MskpCj6fx0hhBBCGgEF8AghhBBSN7FjAziyfQcyk5PgA374OjvBcCwMTYeUiGPo2Z2IHDiI5VddiVB/32IvlxBCCCGEkIZEJbSEEEIIqYv0+ASObN8BKRqDv6cH7nAYDGf+14PhWLjDYfh7eiBFYziyfQfS4xOLvGJCCCGEEEIaEwXwCCGEEFIXY7t3IzM5CW9nBxiWKboNwzLwdnYgMzmJsd27F3aBhBBCCCGEnCIogEfqTk4mETl4EBN79iBy8CDkZHKxl0QIIaTO5GQSk3v2gg/4HcE7QzegK6pjW4ZlwAf8Zo88+htBCCGEEELIDNQDj9QNNS0nhJAzV2p4GHIiAV9np/UzQ9cRO3oMuqrC29YGd3OTdZsYCCI1MoLU8DCEVasWY8mEEELOUIZhQJblxV4GAEAQBDBM8ax1QsiZjQJ4pC6oaTkhhJzZNEUBDFg97wBASaWgq2b2XTYScQTwGI4FjOn7EUIIIQtIlmXcfPPNi70MAMCdd94JURQXexmEkAZEATxSc4VNy+2lU7mm5WIwhPTIKI5s34E1126mTDxCCDnNcDwPMICh6VYQz146q6sqdFUF6zL/K2JoOsBM348QQghZBFP79y/q8ZvXrFnU4xNCGlvZAbz3v//98z4YwzC49957570f0thyTcsLg3d2uablycFBjO3ejf7LL1vgVRJCCKknX1cXhEAAUiIOdzgMAFb2XY6WyYIN+AEAUiIOIRCAr6troZdKCCGEWD5x7XXgXQub56KoKu7Y+pMFPSYh5NRT9jvT9773PasW3zCMiuvyc/ehAF5jkJNJpIaHoSkKOJ43L7T8/prst7BpuaHpUFIp8F4vGBdnbWtvWt59/qaaHJ8QQkhjEPx+tKxfh6Fnd0IMhsCwDIyCAJ6azYIP+GHoBpREkv4WEEIIWXS8ywWBssEJIQ2o4o8W+vr60NdHPctOVfUeLDGjabkBJE6cgCpJ4AQBof5+wBb7pablhBBy+mrfuBGRAweRHhmFt7NjRgaems3C0A2kR0bhaWlB+8aNi7NQQgghhBBCGlxFATzDMHD8+HEsW7YMW7ZswTvf+U643e56rY3U2EIMlihsWq6rKlRJMm+TZTPjT8h/okVNywkh5PTlbWvF8quuxJHtO5AcHIScTAIsC4ZhYBgGpFgcAOBpacHyq66kfqiEEEIIIYSUwM69iem5557DTTfdhGAwiKeeegrXX389urq68Pd///f4wx/+UM81khooHCzhDoetIFtusIS/pwdSNIYj23cgPT5R1XHsTcuBmf2O9ILx7NS0nBBCTm+h/j6suXYzuja9HoZuQE2noaRSUNNpGIaO9tdsxJprN9NEckIIIYQQQmZRdgDvta99Lb7zne9geHgY3//+93HxxRcjHo/jnnvuwV/8xV9g/fr1+PrXv47R0dF6rpdUKTdYwtvZMedgiczkJMZ2767qOPam5UCRhuWKM4BHTcsJIeT0521rxdKL3oimNasQXrEcoWX9CK9Yjua1a9C6fj1l3hFCCCGEEDKHsgN4OaIo4m/+5m/wxBNP4OjRo7jtttvQ19eHffv24TOf+QyWLFmCt771rfjZz34GTdPqsWZSoWKDJXRVQ2p4BKnhEStbDnAOlpCTyYqPlWtariSSMHRjRsNyXc6XyuaalresX0dNywkh5DSnpNPgeB5iKAR3UxPEUAgczyMzUV3GNyGEEEIIIWeSigN4dkuXLsVtt92GI0eO4Ne//jXe/e53g+d5PProo7jmmmvQ3d2NH/3oR7VaK6lSbrCEGAgCMMtWEydOQorHIcXjyEajju3FQBByIoHU8HBVx2vfuBGelhakR0ahFZTMatMBPGpaTgghZxYllS768zQF8AghhBBCCJnTvAJ4dhdffDG+//3vY2RkBLfffjt4nsfExAT+9Kc/1eoQpEr2wRKGbiA5NARNlqzbdUlybD/fwRK5puViOITMxAQ0SYJhGOZaZAnZaBTJwUGI4RA1LSeEkDOEks4H8FhXvu9pdnIShq4XuwshhBBCCCFkWkVTaOfy5JNP4v7778dPf/pTyNOZVyxbsxghqZI1WELVkR4fc1xEATP71NVisESuafmeH/wQ8ePHoVrHZOBta0P3+ZvQvnEjBe8IIaclOZlEanjYnLzN82Z/0DO8VYBq+9vj7+pC4uRJGIYOXdOQjUTgaWlZxNURQgghhBDS2OYdwBsYGMD3vvc9/N//+38xMDAAwzDAcRyuuuoqvP/978df//Vf12KdZB5ygyUSJ09ALci2A2YG8Go1WMLb1opgby9cXo85bVDXwbAs1lz7TvgXaWgFXVQTQuopPT6Bsd27zT6iiQRgAGAAIRBAy/p1Z/QHF/YPj4RgAO7mZmQmzfLZzMQkBfAIIYQQQgiZRVUBvGw2i4ceegj3338/nn76aRiGAcMwsHbtWmzZsgV/93d/h87OzlqvlZSpWJDK09KCyMFDcPm8YBgGHM9bJbK6mh82khss0X3+pnkHtgzDgJJOgeN5cKFQ/ufawpdK0UU1IaTeYscGcGT7DmQmJ8EH/PB1dpqtCzQdUiKOoWd3InLgIJZfdSVC/X2LvdwFZw/gubxeeFpbbAG8CWDN6sVaGiGEEEIIIQ2vogDeH/7wB9x///34yU9+gng8DsMwEAgEcN111+H9738/Nm3aVK91kjKUClKxLg5yKgPW5YKazkAMh+Dv7UHs6DEAgGHo02WzTE0HS2iyDL3IJGI5kZj3vitBF9WEkHpLj0/gyPYdkKIx+Ht6rInfgNlX1B0OQwyGkB4ZxZHtO7Dm2s1n3IcG9hJa3uuBSxQwtX8/APP8EUIIIYQQQkorO4C3YcMG7Nu3z/r+oosuwpYtW/DOd74THo+nLosj5SsVpFJSKcSOHIUmK2A4FhzvAstx5jTA6QCfYRjITE1By2bhaWmp2WAJJZUq+nM5Hp/3vstVzUW1y+OmMltCSEXGdu9GZnJyxvuMHcMy8HZ2IDk4iLHdu9F/+WULvMrFZZ9Cy3u94ETR+l6KRq33XEIIIYQQQshMZQfw9u7dC4Zh0N/fj/e+971YtmwZDMPAtm3bKjrge9/73ooXSWZXKkilyTKSQyNgBQEMz0PLZOFtb0fT6tVInDgBLZuFrk9nyDU313ywhFowLCNHWsAAXiUX1bFjx7D3xz8BdJ3KbAkhZZOTSUzu2Qs+4M+//2YkZGNR8F4vhEAAmH77YVgGfMCP8Zdehre9HSzvOiM+KDB0HWo2a33v8noh+P1gXTx0VYFh6MhOTcHX0bGIqySEEEIIIaRxVdwD79ixY/jiF79Y1cEYhqEAXh0UC1LpqobkiUEY0wE6lmERWLUSUiQCIeDHWR/Ygv3bHkI2MgWGZdF32WVoe9WGmq7Lnm1hXr0aAAA5vjAltMUuqg3dgByLAQwD3ucDy7um15qEHIshOzGJ0PJlp12ZLQ3vIKR+UsPDkBMJ+HK9Xw0gOTQETVUgxWJwRaLwdbSDc4tQM1nI8STSIyPITk3B5facER8UmP3vDOt73usFw7LwtLYgNTICAMiMT1AAjxBCCCGEkBIqCuAZhjH3RnW8P5mpVJAqeXIQmqpY2/m6OiH4fdBVBZN79qL7/E0ILlkC64KqDs+NvWG5u6kJ2ciUueZEwppIW08zLqphNkrPRiLW9y63G5wgIjMxbv5+cixY3gWGM9d2qveuouEdhNSfpiiAAet9Q1dVx/uvms0gNjAAl+iGnEhAk2UYhgGxKQxPS8tp80HBbOwZ2ZwggnWZ//3wtLbmA3gT1AePEEIIIYSQUsqOoOi6XpN/pLZyQSoxELR+JifiUKV8qZK3tQ1CMAAAEANByIkEUsPDcHnzvQvVTKbma7P3wPN15rMqDEMvyM6rj8KLanNNzuOq2SwSQ0OQYnHoqgZD1aBlZXuiCIB8mW1mchJju3fXfe21EDs2gP1bt2Ho2Z3QdQ2+zk74e7vh6+yErmsYenYn9m/dhtixgcVeKiGnNI7nzX6i0xO2NUmasY2uqkgOD0OOx8G4OLC8ywpi5T4o8Pf0QIrGcGT7jtNuqIP9Ax3e57W+9rbmP0A43R4zIYQQQgghtVTfFChSd0WDVMn8hZIYCMDd3GR9z3AsYJj34735i6hS/ermw75PMRh0HG8hBlkUXlTDAHRZdmxj6Dp0WTKzAQ0duqogNTaK2NGjkCIxx7a53lWTe/ZCTibrvv75KOyL6A6HZ2QVns7BAkIWkq+rC0IgAClhvq9ptvcZThDA8TzUrARD0wCOg5pKQ1dUsJwzCf5U/KCgXIUDLHI8tgCenExALRL8JIQQQgghhFAA75RXLEhlz3SwN08HprdjzPu5bBdRSh0CePYMPJfXCyGYzxLMXejW04yLakWGYUutCy5dYl5IGgBYs98dw7JgXS5oihnI0yRnwM+ewdjIcn0RvZ0dcw7vOB2DBYQsJMHvR8v6dVASSRi64cjA470+sz8pAIZlwTDmBwesy4Xk4BDSY+P592+cWh8UVML+gY79bw/v98HldlvfZ+jDBEIIIYQQQoqqOIAnyzK2bduGT3/60/j7v/97fO5zn8MjjzxC5bGLZEaQKitZgysYMI4LJcAMnAmBAHxdXeDtJbTpepTQ2kumfBBtAbyFGGQx86LalhXD83B5PBCCAXBuEWIgAIbjwPt8jt58mm1qIuDMYGxUxfoiwgB0RS1aGnw6BgsIWWjtGzfC09KC9MioI4uMEwWo2YzZezIUAnQDDMfB5XbDgIFsJILk0JBjX6fKBwWVcJTQ2v4uMQzjyMKjPniEEEIIIYQUV9EQixdeeAHveMc7cOLEiRm3rV69Go888ghWrVpVs8WRueWCVEPP7oQYDEFJ57PeOLfoKK01dANKIonu8zdB8PsdWSJKJgPDMMAwxbO1KqUpCjQlHzDjfV4zG3DaQk2ibd+4EZEDB5EeGQUj5H/dOUEEgOnSWbMXnuD3IbR8ObJTEcjJhPU47OwZjI2q1PCOzNQUOJ5HsL/PEaQUA0GkRkaQGh6GQK9fchqr5zRmb1srll91JQ7/fDtS+w+Yfe4EAZwoQElloKsqYGQhBAPwtLZBSSatQRdKOm1mANvK3Bv9g4JKlQrgAWYZbeLkSQBAmgJ4hBBCCCGEFFV2AG9ychJXXnklxsfHi06T3b9/P6688kq89NJL8Hg8RfZA6sUepLJPPuR9PutrQzeQHhmFp6UF7Rs3mrfbLqJ0VYGuqOCE2gSm7OVSDMPC5XZbgzQAQFqAHnhA/qL6yPYdiB09Cl3TrItqQ9OhKQp0TQXH8wgsXQqXx+04B3rBBbQ9g7FRzZiIqajITkWs25RkyvFcnI7BAkLsFmoac6i/DyvechX+PBVBNhqBmk4jMzEJTZLMTLO2Vnjb2uDyuGG0tSJ6+DAMPT/4IjdY6FT4oKBSaqp4CS0Ax7nPjE/U9MMkQgghhBBCThdll9B++9vfxtjYGHiex6233or9+/cjlUrhz3/+Mz70oQ+BZVkcOXIEDzzwQD3XS4rIBamEYACZiQlokgTDMMB7vTA0HdloFMnBQYjhEJZfdaV1scS53WCY/K9ALQdZ2MtnXR4PGJZ19MCTEwnrwrXeQv19WHPtZjMjjWGgptOQYnGkRkbgEkS0rF8PMRS2Ap6s7aJZk/NBrVwGY8v6dTXL2qmHwr6I2amIo/dfYb/D0zFYQEjOQk9jZl0cAkt60Lx2DVrXb8Dqd74Da67bjPCKFRCCAbg8Zr83hmWsTGDAObn2VPigoBKGYZScQgs4B1mo2YyjfyohhBBCCCHEVHYG3mOPPQaGYXDbbbfhH//xH62fr1u3Dt/85jfBsiy++c1v4rHHHsONN95Yl8WS0kL9fVh68V8iG4kiG41Ay2SRmYqAmc4y6T5/04wsE4Zh4PJ4rLJbJZOGGA7VZD3FLtbsJbSGrkFJpxcsEOZpaYanrQ18MAA1nUb3pk3wtDTD19UFNZPF/q3bkB4ZhbezAywvWPfTp8uAi2UwNip7X0TRH4AUizpuLwzUnm7BAkJyCqcx2we65KYxi8EQ0iOjOLJ9B9Zcu3nemXjZSBSAGRAP9Pegdf16cy2jY1arg9w6rP54AFRJgoiZrQ5OB7osQ9dU6/vCElqX2w3BH7BaF2QmJk6bx04IIYQQQkitlJ2Bt3//fgDAhz70oaK3535+4MCBGiyLVEPJZKzMj65Nr8fqa96Gtddtxlkf2IL+yy8remHqcgyyqGUGXj6DInexxvE8eE/+wm2h+uDljmXoGjiehxgKo/O156Jp1SoIfr+VwSiGQ0gODkLNpK0ycU01y0+LZTA2KvvwjkwkMqPkXVPMcmng1MkqJKQaizGNWYpGra/FcNj62j7kwtDN16RLzE9f1STplPqgoBJKQUsFzjZ1NscxyIIm0RJCCCGEEDJD2QG8WCyGpqYmhELFM7RWrFgBAIgvUG8zMlNqepIhx/No3/hqtK5fbwWpSrEH1JQaTqJ1BPBsvfjsvdfkBfxdyUYj1tdiMAjW5Uw+zZXZdp+/CZwgQE2bZVxqOg3D0NF9/iasuXYzQv19C7bm+WjfuBHupiYkBweL9qxU0unTNlhACFBiGjMAXVbNidS2l0UtpzFnSwTwCj8oyEajYKcH6xiGATmeqNsHBXIyicjBg5jYsweRgwcXfOK0fco57/MW7W/nsT3e9MRkTY672I+bEEIIIYSQWiq7hFbXdQiCUPJ2frp/lqZp818VqZiaySAzNWV97+/uLut+jgy8TO0CePYLNpcjgBdEanQUACAlFi4DL1fWBgBiU7joNt62VvRffhm6z9+EvT/aCjkRA8Oy6L/iCrSuX7cwC60Rb1srWjasR2xgAGoqDU4QIIZDZuDOMJCZmIQcj8PT0nJKZBUSUqli05jVTBbx48cBAGIgMJ2Zx05/P/9pzIZhQIrGrO/dBe81uQ8KcgM1spGo9WEHy/Nof81GdG/aVLPX40IN75iLfTp64QCLHG9ri/V1dnJ+gywa5XETQgghhBBSS2Vn4DWCyclJfO5zn8OrX/1q+P1+CIKA3t5eXHvttXjmmWdK3i+ZTOLWW2/F2rVr4fF40NbWhre85S14+umnF27xdZYcHra+5r1eiCUyJQvZexHZB0/Ml/2CjbcFCe198BYyA89xUT3HuRH8foSW9cHd1AQxFIJxCgaldU1DZnwC4eXL4W1vhxAMQJNlK6tQk+VTLquQkEoUTmMGACmWfx+QEgnEjx2HljWHR+SmMUvxeNVZW0oyBd02CVwMhWdsk/ug4KwPbMG6d12LlvXrEV6xHM1r16DtrLNqFlha6OEds3H0RC0xpd7d0gLADNhpiuJ4rirRSI+bEEIIIYSQWio7Aw8AMpkM/t//+3/z2ua9731vJYe0HDx4EBdddBGGh4fBsiz6+/sRDAZx+PBhbNu2DQ8++CDuuOMOfPzjH3fcb2JiAhdeeCH2798PURSxfv16jI+PY/v27dixYwe++c1vluzrdypJDuUDeP7u7rIzF+zZEGqmTj3wbBl4on0S7YIG8GwltCUy8OzEQAC5/EB5ATMFayV25CiUdAoujxvBpUuw/Mq/QmpkDMee+BUYloXL60X3pk0QAtT3jpye7NOYc0E8taBNgKbIiB8/Dm97O1gXj2w0iqO/eBwwjKqytuyl+rzXB04oPdlZ8PshrFqF+ImTiA+YwaRsJFKTgPpiDO+Yjf3DIfvfAzuO5+FuCiMbMc9hZnwCblsJcjkW63HLySRSw8PQFAUcz5uDhKinKCGEEEIIqbGKAnjxeBxbtmwpeTvDMLNuwzBM1QG8v//7v8fw8DBWrVqFn/3sZ1g/Pdkvm83i1ltvxR133IFPf/rTeMtb3oJVtvKnD3zgA9i/fz/OPfdcPPLII+ju7oZhGPjv//5v3HTTTbj55pvxF3/xF9h4CvcAMwwDycEh63t/d/nTRHnHEIvalNDqmgY1m7Udo0QPvERiXmVS5TJ0HVIsHyx0h5vmvM9iZQrWgmEYGH/5Fev78MoV8La3w9vejsiBA5AS5uNJjQxDCFRXKkhIo7NPY3aHw9BVDdr0VGk7wzAQP3kSajIFsCx8nR1wNzWB4VgYmg4pEcfQszsROXAQy6+6ctYAm2Qr1S8sny3F3dTkCODVQm54R2EQyy43vCM5OIix3bvRf/llNTl2MY6WCiVKaAFzkIUVwJuYQNOqlRUdpx6Pe7bgHJXqEkIIIYSQhVRRCa1hGPP+V41EIoGnnnoKAPC1r33NCt4BgNvtxte+9jWsXLkSqqril7/8pXXbn/70JzzyyCNgWRY//vGP0T3dF45hGNx44434u7/7O2iahi996UtVratRyPG4o2TVV2b/OwBw2cqZcv3R5qswEOhylNDmM/B0Tavp5NtSpHgchqEDMCcgCqHgHPeYGWg8lSROnIAUi05/x6DtVa+ybvN15fuBJYdHFnZhpCaoMX957NOYDd1wvNewLhcCPT1gWQ66qkJJJKDJMjieh+D3Wxl7uawtf08PpGgMR7bvQHqWCamlBljMxt2U/0Aha+tjWq2iwzsMQIrFoSRSjm1rObxjNo4S2lkCeN5W+yCLyibRFnvcajqD2NEBpIaGrcm/QHmPOz0+gWO/egIv33s/9v1kGw4+9DPs+8k2vHzv/Tj2qycw+qcXqVSXEEIIIYQsqLIz8I4ePVrPdcxKkiQrsJSbdmvHMAxWrFiBQ4cOQVHy/YcefPBBAMAll1yClStnfpJ/00034YEHHsCOHTuQSqXgK1Ha0+js5bPupqaSPYaKsV9M6ZoKXVFnLfsqh6NhudsNluOs7zmBh8vtgZo1g3xSPFGypKpW7FkxQiDgWE8pjgy8ZAq6ppV1v8VmGAbGX3zZ+j7YtxRiON/zz9fViakDBwAAqeGRBcmAJLVB2T6Va9+4EZEDB5EeGQVsGVm8xwPe70Owvw+Te/dCV1QwLhc4QUB84Di87W1mAG76LuVmbc02wKIUd3M+gCcnElamV7WKDe/ITE0hMx0Q83d1OT6gqMXwjrnYWyrMlYGXk52cquh9t9jjTo2OQZMlaLIE1uWCp73Num22xx07NoAj23cgMzkJPuCHr7PTkZF54re/g5JIQggGEOzrW/QSZUIIIYQQcmYoO4DX17d4je5bW1vR29uLkydP4n//93/xKltGEQCkUins3r0bAPC6173O+vnOnTsBAG984xuL7vd1r3sdRFFENpvF7t27ccEFF9TnAdSZs3y2/Ow7AODcbjAMa2Woqek0OKG8ARilzNXvSAgGrACeHI8DtqywenBkxZR5Uc37/TCv3g0ABpRUytG/r1GlRkaRnhi3vm876yzH7b6ufHm1kk5BTiROicd1ppsroFBuieeZxtvWiuVXXYkj23cgcvAgwDBgBQEurxeGpiMbi0LNZsGJInivF4yLgwEDqbExqJmM+XqxBfFyWVvd52+a0ePMnEAbtb4XyyjVB6Y/VHDx1vALKRKBt7296sc8Y3iHAci2wGI2EnEE8HLDOzTbh1+1ZOi6s6WCr3QAz93cBIblYOgaDENHdipSduCr8HHrigpNlqzbs5EohGAQnFsEUPpxl9NHT04koabTYDgWmiTB5XFPP1jz94BhmQUtUSaEEEIIIWeGU2YK7Ve+8hUwDINPfepT+O53v4uRkRGk02k899xzuPrqqzE6Ooq//du/dQThDkxnGhXL2gMAnuexZMkSAMD+/fvr/yDqwNB1pEacAywqwTDMjDLa+bLvo1i2xUIPspBsfaXKbYrOchwEfz742Mh98OwllceffNK6IPV3dc24+OU9HsdkzBSV0S6YaktfCwMK7nC46hLPM1Govw8r33o13M0tAMNATachxWJIjYxAlxUIPh9aX7UBoeXLHNleUiIxYxKqGAhCTiSQsk39zlGSSeiamt82XN4HIQzDOLL1slPz64NnH94BAJokQbNNxlWzWWvyLjC9HYN5Zf3NRs1kYH4QYpqthJZhWXhamq0ptCPP7yr7tVL4uO2Z4ADMwOzomLWUUo8710fP29lRtI+epiiQIlFwbjfUdAaJ48eRGhpGfOA4IocOO343FqpEmRBCCCGEnBkqGmKxmN7znvcgFArhX//1X3HDDTc4buvq6sJ3vvMd3HTTTY6fT033E2pubi6539xtkTmah99999245557ylrr3r17y9quFjITE1bAhmE5eDsqz9xweT3WxU4tJtGq9gm0RS7W7Nkf0gL0l8vask/K7UsFmJkxuYsuOd54ffAKSyp1RUFmagosz8MdbkLXeecVvZ+/q9PqkZcaGUHzmtULuOozz3xLXxttIMGpSFdVBJb0wNvZDkPVsOSiN4ITeEjxOI7u+KWVFRbs70dycMjKEFaSKUcgbrZstay9VN/vrygg5m5uRnp8fHo/8wvgFQ7vKBY4ykaj8HV2AACkRBxCIODIzq0l+wc6nCCCdZX+b0d6fALJoWFM7dsPXVGQHBzG6K5dZb1WCh+3mpr5t0zNZiDFYhDDoaKPu2j/QABaVoIUi0GTZciJBOREHAznAnQdmakp6LoOhjWD6prs/N1YiBJlQgghhBByZqh5AO/o0aPYtm0bjh49Cp/Ph9e+9rV4xzveAUEQ5r3vQ4cOYWxsDCzLYunSpQgGgzh06BCGh4fxve99DxdeeKGjvDY7XbYz27FF0SynyWRmn8A6PDyMF154Yd6PodYStvJZb3tbVVkUvNeL3KNXajCJ1tGwvFgJbcCegVffwJiuaY7suXL7UgHTffCmsykabZBFsZLK9OgoXF4vdFlGdmoKx5/+DXi/f0ZJpa+rE5P79gGgPnj1Nt/S1xkBBcMM2svxBIRQEJ7WFmvbuUo8z2Tp0VEAZrZVaNVqtG4wByGZZbVmNhbDsWBdHDwtzUgMDgIAlEzaCrgCs2erOcpnbVmu5bAPssjMc5BFbnjH0LM7IQZDkBMzA3hyPAFvWxvAMFASybr+vjhaKnhL92fNvVaSg0OAYcDl9cIlivB1dpb1WnE87kDIcVzW5YKumtmR6fEJ8D5f0cddrI+eksogefIkjOnUPV1VzVJdhgE4FrqqQldVcNP/z9AV2fE7U+8SZUIIIYQQcuaoOID3k5/8BD/72c+QTCaxZs0afPjDH8ayZcsAAP/1X/+Fj370o1BV1XGfZcuW4ec//znWrl1b9UI//OEP49vf/jbOO+88/OIXv8Dq1WbWUCaTwW233Yavfe1ruOCCC/DSSy9Z/frcbjfS6TRkWS65X0kyS4k8cwx+6OrqwjnnnFPWWvfu3TtnQLBWUkPVl8/m2EtoazEVVpkjA0+0T3iNx+saQJILJ9BW0O/NPshiITIFy1WsR5MmK5ASCTAMA276oleOxYs2UHdcnGbSkONxiKH59T0kM5XTS2uuRvf2gIKuakgNDUGZfm/JTE5CDIXA8vm3ccr2KS41ki8V93V12L52Zm0BZkYyAwYGDKt/W67H2WzZatX02syxD7KQIpF5vyfmhnckBwehSllrXwzDTE+E182MsqwET0sL2jdurPpYc1HnaKkAFLxWlvYiPj25VZv+213uUIjc404MnoSmqdbjDvT2ID5wAoahQ9dURA4dRqhv6YzHXdhHT5MkJIcGreAdAIBhzKCvYYDlOLCsAcEfgLs5DI4XzECe7amrd4kyIYQQcrowDGPW6/aFJggCJTmQhlNRAO+DH/wg7r//fuv7HTt24O6778azzz6LwcFBfOQjH4Gu6zPud+TIEVx55ZV45ZVX4J2l/00pL730Er7zne+A53ls27bNMVDD4/Hgq1/9Kl544QX8+te/xpe//GX813/9FwCgqakJ6XTaKqUtJndbky0DopibbrppRoluKeeee+6CZOtpsmKVXQHVB/DsTcVrkoE31xALW2BM11So6cysjc3nw1HWFgxWNElWcAQaGyeAV6ykMmv7Hed4HmIwCCEQKFpS6XK74W5qskr1UsMjFMCrg2pKX7vP34TU8LA1iVSKx83sHVlCcmjYyiLK0bJZsHw+g4iyfWbSJAkZW185ewC7MFvNHD7AwuVxW4FSJZ2Gy+OGoRuzZqvZM/DK7bVpbW/7+6MpCpRkCkKg+oy43PCOPT/4EdRUGizvAu/zQ/D7kYlMQZdlJE6cRHjlCiy/6sq6Tkid6wMdoOC1wpjPgTH9fwk1mwXv85ZVJp5/3D+0HrcQCIATRbibm5AcGjInrbtFdL3+9TMet72PnqHrSJwctNbBMAw8ra1gOBbxY8fN7QUBSiYNd3O45HtovUuUCSGEkNOFLMu4+eabF3sZljvvvNOq1iOkUZQdwPvFL36B++67DwAQCoWwcuVKHDp0CLFYDLfddhui0xcvt9xyCz74wQ+ir68PJ0+exA9+8AN8+ctfxsDAAL773e9W9aJ85plnYBgGVq1aVXIa7hVXXIFf//rXeP75562frV69GoODgzh06FDR+yiKguPHj1vbnmpSIyNWdhkniPC0lO71NxuXJ39RNd8eeIauTzctNxULzHGiCJfohiqZJc5yIl63AJ7zorqyIJU9W09OJBqi1LRYjyZd1SDHbGXCzc0AY15wliqp9HV2WgG85PAImteuWdgHcpor9jyZAaAEwDLgffmfM6w5GfX407/B+Esvm6+fXAkewyA9Po5sNOrItMtRJQm8LdBD2T4zpUbHkJtc4BLdMwItuayt9MioNbjA5fVaATw1nYbR1IT0yGjJbLWZE2jDFa2REwQIfr/Vry4bmZpXAA8wh3c0rVwOQ9OQjUZgqCrUbAZqOm32yWxuQt9ll9R9arFi/3tQJIBX7LXicrutVgzadAAPKK9MPNTfh6bVq80pw9EIdFlB8uQQwAAuUYSruRmelhbEjx9H+2vOdnyoY2VkRmOQ4jFHwNzf1WW91tzNzUiPjcGAAY4XwHtnflAFYM6gLyGEEEJmmmqA4ZLNa+jaiDSmsgN4ucy7K664Ag8//DC8Xi8ymQze8Y534LHHHoMsy/jUpz6FL3/5y9Z9Vq1ahS984QsIh8O45ZZb8D//8z9VBfASFZQv5vreAcCmTZvw1FNP4Xe/+13RbZ977jnIsgy3242NdSwhqpfkUL7/nb+r02qiXSl7X6L5TqFVs1krqAiULpkSggGo4+ZzJcWdPYdqyVnWNnuWZSHBn8/AM3QNajpdNKOwnuRk0pGRpaQzjh5NmiQhNTJqlXixnMsReCxVUunv6sLk9LCV1MhwQwQnTyfFemllp6aQmZwEYA6cEYMBiKEQNEVGZmwccjIJl9sNf1cXGI6FrmqIHTkKOZkEw7IQg0FwggDOLUKdfp+zTxMFKNunGHv5rLezY8bveS5ry+y/Ngg+4IfLbZbMGoYBKRIFDMDT2lIyW01OJKBrmvV9uRNo7dxNzfkA3lQEwaVLK96HnZJKQ0mnreEdneecA5fXg5HnX4CazYDjeaTHxtEyj9YW5VDn6Ila7LViD+Ap6TTctg+n5ioT1xQFaiplPe72s8+GEDCHirCCiONPPgXAgBSLYuKVPyO8YrnjPTbY34+Tv/kNGJ63fld87R2OQLmntQVSLAo5kYS/t6docN3QjVmDvoQQQggp7RPXXgd+lsFX9aKoKu7Y+pMFPy4h5Sr7VfHcc8+BYRh87Wtfs8pgc+WrZ599NhiGwZYtW4re933vex8+8YlP4JVXXqlqkbnsuIMHD2JgYKBoFt7jjz8OAFhji5a/853vxJe//GU89dRTOHToEFauXOm4z9133w0AePOb3wz/KfjpeLIG/e8AZ5BNTWfmFcyxl89yvFAyE0gIBq3y33oOiJBsJbSVlrVxAg+X220FS6R4YsECeKUml8Iwg5JiUxPUVArZqYijP5O7qWlGr7ViJZXmBEpzh2o2CykadZTxkfkp7KUFOMuwDV1DNhpFemLCnJbJACzPm6WCHAtdUZEcHIJh6HB5PVBTacjJJFrWrgHrciExHbzXJMm2T8r2KSY1Mmp9nZu8WijU34c11262XnNSLAY1lYYBAyzPo2XDeiy56I0lS03t2XeVTqDNcTc3IX7CzAjPznOQBQDEp7PLAcDT1ISOc88BwzBwuT048ZvfAABiR4+h6/Wvg6uO5SH2vwnFPtAp9lrhfT5rmIeSTkNXVCtINleZeHp01PoQSfB60XXeax0fbrWsXYPJffugZrI4/OjP4fJ4HFmvcjIJNSuBkWS4/D54W1ogNjkDspwogvf6zFJbRTXfkwNBx4AaJZGEp6V00JcQQgghpfEuFwSqKCFkhrJTtkZHR+FyuXDWWWc5fn7WWWeBn35xLV++vOh9w+EwmpqarDLbSl1xxRVob2+HoijYvHkzDhw4YN2WyWTw6U9/Gr/+9a8BAO9973ut28455xy85S1vgaZpeNe73oXh6YmihmHgnnvuwQMPPACWZXHrrbdWta7FpKTSkGJR63t/T/UBPN42xELXVOjz6J/lzLYoXRZr74Mnx2JVH282uqY5goOVNpYHCta5QIMsYscGsH/rNgw9uxO6rsHX2Ql/bzd8nZ0wYECOxTD+0suOzDsAEAMBRzN8oHRJJSeK8Ni2TQ2PoBbkZBKRgwcxsWcPIgcPWhlFZxp7Ly0A0BUVmjKzKa+alaDJMnRNgyZJZuleLI74sQGrxNzldoNzuwHDgJRMghPd1v01VZnu10XZPsVosmJlPQKYNdPX29aK/ssvw1kf2IK1121G53mvRXjFcjSvXYPQsv5ZgzD2XpuVls/m2F+79v1VKz6QD+AF+/qsD2WCfUvzGYa6hujB4i0masUxlbxIAK/wtQKYg5U4V/49y/7eO1eZeNI2md3X3T0jM73jnNdAkxREjxxBamQUmYlJ+Do64e8xt9UkCYZhQJVl6JIExuWy1maW5UaRHByEr7MDG67/O/S+8UKwLIfUyAiSJ4eQGhkBy3LoPn8T1ly7ue4lyoQQQggh5MxRdgZeNptFR0fx7IXm5maMjY3BNUuaK8/zM6bTlsvn8+EHP/gB3va2t+GPf/wj1q1bh76+PgQCARw6dAjp6QuED3/4w3jrW9/quO99992HCy64ALt27cKyZcuwfv16TExM4MSJE2AYBv/5n/9Z9nTZRmIvnxX8AUegqVKc2w2GYa2sBTWdMSfpVcHesLxU+SwAiAX95epBisUcE2jFCibQ5ixUpmDObJNLYZjBOoNhYCgK5GQSYjAIl9sNb0c7eP/M7MDZSip9XV1WlktyZAQt69fNa93FMgaFQAAt69ehfePGMyoLpXC6qZLOvy44Fw93SzMyk1PQZckMMOgGGJaBms06Sj4BwNvaCq7Xg9iRw0gPj5jBF4YFDB2GYSA9Ng5dVSjbp4j0WL7/HSeIZWWZCn4/hFWroEkyhv/4RwDT77fnlv47MZ8BFtb9bGuT4nGrpLMaqiQ5fo+Ctqx1luPQtGoVxl9+GQAwtf8AWjasr0sJvSYr0NX8B0KuIh/qFJsEDMZss5B7f5JicSvAOVeZeMIWwAsUyUyX4glIsSg0SYbL54Vh6FAyKeiyCikeByeKYAUBuiyD9/thqJp5Lm3vad3nb3K8pxUOn/F1dVEWLCGEEEIIqbmKCssXs0fWZZddhpdeegnf+MY38MQTT2BgYAAnT55Ea2srLr/8ctxwww246qqrZtyvra0Nu3btwle+8hU8+OCD2LNnD3w+H9785jfjU5/6FC6++OJFeDTVy/VEG3l+F6RYDC6vF/7u+fW7YhgGLo/HCjIo6XRVPZyAgomDs5Sb2vu0SfH6DIhwNJUPBavqEejIwFuASbRFJ5cagBSPIT02AUPXwIkitEwGuqqCYVkEl/UVfWxzlVT6Ojsx8ec/AzAz8Kp9DmLHBnBk+w5kJifBB/zwdXY6SsmGnt2JyIGDWH7VlWdMNkrhdFPVXkbo85qvLwaQIhGAZaFmMnCJbsfzyDAMvB0dEEPma6Vp9WrEjh6DoSrQZTNzDwCMIgEFYrIHsXwdM/vfzcZne1/NTExCkyRwJUpNpXn02swRAgGwnAu6pgIwIEVjVT+fiRMnrQ8vXG4PvO1tjtub16zG+MuvmMeJx5AaGYG/Dn0T7YFrhmGtzD+7YpOAAUAIBa0AniZL0LISWEGY9T1NSaXmzEwf270bmiTB09piDVxKjYxa02YBgHd74F+1EqmhYbSsX4vmNatnDc7lgr6EEEIIIYTU08J3hpyH5cuX46677qr4foFAAP/2b/+Gf/u3f6vDqhZGYYZTemwchqGD5XmIwRCaxifmdfHu8uYDePOZRKvM0bA8RwzmA2O6qkDNZh2lvLUgOcraqruotq+z3hl4xSeX6kgODjnOq8stApoGwzCgKWYJZWEAr5ySSnsfPE2WkI1E4GmubJLxbBmDDMfCHQ5DDIaQHhnFke07sObazWdMkCk33TQ1MlIQ2DazkAxdBxgGDMwAs7e9HWomaw0Y8Hd3g3OLjvu5w2H0v+kKJE4MInrkMBiWReuGV6H/8ksX+uGdEhwBvBL970pxNzXZpmUbSI2OFh0sYeg6JFsbgEqnXecwLAuxKYzMxAQAsw9eta+V+LEB6+tg39IZgUshEECgpxuJwUEAwNS+A3UJ4DkC1x5PyQBqsUnAnCA4epBmYzFA02d9T7Nn3wmBmZnp9vdY3utD/OgxGDAcwTvOxZuDKTgOfMCP6OEjWPKXF1FGHSGEEEIIWXQVBfA0TcOJEydgGMaMnwMoelvhNqRyhRlO7qYmyMkkDMOALsuY2r8f2cnJeWU48V4vMtNfK+nMrNvOZq5+RzmcKIITRGiy2YRfjsdrHsBzTKCt8qLamYEXr+u01qKTSyenHOeUYVj4u7rAulyIDxw3MzJHR63JpZU0UOcEAZ7WFitgkBoeqTiAVzRjsADDMvB2diA5OIix3bvRf/llFR3jVJWbbnrwpz9FangELO8CKwhW83sllYYmyxACfgT7+iBMT7m0ArIFpzPX+0sMBiFuCCIbMbOTVFuWE8nTFAWZCXv/u8oCeAzDwNfVhdixowDMoUHFAnhyMmmbQMtU3QMPADzNzfkAXiRS1T40RUFyaND6vtQ02+a1a6wAXnxgAEomU/P3YCWT/1syW0/UYpOAxUAQYjAIJZOBLstIDQ2jafWqWd/T7P3vig12sr/HMhw7Xcqe/x1hWQ7+Jb1gXRyAuSfeEkIIIYQQspAqqimcmJhAf38/li1b5vg3Of0f4GK35f5NTF+UkMoUZji5w2ErI4FhGIihEAK9vZCiMRzZvgPp8erOM++YRFt9Bp4942K2CzbA7HGUI8fjVR+zFMcE2ioGWADOAJ6myFbZYj3MmMZowJHZw3t9CC3rh7u5CUIwgPDKFRACATAMU3UDdb8tWFjpIItiGYOA2a8qMz7haErPsAz4gN/MIG2gwRb1HroR6u9D1+teB297O8Aw0BUFqeERpEZGwHu98La1wtPWZgXvgOnnv0gs1N77y20LtGajMUcGETFlprOUAXPggbvC4DQAR3sC+9Rvu8IJtOwsvWDnYu+DV+0k2uTgoBVQ5HgBvq7igzsCvb3W+75h6IgcOFjV8WbjyDyd5QMdID8JuPv8TdZQCDmRhJrOAAwDT1srlv7lRSXf0wxdd/SGDfT0zNim8D3W3dxs9XtlGAb+3h5wQr7v4FwTb880Tz31FN7ylregra0NHo8Ha9euxec//3mkUtV/iPDQQw/h4osvRlNTE3w+HzZu3Iivf/3rUEqc82PHjoFhmFn/bdq0qer1EEIIIYQ0soquNEpl15H6KZbhpKScWW61yHByefOZF9Vm4BmG4eh5NNsQC8DMJMplm9S6v5yuqpBsJa/uKktoObcbHM9bF3ByPAFXW/E+WPNln8bIcCyUZMq6EGfAwN/dlQ/uwcygczeFseLqt4D3eKpqoO7r6sL4K68AMMsNDX1mOW4pxTIG1XTGKltUJQmB3vxFdCNlsyzk0A0llUJgSQ+8ne3wd3UjvGKZ9TwNPbsTQ8/uhDE9xKKUwn6GusdjDZ4xdA1SNDZjAvGZzl4+623vqKoHpj34JcWiUNLpGYEoxwTaKj8oyCmcRFtNxq99+mxgSS9Yjiu6HcOyaFq9GmO7dwMAJl55BS63G7qm1mwQg/3DoLn+HgD5ScD2oRBju1+CnEyA43mrJ14x2akpK6ObYdiigcvC91iGZRBcsgRyMgmX1+sI3gFzT7w9k9x111346Ec/CsMw0NvbiyVLlmDPnj3413/9Vzz00EN45pln0FxhkPyTn/wk7rjjDgDAihUr4PP58Morr+BTn/oUHn30UTz++OMQS/SdBIALLrig6M83bNhQ0ToIIYQQQk4VZQfw7r///nqugxRRvCea4ehRl7sosmc4lWrwPRuXx5aBV2UPPE2WbaVks/fAA2YOsqglM3PNDDgzLOfI9qsEwzAQAvlpiHIiXrceboXTGKW4LfvO73ME74B8RlZ4+fKqL7S9He1WIEhTZGSnIvC0tpR13xkZg4DVFB4wA1eaLOczXBokm2Uhh27omobUyCgAMwjQee45jqyuYr2/ChXrZ8hyHMRw2CqjzUxNUQCvQGp01Pq60vLZHCEQgOD3W5mZqeFhhFescGzjmEAbqq5U37q/LQNPkyUoqVRFr21d05A4ccL63j59tpjm1asxvPMPSI9PIBuNYGrfAfP1WqNgdrktFQrZh0K43B6c+M1vAJjByVLTee397zxtrUUnqRebeMu4uJItFuaaeHum2LVrFz72sY8BAO6++27ccMMNYBgGQ0NDuPrqq7Fr1y7ccMMNeOihh8re509/+lPccccdEEURW7duxdVXXw0A2LdvH6688kr89re/xec+9zkrwFfMM888M6/HRQghhBByqik7gHf99dfXcx2kiKIZTpmslQmZmx6bM58MJ/vFlVJlCa29XIrluKIXUHbOARG1LaGtxQTaHGcAr36DLOzTGAWfH0oyfz7FgsDAXBNmy8XxPDytLUiPj0NTFAzv2oXgkt6yMnAKs1kAzCgxliJReDvazTU3QDbLQg/dSI+NT08VNV8ThdNAS/X+Kqefobu5yQrgmeWWzsDSmUxXVUc7gWoDeLk+ePJBs7w0OTQzgOfMwJtfEJUTRfA+n/Vemp2KVPT6Tg2PWAFyluOKTmG1S4+PIzk8jOxUxOzR6HLB39tds2C2c6hR+QE8u+DSJVYWtK4qSBw/PuM5AOAony3W/w4oPfG2mFq9x54OvvSlL0HXdbz3ve/FjTfeaP28u7sbP/rRj7B27Vo8/PDDeOmll/DqV7+6rH3+y7/8CwDgM5/5jBW8A4C1a9fiu9/9Li699FJ861vfwmc/+1m0tbWV2g0h5DRiGAbkOraqmYskSdA0DYaBXA7AGYeeg8W32M+BnSAIdev9Tqp3Sk2hPdMUy3DSFRkMGBgw4PJ4ZwQgqs1wspfQqul0VaVbqiPbwjfn/es5ICIbtU+FDM9rX8511ncSbS4jKz4wAN3QwTAMWM7lyGYsZ8JsJVw+HxIv7EY2GkH0wEGIoXBZGTjFsllmBPBicXhaW8FwbENksyz00I2ULajgbe8o2h8t1/srV9KbGhlxlPR2n7+p6HPgaW5G9PBhANX3SztdpccnYOhmNjDr4uFprT4I6+/qQiQXwBsedrxPzZxAG65+0bl9NDfnA3iRCIJLl5R93/hAfvqsv6dn1mB5LpgNMHD5vGAYBkomDV1RwfKumgSzKy2hLYZ1uRDs77eeg+jhIzMCeJqsID06Zn0fmCVwWW3W65kqmUziF7/4BQA4gnc5q1atwiWXXIInnngC27ZtKyuAd/DgQbz44osl93nJJZdg5cqVOHToEB555BF84AMfmOejIIScCmRZxs0337xox9c0Db///e/RohvQztDewvQcLL7Ffg7s7rzzzllbWZDFQQG8BlYsw0kMhyAEg1AzmRnBrvlkONmnD+qaBl1R5sygK2TvzecqI9tCsGWVaYoCLZt1ZBTOh1TDvlT2Ut96B/ByGVkv3v3fUFNp80K6PWT9HpQ7YbZcsWMDGH3+BaTHxsDyLjA8D39PtxmYmCMDp1g2iyY7g8eGoUOOxyGEQouezVJ06IZhBknUTAZiMAh+epjEfEvSc+yDD2bLhirW+2uuLEj7UIbM5FRFAXA5mSz7OKciR/+7trZ5ZeD6bCXPSioFOZGAOP2eICcSVqDQnEA7vxJawCyjzZXBZqfKn0Rr6Drix/P97+Yqn80Fs4NLlyJ+7Bg01XztSrGYVUY/n2C2oeuOfqqVlNAWCq9YYQXwEoNDM3oRpkZG8gNLBHHWgO18sl7PRH/6058gSRJEUcTrXve6otu84Q1vwBNPPIGdO3eWtc/cdsuXL0dPkWEjuX0eOnQIO3fuLBnAu/nmm7Fv3z4wDIP+/n686U1vwtve9jaw83i9E0IW39T+/YtyXC33oVwgOPfGpzl6DhbfYj0HOc1r1izq8UlpFMBrYMUynIDp4EKRANl8Mpw4t9vqhQaYpU8VB/Aq7HfECQI4QbQaj8uJRO0CeI4S2vC89uXIwKtjCW3+eH4ElvQiMzGJbDQCVZKRPDk0Z0ZWpXIZOJokmRl+DADDgJrNwuVxl5WBY89m8bS12oIZeZmpKSiZzKJks9gDVemRUUjRKPzTF4xaVkJqZASqJFnbisEgvO3tYDjWKkmPHjlS1ZAQTZKQtk3ftve+K8Xe+2su7pZ8AE+TJajp9Jx9JxdyeEfOYgQL0/b+d13Vlc/m8B4P3OEwstPvKamhYSuAZy+fFQLzm0Cb45hEGyk/szI9NmabUM4iuKS35LaOYDZnBh5zv6vmQJRmK8hdbTBbzWRhr3+pNgMPMEug86XFBmJHjqL1VflBBY7y2a7OOQO21Wa9nokOHDgAAFi6dCn4Eh8OrpjOiNxf5sVGbp8ripRCV7LPu+66y/H9Pffcg40bN+Lhhx/GsmXLyloLIaQxfeLa68DX4G9qJVKZDN53+1cW9JiNjJ6DxbcYz4Giqrhj608W9JikMhTAa2AL2a8n108vN0VWTWeACsvB7D3wygngWQMiJs0AihRPwNveXtExi5kxgXa+GXi2AJ6SSZdsol4rkYOH4PK4EVjSg9YN69H26lfVJfhhLyc1VBVK1syWUdNpuDxuAHNn4NizWRInTkCTJLCCAJZloes6dFmGkkxBDIUXNJulWKBKyaTNzEyGNaf8JpIwChpsSPE4lHQavs4uMCyDbCSKw4/83LyxwmCXObzC3L9LdDsy5mrBJYrgvT7rNZuZnJo1gLeQwzuAxQkWAmYGcXosX07p65hfAA8wP0zJBfCSw8NoXmt+KinFotY21U66LuSx/Z5IsTh0VZ01MJgLkI6//AqkWAwurxehpX3gZil5KOyvKoZCyExMwoABXVMRHxiAv7vL2kc1wWz7BzocL8zrPZNhGIRXrMD4Sy8BAKKHDzsDeLYBFv4SGV2Fqsl6PRNNTZfnzzZhNndbJFJexuh89ulyufC3f/u3eNe73oUNGzagu7sbExMT2L59O2699Vbs3r0bV1xxBXbt2oVgcPYMjrvvvhv33HNPWWveu3dvWdsRQmqDd7kgLHDPZHmRh6w1GnoOFt9iPAek8VEAr8EtZL8e3uvNB/CqmETr6IE3RyZQjhgMIDNpZn7I8doMspgxgTZQ3QTaHN7ndWYnJpLg6jTxU9c0RA8fsb5vfdUGNFU4kKQcheWkLq/XCuAp6QzctkG0c2Xg5LJZjj3+K4zs2gU1nQbr4sFyHMAw8Ha0I7xieU2CQuUoFajKTkWRnYogfvw4GJaF4PeDFcw/ipyLt0oIdVVF9OgRaFkJuqJADIfg7+qqONhlzwrydXXVpQmsu6XZes1mI1Ml+6Ut9PCOhQ4W2mUmJq1p2CzHwVODBvj+7i5MTl/AJ4fyffBqWaqfIwQDYDlu+jEYkKLRoiWhhQHSXN8/lucheH1Ij0+UfA4L+6vmJrHmgpSaLCM+cBze9naIoRA0Wa44mF2L/nd2TbYAXmZqCtlIBO6mJsiJpGNidzmZrnaVZL2eibLTWZ3CLBn5uf44GdsU8nrts7e3Fw888IDjZ93d3bjhhhtw8cUX49xzz8WhQ4dw55134tZbb511HcPDw3jhhRfKWjMhhBBCSCOgRiENLpfhJIZDSA4OIhuNmr3uYPZEy0ajSA4OQgyH5p3hZO9bZ+9nVy57Bl65F2zO/nI1CuA5ymdD8+p/BcAM9ixQGW3ixAmrpJjlOITqVAaUy8ARp3tMOIaYZDIzJj+JgSDkRAKp4WEU421rRdPqVWheuwbhFcvR9frzsOqat6N57RoEensgxaKQavT8zqYwUOUOh/PDXWQJhq6DYcz+XHIyCQAI9PYitHwZPK0tYMBAV1UoiaR5Hhgmvw/kg13+nh5I0RiObN/hmHZq5+h/V2FQoVwee7nlZOlyy1y2ZakPAYB8tmVmchJju3dXvaaSzwEqO3/Vsve/87S1mYHkeTIz1czzpsmSNTTEOSxn/v3vAPP9RrRl82WK9MGLHRvA/q3bMPTsTui6BndTE1wet/m+axiIHDqE/Vu3IXZsYMZ9AWd/1RxPW5ujfNcwDKRGRxE9chTRQ4fNfn+GAV9nJ/y93fB1dkLXNQw9u7PosSptqTAXMRyCpyX/9y16yBzgYg+Ui4HgvD+wIU5ut5mNPdtEPGm6DYGnzBYY9dgnAKxcuRL/8A//AAB4+OGH59y+q6sL55xzTln/KlkHIYQQQki9UADvFJDLcOo+fxNYlkNqZATJk0NIjYyAZTl0n78Ja67dPO9MFvsgC7XMT9LtHA3Ly8zAswfwpBoFxux9qeZbPptjvyis1TqLiRw4ZH0d7OsDJ9QnbbowA8fl8YCZDlAYhg5t+uIpp5wJx3IsDo7nIYZCaFm3Dt2bXg9vaz77aXJP/UuQigWqtKyE+MAApFgMrCDA0A0wHAuGMQMLvM8LMICnpQXBpUugKyqM6QwujueRHBwyhwnYgppzBbvkZGFWUOkBFvNh74NXauBB0eEdAGAAuursWWjPtswFOCu1kMFCOzmZROTgQYy/+CKkWAyaolglovPFCQK8tiy45PDIjAm0Yg0m0Oa4bRm+UkEJYbEAae7DE4ZhIIbCCCxZMmuA1N5fNYdhGXjb2xDo6QHLmkFPXVWRHhszS3Pdbvg6OsoOxjoCeGUMNSpHeOVy6+vokSMwdN3Z/26WQTGkOk3TQd2pWSZd525raiovM70e+8z5i7/4CwDmpNu53HTTTdi1a1dZ/9atW1fROgghhBBC6oFKaE8RC9Gvx56FZQ/GlUNTFCtzDCg/48KR2RZPVDRJs5SsPQOvRhfVQjAADJpf1ypTsJCSSiMxOGh9X4/S2ZzCCccMy4AVBOs51CQJnDvfQ6ucCceOYEYoCIZh0Lp+HQaffRYAED10CB3nnFNWULKawQfFAlVSLI70yKjV687lFmGoChiOA8vzkKIx+Do7wfLTb4UuDgzLmv8YBi63GwYMpMfHoSRT8HV3gXWZwY3ZSovtmYpCIAAhUJ+eWva+elIiDk1WZpzfwn5nAGCoGmIDA9BVFb72DohN+eyxXL+z1PBwxaWFxZ4DTZKRnZqCy+12lJnWatLvjFLS0TEYMMDyPDzNzQj09tak156vuwvpiXEA5iCL4JJe5wTaUG0y8ADnIItMQZDD3rsyd47twVZh+tzP1rtytv6qvN+HYH8fUsMjSI2Pw9A0GIZhZq3GE2Zw0fYWXepYlfZELUd42TKMPPc8DENHNhbD0M4/YPzlV2DoGlxeLwXw6mD16tUAgOPHj0NRlKKDLA4fPuzYttx9Hjp0qOQ2le4zJ1eWq6pqRfcjhBBCCDkVUADvFFPPfj32iyx7/6Jy2LdnGNYagjAXMRiApihQ02kYuo7JPXsR7Fs6r6CkVOcMPDlenwy86OHDyKV5CX4/fF21yR4qptiEY5foDODZzTXh2NB1R2lxLpgRWrEcI8/vgqbI0BQF0UOH0LK+dCbDfAYfFAaqDF1HenTUMajC09KCQG8vEidPQstmoWgS5GQC7qYmGJqO9OgYlFQKQjAAb3s75HgCumZeCCqZNJKDQ2afuekARqlgl6Opfp2y7wDzvLAuHvp0/75sJAJfh3MQTGG2JQBkYzHo0xe42WjEEcArJ9uylGLBwvToKJRMBlI8DlYQHNlY8wkWAjN77YnhMORk0gw4yQom/7wX6dGxmvTa83d1WT3YUqOjyNhKlsVAoCYTaHPsgdnsVMT6YKNogFSWodlKEXPvnXMFSGfrr8ryLng7O5AaH4NhGGBdLrjcbqQnxqGk0+akV1e+NLnYsWrdAw8wM4WFUBATL/8Z2WgEU3v3W7/7nCBgYslSuDxemh5bQ695zWsgCAIkScJzzz2HCy64YMY2v/vd7wAA559/fln73LRpEwDg6NGjGBwcRE+RwSOV7jPnlVdeAWD2yiOEEEIIOd1QCS2xuDy2HngVDrGw98xzeTxl9Z1Lj0/gxO+eQfTAQUQPH0Hs6DHs37oNL997P4796omqemPpqurIRqlpBt60evTAMwwDkYP5bITwypV1GXqQk8vAURJJGLoZ4LJPrVSlfEAgN+G4Zf26koFVsz9Wrp8WY5VGczyPptX5wMzk3n0wDKPIHmb29Sq311ZOYaBKzWSsYzEMi0BvL3ydHRBDQYSXL4e3vQMMGGQmJq2SdAbmZOTwihXwtrchtKzf8ZjVbMaRaVgs2GUYBpLD9e9/Zz4uxlFumS1Sklas35k9CK3LivU7AJSXbVlK4XNg6AbUTNa6XbL1jAPmFywsVkqqZc3As1lKGoK/t3a99rzt+X56umoGo3NqWT4LOEtoNVkyp4JjZu9KQ9eRHh61tuUE0RrMAszeu3Ku/qrpsTHosgIhEIAYDlkBOyWdQvzECcfvTLFjOVsq1CaAFzs2YAYdx8YAwwAr8OB9Pri8XnA8j5E//nHW9whSuUAggDe96U0AUHRi68GDB/Hkk08CAN75zneWtc/Vq1fjrLPOKrnPJ598EocOHYIgCLj66qvLXmsymcS3v/1tAMAVV1xR9v0IIYQQQk4VFMAjFscgg3S6ZKClmEr7HeWCNcM7/wCG5eDyesH7fBBDobKCNaWYAyzMdbMcV7Py4twFM2CWhhm6PsvWlcuMjzt6pjWtXFHT/RfTvnEjPC0tZompbjgCeLlMvHInHNuDWoLf7xgc0LJuLXIpa1I85shOy6nF4IPCQJVqCyC4vB7H76XL44a/uwvezg70X3YpVl3zNqy9bjNWXP0WuJvC4KbLsBiOhb+72/F7lB6fgDHdO65YsCsbiUDN5oJWTMmsxVrxOLK1ZgbwCvudaZLsKHc3YEC3ZXDNlW05m8LnQMtmHRmQSjLpCCTOJ1hYrNee/YMHl9dT0157rMsFb3s+u9Fe7l6rCbQ5LlF0ZERnI+bzag+QGrqB5OCQNT0amDlIY64A6Wz9VXPB7OY1q9G8ejUEX/41oMnyjA8yCo+lpmtbQpt7j9AVFXzAD04UrQ85GIaBu7WlrsNRzmSf//znwTAMHnjgAdxzzz3W/w2Gh4fx7ne/G7qu421vexvOPvtsx/36+/vR39+PBx98cMY+b7vtNgDA7bffjkcffdT6+f79+/HBD34QAPChD30IbQVTpG+88UY8/PDD1pCLnH379uGv/uqvcPToUfj9fnzqU5+a/wMnhBBCCGkw8wrgGYaB733ve3jTm96Erq4uiKIIjuNK/nPVsMSI1J59iIWuaY6L+rlU0u+oMFgjBIPWhZiuafOaUmmfClmLCbQ5fMAP2IY8VNvgvxR79p2vs2tBJikWZuCo2ax1YaYpCrKTkbInHEuxfF/Awl5gQiCAwJJ8OdPk3pnDLGox+KAwUDXXFMxc+XDn685D6/r1aFq1CuEVy2c09wcDeNvbrd8lQ9eQHh+39lEY7ErZps96WlvgsgVG68FeblnYLw2YmW1ZLINUlfIB27myLWdT+BzkA5kmA4YjUF1tsLDoYA7DOXwn94FELQZz5OTWqSkKpFgM2UgEUizmCH7Xirtp5oASK0CqmsMb7L/jYig0IxOwnABprr/qWR/YgrXXbS4azGY4Fv6eboj2YT62XqOFx9IUxRE0rEUJbe49wtfV6fhAJYf3+uoyHIUA5513Hv7jP/4DgDn4oa+vD+eccw6WLVuGXbt2Yc2aNfjv//7vGfcbGBjAwMAAkkVed9dccw0+9rGPQZIkXH311Vi5ciU2btyIDRs24OjRo7jwwgvx5S9/ecb9nnvuOVxzzTUIBAJYv349Nm3ahJUrV2LdunX4/e9/j6amJvz0pz9Ff39/zc8DIYQQQshiqzq6IUkSLr/8cnzgAx/Ar371K4yOjkJRFLP30Cz/SOPi3G4wTP5XQqlgEq3qyMCbfQJtYbDG3nQ/FzSs5kLMvKjfk7+otgUk54vlOEcQqBZ98KypmS+/jNE//cm64G1atXLe+y6XPQOHEwRomSyUVApqOg1dU8uecFw4wKJQq22CX/ToMYzufhETe/YgcvAgUqOjM4IxaiaD1PAIMmPjM6a/lgrG2ANVuqpZ5ZQAwHucAYRSgapipcWA2RPM09qSf7zxOORkqug+HFMx69j/LscxyCISKZodmsu2TI2MOJ6rHE2Sys62nE3h+bOXz1prjMYBY37BwsJS0vxjMB87AwYu2+t/tlLSSnBuNxInBjG1b79V9h89fARHH/tF1WX/pbibm6xA4cQrf0bk4EEIwSCEgB/Ro0cdH5qIgQB8HR2O4RJAZQFSwe9H06pVpYPZjPN3Tc1modnLo23HmtET1V1eT9RSCgO29unlAMws7ulj1DJgS/I+9rGP4Ve/+hXe/OY3I5VKYc+ePejr68PnPvc5PP/882htrbzv4De+8Q1s3boVF110ESYmJnDgwAGsX78et99+O5588km4i/ze/OM//iPe9773Ye3atZiYmMCuXbswPj6Oc889F7feeiv27NmDyy67rMjRCCGEEEJOfVWnxOX+gwUA73jHO/DWt74V3d3dlGV3CmMYBi6vx7owVNMZoMzeTo4eeLNkWxTLnLH3bLJnbZQ7pdI++CBx4oSVTSTHk2AYZtbBB5UQgkEo02Vh8+mDVzioQc1kIcVjYHke3pYW8P7ZA6C1Zp9wfODhnyEzMQ6GZbHkDW9Ax7nnlLUPeZYMPADT01sFxI4eRTYaQezwYQj+gBlwYBhIkQiC/f3QZBmZ8QnHhTcrCBBtpYGzDT7INeZPnDgJ3dDBMAwYlnNO1J0jUFWqub873AQ5loAqmZmKsSNHEF6x3LEPXdOQGsn3JPPXuXwWyA1qYQAY0DUNUjw/mCQnl2158OGfIjU8ApZ3gRUEMAwDwzAgRaPQJAmelpY5sy3nYj9/xXpparIENZOBFI1VHSwsNpjD/h7EuUVH9u18eu3lxI4NYOBXTyAzPg7GZZb9584fw7IYenYnIgcO1mRgRnp8ApGDBzG1bz90RUH82HFEjxyBEAggMxmBFI2a76EMA8HnNwN0BcG7XIC02gm/xSbVcm4RLrcH6nTZbjYahc/TOeNYSVsWark9UWdTOByF93rAulzWIBbe63U8/vkORyHFXXrppbj00kvL3r6cD203b96MzZs3l73P6667Dtddd13Z2xNCCCGEnE6qjrb9+Mc/BsMw+Od//merlwk59fEerxXAUyqYRKvY+x3N0gOv2JRKjhesrzXZeYE914VY4RRKTnSDcbnMyYkcV9OLajEYQGrEvDCtNoBXuF5fZyeSQ0Nweb3QZRnZaBQHH/ppTdZbKcHvR/PqVZicnrpaWP44G3tZpFAkgBcfOI7EyRNIj42B5V0Ay1pTdhNDg5BicUzt2wdOFMEWlPvJiaQjgDdbMCYXqPrzA9+HOpUGy7vgDjdZfdmkRBxKIjlroCq3jyPbdyA5OGhONw0EwXAsvG2tiBw+DF1RwblFNK1a5dhHemzcmlrLchy87W0z9l9rrMsFMRSCFIsCMPvgFQbwADPbsvXsV0NOppCNRqBlstbgEZfbg+7zN9Uk2J07f4ceeQTJ4WErWOgSRKiyBF2WETs2gFB/X9XBQnuvvVwQz/Ee5HUGwefTaw/Il/3LsTg8bW2OY7kEEe7mJojhMNIjoziyfQfWXLu56vOYe49ITQ9qcHm9YBkW3o4OJI6fQGZy0vzdTyTh7WiHr7t48G6+2ZRA8WC2OxxCcsQM4MmJBDxtbciMjTuONVf5eqVmBGwZwB0OIz1hZjyKQWfLgVoEbAkhhBBCCGk0VX8sfvToUTAMg0984hO1XA9ZZC5b8E2tJICXKq+EtljmDCvkA3iGrjma3M92IVbYS08MBq3gST2amtv70lVTQltsUIOh6VDSaTAMA04UEezrW9Qm7O6m/PTLYv3UilElyRHsKyyhzT1uQ9Ot5vMwDMjx6aw93YBh6FAyWciJpDUgwtp/Jl3RlNRQfx+aVq00Bw4wDFQpazXmZ1murLLgUs39s9EoxGAI3o52hJcvR2pkFFI8n32YspXPejs6wC5QRrLHPol2svjzZhgGshOTCCzpQfPaNei//DKElvUjvGI5wqtWoPfCC2qSqQqY52/JRW+0ngM9K8HQNfM9hWHgbgpj1TVvrzpIXdhrz9ANx9CSwg8R5jOYA3CW/QsFGbKcOD3wpAb91+zvEcElS+ES3WaWHwykR0ehKTL4gB8sz5vvlaoKKR5zTI/NRqNl966cS7FJtS6fDyzHwTAMqNksooePzDiW/W+HqwYTaItNUnY3N8Pf1YVAT890j9K8+QZsCSGEEEIIaURVX10GAgFomgZ/jaZ8ksZgH2ShltkDT9c0q6QKmD3joljmDMtxYFjW6l+lyZLVv2q2C7HcRbW/pwcMy0DN5HueMQxjHcvb2YHk4CDGdu9G/+XV98ZxBPDsQw7KVLhewJm5xvECeK8XLo+nJuuthrOfWtQsD2SKD5XIkWP2x8A7eo8BzsfNTkwgGzEb8mcmp5CZmISmKmBYFoxhwNA06IqCUG8PUmNjMHTdDBSk0uADZuBkrmCMJitQM1kElvTA29mOznPOgcvrAcfzZuCnzPcse2lxangYmqKA43m4W9ow8KvHoaTTMHQNQ/+7E90XnI/0yAhGd78IORGHy+tdkP53Oe7mZuDoUQCwzm+h9Ni4lTnG8QKWXnaJWcItZafvF4W/hn0jdUW1ngN3MIjmdetx4re/BScK4Hgeaqr8DwgKFZZ3qum0Ne2WYVnH7+B8S0kLy/4LWwRwtg8gyi37L6XwPYIThXxLgOmycoZh4G1rhaFp8LS3A7qO1MiI2SuSMd+napVNCeSD2bmy//ToqPmen06D5Xl4mpuwevM74bNlm9Y6A88esLWySxlACBYf9jPfgC0hhBBCCCGNqOoA3nnnnYdf/vKXmJqaQrPtop+c2nKTG4HyS2jtmS/mPkpfsJW6EON4wQokaLJiXYCXuhAr1ktPk/MBPE4QrLKy+V5U59gvFuVEoqzg1mzrhVHYOy4IMOYFei3WWw2zVDXXT001BwUEZw6lsLMPRRCCIcc5KXzcYjhsBZisbEmWBSuI0LJZc5AKx8Ll9YL3eq2ghZxKgg/4ygrGpEZHkJt8Ifj86Dj3nLKfp2IEv39G+XbX61+H4089DTWTxfBzf8ToCy9AVzWkx8cAwOxn2NYOX2dnzbLaZuNusU2iLZGBF5sO8AFmbz7e44G7uQnJ6cEO2UgE/u7aBTxyGaQcz6Nlwwa0nfUqyIk4IgcPAgAiBw8ivGJ51fu3l3fCltHLe/L90GpRSlpY9s8JAljOZf3+Fk6grbb/WrH3CE4UrQBeDieICC5ZYmYf6jrWvutayPG4FWCuJEhdrsJgthSL4+Qzv7cC44UTy2sdwCvWj6+U+QZsCSGEEEIIaVRVl9DecsstMAwD3/jGN2q5HrLI7BdbhYG5UuwXay63GyzHldy21JTPYpNoZ5tSWXwKZf4isthF9XynUAq2Y5kZKOVP6S22XiWdgabmS4PtkxVrNTWzUhzPQ7RlGmanimdz2UmFQUibwsfNCfyMEmuGYeHv6oQYDJqZlLIMJZ1yDPNQUikYWnnBGPsQCV9X57yCd6UE+/rg8ngRPXIE6bExZCanwPu94H2+6eEGLCZefhn7t25D7NhAzY9fyDkdNDNjgrSh644AXmj5MvN+tpLpUpl71TB0HZmJfAl4LojZZAtoJad/N6plL+9Mj4yYU2gNA7zPW9NS0mL91zzTAVOOF8AXvDdV23+t2HtE4fsYxwsILOkFw7HWe4Qcjzumx9YzaJWbVNv52nPR9qpXWZnRk/v2ObZTyxxqVIncJOX0yKjjb4ddrXr/EUIIIYQQ0oiqDuBdeumluP322/GVr3wFX/rSl5CuoF8aaVwuT/5iq9wMvNzQC6C8bItiF2L2PniarMx5IVasl55mywKxl7UBtWlqzgk8XKLb+r6SMtpi67Xfn/f6zOEONVxvtcTmyoI69h5w9mETQPHH7W1tBcOwYMDAHQ4jtHwZ/N1dCPYvBSeK0GUFUjxu/S4ahgEllUL8+EBZwZjU8Ij1ta+zY+4HXIXMxCRSIyPQZQUunxcs70JmOuOMYRi4m5pq2n9xLrzHA5c7nz1b2AcvNTxi9SlkGBahvqUAANEewCsjWFsuKRqDPh2cZhgW7pYWAIC3vQ1iMP87Ejl4aF7HCfX3YcVfvwXu5haz32E6DSmeqKjf4VyK9V8Tm8JoWrkSoWX9M7LBqu2/Vuy1Yn8/5Vw8Akt6wbrMD0gWe1BD89o11teJEychJ/KTo2udgQcU78dXr95/hBBCCCGENKKqS2gvueQSAGYvvC984Qv48pe/jA0bNiAQKN6TBjAvbH/9619Xe0iyAOwltGomXVaZqLNheekBFjnFpnzmmv0bhgEpHoeha7NOCi3WS0+fJYBXq6bmQiBglfoWTtOdTeF6Dd1wXPAWTlFczCbs7qYmxAfMrLGyAnjRfAmtPTgDFH+eOLeI8EqzdJJh88EKIRBAqL8fsaPHwLlcyIyPQ5Nk6KoClucRXr4My6+6atYLc02SkJmctL73d9anB9bY7t2Q43EElvRaxzOMfFYQ7/NaQw0Wqp+hp6UZicFBAOYk2kBvj3Vb1F4+29tjZXbZh19I0QgMXXc8J9VKj49bX7ubwtbvMcMwaFq1EiO7dgEwA3jtG8+e1zE1Kd/vkDGAnjdcUNNS0qJl/3AG2uyq7b9W6rUS6O6GKkkQw2EreAcs/qAGf083xEBwepCIgan9+9H52nNh6Lqjf+psU8krVdiPr569/wghhBBCCGk0VQfwnn76acf32WwWu6YvykqpRykbqS17toSuadBleUYZV6Fqsi0KL8SyU1NWJh8niOg6fxM6ZrkQK7yoNnTDkYnCis4AXq2amgvBANITZnCikkm0hetVU+YABGC6511BoGExm7DbyyqlObKyDF3PT5MFIBSU0JYMfpQI2GiKjODSJVZfr8m9+xE9chgurxee1tY5L8xTo2PI9b/jBBFiU3jW7ath71XmDoUhJxKO7E/AzKgEatd/sRzuZmcAL0fXNMQHjlvfh5cts74Ww2Hkex5qZglnyBmErYa9fNbT1ua4LbxqJUZf+JM5eTidQnJ4GIGensJdlC05aE7+5XgezWvWoHX9+qr3VcxC9V8r9VrhA/4ZU1aBxR/UwDAMmteuwfAf/wgAiBw4iPbXbJwuZc5nK9aqhDan1HCZevT+I4QQQgghpJFUHcC77bbbarkO0iA4UQTDsNYFmJLJzB3As5fQlpGBl2O/EIsfP4mjv3jMnCDp9aL3L86fdV+FF9X27DsGDDg+H8CrZVNze5+6Svp3Fa7XUT7r8zuyeRa7CbvbnpWVSFgXyMXIyaTtYp2ZMfCi2uCHr6MDvo4OuJubkZk0g0Hp8QmomcyMKbd2qZF8+ay/Tv3vHEMNGMDX0YH4iRPW7RzPgxXyb63VDjWolP15y9gCr8nBIWvAC8txCCxdYt3GulwQg0FrGnI2EqlJAC89NmZ9XRh05T0eBHp7ET9hBhUjBw5VHcAzDAOJ6QAegLpN/rUPzPB2dhT9PZ5v/7VTcVCDGYx9wewJKmURP3bM8fvD8XzdMgSLDZchhBBCCCHkdEYBPOLAMAxcXo8VlFPTGcCWDVLMfPsdCX4/WtevxfiLL0LNmqVXUjw+ZzDQflHtspVpsQJf0ymUjrXaSsSlChvw59abGh6BnMzf1z7dthGasAuBgG3KpgEpGiuZ+eaYQOv3WaXQdvMJfribm8F7vdO/Y2awpmnlipJrtw/9qFdmUmGvMpfXAzEYsoJgM4Z0LFCvMk9zi/W1FItBV1WwLpdjeEVgydIZARV3U9gWwIsi1D+/dWiygqytrLowAw8AmlavtAJ48ePHoUoSXHN8UFBMdnLSCk4yDFvTKbp2xcr+xUDQLIfXdEiJOJREctay/3IsRKCwllyiiNDy5dZk4cm9+9D26rPyt3vL/0CHEEIIIYQQMrv5Nzsipx17EK6cQRbVZuAVsk8wlWNzD4iwNzVPDeenUHKCULem5vYAXiUltPb1srwLSjIFTZIAhgHv8zVUE/bcEIYcezlmIdkxgbZ45tZ8ms8zDINAb6/1feLEyZJrUSXJkXlWrwEWxYYaeDva4A6HIQaD8LS0OLZfqF5lQjBgmwBtIBuJQldVxI/nswNDy/pn3E8s87kul5kxOV3GzAtFfy8Cvb3W0A1D1xA9fLiqY9mz7zxtrTN6X9ZSruy/+/xNYFkOqZERJE8O1XRgxqk4qKHFNswiPT7ueI3y3tLZsoQQQgghhJDKVJ2BR05f9p5F6hwBPMMwzCy9afNpWC4Eg0iNjgJwTjadTe6iev/WbYgcPgw1nTbLJkdG6tLU3J4tp8kSNEmas8S4cL3Na9ZAk2RkoxEYmobU0HDDNWF3NzdZvf5mG2ThyMArKJ+1m0/z+cCSXkwdOAAASA6eLDloIT0yilzgyOV2T/d3q71ivcoYloW3o73o9gvVq4xhWYhNTVb/uezUFOREwpoGy/G8Y7BFjiNYW8bQkrlkbBN3Pa2tRcuYGZZFeOUKTLzyCgBg4pU9YF08dLWyfmbJofqXz9otRP+1U21Qg6e1FZ7WVmQmJqApCkae3wVdU8GwLPw9vXPvgBBCFplhGJALetkuJkEQqG/4GcgwDGi6Dk3TIEnSoqxBkiRomgbDQO6/1ISQBkMBPDID77FPos3MsiWgZrM1a1hu759WbgAPMC+q/T09YHgX1HQaba/agGBfX12amrvcbrAuHkomDTWdxugLf4KntaXsY6mSBCkataZmtr3qVRDDoYZrwl5uUMf+PM3VO63a4IevqwsMy8HQNWiKgtToKPxFgmH2/ne+zvr0vwMau1eZp7nZEcBTbK/fYF9f0RJne+88eY6eh+VIj+Un0M4WZGpetQojf3wemYlJZKMRTP75z2BdvBWoalm/btZAlSYrSI/me+0FeuofwMupd/+1U21Qg6+rC2N/ehHZaAS6rVRcisXBMGiogCMhhBSSZRk333zzYi/Dcuedd0Ksoq0EObUpqordhw5BHB/HLbfcAo7j5r5TjWmaht///vdo0c1gIiGk8cw7gPfiiy/iW9/6Fp555hmcPHkSKVs5ZSGGYaCq6nwPSerMVUEJbWZsHFIsBkPXwQmimZFW5cW/PQBUTgltjjkJNWY2TA+F0L7xNfC0tsx9xypkJiaRHh1DYmgQuqIgMz4Jl8ddVsABAOLHBqyApxgIoHvT60tOZF1MzrLKCAzDKBoQk2y9zsodflBp8IPjefi7Oq0Jq4kTJ4sG8JLDtgBeV2fZ+69Go/Yqc7c0Q1MUqOk0xl9+GWpGAucRwfE8Qrbps3ZCIGBlvwGAFI3CW6RvXTkMw0B6PB/AK9b/LicbjSIxOAg5FgfLu8CJInxdnVZPuaFndyJy4CCWX3Vl0bLU1MiI9VriBBGe1tMvQHQqDGqIHRvA8LM7kZkYB8NxcHm9YBjGes+Y63kkhJBGMbV//2IvAc1r1sy9ETmttegGogcPYTGSMDVdN6trAqWragghi2teAbxvfvObuOWWW6ZTbSnP9nRh71tUKoCXHp/A2O7dGH1+FxLTZWysy4WX772/rEBWMULIOeG1VKlkISWVgq5pRfdTS7FjA2YT++FhwDDg8nohNoXhDofLCjgAcAwUCC1b1pDBO8CZlaXJEtR0ZkZ5tCbL1tARwNnDsNYCS5Y4AnhdrzvPcbuazSIbyfdv83fWt1x1oYYaVCI9PoHJPXsxtW+/IwuK5Xl4W1vBlgisMwwDdzicL5meilQdwFNSKcfvRKnHnR6fwJHtO8yhOT4z4CMnk/DqBhiOne4nGEJ6ZBRHtu/Amms3z9iXo3y2q7NhX0uns9zzKMcT8Hd3IxuNWrflfq9cPt+szyMhhDSST1x7Hfgi2er1pqgq7tj6kwU/LmlMH9+8Ge469vUtJZXJ4H23f2XBj0sIKV/Vf6H+8Ic/4KMf/SgA4EMf+hCuuuoqXHnllWhubsbWrVsxMjKCJ554Aj/84Q8RDAZx5513oqvOPaBIbbg89h54M0toc4GszOSkuf10xoXL7Yaua1VnXJgDIhgABgxDh5xMOspqS7H3YeN9vroMC8hdqErRGDxtrZCmL1R1WS474KCk044ssVIZUY3AJYq26a9ANjI1I4An2bIkWRc/r/LpudgHWUjxGKR43PG7kRoZtb52uT11C+LaNVKvMus1OTFhBZdzWVC6LCMbieLAgw+VfE2W2/NwLvbyWcEfgMtTfIjB2O7dyExOItjXh9iRozAMHYauQ0kkIYTMPpMMy8Db2YHk4CDGdu9G/+WXOfaRtA2w8PfM7O1H6i/3PPp7emCoqiOABwCMyzXn80gIIY2Ed7kg1HnoFCFz4bnF+T2UbR8AE0IaU9UpC3feeScMw8BHP/pR3HXXXfirv/orAGbj1UsuuQR/8zd/g/vuuw87d+4EwzD4/Oc/j3POOadmCyf1Y59Cq2bSjuxKeyDL39MDl9ttlVZyggh3OAx/Tw+kaAxHtu9A2tbQfi4sx0Hw56fY2gNzs8nayjjddRpckLtQ9XZ2wCXk+5LYM51yF6qZyUmM7d49Yx+xo8eQ6wgr+P3wtleX5bRQ3E3N1tfZqZlBHfvzI4aCdW24LAT8jue2cBqtvf+dv6t+/e8K5XqVnfWBLVh73WasuuZtWHvdZpz1gS3ov/yyBcu8s16Tvb0Q/H7r8TMMA04UEVi6dNbXZK0GWeT67wGls+/kZBKTe/aCD/jBujgIgXxPNynufM0zLAM+4Mfknr2Qk8n8PhJJx7YLMcCCONmfR4ZlwAo8eK9zCnmu52Kp55EQQgghhBBSvqoDeL///e/BMIyVhZdTWEq7ceNG3HXXXTh8+DC+9rWvVXs4soBcthJaXdOg2yZz2QNZDMsUlOrlL9ZmC2TNxj7JVI4nyrqPZMv6KLcPWyWKXajmaAWfVM12oRo7Yiuf7e9v+Alj7qaw9XWxoI5sD+CVkSk5X/YsvBkBvOFh62tfZ3373xUj+P1oWrUKrevXo2nVqgUdNFD4muREt+N21uWC4PPO+pos1vOwGuX0v0sND0NOJCBO91exv2aVdHpG1q8YCEJOJBzPsb18VgyGHEFAsjAKn0fA+Z7BgHEMTSn2PBJCCCGEEELKV3UAb3R0FKIooq8vX47Fsiyy2eyMbd/+9reD53k8/PDD1R6OLCBOFMEw+V+N3CTLwkAWAOhqvvec/WKt2owL+8V8uRl4zkyw2gfwCi9U7SW6uqpCswU4geIXqnIiYZUoAkBoxfKar7PW7H3wigXw7OddqMN5LxRYusT6OjUyAk02g6dqJuMo3av3AItGUuw1ybmdPVMEfwBgZn9NFut5WClD15GdLqsHSmfgaYoCGADDme8xLo8HnC2rNTUyCkPPBxAZjgUMZ7A8Od0PEQD8Czh9luQVPo+A2cIgF7x2NzeZHRGmFXseCSGEEEIIIeWrOoDn9XrhLeh5FQgEEI/HIUmS4+c8z8Pr9WJgYKDaw5EFxDCMo9+ZmjL7oBUGsnRFhWp7rtmCpr/VZFyIjgy8uSfRGobhnIQarn0gqfBCleV5sFz+sSYHh2DYRq0Xu1CN2rLvxFDYUbLYqOwltFI05hgUAswsoa03b1ubFegxDN3KwrL3v+O9XkcW5+muWBaUqyADTwgGrK9LvSZzPQ9z7ANBypWdmrJ+RxiGhbu5ueh2HM8DDGBo068ZBvB1dli3a4rsCAQamg4w+cC5oeuOXpJUPrs4ZjyPAMCYAdWmVavgKQjgFj6PhBBCCCGEkMpUHcDr6elBPB6HqqrWz1asWAEA+OMf/+jYdmhoCLFYjCbVnkLszedzGXj2QJahG0gODcHQpy/YYQ6xsKsm48IefLEPSShFy2ahyfkgYj0y8IoFHLwd7fk1yDLSI6O59nZFL1RjR45YX4eXL2v48lnAnOaby8Q0DB2y7fkwdB2SrcS5Hue9EMOyCPTmhxUkTpwAAHMq8DRf58L1v2sExbKgXB6PNZGVE0TH63K21+RcPQ/nYu+t525pnhHQz/F1dUEIBCAl8r9PLo8b7rCzjFfLmq9rKRGHEAjANz0EKTMxYb3mGYY9ozIuG0mx5zEnlw1qV/g8EkIIIYQQQipTdQBv3bp10DQNL7/8svWzv/zLv4RhGPjiF79oldLKsoybb74ZAHDWWWfNc7lkodgniqrTk0itQJaqIz06BtVWLu3taAfj4hz7qCbjwp7JpaRT0G0B4mLsAyw4QQRXEESshWIXqkLA78iikxIJKxOw8EI1OxVxlHiGljfu9Fk7luMcGY32rCwllbKCtwAWLOstsMTWB+/kSRiG4cjAW4z+d4upWBYUw7EI9vbC29pqBjxtsZTZXpNz9Tyci73/nbdE/zvA7BfYsn4dlETSUSrraWsB55rOsoOB1MgIDM2AkkiiZf06qzQzYZs+6+1op4yuRVLqeSzG0Gc+j4QQQgghhJDKVB3Au+KKK2AYBh599FHrZx/+8IchiiJ+/etfo7e3FxdccAF6enrw05/+FAzD4CMf+UhNFk3qz15Op0wH8HKBrOTwkGMCpBgKFS1drSbjgvf5wLD5QKA0RxmtY5BCOFSX7KtSF6retjbwtkzF9NgYlHRmxoVq9Gi+fNbT0rogAx9qxV0w3CDHnh3Je30LFkTx9/RYWYFqNovEiZOQYlHr9jMtG6tUFhTncZtZcLwzC26216Sz52G04rVkxueeQJvTvnEjPC0tSNv63TEsC6+tlFbJZhE9chielha0b9xo/dw+wILKZxdXseexkKEbSI+MzngeCSGEEEIIIZWpOoB3zTXX4LbbbkO37QJq2bJl+OEPf4hAIICpqSk8++yzmJycBMMw+PSnP433vOc9NVk0qT97CW0uA0/w+xHo7UF6bNwqh3a5PfC2t8+4f7UZFwzLQgjke3bN1QfP3ofNHQ6XfZxKFb1QZQBfdxdYzgw46oaOyMFDEMNhNK1ejcjBg5j48x6MPr/LKlkMnyLZdzmOAJ4tqFPvwSGluEQR3nYzu0tTFBz95a+QjUQgxWJgXbzjd+dMUMssKPskWikandHzcDaaJDmC+qUm0OZ421qx/KorIYZDSA4OIhuNwtB08D4vBH8AmiRBTaWhywqWXPRGKyCoSZIjUBigARaLqtTzCJjZntloFMnBQYjhEJZfdeWcgV1CCCGEEEJIacWbFJUhHA7jtttum/Hzt7/97bjooouwY8cOnDhxAqFQCFdccQVWrlw5r4WShcV7PdAUBWo6jeixAQQOHoQYCiMbjYFzi1DTGQjBAPw9XTP6Hc0340IMBq2sqrn64NlLU+sZSMpdqB7ZvgPJwUHwAT/EQBCsywVvRyfiR49CUxQwvAtKOoVDP/sfyIkENFlGNhIBy/Nwh5vQd+mldVtjPTizsvIltAs9wMJOCAQw8vwLyEYj0G293LKTEQw88Wu0b9x4RgUK2jduROTAQaRHRuHt7Cjaf6yc16QYCoFhWBiGbvU8tD//s7H3v+MEsaxAaqi/D2uu3Yyx3bsxuWcvUiMjgGEOpmFdPNzNzfC0tCB+/DgCfUuRHhlB/MRJZKMRuLxeCD4/3C0tZa2P1E+p5xGM+VrtPn/TGfeaJIQQQgghpB6qDuDNprm5GX/7t39bj12TBZAen8DY7hcxtW8/dEUBw3JIDg5BTafg8njh6+hAenQMLMtCTiYhBoLmYAtNh5SIQ0kk4WlpqTrjQggFAXM+QUUZePWYQGs324Wq2NwENStBTaWQPDkET2sLAr29yExMQJUk6LIMKRrB4Ud/juVXXYlQf19d11or9sEGSjoNVZLgEkVHYHUhM/BixwYw8vwupMfGwPIuuLxeMAxjBn0EHkPP7kTkwMFT6hzPV6ngcqWvSZbjIIaCVlA8G4lUEMBz9r8rt5Td29aK/ssvQ/f5m5AaHoamKOB4HpqiYvgPf4CayWLk+Rcw+sKfAJgBfTWbAcvzaFq5ApmJSQoMNYBSz6Ovq4t63hFCSBkMw4Cm69A0DZIkzX2HOhIE4YwaCEYIIaeSugTwyKkrdmwAR7bvQGp0DDAMuLxesCwLhmGgZrOQE0lwbhFL//IicKJYl4wLe4+42XrgaYoCJZXK328BAkmlLlQZnscr930PuqbB5fNCzWahZjKQEwkwDANOFOFtb4cUjeHI9h1Yc+3mUyLw4PJ6wAmiNfUzOxWBv6sTcnzhS2jT4xM4sn0HlHQaYigEXcsPOGEYBr72djAuF9Ijo6fUOa6FWmVBuZub8wG8qSlgxfKyjm8va/VUE7T3+yGsWuX42eSf/4yJP++BlpXACQKaVq8yJ9OyDHRZRuLkIPZv3XZGBWsbXbHnkRBCyNwUVcXuQ4cgjo/jlltuAcdxc9+pTu68806IorhoxyeEEFJaTQJ4L730En75y19iYGAAmUwG9957r3WboigYHx8HwzDoqmCYAVl4uQCJFI0hsKQX0cOHAZifCsrJBDhRBCsIYADEB45jzbWb65JxYS/JlGcpobUPsGA5DvwCZnoUXqge+9UTVgZTbnJucnAIBqYb9IMxA5Mhs1fU2O7d6L/8sgVbb7UYhoG7uckMCAGQIhF4WlqswSbAdMbkAhjbvRuZyUn4e3qQGR93lE+zLhfY6Yms3s6OU+oc10otsqBK9TycjWEYzgy89tn735UjPT6B5PAwdEWBy2dmWaaGR6CpihUQD/b1ITsxecYFawkhhJy+WnQD0YOHsFgJcM1r1izOgQkhhJRlXgG8WCyG97///fjZz34GwLyQYxhmRgDv7LPPRiQSwYsvvogNGzbMa8GkfuwBEoZhwICxAlA5vMcDf28vUkNDVoCk1hkXgi2jS5WyVtlmIXv5rBCszwTacsjJJCb37AUfDMDr9iB+/DgMw3CcO5fPC4YzZ8bwAT8m9+xF9/mbTonyMndTPoCXjUQc2Xcsx4H3+eq+BuscB/xgWAa8z+cI4PFeLzD99DMsc8qd41qaTxaUs+dhZJYt88xej/lyH2/r/ANpY7t3Q4rGEOzvR3p0FID5XpDDCQI4gT9jg7WEEEJOXx/fvBluQVjQYyqqiju2/mRBj0kIIaRyVU+hVRQFb37zm/Gzn/0MXq8XV111Fdxu94ztvF4vtmzZAl3X8eCDD85rsaR+CgMkYMysJjuWc8Hf0w2WY60AiZxM1nwtLrcbHM/n11aijFaK2ifQLlwftkKp4WHIiQTEQBCcW4S3Y+ZUXtHW1F8MBCEnEkgNDy/kMqvmyMqaiixK4NR+jgFM977Lv325vF7H9qfaOW4U9udaSaegzdGHR04mMfrCC9YkYJfbA26eZTf29yJ3KGQGZwvkgsb2YG093osIIYSQhcZzLgg8v6D/eBd1VSKEkFNB1QG8e++9Fzt37sTy5cuxf/9+PPLIIwiV6IV1zTXXAAB++9vfVns4UmeFARIAYFz5/hsMGPi7u6ygXj0DJAzDQAjmf5dKTaLN2gNJCzhIoZCmKIABK8NODIUcfeEYxgwyWN9zLGBM3+8U4G7OD7LIRiKOwOlC9b8rPMcMy1hBW9blmpFld6qd40bh8nrBCfkAXKksvPT4BI796gm8fO/9OPrYLxE7egzRw0cwuWcvjv3qCcdU2ko53osYwNfR6QjWAnAE9ShYSwghhBBCCDkTVB3A+9GPfgSGYfCNb3wD3d3ds277mte8BizLYt++fdUejtRZYYAEAFwej/W1t6MdLm/++3oHSMRgPmOtnAy8hZyEWoib7r1maLr1M297OwR/AAzLwtvWDobNn1dD0wEGjizDRmZO9zWz7HRNRWJwsOC2+it2jj1tbQj19yO0bJnj9xY49c5xo2AYBu6msPV9sT54sWMD2L91G4ae3Qld18CJInifzxx4w7sw9OxO7N+6DbFjA1WtofC9iBVcjv52DMM4Mi4pWEsIIYQQQgg5E1QdwHv55ZfBMAyuuOKKObcVBAGhUAiTk5PVHo7UWdEASWsrfB0dCPT0zAjU1DtAYs+oK5aBZ+i6I7DnDofrso5y+Lq6IAQCkBL59TAsA39PF5pWroTY5Dx3UiIOIRCA7xQZ6sLxvKMEOGN7HdsnBtdTsXMMBuBEwSz5LnCqneNG4iyZnnLcZh904+/pgRgMQZfNwBnDMPC2tsHf02NNW64mE6/Ye5EYDsMdDoN1ueBtb3c85xSsJYQQQgghhJwJqg7gpdNpBAIBCGU2WVUUBS7qr9CwSgWhxHAIvH/mkIJ6B0icGXixGbfLiQQMI3eBzyzYJNRiBL8fLevXQUkkYejOoR8oiC0ZugElkUTL+nWn1HAF0TbcwPHzBTrvs57jAqfqOW4UhSXTdrlBN97ODjAsA03K5ictMww4twiGZeDt7EBmchJju3dXfPxSwVpvRzvCK5bP+DCBgrWEEEIIIYSQM0HVAbzW1lbE43Eky2gcfvToUSSTyTlLbcniabQAiaMHXjwBw3CuyVE+GwiA5TgspvaNG+FpaUF6ZLTk+TN0A+mRUXhaWtC+cePCLnCe7FlZdvbnqd5O93PcKApLaHOvvRmDbgComfxkWJfoLjoJuNLhEo32XkQIIYQQQgghjaDqAN7rX/96AMD27dvn3Pauu+4CALzhDW+o9nBkATRSgMSegaerCtR0xnG7YxLqIk6gzfG2tWL5VVdCDIeQHBxENhq1SgANTUc2GkVycBBiOITlV13p6Ol1KnA3NUFTFEixmDVxlHW5wAkLV7Z4up/jRiGG88FaXVWgTAfgCgfdqJksMpP5ElvO45xCPp/hEo30XkQIIYQQQgghjaDqAN773/9+GIaBz3/+8xgaGiq53d13343/83/+DxiGwY033ljt4cgCaKQACSeKcLnzAQGpYJBFNhq1vl7MARZ2of4+rLl2M7rP3wSW5ZAaGUHy5BBSIyNgWQ7d52/Cmms3I9Tft9hLrUh6fALjL72MqX37ET18JD9xdO++eU8crdTpeo4bCSfwEPz5AHqujNY+XEJJpZE4cRKGrlnbFfZDnM9wiUZ6LyKEEEIIIYSQRlB1U7qrrroK11xzDR566CG89rWvxd/8zd8gkzGzpO655x4MDAzg5z//OV555RUYhoEbbrjBytojjSsXIBnbvRuTe/YiNTICGAAYQAgE0H3+JrRv3LggF8xiMAQ1a5boyfE40NVp3WbPwHM3QAZejretFf2XX4bu8zchNTwMTVHA8bzZ1+sULPGLHRvAke07kJmcBAPA5fWCYRgYhgGG4zD07E5EDhzE8quuXLCg2el2jhuRu6kJmcgU1HQaY7tfgiZJ0BUVYAA5FkdqZDTf+w4MfN2d4NyiYx/zHS7RSO9FhBBCCCGEELLY5jVV4oEHHoDb7cYPfvADfOMb37B+/g//8A8AYPVOev/7349vfetb8zkUWUCNEiARQkGkxkYBOAN2hmFAtn3fKBl4doLfD2HVqsVexrwUThw1dN0KqDIMA3c4DDEcRnpkFEe278CaazcvaDDldDjHjSg9PoH48eOY2rcfuqIgeXIQ4y+9BJfHAykaQ3psHC6vB4D5e+Dv7q7boJtGeS8ihBBSP4ZhQJblRTu+JEnQNA2GAWD21qunLcMwoOk6NE2DJEmLsgZ6HgghwOL/TbATBAEMw8y94QKaVwDP7XbjgQcewE033YTvfve7+N///V8MDQ1B0zR0dnbiggsuwI033og3vvGNtVovWUCLHSCxl+TJ8YT1tZrOOMryGjGAdzrITRz19/SAYRlwomgF8ACAEwRr4mhycBBju3ej//LLFnHFZL5yGZfJoSHAMODyeuESRPg6O5EcGkI2FgM0DQzHweVxI9DTYwXz7HLDJbrP31STQNtivxcRQgipH1mWcfPNNy/a8TVNw+9//3u06GYQ60ykqCp2HzoEcXwct9xyC7hFGA5HzwMhBFj8vwl2d955J0RRnHvDBTSvAF7OhRdeiAsvvLAWuyLEItgCeFI8n3En2frfudwecA32ojodFJs46hJF2D+T5QQBgHPiaK0CNmThOTIul/QifmwAAKApMrJTESjpNIRgAFI0BjkeR2Bpb8ngHQ2XIIQQUqmp/fsX5biarpuVHoHg3Buf5lp0A9GDh7AYCSf0PBBC7Bbrb0JO85o1i3r8UmoSwCOkHsSQMwPP0HUwLOsopxUbqP/d6SQ3cdTXme87yAr5QCnDMGBtvc3EQBCpkRGkhocpU+oU5ci4ZBir1yEAZKYmAZj97NzNTVCTSSRPDgIwn3uGY2FoOqREHEoiCU9LCw2XIIQQUrFPXHsdeNfCXp6kMhm87/avLOgxG9nHN2+Ge/pD2oVEzwMhpNBi/E1QVBV3bP3Jgh6zEhTAIw1LCAQAMAAMGIYOOZmEGAw6A3hUPlsX9omjObzXA5coQpUkiKGw+dRMm8/EUbL4imVccoIIVco6tuN4AeHlvchMTUFOJAAdNFyCEEJIzfAuF4Qqhx9VS6b/uzjw3MI/BwA9D4SQmRbjb0KjKzuAd/z48ZoccOnSpTXZDzn9sS4XBL8PcjIJwJxEKwaDyEbtE2jDi7S60xvH8wBjThK1gngMEOzrg64oYAXnG+l8J46SxVUs45ITBUcAzyWKCPT2gnFx8La2wlBV9F1+CXiPh4ZLEEIIIYQQQkidlR3A6+/vn/cEDoZhoKrqvPZBzixCIGgF8KRYHIFeZw88ysCrD19XF4RAAFIi7gySMpgRvANqM3GULJ6iGZc+H6R43Pza7YG/t8e6PZdxybpcaKKSaUIIIYQQQgipO3buTfIMw5j3v1rYsWMH3vGOd6C7uxuiKFoTb2+99daiAUJFUfC1r30NZ599Nnw+H5qamnDxxRfj4Ycfrsl6SP04++DFoUkS1Gwmfzv1wKsLwe9Hy/p1UBJJGPrsr9vcxNGW9eso++oUZc+4zBECAfg7O+Fr74B/Sa8juEcZl4QQQgghhBCysCrqgccwDPr7+/G+970Pb3zjG+u1ppJUVcWWLVvw/e9/HwCwZMkSnH322ZicnMTzzz+P//3f/8VnP/tZ+G1BhGw2i8svvxzPPPMMOI7Dhg0bkEql8PTTT+Ppp5/GZz7zGXzlK9QwtVE5JtHG4o7+dxzPw+X1LsayzgjtGzcicuAg0iOj8HZ2WL3R7Gji6OmhaMYlAwih4pPgKOOSEEIIIYQQQhZW2QG8N7/5zXj88cdx9OhRfOELX8Dy5cuxZcsWXH/99ejp6annGi3/8A//gO9///s477zzcPfdd+M1r3mNdVs6ncYTTzwBURQd9/nMZz6DZ555BsuWLcNjjz2GNdPjgB955BFce+21uP3223HBBRfgr//6rxfkMZDKODLwEs4AnhAKzbusm5TmbWvF8quuxJHtO5AcHAQf8NPE0dNULuNy6NmdEIOhosHanFzGZff5myjjkhBCCCGEEEIWSNkltNu3b8fx48fx7//+71i1ahUOHz6Mz3/+8+jv78eb3/xmbNu2DbIs122hTz31FL773e+iv78fv/71rx3BOwDwer24+uqrwdtKukZHR/Ff//VfAIB7773XCt4BwNVXX41Pf/rTAIAvfOELdVs3mR97Bp6cTCEzOWV9T/3v6i/U34c1125G9/mbwLIcUiMjSJ4cQmpkBCzLofv8TVhz7WaE+vsWe6lknto3boSnpQXpkdGSZdOUcUkIIYQQQgghi6OiHnhdXV347Gc/i3379uF3v/sd3ve+98Hj8eCXv/wl3vWud6G7uxs333wzXnjhhZov9I477gAAfOITn0AgECjrPo888ghkWcaqVatw8cUXz7j9pptuAgC88MILOHz4cO0WS2pG8PvBMLlfUwOJEyet2yiAtzC8ba3ov/wynPWBLVh73WasuuZtWHvdZpz1gS3ov/wyyrw7TeQyLsVwCMnBQWSjUasnnqHpyEajSA4OQgyHKOOSEEIIIYQQQhZYRQE8uwsuuAD33nsvRkZGcO+99+KCCy7A1NQUvvnNb+K8887D2WefjTvvvBOTk5PzXmQ2m8Xjjz8OALjsssuwZ88efOxjH8MVV1yBv/7rv8Y///M/Y2BgYMb9du7cCQB4wxveUHS/PT09WLZsmWNb0lgYloUQzAds5WTC+toxHZXUneD3o2nVKrSuX4+mVauofPI0RBmXhBBCCCGEENKYKhpiUYzX68WWLVuwZcsWHD58GPfddx8eeOABvPzyy/j4xz+OkydP4qtf/eq8jvHiiy9CURQAwO9+9zt85CMfcZTr/vznP8dXv/pV3H///Xj3u99t/fzAgQMAgBUrVpTc94oVK3D06FHs379/Xmsk9SMGQ47ed9bPKQOPkJrLZVx2n78JqeFhaIoCjufNQRcUtCWEkJoyDKOuLWgqXYMgCAveX1iSJGiaBsMAMPvge0IIqSvDMKDpOjRNgyRJC378xX4/XOzHDyz+OWh08w7g2a1YsQLvf//7oWka/vM//9MKus3X8PCw9fWHP/xhnHPOObjrrrtw9tln4/jx4/inf/onbN26Fddffz3Wrl1r9cebmjL7pTU3N5fcd+62SCQy6xruvvtu3HPPPWWtd+/evWVtR8ojhILACefPGMaZmUcIqS3B74ewatViL4MQQk5rsizj5ptvXtQ1aJqG3//+9wDMChuO4xbl+C26eeFICCGLRVFV7D50COL4OG655ZYz7v1wsR8/sPjnoNHVJICXTqexdetW3HfffdZ/AAzDwFlnnYVLL7103vtPJpPW116vF4899hiampoAACtXrsSPfvQjHDhwALt378a//du/4cEHHwRglt4C5qeJpeSm1mYymVnXMDw8XJfefmRuYjAITVGgptMwdB0My8LX2QWGrboCnBBCCCGkYUwtYiWIpuuQYjF0B4KIHjyEBU7As46PQHDujQkhZAG06MYZ/X64WI8faJxz0KjmFcB75plncN999+HBBx9EKpWCYRhoamrCu9/9bmzZsgXnnntuTRbpdrutr9/3vvdZwbsclmXx8Y9/HNdffz0ef/xx6LoOlmWt+81WmpBLDfV4PLOuoaurC+ecc05Z6927d++cAUFSnvT4BMZffgVT+/ZDt2V0ZiYmcexXzWjfuJGa6RNCCCHklPeJa68D76ppcUxZUpkM3nf7VwAAH9+8Ge5ZPviu9/EJIaRRnOnvh4vx+IHGOgeNqOL/JQwNDeF73/sevve97+Hw4cMwDAMsy+Lyyy/Hli1b8Pa3v33WjLdq2AN269atK7pN7ueJRAKTk5Noa2uz7pcrpS0md1thULDQTTfdZE2tncu5555L2Xo1EDs2gCPbdyA9Pg4YBlxeLxiGMX/nOA5Dz+5E5MBBLL/qSmqqTwghhJBTGu9yQeD5BT+ubPuAlOcWfg1yjVruEEJILZ3p74eL8fiBxjoHjajsAN7WrVtx//3344knnoCu6zAMAytWrMD73vc+XH/99ejt7a3bIteuXWt9XSo4aM/S06drpVevXo3f//73OHToUMl9Hz582NqWNI70+ASObN8BKRpDoHcJNEmGYZjPK8MwcDc1gQ8EkB4ZxZHtO7Dm2s2UiUcIIYQQQgghhJDTUtlNxN71rnfh8ccfh9vtxvXXX4/f/OY3OHjwIP7pn/6prsE7AOjp6UFfn5lhdeTIkaLb5AJxbrcbLS0tAIBNmzYBMEt9ixkcHMTRo0cd25LGMLZ7NzKTk/B2doDhGHCCM/rPCQIYloG3swOZyUmM7d69OAslhBBCCCGEEEIIqbOKpwB4vV48/fTTuP7667F8+fKK/q1YsaLqhV533XUAgB/84AdQVXXG7ffddx8A4KKLLoJrun/IW9/6VvA8j4MHD+Kpp56acZ+7774bAPCa17wGK1eurHptpLbkZBKTe/aCD/jBsGbnTJZ3Zl6yovk9wzLgA35M7tkL2TbshBBCCCGEEEIIIeR0UVEAzzAMjI+P49ixY1X/q9YnP/lJhEIhHD16FB/5yEesCbOGYeDOO+/Eo48+CoZh8NnPfta6T0dHh9W37gMf+AD22yZ8Pfroo/jqV78KALjtttuqXhepvdTwMOREAqJt8gxnK51mXS7HBFoxEIScSCA1PLyg6ySEEELOFE899RTe8pa3oK2tDR6PB2vXrsXnP/95pFKpqvf50EMP4eKLL0ZTUxN8Ph82btyIr3/961Dm6H8zNjaGj370o1i+fDncbjc6Oztx3XXXYTdl4xNCCCHkNFZ2D7zFDnK1tbXhwQcfxNVXX427774bP/7xj7F69WqcPHkSw8PDYBgGX/3qV/GXf/mXjvt99atfxa5du/Dss89iw4YNeNWrXoVkMmmV3H7iE5/AW9/61kV4RKQUTVEAA2C4fJDO5RZtX7sd2zMcCxjT9yOEEEJITd1111346Ec/CsMw0NvbiyVLlmDPnj3413/9Vzz00EN45pln0NzcXNE+P/nJT+KOO+4AAKxYsQI+nw+vvPIKPvWpT+HRRx/F448/DlEUZ9zv0KFDuPDCCzE6Ogqfz4cNGzbg5MmT2Lp1K372s59h27ZtuPrqq2vyuAkhhBBCGskpE8ADgMsuuwwvvvgi/v3f/x1PPPEEdu/ejVAohKuvvhq33HILLrroohn38Xg8ePrpp/GNb3wDP/jBD3DgwAEIgoCLLroI/9//9//hmmuuWYRHQmbD8TzAAIamW0E83u+Hp6kJmqLA09bm2N7QdICZvh8hhBBCambXrl342Mc+BsBsPXLDDTeAYRgMDQ3h6quvxq5du3DDDTfgoYceKnufP/3pT3HHHXdAFEVs3brVCrjt27cPV155JX7729/ic5/7nBXgyzEMA5s3b8bo6Cj+6q/+Cj/+8Y8RCoWgqiq++MUv4ktf+hLe85734MCBA+jq6qrZOSCEEEIIaQQV98BbbKtWrcL999+PEydOQJZljI+P43/+53+KBu9yBEHAZz7zGbz00ktIp9OIRqN4+umnKXjXoHxdXRACAUiJeP6HDOBpb4O/p3vGQAspEYcQCMBH/1knhBBCaupLX/oSdF3H3/3d3+HGG28Ew5i9abu7u/GjH/0ILMvi4YcfxksvvVT2Pv/lX/4FAPCZz3zGkS23du1afPe73wUAfOtb38L4+Ljjfv/zP/9jfXj7wx/+EKFQCADgcrnwxS9+EW984xuRTCbx9a9/fV6PmRBCCCGkEZ1yATxy+hP8frSsXwclkYShG7Nua+gGlEQSLevXQfD7F2iFhBBCyOkvmUziF7/4BQDgxhtvnHH7qlWrcMkllwAAtm3bVtY+Dx48iBdffLHkPi+55BKsXLkSkiThkUcecdyWO8bmzZvR1NQ04765/W3durWstRBCCCGEnEoogEcaUvvGjfC0tCA9MloyiGfoBtIjo/C0tKB948aFXSAhhBBymvvTn/4ESZIgiiJe97rXFd3mDW94AwBg586dZe0zt93y5cvR09NT0T5z37/xjW+c9X4nT57E4OBgWeshhBBCCDlVlN0Dj5CF5G1rxfKrrsSR7TuQHBwEH/BDDATBcCwMTYeUiENJJOFpacHyq66Et611sZdMCCGEnFYOHDgAAFi6dCn4En1mV6xYAQDYv39/RfvM3a/cfcqyjGPHjs163yVLlkAQBMiyjP3795cMEDYqRVUX/biKpoJTFvbz/TP9+I2whsU+fiOs4Uw/fiOsYbGP3whrONOP3whrWKy/xeViDMOYvUaRVKy5uRmRSAQejwfr1q1b7OWc0nRVhZrOQM1mYOg6YABgAIZl4XJ74PJ6wLooDk0IIeTMsHbtWvzgBz9YkGN97Wtfw6c//Wm8/vWvL5lh99hjj+HKK6+E3+9HIpGYc58f/vCH8e1vfxvXXXcdfvzjHxfd5jvf+Q4+9KEP4VWvehVefvllAMD4+Dja29sBAHv37sXatWuL3rejowNjY2N48MEHZ+11fPfdd+Oee+6Zc70A8OKLL0LTtLr8v84wDJw4cQJqNlvT/VYqnc2C57iSgVo6/um/hsU+fiOs4Uw/fiOsYbGP3whrONOP3yhrcLndWLJkidX7tx6q+T8dRT7qIDv9n7BMJoMXXnhhkVdDCCGEEFK53P9nBEEouY0oigDM//PUc59ZW4CrFusZHh6u+P9op/v/62RVBSSJjr+IFnsNi338RljDmX78RljDYh+/EdZwph+/IdaQTGJiYmLxjl8CBfDqoL29HWNjY3C73Vi2bFnN9793715kMhnK8KsjOsf1Ree3vuj81h+d4/qi81taqcyzenC73QDM8tVSpOn/XHs8nrruM3e/Wq2nq6sL55xzztwLBvDKK6/AMAz4/f66/L9uodHrq3p07qpH5646dN6qR+euOnTeqlfpuavm/3QUwKuDXI+Wejn33HPxwgsvYN26ddi1a1ddj3WmonNcX3R+64vOb/3ROa4vOr+NITfpdWpqquQ2uduKTYWt5T5DoRBYloWu6yXvaxgGotFoWeu56aabcNNNN5W15tMNvb6qR+euenTuqkPnrXp07qpD5616C3HuaAotIYQQQgiZYfXq1QCA48ePQ1GUotscPnzYsW25+zx06FDJbYrtUxAE9PX1zXrfEydOWNl55a6HEEIIIeRUQQE8QgghhBAyw2te8xoIggBJkvDcc88V3eZ3v/sdAOD8888va5+bNm0CABw9ehSDg4MV7TN339ztpe7X29uL3t7estZDCCGEEHKqoAAeIYQQQgiZIRAI4E1vehMAFJ3YevDgQTz55JMAgHe+851l7XP16tU466yzSu7zySefxKFDhyAIAq6++mrHbbljbNu2DZFIZMZ9c/vbvHlzWWshhBBCCDmVUACPEEIIIYQU9fnPfx4Mw+CBBx7APffcA8MwAJhTXN/97ndD13W87W1vw9lnn+24X39/P/r7+/Hggw/O2Odtt90GALj99tvx6KOPWj/fv38/PvjBDwIAPvShD6Gtrc1xv7e97W149atfjVgshve85z2IxWIAAE3T8M///M/47W9/C6/Xi09+8pO1OwGEEEIIIQ2CAniEEEIIIaSo8847D//xH/8BwBz80NfXh3POOQfLli3Drl27sGbNGvz3f//3jPsNDAxgYGAAyWRyxm3XXHMNPvaxj0GSJFx99dVYuXIlNm7ciA0bNuDo0aO48MIL8eUvf3nG/ViWxbZt29De3o7HHnsMPT09eO1rX4vu7m586UtfAs/z+P73v4/u7u7anwhCCCGEkEVGATxCCCGEEFLSxz72MfzqV7/Cm9/8ZqRSKezZswd9fX343Oc+h+effx6tra0V7/Mb3/gGtm7diosuuggTExM4cOAA1q9fj9tvvx1PPvkk3G530futXr0aL730Ej7ykY+gra0NL7/8MgCzvPYPf/gD3v72t8/rsRJCCCGENCrXYi+AEEIIIYQ0tksvvRSXXnpp2dvnSm1ns3nz5qr61XV0dOCuu+7CXXfdVfF9CSGEEEJOVZSBRwghhBBCCCGEEEJIA6MAHiGEEEIIIYQQQgghDYwCeIQQQgghhBBCCCGENDDqgXcKuvHGGzE8PIyurq7FXsppi85xfdH5rS86v/VH57i+6PwSUj/0+qoenbvq0bmrDp236tG5qw6dt+otxLljjHK6DBNCCCGEEEII+f/Zu/M4Oeoyf+Cfqr7v7rmvZHInJJCDEAiGG4TNckRcUA7lcBcQdQVxRVFZcGF3vRBFfysgSsADNYgajCJEghCOIDkh5+TOZGZ6Zvq+r/r+/uipmqqevqdnumfmeb9evJh0V3dXV1fXTD31HIQQQkhVUAktIYQQQgghhBBCCCE1jAJ4hBBCCCGEEEIIIYTUMArgEUIIIYQQQgghhBBSwyiAN8Fs2rQJV1xxBRobG2EwGLBgwQLcf//9CIVC1V61mtfX14ef//zn+PznP4+zzz4bBoMBHMfhggsuKPjYRCKB73znO1iyZAlMJhMcDgcuvPBCvPDCC2O/4hMAYwxvvfUWvvKVr+Ccc85BfX09NBoNGhsbcemll+KXv/wl8rXbDAaD+PrXv44FCxbAYDCgsbERV1xxBV577bXxexMTwLp163D77bfjjDPOQFtbG3Q6HSwWC04//XTcf//9cLlcOR9L27h0f/7zn8FxHDiOw4wZM3IuR9u2OA8++KC0PXP99/jjj2d9LB2DCSnNn//8Z3z0ox+Vfle0tLRg1apV+PrXv45kMjliefqOpZWy3WbMmFHwmBaNRqv0Tsbe0aNHC75/8b9bb711xOOn6j43mu021fc5kcvlwle/+lUsXrwYZrMZWq0WHR0d+NjHPobNmzfnfNxU/3utnO1WaH9raWkZ53dRHaFQCN/85jdx+umnw2KxwGw2Y+nSpfj2t7+NeDye83FjcpxjZMJ47LHHGMdxDADr6Ohgy5YtYzqdjgFgp5xyCnO5XNVexZr26KOPMgAj/jv//PPzPi4SibBzzjmHAWAqlYotXryYzZ49W3r8l7/85fF5AzVs48aNim06a9Ystnz5clZXVyfddvnll7NoNDrisQMDA2z+/PkMANPpdGzZsmWso6ODAWAcx7H/9//+XxXeUW1asmSJtJ1mzJjBzjjjDDZ9+nRpGzc1NbEdO3aMeBxt49IFAgHFtu3s7My6HG3b4j3wwAPSfrpq1aqs//3hD38Y8Tg6BhNSvEQiwT7xiU9I349p06axFStWsFmzZjGtVssAsEAgoHgMfcfK226dnZ0MADv11FNzHtNisViV3tHY6+3tzfm+V61axZYvXy5tzyeffFLx2Km8z41mu031fY4xxg4cOMBaW1sZAMbzPJs1axZbunQps1gs0t9e3/ve90Y8bqr/vVbudhP3xTPOOCPr/nbVVVdV4d2ML6fTyU499VRp25166qlsyZIlTKVSSdvG7/ePeNxYHecogDdBvPfee4znecZxHHviiSeYIAiMMcZOnjwpHeg/+tGPVnkta9tPf/pTdskll7D77ruPvfDCC+z+++8vKoD3+c9/ngFgM2fOZPv27ZNu/+Mf/ygFUNevXz/Ga1/bXnnlFTZz5kz2gx/8gDmdTsV9zz77rLSd7r333hGPveqqqxgAtnz5cnby5EnGGGOCILAnnnhCOuBt3759PN5GzXvyySfZ3//+dxaPxxW379q1S/rFsnDhwhGPo21cun//939nANiaNWvyBvBo2xZPDODdfPPNJT2OjsGEFO/f/u3fGAC2YsUKtm3bNsV9oVCI/fGPfxzxO4S+Y+VtNzGYsmnTpnFc04lj7dq1DAAzGAzM5/Mp7qN9Lrd82432OcYuuugiBoDNnTuX7d69W7o9EomwL37xiwwAU6vV7MCBA4rHTfW/18rdbmKw6ciRI+O8xrXjsssuYwDYggULWFdXl3T70aNHpeSKT37ykyMeN1bHOQrgTRDiSeRNN9004r4DBw4wnucZALZz584qrN3E9MMf/rBgAK+vr0+68vrqq6+OuF8MAp5++uljuKa1z+fzjfjDVu6///u/GQBWV1fHUqmUdPu2bdukqxnyA6Lok5/8JAWni7Rlyxbpl+yePXuk22kbl+7tt99mPM+zNWvWsKeffjpnAI+2bWnKCeDRMZiQ4r366qsMAJsxY0bWbIBs6DtW3nZjjIIphVxwwQUMALvxxhsVt9M+l1+u7cYY7XN+v1+qRsuWsS8IApszZw4DwH74wx9Kt0/1v9fK3W6MUQBv165d0jZ48803R9y/Y8cOKclq79690u1jeZyjHngTQDAYxEsvvQQAuP3220fcP3fuXFx00UUA0j2ySOWsX78e8Xgcc+fOxYUXXjji/jvuuAMAsG3bNhw6dGi8V69mWK1WaDSanPevXr0aAOB2uzEwMCDd/vzzzwMALrroIsyZM2fE48Tt++c//5n6PBZwyimnSD+Hw2HpZ9rGpUkkErjttttgNBrxox/9KO+ytG3HHh2DCSneI488AgD44he/CIvFUtRj6DtW3nYj+R09ehR///vfAQC33HKL4j7a53LLt90IEIvFpJ7as2fPHnE/x3HS7YlEQrp9qv+9Vu52I5B6A7a3t+NDH/rQiPuXLFmCBQsWgDGG3/zmN9LtY3mcowDeBLB9+3bEYjHodDqceeaZWZc599xzAQDvvPPOeK7apCduT3H7Zmpvb8fMmTMVy5KRIpGI9LPBYJB+FrfZeeedl/VxZ555JnQ6HaLRKHbs2DGm6zjRib9gzGYz5s+fL91O27g0//u//4sPPvgADz30EDo6OvIuS9u2PDt37sQNN9yAiy66CGvWrMH999+P3bt3Z12WjsGEFCcajeLll18GAFxyySXYs2cP7r77blx66aW48sor8Z//+Z84duzYiMdN9e9YudtN7vHHH8cVV1yBiy++GDfeeCMef/xxBAKB8Vj9mvXMM8+AMYbp06dLSQaiqb7P5ZNvu8lN1X2uoaFB+tvsrbfeGnF/KBSS/t6SnzNP9b/Xyt1ucg899BBWr16ND3/4w7jlllvw7LPPIhaLjdk61wq32w0gfVzKJdu2HcvjHAXwJoADBw4AAKZPn54zy0mMmu/fv3/c1msqELd9tqsVItr2hT333HMA0lcprFardHuh7avRaDBt2jQAtH2zEQQBPT09WLt2rXSl9pvf/CbMZrO0DG3j4u3duxf/8z//g9NPPx3//u//XnB52rbl2bFjB5577jls2rQJ69evx8MPP4zTTjsNX/jCF5BKpRTL0jGYkOLs3LlTypx44403sGzZMvzgBz/AK6+8gj/96U946KGHMH/+fOn3sWiqf8fK3W5yv/nNb7Bhwwa8+uqr+NWvfoU777wTs2bNwiuvvDJeb6OmMMbwzDPPAABuuukm8LzydHOq73O5FNpuclN5n/vmN78JjuPwpS99CU899RT6+voQDofx7rvv4qqrroLT6cQnPvEJrFq1SnoM/b1W3naT+9nPfoaXXnoJGzduxDPPPIObb74ZCxYswLZt28b5nYwvu90OADh58mTOZbq7uwEA+/btk24by+McBfAmADHyW1dXl3MZ8T6PxzMu6zRV0LYfva1bt+Lxxx8HAHzlK19R3Efbtzzf//73wXEcVCoV2tvbceutt2LGjBn4y1/+gs9+9rOKZWkbF4cxhttuuw2JRAJPPPEEVCpVwcfQti1NW1sb/uu//gtbtmzBwMAAotEodu3ahU9/+tNgjOH73/8+7rvvPsVjaBsTUpze3l7p589+9rNYtmwZ3n33XcRiMXR1deFjH/sYYrEYbr75Zmzfvl1adqp/x8rdbgBwwQUX4Nlnn8XevXsRCoXg8Xjw4osvYtmyZRgcHMRVV1016U9us/n73/+OI0eOAMheBjrV97lcCm03gPY5ALjxxhuxfv16nHLKKbjtttvQ2toKk8mEs846C3v37sWPf/xjPPvss4rH0D5X3nYDgDVr1uD5559HV1cXIpEIBgYG8Nxzz2HWrFk4evQoLr30Upw4caIK72h8rFixAkA6gJctU+7999+XAnDyfWcs9zkK4E0A0WgUAKDVanMuo9PpAChLFcno0bYfHafTiY9+9KNIJpO4+uqrcd111ynup+1bnvb2dqxatQpnnXUWWltbwXEcduzYgWeffRZer1exLG3j4vz4xz/Gm2++ic997nM444wzinoMbdvS3H777bj//vtx5plnoqGhATqdDqeddhp+/OMf41vf+hYA4NFHH8XRo0elx9A2JqQ4wWBQ+tloNOIvf/kLVqxYAa1Wizlz5uC5557D0qVLkUgk8N///d/SslP9O1budgOAtWvX4pOf/CQWLFgAo9EIu92OK664Am+++SZOP/10RKNR3HvvveP9lqpu7dq1ANKlY9myT6b6PpdLoe0mLkP7HHDw4EH09/eD53nMmDEDixcvhtFoRG9vL9auXTuiLQftc2mlbjcA+MMf/oB/+Zd/wZw5c6DX69HQ0IDrrrsOW7ZswfTp0+FyufCNb3yjCu9mfJx55plSEO+WW27BBx98IN3X1dWFG2+8UaoekfcgH8t9jgJ4E4BerwcAxOPxnMuINejy/mJk9Gjbl8/n82H16tU4fvw4li9fLv1hIkfbtzzXXnstNm/ejHfeeQc9PT3YsWMHzjrrLDz33HO48MILFWWItI0LO3nyJO677z60t7fj4YcfLvpxtG0r54tf/CLa2tqQTCaxfv166XbaxoQUR/yuAOmTDIfDobif53l84QtfAAC8/PLLEARB8bip+h0rd7vlYzAYpGDfpk2bJm1GTzbBYFAaGJAri2yq73PZFLPd8plK+9xnP/tZfOELX0BDQwP27t2LI0eOYOfOnRgcHMSXvvQlbNmyBatWrVL0rqR9rrztlk9DQ4NUNfH73/9eGpIxGf3yl79EW1sb9u/fj8WLF2POnDmYP38+FixYgK6uLnziE58AAMUQpLHc5yiANwGIf0yIqZjZiPdl/uFBRoe2fXmCwSD+6Z/+Cdu3b8eiRYvw17/+VdH7TkTbtzIWL16MDRs2oKGhATt27MCvf/1r6T7axoX9+7//O/x+Px577LGSJhDStq0clUqFs846C0D6iqaItjEhxZHv//Kp5HLi7YFAAC6XS/G4qfodK3e7FSJOKxQEAYcPHx7lWk4czz//PEKhEIxGI6699tqsy0z1fS6bYrZbIVNhn9u1axd+/OMfQ6PRYN26dZg3b550n8FgwLe//W1cfPHF8Pv9+N///V/pvqm+z5W73QoR9zm325132050c+fOxfbt23HPPfdg9uzZ6O7uxuDgIK6++mq89957OPXUUwEALS0t0mPGcp+jAN4EIH7Jjh8/nnO0szh+WP6FJKMnbs+DBw/mXIa2vVI4HMbll1+Od955B3PnzsXGjRtRX1+fddlC2zeRSOD48eOKZUl2FosF559/PoB030ERbePCxH4xn/nMZ9DS0qL476677gIAnDhxQrpNnDJF27ayxDKDZDIp3UbHYEKKs2DBAunnXCU78mwzMZNsqn/Hyt1uhcifS35Mm+zEaotrrrkm5wWxqb7PZVPMditkKuxzmzdvBmMMc+fORWdnZ9ZlLr30UgDAe++9J9021f9eK3e7FTIV9jlRU1MTHnnkEXR1dSEajcLlcuH555/HokWLpNJjsdQWGNvjHAXwJoBly5ZBq9UiFovh3XffzbrMG2+8AQA4++yzx3PVJr2VK1cCSB/4sjl58qTUcFZcdiqLRqO46qqr8Prrr6OzsxN/+9vfFFcjMonbTNx/M7377ruIx+PQ6/VYunTpWKzypCL+8pT/EqVtXDyn0zniP7/fDyB90ibeJqbD07atLLGvSEdHh3QbHYMJKU57e7t0YpYr+0Y8WdDr9dKFtan+HSt3uxUi75MkP6ZNZkeOHMHrr78OIH8Z6FTf5zIVu90KmQr7XCAQKHpZsQcZQH+vlbvdChH3uVKOjZNNIpHASy+9BCA98EM0lsc5CuBNABaLBZdddhkA4Mknnxxxf1dXF1599VUA6Ss3pHLWrFkDjUaDrq4ubNq0acT9TzzxBIB0kHXOnDnjvXo1JZFI4F/+5V/wt7/9De3t7Xj11Velkey5iPvrpk2bsl6hELfv6tWrYTabK7/Sk4jb7cZrr70GIL0/imgbF3b06FEwxrL+9/TTTwMAOjs7pdsuuOACALRtK2nDhg3SFUzxKjBAx2BCSvHxj38cQLpfT7ZsiJ/97GcAgPPPPx9qtRoAfceA8rZbIeJgnoULF6K9vb1Ca1rbnnnmGTDGMGPGDOn3ZDa0zykVu90KmQr7nJip1NXVlbNX28svvwwAmD9/vnTbVP97rdztlk8ymcQjjzwCALjooouKPjZONo888ggGBgYwa9YsXHXVVdLtY3qcY2RCePfddxnHcYzjOPbEE08wQRAYY4z19PSw5cuXMwDsIx/5SJXXcmL54Q9/yACw888/P+9yn/vc5xgANnPmTLZv3z7p9vXr1zOdTscAsD/84Q9jvLa1LZlMsmuuuYYBYC0tLWz//v1FP/aKK65gANjy5ctZT08PY4wxQRDYE088wQAwnufZ1q1bx2rVJ4zXXnuNPfTQQ+zIkSMj7tu6dSs744wzGADW3t7OAoGA4n7axuV7+umnGQDW2dmZ9X7atsX54IMP2O2338527NihuD2VSrFf/epXzGq1MgDsiiuuGPFYOgYTUpz+/n5ms9kYAHbHHXewSCTCGEsfk37wgx8wAIzjOLZp0ybF46b6d6yc7fad73yHPfbYY2xwcFDxXIODg+z2229nABgA9vzzz4/nW6kaQRDYzJkzGQD2wAMPFFx+qu9zolK2G+1zjAWDQdbU1MQAsBUrVijON8LhMPvSl74kbYfM/Wcq/71W7nb78pe/zNauXcv8fr/i+Y4fP87WrFnDADC1Ws3eeeedcXsv1fDGG2+wl156iSWTSem2cDjM/ud//ofxPM9UKhV79dVXRzxurI5zFMCbQB599FHGcRwDwKZNm8aWLVsmffjz589nAwMD1V7Fmnb8+HFWX18v/WcymaQDj/z2b33rW4rHhcNhdvbZZzMATKVSsSVLlrDZs2dLB7ovfvGLVXpHteNXv/qVtD1mzJjBVq1alfO/bdu2KR7b39/P5s6dywAwnU7Hli1bxqZNmyb9wfzYY49V6V3Vlt///vfSNm5paWHLly9nZ555JmttbZVub29vZ9u3bx/xWNrG5SsUwKNtW5zt27dL+2ldXR1btmwZW7FiBXM4HNLt5557LvN4PCMeS8dgQor3yiuvMIPBwAAwm83GVqxYIf2e4DiOfec73xnxGPqOlb7d7rrrLum+mTNnsjPPPJOddtppTK1WS8GAzL8nJ7NNmzZJ2+Pw4cMFl6d9Lq2U7Ub7XNorr7wincPxPM9mzpzJFi9ezIxGo7T/fPaznx3xuKn+91o5200M0qlUKjZ37lx21llnsQULFkjxCL1ez37xi19U6R2Nn0cffZQBYEajkS1atIgtW7ZM2m5Go5H99re/zfq4sTrOUQBvgtm4cSNbvXo1q6urYzqdjs2bN4999atfHZFxQ0Y6cuSI9IXJ91+2K2CxWIx985vfZKeddhozGAzMZrOx888/f1Jf5SqFGOQo5r/MK/+MMeb3+9lXv/pVNm/ePKbT6VhdXR1bvXp11qsZU5XT6WTf+9732FVXXcVmz57NLBYL02g0rKmpiV144YXse9/73ogrZHK0jctTKIDHGG3bYng8Hvbwww+zyy+/nM2aNUvaf5ubm9nq1avZz3/+c8WVzUx0DCakeAcOHGC33HIL6+joYBqNhjU0NLCrrrqKvfbaazkfQ9+x0rbb22+/ze666y62cuVK1tbWxnQ6HTMajWzevHnstttuy3oxbTK7+eabi6pqkaN9rrTtRvvcsEOHDrHPfe5zbMGCBcxgMDCNRsNaW1vZmjVr2J/+9Kecj5vqf6+Vut1eeukldscdd7Dly5ezlpYWptFomNlsZqeeeiq7++672cGDB6vwLsbf9u3b2a233srmz5/PLBYLMxgMbN68eeyuu+5iR48ezfvYsTjOcYwxBkIIIYQQQgghhBBCSE2iIRaEEEIIIYQQQgghhNQwCuARQgghhBBCCCGEEFLDKIBHCCGEEEIIIYQQQkgNowAeIYQQQgghhBBCCCE1jAJ4hBBCCCGEEEIIIYTUMArgEUIIIYQQQgghhBBSwyiARwghhBBCCCGEEEJIDaMAHiGEEEIIIYQQQgghNYwCeIQQQgghhBBCCCGE1DAK4BFCyBh68MEHwXEcLrjggoo+72uvvQaO48BxXEWflxBCCCGEEEJI7aEAHiFkShODYOX8t3bt2mqvPiGEEEIIKZJ4YTXbf0ajEXPnzsXNN9+Mt956K+vj5RdQ5f+p1Wo0Njbi/PPPx/e+9z0Eg8ERjz169KjiMf/0T/9UcH3XrVuneMyDDz442k1ACJnA1NVeAUIIqabm5uastweDQYRCobzLGAyGgs/f0NCA+fPnY/r06eWvJCGEEEIIqSj533eCIMDtduPgwYM4ePAgnn32WTzwwAN5A2YOhwNarRYAEIlEMDg4iNdffx2vv/46/u///g8bN27EjBkzcj7+lVdeQXd3Nzo6OnIu87Of/azk90UImbwoA48QMqX19fVl/e8//uM/Ci7z8Y9/vODzf+5zn8O+ffvw7LPPjuXbIIQQQgghJZD/Tdff349YLIbNmzdj+fLlAIBvfOMbOTPxAOCFF16QHu/z+dDb24u7774bAHDo0CF87GMfy/nYGTNmQBCEvH8fnjx5Ei+//DJMJhMaGhrKe5OEkEmFAniEEEIIIYQQQqY0lUqFVatW4Q9/+IN02x//+MeiH9/S0oJHH30Un/jEJwAA//jHP7Bly5asy958880AkLcdyzPPPANBEHDttdfCZDIVvR6EkMmLAniEEFIGsRfJa6+9hv7+ftxzzz2YN28ejEajYrBEviEW4XAYzz33HG666SYsXboUjY2N0Ol0aGtrw0c+8hH85S9/KXv99u3bh9tvv11aJ71ej2nTpmHlypX46le/in379pX93IQQQgghk1VHRwfq6+sBIGsvu0I++clPSj//4x//yLrM+eefj5kzZ6KrqwtvvPFG1mXE4N6tt95a8joQQiYn6oFHCCGjcPDgQVx33XVwOp3Q6/XQaDRFP/a3v/2t9EcZx3GwWq1Qq9Xo7e3FH//4R/zxj3/EF7/4RXz3u98taZ1eeeUVXHnllYjFYgAAjUYDk8mE7u5udHd3Y8uWLdBqtdQImRBCCCEkw8mTJ+FyuQAA8+fPL/nx8p52fr8/6zIcx+GWW27BAw88gKeffhrnnnuu4v433ngDXV1dmD179oj7CCFTF2XgEULIKHzhC1+A3W7H3/72N4RCIfj9fuzfv7+oxzocDvzHf/wHNm/ejGAwCK/Xi1AohJ6eHnzjG9+ARqPBI488gvXr15e0TnfeeSdisRguvfRSvP/++4jH4/B4PIhEIvjggw/wjW98I29TZUIIIYSQqSaVSuHtt9/G1VdfDQBoamrCTTfdVPLzHD16VPq5rq4u53K33HILeJ7HunXrRmT6icMrbr31VkVlByFkaqMMPEIIGQWe57Fx40bF1dZ58+YV9dg1a9ZgzZo1I25vbW3Ff/7nf8JoNOJLX/oSHnvsMVx11VVFPWd/fz8OHToEIF160draKt2n1+uxaNEiLFq0qKjnIoQQQgiZrFpaWqSfxSm0qVQKVqsVN954I/77v/8bdru95Of9v//7P+nnlStX5lxu+vTpuOiii7Bx40asW7dOqsoIBoNYt24deJ6XeuURQghAGXiEEDIqn/zkJxXBu0q6/PLLAQBvv/02UqlUUY+xWCzg+fShvbe3d0zWixBCCCFkonM6ndJ/AwMD0t9a4XAYPp8PTqez6OeKRqPYuXMnbrjhBmzYsAEAcOGFF2Lp0qV5H/epT30KAPD0009Lt/32t79FKBTChz/84TH7G5MQMjFRAI8QQkZh1apVo3q80+nEAw88gLPPPhv19fVQq9XSgIyFCxcCSP8h6fF4ino+g8GAiy++GADwT//0T/jP//xPbNmyBfF4fFTrSQghhBAymTDGFP9FIhFs374dN998M/70pz/hvPPOU0ykzXThhRdKf7MZDAYsXboUzz33HABg2bJl0s/5XH311bDb7XjjjTdw8OBBAMryWUIIkaMAHiGEjEJTU1PZj3377bexYMEC/Nd//RfeeecduN1uGAwGNDU1obm5GQ0NDdKyoVCo6Od96qmnsGTJEgwMDOChhx7CypUrYbFYcM455+A73/kO3G532etMCCGEEDIZ6fV6LF26FE899RSuvvpqxGIx3HLLLTkHUTgcDjQ3N6O5uRnt7e1YuHAhrrnmGvz85z/Hli1b0NzcXNRrXn/99QDSWXhdXV1488034XA48JGPfKSSb48QMglQAI8QQkZBpVKV9bhkMonrr78eXq8XS5cuxZ///Gf4/X4EAgE4nU709fXhnXfekZZnjBX93NOnT8e2bdvw0ksv4fOf/zyWL18OQRDw5ptv4t5778WcOXPw6quvlrXehBBCCCGT3W233QYA8Pl8+POf/5x1mRdeeAF9fX3o6+tDd3c3du/ejXXr1uETn/gENBpN0a8lZto9++yzeOqppwAAN9xwA3Q63SjfBSFksqEhFoQQUgVvv/02jh07BpVKhT/96U9ob28fsUxfX1/Zz8/zPC677DJcdtllAIBAIIAXX3wR9913H44fP44bbrgBx48fh1arLfs1CCGEEEImo87OTunnI0eOjOlrrVixAosWLcLu3bvx/e9/HwCVzxJCsqMMPEIIqYITJ04AABobG7MG7wBg48aNFXs9i8WCG264AT/96U8BpHvvvf/++xV7fkIIIYSQyaK7u1v62WQyjfnricMs4vE4Fi9ejOXLl4/5axJCJh7KwCOEkCqw2WwAhiegZfZJ6e7uxmOPPVby88bj8bxZdQaDQfpZnFZLCCGEEEKG/epXv5J+PuOMM8b89T75yU+ip6cHAKRhZIQQkonO3gghpArOOeccmEwmMMbwsY99DAcOHAAApFIp/PWvf8UFF1wAjuNKft633noLixcvxqOPPoq9e/dCEAQA6R56b731Fu68804AQEdHBxYvXly5N0QIIYQQMsH19fXh61//Op555hkAwMqVK3H22WeP+es2Njbiu9/9Lr773e9i9erVY/56hJCJiTLwCCGkCmw2G7773e/izjvvxOuvv4758+fDbDYjmUwiGo2ioaEBTz/9NK666qqSn/v999/HPffcg3vuuQcajQZWqxU+nw/JZBIAYLVa8atf/arsARyEEEIIIRNdS0uL4t/RaBQ+n0/692mnnYbf/e53ZV1QJYSQsUABPEIIqZJPf/rTmD59Or7zne/gvffeQzKZRHt7O/75n/8ZX/nKVxCPx0t+zhUrVuC3v/0tNm3ahHfffRc9PT0YHByEXq/HnDlzcOmll+Kuu+5CW1vbGLwjQgghhJCJwel0Kv6t0WjQ0tKCJUuW4JprrsFNN91Ew74IITWFY4yxaq8EIYQQQgghhBBCCCEkO+qBRwghhBBCCCGEEEJIDaMAHiGEEEIIIYQQQgghNYwCeIQQQgghhBBCCCGE1DAK4BFCCCGEEEIIIYQQUsMogEcIIYQQQgghhBBCSA2jAB4hhBBCCCGEEEIIITWMAniEEEIIIYQQQgghhNQwCuARQgghhBBCCCGEEFLDKIBHCCGEEEIIIYQQQkgNowAeIYQQQgghhBBCCCE1jAJ4hBBCCCGEEEIIIYTUMArgEUIIIYQQQgghhBBSwyiARwghhBBCCCGEEEJIDaMAHiGEEEIIIYQQQgghNYwCeIQQQgghhBBCCCGE1DAK4BFCCCGEEEIIIYQQUsMogEcIIYQQQgghhBBCSA2jAB4hhBBCCCGEEEIIITWMAniEEEIIIYQQQgghhNQwCuARQgghhBBCCCGEEFLDKIBHCCGEEEIIIYQQQkgNowAeIYQQQgghhBBCCCE1jAJ4hBBCCCGEEEIIIYTUMArgEUIIIYQQQgghhBBSwyiARwghhBBCCCGEEEJIDaMAHiGEEEIIIYQQQgghNYwCeIQQQgghhBBCCCGE1DAK4BFCCCGEEEIIIYQQUsMogEcIIYQQQgghhBBCSA2jAB4hhBBCCCGEEEIIITWMAniEEEIIIYQQQgghhNQwCuCNgRtvvBHLly/HjTfeWO1VIYQQQggho0B/1xFCCCGkFqirvQKT0b59+7Bt27ZqrwYhpAYMBFzYcWI39vV2IRANgoGBAweL3owFrXOxdNoiNFrqq72ahBBCcqC/6wghhBBSCyiARwghY+SYqxsbdm2EO+SBWWdCs7UJKp5HShAQiAaw5fBWdDkP4/LFl6CzvqPaq0sIIYQQQgghpEZRCS0hhIyBgYALG3ZthC/iR5u9FXajDSo+fchV8TzsRhva7K3wRfzYsGsjBgKuKq8xIYQQQgghhJBaRQE8QggZAztO7IY75EGztQk8x2Vdhuc4NFub4A55sPPE7nFeQ1JNwVgIXc4j2NNzAF3OIwjGQtVeJUIIIYQQQkgNoxJaQgipsGAshH29XTDrTFLwLikk4Qp5oeZ51Jkc4JC+nec4mHUm7O3twsrZy2HWmaq56mSMUU9EQghRYowhHo9XezUAAFqtFlyOi26EEEJItVEAjxBCKqzX249ANIhma5N0mzvkhTfsAwCoVRrY9BbpPoveAqe/H73efsxtnjnu60vGB/VEJISQkeLxOD7/+c9XezUAAI899hh0Ol21V4MQQgjJigJ4hBBSYYlUAgxM6nkHANFETPo5FAsrAngqngcbehyZnDJ7IsrLqsWeiFaDFU5/Pzbs2ohrz7iSMvEIIVPK/r5DVX39+S2zq/r6hBBCSCEUwCOEkArTqDTgwCElCFIQLykkpfsj8YhUOgkAKUEAN/Q4MjmJPREzg3dyYk/EHm8vdp7YjUsWnjfOa0kIIdX18c99Amr1+J6eJJNJ/OZHvxjX1ySEEELKQQE8QgipsFZ7Eyx6MwLRAOxGGxiYIoCXFFJIpBLQqrQAgEA0AIvejFZ7U66nJBNYtp6IANAfGIQ/GkSD2QG7wQaAeiISQqY2tVoNjZYuZhFCCCHZ0BRaMio0SZGQkcw6Exa0zkUwFoLAGFJCCowpl4nEowAAgTEEYyGc0jqXgjWTlNgT0SIrm46n4vCEfUgJKQwEXGAY3kEsegsC0SB6vf3VWF1CCCGEEEJIDaIMPFIWmqRISH5Lpy1Cl/MwnP5+2I3WEfeHExFpeEWdyYEl0xZVYS3JeCjUE1FgDIIgQMWrAFBPREIIIYQQQshIEyYDr6+vDz//+c/x+c9/HmeffTYMBgM4jsMFF1xQ8LGJRALf+c53sGTJEphMJjgcDlx44YV44YUXxn7FJ6Fjrm6se+9FbDm8FSkhhWZrE9rtrWi2NiElpLDl8Fase+9FHHN1V3tVCamaRks9Ll98CWwGK3q8TsSScbChNDzGGDwhH3q8vbAZrLh88SUU8J7E5D0RRbFkXLFMUkhJP1NPREIIIYQQQkimCZOB9+tf/xpf+MIXSn5cNBrFhz/8YWzevBkqlQqLFi1CKBTCa6+9htdeew1f/vKX8c1vfnMM1nhyokmKhBSvs74D155xJf76wWvY0f3B0PAKpIMzag2WTT8NZ85cRt+RSS6zJyKQLYCXhA7UE5EQQgghhBCS3YTJwLNarbjkkktw33334YUXXsD9999f1OO+/OUvY/PmzZg5cyZ2796NnTt34uDBg/jjH/8InU6Hb33rW3jxxRfHeO0nD3GSYrO1qeAkRXfIg50ndo/zGhJSWxot9TilbQ7mN8/GrMZOzGyYjlmNnZjfPBvzW+ZQ8G4KyOyJCAAxWQktAKSGMvCoJyIhhBBCCCEkmwkTwPvUpz6FV155Bf/zP/+Dq6++Gk1NhTMTnE4nHn/8cQDAT3/6U8yfP1+676qrrsK9994LAHjwwQfHZJ0nm2yTFIPxEI66TqA/OKhowi6fpEiDLchUF4pFoFFpYDNY4TDaYDNYoVFp4PTTkIJaM1aDeZZOW4Q6kwNOfz+SqaSiZBZIl9AKjFFPREIIIYQQQkhWE6aEthzr169HPB7H3LlzceGFF464/4477sBDDz2Ebdu24dChQ5g9e3YV1nLiECcpNluHg6cDARfiyQRiyTjMOhOMGoN0n9igv9fbj7nNM6uxyoTUhFA8LP3cZG1Av38QANDnH6jWKpEMYz2YR+yJuGHXRhz3nEQsGYdWpQHHcWCMwRf2IxwLo87koJ6IhBBCCCGEkBGKDuAdP368Ii84ffr0ijxPMd555x0AwLnnnpv1/vb2dsycORNHjhzBO++8QwG8AjInKTIwJFJJ6f5wPKII4NEkRULSwvGI9POsxk4pgBeIBNPfG60h10PJODjm6saGXRvhDnlg1pnQbG2CiueREgQEogFsObwVXc7DuHzxJeis7yj7dcSeiC998Cp2du9R9ETUqjVYOWs5ltAEb0IIIYQQQkgWRQfwZsyYAS5Hz7NicRyHZDJZeMEKOXDgAADkDczNnj0bR44cwf79+8drtSYs+SRFFc9DYII0VRMAIvEoIGvZRJMUCUlPnA3HhgN4TZYGmPVGBKPprLw+Xz9mNXZWa/WmvPEezNNoqcesxk5EEzGE4xEIjIHnOHQ2TMMlC8+rxFsihBBCCCGETEIlldDKgzUTgdvtBgDU1dXlXEa8z+Px5H2uJ554Ak8++WRRr7t3794i13BiyZykmEwpezhFE1Gp7AygSYqEAEA8GZcGFACASWtAs7URwegxAIDTP0ABvCoSB/NkBu/kxME8Pd5e7Dyxe9SBNnfIO9QTcfjiBmPCqJ6TEEIIIYQQMrmVFMDjOA4zZszALbfcgvPOq/1MgWg0CgDQarU5l9HpdACASCSScxkA6O3txbZt2yq3chOQOElxy+GtsBqsiqAEkJ6eGE3EYNDopUmKK2ctp0mKZEoLycpnVbwKWrUWLdYmHOpPB/CoD171ZBvMAwBJIQme48Fzw3Oe5IN5Vs4u/7gmMAHesH/E7eF4tKznI4QQQgghhEwNRQfwVq9ejZdffhlHjhzBgw8+iFmzZuHWW2/FzTffjPb29rFcx7Lp9XoAQDwez7lMLBYDABgM+XtQtba24vTTTy/qdffu3VswIDhRLZ22CF3Ow3D6+7P27YokotCpdTRJkZAhodjwAAujzgCO49BsbZRu84X9iCSiMGj01Vi9KS3bYJ5gLIQebx84jkNn/TRoZS0AKjGYxx8Jjrj4AQCJZAJJIQU1ryrreQkhhBBCCCGTW9EBvA0bNqC3txfPPPMM1q5diwMHDuD+++/HAw88gEsuuQSf+tSnsGbNmrzZbuPN4XAAGC6lzUa8T1w2lzvuuAN33HFHUa+7fPnySZutJ5+k2O3tGTFJ0R100yRFQmTCsgm0YtDbojfDqDVIwy36/YOjGo5AypM5mAcAfJEAGNItI/zRABpMwy0YKjGYxxP2Sj+nWxIEpX9H4hFY9Oayn5sQQgghhBAyefGFFxnW2tqKr3zlK9i3bx/eeOMN3HLLLTAYDPjrX/+K6667Dm1tbfj85z9fM8GrefPmAQAOHjyYc5lDhw4pliWFiZMU5zTOBM9xiMQjCMXCiMQjiKeSOGvWclx7xpUUkCAEQEg2wMKsMwJItyNotg1n4fX5+sd9vYhyMI8oKQwPWsrs81mJwTzukFf6ud7sgE4zfNErQmW0hBBCCCGEkBxKCuDJrVq1Cj/96U/R19eHn/70p1i1ahXcbjd+9KMfYcWKFViyZAkee+wxuFyuSq5vSVauXAkA2Lx5c9b7T548iSNHjiiWJcVptNRjXvNszG+ejVmNnZjZMB2zGjsxt2kmVsxYQpl3hAwJy3rgGbVG6ecWWRmtk/rgVYV8MI8omZIF8ATl1PRKDObxhH3Sz3Umu6IVgXxfIYQQQgghhBC5sgN4IqPRiFtvvRWvv/46urq6cN9996G9vR3vv/8+vvCFL+Bb3/pWJdazLGvWrIFGo0FXVxc2bdo04v4nnngCALBs2TLMmTNnvFdvwoskokOTFK1wGG2wGazQqDQUjCDjIhgLoct5BHt6DqDLeQTBWKjaq5RVKEsJLQBFHzx32ItYMnevTjI2xME8wVgIAmNgYIr+dPKfxcE8p7TOHdVgHndoeOK5w2iDXtb7MJKgDDxCCCGEEEJIdqMO4MnNnj0bn/rUp3DDDTfURC+85uZmqW/dv/7rv2L//v3SfS+++CK+/e1vAwAeeOCBqqzfRBeRZYvotcMnoTRVk4ylgYALr+x5HU9v/jXWvbcev9/+Z6x7bz2e3vxrvLLndQwEqpf1m428B55JN5yBZzNYodekp2CDAf30vamKpdMWoc7kgNPfj2QqCSa7T8zGExiryGCeWDKOsKykus7kgFF27KQSWjJZbdq0CVdccQUaGxthMBiwYMEC3H///QiFSrvwkkql8Morr+Duu+/GmWeeCbvdDq1Wi9bWVqxZswYbNmwYo3dACCGEEFJ9RQ+xyCccDuO3v/0tfvazn+HNN98EkG4Aftppp+Hiiy+uxEvgxIkTWLZsmfTvaDR9ovPmm2+ioaFBuv3ee+/FvffeK/3729/+NrZu3Yq3334bixYtwqmnnopgMCj1vvviF7+INWvWVGQdp5poIib9PKO+A/t6070Gnf4BMMbAcVy1Vo1MUsdc3diwayPcIQ/MOhOarU1Q8TxSgoBANIAth7eiy3kYly++pCZ6MDLGFD3wTLIMPHEa7TFXN4B04HtaXW1O9J7MlIN5ehWDeRKpJDxhH0KxUEUG83hk/e+0ag2MWgMMmuF9IpKgEloy+fzwhz/EXXfdBcYYOjo6MG3aNOzZswcPP/wwfve732Hz5s2oq6sr/EQA1q5di3/7t38DAPA8jzlz5sBsNuPgwYNYv3491q9fj9tvvx2PP/44/Q1CCCGEkElnVBl4mzdvxqc+9Sm0tLTgX//1X7F582bY7Xbceeed+Mc//oGdO3fisssuq8iKplIpuFwu6T/xqm0ymVTcHg6HFY8zGAx47bXX8M1vfhMLFy7EgQMHMDg4iPPPPx/PP/88vvvd71Zk/aYaxpii3GtG/TTp53AsPdSCkEoaCLiwYddG+CJ+tNlbYTfapOmhKp6H3WhDm70VvogfG3ZtrIlMvEQqoeipZpRl4AHKMloqPa8ecTDPorb5IwbzAAwrKzSYR97/zmG0g+M4RQZemDLwyCSzdetW3H333QDSbUuOHz+Obdu24fDhw1i+fDn27t2L2267rejnY4xh8eLFeOqpp+B2u7F//35s3boVLpcL3/nOd8BxHJ588kk8/vjjY/SOCCGEEEKqp+QMvJ6eHqxduxZr167FoUOHwBgDz/P48Ic/jFtvvRVXX331mJTPzpgxA4yxwgtmodVq8eUvfxlf/vKXK7xWU1csGVd8HnUmOywGMwKRIIB0NtEcffl9ogjJtOPEbrhDHrTZW8HnyKzgOQ7N1ib0eHux88RuXLLwvHFeS6WQrMyc53no1TrF/S224WEIrqAH8WQCWnX5E05J+Rot9VjSsRC+sB/heAQCY+A5Dlef/s+YXqHMSPkEWofJDgAwyLIyIzTEgkwyDz30EARBwE033YTbb79dur2trQ3PPfccFixYgBdeeAG7du3C4sWLCz7fRz/6Ufzrv/7riOw6tVqN//iP/8CBAwfwk5/8BE888QTuvPPOir8fQgghhJBqKjoD77e//S1Wr16Nzs5O3H///Th48CBmzZqFhx56CEePHsVLL72Ej3/84zXR+46MPXn2Hc/z0Kg0aLYMZxP1ByibiFROMBbCvt4umHUmKXgXjIVwePAYen1OMFnnMp7jYNaZsLe3q+qDLcIx5QCLzJNOu9EqBewYYxgIDI7r+hGlcHzkYJ5K8oS90s91JhsAwEBDLMgkFQwG8dJLLwGAIngnmjt3Li666CIAwLp164p6zrq6urylsatXrwYARc9jQgghhJDJougA3nXXXYeXX34Zer0eN998M/7+97+jq6sLX/va19DRUf1eU2R8yTNFjFq91M9LROWApJJ6vf0IRIOw6C3SbYNBNxKpJPzRIMIZmUsWvQWBaBC93v7xXlUF+XqZtMYR9/McjybZ94YGwFSXfODI8G2VyYoTmABPSFlCCwAGrTKAJzChIq9HSLVt374dsVgMOp0OZ555ZtZlzj33XADAO++8U5HXjETS31ejceTxlhBCCCFkoiu5hNZoNOK1117Da6+9VvKLcRwnDY8gE5s8U0Q/lEHSbBsORPjCAUQSUUV2CSHlSqQSYGBSzzsGhngqId0fS8YUATIVz4MNPa6aQrKAkFFnyLpMi7UR3e4eABT4rrZsPejkU2NHIxANIiWk0v/gAIdRzMCT7RcMiCXiiqAeyS4YC6HX249EKgGNSoNWexPMOmrbUEsOHDgAAJg+fTo0muytAWbPng2gchlzzz33HIDhwCAhhBBCyGRSUgCPMYaBgQEMDJR3kkkTwSaPiOxEVwzSWXQmGLR66b5+/2BNTAIlE59GpQEHDilBgIrnIQiCogdjLBFXLJ8SBHBDj6sm+QRaozZ7AE+euToYdCGZSkKtqsiAcFKibNl2lZoMK8++s+ot0mesUamhUqmQSqWkdaAAXm4DARd2nNiNfb1dCESDYGDgwMGiN2NB61wsnbZoVJOCSeW43W4AyDthVrzP4/GM+vX++Mc/4k9/+hM4jsO9995bcPknnngCTz75ZFHPvXfv3tGuHiGEEELIqBV9lvjAAw+M5XqQCUaegSeebIpltEcHTwBIZxNRAI9UQqu9CRa9GYFoAHajDUkhqbg/llQG8ALRACx6M1rtTagmeUlmthJaAKg3O6BWqZFMJSEIDANBF1ptzeO1ikQm2xCJSpXQKgZYDGXfAenjplFjQCCVHgCUDhg6KvKak80xVzc27NoId8gDs86EZmsTVDyPlCAgEA1gy+Gt6HIexuWLL6HfPTUgGk3/nZCvN7JOlx7sI5a+lmvfvn24+eabAQB33303PvShDxV8TG9vL7Zt2zaq1yWEEEIIGU8UwCNliSZGZuABUATwqJ8XqRSzzoQFrXOx5fBWWA1WJMVSxCHxZBwMAjjwEBhDMBbCylnLq15SF5INsTDpsgfweI5Hs7UBJz19AIA+3wAF8KogJaQQTcRG3J6trLYcygEWdsV9Bq0egehQAC8+ch1IOvNuw66N8EX8IyZRq3gedqMNVoMVTn8/NuzaiGvPuJIy8apMr0//bRCPx3MuE4ul93eDIXuGcjFOnDiByy67DD6fD//8z/+Mb33rW0U9rrW1FaeffnpRy+7du3fUQUZCCCGEkNGiOi1SFvlJrT4jgCdyhzyIJxPSlE1CRmPptEXoch6G098/orciAxBPJqBRaeH096PO5MCSaYuqs6Iy4XjhElog/b056elDIpXA7pP7oFNrqa/XOIvkCNRlG2xRDnkAz5EZwFNMoi0tSDBVesHtOLEb7pBnRPBOjuc4NFub0OPtxc4Tu3HJwvPGeS2JnMORziQVS2mzEe8Tly1VX18fLr74Yhw/fhwXXHABfve73+Xst5fpjjvuwB133FHUssuXL6dsPUIIIYRUXdkBvHA4DL/fD7vdLl1lJVOHPFNFfvLpMNqgVWsQTyYABgwEBtHuaK3GKpJJptFSj8sXX4INuzbihOckYskEtCoNOI4DYwyDQQ8YE1BncuDyxZdUPfsmkUqmvwdD8gXwtCotuj298IZ9SAhJHHV1g+eor9d4CssDZxzSUWGk+yumhBRUvKrs544n4whGhwOBdUMTaEUG2b5RbMbfVOoFF4yFsK+3C2adSQreJYQknP4B8ByPFmsjeC494IbnOJh1Juzt7cLK2dXPwp3K5s2bBwA4fvw4EolE1sCaONhMXLYU/f39uOiii9DV1YWzzz4bL774Iv09SgghhJBJjS/1AT/+8Y+xaNEiWCwWtLe3w2w24/TTT8cvf/nLsVg/UqMiOTKLOI5Dk6VB+rfTPziu60Umt876Dlx7xpWY2TAdPMchEo8gFAsjEo8gJaSwctZyXHvGlTXR/0qeucVxXM7BBMdc3fjbvjcwEByEAAaDRo86sx3N1iakhBS2HN6Kde+9iGOu7vFa9SlJPm3Wqrco7suVnVcsT3h4gIVGpR5RTm2U7RvZ+vBlOubqxrr3XsSWw1uRElJotjah3d46afeZXm8/AtEgLLLPxR30IBQLIxANwhvxK5a36C0IRIPo9faP96oSmWXLlkGr1SIWi+Hdd9/Nuswbb7wBADj77LNLem63240Pf/jD2Lt3L04//XT85S9/gdlsHvU6E0IIIYTUspICeLfffjs+97nPYd++fWCMgTEGQRCwY8cO3HTTTfja1742VutJaojABESTwxl4+ozARLNtuIzWSX3wSIU1Wuoxs6ET85tnY1ZjJ2Y2TMesxk6c3nkaLll4Xs1kHcn73xm0eilDSE7s6+WPBFBvqoNOrQXHcYjEo1JfrzZ7K3wRPzbs2oiBgGs838KUIi93tuhN0GmGG++HRzmJVjHAwmQfMZHdoBm+CCIfEJRNZi84u9EGFZ/etybrPpNIJcDApPcJQPE7KJoRYFXxPNjQ40j1WCwWXHbZZQCQddprV1cXXn31VQDANddcU/Tz+v1+XHrppdi1axdOPfVUvPzyy7DZbIUfSAghhBAywRUdwHv55Zfx1FNPgTEGh8OB66+/Hl/60pdw7bXXwmg0gjGGb33rW9i+fftYri+pAbFEXCovAzCiH5m8D95A0IVUxsABQkYrHI9Ao9LAZrDCYbTBZrAqMqhqQUi2Prkm0Ip9vZqtTTDqZEEcWTBJ7OvlDnmw88TusVvhKS6zX6FR9pmNdt/KN8Ai/XryDLz8ATz5PlOoF9xk2Wc0Kg04cEgJAgCAgSEumzwtD+YBQEoQwA09jlTX/fffD47j8POf/xxPPvkkGEv/8dDb24vrr78egiDgIx/5CJYsWaJ43IwZMzBjxgw8//zzitvD4TAuv/xybN26FQsWLMDf/vY31NfXxkUbQgghhJCxVnQPvJ/97GcAgBUrVuBPf/oTGhuHgzTHjh3DpZdeioMHD2Lt2rVYtmxZ5deU1Az5ia5apYZGpdyN6k0OqHgVUkIKgiBgMOhWBPUIGa1sgwXC8QhiiRh0Gl0V1mgk+Tpmm0Cb2dfLqDHABQ+AdBaW2NMMoL5e40E+PMKgMcCojcATEu8bZQltaLiE1pHR/w5QDgIKJyJgjI3I0gOy94IDAAECwKDI8pxM+0yrvQkWvRmBaAB2ow1JIQmBDV9FSqSSSLEUVFy6T2EgGoBFb0arvWlc1m+qDBIpx4oVK/C9730P99xzD+644w48/PDDaGhowJ49exCLxTB//nz85Cc/GfG4Y8eOAQCCwaDi9h/84AfYvHmz9O+PfvSjOV/7+eefR0tLS4XeCSGEEEJI9RUdwHv33XfBcRx+9KMfKYJ3ANDZ2Ylvf/vbuPrqq3P2OSGTR1R2MpuZfQcAKl6FRks9+nzp/kNO/wAF8EjFpIRUOgt0iDjEAkj3Gmuxjc9JeyGhAhNoxb5ezdb0+uq1Oum9CIwhEA0qerFZ9BY4/f3o9fZjbvPMsX8DU4z8woRJZ0AkIR8sUf4kWsaYogeewzSy1E++f6RSKSRSyazTuzP3GQCIp+I47u6BwAS02Zth1g4HjibLPmPWmbCgdS62HN4Kq8GqGA4jiiXiMGoNEBhDMBbCylljH7ScSoNERuPuu+/GaaedhkceeQRbtmxBf38/Ojs7cc011+C+++4rqXddLDacbblv3768y0ajowu8E0IIIYTUmqIDeH19fdBoNFi+fHnW+1etWgUAcDqdlVkzUrPk2Si5GvM3WxsVATxCKiWc0eS/0VKP/qFhKe6Qt2YCeOFY/gy8zL5ePHgYtQapd57TPwC9RgetKt2Ljfp6jS35fmXQGhRBtcx9rhSBaBDJVDL9Dy57Bp5Oo1UEoiOJSNYAXrZecP5IUGpT0OcbwMwGvZSJNpn2maXTFqHLeRhOfz+0au2I+6PJGPQaPZz+ftSZHFgybdGYrs8xVzc27NoId8gDs86EZmsTVDyPlCAgEA1gy+Gt6HIexuWLL6mJoTrVdvHFF+Piiy8uenkmy7CUe/DBB/Hggw9WaK0IIYQQQiaWonvgRaNR1NXVgeezP6ShoUFajkxu8gCePke5YrN1eBJtv38QAhPGfL3I1CAPpug1OtSZHNK/5b3Gqq1QBl5mXy8AaLLUS6WRAmPo8TrT5ZGgvl5jTd7nzjgigFf+7zV59p1Fbx7RcgBIl77Kj6W5+uBl22fiqeFs1JSQgivokf178uwzjZZ6XL74EtgMVjj9A4gl41KQJ53l6EWPtxc2gxWXL75kTDPfpuIgEUIIIYQQUn1FZ+ARIpKfXGYroQWARkuDlFGSSCXhCflQb3ZkXZaQUsinuxq1BtTJShLlwZJqU/TAyzLEIrOvFwBoVVq0WJvQ40tnMseScfT7B9FibRr3vl5TSSKVRELMkkN6vwpXKANPMYHWmHtSpkFrkI6tuV4v2z6TWU7qCftgNVigV+sm3T7TWd+Ba8+4Er/c8jt0e3oRiUfAAHAAOM6I8+cux5JxKFsVB4m02VsLDhLp8fZi54nduGTheWO6ToSQ8jHGIKQEpFIpRZl2tWi12qx9UAkhhBAK4JGSFVNCq1GpUW92YDDgBgA4/f0UwCMVoZgWqjMqShI9YR8EJiia+VdDMqNPn3zCrCizr5cYCLDozXAkolIw0hcJQK/Rj1tfr6lI0eOOS2d2VqqEttAEWpH8Ykg0x9CMzH2G44B4lvLYfv8gOhytk3KfaTDXodFcD5PWiHA8AoEx8BwHk86ICxasgppXjenrZxskwsAwEHBJ+42aT/9pNZkGiRAymSUTSRz8YD8GDvXinnvugUo1tseRQh577DHodLUxkIsQQkhtKSmANzAwgFmzZpW9DMdxOHToUCkvSWqQcojFyMCEqNnaiMGAG4lUAu+f3AeAowl9VTKZpiSGM0pT7UZbOgWHpQcABKMhWA2W3E8wDuT978ABxhzfE3lfr2ZrkxQQaLTUIZKIIpqIgTGGo4PHMaNh+pj39Zqq5FnFRo0BPMcrAmqJZAKJVDJr+Wshygw8e87ljLKLIflKduX7TL25LmuvsHA8gqOuE2ixNk26fSYcjwx9FhrYDBrwPAdBGBpiE/KWnH1X6rEx6yCRZEKR/TuncQZUQ4HEyTJIhJCpQLDy6Oo/UtXst/kts6v22oQQQmpfSWcjqVQKR48eLXsZSgefHOQnl7ky8ABAq9ai29MLb9iHJEvhYP8RmtA3zibjlETFtFCtARqVOl1WGAkCSAdMqh7Akw9E0Ohz9g4V+3pt2LURPd5emHUmWPQWqHgeLZZGHBw4glgyAZ1aC5vBCrvRNqmCsbVCOcBCP/z/ocAwAETiEWhK3K/iyQSC0ZD07/wZeMNB3kgid8affJ/p9vQgloxDq9JArVJDr9bCHfYNDc1g+PCi8yfc97sQX8Qv/WzQ6mHSGaVMb3fIU/T7LffYmG2QiDyDU6fWSsE7YHINEiFkKvjYZ2+AVjv+2W/JZBK/+dEvxv11CSGETCxFB/BuvvnmsVwPMoEoM/CyB/COubrxxoF30B8YHDqx1KHRUg8Vp6YJfeNksk5JVGbgpXvLOYw2KYDnCfswA9Oqsm6iUDz/BFo5sa+XGExw+vulvl4NlgYkkgnUmx2IJqJ46o1fIpFKB4UmQzC2VmRmdQKQsvDkfelKDQx7ZVlZapU6b6DVUGQGHjC8z7y8+zVsP/FBOrio1qSDRxyPOkvDUAsDF+Y2Ta6sL/k2tRutsOgtUgDPJct2zGc0x0b5IBExiKcYWJNRLj+ZBokQMhWo1GpotPR9JYQQUpuKDuA9/fTTY7keZIJIZfT2yhbAEyf0BaJBOIxWxIeaw4fjUdiHsoisBiuc/n5s2LUR155xJQUeKixzSqK80bo4JXGifgbybBfxZLnOZMdx10kAtTGJNhTLP4E2U6OlHh9eeB7Onr18RHbd/r6DeOvgezjuPolYMo4mSz1abS2TIhhbK7IF8MSfCw2WyCez/12+LHT560aKeK1GSz3mNs9COB5BOB5Bm70FS6edCk/Eiz0nDwAA9jsPYW7zLDSY60pe91rllWXg2Q02aZgHkM7AK2S0x8bMQSIMguLzyhxYM9kGiRBCCCGEkOqpbqd3MuFEE8rpXPosJbTihL5maxMMspMZeVmYOKHPHfJg54ndY7fCZQjGQuhyHsGengPoch5BMBYq/KAaI/8MCk1JrMXPIBfGWNZgi2KQRaj6k2gVQcYsE2hzMetMmNs8Ewvb5mFu80yYdSZMc7SjPzCIeCqeno6aiCIhpIPoYsChzd4KX8SPDbs2YiDgqvj7mexyBfAM8qBajsES+cgzwux5JtCmX2v4WFrsa/kigaFecFac0joXc5tnYvn0xbAZrekFGPDO4a0IRIMT/pgm8oZlATyjVVGW7Amlh9jkM9pjozhIJBgLQWAMkXgMwlAfQo7jFJ+jwBiCsRBOaZ1LZe6EEEIIIWTUaAotKYn8xFKj1oyY+Jc5oc+o1Us9iyIZZWG1NqFvsvSLyzYlMZKIwhV0w6A1oN40PA241j6DQqLJmNSwHpAF8GQn8YFosOyBA5USislLaAtn4OWzs3vPUPmlGQITwBhDj9eJzvoOqLj0908MOPR4e7HzxG5csvC8Ub3mVJOtLDv9c/mTaIOxEA72H4En7APPcTnbDYjk98cScaSElKKXWjb+SED6WSzvVfEqrJx1Ov76wWuIJKLYcXw3dnXvARgm7DFNxBhTlNDaDFY4hjIbGWNICSn4IgE4cgRLsx0bfVE/XEEvLHoTGs3D2yLfsVE+SEScOAsM9bscui4qMAanvx91JsekGyRCCCGEEEKqY0wy8ARBgNPpRDAYHIunJwWMZQaZPAiX7YRUnNBn0adPJuUZLIlUEgkhqVjeorcgEA2i19tfsXUsxzFXN9a99yK2HN6KlJBCs7UJ7fZWNFubkBJS2HJ4K9a99yKOubqrup7FyPwMAMAZGEQoHsFg0D0iu6dWPoNihGWlqSqVCtqhvlIWnQlqWcCu2mW04TwldaUQAw42vQVt9mbp9kQqCadvQLGsPOAwkTOsqkEZwNNn/bnYAN5AwIVX9ryOn21+DtuO7cKRweM4PHAMG/e+jlf2vJ4zQ9KQUWqdme2cKSWkEIgN/461yfrztdqaYTVYcHjgGPoDg+nprOb6CXtME0UTMcSTw8MgHEYb1LxK8d7zldFmHhsFCOj3DyKRSsAd8iKaLO7YKA4SsRms6PX3I5aMgzEGk86IlCDAG/ahx9sLm8GKyxdfMqGCpIQQQgghpHaVFcDbv38/tm7dCq/Xq7jd5XLh3/7t32C329HW1gabzYYFCxbgJz/5SSXWlRQgnjg+vfnXWPfeevx++5+x7r31eHrzr/OeOJai0ACLzAl9Gl4NtUqV9fFAbUzoy+yJZDfapPWfiCWKmZ+BAAExWTBAnh0G1MZnUCx5aapJa5R6inEcB7tYNojql9GGcpRklkoecDBpjWgwD2dPBmIhJATlZzaRgrG1IldZdubPxQTw5BcC4skE9Jr0lFSD1gAVr8obNFPzKmjUw43TC71eIBqSJuRyQ8Fb0UDAhW5PDxKpJIxaA9QqDVzhdGBrIh7TRB5Z9p1eo4NOk54UWS/7XriCuQN4mcfGSDwqlb8CQ9tUJt+xsbO+A2uWXoY6kx08xyESjyAQDcLp7x/KglyOa8+4knpSEkIIIYSQiikpgLd9+3YsXLgQCxcuxJlnnommpiZ85jOfAWMMwWAQF198MZ5++mkEg0EwxsAYw4EDB/DpT38a995771i9B4LxyyCTZ28ZsvS/k0/ok5ZTDy+XmVVSCxP6Jlu/uMzPQJ6xAowMDNTCZ1CsXIEWAMpeWOHqBfBSQgpRWaZqoSm0+WQGHOpMDkVAXD5QBphYwdhaEU/GIciOV+UG8DIvBOg0WinArFVrUGe0FwyaGUvog+ePDpfPmvUmRbntjhO74Y8EMK2uTVoHXySgeM6JdEwT+eQDLGRlsnWytgCuPBl4mcfGzIsZgaHpzqJCx8ZEKokOeyvmN8/GgrZ5uGb5Fbj2jKtw6znX4ZKF51HmHSGEEEIIqaiiA3gulwuXXnop9u/fLwXnkskknnjiCXz729/Ggw8+iF27dsFiseBjH/sYvvSlL+H6669HQ0MDGGN45JFHsGXLlrF8L1PWeGaQhWWBCX2WDDz5hD5pOa1O+jkzgFftCX3ZeiKlWAq+iB+xpHJdJ0qJYuZnEE8qgzzRRFTR6L3an0Ep8gXwlIMsvOO0RiNl9nrMLI0sRWbAgQMHnXr4+xTL+GwnUjC2VoTlQS2eh1atlf5t0Mgnw0bBZNlamTIvBMg/G/EzKxQ0y3y9fOT972yycnn5Ma3OZIdO9n6c/gFFgGqiHNNE8sC8PONW3tfTE/Lm/Jwyj42ZAbxEKqE4XhY6Nvb4+gCkv2+LWudhUdt8afgMIYQQQgghlVZ0AO+HP/whXC4X9Ho9HnroIbz44ot46KGHoNfr8cwzz+AXv/gFTj31VOzevRu//vWv8a1vfQu//OUvsWfPHnzoQx8CADz11FNj9kamsvHMIJOXwBqzZOBlTugDAL0iAy8qnUDWwoS+rP3i/APo8w/guPskkjXasy+fzM8gM8jDMJzdUwufQSlCsXwBvOGMHE8490n8WAvJynz1Gt2IQS+lyBYQlwdkMj/biRSMrRXhmHxisEHKWAMAo2wASTKVRCKlPB6Isl0IkGdHyj+zfEEz5STa/Bl/viwDLADlMY0DhyZrg3RfLBlHIKrsTTsRjmkin2wCrc0wHMCTD7GJJxM5g5HyY2M8GUc8S6aqWEZb6NiYHibTJ/1b3qOSEEIIIYSQsVB0AO8vf/kLOI7DD37wA3zta1/D5Zdfjq997Wt47LHHsG/fPgwMDOB///d/0d7ernhcQ0MDHn30UTDGsHnz5oq/gaku24mjeLsn7IOA4UyrSmRbFBpiAaQn9NWZHHD6+yEwBr1mOGNIYAzxZKJmJvRlligyMASHTugFxhTBGGDilCjKP4NszfDD8UjNfAalUPTAyyhNzTyJL3VqaKXIs3qMoyifBbIHxOXBoLgsS7QawdixHJgzXuRZxZlBYb1apwjo5dqnsl0IUGbgaRXL5wqayY+p4VIy8GQBvMxjmlFjgEU/vD9kvoeJckwDAG9kOANPHrDXqbUwy96jO08GrnhsPOHpyRrkD8aCRR0bA9EggtHh73qrjQJ4hBBCCCFkbBUdwOvq6gIAXH/99Yrbr7vuOunnVatWZX3sGWecAb1ej+7uiTPtbqLIduIYjIVw0tuH/sAgerxORcnUaLMt5D2UspXQAsoJfT3eXvgjAWiGJoQyxjAYcNXMhL7MEsWkkFSc1NViz75iyD8Dd8gjTUkE0p+BK+Spmc+gFPlKaHVqrSJjqlqTaJUTaMsvnxVlBsS1igBeAgzCuAdjx2NgzniRB4Uz9ymO4xRZcbkCeCMGxzBBERDTaZQBvFxBM/nrRwoEoH3R7Bl42fqQyoPdmYOEJsoxLZKIKrIabbISWkBZRptvkIV4bOQ5HuF4BLFkXMomZ4zBHw3huLu74LHxpCz7zm60jqrXJSGEEEIIIcUoOoDn9/ths9lgMikzO0wmE+x2OwBI/8/EcRysVivC4XDW+0n5smWQDQbd0v2hWFgxWW+02RaFhliIOus7cO0ZV+KsWcuh4lWIJ+MIxcKIxCNICMmamdA3sl+ccrvUWs++UnTWd+Dq0/8Z9aY6aUqi+BkkU0mcMWNpTXwGpcgXwAOUffDcVZpEqwjgVeCkPjMgHolHADZchj4YGN9g7HgNzBkvhfYpk9aYdVm5zKCZPPuO47gRwbFcQTNDkUMs4sm4YlCKVXYBJ2sfUlkbg1gygdQE7IEpL5/VabTQy3pBAsohNu48gywAoMPRig5HG5osDeA5DkkhhVgyjkg8Ap7jMLNhesFjY6/PKf3cZm8p8d0QQgghhBBSOnWxCwqCAL0+e8BGp9NlvV2Oy9GbjYyO/MRRxfMIxkIj+mL1BwZh0hqg4lWjyrZICikkZAGuXCW0okZLPT688DycPXs5thzejl3de8BzHDocrbhk4Xklv34hwVgIvd5+JFIJaFQatNqbCpYSiiWKWw5vhdVgHTHwIZaMgUEAB14qUVw5a/mE6BcHAGpehQ5HK5qtDYgm4uC49JRUo9aAhW3zJkzmHZDuQSYPsGYLttSZbDjp6QVQvQy8UCx3Rle5xID4jhO7sa+3C7FUHMlUChyAlNGKlbOWY8m0RWP+eWYOzJGX7YsDc6wGK5z+fmzYtRHXnnFlze9jhQJ4xfSlkwfN7EbbiPJZDsrff7mCZsUOsZD3v1Or1Ir1zjym8RwHrVoDnuOkMuxYIgaj1jChjmmKARYG24i/KerNxU2iBdJ9TjUqNTocrWhzNGPV7BU44DyMwwPHYNQa4DDZ8+63AhPQ65UH8Kh8lhBCCCGEjL2iA3ikNslPHG1Ga9bSoZSQwkDQhRZr06iyLaIZJ5Ty3nb5mHUmLJ22CCfcJwEAwVgYSSE1qub+cgMBlxTYCESDYGDgwMGiN2NB61wsLRDYWDptEbqch+H094840WYMiCbi0Kl1E65fHAB4h7JWNCoNWmzpfeXo4AkAQJ+vH9Pr2vM9vKYosp+47BmgtTCJNqQoyaxcWZ08IP7nXX/DSW8feI7DGTOWYtWcFRV7nXzEgTmZwTs5cWBOj7cXO0/sHpNgfSVFErl74KVvk2XgxbIH8DKDZvn63+ULmmVm4DHGsl788svLZ/XmEcvIj2nicCO9Ri99h6LJGPQa/YQ6pvkisgEWGeWzAFAnK6GNxKOIxKM5s8S7h4L8ADC9rgPzW+ag2doo/f50Bz1DrSnMWR8/GHBLA014nkeztbazFwkhhBBCyORQdAktqU3yJvfBqDL7zmoYPvnwRQLpZUbR5F5+oqvTaKEqIQDnMNmk5RljBUucilWJcj55ieJA0D2iX9xg0D0h+8UByqbvdqMNLbbhE81eX+1PnZRTBMY0BvDcyMOXfJCFLxJASkiNx6opyIM8Jl1lMvDkzDoT5rfMhsNog81gHdHTbKxkG5gTT8Vx3N2Nbm8vErKJzZUYmDNewnkmG6dvK9wDD8gcHCM7VsoCeIV6FRplWc2CIIzICBb5I8OTZOX970SZZdfesA9adTrrmjEGd3Di9cD0ykpo5QMsREatAXrZZ5Xvd4y8f137UPmr3WiDzTi8LfP9zujxDT++ydIg9XglhBBCCCFkLJX0V6fP58OnPvWprLcDyHpf5jKk8sRsi0ODx6Dh1eA4DmadES3WJsQScSkgdXjgGGY1dZadbVHMAItceI5HvdmBfv8gAGAw4EKTpaGs9RBVspxPLFH82ZvPYSDgQiQeAQPAIR2sPHfOWeNSolhp3rByamOrLIDnCXkRSUQLlkLXCkWpY47AmE1vAc9zEAQGxhh8kYCiN9ZYE5iAcEI+xGJsGtvLA5Xy0sKxJA7MkWcbuUIeRIb6RPZ4+zDN0SYFVi16C5z+fvR6+zG3eea4rGOpBCYU7OupGCyRJ1gqBs027NqIA85D4HkVtCoNdGotUoKAQDR9EaXO5MgZNNOqteB5HsJQL71wIgpdlkxnRTZalgAeMLLsOhRO98DkAOi1elww60MT6pjmVbznkRl4QHqQxcl4OrvOFfKg3dE6YplgLKTop9chW6azbhp2hfcASAfwTm1fkPV1eqh8lhBCCCGEVEFJAbxoNIpnnnkm5/357stVCkRGr9FSj+WdS3Bk8DjC8QjUKjWmOVrBgUOTpR6HBo4hkUpCp9ZidsOMsk/Y5D2ZjHkGWOTSYK6TAngDskEb5ap0OZ/NYEGzpRF1RjvC8QgExsBzHFpsTTVfBpiLom+U0Qqr3gKj1iAFw5y+AcxomFat1StJoV5lQLqczWawSeWz7pB3XAN4kXgUsqHPFeuBl8kuy0AKRkNIpJJjngWUOTAHgGIqaDQRQ5+/H622ZnDgRj0wZzxEEzHF1OlsJc/yz1A+sTabzvoOXLH4w3j2bS+8ER8i8QhcIS9UHA+L3lywVyHHcTBo9FIfxUg8kjXbzB/JPoE2k7zs+sjgCWzc8zp4joNRa8CH5qwYs/2z0mKJmKKFgz1LCS2QHmQh9sB05yihPykrn7UaLIoy2c76DuzqTgfwBgIuhGLhEYNo4sm4YsoyDbAghBBCCCHjpegzvunTp1MArkYxxjAQHMSsxk64gh7EkjF4w354wn5wSAemeE6VzoALDMIV9CgafhdL3sC91Aw8AIqT1sHA6AJ42cr5AECAADAoyivl5XwrZ+du1i42hteoNLAZNVIgJpKIIp5MSCVo46mcwRyiWDKuKA90GO3ghgKShweOAUhPUpwoAbyQotQxd2ZbnWk4gDfegyzkZb46jRbqMQqqWXQmqFVqJIf6cHnDvpIC8+XsV5kDcxjYiOBcIBqCVuVBg7luVANzxos8KKxRqbMGQQ2KAF7uvnQiFc9Lg2NSTMB5c1eW9N01aIcDeOEsgywYY/BHZSW0+twBPJFZZ8Jp7Quwt/eAdEwYDLonTA9MefadVq3JmTVcbyo8yCJb+ayozmSHWW9CcGhy+3H3SZzSOlexTJ9/QAr66jTacb1AQAghhBBCpraizy6PHj06hqtBRuOktxeDATcMGj06HK246JRzEEvEpZPzRks9Nu59HcFoCIwxvHXoHzh//tlw+gZLOoGXZ+CVU3bZaB4OMASiQcQSsazlYcXIVs4XTcakQRkdjjbFOhZTzief7FhntCMQC6Wn7jLAFXKj1TZ+pVKjHcwBQFEmppFNqmxVBPAmTh+8cLy46a7pQRbp9zfegyzCRQYZR4vjONiNVikQ7gl7iwrgjWa/ypy0mhJS0lRTOVfIA61aA0EQyh6YM16KKcuW72tiX7p8xy0x61Wj0qDT3oyFbfNKWif562XrbxiOR6TALZC7hDabBnMdjsfSx8iBgGviBPDCyl6euQKodbILU4FIcMSFl5SQUpS/dmSU2HIch876Duw+uR8AcNR1YkQAr0cWAGy1NWftxUkIIYQQQshYoM7LExxjDDtO7Jb+3e5ozXpS9qHZZ+Dl3X9HJBHFzhN7sLN7D3hwJZ3AF+oVVYhJZ4Reo0N0qGfWQNCFDkdbyc8DZC/n84Z9UkDBG/EpAnjFlPPJ+0rZjTboNFr0etMBrsHg+AXwjrm6sWHXRrhDHph1JjRbm6DieamP1pbDW9HlPIzLF1+CzvqOnM/jyXHSK38f/kgga5lYLSqmhBZQNrgfr/5womKDjJXgMNqkAJ68wX8uo92vMietxpPD3yUVx0OlUkm39fr6oVVpcO7cswAAXc4jZWWRjrVIEfuUVqWBildJA1HC8UiBAJ5X+tlRRnaWPLs529AM+QRavVYPbcaU23waLfU47koH8AYr0MZgvMj371zls0A6M1WjUksTYt0hj2JwT39gUAp+qngVmm0jg8sz6qdJATynf2BEn9B8GXyEEEIIIYSMJbp0PMH1+JyKctSlOQZUtNlbYDNacXjgGPoDg/CEfag3OUqa2CoG3oDyMvA4jkODvIx2FCeQ8nI+kTxDUN6bC0BR5XyZjeEbzJUr+S1W5mAOu9EmBSnFwRxt9lb4In5s2LVR0YspU2YAT2TWm2DWDwdQ+vwTIwuv0LRQkTxoEolH8w4eqLRQfGwn0MopA5XevMtWar+ST1qVT0jVqjVot7ekA+WMIRwPI5SIwB3y4unNv8a699bj99v/jHXvrcfTm3+NV/a8nnffHS/FBIU5jlNcsMg3iRYA3CH54Bh7yesk7y+abd+V97+zFVE+KyfPgh4MuhX9/2qZvITWnmOABZD+rOpkZbSZk2i7Zf3vWmxNUGeZpN5grhvOxmSQAp5Aut9kQDYBuJUGWBBCCCGEkHFEAbwJjDGGnYrsu5ac2XMDARdOenqRFJIwag3QqjToD7qkLLZiTuDlJ67lTi5tMNfJ1qn8oJi8nA8AkkIScVl2XTwZT/fDGxKIBgqW88lLaG0Gq2JdxytbRRzM0WxtKjiYwx3yKD7/TL6IPJCgPOmVT6PtmwBltJnTQvMFxwwaPXSa4awkT2j8svDE3mXA2JbQAsqgbKH3WKn9Spy0ajNY0ecfkCZca9QaqDg1zDozwvEIOPBIpZJ458hWJIQkmq1NJV0sGC/KY1rufcqY0QcvF0EQFBcCsg2gKES+HtmChT7FAAvziPvzqTM50qO1ASSSCUU2Xy2TtwOwFdim8v6urowS+p4isuc4jsOM+uG+oMdcJ6Sf5dl3VoOlZjJJCSGEEELI1DAlAngPPvggOI7L+9/jjz9e7dUsSjAWQpfzCPb0HMA7h7cqJuotyZF9B6RP4L1hH2bUT5NKKcPxiKIZeqETeHkGXjlDLACgUREUc5WdASKW8wVjIQiMjchUYYCUISQwhmAshFNa5+Y84RKGyghFNqMygBeKhRUZfmMh22AOgQno8/ej1+eUSvgA5WCOYCyU9fnkQR17RiaQvKys1+dErYsMDQ8Q5QuOcRynyHzyjuMgC3nAxTTGATz5e4wmYjkzDXMNfEmxFGJJZaZqMftVZ30Hrj3jSkyvawfPcYjEIwhEgnD6+2HSGrC0YyF4noPABGhVWkTiUfB8+nVLzSIda8WWZRc7idYXDUAYygoW+xSWSpGBl+WY48+40FAKrVqjyGAbzUWU8RJLxhWfU74MPACKoRLySbShWFhxTMzsfycnb0PR6+tHbOh3n/xYSdNnCSGEEELIeJtSPfCampowd+7crPe1tub+Y74WZGs+7wn7AJbOxDmlbS6aLA1ZHys/gbcaLAjEQlKm0EBgECatAWo+vSvkmtiaSCUVjdPL7e8lD4rFEnEEYyFY9KVlkYiWTluELudhOP39WRuJRxNxaFU6OP39qDM58gY4A7EgBGEoQMQBFr0Zal4Fg1YvnUQPBl2YNoZN37MN5hgIuqSMGxWvUnzG+QZzRBJRRcA1MxOoRfYawWgYgWiw7M9hPCimhao1WaeFytWZ7FJm4Xj2wZMHd8a6hNag1St6SnpCPhjsIwPr2farpJDEUdcJpAQBjZY61BmHs5aKGfjSaKlHu6MVGpUa4XgEp7YvwPS6DrTam/D2oa040H8YUGnBcRyCsRAGg25F+aZ4saDH24udJ3bjkoXnVWqzlESeTVdsAC9fSbZ8aIrVYIEqS4lmIYYCr+WLyjPwSiuhBYAGc73UU24w6MKcphklP8d4yjWMJxf5JFpv2IeUkIKKV+Gkd/hil0VvzrvtmqwN0Gv1iA5dODju7sHspk5FBl8blc8SQiqIMQYhJSCVSiEWixV+wBi8fjyevqin1WrzTlsfD7WwDuNN/hnUgqn4GRAyEUypAN7q1auxdu3aaq9GybI1n48mowhEQ4inEugPDMLkMuCYqztr83n5CTwHDs3WBhwdPAGBMaQEAd6wXxFYy3YCrziR5KAoUSyFTqODxWCW+ggNBFxlB47Ecr4Nuzbi4MBRAOmG8xzHgTEGT8iLYDSIOpMDly++JO+UTnlZmkVnlnojNZjrcMLdAwAYDHrGNICXOZgjISQV6xWKhQHZOWe+wRzyk16dRgt9RtN9k84Im9ECXzj9/H2+/gkTwCsmeCwPWLrHaRItYwyhIvv0VYrdaJMCld6wN2tQIdvAF380KPWP9IUDigBeMQNfGGMIRIPQqDSwGTRYMm0RGsx10sWCZmsTQvGwdKHAHfJCq9bAph/Onsp1sWA8KYaO5Am4KjPwcvfAkweLyymfBZTtCRLJBJJCSjoepYQUgtHhzEhrGd/ZRksdDvYfATAxBll4I8penoVOJmwGK3iehyAI6d8DYR8azHWK/nftjvzZczzHY3pdOw70HQIAHHN3w24cHtzCcZziIgghhIxWMpHEwQ/2Y+BQL+655x6oVKVfABqNVCqFN998EwCwatWqcX/9TI899hh0utwDoyajeDyOz3/+89VeDclU/AwImQimVABvIspsPi+WwLmCHnAcB51aC7vBimgihg27NuLaM64cEajKPIHX8Bo4THa4gukG35knpNlO4KOyTBW9Wpc1461YjeZ6KYA3GHRjVmNn2c/VWd+Bq0//Z/x086/gDfsQiUfAkG7zpOJ5nDv3LCzJM1lXpBhgISt7UwbwxrbUTz6YQ8XzcIc8irLReCqBhJCEZihbMt9gDsUAC0P2k94Wa5MUwOv19WNu86wKv6PKKTmAN1RGl0glcHSwG7t79kOr0o7pBNRoIlZ0mW+lOGQBvFyZhpn7FaDs1RdPJSBAAD/UUaGYgS+RRFSRkSsGkuQXC6wGC064uxEbCno4/YMwaPTQqoaD/8Vk+42VlJBSDLsx5umBV+wQC/lnUFfGBFpgZH/RSDwiBdeDsdDwPjaUKVwq+XAed8gjZajVqmIn0Ip4nofDaJN+v7lDHtQZ7ej1Dpe/ttsLZ9zPqJ+GA32HkEglsLfnAILRIHwRP4xaA9odrdCqc38/CCGkXIKVR1f/kXHPfBJS6R6ulmZ7VV5fbn7L7Kq9di3YP3TxqJqm+mdASC2jAF6NE5vPy4N34XhEkRHXYK6DXqPPWY6W7QTepDXChfQJTjQZA4MALs8JvKLZ+ygzixot9Tg8cAxAZTJAGGPosLei2dKAcDwCgTHwHAeLwYyLTjmnqGCjGMgC0hNo5esqEqc2jtUfNfLBHCa9SZF9JwrHwlLfq3yDORSZQKbsmUCttmbpj4Ren3NM39toKUpTiwiMJVNJdHt74Q35kEgl4A57oOHVsOjNWNA6F0uLCOqWSt4zTqNSj8sJvmKQRY4Anny/shttIwaCAEA8mYBenb7KWszAF3kfNr1GB606HZTLvFjQbm/FMfdJpIQUGGNwh7yKzKVisv3GSmZ/OXmQLpMiAy+WO4An77dYbgYez/PQabRScDESj0qBOn9GpnA5gTeH0QYVr0JKSEEQ0p9Jpb8LlaScDl5cz796s0MWwPOiXz+IxFDAmed5xRCfXNS8Cn3+fgwG3EikEjg4cARg6d+LGpUaAwFXTW83QsjE9bHP3gCtdnwznyLhCL752Qer9voAkEwm8Zsf/WLcX7cWffxzn4BaPf6n6fQZEFL7plQAb+fOnbjhhhvQ19cHi8WCxYsX47rrrsOiRbl7o1VTrubzrpBH+tmg1Usnl7nK0TJP4AFAr9FKpaaMMUQTcSnzI9sJvPyEP7Mcs1Tycl1X0ANBEMDz5Wf09QcGAKRPrOY1t8EZGEhPsUD6hNdexIm0/CRR3iS9voI9+woRB3NsObx1RDaXKBSPwGawSoM5Vs7KXnqomNqY46RXPsgiEo/CHw2U3BR/vJSSgSeWnItZqgatAXVGO4xaIwLRALYc3oou52FcvviSrCXnFVlH3dhn3wHK4Kw37M8ahJXvV1aDFeFEZMS+FU/GoVfrCu5XooBs+I38+5B5sUCj0qDRUi9lCfojAdSbHNLFgWKy/caK/PPSa3R5g2GZPfAEJoy4MBBPxhGMDgeaHRmDY0ph1BqkAJ58PZUTaEvvfwekA1j1Zgf6/YMA0hcmajkQpcgmLnIoSJ2sD54r6FH0zGyxNkJdoIfmcNsKLwQwGLQG6fdlPJXAkcETWPfeixU/hhBCCACo1GpotOP7ezERH76QVo3XJ0pq+gwIITlMiSm0oh07duC5557Dpk2bsH79ejz88MM47bTT8IUvfAGpVKrwE4wzsRzNoh8+UQvHI4oTugaTsnddIBpEr7df8TyZE1sBgAMvZdwAwwG6XBNbowl5s/fyJtCKHCa7NJUyJaTgGeWUUOfQiSiQbiwuD0IV0/+MMZYzy0On1sJiGA5QjHXPqKXTFsFqsKDP3y8FWUwZ/bcEJuQdzJHu++SV/p0rE0iv0UmlpkC6jLZWKYNjuQN48pLzBpMDOnU6UB1Lxsd8AqpyAu3Y978D0uXRomQqmXNy7NJpi1BncsDp70coOnKKajyZgMBYUQNfgMxA0vD3Q36xQLpfb5YCKAyAW7ZvFpPtN1ZKySo2yMprGWOK0luRN2PYgmkUQVx5Ga384ok/mj1TuFTyiyjVnAJcSDyZUGQ8yvf3fBSTaMPejP53+ctn5ceQaXVt0jEESPe+M2j06KzvqIkpyoQQQgghZGqpSABPEAQMDg5icHAQwlBj9FrS1taG//qv/8KWLVswMDCAaDSKXbt24dOf/jQYY/j+97+P++67L+9zPPHEE1i+fHlR/+3du7ci652t+XwkITvp1OgVmSH5ytHkJ/BiEE9eMhaJR/OewCsz8EYXwFPzKkWGxGiCYgITFCdQzdZGxRRCebZiLtFETGpODow8MR7Pk91GSz1mNkyHRqVBOB5BUkhKk2cZYwjHIzjm7obNYM05mCMcjyjeT75SPnkpmbxHVK2RD4fIFxwTS86brU3Qyco/YsnhiW7iBFR3yIOdJ3ZXcB3lE2jHJwNPq9bArB9+rVxltOLAF5vBij7/AGLJuBQgZozBG/ahx9ubd7+Sk2fgWWUXGLJfLOAUARVfJICkkMx5sWC8KAZYFAjgadUaRdaW/LEieWDSYbKPqhw989gsqkQGHqA8ptXyIAv5hRV1CUHROqMd4NK/C91BDw4PHIcv4kcilSjY/05+DDHrjIrsdyC9r/AcPybHEEIIIYQQQvIpu4R206ZNeOaZZ/D3v/8dx48fV9zX2dmJCy64ALfccgvOO++8HM8wfm6//fYRt5122mn48Y9/jJkzZ+LLX/4yHn30UXzmM5/BjBkzsj5Hb28vtm3bNsZrqpStd129qQ5mnQmukGdEuWO+cjT5xNYeby/MOhN0Q32rxBN4gQmozzGxVX4SmdlkvRwN5joMBtInjgMBN+bnHwqYkzvklZrp8zyXft6gW+qx5y4igCc/SdRptNBllAg3mutwZCC9j4t9lcZKKBaGJ+zFrMZOuIIe8DyHwaAb8WQcyVQSGrUGcxpn4J9OvShnkEX+fvRa/Yj3I9dqa8KengMAIGX91WIfvGJKaDNLzuUZprGkMmNqLCaghhQBofEJ4AGA3WiXSje9YR+m55iU3FnfgSsWfxjPvr0O3ohy4ItBa8DKWcuLGvgCpKfYijIDSUunLUKX8zCc/n40W5vAcxysBgtcQQ+SQ73wXKF06Xwx2X7FCsZC6PX2I5FKQKPSFBxYEo7Ls4oLZ0watQapB104HkHmVvLIsn2LKdvPR57xJ79oowjg6csP4Mk/Y38kgFgyLv0+qCWZAyyKPTZ5wj64gm5pfxD3c71Wj38c2Y6l00/Nup+PbFuRPk7I93fTUAZwLUxRnkg2bdqERx55BFu2bEEwGERnZyeuvfZafOUrX4HJVNq2O3r0KP72t7/hH//4B/7xj3/g/fffRyKRwM0334y1a9eOzRsghBBCCKkBJQfwCNBclwAAZkdJREFUfD4frrvuOrz88ssAkLVP19GjR/HMM8/gmWeewerVq/GrX/0KVmtt9tb64he/iB/84Afo6enB+vXrc47vbm1txemnn17Uc+7duxeRSO5G58XK1rsOAHRqHdpsIyNehcrROus7cO0ZV2LHid3Y19sFX8SPUCycDvqpNVg2/VScNfP0rCc28gy8fM3ei5WehHgQADAwiumu/f4B6ed6Ux3UKrUiu88d8hYMShVqki6f2jgYcmftf1Upu7r3QBAYDBo95rXMwmWLLkC/34U9PQdw1HUcRq0BzdbGvEEWxQCLAoGEZmtj+syWpXv8ecK+sqdnjpV4MqGYeJorOCafgApAEZBIpJJIsRRU3HCfs0pPQJWX+hUTEKoUh9GG7qFJybky8ESxZAwdjlY0WxsQS8aRSCXBcxyMOgMuWLAK6iKGIjDGFKWcmT0hs10ssOgtcJjs6PcPIp5KoMfrxNymmUVl+xUyEHBJx7RANAgGBg5cwYElpU42VgbwoiPuL+V7V/i15FNv068VTyYU08BHU0Jr1pkUgzJcQTfa7GVeRRlD3sjwNi22P6fYv87pHxzRv06n1mLLkW3o6j+StX9d5jEEAMx6ZQBPfvyp5hTlieSHP/wh7rrrrvTAqY4OTJs2DXv27MHDDz+M3/3ud9i8eTPq6uoKP9GQ73//+/jBD34whmtMCCGEEFKbSgrghcNhnHPOOdizZw8YY9BoNFi2bBmWLFki/fHldruxc+dObN++HYlEAn/5y19w/vnn4+2334ZeP/rAT6WpVCqcddZZ+P3vf4+urq6cy91xxx244447inrO5cuXVyRbL7P5fGYpj1yxzecbLfX48MLzcPbs5ej19uPVfZsRTURh1BqwoGVuzpNpeQ+8SmTgNVqG/1j3RfyIJxNlTe2U979rsqZLTetlAahYIo5QPJx3m8izWrKdJNaZHdIJYCqVgi/sV/SOq5RQLIyu/sPSv5d0LITNYIXNYIVFb5L62jn9g0gKqZzBFm8JgQStWitlQyZSCWw9ugPtjraiMpjGi7xckee5nENUMkvO1So1VDyP1FBZfzgWUQSbKjkBNRgL4YSnB6FYGDzHYTyTGOWfsadAz8eT3j4A6SzdRe3zcbD/CAQhfRHGHwkUFbwNxyOKnqHZMsEyLxaIpfvRZCxdQm+ux2ntp4x6AMDwsAEPzDoTmq1N0mdeaGCJPLOtmL6exoxelHKMMcW2H20QXN6TLzL0WvKgqUqlGlWQmOM4NJjrcXKoN9xAwFWbAbyMDLxC5P3rmq2NivJgjuPQaKmHUWuE09+PDbs24tozrlT8zsvWtsKkM0Kj0iCRSsCg1UMry3Cv5hTliWLr1q24++67AaRbkdx2223gOA49PT246qqrsHXrVtx222343e9+V/RzNjQ04PLLL8eKFSuwYsUKvPDCC/jpT386Ru+AEEIIIaR2lBTAu++++7B7d7rfy2c/+1l87WtfQ0tL9j/6+/r68PDDD+P//u//sGvXLnzta1/DI488Mvo1HgNabTpTJ5lMFlhy/GUrR8tUSvN5kVlnwtzmmXD6B3Cw/wgAoD8wiDlNM0Ysm+69Js/AG312kVVvgUatQSKZABjgCrnRamsu6TkYY3AGhgN4zdZGAIBOo4NZb5TKCt0hb4EAnjwDb2QwQs2r4DDapIEYg0H3mATwxOw7ID2oYU7TcEZHo6UeKpUKqVQKKSGFfv8g2uzZt1epUxuNGgO6Pb3whn040H8EdoOlqAym8aIYNqAx5MymzCw558ANTZ5NZ8+E4mFFAK8SE1DF7K+9vQdwaOBYOtsTwIs7X8bijkXjsu3kATxfJICUkMo6UVVgAnqGAngA0OFoQ79/UAqSeIvMvpT3v9NrdDkD75kXCxKpBI66TuCkpxcalQYnvb1lB+4BZbCmzd6qODaKA0usBmvOYE2oxIxJRV+6hDKAF4qFkZBliY6+hHbkEAt/RvnsaEvdG8x1wwG8Gu2D55Nl4NmLyMAT+9e12VtHfEYcxw31r0v3wOzx9mLnid24ZOFwm49sbSt48Oisa0dk6EKXXDWnKE8UDz30EARBwE033aRoZ9LW1obnnnsOCxYswAsvvIBdu3Zh8eLFRT3n17/+dcW/X3311YquMyGEEEJIrSq6DtDj8eDJJ58Ex3F49NFH8cMf/jBn8A4AWlpa8KMf/Qjf+973wBjDj3/8Y/h8+cu7quWDDz4AAHR0jC4bZCzIm8/3eNNBFjGjKCUIJTefz9Q8lLUGAAOyYJhcPJVQDCepRAZeOgNEPhyi9BPIQDSoKCkThz0AUJTRFupbV6iEFgAaZBmDlTrZDcZC6HIewZ6eA3i/ey/29O6X7lvSsVARhFHxKrTIyrrkgRi5dD9DedZK/kDCMVc3tp/4AP2BdLmZhlehzd6CZmsTUkIKWw5vxbr3XsQxV3e5b3PUig20ZJuAapY1vQ/GwmAYLvkf7QTUY65urHvvRWw5vDWdnaPRw6QzSiV747XtrIbhYA5jTBHokXMFPdJwE47j0GJtUuwf8v0mH3kmWDGDFMSLBQvb5uHiU86VPsN4MoH9zoNFvWY28mEDubKT8w0siZRYQquYBh1TBofkU59NOuOo+8kpg4VRCEzIyBQuv3xWJM+CHgy6s7bDqKZEKildhAEKH8vy9cAE0r+3xNYH8v518snN2Y4hQPr4m35e5Z9M1ZyiPBEEg0G89NJLALL3Ip47dy4uuugiAMC6devGdd0IIYQQQiaiogN4v/nNbxCLxfChD30Id911V9EvcPfdd+NDH/oQYrEYfvOb35S1kmNpw4YNUlbhpZdeWuW1yU4sRztr1nKoeBWc/n6c9PbB6e+Hildh5azluPaMK8sqR5MH/DxhH+IZzf4BZfksx3EVa3beKO8tV0YfPHn5rM1oVZRWyjOJ8g2ySKaSCMqmh9pyZKwp1nWUk2gHAi68sud1PL3511j33nr8fvuf8cstL2Bvz0F0e3oBDorsO5E8467Xl31ibCgWVvSLsxtyn/SKGUyxRAwmnQE6tRYM6am8YgZTm70VvogfG3ZtHPMJvLnIS2jzTaHMNgHVJOtXlRJS0jTa0U5Azcz+MulMUhCN53k4jPZx23YqXqUI6OTqg3dSFvRtsjRAq9YoA3iR4i6w+CPDGXiZ/e8K0am1WNA6R/r37p4DSAqpPI/IbuSwAUCAgG5vLw4NHFUEZbIFa+LJhCJjrpihI4Y8JbSV7H8HKIdYiP0pFYHTUQywEMl7e0bjUcUQllogv7AiBtDyEfvXWYa2jYpXQSObHJx57LDoLQhEg+j19ku3ZTuG5FLtKcoTwfbt2xGLxaDT6XDmmWdmXebcc88FALzzzjvjuWqEEEIIIRNS0SW0b7/9NjiOw5133lnyi9x5551466238NZbb2W9CjuWdu/ejcceewyf+cxnsGTJEul2QRDwm9/8Bp/+9KcBAFdccQVWrFgxrutWimzlaJXoU2YzWIebmbN0YKLd0apYJnMCbaWmlMqz2gbLyMDrDwwPsJBnEgJAvTwDL08Azx8NQkzK4nlekbGleD5ZtqAn7Mvbgy6fbD27BKTSJ4xg6A8MQqNSo9vTOyIgK+9R5Qp5EEvERkyYlQcSTDpj3vJEeblZ0pOSSvUiiYiUZZmv3Gy8lDJsILPkXMWrYNDopfcWjIWhVelKLjnPJN92PMcpgqYaXg0O6T5447XtHCa7lEGXK4Anz9oUg8HyssSyMvBKDOABwMK2+djT04WUkEI0HkWX8zBOaZ1b0nNkGzbgjwQQGgrG9wcGYdIZwSF9rMocNiAvr+S43H0V5RQ98GQXNYCMAF4Fyuu1ag3UKrW0X4XjEeUE2gpk4Ok1Opj1JgSj6aDmYMBd8HdJqZN+yxWMhfB+9z54wj7wHId2R2vB3zvZ+teJ049VPD9iX83Vv26s2lZMRQcOpCecT58+HRpN9t9Fs2fPBgDs378/6/2EkKmDMQYhJSCVSiEWi1Xl9ePxdCKDVqut2PlOsWKxGFKpFBhjioqR8VTtz0CuGp8BIRNB0QG8nTt3AgDOOeeckl/kvPPOUzzHeEokEnjyySfx5JNPoq6uDp2dnVCr1Th48CA8nnRg59xzz8XPf/7zcV+3cojlaJWSbuzdIE2x7M8WwJOdrBZzolsseVZbOB5BKBbOm2GVSTHAwtKouE9eQhuORbIGuwBllodVb845XdZutEo96BhjcIc8ipLdYuTq2TXgdwFIZzYatXqkBCFrzy67wQq9Vp8uG2ZAj8+JmQ3TFa8hz6LKV3KWmcFk1Bqkzzkcj6DOOLz95BlMK2fnH5IyFkoJ4GWbgGrQpgN4jDEMBt2IxqOoMznKnoCaLfsrKQwH8NSyrJ/x2nYOow1Hhn7OFsCLJ+OKLEAxGCzfR/zRQFGBaXkPvHICSQaNHnObZ2Ffb3po0Psn92Je86ysfftyyRaskQe4EqkkwvGIlIGZGaxR9FXUFndRQr7vRRNRCIIAfuj15QMsKpGBB6S3UyCV3taRRERRGl2JElog/X0RA3gDQRdmNEzLuly5k35LJX+dHp9TmpLuDnlhM1jzvk62/nX1JgfMOhM0KrViAjWQu39drinK8uEowVhoVMeQqcLtTl+YyzdhVrxP/HtsPD3xxBN48skni1p27969Y7w2hJBkIomDH+zHwKFe3HPPPVCpSr9QPhqpVApvvvkmAGDVqlVVe33ByitaF42nan8Gco899hh0usqddxIyWRQdwHM6nVCr1Zg+fXrhhTNMmzYNGo0GfX3Z+3aNpRkzZuDhhx/G22+/jb179+LgwYOIRqOoq6vD6tWrccMNN+D666+v6gGq2pos9bIA3sCI+yMVHmAx/FzpnmFi1sxg0F10AC+SiCpOaDMz8Ixaw3BmIdIZa9mmLBbT/w4AeI5HvcmB/qGg4WDAXXIALzNrCwASQgL+6PA6NJjrYNVbs2ZtcRyHNlszDg8cAwD0eLME8IocYJGZwWTUGqRMxXA8CgYBnKzCPjODaTyFSuxVljkB1RcNSIEAjVqD5TMW44zOpWWfeGfL/hJ7ywGAOuNYMh7bTtnLzjvi/l5fv9TjTKfRot6cDtBaDWbwPJcensIKT6JN99iTBfDKyMADgNPaF+CA8yAEgSEci2D3yQMwaPVFZ3ZlBmtiyTiiCeWVYl/ELwXwMoM1pQSFRYpjH0sfg0w6I1JCShE8rNSAG4NWLwVLXUGPIsuzEhl4QPp4c2TgOIDcWdCjmfRbiszXEfsAMsag4lUFX0fev078PnAY2QtPlK9/XbYpygwAh3TZ+MpZy7GkysN9JoJoNP23gzgoLBvx5CwSieRcZqz09vZi27Zt4/66hJD8BCuPrv4j4559JaQE+CJ+WJrt1X19q31cXzfrulTpMxDNb5ldldclZCIoOoDn9/ths5WfWWC1WuH3F1eiVUl2ux1f+9rXxv11JxJ5IGog4IbABEUmmjwDrxIDLOQazHXwhn0IxyPYfvx9xJOJosqy+mXZd0atYcTyHMehzuRArzfdK84d8uYI4MmzWvJPOWww1w0H8EocZJEtawsAXEEvxFZLalW6lxmH3FlbbfYWKYDX6+tLTz2VPZ9HVgaZLxMoM4PJoNWB47h02j5jiCUTihPfXOVm46GcYIu85LzH68TGPa8jkUrAqDVgbtPsUZ14Z8v+UmSpqpXfkfHYdvLPOhgNj5juelJRPtsia+bPw6q3FD2JNhyPICXrWWcpsxebSWfE7MYZ2NW9F66gB/v6Dg710ysusyszWOPPGDoApL9z4kTezGCN/KJEsfuUmldBq9ZIwdpwPAKTzghfJCAFR3meg60C/eky16vPP3xhRa/RjU0f0tDIY/9oJ/0WK9vruIcuRqSP5XYYtca8ryP2r9tyeCusBmvOwSbAcP+6lbNyZ8WOVduKqUSvTx8LxZK0bMQSLYOhchcHi9Xa2orTTz+9qGX37t1blSAjIVPVxz57A7Ta8c2+ioQj+OZnH6yJ168F1dgGyWQSv/nRL8b1NQmZaIoO4EUikVEF8NRqtXQ1ltSWBnOdFLxJppLwhHxShg6gHGJhqOCBfCDgwgl3D/b3HUIilcAJTw/29BwoqizLKTuhbbI2ZL1CVC8L4OXqg+eTBbxsxvwn3vKpuaUG8LJlbSVSyuy7epNDynrLlbXVaht+fDAaRiAalLJxBCYo3k++EtrMDCYOPHRqrZTFFEvEFAG8XOVmY00QBMX+ZyyhxBpIn9TPa56FwaALB/oOAwBOensxp2lG2euUue1STFBkf8kniALjs+3MOpOiZ5o34pMC84wx9Hh7pWXbbMpAtt1okwXw8l9kkZfP6jW6vD0WC7EbbTg8cAyxZBxqlRomnRF2g7WozC5lsMaiCMSLGEuXBdsMthHBmnKCwuKy8gAekL44ILIZbFJZ7WjpZRdL5OXPlcq+A4A6s0M69qdSKfjCfkUGYbas4UyV6JOZ+ToCBEXAW6vWFPU6Y9G/rtJtK6YShyP9d4RYSpuNeJ+47Hi64447cMcddxS17PLlyylbj5BxpFKrodGO79+cifjw751qv34tqMY2IIQUVpkzDTKhqVVqRcCuPzCouD8cr3wG3jFXN9a99yIODhyBAAaDNj0FtdnaiJSQwpbDW7HuvRdxzNWd9fHydWy2NmZdptAkWsZYSRl48mCiPxJALMvE3lwys7YYGPr8AyOy70S5srZMOqOiNLZHNo02GA0NZ0dxygEFmeQZTCJ5Vk80qSxHzFduNpbCiQjkfXxLCbbItduH+zqe9PRCYOX3FsncdvKBCCqOH5EdNR7bjuM4xX7hCQ2XUgeiQQSjwxNG5dOMAZQ0ibZSgxQGAi78ff/b4Hk+Xe6u1sIb9knfkWImIC+dtgh1JgeOu09KgUuOU/aH84Z9cPqdI4I15Qbwsk2i9chKlivV/y69XsPHWnn5bKX63wHprEL5Og/IpoFnyxpOpBJwhTyIJpUX47JN+i1WtteRl6RzHCcFvwu9jti/zmZItyHwhn1IDfURSgkCvGEfery9sBms1L9uHMybNw8AcPz4cSQS2U9MDx06pFiWEEIIIYTkVnQGHpAug3jjjTekcqFSH0tqV5OlQeqB1B8YVEyFjCqGWIw+gCcvl+qs68DBgaMA0pkRSSFVsCwrkUrCFRwOyOXqRScPSvoiASRSSWhkAwZCsbCiHLBQAM+sMyn76gXdWctys8nM2vJFAoogQqO5XtFzLl/WVpu9RcqU6vH2YUHLHADK4QUWnVkxTCHbe8ksN9NrdFKAJibLKCum3GysyLeRTqMta/IvMFQ2OtTrLZ5MoN8/iBZbeQG1zG2n7BGplyafAuO77RxGu/QdlvdClJfP2o3WEX0mS5lEqxhgMYpSUTHjamb9NBxznwQAxJJxhGJhaTsVyrgSgzVPv/lrhOMRqFVqOIw21A1N5I2nEgjFwpjZMG1EsEYxxEJTWgZe5nPIt3W+8uNS5VqvSmbgAUCDpV7KIhwMujGvOd13JjNrOBwP46TXCYEJcIU4dNa1QyfL0i2312P2npLDfy9oh46dxb4O9a+rHcuWLYNWq0UsFsO7776LVatWjVjmjTfeAACcffbZ4716hBBCCCETTkkBPI/HgwsuuKCsF8rs1UVqS5OlAXtwAICyvxxQXr+ofDLLpXRqrZTNFk1EoVNr8568DwRcUhBZo1LDYcqe9WLVW4bLClk6U0Ye7JMPsDDqDIrgXjYcx6HBXIeTnnRAZLCEAJ48a8ukN2FAlkFo0hmH+n8Ny5e11Wprxp6e9GfV6+uX+lYVO8BClFluJj8ZjybjYGBgDCWVm1VaOCbPlCqtfFZOo1Kj2doklVSf9PaWHcADlNtOHmyQZ2iVWqo3Wg55Bl6OAF62/bWUSbTyXnMWfXkBSXnGlV6jh1lnRHBokI0r5IFJZ5QCNoWm+LZYG9Fqa4aaV8Mb8SGZSmIg4EZSSILnODRZGrCwbd6IElx5AM+kKy+AJx4X5dmOY5WBJzeawGk2jeY6HEA6C2pANshCnjXsjwbQ5++XMoYZY+jxOdFZ1yH1zCu312OhicKZGa3FvA71r6sNFosFl112GV588UU8+eSTIwJ4XV1dePXVVwEA11xzTTVWkRBCCCFkQimphFZscF/Of6S2ybMRQrGwNBmWMaZs0D/KDLxs5VJ6zXDgKCLL/MpVLiWflNtkbVA0XZcTm5+L5Fl7QPETaOXEPniJVAJ7eg9gT88BdDmPFCwbE7O2ArEQ+nxOCEPfCRXHo9namDVr65TWuVlPNltsTeD5oZK2ZELqx+eNFNf/TpRZbhZJRKXvqiAIGAy4q15uFo4Pl36ONng8zTFcRtvt6c2zZGHitrMYzHCFvIgl42CMwajVV61Uz260Sz+LwdyUkEKfr1+6vV22DUTiJFoA0iTaXPwVKKEVM67EARh1Jnm/zdiI75JFb0EgGkSvtx+ZDg8eh06tRYejFYs7FuHGsz6Kq5etxuWnXYL5zbPR4WjFYMCNhKwElTGmzMArsQeeKBwPI5aIKZ6rmO9dsXKtVyVLaIF0Bh6QPqYdc53Aru696HIeQVJIAuAwEBwcmmKsfFw8mVC0Mii316M8OxlID4SRb9PM/ayU1xH71y1sm4e5zTMpeFcF999/PziOw89//nM8+eST0u+Y3t5eXH/99RAEAR/5yEewZMkSxeNmzJiBGTNm4Pnnn6/GahNCCCGE1KSiM/A2bdo0lutBqsykM8KsN0q9svoDg5ipm474UGBClNmgv1TZyqX0Gr2UcRGORyBAAJ9nmINTliGYq3xWVGeySxmF8mbzAOAtof+dSMWr0O0Z6q3EUjjUf7SoqZlAOmtr2/Fd6PH2waAxgOM4NFrroeGHv4bFZG1pVGo0mhukQR69XieaLA3wyN5fsZlAmeVm8VQcyVQKHICU0Vr1crNQmb3KsulwtOHdIzsApLOmQrHwiHLSUnTWd+DCeR+CN+SHN+JDNBGFK+iR9ofx3nbyTNRoIoZIPApfxC/1T1Pxqqz9IoudRMsYQyA6HFwrNxNsxARkjR4mnVG6aDAQcMGsM0ol5fkyrg72H5F+PqV1Dua1pMs/5zbPQo+3D4lUEolUEkcHT0jHj3gyDkEY7oFY6hALUTgeUWQ66jTaimQoi7L2G+UwIlt3tBLJBHp8TriDnqEed17oVBroNTq4gm4IjEnHfdVQz0JxP/BFAjBpjVJ2cTm9HjMnCsv7leo1uhHbtFr9OEl5VqxYge9973u45557cMcdd+Dhhx9GQ0MD9uzZg1gshvnz5+MnP/nJiMcdO5aeth4MBkfc9+abb2LNmjXSv8Ph9LHj17/+Nf70pz9Jt//oRz/CddddV+m3RAghhBBSNUUH8M4///yxXA9SA5osjQhG03809/sHMbNhOsKy7Due56Ed5STNbOVS8lKxRCoBp28ALbYmcOBGnLwLTFA0tM81wEJUL8vuyRxkoczAKxyMOObqxt/3v43+wCDUKjV0ah2arI3gwRecmpl+nwZY9RYMqtwIxyOw6E0wa9MZIeLkzWAshDqTo2DWVpu9WQrg9XidOK39FEV5YymZQPJys5c+eBUn3L3gOQ6ndy7GuXPPKvp5xkK5wwaysRossBjMCETSJ4Tdnh7MH+ofWK54KoEORyuarQ0w6YxYOu3UqpXqGTR66DU6aSKuJ+xDr2zISbO1IWdpbDGTaMPxiKJnZLmBpMx+kEC6B2Q4Fh76rifhCftRN5RRmCvjyhP2KbJq5zTOkL2GGjMbp0uTh7v6D0sBPPk+peJVJR3T5BcwIomoIoBnN9oq2iZCr9EhKSQRioUhMAae49BoaYCqzD6Q2RxzdWPDro1wBd1gSGf92QwWWHVmHHEdR2joM1fxPEw6EzocrdCoVEikeqT9rM8/AJ1aW3avR3lPSb1GJ5VTA+Jk7ur0lCSVc/fdd+O0007DI488gi1btqC/vx+dnZ245pprcN9998FsLu1Ykkgk4HKNHGwTi8UQiw1n8Uej0RHLEEIIIYRMZEUH8F5//XVotVqsXLlyLNeHVFGTtQGHB4YCeEOlUfL+d3qNbtQnqNlO3rUq7VAAIX0y7I8GodNoUWd0jDh5d4e8UkYRz3NS+Vcu8kwiT9gHQRDAD71uKRNoxcEbwVgINoMFyaFARjQRhUVnLjh4gzGGtw9vhUGjx6zGTnjDPug1Ojj9A2U1WG+1N2P78Q/S6xYchCvkgSCkMyU5jiurzM6sM+GU1nlSFmZIdiJdLfIeeKX0KstlmqMNeyLp/oHdnt5RB/D6fOkgqkalwantp2BhW3UnKTpMNqnU1Bv2Fux/J0oHfE+kH5djEq08QKzX6qFVlxfMz8y4AtJ9zmyyY4Ar6IZVb4aaV+fMuJJn39WbHXBkZA3ObZolBfD6/YPwRfywGawjgsKlHNPkQeRYIq64mOCQlTCP1kDAhR0ndqPLeQTRRFQ6RgwEXXhlz+t5M31LeQ1xmFCztVEKRoZiYfijQQiMwaI3wxf2IRANYUbDdCnY2WprwjFXNwTGkBJSONB/GDMbppfd61HsKXnEdQIcOHBDvVHlGbLj3VOSVNbFF1+Miy++uOjl87VeueCCC6g1CyGEEEKmpKIDeBdccAFaW1tx8uTJsVwfUkXyclR3yItEKqmYQFuJ8rBsJ+/p165HPBmXTq4HAm5o1Vokk0nFyXu/f7j/Xb2pruBUUjErhjEGQRDgjfhRZ7IjlowjKgtOFgp4yQdv9PmcCAz16YomYrDo0tkD8sEb7x7ZjnnNs6Xm6bFkDN3uHgDpTKlLlp+LVntz2Q3WG8x10Kg1SCQTEASGfX0HpfusBnPZWTqZGYvVHj5TyQw8AOhwtEoDQHp8zrwDGwpJCikMBIcDOC22/Nmg48FhtEsBvF5fP9yyDLVs/e9ExUyi9UfkE2jLL+PMNgEZABpMDgQiAaSYAIExDAbd6azgLBlXAhNwaOhiAwDMaRo5jbTBXAeHySYNmehyHsEZM5aMap8yZkyG7ZFlOFZqgIWYFecOecDxHAxDQUbGGFScqmCmb7Hkx7RQLAQP0ttJvn00KjVarE1wR7w45jqBDnsrLHoLtCotGi31OO7uQTKVhE6txezGGTBo9ehyHin5mNZoqcf588/G2jd/g1gyDrVKLfUGLTU7mRBCCCGEkMmqpCm0dMVzcrMbrdCo1EikkmCMYTDoqugACyD3yTsHDm22Zhxzd0sN53s8fdCqtThnzpnSSaCi/501f/87IF0iZzfapP5w7pAHdSa7ohm/RqXOeyKfOXhDr9UpAnhysWS699gre/6Obcd3ged4CIwhEA3Aqrei3uzA7MZOzGmaCY7jpLK+UvEcj1ZbE4670gH1I4PHpfvshvIDCfKMxXgygWAsVPGeW8XKHDYwmim0omZrozSZOJVKwenrzxvYymcw4JJ6qal4lSL4WS0Oow2JVCLdn63bB57jYNQaYDNYFUG6TMVMopVn4I12EmrmBGSe49Lb0OxA/1BWmzfsRzyVQIOpbkTG1UlPnxSA53kesxqmj3gNjuMwt2mm1Pfw4MBRnD79tIwBFqUd03ieV5Qpyy8CZOsbWCp5VlybvRU9vj4pE5bjONiNNtjyZPoWa+QxLft2cBhtaLTUw+w3IRgNgSGdBTecNWyChtfArDPivWM7sat7D5KpJBhY0b1BRd6wD7MaO+EKehCMhaRhSqVmJxNCCCFkYmKMQUgJSKVSipYI1aLVaquayEBINiUF8MjkxnM8Giz16PWms0r6/YOK6Y1Zm6qXIdvJO5AOgrTbW3Hc3Y2UICCcSJ9on9I2D8FYCD1eJ/b0HkAylYRRayjY/05Ub3LIAnjp/yv63xmteQ/OmYM39Gr51Nwo+gODsBmsiCfjOO4+iWgyBkFIwawzwW60odvTg6QgoD8wCH80gAvmf6givwza7C047jqZDthEIlKfLINWV/jBOWjV2qEMyXS2lSvoqVoAL56MK3qumSqQgafiVWi1NeHEUDZkt6e37ABen18+Dbm+or3JyjEQcOGDk/uxv+/QUK9JSOXnc5tnYTDozhn8ECfRCgKTJtFmBqTEfUJcfjTEKb4bdm1Ej7cXZp0JFr1lKNjuQzAeRjKVhFatwT+fdvGI9ZaXz05ztEGnyb7Pz26cgfeO7YIgCIjGo+j29o46q9OoNYwI3AOVmUArz4rjOW5EEFWr1igyfXee2I1LFp5X8utkHtPUvApqXiW1BgDSWdFiWXCDuR4pIYWLF5wHg1YvZdg1WurxwrYN2NvbhVgyDp1ai3lNs6BRa6TMuWIyBoOxEA72H4VBo0eHoxWnT1+seJ1q9JQkhBBCyPhKJpI4+MF+DBzqxT333AOVqrp/Wz/22GPQ6co/ryJkLFAAjyg0WxuGA3gBF/QarXRfpQJ4uU7eVTwPNa+GWWdCr68fOrUWdSYHfrdtA8AYvGE/BoNuKSjR4WiFQaMvmJEhD0SITe/lZYKFymczB2/oNHpwHMBY+kqRJ+zDQNCN8FCmjFlnkjIXA9EgwvEodGottCoNNCo1Nu17Ew3mulFnkuhUWmkirjxgE0lEEYiGy+6TVW92SMEad8iLGQ3TRrWe5ZJPoOV5Hlq1Ns/SxetwtCkCeGeWWSbslAXw5FOVq0EaRhByQwBTlF3GUwmc8JzEuvdezBlEKWYSrTxrdbQZeMDICchSZhfHgec4NFkaUG92SD0rRbFEDCc8w60cspXPinQaHabXtePoYLq/3wHnYcg/6XICeAatAciYaG3Rm6FRje7XaWZWHACoeeVzit8BnuNg1pmwt7cLK2eXPtAh85jGgYPNYIUr5AHHcWi1NUmtAYDhScBqlUqRNTwQcMEXCSCRSkj9BJ3BQbTbW6Di+YK9QUUfnNwnZfib9Uac2j5/xOdOCCGEkKlBsPLo6j9S1ey3+S2zq/bahORDATyiIO+DNxAYRL25Tvp3qeVm+eQ8eUf6ZHj59NMwEHTD6R9ALBmHw2iD3WhFJBEFYwwMDFuP7cKRwRMFe0HJAxFiXzflBNr8AywyB2+oOB6N5noMBN3SSWcsEUU8lYCaVyEQC4IxhlgyjuBQqS0AmHRGtNtb0OPtKztzRnTM1Y2/fPAqXCE3OI6vaJ+sOpNdCni4Mib3jqdwfHiIRqnDBvLpkGXcBaJB+KOBgvtAJmEoo1LUUmQ26FiQl12229uQSCWlzFlxGMCMumkYCLryBlHyTaJljCEQHd6XK5WVKZ+ALPaDVKvUOOA8hMGAGwDwj6M7hgJC6auwhwePSwNb9Fo92h25h3MAwLzmWdL+fGTwGAQhXZrNcxzK2aOyBf0cptFn32VmxQFQZHVyGRl5Fr0FTn8/er39JZfiZxsmVG92wKQzQqvSjMgmzTUJeMeJ3QjFQphW147BYPrzCsXC8IZ9UvZeoYzBSDyKA87D0r9PbT+FgneEEELIFPexz94A7SiqisqVTCbxmx/9Ytxfl5BiUQCPKDSY69NRNJbugSafslipDDxRtpN3sVwqEovg/722FvFUHEatAfFUQpqSyHEc7AYrmiyNRfWCqpP1JkukkgjEQiVNoM02eMNhtMNqsMAfCcId9iKWTKQDAhyHlJACBw6esA88lz4R5TkOLdZG8Bw/qswZQBmwabI0wC8rbeR5Hg2WOjCGsvtkyXu5jUUALxgLFTW8Q17qaKpA/zvpuXRGOEx2qay629NbcgBvMORGKpUuN0xv8+r15cosu9SptYrSd71GNzQUIH/ZZb5JtOF4RFHOXOmyarPOpAhCNVrqsX7HX9OBw0gQ249/AJvBikQqgXePbEMilYRGpcHsxk7pO5ZLq60ZPM/huKtnRLbqn5Nx9Pj6S8pWNWoNUp9BqWxdM/qrtJlZcQCgUQ//itaptZCHHMWsuEQqUfJrZTumceByHuOzTQKWZwzahi6uiP36BoJuGLQGqd1AvozBD3r2Sb0kDVp93oxKQgghhEwNKrUaGq2m8IKETDElBfAGBgYwa9assl+M4zgcOnSo7MeTsadVa1BntEu94pLyHngVzMCTyzx5B4C3D21Nl2AZbIgPnaAq+vFpDUX3gtKqNYq+boMBl6KfV6ES2lyDN1ScCg6jDTzHwTsUrEukEhAYg0GjUwQWGsz1UvbKaDJnAGXAJhgLKQJ42qHMGo5D2X2y6sz/v707D4+yvPfH/35mn8xM9pUEEvZN2QKCP1QEPSouoK1opS70nIptta61Va/iUu2pHhesntbiscXlp/SIWsG1gsABVKCyyp4gWyD7NksyM5mZ+/tHmIeZZCaZzJ7J+3Vdua7wrPfcGZ7nmc987vtzNoBnd9rR5myPSgXYekujnHFpsVt7nejeb64ybeTn91WSVeQTwDuN8YNG92l/3+GzecacsCvZRirQsEutSgurwz97Eeh92GVPlWh9A946jQ4aVWwfqLLSMjC6cDh2ntiLRmsz9lUfQobOBLfHjSZbC9RKNTLTMnDhqOm9HutE0ymcbKpGnaUBKqXKL1sVktSnbNV6SyP2n+4+z2B7hx1WR/jD1oHAWXEGTRqMWgMcLgdyfbKhgeBZcaEIdk0LxCNEwErAvhmDEjq/oDjWWAW3xw0hBKqaq1GUkS8H3wNd9xwdDhyqOftMMH7Q6IT9XyIiIiIiSnZ9CuB5PB4cO3Ys7JOxikv/kJ+eKwfwfEU7Ay8Yb1DCpDXCoEvD8cZTftk/AJB2pi2hzgWVbciUg3bHGk/KQ18lSQopmyhY4Q2g8wOuN3tFCAGNSoN0nVEOOBq0achMOxsciSRzpmvApmthB9954sKdJ0uv1iFNo5cDaI3WZqRlRxZA887R1mRrhlFrQEF6PpQKRY8T3UdabKAng7MG4buqA+hwd+BwzREUpRdAr9GHPFl+Tavv/HeJGz4baNhl1+Cab/ZiT8HjnirR+gW8ozD/XSiyDVk41ngS7U47VEoVlAolNCoN9B0OON0daGprwT/3bugx8ObNVhXC020YtiRJZ7JNpZCyVb3v4erW2m7zDCoVkQ1bB4JnxRVnBh4iHCgrri96uqZ5eURn1dlsQ1a3SsBdMwZVChWKMvJR1VwNAHB73Khqrka2IRO5xmz5umdut6Ci9ig63B042nAS7c52qJVqaNUajC4cEdZrISIiIiIaCPoUwNPpdLjhhhti1RZKEvmmXBysruw2TMx9ZphTrPkGJZQKBYozC3Gy+RTOxNw6Kyb6TBgfSkZbjjELxxurAED+gAkARp0hpOqhPRXegOj8sGpz2KBT6zAkpxgmrREd7g50uF3Qa3R+Q98iyZzpGrBRKpTQqrVwnKmKqe1S6CHcbL9sYxbamjoDaE22ZgzOHtTntnr5Dvn1DvP06mmie5vDdwhtdAN4AFDdWodGaxM63B2oszZBr9IGzQb05REe1Plk4BVmJC6AF2jYpc6nIqtSUvhlzvYUPO6sRKvoHM7YpRKt2X42Ay8eVYnrLY1Yu38jNEoVpDOBMrPdCoWkkOf1yzPmoLXd3GPgzTdb9XRrtd97Sikp5CzZ3rJV/d/DBThxpggKcGYItTGyYetAdLLi+qKna5o3sG512JBtyMJVEy7t9nqCZQwWpueh1tIgf0nSZGtBu7MdGbp0tLS14p/7NwBCwC08aLQ1QSWpzmRTzoi4EAgRERERUSrr09NyRkYGli9fHqu2UJJQSsru1U0lCW9tWYmxRaMiGiYWiq5BCb1ahwJTHmrOBE1MemOf54LyLWTh8QlE9mXus2CFNzweN9RKFQzaNJRkDZIzFdVKdcAgXSSZM4ECNtlpGahurYNCkpCu9w+uhJvtl2PIQtWZIEWk8+B1naMtkEDDof0z8KI3B56cDdjWLGdSGTR65Blzg2YD+mqytfgVicjzKfwSb4GCKBqlBrnGLFjsNuQYskIOHiskBTL0JjTbOue/861E61eBVh/7AJ73PTM0dwiON56Sh9F7ROf/XUmSkKE3QZIyggbeumarZujS/QN4yrOB+96yVX3fwx7hnw3snZsukmHrXpFmxfVVb8WEZgwrx8Qg1/tAGYNA5zVVq9aiurUWTlfn381st+JUczUUCiUKMvKQpc9Eq70VNocOTncH6q2N+K5qP8pySsLKXiQiIiIiGgj4dTf5Od5YhU++W4sGaxMUirPVTVUKJTweT8TDxEIRKCiRoU+HWqlGh8cFk87/w3UoGW05huyAy3ub/66rYIU3DtVWYteJvdCqeq6WFGnmTKC+SdeZkKbRQ+GTUeQVbrZfjs88eE19COB1LVCRrjd2m6MN6AzECHRmQXl1DaJ0rUIbDb6ZVCWZRXJQ2OZoQ0G6FDQb0Jfv/He5xuyEZg0FC6LkGLIDvud7Cx5n6NN9Anhmn/3ODqFNj/EQWv/AmxJ5phycaqnx28aoTZMzZ4MF3rpmqxp1aVBaFHImsUrh/3cLlq3aNRAoSf4Zu9ooDFv3ijQrLhw9FRPqqf09ZQzqVFqUZpeg1tKAJlsLLHYbXB4P0lTazi9QJIEmW6ucTZmVlgGL3Rp29iIRERER0UDAAB7JfIMbeaZsv4nw1UpVSMGNaAgWlAgWxAklo02v0UGn0cHSbvEbFqxVaoLu05OuhTcy09JxovFUzDNngvVN12CEV7jZfr6VaK32Njg6HNCqgwcngxWokCQJTbYWlOUMBgB0eFxosjXLRRGy0jKQY8iSA4/eIEpF7VHUmRvkv5OA6FP7g/HNpBLCA6AzGOfyuOFwOaFTaXstjlLTWif/nsj574DoD7sMVIlWCAGL3SZvE+shtF0DbwZtmt+cjACQ7hN4DxZ465qtKkGBdJ1JrmbdNagdLFu1a3skdH6h4TozL2e0hq17RZIVF4lAxYR601PGoEJSoCg9H1a7DS6PCyqFEnqNDs1trTDbLXIgVZIkZBsyoZCUEWUvEhERERGlOgbwSOYb3Ghtb/UL4CnPBIhCrfwaiVjMBVVvaUSDpRHHGk76VY90ujtQa2mIeFhwvDJn4jVPVppGD61aA0eHEwDQaGvBoMyCgNv2VKDidEs1LHYrjjaegFFrgNPtlOcyBHAmO8eKfFOuvL65rRUf7f4CjdamM8O3gf/dtgpjB0U2fLtbxVZJCb1ai/Yz8wfaHDbozmRQBsukEkL4ZeAlcv47r2gOu8zyCQp7A102Z5tfEZn0Pmat9lX3wJuEfFMujjeehEDnlwm+hTmCBd4CZavmGLPgcDnhER5kGzL8tg+WrRpsnkHv9VHf5YuFSIrUeIWbFRdvvV33mtua0dLWCoNGD6PWIIfhfedTzdSny19ARJK9SERERESU6hS9b0IDQdfghq5LxVnfQg++wQ2rw9b1UFExafB4ZBuyUGuug0cEzr4KNShxvLEKK7/9CFXN1WfnPNOmQa/RQykpsPX77Vj57UdykYtweTNnpg8rh1KhRK25DqdaalBrroNSocSMYeVYMPWaiIceR7NvgunMiul9GG3XAhWZaRlyoEOpUECv1QOShNY2M2pa6+Byu7sdo8PtwqmWGhypP47KuqOw2K1we9zy38moNcIjPBH/nbyZVCafIaAG7dlAkMXR5pfpZ9KZYLFbUd1yNuOuua1VntcLEpBvSnwAzxtEydCn43RL59yV3gCJ2+NBS1srTrdUI0Of3mvw2HdOSIvdCpfHDXP72eGzeo0u5kOGfQNvXlqVBiVZg5BtyERJVlFI8/r5Zqt6KSUlBmcNQml2CTRdsm+DZasGak++KReZaRkozMiXg769tScc3qy4cYNGYWTB0KQMavV03etwu5Cm0WN0wQiMKBiKzC5zjkoSkOUzP2mg/3NERERERNSJGXgEoPswMZ1aC0mS5EqCKqX/vE+RDhPrTbQy2vwCTBkFqDaf/WCoUqqQbchCZlpm1IYFxyNzJl7ZfjmGLFS31AIIXsgiWIEKh8uJRlszWtvMEEJAkhRwCw/sHQ5kpqUjKy0TLo8LzbYWCHQOYW1ua4HL7YZerUOGPh311kYAgFqljsrw7UCZVAatAQ3Wztfm6HCgua0V2WmZAAJnUvlm3+UYsqBRRR6kiYZoDbsMVInWNwAW6/nvgJ6H0AcaRh8s8BatbNVA7VEr1SgIUrwkkiI1/VWw657ZbsHne9fJgfKC9DykafSoMdd3ZkGmZUHtM/w/GtmLRP2NEAJOpzPRzZBpNBpIPVwviYgodSXDPcm3DYm+JyX6/IGEHMA7evSoX9U+Si2Bhq3p1Tp53il1lznW4vFBKxpBCd8Ak8vj8lunOZMhE4thweHMJ9UX8Zgny7eQRaO1ewCv25BUAAKdQ0y9c9wpFApoVWq0dzigkBSQJAklWUVy9lO6zoRacz0arI3yME1JktBga5LPozqT/Rnp3ynQkEqdSguj1iBnkjZYm5Cm0UOn0gbMpEqm+e+6ikbwOFAlWrNvAYs4VKCN5jDxaAwvjtew9VTQ9bpXUXu02/85k84IgzYNLo+rW5ZiNLMXifoLp9OJu+++O9HNkL300kvQansuyEVERKkpGe5JbrcbX331FQBg5syZCY1BJeM9MeQAXmlpaUjbOZ1OfP755zh06BC0Wi2mTJmCCy64IOwGUnwECm7kGrNR3VoLlULVbeL6eH3QiiQo0TXApFaqoJAkedipb/ZUpNUjEyHW2X6+hSzMdgs63C6/4ZNdszYBoLXdLAfvvExaIxRnqhgLjwftTjs0+s4AnlalQWFGHhrOzHenUiihU2vlzE/Av0BHJH+nYJldhel5ONZoh8vjhhAC1a21KM0u6ZZJ1X3+u+TMsIo0eNy1Eq3Z5+9pikMGHhC9ef2ila0azXkGB5Jg/+cUkqLbEGZgYGYvEnkdqjmS6CZgdOHwRDeBiIiSQCLvSR63B63tZpgKMlFRdzRhGXDJek8MOYBnsVjwj3/8AwBw4403BoxEfvvtt/jhD3+Iqir/OaqmT5+ODz74AIWFhRE2l2Il0ActvVqHoblD/Oab8or3B61wghKBqkdq1Vq0O+0AAE2Uq0cmSqyy/Uw6I9RKFTrcLkAAzbYW5KefHTbYNWtTQMiBH6AzQJpjyIZJZ4DVbsOJplOw2K0w2y0wao1yEKXe3Ainy4kMnQkmvVEunOGljtLw7WCZVEqFEoUZ+ahqrgYAOF0dqDU3wO1x+WVStbZbYD9T8AISgg6h7O+6VqL1y8CLcQVar2gOE49Gtmq8hq2nGmYvEvXNjXfdDJUq/rPbuFwu/O9///9xPy8RESWvRN2T2tva8fSdjwMAbrhzITSa+GbAJfs9MeS/yJdffolFixZh0qRJuPXWW7utr6urw5VXXonGxka/7BkA2Lp1K+bNm4dt27ZF3mKKiWAftAIF7/rLB61Ac55lp2XidEctVAolMrpkE3H+JX/eQhberLNGW7NfAK9r1qbN2QanT98VZxbJw5RNOiPKcgbjWONJqBQqvyAKJAkmnRHD8kqhV+vQ3mFHrbkeDldnIM+30AQQ2d8pWCaVQZOGLEMGmm2tEEKgxlyLkqxBfplUtT7zJ2alZUKrTq506mjxq0Rra4XNebYadawr0PqK5jDxaGSrxmPYeipi9iJR6FQqFdQaDiEnIqLES9Q9qcN59jOekvfFbkIO4G3atAkAsHDhwoDrn3nmGTQ0NECSJNx2221YvHgxjEYjXn/9dSxduhTbt2/He++9h+uvvz46LaeoS7UPWoGGBRu1BozIK4MkSd2Ck5x/qbtsQ+bZAF6XefC6Zm36Zt8ZtQY5eOfV4e7AkOxi3DBtHsztVjmI0t7Rjo93r5GH1OnVOpTmlKDN2Q6lQhnVKp89ZVLlpGWiydaCNmc7tCoN0nVGv6IJNT7DZ5Nt/rto6lqJ1lfXofSxFu1h4pFmq8ajSE2qYfYiEREREVF0hBzA27ZtGyRJwhVXXBFw/dtvvw1JknDNNddg+fLl8vLnn38eTU1NeOONN/D+++8zgJfEUu2DVk/zLwXC+Ze68ytk0aUSrW/WplatlQueAP5ZXIB/1mZBep5fAMzqsHX7O0mQYND4Z955Rfp36imTKt+YA7vOiay0DGhVWmyu3Ir/b/g0VLfWYd+pQ+hwdyBNo0dhCgfw/CrR+tBrdH5zIMZTrIvC9FWytSfZMXuRiIiIiChyIX8aq66uhkqlwrhx47qt27dvH+rq6iBJUsCqJffccw/eeOMN7Ny5M7LWUsyl0gctzr8UOd9CFi1trXB73FAqzs5J583aPN7YOe+lJEnQqjTQa3TyNslY5bOnTKrTLTX4uvJbtHfY8a+ju/GvY7vhER40WJrkzL/irCIYtGn94v9BX3WtROuVHqcCFpSamL1IRERERBSZkAN4tbW1SE9Ph0LRPXvJO7edRqMJWHH2nHPOgSRJOH36dARNpXhJpQ9aqTYsON4y9OlyNpYQAs1trcg1Zsvr80w5uHTshXht8zuwdzigUqqQn54rD11O9iqfgTKpRuYPw+6q/dh3+hAcLifUShVyTdkwaNMghICAwI7je3Cs4SSumnApSnNKotKWZJKhT0eduQFtznZ4hIBCkjA4e1Cim0UpgNmLREREREThCTmA53a7YTabA67bvn07AGDs2LHQaDTd1qtUKmRlZaG1tbXbOkpeqfBBK9WGBcebQqFAtiETDZYmAJ3z4PkG8ADA5mzH0NwhaLQ2w2K3os3RhjZHe7+t8tlgbUJtaz3cHjfSNHpIkgRze+dccJIkIVOfgXxTLmrNdfhkz1osmHpNSr1v6i2NONZwEodqjpwpBNOZgWuxW+ERApP6SQYuERERERFRKgk5gJefn4+TJ0/iyJEjGD58uN+6b775BpIkYdq0aUH3t1qtMBj6V/YWpYZUGhacCL4BvKYu8+C5PG4cqqmEXq1DSVYRxhaNQLYhu19X+dx1ch9a2loxPK8MVS3V3danaXRQSBIK0vNxuqUau0/uw6XjLoppm+LleGMVPtmzFtWttfBAQH8mgCmEgEJSYOv321FR+33KZh4SERERERElq5ADeFOmTMHJkyfx6quv4plnnpGXV1RUYNeuXQCAWbNmBdz3+PHjcDqdGDFiRGStJQpTKg0LjjffefC6FrI4Wn8c9g4HAECpUGLi4HOgU/tXje2LRP+drA4bDlZXwKg1wKBNQ7ahszKtL/2ZyrQKSYJRa8CB6grMGN7/506stzTikz1r0dpuRnFmEY43VcnrJElCtjELGqUmZTMPiYiIiIiIklnIAbybbroJH374IZYuXYrc3FzMmzcPVVVVeOCBByCEgNFoxDXXXBNw340bNwLonAuPKJFSYVhwvGX7BPCaba3wCA8UkgJCCOyvPiyvG55fGlHwzlei/k7VLXWw2K0oSO+scJtrzEabs10OUqqVaqgVZy+bJp0JteY6VLfU9fv31a6T+9Bka8agzCJIEuTMOy+NUp2ymYdERERERETJrntFiiAWLFiAiy66CC6XCw899BDGjRuHyy67DN999x0kScL9998PkylwlcL//d//hSRJAQtcEFFyyzJkQjpTVMLtcaO13QIAqG6t9atUOq5oVELaF02dc74JKM8U65EgoSgjH2plZ9Aux5Dpt71SoYA4s19/5pt5qJAkSJCgUarl9SqFEgqps098Mw+tDluimkxERERERDSghJyBBwCrVq3CLbfcgo8//lheJkkSfvrTn+LRRx8NuE9FRQU+//xzAMCVV14ZQVOJKBFUCiUy09LlYF2jtRlZaRnYd/ps9l1xViEy0zIS1cSoUSvVcgVdbxBPo9SgLGdwZ2BPUvpt7/Z4IJ3Zrz/rmnkIABqVGg6XEwCgVvm/vlTKPCQiGuiEEPC4PXC73XA4HHE/v8PhgNvtliu9ExElSqKvh0IIOJ2dz98ajUZOoogXXo+TX58CeBkZGVi9ejUqKyvlee+mTZuG0tLSoPuo1WqsWrUKarUaw4YNi6ixRJQY2YZMOYDXZGtGS1s2TjWfLfAwbtDoRDUtqooy82HSGWGxW/wCkt7ss64sdgtMOiOKMvMDru8vumYeAoBOrYPF3plhp1P5D41OlcxDIiICXB0uVO49hPoj1bj//vuhVCp73ymK3G43vvrqK3jSFfB4PHE9NxGRr2S5HgLAzJkzeT2mbvoUwPMaMWJEyAUpysrKUFZWFs5piChJ5BiycNBdiTZnO/ZXH0ZVc7VcYCIzLR2DMgoS3cSoMGoNGFM0Elu/3450fToUPXzr5RECVocNM4b1/wIWgTIPM/XpcLqc8Hg8yO4ydDhVMg+JiOgsT7oCFXVH457x4XF70Npuhik9M67nJSIKJuHXw4JMXo8poLACeEQ0cNRbGnGguhKHao50ZlyduZGoFSpkpmVg3KBRcb+5xNKkweNRUfs9as11KEjPDxjE8wiBWnMdsg1ZmDh4fAJaGV2BMg8VkgKF6YEzC1Ml85CIiPzdcOdCaDTRKUgVqva2djx95+NxPScRUW8SfT1M9PkpOTGAR0RBHW+swid71qLB1gQPBPQavVyd1OnuQIO1EduO7UJBeh5Kc0oS3dyoyDPl4KoJl+KTPWtxuqUaRq0BJp0JSoUCbo8HFrsFVocN2YYsXDXhUuSZchLd5IgN1MxDIiLyp1SpoNbEN7u6w8npGIgo+ST6epjo81NyCrkKbSpYv349rr76auTl5UGv12PMmDFYsmQJbDZWUiTqqt7SiE/2rEVruxklmYNg1BrkTDtJkqBVaVCcWQRLuwWf7FmLektjglscPaU5JVgw9RpMH1YOpUKJWnMdTrXUoNZcB6VCiRnDyrFg6jUpE7QEOjMPsw1ZqDXXwSMCT1qbapmHRERERERE/cWAycB7+eWXcc8990AIgZKSEgwePBj79+/HU089hffffx+bN29GdnZ2optJlDR2ndyHJlszBmUWQSFJ0Kk1fkULJElCliEDCkmJ0y3V2H1yHy4dd1ECWxxdeaYc/Nu4i3D+8HJUt9TJc/4VZeanZObZQMw8JCIiIiIi6i8GRAbe9u3bce+99wIAli1bhhMnTmDHjh34/vvvUV5ejgMHDuD2229PbCOJkojVYcPB6goYtQZ5OKVO7T8Hg0lnhEqhgkKSYNQacKC6AlZH6mWzGrUGjCwYinGDRmFkwdCUDN55DcTMQyKKvViMgHj//fcxe/ZsZGVlwWAwYNKkSXjuuefQ0cHhP0RERJSaBkQG3pNPPgmPx4Nbb70VixcvlpcPGjQIK1aswJgxY/DBBx9gz549mDBhQgJbSpQcqlvqYLFbUeBTxECr8g/gZZ0pdgAAJp0JteY6VLfUYWTB0Li1k6JvoGUeElFsxWIExK9+9Ss8//zzAIDhw4fDYDBg7969ePDBB/HRRx/hiy++gFYb34m/iYiIiGIt5TPwrFYrPv/8cwDwC955jRw5EnPmzAEArFy5Mq5tI0pWHe4OCAgoFWcvEXqNDmplZ8zfpDNC5xPQUyoUEGf2o9QwkDIPiSg2YjEC4h//+Aeef/55aLVarFq1CpWVldi9ezf27t2LoUOHYuPGjXjkkUdi8GqIiIiIEivlA3g7d+6Ew+GAVqvFeeedF3CbCy+8EACwZcuWeDaNKGmplWpIkOD2eORlCihQljMYQ7KLUZSR57e92+OBdGY/IiIi4OwIiFtuuQWLFy+WCyF5R0AoFAp5BESonnjiCQDAb37zG8ybN09ePmbMGLz22msAgD/96U+or6+P4ishIiIiSryUD+AdPnwYADBkyBCo1YGDC8OHDwcAHDp0KG7tIkpmRZn5MOmMsNgtfssVkgJ6tQ5Sl0uHxW6BSWdEUWY+iIiIYjECoqKiArt37w56zDlz5mDEiBFwOBxYvXp1uE0nIiIiSkopPwdeU1MTAPQ4v4p3XXNzc9Btli1bhldffTWkcx44cKAPLSRKPkatAWOKRmLr99uRrk+XC1kE4hECVocNM4aVc5glEREBCH0ExNq1a0MeAeHdbtiwYSguLg56zMrKSmzZsgX/8R//EV7jiYiIiJJQygfw7HY7AECj0QTdxjvRcXt7e9BtqqursWPHjug2jiiJTRo8HhW136PWXIeC9PyAQTyPEKg11yHbkIWJg8cnoJVERJSMYjECwntM737ROGYycblcCT+v2+VChzO+89kO9PMnQxsSff5kaMNAP38ytCHR50+GNgz08ydDGxJ1Lw6VJIQQiW5ELD377LP49a9/jenTpwf9hvezzz7DlVdeCaPRCIvFEnCbvmTg7d69G263G3q9HmPHjg277USJ5nR1oLXdDLfHDYWkgEKhgAQJAgIejwce4YFSoUSGPh0aFee/IyKKtTFjxuDtt99OdDN6Fa3nL1933nkn/vznP+PGG2/E3//+94DbvPLKK/jFL36Bc845B999913QYyXLc50QAidPnoS9wxHV4/axEbDbHVCqlEGDrTx/irch0edPhjYM9PMnQxsSff5kaMNAP3+ytAGATq3F4MGD5fl7YyGcZ7qUz8DLysoCcHYobSDedd5tA7njjjtwxx13hHTOtLQ0tLe3o729nVl7NCCcTHQDiIgoqURrBESsjhnOyIpUf65zOTvggJ3nT6BEtyHR50+GNgz08ydDGxJ9/mRow0A/fzK0wQoLGhoaEnb+YFI+gDdq1CgAwIkTJ9DR0REwinvkyBG/bSOVn5+Puro66HQ6DB06NCrH9HXgwAG0t7czwy+G2Mexxf6NLfZv7LGPY4v9G9yYMWMS3YSQ6HQ6AIDT6Qy6jcPRmXWm1+vjfsyioiJMmTIlpPPu3bsXQggYjcagz3V8z8YP+zo+2M/xw76OD/Zz/LCvQxPOM13KB/AmT54MjUYDh8OBbdu2YebMmd222bRpEwDg/PPPj8o5jx07FpXjBFNeXo4dO3Zg7Nix2L59e0zPNVCxj2OL/Rtb7N/YYx/HFvu3/4vWCIhYHbMvIytCwfds/LCv44P9HD/s6/hgP8cP+zp2FIluQKyZTCZcfvnlABBwrpOKigqsW7cOAHD99dfHtW1EREREqajrCIhA+joCwrtdZWVl0G2iPaqCiIiIKFmkfAAPAJYsWQJJkvDWW2/h1VdfhbduR3V1NW666SZ4PB5ce+21mDhxYoJbSkRERNT/dR0BEUhfR0DMmDEDAHD06FGcOnUqKsckIiIi6i8GRABv2rRpeOGFFwB0DpkoLS3FlClTMHToUGzfvh2jR4/G//zP/yS4lURERESpIRYjIEaNGoVzzz036DHXrVuHyspKaDQazJs3L9ymExERESWlARHAA4B7770Xa9aswdy5c2Gz2bB//36UlpbikUcewbfffovc3NxEN5GIiIgoZYQ7AqKsrAxlZWV47733uh3zscceAwA888wz+Oijj+Tlhw4dwk9/+lMAwC9+8Qvk5eXF6mURERERJUTKF7Hwdckll+CSSy5JdDOIiIiIUp53BMT999+PO+64A0899RRyc3Oxf/9+OByOoCMgjh8/DgCwWq3d1v3whz/EvffeixdffBHz5s3D8OHDYTQasXfvXrjdblxwwQX4wx/+EPPXRkRERBRvAyYDj4iIiIjiKxYjIJYuXYp3330Xs2bNQkNDAw4fPoxx48bhmWeewbp166DT6WLwSoiIiIgSa0Bl4BERERFRfPV1BIR3qG1PFixYgAULFkTSLCIiIqJ+hRl4RERERERERERESYwBPCIiIiIiIiIioiTGAB4REREREREREVES4xx4/dDixYtRXV2NoqKiRDclZbGPY4v9G1vs39hjH8cW+5f6G75n44d9HR/s5/hhX8cH+zl+2NexI4lQZgomIiIiIiIiIiKihOAQWiIiIiIiIiIioiTGAB4REREREREREVESYwCPiIiIiIiIiIgoiTGA18+sX78eV199NfLy8qDX6zFmzBgsWbIENpst0U1LejU1NXjrrbdw99134/zzz4der4ckSbj44ot73bejowPPPvssJk6cCIPBgKysLMyePRsffPBB7BveDwgh8PXXX+Ohhx7CBRdcgJycHKjVauTl5eGyyy7D22+/jZ6m27Rarfjtb3+LMWPGQK/XIy8vD1dffTU2bNgQvxfRD6xcuRKLFy/G1KlTMWjQIGi1WphMJkyZMgVLlixBY2Nj0H3Zx3336aefQpIkSJKEsrKyoNuxb0Pz+OOPy/0Z7Ocvf/lLwH15DaZkxeey2Ir0+YIiE+p9kML36aef4gc/+IH8XFdYWIiZM2fit7/9LVwuV6Kb1+81NjbikUcewYQJE2A0GqHRaFBSUoIbbrgBmzdvTnTz+hV+lk4SgvqNl156SUiSJACIkpISMXnyZKHVagUAMXbsWNHY2JjoJia1pUuXCgDdfmbNmtXjfu3t7eKCCy4QAIRSqRQTJkwQw4cPl/f/zW9+E58XkMTWrl3r16fDhg0T5eXlIjs7W1521VVXCbvd3m3f+vp6MXr0aAFAaLVaMXnyZFFSUiIACEmSxJ/+9KcEvKLkNHHiRLmfysrKxNSpU8WQIUPkPs7Pzxe7du3qth/7uO8sFotf35aWlgbcjn0buscee0x+n86cOTPgz4cffthtP16DKVnxuSz2Inm+oMiEeh+k8HR0dIibb75Z7t/BgweLadOmiWHDhgmNRiMACIvFkuhm9muHDx8WRUVFAoBQKBRi2LBhYtKkScJkMsnPaS+88EKim9lv8LN0cmAAr5/49ttvhUKhEJIkiWXLlgmPxyOEEOLUqVOivLxcABA/+MEPEtzK5PbXv/5VXHrppeLhhx8WH3zwgViyZElIF527775bABBDhw4VBw8elJevWrVKflBfvXp1jFuf3NasWSOGDh0q/vjHP4ra2lq/dW+++abcT7/+9a+77Ttv3jwBQJSXl4tTp04JIYTweDxi2bJl8oV+586d8XgZSe/VV18V//d//yecTqff8j179ohzzjlHABDjxo3rth/7uO9++ctfCgBi/vz5PX5wYd+GzhvAu+222/q0H6/BlIz4XBYfkTxfUGRCvQ9SeH76058KAGLatGlix44dfutsNptYtWpVt+c96ps5c+YIAGLkyJFi37598vL29nbxwAMPCABCpVKJw4cPJ7CV/Qc/SycHBvD6Ce/N89Zbb+227vDhw0KhUAgAYvfu3QloXf/08ssv93rRqampkb8FW7duXbf13gvXlClTYtjS5Nfa2trjQ8bvf/97AUBkZ2cLt9stL9+xY4f8rVhFRUW3/W655RZ+CArR1q1b5W+y9u/fLy9nH/fdN998IxQKhZg/f75Yvnx50A8u7Nu+CSeAx2swJSs+l8VHuM8XFJlQ74MUnnXr1gkAoqysTJjN5kQ3JyWZzWY5QzpQdr/H4xEjRowQAMTLL7+cgBb2f/wsnRicA68fsFqt+PzzzwEAixcv7rZ+5MiRmDNnDoDOObIoelavXg2n04mRI0di9uzZ3dbfcccdAIAdO3bgyJEj8W5e0khPT4darQ66fu7cuQCApqYm1NfXy8vfe+89AMCcOXMwYsSIbvt5+/fTTz/lfEK9GDt2rPx7W1ub/Dv7uG86Ojpw++23Iy0tDf/93//d47bs29jjNZiSEZ/L4ifc5wsKX1/ugxSe559/HgDwwAMPwGQyJbg1qcnhcMjzYw4fPrzbekmS5OUdHR1xbdtAwue46GMArx/YuXMnHA4HtFotzjvvvIDbXHjhhQCALVu2xLNpKc/bn97+7aq4uBhDhw7125a6a29vl3/X6/Xy794+u+iiiwLud95550Gr1cJut2PXrl0xbWN/552I12g0YvTo0fJy9nHf/OEPf8DevXvx5JNPoqSkpMdt2bfh2b17NxYuXIg5c+Zg/vz5WLJkCfbt2xdwW16DKRnxuSx5BHu+oPD15T5IfWe32/HFF18AAC699FLs378f9957Ly677DJcc801ePTRR3H8+PEEt7L/y83Nld+/X3/9dbf1NptNfjYLdh2nyPE5LvoYwOsHDh8+DAAYMmRI0G8hvd8gHDp0KG7tGgi8fR/omxsv9n3vVqxYAQCYOHEi0tPT5eW99a9arcbgwYMBsH8D8Xg8OH36NF5//XUsWrQIAPD000/DaDTK27CPQ3fgwAH853/+J6ZMmYJf/vKXvW7Pvg3Prl27sGLFCqxfvx6rV6/GU089hXPPPRf33Xcf3G6337a8BlMy4nNZ8gj2fEHh6et9kPpu9+7dcsbXpk2bMHnyZPzxj3/EmjVr8PHHH+PJJ5/E6NGj5fc2he/pp5+GJEl48MEH8dprr6GmpgZtbW3Ytm0b5s2bh9raWtx8882YOXNmopuasvgcF30M4PUDTU1NAIDs7Oyg23jXNTc3x6VNAwX7PnLbt2/HX/7yFwDAQw895LeO/RueF198EZIkQalUori4GD/5yU9QVlaGzz77DHfeeafftuzj0AghcPvtt6OjowPLli2DUqnsdR/2bd8MGjQIv/vd77B161bU19fDbrdjz549+NnPfgYhBF588UU8/PDDfvuwjykZ8X2ZHHp6vqC+C+c+SH1XXV0t/37nnXdi8uTJ2LZtGxwOByoqKnDDDTfA4XDgtttuw86dOxPY0v7vxz/+MVavXo2xY8fi9ttvR1FREQwGA6ZPn44DBw7glVdewZtvvpnoZqY03i+jjwG8fsButwMANBpN0G20Wi0A/6EEFDn2fWRqa2vxgx/8AC6XC9dddx1+9KMf+a1n/4anuLgYM2fOxPTp01FUVARJkrBr1y68+eabaGlp8duWfRyaV155BV999RXuuusuTJ06NaR92Ld9s3jxYixZsgTnnXcecnNzodVqce655+KVV17BM888AwBYunQpjh07Ju/DPqZkxPdl4vX2fEF9F859kPrOarXKv6elpeGzzz7DtGnToNFoMGLECKxYsQKTJk1CR0cHfv/73yewpamhsrISdXV1UCgUKCsrw4QJE5CWlobq6mq8/vrrQafwoOjg/TL6GMDrB3Q6HQDA6XQG3cbhcADg/B/Rxr4PX2trK+bOnYsTJ06gvLwcr7/+erdt2L/hWbBgATZv3owtW7bg9OnT2LVrF6ZPn44VK1Zg9uzZfsMQ2ce9O3XqFB5++GEUFxfjqaeeCnk/9m30PPDAAxg0aBBcLhdWr14tL2cfUzLi+zKxQnm+oL4J9z5Ifee9fgDAokWLkJWV5bdeoVDgvvvuAwB88cUX8Hg8cW1fKrnzzjtx3333ITc3FwcOHMDRo0exe/duNDQ04MEHH8TWrVsxc+ZMzjkYQ7xfRh8DeP2A98LuTUENxLuu602AIsO+D4/VasUVV1yBnTt3Yvz48fjnP/8ZcG4a9m90TJgwAZ988glyc3Oxa9cu/P3vf5fXsY9798tf/hJmsxkvvfRSn6rBsW+jR6lUYvr06QCAiooKeTn7mJIR35eJE+rzBfVNuPdB6jvfa8LYsWMDbuNdbrFY0NjYGJd2pZo9e/bglVdegVqtxsqVKzFq1Ch5nV6vx3/913/hkksugdlsxh/+8IcEtjS18X4ZfQzg9QPeC86JEyeClrn2ll32vThR5Lz9WVlZGXQb9r2/trY2XHXVVdiyZQtGjhyJtWvXIicnJ+C2vfVvR0cHTpw44bctBWYymTBr1iwAnfMCebGPe7djxw4AwC9+8QsUFhb6/dxzzz0AgJMnT8rLvNXM2LfR5R1e4XK55GW8BlMy4nNZYvTl+YL6Jtz7IPXdmDFj5N+DDSv0zdJjBl54Nm/eDCEERo4cidLS0oDbXHbZZQCAb7/9Np5NG1D4HBd9DOD1A5MnT4ZGo4HD4cC2bdsCbrNp0yYAwPnnnx/PpqW8GTNmAOi8CQRy6tQpHD161G/bgcxut2PevHnYuHEjSktL8eWXX6KwsDDo9t4+875/u9q2bRucTid0Oh0mTZoUiyanFG/gwzcAwj4OXW1tbbcfs9kMoPMB2rvMOwyAfRtde/fuBQCUlJTIy3gNpmTE57L46+vzBYWnr/dB6rvi4mI5oPT9998H3MYb0NDpdAxSh8lisYS8rXeeNoo+PsdFHwN4/YDJZMLll18OAHj11Ve7ra+oqMC6desAANdff31c25bq5s+fD7VajYqKCqxfv77b+mXLlgHofJgfMWJEvJuXVDo6OvDDH/4QX375JYqLi7Fu3ToMHjy4x32879f169cH/GbG279z586F0WiMfqNTSFNTEzZs2ACg8/3oxT7u3bFjxyCECPizfPlyAEBpaam87OKLLwbAvo2mTz75RJ5I2vuNOMBrMCUnPpfFVzjPF9Q34d4HKTw33ngjAODtt9/2+9LV629/+xsAYNasWVCpVHFtW6rwZnNVVFQEnePuiy++AACMHj06bu0aaPgcFwOC+oVt27YJSZKEJEli2bJlwuPxCCGEOH36tCgvLxcAxLXXXpvgVvYvL7/8sgAgZs2a1eN2d911lwAghg4dKg4ePCgvX716tdBqtQKA+PDDD2Pc2uTmcrnE9ddfLwCIwsJCcejQoZD3vfrqqwUAUV5eLk6fPi2EEMLj8Yhly5YJAEKhUIjt27fHqun9xoYNG8STTz4pjh492m3d9u3bxdSpUwUAUVxcLCwWi9969nH4li9fLgCI0tLSgOvZt6HZu3evWLx4sdi1a5ffcrfbLd555x2Rnp4uAIirr7662768BlMy4nNZfETyfEHR0dt9kPqurq5OZGRkCADijjvuEO3t7UKIzueHP/7xjwKAkCRJrF+/PrEN7cesVqvIz88XAMS0adP8rh1tbW3iwQcfFAD4DBEBfpZODAbw+pGlS5cKSZIEADF48GAxefJk+U0/evRoUV9fn+gmJrUTJ06InJwc+cdgMAgAQqVS+S1/5pln/PZra2sT559/vgAglEqlmDhxohg+fLh80X/ggQcS9IqSxzvvvCP3R1lZmZg5c2bQnx07dvjtW1dXJ0aOHCkACK1WKyZPniwGDx4sP7y89NJLCXpVyeUf//iH3MeFhYWivLxcnHfeeaKoqEheXlxcLHbu3NltX/Zx+Hr74MK+Dc3OnTvl92l2draYPHmymDZtmsjKypKXX3jhhaK5ubnbvrwGU7Lic1nsRfJ8QdHBAF5srFmzRuj1egFAZGRkiGnTpsnPdJIkiWeffTbRTez31qxZI3/eUygUYujQoWLChAkiLS1Nvq7ceeediW5mv8HP0smBAbx+Zu3atWLu3LkiOztbaLVaMWrUKPHII490y7ih7o4ePSpfKHr6eeyxx7rt63A4xNNPPy3OPfdcodfrRUZGhpg1a5Z477334v9CkpD34S6Un0DfJprNZvHII4+IUaNGCa1WK7Kzs8XcuXPFunXr4v9iklRtba144YUXxLx588Tw4cOFyWQSarVa5Ofni9mzZ4sXXnhBmM3moPuzj8MTygcX9m3vmpubxVNPPSWuuuoqMWzYMPn9W1BQIObOnSveeust4XK5gu7PazAlKz6XxVakzxcUOQbwYufw4cNi0aJFoqSkRKjVapGbmyvmzZsnNmzYkOimpYwjR46Iu+66S4wZM0bo9XqhVqtFUVGRmD9/vvj4448T3bx+hZ+lk4MkhBBBRtcSERERERERERFRgrGIBRERERERERERURJjAI+IiIiIiIiIiCiJMYBHRERERERERESUxBjAIyIiIiIiIiIiSmIM4BERERERERERESUxBvCIiIiIiIiIiIiSGAN4RERERERERERESYwBPCIiIiIiIiIioiTGAB4REREREREREVESYwCPiIiIiIiIiIgoiTGAR0QUQ48//jgkScLFF18c1eNu2LABkiRBkqSoHpeIiIiIiIiSDwN4RDSgeYNg4fy8/vrriW4+EREREYXI+8VqoJ+0tDSMHDkSt912G77++uuA+/t+ger7o1KpkJeXh1mzZuGFF16A1Wrttu+xY8f89rniiit6be/KlSv99nn88ccj7QIi6sdUiW4AEVEiFRQUBFxutVphs9l63Eav1/d6/NzcXIwePRpDhgwJv5FEREREFFW+z3cejwdNTU2orKxEZWUl3nzzTTz22GM9BsyysrKg0WgAAO3t7WhoaMDGjRuxceNG/PnPf8batWtRVlYWdP81a9agqqoKJSUlQbf529/+1ufXRUSpixl4RDSg1dTUBPz51a9+1es2N954Y6/Hv+uuu3Dw4EG8+eabsXwZRERERNQHvs90dXV1cDgc2Lx5M8rLywEATzzxRNBMPAD44IMP5P1bW1tRXV2Ne++9FwBw5MgR3HDDDUH3LSsrg8fj6fH58NSpU/jiiy9gMBiQm5sb3oskopTCAB4RERERERENaEqlEjNnzsSHH34oL1u1alXI+xcWFmLp0qW4+eabAQD/+te/sHXr1oDb3nbbbQDQ43Qsb7zxBjweDxYsWACDwRByO4godTGAR0QUBu9cJBs2bEBdXR3uv/9+jBo1CmlpaX6FJXoqYtHW1oYVK1bg1ltvxaRJk5CXlwetVotBgwbh2muvxWeffRZ2+w4ePIjFixfLbdLpdBg8eDBmzJiBRx55BAcPHgz72ERERESpqqSkBDk5OQAQcC673txyyy3y7//6178CbjNr1iwMHToUFRUV2LRpU8BtvMG9n/zkJ31uAxGlJs6BR0QUgcrKSvzoRz9CbW0tdDod1Gp1yPu+++678kOZJElIT0+HSqVCdXU1Vq1ahVWrVuGBBx7Ac88916c2rVmzBtdccw0cDgcAQK1Ww2AwoKqqClVVVdi6dSs0Gg0nQiYiIiLq4tSpU2hsbAQAjB49us/7+85pZzabA24jSRIWLVqExx57DMuXL8eFF17ot37Tpk2oqKjA8OHDu60jooGLGXhERBG47777kJmZiS+//BI2mw1msxmHDh0Kad+srCz86le/wubNm2G1WtHS0gKbzYbTp0/jiSeegFqtxvPPP4/Vq1f3qU0///nP4XA4cNlll+G7776D0+lEc3Mz2tvbsXfvXjzxxBM9TqpMRERENNC43W588803uO666wAA+fn5uPXWW/t8nGPHjsm/Z2dnB91u0aJFUCgUWLlyZbdMP2/xip/85Cd+IzuIaGBjBh4RUQQUCgXWrl3r923rqFGjQtp3/vz5mD9/frflRUVFePTRR5GWloYHH3wQL730EubNmxfSMevq6nDkyBEAnUMvioqK5HU6nQ7jx4/H+PHjQzoWERERUaoqLCyUf/dWoXW73UhPT8ePf/xj/P73v0dmZmafj/vnP/9Z/n3GjBlBtxsyZAjmzJmDtWvXYuXKlfKoDKvVipUrV0KhUMhz5RERAczAIyKKyC233OIXvIumq666CgDwzTffwO12h7SPyWSCQtF5aa+uro5Ju4iIiIj6u9raWvmnvr5eftZqa2tDa2sramtrQz6W3W7H7t27sXDhQnzyyScAgNmzZ2PSpEk97vfv//7vAIDly5fLy959913YbDb827/9W8yeMYmof2IAj4goAjNnzoxo/9raWjz22GM4//zzkZOTA5VKJRfIGDduHIDOB8nm5uaQjqfX63HJJZcAAK644go8+uij2Lp1K5xOZ0TtJCIiIkolQgi/n/b2duzcuRO33XYbPv74Y1x00UV+FWm7mj17tvzMptfrMWnSJKxYsQIAMHnyZPn3nlx33XXIzMzEpk2bUFlZCcB/+CwRkS8G8IiIIpCfnx/2vt988w3GjBmD3/3ud9iyZQuampqg1+uRn5+PgoIC5ObmytvabLaQj/vaa69h4sSJqK+vx5NPPokZM2bAZDLhggsuwLPPPoumpqaw20xERESUinQ6HSZNmoTXXnsN1113HRwOBxYtWhS0EEVWVhYKCgpQUFCA4uJijBs3Dtdffz3eeustbN26FQUFBSGd86abbgLQmYVXUVGBr776CllZWbj22muj+fKIKAUwgEdEFAGlUhnWfi6XCzfddBNaWlowadIkfPrppzCbzbBYLKitrUVNTQ22bNkiby+ECPnYQ4YMwY4dO/D555/j7rvvRnl5OTweD7766iv8+te/xogRI7Bu3bqw2k1ERESU6m6//XYAQGtrKz799NOA23zwwQeoqalBTU0NqqqqsG/fPqxcuRI333wz1Gp1yOfyZtq9+eabeO211wAACxcuhFarjfBVEFGqYRELIqIE+Oabb3D8+HEolUp8/PHHKC4u7rZNTU1N2MdXKBS4/PLLcfnllwMALBYLPvroIzz88MM4ceIEFi5ciBMnTkCj0YR9DiIiIqJUVFpaKv9+9OjRmJ5r2rRpGD9+PPbt24cXX3wRAIfPElFgzMAjIkqAkydPAgDy8vICBu8AYO3atVE7n8lkwsKFC/HXv/4VQOfce999913Ujk9ERESUKqqqquTfDQZDzM/nLWbhdDoxYcIElJeXx/ycRNT/MAOPiCgBMjIyAJytgNZ1npSqqiq89NJLfT6u0+nsMatOr9fLv3ur1RIRERHRWe+88478+9SpU2N+vltuuQWnT58GALkYGRFRV/z0RkSUABdccAEMBgOEELjhhhtw+PBhAIDb7cY///lPXHzxxZAkqc/H/frrrzFhwgQsXboUBw4cgMfjAdA5h97XX3+Nn//85wCAkpISTJgwIXoviIiIiKifq6mpwW9/+1u88cYbAIAZM2bg/PPPj/l58/Ly8Nxzz+G5557D3LlzY34+IuqfmIFHRJQAGRkZeO655/Dzn/8cGzduxOjRo2E0GuFyuWC325Gbm4vly5dj3rx5fT72d999h/vvvx/3338/1Go10tPT0draCpfLBQBIT0/HO++8E3YBDiIiIqL+rrCw0O/fdrsdra2t8r/PPfdcvP/++2F9oUpEFAsM4BERJcjPfvYzDBkyBM8++yy+/fZbuFwuFBcX48orr8RDDz0Ep9PZ52NOmzYN7777LtavX49t27bh9OnTaGhogE6nw4gRI3DZZZfhnnvuwaBBg2LwioiIiIj6h9raWr9/q9VqFBYWYuLEibj++utx6623stgXESUVSQghEt0IIiIiIiIiIiIiCoxz4BERERERERERESUxBvCIiIiIiIiIiIiSGAN4RERERERERERESYwBPCIiIiIiIiIioiTGAB4REREREREREVESYwCPiIiIiIiIiIgoiTGAR0RERERERERElMQYwCMiIiIiIiIiIkpiDOARERERERERERElMQbwiIiIiIiIiIiIkhgDeEREREREREREREmMATwiIiIiIiIiIqIkxgAeERERERERERFREmMAj4iIiIiIiIiIKIn9P5LIcqgYxA+RAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.set_context('talk')\n", + "fig, axs = plt.subplots(figsize=(13, 5), nrows=2, ncols=2)\n", + "meanBPM = np.delete(np.array(meanBPM), np.array(drop))\n", + "stdBPM = np.delete(np.array(stdBPM), np.array(drop))\n", + "for i, metric, col in zip(range(3), [meanBPM, stdBPM], ['#b55d60', '#5f9e6e']):\n", + " axs[i, 0].plot(metric, 'o-', color=col, alpha=.6)\n", + " axs[i, 1].hist(metric, color=col, bins=15, ec=\"k\", density=True, alpha=.6)\n", + " axs[i, 0].set_ylabel('Mean BPM' if i == 0 else 'STD BPM')\n", + " axs[i, 0].set_xlabel('Trials')\n", + " axs[i, 1].set_xlabel('BPM')\n", + "sns.despine()\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kfxY73IdHuha" + }, + "source": [ + "# Save dataframe" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XxJG7-qqHuhb", + "outputId": "452b925e-a86d-42f2-bcbb-c87fcde329fd" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4 Interoception trials and 0 exteroception trials were dropped after trial rejection based on heart rate outliers.\n" + ] + } + ], + "source": [ + "print(f'{clean_df[\"HeartRateOutlier\"][clean_df.Modality==\"Intero\"].sum()} Interoception trials and {clean_df[\"HeartRateOutlier\"][clean_df.Modality==\"Extero\"].sum()} exteroception trials were dropped after trial rejection based on heart rate outliers.')\n", + "\n", + "# uncomment this to save the results in the result folder\n", + "# clean_df.to_csv(Path(reportPath, \"preprocessed.txt\"), index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "jYQ6brVXJL0x" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "name": "HeartRateDiscrimination.ipynb", + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + }, + "toc-autonumbering": true, + "toc-showcode": true, + "toc-showmarkdowntxt": true, + "toc-showtags": true, + "vscode": { + "interpreter": { + "hash": "40d3a090f54c6569ab1632332b64b2c03c39dcf918b08424e98f38b5ae0af88f" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/_sources/generated/HBC.parameters/cardioception.HBC.parameters.getParameters.rst.txt b/_sources/generated/HBC.parameters/cardioception.HBC.parameters.getParameters.rst.txt new file mode 100644 index 0000000..bebcfec --- /dev/null +++ b/_sources/generated/HBC.parameters/cardioception.HBC.parameters.getParameters.rst.txt @@ -0,0 +1,6 @@ +cardioception.HBC.parameters.getParameters +========================================== + +.. currentmodule:: cardioception.HBC.parameters + +.. autofunction:: getParameters \ No newline at end of file diff --git a/_sources/generated/HBC.task/cardioception.HBC.task.rest.rst.txt b/_sources/generated/HBC.task/cardioception.HBC.task.rest.rst.txt new file mode 100644 index 0000000..e428da5 --- /dev/null +++ b/_sources/generated/HBC.task/cardioception.HBC.task.rest.rst.txt @@ -0,0 +1,6 @@ +cardioception.HBC.task.rest +=========================== + +.. currentmodule:: cardioception.HBC.task + +.. autofunction:: rest \ No newline at end of file diff --git a/_sources/generated/HBC.task/cardioception.HBC.task.run.rst.txt b/_sources/generated/HBC.task/cardioception.HBC.task.run.rst.txt new file mode 100644 index 0000000..c256996 --- /dev/null +++ b/_sources/generated/HBC.task/cardioception.HBC.task.run.rst.txt @@ -0,0 +1,6 @@ +cardioception.HBC.task.run +========================== + +.. currentmodule:: cardioception.HBC.task + +.. autofunction:: run \ No newline at end of file diff --git a/_sources/generated/HBC.task/cardioception.HBC.task.trial.rst.txt b/_sources/generated/HBC.task/cardioception.HBC.task.trial.rst.txt new file mode 100644 index 0000000..ad804fb --- /dev/null +++ b/_sources/generated/HBC.task/cardioception.HBC.task.trial.rst.txt @@ -0,0 +1,6 @@ +cardioception.HBC.task.trial +============================ + +.. currentmodule:: cardioception.HBC.task + +.. autofunction:: trial \ No newline at end of file diff --git a/_sources/generated/HBC.task/cardioception.HBC.task.tutorial.rst.txt b/_sources/generated/HBC.task/cardioception.HBC.task.tutorial.rst.txt new file mode 100644 index 0000000..9d28bb3 --- /dev/null +++ b/_sources/generated/HBC.task/cardioception.HBC.task.tutorial.rst.txt @@ -0,0 +1,6 @@ +cardioception.HBC.task.tutorial +=============================== + +.. currentmodule:: cardioception.HBC.task + +.. autofunction:: tutorial \ No newline at end of file diff --git a/_sources/generated/HRD.languages/cardioception.HRD.languages.danish.rst.txt b/_sources/generated/HRD.languages/cardioception.HRD.languages.danish.rst.txt new file mode 100644 index 0000000..5399673 --- /dev/null +++ b/_sources/generated/HRD.languages/cardioception.HRD.languages.danish.rst.txt @@ -0,0 +1,6 @@ +cardioception.HRD.languages.danish +================================== + +.. currentmodule:: cardioception.HRD.languages + +.. autofunction:: danish \ No newline at end of file diff --git a/_sources/generated/HRD.languages/cardioception.HRD.languages.danish_children.rst.txt b/_sources/generated/HRD.languages/cardioception.HRD.languages.danish_children.rst.txt new file mode 100644 index 0000000..20bf942 --- /dev/null +++ b/_sources/generated/HRD.languages/cardioception.HRD.languages.danish_children.rst.txt @@ -0,0 +1,6 @@ +cardioception.HRD.languages.danish\_children +============================================ + +.. currentmodule:: cardioception.HRD.languages + +.. autofunction:: danish_children \ No newline at end of file diff --git a/_sources/generated/HRD.languages/cardioception.HRD.languages.english.rst.txt b/_sources/generated/HRD.languages/cardioception.HRD.languages.english.rst.txt new file mode 100644 index 0000000..b3996f1 --- /dev/null +++ b/_sources/generated/HRD.languages/cardioception.HRD.languages.english.rst.txt @@ -0,0 +1,6 @@ +cardioception.HRD.languages.english +=================================== + +.. currentmodule:: cardioception.HRD.languages + +.. autofunction:: english \ No newline at end of file diff --git a/_sources/generated/HRD.languages/cardioception.HRD.languages.french.rst.txt b/_sources/generated/HRD.languages/cardioception.HRD.languages.french.rst.txt new file mode 100644 index 0000000..b77ccc9 --- /dev/null +++ b/_sources/generated/HRD.languages/cardioception.HRD.languages.french.rst.txt @@ -0,0 +1,6 @@ +cardioception.HRD.languages.french +================================== + +.. currentmodule:: cardioception.HRD.languages + +.. autofunction:: french \ No newline at end of file diff --git a/_sources/generated/HRD.parameters/cardioception.HRD.parameters.getParameters.rst.txt b/_sources/generated/HRD.parameters/cardioception.HRD.parameters.getParameters.rst.txt new file mode 100644 index 0000000..5ed258e --- /dev/null +++ b/_sources/generated/HRD.parameters/cardioception.HRD.parameters.getParameters.rst.txt @@ -0,0 +1,6 @@ +cardioception.HRD.parameters.getParameters +========================================== + +.. currentmodule:: cardioception.HRD.parameters + +.. autofunction:: getParameters \ No newline at end of file diff --git a/_sources/generated/HRD.task/cardioception.HRD.task.confidenceRatingTask.rst.txt b/_sources/generated/HRD.task/cardioception.HRD.task.confidenceRatingTask.rst.txt new file mode 100644 index 0000000..f427609 --- /dev/null +++ b/_sources/generated/HRD.task/cardioception.HRD.task.confidenceRatingTask.rst.txt @@ -0,0 +1,6 @@ +cardioception.HRD.task.confidenceRatingTask +=========================================== + +.. currentmodule:: cardioception.HRD.task + +.. autofunction:: confidenceRatingTask \ No newline at end of file diff --git a/_sources/generated/HRD.task/cardioception.HRD.task.responseDecision.rst.txt b/_sources/generated/HRD.task/cardioception.HRD.task.responseDecision.rst.txt new file mode 100644 index 0000000..7a55f7c --- /dev/null +++ b/_sources/generated/HRD.task/cardioception.HRD.task.responseDecision.rst.txt @@ -0,0 +1,6 @@ +cardioception.HRD.task.responseDecision +======================================= + +.. currentmodule:: cardioception.HRD.task + +.. autofunction:: responseDecision \ No newline at end of file diff --git a/_sources/generated/HRD.task/cardioception.HRD.task.run.rst.txt b/_sources/generated/HRD.task/cardioception.HRD.task.run.rst.txt new file mode 100644 index 0000000..676cb32 --- /dev/null +++ b/_sources/generated/HRD.task/cardioception.HRD.task.run.rst.txt @@ -0,0 +1,6 @@ +cardioception.HRD.task.run +========================== + +.. currentmodule:: cardioception.HRD.task + +.. autofunction:: run \ No newline at end of file diff --git a/_sources/generated/HRD.task/cardioception.HRD.task.trial.rst.txt b/_sources/generated/HRD.task/cardioception.HRD.task.trial.rst.txt new file mode 100644 index 0000000..98d5aa1 --- /dev/null +++ b/_sources/generated/HRD.task/cardioception.HRD.task.trial.rst.txt @@ -0,0 +1,6 @@ +cardioception.HRD.task.trial +============================ + +.. currentmodule:: cardioception.HRD.task + +.. autofunction:: trial \ No newline at end of file diff --git a/_sources/generated/HRD.task/cardioception.HRD.task.tutorial.rst.txt b/_sources/generated/HRD.task/cardioception.HRD.task.tutorial.rst.txt new file mode 100644 index 0000000..d4b5965 --- /dev/null +++ b/_sources/generated/HRD.task/cardioception.HRD.task.tutorial.rst.txt @@ -0,0 +1,6 @@ +cardioception.HRD.task.tutorial +=============================== + +.. currentmodule:: cardioception.HRD.task + +.. autofunction:: tutorial \ No newline at end of file diff --git a/_sources/generated/HRD.task/cardioception.HRD.task.waitInput.rst.txt b/_sources/generated/HRD.task/cardioception.HRD.task.waitInput.rst.txt new file mode 100644 index 0000000..47e7b10 --- /dev/null +++ b/_sources/generated/HRD.task/cardioception.HRD.task.waitInput.rst.txt @@ -0,0 +1,6 @@ +cardioception.HRD.task.waitInput +================================ + +.. currentmodule:: cardioception.HRD.task + +.. autofunction:: waitInput \ No newline at end of file diff --git a/_sources/generated/reports/cardioception.reports.group_level_preprocessing.rst.txt b/_sources/generated/reports/cardioception.reports.group_level_preprocessing.rst.txt new file mode 100644 index 0000000..f7dae53 --- /dev/null +++ b/_sources/generated/reports/cardioception.reports.group_level_preprocessing.rst.txt @@ -0,0 +1,6 @@ +cardioception.reports.group\_level\_preprocessing +================================================= + +.. currentmodule:: cardioception.reports + +.. autofunction:: group_level_preprocessing \ No newline at end of file diff --git a/_sources/generated/reports/cardioception.reports.preprocessing.rst.txt b/_sources/generated/reports/cardioception.reports.preprocessing.rst.txt new file mode 100644 index 0000000..8cc3773 --- /dev/null +++ b/_sources/generated/reports/cardioception.reports.preprocessing.rst.txt @@ -0,0 +1,6 @@ +cardioception.reports.preprocessing +=================================== + +.. currentmodule:: cardioception.reports + +.. autofunction:: preprocessing \ No newline at end of file diff --git a/_sources/generated/reports/cardioception.reports.report.rst.txt b/_sources/generated/reports/cardioception.reports.report.rst.txt new file mode 100644 index 0000000..fd574bf --- /dev/null +++ b/_sources/generated/reports/cardioception.reports.report.rst.txt @@ -0,0 +1,6 @@ +cardioception.reports.report +============================ + +.. currentmodule:: cardioception.reports + +.. autofunction:: report \ No newline at end of file diff --git a/_sources/generated/stats/cardioception.stats.behaviours.rst.txt b/_sources/generated/stats/cardioception.stats.behaviours.rst.txt new file mode 100644 index 0000000..ec38dc3 --- /dev/null +++ b/_sources/generated/stats/cardioception.stats.behaviours.rst.txt @@ -0,0 +1,6 @@ +cardioception.stats.behaviours +============================== + +.. currentmodule:: cardioception.stats + +.. autofunction:: behaviours \ No newline at end of file diff --git a/_sources/generated/stats/cardioception.stats.psychophysics.rst.txt b/_sources/generated/stats/cardioception.stats.psychophysics.rst.txt new file mode 100644 index 0000000..b4e9e3a --- /dev/null +++ b/_sources/generated/stats/cardioception.stats.psychophysics.rst.txt @@ -0,0 +1,6 @@ +cardioception.stats.psychophysics +================================= + +.. currentmodule:: cardioception.stats + +.. autofunction:: psychophysics \ No newline at end of file diff --git a/_sources/index.md.txt b/_sources/index.md.txt new file mode 100644 index 0000000..8f5ba9d --- /dev/null +++ b/_sources/index.md.txt @@ -0,0 +1,47 @@ +# Cardioception toolbox + +[![GitHub license](https://img.shields.io/github/license/LegrandNico/cardioception-toolbox)](https://github.com/LegrandNico/cardioception-toolbox/blob/master/LICENSE) [![GitHub release](https://img.shields.io/github/release/LegrandNico/cardioception-toolbox)](https://github.com/LegrandNico/cardioception-toolbox/releases/) [![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/pre-commit/pre-commit) [![pip](https://badge.fury.io/py/cardioception-toolbox.svg)](https://badge.fury.io/py/cardioception-toolbox) [![black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![mypy](http://www.mypy-lang.org/static/mypy_badge.svg)](http://mypy-lang.org/) [![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/) + +--- + +cardioception + +```{important} +The Cardioception Python Toolbox is a fork of the [original cardioception repository](https://github.com/embodied-computation-group/Cardioception) that I ([Nicolas Legrand](https://github.com/LegrandNico/)) created while working in [the ECG lab](https://www.the-ecg.org/) from 2019 to 2022. My previous lab has taken full control of the repository since then, meaning that I am unfortunately unable to maintain it as it should be. This repository allows me to pursue the maintenance of the package, aiming to provide reliable and robust tasks to measure cardiac interoception, together with computational modelling tools to analyse data gathered with these tasks. +``` + +The repository implements two measures of cardiac interoception (cardioception): + +1. The **Heartbeat counting task (HBC)**, also known as the **Heartbeat tracking task**, developed by Rainer Schandry {cite:p}`1978:dale,1981:schandry`. This task cardiac measures interoception by asking participants to count their heartbeats for a given period of time. An accuracy score is then derived by comparing the reported heartbeats and the true number of heartbeats. +2. The **Heart Rate Discrimination task** {cite:p}`2022:legrand` implements an adaptive psychophysical measure of cardiac interoception where participants have to estimate the frequency of their heart rate by comparing it to tones that can be faster or slower. By manipulating the difference between the true heart rate and the presented tone using different staircase procedures, the bias (threshold) and precision (slope) of the psychometric function can be estimated either online or offline (see *Analyses* below), together with metacognitive efficiency. + +```{note} +While having slightly similar names, the **Heartbeat counting task (HBC)** and the **Heart Rate Discrimination task** are different in terms of implementation and the measures they provided and should not be conflated. We developed the cardioception package first to provide an open-sourced version of the *HBC*, which was lacking, with easy support to record heart rate via cheap pulse oximetry via [Systole](https://github.com/LegrandNico/systole). In addition to that, we developed the **HRD** task as a new measure of cardiac interoception {cite:p}`2022:legrand`, grounding on different reasoning and trying to control for the confounds other interoception tasks might have. + +``` + +These tasks can run using minimal experimental settings: a computer and a recording device to monitor the heart rate of the participant. The default version of the task uses the [Nonin 3012LP Xpod USB pulse oximeter](https://www.nonin.com/products/xpod/) together with [Nonin 8000SM 'soft-clip' fingertip sensors](https://www.nonin.com/products/8000s/). This sensor can be plugged directly into the stim PC via USB and will work with Cardioception without additional coding. The tasks can also integrate easily with other recording devices and experimental settings (ECG, M/EEG, fMRI...). + +## Looking for help? + +If you have questions regarding the tasks, want to report a bug or discuss data analysis, please ask on the public discussion page in this repository. + +If you want to report a bug, you can open an issue on the [GitHub page](https://github.com/LegrandNico/cardioception-toolbox). + +## Development + +This package is a fork of the original [Cardioception](https://github.com/embodied-computation-group/Cardioception) repository and is maintained by [Nicolas Legrand](https://github.com/LegrandNico). + + + +```{toctree} +--- +hidden: +--- +Theory +Guide +API +Statistical analysis +Cite +References +``` diff --git a/_sources/measuring.md.txt b/_sources/measuring.md.txt new file mode 100644 index 0000000..1b281b3 --- /dev/null +++ b/_sources/measuring.md.txt @@ -0,0 +1,57 @@ +# Measuring cardiac interoception + +Cardiac interoception has been largely investigated using the heartbeat counting task (also known as the heartbeat tracking task) that was formally introduced more than 40 years ago {cite:p}`1981:schandry`. This task comes with several variants that can concern task instruction, experimental design or the scores derived to measure cardiac interoceptive accuracy and metacognition. Here, we describe the heartbeat counting task together with the heart rate discrimination task, that was recently proposed {cite:p}`2022:legrand` and is also implemented in [cardioception](https://github.com/LegrandNico/cardioception-toolbox). + +## The Heart Beat Counting task + +In the classic "heartbeat counting task" {cite:p}`1981:schandry,1978:dale` participants attend to their heartbeats in intervals of various lengths and are asked to count the number of heartbeats they can effectively feel during this period. An accuracy score is then derived by comparing the reported number of heartbeats and the true number of heartbeats. In the original version {cite:p}`1981:schandry`, the task started with a resting period of 60 seconds and consisted of three estimation sessions (25, 35, and 45 seconds) interleaved with resting periods of 30 seconds. + +![hbc](https://raw.githubusercontent.com/LegrandNico/cardioception-toolbox/master/docs/source/images/HeartBeatCounting.png) + +By default, [Cardioception](https://github.com/LegrandNico/cardioception-toolbox) implements the version used in recent publications {cite:p}`2013:hart` in which a training trial of 20 seconds is proposed, after which the 6 experimental trials of different time windows (25, 30, 35,40, 45 and 50s) occurred in a randomized order. The trial length, the condition (`'Rest'`, `'Count'`, `'Training'`), and the randomization can be controlled in the parameters dictionary. This behaviour can be controlled using the `"taskVersion"` parameter. + +### Instructions + +The instructions are the following: + +```text +Without manually checking can you silently count each heartbeat you feel in your body from the time you hear the first tone to when you hear the second tone? +``` + +### Score + +Many variants of the *interoceptive accuracy* score have been proposed, here we implemented and use the one that we considered to be the more widely used, following the formula proposed by Hart et al. {cite:p}`2013:hart` as follows: + +```{math} + Accuracy = 1-\frac{\left | N_{real} - N_{reported} \right |}{\frac{N_{real} + N_{reported}}{2}} +``` + +After each counting response, the participant is prompted to rate their subjective confidence (from 0 to 100), used to calculate "interoceptive awareness", i.e. the relationship between confidence and accuracy. Total task runtime using default settings is approximately **4 minutes**. + +## The Heart Rate Discrimination task + +The **Heart Rate Discrimination Task** {cite:p}`2022:legrand` implements an adaptive psychophysical measure of cardiac interoception where participants have to estimate the frequency of their heart rate by comparing it to tones that can be faster or slower. By manipulating the difference between the true heart rate and the presented tone using different staircase procedures, the bias (threshold) and precision (slope) of the psychometric function can be estimated either online or offline, together with metacognitive efficiency. + +![hrd](https://raw.githubusercontent.com/LegrandNico/cardioception-toolbox/master/docs/source/images/HeartRateDiscrimination.png) + +### Staircases + +If you run the task in behavioural mode, the **Nonin pulse oximeter** will be read from the port provided. These components might be adapted depending on your local configuration. + +Two staircase procedures are implemented and can be controlled through the `stairType` parameters in the parameters dictionary: + +#### 1. nUp/nDown + +This procedure uses a classical adaptive nUp/nDown thresholding procedure {cite:p}`1962:cornsweet` to estimate the sensitivity and bias of cardiac beliefs. To do so, the staircase adjusts the absolute difference between the frequency of an auditory feedback stimulus and the estimated heart rate during the interoceptive 'listening' interval (i.e., absolute $\Delta$-BPM). Feedback tones on each trial are thus presented at a frequency faster or slower than the true heart rate, according to the absolute $\Delta$-BPM parameter. (i.e., 'Faster' or 'Slower' condition). Staircase responses are coded according to their accuracy relative to the ground truth heart rate, e.g. when the participant correctly discriminates whether a feedback tone is faster or slower than their true heart rate. This procedure converges on the minimum difference between the tones and the heart rate a participant can reliably discriminate, according to the stepping rule parameter. A default 1-down 2-up procedure is used, converging at ~71% accuracy at the limit. Depending on how the `parameters.py` file is set, 2 or more randomly interleaved staircases can be presented at low versus high starting values. This procedure is optimal for estimating the accuracy of interoceptive belief in a simple, reasonably robust algorithm, but should not be used for estimating interoceptive precision (i.e., slope). + +#### 2. Psi + +This procedure uses Kontsevich and Tyler's {cite:p}`1999:kontsevich` psi-method to estimate the point of subjective equality for faster versus slower cardiac feedback stimuli, based on a cumulative Gaussian psychometric function. Here, tones are presented at the relative $\Delta$-BPM (i.e., which can be more or less than the true heart rate), and this stimulus intensity value is adjusted according to the psi-method, between a minimum and maximum range of $\Delta$-BPM = [-40 40]. The staircase is 'response coded', such that the psychometric function converges on the point of subjective equality between faster and slower stimuli. In this case, the estimated threshold can be treated as an objective measure of subjective cardiac bias, and the slope as a measure of interoceptive uncertainty or precision. Nuisance parameters (i.e., guess and lapse rates) are fixed at values corresponding to a standard 1-alternative forced choice paradigm. + +## Discussion + +The validity and reliability of the heartbeat counting task (HBC, also called heartbeat tracking task) as a measure of cardiac interoceptive accuracy has been discussed during the last years and it is acknowledged that the scores derived from this task are difficult to interpret concerning interoceptive abilities {cite:p}`2022:ferentzi`. It has been documented that the HBC task is poorly related to actual heartbeat detection {cite:p}`2020:desmedt`, is confounded by fundamental mathematical issues {cite:p}`2018:zamariola`, is unable to distinguish subjective from physiological confounds {cite:p}`1996:ring`, is unable to distinguish true interoceptors from non-interoceptors, and most crucially cannot, by design, distinguish cardiac accuracy (hit rate) from response bias. Furthermore, the task is also ill-suited to the estimation of metacognition variables, as there are extremely few trials and no overall control of accuracy (see {cite:p}`2014:fleming` for details on how metacognition should be measured). + +Based on these observations, we considered that *cardiac interoceptive accuracy* is a too multifaceted concept and too confounded by other psychological factors to be measured precisely in the lab without directly manipulating the cardiac signal (i.e. changing and/or systematically observing different cardiac frequencies). It is indeed not possible to know if a participant is correct when reporting heartbeat counts because he/she has good interoceptive accuracy, or because he/she is simply lucky to have prior cardiac beliefs that are aligned with the physiological signal, at least for the time of the experience. + +With the heart rate discrimination task (HRD), we proposed to change the focus and the way we measure cardioception. Suppose cardiac interoceptive accuracy cannot be precisely estimated because it is confounded by cardiac beliefs. In that case, we can however measure these beliefs in a very precise and rigorous manner using methods from psychophysics. In addition to that, because we test decisions from the participant many times (the recommended number of trials in the HRD task is 40 per condition minimum), we can estimate metacognitive efficiency more robustly using *meta-d'* {cite:p}`2014:fleming`. diff --git a/_sources/references.md.txt b/_sources/references.md.txt new file mode 100644 index 0000000..d977a9b --- /dev/null +++ b/_sources/references.md.txt @@ -0,0 +1,4 @@ +# References + +```{bibliography} +``` diff --git a/_sources/stats.md.txt b/_sources/stats.md.txt new file mode 100644 index 0000000..5a2b10e --- /dev/null +++ b/_sources/stats.md.txt @@ -0,0 +1,84 @@ +# Statistical analysis + +## Using R + +If you want to use R to analyse your data, you can find R/Stan scripts with example notebooks in [this folder](https://github.com/LegrandNico/cardioception-toolbox/tree/master/docs/source/examples/R). + +## Using Python + +If you want to use Python to analyse your data, the package includes two functions ([preprocessing](cardioception.reports.preprocessing) and [report](cardioception.reports.report)) that can help automate the analysis of large datasets obtained with the Heart Rate Discrimination task. We also provide notebooks detailing specific parts of the data analysis and Bayesian modelling of psychophysics (see below). + +### Behavioural summary using the preprocessing function + +The reports module includes a [preprocessing function](cardioception.reports.preprocessing) that automates the analysis and extraction of behavioural variables from the main outputs saved by the task. The function only requires the `final.txt` data frame (either the Pandas data frame or simply a path to the file) that is saved in each subject folder and will return a summary data frame containing the response time, the psychometric parameter estimated by the Psi algorithm and Bayesian inference as well as SDT measures and metacognitive efficiency (meta-d prime). This approach is the most straightforward to extract relevant parameters using default settings that will fit most users' needs. + +This script exemplifies how this function can be used to extract summary statistics from a result folder. It is assumed that the following script is in a folder that contains the `data` folder with sub-folders `sub-01`, `sub-02` for each participant in which the main outputs of the task are stored. The HTML reports will be saved in the `reports` folder. + +```python +from pathlib import Path +from cardioception.reports import preprocessing + +data_folder = Path(Path().cwd(), "data") # path to the data folder + +# for each file found in the result folder, create the HTML report +for f in data_folder.iterdir(): + + # all the preprocessing happens here + # the input is a file name at it returns a summary dataframe + results_df = preprocessing(results=f) +``` + +### HTML reports using the report function + +Using a similar approach, the [report function](cardioception.reports.report) automates the production of HTML reports that are generated using the templates below. The function will require more files than the previous one, especially as this time the PPG signal is being analyzed. Using the HTML reports is an important step in the data quality checks, especially for the quality of the PPG recording. Here, we will assume that the following script is in a folder that contains the `data` folder in which the main outputs of the tasks (either the Heart Rate Discrimination task or the Heartbeats Detection task) are stored. + +```python +from pathlib import Path +from cardioception.reports import report + +data_folder = Path(Path().cwd(), "data") # path to the data folder + +# for each folder, create the HTML report from the files it contains +for f in data_folder.iterdir(): + + # this command runs the notebook and converts it into HTML + report(result_path=f, report_path=Path(data_folder, "reports")) +``` + +## Report templates + +Here, you will find the report templates used to produce the HTML reports when calling the [report function](cardioception.reports.report) function. We provide one for the Heart Rate Discrimination task and one for the Heart Beat Counting task. You can navigate the notebooks by clicking on the links or run them interactively in [Google Colab](https://colab.research.google.com/) using the badges, and upload your data. Visualizing the data this way is recommended to assess the quality of the PPG recording or the general performance of the participant during the tasks. + +```{toctree} +--- +hidden: +glob: +--- + +examples/templates/* + +``` + +| Notebook | Colab | +| --- | ---| +| {ref}`hbc_template` | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/LegrandNico/cardioception-toolbox/blob/master/docs/source/examples/templates/HeartBeatCounting.ipynb) +| {ref}`hrd_template` | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/LegrandNico/cardioception-toolbox/blob/master/docs/source/examples/templates/HeartRateDiscrimination.ipynb) + +## Bayesian modelling of psychophysics + +These notebooks provide a more detailled introduction to the Bayesian modelling of the psychometric functions to estimate threshold and slope offline (as opposed to the online estimation performed by the Psi staircase). The models are implemented in PyMC, the code can easily be adapted to fit different modelling needs (e.g. group comparison, repeated measure...). + +```{toctree} +--- +hidden: +glob: +--- + +examples/psychophysics/* + +``` + +| Notebook | Colab | +| --- | ---| +| {ref}`psychophysics_subject_level` | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/LegrandNico/cardioception-toolbox/blob/master/docs/source/examples/psychophysics/1-psychophysics_subject_level.ipynb) +| {ref}`psychophysics_group_level` | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/LegrandNico/cardioception-toolbox/blob/master/docs/source/examples/psychophysics/2-psychophysics_group_level.ipynb) diff --git a/_sources/user_guide.md.txt b/_sources/user_guide.md.txt new file mode 100644 index 0000000..4e969fb --- /dev/null +++ b/_sources/user_guide.md.txt @@ -0,0 +1,120 @@ +# User guide + +## Installation + +### Using the Python Package Index + +* The most recent version can be installed using: + + `pip install cardioception` + +* The current development branch can be installed using: + + `pip install git+https://github.com/LegrandNico/Cardioception.git` + +### Set up a conda environment + +The task can be installed in a new environment using the `environment.yml` file that you can find at the root of the directory. Using the Anaconda prompt, you can create a new environment with: + + `conda env create -f environment.yml` + +This will create a new `cardioception` environment that you can later activate using: + + `conda activate cardioception` + +```{note} If you are using the shortcut method described below, you will have to activate the *cardioception* environment instead of the *base* one. +``` + +## Dependencies + +Cardioception has been tested with Python 3.7. We recommend using the last install of Anaconda for Python 3.7 or latest (see [this link](https://www.anaconda.com/products/individual#download-section)). + +Make sure that you have the following packages installed and up to date before running cardioception: + +* [psychopy](https://www.psychopy.org/) can be installed with `pip install psychopy`. +* [systole](https://systole-docs.github.io/) can be installed with `pip install systole`. + +The other main dependencies are: + +* [numpy](https://numpy.org/) (>=1.18,<=1.23) +* [scipy](https://www.scipy.org/) (>=1.3.0) +* [pandas](https://pandas.pydata.org/) (>=1.0.3) +* [pyserial](https://pypi.org/project/pyserial/) (>=3.4) + +In addition, some functions for HTML reports will require: + +* [papermill](https://papermill.readthedocs.io/en/latest/) (>=2.3.1) +* [matplotlib](https://matplotlib.org/) (>=3.3.3) +* [seaborn](https://seaborn.pydata.org/) (>=0.11.1) +* [pingouin](https://pingouin-stats.org/) (>=0.3.10) +* [metadpy](https://github.com/EmbodiedComputationGroup/metadpy) (>=0.1.0) +* [pymc](https://www.pymc.io/welcome.html) (>=5.0) + +```{note} +The versions provided here are the ones used when testing and running cardioception locally and are often the last ones. For several packages, however, older versions might also be compatible. +``` + +Cardioception will automatically copy the images and sound files necessary to run the task correctly (~ 160 Mo). These files will be removed if you uninstall the package using `pip uninstall cardioception`. + +## Physiological recording + +Both the Heartbeat counting task (HBC) and the heart rate discrimination task (HRD) require access to a physiological recording device during the task to estimate the heart rate or count the number of heartbeats in a given time window. Cardioception natively supports: + +* The [Nonin 3012LP Xpod USB pulse oximeter](https://www.nonin.com/products/xpod/) together with [Nonin 8000SM 'soft-clip' fingertip sensors](https://www.nonin.com/products/8000s/) +* Remote Data Access (RDA) via BrainVision Recorder together with [Brain product ExG amplifier](https://www.brainproducts.com/>). + +The package can easily be extended and integrate other recording devices by providing another recording class that will interface with your own devices (ECG, pulse oximeters, or any kind of recording that will offer precise estimation of the cardiac frequency). + +## Running the tasks + +Each task contains a `parameters` and a `task` submodule describing the experimental parameters and the Psychopy script respectively. Several changes and adaptations can be parametrized just by passing arguments to the `getParameters` function. Please refer to the API documentation for details. + +### Using a script + +Once the package has been installed, you can run the task (e.g. here the Heart rate Discrimination task) using the following code snippet: + +```python +from cardioception.HRD.parameters import getParameters +from cardioception.HRD import task + +# Set global task parameters +parameters = parameters.getParameters( + participant='Subject_01', session='Test', serialPort=None, + setup='behavioral', nTrials=10, screenNb=0) + +# Run task +task.run(parameters, confidenceRating=True, runTutorial=True) + +parameters['win'].close() +``` + +This minimal example will run the Heart Rate Discrimination task with a total of 10 trials using a Psi staircase. + +We provide standard scripts in the [wrappers](https://github.com/LegrandNico/cardioception-toolbox/tree/master/wrappers) folder that can be adapted to your needs. We recommend copying this script in your local task folder if you want to parametrize it to fit your needs. The tasks can then easily be executed by running the corresponding wrapper file (e.g. in a terminal). + +### Creating a shortcut (Windows) + +Once you have adapted the scripts, you can create a shortcut (e.g. in the Desktop) so the task can be executed just by clicking on it without any coding or command line interactions. + +If you are using Windows, you can simply create a `.bat` file containing the following: + +```bash +call [path to your environment */conda.bat] activate +[path to your local */python.exe] [path to your wrapper */hrd.py] +pause +``` + +## Creating HTML reports + +The results are saved in the `'resultPath'` folder defined in the parameters dictionary. For each task, we provide a comprehensive notebook detailing the main results, quality checks, and basic preprocessing steps. You can automatically generate the HTML reports using the following code snippet: + +```python +from cardioception.reports import report + +resultPath = "./" # the folder containing the result files +reportPath = "./" # the folder where you want to save the HTML report + +report(resultPath, reportPath, task='HRD') +``` + +This code will generate the HTML reports for the Heart Rate Discrimination task in the `reportPath` folder using the results files located in `resultPath`. This will require [papermill](https://papermill.readthedocs.io/en/latest/). diff --git a/_static/_sphinx_javascript_frameworks_compat.js b/_static/_sphinx_javascript_frameworks_compat.js new file mode 100644 index 0000000..8549469 --- /dev/null +++ b/_static/_sphinx_javascript_frameworks_compat.js @@ -0,0 +1,134 @@ +/* + * _sphinx_javascript_frameworks_compat.js + * ~~~~~~~~~~ + * + * Compatability shim for jQuery and underscores.js. + * + * WILL BE REMOVED IN Sphinx 6.0 + * xref RemovedInSphinx60Warning + * + */ + +/** + * select a different prefix for underscore + */ +$u = _.noConflict(); + + +/** + * small helper function to urldecode strings + * + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL + */ +jQuery.urldecode = function(x) { + if (!x) { + return x + } + return decodeURIComponent(x.replace(/\+/g, ' ')); +}; + +/** + * small helper function to urlencode strings + */ +jQuery.urlencode = encodeURIComponent; + +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s === 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; + +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node, addItems) { + if (node.nodeType === 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && + !jQuery(node.parentNode).hasClass(className) && + !jQuery(node.parentNode).hasClass("nohighlight")) { + var span; + var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.className = className; + } + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling)); + node.nodeValue = val.substr(0, pos); + if (isInSVG) { + var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); + var bbox = node.parentElement.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute('class', className); + addItems.push({ + "parent": node.parentNode, + "target": rect}); + } + } + } + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this, addItems); + }); + } + } + var addItems = []; + var result = this.each(function() { + highlight(this, addItems); + }); + for (var i = 0; i < addItems.length; ++i) { + jQuery(addItems[i].parent).before(addItems[i].target); + } + return result; +}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} diff --git a/_static/basic.css b/_static/basic.css new file mode 100644 index 0000000..c5dde73 --- /dev/null +++ b/_static/basic.css @@ -0,0 +1,899 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 270px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 360px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} +a.brackets:before, +span.brackets > a:before{ + content: "["; +} + +a.brackets:after, +span.brackets > a:after { + content: "]"; +} + + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} +dl.footnote > dt, +dl.citation > dt { + float: left; + margin-right: 0.5em; +} + +dl.footnote > dd, +dl.citation > dd { + margin-bottom: 0em; +} + +dl.footnote > dd:after, +dl.citation > dd:after { + content: ""; + clear: both; +} + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} +dl.field-list > dt:after { + content: ":"; +} + + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/_static/doctools.js b/_static/doctools.js new file mode 100644 index 0000000..527b876 --- /dev/null +++ b/_static/doctools.js @@ -0,0 +1,156 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Base JavaScript utilities for all Sphinx HTML documentation. + * + * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ + "TEXTAREA", + "INPUT", + "SELECT", + "BUTTON", +]); + +const _ready = (callback) => { + if (document.readyState !== "loading") { + callback(); + } else { + document.addEventListener("DOMContentLoaded", callback); + } +}; + +/** + * Small JavaScript module for the documentation. + */ +const Documentation = { + init: () => { + Documentation.initDomainIndexTable(); + Documentation.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS: {}, + PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), + LOCALE: "unknown", + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext: (string) => { + const translated = Documentation.TRANSLATIONS[string]; + switch (typeof translated) { + case "undefined": + return string; // no translation + case "string": + return translated; // translation exists + default: + return translated[0]; // (singular, plural) translation tuple exists + } + }, + + ngettext: (singular, plural, n) => { + const translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated !== "undefined") + return translated[Documentation.PLURAL_EXPR(n)]; + return n === 1 ? singular : plural; + }, + + addTranslations: (catalog) => { + Object.assign(Documentation.TRANSLATIONS, catalog.messages); + Documentation.PLURAL_EXPR = new Function( + "n", + `return (${catalog.plural_expr})` + ); + Documentation.LOCALE = catalog.locale; + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar: () => { + document.querySelectorAll("input[name=q]")[0]?.focus(); + }, + + /** + * Initialise the domain index toggle buttons + */ + initDomainIndexTable: () => { + const toggler = (el) => { + const idNumber = el.id.substr(7); + const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); + if (el.src.substr(-9) === "minus.png") { + el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; + toggledRows.forEach((el) => (el.style.display = "none")); + } else { + el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; + toggledRows.forEach((el) => (el.style.display = "")); + } + }; + + const togglerElements = document.querySelectorAll("img.toggler"); + togglerElements.forEach((el) => + el.addEventListener("click", (event) => toggler(event.currentTarget)) + ); + togglerElements.forEach((el) => (el.style.display = "")); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + }, + + initOnKeyListeners: () => { + // only install a listener if it is really needed + if ( + !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS + ) + return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.altKey || event.ctrlKey || event.metaKey) return; + + if (!event.shiftKey) { + switch (event.key) { + case "ArrowLeft": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const prevLink = document.querySelector('link[rel="prev"]'); + if (prevLink && prevLink.href) { + window.location.href = prevLink.href; + event.preventDefault(); + } + break; + case "ArrowRight": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const nextLink = document.querySelector('link[rel="next"]'); + if (nextLink && nextLink.href) { + window.location.href = nextLink.href; + event.preventDefault(); + } + break; + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case "/": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.focusSearchBar(); + event.preventDefault(); + } + }); + }, +}; + +// quick alias for translations +const _ = Documentation.gettext; + +_ready(Documentation.init); diff --git a/_static/documentation_options.js b/_static/documentation_options.js new file mode 100644 index 0000000..05374cd --- /dev/null +++ b/_static/documentation_options.js @@ -0,0 +1,14 @@ +var DOCUMENTATION_OPTIONS = { + URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'), + VERSION: '0.5.0', + LANGUAGE: 'en', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '.txt', + NAVIGATION_WITH_KEYS: false, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: true, +}; \ No newline at end of file diff --git a/_static/file.png b/_static/file.png new file mode 100644 index 0000000..a858a41 Binary files /dev/null and b/_static/file.png differ diff --git a/_static/jquery-3.6.0.js b/_static/jquery-3.6.0.js new file mode 100644 index 0000000..fc6c299 --- /dev/null +++ b/_static/jquery-3.6.0.js @@ -0,0 +1,10881 @@ +/*! + * jQuery JavaScript Library v3.6.0 + * https://jquery.com/ + * + * Includes Sizzle.js + * https://sizzlejs.com/ + * + * Copyright OpenJS Foundation and other contributors + * Released under the MIT license + * https://jquery.org/license + * + * Date: 2021-03-02T17:08Z + */ +( function( global, factory ) { + + "use strict"; + + if ( typeof module === "object" && typeof module.exports === "object" ) { + + // For CommonJS and CommonJS-like environments where a proper `window` + // is present, execute the factory and get jQuery. + // For environments that do not have a `window` with a `document` + // (such as Node.js), expose a factory as module.exports. + // This accentuates the need for the creation of a real `window`. + // e.g. var jQuery = require("jquery")(window); + // See ticket #14549 for more info. + module.exports = global.document ? + factory( global, true ) : + function( w ) { + if ( !w.document ) { + throw new Error( "jQuery requires a window with a document" ); + } + return factory( w ); + }; + } else { + factory( global ); + } + +// Pass this if window is not defined yet +} )( typeof window !== "undefined" ? window : this, function( window, noGlobal ) { + +// Edge <= 12 - 13+, Firefox <=18 - 45+, IE 10 - 11, Safari 5.1 - 9+, iOS 6 - 9.1 +// throw exceptions when non-strict code (e.g., ASP.NET 4.5) accesses strict mode +// arguments.callee.caller (trac-13335). But as of jQuery 3.0 (2016), strict mode should be common +// enough that all such attempts are guarded in a try block. +"use strict"; + +var arr = []; + +var getProto = Object.getPrototypeOf; + +var slice = arr.slice; + +var flat = arr.flat ? function( array ) { + return arr.flat.call( array ); +} : function( array ) { + return arr.concat.apply( [], array ); +}; + + +var push = arr.push; + +var indexOf = arr.indexOf; + +var class2type = {}; + +var toString = class2type.toString; + +var hasOwn = class2type.hasOwnProperty; + +var fnToString = hasOwn.toString; + +var ObjectFunctionString = fnToString.call( Object ); + +var support = {}; + +var isFunction = function isFunction( obj ) { + + // Support: Chrome <=57, Firefox <=52 + // In some browsers, typeof returns "function" for HTML elements + // (i.e., `typeof document.createElement( "object" ) === "function"`). + // We don't want to classify *any* DOM node as a function. + // Support: QtWeb <=3.8.5, WebKit <=534.34, wkhtmltopdf tool <=0.12.5 + // Plus for old WebKit, typeof returns "function" for HTML collections + // (e.g., `typeof document.getElementsByTagName("div") === "function"`). (gh-4756) + return typeof obj === "function" && typeof obj.nodeType !== "number" && + typeof obj.item !== "function"; + }; + + +var isWindow = function isWindow( obj ) { + return obj != null && obj === obj.window; + }; + + +var document = window.document; + + + + var preservedScriptAttributes = { + type: true, + src: true, + nonce: true, + noModule: true + }; + + function DOMEval( code, node, doc ) { + doc = doc || document; + + var i, val, + script = doc.createElement( "script" ); + + script.text = code; + if ( node ) { + for ( i in preservedScriptAttributes ) { + + // Support: Firefox 64+, Edge 18+ + // Some browsers don't support the "nonce" property on scripts. + // On the other hand, just using `getAttribute` is not enough as + // the `nonce` attribute is reset to an empty string whenever it + // becomes browsing-context connected. + // See https://github.com/whatwg/html/issues/2369 + // See https://html.spec.whatwg.org/#nonce-attributes + // The `node.getAttribute` check was added for the sake of + // `jQuery.globalEval` so that it can fake a nonce-containing node + // via an object. + val = node[ i ] || node.getAttribute && node.getAttribute( i ); + if ( val ) { + script.setAttribute( i, val ); + } + } + } + doc.head.appendChild( script ).parentNode.removeChild( script ); + } + + +function toType( obj ) { + if ( obj == null ) { + return obj + ""; + } + + // Support: Android <=2.3 only (functionish RegExp) + return typeof obj === "object" || typeof obj === "function" ? + class2type[ toString.call( obj ) ] || "object" : + typeof obj; +} +/* global Symbol */ +// Defining this global in .eslintrc.json would create a danger of using the global +// unguarded in another place, it seems safer to define global only for this module + + + +var + version = "3.6.0", + + // Define a local copy of jQuery + jQuery = function( selector, context ) { + + // The jQuery object is actually just the init constructor 'enhanced' + // Need init if jQuery is called (just allow error to be thrown if not included) + return new jQuery.fn.init( selector, context ); + }; + +jQuery.fn = jQuery.prototype = { + + // The current version of jQuery being used + jquery: version, + + constructor: jQuery, + + // The default length of a jQuery object is 0 + length: 0, + + toArray: function() { + return slice.call( this ); + }, + + // Get the Nth element in the matched element set OR + // Get the whole matched element set as a clean array + get: function( num ) { + + // Return all the elements in a clean array + if ( num == null ) { + return slice.call( this ); + } + + // Return just the one element from the set + return num < 0 ? this[ num + this.length ] : this[ num ]; + }, + + // Take an array of elements and push it onto the stack + // (returning the new matched element set) + pushStack: function( elems ) { + + // Build a new jQuery matched element set + var ret = jQuery.merge( this.constructor(), elems ); + + // Add the old object onto the stack (as a reference) + ret.prevObject = this; + + // Return the newly-formed element set + return ret; + }, + + // Execute a callback for every element in the matched set. + each: function( callback ) { + return jQuery.each( this, callback ); + }, + + map: function( callback ) { + return this.pushStack( jQuery.map( this, function( elem, i ) { + return callback.call( elem, i, elem ); + } ) ); + }, + + slice: function() { + return this.pushStack( slice.apply( this, arguments ) ); + }, + + first: function() { + return this.eq( 0 ); + }, + + last: function() { + return this.eq( -1 ); + }, + + even: function() { + return this.pushStack( jQuery.grep( this, function( _elem, i ) { + return ( i + 1 ) % 2; + } ) ); + }, + + odd: function() { + return this.pushStack( jQuery.grep( this, function( _elem, i ) { + return i % 2; + } ) ); + }, + + eq: function( i ) { + var len = this.length, + j = +i + ( i < 0 ? len : 0 ); + return this.pushStack( j >= 0 && j < len ? [ this[ j ] ] : [] ); + }, + + end: function() { + return this.prevObject || this.constructor(); + }, + + // For internal use only. + // Behaves like an Array's method, not like a jQuery method. + push: push, + sort: arr.sort, + splice: arr.splice +}; + +jQuery.extend = jQuery.fn.extend = function() { + var options, name, src, copy, copyIsArray, clone, + target = arguments[ 0 ] || {}, + i = 1, + length = arguments.length, + deep = false; + + // Handle a deep copy situation + if ( typeof target === "boolean" ) { + deep = target; + + // Skip the boolean and the target + target = arguments[ i ] || {}; + i++; + } + + // Handle case when target is a string or something (possible in deep copy) + if ( typeof target !== "object" && !isFunction( target ) ) { + target = {}; + } + + // Extend jQuery itself if only one argument is passed + if ( i === length ) { + target = this; + i--; + } + + for ( ; i < length; i++ ) { + + // Only deal with non-null/undefined values + if ( ( options = arguments[ i ] ) != null ) { + + // Extend the base object + for ( name in options ) { + copy = options[ name ]; + + // Prevent Object.prototype pollution + // Prevent never-ending loop + if ( name === "__proto__" || target === copy ) { + continue; + } + + // Recurse if we're merging plain objects or arrays + if ( deep && copy && ( jQuery.isPlainObject( copy ) || + ( copyIsArray = Array.isArray( copy ) ) ) ) { + src = target[ name ]; + + // Ensure proper type for the source value + if ( copyIsArray && !Array.isArray( src ) ) { + clone = []; + } else if ( !copyIsArray && !jQuery.isPlainObject( src ) ) { + clone = {}; + } else { + clone = src; + } + copyIsArray = false; + + // Never move original objects, clone them + target[ name ] = jQuery.extend( deep, clone, copy ); + + // Don't bring in undefined values + } else if ( copy !== undefined ) { + target[ name ] = copy; + } + } + } + } + + // Return the modified object + return target; +}; + +jQuery.extend( { + + // Unique for each copy of jQuery on the page + expando: "jQuery" + ( version + Math.random() ).replace( /\D/g, "" ), + + // Assume jQuery is ready without the ready module + isReady: true, + + error: function( msg ) { + throw new Error( msg ); + }, + + noop: function() {}, + + isPlainObject: function( obj ) { + var proto, Ctor; + + // Detect obvious negatives + // Use toString instead of jQuery.type to catch host objects + if ( !obj || toString.call( obj ) !== "[object Object]" ) { + return false; + } + + proto = getProto( obj ); + + // Objects with no prototype (e.g., `Object.create( null )`) are plain + if ( !proto ) { + return true; + } + + // Objects with prototype are plain iff they were constructed by a global Object function + Ctor = hasOwn.call( proto, "constructor" ) && proto.constructor; + return typeof Ctor === "function" && fnToString.call( Ctor ) === ObjectFunctionString; + }, + + isEmptyObject: function( obj ) { + var name; + + for ( name in obj ) { + return false; + } + return true; + }, + + // Evaluates a script in a provided context; falls back to the global one + // if not specified. + globalEval: function( code, options, doc ) { + DOMEval( code, { nonce: options && options.nonce }, doc ); + }, + + each: function( obj, callback ) { + var length, i = 0; + + if ( isArrayLike( obj ) ) { + length = obj.length; + for ( ; i < length; i++ ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } else { + for ( i in obj ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } + + return obj; + }, + + // results is for internal usage only + makeArray: function( arr, results ) { + var ret = results || []; + + if ( arr != null ) { + if ( isArrayLike( Object( arr ) ) ) { + jQuery.merge( ret, + typeof arr === "string" ? + [ arr ] : arr + ); + } else { + push.call( ret, arr ); + } + } + + return ret; + }, + + inArray: function( elem, arr, i ) { + return arr == null ? -1 : indexOf.call( arr, elem, i ); + }, + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + merge: function( first, second ) { + var len = +second.length, + j = 0, + i = first.length; + + for ( ; j < len; j++ ) { + first[ i++ ] = second[ j ]; + } + + first.length = i; + + return first; + }, + + grep: function( elems, callback, invert ) { + var callbackInverse, + matches = [], + i = 0, + length = elems.length, + callbackExpect = !invert; + + // Go through the array, only saving the items + // that pass the validator function + for ( ; i < length; i++ ) { + callbackInverse = !callback( elems[ i ], i ); + if ( callbackInverse !== callbackExpect ) { + matches.push( elems[ i ] ); + } + } + + return matches; + }, + + // arg is for internal usage only + map: function( elems, callback, arg ) { + var length, value, + i = 0, + ret = []; + + // Go through the array, translating each of the items to their new values + if ( isArrayLike( elems ) ) { + length = elems.length; + for ( ; i < length; i++ ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + + // Go through every key on the object, + } else { + for ( i in elems ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + } + + // Flatten any nested arrays + return flat( ret ); + }, + + // A global GUID counter for objects + guid: 1, + + // jQuery.support is not used in Core but other projects attach their + // properties to it so it needs to exist. + support: support +} ); + +if ( typeof Symbol === "function" ) { + jQuery.fn[ Symbol.iterator ] = arr[ Symbol.iterator ]; +} + +// Populate the class2type map +jQuery.each( "Boolean Number String Function Array Date RegExp Object Error Symbol".split( " " ), + function( _i, name ) { + class2type[ "[object " + name + "]" ] = name.toLowerCase(); + } ); + +function isArrayLike( obj ) { + + // Support: real iOS 8.2 only (not reproducible in simulator) + // `in` check used to prevent JIT error (gh-2145) + // hasOwn isn't used here due to false negatives + // regarding Nodelist length in IE + var length = !!obj && "length" in obj && obj.length, + type = toType( obj ); + + if ( isFunction( obj ) || isWindow( obj ) ) { + return false; + } + + return type === "array" || length === 0 || + typeof length === "number" && length > 0 && ( length - 1 ) in obj; +} +var Sizzle = +/*! + * Sizzle CSS Selector Engine v2.3.6 + * https://sizzlejs.com/ + * + * Copyright JS Foundation and other contributors + * Released under the MIT license + * https://js.foundation/ + * + * Date: 2021-02-16 + */ +( function( window ) { +var i, + support, + Expr, + getText, + isXML, + tokenize, + compile, + select, + outermostContext, + sortInput, + hasDuplicate, + + // Local document vars + setDocument, + document, + docElem, + documentIsHTML, + rbuggyQSA, + rbuggyMatches, + matches, + contains, + + // Instance-specific data + expando = "sizzle" + 1 * new Date(), + preferredDoc = window.document, + dirruns = 0, + done = 0, + classCache = createCache(), + tokenCache = createCache(), + compilerCache = createCache(), + nonnativeSelectorCache = createCache(), + sortOrder = function( a, b ) { + if ( a === b ) { + hasDuplicate = true; + } + return 0; + }, + + // Instance methods + hasOwn = ( {} ).hasOwnProperty, + arr = [], + pop = arr.pop, + pushNative = arr.push, + push = arr.push, + slice = arr.slice, + + // Use a stripped-down indexOf as it's faster than native + // https://jsperf.com/thor-indexof-vs-for/5 + indexOf = function( list, elem ) { + var i = 0, + len = list.length; + for ( ; i < len; i++ ) { + if ( list[ i ] === elem ) { + return i; + } + } + return -1; + }, + + booleans = "checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|" + + "ismap|loop|multiple|open|readonly|required|scoped", + + // Regular expressions + + // http://www.w3.org/TR/css3-selectors/#whitespace + whitespace = "[\\x20\\t\\r\\n\\f]", + + // https://www.w3.org/TR/css-syntax-3/#ident-token-diagram + identifier = "(?:\\\\[\\da-fA-F]{1,6}" + whitespace + + "?|\\\\[^\\r\\n\\f]|[\\w-]|[^\0-\\x7f])+", + + // Attribute selectors: http://www.w3.org/TR/selectors/#attribute-selectors + attributes = "\\[" + whitespace + "*(" + identifier + ")(?:" + whitespace + + + // Operator (capture 2) + "*([*^$|!~]?=)" + whitespace + + + // "Attribute values must be CSS identifiers [capture 5] + // or strings [capture 3 or capture 4]" + "*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|(" + identifier + "))|)" + + whitespace + "*\\]", + + pseudos = ":(" + identifier + ")(?:\\((" + + + // To reduce the number of selectors needing tokenize in the preFilter, prefer arguments: + // 1. quoted (capture 3; capture 4 or capture 5) + "('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|" + + + // 2. simple (capture 6) + "((?:\\\\.|[^\\\\()[\\]]|" + attributes + ")*)|" + + + // 3. anything else (capture 2) + ".*" + + ")\\)|)", + + // Leading and non-escaped trailing whitespace, capturing some non-whitespace characters preceding the latter + rwhitespace = new RegExp( whitespace + "+", "g" ), + rtrim = new RegExp( "^" + whitespace + "+|((?:^|[^\\\\])(?:\\\\.)*)" + + whitespace + "+$", "g" ), + + rcomma = new RegExp( "^" + whitespace + "*," + whitespace + "*" ), + rcombinators = new RegExp( "^" + whitespace + "*([>+~]|" + whitespace + ")" + whitespace + + "*" ), + rdescend = new RegExp( whitespace + "|>" ), + + rpseudo = new RegExp( pseudos ), + ridentifier = new RegExp( "^" + identifier + "$" ), + + matchExpr = { + "ID": new RegExp( "^#(" + identifier + ")" ), + "CLASS": new RegExp( "^\\.(" + identifier + ")" ), + "TAG": new RegExp( "^(" + identifier + "|[*])" ), + "ATTR": new RegExp( "^" + attributes ), + "PSEUDO": new RegExp( "^" + pseudos ), + "CHILD": new RegExp( "^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\(" + + whitespace + "*(even|odd|(([+-]|)(\\d*)n|)" + whitespace + "*(?:([+-]|)" + + whitespace + "*(\\d+)|))" + whitespace + "*\\)|)", "i" ), + "bool": new RegExp( "^(?:" + booleans + ")$", "i" ), + + // For use in libraries implementing .is() + // We use this for POS matching in `select` + "needsContext": new RegExp( "^" + whitespace + + "*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\(" + whitespace + + "*((?:-\\d)?\\d*)" + whitespace + "*\\)|)(?=[^-]|$)", "i" ) + }, + + rhtml = /HTML$/i, + rinputs = /^(?:input|select|textarea|button)$/i, + rheader = /^h\d$/i, + + rnative = /^[^{]+\{\s*\[native \w/, + + // Easily-parseable/retrievable ID or TAG or CLASS selectors + rquickExpr = /^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/, + + rsibling = /[+~]/, + + // CSS escapes + // http://www.w3.org/TR/CSS21/syndata.html#escaped-characters + runescape = new RegExp( "\\\\[\\da-fA-F]{1,6}" + whitespace + "?|\\\\([^\\r\\n\\f])", "g" ), + funescape = function( escape, nonHex ) { + var high = "0x" + escape.slice( 1 ) - 0x10000; + + return nonHex ? + + // Strip the backslash prefix from a non-hex escape sequence + nonHex : + + // Replace a hexadecimal escape sequence with the encoded Unicode code point + // Support: IE <=11+ + // For values outside the Basic Multilingual Plane (BMP), manually construct a + // surrogate pair + high < 0 ? + String.fromCharCode( high + 0x10000 ) : + String.fromCharCode( high >> 10 | 0xD800, high & 0x3FF | 0xDC00 ); + }, + + // CSS string/identifier serialization + // https://drafts.csswg.org/cssom/#common-serializing-idioms + rcssescape = /([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g, + fcssescape = function( ch, asCodePoint ) { + if ( asCodePoint ) { + + // U+0000 NULL becomes U+FFFD REPLACEMENT CHARACTER + if ( ch === "\0" ) { + return "\uFFFD"; + } + + // Control characters and (dependent upon position) numbers get escaped as code points + return ch.slice( 0, -1 ) + "\\" + + ch.charCodeAt( ch.length - 1 ).toString( 16 ) + " "; + } + + // Other potentially-special ASCII characters get backslash-escaped + return "\\" + ch; + }, + + // Used for iframes + // See setDocument() + // Removing the function wrapper causes a "Permission Denied" + // error in IE + unloadHandler = function() { + setDocument(); + }, + + inDisabledFieldset = addCombinator( + function( elem ) { + return elem.disabled === true && elem.nodeName.toLowerCase() === "fieldset"; + }, + { dir: "parentNode", next: "legend" } + ); + +// Optimize for push.apply( _, NodeList ) +try { + push.apply( + ( arr = slice.call( preferredDoc.childNodes ) ), + preferredDoc.childNodes + ); + + // Support: Android<4.0 + // Detect silently failing push.apply + // eslint-disable-next-line no-unused-expressions + arr[ preferredDoc.childNodes.length ].nodeType; +} catch ( e ) { + push = { apply: arr.length ? + + // Leverage slice if possible + function( target, els ) { + pushNative.apply( target, slice.call( els ) ); + } : + + // Support: IE<9 + // Otherwise append directly + function( target, els ) { + var j = target.length, + i = 0; + + // Can't trust NodeList.length + while ( ( target[ j++ ] = els[ i++ ] ) ) {} + target.length = j - 1; + } + }; +} + +function Sizzle( selector, context, results, seed ) { + var m, i, elem, nid, match, groups, newSelector, + newContext = context && context.ownerDocument, + + // nodeType defaults to 9, since context defaults to document + nodeType = context ? context.nodeType : 9; + + results = results || []; + + // Return early from calls with invalid selector or context + if ( typeof selector !== "string" || !selector || + nodeType !== 1 && nodeType !== 9 && nodeType !== 11 ) { + + return results; + } + + // Try to shortcut find operations (as opposed to filters) in HTML documents + if ( !seed ) { + setDocument( context ); + context = context || document; + + if ( documentIsHTML ) { + + // If the selector is sufficiently simple, try using a "get*By*" DOM method + // (excepting DocumentFragment context, where the methods don't exist) + if ( nodeType !== 11 && ( match = rquickExpr.exec( selector ) ) ) { + + // ID selector + if ( ( m = match[ 1 ] ) ) { + + // Document context + if ( nodeType === 9 ) { + if ( ( elem = context.getElementById( m ) ) ) { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( elem.id === m ) { + results.push( elem ); + return results; + } + } else { + return results; + } + + // Element context + } else { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( newContext && ( elem = newContext.getElementById( m ) ) && + contains( context, elem ) && + elem.id === m ) { + + results.push( elem ); + return results; + } + } + + // Type selector + } else if ( match[ 2 ] ) { + push.apply( results, context.getElementsByTagName( selector ) ); + return results; + + // Class selector + } else if ( ( m = match[ 3 ] ) && support.getElementsByClassName && + context.getElementsByClassName ) { + + push.apply( results, context.getElementsByClassName( m ) ); + return results; + } + } + + // Take advantage of querySelectorAll + if ( support.qsa && + !nonnativeSelectorCache[ selector + " " ] && + ( !rbuggyQSA || !rbuggyQSA.test( selector ) ) && + + // Support: IE 8 only + // Exclude object elements + ( nodeType !== 1 || context.nodeName.toLowerCase() !== "object" ) ) { + + newSelector = selector; + newContext = context; + + // qSA considers elements outside a scoping root when evaluating child or + // descendant combinators, which is not what we want. + // In such cases, we work around the behavior by prefixing every selector in the + // list with an ID selector referencing the scope context. + // The technique has to be used as well when a leading combinator is used + // as such selectors are not recognized by querySelectorAll. + // Thanks to Andrew Dupont for this technique. + if ( nodeType === 1 && + ( rdescend.test( selector ) || rcombinators.test( selector ) ) ) { + + // Expand context for sibling selectors + newContext = rsibling.test( selector ) && testContext( context.parentNode ) || + context; + + // We can use :scope instead of the ID hack if the browser + // supports it & if we're not changing the context. + if ( newContext !== context || !support.scope ) { + + // Capture the context ID, setting it first if necessary + if ( ( nid = context.getAttribute( "id" ) ) ) { + nid = nid.replace( rcssescape, fcssescape ); + } else { + context.setAttribute( "id", ( nid = expando ) ); + } + } + + // Prefix every selector in the list + groups = tokenize( selector ); + i = groups.length; + while ( i-- ) { + groups[ i ] = ( nid ? "#" + nid : ":scope" ) + " " + + toSelector( groups[ i ] ); + } + newSelector = groups.join( "," ); + } + + try { + push.apply( results, + newContext.querySelectorAll( newSelector ) + ); + return results; + } catch ( qsaError ) { + nonnativeSelectorCache( selector, true ); + } finally { + if ( nid === expando ) { + context.removeAttribute( "id" ); + } + } + } + } + } + + // All others + return select( selector.replace( rtrim, "$1" ), context, results, seed ); +} + +/** + * Create key-value caches of limited size + * @returns {function(string, object)} Returns the Object data after storing it on itself with + * property name the (space-suffixed) string and (if the cache is larger than Expr.cacheLength) + * deleting the oldest entry + */ +function createCache() { + var keys = []; + + function cache( key, value ) { + + // Use (key + " ") to avoid collision with native prototype properties (see Issue #157) + if ( keys.push( key + " " ) > Expr.cacheLength ) { + + // Only keep the most recent entries + delete cache[ keys.shift() ]; + } + return ( cache[ key + " " ] = value ); + } + return cache; +} + +/** + * Mark a function for special use by Sizzle + * @param {Function} fn The function to mark + */ +function markFunction( fn ) { + fn[ expando ] = true; + return fn; +} + +/** + * Support testing using an element + * @param {Function} fn Passed the created element and returns a boolean result + */ +function assert( fn ) { + var el = document.createElement( "fieldset" ); + + try { + return !!fn( el ); + } catch ( e ) { + return false; + } finally { + + // Remove from its parent by default + if ( el.parentNode ) { + el.parentNode.removeChild( el ); + } + + // release memory in IE + el = null; + } +} + +/** + * Adds the same handler for all of the specified attrs + * @param {String} attrs Pipe-separated list of attributes + * @param {Function} handler The method that will be applied + */ +function addHandle( attrs, handler ) { + var arr = attrs.split( "|" ), + i = arr.length; + + while ( i-- ) { + Expr.attrHandle[ arr[ i ] ] = handler; + } +} + +/** + * Checks document order of two siblings + * @param {Element} a + * @param {Element} b + * @returns {Number} Returns less than 0 if a precedes b, greater than 0 if a follows b + */ +function siblingCheck( a, b ) { + var cur = b && a, + diff = cur && a.nodeType === 1 && b.nodeType === 1 && + a.sourceIndex - b.sourceIndex; + + // Use IE sourceIndex if available on both nodes + if ( diff ) { + return diff; + } + + // Check if b follows a + if ( cur ) { + while ( ( cur = cur.nextSibling ) ) { + if ( cur === b ) { + return -1; + } + } + } + + return a ? 1 : -1; +} + +/** + * Returns a function to use in pseudos for input types + * @param {String} type + */ +function createInputPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for buttons + * @param {String} type + */ +function createButtonPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return ( name === "input" || name === "button" ) && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for :enabled/:disabled + * @param {Boolean} disabled true for :disabled; false for :enabled + */ +function createDisabledPseudo( disabled ) { + + // Known :disabled false positives: fieldset[disabled] > legend:nth-of-type(n+2) :can-disable + return function( elem ) { + + // Only certain elements can match :enabled or :disabled + // https://html.spec.whatwg.org/multipage/scripting.html#selector-enabled + // https://html.spec.whatwg.org/multipage/scripting.html#selector-disabled + if ( "form" in elem ) { + + // Check for inherited disabledness on relevant non-disabled elements: + // * listed form-associated elements in a disabled fieldset + // https://html.spec.whatwg.org/multipage/forms.html#category-listed + // https://html.spec.whatwg.org/multipage/forms.html#concept-fe-disabled + // * option elements in a disabled optgroup + // https://html.spec.whatwg.org/multipage/forms.html#concept-option-disabled + // All such elements have a "form" property. + if ( elem.parentNode && elem.disabled === false ) { + + // Option elements defer to a parent optgroup if present + if ( "label" in elem ) { + if ( "label" in elem.parentNode ) { + return elem.parentNode.disabled === disabled; + } else { + return elem.disabled === disabled; + } + } + + // Support: IE 6 - 11 + // Use the isDisabled shortcut property to check for disabled fieldset ancestors + return elem.isDisabled === disabled || + + // Where there is no isDisabled, check manually + /* jshint -W018 */ + elem.isDisabled !== !disabled && + inDisabledFieldset( elem ) === disabled; + } + + return elem.disabled === disabled; + + // Try to winnow out elements that can't be disabled before trusting the disabled property. + // Some victims get caught in our net (label, legend, menu, track), but it shouldn't + // even exist on them, let alone have a boolean value. + } else if ( "label" in elem ) { + return elem.disabled === disabled; + } + + // Remaining elements are neither :enabled nor :disabled + return false; + }; +} + +/** + * Returns a function to use in pseudos for positionals + * @param {Function} fn + */ +function createPositionalPseudo( fn ) { + return markFunction( function( argument ) { + argument = +argument; + return markFunction( function( seed, matches ) { + var j, + matchIndexes = fn( [], seed.length, argument ), + i = matchIndexes.length; + + // Match elements found at the specified indexes + while ( i-- ) { + if ( seed[ ( j = matchIndexes[ i ] ) ] ) { + seed[ j ] = !( matches[ j ] = seed[ j ] ); + } + } + } ); + } ); +} + +/** + * Checks a node for validity as a Sizzle context + * @param {Element|Object=} context + * @returns {Element|Object|Boolean} The input node if acceptable, otherwise a falsy value + */ +function testContext( context ) { + return context && typeof context.getElementsByTagName !== "undefined" && context; +} + +// Expose support vars for convenience +support = Sizzle.support = {}; + +/** + * Detects XML nodes + * @param {Element|Object} elem An element or a document + * @returns {Boolean} True iff elem is a non-HTML XML node + */ +isXML = Sizzle.isXML = function( elem ) { + var namespace = elem && elem.namespaceURI, + docElem = elem && ( elem.ownerDocument || elem ).documentElement; + + // Support: IE <=8 + // Assume HTML when documentElement doesn't yet exist, such as inside loading iframes + // https://bugs.jquery.com/ticket/4833 + return !rhtml.test( namespace || docElem && docElem.nodeName || "HTML" ); +}; + +/** + * Sets document-related variables once based on the current document + * @param {Element|Object} [doc] An element or document object to use to set the document + * @returns {Object} Returns the current document + */ +setDocument = Sizzle.setDocument = function( node ) { + var hasCompare, subWindow, + doc = node ? node.ownerDocument || node : preferredDoc; + + // Return early if doc is invalid or already selected + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( doc == document || doc.nodeType !== 9 || !doc.documentElement ) { + return document; + } + + // Update global variables + document = doc; + docElem = document.documentElement; + documentIsHTML = !isXML( document ); + + // Support: IE 9 - 11+, Edge 12 - 18+ + // Accessing iframe documents after unload throws "permission denied" errors (jQuery #13936) + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( preferredDoc != document && + ( subWindow = document.defaultView ) && subWindow.top !== subWindow ) { + + // Support: IE 11, Edge + if ( subWindow.addEventListener ) { + subWindow.addEventListener( "unload", unloadHandler, false ); + + // Support: IE 9 - 10 only + } else if ( subWindow.attachEvent ) { + subWindow.attachEvent( "onunload", unloadHandler ); + } + } + + // Support: IE 8 - 11+, Edge 12 - 18+, Chrome <=16 - 25 only, Firefox <=3.6 - 31 only, + // Safari 4 - 5 only, Opera <=11.6 - 12.x only + // IE/Edge & older browsers don't support the :scope pseudo-class. + // Support: Safari 6.0 only + // Safari 6.0 supports :scope but it's an alias of :root there. + support.scope = assert( function( el ) { + docElem.appendChild( el ).appendChild( document.createElement( "div" ) ); + return typeof el.querySelectorAll !== "undefined" && + !el.querySelectorAll( ":scope fieldset div" ).length; + } ); + + /* Attributes + ---------------------------------------------------------------------- */ + + // Support: IE<8 + // Verify that getAttribute really returns attributes and not properties + // (excepting IE8 booleans) + support.attributes = assert( function( el ) { + el.className = "i"; + return !el.getAttribute( "className" ); + } ); + + /* getElement(s)By* + ---------------------------------------------------------------------- */ + + // Check if getElementsByTagName("*") returns only elements + support.getElementsByTagName = assert( function( el ) { + el.appendChild( document.createComment( "" ) ); + return !el.getElementsByTagName( "*" ).length; + } ); + + // Support: IE<9 + support.getElementsByClassName = rnative.test( document.getElementsByClassName ); + + // Support: IE<10 + // Check if getElementById returns elements by name + // The broken getElementById methods don't pick up programmatically-set names, + // so use a roundabout getElementsByName test + support.getById = assert( function( el ) { + docElem.appendChild( el ).id = expando; + return !document.getElementsByName || !document.getElementsByName( expando ).length; + } ); + + // ID filter and find + if ( support.getById ) { + Expr.filter[ "ID" ] = function( id ) { + var attrId = id.replace( runescape, funescape ); + return function( elem ) { + return elem.getAttribute( "id" ) === attrId; + }; + }; + Expr.find[ "ID" ] = function( id, context ) { + if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { + var elem = context.getElementById( id ); + return elem ? [ elem ] : []; + } + }; + } else { + Expr.filter[ "ID" ] = function( id ) { + var attrId = id.replace( runescape, funescape ); + return function( elem ) { + var node = typeof elem.getAttributeNode !== "undefined" && + elem.getAttributeNode( "id" ); + return node && node.value === attrId; + }; + }; + + // Support: IE 6 - 7 only + // getElementById is not reliable as a find shortcut + Expr.find[ "ID" ] = function( id, context ) { + if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { + var node, i, elems, + elem = context.getElementById( id ); + + if ( elem ) { + + // Verify the id attribute + node = elem.getAttributeNode( "id" ); + if ( node && node.value === id ) { + return [ elem ]; + } + + // Fall back on getElementsByName + elems = context.getElementsByName( id ); + i = 0; + while ( ( elem = elems[ i++ ] ) ) { + node = elem.getAttributeNode( "id" ); + if ( node && node.value === id ) { + return [ elem ]; + } + } + } + + return []; + } + }; + } + + // Tag + Expr.find[ "TAG" ] = support.getElementsByTagName ? + function( tag, context ) { + if ( typeof context.getElementsByTagName !== "undefined" ) { + return context.getElementsByTagName( tag ); + + // DocumentFragment nodes don't have gEBTN + } else if ( support.qsa ) { + return context.querySelectorAll( tag ); + } + } : + + function( tag, context ) { + var elem, + tmp = [], + i = 0, + + // By happy coincidence, a (broken) gEBTN appears on DocumentFragment nodes too + results = context.getElementsByTagName( tag ); + + // Filter out possible comments + if ( tag === "*" ) { + while ( ( elem = results[ i++ ] ) ) { + if ( elem.nodeType === 1 ) { + tmp.push( elem ); + } + } + + return tmp; + } + return results; + }; + + // Class + Expr.find[ "CLASS" ] = support.getElementsByClassName && function( className, context ) { + if ( typeof context.getElementsByClassName !== "undefined" && documentIsHTML ) { + return context.getElementsByClassName( className ); + } + }; + + /* QSA/matchesSelector + ---------------------------------------------------------------------- */ + + // QSA and matchesSelector support + + // matchesSelector(:active) reports false when true (IE9/Opera 11.5) + rbuggyMatches = []; + + // qSa(:focus) reports false when true (Chrome 21) + // We allow this because of a bug in IE8/9 that throws an error + // whenever `document.activeElement` is accessed on an iframe + // So, we allow :focus to pass through QSA all the time to avoid the IE error + // See https://bugs.jquery.com/ticket/13378 + rbuggyQSA = []; + + if ( ( support.qsa = rnative.test( document.querySelectorAll ) ) ) { + + // Build QSA regex + // Regex strategy adopted from Diego Perini + assert( function( el ) { + + var input; + + // Select is set to empty string on purpose + // This is to test IE's treatment of not explicitly + // setting a boolean content attribute, + // since its presence should be enough + // https://bugs.jquery.com/ticket/12359 + docElem.appendChild( el ).innerHTML = "" + + ""; + + // Support: IE8, Opera 11-12.16 + // Nothing should be selected when empty strings follow ^= or $= or *= + // The test attribute must be unknown in Opera but "safe" for WinRT + // https://msdn.microsoft.com/en-us/library/ie/hh465388.aspx#attribute_section + if ( el.querySelectorAll( "[msallowcapture^='']" ).length ) { + rbuggyQSA.push( "[*^$]=" + whitespace + "*(?:''|\"\")" ); + } + + // Support: IE8 + // Boolean attributes and "value" are not treated correctly + if ( !el.querySelectorAll( "[selected]" ).length ) { + rbuggyQSA.push( "\\[" + whitespace + "*(?:value|" + booleans + ")" ); + } + + // Support: Chrome<29, Android<4.4, Safari<7.0+, iOS<7.0+, PhantomJS<1.9.8+ + if ( !el.querySelectorAll( "[id~=" + expando + "-]" ).length ) { + rbuggyQSA.push( "~=" ); + } + + // Support: IE 11+, Edge 15 - 18+ + // IE 11/Edge don't find elements on a `[name='']` query in some cases. + // Adding a temporary attribute to the document before the selection works + // around the issue. + // Interestingly, IE 10 & older don't seem to have the issue. + input = document.createElement( "input" ); + input.setAttribute( "name", "" ); + el.appendChild( input ); + if ( !el.querySelectorAll( "[name='']" ).length ) { + rbuggyQSA.push( "\\[" + whitespace + "*name" + whitespace + "*=" + + whitespace + "*(?:''|\"\")" ); + } + + // Webkit/Opera - :checked should return selected option elements + // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked + // IE8 throws error here and will not see later tests + if ( !el.querySelectorAll( ":checked" ).length ) { + rbuggyQSA.push( ":checked" ); + } + + // Support: Safari 8+, iOS 8+ + // https://bugs.webkit.org/show_bug.cgi?id=136851 + // In-page `selector#id sibling-combinator selector` fails + if ( !el.querySelectorAll( "a#" + expando + "+*" ).length ) { + rbuggyQSA.push( ".#.+[+~]" ); + } + + // Support: Firefox <=3.6 - 5 only + // Old Firefox doesn't throw on a badly-escaped identifier. + el.querySelectorAll( "\\\f" ); + rbuggyQSA.push( "[\\r\\n\\f]" ); + } ); + + assert( function( el ) { + el.innerHTML = "" + + ""; + + // Support: Windows 8 Native Apps + // The type and name attributes are restricted during .innerHTML assignment + var input = document.createElement( "input" ); + input.setAttribute( "type", "hidden" ); + el.appendChild( input ).setAttribute( "name", "D" ); + + // Support: IE8 + // Enforce case-sensitivity of name attribute + if ( el.querySelectorAll( "[name=d]" ).length ) { + rbuggyQSA.push( "name" + whitespace + "*[*^$|!~]?=" ); + } + + // FF 3.5 - :enabled/:disabled and hidden elements (hidden elements are still enabled) + // IE8 throws error here and will not see later tests + if ( el.querySelectorAll( ":enabled" ).length !== 2 ) { + rbuggyQSA.push( ":enabled", ":disabled" ); + } + + // Support: IE9-11+ + // IE's :disabled selector does not pick up the children of disabled fieldsets + docElem.appendChild( el ).disabled = true; + if ( el.querySelectorAll( ":disabled" ).length !== 2 ) { + rbuggyQSA.push( ":enabled", ":disabled" ); + } + + // Support: Opera 10 - 11 only + // Opera 10-11 does not throw on post-comma invalid pseudos + el.querySelectorAll( "*,:x" ); + rbuggyQSA.push( ",.*:" ); + } ); + } + + if ( ( support.matchesSelector = rnative.test( ( matches = docElem.matches || + docElem.webkitMatchesSelector || + docElem.mozMatchesSelector || + docElem.oMatchesSelector || + docElem.msMatchesSelector ) ) ) ) { + + assert( function( el ) { + + // Check to see if it's possible to do matchesSelector + // on a disconnected node (IE 9) + support.disconnectedMatch = matches.call( el, "*" ); + + // This should fail with an exception + // Gecko does not error, returns false instead + matches.call( el, "[s!='']:x" ); + rbuggyMatches.push( "!=", pseudos ); + } ); + } + + rbuggyQSA = rbuggyQSA.length && new RegExp( rbuggyQSA.join( "|" ) ); + rbuggyMatches = rbuggyMatches.length && new RegExp( rbuggyMatches.join( "|" ) ); + + /* Contains + ---------------------------------------------------------------------- */ + hasCompare = rnative.test( docElem.compareDocumentPosition ); + + // Element contains another + // Purposefully self-exclusive + // As in, an element does not contain itself + contains = hasCompare || rnative.test( docElem.contains ) ? + function( a, b ) { + var adown = a.nodeType === 9 ? a.documentElement : a, + bup = b && b.parentNode; + return a === bup || !!( bup && bup.nodeType === 1 && ( + adown.contains ? + adown.contains( bup ) : + a.compareDocumentPosition && a.compareDocumentPosition( bup ) & 16 + ) ); + } : + function( a, b ) { + if ( b ) { + while ( ( b = b.parentNode ) ) { + if ( b === a ) { + return true; + } + } + } + return false; + }; + + /* Sorting + ---------------------------------------------------------------------- */ + + // Document order sorting + sortOrder = hasCompare ? + function( a, b ) { + + // Flag for duplicate removal + if ( a === b ) { + hasDuplicate = true; + return 0; + } + + // Sort on method existence if only one input has compareDocumentPosition + var compare = !a.compareDocumentPosition - !b.compareDocumentPosition; + if ( compare ) { + return compare; + } + + // Calculate position if both inputs belong to the same document + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + compare = ( a.ownerDocument || a ) == ( b.ownerDocument || b ) ? + a.compareDocumentPosition( b ) : + + // Otherwise we know they are disconnected + 1; + + // Disconnected nodes + if ( compare & 1 || + ( !support.sortDetached && b.compareDocumentPosition( a ) === compare ) ) { + + // Choose the first element that is related to our preferred document + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( a == document || a.ownerDocument == preferredDoc && + contains( preferredDoc, a ) ) { + return -1; + } + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( b == document || b.ownerDocument == preferredDoc && + contains( preferredDoc, b ) ) { + return 1; + } + + // Maintain original order + return sortInput ? + ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : + 0; + } + + return compare & 4 ? -1 : 1; + } : + function( a, b ) { + + // Exit early if the nodes are identical + if ( a === b ) { + hasDuplicate = true; + return 0; + } + + var cur, + i = 0, + aup = a.parentNode, + bup = b.parentNode, + ap = [ a ], + bp = [ b ]; + + // Parentless nodes are either documents or disconnected + if ( !aup || !bup ) { + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + /* eslint-disable eqeqeq */ + return a == document ? -1 : + b == document ? 1 : + /* eslint-enable eqeqeq */ + aup ? -1 : + bup ? 1 : + sortInput ? + ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : + 0; + + // If the nodes are siblings, we can do a quick check + } else if ( aup === bup ) { + return siblingCheck( a, b ); + } + + // Otherwise we need full lists of their ancestors for comparison + cur = a; + while ( ( cur = cur.parentNode ) ) { + ap.unshift( cur ); + } + cur = b; + while ( ( cur = cur.parentNode ) ) { + bp.unshift( cur ); + } + + // Walk down the tree looking for a discrepancy + while ( ap[ i ] === bp[ i ] ) { + i++; + } + + return i ? + + // Do a sibling check if the nodes have a common ancestor + siblingCheck( ap[ i ], bp[ i ] ) : + + // Otherwise nodes in our document sort first + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + /* eslint-disable eqeqeq */ + ap[ i ] == preferredDoc ? -1 : + bp[ i ] == preferredDoc ? 1 : + /* eslint-enable eqeqeq */ + 0; + }; + + return document; +}; + +Sizzle.matches = function( expr, elements ) { + return Sizzle( expr, null, null, elements ); +}; + +Sizzle.matchesSelector = function( elem, expr ) { + setDocument( elem ); + + if ( support.matchesSelector && documentIsHTML && + !nonnativeSelectorCache[ expr + " " ] && + ( !rbuggyMatches || !rbuggyMatches.test( expr ) ) && + ( !rbuggyQSA || !rbuggyQSA.test( expr ) ) ) { + + try { + var ret = matches.call( elem, expr ); + + // IE 9's matchesSelector returns false on disconnected nodes + if ( ret || support.disconnectedMatch || + + // As well, disconnected nodes are said to be in a document + // fragment in IE 9 + elem.document && elem.document.nodeType !== 11 ) { + return ret; + } + } catch ( e ) { + nonnativeSelectorCache( expr, true ); + } + } + + return Sizzle( expr, document, null, [ elem ] ).length > 0; +}; + +Sizzle.contains = function( context, elem ) { + + // Set document vars if needed + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( ( context.ownerDocument || context ) != document ) { + setDocument( context ); + } + return contains( context, elem ); +}; + +Sizzle.attr = function( elem, name ) { + + // Set document vars if needed + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( ( elem.ownerDocument || elem ) != document ) { + setDocument( elem ); + } + + var fn = Expr.attrHandle[ name.toLowerCase() ], + + // Don't get fooled by Object.prototype properties (jQuery #13807) + val = fn && hasOwn.call( Expr.attrHandle, name.toLowerCase() ) ? + fn( elem, name, !documentIsHTML ) : + undefined; + + return val !== undefined ? + val : + support.attributes || !documentIsHTML ? + elem.getAttribute( name ) : + ( val = elem.getAttributeNode( name ) ) && val.specified ? + val.value : + null; +}; + +Sizzle.escape = function( sel ) { + return ( sel + "" ).replace( rcssescape, fcssescape ); +}; + +Sizzle.error = function( msg ) { + throw new Error( "Syntax error, unrecognized expression: " + msg ); +}; + +/** + * Document sorting and removing duplicates + * @param {ArrayLike} results + */ +Sizzle.uniqueSort = function( results ) { + var elem, + duplicates = [], + j = 0, + i = 0; + + // Unless we *know* we can detect duplicates, assume their presence + hasDuplicate = !support.detectDuplicates; + sortInput = !support.sortStable && results.slice( 0 ); + results.sort( sortOrder ); + + if ( hasDuplicate ) { + while ( ( elem = results[ i++ ] ) ) { + if ( elem === results[ i ] ) { + j = duplicates.push( i ); + } + } + while ( j-- ) { + results.splice( duplicates[ j ], 1 ); + } + } + + // Clear input after sorting to release objects + // See https://github.com/jquery/sizzle/pull/225 + sortInput = null; + + return results; +}; + +/** + * Utility function for retrieving the text value of an array of DOM nodes + * @param {Array|Element} elem + */ +getText = Sizzle.getText = function( elem ) { + var node, + ret = "", + i = 0, + nodeType = elem.nodeType; + + if ( !nodeType ) { + + // If no nodeType, this is expected to be an array + while ( ( node = elem[ i++ ] ) ) { + + // Do not traverse comment nodes + ret += getText( node ); + } + } else if ( nodeType === 1 || nodeType === 9 || nodeType === 11 ) { + + // Use textContent for elements + // innerText usage removed for consistency of new lines (jQuery #11153) + if ( typeof elem.textContent === "string" ) { + return elem.textContent; + } else { + + // Traverse its children + for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { + ret += getText( elem ); + } + } + } else if ( nodeType === 3 || nodeType === 4 ) { + return elem.nodeValue; + } + + // Do not include comment or processing instruction nodes + + return ret; +}; + +Expr = Sizzle.selectors = { + + // Can be adjusted by the user + cacheLength: 50, + + createPseudo: markFunction, + + match: matchExpr, + + attrHandle: {}, + + find: {}, + + relative: { + ">": { dir: "parentNode", first: true }, + " ": { dir: "parentNode" }, + "+": { dir: "previousSibling", first: true }, + "~": { dir: "previousSibling" } + }, + + preFilter: { + "ATTR": function( match ) { + match[ 1 ] = match[ 1 ].replace( runescape, funescape ); + + // Move the given value to match[3] whether quoted or unquoted + match[ 3 ] = ( match[ 3 ] || match[ 4 ] || + match[ 5 ] || "" ).replace( runescape, funescape ); + + if ( match[ 2 ] === "~=" ) { + match[ 3 ] = " " + match[ 3 ] + " "; + } + + return match.slice( 0, 4 ); + }, + + "CHILD": function( match ) { + + /* matches from matchExpr["CHILD"] + 1 type (only|nth|...) + 2 what (child|of-type) + 3 argument (even|odd|\d*|\d*n([+-]\d+)?|...) + 4 xn-component of xn+y argument ([+-]?\d*n|) + 5 sign of xn-component + 6 x of xn-component + 7 sign of y-component + 8 y of y-component + */ + match[ 1 ] = match[ 1 ].toLowerCase(); + + if ( match[ 1 ].slice( 0, 3 ) === "nth" ) { + + // nth-* requires argument + if ( !match[ 3 ] ) { + Sizzle.error( match[ 0 ] ); + } + + // numeric x and y parameters for Expr.filter.CHILD + // remember that false/true cast respectively to 0/1 + match[ 4 ] = +( match[ 4 ] ? + match[ 5 ] + ( match[ 6 ] || 1 ) : + 2 * ( match[ 3 ] === "even" || match[ 3 ] === "odd" ) ); + match[ 5 ] = +( ( match[ 7 ] + match[ 8 ] ) || match[ 3 ] === "odd" ); + + // other types prohibit arguments + } else if ( match[ 3 ] ) { + Sizzle.error( match[ 0 ] ); + } + + return match; + }, + + "PSEUDO": function( match ) { + var excess, + unquoted = !match[ 6 ] && match[ 2 ]; + + if ( matchExpr[ "CHILD" ].test( match[ 0 ] ) ) { + return null; + } + + // Accept quoted arguments as-is + if ( match[ 3 ] ) { + match[ 2 ] = match[ 4 ] || match[ 5 ] || ""; + + // Strip excess characters from unquoted arguments + } else if ( unquoted && rpseudo.test( unquoted ) && + + // Get excess from tokenize (recursively) + ( excess = tokenize( unquoted, true ) ) && + + // advance to the next closing parenthesis + ( excess = unquoted.indexOf( ")", unquoted.length - excess ) - unquoted.length ) ) { + + // excess is a negative index + match[ 0 ] = match[ 0 ].slice( 0, excess ); + match[ 2 ] = unquoted.slice( 0, excess ); + } + + // Return only captures needed by the pseudo filter method (type and argument) + return match.slice( 0, 3 ); + } + }, + + filter: { + + "TAG": function( nodeNameSelector ) { + var nodeName = nodeNameSelector.replace( runescape, funescape ).toLowerCase(); + return nodeNameSelector === "*" ? + function() { + return true; + } : + function( elem ) { + return elem.nodeName && elem.nodeName.toLowerCase() === nodeName; + }; + }, + + "CLASS": function( className ) { + var pattern = classCache[ className + " " ]; + + return pattern || + ( pattern = new RegExp( "(^|" + whitespace + + ")" + className + "(" + whitespace + "|$)" ) ) && classCache( + className, function( elem ) { + return pattern.test( + typeof elem.className === "string" && elem.className || + typeof elem.getAttribute !== "undefined" && + elem.getAttribute( "class" ) || + "" + ); + } ); + }, + + "ATTR": function( name, operator, check ) { + return function( elem ) { + var result = Sizzle.attr( elem, name ); + + if ( result == null ) { + return operator === "!="; + } + if ( !operator ) { + return true; + } + + result += ""; + + /* eslint-disable max-len */ + + return operator === "=" ? result === check : + operator === "!=" ? result !== check : + operator === "^=" ? check && result.indexOf( check ) === 0 : + operator === "*=" ? check && result.indexOf( check ) > -1 : + operator === "$=" ? check && result.slice( -check.length ) === check : + operator === "~=" ? ( " " + result.replace( rwhitespace, " " ) + " " ).indexOf( check ) > -1 : + operator === "|=" ? result === check || result.slice( 0, check.length + 1 ) === check + "-" : + false; + /* eslint-enable max-len */ + + }; + }, + + "CHILD": function( type, what, _argument, first, last ) { + var simple = type.slice( 0, 3 ) !== "nth", + forward = type.slice( -4 ) !== "last", + ofType = what === "of-type"; + + return first === 1 && last === 0 ? + + // Shortcut for :nth-*(n) + function( elem ) { + return !!elem.parentNode; + } : + + function( elem, _context, xml ) { + var cache, uniqueCache, outerCache, node, nodeIndex, start, + dir = simple !== forward ? "nextSibling" : "previousSibling", + parent = elem.parentNode, + name = ofType && elem.nodeName.toLowerCase(), + useCache = !xml && !ofType, + diff = false; + + if ( parent ) { + + // :(first|last|only)-(child|of-type) + if ( simple ) { + while ( dir ) { + node = elem; + while ( ( node = node[ dir ] ) ) { + if ( ofType ? + node.nodeName.toLowerCase() === name : + node.nodeType === 1 ) { + + return false; + } + } + + // Reverse direction for :only-* (if we haven't yet done so) + start = dir = type === "only" && !start && "nextSibling"; + } + return true; + } + + start = [ forward ? parent.firstChild : parent.lastChild ]; + + // non-xml :nth-child(...) stores cache data on `parent` + if ( forward && useCache ) { + + // Seek `elem` from a previously-cached index + + // ...in a gzip-friendly way + node = parent; + outerCache = node[ expando ] || ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + cache = uniqueCache[ type ] || []; + nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; + diff = nodeIndex && cache[ 2 ]; + node = nodeIndex && parent.childNodes[ nodeIndex ]; + + while ( ( node = ++nodeIndex && node && node[ dir ] || + + // Fallback to seeking `elem` from the start + ( diff = nodeIndex = 0 ) || start.pop() ) ) { + + // When found, cache indexes on `parent` and break + if ( node.nodeType === 1 && ++diff && node === elem ) { + uniqueCache[ type ] = [ dirruns, nodeIndex, diff ]; + break; + } + } + + } else { + + // Use previously-cached element index if available + if ( useCache ) { + + // ...in a gzip-friendly way + node = elem; + outerCache = node[ expando ] || ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + cache = uniqueCache[ type ] || []; + nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; + diff = nodeIndex; + } + + // xml :nth-child(...) + // or :nth-last-child(...) or :nth(-last)?-of-type(...) + if ( diff === false ) { + + // Use the same loop as above to seek `elem` from the start + while ( ( node = ++nodeIndex && node && node[ dir ] || + ( diff = nodeIndex = 0 ) || start.pop() ) ) { + + if ( ( ofType ? + node.nodeName.toLowerCase() === name : + node.nodeType === 1 ) && + ++diff ) { + + // Cache the index of each encountered element + if ( useCache ) { + outerCache = node[ expando ] || + ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + uniqueCache[ type ] = [ dirruns, diff ]; + } + + if ( node === elem ) { + break; + } + } + } + } + } + + // Incorporate the offset, then check against cycle size + diff -= last; + return diff === first || ( diff % first === 0 && diff / first >= 0 ); + } + }; + }, + + "PSEUDO": function( pseudo, argument ) { + + // pseudo-class names are case-insensitive + // http://www.w3.org/TR/selectors/#pseudo-classes + // Prioritize by case sensitivity in case custom pseudos are added with uppercase letters + // Remember that setFilters inherits from pseudos + var args, + fn = Expr.pseudos[ pseudo ] || Expr.setFilters[ pseudo.toLowerCase() ] || + Sizzle.error( "unsupported pseudo: " + pseudo ); + + // The user may use createPseudo to indicate that + // arguments are needed to create the filter function + // just as Sizzle does + if ( fn[ expando ] ) { + return fn( argument ); + } + + // But maintain support for old signatures + if ( fn.length > 1 ) { + args = [ pseudo, pseudo, "", argument ]; + return Expr.setFilters.hasOwnProperty( pseudo.toLowerCase() ) ? + markFunction( function( seed, matches ) { + var idx, + matched = fn( seed, argument ), + i = matched.length; + while ( i-- ) { + idx = indexOf( seed, matched[ i ] ); + seed[ idx ] = !( matches[ idx ] = matched[ i ] ); + } + } ) : + function( elem ) { + return fn( elem, 0, args ); + }; + } + + return fn; + } + }, + + pseudos: { + + // Potentially complex pseudos + "not": markFunction( function( selector ) { + + // Trim the selector passed to compile + // to avoid treating leading and trailing + // spaces as combinators + var input = [], + results = [], + matcher = compile( selector.replace( rtrim, "$1" ) ); + + return matcher[ expando ] ? + markFunction( function( seed, matches, _context, xml ) { + var elem, + unmatched = matcher( seed, null, xml, [] ), + i = seed.length; + + // Match elements unmatched by `matcher` + while ( i-- ) { + if ( ( elem = unmatched[ i ] ) ) { + seed[ i ] = !( matches[ i ] = elem ); + } + } + } ) : + function( elem, _context, xml ) { + input[ 0 ] = elem; + matcher( input, null, xml, results ); + + // Don't keep the element (issue #299) + input[ 0 ] = null; + return !results.pop(); + }; + } ), + + "has": markFunction( function( selector ) { + return function( elem ) { + return Sizzle( selector, elem ).length > 0; + }; + } ), + + "contains": markFunction( function( text ) { + text = text.replace( runescape, funescape ); + return function( elem ) { + return ( elem.textContent || getText( elem ) ).indexOf( text ) > -1; + }; + } ), + + // "Whether an element is represented by a :lang() selector + // is based solely on the element's language value + // being equal to the identifier C, + // or beginning with the identifier C immediately followed by "-". + // The matching of C against the element's language value is performed case-insensitively. + // The identifier C does not have to be a valid language name." + // http://www.w3.org/TR/selectors/#lang-pseudo + "lang": markFunction( function( lang ) { + + // lang value must be a valid identifier + if ( !ridentifier.test( lang || "" ) ) { + Sizzle.error( "unsupported lang: " + lang ); + } + lang = lang.replace( runescape, funescape ).toLowerCase(); + return function( elem ) { + var elemLang; + do { + if ( ( elemLang = documentIsHTML ? + elem.lang : + elem.getAttribute( "xml:lang" ) || elem.getAttribute( "lang" ) ) ) { + + elemLang = elemLang.toLowerCase(); + return elemLang === lang || elemLang.indexOf( lang + "-" ) === 0; + } + } while ( ( elem = elem.parentNode ) && elem.nodeType === 1 ); + return false; + }; + } ), + + // Miscellaneous + "target": function( elem ) { + var hash = window.location && window.location.hash; + return hash && hash.slice( 1 ) === elem.id; + }, + + "root": function( elem ) { + return elem === docElem; + }, + + "focus": function( elem ) { + return elem === document.activeElement && + ( !document.hasFocus || document.hasFocus() ) && + !!( elem.type || elem.href || ~elem.tabIndex ); + }, + + // Boolean properties + "enabled": createDisabledPseudo( false ), + "disabled": createDisabledPseudo( true ), + + "checked": function( elem ) { + + // In CSS3, :checked should return both checked and selected elements + // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked + var nodeName = elem.nodeName.toLowerCase(); + return ( nodeName === "input" && !!elem.checked ) || + ( nodeName === "option" && !!elem.selected ); + }, + + "selected": function( elem ) { + + // Accessing this property makes selected-by-default + // options in Safari work properly + if ( elem.parentNode ) { + // eslint-disable-next-line no-unused-expressions + elem.parentNode.selectedIndex; + } + + return elem.selected === true; + }, + + // Contents + "empty": function( elem ) { + + // http://www.w3.org/TR/selectors/#empty-pseudo + // :empty is negated by element (1) or content nodes (text: 3; cdata: 4; entity ref: 5), + // but not by others (comment: 8; processing instruction: 7; etc.) + // nodeType < 6 works because attributes (2) do not appear as children + for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { + if ( elem.nodeType < 6 ) { + return false; + } + } + return true; + }, + + "parent": function( elem ) { + return !Expr.pseudos[ "empty" ]( elem ); + }, + + // Element/input types + "header": function( elem ) { + return rheader.test( elem.nodeName ); + }, + + "input": function( elem ) { + return rinputs.test( elem.nodeName ); + }, + + "button": function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === "button" || name === "button"; + }, + + "text": function( elem ) { + var attr; + return elem.nodeName.toLowerCase() === "input" && + elem.type === "text" && + + // Support: IE<8 + // New HTML5 attribute values (e.g., "search") appear with elem.type === "text" + ( ( attr = elem.getAttribute( "type" ) ) == null || + attr.toLowerCase() === "text" ); + }, + + // Position-in-collection + "first": createPositionalPseudo( function() { + return [ 0 ]; + } ), + + "last": createPositionalPseudo( function( _matchIndexes, length ) { + return [ length - 1 ]; + } ), + + "eq": createPositionalPseudo( function( _matchIndexes, length, argument ) { + return [ argument < 0 ? argument + length : argument ]; + } ), + + "even": createPositionalPseudo( function( matchIndexes, length ) { + var i = 0; + for ( ; i < length; i += 2 ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "odd": createPositionalPseudo( function( matchIndexes, length ) { + var i = 1; + for ( ; i < length; i += 2 ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "lt": createPositionalPseudo( function( matchIndexes, length, argument ) { + var i = argument < 0 ? + argument + length : + argument > length ? + length : + argument; + for ( ; --i >= 0; ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "gt": createPositionalPseudo( function( matchIndexes, length, argument ) { + var i = argument < 0 ? argument + length : argument; + for ( ; ++i < length; ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ) + } +}; + +Expr.pseudos[ "nth" ] = Expr.pseudos[ "eq" ]; + +// Add button/input type pseudos +for ( i in { radio: true, checkbox: true, file: true, password: true, image: true } ) { + Expr.pseudos[ i ] = createInputPseudo( i ); +} +for ( i in { submit: true, reset: true } ) { + Expr.pseudos[ i ] = createButtonPseudo( i ); +} + +// Easy API for creating new setFilters +function setFilters() {} +setFilters.prototype = Expr.filters = Expr.pseudos; +Expr.setFilters = new setFilters(); + +tokenize = Sizzle.tokenize = function( selector, parseOnly ) { + var matched, match, tokens, type, + soFar, groups, preFilters, + cached = tokenCache[ selector + " " ]; + + if ( cached ) { + return parseOnly ? 0 : cached.slice( 0 ); + } + + soFar = selector; + groups = []; + preFilters = Expr.preFilter; + + while ( soFar ) { + + // Comma and first run + if ( !matched || ( match = rcomma.exec( soFar ) ) ) { + if ( match ) { + + // Don't consume trailing commas as valid + soFar = soFar.slice( match[ 0 ].length ) || soFar; + } + groups.push( ( tokens = [] ) ); + } + + matched = false; + + // Combinators + if ( ( match = rcombinators.exec( soFar ) ) ) { + matched = match.shift(); + tokens.push( { + value: matched, + + // Cast descendant combinators to space + type: match[ 0 ].replace( rtrim, " " ) + } ); + soFar = soFar.slice( matched.length ); + } + + // Filters + for ( type in Expr.filter ) { + if ( ( match = matchExpr[ type ].exec( soFar ) ) && ( !preFilters[ type ] || + ( match = preFilters[ type ]( match ) ) ) ) { + matched = match.shift(); + tokens.push( { + value: matched, + type: type, + matches: match + } ); + soFar = soFar.slice( matched.length ); + } + } + + if ( !matched ) { + break; + } + } + + // Return the length of the invalid excess + // if we're just parsing + // Otherwise, throw an error or return tokens + return parseOnly ? + soFar.length : + soFar ? + Sizzle.error( selector ) : + + // Cache the tokens + tokenCache( selector, groups ).slice( 0 ); +}; + +function toSelector( tokens ) { + var i = 0, + len = tokens.length, + selector = ""; + for ( ; i < len; i++ ) { + selector += tokens[ i ].value; + } + return selector; +} + +function addCombinator( matcher, combinator, base ) { + var dir = combinator.dir, + skip = combinator.next, + key = skip || dir, + checkNonElements = base && key === "parentNode", + doneName = done++; + + return combinator.first ? + + // Check against closest ancestor/preceding element + function( elem, context, xml ) { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + return matcher( elem, context, xml ); + } + } + return false; + } : + + // Check against all ancestor/preceding elements + function( elem, context, xml ) { + var oldCache, uniqueCache, outerCache, + newCache = [ dirruns, doneName ]; + + // We can't set arbitrary data on XML nodes, so they don't benefit from combinator caching + if ( xml ) { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + if ( matcher( elem, context, xml ) ) { + return true; + } + } + } + } else { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + outerCache = elem[ expando ] || ( elem[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ elem.uniqueID ] || + ( outerCache[ elem.uniqueID ] = {} ); + + if ( skip && skip === elem.nodeName.toLowerCase() ) { + elem = elem[ dir ] || elem; + } else if ( ( oldCache = uniqueCache[ key ] ) && + oldCache[ 0 ] === dirruns && oldCache[ 1 ] === doneName ) { + + // Assign to newCache so results back-propagate to previous elements + return ( newCache[ 2 ] = oldCache[ 2 ] ); + } else { + + // Reuse newcache so results back-propagate to previous elements + uniqueCache[ key ] = newCache; + + // A match means we're done; a fail means we have to keep checking + if ( ( newCache[ 2 ] = matcher( elem, context, xml ) ) ) { + return true; + } + } + } + } + } + return false; + }; +} + +function elementMatcher( matchers ) { + return matchers.length > 1 ? + function( elem, context, xml ) { + var i = matchers.length; + while ( i-- ) { + if ( !matchers[ i ]( elem, context, xml ) ) { + return false; + } + } + return true; + } : + matchers[ 0 ]; +} + +function multipleContexts( selector, contexts, results ) { + var i = 0, + len = contexts.length; + for ( ; i < len; i++ ) { + Sizzle( selector, contexts[ i ], results ); + } + return results; +} + +function condense( unmatched, map, filter, context, xml ) { + var elem, + newUnmatched = [], + i = 0, + len = unmatched.length, + mapped = map != null; + + for ( ; i < len; i++ ) { + if ( ( elem = unmatched[ i ] ) ) { + if ( !filter || filter( elem, context, xml ) ) { + newUnmatched.push( elem ); + if ( mapped ) { + map.push( i ); + } + } + } + } + + return newUnmatched; +} + +function setMatcher( preFilter, selector, matcher, postFilter, postFinder, postSelector ) { + if ( postFilter && !postFilter[ expando ] ) { + postFilter = setMatcher( postFilter ); + } + if ( postFinder && !postFinder[ expando ] ) { + postFinder = setMatcher( postFinder, postSelector ); + } + return markFunction( function( seed, results, context, xml ) { + var temp, i, elem, + preMap = [], + postMap = [], + preexisting = results.length, + + // Get initial elements from seed or context + elems = seed || multipleContexts( + selector || "*", + context.nodeType ? [ context ] : context, + [] + ), + + // Prefilter to get matcher input, preserving a map for seed-results synchronization + matcherIn = preFilter && ( seed || !selector ) ? + condense( elems, preMap, preFilter, context, xml ) : + elems, + + matcherOut = matcher ? + + // If we have a postFinder, or filtered seed, or non-seed postFilter or preexisting results, + postFinder || ( seed ? preFilter : preexisting || postFilter ) ? + + // ...intermediate processing is necessary + [] : + + // ...otherwise use results directly + results : + matcherIn; + + // Find primary matches + if ( matcher ) { + matcher( matcherIn, matcherOut, context, xml ); + } + + // Apply postFilter + if ( postFilter ) { + temp = condense( matcherOut, postMap ); + postFilter( temp, [], context, xml ); + + // Un-match failing elements by moving them back to matcherIn + i = temp.length; + while ( i-- ) { + if ( ( elem = temp[ i ] ) ) { + matcherOut[ postMap[ i ] ] = !( matcherIn[ postMap[ i ] ] = elem ); + } + } + } + + if ( seed ) { + if ( postFinder || preFilter ) { + if ( postFinder ) { + + // Get the final matcherOut by condensing this intermediate into postFinder contexts + temp = []; + i = matcherOut.length; + while ( i-- ) { + if ( ( elem = matcherOut[ i ] ) ) { + + // Restore matcherIn since elem is not yet a final match + temp.push( ( matcherIn[ i ] = elem ) ); + } + } + postFinder( null, ( matcherOut = [] ), temp, xml ); + } + + // Move matched elements from seed to results to keep them synchronized + i = matcherOut.length; + while ( i-- ) { + if ( ( elem = matcherOut[ i ] ) && + ( temp = postFinder ? indexOf( seed, elem ) : preMap[ i ] ) > -1 ) { + + seed[ temp ] = !( results[ temp ] = elem ); + } + } + } + + // Add elements to results, through postFinder if defined + } else { + matcherOut = condense( + matcherOut === results ? + matcherOut.splice( preexisting, matcherOut.length ) : + matcherOut + ); + if ( postFinder ) { + postFinder( null, results, matcherOut, xml ); + } else { + push.apply( results, matcherOut ); + } + } + } ); +} + +function matcherFromTokens( tokens ) { + var checkContext, matcher, j, + len = tokens.length, + leadingRelative = Expr.relative[ tokens[ 0 ].type ], + implicitRelative = leadingRelative || Expr.relative[ " " ], + i = leadingRelative ? 1 : 0, + + // The foundational matcher ensures that elements are reachable from top-level context(s) + matchContext = addCombinator( function( elem ) { + return elem === checkContext; + }, implicitRelative, true ), + matchAnyContext = addCombinator( function( elem ) { + return indexOf( checkContext, elem ) > -1; + }, implicitRelative, true ), + matchers = [ function( elem, context, xml ) { + var ret = ( !leadingRelative && ( xml || context !== outermostContext ) ) || ( + ( checkContext = context ).nodeType ? + matchContext( elem, context, xml ) : + matchAnyContext( elem, context, xml ) ); + + // Avoid hanging onto element (issue #299) + checkContext = null; + return ret; + } ]; + + for ( ; i < len; i++ ) { + if ( ( matcher = Expr.relative[ tokens[ i ].type ] ) ) { + matchers = [ addCombinator( elementMatcher( matchers ), matcher ) ]; + } else { + matcher = Expr.filter[ tokens[ i ].type ].apply( null, tokens[ i ].matches ); + + // Return special upon seeing a positional matcher + if ( matcher[ expando ] ) { + + // Find the next relative operator (if any) for proper handling + j = ++i; + for ( ; j < len; j++ ) { + if ( Expr.relative[ tokens[ j ].type ] ) { + break; + } + } + return setMatcher( + i > 1 && elementMatcher( matchers ), + i > 1 && toSelector( + + // If the preceding token was a descendant combinator, insert an implicit any-element `*` + tokens + .slice( 0, i - 1 ) + .concat( { value: tokens[ i - 2 ].type === " " ? "*" : "" } ) + ).replace( rtrim, "$1" ), + matcher, + i < j && matcherFromTokens( tokens.slice( i, j ) ), + j < len && matcherFromTokens( ( tokens = tokens.slice( j ) ) ), + j < len && toSelector( tokens ) + ); + } + matchers.push( matcher ); + } + } + + return elementMatcher( matchers ); +} + +function matcherFromGroupMatchers( elementMatchers, setMatchers ) { + var bySet = setMatchers.length > 0, + byElement = elementMatchers.length > 0, + superMatcher = function( seed, context, xml, results, outermost ) { + var elem, j, matcher, + matchedCount = 0, + i = "0", + unmatched = seed && [], + setMatched = [], + contextBackup = outermostContext, + + // We must always have either seed elements or outermost context + elems = seed || byElement && Expr.find[ "TAG" ]( "*", outermost ), + + // Use integer dirruns iff this is the outermost matcher + dirrunsUnique = ( dirruns += contextBackup == null ? 1 : Math.random() || 0.1 ), + len = elems.length; + + if ( outermost ) { + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + outermostContext = context == document || context || outermost; + } + + // Add elements passing elementMatchers directly to results + // Support: IE<9, Safari + // Tolerate NodeList properties (IE: "length"; Safari: ) matching elements by id + for ( ; i !== len && ( elem = elems[ i ] ) != null; i++ ) { + if ( byElement && elem ) { + j = 0; + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( !context && elem.ownerDocument != document ) { + setDocument( elem ); + xml = !documentIsHTML; + } + while ( ( matcher = elementMatchers[ j++ ] ) ) { + if ( matcher( elem, context || document, xml ) ) { + results.push( elem ); + break; + } + } + if ( outermost ) { + dirruns = dirrunsUnique; + } + } + + // Track unmatched elements for set filters + if ( bySet ) { + + // They will have gone through all possible matchers + if ( ( elem = !matcher && elem ) ) { + matchedCount--; + } + + // Lengthen the array for every element, matched or not + if ( seed ) { + unmatched.push( elem ); + } + } + } + + // `i` is now the count of elements visited above, and adding it to `matchedCount` + // makes the latter nonnegative. + matchedCount += i; + + // Apply set filters to unmatched elements + // NOTE: This can be skipped if there are no unmatched elements (i.e., `matchedCount` + // equals `i`), unless we didn't visit _any_ elements in the above loop because we have + // no element matchers and no seed. + // Incrementing an initially-string "0" `i` allows `i` to remain a string only in that + // case, which will result in a "00" `matchedCount` that differs from `i` but is also + // numerically zero. + if ( bySet && i !== matchedCount ) { + j = 0; + while ( ( matcher = setMatchers[ j++ ] ) ) { + matcher( unmatched, setMatched, context, xml ); + } + + if ( seed ) { + + // Reintegrate element matches to eliminate the need for sorting + if ( matchedCount > 0 ) { + while ( i-- ) { + if ( !( unmatched[ i ] || setMatched[ i ] ) ) { + setMatched[ i ] = pop.call( results ); + } + } + } + + // Discard index placeholder values to get only actual matches + setMatched = condense( setMatched ); + } + + // Add matches to results + push.apply( results, setMatched ); + + // Seedless set matches succeeding multiple successful matchers stipulate sorting + if ( outermost && !seed && setMatched.length > 0 && + ( matchedCount + setMatchers.length ) > 1 ) { + + Sizzle.uniqueSort( results ); + } + } + + // Override manipulation of globals by nested matchers + if ( outermost ) { + dirruns = dirrunsUnique; + outermostContext = contextBackup; + } + + return unmatched; + }; + + return bySet ? + markFunction( superMatcher ) : + superMatcher; +} + +compile = Sizzle.compile = function( selector, match /* Internal Use Only */ ) { + var i, + setMatchers = [], + elementMatchers = [], + cached = compilerCache[ selector + " " ]; + + if ( !cached ) { + + // Generate a function of recursive functions that can be used to check each element + if ( !match ) { + match = tokenize( selector ); + } + i = match.length; + while ( i-- ) { + cached = matcherFromTokens( match[ i ] ); + if ( cached[ expando ] ) { + setMatchers.push( cached ); + } else { + elementMatchers.push( cached ); + } + } + + // Cache the compiled function + cached = compilerCache( + selector, + matcherFromGroupMatchers( elementMatchers, setMatchers ) + ); + + // Save selector and tokenization + cached.selector = selector; + } + return cached; +}; + +/** + * A low-level selection function that works with Sizzle's compiled + * selector functions + * @param {String|Function} selector A selector or a pre-compiled + * selector function built with Sizzle.compile + * @param {Element} context + * @param {Array} [results] + * @param {Array} [seed] A set of elements to match against + */ +select = Sizzle.select = function( selector, context, results, seed ) { + var i, tokens, token, type, find, + compiled = typeof selector === "function" && selector, + match = !seed && tokenize( ( selector = compiled.selector || selector ) ); + + results = results || []; + + // Try to minimize operations if there is only one selector in the list and no seed + // (the latter of which guarantees us context) + if ( match.length === 1 ) { + + // Reduce context if the leading compound selector is an ID + tokens = match[ 0 ] = match[ 0 ].slice( 0 ); + if ( tokens.length > 2 && ( token = tokens[ 0 ] ).type === "ID" && + context.nodeType === 9 && documentIsHTML && Expr.relative[ tokens[ 1 ].type ] ) { + + context = ( Expr.find[ "ID" ]( token.matches[ 0 ] + .replace( runescape, funescape ), context ) || [] )[ 0 ]; + if ( !context ) { + return results; + + // Precompiled matchers will still verify ancestry, so step up a level + } else if ( compiled ) { + context = context.parentNode; + } + + selector = selector.slice( tokens.shift().value.length ); + } + + // Fetch a seed set for right-to-left matching + i = matchExpr[ "needsContext" ].test( selector ) ? 0 : tokens.length; + while ( i-- ) { + token = tokens[ i ]; + + // Abort if we hit a combinator + if ( Expr.relative[ ( type = token.type ) ] ) { + break; + } + if ( ( find = Expr.find[ type ] ) ) { + + // Search, expanding context for leading sibling combinators + if ( ( seed = find( + token.matches[ 0 ].replace( runescape, funescape ), + rsibling.test( tokens[ 0 ].type ) && testContext( context.parentNode ) || + context + ) ) ) { + + // If seed is empty or no tokens remain, we can return early + tokens.splice( i, 1 ); + selector = seed.length && toSelector( tokens ); + if ( !selector ) { + push.apply( results, seed ); + return results; + } + + break; + } + } + } + } + + // Compile and execute a filtering function if one is not provided + // Provide `match` to avoid retokenization if we modified the selector above + ( compiled || compile( selector, match ) )( + seed, + context, + !documentIsHTML, + results, + !context || rsibling.test( selector ) && testContext( context.parentNode ) || context + ); + return results; +}; + +// One-time assignments + +// Sort stability +support.sortStable = expando.split( "" ).sort( sortOrder ).join( "" ) === expando; + +// Support: Chrome 14-35+ +// Always assume duplicates if they aren't passed to the comparison function +support.detectDuplicates = !!hasDuplicate; + +// Initialize against the default document +setDocument(); + +// Support: Webkit<537.32 - Safari 6.0.3/Chrome 25 (fixed in Chrome 27) +// Detached nodes confoundingly follow *each other* +support.sortDetached = assert( function( el ) { + + // Should return 1, but returns 4 (following) + return el.compareDocumentPosition( document.createElement( "fieldset" ) ) & 1; +} ); + +// Support: IE<8 +// Prevent attribute/property "interpolation" +// https://msdn.microsoft.com/en-us/library/ms536429%28VS.85%29.aspx +if ( !assert( function( el ) { + el.innerHTML = ""; + return el.firstChild.getAttribute( "href" ) === "#"; +} ) ) { + addHandle( "type|href|height|width", function( elem, name, isXML ) { + if ( !isXML ) { + return elem.getAttribute( name, name.toLowerCase() === "type" ? 1 : 2 ); + } + } ); +} + +// Support: IE<9 +// Use defaultValue in place of getAttribute("value") +if ( !support.attributes || !assert( function( el ) { + el.innerHTML = ""; + el.firstChild.setAttribute( "value", "" ); + return el.firstChild.getAttribute( "value" ) === ""; +} ) ) { + addHandle( "value", function( elem, _name, isXML ) { + if ( !isXML && elem.nodeName.toLowerCase() === "input" ) { + return elem.defaultValue; + } + } ); +} + +// Support: IE<9 +// Use getAttributeNode to fetch booleans when getAttribute lies +if ( !assert( function( el ) { + return el.getAttribute( "disabled" ) == null; +} ) ) { + addHandle( booleans, function( elem, name, isXML ) { + var val; + if ( !isXML ) { + return elem[ name ] === true ? name.toLowerCase() : + ( val = elem.getAttributeNode( name ) ) && val.specified ? + val.value : + null; + } + } ); +} + +return Sizzle; + +} )( window ); + + + +jQuery.find = Sizzle; +jQuery.expr = Sizzle.selectors; + +// Deprecated +jQuery.expr[ ":" ] = jQuery.expr.pseudos; +jQuery.uniqueSort = jQuery.unique = Sizzle.uniqueSort; +jQuery.text = Sizzle.getText; +jQuery.isXMLDoc = Sizzle.isXML; +jQuery.contains = Sizzle.contains; +jQuery.escapeSelector = Sizzle.escape; + + + + +var dir = function( elem, dir, until ) { + var matched = [], + truncate = until !== undefined; + + while ( ( elem = elem[ dir ] ) && elem.nodeType !== 9 ) { + if ( elem.nodeType === 1 ) { + if ( truncate && jQuery( elem ).is( until ) ) { + break; + } + matched.push( elem ); + } + } + return matched; +}; + + +var siblings = function( n, elem ) { + var matched = []; + + for ( ; n; n = n.nextSibling ) { + if ( n.nodeType === 1 && n !== elem ) { + matched.push( n ); + } + } + + return matched; +}; + + +var rneedsContext = jQuery.expr.match.needsContext; + + + +function nodeName( elem, name ) { + + return elem.nodeName && elem.nodeName.toLowerCase() === name.toLowerCase(); + +} +var rsingleTag = ( /^<([a-z][^\/\0>:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i ); + + + +// Implement the identical functionality for filter and not +function winnow( elements, qualifier, not ) { + if ( isFunction( qualifier ) ) { + return jQuery.grep( elements, function( elem, i ) { + return !!qualifier.call( elem, i, elem ) !== not; + } ); + } + + // Single element + if ( qualifier.nodeType ) { + return jQuery.grep( elements, function( elem ) { + return ( elem === qualifier ) !== not; + } ); + } + + // Arraylike of elements (jQuery, arguments, Array) + if ( typeof qualifier !== "string" ) { + return jQuery.grep( elements, function( elem ) { + return ( indexOf.call( qualifier, elem ) > -1 ) !== not; + } ); + } + + // Filtered directly for both simple and complex selectors + return jQuery.filter( qualifier, elements, not ); +} + +jQuery.filter = function( expr, elems, not ) { + var elem = elems[ 0 ]; + + if ( not ) { + expr = ":not(" + expr + ")"; + } + + if ( elems.length === 1 && elem.nodeType === 1 ) { + return jQuery.find.matchesSelector( elem, expr ) ? [ elem ] : []; + } + + return jQuery.find.matches( expr, jQuery.grep( elems, function( elem ) { + return elem.nodeType === 1; + } ) ); +}; + +jQuery.fn.extend( { + find: function( selector ) { + var i, ret, + len = this.length, + self = this; + + if ( typeof selector !== "string" ) { + return this.pushStack( jQuery( selector ).filter( function() { + for ( i = 0; i < len; i++ ) { + if ( jQuery.contains( self[ i ], this ) ) { + return true; + } + } + } ) ); + } + + ret = this.pushStack( [] ); + + for ( i = 0; i < len; i++ ) { + jQuery.find( selector, self[ i ], ret ); + } + + return len > 1 ? jQuery.uniqueSort( ret ) : ret; + }, + filter: function( selector ) { + return this.pushStack( winnow( this, selector || [], false ) ); + }, + not: function( selector ) { + return this.pushStack( winnow( this, selector || [], true ) ); + }, + is: function( selector ) { + return !!winnow( + this, + + // If this is a positional/relative selector, check membership in the returned set + // so $("p:first").is("p:last") won't return true for a doc with two "p". + typeof selector === "string" && rneedsContext.test( selector ) ? + jQuery( selector ) : + selector || [], + false + ).length; + } +} ); + + +// Initialize a jQuery object + + +// A central reference to the root jQuery(document) +var rootjQuery, + + // A simple way to check for HTML strings + // Prioritize #id over to avoid XSS via location.hash (#9521) + // Strict HTML recognition (#11290: must start with <) + // Shortcut simple #id case for speed + rquickExpr = /^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]+))$/, + + init = jQuery.fn.init = function( selector, context, root ) { + var match, elem; + + // HANDLE: $(""), $(null), $(undefined), $(false) + if ( !selector ) { + return this; + } + + // Method init() accepts an alternate rootjQuery + // so migrate can support jQuery.sub (gh-2101) + root = root || rootjQuery; + + // Handle HTML strings + if ( typeof selector === "string" ) { + if ( selector[ 0 ] === "<" && + selector[ selector.length - 1 ] === ">" && + selector.length >= 3 ) { + + // Assume that strings that start and end with <> are HTML and skip the regex check + match = [ null, selector, null ]; + + } else { + match = rquickExpr.exec( selector ); + } + + // Match html or make sure no context is specified for #id + if ( match && ( match[ 1 ] || !context ) ) { + + // HANDLE: $(html) -> $(array) + if ( match[ 1 ] ) { + context = context instanceof jQuery ? context[ 0 ] : context; + + // Option to run scripts is true for back-compat + // Intentionally let the error be thrown if parseHTML is not present + jQuery.merge( this, jQuery.parseHTML( + match[ 1 ], + context && context.nodeType ? context.ownerDocument || context : document, + true + ) ); + + // HANDLE: $(html, props) + if ( rsingleTag.test( match[ 1 ] ) && jQuery.isPlainObject( context ) ) { + for ( match in context ) { + + // Properties of context are called as methods if possible + if ( isFunction( this[ match ] ) ) { + this[ match ]( context[ match ] ); + + // ...and otherwise set as attributes + } else { + this.attr( match, context[ match ] ); + } + } + } + + return this; + + // HANDLE: $(#id) + } else { + elem = document.getElementById( match[ 2 ] ); + + if ( elem ) { + + // Inject the element directly into the jQuery object + this[ 0 ] = elem; + this.length = 1; + } + return this; + } + + // HANDLE: $(expr, $(...)) + } else if ( !context || context.jquery ) { + return ( context || root ).find( selector ); + + // HANDLE: $(expr, context) + // (which is just equivalent to: $(context).find(expr) + } else { + return this.constructor( context ).find( selector ); + } + + // HANDLE: $(DOMElement) + } else if ( selector.nodeType ) { + this[ 0 ] = selector; + this.length = 1; + return this; + + // HANDLE: $(function) + // Shortcut for document ready + } else if ( isFunction( selector ) ) { + return root.ready !== undefined ? + root.ready( selector ) : + + // Execute immediately if ready is not present + selector( jQuery ); + } + + return jQuery.makeArray( selector, this ); + }; + +// Give the init function the jQuery prototype for later instantiation +init.prototype = jQuery.fn; + +// Initialize central reference +rootjQuery = jQuery( document ); + + +var rparentsprev = /^(?:parents|prev(?:Until|All))/, + + // Methods guaranteed to produce a unique set when starting from a unique set + guaranteedUnique = { + children: true, + contents: true, + next: true, + prev: true + }; + +jQuery.fn.extend( { + has: function( target ) { + var targets = jQuery( target, this ), + l = targets.length; + + return this.filter( function() { + var i = 0; + for ( ; i < l; i++ ) { + if ( jQuery.contains( this, targets[ i ] ) ) { + return true; + } + } + } ); + }, + + closest: function( selectors, context ) { + var cur, + i = 0, + l = this.length, + matched = [], + targets = typeof selectors !== "string" && jQuery( selectors ); + + // Positional selectors never match, since there's no _selection_ context + if ( !rneedsContext.test( selectors ) ) { + for ( ; i < l; i++ ) { + for ( cur = this[ i ]; cur && cur !== context; cur = cur.parentNode ) { + + // Always skip document fragments + if ( cur.nodeType < 11 && ( targets ? + targets.index( cur ) > -1 : + + // Don't pass non-elements to Sizzle + cur.nodeType === 1 && + jQuery.find.matchesSelector( cur, selectors ) ) ) { + + matched.push( cur ); + break; + } + } + } + } + + return this.pushStack( matched.length > 1 ? jQuery.uniqueSort( matched ) : matched ); + }, + + // Determine the position of an element within the set + index: function( elem ) { + + // No argument, return index in parent + if ( !elem ) { + return ( this[ 0 ] && this[ 0 ].parentNode ) ? this.first().prevAll().length : -1; + } + + // Index in selector + if ( typeof elem === "string" ) { + return indexOf.call( jQuery( elem ), this[ 0 ] ); + } + + // Locate the position of the desired element + return indexOf.call( this, + + // If it receives a jQuery object, the first element is used + elem.jquery ? elem[ 0 ] : elem + ); + }, + + add: function( selector, context ) { + return this.pushStack( + jQuery.uniqueSort( + jQuery.merge( this.get(), jQuery( selector, context ) ) + ) + ); + }, + + addBack: function( selector ) { + return this.add( selector == null ? + this.prevObject : this.prevObject.filter( selector ) + ); + } +} ); + +function sibling( cur, dir ) { + while ( ( cur = cur[ dir ] ) && cur.nodeType !== 1 ) {} + return cur; +} + +jQuery.each( { + parent: function( elem ) { + var parent = elem.parentNode; + return parent && parent.nodeType !== 11 ? parent : null; + }, + parents: function( elem ) { + return dir( elem, "parentNode" ); + }, + parentsUntil: function( elem, _i, until ) { + return dir( elem, "parentNode", until ); + }, + next: function( elem ) { + return sibling( elem, "nextSibling" ); + }, + prev: function( elem ) { + return sibling( elem, "previousSibling" ); + }, + nextAll: function( elem ) { + return dir( elem, "nextSibling" ); + }, + prevAll: function( elem ) { + return dir( elem, "previousSibling" ); + }, + nextUntil: function( elem, _i, until ) { + return dir( elem, "nextSibling", until ); + }, + prevUntil: function( elem, _i, until ) { + return dir( elem, "previousSibling", until ); + }, + siblings: function( elem ) { + return siblings( ( elem.parentNode || {} ).firstChild, elem ); + }, + children: function( elem ) { + return siblings( elem.firstChild ); + }, + contents: function( elem ) { + if ( elem.contentDocument != null && + + // Support: IE 11+ + // elements with no `data` attribute has an object + // `contentDocument` with a `null` prototype. + getProto( elem.contentDocument ) ) { + + return elem.contentDocument; + } + + // Support: IE 9 - 11 only, iOS 7 only, Android Browser <=4.3 only + // Treat the template element as a regular one in browsers that + // don't support it. + if ( nodeName( elem, "template" ) ) { + elem = elem.content || elem; + } + + return jQuery.merge( [], elem.childNodes ); + } +}, function( name, fn ) { + jQuery.fn[ name ] = function( until, selector ) { + var matched = jQuery.map( this, fn, until ); + + if ( name.slice( -5 ) !== "Until" ) { + selector = until; + } + + if ( selector && typeof selector === "string" ) { + matched = jQuery.filter( selector, matched ); + } + + if ( this.length > 1 ) { + + // Remove duplicates + if ( !guaranteedUnique[ name ] ) { + jQuery.uniqueSort( matched ); + } + + // Reverse order for parents* and prev-derivatives + if ( rparentsprev.test( name ) ) { + matched.reverse(); + } + } + + return this.pushStack( matched ); + }; +} ); +var rnothtmlwhite = ( /[^\x20\t\r\n\f]+/g ); + + + +// Convert String-formatted options into Object-formatted ones +function createOptions( options ) { + var object = {}; + jQuery.each( options.match( rnothtmlwhite ) || [], function( _, flag ) { + object[ flag ] = true; + } ); + return object; +} + +/* + * Create a callback list using the following parameters: + * + * options: an optional list of space-separated options that will change how + * the callback list behaves or a more traditional option object + * + * By default a callback list will act like an event callback list and can be + * "fired" multiple times. + * + * Possible options: + * + * once: will ensure the callback list can only be fired once (like a Deferred) + * + * memory: will keep track of previous values and will call any callback added + * after the list has been fired right away with the latest "memorized" + * values (like a Deferred) + * + * unique: will ensure a callback can only be added once (no duplicate in the list) + * + * stopOnFalse: interrupt callings when a callback returns false + * + */ +jQuery.Callbacks = function( options ) { + + // Convert options from String-formatted to Object-formatted if needed + // (we check in cache first) + options = typeof options === "string" ? + createOptions( options ) : + jQuery.extend( {}, options ); + + var // Flag to know if list is currently firing + firing, + + // Last fire value for non-forgettable lists + memory, + + // Flag to know if list was already fired + fired, + + // Flag to prevent firing + locked, + + // Actual callback list + list = [], + + // Queue of execution data for repeatable lists + queue = [], + + // Index of currently firing callback (modified by add/remove as needed) + firingIndex = -1, + + // Fire callbacks + fire = function() { + + // Enforce single-firing + locked = locked || options.once; + + // Execute callbacks for all pending executions, + // respecting firingIndex overrides and runtime changes + fired = firing = true; + for ( ; queue.length; firingIndex = -1 ) { + memory = queue.shift(); + while ( ++firingIndex < list.length ) { + + // Run callback and check for early termination + if ( list[ firingIndex ].apply( memory[ 0 ], memory[ 1 ] ) === false && + options.stopOnFalse ) { + + // Jump to end and forget the data so .add doesn't re-fire + firingIndex = list.length; + memory = false; + } + } + } + + // Forget the data if we're done with it + if ( !options.memory ) { + memory = false; + } + + firing = false; + + // Clean up if we're done firing for good + if ( locked ) { + + // Keep an empty list if we have data for future add calls + if ( memory ) { + list = []; + + // Otherwise, this object is spent + } else { + list = ""; + } + } + }, + + // Actual Callbacks object + self = { + + // Add a callback or a collection of callbacks to the list + add: function() { + if ( list ) { + + // If we have memory from a past run, we should fire after adding + if ( memory && !firing ) { + firingIndex = list.length - 1; + queue.push( memory ); + } + + ( function add( args ) { + jQuery.each( args, function( _, arg ) { + if ( isFunction( arg ) ) { + if ( !options.unique || !self.has( arg ) ) { + list.push( arg ); + } + } else if ( arg && arg.length && toType( arg ) !== "string" ) { + + // Inspect recursively + add( arg ); + } + } ); + } )( arguments ); + + if ( memory && !firing ) { + fire(); + } + } + return this; + }, + + // Remove a callback from the list + remove: function() { + jQuery.each( arguments, function( _, arg ) { + var index; + while ( ( index = jQuery.inArray( arg, list, index ) ) > -1 ) { + list.splice( index, 1 ); + + // Handle firing indexes + if ( index <= firingIndex ) { + firingIndex--; + } + } + } ); + return this; + }, + + // Check if a given callback is in the list. + // If no argument is given, return whether or not list has callbacks attached. + has: function( fn ) { + return fn ? + jQuery.inArray( fn, list ) > -1 : + list.length > 0; + }, + + // Remove all callbacks from the list + empty: function() { + if ( list ) { + list = []; + } + return this; + }, + + // Disable .fire and .add + // Abort any current/pending executions + // Clear all callbacks and values + disable: function() { + locked = queue = []; + list = memory = ""; + return this; + }, + disabled: function() { + return !list; + }, + + // Disable .fire + // Also disable .add unless we have memory (since it would have no effect) + // Abort any pending executions + lock: function() { + locked = queue = []; + if ( !memory && !firing ) { + list = memory = ""; + } + return this; + }, + locked: function() { + return !!locked; + }, + + // Call all callbacks with the given context and arguments + fireWith: function( context, args ) { + if ( !locked ) { + args = args || []; + args = [ context, args.slice ? args.slice() : args ]; + queue.push( args ); + if ( !firing ) { + fire(); + } + } + return this; + }, + + // Call all the callbacks with the given arguments + fire: function() { + self.fireWith( this, arguments ); + return this; + }, + + // To know if the callbacks have already been called at least once + fired: function() { + return !!fired; + } + }; + + return self; +}; + + +function Identity( v ) { + return v; +} +function Thrower( ex ) { + throw ex; +} + +function adoptValue( value, resolve, reject, noValue ) { + var method; + + try { + + // Check for promise aspect first to privilege synchronous behavior + if ( value && isFunction( ( method = value.promise ) ) ) { + method.call( value ).done( resolve ).fail( reject ); + + // Other thenables + } else if ( value && isFunction( ( method = value.then ) ) ) { + method.call( value, resolve, reject ); + + // Other non-thenables + } else { + + // Control `resolve` arguments by letting Array#slice cast boolean `noValue` to integer: + // * false: [ value ].slice( 0 ) => resolve( value ) + // * true: [ value ].slice( 1 ) => resolve() + resolve.apply( undefined, [ value ].slice( noValue ) ); + } + + // For Promises/A+, convert exceptions into rejections + // Since jQuery.when doesn't unwrap thenables, we can skip the extra checks appearing in + // Deferred#then to conditionally suppress rejection. + } catch ( value ) { + + // Support: Android 4.0 only + // Strict mode functions invoked without .call/.apply get global-object context + reject.apply( undefined, [ value ] ); + } +} + +jQuery.extend( { + + Deferred: function( func ) { + var tuples = [ + + // action, add listener, callbacks, + // ... .then handlers, argument index, [final state] + [ "notify", "progress", jQuery.Callbacks( "memory" ), + jQuery.Callbacks( "memory" ), 2 ], + [ "resolve", "done", jQuery.Callbacks( "once memory" ), + jQuery.Callbacks( "once memory" ), 0, "resolved" ], + [ "reject", "fail", jQuery.Callbacks( "once memory" ), + jQuery.Callbacks( "once memory" ), 1, "rejected" ] + ], + state = "pending", + promise = { + state: function() { + return state; + }, + always: function() { + deferred.done( arguments ).fail( arguments ); + return this; + }, + "catch": function( fn ) { + return promise.then( null, fn ); + }, + + // Keep pipe for back-compat + pipe: function( /* fnDone, fnFail, fnProgress */ ) { + var fns = arguments; + + return jQuery.Deferred( function( newDefer ) { + jQuery.each( tuples, function( _i, tuple ) { + + // Map tuples (progress, done, fail) to arguments (done, fail, progress) + var fn = isFunction( fns[ tuple[ 4 ] ] ) && fns[ tuple[ 4 ] ]; + + // deferred.progress(function() { bind to newDefer or newDefer.notify }) + // deferred.done(function() { bind to newDefer or newDefer.resolve }) + // deferred.fail(function() { bind to newDefer or newDefer.reject }) + deferred[ tuple[ 1 ] ]( function() { + var returned = fn && fn.apply( this, arguments ); + if ( returned && isFunction( returned.promise ) ) { + returned.promise() + .progress( newDefer.notify ) + .done( newDefer.resolve ) + .fail( newDefer.reject ); + } else { + newDefer[ tuple[ 0 ] + "With" ]( + this, + fn ? [ returned ] : arguments + ); + } + } ); + } ); + fns = null; + } ).promise(); + }, + then: function( onFulfilled, onRejected, onProgress ) { + var maxDepth = 0; + function resolve( depth, deferred, handler, special ) { + return function() { + var that = this, + args = arguments, + mightThrow = function() { + var returned, then; + + // Support: Promises/A+ section 2.3.3.3.3 + // https://promisesaplus.com/#point-59 + // Ignore double-resolution attempts + if ( depth < maxDepth ) { + return; + } + + returned = handler.apply( that, args ); + + // Support: Promises/A+ section 2.3.1 + // https://promisesaplus.com/#point-48 + if ( returned === deferred.promise() ) { + throw new TypeError( "Thenable self-resolution" ); + } + + // Support: Promises/A+ sections 2.3.3.1, 3.5 + // https://promisesaplus.com/#point-54 + // https://promisesaplus.com/#point-75 + // Retrieve `then` only once + then = returned && + + // Support: Promises/A+ section 2.3.4 + // https://promisesaplus.com/#point-64 + // Only check objects and functions for thenability + ( typeof returned === "object" || + typeof returned === "function" ) && + returned.then; + + // Handle a returned thenable + if ( isFunction( then ) ) { + + // Special processors (notify) just wait for resolution + if ( special ) { + then.call( + returned, + resolve( maxDepth, deferred, Identity, special ), + resolve( maxDepth, deferred, Thrower, special ) + ); + + // Normal processors (resolve) also hook into progress + } else { + + // ...and disregard older resolution values + maxDepth++; + + then.call( + returned, + resolve( maxDepth, deferred, Identity, special ), + resolve( maxDepth, deferred, Thrower, special ), + resolve( maxDepth, deferred, Identity, + deferred.notifyWith ) + ); + } + + // Handle all other returned values + } else { + + // Only substitute handlers pass on context + // and multiple values (non-spec behavior) + if ( handler !== Identity ) { + that = undefined; + args = [ returned ]; + } + + // Process the value(s) + // Default process is resolve + ( special || deferred.resolveWith )( that, args ); + } + }, + + // Only normal processors (resolve) catch and reject exceptions + process = special ? + mightThrow : + function() { + try { + mightThrow(); + } catch ( e ) { + + if ( jQuery.Deferred.exceptionHook ) { + jQuery.Deferred.exceptionHook( e, + process.stackTrace ); + } + + // Support: Promises/A+ section 2.3.3.3.4.1 + // https://promisesaplus.com/#point-61 + // Ignore post-resolution exceptions + if ( depth + 1 >= maxDepth ) { + + // Only substitute handlers pass on context + // and multiple values (non-spec behavior) + if ( handler !== Thrower ) { + that = undefined; + args = [ e ]; + } + + deferred.rejectWith( that, args ); + } + } + }; + + // Support: Promises/A+ section 2.3.3.3.1 + // https://promisesaplus.com/#point-57 + // Re-resolve promises immediately to dodge false rejection from + // subsequent errors + if ( depth ) { + process(); + } else { + + // Call an optional hook to record the stack, in case of exception + // since it's otherwise lost when execution goes async + if ( jQuery.Deferred.getStackHook ) { + process.stackTrace = jQuery.Deferred.getStackHook(); + } + window.setTimeout( process ); + } + }; + } + + return jQuery.Deferred( function( newDefer ) { + + // progress_handlers.add( ... ) + tuples[ 0 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onProgress ) ? + onProgress : + Identity, + newDefer.notifyWith + ) + ); + + // fulfilled_handlers.add( ... ) + tuples[ 1 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onFulfilled ) ? + onFulfilled : + Identity + ) + ); + + // rejected_handlers.add( ... ) + tuples[ 2 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onRejected ) ? + onRejected : + Thrower + ) + ); + } ).promise(); + }, + + // Get a promise for this deferred + // If obj is provided, the promise aspect is added to the object + promise: function( obj ) { + return obj != null ? jQuery.extend( obj, promise ) : promise; + } + }, + deferred = {}; + + // Add list-specific methods + jQuery.each( tuples, function( i, tuple ) { + var list = tuple[ 2 ], + stateString = tuple[ 5 ]; + + // promise.progress = list.add + // promise.done = list.add + // promise.fail = list.add + promise[ tuple[ 1 ] ] = list.add; + + // Handle state + if ( stateString ) { + list.add( + function() { + + // state = "resolved" (i.e., fulfilled) + // state = "rejected" + state = stateString; + }, + + // rejected_callbacks.disable + // fulfilled_callbacks.disable + tuples[ 3 - i ][ 2 ].disable, + + // rejected_handlers.disable + // fulfilled_handlers.disable + tuples[ 3 - i ][ 3 ].disable, + + // progress_callbacks.lock + tuples[ 0 ][ 2 ].lock, + + // progress_handlers.lock + tuples[ 0 ][ 3 ].lock + ); + } + + // progress_handlers.fire + // fulfilled_handlers.fire + // rejected_handlers.fire + list.add( tuple[ 3 ].fire ); + + // deferred.notify = function() { deferred.notifyWith(...) } + // deferred.resolve = function() { deferred.resolveWith(...) } + // deferred.reject = function() { deferred.rejectWith(...) } + deferred[ tuple[ 0 ] ] = function() { + deferred[ tuple[ 0 ] + "With" ]( this === deferred ? undefined : this, arguments ); + return this; + }; + + // deferred.notifyWith = list.fireWith + // deferred.resolveWith = list.fireWith + // deferred.rejectWith = list.fireWith + deferred[ tuple[ 0 ] + "With" ] = list.fireWith; + } ); + + // Make the deferred a promise + promise.promise( deferred ); + + // Call given func if any + if ( func ) { + func.call( deferred, deferred ); + } + + // All done! + return deferred; + }, + + // Deferred helper + when: function( singleValue ) { + var + + // count of uncompleted subordinates + remaining = arguments.length, + + // count of unprocessed arguments + i = remaining, + + // subordinate fulfillment data + resolveContexts = Array( i ), + resolveValues = slice.call( arguments ), + + // the primary Deferred + primary = jQuery.Deferred(), + + // subordinate callback factory + updateFunc = function( i ) { + return function( value ) { + resolveContexts[ i ] = this; + resolveValues[ i ] = arguments.length > 1 ? slice.call( arguments ) : value; + if ( !( --remaining ) ) { + primary.resolveWith( resolveContexts, resolveValues ); + } + }; + }; + + // Single- and empty arguments are adopted like Promise.resolve + if ( remaining <= 1 ) { + adoptValue( singleValue, primary.done( updateFunc( i ) ).resolve, primary.reject, + !remaining ); + + // Use .then() to unwrap secondary thenables (cf. gh-3000) + if ( primary.state() === "pending" || + isFunction( resolveValues[ i ] && resolveValues[ i ].then ) ) { + + return primary.then(); + } + } + + // Multiple arguments are aggregated like Promise.all array elements + while ( i-- ) { + adoptValue( resolveValues[ i ], updateFunc( i ), primary.reject ); + } + + return primary.promise(); + } +} ); + + +// These usually indicate a programmer mistake during development, +// warn about them ASAP rather than swallowing them by default. +var rerrorNames = /^(Eval|Internal|Range|Reference|Syntax|Type|URI)Error$/; + +jQuery.Deferred.exceptionHook = function( error, stack ) { + + // Support: IE 8 - 9 only + // Console exists when dev tools are open, which can happen at any time + if ( window.console && window.console.warn && error && rerrorNames.test( error.name ) ) { + window.console.warn( "jQuery.Deferred exception: " + error.message, error.stack, stack ); + } +}; + + + + +jQuery.readyException = function( error ) { + window.setTimeout( function() { + throw error; + } ); +}; + + + + +// The deferred used on DOM ready +var readyList = jQuery.Deferred(); + +jQuery.fn.ready = function( fn ) { + + readyList + .then( fn ) + + // Wrap jQuery.readyException in a function so that the lookup + // happens at the time of error handling instead of callback + // registration. + .catch( function( error ) { + jQuery.readyException( error ); + } ); + + return this; +}; + +jQuery.extend( { + + // Is the DOM ready to be used? Set to true once it occurs. + isReady: false, + + // A counter to track how many items to wait for before + // the ready event fires. See #6781 + readyWait: 1, + + // Handle when the DOM is ready + ready: function( wait ) { + + // Abort if there are pending holds or we're already ready + if ( wait === true ? --jQuery.readyWait : jQuery.isReady ) { + return; + } + + // Remember that the DOM is ready + jQuery.isReady = true; + + // If a normal DOM Ready event fired, decrement, and wait if need be + if ( wait !== true && --jQuery.readyWait > 0 ) { + return; + } + + // If there are functions bound, to execute + readyList.resolveWith( document, [ jQuery ] ); + } +} ); + +jQuery.ready.then = readyList.then; + +// The ready event handler and self cleanup method +function completed() { + document.removeEventListener( "DOMContentLoaded", completed ); + window.removeEventListener( "load", completed ); + jQuery.ready(); +} + +// Catch cases where $(document).ready() is called +// after the browser event has already occurred. +// Support: IE <=9 - 10 only +// Older IE sometimes signals "interactive" too soon +if ( document.readyState === "complete" || + ( document.readyState !== "loading" && !document.documentElement.doScroll ) ) { + + // Handle it asynchronously to allow scripts the opportunity to delay ready + window.setTimeout( jQuery.ready ); + +} else { + + // Use the handy event callback + document.addEventListener( "DOMContentLoaded", completed ); + + // A fallback to window.onload, that will always work + window.addEventListener( "load", completed ); +} + + + + +// Multifunctional method to get and set values of a collection +// The value/s can optionally be executed if it's a function +var access = function( elems, fn, key, value, chainable, emptyGet, raw ) { + var i = 0, + len = elems.length, + bulk = key == null; + + // Sets many values + if ( toType( key ) === "object" ) { + chainable = true; + for ( i in key ) { + access( elems, fn, i, key[ i ], true, emptyGet, raw ); + } + + // Sets one value + } else if ( value !== undefined ) { + chainable = true; + + if ( !isFunction( value ) ) { + raw = true; + } + + if ( bulk ) { + + // Bulk operations run against the entire set + if ( raw ) { + fn.call( elems, value ); + fn = null; + + // ...except when executing function values + } else { + bulk = fn; + fn = function( elem, _key, value ) { + return bulk.call( jQuery( elem ), value ); + }; + } + } + + if ( fn ) { + for ( ; i < len; i++ ) { + fn( + elems[ i ], key, raw ? + value : + value.call( elems[ i ], i, fn( elems[ i ], key ) ) + ); + } + } + } + + if ( chainable ) { + return elems; + } + + // Gets + if ( bulk ) { + return fn.call( elems ); + } + + return len ? fn( elems[ 0 ], key ) : emptyGet; +}; + + +// Matches dashed string for camelizing +var rmsPrefix = /^-ms-/, + rdashAlpha = /-([a-z])/g; + +// Used by camelCase as callback to replace() +function fcamelCase( _all, letter ) { + return letter.toUpperCase(); +} + +// Convert dashed to camelCase; used by the css and data modules +// Support: IE <=9 - 11, Edge 12 - 15 +// Microsoft forgot to hump their vendor prefix (#9572) +function camelCase( string ) { + return string.replace( rmsPrefix, "ms-" ).replace( rdashAlpha, fcamelCase ); +} +var acceptData = function( owner ) { + + // Accepts only: + // - Node + // - Node.ELEMENT_NODE + // - Node.DOCUMENT_NODE + // - Object + // - Any + return owner.nodeType === 1 || owner.nodeType === 9 || !( +owner.nodeType ); +}; + + + + +function Data() { + this.expando = jQuery.expando + Data.uid++; +} + +Data.uid = 1; + +Data.prototype = { + + cache: function( owner ) { + + // Check if the owner object already has a cache + var value = owner[ this.expando ]; + + // If not, create one + if ( !value ) { + value = {}; + + // We can accept data for non-element nodes in modern browsers, + // but we should not, see #8335. + // Always return an empty object. + if ( acceptData( owner ) ) { + + // If it is a node unlikely to be stringify-ed or looped over + // use plain assignment + if ( owner.nodeType ) { + owner[ this.expando ] = value; + + // Otherwise secure it in a non-enumerable property + // configurable must be true to allow the property to be + // deleted when data is removed + } else { + Object.defineProperty( owner, this.expando, { + value: value, + configurable: true + } ); + } + } + } + + return value; + }, + set: function( owner, data, value ) { + var prop, + cache = this.cache( owner ); + + // Handle: [ owner, key, value ] args + // Always use camelCase key (gh-2257) + if ( typeof data === "string" ) { + cache[ camelCase( data ) ] = value; + + // Handle: [ owner, { properties } ] args + } else { + + // Copy the properties one-by-one to the cache object + for ( prop in data ) { + cache[ camelCase( prop ) ] = data[ prop ]; + } + } + return cache; + }, + get: function( owner, key ) { + return key === undefined ? + this.cache( owner ) : + + // Always use camelCase key (gh-2257) + owner[ this.expando ] && owner[ this.expando ][ camelCase( key ) ]; + }, + access: function( owner, key, value ) { + + // In cases where either: + // + // 1. No key was specified + // 2. A string key was specified, but no value provided + // + // Take the "read" path and allow the get method to determine + // which value to return, respectively either: + // + // 1. The entire cache object + // 2. The data stored at the key + // + if ( key === undefined || + ( ( key && typeof key === "string" ) && value === undefined ) ) { + + return this.get( owner, key ); + } + + // When the key is not a string, or both a key and value + // are specified, set or extend (existing objects) with either: + // + // 1. An object of properties + // 2. A key and value + // + this.set( owner, key, value ); + + // Since the "set" path can have two possible entry points + // return the expected data based on which path was taken[*] + return value !== undefined ? value : key; + }, + remove: function( owner, key ) { + var i, + cache = owner[ this.expando ]; + + if ( cache === undefined ) { + return; + } + + if ( key !== undefined ) { + + // Support array or space separated string of keys + if ( Array.isArray( key ) ) { + + // If key is an array of keys... + // We always set camelCase keys, so remove that. + key = key.map( camelCase ); + } else { + key = camelCase( key ); + + // If a key with the spaces exists, use it. + // Otherwise, create an array by matching non-whitespace + key = key in cache ? + [ key ] : + ( key.match( rnothtmlwhite ) || [] ); + } + + i = key.length; + + while ( i-- ) { + delete cache[ key[ i ] ]; + } + } + + // Remove the expando if there's no more data + if ( key === undefined || jQuery.isEmptyObject( cache ) ) { + + // Support: Chrome <=35 - 45 + // Webkit & Blink performance suffers when deleting properties + // from DOM nodes, so set to undefined instead + // https://bugs.chromium.org/p/chromium/issues/detail?id=378607 (bug restricted) + if ( owner.nodeType ) { + owner[ this.expando ] = undefined; + } else { + delete owner[ this.expando ]; + } + } + }, + hasData: function( owner ) { + var cache = owner[ this.expando ]; + return cache !== undefined && !jQuery.isEmptyObject( cache ); + } +}; +var dataPriv = new Data(); + +var dataUser = new Data(); + + + +// Implementation Summary +// +// 1. Enforce API surface and semantic compatibility with 1.9.x branch +// 2. Improve the module's maintainability by reducing the storage +// paths to a single mechanism. +// 3. Use the same single mechanism to support "private" and "user" data. +// 4. _Never_ expose "private" data to user code (TODO: Drop _data, _removeData) +// 5. Avoid exposing implementation details on user objects (eg. expando properties) +// 6. Provide a clear path for implementation upgrade to WeakMap in 2014 + +var rbrace = /^(?:\{[\w\W]*\}|\[[\w\W]*\])$/, + rmultiDash = /[A-Z]/g; + +function getData( data ) { + if ( data === "true" ) { + return true; + } + + if ( data === "false" ) { + return false; + } + + if ( data === "null" ) { + return null; + } + + // Only convert to a number if it doesn't change the string + if ( data === +data + "" ) { + return +data; + } + + if ( rbrace.test( data ) ) { + return JSON.parse( data ); + } + + return data; +} + +function dataAttr( elem, key, data ) { + var name; + + // If nothing was found internally, try to fetch any + // data from the HTML5 data-* attribute + if ( data === undefined && elem.nodeType === 1 ) { + name = "data-" + key.replace( rmultiDash, "-$&" ).toLowerCase(); + data = elem.getAttribute( name ); + + if ( typeof data === "string" ) { + try { + data = getData( data ); + } catch ( e ) {} + + // Make sure we set the data so it isn't changed later + dataUser.set( elem, key, data ); + } else { + data = undefined; + } + } + return data; +} + +jQuery.extend( { + hasData: function( elem ) { + return dataUser.hasData( elem ) || dataPriv.hasData( elem ); + }, + + data: function( elem, name, data ) { + return dataUser.access( elem, name, data ); + }, + + removeData: function( elem, name ) { + dataUser.remove( elem, name ); + }, + + // TODO: Now that all calls to _data and _removeData have been replaced + // with direct calls to dataPriv methods, these can be deprecated. + _data: function( elem, name, data ) { + return dataPriv.access( elem, name, data ); + }, + + _removeData: function( elem, name ) { + dataPriv.remove( elem, name ); + } +} ); + +jQuery.fn.extend( { + data: function( key, value ) { + var i, name, data, + elem = this[ 0 ], + attrs = elem && elem.attributes; + + // Gets all values + if ( key === undefined ) { + if ( this.length ) { + data = dataUser.get( elem ); + + if ( elem.nodeType === 1 && !dataPriv.get( elem, "hasDataAttrs" ) ) { + i = attrs.length; + while ( i-- ) { + + // Support: IE 11 only + // The attrs elements can be null (#14894) + if ( attrs[ i ] ) { + name = attrs[ i ].name; + if ( name.indexOf( "data-" ) === 0 ) { + name = camelCase( name.slice( 5 ) ); + dataAttr( elem, name, data[ name ] ); + } + } + } + dataPriv.set( elem, "hasDataAttrs", true ); + } + } + + return data; + } + + // Sets multiple values + if ( typeof key === "object" ) { + return this.each( function() { + dataUser.set( this, key ); + } ); + } + + return access( this, function( value ) { + var data; + + // The calling jQuery object (element matches) is not empty + // (and therefore has an element appears at this[ 0 ]) and the + // `value` parameter was not undefined. An empty jQuery object + // will result in `undefined` for elem = this[ 0 ] which will + // throw an exception if an attempt to read a data cache is made. + if ( elem && value === undefined ) { + + // Attempt to get data from the cache + // The key will always be camelCased in Data + data = dataUser.get( elem, key ); + if ( data !== undefined ) { + return data; + } + + // Attempt to "discover" the data in + // HTML5 custom data-* attrs + data = dataAttr( elem, key ); + if ( data !== undefined ) { + return data; + } + + // We tried really hard, but the data doesn't exist. + return; + } + + // Set the data... + this.each( function() { + + // We always store the camelCased key + dataUser.set( this, key, value ); + } ); + }, null, value, arguments.length > 1, null, true ); + }, + + removeData: function( key ) { + return this.each( function() { + dataUser.remove( this, key ); + } ); + } +} ); + + +jQuery.extend( { + queue: function( elem, type, data ) { + var queue; + + if ( elem ) { + type = ( type || "fx" ) + "queue"; + queue = dataPriv.get( elem, type ); + + // Speed up dequeue by getting out quickly if this is just a lookup + if ( data ) { + if ( !queue || Array.isArray( data ) ) { + queue = dataPriv.access( elem, type, jQuery.makeArray( data ) ); + } else { + queue.push( data ); + } + } + return queue || []; + } + }, + + dequeue: function( elem, type ) { + type = type || "fx"; + + var queue = jQuery.queue( elem, type ), + startLength = queue.length, + fn = queue.shift(), + hooks = jQuery._queueHooks( elem, type ), + next = function() { + jQuery.dequeue( elem, type ); + }; + + // If the fx queue is dequeued, always remove the progress sentinel + if ( fn === "inprogress" ) { + fn = queue.shift(); + startLength--; + } + + if ( fn ) { + + // Add a progress sentinel to prevent the fx queue from being + // automatically dequeued + if ( type === "fx" ) { + queue.unshift( "inprogress" ); + } + + // Clear up the last queue stop function + delete hooks.stop; + fn.call( elem, next, hooks ); + } + + if ( !startLength && hooks ) { + hooks.empty.fire(); + } + }, + + // Not public - generate a queueHooks object, or return the current one + _queueHooks: function( elem, type ) { + var key = type + "queueHooks"; + return dataPriv.get( elem, key ) || dataPriv.access( elem, key, { + empty: jQuery.Callbacks( "once memory" ).add( function() { + dataPriv.remove( elem, [ type + "queue", key ] ); + } ) + } ); + } +} ); + +jQuery.fn.extend( { + queue: function( type, data ) { + var setter = 2; + + if ( typeof type !== "string" ) { + data = type; + type = "fx"; + setter--; + } + + if ( arguments.length < setter ) { + return jQuery.queue( this[ 0 ], type ); + } + + return data === undefined ? + this : + this.each( function() { + var queue = jQuery.queue( this, type, data ); + + // Ensure a hooks for this queue + jQuery._queueHooks( this, type ); + + if ( type === "fx" && queue[ 0 ] !== "inprogress" ) { + jQuery.dequeue( this, type ); + } + } ); + }, + dequeue: function( type ) { + return this.each( function() { + jQuery.dequeue( this, type ); + } ); + }, + clearQueue: function( type ) { + return this.queue( type || "fx", [] ); + }, + + // Get a promise resolved when queues of a certain type + // are emptied (fx is the type by default) + promise: function( type, obj ) { + var tmp, + count = 1, + defer = jQuery.Deferred(), + elements = this, + i = this.length, + resolve = function() { + if ( !( --count ) ) { + defer.resolveWith( elements, [ elements ] ); + } + }; + + if ( typeof type !== "string" ) { + obj = type; + type = undefined; + } + type = type || "fx"; + + while ( i-- ) { + tmp = dataPriv.get( elements[ i ], type + "queueHooks" ); + if ( tmp && tmp.empty ) { + count++; + tmp.empty.add( resolve ); + } + } + resolve(); + return defer.promise( obj ); + } +} ); +var pnum = ( /[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/ ).source; + +var rcssNum = new RegExp( "^(?:([+-])=|)(" + pnum + ")([a-z%]*)$", "i" ); + + +var cssExpand = [ "Top", "Right", "Bottom", "Left" ]; + +var documentElement = document.documentElement; + + + + var isAttached = function( elem ) { + return jQuery.contains( elem.ownerDocument, elem ); + }, + composed = { composed: true }; + + // Support: IE 9 - 11+, Edge 12 - 18+, iOS 10.0 - 10.2 only + // Check attachment across shadow DOM boundaries when possible (gh-3504) + // Support: iOS 10.0-10.2 only + // Early iOS 10 versions support `attachShadow` but not `getRootNode`, + // leading to errors. We need to check for `getRootNode`. + if ( documentElement.getRootNode ) { + isAttached = function( elem ) { + return jQuery.contains( elem.ownerDocument, elem ) || + elem.getRootNode( composed ) === elem.ownerDocument; + }; + } +var isHiddenWithinTree = function( elem, el ) { + + // isHiddenWithinTree might be called from jQuery#filter function; + // in that case, element will be second argument + elem = el || elem; + + // Inline style trumps all + return elem.style.display === "none" || + elem.style.display === "" && + + // Otherwise, check computed style + // Support: Firefox <=43 - 45 + // Disconnected elements can have computed display: none, so first confirm that elem is + // in the document. + isAttached( elem ) && + + jQuery.css( elem, "display" ) === "none"; + }; + + + +function adjustCSS( elem, prop, valueParts, tween ) { + var adjusted, scale, + maxIterations = 20, + currentValue = tween ? + function() { + return tween.cur(); + } : + function() { + return jQuery.css( elem, prop, "" ); + }, + initial = currentValue(), + unit = valueParts && valueParts[ 3 ] || ( jQuery.cssNumber[ prop ] ? "" : "px" ), + + // Starting value computation is required for potential unit mismatches + initialInUnit = elem.nodeType && + ( jQuery.cssNumber[ prop ] || unit !== "px" && +initial ) && + rcssNum.exec( jQuery.css( elem, prop ) ); + + if ( initialInUnit && initialInUnit[ 3 ] !== unit ) { + + // Support: Firefox <=54 + // Halve the iteration target value to prevent interference from CSS upper bounds (gh-2144) + initial = initial / 2; + + // Trust units reported by jQuery.css + unit = unit || initialInUnit[ 3 ]; + + // Iteratively approximate from a nonzero starting point + initialInUnit = +initial || 1; + + while ( maxIterations-- ) { + + // Evaluate and update our best guess (doubling guesses that zero out). + // Finish if the scale equals or crosses 1 (making the old*new product non-positive). + jQuery.style( elem, prop, initialInUnit + unit ); + if ( ( 1 - scale ) * ( 1 - ( scale = currentValue() / initial || 0.5 ) ) <= 0 ) { + maxIterations = 0; + } + initialInUnit = initialInUnit / scale; + + } + + initialInUnit = initialInUnit * 2; + jQuery.style( elem, prop, initialInUnit + unit ); + + // Make sure we update the tween properties later on + valueParts = valueParts || []; + } + + if ( valueParts ) { + initialInUnit = +initialInUnit || +initial || 0; + + // Apply relative offset (+=/-=) if specified + adjusted = valueParts[ 1 ] ? + initialInUnit + ( valueParts[ 1 ] + 1 ) * valueParts[ 2 ] : + +valueParts[ 2 ]; + if ( tween ) { + tween.unit = unit; + tween.start = initialInUnit; + tween.end = adjusted; + } + } + return adjusted; +} + + +var defaultDisplayMap = {}; + +function getDefaultDisplay( elem ) { + var temp, + doc = elem.ownerDocument, + nodeName = elem.nodeName, + display = defaultDisplayMap[ nodeName ]; + + if ( display ) { + return display; + } + + temp = doc.body.appendChild( doc.createElement( nodeName ) ); + display = jQuery.css( temp, "display" ); + + temp.parentNode.removeChild( temp ); + + if ( display === "none" ) { + display = "block"; + } + defaultDisplayMap[ nodeName ] = display; + + return display; +} + +function showHide( elements, show ) { + var display, elem, + values = [], + index = 0, + length = elements.length; + + // Determine new display value for elements that need to change + for ( ; index < length; index++ ) { + elem = elements[ index ]; + if ( !elem.style ) { + continue; + } + + display = elem.style.display; + if ( show ) { + + // Since we force visibility upon cascade-hidden elements, an immediate (and slow) + // check is required in this first loop unless we have a nonempty display value (either + // inline or about-to-be-restored) + if ( display === "none" ) { + values[ index ] = dataPriv.get( elem, "display" ) || null; + if ( !values[ index ] ) { + elem.style.display = ""; + } + } + if ( elem.style.display === "" && isHiddenWithinTree( elem ) ) { + values[ index ] = getDefaultDisplay( elem ); + } + } else { + if ( display !== "none" ) { + values[ index ] = "none"; + + // Remember what we're overwriting + dataPriv.set( elem, "display", display ); + } + } + } + + // Set the display of the elements in a second loop to avoid constant reflow + for ( index = 0; index < length; index++ ) { + if ( values[ index ] != null ) { + elements[ index ].style.display = values[ index ]; + } + } + + return elements; +} + +jQuery.fn.extend( { + show: function() { + return showHide( this, true ); + }, + hide: function() { + return showHide( this ); + }, + toggle: function( state ) { + if ( typeof state === "boolean" ) { + return state ? this.show() : this.hide(); + } + + return this.each( function() { + if ( isHiddenWithinTree( this ) ) { + jQuery( this ).show(); + } else { + jQuery( this ).hide(); + } + } ); + } +} ); +var rcheckableType = ( /^(?:checkbox|radio)$/i ); + +var rtagName = ( /<([a-z][^\/\0>\x20\t\r\n\f]*)/i ); + +var rscriptType = ( /^$|^module$|\/(?:java|ecma)script/i ); + + + +( function() { + var fragment = document.createDocumentFragment(), + div = fragment.appendChild( document.createElement( "div" ) ), + input = document.createElement( "input" ); + + // Support: Android 4.0 - 4.3 only + // Check state lost if the name is set (#11217) + // Support: Windows Web Apps (WWA) + // `name` and `type` must use .setAttribute for WWA (#14901) + input.setAttribute( "type", "radio" ); + input.setAttribute( "checked", "checked" ); + input.setAttribute( "name", "t" ); + + div.appendChild( input ); + + // Support: Android <=4.1 only + // Older WebKit doesn't clone checked state correctly in fragments + support.checkClone = div.cloneNode( true ).cloneNode( true ).lastChild.checked; + + // Support: IE <=11 only + // Make sure textarea (and checkbox) defaultValue is properly cloned + div.innerHTML = ""; + support.noCloneChecked = !!div.cloneNode( true ).lastChild.defaultValue; + + // Support: IE <=9 only + // IE <=9 replaces "; + support.option = !!div.lastChild; +} )(); + + +// We have to close these tags to support XHTML (#13200) +var wrapMap = { + + // XHTML parsers do not magically insert elements in the + // same way that tag soup parsers do. So we cannot shorten + // this by omitting or other required elements. + thead: [ 1, "", "
" ], + col: [ 2, "", "
" ], + tr: [ 2, "", "
" ], + td: [ 3, "", "
" ], + + _default: [ 0, "", "" ] +}; + +wrapMap.tbody = wrapMap.tfoot = wrapMap.colgroup = wrapMap.caption = wrapMap.thead; +wrapMap.th = wrapMap.td; + +// Support: IE <=9 only +if ( !support.option ) { + wrapMap.optgroup = wrapMap.option = [ 1, "" ]; +} + + +function getAll( context, tag ) { + + // Support: IE <=9 - 11 only + // Use typeof to avoid zero-argument method invocation on host objects (#15151) + var ret; + + if ( typeof context.getElementsByTagName !== "undefined" ) { + ret = context.getElementsByTagName( tag || "*" ); + + } else if ( typeof context.querySelectorAll !== "undefined" ) { + ret = context.querySelectorAll( tag || "*" ); + + } else { + ret = []; + } + + if ( tag === undefined || tag && nodeName( context, tag ) ) { + return jQuery.merge( [ context ], ret ); + } + + return ret; +} + + +// Mark scripts as having already been evaluated +function setGlobalEval( elems, refElements ) { + var i = 0, + l = elems.length; + + for ( ; i < l; i++ ) { + dataPriv.set( + elems[ i ], + "globalEval", + !refElements || dataPriv.get( refElements[ i ], "globalEval" ) + ); + } +} + + +var rhtml = /<|&#?\w+;/; + +function buildFragment( elems, context, scripts, selection, ignored ) { + var elem, tmp, tag, wrap, attached, j, + fragment = context.createDocumentFragment(), + nodes = [], + i = 0, + l = elems.length; + + for ( ; i < l; i++ ) { + elem = elems[ i ]; + + if ( elem || elem === 0 ) { + + // Add nodes directly + if ( toType( elem ) === "object" ) { + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( nodes, elem.nodeType ? [ elem ] : elem ); + + // Convert non-html into a text node + } else if ( !rhtml.test( elem ) ) { + nodes.push( context.createTextNode( elem ) ); + + // Convert html into DOM nodes + } else { + tmp = tmp || fragment.appendChild( context.createElement( "div" ) ); + + // Deserialize a standard representation + tag = ( rtagName.exec( elem ) || [ "", "" ] )[ 1 ].toLowerCase(); + wrap = wrapMap[ tag ] || wrapMap._default; + tmp.innerHTML = wrap[ 1 ] + jQuery.htmlPrefilter( elem ) + wrap[ 2 ]; + + // Descend through wrappers to the right content + j = wrap[ 0 ]; + while ( j-- ) { + tmp = tmp.lastChild; + } + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( nodes, tmp.childNodes ); + + // Remember the top-level container + tmp = fragment.firstChild; + + // Ensure the created nodes are orphaned (#12392) + tmp.textContent = ""; + } + } + } + + // Remove wrapper from fragment + fragment.textContent = ""; + + i = 0; + while ( ( elem = nodes[ i++ ] ) ) { + + // Skip elements already in the context collection (trac-4087) + if ( selection && jQuery.inArray( elem, selection ) > -1 ) { + if ( ignored ) { + ignored.push( elem ); + } + continue; + } + + attached = isAttached( elem ); + + // Append to fragment + tmp = getAll( fragment.appendChild( elem ), "script" ); + + // Preserve script evaluation history + if ( attached ) { + setGlobalEval( tmp ); + } + + // Capture executables + if ( scripts ) { + j = 0; + while ( ( elem = tmp[ j++ ] ) ) { + if ( rscriptType.test( elem.type || "" ) ) { + scripts.push( elem ); + } + } + } + } + + return fragment; +} + + +var rtypenamespace = /^([^.]*)(?:\.(.+)|)/; + +function returnTrue() { + return true; +} + +function returnFalse() { + return false; +} + +// Support: IE <=9 - 11+ +// focus() and blur() are asynchronous, except when they are no-op. +// So expect focus to be synchronous when the element is already active, +// and blur to be synchronous when the element is not already active. +// (focus and blur are always synchronous in other supported browsers, +// this just defines when we can count on it). +function expectSync( elem, type ) { + return ( elem === safeActiveElement() ) === ( type === "focus" ); +} + +// Support: IE <=9 only +// Accessing document.activeElement can throw unexpectedly +// https://bugs.jquery.com/ticket/13393 +function safeActiveElement() { + try { + return document.activeElement; + } catch ( err ) { } +} + +function on( elem, types, selector, data, fn, one ) { + var origFn, type; + + // Types can be a map of types/handlers + if ( typeof types === "object" ) { + + // ( types-Object, selector, data ) + if ( typeof selector !== "string" ) { + + // ( types-Object, data ) + data = data || selector; + selector = undefined; + } + for ( type in types ) { + on( elem, type, selector, data, types[ type ], one ); + } + return elem; + } + + if ( data == null && fn == null ) { + + // ( types, fn ) + fn = selector; + data = selector = undefined; + } else if ( fn == null ) { + if ( typeof selector === "string" ) { + + // ( types, selector, fn ) + fn = data; + data = undefined; + } else { + + // ( types, data, fn ) + fn = data; + data = selector; + selector = undefined; + } + } + if ( fn === false ) { + fn = returnFalse; + } else if ( !fn ) { + return elem; + } + + if ( one === 1 ) { + origFn = fn; + fn = function( event ) { + + // Can use an empty set, since event contains the info + jQuery().off( event ); + return origFn.apply( this, arguments ); + }; + + // Use same guid so caller can remove using origFn + fn.guid = origFn.guid || ( origFn.guid = jQuery.guid++ ); + } + return elem.each( function() { + jQuery.event.add( this, types, fn, data, selector ); + } ); +} + +/* + * Helper functions for managing events -- not part of the public interface. + * Props to Dean Edwards' addEvent library for many of the ideas. + */ +jQuery.event = { + + global: {}, + + add: function( elem, types, handler, data, selector ) { + + var handleObjIn, eventHandle, tmp, + events, t, handleObj, + special, handlers, type, namespaces, origType, + elemData = dataPriv.get( elem ); + + // Only attach events to objects that accept data + if ( !acceptData( elem ) ) { + return; + } + + // Caller can pass in an object of custom data in lieu of the handler + if ( handler.handler ) { + handleObjIn = handler; + handler = handleObjIn.handler; + selector = handleObjIn.selector; + } + + // Ensure that invalid selectors throw exceptions at attach time + // Evaluate against documentElement in case elem is a non-element node (e.g., document) + if ( selector ) { + jQuery.find.matchesSelector( documentElement, selector ); + } + + // Make sure that the handler has a unique ID, used to find/remove it later + if ( !handler.guid ) { + handler.guid = jQuery.guid++; + } + + // Init the element's event structure and main handler, if this is the first + if ( !( events = elemData.events ) ) { + events = elemData.events = Object.create( null ); + } + if ( !( eventHandle = elemData.handle ) ) { + eventHandle = elemData.handle = function( e ) { + + // Discard the second event of a jQuery.event.trigger() and + // when an event is called after a page has unloaded + return typeof jQuery !== "undefined" && jQuery.event.triggered !== e.type ? + jQuery.event.dispatch.apply( elem, arguments ) : undefined; + }; + } + + // Handle multiple events separated by a space + types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; + t = types.length; + while ( t-- ) { + tmp = rtypenamespace.exec( types[ t ] ) || []; + type = origType = tmp[ 1 ]; + namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); + + // There *must* be a type, no attaching namespace-only handlers + if ( !type ) { + continue; + } + + // If event changes its type, use the special event handlers for the changed type + special = jQuery.event.special[ type ] || {}; + + // If selector defined, determine special event api type, otherwise given type + type = ( selector ? special.delegateType : special.bindType ) || type; + + // Update special based on newly reset type + special = jQuery.event.special[ type ] || {}; + + // handleObj is passed to all event handlers + handleObj = jQuery.extend( { + type: type, + origType: origType, + data: data, + handler: handler, + guid: handler.guid, + selector: selector, + needsContext: selector && jQuery.expr.match.needsContext.test( selector ), + namespace: namespaces.join( "." ) + }, handleObjIn ); + + // Init the event handler queue if we're the first + if ( !( handlers = events[ type ] ) ) { + handlers = events[ type ] = []; + handlers.delegateCount = 0; + + // Only use addEventListener if the special events handler returns false + if ( !special.setup || + special.setup.call( elem, data, namespaces, eventHandle ) === false ) { + + if ( elem.addEventListener ) { + elem.addEventListener( type, eventHandle ); + } + } + } + + if ( special.add ) { + special.add.call( elem, handleObj ); + + if ( !handleObj.handler.guid ) { + handleObj.handler.guid = handler.guid; + } + } + + // Add to the element's handler list, delegates in front + if ( selector ) { + handlers.splice( handlers.delegateCount++, 0, handleObj ); + } else { + handlers.push( handleObj ); + } + + // Keep track of which events have ever been used, for event optimization + jQuery.event.global[ type ] = true; + } + + }, + + // Detach an event or set of events from an element + remove: function( elem, types, handler, selector, mappedTypes ) { + + var j, origCount, tmp, + events, t, handleObj, + special, handlers, type, namespaces, origType, + elemData = dataPriv.hasData( elem ) && dataPriv.get( elem ); + + if ( !elemData || !( events = elemData.events ) ) { + return; + } + + // Once for each type.namespace in types; type may be omitted + types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; + t = types.length; + while ( t-- ) { + tmp = rtypenamespace.exec( types[ t ] ) || []; + type = origType = tmp[ 1 ]; + namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); + + // Unbind all events (on this namespace, if provided) for the element + if ( !type ) { + for ( type in events ) { + jQuery.event.remove( elem, type + types[ t ], handler, selector, true ); + } + continue; + } + + special = jQuery.event.special[ type ] || {}; + type = ( selector ? special.delegateType : special.bindType ) || type; + handlers = events[ type ] || []; + tmp = tmp[ 2 ] && + new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ); + + // Remove matching events + origCount = j = handlers.length; + while ( j-- ) { + handleObj = handlers[ j ]; + + if ( ( mappedTypes || origType === handleObj.origType ) && + ( !handler || handler.guid === handleObj.guid ) && + ( !tmp || tmp.test( handleObj.namespace ) ) && + ( !selector || selector === handleObj.selector || + selector === "**" && handleObj.selector ) ) { + handlers.splice( j, 1 ); + + if ( handleObj.selector ) { + handlers.delegateCount--; + } + if ( special.remove ) { + special.remove.call( elem, handleObj ); + } + } + } + + // Remove generic event handler if we removed something and no more handlers exist + // (avoids potential for endless recursion during removal of special event handlers) + if ( origCount && !handlers.length ) { + if ( !special.teardown || + special.teardown.call( elem, namespaces, elemData.handle ) === false ) { + + jQuery.removeEvent( elem, type, elemData.handle ); + } + + delete events[ type ]; + } + } + + // Remove data and the expando if it's no longer used + if ( jQuery.isEmptyObject( events ) ) { + dataPriv.remove( elem, "handle events" ); + } + }, + + dispatch: function( nativeEvent ) { + + var i, j, ret, matched, handleObj, handlerQueue, + args = new Array( arguments.length ), + + // Make a writable jQuery.Event from the native event object + event = jQuery.event.fix( nativeEvent ), + + handlers = ( + dataPriv.get( this, "events" ) || Object.create( null ) + )[ event.type ] || [], + special = jQuery.event.special[ event.type ] || {}; + + // Use the fix-ed jQuery.Event rather than the (read-only) native event + args[ 0 ] = event; + + for ( i = 1; i < arguments.length; i++ ) { + args[ i ] = arguments[ i ]; + } + + event.delegateTarget = this; + + // Call the preDispatch hook for the mapped type, and let it bail if desired + if ( special.preDispatch && special.preDispatch.call( this, event ) === false ) { + return; + } + + // Determine handlers + handlerQueue = jQuery.event.handlers.call( this, event, handlers ); + + // Run delegates first; they may want to stop propagation beneath us + i = 0; + while ( ( matched = handlerQueue[ i++ ] ) && !event.isPropagationStopped() ) { + event.currentTarget = matched.elem; + + j = 0; + while ( ( handleObj = matched.handlers[ j++ ] ) && + !event.isImmediatePropagationStopped() ) { + + // If the event is namespaced, then each handler is only invoked if it is + // specially universal or its namespaces are a superset of the event's. + if ( !event.rnamespace || handleObj.namespace === false || + event.rnamespace.test( handleObj.namespace ) ) { + + event.handleObj = handleObj; + event.data = handleObj.data; + + ret = ( ( jQuery.event.special[ handleObj.origType ] || {} ).handle || + handleObj.handler ).apply( matched.elem, args ); + + if ( ret !== undefined ) { + if ( ( event.result = ret ) === false ) { + event.preventDefault(); + event.stopPropagation(); + } + } + } + } + } + + // Call the postDispatch hook for the mapped type + if ( special.postDispatch ) { + special.postDispatch.call( this, event ); + } + + return event.result; + }, + + handlers: function( event, handlers ) { + var i, handleObj, sel, matchedHandlers, matchedSelectors, + handlerQueue = [], + delegateCount = handlers.delegateCount, + cur = event.target; + + // Find delegate handlers + if ( delegateCount && + + // Support: IE <=9 + // Black-hole SVG instance trees (trac-13180) + cur.nodeType && + + // Support: Firefox <=42 + // Suppress spec-violating clicks indicating a non-primary pointer button (trac-3861) + // https://www.w3.org/TR/DOM-Level-3-Events/#event-type-click + // Support: IE 11 only + // ...but not arrow key "clicks" of radio inputs, which can have `button` -1 (gh-2343) + !( event.type === "click" && event.button >= 1 ) ) { + + for ( ; cur !== this; cur = cur.parentNode || this ) { + + // Don't check non-elements (#13208) + // Don't process clicks on disabled elements (#6911, #8165, #11382, #11764) + if ( cur.nodeType === 1 && !( event.type === "click" && cur.disabled === true ) ) { + matchedHandlers = []; + matchedSelectors = {}; + for ( i = 0; i < delegateCount; i++ ) { + handleObj = handlers[ i ]; + + // Don't conflict with Object.prototype properties (#13203) + sel = handleObj.selector + " "; + + if ( matchedSelectors[ sel ] === undefined ) { + matchedSelectors[ sel ] = handleObj.needsContext ? + jQuery( sel, this ).index( cur ) > -1 : + jQuery.find( sel, this, null, [ cur ] ).length; + } + if ( matchedSelectors[ sel ] ) { + matchedHandlers.push( handleObj ); + } + } + if ( matchedHandlers.length ) { + handlerQueue.push( { elem: cur, handlers: matchedHandlers } ); + } + } + } + } + + // Add the remaining (directly-bound) handlers + cur = this; + if ( delegateCount < handlers.length ) { + handlerQueue.push( { elem: cur, handlers: handlers.slice( delegateCount ) } ); + } + + return handlerQueue; + }, + + addProp: function( name, hook ) { + Object.defineProperty( jQuery.Event.prototype, name, { + enumerable: true, + configurable: true, + + get: isFunction( hook ) ? + function() { + if ( this.originalEvent ) { + return hook( this.originalEvent ); + } + } : + function() { + if ( this.originalEvent ) { + return this.originalEvent[ name ]; + } + }, + + set: function( value ) { + Object.defineProperty( this, name, { + enumerable: true, + configurable: true, + writable: true, + value: value + } ); + } + } ); + }, + + fix: function( originalEvent ) { + return originalEvent[ jQuery.expando ] ? + originalEvent : + new jQuery.Event( originalEvent ); + }, + + special: { + load: { + + // Prevent triggered image.load events from bubbling to window.load + noBubble: true + }, + click: { + + // Utilize native event to ensure correct state for checkable inputs + setup: function( data ) { + + // For mutual compressibility with _default, replace `this` access with a local var. + // `|| data` is dead code meant only to preserve the variable through minification. + var el = this || data; + + // Claim the first handler + if ( rcheckableType.test( el.type ) && + el.click && nodeName( el, "input" ) ) { + + // dataPriv.set( el, "click", ... ) + leverageNative( el, "click", returnTrue ); + } + + // Return false to allow normal processing in the caller + return false; + }, + trigger: function( data ) { + + // For mutual compressibility with _default, replace `this` access with a local var. + // `|| data` is dead code meant only to preserve the variable through minification. + var el = this || data; + + // Force setup before triggering a click + if ( rcheckableType.test( el.type ) && + el.click && nodeName( el, "input" ) ) { + + leverageNative( el, "click" ); + } + + // Return non-false to allow normal event-path propagation + return true; + }, + + // For cross-browser consistency, suppress native .click() on links + // Also prevent it if we're currently inside a leveraged native-event stack + _default: function( event ) { + var target = event.target; + return rcheckableType.test( target.type ) && + target.click && nodeName( target, "input" ) && + dataPriv.get( target, "click" ) || + nodeName( target, "a" ); + } + }, + + beforeunload: { + postDispatch: function( event ) { + + // Support: Firefox 20+ + // Firefox doesn't alert if the returnValue field is not set. + if ( event.result !== undefined && event.originalEvent ) { + event.originalEvent.returnValue = event.result; + } + } + } + } +}; + +// Ensure the presence of an event listener that handles manually-triggered +// synthetic events by interrupting progress until reinvoked in response to +// *native* events that it fires directly, ensuring that state changes have +// already occurred before other listeners are invoked. +function leverageNative( el, type, expectSync ) { + + // Missing expectSync indicates a trigger call, which must force setup through jQuery.event.add + if ( !expectSync ) { + if ( dataPriv.get( el, type ) === undefined ) { + jQuery.event.add( el, type, returnTrue ); + } + return; + } + + // Register the controller as a special universal handler for all event namespaces + dataPriv.set( el, type, false ); + jQuery.event.add( el, type, { + namespace: false, + handler: function( event ) { + var notAsync, result, + saved = dataPriv.get( this, type ); + + if ( ( event.isTrigger & 1 ) && this[ type ] ) { + + // Interrupt processing of the outer synthetic .trigger()ed event + // Saved data should be false in such cases, but might be a leftover capture object + // from an async native handler (gh-4350) + if ( !saved.length ) { + + // Store arguments for use when handling the inner native event + // There will always be at least one argument (an event object), so this array + // will not be confused with a leftover capture object. + saved = slice.call( arguments ); + dataPriv.set( this, type, saved ); + + // Trigger the native event and capture its result + // Support: IE <=9 - 11+ + // focus() and blur() are asynchronous + notAsync = expectSync( this, type ); + this[ type ](); + result = dataPriv.get( this, type ); + if ( saved !== result || notAsync ) { + dataPriv.set( this, type, false ); + } else { + result = {}; + } + if ( saved !== result ) { + + // Cancel the outer synthetic event + event.stopImmediatePropagation(); + event.preventDefault(); + + // Support: Chrome 86+ + // In Chrome, if an element having a focusout handler is blurred by + // clicking outside of it, it invokes the handler synchronously. If + // that handler calls `.remove()` on the element, the data is cleared, + // leaving `result` undefined. We need to guard against this. + return result && result.value; + } + + // If this is an inner synthetic event for an event with a bubbling surrogate + // (focus or blur), assume that the surrogate already propagated from triggering the + // native event and prevent that from happening again here. + // This technically gets the ordering wrong w.r.t. to `.trigger()` (in which the + // bubbling surrogate propagates *after* the non-bubbling base), but that seems + // less bad than duplication. + } else if ( ( jQuery.event.special[ type ] || {} ).delegateType ) { + event.stopPropagation(); + } + + // If this is a native event triggered above, everything is now in order + // Fire an inner synthetic event with the original arguments + } else if ( saved.length ) { + + // ...and capture the result + dataPriv.set( this, type, { + value: jQuery.event.trigger( + + // Support: IE <=9 - 11+ + // Extend with the prototype to reset the above stopImmediatePropagation() + jQuery.extend( saved[ 0 ], jQuery.Event.prototype ), + saved.slice( 1 ), + this + ) + } ); + + // Abort handling of the native event + event.stopImmediatePropagation(); + } + } + } ); +} + +jQuery.removeEvent = function( elem, type, handle ) { + + // This "if" is needed for plain objects + if ( elem.removeEventListener ) { + elem.removeEventListener( type, handle ); + } +}; + +jQuery.Event = function( src, props ) { + + // Allow instantiation without the 'new' keyword + if ( !( this instanceof jQuery.Event ) ) { + return new jQuery.Event( src, props ); + } + + // Event object + if ( src && src.type ) { + this.originalEvent = src; + this.type = src.type; + + // Events bubbling up the document may have been marked as prevented + // by a handler lower down the tree; reflect the correct value. + this.isDefaultPrevented = src.defaultPrevented || + src.defaultPrevented === undefined && + + // Support: Android <=2.3 only + src.returnValue === false ? + returnTrue : + returnFalse; + + // Create target properties + // Support: Safari <=6 - 7 only + // Target should not be a text node (#504, #13143) + this.target = ( src.target && src.target.nodeType === 3 ) ? + src.target.parentNode : + src.target; + + this.currentTarget = src.currentTarget; + this.relatedTarget = src.relatedTarget; + + // Event type + } else { + this.type = src; + } + + // Put explicitly provided properties onto the event object + if ( props ) { + jQuery.extend( this, props ); + } + + // Create a timestamp if incoming event doesn't have one + this.timeStamp = src && src.timeStamp || Date.now(); + + // Mark it as fixed + this[ jQuery.expando ] = true; +}; + +// jQuery.Event is based on DOM3 Events as specified by the ECMAScript Language Binding +// https://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/ecma-script-binding.html +jQuery.Event.prototype = { + constructor: jQuery.Event, + isDefaultPrevented: returnFalse, + isPropagationStopped: returnFalse, + isImmediatePropagationStopped: returnFalse, + isSimulated: false, + + preventDefault: function() { + var e = this.originalEvent; + + this.isDefaultPrevented = returnTrue; + + if ( e && !this.isSimulated ) { + e.preventDefault(); + } + }, + stopPropagation: function() { + var e = this.originalEvent; + + this.isPropagationStopped = returnTrue; + + if ( e && !this.isSimulated ) { + e.stopPropagation(); + } + }, + stopImmediatePropagation: function() { + var e = this.originalEvent; + + this.isImmediatePropagationStopped = returnTrue; + + if ( e && !this.isSimulated ) { + e.stopImmediatePropagation(); + } + + this.stopPropagation(); + } +}; + +// Includes all common event props including KeyEvent and MouseEvent specific props +jQuery.each( { + altKey: true, + bubbles: true, + cancelable: true, + changedTouches: true, + ctrlKey: true, + detail: true, + eventPhase: true, + metaKey: true, + pageX: true, + pageY: true, + shiftKey: true, + view: true, + "char": true, + code: true, + charCode: true, + key: true, + keyCode: true, + button: true, + buttons: true, + clientX: true, + clientY: true, + offsetX: true, + offsetY: true, + pointerId: true, + pointerType: true, + screenX: true, + screenY: true, + targetTouches: true, + toElement: true, + touches: true, + which: true +}, jQuery.event.addProp ); + +jQuery.each( { focus: "focusin", blur: "focusout" }, function( type, delegateType ) { + jQuery.event.special[ type ] = { + + // Utilize native event if possible so blur/focus sequence is correct + setup: function() { + + // Claim the first handler + // dataPriv.set( this, "focus", ... ) + // dataPriv.set( this, "blur", ... ) + leverageNative( this, type, expectSync ); + + // Return false to allow normal processing in the caller + return false; + }, + trigger: function() { + + // Force setup before trigger + leverageNative( this, type ); + + // Return non-false to allow normal event-path propagation + return true; + }, + + // Suppress native focus or blur as it's already being fired + // in leverageNative. + _default: function() { + return true; + }, + + delegateType: delegateType + }; +} ); + +// Create mouseenter/leave events using mouseover/out and event-time checks +// so that event delegation works in jQuery. +// Do the same for pointerenter/pointerleave and pointerover/pointerout +// +// Support: Safari 7 only +// Safari sends mouseenter too often; see: +// https://bugs.chromium.org/p/chromium/issues/detail?id=470258 +// for the description of the bug (it existed in older Chrome versions as well). +jQuery.each( { + mouseenter: "mouseover", + mouseleave: "mouseout", + pointerenter: "pointerover", + pointerleave: "pointerout" +}, function( orig, fix ) { + jQuery.event.special[ orig ] = { + delegateType: fix, + bindType: fix, + + handle: function( event ) { + var ret, + target = this, + related = event.relatedTarget, + handleObj = event.handleObj; + + // For mouseenter/leave call the handler if related is outside the target. + // NB: No relatedTarget if the mouse left/entered the browser window + if ( !related || ( related !== target && !jQuery.contains( target, related ) ) ) { + event.type = handleObj.origType; + ret = handleObj.handler.apply( this, arguments ); + event.type = fix; + } + return ret; + } + }; +} ); + +jQuery.fn.extend( { + + on: function( types, selector, data, fn ) { + return on( this, types, selector, data, fn ); + }, + one: function( types, selector, data, fn ) { + return on( this, types, selector, data, fn, 1 ); + }, + off: function( types, selector, fn ) { + var handleObj, type; + if ( types && types.preventDefault && types.handleObj ) { + + // ( event ) dispatched jQuery.Event + handleObj = types.handleObj; + jQuery( types.delegateTarget ).off( + handleObj.namespace ? + handleObj.origType + "." + handleObj.namespace : + handleObj.origType, + handleObj.selector, + handleObj.handler + ); + return this; + } + if ( typeof types === "object" ) { + + // ( types-object [, selector] ) + for ( type in types ) { + this.off( type, selector, types[ type ] ); + } + return this; + } + if ( selector === false || typeof selector === "function" ) { + + // ( types [, fn] ) + fn = selector; + selector = undefined; + } + if ( fn === false ) { + fn = returnFalse; + } + return this.each( function() { + jQuery.event.remove( this, types, fn, selector ); + } ); + } +} ); + + +var + + // Support: IE <=10 - 11, Edge 12 - 13 only + // In IE/Edge using regex groups here causes severe slowdowns. + // See https://connect.microsoft.com/IE/feedback/details/1736512/ + rnoInnerhtml = /\s*$/g; + +// Prefer a tbody over its parent table for containing new rows +function manipulationTarget( elem, content ) { + if ( nodeName( elem, "table" ) && + nodeName( content.nodeType !== 11 ? content : content.firstChild, "tr" ) ) { + + return jQuery( elem ).children( "tbody" )[ 0 ] || elem; + } + + return elem; +} + +// Replace/restore the type attribute of script elements for safe DOM manipulation +function disableScript( elem ) { + elem.type = ( elem.getAttribute( "type" ) !== null ) + "/" + elem.type; + return elem; +} +function restoreScript( elem ) { + if ( ( elem.type || "" ).slice( 0, 5 ) === "true/" ) { + elem.type = elem.type.slice( 5 ); + } else { + elem.removeAttribute( "type" ); + } + + return elem; +} + +function cloneCopyEvent( src, dest ) { + var i, l, type, pdataOld, udataOld, udataCur, events; + + if ( dest.nodeType !== 1 ) { + return; + } + + // 1. Copy private data: events, handlers, etc. + if ( dataPriv.hasData( src ) ) { + pdataOld = dataPriv.get( src ); + events = pdataOld.events; + + if ( events ) { + dataPriv.remove( dest, "handle events" ); + + for ( type in events ) { + for ( i = 0, l = events[ type ].length; i < l; i++ ) { + jQuery.event.add( dest, type, events[ type ][ i ] ); + } + } + } + } + + // 2. Copy user data + if ( dataUser.hasData( src ) ) { + udataOld = dataUser.access( src ); + udataCur = jQuery.extend( {}, udataOld ); + + dataUser.set( dest, udataCur ); + } +} + +// Fix IE bugs, see support tests +function fixInput( src, dest ) { + var nodeName = dest.nodeName.toLowerCase(); + + // Fails to persist the checked state of a cloned checkbox or radio button. + if ( nodeName === "input" && rcheckableType.test( src.type ) ) { + dest.checked = src.checked; + + // Fails to return the selected option to the default selected state when cloning options + } else if ( nodeName === "input" || nodeName === "textarea" ) { + dest.defaultValue = src.defaultValue; + } +} + +function domManip( collection, args, callback, ignored ) { + + // Flatten any nested arrays + args = flat( args ); + + var fragment, first, scripts, hasScripts, node, doc, + i = 0, + l = collection.length, + iNoClone = l - 1, + value = args[ 0 ], + valueIsFunction = isFunction( value ); + + // We can't cloneNode fragments that contain checked, in WebKit + if ( valueIsFunction || + ( l > 1 && typeof value === "string" && + !support.checkClone && rchecked.test( value ) ) ) { + return collection.each( function( index ) { + var self = collection.eq( index ); + if ( valueIsFunction ) { + args[ 0 ] = value.call( this, index, self.html() ); + } + domManip( self, args, callback, ignored ); + } ); + } + + if ( l ) { + fragment = buildFragment( args, collection[ 0 ].ownerDocument, false, collection, ignored ); + first = fragment.firstChild; + + if ( fragment.childNodes.length === 1 ) { + fragment = first; + } + + // Require either new content or an interest in ignored elements to invoke the callback + if ( first || ignored ) { + scripts = jQuery.map( getAll( fragment, "script" ), disableScript ); + hasScripts = scripts.length; + + // Use the original fragment for the last item + // instead of the first because it can end up + // being emptied incorrectly in certain situations (#8070). + for ( ; i < l; i++ ) { + node = fragment; + + if ( i !== iNoClone ) { + node = jQuery.clone( node, true, true ); + + // Keep references to cloned scripts for later restoration + if ( hasScripts ) { + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( scripts, getAll( node, "script" ) ); + } + } + + callback.call( collection[ i ], node, i ); + } + + if ( hasScripts ) { + doc = scripts[ scripts.length - 1 ].ownerDocument; + + // Reenable scripts + jQuery.map( scripts, restoreScript ); + + // Evaluate executable scripts on first document insertion + for ( i = 0; i < hasScripts; i++ ) { + node = scripts[ i ]; + if ( rscriptType.test( node.type || "" ) && + !dataPriv.access( node, "globalEval" ) && + jQuery.contains( doc, node ) ) { + + if ( node.src && ( node.type || "" ).toLowerCase() !== "module" ) { + + // Optional AJAX dependency, but won't run scripts if not present + if ( jQuery._evalUrl && !node.noModule ) { + jQuery._evalUrl( node.src, { + nonce: node.nonce || node.getAttribute( "nonce" ) + }, doc ); + } + } else { + DOMEval( node.textContent.replace( rcleanScript, "" ), node, doc ); + } + } + } + } + } + } + + return collection; +} + +function remove( elem, selector, keepData ) { + var node, + nodes = selector ? jQuery.filter( selector, elem ) : elem, + i = 0; + + for ( ; ( node = nodes[ i ] ) != null; i++ ) { + if ( !keepData && node.nodeType === 1 ) { + jQuery.cleanData( getAll( node ) ); + } + + if ( node.parentNode ) { + if ( keepData && isAttached( node ) ) { + setGlobalEval( getAll( node, "script" ) ); + } + node.parentNode.removeChild( node ); + } + } + + return elem; +} + +jQuery.extend( { + htmlPrefilter: function( html ) { + return html; + }, + + clone: function( elem, dataAndEvents, deepDataAndEvents ) { + var i, l, srcElements, destElements, + clone = elem.cloneNode( true ), + inPage = isAttached( elem ); + + // Fix IE cloning issues + if ( !support.noCloneChecked && ( elem.nodeType === 1 || elem.nodeType === 11 ) && + !jQuery.isXMLDoc( elem ) ) { + + // We eschew Sizzle here for performance reasons: https://jsperf.com/getall-vs-sizzle/2 + destElements = getAll( clone ); + srcElements = getAll( elem ); + + for ( i = 0, l = srcElements.length; i < l; i++ ) { + fixInput( srcElements[ i ], destElements[ i ] ); + } + } + + // Copy the events from the original to the clone + if ( dataAndEvents ) { + if ( deepDataAndEvents ) { + srcElements = srcElements || getAll( elem ); + destElements = destElements || getAll( clone ); + + for ( i = 0, l = srcElements.length; i < l; i++ ) { + cloneCopyEvent( srcElements[ i ], destElements[ i ] ); + } + } else { + cloneCopyEvent( elem, clone ); + } + } + + // Preserve script evaluation history + destElements = getAll( clone, "script" ); + if ( destElements.length > 0 ) { + setGlobalEval( destElements, !inPage && getAll( elem, "script" ) ); + } + + // Return the cloned set + return clone; + }, + + cleanData: function( elems ) { + var data, elem, type, + special = jQuery.event.special, + i = 0; + + for ( ; ( elem = elems[ i ] ) !== undefined; i++ ) { + if ( acceptData( elem ) ) { + if ( ( data = elem[ dataPriv.expando ] ) ) { + if ( data.events ) { + for ( type in data.events ) { + if ( special[ type ] ) { + jQuery.event.remove( elem, type ); + + // This is a shortcut to avoid jQuery.event.remove's overhead + } else { + jQuery.removeEvent( elem, type, data.handle ); + } + } + } + + // Support: Chrome <=35 - 45+ + // Assign undefined instead of using delete, see Data#remove + elem[ dataPriv.expando ] = undefined; + } + if ( elem[ dataUser.expando ] ) { + + // Support: Chrome <=35 - 45+ + // Assign undefined instead of using delete, see Data#remove + elem[ dataUser.expando ] = undefined; + } + } + } + } +} ); + +jQuery.fn.extend( { + detach: function( selector ) { + return remove( this, selector, true ); + }, + + remove: function( selector ) { + return remove( this, selector ); + }, + + text: function( value ) { + return access( this, function( value ) { + return value === undefined ? + jQuery.text( this ) : + this.empty().each( function() { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + this.textContent = value; + } + } ); + }, null, value, arguments.length ); + }, + + append: function() { + return domManip( this, arguments, function( elem ) { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + var target = manipulationTarget( this, elem ); + target.appendChild( elem ); + } + } ); + }, + + prepend: function() { + return domManip( this, arguments, function( elem ) { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + var target = manipulationTarget( this, elem ); + target.insertBefore( elem, target.firstChild ); + } + } ); + }, + + before: function() { + return domManip( this, arguments, function( elem ) { + if ( this.parentNode ) { + this.parentNode.insertBefore( elem, this ); + } + } ); + }, + + after: function() { + return domManip( this, arguments, function( elem ) { + if ( this.parentNode ) { + this.parentNode.insertBefore( elem, this.nextSibling ); + } + } ); + }, + + empty: function() { + var elem, + i = 0; + + for ( ; ( elem = this[ i ] ) != null; i++ ) { + if ( elem.nodeType === 1 ) { + + // Prevent memory leaks + jQuery.cleanData( getAll( elem, false ) ); + + // Remove any remaining nodes + elem.textContent = ""; + } + } + + return this; + }, + + clone: function( dataAndEvents, deepDataAndEvents ) { + dataAndEvents = dataAndEvents == null ? false : dataAndEvents; + deepDataAndEvents = deepDataAndEvents == null ? dataAndEvents : deepDataAndEvents; + + return this.map( function() { + return jQuery.clone( this, dataAndEvents, deepDataAndEvents ); + } ); + }, + + html: function( value ) { + return access( this, function( value ) { + var elem = this[ 0 ] || {}, + i = 0, + l = this.length; + + if ( value === undefined && elem.nodeType === 1 ) { + return elem.innerHTML; + } + + // See if we can take a shortcut and just use innerHTML + if ( typeof value === "string" && !rnoInnerhtml.test( value ) && + !wrapMap[ ( rtagName.exec( value ) || [ "", "" ] )[ 1 ].toLowerCase() ] ) { + + value = jQuery.htmlPrefilter( value ); + + try { + for ( ; i < l; i++ ) { + elem = this[ i ] || {}; + + // Remove element nodes and prevent memory leaks + if ( elem.nodeType === 1 ) { + jQuery.cleanData( getAll( elem, false ) ); + elem.innerHTML = value; + } + } + + elem = 0; + + // If using innerHTML throws an exception, use the fallback method + } catch ( e ) {} + } + + if ( elem ) { + this.empty().append( value ); + } + }, null, value, arguments.length ); + }, + + replaceWith: function() { + var ignored = []; + + // Make the changes, replacing each non-ignored context element with the new content + return domManip( this, arguments, function( elem ) { + var parent = this.parentNode; + + if ( jQuery.inArray( this, ignored ) < 0 ) { + jQuery.cleanData( getAll( this ) ); + if ( parent ) { + parent.replaceChild( elem, this ); + } + } + + // Force callback invocation + }, ignored ); + } +} ); + +jQuery.each( { + appendTo: "append", + prependTo: "prepend", + insertBefore: "before", + insertAfter: "after", + replaceAll: "replaceWith" +}, function( name, original ) { + jQuery.fn[ name ] = function( selector ) { + var elems, + ret = [], + insert = jQuery( selector ), + last = insert.length - 1, + i = 0; + + for ( ; i <= last; i++ ) { + elems = i === last ? this : this.clone( true ); + jQuery( insert[ i ] )[ original ]( elems ); + + // Support: Android <=4.0 only, PhantomJS 1 only + // .get() because push.apply(_, arraylike) throws on ancient WebKit + push.apply( ret, elems.get() ); + } + + return this.pushStack( ret ); + }; +} ); +var rnumnonpx = new RegExp( "^(" + pnum + ")(?!px)[a-z%]+$", "i" ); + +var getStyles = function( elem ) { + + // Support: IE <=11 only, Firefox <=30 (#15098, #14150) + // IE throws on elements created in popups + // FF meanwhile throws on frame elements through "defaultView.getComputedStyle" + var view = elem.ownerDocument.defaultView; + + if ( !view || !view.opener ) { + view = window; + } + + return view.getComputedStyle( elem ); + }; + +var swap = function( elem, options, callback ) { + var ret, name, + old = {}; + + // Remember the old values, and insert the new ones + for ( name in options ) { + old[ name ] = elem.style[ name ]; + elem.style[ name ] = options[ name ]; + } + + ret = callback.call( elem ); + + // Revert the old values + for ( name in options ) { + elem.style[ name ] = old[ name ]; + } + + return ret; +}; + + +var rboxStyle = new RegExp( cssExpand.join( "|" ), "i" ); + + + +( function() { + + // Executing both pixelPosition & boxSizingReliable tests require only one layout + // so they're executed at the same time to save the second computation. + function computeStyleTests() { + + // This is a singleton, we need to execute it only once + if ( !div ) { + return; + } + + container.style.cssText = "position:absolute;left:-11111px;width:60px;" + + "margin-top:1px;padding:0;border:0"; + div.style.cssText = + "position:relative;display:block;box-sizing:border-box;overflow:scroll;" + + "margin:auto;border:1px;padding:1px;" + + "width:60%;top:1%"; + documentElement.appendChild( container ).appendChild( div ); + + var divStyle = window.getComputedStyle( div ); + pixelPositionVal = divStyle.top !== "1%"; + + // Support: Android 4.0 - 4.3 only, Firefox <=3 - 44 + reliableMarginLeftVal = roundPixelMeasures( divStyle.marginLeft ) === 12; + + // Support: Android 4.0 - 4.3 only, Safari <=9.1 - 10.1, iOS <=7.0 - 9.3 + // Some styles come back with percentage values, even though they shouldn't + div.style.right = "60%"; + pixelBoxStylesVal = roundPixelMeasures( divStyle.right ) === 36; + + // Support: IE 9 - 11 only + // Detect misreporting of content dimensions for box-sizing:border-box elements + boxSizingReliableVal = roundPixelMeasures( divStyle.width ) === 36; + + // Support: IE 9 only + // Detect overflow:scroll screwiness (gh-3699) + // Support: Chrome <=64 + // Don't get tricked when zoom affects offsetWidth (gh-4029) + div.style.position = "absolute"; + scrollboxSizeVal = roundPixelMeasures( div.offsetWidth / 3 ) === 12; + + documentElement.removeChild( container ); + + // Nullify the div so it wouldn't be stored in the memory and + // it will also be a sign that checks already performed + div = null; + } + + function roundPixelMeasures( measure ) { + return Math.round( parseFloat( measure ) ); + } + + var pixelPositionVal, boxSizingReliableVal, scrollboxSizeVal, pixelBoxStylesVal, + reliableTrDimensionsVal, reliableMarginLeftVal, + container = document.createElement( "div" ), + div = document.createElement( "div" ); + + // Finish early in limited (non-browser) environments + if ( !div.style ) { + return; + } + + // Support: IE <=9 - 11 only + // Style of cloned element affects source element cloned (#8908) + div.style.backgroundClip = "content-box"; + div.cloneNode( true ).style.backgroundClip = ""; + support.clearCloneStyle = div.style.backgroundClip === "content-box"; + + jQuery.extend( support, { + boxSizingReliable: function() { + computeStyleTests(); + return boxSizingReliableVal; + }, + pixelBoxStyles: function() { + computeStyleTests(); + return pixelBoxStylesVal; + }, + pixelPosition: function() { + computeStyleTests(); + return pixelPositionVal; + }, + reliableMarginLeft: function() { + computeStyleTests(); + return reliableMarginLeftVal; + }, + scrollboxSize: function() { + computeStyleTests(); + return scrollboxSizeVal; + }, + + // Support: IE 9 - 11+, Edge 15 - 18+ + // IE/Edge misreport `getComputedStyle` of table rows with width/height + // set in CSS while `offset*` properties report correct values. + // Behavior in IE 9 is more subtle than in newer versions & it passes + // some versions of this test; make sure not to make it pass there! + // + // Support: Firefox 70+ + // Only Firefox includes border widths + // in computed dimensions. (gh-4529) + reliableTrDimensions: function() { + var table, tr, trChild, trStyle; + if ( reliableTrDimensionsVal == null ) { + table = document.createElement( "table" ); + tr = document.createElement( "tr" ); + trChild = document.createElement( "div" ); + + table.style.cssText = "position:absolute;left:-11111px;border-collapse:separate"; + tr.style.cssText = "border:1px solid"; + + // Support: Chrome 86+ + // Height set through cssText does not get applied. + // Computed height then comes back as 0. + tr.style.height = "1px"; + trChild.style.height = "9px"; + + // Support: Android 8 Chrome 86+ + // In our bodyBackground.html iframe, + // display for all div elements is set to "inline", + // which causes a problem only in Android 8 Chrome 86. + // Ensuring the div is display: block + // gets around this issue. + trChild.style.display = "block"; + + documentElement + .appendChild( table ) + .appendChild( tr ) + .appendChild( trChild ); + + trStyle = window.getComputedStyle( tr ); + reliableTrDimensionsVal = ( parseInt( trStyle.height, 10 ) + + parseInt( trStyle.borderTopWidth, 10 ) + + parseInt( trStyle.borderBottomWidth, 10 ) ) === tr.offsetHeight; + + documentElement.removeChild( table ); + } + return reliableTrDimensionsVal; + } + } ); +} )(); + + +function curCSS( elem, name, computed ) { + var width, minWidth, maxWidth, ret, + + // Support: Firefox 51+ + // Retrieving style before computed somehow + // fixes an issue with getting wrong values + // on detached elements + style = elem.style; + + computed = computed || getStyles( elem ); + + // getPropertyValue is needed for: + // .css('filter') (IE 9 only, #12537) + // .css('--customProperty) (#3144) + if ( computed ) { + ret = computed.getPropertyValue( name ) || computed[ name ]; + + if ( ret === "" && !isAttached( elem ) ) { + ret = jQuery.style( elem, name ); + } + + // A tribute to the "awesome hack by Dean Edwards" + // Android Browser returns percentage for some values, + // but width seems to be reliably pixels. + // This is against the CSSOM draft spec: + // https://drafts.csswg.org/cssom/#resolved-values + if ( !support.pixelBoxStyles() && rnumnonpx.test( ret ) && rboxStyle.test( name ) ) { + + // Remember the original values + width = style.width; + minWidth = style.minWidth; + maxWidth = style.maxWidth; + + // Put in the new values to get a computed value out + style.minWidth = style.maxWidth = style.width = ret; + ret = computed.width; + + // Revert the changed values + style.width = width; + style.minWidth = minWidth; + style.maxWidth = maxWidth; + } + } + + return ret !== undefined ? + + // Support: IE <=9 - 11 only + // IE returns zIndex value as an integer. + ret + "" : + ret; +} + + +function addGetHookIf( conditionFn, hookFn ) { + + // Define the hook, we'll check on the first run if it's really needed. + return { + get: function() { + if ( conditionFn() ) { + + // Hook not needed (or it's not possible to use it due + // to missing dependency), remove it. + delete this.get; + return; + } + + // Hook needed; redefine it so that the support test is not executed again. + return ( this.get = hookFn ).apply( this, arguments ); + } + }; +} + + +var cssPrefixes = [ "Webkit", "Moz", "ms" ], + emptyStyle = document.createElement( "div" ).style, + vendorProps = {}; + +// Return a vendor-prefixed property or undefined +function vendorPropName( name ) { + + // Check for vendor prefixed names + var capName = name[ 0 ].toUpperCase() + name.slice( 1 ), + i = cssPrefixes.length; + + while ( i-- ) { + name = cssPrefixes[ i ] + capName; + if ( name in emptyStyle ) { + return name; + } + } +} + +// Return a potentially-mapped jQuery.cssProps or vendor prefixed property +function finalPropName( name ) { + var final = jQuery.cssProps[ name ] || vendorProps[ name ]; + + if ( final ) { + return final; + } + if ( name in emptyStyle ) { + return name; + } + return vendorProps[ name ] = vendorPropName( name ) || name; +} + + +var + + // Swappable if display is none or starts with table + // except "table", "table-cell", or "table-caption" + // See here for display values: https://developer.mozilla.org/en-US/docs/CSS/display + rdisplayswap = /^(none|table(?!-c[ea]).+)/, + rcustomProp = /^--/, + cssShow = { position: "absolute", visibility: "hidden", display: "block" }, + cssNormalTransform = { + letterSpacing: "0", + fontWeight: "400" + }; + +function setPositiveNumber( _elem, value, subtract ) { + + // Any relative (+/-) values have already been + // normalized at this point + var matches = rcssNum.exec( value ); + return matches ? + + // Guard against undefined "subtract", e.g., when used as in cssHooks + Math.max( 0, matches[ 2 ] - ( subtract || 0 ) ) + ( matches[ 3 ] || "px" ) : + value; +} + +function boxModelAdjustment( elem, dimension, box, isBorderBox, styles, computedVal ) { + var i = dimension === "width" ? 1 : 0, + extra = 0, + delta = 0; + + // Adjustment may not be necessary + if ( box === ( isBorderBox ? "border" : "content" ) ) { + return 0; + } + + for ( ; i < 4; i += 2 ) { + + // Both box models exclude margin + if ( box === "margin" ) { + delta += jQuery.css( elem, box + cssExpand[ i ], true, styles ); + } + + // If we get here with a content-box, we're seeking "padding" or "border" or "margin" + if ( !isBorderBox ) { + + // Add padding + delta += jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); + + // For "border" or "margin", add border + if ( box !== "padding" ) { + delta += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + + // But still keep track of it otherwise + } else { + extra += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + } + + // If we get here with a border-box (content + padding + border), we're seeking "content" or + // "padding" or "margin" + } else { + + // For "content", subtract padding + if ( box === "content" ) { + delta -= jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); + } + + // For "content" or "padding", subtract border + if ( box !== "margin" ) { + delta -= jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + } + } + } + + // Account for positive content-box scroll gutter when requested by providing computedVal + if ( !isBorderBox && computedVal >= 0 ) { + + // offsetWidth/offsetHeight is a rounded sum of content, padding, scroll gutter, and border + // Assuming integer scroll gutter, subtract the rest and round down + delta += Math.max( 0, Math.ceil( + elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - + computedVal - + delta - + extra - + 0.5 + + // If offsetWidth/offsetHeight is unknown, then we can't determine content-box scroll gutter + // Use an explicit zero to avoid NaN (gh-3964) + ) ) || 0; + } + + return delta; +} + +function getWidthOrHeight( elem, dimension, extra ) { + + // Start with computed style + var styles = getStyles( elem ), + + // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-4322). + // Fake content-box until we know it's needed to know the true value. + boxSizingNeeded = !support.boxSizingReliable() || extra, + isBorderBox = boxSizingNeeded && + jQuery.css( elem, "boxSizing", false, styles ) === "border-box", + valueIsBorderBox = isBorderBox, + + val = curCSS( elem, dimension, styles ), + offsetProp = "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ); + + // Support: Firefox <=54 + // Return a confounding non-pixel value or feign ignorance, as appropriate. + if ( rnumnonpx.test( val ) ) { + if ( !extra ) { + return val; + } + val = "auto"; + } + + + // Support: IE 9 - 11 only + // Use offsetWidth/offsetHeight for when box sizing is unreliable. + // In those cases, the computed value can be trusted to be border-box. + if ( ( !support.boxSizingReliable() && isBorderBox || + + // Support: IE 10 - 11+, Edge 15 - 18+ + // IE/Edge misreport `getComputedStyle` of table rows with width/height + // set in CSS while `offset*` properties report correct values. + // Interestingly, in some cases IE 9 doesn't suffer from this issue. + !support.reliableTrDimensions() && nodeName( elem, "tr" ) || + + // Fall back to offsetWidth/offsetHeight when value is "auto" + // This happens for inline elements with no explicit setting (gh-3571) + val === "auto" || + + // Support: Android <=4.1 - 4.3 only + // Also use offsetWidth/offsetHeight for misreported inline dimensions (gh-3602) + !parseFloat( val ) && jQuery.css( elem, "display", false, styles ) === "inline" ) && + + // Make sure the element is visible & connected + elem.getClientRects().length ) { + + isBorderBox = jQuery.css( elem, "boxSizing", false, styles ) === "border-box"; + + // Where available, offsetWidth/offsetHeight approximate border box dimensions. + // Where not available (e.g., SVG), assume unreliable box-sizing and interpret the + // retrieved value as a content box dimension. + valueIsBorderBox = offsetProp in elem; + if ( valueIsBorderBox ) { + val = elem[ offsetProp ]; + } + } + + // Normalize "" and auto + val = parseFloat( val ) || 0; + + // Adjust for the element's box model + return ( val + + boxModelAdjustment( + elem, + dimension, + extra || ( isBorderBox ? "border" : "content" ), + valueIsBorderBox, + styles, + + // Provide the current computed size to request scroll gutter calculation (gh-3589) + val + ) + ) + "px"; +} + +jQuery.extend( { + + // Add in style property hooks for overriding the default + // behavior of getting and setting a style property + cssHooks: { + opacity: { + get: function( elem, computed ) { + if ( computed ) { + + // We should always get a number back from opacity + var ret = curCSS( elem, "opacity" ); + return ret === "" ? "1" : ret; + } + } + } + }, + + // Don't automatically add "px" to these possibly-unitless properties + cssNumber: { + "animationIterationCount": true, + "columnCount": true, + "fillOpacity": true, + "flexGrow": true, + "flexShrink": true, + "fontWeight": true, + "gridArea": true, + "gridColumn": true, + "gridColumnEnd": true, + "gridColumnStart": true, + "gridRow": true, + "gridRowEnd": true, + "gridRowStart": true, + "lineHeight": true, + "opacity": true, + "order": true, + "orphans": true, + "widows": true, + "zIndex": true, + "zoom": true + }, + + // Add in properties whose names you wish to fix before + // setting or getting the value + cssProps: {}, + + // Get and set the style property on a DOM Node + style: function( elem, name, value, extra ) { + + // Don't set styles on text and comment nodes + if ( !elem || elem.nodeType === 3 || elem.nodeType === 8 || !elem.style ) { + return; + } + + // Make sure that we're working with the right name + var ret, type, hooks, + origName = camelCase( name ), + isCustomProp = rcustomProp.test( name ), + style = elem.style; + + // Make sure that we're working with the right name. We don't + // want to query the value if it is a CSS custom property + // since they are user-defined. + if ( !isCustomProp ) { + name = finalPropName( origName ); + } + + // Gets hook for the prefixed version, then unprefixed version + hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; + + // Check if we're setting a value + if ( value !== undefined ) { + type = typeof value; + + // Convert "+=" or "-=" to relative numbers (#7345) + if ( type === "string" && ( ret = rcssNum.exec( value ) ) && ret[ 1 ] ) { + value = adjustCSS( elem, name, ret ); + + // Fixes bug #9237 + type = "number"; + } + + // Make sure that null and NaN values aren't set (#7116) + if ( value == null || value !== value ) { + return; + } + + // If a number was passed in, add the unit (except for certain CSS properties) + // The isCustomProp check can be removed in jQuery 4.0 when we only auto-append + // "px" to a few hardcoded values. + if ( type === "number" && !isCustomProp ) { + value += ret && ret[ 3 ] || ( jQuery.cssNumber[ origName ] ? "" : "px" ); + } + + // background-* props affect original clone's values + if ( !support.clearCloneStyle && value === "" && name.indexOf( "background" ) === 0 ) { + style[ name ] = "inherit"; + } + + // If a hook was provided, use that value, otherwise just set the specified value + if ( !hooks || !( "set" in hooks ) || + ( value = hooks.set( elem, value, extra ) ) !== undefined ) { + + if ( isCustomProp ) { + style.setProperty( name, value ); + } else { + style[ name ] = value; + } + } + + } else { + + // If a hook was provided get the non-computed value from there + if ( hooks && "get" in hooks && + ( ret = hooks.get( elem, false, extra ) ) !== undefined ) { + + return ret; + } + + // Otherwise just get the value from the style object + return style[ name ]; + } + }, + + css: function( elem, name, extra, styles ) { + var val, num, hooks, + origName = camelCase( name ), + isCustomProp = rcustomProp.test( name ); + + // Make sure that we're working with the right name. We don't + // want to modify the value if it is a CSS custom property + // since they are user-defined. + if ( !isCustomProp ) { + name = finalPropName( origName ); + } + + // Try prefixed name followed by the unprefixed name + hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; + + // If a hook was provided get the computed value from there + if ( hooks && "get" in hooks ) { + val = hooks.get( elem, true, extra ); + } + + // Otherwise, if a way to get the computed value exists, use that + if ( val === undefined ) { + val = curCSS( elem, name, styles ); + } + + // Convert "normal" to computed value + if ( val === "normal" && name in cssNormalTransform ) { + val = cssNormalTransform[ name ]; + } + + // Make numeric if forced or a qualifier was provided and val looks numeric + if ( extra === "" || extra ) { + num = parseFloat( val ); + return extra === true || isFinite( num ) ? num || 0 : val; + } + + return val; + } +} ); + +jQuery.each( [ "height", "width" ], function( _i, dimension ) { + jQuery.cssHooks[ dimension ] = { + get: function( elem, computed, extra ) { + if ( computed ) { + + // Certain elements can have dimension info if we invisibly show them + // but it must have a current display style that would benefit + return rdisplayswap.test( jQuery.css( elem, "display" ) ) && + + // Support: Safari 8+ + // Table columns in Safari have non-zero offsetWidth & zero + // getBoundingClientRect().width unless display is changed. + // Support: IE <=11 only + // Running getBoundingClientRect on a disconnected node + // in IE throws an error. + ( !elem.getClientRects().length || !elem.getBoundingClientRect().width ) ? + swap( elem, cssShow, function() { + return getWidthOrHeight( elem, dimension, extra ); + } ) : + getWidthOrHeight( elem, dimension, extra ); + } + }, + + set: function( elem, value, extra ) { + var matches, + styles = getStyles( elem ), + + // Only read styles.position if the test has a chance to fail + // to avoid forcing a reflow. + scrollboxSizeBuggy = !support.scrollboxSize() && + styles.position === "absolute", + + // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-3991) + boxSizingNeeded = scrollboxSizeBuggy || extra, + isBorderBox = boxSizingNeeded && + jQuery.css( elem, "boxSizing", false, styles ) === "border-box", + subtract = extra ? + boxModelAdjustment( + elem, + dimension, + extra, + isBorderBox, + styles + ) : + 0; + + // Account for unreliable border-box dimensions by comparing offset* to computed and + // faking a content-box to get border and padding (gh-3699) + if ( isBorderBox && scrollboxSizeBuggy ) { + subtract -= Math.ceil( + elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - + parseFloat( styles[ dimension ] ) - + boxModelAdjustment( elem, dimension, "border", false, styles ) - + 0.5 + ); + } + + // Convert to pixels if value adjustment is needed + if ( subtract && ( matches = rcssNum.exec( value ) ) && + ( matches[ 3 ] || "px" ) !== "px" ) { + + elem.style[ dimension ] = value; + value = jQuery.css( elem, dimension ); + } + + return setPositiveNumber( elem, value, subtract ); + } + }; +} ); + +jQuery.cssHooks.marginLeft = addGetHookIf( support.reliableMarginLeft, + function( elem, computed ) { + if ( computed ) { + return ( parseFloat( curCSS( elem, "marginLeft" ) ) || + elem.getBoundingClientRect().left - + swap( elem, { marginLeft: 0 }, function() { + return elem.getBoundingClientRect().left; + } ) + ) + "px"; + } + } +); + +// These hooks are used by animate to expand properties +jQuery.each( { + margin: "", + padding: "", + border: "Width" +}, function( prefix, suffix ) { + jQuery.cssHooks[ prefix + suffix ] = { + expand: function( value ) { + var i = 0, + expanded = {}, + + // Assumes a single number if not a string + parts = typeof value === "string" ? value.split( " " ) : [ value ]; + + for ( ; i < 4; i++ ) { + expanded[ prefix + cssExpand[ i ] + suffix ] = + parts[ i ] || parts[ i - 2 ] || parts[ 0 ]; + } + + return expanded; + } + }; + + if ( prefix !== "margin" ) { + jQuery.cssHooks[ prefix + suffix ].set = setPositiveNumber; + } +} ); + +jQuery.fn.extend( { + css: function( name, value ) { + return access( this, function( elem, name, value ) { + var styles, len, + map = {}, + i = 0; + + if ( Array.isArray( name ) ) { + styles = getStyles( elem ); + len = name.length; + + for ( ; i < len; i++ ) { + map[ name[ i ] ] = jQuery.css( elem, name[ i ], false, styles ); + } + + return map; + } + + return value !== undefined ? + jQuery.style( elem, name, value ) : + jQuery.css( elem, name ); + }, name, value, arguments.length > 1 ); + } +} ); + + +function Tween( elem, options, prop, end, easing ) { + return new Tween.prototype.init( elem, options, prop, end, easing ); +} +jQuery.Tween = Tween; + +Tween.prototype = { + constructor: Tween, + init: function( elem, options, prop, end, easing, unit ) { + this.elem = elem; + this.prop = prop; + this.easing = easing || jQuery.easing._default; + this.options = options; + this.start = this.now = this.cur(); + this.end = end; + this.unit = unit || ( jQuery.cssNumber[ prop ] ? "" : "px" ); + }, + cur: function() { + var hooks = Tween.propHooks[ this.prop ]; + + return hooks && hooks.get ? + hooks.get( this ) : + Tween.propHooks._default.get( this ); + }, + run: function( percent ) { + var eased, + hooks = Tween.propHooks[ this.prop ]; + + if ( this.options.duration ) { + this.pos = eased = jQuery.easing[ this.easing ]( + percent, this.options.duration * percent, 0, 1, this.options.duration + ); + } else { + this.pos = eased = percent; + } + this.now = ( this.end - this.start ) * eased + this.start; + + if ( this.options.step ) { + this.options.step.call( this.elem, this.now, this ); + } + + if ( hooks && hooks.set ) { + hooks.set( this ); + } else { + Tween.propHooks._default.set( this ); + } + return this; + } +}; + +Tween.prototype.init.prototype = Tween.prototype; + +Tween.propHooks = { + _default: { + get: function( tween ) { + var result; + + // Use a property on the element directly when it is not a DOM element, + // or when there is no matching style property that exists. + if ( tween.elem.nodeType !== 1 || + tween.elem[ tween.prop ] != null && tween.elem.style[ tween.prop ] == null ) { + return tween.elem[ tween.prop ]; + } + + // Passing an empty string as a 3rd parameter to .css will automatically + // attempt a parseFloat and fallback to a string if the parse fails. + // Simple values such as "10px" are parsed to Float; + // complex values such as "rotate(1rad)" are returned as-is. + result = jQuery.css( tween.elem, tween.prop, "" ); + + // Empty strings, null, undefined and "auto" are converted to 0. + return !result || result === "auto" ? 0 : result; + }, + set: function( tween ) { + + // Use step hook for back compat. + // Use cssHook if its there. + // Use .style if available and use plain properties where available. + if ( jQuery.fx.step[ tween.prop ] ) { + jQuery.fx.step[ tween.prop ]( tween ); + } else if ( tween.elem.nodeType === 1 && ( + jQuery.cssHooks[ tween.prop ] || + tween.elem.style[ finalPropName( tween.prop ) ] != null ) ) { + jQuery.style( tween.elem, tween.prop, tween.now + tween.unit ); + } else { + tween.elem[ tween.prop ] = tween.now; + } + } + } +}; + +// Support: IE <=9 only +// Panic based approach to setting things on disconnected nodes +Tween.propHooks.scrollTop = Tween.propHooks.scrollLeft = { + set: function( tween ) { + if ( tween.elem.nodeType && tween.elem.parentNode ) { + tween.elem[ tween.prop ] = tween.now; + } + } +}; + +jQuery.easing = { + linear: function( p ) { + return p; + }, + swing: function( p ) { + return 0.5 - Math.cos( p * Math.PI ) / 2; + }, + _default: "swing" +}; + +jQuery.fx = Tween.prototype.init; + +// Back compat <1.8 extension point +jQuery.fx.step = {}; + + + + +var + fxNow, inProgress, + rfxtypes = /^(?:toggle|show|hide)$/, + rrun = /queueHooks$/; + +function schedule() { + if ( inProgress ) { + if ( document.hidden === false && window.requestAnimationFrame ) { + window.requestAnimationFrame( schedule ); + } else { + window.setTimeout( schedule, jQuery.fx.interval ); + } + + jQuery.fx.tick(); + } +} + +// Animations created synchronously will run synchronously +function createFxNow() { + window.setTimeout( function() { + fxNow = undefined; + } ); + return ( fxNow = Date.now() ); +} + +// Generate parameters to create a standard animation +function genFx( type, includeWidth ) { + var which, + i = 0, + attrs = { height: type }; + + // If we include width, step value is 1 to do all cssExpand values, + // otherwise step value is 2 to skip over Left and Right + includeWidth = includeWidth ? 1 : 0; + for ( ; i < 4; i += 2 - includeWidth ) { + which = cssExpand[ i ]; + attrs[ "margin" + which ] = attrs[ "padding" + which ] = type; + } + + if ( includeWidth ) { + attrs.opacity = attrs.width = type; + } + + return attrs; +} + +function createTween( value, prop, animation ) { + var tween, + collection = ( Animation.tweeners[ prop ] || [] ).concat( Animation.tweeners[ "*" ] ), + index = 0, + length = collection.length; + for ( ; index < length; index++ ) { + if ( ( tween = collection[ index ].call( animation, prop, value ) ) ) { + + // We're done with this property + return tween; + } + } +} + +function defaultPrefilter( elem, props, opts ) { + var prop, value, toggle, hooks, oldfire, propTween, restoreDisplay, display, + isBox = "width" in props || "height" in props, + anim = this, + orig = {}, + style = elem.style, + hidden = elem.nodeType && isHiddenWithinTree( elem ), + dataShow = dataPriv.get( elem, "fxshow" ); + + // Queue-skipping animations hijack the fx hooks + if ( !opts.queue ) { + hooks = jQuery._queueHooks( elem, "fx" ); + if ( hooks.unqueued == null ) { + hooks.unqueued = 0; + oldfire = hooks.empty.fire; + hooks.empty.fire = function() { + if ( !hooks.unqueued ) { + oldfire(); + } + }; + } + hooks.unqueued++; + + anim.always( function() { + + // Ensure the complete handler is called before this completes + anim.always( function() { + hooks.unqueued--; + if ( !jQuery.queue( elem, "fx" ).length ) { + hooks.empty.fire(); + } + } ); + } ); + } + + // Detect show/hide animations + for ( prop in props ) { + value = props[ prop ]; + if ( rfxtypes.test( value ) ) { + delete props[ prop ]; + toggle = toggle || value === "toggle"; + if ( value === ( hidden ? "hide" : "show" ) ) { + + // Pretend to be hidden if this is a "show" and + // there is still data from a stopped show/hide + if ( value === "show" && dataShow && dataShow[ prop ] !== undefined ) { + hidden = true; + + // Ignore all other no-op show/hide data + } else { + continue; + } + } + orig[ prop ] = dataShow && dataShow[ prop ] || jQuery.style( elem, prop ); + } + } + + // Bail out if this is a no-op like .hide().hide() + propTween = !jQuery.isEmptyObject( props ); + if ( !propTween && jQuery.isEmptyObject( orig ) ) { + return; + } + + // Restrict "overflow" and "display" styles during box animations + if ( isBox && elem.nodeType === 1 ) { + + // Support: IE <=9 - 11, Edge 12 - 15 + // Record all 3 overflow attributes because IE does not infer the shorthand + // from identically-valued overflowX and overflowY and Edge just mirrors + // the overflowX value there. + opts.overflow = [ style.overflow, style.overflowX, style.overflowY ]; + + // Identify a display type, preferring old show/hide data over the CSS cascade + restoreDisplay = dataShow && dataShow.display; + if ( restoreDisplay == null ) { + restoreDisplay = dataPriv.get( elem, "display" ); + } + display = jQuery.css( elem, "display" ); + if ( display === "none" ) { + if ( restoreDisplay ) { + display = restoreDisplay; + } else { + + // Get nonempty value(s) by temporarily forcing visibility + showHide( [ elem ], true ); + restoreDisplay = elem.style.display || restoreDisplay; + display = jQuery.css( elem, "display" ); + showHide( [ elem ] ); + } + } + + // Animate inline elements as inline-block + if ( display === "inline" || display === "inline-block" && restoreDisplay != null ) { + if ( jQuery.css( elem, "float" ) === "none" ) { + + // Restore the original display value at the end of pure show/hide animations + if ( !propTween ) { + anim.done( function() { + style.display = restoreDisplay; + } ); + if ( restoreDisplay == null ) { + display = style.display; + restoreDisplay = display === "none" ? "" : display; + } + } + style.display = "inline-block"; + } + } + } + + if ( opts.overflow ) { + style.overflow = "hidden"; + anim.always( function() { + style.overflow = opts.overflow[ 0 ]; + style.overflowX = opts.overflow[ 1 ]; + style.overflowY = opts.overflow[ 2 ]; + } ); + } + + // Implement show/hide animations + propTween = false; + for ( prop in orig ) { + + // General show/hide setup for this element animation + if ( !propTween ) { + if ( dataShow ) { + if ( "hidden" in dataShow ) { + hidden = dataShow.hidden; + } + } else { + dataShow = dataPriv.access( elem, "fxshow", { display: restoreDisplay } ); + } + + // Store hidden/visible for toggle so `.stop().toggle()` "reverses" + if ( toggle ) { + dataShow.hidden = !hidden; + } + + // Show elements before animating them + if ( hidden ) { + showHide( [ elem ], true ); + } + + /* eslint-disable no-loop-func */ + + anim.done( function() { + + /* eslint-enable no-loop-func */ + + // The final step of a "hide" animation is actually hiding the element + if ( !hidden ) { + showHide( [ elem ] ); + } + dataPriv.remove( elem, "fxshow" ); + for ( prop in orig ) { + jQuery.style( elem, prop, orig[ prop ] ); + } + } ); + } + + // Per-property setup + propTween = createTween( hidden ? dataShow[ prop ] : 0, prop, anim ); + if ( !( prop in dataShow ) ) { + dataShow[ prop ] = propTween.start; + if ( hidden ) { + propTween.end = propTween.start; + propTween.start = 0; + } + } + } +} + +function propFilter( props, specialEasing ) { + var index, name, easing, value, hooks; + + // camelCase, specialEasing and expand cssHook pass + for ( index in props ) { + name = camelCase( index ); + easing = specialEasing[ name ]; + value = props[ index ]; + if ( Array.isArray( value ) ) { + easing = value[ 1 ]; + value = props[ index ] = value[ 0 ]; + } + + if ( index !== name ) { + props[ name ] = value; + delete props[ index ]; + } + + hooks = jQuery.cssHooks[ name ]; + if ( hooks && "expand" in hooks ) { + value = hooks.expand( value ); + delete props[ name ]; + + // Not quite $.extend, this won't overwrite existing keys. + // Reusing 'index' because we have the correct "name" + for ( index in value ) { + if ( !( index in props ) ) { + props[ index ] = value[ index ]; + specialEasing[ index ] = easing; + } + } + } else { + specialEasing[ name ] = easing; + } + } +} + +function Animation( elem, properties, options ) { + var result, + stopped, + index = 0, + length = Animation.prefilters.length, + deferred = jQuery.Deferred().always( function() { + + // Don't match elem in the :animated selector + delete tick.elem; + } ), + tick = function() { + if ( stopped ) { + return false; + } + var currentTime = fxNow || createFxNow(), + remaining = Math.max( 0, animation.startTime + animation.duration - currentTime ), + + // Support: Android 2.3 only + // Archaic crash bug won't allow us to use `1 - ( 0.5 || 0 )` (#12497) + temp = remaining / animation.duration || 0, + percent = 1 - temp, + index = 0, + length = animation.tweens.length; + + for ( ; index < length; index++ ) { + animation.tweens[ index ].run( percent ); + } + + deferred.notifyWith( elem, [ animation, percent, remaining ] ); + + // If there's more to do, yield + if ( percent < 1 && length ) { + return remaining; + } + + // If this was an empty animation, synthesize a final progress notification + if ( !length ) { + deferred.notifyWith( elem, [ animation, 1, 0 ] ); + } + + // Resolve the animation and report its conclusion + deferred.resolveWith( elem, [ animation ] ); + return false; + }, + animation = deferred.promise( { + elem: elem, + props: jQuery.extend( {}, properties ), + opts: jQuery.extend( true, { + specialEasing: {}, + easing: jQuery.easing._default + }, options ), + originalProperties: properties, + originalOptions: options, + startTime: fxNow || createFxNow(), + duration: options.duration, + tweens: [], + createTween: function( prop, end ) { + var tween = jQuery.Tween( elem, animation.opts, prop, end, + animation.opts.specialEasing[ prop ] || animation.opts.easing ); + animation.tweens.push( tween ); + return tween; + }, + stop: function( gotoEnd ) { + var index = 0, + + // If we are going to the end, we want to run all the tweens + // otherwise we skip this part + length = gotoEnd ? animation.tweens.length : 0; + if ( stopped ) { + return this; + } + stopped = true; + for ( ; index < length; index++ ) { + animation.tweens[ index ].run( 1 ); + } + + // Resolve when we played the last frame; otherwise, reject + if ( gotoEnd ) { + deferred.notifyWith( elem, [ animation, 1, 0 ] ); + deferred.resolveWith( elem, [ animation, gotoEnd ] ); + } else { + deferred.rejectWith( elem, [ animation, gotoEnd ] ); + } + return this; + } + } ), + props = animation.props; + + propFilter( props, animation.opts.specialEasing ); + + for ( ; index < length; index++ ) { + result = Animation.prefilters[ index ].call( animation, elem, props, animation.opts ); + if ( result ) { + if ( isFunction( result.stop ) ) { + jQuery._queueHooks( animation.elem, animation.opts.queue ).stop = + result.stop.bind( result ); + } + return result; + } + } + + jQuery.map( props, createTween, animation ); + + if ( isFunction( animation.opts.start ) ) { + animation.opts.start.call( elem, animation ); + } + + // Attach callbacks from options + animation + .progress( animation.opts.progress ) + .done( animation.opts.done, animation.opts.complete ) + .fail( animation.opts.fail ) + .always( animation.opts.always ); + + jQuery.fx.timer( + jQuery.extend( tick, { + elem: elem, + anim: animation, + queue: animation.opts.queue + } ) + ); + + return animation; +} + +jQuery.Animation = jQuery.extend( Animation, { + + tweeners: { + "*": [ function( prop, value ) { + var tween = this.createTween( prop, value ); + adjustCSS( tween.elem, prop, rcssNum.exec( value ), tween ); + return tween; + } ] + }, + + tweener: function( props, callback ) { + if ( isFunction( props ) ) { + callback = props; + props = [ "*" ]; + } else { + props = props.match( rnothtmlwhite ); + } + + var prop, + index = 0, + length = props.length; + + for ( ; index < length; index++ ) { + prop = props[ index ]; + Animation.tweeners[ prop ] = Animation.tweeners[ prop ] || []; + Animation.tweeners[ prop ].unshift( callback ); + } + }, + + prefilters: [ defaultPrefilter ], + + prefilter: function( callback, prepend ) { + if ( prepend ) { + Animation.prefilters.unshift( callback ); + } else { + Animation.prefilters.push( callback ); + } + } +} ); + +jQuery.speed = function( speed, easing, fn ) { + var opt = speed && typeof speed === "object" ? jQuery.extend( {}, speed ) : { + complete: fn || !fn && easing || + isFunction( speed ) && speed, + duration: speed, + easing: fn && easing || easing && !isFunction( easing ) && easing + }; + + // Go to the end state if fx are off + if ( jQuery.fx.off ) { + opt.duration = 0; + + } else { + if ( typeof opt.duration !== "number" ) { + if ( opt.duration in jQuery.fx.speeds ) { + opt.duration = jQuery.fx.speeds[ opt.duration ]; + + } else { + opt.duration = jQuery.fx.speeds._default; + } + } + } + + // Normalize opt.queue - true/undefined/null -> "fx" + if ( opt.queue == null || opt.queue === true ) { + opt.queue = "fx"; + } + + // Queueing + opt.old = opt.complete; + + opt.complete = function() { + if ( isFunction( opt.old ) ) { + opt.old.call( this ); + } + + if ( opt.queue ) { + jQuery.dequeue( this, opt.queue ); + } + }; + + return opt; +}; + +jQuery.fn.extend( { + fadeTo: function( speed, to, easing, callback ) { + + // Show any hidden elements after setting opacity to 0 + return this.filter( isHiddenWithinTree ).css( "opacity", 0 ).show() + + // Animate to the value specified + .end().animate( { opacity: to }, speed, easing, callback ); + }, + animate: function( prop, speed, easing, callback ) { + var empty = jQuery.isEmptyObject( prop ), + optall = jQuery.speed( speed, easing, callback ), + doAnimation = function() { + + // Operate on a copy of prop so per-property easing won't be lost + var anim = Animation( this, jQuery.extend( {}, prop ), optall ); + + // Empty animations, or finishing resolves immediately + if ( empty || dataPriv.get( this, "finish" ) ) { + anim.stop( true ); + } + }; + + doAnimation.finish = doAnimation; + + return empty || optall.queue === false ? + this.each( doAnimation ) : + this.queue( optall.queue, doAnimation ); + }, + stop: function( type, clearQueue, gotoEnd ) { + var stopQueue = function( hooks ) { + var stop = hooks.stop; + delete hooks.stop; + stop( gotoEnd ); + }; + + if ( typeof type !== "string" ) { + gotoEnd = clearQueue; + clearQueue = type; + type = undefined; + } + if ( clearQueue ) { + this.queue( type || "fx", [] ); + } + + return this.each( function() { + var dequeue = true, + index = type != null && type + "queueHooks", + timers = jQuery.timers, + data = dataPriv.get( this ); + + if ( index ) { + if ( data[ index ] && data[ index ].stop ) { + stopQueue( data[ index ] ); + } + } else { + for ( index in data ) { + if ( data[ index ] && data[ index ].stop && rrun.test( index ) ) { + stopQueue( data[ index ] ); + } + } + } + + for ( index = timers.length; index--; ) { + if ( timers[ index ].elem === this && + ( type == null || timers[ index ].queue === type ) ) { + + timers[ index ].anim.stop( gotoEnd ); + dequeue = false; + timers.splice( index, 1 ); + } + } + + // Start the next in the queue if the last step wasn't forced. + // Timers currently will call their complete callbacks, which + // will dequeue but only if they were gotoEnd. + if ( dequeue || !gotoEnd ) { + jQuery.dequeue( this, type ); + } + } ); + }, + finish: function( type ) { + if ( type !== false ) { + type = type || "fx"; + } + return this.each( function() { + var index, + data = dataPriv.get( this ), + queue = data[ type + "queue" ], + hooks = data[ type + "queueHooks" ], + timers = jQuery.timers, + length = queue ? queue.length : 0; + + // Enable finishing flag on private data + data.finish = true; + + // Empty the queue first + jQuery.queue( this, type, [] ); + + if ( hooks && hooks.stop ) { + hooks.stop.call( this, true ); + } + + // Look for any active animations, and finish them + for ( index = timers.length; index--; ) { + if ( timers[ index ].elem === this && timers[ index ].queue === type ) { + timers[ index ].anim.stop( true ); + timers.splice( index, 1 ); + } + } + + // Look for any animations in the old queue and finish them + for ( index = 0; index < length; index++ ) { + if ( queue[ index ] && queue[ index ].finish ) { + queue[ index ].finish.call( this ); + } + } + + // Turn off finishing flag + delete data.finish; + } ); + } +} ); + +jQuery.each( [ "toggle", "show", "hide" ], function( _i, name ) { + var cssFn = jQuery.fn[ name ]; + jQuery.fn[ name ] = function( speed, easing, callback ) { + return speed == null || typeof speed === "boolean" ? + cssFn.apply( this, arguments ) : + this.animate( genFx( name, true ), speed, easing, callback ); + }; +} ); + +// Generate shortcuts for custom animations +jQuery.each( { + slideDown: genFx( "show" ), + slideUp: genFx( "hide" ), + slideToggle: genFx( "toggle" ), + fadeIn: { opacity: "show" }, + fadeOut: { opacity: "hide" }, + fadeToggle: { opacity: "toggle" } +}, function( name, props ) { + jQuery.fn[ name ] = function( speed, easing, callback ) { + return this.animate( props, speed, easing, callback ); + }; +} ); + +jQuery.timers = []; +jQuery.fx.tick = function() { + var timer, + i = 0, + timers = jQuery.timers; + + fxNow = Date.now(); + + for ( ; i < timers.length; i++ ) { + timer = timers[ i ]; + + // Run the timer and safely remove it when done (allowing for external removal) + if ( !timer() && timers[ i ] === timer ) { + timers.splice( i--, 1 ); + } + } + + if ( !timers.length ) { + jQuery.fx.stop(); + } + fxNow = undefined; +}; + +jQuery.fx.timer = function( timer ) { + jQuery.timers.push( timer ); + jQuery.fx.start(); +}; + +jQuery.fx.interval = 13; +jQuery.fx.start = function() { + if ( inProgress ) { + return; + } + + inProgress = true; + schedule(); +}; + +jQuery.fx.stop = function() { + inProgress = null; +}; + +jQuery.fx.speeds = { + slow: 600, + fast: 200, + + // Default speed + _default: 400 +}; + + +// Based off of the plugin by Clint Helfers, with permission. +// https://web.archive.org/web/20100324014747/http://blindsignals.com/index.php/2009/07/jquery-delay/ +jQuery.fn.delay = function( time, type ) { + time = jQuery.fx ? jQuery.fx.speeds[ time ] || time : time; + type = type || "fx"; + + return this.queue( type, function( next, hooks ) { + var timeout = window.setTimeout( next, time ); + hooks.stop = function() { + window.clearTimeout( timeout ); + }; + } ); +}; + + +( function() { + var input = document.createElement( "input" ), + select = document.createElement( "select" ), + opt = select.appendChild( document.createElement( "option" ) ); + + input.type = "checkbox"; + + // Support: Android <=4.3 only + // Default value for a checkbox should be "on" + support.checkOn = input.value !== ""; + + // Support: IE <=11 only + // Must access selectedIndex to make default options select + support.optSelected = opt.selected; + + // Support: IE <=11 only + // An input loses its value after becoming a radio + input = document.createElement( "input" ); + input.value = "t"; + input.type = "radio"; + support.radioValue = input.value === "t"; +} )(); + + +var boolHook, + attrHandle = jQuery.expr.attrHandle; + +jQuery.fn.extend( { + attr: function( name, value ) { + return access( this, jQuery.attr, name, value, arguments.length > 1 ); + }, + + removeAttr: function( name ) { + return this.each( function() { + jQuery.removeAttr( this, name ); + } ); + } +} ); + +jQuery.extend( { + attr: function( elem, name, value ) { + var ret, hooks, + nType = elem.nodeType; + + // Don't get/set attributes on text, comment and attribute nodes + if ( nType === 3 || nType === 8 || nType === 2 ) { + return; + } + + // Fallback to prop when attributes are not supported + if ( typeof elem.getAttribute === "undefined" ) { + return jQuery.prop( elem, name, value ); + } + + // Attribute hooks are determined by the lowercase version + // Grab necessary hook if one is defined + if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { + hooks = jQuery.attrHooks[ name.toLowerCase() ] || + ( jQuery.expr.match.bool.test( name ) ? boolHook : undefined ); + } + + if ( value !== undefined ) { + if ( value === null ) { + jQuery.removeAttr( elem, name ); + return; + } + + if ( hooks && "set" in hooks && + ( ret = hooks.set( elem, value, name ) ) !== undefined ) { + return ret; + } + + elem.setAttribute( name, value + "" ); + return value; + } + + if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { + return ret; + } + + ret = jQuery.find.attr( elem, name ); + + // Non-existent attributes return null, we normalize to undefined + return ret == null ? undefined : ret; + }, + + attrHooks: { + type: { + set: function( elem, value ) { + if ( !support.radioValue && value === "radio" && + nodeName( elem, "input" ) ) { + var val = elem.value; + elem.setAttribute( "type", value ); + if ( val ) { + elem.value = val; + } + return value; + } + } + } + }, + + removeAttr: function( elem, value ) { + var name, + i = 0, + + // Attribute names can contain non-HTML whitespace characters + // https://html.spec.whatwg.org/multipage/syntax.html#attributes-2 + attrNames = value && value.match( rnothtmlwhite ); + + if ( attrNames && elem.nodeType === 1 ) { + while ( ( name = attrNames[ i++ ] ) ) { + elem.removeAttribute( name ); + } + } + } +} ); + +// Hooks for boolean attributes +boolHook = { + set: function( elem, value, name ) { + if ( value === false ) { + + // Remove boolean attributes when set to false + jQuery.removeAttr( elem, name ); + } else { + elem.setAttribute( name, name ); + } + return name; + } +}; + +jQuery.each( jQuery.expr.match.bool.source.match( /\w+/g ), function( _i, name ) { + var getter = attrHandle[ name ] || jQuery.find.attr; + + attrHandle[ name ] = function( elem, name, isXML ) { + var ret, handle, + lowercaseName = name.toLowerCase(); + + if ( !isXML ) { + + // Avoid an infinite loop by temporarily removing this function from the getter + handle = attrHandle[ lowercaseName ]; + attrHandle[ lowercaseName ] = ret; + ret = getter( elem, name, isXML ) != null ? + lowercaseName : + null; + attrHandle[ lowercaseName ] = handle; + } + return ret; + }; +} ); + + + + +var rfocusable = /^(?:input|select|textarea|button)$/i, + rclickable = /^(?:a|area)$/i; + +jQuery.fn.extend( { + prop: function( name, value ) { + return access( this, jQuery.prop, name, value, arguments.length > 1 ); + }, + + removeProp: function( name ) { + return this.each( function() { + delete this[ jQuery.propFix[ name ] || name ]; + } ); + } +} ); + +jQuery.extend( { + prop: function( elem, name, value ) { + var ret, hooks, + nType = elem.nodeType; + + // Don't get/set properties on text, comment and attribute nodes + if ( nType === 3 || nType === 8 || nType === 2 ) { + return; + } + + if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { + + // Fix name and attach hooks + name = jQuery.propFix[ name ] || name; + hooks = jQuery.propHooks[ name ]; + } + + if ( value !== undefined ) { + if ( hooks && "set" in hooks && + ( ret = hooks.set( elem, value, name ) ) !== undefined ) { + return ret; + } + + return ( elem[ name ] = value ); + } + + if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { + return ret; + } + + return elem[ name ]; + }, + + propHooks: { + tabIndex: { + get: function( elem ) { + + // Support: IE <=9 - 11 only + // elem.tabIndex doesn't always return the + // correct value when it hasn't been explicitly set + // https://web.archive.org/web/20141116233347/http://fluidproject.org/blog/2008/01/09/getting-setting-and-removing-tabindex-values-with-javascript/ + // Use proper attribute retrieval(#12072) + var tabindex = jQuery.find.attr( elem, "tabindex" ); + + if ( tabindex ) { + return parseInt( tabindex, 10 ); + } + + if ( + rfocusable.test( elem.nodeName ) || + rclickable.test( elem.nodeName ) && + elem.href + ) { + return 0; + } + + return -1; + } + } + }, + + propFix: { + "for": "htmlFor", + "class": "className" + } +} ); + +// Support: IE <=11 only +// Accessing the selectedIndex property +// forces the browser to respect setting selected +// on the option +// The getter ensures a default option is selected +// when in an optgroup +// eslint rule "no-unused-expressions" is disabled for this code +// since it considers such accessions noop +if ( !support.optSelected ) { + jQuery.propHooks.selected = { + get: function( elem ) { + + /* eslint no-unused-expressions: "off" */ + + var parent = elem.parentNode; + if ( parent && parent.parentNode ) { + parent.parentNode.selectedIndex; + } + return null; + }, + set: function( elem ) { + + /* eslint no-unused-expressions: "off" */ + + var parent = elem.parentNode; + if ( parent ) { + parent.selectedIndex; + + if ( parent.parentNode ) { + parent.parentNode.selectedIndex; + } + } + } + }; +} + +jQuery.each( [ + "tabIndex", + "readOnly", + "maxLength", + "cellSpacing", + "cellPadding", + "rowSpan", + "colSpan", + "useMap", + "frameBorder", + "contentEditable" +], function() { + jQuery.propFix[ this.toLowerCase() ] = this; +} ); + + + + + // Strip and collapse whitespace according to HTML spec + // https://infra.spec.whatwg.org/#strip-and-collapse-ascii-whitespace + function stripAndCollapse( value ) { + var tokens = value.match( rnothtmlwhite ) || []; + return tokens.join( " " ); + } + + +function getClass( elem ) { + return elem.getAttribute && elem.getAttribute( "class" ) || ""; +} + +function classesToArray( value ) { + if ( Array.isArray( value ) ) { + return value; + } + if ( typeof value === "string" ) { + return value.match( rnothtmlwhite ) || []; + } + return []; +} + +jQuery.fn.extend( { + addClass: function( value ) { + var classes, elem, cur, curValue, clazz, j, finalValue, + i = 0; + + if ( isFunction( value ) ) { + return this.each( function( j ) { + jQuery( this ).addClass( value.call( this, j, getClass( this ) ) ); + } ); + } + + classes = classesToArray( value ); + + if ( classes.length ) { + while ( ( elem = this[ i++ ] ) ) { + curValue = getClass( elem ); + cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); + + if ( cur ) { + j = 0; + while ( ( clazz = classes[ j++ ] ) ) { + if ( cur.indexOf( " " + clazz + " " ) < 0 ) { + cur += clazz + " "; + } + } + + // Only assign if different to avoid unneeded rendering. + finalValue = stripAndCollapse( cur ); + if ( curValue !== finalValue ) { + elem.setAttribute( "class", finalValue ); + } + } + } + } + + return this; + }, + + removeClass: function( value ) { + var classes, elem, cur, curValue, clazz, j, finalValue, + i = 0; + + if ( isFunction( value ) ) { + return this.each( function( j ) { + jQuery( this ).removeClass( value.call( this, j, getClass( this ) ) ); + } ); + } + + if ( !arguments.length ) { + return this.attr( "class", "" ); + } + + classes = classesToArray( value ); + + if ( classes.length ) { + while ( ( elem = this[ i++ ] ) ) { + curValue = getClass( elem ); + + // This expression is here for better compressibility (see addClass) + cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); + + if ( cur ) { + j = 0; + while ( ( clazz = classes[ j++ ] ) ) { + + // Remove *all* instances + while ( cur.indexOf( " " + clazz + " " ) > -1 ) { + cur = cur.replace( " " + clazz + " ", " " ); + } + } + + // Only assign if different to avoid unneeded rendering. + finalValue = stripAndCollapse( cur ); + if ( curValue !== finalValue ) { + elem.setAttribute( "class", finalValue ); + } + } + } + } + + return this; + }, + + toggleClass: function( value, stateVal ) { + var type = typeof value, + isValidValue = type === "string" || Array.isArray( value ); + + if ( typeof stateVal === "boolean" && isValidValue ) { + return stateVal ? this.addClass( value ) : this.removeClass( value ); + } + + if ( isFunction( value ) ) { + return this.each( function( i ) { + jQuery( this ).toggleClass( + value.call( this, i, getClass( this ), stateVal ), + stateVal + ); + } ); + } + + return this.each( function() { + var className, i, self, classNames; + + if ( isValidValue ) { + + // Toggle individual class names + i = 0; + self = jQuery( this ); + classNames = classesToArray( value ); + + while ( ( className = classNames[ i++ ] ) ) { + + // Check each className given, space separated list + if ( self.hasClass( className ) ) { + self.removeClass( className ); + } else { + self.addClass( className ); + } + } + + // Toggle whole class name + } else if ( value === undefined || type === "boolean" ) { + className = getClass( this ); + if ( className ) { + + // Store className if set + dataPriv.set( this, "__className__", className ); + } + + // If the element has a class name or if we're passed `false`, + // then remove the whole classname (if there was one, the above saved it). + // Otherwise bring back whatever was previously saved (if anything), + // falling back to the empty string if nothing was stored. + if ( this.setAttribute ) { + this.setAttribute( "class", + className || value === false ? + "" : + dataPriv.get( this, "__className__" ) || "" + ); + } + } + } ); + }, + + hasClass: function( selector ) { + var className, elem, + i = 0; + + className = " " + selector + " "; + while ( ( elem = this[ i++ ] ) ) { + if ( elem.nodeType === 1 && + ( " " + stripAndCollapse( getClass( elem ) ) + " " ).indexOf( className ) > -1 ) { + return true; + } + } + + return false; + } +} ); + + + + +var rreturn = /\r/g; + +jQuery.fn.extend( { + val: function( value ) { + var hooks, ret, valueIsFunction, + elem = this[ 0 ]; + + if ( !arguments.length ) { + if ( elem ) { + hooks = jQuery.valHooks[ elem.type ] || + jQuery.valHooks[ elem.nodeName.toLowerCase() ]; + + if ( hooks && + "get" in hooks && + ( ret = hooks.get( elem, "value" ) ) !== undefined + ) { + return ret; + } + + ret = elem.value; + + // Handle most common string cases + if ( typeof ret === "string" ) { + return ret.replace( rreturn, "" ); + } + + // Handle cases where value is null/undef or number + return ret == null ? "" : ret; + } + + return; + } + + valueIsFunction = isFunction( value ); + + return this.each( function( i ) { + var val; + + if ( this.nodeType !== 1 ) { + return; + } + + if ( valueIsFunction ) { + val = value.call( this, i, jQuery( this ).val() ); + } else { + val = value; + } + + // Treat null/undefined as ""; convert numbers to string + if ( val == null ) { + val = ""; + + } else if ( typeof val === "number" ) { + val += ""; + + } else if ( Array.isArray( val ) ) { + val = jQuery.map( val, function( value ) { + return value == null ? "" : value + ""; + } ); + } + + hooks = jQuery.valHooks[ this.type ] || jQuery.valHooks[ this.nodeName.toLowerCase() ]; + + // If set returns undefined, fall back to normal setting + if ( !hooks || !( "set" in hooks ) || hooks.set( this, val, "value" ) === undefined ) { + this.value = val; + } + } ); + } +} ); + +jQuery.extend( { + valHooks: { + option: { + get: function( elem ) { + + var val = jQuery.find.attr( elem, "value" ); + return val != null ? + val : + + // Support: IE <=10 - 11 only + // option.text throws exceptions (#14686, #14858) + // Strip and collapse whitespace + // https://html.spec.whatwg.org/#strip-and-collapse-whitespace + stripAndCollapse( jQuery.text( elem ) ); + } + }, + select: { + get: function( elem ) { + var value, option, i, + options = elem.options, + index = elem.selectedIndex, + one = elem.type === "select-one", + values = one ? null : [], + max = one ? index + 1 : options.length; + + if ( index < 0 ) { + i = max; + + } else { + i = one ? index : 0; + } + + // Loop through all the selected options + for ( ; i < max; i++ ) { + option = options[ i ]; + + // Support: IE <=9 only + // IE8-9 doesn't update selected after form reset (#2551) + if ( ( option.selected || i === index ) && + + // Don't return options that are disabled or in a disabled optgroup + !option.disabled && + ( !option.parentNode.disabled || + !nodeName( option.parentNode, "optgroup" ) ) ) { + + // Get the specific value for the option + value = jQuery( option ).val(); + + // We don't need an array for one selects + if ( one ) { + return value; + } + + // Multi-Selects return an array + values.push( value ); + } + } + + return values; + }, + + set: function( elem, value ) { + var optionSet, option, + options = elem.options, + values = jQuery.makeArray( value ), + i = options.length; + + while ( i-- ) { + option = options[ i ]; + + /* eslint-disable no-cond-assign */ + + if ( option.selected = + jQuery.inArray( jQuery.valHooks.option.get( option ), values ) > -1 + ) { + optionSet = true; + } + + /* eslint-enable no-cond-assign */ + } + + // Force browsers to behave consistently when non-matching value is set + if ( !optionSet ) { + elem.selectedIndex = -1; + } + return values; + } + } + } +} ); + +// Radios and checkboxes getter/setter +jQuery.each( [ "radio", "checkbox" ], function() { + jQuery.valHooks[ this ] = { + set: function( elem, value ) { + if ( Array.isArray( value ) ) { + return ( elem.checked = jQuery.inArray( jQuery( elem ).val(), value ) > -1 ); + } + } + }; + if ( !support.checkOn ) { + jQuery.valHooks[ this ].get = function( elem ) { + return elem.getAttribute( "value" ) === null ? "on" : elem.value; + }; + } +} ); + + + + +// Return jQuery for attributes-only inclusion + + +support.focusin = "onfocusin" in window; + + +var rfocusMorph = /^(?:focusinfocus|focusoutblur)$/, + stopPropagationCallback = function( e ) { + e.stopPropagation(); + }; + +jQuery.extend( jQuery.event, { + + trigger: function( event, data, elem, onlyHandlers ) { + + var i, cur, tmp, bubbleType, ontype, handle, special, lastElement, + eventPath = [ elem || document ], + type = hasOwn.call( event, "type" ) ? event.type : event, + namespaces = hasOwn.call( event, "namespace" ) ? event.namespace.split( "." ) : []; + + cur = lastElement = tmp = elem = elem || document; + + // Don't do events on text and comment nodes + if ( elem.nodeType === 3 || elem.nodeType === 8 ) { + return; + } + + // focus/blur morphs to focusin/out; ensure we're not firing them right now + if ( rfocusMorph.test( type + jQuery.event.triggered ) ) { + return; + } + + if ( type.indexOf( "." ) > -1 ) { + + // Namespaced trigger; create a regexp to match event type in handle() + namespaces = type.split( "." ); + type = namespaces.shift(); + namespaces.sort(); + } + ontype = type.indexOf( ":" ) < 0 && "on" + type; + + // Caller can pass in a jQuery.Event object, Object, or just an event type string + event = event[ jQuery.expando ] ? + event : + new jQuery.Event( type, typeof event === "object" && event ); + + // Trigger bitmask: & 1 for native handlers; & 2 for jQuery (always true) + event.isTrigger = onlyHandlers ? 2 : 3; + event.namespace = namespaces.join( "." ); + event.rnamespace = event.namespace ? + new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ) : + null; + + // Clean up the event in case it is being reused + event.result = undefined; + if ( !event.target ) { + event.target = elem; + } + + // Clone any incoming data and prepend the event, creating the handler arg list + data = data == null ? + [ event ] : + jQuery.makeArray( data, [ event ] ); + + // Allow special events to draw outside the lines + special = jQuery.event.special[ type ] || {}; + if ( !onlyHandlers && special.trigger && special.trigger.apply( elem, data ) === false ) { + return; + } + + // Determine event propagation path in advance, per W3C events spec (#9951) + // Bubble up to document, then to window; watch for a global ownerDocument var (#9724) + if ( !onlyHandlers && !special.noBubble && !isWindow( elem ) ) { + + bubbleType = special.delegateType || type; + if ( !rfocusMorph.test( bubbleType + type ) ) { + cur = cur.parentNode; + } + for ( ; cur; cur = cur.parentNode ) { + eventPath.push( cur ); + tmp = cur; + } + + // Only add window if we got to document (e.g., not plain obj or detached DOM) + if ( tmp === ( elem.ownerDocument || document ) ) { + eventPath.push( tmp.defaultView || tmp.parentWindow || window ); + } + } + + // Fire handlers on the event path + i = 0; + while ( ( cur = eventPath[ i++ ] ) && !event.isPropagationStopped() ) { + lastElement = cur; + event.type = i > 1 ? + bubbleType : + special.bindType || type; + + // jQuery handler + handle = ( dataPriv.get( cur, "events" ) || Object.create( null ) )[ event.type ] && + dataPriv.get( cur, "handle" ); + if ( handle ) { + handle.apply( cur, data ); + } + + // Native handler + handle = ontype && cur[ ontype ]; + if ( handle && handle.apply && acceptData( cur ) ) { + event.result = handle.apply( cur, data ); + if ( event.result === false ) { + event.preventDefault(); + } + } + } + event.type = type; + + // If nobody prevented the default action, do it now + if ( !onlyHandlers && !event.isDefaultPrevented() ) { + + if ( ( !special._default || + special._default.apply( eventPath.pop(), data ) === false ) && + acceptData( elem ) ) { + + // Call a native DOM method on the target with the same name as the event. + // Don't do default actions on window, that's where global variables be (#6170) + if ( ontype && isFunction( elem[ type ] ) && !isWindow( elem ) ) { + + // Don't re-trigger an onFOO event when we call its FOO() method + tmp = elem[ ontype ]; + + if ( tmp ) { + elem[ ontype ] = null; + } + + // Prevent re-triggering of the same event, since we already bubbled it above + jQuery.event.triggered = type; + + if ( event.isPropagationStopped() ) { + lastElement.addEventListener( type, stopPropagationCallback ); + } + + elem[ type ](); + + if ( event.isPropagationStopped() ) { + lastElement.removeEventListener( type, stopPropagationCallback ); + } + + jQuery.event.triggered = undefined; + + if ( tmp ) { + elem[ ontype ] = tmp; + } + } + } + } + + return event.result; + }, + + // Piggyback on a donor event to simulate a different one + // Used only for `focus(in | out)` events + simulate: function( type, elem, event ) { + var e = jQuery.extend( + new jQuery.Event(), + event, + { + type: type, + isSimulated: true + } + ); + + jQuery.event.trigger( e, null, elem ); + } + +} ); + +jQuery.fn.extend( { + + trigger: function( type, data ) { + return this.each( function() { + jQuery.event.trigger( type, data, this ); + } ); + }, + triggerHandler: function( type, data ) { + var elem = this[ 0 ]; + if ( elem ) { + return jQuery.event.trigger( type, data, elem, true ); + } + } +} ); + + +// Support: Firefox <=44 +// Firefox doesn't have focus(in | out) events +// Related ticket - https://bugzilla.mozilla.org/show_bug.cgi?id=687787 +// +// Support: Chrome <=48 - 49, Safari <=9.0 - 9.1 +// focus(in | out) events fire after focus & blur events, +// which is spec violation - http://www.w3.org/TR/DOM-Level-3-Events/#events-focusevent-event-order +// Related ticket - https://bugs.chromium.org/p/chromium/issues/detail?id=449857 +if ( !support.focusin ) { + jQuery.each( { focus: "focusin", blur: "focusout" }, function( orig, fix ) { + + // Attach a single capturing handler on the document while someone wants focusin/focusout + var handler = function( event ) { + jQuery.event.simulate( fix, event.target, jQuery.event.fix( event ) ); + }; + + jQuery.event.special[ fix ] = { + setup: function() { + + // Handle: regular nodes (via `this.ownerDocument`), window + // (via `this.document`) & document (via `this`). + var doc = this.ownerDocument || this.document || this, + attaches = dataPriv.access( doc, fix ); + + if ( !attaches ) { + doc.addEventListener( orig, handler, true ); + } + dataPriv.access( doc, fix, ( attaches || 0 ) + 1 ); + }, + teardown: function() { + var doc = this.ownerDocument || this.document || this, + attaches = dataPriv.access( doc, fix ) - 1; + + if ( !attaches ) { + doc.removeEventListener( orig, handler, true ); + dataPriv.remove( doc, fix ); + + } else { + dataPriv.access( doc, fix, attaches ); + } + } + }; + } ); +} +var location = window.location; + +var nonce = { guid: Date.now() }; + +var rquery = ( /\?/ ); + + + +// Cross-browser xml parsing +jQuery.parseXML = function( data ) { + var xml, parserErrorElem; + if ( !data || typeof data !== "string" ) { + return null; + } + + // Support: IE 9 - 11 only + // IE throws on parseFromString with invalid input. + try { + xml = ( new window.DOMParser() ).parseFromString( data, "text/xml" ); + } catch ( e ) {} + + parserErrorElem = xml && xml.getElementsByTagName( "parsererror" )[ 0 ]; + if ( !xml || parserErrorElem ) { + jQuery.error( "Invalid XML: " + ( + parserErrorElem ? + jQuery.map( parserErrorElem.childNodes, function( el ) { + return el.textContent; + } ).join( "\n" ) : + data + ) ); + } + return xml; +}; + + +var + rbracket = /\[\]$/, + rCRLF = /\r?\n/g, + rsubmitterTypes = /^(?:submit|button|image|reset|file)$/i, + rsubmittable = /^(?:input|select|textarea|keygen)/i; + +function buildParams( prefix, obj, traditional, add ) { + var name; + + if ( Array.isArray( obj ) ) { + + // Serialize array item. + jQuery.each( obj, function( i, v ) { + if ( traditional || rbracket.test( prefix ) ) { + + // Treat each array item as a scalar. + add( prefix, v ); + + } else { + + // Item is non-scalar (array or object), encode its numeric index. + buildParams( + prefix + "[" + ( typeof v === "object" && v != null ? i : "" ) + "]", + v, + traditional, + add + ); + } + } ); + + } else if ( !traditional && toType( obj ) === "object" ) { + + // Serialize object item. + for ( name in obj ) { + buildParams( prefix + "[" + name + "]", obj[ name ], traditional, add ); + } + + } else { + + // Serialize scalar item. + add( prefix, obj ); + } +} + +// Serialize an array of form elements or a set of +// key/values into a query string +jQuery.param = function( a, traditional ) { + var prefix, + s = [], + add = function( key, valueOrFunction ) { + + // If value is a function, invoke it and use its return value + var value = isFunction( valueOrFunction ) ? + valueOrFunction() : + valueOrFunction; + + s[ s.length ] = encodeURIComponent( key ) + "=" + + encodeURIComponent( value == null ? "" : value ); + }; + + if ( a == null ) { + return ""; + } + + // If an array was passed in, assume that it is an array of form elements. + if ( Array.isArray( a ) || ( a.jquery && !jQuery.isPlainObject( a ) ) ) { + + // Serialize the form elements + jQuery.each( a, function() { + add( this.name, this.value ); + } ); + + } else { + + // If traditional, encode the "old" way (the way 1.3.2 or older + // did it), otherwise encode params recursively. + for ( prefix in a ) { + buildParams( prefix, a[ prefix ], traditional, add ); + } + } + + // Return the resulting serialization + return s.join( "&" ); +}; + +jQuery.fn.extend( { + serialize: function() { + return jQuery.param( this.serializeArray() ); + }, + serializeArray: function() { + return this.map( function() { + + // Can add propHook for "elements" to filter or add form elements + var elements = jQuery.prop( this, "elements" ); + return elements ? jQuery.makeArray( elements ) : this; + } ).filter( function() { + var type = this.type; + + // Use .is( ":disabled" ) so that fieldset[disabled] works + return this.name && !jQuery( this ).is( ":disabled" ) && + rsubmittable.test( this.nodeName ) && !rsubmitterTypes.test( type ) && + ( this.checked || !rcheckableType.test( type ) ); + } ).map( function( _i, elem ) { + var val = jQuery( this ).val(); + + if ( val == null ) { + return null; + } + + if ( Array.isArray( val ) ) { + return jQuery.map( val, function( val ) { + return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; + } ); + } + + return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; + } ).get(); + } +} ); + + +var + r20 = /%20/g, + rhash = /#.*$/, + rantiCache = /([?&])_=[^&]*/, + rheaders = /^(.*?):[ \t]*([^\r\n]*)$/mg, + + // #7653, #8125, #8152: local protocol detection + rlocalProtocol = /^(?:about|app|app-storage|.+-extension|file|res|widget):$/, + rnoContent = /^(?:GET|HEAD)$/, + rprotocol = /^\/\//, + + /* Prefilters + * 1) They are useful to introduce custom dataTypes (see ajax/jsonp.js for an example) + * 2) These are called: + * - BEFORE asking for a transport + * - AFTER param serialization (s.data is a string if s.processData is true) + * 3) key is the dataType + * 4) the catchall symbol "*" can be used + * 5) execution will start with transport dataType and THEN continue down to "*" if needed + */ + prefilters = {}, + + /* Transports bindings + * 1) key is the dataType + * 2) the catchall symbol "*" can be used + * 3) selection will start with transport dataType and THEN go to "*" if needed + */ + transports = {}, + + // Avoid comment-prolog char sequence (#10098); must appease lint and evade compression + allTypes = "*/".concat( "*" ), + + // Anchor tag for parsing the document origin + originAnchor = document.createElement( "a" ); + +originAnchor.href = location.href; + +// Base "constructor" for jQuery.ajaxPrefilter and jQuery.ajaxTransport +function addToPrefiltersOrTransports( structure ) { + + // dataTypeExpression is optional and defaults to "*" + return function( dataTypeExpression, func ) { + + if ( typeof dataTypeExpression !== "string" ) { + func = dataTypeExpression; + dataTypeExpression = "*"; + } + + var dataType, + i = 0, + dataTypes = dataTypeExpression.toLowerCase().match( rnothtmlwhite ) || []; + + if ( isFunction( func ) ) { + + // For each dataType in the dataTypeExpression + while ( ( dataType = dataTypes[ i++ ] ) ) { + + // Prepend if requested + if ( dataType[ 0 ] === "+" ) { + dataType = dataType.slice( 1 ) || "*"; + ( structure[ dataType ] = structure[ dataType ] || [] ).unshift( func ); + + // Otherwise append + } else { + ( structure[ dataType ] = structure[ dataType ] || [] ).push( func ); + } + } + } + }; +} + +// Base inspection function for prefilters and transports +function inspectPrefiltersOrTransports( structure, options, originalOptions, jqXHR ) { + + var inspected = {}, + seekingTransport = ( structure === transports ); + + function inspect( dataType ) { + var selected; + inspected[ dataType ] = true; + jQuery.each( structure[ dataType ] || [], function( _, prefilterOrFactory ) { + var dataTypeOrTransport = prefilterOrFactory( options, originalOptions, jqXHR ); + if ( typeof dataTypeOrTransport === "string" && + !seekingTransport && !inspected[ dataTypeOrTransport ] ) { + + options.dataTypes.unshift( dataTypeOrTransport ); + inspect( dataTypeOrTransport ); + return false; + } else if ( seekingTransport ) { + return !( selected = dataTypeOrTransport ); + } + } ); + return selected; + } + + return inspect( options.dataTypes[ 0 ] ) || !inspected[ "*" ] && inspect( "*" ); +} + +// A special extend for ajax options +// that takes "flat" options (not to be deep extended) +// Fixes #9887 +function ajaxExtend( target, src ) { + var key, deep, + flatOptions = jQuery.ajaxSettings.flatOptions || {}; + + for ( key in src ) { + if ( src[ key ] !== undefined ) { + ( flatOptions[ key ] ? target : ( deep || ( deep = {} ) ) )[ key ] = src[ key ]; + } + } + if ( deep ) { + jQuery.extend( true, target, deep ); + } + + return target; +} + +/* Handles responses to an ajax request: + * - finds the right dataType (mediates between content-type and expected dataType) + * - returns the corresponding response + */ +function ajaxHandleResponses( s, jqXHR, responses ) { + + var ct, type, finalDataType, firstDataType, + contents = s.contents, + dataTypes = s.dataTypes; + + // Remove auto dataType and get content-type in the process + while ( dataTypes[ 0 ] === "*" ) { + dataTypes.shift(); + if ( ct === undefined ) { + ct = s.mimeType || jqXHR.getResponseHeader( "Content-Type" ); + } + } + + // Check if we're dealing with a known content-type + if ( ct ) { + for ( type in contents ) { + if ( contents[ type ] && contents[ type ].test( ct ) ) { + dataTypes.unshift( type ); + break; + } + } + } + + // Check to see if we have a response for the expected dataType + if ( dataTypes[ 0 ] in responses ) { + finalDataType = dataTypes[ 0 ]; + } else { + + // Try convertible dataTypes + for ( type in responses ) { + if ( !dataTypes[ 0 ] || s.converters[ type + " " + dataTypes[ 0 ] ] ) { + finalDataType = type; + break; + } + if ( !firstDataType ) { + firstDataType = type; + } + } + + // Or just use first one + finalDataType = finalDataType || firstDataType; + } + + // If we found a dataType + // We add the dataType to the list if needed + // and return the corresponding response + if ( finalDataType ) { + if ( finalDataType !== dataTypes[ 0 ] ) { + dataTypes.unshift( finalDataType ); + } + return responses[ finalDataType ]; + } +} + +/* Chain conversions given the request and the original response + * Also sets the responseXXX fields on the jqXHR instance + */ +function ajaxConvert( s, response, jqXHR, isSuccess ) { + var conv2, current, conv, tmp, prev, + converters = {}, + + // Work with a copy of dataTypes in case we need to modify it for conversion + dataTypes = s.dataTypes.slice(); + + // Create converters map with lowercased keys + if ( dataTypes[ 1 ] ) { + for ( conv in s.converters ) { + converters[ conv.toLowerCase() ] = s.converters[ conv ]; + } + } + + current = dataTypes.shift(); + + // Convert to each sequential dataType + while ( current ) { + + if ( s.responseFields[ current ] ) { + jqXHR[ s.responseFields[ current ] ] = response; + } + + // Apply the dataFilter if provided + if ( !prev && isSuccess && s.dataFilter ) { + response = s.dataFilter( response, s.dataType ); + } + + prev = current; + current = dataTypes.shift(); + + if ( current ) { + + // There's only work to do if current dataType is non-auto + if ( current === "*" ) { + + current = prev; + + // Convert response if prev dataType is non-auto and differs from current + } else if ( prev !== "*" && prev !== current ) { + + // Seek a direct converter + conv = converters[ prev + " " + current ] || converters[ "* " + current ]; + + // If none found, seek a pair + if ( !conv ) { + for ( conv2 in converters ) { + + // If conv2 outputs current + tmp = conv2.split( " " ); + if ( tmp[ 1 ] === current ) { + + // If prev can be converted to accepted input + conv = converters[ prev + " " + tmp[ 0 ] ] || + converters[ "* " + tmp[ 0 ] ]; + if ( conv ) { + + // Condense equivalence converters + if ( conv === true ) { + conv = converters[ conv2 ]; + + // Otherwise, insert the intermediate dataType + } else if ( converters[ conv2 ] !== true ) { + current = tmp[ 0 ]; + dataTypes.unshift( tmp[ 1 ] ); + } + break; + } + } + } + } + + // Apply converter (if not an equivalence) + if ( conv !== true ) { + + // Unless errors are allowed to bubble, catch and return them + if ( conv && s.throws ) { + response = conv( response ); + } else { + try { + response = conv( response ); + } catch ( e ) { + return { + state: "parsererror", + error: conv ? e : "No conversion from " + prev + " to " + current + }; + } + } + } + } + } + } + + return { state: "success", data: response }; +} + +jQuery.extend( { + + // Counter for holding the number of active queries + active: 0, + + // Last-Modified header cache for next request + lastModified: {}, + etag: {}, + + ajaxSettings: { + url: location.href, + type: "GET", + isLocal: rlocalProtocol.test( location.protocol ), + global: true, + processData: true, + async: true, + contentType: "application/x-www-form-urlencoded; charset=UTF-8", + + /* + timeout: 0, + data: null, + dataType: null, + username: null, + password: null, + cache: null, + throws: false, + traditional: false, + headers: {}, + */ + + accepts: { + "*": allTypes, + text: "text/plain", + html: "text/html", + xml: "application/xml, text/xml", + json: "application/json, text/javascript" + }, + + contents: { + xml: /\bxml\b/, + html: /\bhtml/, + json: /\bjson\b/ + }, + + responseFields: { + xml: "responseXML", + text: "responseText", + json: "responseJSON" + }, + + // Data converters + // Keys separate source (or catchall "*") and destination types with a single space + converters: { + + // Convert anything to text + "* text": String, + + // Text to html (true = no transformation) + "text html": true, + + // Evaluate text as a json expression + "text json": JSON.parse, + + // Parse text as xml + "text xml": jQuery.parseXML + }, + + // For options that shouldn't be deep extended: + // you can add your own custom options here if + // and when you create one that shouldn't be + // deep extended (see ajaxExtend) + flatOptions: { + url: true, + context: true + } + }, + + // Creates a full fledged settings object into target + // with both ajaxSettings and settings fields. + // If target is omitted, writes into ajaxSettings. + ajaxSetup: function( target, settings ) { + return settings ? + + // Building a settings object + ajaxExtend( ajaxExtend( target, jQuery.ajaxSettings ), settings ) : + + // Extending ajaxSettings + ajaxExtend( jQuery.ajaxSettings, target ); + }, + + ajaxPrefilter: addToPrefiltersOrTransports( prefilters ), + ajaxTransport: addToPrefiltersOrTransports( transports ), + + // Main method + ajax: function( url, options ) { + + // If url is an object, simulate pre-1.5 signature + if ( typeof url === "object" ) { + options = url; + url = undefined; + } + + // Force options to be an object + options = options || {}; + + var transport, + + // URL without anti-cache param + cacheURL, + + // Response headers + responseHeadersString, + responseHeaders, + + // timeout handle + timeoutTimer, + + // Url cleanup var + urlAnchor, + + // Request state (becomes false upon send and true upon completion) + completed, + + // To know if global events are to be dispatched + fireGlobals, + + // Loop variable + i, + + // uncached part of the url + uncached, + + // Create the final options object + s = jQuery.ajaxSetup( {}, options ), + + // Callbacks context + callbackContext = s.context || s, + + // Context for global events is callbackContext if it is a DOM node or jQuery collection + globalEventContext = s.context && + ( callbackContext.nodeType || callbackContext.jquery ) ? + jQuery( callbackContext ) : + jQuery.event, + + // Deferreds + deferred = jQuery.Deferred(), + completeDeferred = jQuery.Callbacks( "once memory" ), + + // Status-dependent callbacks + statusCode = s.statusCode || {}, + + // Headers (they are sent all at once) + requestHeaders = {}, + requestHeadersNames = {}, + + // Default abort message + strAbort = "canceled", + + // Fake xhr + jqXHR = { + readyState: 0, + + // Builds headers hashtable if needed + getResponseHeader: function( key ) { + var match; + if ( completed ) { + if ( !responseHeaders ) { + responseHeaders = {}; + while ( ( match = rheaders.exec( responseHeadersString ) ) ) { + responseHeaders[ match[ 1 ].toLowerCase() + " " ] = + ( responseHeaders[ match[ 1 ].toLowerCase() + " " ] || [] ) + .concat( match[ 2 ] ); + } + } + match = responseHeaders[ key.toLowerCase() + " " ]; + } + return match == null ? null : match.join( ", " ); + }, + + // Raw string + getAllResponseHeaders: function() { + return completed ? responseHeadersString : null; + }, + + // Caches the header + setRequestHeader: function( name, value ) { + if ( completed == null ) { + name = requestHeadersNames[ name.toLowerCase() ] = + requestHeadersNames[ name.toLowerCase() ] || name; + requestHeaders[ name ] = value; + } + return this; + }, + + // Overrides response content-type header + overrideMimeType: function( type ) { + if ( completed == null ) { + s.mimeType = type; + } + return this; + }, + + // Status-dependent callbacks + statusCode: function( map ) { + var code; + if ( map ) { + if ( completed ) { + + // Execute the appropriate callbacks + jqXHR.always( map[ jqXHR.status ] ); + } else { + + // Lazy-add the new callbacks in a way that preserves old ones + for ( code in map ) { + statusCode[ code ] = [ statusCode[ code ], map[ code ] ]; + } + } + } + return this; + }, + + // Cancel the request + abort: function( statusText ) { + var finalText = statusText || strAbort; + if ( transport ) { + transport.abort( finalText ); + } + done( 0, finalText ); + return this; + } + }; + + // Attach deferreds + deferred.promise( jqXHR ); + + // Add protocol if not provided (prefilters might expect it) + // Handle falsy url in the settings object (#10093: consistency with old signature) + // We also use the url parameter if available + s.url = ( ( url || s.url || location.href ) + "" ) + .replace( rprotocol, location.protocol + "//" ); + + // Alias method option to type as per ticket #12004 + s.type = options.method || options.type || s.method || s.type; + + // Extract dataTypes list + s.dataTypes = ( s.dataType || "*" ).toLowerCase().match( rnothtmlwhite ) || [ "" ]; + + // A cross-domain request is in order when the origin doesn't match the current origin. + if ( s.crossDomain == null ) { + urlAnchor = document.createElement( "a" ); + + // Support: IE <=8 - 11, Edge 12 - 15 + // IE throws exception on accessing the href property if url is malformed, + // e.g. http://example.com:80x/ + try { + urlAnchor.href = s.url; + + // Support: IE <=8 - 11 only + // Anchor's host property isn't correctly set when s.url is relative + urlAnchor.href = urlAnchor.href; + s.crossDomain = originAnchor.protocol + "//" + originAnchor.host !== + urlAnchor.protocol + "//" + urlAnchor.host; + } catch ( e ) { + + // If there is an error parsing the URL, assume it is crossDomain, + // it can be rejected by the transport if it is invalid + s.crossDomain = true; + } + } + + // Convert data if not already a string + if ( s.data && s.processData && typeof s.data !== "string" ) { + s.data = jQuery.param( s.data, s.traditional ); + } + + // Apply prefilters + inspectPrefiltersOrTransports( prefilters, s, options, jqXHR ); + + // If request was aborted inside a prefilter, stop there + if ( completed ) { + return jqXHR; + } + + // We can fire global events as of now if asked to + // Don't fire events if jQuery.event is undefined in an AMD-usage scenario (#15118) + fireGlobals = jQuery.event && s.global; + + // Watch for a new set of requests + if ( fireGlobals && jQuery.active++ === 0 ) { + jQuery.event.trigger( "ajaxStart" ); + } + + // Uppercase the type + s.type = s.type.toUpperCase(); + + // Determine if request has content + s.hasContent = !rnoContent.test( s.type ); + + // Save the URL in case we're toying with the If-Modified-Since + // and/or If-None-Match header later on + // Remove hash to simplify url manipulation + cacheURL = s.url.replace( rhash, "" ); + + // More options handling for requests with no content + if ( !s.hasContent ) { + + // Remember the hash so we can put it back + uncached = s.url.slice( cacheURL.length ); + + // If data is available and should be processed, append data to url + if ( s.data && ( s.processData || typeof s.data === "string" ) ) { + cacheURL += ( rquery.test( cacheURL ) ? "&" : "?" ) + s.data; + + // #9682: remove data so that it's not used in an eventual retry + delete s.data; + } + + // Add or update anti-cache param if needed + if ( s.cache === false ) { + cacheURL = cacheURL.replace( rantiCache, "$1" ); + uncached = ( rquery.test( cacheURL ) ? "&" : "?" ) + "_=" + ( nonce.guid++ ) + + uncached; + } + + // Put hash and anti-cache on the URL that will be requested (gh-1732) + s.url = cacheURL + uncached; + + // Change '%20' to '+' if this is encoded form body content (gh-2658) + } else if ( s.data && s.processData && + ( s.contentType || "" ).indexOf( "application/x-www-form-urlencoded" ) === 0 ) { + s.data = s.data.replace( r20, "+" ); + } + + // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. + if ( s.ifModified ) { + if ( jQuery.lastModified[ cacheURL ] ) { + jqXHR.setRequestHeader( "If-Modified-Since", jQuery.lastModified[ cacheURL ] ); + } + if ( jQuery.etag[ cacheURL ] ) { + jqXHR.setRequestHeader( "If-None-Match", jQuery.etag[ cacheURL ] ); + } + } + + // Set the correct header, if data is being sent + if ( s.data && s.hasContent && s.contentType !== false || options.contentType ) { + jqXHR.setRequestHeader( "Content-Type", s.contentType ); + } + + // Set the Accepts header for the server, depending on the dataType + jqXHR.setRequestHeader( + "Accept", + s.dataTypes[ 0 ] && s.accepts[ s.dataTypes[ 0 ] ] ? + s.accepts[ s.dataTypes[ 0 ] ] + + ( s.dataTypes[ 0 ] !== "*" ? ", " + allTypes + "; q=0.01" : "" ) : + s.accepts[ "*" ] + ); + + // Check for headers option + for ( i in s.headers ) { + jqXHR.setRequestHeader( i, s.headers[ i ] ); + } + + // Allow custom headers/mimetypes and early abort + if ( s.beforeSend && + ( s.beforeSend.call( callbackContext, jqXHR, s ) === false || completed ) ) { + + // Abort if not done already and return + return jqXHR.abort(); + } + + // Aborting is no longer a cancellation + strAbort = "abort"; + + // Install callbacks on deferreds + completeDeferred.add( s.complete ); + jqXHR.done( s.success ); + jqXHR.fail( s.error ); + + // Get transport + transport = inspectPrefiltersOrTransports( transports, s, options, jqXHR ); + + // If no transport, we auto-abort + if ( !transport ) { + done( -1, "No Transport" ); + } else { + jqXHR.readyState = 1; + + // Send global event + if ( fireGlobals ) { + globalEventContext.trigger( "ajaxSend", [ jqXHR, s ] ); + } + + // If request was aborted inside ajaxSend, stop there + if ( completed ) { + return jqXHR; + } + + // Timeout + if ( s.async && s.timeout > 0 ) { + timeoutTimer = window.setTimeout( function() { + jqXHR.abort( "timeout" ); + }, s.timeout ); + } + + try { + completed = false; + transport.send( requestHeaders, done ); + } catch ( e ) { + + // Rethrow post-completion exceptions + if ( completed ) { + throw e; + } + + // Propagate others as results + done( -1, e ); + } + } + + // Callback for when everything is done + function done( status, nativeStatusText, responses, headers ) { + var isSuccess, success, error, response, modified, + statusText = nativeStatusText; + + // Ignore repeat invocations + if ( completed ) { + return; + } + + completed = true; + + // Clear timeout if it exists + if ( timeoutTimer ) { + window.clearTimeout( timeoutTimer ); + } + + // Dereference transport for early garbage collection + // (no matter how long the jqXHR object will be used) + transport = undefined; + + // Cache response headers + responseHeadersString = headers || ""; + + // Set readyState + jqXHR.readyState = status > 0 ? 4 : 0; + + // Determine if successful + isSuccess = status >= 200 && status < 300 || status === 304; + + // Get response data + if ( responses ) { + response = ajaxHandleResponses( s, jqXHR, responses ); + } + + // Use a noop converter for missing script but not if jsonp + if ( !isSuccess && + jQuery.inArray( "script", s.dataTypes ) > -1 && + jQuery.inArray( "json", s.dataTypes ) < 0 ) { + s.converters[ "text script" ] = function() {}; + } + + // Convert no matter what (that way responseXXX fields are always set) + response = ajaxConvert( s, response, jqXHR, isSuccess ); + + // If successful, handle type chaining + if ( isSuccess ) { + + // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. + if ( s.ifModified ) { + modified = jqXHR.getResponseHeader( "Last-Modified" ); + if ( modified ) { + jQuery.lastModified[ cacheURL ] = modified; + } + modified = jqXHR.getResponseHeader( "etag" ); + if ( modified ) { + jQuery.etag[ cacheURL ] = modified; + } + } + + // if no content + if ( status === 204 || s.type === "HEAD" ) { + statusText = "nocontent"; + + // if not modified + } else if ( status === 304 ) { + statusText = "notmodified"; + + // If we have data, let's convert it + } else { + statusText = response.state; + success = response.data; + error = response.error; + isSuccess = !error; + } + } else { + + // Extract error from statusText and normalize for non-aborts + error = statusText; + if ( status || !statusText ) { + statusText = "error"; + if ( status < 0 ) { + status = 0; + } + } + } + + // Set data for the fake xhr object + jqXHR.status = status; + jqXHR.statusText = ( nativeStatusText || statusText ) + ""; + + // Success/Error + if ( isSuccess ) { + deferred.resolveWith( callbackContext, [ success, statusText, jqXHR ] ); + } else { + deferred.rejectWith( callbackContext, [ jqXHR, statusText, error ] ); + } + + // Status-dependent callbacks + jqXHR.statusCode( statusCode ); + statusCode = undefined; + + if ( fireGlobals ) { + globalEventContext.trigger( isSuccess ? "ajaxSuccess" : "ajaxError", + [ jqXHR, s, isSuccess ? success : error ] ); + } + + // Complete + completeDeferred.fireWith( callbackContext, [ jqXHR, statusText ] ); + + if ( fireGlobals ) { + globalEventContext.trigger( "ajaxComplete", [ jqXHR, s ] ); + + // Handle the global AJAX counter + if ( !( --jQuery.active ) ) { + jQuery.event.trigger( "ajaxStop" ); + } + } + } + + return jqXHR; + }, + + getJSON: function( url, data, callback ) { + return jQuery.get( url, data, callback, "json" ); + }, + + getScript: function( url, callback ) { + return jQuery.get( url, undefined, callback, "script" ); + } +} ); + +jQuery.each( [ "get", "post" ], function( _i, method ) { + jQuery[ method ] = function( url, data, callback, type ) { + + // Shift arguments if data argument was omitted + if ( isFunction( data ) ) { + type = type || callback; + callback = data; + data = undefined; + } + + // The url can be an options object (which then must have .url) + return jQuery.ajax( jQuery.extend( { + url: url, + type: method, + dataType: type, + data: data, + success: callback + }, jQuery.isPlainObject( url ) && url ) ); + }; +} ); + +jQuery.ajaxPrefilter( function( s ) { + var i; + for ( i in s.headers ) { + if ( i.toLowerCase() === "content-type" ) { + s.contentType = s.headers[ i ] || ""; + } + } +} ); + + +jQuery._evalUrl = function( url, options, doc ) { + return jQuery.ajax( { + url: url, + + // Make this explicit, since user can override this through ajaxSetup (#11264) + type: "GET", + dataType: "script", + cache: true, + async: false, + global: false, + + // Only evaluate the response if it is successful (gh-4126) + // dataFilter is not invoked for failure responses, so using it instead + // of the default converter is kludgy but it works. + converters: { + "text script": function() {} + }, + dataFilter: function( response ) { + jQuery.globalEval( response, options, doc ); + } + } ); +}; + + +jQuery.fn.extend( { + wrapAll: function( html ) { + var wrap; + + if ( this[ 0 ] ) { + if ( isFunction( html ) ) { + html = html.call( this[ 0 ] ); + } + + // The elements to wrap the target around + wrap = jQuery( html, this[ 0 ].ownerDocument ).eq( 0 ).clone( true ); + + if ( this[ 0 ].parentNode ) { + wrap.insertBefore( this[ 0 ] ); + } + + wrap.map( function() { + var elem = this; + + while ( elem.firstElementChild ) { + elem = elem.firstElementChild; + } + + return elem; + } ).append( this ); + } + + return this; + }, + + wrapInner: function( html ) { + if ( isFunction( html ) ) { + return this.each( function( i ) { + jQuery( this ).wrapInner( html.call( this, i ) ); + } ); + } + + return this.each( function() { + var self = jQuery( this ), + contents = self.contents(); + + if ( contents.length ) { + contents.wrapAll( html ); + + } else { + self.append( html ); + } + } ); + }, + + wrap: function( html ) { + var htmlIsFunction = isFunction( html ); + + return this.each( function( i ) { + jQuery( this ).wrapAll( htmlIsFunction ? html.call( this, i ) : html ); + } ); + }, + + unwrap: function( selector ) { + this.parent( selector ).not( "body" ).each( function() { + jQuery( this ).replaceWith( this.childNodes ); + } ); + return this; + } +} ); + + +jQuery.expr.pseudos.hidden = function( elem ) { + return !jQuery.expr.pseudos.visible( elem ); +}; +jQuery.expr.pseudos.visible = function( elem ) { + return !!( elem.offsetWidth || elem.offsetHeight || elem.getClientRects().length ); +}; + + + + +jQuery.ajaxSettings.xhr = function() { + try { + return new window.XMLHttpRequest(); + } catch ( e ) {} +}; + +var xhrSuccessStatus = { + + // File protocol always yields status code 0, assume 200 + 0: 200, + + // Support: IE <=9 only + // #1450: sometimes IE returns 1223 when it should be 204 + 1223: 204 + }, + xhrSupported = jQuery.ajaxSettings.xhr(); + +support.cors = !!xhrSupported && ( "withCredentials" in xhrSupported ); +support.ajax = xhrSupported = !!xhrSupported; + +jQuery.ajaxTransport( function( options ) { + var callback, errorCallback; + + // Cross domain only allowed if supported through XMLHttpRequest + if ( support.cors || xhrSupported && !options.crossDomain ) { + return { + send: function( headers, complete ) { + var i, + xhr = options.xhr(); + + xhr.open( + options.type, + options.url, + options.async, + options.username, + options.password + ); + + // Apply custom fields if provided + if ( options.xhrFields ) { + for ( i in options.xhrFields ) { + xhr[ i ] = options.xhrFields[ i ]; + } + } + + // Override mime type if needed + if ( options.mimeType && xhr.overrideMimeType ) { + xhr.overrideMimeType( options.mimeType ); + } + + // X-Requested-With header + // For cross-domain requests, seeing as conditions for a preflight are + // akin to a jigsaw puzzle, we simply never set it to be sure. + // (it can always be set on a per-request basis or even using ajaxSetup) + // For same-domain requests, won't change header if already provided. + if ( !options.crossDomain && !headers[ "X-Requested-With" ] ) { + headers[ "X-Requested-With" ] = "XMLHttpRequest"; + } + + // Set headers + for ( i in headers ) { + xhr.setRequestHeader( i, headers[ i ] ); + } + + // Callback + callback = function( type ) { + return function() { + if ( callback ) { + callback = errorCallback = xhr.onload = + xhr.onerror = xhr.onabort = xhr.ontimeout = + xhr.onreadystatechange = null; + + if ( type === "abort" ) { + xhr.abort(); + } else if ( type === "error" ) { + + // Support: IE <=9 only + // On a manual native abort, IE9 throws + // errors on any property access that is not readyState + if ( typeof xhr.status !== "number" ) { + complete( 0, "error" ); + } else { + complete( + + // File: protocol always yields status 0; see #8605, #14207 + xhr.status, + xhr.statusText + ); + } + } else { + complete( + xhrSuccessStatus[ xhr.status ] || xhr.status, + xhr.statusText, + + // Support: IE <=9 only + // IE9 has no XHR2 but throws on binary (trac-11426) + // For XHR2 non-text, let the caller handle it (gh-2498) + ( xhr.responseType || "text" ) !== "text" || + typeof xhr.responseText !== "string" ? + { binary: xhr.response } : + { text: xhr.responseText }, + xhr.getAllResponseHeaders() + ); + } + } + }; + }; + + // Listen to events + xhr.onload = callback(); + errorCallback = xhr.onerror = xhr.ontimeout = callback( "error" ); + + // Support: IE 9 only + // Use onreadystatechange to replace onabort + // to handle uncaught aborts + if ( xhr.onabort !== undefined ) { + xhr.onabort = errorCallback; + } else { + xhr.onreadystatechange = function() { + + // Check readyState before timeout as it changes + if ( xhr.readyState === 4 ) { + + // Allow onerror to be called first, + // but that will not handle a native abort + // Also, save errorCallback to a variable + // as xhr.onerror cannot be accessed + window.setTimeout( function() { + if ( callback ) { + errorCallback(); + } + } ); + } + }; + } + + // Create the abort callback + callback = callback( "abort" ); + + try { + + // Do send the request (this may raise an exception) + xhr.send( options.hasContent && options.data || null ); + } catch ( e ) { + + // #14683: Only rethrow if this hasn't been notified as an error yet + if ( callback ) { + throw e; + } + } + }, + + abort: function() { + if ( callback ) { + callback(); + } + } + }; + } +} ); + + + + +// Prevent auto-execution of scripts when no explicit dataType was provided (See gh-2432) +jQuery.ajaxPrefilter( function( s ) { + if ( s.crossDomain ) { + s.contents.script = false; + } +} ); + +// Install script dataType +jQuery.ajaxSetup( { + accepts: { + script: "text/javascript, application/javascript, " + + "application/ecmascript, application/x-ecmascript" + }, + contents: { + script: /\b(?:java|ecma)script\b/ + }, + converters: { + "text script": function( text ) { + jQuery.globalEval( text ); + return text; + } + } +} ); + +// Handle cache's special case and crossDomain +jQuery.ajaxPrefilter( "script", function( s ) { + if ( s.cache === undefined ) { + s.cache = false; + } + if ( s.crossDomain ) { + s.type = "GET"; + } +} ); + +// Bind script tag hack transport +jQuery.ajaxTransport( "script", function( s ) { + + // This transport only deals with cross domain or forced-by-attrs requests + if ( s.crossDomain || s.scriptAttrs ) { + var script, callback; + return { + send: function( _, complete ) { + script = jQuery( " +{% endmacro %} + +{% macro body_post() %} + + + +{% endmacro %} \ No newline at end of file diff --git a/api.html b/api.html new file mode 100644 index 0000000..c671686 --- /dev/null +++ b/api.html @@ -0,0 +1,779 @@ + + + + + + + + + + + + API — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

Table of Contents

+ +
+
+

API#

+
+

Tasks#

+
+

Heart Beat Counting task#

+
+

Parameters#

+ ++++ + + + + + +

getParameters([participant, session, ...])

Create Heartbeat Counting task parameters.

+
+
+

Scripts#

+ ++++ + + + + + + + + + + + + + + +

run(parameters[, runTutorial])

Run the entire task sequence.

trial(condition, duration, nTrial, parameters)

Run one trial.

tutorial(parameters)

Run tutorial for the Heartbeat Counting Task.

rest(parameters[, duration])

Run a resting state period for heart rate variability before running the Heart Beat Counting Task.

+
+
+
+

Heart Rate Discrimination task#

+
+

Parameters#

+ ++++ + + + + + +

getParameters([participant, session, ...])

Create Heart Rate Discrimination task parameters.

+
+
+

Scripts#

+ ++++ + + + + + + + + + + + + + + + + + + + + +

run(parameters[, confidenceRating, runTutorial])

Run the Heart Rate Discrimination task.

trial(parameters, alpha, modality[, ...])

Run one trial of the Heart Rate Discrimination task.

waitInput(parameters)

Wait for participant input before continue

tutorial(parameters)

Run tutorial before task run.

responseDecision(this_hr, parameters, ...)

Recording response during the decision phase.

confidenceRatingTask(parameters)

Confidence rating scale, using keyboard or mouse inputs.

+
+
+

Languages#

+ ++++ + + + + + + + + + + + + + + +

english(device, setup, exteroception)

Create the text dictionary with instruction in Danish

danish(device, setup, exteroception)

Create the text dictionary with instruction in Danish

danish_children(device, setup, exteroception)

Create the text dictionary with instruction in Danish (simplified version for children).

french(device, setup, exteroception)

Create the text dictionary with instruction in french

+
+
+
+
+

Reports#

+ ++++ + + + + + + + + + + + +

report(result_path[, report_path, task])

From the results folders, create HTML reports of behavioural and physiological data.

preprocessing(results)

From the main behavioural data frame, extract summary metrics of behavioural, metacognitive and interoceptive performances.

group_level_preprocessing(results[, ...])

Extrat all relevant indices from large result data frames.

+
+
+

Stats#

+

Extracting the relevant parameters from long result data frame across group / repeated measures.

+ ++++ + + + + + + + + +

psychophysics(summary_df[, variables, ...])

Extract psychometric parameters from a set of result files from the HRD task.

behaviours(summary_df[, variables, ...])

Extract behavioural parameters from a set of result files from the HRD task.

+
+
+ + +
+ + + + + + + +
+ + + + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/cite.html b/cite.html new file mode 100644 index 0000000..6e77096 --- /dev/null +++ b/cite.html @@ -0,0 +1,629 @@ + + + + + + + + + + + + How to cite? — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

How to cite?#

+

If you are using the cardioception toolbox for your research, we ask you to cite the following paper in the final publication:

+
    +
  • Legrand, N., Nikolova, N., Correa, C., Brændholt, M., Stuckert, A., Kildahl, N., Vejlø, M., Fardo, F., & Allen, M. (2021). The Heart Rate Discrimination Task: A psychophysical method to estimate the accuracy and precision of interoceptive beliefs. Biological Psychology, 108239. https://doi.org/10.1016/j.biopsycho.2021.108239

  • +
+

In BibTeX format:

+
@article{LEGRAND2022108239,
+title = {The heart rate discrimination task: A psychophysical method to estimate the accuracy and precision of interoceptive beliefs},
+journal = {Biological Psychology},
+volume = {168},
+pages = {108239},
+year = {2022},
+issn = {0301-0511},
+doi = {https://doi.org/10.1016/j.biopsycho.2021.108239},
+url = {https://www.sciencedirect.com/science/article/pii/S0301051121002325},
+author = {Nicolas Legrand and Niia Nikolova and Camile Correa and Malthe Brændholt and Anna Stuckert and Nanna Kildahl and Melina Vejlø and Francesca Fardo and Micah Allen},
+keywords = {Heart rate discrimination, Heartbeat tracking, Interoception, Psychophysics, Metacognition},
+abstract = {Interoception - the physiological sense of our inner bodies - has risen to the forefront of psychological and psychiatric research. Much of this research utilizes tasks that attempt to measure the ability to accurately detect cardiac signals. Unfortunately, these approaches are confounded by well-known issues limiting their validity and interpretation. At the core of this controversy is the role of subjective beliefs about the heart rate in confounding measures of interoceptive accuracy. Here, we recast these beliefs as an important part of the causal machinery of interoception, and offer a novel psychophysical “heart rate discrimination“ method to estimate their accuracy and precision. By applying this task in 223 healthy participants, we demonstrate that cardiac interoceptive beliefs are more biased, less precise, and are associated with poorer metacognitive insight relative to an exteroceptive control condition. Our task, provided as an open-source python package, offers a robust approach to quantifying cardiac beliefs.}
+}
+
+
+

If you are also using Systole to interact with your PPG recording device (this is the default setting in cardioception), and/or to analyze physiological recordings, you might also cite the following reference:

+
    +
  • Legrand et al., (2022). Systole: A python package for cardiac signal synchrony and analysis. Journal of Open Source Software, 7(69), 3832, https://doi.org/10.21105/joss.03832

  • +
+

In BibTeX format:

+
@article{Legrand2022,
+doi = {10.21105/joss.03832},
+url = {https://doi.org/10.21105/joss.03832},
+year = {2022},
+publisher = {The Open Journal},
+volume = {7},
+number = {69},
+pages = {3832},
+author = {Nicolas Legrand and Micah Allen},
+title = {Systole: A python package for cardiac signal synchrony and analysis},
+journal = {Journal of Open Source Software}
+} 
+
+
+
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/examples/psychophysics/1-psychophysics_subject_level.html b/examples/psychophysics/1-psychophysics_subject_level.html new file mode 100644 index 0000000..d97091b --- /dev/null +++ b/examples/psychophysics/1-psychophysics_subject_level.html @@ -0,0 +1,1306 @@ + + + + + + + + + + + + Fitting a psychometric function at the subject level — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

Fitting a psychometric function at the subject level#

+

Author: Nicolas Legrand nicolas.legrand@cas.au.dk

+
+
+
import pytensor.tensor as pt
+import arviz as az
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+import seaborn as sns
+from scipy.stats import norm
+
+import pymc as pm
+
+sns.set_context('talk')
+
+
+
+
+
WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
+
+
+
+
+

In this example, we are going to fit a cummulative normal function to decision responses made during the Heart Rate Discrimination task. We are going to use the data from the HRD method paper [Legrand et al., 2022] and analyse the responses from one participant from the second session.

+
+
+
# Load data frame
+psychophysics_df = pd.read_csv('https://github.com/embodied-computation-group/CardioceptionPaper/raw/main/data/Del2_merged.txt')
+
+
+
+
+

First, let’s filter this data frame so we only keep subject 19 (sub_0019 label) and the interoceptive condition (Extero label).

+
+
+
this_df = psychophysics_df[(psychophysics_df.Modality == 'Extero') & (psychophysics_df.Subject == 'sub_0019')]
+this_df.head()
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TrialTypeConditionModalityStairCondDecisionDecisionRTConfidenceConfidenceRTAlphalistenBPM...EstimatedThresholdEstimatedSlopeStartListeningStartDecisionResponseMadeRatingStartRatingEndsendTriggerHeartRateOutlierSubject
1psiLessExteropsiLess2.21642959.01.632995-0.578.0...22.80555012.5494571.603353e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
3psiCatchTrialLessExteropsiCatchTrialLess1.449154100.00.511938-30.082.0...NaNNaN1.603354e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
6psiMoreExteropsiMore1.18266695.00.60678622.569.0...10.00188212.8849021.603354e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
10psiMoreExteropsiMore1.84814124.01.44896910.562.0...0.99838413.0447441.603354e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
11psiCatchTrialMoreExteropsiCatchTrialMore1.34946975.00.56182010.072.0...NaNNaN1.603354e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
+

5 rows × 25 columns

+
+
+

This data frame contain a large number of columns, but here we will be interested in the Alpha column (the intensity value) and the Decision column (the response made by the participant).

+
+
+
this_df = this_df[['Alpha', 'Decision']]
+this_df.head()
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
AlphaDecision
1-0.5Less
3-30.0Less
622.5More
1010.5More
1110.0More
+
+
+

These two columns are enought for us to extract the 3 vectors of interest to fit a psychometric function:

+
    +
  • The intensity vector, listing all the tested intensities values

  • +
  • The total number of trials for each tested intensity value

  • +
  • The number of “correct” response (here, when the decision == ‘More’).

  • +
+

Let’s take a look at the data. This function will plot the proportion of “Faster” responses depending on the intensity value of the trial stimuli (expressed in BPM). Here, the size of the circle represent the number of trials that were presented for each intensity values.

+
+
+
fig, axs = plt.subplots(figsize=(8, 5))
+for ii, intensity in enumerate(np.sort(this_df.Alpha.unique())):
+    resp = sum((this_df.Alpha == intensity) & (this_df.Decision == 'More'))
+    total = sum(this_df.Alpha == intensity)
+    axs.plot(intensity, resp/total, 'o', alpha=0.5, color='#4c72b0', 
+             markeredgecolor='k', markersize=total*5)
+plt.ylabel('P$_{(Response = More|Intensity)}$')
+plt.xlabel('Intensity ($\Delta$ BPM)')
+plt.tight_layout()
+sns.despine()
+
+
+
+
+../../_images/824d20f57c99a6e7d1061399db63b2e2342259372495ddf31b8f53b1ae86ba50.png +
+
+
+
+

Model#

+

The model was defined as follows:

+
+\[ r_{i} \sim \mathcal{Binomial}(\theta_{i},n_{i})\]
+
+\[ \Phi_{i}(x_{i}, \alpha, \beta) = \frac{1}{2} + \frac{1}{2} * erf(\frac{x_{i} - \alpha}{\beta * \sqrt{2}})\]
+
+\[ \alpha \sim \mathcal{Uniform}(-40.5, 40.5)\]
+
+\[ \beta \sim |\mathcal{Normal}(0, 10)|\]
+

Where \(erf\) denotes the error functions and \(\phi\) is the cumulative normal function.

+

Let’s create our own cumulative normal distribution function here using pytensor.

+
+
+
def cumulative_normal(x, alpha, beta):
+    # Cumulative distribution function for the standard normal distribution
+    return 0.5 + 0.5 * pt.erf((x - alpha) / (beta * pt.sqrt(2)))
+
+
+
+
+

We preprocess the data to extract the intensity \(x\), the number or trials \(n\) and number of hit responses \(r\).

+
+
+
x, n, r = np.zeros(163), np.zeros(163), np.zeros(163)
+
+for ii, intensity in enumerate(np.arange(-40.5, 41, 0.5)):
+    x[ii] = intensity
+    n[ii] = sum(this_df.Alpha == intensity)
+    r[ii] = sum((this_df.Alpha == intensity) & (this_df.Decision == "More"))
+
+# remove no responses trials
+validmask = n != 0
+xij, nij, rij = x[validmask], n[validmask], r[validmask]
+
+
+
+
+

Create the model.

+
+
+
with pm.Model() as subject_psychophysics:
+
+    alpha = pm.Uniform("alpha", lower=-40.5, upper=40.5)
+    beta = pm.HalfNormal("beta", 10)
+
+    thetaij = pm.Deterministic(
+        "thetaij", cumulative_normal(xij, alpha, beta)
+    )
+
+    rij_ = pm.Binomial("rij", p=thetaij, n=nij, observed=rij)
+
+
+
+
+
+
+
pm.model_to_graphviz(subject_psychophysics)
+
+
+
+
+../../_images/174b23371e4bb37e0d5452c2df0934e7601c77eea70b6aafb5ebae8bf3fe766f.svg
+
+
+
+
with subject_psychophysics:
+    idata = pm.sample(chains=4, cores=4)
+
+
+
+
+
Auto-assigning NUTS sampler...
+
+
+
Initializing NUTS using jitter+adapt_diag...
+
+
+
Multiprocess sampling (4 chains in 4 jobs)
+
+
+
NUTS: [alpha, beta]
+
+
+
+ +
+
+ + 100.00% [8000/8000 00:02<00:00 Sampling 4 chains, 0 divergences] +
+
Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 3 seconds.
+
+
+
---------------------------------------------------------------------------
+AttributeError                            Traceback (most recent call last)
+File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/arviz/data/base.py:342, in make_attrs(attrs, library)
+    341 try:
+--> 342     version = importlib.metadata.version(library_name)
+    343     default_attrs["inference_library_version"] = version
+
+AttributeError: module 'importlib' has no attribute 'metadata'
+
+During handling of the above exception, another exception occurred:
+
+AttributeError                            Traceback (most recent call last)
+Cell In[10], line 2
+      1 with subject_psychophysics:
+----> 2     idata = pm.sample(chains=4, cores=4)
+
+File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/sampling/mcmc.py:826, in sample(draws, tune, chains, cores, random_seed, progressbar, step, var_names, nuts_sampler, initvals, init, jitter_max_retries, n_init, trace, discard_tuned_samples, compute_convergence_checks, keep_warning_stat, return_inferencedata, idata_kwargs, nuts_sampler_kwargs, callback, mp_ctx, model, **kwargs)
+    822 t_sampling = time.time() - t_start
+    824 # Packaging, validating and returning the result was extracted
+    825 # into a function to make it easier to test and refactor.
+--> 826 return _sample_return(
+    827     run=run,
+    828     traces=traces,
+    829     tune=tune,
+    830     t_sampling=t_sampling,
+    831     discard_tuned_samples=discard_tuned_samples,
+    832     compute_convergence_checks=compute_convergence_checks,
+    833     return_inferencedata=return_inferencedata,
+    834     keep_warning_stat=keep_warning_stat,
+    835     idata_kwargs=idata_kwargs or {},
+    836     model=model,
+    837 )
+
+File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/sampling/mcmc.py:894, in _sample_return(run, traces, tune, t_sampling, discard_tuned_samples, compute_convergence_checks, return_inferencedata, keep_warning_stat, idata_kwargs, model)
+    892 ikwargs: dict[str, Any] = dict(model=model, save_warmup=not discard_tuned_samples)
+    893 ikwargs.update(idata_kwargs)
+--> 894 idata = pm.to_inference_data(mtrace, **ikwargs)
+    896 if compute_convergence_checks:
+    897     warns = run_convergence_checks(idata, model)
+
+File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/backends/arviz.py:525, in to_inference_data(trace, prior, posterior_predictive, log_likelihood, log_prior, coords, dims, sample_dims, model, save_warmup, include_transformed)
+    522 if isinstance(trace, InferenceData):
+    523     return trace
+--> 525 return InferenceDataConverter(
+    526     trace=trace,
+    527     prior=prior,
+    528     posterior_predictive=posterior_predictive,
+    529     log_likelihood=log_likelihood,
+    530     log_prior=log_prior,
+    531     coords=coords,
+    532     dims=dims,
+    533     sample_dims=sample_dims,
+    534     model=model,
+    535     save_warmup=save_warmup,
+    536     include_transformed=include_transformed,
+    537 ).to_inference_data()
+
+File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/backends/arviz.py:429, in InferenceDataConverter.to_inference_data(self)
+    421 def to_inference_data(self):
+    422     """Convert all available data to an InferenceData object.
+    423 
+    424     Note that if groups can not be created (e.g., there is no `trace`, so
+    425     the `posterior` and `sample_stats` can not be extracted), then the InferenceData
+    426     will not have those groups.
+    427     """
+    428     id_dict = {
+--> 429         "posterior": self.posterior_to_xarray(),
+    430         "sample_stats": self.sample_stats_to_xarray(),
+    431         "posterior_predictive": self.posterior_predictive_to_xarray(),
+    432         "predictions": self.predictions_to_xarray(),
+    433         **self.priors_to_xarray(),
+    434         "observed_data": self.observed_data_to_xarray(),
+    435     }
+    436     if self.predictions:
+    437         id_dict["predictions_constant_data"] = self.constant_data_to_xarray()
+
+File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/arviz/data/base.py:65, in requires.__call__.<locals>.wrapped(cls)
+     63     if all((getattr(cls, prop_i) is None for prop_i in prop)):
+     64         return None
+---> 65 return func(cls)
+
+File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/backends/arviz.py:279, in InferenceDataConverter.posterior_to_xarray(self)
+    274     if self.posterior_trace:
+    275         data[var_name] = np.array(
+    276             self.posterior_trace.get_values(var_name, combine=False, squeeze=False)
+    277         )
+    278 return (
+--> 279     dict_to_dataset(
+    280         data,
+    281         library=pymc,
+    282         coords=self.coords,
+    283         dims=self.dims,
+    284         attrs=self.attrs,
+    285     ),
+    286     dict_to_dataset(
+    287         data_warmup,
+    288         library=pymc,
+    289         coords=self.coords,
+    290         dims=self.dims,
+    291         attrs=self.attrs,
+    292     ),
+    293 )
+
+File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/arviz/data/base.py:318, in dict_to_dataset(data, attrs, library, coords, dims, default_dims, index_origin, skip_event_dims)
+    304     dims = {}
+    306 data_vars = {
+    307     key: numpy_to_data_array(
+    308         values,
+   (...)
+    316     for key, values in data.items()
+    317 }
+--> 318 return xr.Dataset(data_vars=data_vars, attrs=make_attrs(attrs=attrs, library=library))
+
+File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/arviz/data/base.py:344, in make_attrs(attrs, library)
+    342     version = importlib.metadata.version(library_name)
+    343     default_attrs["inference_library_version"] = version
+--> 344 except importlib.metadata.PackageNotFoundError:
+    345     if hasattr(library, "__version__"):
+    346         version = library.__version__
+
+AttributeError: module 'importlib' has no attribute 'metadata'
+
+
+
+
+
+
+
az.plot_trace(idata, var_names=['alpha', 'beta']);
+
+
+
+
+../../_images/2a5b968ed55f9f50d4a9d9dd01acbb2823a5274c7a4b526016acd2241859c79b.png +
+
+
+
+
stats = az.summary(idata, ["alpha", "beta"])
+stats
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
alpha2.1971.576-0.6645.1430.0290.0213149.02042.01.0
beta7.4381.8434.42410.8660.0370.0262712.02349.01.0
+
+
+
+

Hint

+

Here, \(\alpha\) refers to the threshold value (also the point of subjective equality for this design). This participant had a threshold at estimated at 2.25, which is just slightly positively biased. The \(\beta\) value refers to the slope. A higher value means lower precision. Here, the slope is estimated to be around 7.46 for this participant.

+
+
+
+

Plotting#

+

Extrace the last 10 sample of each chain (here we have 4).

+
+
+
alpha_samples = idata["posterior"]["alpha"].values[:, -10:].flatten()
+beta_samples = idata["posterior"]["beta"].values[:, -10:].flatten()
+
+
+
+
+
+
+
fig, axs = plt.subplots(figsize=(8, 5))
+
+# Draw some sample from the traces
+for a, b in zip(alpha_samples, beta_samples):
+    axs.plot(
+        np.linspace(-40, 40, 500), 
+        (norm.cdf(np.linspace(-40, 40, 500), loc=a, scale=b)),
+        color='k', alpha=.08, linewidth=2
+    )
+
+# Plot psychometric function with average parameters
+slope = stats['mean']['beta']
+threshold = stats['mean']['alpha']
+axs.plot(np.linspace(-40, 40, 500), 
+        (norm.cdf(np.linspace(-40, 40, 500), loc=threshold, scale=slope)),
+         color='#4c72b0', linewidth=4)
+
+# Draw circles showing response proportions
+for ii, intensity in enumerate(np.sort(this_df.Alpha.unique())):
+    resp = sum((this_df.Alpha == intensity) & (this_df.Decision == 'More'))
+    total = sum(this_df.Alpha == intensity)
+    axs.plot(intensity, resp/total, 'o', alpha=0.5, color='#4c72b0', 
+             markeredgecolor='k', markersize=total*5)
+
+plt.ylabel('P$_{(Response = More|Intensity)}$')
+plt.xlabel('Intensity ($\Delta$ BPM)')
+plt.tight_layout()
+sns.despine()
+
+
+
+
+../../_images/ae157f933d77b401d2855f0bd2b6be02780c889014c029311ea29a9ac755c03b.png +
+
+
+

System configuration#

+
+
+
%load_ext watermark
+%watermark -n -u -v -iv -w -p pymc,arviz,pytensor
+
+
+
+
+
Last updated: Fri Nov 10 2023
+
+Python implementation: CPython
+Python version       : 3.9.18
+IPython version      : 8.16.1
+
+pymc    : 5.9.0
+arviz   : 0.16.1
+pytensor: 2.17.2
+
+pytensor  : 2.17.2
+pymc      : 5.9.0
+seaborn   : 0.13.0
+matplotlib: 3.8.0
+pandas    : 2.0.3
+numpy     : 1.22.0
+arviz     : 0.16.1
+
+Watermark: 2.4.3
+
+
+
+
+
+
+ + +
+ + + + + + + +
+ + + + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/examples/psychophysics/2-psychophysics_group_level.html b/examples/psychophysics/2-psychophysics_group_level.html new file mode 100644 index 0000000..ae580e9 --- /dev/null +++ b/examples/psychophysics/2-psychophysics_group_level.html @@ -0,0 +1,1330 @@ + + + + + + + + + + + + Fitting a psychometric function at the group level — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

Fitting a psychometric function at the group level#

+

Author: Nicolas Legrand nicolas.legrand@cas.au.dk

+
+
+
import pytensor.tensor as pt
+import arviz as az
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+import seaborn as sns
+from scipy.stats import norm
+import pymc as pm
+
+sns.set_context('talk')
+
+
+
+
+
WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
+
+
+
+
+

In this example, we are going to fit a cummulative normal function to decision responses made during the Heart Rate Discrimination task. We will use the data from the HRD method paper [Legrand et al., 2022] and analyse the responses from all participants and infer group-level hyperpriors.

+
+
+
# Load data frame
+psychophysics_df = pd.read_csv('https://github.com/embodied-computation-group/CardioceptionPaper/raw/main/data/Del2_merged.txt')
+
+
+
+
+

First, let’s filter this data frame so we only keep the interoceptive condition (Extero label).

+
+
+
this_df = psychophysics_df[psychophysics_df.Modality == 'Extero']
+this_df.head()
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TrialTypeConditionModalityStairCondDecisionDecisionRTConfidenceConfidenceRTAlphalistenBPM...EstimatedThresholdEstimatedSlopeStartListeningStartDecisionResponseMadeRatingStartRatingEndsendTriggerHeartRateOutlierSubject
1psiLessExteropsiLess2.21642959.01.632995-0.578.0...22.80555012.5494571.603353e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
3psiCatchTrialLessExteropsiCatchTrialLess1.449154100.00.511938-30.082.0...NaNNaN1.603354e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
6psiMoreExteropsiMore1.18266695.00.60678622.569.0...10.00188212.8849021.603354e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
10psiMoreExteropsiMore1.84814124.01.44896910.562.0...0.99838413.0447441.603354e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
11psiCatchTrialMoreExteropsiCatchTrialMore1.34946975.00.56182010.072.0...NaNNaN1.603354e+091.603354e+091.603354e+091.603354e+091.603354e+091.603354e+09Falsesub_0019
+

5 rows × 25 columns

+
+
+

This data frame contain a large number of columns, but here we will be interested in the Alpha column (the intensity value) and the Decision column (the response made by the participant).

+
+
+
this_df = this_df[['Alpha', 'Decision', 'Subject']]
+this_df.head()
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
AlphaDecisionSubject
1-0.5Lesssub_0019
3-30.0Lesssub_0019
622.5Moresub_0019
1010.5Moresub_0019
1110.0Moresub_0019
+
+
+

These two columns are enought for us to extract the 3 vectors of interest to fit a psychometric function:

+
    +
  • The intensity vector, listing all the tested intensities values

  • +
  • The total number of trials for each tested intensity value

  • +
  • The number of “correct” response (here, when the decision == ‘More’).

  • +
+

Let’s take a look at the data. This function will plot the proportion of “Faster” responses depending on the intensity value of the trial stimuli (expressed in BPM). Here, the size of the circle represent the number of trials that were presented for each intensity values.

+
+
+

Model#

+

The model is defined as follows:

+
+\[ r_{i} \sim \mathcal{Binomial}(\theta_{i},n_{i})\]
+
+\[ \Phi_{i, j}(x_{i, j}, \alpha, \beta) = \frac{1}{2} + \frac{1}{2} * erf(\frac{x_{i, j} - \alpha}{\beta * \sqrt{2}})\]
+
+\[ \alpha_{i} \sim \mathcal{Normal}(\mu_{\alpha}, \sigma_{\alpha})\]
+
+\[ \beta_{i} \sim \mathcal{Normal}(\mu_{\beta}, \sigma_{\beta})\]
+
+\[ \mu_{\alpha} \sim \mathcal{Uniform}(-50, 50)\]
+
+\[ \sigma_{\alpha} \sim |\mathcal{Normal}(0, 100)|\]
+
+\[ \mu_{\beta} \sim \mathcal{Uniform}(0, 100)\]
+
+\[ \sigma_{\beta} \sim |\mathcal{Normal}(0, 100)|\]
+

Where \(erf\) is the error functions, and \(\Phi\) is the cumulative normal function with threshold \(\alpha\) and slope \(\beta\).

+

We create our own cumulative normal distribution function here using pytensor.

+
+
+
def cumulative_normal(x, alpha, beta):
+    # Cumulative distribution function for the standard normal distribution
+    return 0.5 + 0.5 * pt.erf((x - alpha) / (beta * pt.sqrt(2)))
+
+
+
+
+

We preprocess the data to extract the intensity \(x\), the number or trials \(n\) and number of hit responses \(r\). We also create a vector sub_total containing the participants index (from 0 to \(n_{participants}\)).

+
+
+
nsubj = this_df.Subject.nunique()
+x_total, n_total, r_total, sub_total = [], [], [], []
+
+for i, sub in enumerate(this_df.Subject.unique()):
+
+    sub_df = this_df[this_df.Subject==sub]
+
+    x, n, r = np.zeros(163), np.zeros(163), np.zeros(163)
+
+    for ii, intensity in enumerate(np.arange(-40.5, 41, 0.5)):
+        x[ii] = intensity
+        n[ii] = sum(sub_df.Alpha == intensity)
+        r[ii] = sum((sub_df.Alpha == intensity) & (sub_df.Decision == "More"))
+
+    # remove no responses trials
+    validmask = n != 0
+    xij, nij, rij = x[validmask], n[validmask], r[validmask]
+    sub_vec = [i] * len(xij)
+
+    x_total.extend(xij)
+    n_total.extend(nij)
+    r_total.extend(rij)
+    sub_total.extend(sub_vec)
+
+
+
+
+

Create the model.

+
+
+
with pm.Model() as group_psychophysics:
+
+    mu_alpha = pm.Uniform("mu_alpha", lower=-50, upper=50)
+    sigma_alpha = pm.HalfNormal("sigma_alpha", sigma=100)
+
+    mu_beta = pm.Uniform("mu_beta", lower=0, upper=100)
+    sigma_beta = pm.HalfNormal("sigma_beta", sigma=100)
+
+    alpha = pm.Normal("alpha", mu=mu_alpha, sigma=sigma_alpha, shape=nsubj)
+    beta = pm.Normal("beta", mu=mu_beta, sigma=sigma_beta, shape=nsubj)
+
+    thetaij = pm.Deterministic(
+        "thetaij", cumulative_normal(x_total, alpha[sub_total], beta[sub_total])
+    )
+
+    rij_ = pm.Binomial("rij", p=thetaij, n=n_total, observed=r_total)
+
+
+
+
+
+
+
pm.model_to_graphviz(group_psychophysics)
+
+
+
+
+../../_images/56af5baab3d4f8cd33390caeac204724ef87187dd6fd6ef4e9c8ab860aae1504.svg
+
+

Sampling.

+
+
+
with group_psychophysics:
+    idata = pm.sample(chains=4, cores=4)
+
+
+
+
+
Auto-assigning NUTS sampler...
+
+
+
Initializing NUTS using jitter+adapt_diag...
+
+
+
Multiprocess sampling (4 chains in 4 jobs)
+
+
+
NUTS: [mu_alpha, sigma_alpha, mu_beta, sigma_beta, alpha, beta]
+
+
+
+ +
+
+ + 100.00% [8000/8000 02:26<00:00 Sampling 4 chains, 0 divergences] +
+
Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 147 seconds.
+
+
+
---------------------------------------------------------------------------
+AttributeError                            Traceback (most recent call last)
+File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/arviz/data/base.py:342, in make_attrs(attrs, library)
+    341 try:
+--> 342     version = importlib.metadata.version(library_name)
+    343     default_attrs["inference_library_version"] = version
+
+AttributeError: module 'importlib' has no attribute 'metadata'
+
+During handling of the above exception, another exception occurred:
+
+AttributeError                            Traceback (most recent call last)
+Cell In[9], line 2
+      1 with group_psychophysics:
+----> 2     idata = pm.sample(chains=4, cores=4)
+
+File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/sampling/mcmc.py:826, in sample(draws, tune, chains, cores, random_seed, progressbar, step, var_names, nuts_sampler, initvals, init, jitter_max_retries, n_init, trace, discard_tuned_samples, compute_convergence_checks, keep_warning_stat, return_inferencedata, idata_kwargs, nuts_sampler_kwargs, callback, mp_ctx, model, **kwargs)
+    822 t_sampling = time.time() - t_start
+    824 # Packaging, validating and returning the result was extracted
+    825 # into a function to make it easier to test and refactor.
+--> 826 return _sample_return(
+    827     run=run,
+    828     traces=traces,
+    829     tune=tune,
+    830     t_sampling=t_sampling,
+    831     discard_tuned_samples=discard_tuned_samples,
+    832     compute_convergence_checks=compute_convergence_checks,
+    833     return_inferencedata=return_inferencedata,
+    834     keep_warning_stat=keep_warning_stat,
+    835     idata_kwargs=idata_kwargs or {},
+    836     model=model,
+    837 )
+
+File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/sampling/mcmc.py:894, in _sample_return(run, traces, tune, t_sampling, discard_tuned_samples, compute_convergence_checks, return_inferencedata, keep_warning_stat, idata_kwargs, model)
+    892 ikwargs: dict[str, Any] = dict(model=model, save_warmup=not discard_tuned_samples)
+    893 ikwargs.update(idata_kwargs)
+--> 894 idata = pm.to_inference_data(mtrace, **ikwargs)
+    896 if compute_convergence_checks:
+    897     warns = run_convergence_checks(idata, model)
+
+File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/backends/arviz.py:525, in to_inference_data(trace, prior, posterior_predictive, log_likelihood, log_prior, coords, dims, sample_dims, model, save_warmup, include_transformed)
+    522 if isinstance(trace, InferenceData):
+    523     return trace
+--> 525 return InferenceDataConverter(
+    526     trace=trace,
+    527     prior=prior,
+    528     posterior_predictive=posterior_predictive,
+    529     log_likelihood=log_likelihood,
+    530     log_prior=log_prior,
+    531     coords=coords,
+    532     dims=dims,
+    533     sample_dims=sample_dims,
+    534     model=model,
+    535     save_warmup=save_warmup,
+    536     include_transformed=include_transformed,
+    537 ).to_inference_data()
+
+File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/backends/arviz.py:429, in InferenceDataConverter.to_inference_data(self)
+    421 def to_inference_data(self):
+    422     """Convert all available data to an InferenceData object.
+    423 
+    424     Note that if groups can not be created (e.g., there is no `trace`, so
+    425     the `posterior` and `sample_stats` can not be extracted), then the InferenceData
+    426     will not have those groups.
+    427     """
+    428     id_dict = {
+--> 429         "posterior": self.posterior_to_xarray(),
+    430         "sample_stats": self.sample_stats_to_xarray(),
+    431         "posterior_predictive": self.posterior_predictive_to_xarray(),
+    432         "predictions": self.predictions_to_xarray(),
+    433         **self.priors_to_xarray(),
+    434         "observed_data": self.observed_data_to_xarray(),
+    435     }
+    436     if self.predictions:
+    437         id_dict["predictions_constant_data"] = self.constant_data_to_xarray()
+
+File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/arviz/data/base.py:65, in requires.__call__.<locals>.wrapped(cls)
+     63     if all((getattr(cls, prop_i) is None for prop_i in prop)):
+     64         return None
+---> 65 return func(cls)
+
+File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/backends/arviz.py:279, in InferenceDataConverter.posterior_to_xarray(self)
+    274     if self.posterior_trace:
+    275         data[var_name] = np.array(
+    276             self.posterior_trace.get_values(var_name, combine=False, squeeze=False)
+    277         )
+    278 return (
+--> 279     dict_to_dataset(
+    280         data,
+    281         library=pymc,
+    282         coords=self.coords,
+    283         dims=self.dims,
+    284         attrs=self.attrs,
+    285     ),
+    286     dict_to_dataset(
+    287         data_warmup,
+    288         library=pymc,
+    289         coords=self.coords,
+    290         dims=self.dims,
+    291         attrs=self.attrs,
+    292     ),
+    293 )
+
+File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/arviz/data/base.py:318, in dict_to_dataset(data, attrs, library, coords, dims, default_dims, index_origin, skip_event_dims)
+    304     dims = {}
+    306 data_vars = {
+    307     key: numpy_to_data_array(
+    308         values,
+   (...)
+    316     for key, values in data.items()
+    317 }
+--> 318 return xr.Dataset(data_vars=data_vars, attrs=make_attrs(attrs=attrs, library=library))
+
+File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/arviz/data/base.py:344, in make_attrs(attrs, library)
+    342     version = importlib.metadata.version(library_name)
+    343     default_attrs["inference_library_version"] = version
+--> 344 except importlib.metadata.PackageNotFoundError:
+    345     if hasattr(library, "__version__"):
+    346         version = library.__version__
+
+AttributeError: module 'importlib' has no attribute 'metadata'
+
+
+
+
+
+
+
az.plot_trace(idata, var_names=["mu_alpha", "alpha"]);
+
+
+
+
+../../_images/67abc252a194139e053a53525f672aad54549e4748c14e1b00f7d3e2147ec73d.png +
+
+
+
+
stats = az.summary(idata, var_names=["mu_alpha", "mu_beta"])
+stats
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
mu_alpha0.2160.246-0.2630.6460.0040.0034175.03124.01.0
mu_beta7.9240.2367.4798.3420.0040.0033320.03141.01.0
+
+
+

+
+
+
+
+
az.plot_posterior(idata, var_names=["mu_alpha"])
+
+
+
+
+
<Axes: title={'center': 'mu_alpha'}>
+
+
+../../_images/ba81bee369ee26cc12f911cb21f6de2d4dfbff0b8c9ca0dfe7e16495741dd694.png +
+
+
+
+

Plotting#

+

Extrace the individual parameters estimates.

+
+
+
alpha_samples = az.summary(idata, var_names=["alpha"])["mean"].values
+beta_samples = az.summary(idata, var_names=["beta"])["mean"].values
+
+
+
+
+
+
+
fig, axs = plt.subplots(figsize=(8, 6))
+
+# Draw some sample from the traces
+for a, b in zip(alpha_samples, beta_samples):
+    axs.plot(
+        np.linspace(-40, 40, 500), 
+        (norm.cdf(np.linspace(-40, 40, 500), loc=a, scale=b)),
+        color='gray', alpha=.05, linewidth=2
+    )
+
+# Plot psychometric function with average parameters
+slope = az.summary(idata, var_names=["mu_beta"])['mean']['mu_beta']
+threshold = az.summary(idata, var_names=["mu_alpha"])['mean']['mu_alpha']
+axs.plot(np.linspace(-40, 40, 500), 
+        (norm.cdf(np.linspace(-40, 40, 500), loc=threshold, scale=slope)),
+         color='#4c72b0', linewidth=4)
+
+axs.plot([threshold, threshold], [0, .5], '--', color='#4c72b0', linewidth=2)
+axs.plot(threshold, .5, 'o', color='w', markeredgecolor='#4c72b0', 
+         markersize=15, markeredgewidth=3)
+
+plt.ylabel('P$_{(Response = More|Intensity)}$')
+plt.xlabel('Intensity ($\Delta$ BPM)')
+plt.title('Group level estimate of the psychometric function')
+plt.tight_layout()
+sns.despine()
+
+
+
+
+../../_images/8eacefa349eacfdae22a57292e69e0fd5e424368fc1aff18ccb38b57e721b934.png +
+
+
+

System configuration#

+
+
+
%load_ext watermark
+%watermark -n -u -v -iv -w -p pymc,arviz,pytensor
+
+
+
+
+
Last updated: Fri Nov 10 2023
+
+Python implementation: CPython
+Python version       : 3.9.18
+IPython version      : 8.16.1
+
+pymc    : 5.9.0
+arviz   : 0.16.1
+pytensor: 2.17.2
+
+matplotlib: 3.8.0
+numpy     : 1.22.0
+pymc      : 5.9.0
+pandas    : 2.0.3
+pytensor  : 2.17.2
+arviz     : 0.16.1
+seaborn   : 0.13.0
+
+Watermark: 2.4.3
+
+
+
+
+
+
+ + +
+ + + + + + + +
+ + + + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/examples/templates/HeartBeatCounting.html b/examples/templates/HeartBeatCounting.html new file mode 100644 index 0000000..32eb52f --- /dev/null +++ b/examples/templates/HeartBeatCounting.html @@ -0,0 +1,989 @@ + + + + + + + + + + + + Heartbeat Counting task - Summary results — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

Heartbeat Counting task - Summary results#

+

Author: Nicolas Legrand nicolas.legrand@cas.au.dk

+
+
+ + +Hide code cell content + +
+
%%capture
+import sys
+
+if 'google.colab' in sys.modules:
+    !pip install systole, metadpy
+
+
+
+
+
+
+
+
from pathlib import Path
+import matplotlib.pyplot as plt
+from matplotlib.dates import date2num
+import numpy as np
+import pandas as pd
+import seaborn as sns
+from systole.detection import ppg_peaks
+from systole.plots import plot_raw, plot_subspaces
+
+sns.set_context('paper')
+%matplotlib inline
+
+
+
+
+

Import data

+
+
+
# Define the result and report folders - This should be adapted to you own settings
+resultPath = Path(Path.cwd(), "data", "HBC")
+reportPath = Path(Path.cwd(), "reports")
+
+
+
+
+
+
+
# ensure that the paths are pathlib instance in case they are passed through cardioception.reports.report
+resultPath = Path(resultPath)
+reportPath = Path(reportPath)
+
+
+
+
+
+
+
# Search files ending with "final.txt" - This is the main data frame that is saved at the end of the task
+results_df = [file for file in Path(resultPath).glob('*final.txt')]
+
+
+
+
+
+
+
# Load dataframe
+df = pd.read_csv(results_df[0])
+df
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
nTrialReportedConditionDurationConfidenceConfidenceRT
0036Count4045.146
1127Count3059.909
2229Count3544.279
3339Count4553.278
4447Count5054.007
5523Count2552.635
+
+
+
+
+
# Load raw PPG signal - PPG is saved as .npy files, one for each trial
+ppg = {}
+for i in range(6):
+    ppg[str(i)] = np.load(
+        [file for file in resultPath.glob(f'*_{i}.npy')][0]
+        )
+
+
+
+
+
+
+

Heartbeats and artefacts detection#

+
+

Note

+

This section reports the raw PPG signal together with the peaks detected. The instantaneous heart rate frequency (R-R intervals) is derived and represented below each PPG time series. Artefacts in the RR time series are detected using the method described in [Lipponen and Tarvainen, 2019]. The shaded areas represent the pre-recording and post-recording period. Heartbeats detected inside these intervals are automatically removed.

+
+
+

Loop across trials#

+
+
+
counts = []
+for nTrial in range(6):
+
+    print(f'Analyzing trial number {nTrial+1}')
+
+    signal, peaks = ppg_peaks(ppg[str(nTrial)][0], clean_extra=True, sfreq=75)
+    axs = plot_raw(
+        signal=signal, sfreq=1000, figsize=(18, 5), clean_extra=True,
+        show_heart_rate=True
+        );
+
+    # Show the windows of interest
+    # We need to convert sample vector into Matplotlib internal representation
+    # so we can index it easily
+    x_vec = date2num(
+        pd.to_datetime(
+            np.arange(0, len(signal)), unit="ms", origin="unix"
+            )
+        )
+    l = len(signal)/1000
+    for i in range(2):
+        # Pre-trial time
+        axs[i].axvspan(
+            x_vec[0], x_vec[- (3+df.Duration.iloc[nTrial]) * 1000]
+            , alpha=.2
+            )
+        # Post trial time
+        axs[i].axvspan(
+            x_vec[- 3 * 1000], 
+            x_vec[- 1], 
+            alpha=.2
+            )
+    plt.show()
+
+    # Detected heartbeat in the time window of interest
+    peaks = peaks[int(l - (3+df.Duration.iloc[nTrial]))*1000:int((l-3)*1000)]
+
+    rr = np.diff(np.where(peaks)[0])
+
+    _, axs = plt.subplots(ncols=2, figsize=(12, 6))
+    plot_subspaces(rr=rr, ax=axs);
+    plt.show()
+
+    trial_counts = np.sum(peaks)
+    print(f'Reported: {df.Reported.loc[nTrial]} beats ; Detected : {trial_counts} beats')
+    counts.append(trial_counts)
+
+
+
+
+
Analyzing trial number 1
+
+
+
---------------------------------------------------------------------------
+TypeError                                 Traceback (most recent call last)
+Cell In[8], line 6
+      2 for nTrial in range(6):
+      4     print(f'Analyzing trial number {nTrial+1}')
+----> 6     signal, peaks = ppg_peaks(ppg[str(nTrial)][0], clean_extra=True, sfreq=75)
+      7     axs = plot_raw(
+      8         signal=signal, sfreq=1000, figsize=(18, 5), clean_extra=True,
+      9         show_heart_rate=True
+     10         );
+     12     # Show the windows of interest
+     13     # We need to convert sample vector into Matplotlib internal representation
+     14     # so we can index it easily
+
+TypeError: ppg_peaks() got an unexpected keyword argument 'clean_extra'
+
+
+
+
+
+
+

Save reults#

+
+
+
# Add heartbeat counts and compute accuracy score
+df['Counts'] = counts
+df['Score'] = 1 - ((df.Counts - df.Reported).abs() / ((df.Counts + df.Reported)/2))
+
+
+
+
+
+
+
df
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
nTrialReportedConditionDurationConfidenceConfidenceRTCountsScore
0036Count4045.146400.894737
1127Count3059.909300.894737
2229Count3544.279360.784615
3339Count4553.278460.835294
4447Count5054.007510.918367
5523Count2552.635250.916667
+
+
+
+
+
# Uncomment this to save the final result
+#df.to_csv(Path(resultPath, 'processed.txt'))
+
+
+
+
+
+
+ + +
+ + + + + + + +
+ + + + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/examples/templates/HeartRateDiscrimination.html b/examples/templates/HeartRateDiscrimination.html new file mode 100644 index 0000000..013a722 --- /dev/null +++ b/examples/templates/HeartRateDiscrimination.html @@ -0,0 +1,1094 @@ + + + + + + + + + + + + Heart Rate Discrimination task - Summary results — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

Heart Rate Discrimination task - Summary results#

+

Author: Nicolas Legrand nicolas.legrand@cas.au.dk

+
+
+ + +Hide code cell content + +
+
%%capture
+import sys
+
+if 'google.colab' in sys.modules:
+    !pip install metadpy, systole, pingouin
+
+
+
+
+
+
+
+
from pathlib import Path
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+import pingouin as pg
+import seaborn as sns
+from metadpy import sdt
+from metadpy.plotting import plot_confidence
+from metadpy.utils import discreteRatings, trials2counts
+from scipy.stats import norm
+from systole.detection import ppg_peaks
+
+sns.set_context('talk')
+%matplotlib inline
+
+
+
+
+
---------------------------------------------------------------------------
+ModuleNotFoundError                       Traceback (most recent call last)
+Cell In[2], line 5
+      3 import numpy as np
+      4 import pandas as pd
+----> 5 import pingouin as pg
+      6 import seaborn as sns
+      7 from metadpy import sdt
+
+ModuleNotFoundError: No module named 'pingouin'
+
+
+
+
+

This notebook introduces basic analysis steps, plots and quality check for the Heart Rate Discrimination task. The current version use data from a young and healthy participant tested with the default task parameters implemented in the launcher.py file (80 trials per condition, 30 using a 1-Up/1-Down staircase and 50 using the Psi method.

+

The target directory is defined by the path variable and should include the following files: final.txt (the behavioural data), Intero_posterior.npy and Extero_posterior.npy (the posterior estimates) and signal.txt (the PPG signal time series during the interoception trials).

+

Import data

+
+
+
# Define the result and report folders - This should be adapted to you own settings
+resultPath = Path(Path.cwd(), "data", "HRD")
+reportPath = Path(Path.cwd(), "reports")
+
+
+
+
+
+
+
# ensure that the paths are pathlib instance in case they are passed through cardioception.reports.report
+resultPath = Path(resultPath)
+reportPath = Path(reportPath)
+
+
+
+
+
+
+
# Logs dataframe
+df = pd.read_csv(
+    [file for file in Path(resultPath).glob('*final.txt')][0]
+    )
+
+# History of posteriors distribution
+try:
+    interoPost = np.load(
+        [file for file in Path(resultPath).glob('*Intero_posterior.npy')][0]
+        )
+except:
+    interoPost = None
+try:
+    exteroPost = np.load(
+        [file for file in Path(resultPath).glob('*Extero_posterior.npy')][0]
+        )
+except:
+    exteroPost = None
+
+# PPG signal
+signal_df = pd.read_csv(
+    [file for file in Path(resultPath).glob('*signal.txt')][0]
+    )
+signal_df['Time'] = np.arange(0, len(signal_df))/1000 # Create time vector
+
+
+
+
+
+
+

Response time#

+
+
+
palette = ['#b55d60', '#5f9e6e']
+
+fig, axs = plt.subplots(1, 2, figsize=(13, 5))
+for i, task, title in zip([0, 1], ['DecisionRT', 'ConfidenceRT'], ['Decision', 'Confidence']):
+    sns.boxplot(data=df, x='Modality', y=task, hue='ResponseCorrect',
+                palette=palette, width=.15, notch=True, ax=axs[i])
+    sns.stripplot(data=df, x='Modality', y=task, hue='ResponseCorrect',
+                  dodge=True, linewidth=1, size=6, palette=palette, alpha=.6, ax=axs[i])
+    axs[i].set_title(title)
+    axs[i].set_ylabel('Response Time (s)')
+    axs[i].set_xlabel('')
+    axs[i].get_legend().remove()
+sns.despine(trim=10)
+
+handles, labels = axs[0].get_legend_handles_labels()
+plt.legend(handles[0:2], ['Incorrect', 'Correct'], bbox_to_anchor=(1.05, .5), loc=2, borderaxespad=0.)
+
+
+
+
+
<matplotlib.legend.Legend at 0x7efcf4935eb0>
+
+
+../../_images/681971437bae430d44fedafff71a9ec028bc7991ef8c17e2449a4a06225abcaa.png +
+
+

Response time distribution for the decision and the confidence rating phases for correct (red) and incorrect (green) responses.

+
+
+

Metacognition#

+

SDT estimate for decision 1 perforamces (d’ and criterion)

+
+
+
for i, cond in enumerate(['Intero', 'Extero']):
+    this_df = df[df.Modality == cond].copy()
+    if len(this_df) > 0:
+      this_df['Stimuli'] = (this_df.responseBPM > this_df.listenBPM)
+      this_df['Responses'] = (this_df.Decision == 'More')
+
+      hit, miss, fa, cr = this_df.scores()
+      hr, far = sdt.rates(hits=hit, misses=miss, fas=fa, crs=cr)
+      d, c = sdt.dprime(hit_rate=hr, fa_rate=far), sdt.criterion(hit_rate=hr, fa_rate=far)
+      
+      print(f'Condition: {cond} - d-prime: {d} - criterion: {c}')
+
+
+
+
+
Condition: Intero - d-prime: 1.38023349795524 - criterion: 0.4602326313983878
+Condition: Extero - d-prime: 2.699085962223946 - criterion: 0.382121415010272
+
+
+
+
+
+
+
fig, axs = plt.subplots(1, 2, figsize=(13, 5))
+
+for i, cond in enumerate(['Intero', 'Extero']):
+    try:
+        this_df = df[(df.Modality == cond) & (df.RatingProvided == 1)]
+        this_df = this_df[~this_df.Confidence.isnull()]
+        new_confidence, _ = discreteRatings(this_df.Confidence)
+        this_df['Confidence'] = new_confidence
+        this_df['Stimuli'] = (this_df.Alpha > 0).astype('int')
+        this_df['Responses'] = (this_df.Decision == 'More').astype('int')
+        nR_S1, nR_S2 = trials2counts(data=this_df)
+        plot_confidence(nR_S1, nR_S2, ax=axs[i])
+        axs[i].set_title(f'{cond}ception')
+    except:
+        print('Invalid ratings')
+        this_df = df[df.Modality == cond]
+        sns.histplot(this_df[this_df.ResponseCorrect==1].Confidence, ax=axs[i], color="#5f9e6e",)
+        sns.histplot(this_df[this_df.ResponseCorrect==0].Confidence, ax=axs[i], color="#b55d60")
+        axs[i].set_title(f'{cond}ception')
+sns.despine()
+plt.tight_layout()
+
+
+
+
+../../_images/0f7fc5e0613312de67a02a7cba94f841d82647aa8ef4fba4dd7f28121b1039d2.png +
+
+

Distribution of confidence ratings for correct (green) and incorrect (red) trials. Overlapping distribution suggests that the subjective confidence in the decision was not predictive of decision performances.

+
+
+

Psychophysics#

+

Distribution of the intensities values.

+
+
+
fig, axs = plt.subplots(1, 1, figsize=(8, 5))
+
+for cond, col in zip(['Intero', 'Extero'], ['#c44e52', '#4c72b0']):
+    this_df = df[df.Modality == cond]
+    axs.hist(this_df.Alpha, color=col, bins=np.arange(-40.5, 40.5, 5), histtype='stepfilled',
+             ec="k", density=True, align='mid', label=cond, alpha=.6)
+axs.set_title('Distribution of the tested intensities values')
+axs.set_xlabel('Intensity (BPM)')
+plt.legend()
+sns.despine(trim=10)
+plt.tight_layout()
+
+
+
+
+../../_images/c8398a5d573310c2c1e7b0134a4f89c02e317d69824a54580afbe7ceaa566f27.png +
+
+
+

Staircases#

+
+

Psi#

+
+
+
if sum(df.TrialType == 'psi') > 0:
+
+    fig, axs = plt.subplots(figsize=(18, 5), nrows=1, ncols=2)
+
+    # Plot confidence interval for each staircase
+    def ci(x):
+        return np.where(np.cumsum(x) / np.sum(x) > .025)[0][0], \
+               np.where(np.cumsum(x) / np.sum(x) < .975)[0][-1]
+
+    try:
+        for i, stair, col, modality in zip([0, 1], 
+                                 [interoPost, exteroPost], 
+                                 ['#c44e52', '#4c72b0'],
+                                ['Intero', 'Extero']):
+            this_df = df[(df.Modality == modality) & (df.TrialType != 'UpDown')]
+            ciUp, ciLow = [], []
+            for t in range(stair.shape[0]):
+                up, low = ci(stair.mean(2)[t])
+                rg = np.arange(-50.5, 50.5)
+                ciUp.append(rg[up])
+                ciLow.append(rg[low])
+
+            axs[i].fill_between(x=np.linspace(0, len(this_df), len(ciUp)),
+                                y1=ciLow,
+                                y2=ciUp,
+                                color=col, alpha=.2)
+    except:
+        pass
+
+
+    # Staircase traces
+    for i, modality, col in zip([0, 1], ['Intero', 'Extero'], ['#c44e52', '#4c72b0']):
+        this_df = df[(df.Modality == modality) & (df.TrialType != 'UpDown')]
+
+        # Show UpDown staircase traces
+        axs[i].plot(np.arange(0, len(this_df))[this_df.TrialType == 'high'], 
+                        this_df.Alpha[this_df.TrialType == 'high'], linestyle='--', color=col, linewidth=2)
+        axs[i].plot(np.arange(0, len(this_df))[this_df.TrialType == 'low'], 
+                        this_df.Alpha[this_df.TrialType == 'low'], linestyle='-', color=col, linewidth=2)
+
+        # Use different colors for psi and catch trials
+        for trialCond, pointCol in zip(['psi', 'psiCatchTrial'], [col, 'gray']):
+            axs[i].plot(np.arange(0, len(this_df))[(this_df.Decision == 'More') & (this_df.TrialType == trialCond)], 
+                        this_df.Alpha[(this_df.Decision == 'More') & (this_df.TrialType == trialCond)], 
+                        pointCol, marker='o', linestyle='', markeredgecolor='k', label=cond)
+            axs[i].plot(np.arange(0, len(this_df))[(this_df.Decision == 'Less') & (this_df.TrialType == trialCond)],
+                        this_df.Alpha[(this_df.Decision == 'Less') & (this_df.TrialType == trialCond)], 
+                        'w', marker='s', linestyle='', markeredgecolor=pointCol, label=modality)
+
+        # Psi trials
+        axs[i].plot(np.arange(len(this_df))[this_df.TrialType=='psi'],
+                    this_df[this_df.TrialType=='psi'].EstimatedThreshold, linestyle='-', color=col, linewidth=4)
+    
+        axs[i].axhline(y=0, linestyle='--', color = 'gray')
+        handles, labels = axs[i].get_legend_handles_labels()
+        axs[i].legend(handles[0:2], ['More', 'Less'], borderaxespad=0., title='Decision')
+        axs[i].set_ylabel('Intensity ($\Delta$ BPM)')
+        axs[i].set_xlabel('Trials')
+        axs[i].set_ylim(-52, 52)
+        axs[i].set_title(modality+'ception')
+        sns.despine(trim=10, ax=axs[i])
+        plt.gcf()
+
+
+
+
+../../_images/8e9828216f3319324462ca30a34bd1e06087219ee6337f992166a215e852865e.png +
+
+

This figure represents the evolution of threshold estimate across trials for the Interoception and Exteroception condition. Shaded areas represent the 95% confidence interval of the threshold estimate by Psi. For each condition, the first 30 trials (connected with dashed lines) were allocated to an Up/Down method (2 interleaved staircases starting a -40.5 or 40 respectively). The intensities and responses were included in the Psi staircase to maximize the amount of information included. The remaining 50 trials were monitored by the Psi staircase only. This dual estimation was implemented to estimate the reliability of the estimation of threshold using an up/down procedure, as compared to a longer psi procedure.

+
+
+
+
+

Psychometric function#

+
+
+
sns.set_context('talk')
+fig, axs = plt.subplots(figsize=(8, 5))
+for i, modality, col in zip((0, 1), ['Extero', 'Intero'], ['#4c72b0', '#c44e52']):
+    
+    this_df = df[(df.Modality == modality) & (df.TrialType == 'psi')]
+    if len(this_df) > 0:
+        t, s = this_df.EstimatedThreshold.iloc[-1], this_df.EstimatedSlope.iloc[-1]
+        # Plot Psi estimate of psychometric function
+        axs.plot(np.linspace(-40, 40, 500), 
+                (norm.cdf(np.linspace(-40, 40, 500), loc=t, scale=s)),
+                '--', color=col, label=modality)
+        # Plot threshold
+        axs.plot([t, t], [0, .5], color=col, linewidth=2)
+        axs.plot(t, .5, 'o', color=col, markersize=10)
+
+        # Plot data points
+        for ii, intensity in enumerate(np.sort(this_df.Alpha.unique())):
+            resp = sum((this_df.Alpha == intensity) & (this_df.Decision == 'More'))
+            total = sum(this_df.Alpha == intensity)
+            axs.plot(intensity, resp/total, 'o', alpha=0.5, color=col, 
+                     markeredgecolor='k', markersize=total*5)
+plt.ylabel('P$_{(Response = More|Intensity)}$')
+plt.xlabel('Intensity ($\Delta$ BPM)')
+plt.tight_layout()
+plt.legend()
+sns.despine()
+
+
+
+
+../../_images/edd553d60438fb1deed195f8b2f2261bb7dce0f949e7586421bcaf28600dd1bb.png +
+
+

Psychometric functions fitted using the estimated threshold and slope from the final trial on each condition. The size of the circles reflects the proportion of responses for each intensity level.

+
+
+

Pulse oximeter#

+
+

Visualization of PPG signal#

+

This interactive graph shows the PPG signal recorded at each interoceptive trial. Blue and red time series represent different trials of 6 seconds each. In each trial, the 5 last seconds were used to estimate the average heart rate of the participant, the first second was included to help peak detection algorithm initialization.

+

Bad trials are represented with shaded area. A trial was marked as bad and removed if one of the two conditions was met:

+
    +
  • Contain a RR interval marked as an outlier. Outliers were detected using the MAD rule on all RR intervals in the recording.

  • +
  • The standard deviation of the RR interval inside the trial is larger than 5.

  • +
+
+
+
drop, bpm_std, bpm_df = [], [], pd.DataFrame([])
+clean_df = df.copy()
+clean_df['HeartRateOutlier'] = np.zeros(len(clean_df), dtype='bool')
+for i, trial in enumerate(signal_df.nTrial.unique()):
+    color = '#c44e52' if (i % 2) == 0 else '#4c72b0'
+    this_df = signal_df[signal_df.nTrial==trial]  # Downsample to save memory
+    
+    signal, peaks = ppg_peaks(this_df.signal, sfreq=1000)
+    bpm = 60000/np.diff(np.where(peaks)[0])
+    
+    bpm_df = pd.concat(
+        [
+            bpm_df,
+            pd.DataFrame({'bpm': bpm, 'nEpoch': i, 'nTrial': trial})
+        ]
+    )
+
+# Check for outliers in the absolute value of RR intervals 
+for e, t in zip(bpm_df.nEpoch[pg.madmedianrule(bpm_df.bpm.to_numpy())].unique(),
+                bpm_df.nTrial[pg.madmedianrule(bpm_df.bpm.to_numpy())].unique()):
+    drop.append(e)
+    clean_df.loc[t, 'HeartRateOutlier'] = True
+
+# Check for outliers in the standard deviation values of RR intervals 
+for e, t in zip(np.arange(0, bpm_df.nTrial.nunique())[pg.madmedianrule(bpm_df.copy().groupby(['nTrial', 'nEpoch']).bpm.std().to_numpy())],
+                bpm_df.nTrial.unique()[pg.madmedianrule(bpm_df.copy().groupby(['nTrial', 'nEpoch']).bpm.std().to_numpy())]):
+    if e not in drop:
+        drop.append(e)
+        clean_df.loc[t, 'HeartRateOutlier'] = True
+
+
+
+
+
+
+
meanBPM, stdBPM, rangeBPM = [], [], []
+
+fig, ax = plt.subplots(nrows=2, sharex=True, figsize=(30, 10))
+for i, trial in enumerate(signal_df.nTrial.unique()):
+    
+    color = '#3a5799' if (i % 2) == 0 else '#3bb0ac'
+    this_df = signal_df[signal_df.nTrial==trial]  # Downsample to save memory
+    
+    # Mark as outlier if relevant
+    if i in drop:
+        ax[0].axvspan(this_df.Time.iloc[0], this_df.Time.iloc[-1], alpha=.3, color='gray')
+        ax[1].axvspan(this_df.Time.iloc[0], this_df.Time.iloc[-1], alpha=.3, color='gray')
+    
+    ax[0].plot(this_df.Time, this_df.signal, label='PPG', color=color, linewidth=.5)
+
+    # Peaks detection
+    signal, peaks = ppg_peaks(this_df.signal, sfreq=1000)
+    bpm = 60000/np.diff(np.where(peaks)[0])
+    m, s, r = bpm.mean(), bpm.std(), bpm.max() - bpm.min()
+    meanBPM.append(m)
+    stdBPM.append(s)
+    rangeBPM.append(r)
+
+    # Plot instantaneous heart rate
+    ax[1].plot(this_df.Time.to_numpy()[np.where(peaks)[0][1:]], 
+               60000/np.diff(np.where(peaks)[0]),
+              'o-', color=color, alpha=0.6)
+
+ax[1].set_xlabel("Time (s)")
+ax[0].set_ylabel("PPG level (a.u.)")
+ax[1].set_ylabel("Heart rate (BPM)")
+ax[0].set_title("PPG signal recorded during interoceptive condition (5 seconds each)")
+sns.despine()
+ax[0].grid(True)
+ax[1].grid(True)
+
+
+
+
+../../_images/62bbcaf841d152e1c65f7ba7a0b5e77971a02d4497c0037d872b8811ac64a166.png +
+
+
+

Note

+

Here we are only representing the interoception trials, as the quality of the PPG recording will not affect the exteroception condition.

+
+
+
+

Heart rate - Summary statistics#

+

This figure show the evolution of the average and standard deviation of the instantaneous heart rate across time. An instantaneous frequnecy was derived between each peak detected in the PPG signal (also known as pulse-to-pulse intervals, or pseudo RR intervals). Rapid increase or decrease of the heart rate frequency can lead to larger standard deviation, and less accurate estimation of the average heart rate.

+
+
+
sns.set_context('talk')
+fig, axs = plt.subplots(figsize=(13, 5), nrows=2, ncols=2)
+meanBPM = np.delete(np.array(meanBPM), np.array(drop))
+stdBPM = np.delete(np.array(stdBPM), np.array(drop))
+for i, metric, col in zip(range(3), [meanBPM, stdBPM], ['#b55d60', '#5f9e6e']):
+    axs[i, 0].plot(metric, 'o-', color=col, alpha=.6)
+    axs[i, 1].hist(metric, color=col, bins=15, ec="k", density=True, alpha=.6)
+    axs[i, 0].set_ylabel('Mean BPM' if i == 0 else 'STD BPM')
+    axs[i, 0].set_xlabel('Trials')
+    axs[i, 1].set_xlabel('BPM')
+sns.despine()
+plt.tight_layout()
+
+
+
+
+../../_images/44cc7be89ed565b3ee4d8f13540fcc6e3e2a1892269ae29d67199826f30c606a.png +
+
+
+
+
+

Save dataframe#

+
+
+
print(f'{clean_df["HeartRateOutlier"][clean_df.Modality=="Intero"].sum()} Interoception trials and {clean_df["HeartRateOutlier"][clean_df.Modality=="Extero"].sum()} exteroception trials were dropped after trial rejection based on heart rate outliers.')
+
+# uncomment this to save the results in the result folder
+# clean_df.to_csv(Path(reportPath, "preprocessed.txt"), index=False)
+
+
+
+
+
4 Interoception trials and 0 exteroception trials were dropped after trial rejection based on heart rate outliers.
+
+
+
+
+
+ + +
+ + + + + + + +
+ + + + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/HBC.parameters/cardioception.HBC.parameters.getParameters.html b/generated/HBC.parameters/cardioception.HBC.parameters.getParameters.html new file mode 100644 index 0000000..6443e42 --- /dev/null +++ b/generated/HBC.parameters/cardioception.HBC.parameters.getParameters.html @@ -0,0 +1,696 @@ + + + + + + + + + + + + cardioception.HBC.parameters.getParameters — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.HBC.parameters.getParameters#

+
+
+cardioception.HBC.parameters.getParameters(participant: str = 'Participant', session: str = '001', serialPort: str = 'COM3', taskVersion: str = 'Garfinkel', setup: str = 'behavioral', screenNb: int = 0, fullscr: bool = True, resultPath: Optional[str] = None, systole_kw: dict = {}) Dict[source]#
+

Create Heartbeat Counting task parameters.

+
+
Parameters
+
+
participantstr

Subject ID. Default is ‘exteroStairCase’.

+
+
resultPathstr or None

Where to save the results.

+
+
screenNbint

Screen number. Used to parametrize py:func:psychopy.visual.Window. +Default is set to 0.

+
+
serialPort: str

The USB port where the pulse oximeter is plugged. Should be written as a string +e.g. “COM3” for USB ports on Windows.

+
+
sessionint

Session number. Default to ‘001’.

+
+
setupstr

Context of oximeter recording. “behavioral” will record through a Nonin +pulse oximeter, “test” will use pre-recorded pulse time series (for testing +only).

+
+
systole_kwdict

Additional keyword arguments for systole.recorder.Oxmeter.

+
+
taskVersionstr or None

Task version to run. Can be ‘Garfinkel’, ‘Shandry’, ‘test’ or None.

+
+
+
+
Attributes
+
+
conditions1d array-like of str

The conditions. Can be ‘Rest’, ‘Training’ or ‘Count’.

+
+
confScalelist

The range of the confidence rating scale.

+
+
heartLogopsychopy.visual.ImageStim

Image presented during resting conditions.

+
+
labelsRatinglist

The labels of the confidence rating scale.

+
+
noteStartpsychopy.sound.Sound instance

The sound that will be played when trial starts.

+
+
noteStoppsychopy.sound.Sound instance

The sound that will be played when trial ends.

+
+
pathstr

The task working directory.

+
+
randomizebool

If True (default), will randomize the order of the conditions. If +taskVersion is not None, will use the default task parameter instead.

+
+
ratingbool

If True (default), will add a rating scale after the evaluation.

+
+
restLengthint

The length of the resting period (seconds). Default is 300 seconds.

+
+
restLogopsychopy.visual.ImageStim

Image presented during resting conditions.

+
+
restPeriodbool

If True, a resting period will be proposed before the task.

+
+
resultPathstr

The subject result directory.

+
+
screenNbint

The screen number (Psychopy parameter). Default set to 0.

+
+
serialserial.Serial

The serial port used to record the PPG activity.

+
+
startKeystr

The key to press to start the task and go to next steps.

+
+
taskVersionstr or None

Task version to run. Can be ‘Garfinkel’, ‘Shandry’, ‘test’ or None.

+
+
textsdict

Dictionary containing the texts to be presented.

+
+
textSizefloat

Text size.

+
+
triggersdict

Dictionary {str, callable or None}. The function will be executed +before the corresponding trial sequence. The default values are +None (no trigger sent). +* “trialStart” +* “trialStop” +* “listeningStart” +* “listeningStop” +* “decisionStart” +* “decisionStop” +* “confidenceStart” +* “confidenceStop”

+
+
times1d array-like of int

Length of trials, in seconds.

+
+
winpsychopy.visual.window

The window in which to draw objects.

+
+
+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/HBC.task/cardioception.HBC.task.rest.html b/generated/HBC.task/cardioception.HBC.task.rest.html new file mode 100644 index 0000000..d415447 --- /dev/null +++ b/generated/HBC.task/cardioception.HBC.task.rest.html @@ -0,0 +1,622 @@ + + + + + + + + + + + + cardioception.HBC.task.rest — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.HBC.task.rest#

+
+
+cardioception.HBC.task.rest(parameters: dict, duration: float = 300.0)[source]#
+

Run a resting state period for heart rate variability before running the Heart +Beat Counting Task.

+
+
Parameters
+
+
parametersdict

Task parameters.

+
+
durationfloat

Duration or the recording (seconds).

+
+
+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/HBC.task/cardioception.HBC.task.run.html b/generated/HBC.task/cardioception.HBC.task.run.html new file mode 100644 index 0000000..6a0887f --- /dev/null +++ b/generated/HBC.task/cardioception.HBC.task.run.html @@ -0,0 +1,622 @@ + + + + + + + + + + + + cardioception.HBC.task.run — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.HBC.task.run#

+
+
+cardioception.HBC.task.run(parameters: dict, runTutorial: bool = True)[source]#
+

Run the entire task sequence.

+
+
Parameters
+
+
parametersdict

Task parameters.

+
+
tutorialbool

If True, will present a tutorial with 10 training trial with feedback and 5 +trials with confidence rating.

+
+
+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/HBC.task/cardioception.HBC.task.trial.html b/generated/HBC.task/cardioception.HBC.task.trial.html new file mode 100644 index 0000000..fd0ef3f --- /dev/null +++ b/generated/HBC.task/cardioception.HBC.task.trial.html @@ -0,0 +1,636 @@ + + + + + + + + + + + + cardioception.HBC.task.trial — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.HBC.task.trial#

+
+
+cardioception.HBC.task.trial(condition: str, duration: int, nTrial: int, parameters: dict) Tuple[Optional[int], Optional[float], Optional[float]][source]#
+

Run one trial.

+
+
Parameters
+
+
conditionstr

The trial condition, can be “Rest” or “Count”.

+
+
durationint

The lenght of the recording (in seconds).

+
+
ntrialint

Trial number.

+
+
parametersdict

Task parameters.

+
+
+
+
Returns
+
+
nCountint

The number of heartbeat estimated by the participant.

+
+
confidenceint

The confidence in the estimation of the heartbeat provided by the +participant.

+
+
confidenceRTfloat

The response time to provide confidence rating.

+
+
+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/HBC.task/cardioception.HBC.task.tutorial.html b/generated/HBC.task/cardioception.HBC.task.tutorial.html new file mode 100644 index 0000000..afb84ac --- /dev/null +++ b/generated/HBC.task/cardioception.HBC.task.tutorial.html @@ -0,0 +1,621 @@ + + + + + + + + + + + + cardioception.HBC.task.tutorial — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.HBC.task.tutorial#

+
+
+cardioception.HBC.task.tutorial(parameters: dict)[source]#
+

Run tutorial for the Heartbeat Counting Task.

+
+
Parameters
+
+
parametersdict

Task parameters.

+
+
winpsychopy.visual.window or None

The window in which to draw objects.

+
+
+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/HRD.languages/cardioception.HRD.languages.danish.html b/generated/HRD.languages/cardioception.HRD.languages.danish.html new file mode 100644 index 0000000..e9c959a --- /dev/null +++ b/generated/HRD.languages/cardioception.HRD.languages.danish.html @@ -0,0 +1,628 @@ + + + + + + + + + + + + cardioception.HRD.languages.danish — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.HRD.languages.danish#

+
+
+cardioception.HRD.languages.danish(device: str, setup: str, exteroception: bool) Dict[str, Collection[str]][source]#
+

Create the text dictionary with instruction in Danish

+
+
Parameters
+
+
devicestr

Can be “keyboard” or “mouse”.

+
+
setupstr

The experimental setup. Can be “behavioral” or “test”.

+
+
exteroceptionbool

If True, the task includes and exteroceptive control condition.

+
+
+
+
Returns
+
+
textsdict
+
+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/HRD.languages/cardioception.HRD.languages.danish_children.html b/generated/HRD.languages/cardioception.HRD.languages.danish_children.html new file mode 100644 index 0000000..c00f3ff --- /dev/null +++ b/generated/HRD.languages/cardioception.HRD.languages.danish_children.html @@ -0,0 +1,629 @@ + + + + + + + + + + + + cardioception.HRD.languages.danish_children — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.HRD.languages.danish_children#

+
+
+cardioception.HRD.languages.danish_children(device: str, setup: str, exteroception: bool) Dict[str, Collection[str]][source]#
+

Create the text dictionary with instruction in Danish (simplified version for +children).

+
+
Parameters
+
+
devicestr

Can be “keyboard” or “mouse”.

+
+
setupstr

The experimental setup. Can be “behavioral” or “test”.

+
+
exteroceptionbool

If True, the task includes and exteroceptive control condition.

+
+
+
+
Returns
+
+
textsdict
+
+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/HRD.languages/cardioception.HRD.languages.english.html b/generated/HRD.languages/cardioception.HRD.languages.english.html new file mode 100644 index 0000000..94332c0 --- /dev/null +++ b/generated/HRD.languages/cardioception.HRD.languages.english.html @@ -0,0 +1,628 @@ + + + + + + + + + + + + cardioception.HRD.languages.english — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.HRD.languages.english#

+
+
+cardioception.HRD.languages.english(device: str, setup: str, exteroception: bool) Dict[str, Collection[str]][source]#
+

Create the text dictionary with instruction in Danish

+
+
Parameters
+
+
devicestr

Can be “keyboard” or “mouse”.

+
+
setupstr

The experimental setup. Can be “behavioral” or “test”.

+
+
exteroceptionbool

If True, the task includes and exteroceptive control condition.

+
+
+
+
Returns
+
+
textsdict
+
+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/HRD.languages/cardioception.HRD.languages.french.html b/generated/HRD.languages/cardioception.HRD.languages.french.html new file mode 100644 index 0000000..904d03b --- /dev/null +++ b/generated/HRD.languages/cardioception.HRD.languages.french.html @@ -0,0 +1,628 @@ + + + + + + + + + + + + cardioception.HRD.languages.french — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.HRD.languages.french#

+
+
+cardioception.HRD.languages.french(device: str, setup: str, exteroception: bool) Dict[str, Collection[str]][source]#
+

Create the text dictionary with instruction in french

+
+
Parameters
+
+
devicestr

Can be “keyboard” or “mouse”.

+
+
setupstr

The experimental setup. Can be “behavioral” or “test”.

+
+
exteroceptionbool

If True, the task includes and exteroceptive control condition.

+
+
+
+
Returns
+
+
textsdict
+
+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/HRD.parameters/cardioception.HRD.parameters.getParameters.html b/generated/HRD.parameters/cardioception.HRD.parameters.getParameters.html new file mode 100644 index 0000000..475bb14 --- /dev/null +++ b/generated/HRD.parameters/cardioception.HRD.parameters.getParameters.html @@ -0,0 +1,786 @@ + + + + + + + + + + + + cardioception.HRD.parameters.getParameters — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.HRD.parameters.getParameters#

+
+
+cardioception.HRD.parameters.getParameters(participant: str = 'SubjectTest', session: str = '001', serialPort: str = 'COM3', setup: str = 'behavioral', stairType: str = 'psi', exteroception: bool = True, catchTrials: float = 0.0, nTrials: int = 120, device: str = 'mouse', screenNb: int = 0, fullscr: bool = True, nBreaking: int = 20, resultPath: Optional[str] = None, language: str = 'english', systole_kw: dict = {})[source]#
+

Create Heart Rate Discrimination task parameters.

+

Many task parameters, aesthetics, and options are controlled by the +parameters dictionary defined herein. These are intended to provide +flexibility and modularity to the task. In many cases, unique versions of the +task (e.g., with or without confidence ratings or choice feedback) can be +created simply by changing these parameters, with no further interaction +with the underlying task code.

+
+
Parameters
+
+
device

Select how the participant provides responses. Can be ‘mouse’ or ‘keyboard’.

+
+
exteroception

If True, the task will include an exteroceptive (half of the trials).

+
+
fullscr

If True, activate full-screen mode.

+
+
language

The language used for the instruction. Can be “english”, “danish” or +“danish_children” (a slightly simplified danish version), or “french”.

+
+
nBreaking

Number of trials to run before the break.

+
+
nStaircase

Number of staircases to use per condition (exteroceptive and +interoceptive).

+
+
nTrials

The number of trials to run (UpDown and psi staircase). +.. note:

+
This number indicates the total number of trials that will be presented
+during the experiment. If `nTrials=50` and `exteroception=False`, the task
+contains 50 interoceptive trials. If `nTrials=50` and `exteroception=True`,
+the task contains 25 interoceptive trials and 25 exteroceptive trials.
+
+
+
+
participant

Subject ID. The default is ‘Participant’.

+
+
catchTrials

Ratio of Psi trials allocated to extreme values (+20 or -20 bpm with some +jitter) to control for a range of stimuli presented. Default to 0.0 (no catch +trials). If not 0.0, recommended value is 0.2.

+
+
resultPath

Where to save the results.

+
+
screenNb

Screen number. Used to parametrize py:func:psychopy.visual.Window. Defaults +to 0.

+
+
serialPort:

The USB port where the pulse oximeter is plugged. Should be written as a string +e.g. “COM3” for USB ports on Windows.

+
+
session

Session number. Default to ‘001’.

+
+
setup

Context of oximeter recording. “ehavioral” will be recorded through a Nonin +pulse oximeter and “test” will use a pre-recorded pulse time series (for +testing only).

+
+
stairType

Staircase type. Can be “psi” or “updown”. The default is set to “psi”.

+
+
systole_kw

Additional keyword arguments for systole.recorder.Oxmeter.

+
+
+
+
+

Notes

+

When using the behavioral setup, triggers will be sent to the PPG recording. The +trigger channel is coding for different events during the task as follows: +- Trial start: 1 +- recording trigger: 2 +- sound trigger : 3 +- rating trigger: 4 +- end trigger: 5 +All these events, except the trial start, have also their time stamps encoded in the +behavioural results data frame.

+
+
Attributes
+
+
confScale

The range of the confidence rating scale.

+
+
device

The device used for response and rating scale. Can be “keyboard” or +“mouse”.

+
+
HRcutOff

Cut off for extreme heart rate values during recording.

+
+
ExteroCondition

If True, the task includes an exteroceptive (half of the trials).

+
+
isi

Range of the inter-stimulus interval (seconds). Should be in the form of (low, +high). At each trial, the value is generated using a uniform distribution +between these two values. The default is set to (0.25, 0.25) so the value is +fixed at 0.25.

+
+
labelsRating

The labels of the confidence rating scale.

+
+
lambdaExtero

(3d) Posterior estimate of the psychophysics function parameters (slope and +threshold) across trials for the exteroceptive condition.

+
+
lambdaIntero

(3d) Posterior estimate of the psychophysics function parameters (slope and +threshold) across trials for the interoceptive condition.

+
+
listenLogo, heartLogoPsychopy visual instance

Image used for the inference and recording phases, respectively.

+
+
maxRatingTime

The maximum time for a confidence rating (in seconds).

+
+
minRatingTime

The minimum time before a rating can be provided during the confidence +rating (in seconds).

+
+
monitor

The monitor used to present the task (Psychopy parameter).

+
+
nBreaking

Number of trials to run before the break.

+
+
nConfidence

The number of trials with feedback during the tutorial phase (no +feedback).

+
+
nFeedback

The number of trials with feedback during the tutorial phase (no +confidence rating).

+
+
nFinger

The finger number (“1”, “2”, “3”, “4” or “5”) where the participant +decided to place the pulse oximeter (if relevant).

+
+
nTrials

The number of trials to run (UpDown and psi staircase). +.. note:

+
This number indicates the total number of trials that will be presented
+during the experiment. If `nTrials=50` and `exteroception=False`, the task
+contains 50 interoceptive trials. If `nTrials=50` and `exteroception=True`,
+the task contains 25 interoceptive trials and 25 exteroceptive trials.
+
+
+
+
participant

Subject ID. The default is ‘Participant’.

+
+
path

The task working directory.

+
+
response_keys

A dictionary listing the possible response key for Faster/More and Slower/Less +trials. The default is “up”/”down”. Only relevant if device==”keyboard”.

+
+
resultPath

Where to save the results.

+
+
serial

The serial port is used to record the PPG activity.

+
+
screenNb

The screen number (Psychopy parameter). The default is set to 0.

+
+
signal_df

Dataframe where the pulse signal recorded during the interoception +condition will be stored.

+
+
stairCase

The staircase instances for ‘psi’ and ‘UpDown’. Each entry contains +a dictionary for ‘Intero’ and ‘Extero conditions’ (if relevant).

+
+
staircaseType

Vector indexing stairce type (‘UpDown’, ‘psi’, ‘psiCatchTrial’).

+
+
startKey

The key to press to start the task and go to the next steps.

+
+
respMax

The maximum time for decision (in seconds).

+
+
results

The result directory.

+
+
session

Session number. Default to ‘001’.

+
+
setup

The context of recording. Can be ‘behavioral’ or ‘test’.

+
+
texts

Long text elements.

+
+
textSize

Scaling parameter for text size.

+
+
triggers

Dictionary {str, callable or None}. The function will be executed +before the corresponding trial sequence. The default values are +None (no trigger sent). +* “trialStart” +* “trialStop” +* “listeningStart” +* “listeningStop” +* “decisionStart” +* “decisionStop” +* “confidenceStart” +* “confidenceStop”

+
+
win

The window in which to draw objects.

+
+
+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/HRD.task/cardioception.HRD.task.confidenceRatingTask.html b/generated/HRD.task/cardioception.HRD.task.confidenceRatingTask.html new file mode 100644 index 0000000..51ad761 --- /dev/null +++ b/generated/HRD.task/cardioception.HRD.task.confidenceRatingTask.html @@ -0,0 +1,619 @@ + + + + + + + + + + + + cardioception.HRD.task.confidenceRatingTask — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.HRD.task.confidenceRatingTask#

+
+
+cardioception.HRD.task.confidenceRatingTask(parameters: dict) Tuple[Optional[float], Optional[float], bool, Optional[float]][source]#
+

Confidence rating scale, using keyboard or mouse inputs.

+
+
Parameters
+
+
parametersdict

Parameters dictionary.

+
+
+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/HRD.task/cardioception.HRD.task.responseDecision.html b/generated/HRD.task/cardioception.HRD.task.responseDecision.html new file mode 100644 index 0000000..ef82ba4 --- /dev/null +++ b/generated/HRD.task/cardioception.HRD.task.responseDecision.html @@ -0,0 +1,642 @@ + + + + + + + + + + + + cardioception.HRD.task.responseDecision — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.HRD.task.responseDecision#

+
+
+cardioception.HRD.task.responseDecision(this_hr, parameters: dict, feedback: bool, condition: str) Tuple[float, Optional[float], bool, Optional[str], Optional[float], Optional[bool]][source]#
+

Recording response during the decision phase.

+
+
Parameters
+
+
this_hrpsychopy sound instance

The sound .wav file to play.

+
+
parametersdict

Parameters dictionary.

+
+
feedbackbool

If True, provide feedback after decision.

+
+
conditionstr

The trial condition [‘More’ or ‘Less’] used to check is response is +correct or not.

+
+
+
+
Returns
+
+
responseMadeTriggerfloat

Time stamp of response provided.

+
+
response_triggerfloat

Time stamp of response start.

+
+
response_providedbool

True if the response was provided, False otherwise.

+
+
decisionstr or None

The decision made (‘Higher’, ‘Lower’ or None)

+
+
decisionRTfloat

Decision response time (seconds).

+
+
is_correctbool or None

True if the response provided was correct, False otherwise.

+
+
+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/HRD.task/cardioception.HRD.task.run.html b/generated/HRD.task/cardioception.HRD.task.run.html new file mode 100644 index 0000000..17d4219 --- /dev/null +++ b/generated/HRD.task/cardioception.HRD.task.run.html @@ -0,0 +1,624 @@ + + + + + + + + + + + + cardioception.HRD.task.run — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.HRD.task.run#

+
+
+cardioception.HRD.task.run(parameters: dict, confidenceRating: bool = True, runTutorial: bool = False)[source]#
+

Run the Heart Rate Discrimination task.

+
+
Parameters
+
+
parametersdict

Task parameters.

+
+
confidenceRatingbool

Whether the trial show include a confidence rating scale.

+
+
runTutorialbool

If True, will present a tutorial with 10 training trial with feedback +and 5 trials with confidence rating.

+
+
+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/HRD.task/cardioception.HRD.task.trial.html b/generated/HRD.task/cardioception.HRD.task.trial.html new file mode 100644 index 0000000..7d0afa0 --- /dev/null +++ b/generated/HRD.task/cardioception.HRD.task.trial.html @@ -0,0 +1,669 @@ + + + + + + + + + + + + cardioception.HRD.task.trial — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.HRD.task.trial#

+
+
+cardioception.HRD.task.trial(parameters: dict, alpha: float, modality: str, confidenceRating: bool = True, feedback: bool = False, nTrial: Optional[int] = None) Tuple[str, float, float, Optional[str], Optional[float], Optional[float], Optional[float], float, Optional[bool], bool, bool, float, float, float, Optional[float], Optional[float], float][source]#
+

Run one trial of the Heart Rate Discrimination task.

+
+
Parameters
+
+
parameterdict

Task parameters.

+
+
alphafloat

The intensity of the stimulus, from the staircase procedure.

+
+
modalitystr

The modality, can be ‘Intero’ or ‘Extro’ if an exteroceptive +control condition has been added.

+
+
confidenceRatingboolean

If False, do not display confidence rating scale.

+
+
feedbackboolean

If True, will provide feedback.

+
+
nTrialint

Trial number (optional).

+
+
+
+
Returns
+
+
conditionstr

The trial condition, can be ‘Higher’ or ‘Lower’ depending on the +alpha value.

+
+
listenBPMfloat

The frequency of the tones (exteroceptive condition) or of the heart +rate (interoceptive condition), expressed in BPM.

+
+
responseBPMfloat

The frequency of thefeebdack tones, expressed in BPM.

+
+
decisionstr

The participant decision. Can be ‘up’ (the participant indicates +the beats are faster than the recorded heart rate) or ‘down’ (the +participant indicates the beats are slower than recorded heart rate).

+
+
decisionRTfloat

The response time from sound start to choice (seconds).

+
+
confidenceint

If confidenceRating is True, the confidence of the participant. The +range of the scale is defined in parameters[‘confScale’]. Default is +[1, 7].

+
+
confidenceRTfloat

The response time (RT) for the confidence rating scale.

+
+
alphaint

The difference between the true heart rate and the delivered tone BPM. +Alpha is defined by the stairCase.intensities values and is updated +on each trial.

+
+
is_correctint

0 for incorrect response, 1 for correct responses. Note that this +value is not feeded to the staircase when using the (Yes/No) version +of the task, but instead will check if the response is ‘More’ or not.

+
+
response_providedbool

Was the decision provided (True) or not (False).

+
+
ratingProvidedbool

Was the rating provided (True) or not (False). If no decision was +provided, the ratig scale is not proposed and no ratings can be provided.

+
+
startTrigger, soundTrigger, responseMadeTrigger, ratingStartTrigger, ratingEndTrigger, endTriggerfloat

Time stamp of key timepoints inside the trial.

+
+
+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/HRD.task/cardioception.HRD.task.tutorial.html b/generated/HRD.task/cardioception.HRD.task.tutorial.html new file mode 100644 index 0000000..44b10ed --- /dev/null +++ b/generated/HRD.task/cardioception.HRD.task.tutorial.html @@ -0,0 +1,619 @@ + + + + + + + + + + + + cardioception.HRD.task.tutorial — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.HRD.task.tutorial#

+
+
+cardioception.HRD.task.tutorial(parameters: dict)[source]#
+

Run tutorial before task run.

+
+
Parameters
+
+
parametersdict

Task parameters.

+
+
+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/HRD.task/cardioception.HRD.task.waitInput.html b/generated/HRD.task/cardioception.HRD.task.waitInput.html new file mode 100644 index 0000000..d666f64 --- /dev/null +++ b/generated/HRD.task/cardioception.HRD.task.waitInput.html @@ -0,0 +1,611 @@ + + + + + + + + + + + + cardioception.HRD.task.waitInput — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.HRD.task.waitInput#

+
+
+cardioception.HRD.task.waitInput(parameters: dict)[source]#
+

Wait for participant input before continue

+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/reports/cardioception.reports.group_level_preprocessing.html b/generated/reports/cardioception.reports.group_level_preprocessing.html new file mode 100644 index 0000000..b9243e9 --- /dev/null +++ b/generated/reports/cardioception.reports.group_level_preprocessing.html @@ -0,0 +1,647 @@ + + + + + + + + + + + + cardioception.reports.group_level_preprocessing — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.reports.group_level_preprocessing#

+
+
+cardioception.reports.group_level_preprocessing(results: Union[PathLike, DataFrame], variables: List[str] = ['participant_id', 'Modality'], additional_variables=[], behavioural_indices: bool = True, psychophysical_indices: bool = True, metacognitive_indices: bool = True) DataFrame[source]#
+

Extrat all relevant indices from large result data frames.

+
+

Note

+

This function concatenate the results from +{ref}`cardioception.stats.psychophysics`, {ref}`cardioception.stats.behaviours` +and {ref}`cardioception.stats.metacognition`, see the documentation of thoses +functions for more details on the indices.

+
+
+
Parameters
+
+
results

The data frame merging the individual result data frames. Multiple variables / +condition can be specifyed using separate columns with the variables argument.

+
+
variables

The variables coding for group / repeated measures. The default is +participant_id and Modality.

+
+
additional_variables

Additional variables for group / repeated measures.

+
+
behavioural_indices

Whether to extract the behavioural indices. Defaults to True.

+
+
psychophysical_indices

Whether to extract the psychophysical indices. Defaults to True.

+
+
metacognitive_indices

Whether to extract the metacognitive indices. Defaults to True.

+
+
+
+
Returns
+
+
+
+

See also

+
+
cardioception.stats.psychophysics, cardioception.stats.behaviours
+
cardioception.stats.metacognition
+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/reports/cardioception.reports.preprocessing.html b/generated/reports/cardioception.reports.preprocessing.html new file mode 100644 index 0000000..03dca60 --- /dev/null +++ b/generated/reports/cardioception.reports.preprocessing.html @@ -0,0 +1,665 @@ + + + + + + + + + + + + cardioception.reports.preprocessing — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.reports.preprocessing#

+
+
+cardioception.reports.preprocessing(results: Union[PathLike, DataFrame]) DataFrame[source]#
+

From the main behavioural data frame, extract summary metrics of behavioural, +metacognitive and interoceptive performances.

+

The slope and thresholds of the interoceptive/exteroceptive psychometric function +are reported both using the online estimate outputted by the Psi staircase (i.e. +slope and threshold), and using a Bayesian estimation (i.e. bayesian_slope and +bayesian_threshold). The Bayesian estimation is the recommended value to use to +report the results. Removing outliers before fitting will change the estimation, +which is not the case for the Psi values.

+

The d-prime and criterion are also computed using a classical SDT approach +(dprime and criterion), as well as a Bayesian estimation performed when +estimating the metacognitive sensitivity meta-d’ (bayesian_dprime, +bayesian_criterion, bayesian_meta_d, bayesian_m_ratio). The dprime and +criterion can vary between the two methods. It is recommended to use the estimates +consistently. Before the estimation of SDT and metacognitive metrics, the function +ensure that at least 5 valid trials of each signal are present, otherwise returns +None.

+

When using this function for analysing results from the Heart Rate Discrimination +task, the following packages should be credited: Systole [1], metadpy [2] and +cardioception [3].

+
+
Parameters
+
+
resultspd.DataFrame | PathLike

Either the path to the result file, or the Pandas Data Frame.

+
+
+
+
Returns
+
+
summary_dfpd.DataFrame

The summary statistic for this participant, splitting for interoception and +exteroception if the two conditions were used.

+
+
+
+
+

Notes

+

This function will require [PyMC](pymc-devs/pymc) (>= 5.0) and +[metadpy](LegrandNico/metadpy) (>=0.1.0).

+

References

+
+
1
+

Legrand et al., (2022). Systole: A python package for cardiac signal +synchrony and analysis. Journal of Open Source Software, 7(69), 3832, +https://doi.org/10.21105/joss.03832

+
+
2
+

LegrandNico/metadpy

+
+
3
+

Legrand, N., Nikolova, N., Correa, C., Brændholt, M., Stuckert, A., Kildahl, +N., Vejlø, M., Fardo, F., & Allen, M. (2021). The Heart Rate Discrimination +Task: A psychophysical method to estimate the accuracy and precision of +interoceptive beliefs. Biological Psychology, 108239. +https://doi.org/10.1016/j.biopsycho.2021.108239

+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/reports/cardioception.reports.report.html b/generated/reports/cardioception.reports.report.html new file mode 100644 index 0000000..99e942a --- /dev/null +++ b/generated/reports/cardioception.reports.report.html @@ -0,0 +1,625 @@ + + + + + + + + + + + + cardioception.reports.report — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.reports.report#

+
+
+cardioception.reports.report(result_path: PathLike, report_path: Optional[PathLike] = None, task: str = 'HRD')[source]#
+

From the results folders, create HTML reports of behavioural and physiological +data.

+
+
Parameters
+
+
resultPathPathLike

Path variable. Where the results are stored (one participant only).

+
+
reportPathPathLike, optional

Where the HTML report should be saved. If None, default will be in the +provided resultPath.

+
+
taskstr, optional

The task (“HRD” or “HBC”), by default “HRD”.

+
+
+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/stats/cardioception.stats.behaviours.html b/generated/stats/cardioception.stats.behaviours.html new file mode 100644 index 0000000..9361483 --- /dev/null +++ b/generated/stats/cardioception.stats.behaviours.html @@ -0,0 +1,692 @@ + + + + + + + + + + + + cardioception.stats.behaviours — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.stats.behaviours#

+
+
+cardioception.stats.behaviours(summary_df: DataFrame, variables: List[str] = ['participant_id', 'Modality'], additional_variables=[]) DataFrame[source]#
+

Extract behavioural parameters from a set of result files from the HRD task.

+

For each participant/repeated measure/group, the following parameters are +returned:

+
    +
  • +
    threshold

    The threshold of the psychometric curve as estimated during the task by the Psi +staircase.

    +
    +
    +
  • +
  • +
    slope

    The slope of the psychometric curve as estimated during the task by the Psi +staircase.

    +
    +
    +
  • +
  • +
    decision_mean_rt

    The average response time to decide whether the tone is faster or slower than +the heart rate.

    +
    +
    +
  • +
  • +
    decision_median_rt

    The median response time to decide whether the tone is faster or slower than +the heart rate.

    +
    +
    +
  • +
  • +
    confidence_mean_rt

    The average response time to provide the confidence ratings.

    +
    +
    +
  • +
  • +
    confidence_median_rt

    The median response time to provide the confidence ratings.

    +
    +
    +
  • +
  • +
    confidence_mean

    The average confidence level (using the same scale as what was used during +the task).

    +
    +
    +
  • +
  • +
    dprime

    The sensitivity (SDT indices) in discriminating whether the tone is faster than +the heart rate or not.

    +
    +
    +
  • +
  • +
    criterion

    The bias (SDT indices) in discriminating whether the tone is faster than the +heart rate or not.

    +
    +
    +
  • +
+
+

Warning

+

This function requires metadpy.

+
+
+
Parameters
+
+
summary_df

The data frame merges the individual result data frames. Multiple variables / +condition can be specified using separate columns with the variables argument.

+
+
variables

The variables coding for group / repeated measures. The default is +participant_id and Modality.

+
+
additional_variables

Additional variables for group / repeated measures.

+
+
+
+
Returns
+
+
results_df

The data frame containing, for each participant/condition/group, the +psychometric variables.

+
+
+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/generated/stats/cardioception.stats.psychophysics.html b/generated/stats/cardioception.stats.psychophysics.html new file mode 100644 index 0000000..56c38ba --- /dev/null +++ b/generated/stats/cardioception.stats.psychophysics.html @@ -0,0 +1,721 @@ + + + + + + + + + + + + cardioception.stats.psychophysics — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

cardioception.stats.psychophysics#

+
+
+cardioception.stats.psychophysics(summary_df: DataFrame, variables: List[str] = ['participant_id', 'Modality'], additional_variables=[]) DataFrame[source]#
+

Extract psychometric parameters from a set of result files from the HRD task.

+

This function will use a Bayesian model to estimate psychophysics parameters and +perform inference using MCMC sampling. The following parameters are returned:

+
    +
  • Interoceptive bias

    +
    +
      +
    • bayesian_threshold (the mean of the interoceptive bias)

    • +
    • bayesian_slope (the slope of the interoceptive bias)

    • +
    +
    +
  • +
+

The interoceptive bias \(\alpha\) represents the difference between the real +heart rate and the cardiac belief. The interoceptive slope \(\beta\) represents +the precision of this bias (the standard deviation of the underlying cumulative +normal function). These parameters are estimated using the following model:

+
+\[\begin{split}r_{i} & \sim \mathcal{Binomial}(\theta_{i},n_{i}) \\ +\Phi_{i}(x_{i}, \alpha, \beta) & = \frac{1}{2} + \frac{1}{2} * erf(\frac{x_{i} +- \alpha}{\beta * \sqrt{2}}) \\ +\alpha & \sim \mathcal{Uniform}(-50.5, 50.5) \\ +\beta & \sim \mathcal{Uniform}(.1, 30.0) \\\end{split}\]
+

Here \(x_i\) is the proportion of positive response at the intensity \(i\). +To compute the interoceptive bias, we use the Alpha value (the difference between +the real heart rate and the tone that is presented at each trial). A negative value +means that the tone needs to be slower than the heart rate for the participant to +find it the same.

+
    +
  • Cardiac beliefs

    +
    +
      +
    • belief_mean

    • +
    • belief_std

    • +
    +
    +
  • +
+

The mean of the cardiac belief \(\psi_{alpha}\) represents the cardiac frequency +that was inferred on average through the task. The precision of the cardiac belief +\(\psi_{beta}\) is the standard deviation around this belief. Under the +hypothesis that the participant is not using any interoceptive information to +perform the task, this value is the belief used to inform the decision by comparing +it to the tones. These parameters are estimated using the following model:

+
+\[\begin{split}r_{i} & \sim \mathcal{Binomial}(\theta_{i},n_{i}) \\ +\Phi_{i}(x_{i}, \psi_{alpha}, \psi_{beta}) & = \frac{1}{2} + \frac{1}{2} * +erf(\frac{x_{i} - \psi_{alpha}}{\psi_{beta} * \sqrt{2}}) \\ +\psi_{alpha} & \sim \mathcal{Uniform}(15.0, 200.0) \\ +\psi_{beta} & \sim \mathcal{Uniform}(.1, 50.0) \\\end{split}\]
+

Here \(x_i\) is the proportion of positive response at the intensity \(i\). +To compute the interoceptive bias, we use the frequency of the tone presented +during the decision phase only (assuming therefore that this is the only source of +information used by the participant). The units are beat per minute (bpm).

+
+

Note

+

In the two equations above, $erf$ denotes the +error functions and \(\phi\) +is the cumulative normal function.

+
+
    +
  • Heart rate

    +
    +
      +
    • hr_mean the mean of the averaged heart rates

    • +
    • hr_std the standard deviation of the averaged heart rates

    • +
    +
    +
  • +
+

The mean of the averaged heart rates \(\omega_{alpha}\) and the standard +deviation of the averaged heart rates \(\omega_{beta}\) are computed using the +following model:

+
+\[\begin{split}r_{i} & \sim \mathcal{Normal}(\omega_{alpha},\omega_{beta}) \\ +\omega_{alpha} & \sim \mathcal{Uniform}(15.0, 200.0) \\ +\omega_{beta} & \sim \mathcal{Uniform}(.1, 50.0) \\\end{split}\]
+

Here \(x_i\) is the average heart rate at each trial.

+
+

Note

+

The heart rate that was recorded on every trial is the average of what was +recorded over the 5 seconds of interoception during the listening phase. Here +we are returning the mean and standard deviation of these values.

+
+
+

Warning

+

This function requires PyMC.

+
+
+
Parameters
+
+
summary_df

The data frame merges the individual result data frames. Multiple variables/ +condition can be specified using separate columns with the variables argument.

+
+
variables

The variables coding for group/repeated measures. The default is +participant_id and Modality.

+
+
additional_variables

Additional variables for group/repeated measures.

+
+
+
+
Returns
+
+
results_df

The data frame containing, for each participant/condition/group, the +psychometric variables.

+
+
+
+
+
+ +
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/genindex.html b/genindex.html new file mode 100644 index 0000000..46f5373 --- /dev/null +++ b/genindex.html @@ -0,0 +1,662 @@ + + + + + + + + + + + Index — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + + + +
+ + + + + + + + + + + +
+ +
+ + + +
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/index.html b/index.html new file mode 100644 index 0000000..3e946dd --- /dev/null +++ b/index.html @@ -0,0 +1,598 @@ + + + + + + + + + + + + Cardioception toolbox — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+ + + + + +
+ +
+

Cardioception toolbox#

+

GitHub license GitHub release pre-commit pip black mypy Imports: isort

+
+cardioception +
+

Important

+

The Cardioception Python Toolbox is a fork of the original cardioception repository that I (Nicolas Legrand) created while working in the ECG lab from 2019 to 2022. My previous lab has taken full control of the repository since then, meaning that I am unfortunately unable to maintain it as it should be. This repository allows me to pursue the maintenance of the package, aiming to provide reliable and robust tasks to measure cardiac interoception, together with computational modelling tools to analyse data gathered with these tasks.

+
+

The repository implements two measures of cardiac interoception (cardioception):

+
    +
  1. The Heartbeat counting task (HBC), also known as the Heartbeat tracking task, developed by Rainer Schandry [Dale and Anderson, 1978, Schandry, 1981]. This task cardiac measures interoception by asking participants to count their heartbeats for a given period of time. An accuracy score is then derived by comparing the reported heartbeats and the true number of heartbeats.

  2. +
  3. The Heart Rate Discrimination task [Legrand et al., 2022] implements an adaptive psychophysical measure of cardiac interoception where participants have to estimate the frequency of their heart rate by comparing it to tones that can be faster or slower. By manipulating the difference between the true heart rate and the presented tone using different staircase procedures, the bias (threshold) and precision (slope) of the psychometric function can be estimated either online or offline (see Analyses below), together with metacognitive efficiency.

  4. +
+
+

Note

+

While having slightly similar names, the Heartbeat counting task (HBC) and the Heart Rate Discrimination task are different in terms of implementation and the measures they provided and should not be conflated. We developed the cardioception package first to provide an open-sourced version of the HBC, which was lacking, with easy support to record heart rate via cheap pulse oximetry via Systole. In addition to that, we developed the HRD task as a new measure of cardiac interoception [Legrand et al., 2022], grounding on different reasoning and trying to control for the confounds other interoception tasks might have.

+
+

These tasks can run using minimal experimental settings: a computer and a recording device to monitor the heart rate of the participant. The default version of the task uses the Nonin 3012LP Xpod USB pulse oximeter together with Nonin 8000SM ‘soft-clip’ fingertip sensors. This sensor can be plugged directly into the stim PC via USB and will work with Cardioception without additional coding. The tasks can also integrate easily with other recording devices and experimental settings (ECG, M/EEG, fMRI…).

+
+

Looking for help?#

+

If you have questions regarding the tasks, want to report a bug or discuss data analysis, please ask on the public discussion page in this repository.

+

If you want to report a bug, you can open an issue on the GitHub page.

+
+
+

Development#

+

This package is a fork of the original Cardioception repository and is maintained by Nicolas Legrand.

+ +
+
+
+
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/measuring.html b/measuring.html new file mode 100644 index 0000000..fe94af4 --- /dev/null +++ b/measuring.html @@ -0,0 +1,662 @@ + + + + + + + + + + + + Measuring cardiac interoception — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

Measuring cardiac interoception#

+

Cardiac interoception has been largely investigated using the heartbeat counting task (also known as the heartbeat tracking task) that was formally introduced more than 40 years ago [Schandry, 1981]. This task comes with several variants that can concern task instruction, experimental design or the scores derived to measure cardiac interoceptive accuracy and metacognition. Here, we describe the heartbeat counting task together with the heart rate discrimination task, that was recently proposed [Legrand et al., 2022] and is also implemented in cardioception.

+
+

The Heart Beat Counting task#

+

In the classic “heartbeat counting task” [Dale and Anderson, 1978, Schandry, 1981] participants attend to their heartbeats in intervals of various lengths and are asked to count the number of heartbeats they can effectively feel during this period. An accuracy score is then derived by comparing the reported number of heartbeats and the true number of heartbeats. In the original version [Schandry, 1981], the task started with a resting period of 60 seconds and consisted of three estimation sessions (25, 35, and 45 seconds) interleaved with resting periods of 30 seconds.

+

hbc

+

By default, Cardioception implements the version used in recent publications [Hart et al., 2013] in which a training trial of 20 seconds is proposed, after which the 6 experimental trials of different time windows (25, 30, 35,40, 45 and 50s) occurred in a randomized order. The trial length, the condition ('Rest', 'Count', 'Training'), and the randomization can be controlled in the parameters dictionary. This behaviour can be controlled using the "taskVersion" parameter.

+
+

Instructions#

+

The instructions are the following:

+
Without manually checking can you silently count each heartbeat you feel in your body from the time you hear the first tone to when you hear the second tone?
+
+
+
+
+

Score#

+

Many variants of the interoceptive accuracy score have been proposed, here we implemented and use the one that we considered to be the more widely used, following the formula proposed by Hart et al. [Hart et al., 2013] as follows:

+
+\[ Accuracy = 1-\frac{\left | N_{real} - N_{reported} \right |}{\frac{N_{real} + N_{reported}}{2}}\]
+

After each counting response, the participant is prompted to rate their subjective confidence (from 0 to 100), used to calculate “interoceptive awareness”, i.e. the relationship between confidence and accuracy. Total task runtime using default settings is approximately 4 minutes.

+
+
+
+

The Heart Rate Discrimination task#

+

The Heart Rate Discrimination Task [Legrand et al., 2022] implements an adaptive psychophysical measure of cardiac interoception where participants have to estimate the frequency of their heart rate by comparing it to tones that can be faster or slower. By manipulating the difference between the true heart rate and the presented tone using different staircase procedures, the bias (threshold) and precision (slope) of the psychometric function can be estimated either online or offline, together with metacognitive efficiency.

+

hrd

+
+

Staircases#

+

If you run the task in behavioural mode, the Nonin pulse oximeter will be read from the port provided. These components might be adapted depending on your local configuration.

+

Two staircase procedures are implemented and can be controlled through the stairType parameters in the parameters dictionary:

+
+

1. nUp/nDown#

+

This procedure uses a classical adaptive nUp/nDown thresholding procedure [Cornsweet, 1962] to estimate the sensitivity and bias of cardiac beliefs. To do so, the staircase adjusts the absolute difference between the frequency of an auditory feedback stimulus and the estimated heart rate during the interoceptive ‘listening’ interval (i.e., absolute \(\Delta\)-BPM). Feedback tones on each trial are thus presented at a frequency faster or slower than the true heart rate, according to the absolute \(\Delta\)-BPM parameter. (i.e., ‘Faster’ or ‘Slower’ condition). Staircase responses are coded according to their accuracy relative to the ground truth heart rate, e.g. when the participant correctly discriminates whether a feedback tone is faster or slower than their true heart rate. This procedure converges on the minimum difference between the tones and the heart rate a participant can reliably discriminate, according to the stepping rule parameter. A default 1-down 2-up procedure is used, converging at ~71% accuracy at the limit. Depending on how the parameters.py file is set, 2 or more randomly interleaved staircases can be presented at low versus high starting values. This procedure is optimal for estimating the accuracy of interoceptive belief in a simple, reasonably robust algorithm, but should not be used for estimating interoceptive precision (i.e., slope).

+
+
+

2. Psi#

+

This procedure uses Kontsevich and Tyler’s [Kontsevich and Tyler, 1999] psi-method to estimate the point of subjective equality for faster versus slower cardiac feedback stimuli, based on a cumulative Gaussian psychometric function. Here, tones are presented at the relative \(\Delta\)-BPM (i.e., which can be more or less than the true heart rate), and this stimulus intensity value is adjusted according to the psi-method, between a minimum and maximum range of \(\Delta\)-BPM = [-40 40]. The staircase is ‘response coded’, such that the psychometric function converges on the point of subjective equality between faster and slower stimuli. In this case, the estimated threshold can be treated as an objective measure of subjective cardiac bias, and the slope as a measure of interoceptive uncertainty or precision. Nuisance parameters (i.e., guess and lapse rates) are fixed at values corresponding to a standard 1-alternative forced choice paradigm.

+
+
+
+
+

Discussion#

+

The validity and reliability of the heartbeat counting task (HBC, also called heartbeat tracking task) as a measure of cardiac interoceptive accuracy has been discussed during the last years and it is acknowledged that the scores derived from this task are difficult to interpret concerning interoceptive abilities [Ferentzi et al., 2022]. It has been documented that the HBC task is poorly related to actual heartbeat detection [Desmedt et al., 2020], is confounded by fundamental mathematical issues [Zamariola et al., 2018], is unable to distinguish subjective from physiological confounds [RING and BRENER, 1996], is unable to distinguish true interoceptors from non-interoceptors, and most crucially cannot, by design, distinguish cardiac accuracy (hit rate) from response bias. Furthermore, the task is also ill-suited to the estimation of metacognition variables, as there are extremely few trials and no overall control of accuracy (see [Fleming and Lau, 2014] for details on how metacognition should be measured).

+

Based on these observations, we considered that cardiac interoceptive accuracy is a too multifaceted concept and too confounded by other psychological factors to be measured precisely in the lab without directly manipulating the cardiac signal (i.e. changing and/or systematically observing different cardiac frequencies). It is indeed not possible to know if a participant is correct when reporting heartbeat counts because he/she has good interoceptive accuracy, or because he/she is simply lucky to have prior cardiac beliefs that are aligned with the physiological signal, at least for the time of the experience.

+

With the heart rate discrimination task (HRD), we proposed to change the focus and the way we measure cardioception. Suppose cardiac interoceptive accuracy cannot be precisely estimated because it is confounded by cardiac beliefs. In that case, we can however measure these beliefs in a very precise and rigorous manner using methods from psychophysics. In addition to that, because we test decisions from the participant many times (the recommended number of trials in the HRD task is 40 per condition minimum), we can estimate metacognitive efficiency more robustly using meta-d’ [Fleming and Lau, 2014].

+
+
+ + +
+ + + + + + + +
+ + + + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/objects.inv b/objects.inv new file mode 100644 index 0000000..2afd767 Binary files /dev/null and b/objects.inv differ diff --git a/references.html b/references.html new file mode 100644 index 0000000..2dbad0f --- /dev/null +++ b/references.html @@ -0,0 +1,620 @@ + + + + + + + + + + + + References — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

References#

+
+
+
1
+

Alexander Dale and David Anderson. Information variables in voluntary control and classical conditioning of heart rate: field dependence and heart-rate perception. Perceptual and Motor Skills, 47(1):79–85, 1978. PMID: 704264. URL: https://doi.org/10.2466/pms.1978.47.1.79, arXiv:https://doi.org/10.2466/pms.1978.47.1.79, doi:10.2466/pms.1978.47.1.79.

+
+
2
+

Rainer Schandry. Heart beat perception and emotional experience. Psychophysiology, 18(4):483–488, 1981. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.1981.tb02486.x, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8986.1981.tb02486.x, doi:https://doi.org/10.1111/j.1469-8986.1981.tb02486.x.

+
+
3
+

Nicolas Legrand, Niia Nikolova, Camile Correa, Malthe Brændholt, Anna Stuckert, Nanna Kildahl, Melina Vejlø, Francesca Fardo, and Micah Allen. The heart rate discrimination task: a psychophysical method to estimate the accuracy and precision of interoceptive beliefs. Biological Psychology, 168:108239, 2022. URL: https://www.sciencedirect.com/science/article/pii/S0301051121002325, doi:https://doi.org/10.1016/j.biopsycho.2021.108239.

+
+
4
+

Nova Hart, John McGowan, Ludovico Minati, and Hugo D. Critchley. Emotional regulation and bodily sensation: interoceptive awareness is intact in borderline personality disorder. Journal of Personality Disorders, 27(4):506–518, 2013. PMID: 22928847. URL: https://doi.org/10.1521/pedi_2012_26_049, arXiv:https://doi.org/10.1521/pedi_2012_26_049, doi:10.1521/pedi\_2012\_26\_049.

+
+
5
+

Tom N. Cornsweet. The staircase-method in psychophysics. The American Journal of Psychology, 75(3):485–491, 1962. URL: http://www.jstor.org/stable/1419876 (visited on 2022-09-08).

+
+
6
+

Leonid L. Kontsevich and Christopher W. Tyler. Bayesian adaptive estimation of psychometric slope and threshold. Vision Research, 39(16):2729–2737, 1999. URL: https://www.sciencedirect.com/science/article/pii/S0042698998002855, doi:https://doi.org/10.1016/S0042-6989(98)00285-5.

+
+
7
+

Eszter Ferentzi, Oliver Wilhelm, and Ferenc Köteles. What counts when heartbeats are counted. Trends in Cognitive Sciences, 2022. URL: https://www.sciencedirect.com/science/article/pii/S1364661322001668, doi:https://doi.org/10.1016/j.tics.2022.07.009.

+
+
8
+

Olivier Desmedt, Olivier Corneille, Olivier Luminet, Jennifer Murphy, Geoffrey Bird, and Pierre Maurage. Contribution of time estimation and knowledge to heartbeat counting task performance under original and adapted instructions. Biological Psychology, 154:107904, 2020. URL: https://www.sciencedirect.com/science/article/pii/S0301051120300648, doi:https://doi.org/10.1016/j.biopsycho.2020.107904.

+
+
9
+

Giorgia Zamariola, Pierre Maurage, Olivier Luminet, and Olivier Corneille. Interoceptive accuracy scores from the heartbeat counting task are problematic: evidence from simple bivariate correlations. Biological Psychology, 137:12–17, 2018. URL: https://www.sciencedirect.com/science/article/pii/S0301051118303739, doi:https://doi.org/10.1016/j.biopsycho.2018.06.006.

+
+
10
+

CHRISTOPHER RING and JASPER BRENER. Influence of beliefs about heart rate and actual heart rate on heartbeat counting. Psychophysiology, 33(5):541–546, 1996. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.1996.tb02430.x, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8986.1996.tb02430.x, doi:https://doi.org/10.1111/j.1469-8986.1996.tb02430.x.

+
+
11
+

Stephen M. Fleming and Hakwan C. Lau. How to measure metacognition. Frontiers in Human Neuroscience, 2014. URL: https://www.frontiersin.org/articles/10.3389/fnhum.2014.00443, doi:10.3389/fnhum.2014.00443.

+
+
12
+

Jukka A. Lipponen and Mika P. Tarvainen. A robust algorithm for heart rate variability time series artefact correction using novel beat classification. Journal of Medical Engineering & Technology, 43(3):173–181, 2019. PMID: 31314618. URL: https://doi.org/10.1080/03091902.2019.1640306, arXiv:https://doi.org/10.1080/03091902.2019.1640306, doi:10.1080/03091902.2019.1640306.

+
+
+
+
+ + +
+ + + + + + + +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/reports/examples/psychophysics/1-psychophysics_subject_level.err.log b/reports/examples/psychophysics/1-psychophysics_subject_level.err.log new file mode 100644 index 0000000..a1b3ccb --- /dev/null +++ b/reports/examples/psychophysics/1-psychophysics_subject_level.err.log @@ -0,0 +1,155 @@ +Traceback (most recent call last): + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/jupyter_cache/executors/utils.py", line 58, in single_nb_execution + executenb( + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/nbclient/client.py", line 1314, in execute + return NotebookClient(nb=nb, resources=resources, km=km, **kwargs).execute() + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/jupyter_core/utils/__init__.py", line 165, in wrapped + return loop.run_until_complete(inner) + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/asyncio/base_events.py", line 647, in run_until_complete + return future.result() + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/nbclient/client.py", line 709, in async_execute + await self.async_execute_cell( + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/nbclient/client.py", line 1062, in async_execute_cell + await self._check_raise_for_error(cell, cell_index, exec_reply) + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/nbclient/client.py", line 918, in _check_raise_for_error + raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content) +nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell: +------------------ +with subject_psychophysics: + idata = pm.sample(chains=4, cores=4) +------------------ + +----- stderr ----- +Auto-assigning NUTS sampler... +----- stderr ----- +Initializing NUTS using jitter+adapt_diag... +----- stderr ----- +Multiprocess sampling (4 chains in 4 jobs) +----- stderr ----- +NUTS: [alpha, beta] +----- stderr ----- +Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 3 seconds. +------------------ + +--------------------------------------------------------------------------- +AttributeError Traceback (most recent call last) +File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/arviz/data/base.py:342, in make_attrs(attrs, library) + 341 try: +--> 342 version = importlib.metadata.version(library_name) + 343 default_attrs["inference_library_version"] = version + +AttributeError: module 'importlib' has no attribute 'metadata' + +During handling of the above exception, another exception occurred: + +AttributeError Traceback (most recent call last) +Cell In[10], line 2 + 1 with subject_psychophysics: +----> 2 idata = pm.sample(chains=4, cores=4) + +File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/sampling/mcmc.py:826, in sample(draws, tune, chains, cores, random_seed, progressbar, step, var_names, nuts_sampler, initvals, init, jitter_max_retries, n_init, trace, discard_tuned_samples, compute_convergence_checks, keep_warning_stat, return_inferencedata, idata_kwargs, nuts_sampler_kwargs, callback, mp_ctx, model, **kwargs) + 822 t_sampling = time.time() - t_start + 824 # Packaging, validating and returning the result was extracted + 825 # into a function to make it easier to test and refactor. +--> 826 return _sample_return( + 827  run=run, + 828  traces=traces, + 829  tune=tune, + 830  t_sampling=t_sampling, + 831  discard_tuned_samples=discard_tuned_samples, + 832  compute_convergence_checks=compute_convergence_checks, + 833  return_inferencedata=return_inferencedata, + 834  keep_warning_stat=keep_warning_stat, + 835  idata_kwargs=idata_kwargs or {}, + 836  model=model, + 837 ) + +File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/sampling/mcmc.py:894, in _sample_return(run, traces, tune, t_sampling, discard_tuned_samples, compute_convergence_checks, return_inferencedata, keep_warning_stat, idata_kwargs, model) + 892 ikwargs: dict[str, Any] = dict(model=model, save_warmup=not discard_tuned_samples) + 893 ikwargs.update(idata_kwargs) +--> 894 idata = pm.to_inference_data(mtrace, **ikwargs) + 896 if compute_convergence_checks: + 897 warns = run_convergence_checks(idata, model) + +File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/backends/arviz.py:525, in to_inference_data(trace, prior, posterior_predictive, log_likelihood, log_prior, coords, dims, sample_dims, model, save_warmup, include_transformed) + 522 if isinstance(trace, InferenceData): + 523 return trace +--> 525 return InferenceDataConverter( + 526  trace=trace, + 527  prior=prior, + 528  posterior_predictive=posterior_predictive, + 529  log_likelihood=log_likelihood, + 530  log_prior=log_prior, + 531  coords=coords, + 532  dims=dims, + 533  sample_dims=sample_dims, + 534  model=model, + 535  save_warmup=save_warmup, + 536  include_transformed=include_transformed, + 537 ).to_inference_data() + +File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/backends/arviz.py:429, in InferenceDataConverter.to_inference_data(self) + 421 def to_inference_data(self): + 422  """Convert all available data to an InferenceData object. + 423 + 424  Note that if groups can not be created (e.g., there is no `trace`, so + 425  the `posterior` and `sample_stats` can not be extracted), then the InferenceData + 426  will not have those groups. + 427  """ + 428 id_dict = { +--> 429 "posterior": self.posterior_to_xarray(), + 430 "sample_stats": self.sample_stats_to_xarray(), + 431 "posterior_predictive": self.posterior_predictive_to_xarray(), + 432 "predictions": self.predictions_to_xarray(), + 433 **self.priors_to_xarray(), + 434 "observed_data": self.observed_data_to_xarray(), + 435 } + 436 if self.predictions: + 437 id_dict["predictions_constant_data"] = self.constant_data_to_xarray() + +File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/arviz/data/base.py:65, in requires.__call__..wrapped(cls) + 63 if all((getattr(cls, prop_i) is None for prop_i in prop)): + 64 return None +---> 65 return func(cls) + +File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/backends/arviz.py:279, in InferenceDataConverter.posterior_to_xarray(self) + 274 if self.posterior_trace: + 275 data[var_name] = np.array( + 276 self.posterior_trace.get_values(var_name, combine=False, squeeze=False) + 277 ) + 278 return ( +--> 279 dict_to_dataset( + 280  data, + 281  library=pymc, + 282  coords=self.coords, + 283  dims=self.dims, + 284  attrs=self.attrs, + 285  ), + 286 dict_to_dataset( + 287 data_warmup, + 288 library=pymc, + 289 coords=self.coords, + 290 dims=self.dims, + 291 attrs=self.attrs, + 292 ), + 293 ) + +File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/arviz/data/base.py:318, in dict_to_dataset(data, attrs, library, coords, dims, default_dims, index_origin, skip_event_dims) + 304 dims = {} + 306 data_vars = { + 307 key: numpy_to_data_array( + 308 values, + (...) + 316 for key, values in data.items() + 317 } +--> 318 return xr.Dataset(data_vars=data_vars, attrs=make_attrs(attrs=attrs, library=library)) + +File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/arviz/data/base.py:344, in make_attrs(attrs, library) + 342 version = importlib.metadata.version(library_name) + 343 default_attrs["inference_library_version"] = version +--> 344 except importlib.metadata.PackageNotFoundError: + 345 if hasattr(library, "__version__"): + 346 version = library.__version__ + +AttributeError: module 'importlib' has no attribute 'metadata' + diff --git a/reports/examples/psychophysics/2-psychophysics_group_level.err.log b/reports/examples/psychophysics/2-psychophysics_group_level.err.log new file mode 100644 index 0000000..4d4fe68 --- /dev/null +++ b/reports/examples/psychophysics/2-psychophysics_group_level.err.log @@ -0,0 +1,155 @@ +Traceback (most recent call last): + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/jupyter_cache/executors/utils.py", line 58, in single_nb_execution + executenb( + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/nbclient/client.py", line 1314, in execute + return NotebookClient(nb=nb, resources=resources, km=km, **kwargs).execute() + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/jupyter_core/utils/__init__.py", line 165, in wrapped + return loop.run_until_complete(inner) + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/asyncio/base_events.py", line 647, in run_until_complete + return future.result() + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/nbclient/client.py", line 709, in async_execute + await self.async_execute_cell( + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/nbclient/client.py", line 1062, in async_execute_cell + await self._check_raise_for_error(cell, cell_index, exec_reply) + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/nbclient/client.py", line 918, in _check_raise_for_error + raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content) +nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell: +------------------ +with group_psychophysics: + idata = pm.sample(chains=4, cores=4) +------------------ + +----- stderr ----- +Auto-assigning NUTS sampler... +----- stderr ----- +Initializing NUTS using jitter+adapt_diag... +----- stderr ----- +Multiprocess sampling (4 chains in 4 jobs) +----- stderr ----- +NUTS: [mu_alpha, sigma_alpha, mu_beta, sigma_beta, alpha, beta] +----- stderr ----- +Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 147 seconds. +------------------ + +--------------------------------------------------------------------------- +AttributeError Traceback (most recent call last) +File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/arviz/data/base.py:342, in make_attrs(attrs, library) + 341 try: +--> 342 version = importlib.metadata.version(library_name) + 343 default_attrs["inference_library_version"] = version + +AttributeError: module 'importlib' has no attribute 'metadata' + +During handling of the above exception, another exception occurred: + +AttributeError Traceback (most recent call last) +Cell In[9], line 2 + 1 with group_psychophysics: +----> 2 idata = pm.sample(chains=4, cores=4) + +File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/sampling/mcmc.py:826, in sample(draws, tune, chains, cores, random_seed, progressbar, step, var_names, nuts_sampler, initvals, init, jitter_max_retries, n_init, trace, discard_tuned_samples, compute_convergence_checks, keep_warning_stat, return_inferencedata, idata_kwargs, nuts_sampler_kwargs, callback, mp_ctx, model, **kwargs) + 822 t_sampling = time.time() - t_start + 824 # Packaging, validating and returning the result was extracted + 825 # into a function to make it easier to test and refactor. +--> 826 return _sample_return( + 827  run=run, + 828  traces=traces, + 829  tune=tune, + 830  t_sampling=t_sampling, + 831  discard_tuned_samples=discard_tuned_samples, + 832  compute_convergence_checks=compute_convergence_checks, + 833  return_inferencedata=return_inferencedata, + 834  keep_warning_stat=keep_warning_stat, + 835  idata_kwargs=idata_kwargs or {}, + 836  model=model, + 837 ) + +File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/sampling/mcmc.py:894, in _sample_return(run, traces, tune, t_sampling, discard_tuned_samples, compute_convergence_checks, return_inferencedata, keep_warning_stat, idata_kwargs, model) + 892 ikwargs: dict[str, Any] = dict(model=model, save_warmup=not discard_tuned_samples) + 893 ikwargs.update(idata_kwargs) +--> 894 idata = pm.to_inference_data(mtrace, **ikwargs) + 896 if compute_convergence_checks: + 897 warns = run_convergence_checks(idata, model) + +File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/backends/arviz.py:525, in to_inference_data(trace, prior, posterior_predictive, log_likelihood, log_prior, coords, dims, sample_dims, model, save_warmup, include_transformed) + 522 if isinstance(trace, InferenceData): + 523 return trace +--> 525 return InferenceDataConverter( + 526  trace=trace, + 527  prior=prior, + 528  posterior_predictive=posterior_predictive, + 529  log_likelihood=log_likelihood, + 530  log_prior=log_prior, + 531  coords=coords, + 532  dims=dims, + 533  sample_dims=sample_dims, + 534  model=model, + 535  save_warmup=save_warmup, + 536  include_transformed=include_transformed, + 537 ).to_inference_data() + +File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/backends/arviz.py:429, in InferenceDataConverter.to_inference_data(self) + 421 def to_inference_data(self): + 422  """Convert all available data to an InferenceData object. + 423 + 424  Note that if groups can not be created (e.g., there is no `trace`, so + 425  the `posterior` and `sample_stats` can not be extracted), then the InferenceData + 426  will not have those groups. + 427  """ + 428 id_dict = { +--> 429 "posterior": self.posterior_to_xarray(), + 430 "sample_stats": self.sample_stats_to_xarray(), + 431 "posterior_predictive": self.posterior_predictive_to_xarray(), + 432 "predictions": self.predictions_to_xarray(), + 433 **self.priors_to_xarray(), + 434 "observed_data": self.observed_data_to_xarray(), + 435 } + 436 if self.predictions: + 437 id_dict["predictions_constant_data"] = self.constant_data_to_xarray() + +File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/arviz/data/base.py:65, in requires.__call__..wrapped(cls) + 63 if all((getattr(cls, prop_i) is None for prop_i in prop)): + 64 return None +---> 65 return func(cls) + +File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pymc/backends/arviz.py:279, in InferenceDataConverter.posterior_to_xarray(self) + 274 if self.posterior_trace: + 275 data[var_name] = np.array( + 276 self.posterior_trace.get_values(var_name, combine=False, squeeze=False) + 277 ) + 278 return ( +--> 279 dict_to_dataset( + 280  data, + 281  library=pymc, + 282  coords=self.coords, + 283  dims=self.dims, + 284  attrs=self.attrs, + 285  ), + 286 dict_to_dataset( + 287 data_warmup, + 288 library=pymc, + 289 coords=self.coords, + 290 dims=self.dims, + 291 attrs=self.attrs, + 292 ), + 293 ) + +File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/arviz/data/base.py:318, in dict_to_dataset(data, attrs, library, coords, dims, default_dims, index_origin, skip_event_dims) + 304 dims = {} + 306 data_vars = { + 307 key: numpy_to_data_array( + 308 values, + (...) + 316 for key, values in data.items() + 317 } +--> 318 return xr.Dataset(data_vars=data_vars, attrs=make_attrs(attrs=attrs, library=library)) + +File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/arviz/data/base.py:344, in make_attrs(attrs, library) + 342 version = importlib.metadata.version(library_name) + 343 default_attrs["inference_library_version"] = version +--> 344 except importlib.metadata.PackageNotFoundError: + 345 if hasattr(library, "__version__"): + 346 version = library.__version__ + +AttributeError: module 'importlib' has no attribute 'metadata' + diff --git a/reports/examples/templates/HeartBeatCounting.err.log b/reports/examples/templates/HeartBeatCounting.err.log new file mode 100644 index 0000000..fd92792 --- /dev/null +++ b/reports/examples/templates/HeartBeatCounting.err.log @@ -0,0 +1,85 @@ +Traceback (most recent call last): + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/jupyter_cache/executors/utils.py", line 58, in single_nb_execution + executenb( + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/nbclient/client.py", line 1314, in execute + return NotebookClient(nb=nb, resources=resources, km=km, **kwargs).execute() + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/jupyter_core/utils/__init__.py", line 165, in wrapped + return loop.run_until_complete(inner) + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/asyncio/base_events.py", line 647, in run_until_complete + return future.result() + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/nbclient/client.py", line 709, in async_execute + await self.async_execute_cell( + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/nbclient/client.py", line 1062, in async_execute_cell + await self._check_raise_for_error(cell, cell_index, exec_reply) + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/nbclient/client.py", line 918, in _check_raise_for_error + raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content) +nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell: +------------------ +counts = [] +for nTrial in range(6): + + print(f'Analyzing trial number {nTrial+1}') + + signal, peaks = ppg_peaks(ppg[str(nTrial)][0], clean_extra=True, sfreq=75) + axs = plot_raw( + signal=signal, sfreq=1000, figsize=(18, 5), clean_extra=True, + show_heart_rate=True + ); + + # Show the windows of interest + # We need to convert sample vector into Matplotlib internal representation + # so we can index it easily + x_vec = date2num( + pd.to_datetime( + np.arange(0, len(signal)), unit="ms", origin="unix" + ) + ) + l = len(signal)/1000 + for i in range(2): + # Pre-trial time + axs[i].axvspan( + x_vec[0], x_vec[- (3+df.Duration.iloc[nTrial]) * 1000] + , alpha=.2 + ) + # Post trial time + axs[i].axvspan( + x_vec[- 3 * 1000], + x_vec[- 1], + alpha=.2 + ) + plt.show() + + # Detected heartbeat in the time window of interest + peaks = peaks[int(l - (3+df.Duration.iloc[nTrial]))*1000:int((l-3)*1000)] + + rr = np.diff(np.where(peaks)[0]) + + _, axs = plt.subplots(ncols=2, figsize=(12, 6)) + plot_subspaces(rr=rr, ax=axs); + plt.show() + + trial_counts = np.sum(peaks) + print(f'Reported: {df.Reported.loc[nTrial]} beats ; Detected : {trial_counts} beats') + counts.append(trial_counts) +------------------ + +----- stdout ----- +Analyzing trial number 1 +------------------ + +--------------------------------------------------------------------------- +TypeError Traceback (most recent call last) +Cell In[8], line 6 + 2 for nTrial in range(6): + 4 print(f'Analyzing trial number {nTrial+1}') +----> 6 signal, peaks = ppg_peaks(ppg[str(nTrial)][0], clean_extra=True, sfreq=75) + 7 axs = plot_raw( + 8 signal=signal, sfreq=1000, figsize=(18, 5), clean_extra=True, + 9 show_heart_rate=True + 10 ); + 12 # Show the windows of interest + 13 # We need to convert sample vector into Matplotlib internal representation + 14 # so we can index it easily + +TypeError: ppg_peaks() got an unexpected keyword argument 'clean_extra' + diff --git a/reports/examples/templates/HeartRateDiscrimination.err.log b/reports/examples/templates/HeartRateDiscrimination.err.log new file mode 100644 index 0000000..18c11a3 --- /dev/null +++ b/reports/examples/templates/HeartRateDiscrimination.err.log @@ -0,0 +1,45 @@ +Traceback (most recent call last): + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/jupyter_cache/executors/utils.py", line 58, in single_nb_execution + executenb( + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/nbclient/client.py", line 1314, in execute + return NotebookClient(nb=nb, resources=resources, km=km, **kwargs).execute() + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/jupyter_core/utils/__init__.py", line 165, in wrapped + return loop.run_until_complete(inner) + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/asyncio/base_events.py", line 647, in run_until_complete + return future.result() + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/nbclient/client.py", line 709, in async_execute + await self.async_execute_cell( + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/nbclient/client.py", line 1062, in async_execute_cell + await self._check_raise_for_error(cell, cell_index, exec_reply) + File "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/nbclient/client.py", line 918, in _check_raise_for_error + raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content) +nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell: +------------------ +from pathlib import Path +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +import pingouin as pg +import seaborn as sns +from metadpy import sdt +from metadpy.plotting import plot_confidence +from metadpy.utils import discreteRatings, trials2counts +from scipy.stats import norm +from systole.detection import ppg_peaks + +sns.set_context('talk') +%matplotlib inline +------------------ + + +--------------------------------------------------------------------------- +ModuleNotFoundError Traceback (most recent call last) +Cell In[2], line 5 + 3 import numpy as np + 4 import pandas as pd +----> 5 import pingouin as pg + 6 import seaborn as sns + 7 from metadpy import sdt + +ModuleNotFoundError: No module named 'pingouin' + diff --git a/search.html b/search.html new file mode 100644 index 0000000..b2f80c4 --- /dev/null +++ b/search.html @@ -0,0 +1,556 @@ + + + + + + + + + + Search - cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+ + +
+

Search

+ + + +
+
+ + + + + + +
+ +
+
+
+ +
+ + + +
+ + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/searchindex.js b/searchindex.js new file mode 100644 index 0000000..6a5b79e --- /dev/null +++ b/searchindex.js @@ -0,0 +1 @@ +Search.setIndex({"docnames": ["api", "cite", "examples/psychophysics/1-psychophysics_subject_level", "examples/psychophysics/2-psychophysics_group_level", "examples/templates/HeartBeatCounting", "examples/templates/HeartRateDiscrimination", "generated/HBC.parameters/cardioception.HBC.parameters.getParameters", "generated/HBC.task/cardioception.HBC.task.rest", "generated/HBC.task/cardioception.HBC.task.run", "generated/HBC.task/cardioception.HBC.task.trial", "generated/HBC.task/cardioception.HBC.task.tutorial", "generated/HRD.languages/cardioception.HRD.languages.danish", "generated/HRD.languages/cardioception.HRD.languages.danish_children", "generated/HRD.languages/cardioception.HRD.languages.english", "generated/HRD.languages/cardioception.HRD.languages.french", "generated/HRD.parameters/cardioception.HRD.parameters.getParameters", "generated/HRD.task/cardioception.HRD.task.confidenceRatingTask", "generated/HRD.task/cardioception.HRD.task.responseDecision", "generated/HRD.task/cardioception.HRD.task.run", "generated/HRD.task/cardioception.HRD.task.trial", "generated/HRD.task/cardioception.HRD.task.tutorial", "generated/HRD.task/cardioception.HRD.task.waitInput", "generated/reports/cardioception.reports.group_level_preprocessing", "generated/reports/cardioception.reports.preprocessing", "generated/reports/cardioception.reports.report", "generated/stats/cardioception.stats.behaviours", "generated/stats/cardioception.stats.psychophysics", "index", "measuring", "references", "stats", "user_guide"], "filenames": ["api.rst", "cite.md", "examples/psychophysics/1-psychophysics_subject_level.ipynb", "examples/psychophysics/2-psychophysics_group_level.ipynb", "examples/templates/HeartBeatCounting.ipynb", "examples/templates/HeartRateDiscrimination.ipynb", "generated/HBC.parameters/cardioception.HBC.parameters.getParameters.rst", "generated/HBC.task/cardioception.HBC.task.rest.rst", "generated/HBC.task/cardioception.HBC.task.run.rst", "generated/HBC.task/cardioception.HBC.task.trial.rst", "generated/HBC.task/cardioception.HBC.task.tutorial.rst", "generated/HRD.languages/cardioception.HRD.languages.danish.rst", "generated/HRD.languages/cardioception.HRD.languages.danish_children.rst", "generated/HRD.languages/cardioception.HRD.languages.english.rst", "generated/HRD.languages/cardioception.HRD.languages.french.rst", "generated/HRD.parameters/cardioception.HRD.parameters.getParameters.rst", "generated/HRD.task/cardioception.HRD.task.confidenceRatingTask.rst", "generated/HRD.task/cardioception.HRD.task.responseDecision.rst", "generated/HRD.task/cardioception.HRD.task.run.rst", "generated/HRD.task/cardioception.HRD.task.trial.rst", "generated/HRD.task/cardioception.HRD.task.tutorial.rst", "generated/HRD.task/cardioception.HRD.task.waitInput.rst", "generated/reports/cardioception.reports.group_level_preprocessing.rst", "generated/reports/cardioception.reports.preprocessing.rst", "generated/reports/cardioception.reports.report.rst", "generated/stats/cardioception.stats.behaviours.rst", "generated/stats/cardioception.stats.psychophysics.rst", "index.md", "measuring.md", "references.md", "stats.md", "user_guide.md"], "titles": ["API", "How to cite?", "Fitting a psychometric function at the subject level", "Fitting a psychometric function at the group level", "Heartbeat Counting task - Summary results", "Heart Rate Discrimination task - Summary results", "cardioception.HBC.parameters.getParameters", "cardioception.HBC.task.rest", "cardioception.HBC.task.run", "cardioception.HBC.task.trial", "cardioception.HBC.task.tutorial", "cardioception.HRD.languages.danish", "cardioception.HRD.languages.danish_children", "cardioception.HRD.languages.english", "cardioception.HRD.languages.french", "cardioception.HRD.parameters.getParameters", "cardioception.HRD.task.confidenceRatingTask", "cardioception.HRD.task.responseDecision", "cardioception.HRD.task.run", "cardioception.HRD.task.trial", "cardioception.HRD.task.tutorial", "cardioception.HRD.task.waitInput", "cardioception.reports.group_level_preprocessing", "cardioception.reports.preprocessing", "cardioception.reports.report", "cardioception.stats.behaviours", "cardioception.stats.psychophysics", "Cardioception toolbox", "Measuring cardiac interoception", "References", "Statistical analysis", "User guide"], "terms": {"extract": [0, 2, 3, 22, 23, 25, 26, 30], "relev": [0, 5, 15, 22, 30], "from": [0, 2, 3, 4, 5, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "long": [0, 15], "result": [0, 2, 3, 6, 15, 22, 23, 24, 25, 26, 30, 31], "data": [0, 2, 3, 4, 5, 15, 22, 23, 24, 25, 26, 27, 30, 31], "frame": [0, 2, 3, 4, 15, 22, 23, 25, 26, 30], "across": [0, 5, 15], "group": [0, 2, 22, 25, 26, 30], "repeat": [0, 22, 25, 26, 30], "measur": [0, 1, 22, 25, 26, 27, 29, 30], "If": [1, 6, 8, 11, 12, 13, 14, 15, 17, 18, 19, 24, 27, 28, 30, 31], "you": [1, 4, 5, 27, 28, 30, 31], "ar": [1, 2, 3, 4, 5, 6, 15, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31], "us": [1, 2, 3, 4, 5, 6, 15, 16, 17, 19, 22, 23, 25, 26, 27, 28, 29], "cardiocept": [1, 4, 5, 28, 30, 31], "toolbox": 1, "your": [1, 28, 30, 31], "research": [1, 29], "we": [1, 2, 3, 4, 5, 26, 27, 28, 30, 31], "ask": [1, 27, 28], "follow": [1, 2, 3, 5, 15, 23, 25, 26, 28, 30, 31], "paper": [1, 2, 3, 4], "final": [1, 4, 5, 30], "public": [1, 27, 28], "legrand": [1, 2, 3, 4, 5, 23, 27, 28, 29], "n": [1, 2, 3, 23, 29], "nikolova": [1, 23, 29], "correa": [1, 23, 29], "c": [1, 2, 3, 5, 23, 29], "br\u00e6ndholt": [1, 23, 29], "m": [1, 4, 5, 23, 27, 29], "stuckert": [1, 23, 29], "A": [1, 2, 5, 15, 23, 26, 28, 29], "kildahl": [1, 23, 29], "vejl\u00f8": [1, 23, 29], "fardo": [1, 23, 29], "f": [1, 4, 5, 23, 30, 31], "allen": [1, 23, 29], "2021": [1, 23, 29], "The": [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 17, 19, 22, 23, 24, 25, 26, 27, 29, 30, 31], "heart": [1, 2, 3, 4, 7, 15, 18, 19, 23, 25, 26, 27, 29, 30, 31], "rate": [1, 2, 3, 4, 6, 7, 8, 9, 15, 16, 18, 19, 23, 25, 26, 27, 29, 30, 31], "discrimin": [1, 2, 3, 15, 18, 19, 23, 25, 27, 29, 30, 31], "task": [1, 2, 3, 6, 11, 12, 13, 14, 15, 23, 24, 25, 26, 27, 29, 30], "psychophys": [1, 15, 22, 23, 27, 28, 29], "method": [1, 2, 3, 4, 5, 23, 28, 29, 31], "estim": [1, 2, 3, 5, 9, 15, 23, 25, 26, 27, 28, 29, 30, 31], "accuraci": [1, 4, 23, 27, 28, 29], "precis": [1, 2, 23, 26, 27, 28, 29, 31], "interocept": [1, 2, 3, 5, 15, 19, 23, 26, 27, 29], "belief": [1, 23, 26, 28, 29], "biolog": [1, 23, 29], "psychologi": [1, 23, 29], "108239": [1, 23, 29], "http": [1, 2, 3, 23, 29, 31], "doi": [1, 23, 29], "org": [1, 23, 29], "10": [1, 2, 3, 4, 5, 8, 18, 23, 29, 31], "1016": [1, 23, 29], "j": [1, 3, 23, 29], "biopsycho": [1, 23, 29], "In": [1, 2, 3, 4, 5, 15, 26, 27, 28, 31], "bibtex": 1, "format": 1, "articl": [1, 29], "legrand2022108239": 1, "titl": [1, 3, 5], "journal": [1, 23, 29], "volum": 1, "168": [1, 29], "page": [1, 27], "year": [1, 28], "2022": [1, 2, 3, 23, 27, 28, 29], "issn": 1, "0301": 1, "0511": 1, "url": [1, 29], "www": [1, 29], "sciencedirect": [1, 29], "com": [1, 2, 3, 29, 31], "scienc": [1, 29], "pii": [1, 29], "s0301051121002325": [1, 29], "author": [1, 2, 3, 4, 5], "nicola": [1, 2, 3, 4, 5, 27, 29], "niia": [1, 29], "camil": [1, 29], "malth": [1, 29], "anna": [1, 29], "nanna": [1, 29], "melina": [1, 29], "francesca": [1, 29], "micah": [1, 29], "keyword": [1, 4, 6, 15], "heartbeat": [1, 6, 9, 10, 27, 28, 29, 30, 31], "track": [1, 27, 28], "metacognit": [1, 22, 23, 27, 28, 29, 30], "abstract": 1, "physiolog": [1, 24, 28], "sens": 1, "our": [1, 2, 3], "inner": 1, "bodi": [1, 28], "ha": [1, 2, 3, 19, 27, 28, 31], "risen": 1, "forefront": 1, "psycholog": [1, 28], "psychiatr": 1, "much": 1, "thi": [1, 2, 3, 4, 5, 15, 19, 22, 23, 25, 26, 27, 28, 30, 31], "util": [1, 5], "attempt": 1, "abil": [1, 28], "accur": [1, 5], "detect": [1, 5, 28, 30], "cardiac": [1, 23, 26, 27, 31], "signal": [1, 4, 15, 23, 28, 30], "unfortun": [1, 27], "approach": [1, 23, 30], "confound": [1, 27, 28], "well": [1, 23, 30], "known": [1, 5, 27, 28], "issu": [1, 27, 28], "limit": [1, 28], "valid": [1, 2, 3, 23, 28], "interpret": [1, 28], "At": [1, 15], "core": [1, 2, 3], "controversi": 1, "i": [1, 2, 3, 4, 5, 6, 15, 17, 19, 22, 23, 25, 26, 27, 28, 29, 30], "role": 1, "subject": [1, 3, 5, 6, 15, 28, 30], "about": [1, 29], "here": [1, 2, 3, 5, 26, 28, 30, 31], "recast": 1, "an": [1, 2, 3, 4, 5, 15, 19, 27, 28, 30], "import": [1, 2, 3, 4, 5, 30, 31], "part": [1, 30], "causal": 1, "machineri": 1, "offer": [1, 31], "novel": [1, 29], "By": [1, 27, 28], "appli": 1, "223": 1, "healthi": [1, 5], "particip": [1, 2, 3, 5, 6, 9, 15, 19, 21, 23, 24, 25, 26, 27, 28, 30, 31], "demonstr": 1, "more": [1, 2, 3, 5, 15, 17, 19, 22, 28, 30], "bias": [1, 2], "less": [1, 2, 3, 5, 15, 17, 28], "associ": 1, "poorer": 1, "insight": 1, "rel": [1, 28], "exterocept": [1, 5, 11, 12, 13, 14, 15, 19, 23], "control": [1, 11, 12, 13, 14, 15, 19, 27, 28, 29], "condit": [1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 15, 17, 19, 22, 23, 25, 26, 28, 29], "provid": [1, 9, 15, 17, 19, 24, 25, 27, 28, 30, 31], "open": [1, 23, 27], "sourc": [1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "python": [1, 2, 3, 23, 27], "packag": [1, 2, 3, 23, 27, 30], "robust": [1, 27, 28, 29], "quantifi": 1, "also": [1, 2, 3, 5, 15, 23, 27, 28, 30, 31], "systol": [1, 4, 5, 6, 15, 23, 27, 31], "interact": [1, 5, 15, 30, 31], "ppg": [1, 4, 6, 15, 30], "record": [1, 4, 5, 6, 7, 9, 15, 17, 19, 26, 27, 30], "devic": [1, 11, 12, 13, 14, 15, 27, 31], "default": [1, 5, 6, 15, 19, 22, 24, 25, 26, 27, 28, 30], "set": [1, 4, 5, 6, 15, 25, 26, 27, 28, 30], "analyz": [1, 4, 30], "might": [1, 27, 28, 31], "refer": [1, 2, 23, 31], "et": [1, 2, 3, 23, 27, 28], "al": [1, 2, 3, 23, 27, 28], "synchroni": [1, 23], "analysi": [1, 5, 23, 27], "softwar": [1, 23], "7": [1, 2, 3, 4, 5, 19, 23, 29, 31], "69": [1, 2, 3, 23], "3832": [1, 23], "21105": [1, 23], "joss": [1, 23], "03832": [1, 23], "legrand2022": 1, "publish": 1, "number": [1, 2, 3, 4, 6, 9, 15, 19, 27, 28, 31], "ca": [2, 3, 4, 5], "au": [2, 3, 4, 5], "dk": [2, 3, 4, 5], "pytensor": [2, 3], "tensor": [2, 3], "pt": [2, 3], "arviz": [2, 3], "az": [2, 3], "matplotlib": [2, 3, 4, 5, 31], "pyplot": [2, 3, 4, 5], "plt": [2, 3, 4, 5], "numpi": [2, 3, 4, 5, 31], "np": [2, 3, 4, 5], "panda": [2, 3, 4, 5, 23, 30, 31], "pd": [2, 3, 4, 5, 23], "seaborn": [2, 3, 4, 5, 31], "sn": [2, 3, 4, 5], "scipi": [2, 3, 5, 31], "stat": [2, 3, 5, 22], "norm": [2, 3, 5], "pymc": [2, 3, 23, 26, 30, 31], "pm": [2, 3, 29], "set_context": [2, 3, 4, 5], "talk": [2, 3, 5], "warn": [2, 3], "bla": [2, 3], "api": [2, 3, 31], "base": [2, 3, 5, 28, 31], "implement": [2, 3, 5, 27, 28, 30], "exampl": [2, 3, 30, 31], "go": [2, 3, 6, 15], "cummul": [2, 3], "normal": [2, 3, 26], "decis": [2, 3, 5, 15, 17, 19, 26, 28], "respons": [2, 3, 9, 15, 17, 19, 25, 26, 28, 30], "made": [2, 3, 17], "dure": [2, 3, 5, 6, 15, 17, 25, 26, 28, 30, 31], "hrd": [2, 3, 5, 24, 25, 26, 27, 28, 31], "analys": [2, 3, 23, 27, 30], "one": [2, 4, 5, 9, 19, 24, 28, 30, 31], "second": [2, 3, 5, 6, 7, 9, 15, 17, 19, 26, 28], "session": [2, 6, 15, 28, 31], "load": [2, 3, 4, 5], "psychophysics_df": [2, 3], "read_csv": [2, 3, 4, 5], "github": [2, 3, 27, 31], "embodi": [2, 3], "comput": [2, 3, 4, 23, 26, 27], "cardioceptionpap": [2, 3], "raw": [2, 3, 4], "main": [2, 3, 4, 23, 30, 31], "del2_merg": [2, 3], "txt": [2, 3, 4, 5, 30], "first": [2, 3, 5, 27, 28], "let": [2, 3], "": [2, 3, 5, 28], "filter": [2, 3], "so": [2, 3, 4, 15, 28, 31], "onli": [2, 3, 5, 6, 15, 24, 26, 30], "keep": [2, 3], "19": [2, 3], "sub_0019": [2, 3], "label": [2, 3, 5, 6, 15], "extero": [2, 3, 5, 15], "this_df": [2, 3, 5], "modal": [2, 3, 5, 19, 22, 25, 26], "head": [2, 3], "trialtyp": [2, 3, 5], "staircond": [2, 3], "decisionrt": [2, 3, 5, 17, 19], "confid": [2, 3, 4, 5, 6, 8, 9, 15, 16, 18, 19, 25, 28], "confidencert": [2, 3, 4, 5, 9, 19], "alpha": [2, 3, 4, 5, 19, 26], "listenbpm": [2, 3, 5, 19], "estimatedthreshold": [2, 3, 5], "estimatedslop": [2, 3, 5], "startlisten": [2, 3], "startdecis": [2, 3], "responsemad": [2, 3], "ratingstart": [2, 3], "ratingend": [2, 3], "endtrigg": [2, 3, 19], "heartrateoutli": [2, 3, 5], "1": [2, 3, 4, 5, 15, 19, 23, 26, 29, 31], "psi": [2, 3, 15, 23, 25, 30, 31], "2": [2, 3, 4, 5, 15, 23, 26, 29, 31], "216429": [2, 3], "59": [2, 3], "0": [2, 3, 4, 5, 6, 7, 15, 19, 23, 26, 28, 31], "632995": [2, 3], "5": [2, 3, 4, 5, 8, 15, 18, 23, 26, 29, 31], "78": [2, 3], "22": [2, 3], "805550": [2, 3], "12": [2, 3, 4, 29], "549457": [2, 3], "603353e": [2, 3], "09": [2, 3, 29], "603354e": [2, 3], "fals": [2, 3, 5, 15, 17, 18, 19], "3": [2, 3, 4, 5, 15, 23, 29, 31], "psicatchtri": [2, 3, 5, 15], "449154": [2, 3], "100": [2, 3, 28], "511938": [2, 3], "30": [2, 3, 4, 5, 26, 28], "82": [2, 3], "nan": [2, 3], "6": [2, 3, 4, 5, 28, 29], "182666": [2, 3], "95": [2, 3, 5], "606786": [2, 3], "001882": [2, 3], "884902": [2, 3], "848141": [2, 3], "24": [2, 3], "448969": [2, 3], "62": [2, 3], "998384": [2, 3], "13": [2, 3, 4, 5], "044744": [2, 3], "11": [2, 3, 29, 31], "349469": [2, 3], "75": [2, 3, 4, 29], "561820": [2, 3], "72": [2, 3], "row": [2, 3], "25": [2, 3, 4, 15, 28], "column": [2, 3, 22, 25, 26], "contain": [2, 3, 5, 6, 15, 25, 26, 30, 31], "larg": [2, 3, 22, 28, 30], "interest": [2, 3, 4], "intens": [2, 3, 5, 19, 26, 28], "valu": [2, 3, 5, 6, 15, 19, 23, 26, 28], "These": [2, 3, 15, 26, 27, 28, 30, 31], "two": [2, 3, 5, 15, 23, 26, 27, 28, 30], "enought": [2, 3], "u": [2, 3, 5], "vector": [2, 3, 4, 5, 15], "list": [2, 3, 6, 15, 22, 25, 26], "all": [2, 3, 5, 15, 22, 30], "test": [2, 3, 5, 6, 11, 12, 13, 14, 15, 28, 31], "total": [2, 3, 5, 15, 28, 31], "trial": [2, 3, 5, 6, 8, 15, 17, 18, 23, 26, 28, 31], "each": [2, 3, 4, 5, 15, 19, 23, 25, 26, 28, 30, 31], "correct": [2, 3, 5, 17, 19, 28, 29], "when": [2, 3, 6, 15, 19, 23, 28, 29, 30, 31], "take": [2, 3], "look": [2, 3], "proport": [2, 3, 5, 26], "faster": [2, 3, 15, 19, 25, 27, 28], "depend": [2, 3, 19, 28, 29], "stimuli": [2, 3, 5, 15, 28], "express": [2, 3, 19], "bpm": [2, 3, 5, 15, 19, 26, 28], "size": [2, 3, 5, 6, 15], "circl": [2, 3, 5], "repres": [2, 3, 4, 5, 26], "were": [2, 3, 5, 23], "present": [2, 3, 6, 8, 15, 18, 23, 26, 27, 28], "fig": [2, 3, 5], "ax": [2, 3, 4, 5], "subplot": [2, 3, 4, 5], "figsiz": [2, 3, 4, 5], "8": [2, 3, 4, 5, 29], "ii": [2, 3, 5], "enumer": [2, 3, 5], "sort": [2, 5], "uniqu": [2, 3, 5, 15], "resp": [2, 5], "sum": [2, 3, 4, 5], "o": [2, 3, 5], "color": [2, 3, 5], "4c72b0": [2, 3, 5], "markeredgecolor": [2, 3, 5], "k": [2, 5], "markers": [2, 3, 5], "ylabel": [2, 3, 5], "p": [2, 3, 5, 29], "_": [2, 3, 4, 5], "xlabel": [2, 3, 5], "delta": [2, 3, 5, 28], "tight_layout": [2, 3, 5], "despin": [2, 3, 5], "wa": [2, 3, 5, 17, 19, 25, 26, 27, 28], "defin": [2, 3, 4, 5, 15, 19, 31], "r_": [2, 3, 26], "sim": [2, 3, 26], "mathcal": [2, 3, 26], "binomi": [2, 3, 26], "theta_": [2, 3, 26], "n_": [2, 3, 26, 28], "phi_": [2, 3, 26], "x_": [2, 3, 26], "beta": [2, 3, 26], "frac": [2, 3, 26, 28], "erf": [2, 3, 26], "sqrt": [2, 3, 26], "uniform": [2, 3, 15, 26], "40": [2, 3, 4, 5, 28], "where": [2, 3, 4, 5, 6, 15, 24, 27, 28, 31], "denot": [2, 26], "error": [2, 3, 26], "phi": [2, 3, 26], "cumul": [2, 3, 26, 28], "creat": [2, 3, 5, 6, 11, 12, 13, 14, 15, 24, 27, 30], "own": [2, 3, 4, 5, 31], "distribut": [2, 3, 5, 15], "def": [2, 3, 5], "cumulative_norm": [2, 3], "x": [2, 3, 5, 29], "standard": [2, 3, 5, 26, 28, 31], "return": [2, 3, 5, 9, 11, 12, 13, 14, 17, 19, 22, 23, 25, 26, 30], "preprocess": [2, 3, 5, 31], "hit": [2, 3, 5, 28], "r": [2, 3, 4, 5], "zero": [2, 3, 5], "163": [2, 3], "arang": [2, 3, 4, 5], "41": [2, 3], "remov": [2, 3, 4, 5, 23, 31], "validmask": [2, 3], "xij": [2, 3], "nij": [2, 3], "rij": [2, 3], "subject_psychophys": 2, "lower": [2, 3, 17, 19], "upper": [2, 3], "halfnorm": [2, 3], "thetaij": [2, 3], "determinist": [2, 3], "rij_": [2, 3], "observ": [2, 3, 28], "model_to_graphviz": [2, 3], "idata": [2, 3], "sampl": [2, 3, 4, 26], "chain": [2, 3], "4": [2, 3, 4, 5, 15, 28, 29, 31], "auto": [2, 3], "assign": [2, 3], "nut": [2, 3], "sampler": [2, 3], "initi": [2, 3, 5], "jitter": [2, 3, 15], "adapt_diag": [2, 3], "multiprocess": [2, 3], "job": [2, 3], "00": [2, 3], "8000": [2, 3], "02": [2, 3, 30], "lt": [2, 3], "diverg": [2, 3], "1_000": [2, 3], "tune": [2, 3], "draw": [2, 3, 6, 10, 15], "iter": [2, 3], "4_000": [2, 3], "took": [2, 3], "attributeerror": [2, 3], "traceback": [2, 3, 4, 5], "most": [2, 3, 4, 5, 28, 30, 31], "recent": [2, 3, 4, 5, 28, 31], "call": [2, 3, 4, 5, 28, 30, 31], "last": [2, 3, 4, 5, 28, 31], "file": [2, 3, 4, 5, 17, 23, 25, 26, 28, 30, 31], "opt": [2, 3], "hostedtoolcach": [2, 3], "9": [2, 3, 4, 29], "x64": [2, 3], "lib": [2, 3], "python3": [2, 3], "site": [2, 3], "py": [2, 3, 5, 6, 15, 28, 31], "342": [2, 3], "make_attr": [2, 3], "attr": [2, 3], "librari": [2, 3], "341": [2, 3], "try": [2, 3, 5, 27], "version": [2, 3, 5, 6, 12, 15, 19, 27, 28, 31], "importlib": [2, 3], "metadata": [2, 3], "library_nam": [2, 3], "343": [2, 3], "default_attr": [2, 3], "inference_library_vers": [2, 3], "modul": [2, 3, 4, 5, 30], "attribut": [2, 3, 6, 15], "handl": [2, 3, 5], "abov": [2, 3, 26], "except": [2, 3, 5, 15], "anoth": [2, 3, 31], "occur": [2, 3, 28], "cell": [2, 3, 4, 5], "line": [2, 3, 4, 5, 31], "mcmc": [2, 3, 26], "826": [2, 3], "random_se": [2, 3], "progressbar": [2, 3], "step": [2, 3, 5, 6, 15, 28, 30, 31], "var_nam": [2, 3], "nuts_sampl": [2, 3], "initv": [2, 3], "init": [2, 3], "jitter_max_retri": [2, 3], "n_init": [2, 3], "trace": [2, 3, 5], "discard_tuned_sampl": [2, 3], "compute_convergence_check": [2, 3], "keep_warning_stat": [2, 3], "return_inferencedata": [2, 3], "idata_kwarg": [2, 3], "nuts_sampler_kwarg": [2, 3], "callback": [2, 3], "mp_ctx": [2, 3], "kwarg": [2, 3], "822": [2, 3], "t_sampl": [2, 3], "time": [2, 3, 4, 6, 9, 15, 17, 19, 25, 27, 28, 29, 30, 31], "t_start": [2, 3], "824": [2, 3], "825": [2, 3], "make": [2, 3, 31], "easier": [2, 3], "refactor": [2, 3], "_sample_return": [2, 3], "827": [2, 3], "run": [2, 3, 6, 7, 9, 10, 15, 19, 20, 27, 28, 30], "828": [2, 3], "829": [2, 3], "830": [2, 3], "831": [2, 3], "832": [2, 3], "833": [2, 3], "834": [2, 3], "835": [2, 3], "836": [2, 3], "837": [2, 3], "894": [2, 3], "892": [2, 3], "ikwarg": [2, 3], "dict": [2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], "str": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 17, 19, 22, 24, 25, 26], "ani": [2, 3, 26, 31], "save_warmup": [2, 3], "893": [2, 3], "updat": [2, 3, 19], "to_inference_data": [2, 3], "mtrace": [2, 3], "896": [2, 3], "897": [2, 3], "run_convergence_check": [2, 3], "backend": [2, 3], "525": [2, 3], "prior": [2, 3, 28], "posterior_predict": [2, 3], "log_likelihood": [2, 3], "log_prior": [2, 3], "coord": [2, 3], "dim": [2, 3], "sample_dim": [2, 3], "include_transform": [2, 3], "522": [2, 3], "isinst": [2, 3], "inferencedata": [2, 3], "523": [2, 3], "inferencedataconvert": [2, 3], "526": [2, 3], "527": [2, 3], "528": [2, 3], "529": [2, 3], "530": [2, 3], "531": [2, 3], "532": [2, 3], "533": [2, 3], "534": [2, 3], "535": [2, 3], "536": [2, 3], "537": [2, 3], "429": [2, 3], "self": [2, 3], "421": [2, 3], "422": [2, 3], "convert": [2, 3, 4, 30], "avail": [2, 3], "object": [2, 3, 6, 10, 15, 28], "423": [2, 3], "424": [2, 3], "note": [2, 3, 15, 19, 23], "can": [2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 15, 19, 22, 23, 25, 26, 27, 28, 30, 31], "e": [2, 3, 5, 6, 15, 23, 28, 30, 31], "g": [2, 3, 6, 15, 28, 30, 31], "425": [2, 3], "posterior": [2, 3, 5, 15], "sample_stat": [2, 3], "426": [2, 3], "have": [2, 3, 15, 27, 28, 31], "those": [2, 3, 22], "427": [2, 3], "428": [2, 3], "id_dict": [2, 3], "posterior_to_xarrai": [2, 3], "430": [2, 3], "sample_stats_to_xarrai": [2, 3], "431": [2, 3], "posterior_predictive_to_xarrai": [2, 3], "432": [2, 3], "predict": [2, 3, 5], "predictions_to_xarrai": [2, 3], "433": [2, 3], "priors_to_xarrai": [2, 3], "434": [2, 3], "observed_data": [2, 3], "observed_data_to_xarrai": [2, 3], "435": [2, 3], "436": [2, 3], "437": [2, 3], "predictions_constant_data": [2, 3], "constant_data_to_xarrai": [2, 3], "65": [2, 3], "requir": [2, 3, 23, 25, 26, 30, 31], "__call__": [2, 3], "local": [2, 3, 28, 31], "wrap": [2, 3], "cl": [2, 3], "63": [2, 3], "getattr": [2, 3], "prop_i": [2, 3], "none": [2, 3, 5, 6, 10, 15, 17, 19, 23, 24, 31], "prop": [2, 3], "64": [2, 3], "func": [2, 3, 6, 15], "279": [2, 3, 4], "274": [2, 3], "posterior_trac": [2, 3], "275": [2, 3], "arrai": [2, 3, 5, 6], "276": [2, 3], "get_valu": [2, 3], "combin": [2, 3], "squeez": [2, 3], "277": [2, 3], "278": [2, 3, 4], "dict_to_dataset": [2, 3], "280": [2, 3], "281": [2, 3], "282": [2, 3], "283": [2, 3], "284": [2, 3], "285": [2, 3], "286": [2, 3], "287": [2, 3], "data_warmup": [2, 3], "288": [2, 3], "289": [2, 3], "290": [2, 3], "291": [2, 3], "292": [2, 3], "293": [2, 3], "318": [2, 3], "default_dim": [2, 3], "index_origin": [2, 3], "skip_event_dim": [2, 3], "304": [2, 3], "306": [2, 3], "data_var": [2, 3], "307": [2, 3], "kei": [2, 3, 6, 15, 19], "numpy_to_data_arrai": [2, 3], "308": [2, 3], "316": [2, 3], "item": [2, 3], "317": [2, 3], "xr": [2, 3], "dataset": [2, 3, 30], "344": [2, 3], "packagenotfounderror": [2, 3], "345": [2, 3], "hasattr": [2, 3], "__version__": [2, 3], "346": [2, 3], "plot_trac": [2, 3], "summari": [2, 3, 23], "mean": [2, 3, 5, 26, 27], "sd": [2, 3], "hdi_3": [2, 3], "hdi_97": [2, 3], "mcse_mean": [2, 3], "mcse_sd": [2, 3], "ess_bulk": [2, 3], "ess_tail": [2, 3], "r_hat": [2, 3], "197": 2, "576": 2, "664": 2, "143": 2, "029": 2, "021": 2, "3149": 2, "2042": 2, "438": 2, "843": 2, "866": 2, "037": 2, "026": 2, "2712": 2, "2349": 2, "threshold": [2, 3, 5, 15, 23, 25, 27, 28, 29, 30], "point": [2, 5, 28], "equal": [2, 28], "design": [2, 28], "had": 2, "which": [2, 6, 10, 15, 23, 27, 28, 30], "just": [2, 31], "slightli": [2, 15, 27], "posit": [2, 26], "slope": [2, 3, 5, 15, 23, 25, 26, 27, 28, 29, 30], "higher": [2, 17, 19], "around": [2, 26], "46": [2, 4], "extrac": [2, 3], "alpha_sampl": [2, 3], "flatten": 2, "beta_sampl": [2, 3], "some": [2, 3, 15, 31], "b": [2, 3], "zip": [2, 3, 5], "linspac": [2, 3, 5], "500": [2, 3, 5], "cdf": [2, 3, 5], "loc": [2, 3, 4, 5], "scale": [2, 3, 5, 6, 15, 16, 18, 19, 25], "08": [2, 29], "linewidth": [2, 3, 5], "averag": [2, 3, 5, 25, 26], "paramet": [2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 30, 31], "show": [2, 4, 5, 18], "load_ext": [2, 3], "watermark": [2, 3], "v": [2, 3], "iv": [2, 3], "w": [2, 3, 5, 29], "fri": [2, 3], "nov": [2, 3], "2023": [2, 3], "cpython": [2, 3], "18": [2, 3, 4, 5, 29, 31], "ipython": [2, 3], "16": [2, 3, 29], "17": [2, 3, 29], "infer": [3, 15, 26, 30], "hyperprior": 3, "alpha_": 3, "mu_": 3, "sigma_": 3, "beta_": 3, "50": [3, 4, 5, 15, 26, 28], "sub_tot": 3, "index": [3, 4, 5, 15], "nsubj": 3, "nuniqu": [3, 5], "x_total": 3, "n_total": 3, "r_total": 3, "sub": [3, 30], "sub_df": 3, "sub_vec": 3, "len": [3, 4, 5], "extend": [3, 31], "group_psychophys": 3, "mu_alpha": 3, "sigma_alpha": 3, "sigma": 3, "mu_beta": 3, "sigma_beta": 3, "mu": 3, "shape": [3, 5], "26": 3, "147": 3, "216": 3, "246": 3, "263": 3, "646": 3, "004": 3, "003": 3, "4175": 3, "3124": 3, "924": 3, "236": 3, "479": 3, "3320": 3, "3141": 3, "plot_posterior": 3, "center": 3, "individu": [3, 22, 25, 26], "grai": [3, 5], "05": [3, 5], "15": [3, 5, 26], "markeredgewidth": 3, "captur": [4, 5], "sy": [4, 5], "googl": [4, 5, 30], "colab": [4, 5, 30], "pip": [4, 5, 31], "instal": [4, 5], "metadpi": [4, 5, 23, 25, 31], "pathlib": [4, 5, 30], "path": [4, 5, 6, 15, 23, 24, 30, 31], "date": [4, 31], "date2num": 4, "ppg_peak": [4, 5], "plot": [4, 5], "plot_raw": 4, "plot_subspac": 4, "inlin": [4, 5], "report": [4, 5, 27, 28], "folder": [4, 5, 24, 30, 31], "should": [4, 5, 6, 15, 23, 24, 27, 28], "adapt": [4, 5, 27, 28, 29, 30, 31], "resultpath": [4, 5, 6, 15, 24, 31], "cwd": [4, 5, 30], "hbc": [4, 24, 27, 28, 31], "reportpath": [4, 5, 24, 31], "ensur": [4, 5, 23], "instanc": [4, 5, 6, 15, 17], "case": [4, 5, 15, 23, 28], "thei": [4, 5, 27, 28], "pass": [4, 5, 31], "through": [4, 5, 6, 15, 26, 28], "search": 4, "end": [4, 6, 15], "results_df": [4, 25, 26, 30], "glob": [4, 5], "datafram": [4, 15, 22, 23, 25, 26, 30], "df": [4, 5], "ntrial": [4, 5, 9, 15, 19, 31], "durat": [4, 7, 9], "36": 4, "146": 4, "27": [4, 29], "909": 4, "29": 4, "35": [4, 28], "39": [4, 29], "45": [4, 28], "47": [4, 29], "007": 4, "23": [4, 31], "635": 4, "npy": [4, 5], "rang": [4, 5, 6, 15, 19, 28], "section": 4, "togeth": [4, 27, 28, 31], "peak": [4, 5], "instantan": [4, 5], "frequenc": [4, 5, 19, 26, 27, 28, 31], "interv": [4, 5, 15, 28], "deriv": [4, 5, 27, 28], "below": [4, 27, 30, 31], "seri": [4, 5, 6, 15, 29], "rr": [4, 5], "describ": [4, 28, 31], "lipponen": [4, 29], "tarvainen": [4, 29], "2019": [4, 27, 29], "shade": [4, 5], "area": [4, 5], "pre": [4, 6, 15], "post": 4, "period": [4, 6, 7, 27, 28], "insid": [4, 5, 19], "automat": [4, 31], "print": [4, 5], "clean_extra": 4, "true": [4, 5, 6, 8, 11, 12, 13, 14, 15, 17, 18, 19, 22, 27, 28, 31], "sfreq": [4, 5], "1000": [4, 5], "show_heart_r": 4, "window": [4, 6, 10, 15, 28], "need": [4, 26, 30, 31], "intern": 4, "represent": 4, "easili": [4, 27, 30, 31], "x_vec": 4, "to_datetim": 4, "unit": [4, 26], "origin": [4, 27, 28, 29], "unix": 4, "l": [4, 29], "axvspan": [4, 5], "iloc": [4, 5], "int": [4, 5, 6, 9, 15, 19], "diff": [4, 5], "ncol": [4, 5], "trial_count": 4, "beat": [4, 7, 19, 26, 29, 30], "append": [4, 5], "typeerror": 4, "14": 4, "got": 4, "unexpect": 4, "argument": [4, 6, 15, 22, 25, 26, 31], "add": [4, 6], "score": [4, 5, 27, 29], "ab": [4, 29], "894737": 4, "784615": 4, "835294": 4, "51": 4, "918367": 4, "916667": 4, "uncom": [4, 5], "to_csv": [4, 5], "process": 4, "pingouin": [5, 31], "pg": 5, "sdt": [5, 23, 25, 30], "plot_confid": 5, "discreter": 5, "trials2count": 5, "modulenotfounderror": 5, "No": [5, 19], "name": [5, 27, 30], "notebook": [5, 30, 31], "introduc": [5, 28], "basic": [5, 31], "qualiti": [5, 30, 31], "check": [5, 17, 19, 28, 30, 31], "current": [5, 31], "young": 5, "launcher": 5, "80": 5, "per": [5, 15, 26, 28], "up": [5, 15, 19, 28], "down": [5, 15, 19, 28], "target": 5, "directori": [5, 6, 15, 31], "variabl": [5, 7, 22, 24, 25, 26, 28, 29, 30], "includ": [5, 11, 12, 13, 14, 15, 18, 30], "behaviour": [5, 15, 22, 23, 24, 28], "intero_posterior": 5, "extero_posterior": 5, "log": 5, "histori": 5, "interopost": 5, "exteropost": 5, "signal_df": [5, 15], "palett": 5, "b55d60": 5, "5f9e6e": 5, "boxplot": 5, "y": 5, "hue": 5, "responsecorrect": 5, "width": 5, "notch": 5, "stripplot": 5, "dodg": 5, "set_titl": 5, "set_ylabel": 5, "set_xlabel": 5, "get_legend": 5, "trim": 5, "get_legend_handles_label": 5, "legend": 5, "incorrect": [5, 19], "bbox_to_anchor": 5, "borderaxespad": 5, "0x7efcf4935eb0": 5, "phase": [5, 15, 17, 26], "red": 5, "green": 5, "perforamc": 5, "d": [5, 23, 28, 29, 30], "criterion": [5, 23, 25], "cond": 5, "intero": [5, 15, 19], "copi": [5, 31], "responsebpm": [5, 19], "miss": 5, "fa": 5, "cr": 5, "hr": 5, "far": 5, "dprime": [5, 23, 25], "hit_rat": 5, "fa_rat": 5, "prime": [5, 23, 30], "38023349795524": 5, "4602326313983878": 5, "699085962223946": 5, "382121415010272": 5, "ratingprovid": [5, 19], "isnul": 5, "new_confid": 5, "astyp": 5, "nr_s1": 5, "nr_s2": 5, "ception": 5, "invalid": 5, "histplot": 5, "overlap": 5, "suggest": 5, "perform": [5, 23, 26, 29, 30], "col": 5, "c44e52": 5, "hist": 5, "bin": 5, "histtyp": 5, "stepfil": 5, "ec": 5, "densiti": 5, "align": [5, 28], "mid": 5, "nrow": 5, "ci": 5, "cumsum": 5, "025": 5, "975": 5, "stair": 5, "updown": [5, 15], "ciup": 5, "cilow": 5, "t": 5, "low": [5, 15, 28], "rg": 5, "fill_between": 5, "y1": 5, "y2": 5, "high": [5, 15, 28], "linestyl": 5, "differ": [5, 15, 19, 26, 27, 28, 30], "catch": [5, 15], "trialcond": 5, "pointcol": 5, "marker": 5, "axhlin": 5, "set_ylim": 5, "52": 5, "gcf": 5, "figur": 5, "evolut": 5, "For": [5, 25, 31], "connect": 5, "dash": 5, "alloc": [5, 15], "interleav": [5, 28], "start": [5, 6, 15, 17, 19, 28], "respect": [5, 15, 31], "maxim": 5, "amount": 5, "inform": [5, 26, 29], "remain": 5, "monitor": [5, 15, 27], "dual": 5, "reliabl": [5, 27, 28], "procedur": [5, 19, 27, 28], "compar": [5, 26, 27, 28], "longer": 5, "fit": [5, 23, 30, 31], "reflect": 5, "level": [5, 25, 30], "graph": 5, "blue": 5, "help": [5, 30], "algorithm": [5, 28, 29, 30], "bad": 5, "mark": 5, "met": 5, "outlier": [5, 23], "mad": 5, "rule": [5, 28], "deviat": [5, 26], "larger": 5, "than": [5, 19, 25, 26, 28, 30], "drop": 5, "bpm_std": 5, "bpm_df": 5, "clean_df": 5, "dtype": 5, "bool": [5, 6, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22], "els": 5, "downsampl": 5, "memori": 5, "60000": 5, "concat": 5, "nepoch": 5, "absolut": [5, 28], "madmedianrul": 5, "to_numpi": 5, "groupbi": 5, "std": 5, "meanbpm": 5, "stdbpm": 5, "rangebpm": 5, "sharex": 5, "3a5799": 5, "3bb0ac": 5, "max": 5, "min": 5, "grid": 5, "affect": 5, "frequneci": 5, "between": [5, 15, 19, 23, 26, 27, 28], "pseudo": 5, "rapid": 5, "increas": 5, "decreas": 5, "lead": 5, "delet": 5, "metric": [5, 23], "after": [5, 6, 17, 28], "reject": 5, "001": [6, 15], "serialport": [6, 15, 31], "com3": [6, 15], "taskvers": [6, 28], "garfinkel": 6, "setup": [6, 11, 12, 13, 14, 15, 31], "behavior": [6, 11, 12, 13, 14, 15, 31], "screennb": [6, 15, 31], "fullscr": [6, 15], "option": [6, 9, 15, 16, 17, 19, 24], "systole_kw": [6, 15], "count": [6, 7, 9, 10, 27, 29, 30, 31], "id": [6, 15], "exterostaircas": 6, "save": [6, 15, 24, 30, 31], "screen": [6, 15], "parametr": [6, 15, 31], "psychopi": [6, 10, 15, 17, 31], "visual": [6, 10, 15, 30], "usb": [6, 15, 27, 31], "port": [6, 15, 28], "puls": [6, 15, 27, 28, 31], "oximet": [6, 15, 27, 28, 31], "plug": [6, 15, 27], "written": [6, 15], "string": [6, 15], "context": [6, 15], "nonin": [6, 15, 27, 28, 31], "addit": [6, 15, 22, 25, 26, 27, 28, 31], "oxmet": [6, 15], "shandri": 6, "1d": 6, "like": 6, "rest": [6, 9, 28], "train": [6, 8, 18, 28], "confscal": [6, 15, 19], "heartlogo": [6, 15], "imagestim": 6, "imag": [6, 15, 31], "labelsr": [6, 15], "notestart": 6, "sound": [6, 15, 17, 19, 31], "plai": [6, 17], "notestop": 6, "work": [6, 15, 27], "random": [6, 28], "order": [6, 28], "instead": [6, 19, 31], "evalu": 6, "restlength": 6, "length": [6, 28], "300": [6, 7], "restlogo": 6, "restperiod": 6, "propos": [6, 19, 28], "befor": [6, 7, 15, 20, 21, 23, 31], "serial": [6, 15], "activ": [6, 15, 31], "startkei": [6, 15], "press": [6, 15], "next": [6, 15], "text": [6, 11, 12, 13, 14, 15], "dictionari": [6, 11, 12, 13, 14, 15, 16, 17, 28, 31], "textsiz": [6, 15], "float": [6, 7, 9, 15, 16, 17, 19], "trigger": [6, 15], "callabl": [6, 15], "function": [6, 15, 22, 23, 25, 26, 27, 28, 31], "execut": [6, 15, 31], "correspond": [6, 15, 28, 31], "sequenc": [6, 8, 15], "sent": [6, 15], "trialstart": [6, 15], "trialstop": [6, 15], "listeningstart": [6, 15], "listeningstop": [6, 15], "decisionstart": [6, 15], "decisionstop": [6, 15], "confidencestart": [6, 15], "confidencestop": [6, 15], "win": [6, 10, 15, 31], "state": 7, "runtutori": [8, 18, 31], "entir": 8, "tutori": [8, 15, 18], "feedback": [8, 15, 17, 18, 19, 28], "tupl": [9, 16, 17, 19], "lenght": 9, "ncount": 9, "collect": [11, 12, 13, 14], "instruct": [11, 12, 13, 14, 15, 29], "keyboard": [11, 12, 13, 14, 15, 16], "mous": [11, 12, 13, 14, 15, 16], "experiment": [11, 12, 13, 14, 27, 28, 31], "danish": [12, 13, 15], "simplifi": [12, 15], "children": 12, "subjecttest": 15, "stairtyp": [15, 28], "catchtrial": 15, "120": 15, "nbreak": 15, "20": [15, 28], "languag": 15, "english": 15, "mani": [15, 28], "aesthet": 15, "herein": 15, "intend": 15, "flexibl": 15, "modular": 15, "without": [15, 27, 28, 31], "choic": [15, 19, 28], "simpli": [15, 28, 30, 31], "chang": [15, 23, 28, 31], "further": 15, "underli": [15, 26], "code": [15, 22, 25, 26, 27, 28, 30, 31], "select": 15, "how": [15, 28, 29, 30], "half": 15, "full": [15, 27], "mode": [15, 28], "danish_children": 15, "french": 15, "break": 15, "nstaircas": 15, "staircas": [15, 19, 23, 25, 27, 29, 30, 31], "indic": [15, 19, 22, 25], "experi": [15, 28, 29], "ratio": 15, "extrem": [15, 28], "recommend": [15, 23, 28, 30, 31], "ehavior": 15, "type": 15, "channel": 15, "event": 15, "stamp": [15, 17, 19], "encod": 15, "hrcutoff": 15, "cut": 15, "off": 15, "exterocondit": 15, "isi": 15, "inter": 15, "stimulu": [15, 19, 28], "form": 15, "gener": [15, 30, 31], "fix": [15, 28], "lambdaextero": 15, "3d": 15, "lambdaintero": 15, "listenlogo": 15, "maxratingtim": 15, "maximum": [15, 28], "minratingtim": 15, "minimum": [15, 28], "nconfid": 15, "nfeedback": 15, "nfinger": 15, "finger": 15, "decid": [15, 25], "place": 15, "response_kei": 15, "possibl": [15, 28], "slower": [15, 19, 25, 26, 27, 28], "store": [15, 24, 30], "entri": 15, "staircasetyp": 15, "stairc": 15, "respmax": 15, "element": 15, "input": [16, 21, 30], "this_hr": 17, "wav": 17, "responsemadetrigg": [17, 19], "response_trigg": 17, "response_provid": [17, 19], "otherwis": [17, 23], "is_correct": [17, 19], "confidencer": [18, 19, 31], "whether": [18, 22, 25, 28], "extro": 19, "been": [19, 28, 31], "ad": 19, "boolean": 19, "do": [19, 28], "displai": 19, "tone": [19, 25, 26, 27, 28], "thefeebdack": 19, "rt": 19, "deliv": 19, "feed": 19, "ye": 19, "ratig": 19, "starttrigg": 19, "soundtrigg": 19, "ratingstarttrigg": 19, "ratingendtrigg": 19, "timepoint": 19, "wait": 21, "continu": 21, "union": [22, 23], "pathlik": [22, 23, 24], "participant_id": [22, 25, 26], "additional_vari": [22, 25, 26], "behavioural_indic": 22, "psychophysical_indic": 22, "metacognitive_indic": 22, "extrat": 22, "concaten": 22, "ref": 22, "see": [22, 27, 28, 30, 31], "document": [22, 28, 31], "detail": [22, 28, 30, 31], "merg": [22, 25, 26], "multipl": [22, 25, 26], "specifi": [22, 25, 26], "separ": [22, 25, 26], "psychometr": [23, 25, 26, 27, 28, 29, 30], "both": [23, 31], "onlin": [23, 27, 28, 30], "output": [23, 30], "bayesian": [23, 26, 29], "bayesian_slop": [23, 26], "bayesian_threshold": [23, 26], "classic": [23, 28, 29], "sensit": [23, 25, 28], "meta": [23, 28, 30], "bayesian_dprim": 23, "bayesian_criterion": 23, "bayesian_meta_d": 23, "bayesian_m_ratio": 23, "vari": 23, "It": [23, 28, 30], "consist": [23, 28], "least": [23, 28], "credit": 23, "either": [23, 27, 28, 30], "summary_df": [23, 25, 26], "statist": 23, "split": 23, "dev": 23, "legrandnico": [23, 31], "result_path": [24, 30], "report_path": [24, 30], "html": 24, "curv": 25, "decision_mean_rt": 25, "decision_median_rt": 25, "median": 25, "confidence_mean_rt": 25, "confidence_median_rt": 25, "confidence_mean": 25, "same": [25, 26], "what": [25, 26, 29], "bia": [25, 26, 27, 28], "model": [26, 27], "real": [26, 28], "x_i": 26, "To": [26, 28], "neg": 26, "find": [26, 30, 31], "belief_mean": 26, "belief_std": 26, "psi_": 26, "under": [26, 29], "hypothesi": 26, "200": 26, "assum": [26, 30], "therefor": 26, "minut": [26, 28], "equat": 26, "hr_mean": 26, "hr_std": 26, "omega_": 26, "everi": 26, "over": 26, "listen": [26, 28], "fork": 27, "repositori": 27, "while": 27, "ecg": [27, 31], "lab": [27, 28], "my": 27, "previou": [27, 30], "taken": 27, "sinc": 27, "am": 27, "unabl": [27, 28], "maintain": 27, "allow": 27, "me": 27, "pursu": 27, "mainten": 27, "aim": 27, "tool": 27, "gather": 27, "rainer": [27, 29], "schandri": [27, 28, 29], "dale": [27, 28, 29], "anderson": [27, 28, 29], "1978": [27, 28, 29], "1981": [27, 28, 29], "given": [27, 31], "manipul": [27, 28], "offlin": [27, 28, 30], "effici": [27, 28, 30], "similar": [27, 30], "term": 27, "conflat": 27, "lack": 27, "easi": 27, "support": [27, 31], "via": [27, 31], "cheap": 27, "oximetri": 27, "new": [27, 31], "ground": [27, 28], "reason": [27, 28], "other": [27, 28, 31], "minim": [27, 31], "3012lp": [27, 31], "xpod": [27, 31], "8000sm": [27, 31], "soft": [27, 31], "clip": [27, 31], "fingertip": [27, 31], "sensor": [27, 31], "directli": [27, 28], "stim": 27, "pc": 27, "integr": [27, 31], "eeg": 27, "fmri": 27, "question": 27, "regard": 27, "want": [27, 30, 31], "bug": 27, "discuss": 27, "pleas": [27, 31], "investig": 28, "formal": 28, "ago": 28, "come": 28, "sever": [28, 31], "variant": 28, "concern": 28, "attend": 28, "variou": 28, "effect": 28, "feel": 28, "60": 28, "three": 28, "hart": [28, 29], "2013": [28, 29], "manual": 28, "silent": 28, "hear": 28, "consid": 28, "wide": 28, "formula": 28, "left": 28, "right": 28, "prompt": [28, 31], "calcul": 28, "awar": [28, 29], "relationship": 28, "runtim": 28, "approxim": 28, "read": 28, "compon": 28, "configur": 28, "cornsweet": [28, 29], "1962": [28, 29], "adjust": 28, "auditori": 28, "thu": 28, "accord": 28, "truth": 28, "correctli": [28, 31], "converg": 28, "71": 28, "randomli": 28, "versu": 28, "optim": 28, "simpl": [28, 29], "kontsevich": [28, 29], "tyler": [28, 29], "1999": [28, 29], "gaussian": 28, "treat": 28, "uncertainti": 28, "nuisanc": 28, "guess": 28, "laps": 28, "altern": 28, "forc": 28, "paradigm": 28, "acknowledg": 28, "difficult": 28, "ferentzi": [28, 29], "poorli": 28, "relat": 28, "actual": [28, 29], "desmedt": [28, 29], "2020": [28, 29], "fundament": 28, "mathemat": 28, "zamariola": [28, 29], "2018": [28, 29], "distinguish": 28, "ring": [28, 29], "brener": [28, 29], "1996": [28, 29], "interoceptor": 28, "non": 28, "crucial": 28, "cannot": 28, "furthermor": 28, "ill": 28, "suit": 28, "few": 28, "overal": 28, "fleme": [28, 29], "lau": [28, 29], "2014": [28, 29], "too": 28, "multifacet": 28, "concept": 28, "factor": 28, "systemat": 28, "inde": 28, "know": 28, "becaus": 28, "he": 28, "she": 28, "good": 28, "lucki": 28, "With": 28, "focu": 28, "wai": [28, 30], "suppos": 28, "howev": [28, 31], "veri": 28, "rigor": 28, "manner": 28, "robustli": 28, "alexand": 29, "david": 29, "voluntari": 29, "field": 29, "percept": 29, "perceptu": 29, "motor": 29, "skill": 29, "79": 29, "85": 29, "pmid": 29, "704264": 29, "2466": 29, "arxiv": 29, "emot": 29, "psychophysiologi": 29, "483": 29, "488": 29, "onlinelibrari": 29, "wilei": 29, "1111": 29, "1469": 29, "8986": 29, "tb02486": 29, "pdf": 29, "nova": 29, "john": 29, "mcgowan": 29, "ludovico": 29, "minati": 29, "hugo": 29, "critchlei": 29, "regul": 29, "bodili": 29, "sensat": 29, "intact": 29, "borderlin": 29, "person": 29, "disord": 29, "506": 29, "518": 29, "22928847": 29, "1521": 29, "pedi_2012_26_049": 29, "pedi": 29, "_2012": 29, "_26": 29, "_049": 29, "tom": 29, "american": 29, "485": 29, "491": 29, "jstor": 29, "stabl": 29, "1419876": 29, "visit": 29, "leonid": 29, "christoph": 29, "vision": 29, "2729": 29, "2737": 29, "s0042698998002855": 29, "s0042": 29, "6989": 29, "98": 29, "00285": 29, "eszter": 29, "oliv": 29, "wilhelm": 29, "ferenc": 29, "k\u00f6tele": 29, "trend": 29, "cognit": 29, "s1364661322001668": 29, "tic": 29, "07": 29, "009": 29, "olivi": 29, "corneil": 29, "luminet": 29, "jennif": 29, "murphi": 29, "geoffrei": 29, "bird": 29, "pierr": 29, "maurag": 29, "contribut": 29, "knowledg": 29, "154": 29, "107904": 29, "s0301051120300648": 29, "giorgia": 29, "problemat": 29, "evid": 29, "bivari": 29, "correl": 29, "137": 29, "s0301051118303739": 29, "06": 29, "006": 29, "jasper": 29, "influenc": 29, "33": 29, "541": 29, "546": 29, "tb02430": 29, "stephen": 29, "hakwan": 29, "frontier": 29, "human": 29, "neurosci": 29, "frontiersin": 29, "3389": 29, "fnhum": 29, "00443": 29, "jukka": 29, "mika": 29, "artefact": 29, "classif": 29, "medic": 29, "engin": 29, "technologi": 29, "43": 29, "173": 29, "181": 29, "31314618": 29, "1080": 29, "03091902": 29, "1640306": 29, "stan": 30, "script": 30, "autom": 30, "obtain": 30, "specif": 30, "straightforward": 30, "user": 30, "exemplifi": 30, "01": 30, "data_fold": 30, "found": 30, "iterdir": 30, "happen": 30, "product": [30, 31], "especi": 30, "being": 30, "command": [30, 31], "produc": 30, "navig": 30, "click": [30, 31], "link": [30, 31], "them": 30, "badg": 30, "upload": 30, "assess": 30, "introduct": 30, "oppos": 30, "comparison": 30, "develop": 31, "branch": 31, "git": 31, "yml": 31, "root": 31, "anaconda": 31, "env": 31, "later": 31, "latest": 31, "sure": 31, "pyseri": 31, "papermil": 31, "ones": 31, "often": 31, "older": 31, "compat": 31, "necessari": 31, "160": 31, "mo": 31, "uninstal": 31, "access": 31, "nativ": 31, "remot": 31, "rda": 31, "brainvis": 31, "brain": 31, "exg": 31, "amplifi": 31, "class": 31, "interfac": 31, "kind": 31, "submodul": 31, "getparamet": 31, "onc": 31, "snippet": 31, "global": 31, "subject_01": 31, "close": 31, "wrapper": 31, "termin": 31, "desktop": 31, "bat": 31, "ex": 31, "paus": 31, "comprehens": 31, "locat": 31}, "objects": {"cardioception.HBC.parameters": [[6, 0, 1, "", "getParameters"]], "cardioception.HBC.task": [[7, 0, 1, "", "rest"], [8, 0, 1, "", "run"], [9, 0, 1, "", "trial"], [10, 0, 1, "", "tutorial"]], "cardioception.HRD.languages": [[11, 0, 1, "", "danish"], [12, 0, 1, "", "danish_children"], [13, 0, 1, "", "english"], [14, 0, 1, "", "french"]], "cardioception.HRD.parameters": [[15, 0, 1, "", "getParameters"]], "cardioception.HRD.task": [[16, 0, 1, "", "confidenceRatingTask"], [17, 0, 1, "", "responseDecision"], [18, 0, 1, "", "run"], [19, 0, 1, "", "trial"], [20, 0, 1, "", "tutorial"], [21, 0, 1, "", "waitInput"]], "cardioception.reports": [[22, 0, 1, "", "group_level_preprocessing"], [23, 0, 1, "", "preprocessing"], [24, 0, 1, "", "report"]], "cardioception.stats": [[25, 0, 1, "", "behaviours"], [26, 0, 1, "", "psychophysics"]]}, "objtypes": {"0": "py:function"}, "objnames": {"0": ["py", "function", "Python function"]}, "titleterms": {"tabl": 0, "content": 0, "api": 0, "task": [0, 4, 5, 7, 8, 9, 10, 16, 17, 18, 19, 20, 21, 28, 31], "heart": [0, 5, 28], "beat": [0, 28], "count": [0, 4, 28], "paramet": [0, 6, 15], "script": [0, 31], "rate": [0, 5, 28], "discrimin": [0, 5, 28], "languag": [0, 11, 12, 13, 14], "report": [0, 22, 23, 24, 30, 31], "stat": [0, 25, 26], "how": 1, "cite": 1, "fit": [2, 3], "psychometr": [2, 3, 5], "function": [2, 3, 5, 30], "subject": 2, "level": [2, 3], "model": [2, 3, 30], "plot": [2, 3], "system": [2, 3], "configur": [2, 3], "group": 3, "heartbeat": 4, "summari": [4, 5, 30], "result": [4, 5], "artefact": 4, "detect": 4, "loop": 4, "across": 4, "trial": [4, 9, 19], "save": [4, 5], "reult": 4, "respons": 5, "time": 5, "metacognit": 5, "psychophys": [5, 26, 30], "staircas": [5, 28], "psi": [5, 28], "puls": 5, "oximet": 5, "visual": 5, "ppg": 5, "signal": 5, "statist": [5, 30], "datafram": 5, "cardiocept": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "hbc": [6, 7, 8, 9, 10], "getparamet": [6, 15], "rest": 7, "run": [8, 18, 31], "tutori": [10, 20], "hrd": [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], "danish": 11, "danish_children": 12, "english": 13, "french": 14, "confidenceratingtask": 16, "responsedecis": 17, "waitinput": 21, "group_level_preprocess": 22, "preprocess": [23, 30], "behaviour": [25, 30], "toolbox": 27, "look": 27, "help": 27, "develop": 27, "measur": 28, "cardiac": 28, "interocept": 28, "The": 28, "instruct": 28, "score": 28, "1": 28, "nup": 28, "ndown": 28, "2": 28, "discuss": 28, "refer": 29, "analysi": 30, "us": [30, 31], "r": 30, "python": [30, 31], "html": [30, 31], "templat": 30, "bayesian": 30, "user": 31, "guid": 31, "instal": 31, "packag": 31, "index": 31, "set": 31, "up": 31, "conda": 31, "environ": 31, "depend": 31, "physiolog": 31, "record": 31, "creat": 31, "shortcut": 31, "window": 31}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9, "sphinx": 57}, "alltitles": {"Table of Contents": [[0, "table-of-contents"]], "API": [[0, "api"]], "Tasks": [[0, "tasks"]], "Heart Beat Counting task": [[0, "heart-beat-counting-task"]], "Parameters": [[0, "parameters"], [0, "id1"]], "Scripts": [[0, "scripts"], [0, "id3"]], "Heart Rate Discrimination task": [[0, "heart-rate-discrimination-task"]], "Languages": [[0, "languages"]], "Reports": [[0, "reports"]], "Stats": [[0, "stats"]], "How to cite?": [[1, "how-to-cite"]], "Fitting a psychometric function at the subject level": [[2, "fitting-a-psychometric-function-at-the-subject-level"]], "Model": [[2, "model"], [3, "model"]], "Plotting": [[2, "plotting"], [3, "plotting"]], "System configuration": [[2, "system-configuration"], [3, "system-configuration"]], "Fitting a psychometric function at the group level": [[3, "fitting-a-psychometric-function-at-the-group-level"]], "Heartbeat Counting task - Summary results": [[4, "heartbeat-counting-task-summary-results"]], "Heartbeats and artefacts detection": [[4, "heartbeats-and-artefacts-detection"]], "Loop across trials": [[4, "loop-across-trials"]], "Save reults": [[4, "save-reults"]], "Heart Rate Discrimination task - Summary results": [[5, "heart-rate-discrimination-task-summary-results"]], "Response time": [[5, "response-time"]], "Metacognition": [[5, "metacognition"]], "Psychophysics": [[5, "psychophysics"]], "Staircases": [[5, "staircases"], [28, "staircases"]], "Psi": [[5, "psi"]], "Psychometric function": [[5, "psychometric-function"]], "Pulse oximeter": [[5, "pulse-oximeter"]], "Visualization of PPG signal": [[5, "visualization-of-ppg-signal"]], "Heart rate - Summary statistics": [[5, "heart-rate-summary-statistics"]], "Save dataframe": [[5, "save-dataframe"]], "cardioception.HBC.parameters.getParameters": [[6, "cardioception-hbc-parameters-getparameters"]], "cardioception.HBC.task.rest": [[7, "cardioception-hbc-task-rest"]], "cardioception.HBC.task.run": [[8, "cardioception-hbc-task-run"]], "cardioception.HBC.task.trial": [[9, "cardioception-hbc-task-trial"]], "cardioception.HBC.task.tutorial": [[10, "cardioception-hbc-task-tutorial"]], "cardioception.HRD.languages.danish": [[11, "cardioception-hrd-languages-danish"]], "cardioception.HRD.languages.danish_children": [[12, "cardioception-hrd-languages-danish-children"]], "cardioception.HRD.languages.english": [[13, "cardioception-hrd-languages-english"]], "cardioception.HRD.languages.french": [[14, "cardioception-hrd-languages-french"]], "cardioception.HRD.parameters.getParameters": [[15, "cardioception-hrd-parameters-getparameters"]], "cardioception.HRD.task.confidenceRatingTask": [[16, "cardioception-hrd-task-confidenceratingtask"]], "cardioception.HRD.task.responseDecision": [[17, "cardioception-hrd-task-responsedecision"]], "cardioception.HRD.task.run": [[18, "cardioception-hrd-task-run"]], "cardioception.HRD.task.trial": [[19, "cardioception-hrd-task-trial"]], "cardioception.HRD.task.tutorial": [[20, "cardioception-hrd-task-tutorial"]], "cardioception.HRD.task.waitInput": [[21, "cardioception-hrd-task-waitinput"]], "cardioception.reports.group_level_preprocessing": [[22, "cardioception-reports-group-level-preprocessing"]], "cardioception.reports.preprocessing": [[23, "cardioception-reports-preprocessing"]], "cardioception.reports.report": [[24, "cardioception-reports-report"]], "cardioception.stats.behaviours": [[25, "cardioception-stats-behaviours"]], "cardioception.stats.psychophysics": [[26, "cardioception-stats-psychophysics"]], "Cardioception toolbox": [[27, "cardioception-toolbox"]], "Looking for help?": [[27, "looking-for-help"]], "Development": [[27, "development"]], "Measuring cardiac interoception": [[28, "measuring-cardiac-interoception"]], "The Heart Beat Counting task": [[28, "the-heart-beat-counting-task"]], "Instructions": [[28, "instructions"]], "Score": [[28, "score"]], "The Heart Rate Discrimination task": [[28, "the-heart-rate-discrimination-task"]], "1. nUp/nDown": [[28, "nup-ndown"]], "2. Psi": [[28, "psi"]], "Discussion": [[28, "discussion"]], "References": [[29, "references"]], "Statistical analysis": [[30, "statistical-analysis"]], "Using R": [[30, "using-r"]], "Using Python": [[30, "using-python"]], "Behavioural summary using the preprocessing function": [[30, "behavioural-summary-using-the-preprocessing-function"]], "HTML reports using the report function": [[30, "html-reports-using-the-report-function"]], "Report templates": [[30, "report-templates"]], "Bayesian modelling of psychophysics": [[30, "bayesian-modelling-of-psychophysics"]], "User guide": [[31, "user-guide"]], "Installation": [[31, "installation"]], "Using the Python Package Index": [[31, "using-the-python-package-index"]], "Set up a conda environment": [[31, "set-up-a-conda-environment"]], "Dependencies": [[31, "dependencies"]], "Physiological recording": [[31, "physiological-recording"]], "Running the tasks": [[31, "running-the-tasks"]], "Using a script": [[31, "using-a-script"]], "Creating a shortcut (Windows)": [[31, "creating-a-shortcut-windows"]], "Creating HTML reports": [[31, "creating-html-reports"]]}, "indexentries": {"getparameters() (in module cardioception.hbc.parameters)": [[6, "cardioception.HBC.parameters.getParameters"]], "rest() (in module cardioception.hbc.task)": [[7, "cardioception.HBC.task.rest"]], "run() (in module cardioception.hbc.task)": [[8, "cardioception.HBC.task.run"]], "trial() (in module cardioception.hbc.task)": [[9, "cardioception.HBC.task.trial"]], "tutorial() (in module cardioception.hbc.task)": [[10, "cardioception.HBC.task.tutorial"]], "danish() (in module cardioception.hrd.languages)": [[11, "cardioception.HRD.languages.danish"]], "danish_children() (in module cardioception.hrd.languages)": [[12, "cardioception.HRD.languages.danish_children"]], "english() (in module cardioception.hrd.languages)": [[13, "cardioception.HRD.languages.english"]], "french() (in module cardioception.hrd.languages)": [[14, "cardioception.HRD.languages.french"]], "getparameters() (in module cardioception.hrd.parameters)": [[15, "cardioception.HRD.parameters.getParameters"]], "confidenceratingtask() (in module cardioception.hrd.task)": [[16, "cardioception.HRD.task.confidenceRatingTask"]], "responsedecision() (in module cardioception.hrd.task)": [[17, "cardioception.HRD.task.responseDecision"]], "run() (in module cardioception.hrd.task)": [[18, "cardioception.HRD.task.run"]], "trial() (in module cardioception.hrd.task)": [[19, "cardioception.HRD.task.trial"]], "tutorial() (in module cardioception.hrd.task)": [[20, "cardioception.HRD.task.tutorial"]], "waitinput() (in module cardioception.hrd.task)": [[21, "cardioception.HRD.task.waitInput"]], "group_level_preprocessing() (in module cardioception.reports)": [[22, "cardioception.reports.group_level_preprocessing"]], "preprocessing() (in module cardioception.reports)": [[23, "cardioception.reports.preprocessing"]], "report() (in module cardioception.reports)": [[24, "cardioception.reports.report"]], "behaviours() (in module cardioception.stats)": [[25, "cardioception.stats.behaviours"]], "psychophysics() (in module cardioception.stats)": [[26, "cardioception.stats.psychophysics"]]}}) \ No newline at end of file diff --git a/stats.html b/stats.html new file mode 100644 index 0000000..cba8825 --- /dev/null +++ b/stats.html @@ -0,0 +1,693 @@ + + + + + + + + + + + + Statistical analysis — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

Statistical analysis#

+
+

Using R#

+

If you want to use R to analyse your data, you can find R/Stan scripts with example notebooks in this folder.

+
+
+

Using Python#

+

If you want to use Python to analyse your data, the package includes two functions (preprocessing and report) that can help automate the analysis of large datasets obtained with the Heart Rate Discrimination task. We also provide notebooks detailing specific parts of the data analysis and Bayesian modelling of psychophysics (see below).

+
+

Behavioural summary using the preprocessing function#

+

The reports module includes a preprocessing function that automates the analysis and extraction of behavioural variables from the main outputs saved by the task. The function only requires the final.txt data frame (either the Pandas data frame or simply a path to the file) that is saved in each subject folder and will return a summary data frame containing the response time, the psychometric parameter estimated by the Psi algorithm and Bayesian inference as well as SDT measures and metacognitive efficiency (meta-d prime). This approach is the most straightforward to extract relevant parameters using default settings that will fit most users’ needs.

+

This script exemplifies how this function can be used to extract summary statistics from a result folder. It is assumed that the following script is in a folder that contains the data folder with sub-folders sub-01, sub-02 for each participant in which the main outputs of the task are stored. The HTML reports will be saved in the reports folder.

+
from pathlib import Path
+from cardioception.reports import preprocessing
+
+data_folder = Path(Path().cwd(), "data")  # path to the data folder
+
+# for each file found in the result folder, create the HTML report
+for f in data_folder.iterdir():
+
+    # all the preprocessing happens here
+    # the input is a file name at it returns a summary dataframe
+    results_df = preprocessing(results=f)
+
+
+
+
+

HTML reports using the report function#

+

Using a similar approach, the report function automates the production of HTML reports that are generated using the templates below. The function will require more files than the previous one, especially as this time the PPG signal is being analyzed. Using the HTML reports is an important step in the data quality checks, especially for the quality of the PPG recording. Here, we will assume that the following script is in a folder that contains the data folder in which the main outputs of the tasks (either the Heart Rate Discrimination task or the Heartbeats Detection task) are stored.

+
from pathlib import Path
+from cardioception.reports import report
+
+data_folder = Path(Path().cwd(), "data")  # path to the data folder
+
+# for each folder, create the HTML report from the files it contains
+for f in data_folder.iterdir():
+
+    # this command runs the notebook and converts it into HTML
+    report(result_path=f, report_path=Path(data_folder, "reports"))
+
+
+
+
+
+

Report templates#

+

Here, you will find the report templates used to produce the HTML reports when calling the report function function. We provide one for the Heart Rate Discrimination task and one for the Heart Beat Counting task. You can navigate the notebooks by clicking on the links or run them interactively in Google Colab using the badges, and upload your data. Visualizing the data this way is recommended to assess the quality of the PPG recording or the general performance of the participant during the tasks.

+
+
+ + + + + + + + + + + + + + +

Notebook

Colab

Heartbeat Counting task - Summary results

Open In Colab

Heart Rate Discrimination task - Summary results

Open In Colab

+
+
+

Bayesian modelling of psychophysics#

+

These notebooks provide a more detailled introduction to the Bayesian modelling of the psychometric functions to estimate threshold and slope offline (as opposed to the online estimation performed by the Psi staircase). The models are implemented in PyMC, the code can easily be adapted to fit different modelling needs (e.g. group comparison, repeated measure…).

+
+
+ + + + + + + + + + + + + + +

Notebook

Colab

Fitting a psychometric function at the subject level

Open In Colab

Fitting a psychometric function at the group level

Open In Colab

+
+
+ + +
+ + + + + + + +
+ + + + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/user_guide.html b/user_guide.html new file mode 100644 index 0000000..7a0a96c --- /dev/null +++ b/user_guide.html @@ -0,0 +1,725 @@ + + + + + + + + + + + + User guide — cardioception 0.5.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ + + + +
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+ +
+

User guide#

+
+

Installation#

+
+

Using the Python Package Index#

+
    +
  • The most recent version can be installed using:

    +

    pip install cardioception

    +
  • +
  • The current development branch can be installed using:

    +

    pip install git+https://github.com/LegrandNico/Cardioception.git

    +
  • +
+
+
+

Set up a conda environment#

+

The task can be installed in a new environment using the environment.yml file that you can find at the root of the directory. Using the Anaconda prompt, you can create a new environment with:

+

conda env create -f environment.yml

+

This will create a new cardioception environment that you can later activate using:

+

conda activate cardioception

+
+

Note

+

If you are using the shortcut method described below, you will have to activate the cardioception environment instead of the base one.

+
+
+
+
+

Dependencies#

+

Cardioception has been tested with Python 3.7. We recommend using the last install of Anaconda for Python 3.7 or latest (see this link).

+

Make sure that you have the following packages installed and up to date before running cardioception:

+
    +
  • psychopy can be installed with pip install psychopy.

  • +
  • systole can be installed with pip install systole.

  • +
+

The other main dependencies are:

+ +

In addition, some functions for HTML reports will require:

+ +
+

Note

+

The versions provided here are the ones used when testing and running cardioception locally and are often the last ones. For several packages, however, older versions might also be compatible.

+
+

Cardioception will automatically copy the images and sound files necessary to run the task correctly (~ 160 Mo). These files will be removed if you uninstall the package using pip uninstall cardioception.

+
+
+

Physiological recording#

+

Both the Heartbeat counting task (HBC) and the heart rate discrimination task (HRD) require access to a physiological recording device during the task to estimate the heart rate or count the number of heartbeats in a given time window. Cardioception natively supports:

+ +

The package can easily be extended and integrate other recording devices by providing another recording class that will interface with your own devices (ECG, pulse oximeters, or any kind of recording that will offer precise estimation of the cardiac frequency).

+
+
+

Running the tasks#

+

Each task contains a parameters and a task submodule describing the experimental parameters and the Psychopy script respectively. Several changes and adaptations can be parametrized just by passing arguments to the getParameters function. Please refer to the API documentation for details.

+
+

Using a script#

+

Once the package has been installed, you can run the task (e.g. here the Heart rate Discrimination task) using the following code snippet:

+
from cardioception.HRD.parameters import getParameters
+from cardioception.HRD import task
+
+# Set global task parameters
+parameters = parameters.getParameters(
+    participant='Subject_01', session='Test', serialPort=None,
+    setup='behavioral', nTrials=10, screenNb=0)
+
+# Run task
+task.run(parameters, confidenceRating=True, runTutorial=True)
+
+parameters['win'].close()
+
+
+

This minimal example will run the Heart Rate Discrimination task with a total of 10 trials using a Psi staircase.

+

We provide standard scripts in the wrappers folder that can be adapted to your needs. We recommend copying this script in your local task folder if you want to parametrize it to fit your needs. The tasks can then easily be executed by running the corresponding wrapper file (e.g. in a terminal).

+
+
+

Creating a shortcut (Windows)#

+

Once you have adapted the scripts, you can create a shortcut (e.g. in the Desktop) so the task can be executed just by clicking on it without any coding or command line interactions.

+

If you are using Windows, you can simply create a .bat file containing the following:

+
call [path to your environment */conda.bat] activate
+[path to your local */python.exe] [path to your wrapper */hrd.py]
+pause
+
+
+
+
+
+

Creating HTML reports#

+

The results are saved in the 'resultPath' folder defined in the parameters dictionary. For each task, we provide a comprehensive notebook detailing the main results, quality checks, and basic preprocessing steps. You can automatically generate the HTML reports using the following code snippet:

+
from cardioception.reports import report
+
+resultPath = "./"  # the folder containing the result files
+reportPath = "./"  # the folder where you want to save the HTML report
+
+report(resultPath, reportPath, task='HRD')
+
+
+

This code will generate the HTML reports for the Heart Rate Discrimination task in the reportPath folder using the results files located in resultPath. This will require papermill.

+
+
+ + +
+ + + + + + + +
+ + + + + + +
+
+ +
+ +
+
+
+ + + + + + + + \ No newline at end of file