-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
264 lines (227 loc) · 8.32 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import mujoco_kitchen.adept_envs
import gym
import numpy as np
from gym.spaces.box import Box
from mujoco_kitchen.kitchen_envs import (
KitchenHingeCabinetV0,
KitchenHingeSlideBottomLeftBurnerLightV0,
KitchenKettleV0,
KitchenLightSwitchV0,
KitchenMicrowaveKettleLightTopLeftBurnerV0,
KitchenMicrowaveV0,
KitchenSlideCabinetV0,
KitchenTopLeftBurnerV0,
)
from mujoco_kitchen.kitchen_envs import OBS_ELEMENT_INDICES, OBS_ELEMENT_GOALS
ALL_KITCHEN_ENVIRONMENTS = {
"microwave": KitchenMicrowaveV0,
"kettle": KitchenKettleV0,
"slide_cabinet": KitchenSlideCabinetV0,
"hinge_cabinet": KitchenHingeCabinetV0,
"top_left_burner": KitchenTopLeftBurnerV0,
"light_switch": KitchenLightSwitchV0,
"microwave_kettle_light_top_left_burner": KitchenMicrowaveKettleLightTopLeftBurnerV0,
"hinge_slide_bottom_left_burner_light": KitchenHingeSlideBottomLeftBurnerLightV0,
}
class TimeLimit(gym.Wrapper):
def __init__(self, env, duration):
gym.Wrapper.__init__(self, env)
self._duration = duration
self._elapsed_steps = 0
self._max_episode_steps = duration
self._step = None
def __getattr__(self, name):
return getattr(self.env, name)
def step(
self,
action,
render_every_step=False,
render_mode="rgb_array",
render_im_shape=(1000, 1000),
):
assert self._step is not None, "Must reset environment."
obs, reward, done, info = self.env.step(
action,
render_every_step=render_every_step,
render_mode=render_mode,
render_im_shape=render_im_shape,
)
self._step += 1
self._elapsed_steps += 1
if self._step >= self._duration:
done = True
self._step = None
return obs, reward, done, info
def reset(self):
self._step = 0
self._elapsed_steps = 0
return self.env.reset()
class ActionRepeat(gym.Wrapper):
def __init__(self, env, amount):
gym.Wrapper.__init__(self, env)
self._amount = amount
def __getattr__(self, name):
return getattr(self.env, name)
def step(
self,
action,
render_every_step=False,
render_mode="rgb_array",
render_im_shape=(1000, 1000),
):
done = False
total_reward = 0
current_step = 0
while current_step < self._amount and not done:
obs, reward, done, info = self.env.step(
action,
render_every_step=render_every_step,
render_mode=render_mode,
render_im_shape=render_im_shape,
)
total_reward += reward
current_step += 1
return obs, total_reward, done, info
class NormalizeActions(gym.Wrapper):
def __init__(self, env, unused=None):
gym.Wrapper.__init__(self, env)
self._mask = np.logical_and(
np.isfinite(env.action_space.low), np.isfinite(env.action_space.high)
)
self._low = np.where(self._mask, env.action_space.low, -1)
self._high = np.where(self._mask, env.action_space.high, 1)
low = np.where(self._mask, -np.ones_like(self._low), self._low)
high = np.where(self._mask, np.ones_like(self._low), self._high)
self.action_space = gym.spaces.Box(low, high, dtype=np.float32)
def __getattr__(self, name):
return getattr(self.env, name)
def step(
self,
action,
render_every_step=False,
render_mode="rgb_array",
render_im_shape=(1000, 1000),
):
original = (action + 1) / 2 * (self._high - self._low) + self._low
original = np.where(self._mask, original, action)
o, r, d, i = self.env.step(
original,
render_every_step=render_every_step,
render_mode=render_mode,
render_im_shape=render_im_shape,
)
return o, r, d, i
def reset(self):
return self.env.reset()
class ImageUnFlattenWrapper(gym.Wrapper):
def __init__(self, env):
gym.Wrapper.__init__(self, env)
self.observation_space = Box(
0, 255, (3, self.env.imwidth, self.env.imheight), dtype=np.uint8
)
def __getattr__(self, name):
return getattr(self.env, name)
def reset(self):
obs = self.env.reset()
return obs.reshape(-1, self.env.imwidth, self.env.imheight)
def step(
self,
action,
render_every_step=False,
render_mode="rgb_array",
render_im_shape=(1000, 1000),
):
obs, reward, done, info = self.env.step(
action,
render_every_step=render_every_step,
render_mode=render_mode,
render_im_shape=render_im_shape,
)
return (
obs.reshape(-1, self.env.imwidth, self.env.imheight),
reward,
done,
info,
)
def make_base_kitchen_env(env_class, env_kwargs):
env = ALL_KITCHEN_ENVIRONMENTS[env_class](**env_kwargs)
return env
def make_env(env_suite, env_name, env_kwargs):
usage_kwargs = env_kwargs["usage_kwargs"]
max_path_length = usage_kwargs["max_path_length"]
use_raw_action_wrappers = usage_kwargs.get("use_raw_action_wrappers", False)
unflatten_images = usage_kwargs.get("unflatten_images", False)
env_kwargs_new = env_kwargs.copy()
if "usage_kwargs" in env_kwargs_new:
del env_kwargs_new["usage_kwargs"]
if "image_kwargs" in env_kwargs_new:
del env_kwargs_new["image_kwargs"]
if env_suite == "kitchen":
env = make_base_kitchen_env(env_name, env_kwargs_new)
if unflatten_images:
env = ImageUnFlattenWrapper(env)
if use_raw_action_wrappers:
env = ActionRepeat(env, 2)
env = NormalizeActions(env)
env = TimeLimit(env, max_path_length // 2)
else:
env = TimeLimit(env, max_path_length)
env.reset()
return env
def primitive_and_params_to_primitive_action(primitive_name, params):
action = np.zeros(29) + 0.0
for i, name in env.primitive_idx_to_name.items():
if name == primitive_name:
action[i] = 1.0
idxs = env.primitive_name_to_action_idx[name]
for param_i, idx in enumerate(idxs):
action[env.num_primitives + idx] = params[param_i]
break
else:
assert False
return action
##
env = make_env("kitchen", "microwave", {"usage_kwargs": {"max_path_length": 50, "use_raw_action_wrappers": False, "unflatten_images": False}})
# Display Useful Information
print("#"*30)
print("Env", env)
print("Primitive Funcs", env.primitive_name_to_func.keys())
print("Primitive Index -> Names", env.primitive_idx_to_name)
print("Primitive Names -> Action Index", env.primitive_name_to_action_idx)
print("Number of Parameters", env.max_arg_len)
print("Number of Primitives", env.num_primitives)
print("Action Space", env.action_space)
print("#"*30)
env.reset()
for _ in range(100):
env.render()
# Move to Kettle
action = primitive_and_params_to_primitive_action('move_delta_ee_pose', env.get_site_xpos("kettle_site") - env.get_site_xpos("end_effector")) #env.action_space.sample()
# Parse Action to Primitive and Parameters
# Only needed for printing (This is done in env)
primitive_idx, primitive_args = (
np.argmax(action[: env.num_primitives]),
action[env.num_primitives :],
)
primitive_name = env.primitive_idx_to_name[primitive_idx]
parameters = None
for key, val in env.primitive_name_to_action_idx.items():
if key == primitive_name:
if type(val) == int:
parameters = [primitive_args[val]]
else:
parameters = [primitive_args[i] for i in val]
assert parameters is not None
print(primitive_name, parameters, "\n")
state, reward, done, info = env.step(action)
# Parse State into Object Centric State
for key, val in OBS_ELEMENT_INDICES.items():
print(key, [state[i] for i in val])
print()
important_sites = ["hinge_site1", "hinge_site2", "kettle_site", "microhandle_site", "knob1_site", "knob2_site", "knob3_site", "knob4_site", "light_site", "slide_site", "end_effector"]
for site in important_sites:
print(site, env.get_site_xpos(site))
# Potentially can get this ^ from state
if done:
print("Done")
break