Skip to content

Commit 5754302

Browse files
authored
Add files via upload
1 parent 7e116ad commit 5754302

23 files changed

+365
-0
lines changed

myhomework/__init__.py

Whitespace-only changes.

myhomework/homework1/DataModule.py

+23
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,23 @@
1+
import random
2+
import string
3+
4+
def dataSampling(data_type, length, **kwargs):
5+
result = []
6+
# length = int(length)
7+
# for data_type, length in kwargs.items():
8+
length = int(length)
9+
if data_type == 'int':
10+
result.extend(random.sample(range(0, 10 * length), length))
11+
elif data_type == 'float':
12+
result.extend([random.uniform(0, 1) for _ in range(length)])
13+
elif data_type == 'str':
14+
result.extend([''.join(random.choices(string.ascii_letters + string.digits, k=length)) for _ in range(length)])
15+
print(result)
16+
return result
17+
18+
# 调用
19+
# result = dataSampling(data_type = 'str', length = 10)
20+
# print(result)
21+
22+
23+

myhomework/homework1/__init__.py

Whitespace-only changes.
Binary file not shown.
Binary file not shown.

myhomework/homework2/MLModule.py

+57
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,57 @@
1+
from MLPackage.ML_Functions import functionSampling
2+
# 定义一个修饰器函数
3+
def random_data_decorator(ml_method):
4+
# 内部函数,用于包装原始的随机数据结构生成函数
5+
def wrapper(func):
6+
# 在函数调用前的操作
7+
def inner_function(*args, **kwargs):
8+
# 机器学习方法操作
9+
if ml_method == 'SVM':
10+
# 执行 SVM 操作
11+
svm_result = functionSampling(func_type='svm')
12+
elif ml_method == 'RF':
13+
# 执行 RF 操作
14+
rf_result = functionSampling(func_type='rf')
15+
elif ml_method == 'CNN':
16+
# 执行 CNN 操作
17+
cnn_result = functionSampling(func_type='cnn')
18+
elif ml_method == 'RNN':
19+
# 执行 RNN 操作
20+
rnn_result = functionSampling(func_type='rnn')
21+
22+
# 调用原始函数
23+
return func(*args, **kwargs)
24+
25+
# 返回内部函数
26+
return inner_function
27+
28+
# 返回修饰器函数
29+
return wrapper
30+
31+
# 定义一个原始的随机数据结构生成函数
32+
def generate_random_data():
33+
# 生成随机数据的逻辑
34+
pass
35+
36+
# 调用修饰器函数修饰原始函数
37+
@random_data_decorator(ml_method='SVM')
38+
def generate_random_data_svm():
39+
return generate_random_data()
40+
41+
@random_data_decorator(ml_method='RF')
42+
def generate_random_data_rf():
43+
return generate_random_data()
44+
45+
@random_data_decorator(ml_method='CNN')
46+
def generate_random_data_cnn():
47+
return generate_random_data()
48+
49+
@random_data_decorator(ml_method='RNN')
50+
def generate_random_data_rnn():
51+
return generate_random_data()
52+
53+
# 调用修饰后的函数
54+
# svm_data = generate_random_data_svm()
55+
# rf_data = generate_random_data_rf()
56+
# cnn_data = generate_random_data_cnn()
57+
# rnn_data = generate_random_data_rnn()
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,158 @@
1+
import torch
2+
import torch.nn as nn
3+
import torch.optim as optim
4+
import numpy as np
5+
from VerifyModule.Standard import calculate_acc,calculate_recall,calculate_mcc,calculate_f1
6+
# SVM 模型
7+
class SVM(nn.Module):
8+
def __init__(self, input_dim):
9+
super(SVM, self).__init__()
10+
self.fc = nn.Linear(input_dim, 1)
11+
12+
def forward(self, x):
13+
out = self.fc(x)
14+
return out
15+
16+
# RF 模型
17+
class RandomForest(nn.Module):
18+
def __init__(self, input_dim):
19+
super(RandomForest, self).__init__()
20+
self.fc = nn.Linear(input_dim, 1)
21+
22+
def forward(self, x):
23+
out = self.fc(x)
24+
return out
25+
26+
# CNN 模型
27+
class CNN(nn.Module):
28+
def __init__(self):
29+
super(CNN, self).__init__()
30+
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1)
31+
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
32+
self.fc1 = nn.Linear(32 * 4 * 4, 64)
33+
self.fc2 = nn.Linear(64, 2)
34+
35+
def forward(self, x):
36+
x = self.pool(torch.relu(self.conv1(x)))
37+
x = x.view(-1, 32 * 4 * 4)
38+
x = torch.relu(self.fc1(x))
39+
out = self.fc2(x)
40+
return out
41+
42+
# RNN 模型
43+
class RNN(nn.Module):
44+
def __init__(self, input_dim, hidden_dim):
45+
super(RNN, self).__init__()
46+
self.rnn = nn.RNN(input_dim, hidden_dim, batch_first=True)
47+
self.fc = nn.Linear(hidden_dim, 2)
48+
49+
def forward(self, x):
50+
out, _ = self.rnn(x)
51+
out = self.fc(out[:, -1, :])
52+
return out
53+
54+
# 生成 100 * 10 * 10 的随机数
55+
data = np.random.randint(0, 1000, (100, 10, 10))
56+
57+
# 转换为PyTorch的Tensor
58+
data_tensor = torch.from_numpy(data).float()
59+
60+
def functionSampling(func_type):
61+
if func_type == 'svm':
62+
# SVM 模型训练和预测
63+
svm_model = SVM(input_dim=100)
64+
svm_criterion = nn.HingeEmbeddingLoss()
65+
svm_optimizer = optim.SGD(svm_model.parameters(), lr=0.01)
66+
# 真实标签
67+
svm_labels = torch.randint(0, 2, (100,))
68+
svm_labels = svm_labels.float()
69+
70+
svm_optimizer.zero_grad()
71+
svm_outputs = svm_model(data_tensor.view(100, -1))
72+
svm_loss = svm_criterion(svm_outputs.squeeze(), svm_labels)
73+
svm_loss.backward()
74+
svm_optimizer.step()
75+
76+
svm_prediction = torch.sign(svm_outputs).detach().numpy()
77+
svm_prediction = np.where(svm_prediction == -1, 0, svm_prediction)
78+
svm_prediction = torch.from_numpy(svm_prediction)
79+
# print("SVM 预测结果:", svm_prediction)
80+
print("SVM 准确率:{} ;\nMatthews相关系数: {} ;\nF1得分: {};\n召回率: {}\n".format(calculate_acc(svm_labels,svm_prediction), calculate_mcc(svm_labels,svm_prediction), calculate_f1(svm_labels,svm_prediction), calculate_recall(svm_labels,svm_prediction)))
81+
return svm_prediction
82+
83+
elif func_type == 'rf':
84+
# RF 模型训练和预测
85+
rf_model = RandomForest(input_dim=100)
86+
rf_criterion = nn.BCEWithLogitsLoss()
87+
rf_optimizer = optim.Adam(rf_model.parameters(), lr=0.01)
88+
# 真实标签
89+
rf_labels = torch.randint(0, 2, (100,))
90+
rf_labels = rf_labels.float()
91+
92+
rf_optimizer.zero_grad()
93+
rf_outputs = rf_model(data_tensor.view(100, -1))
94+
rf_loss = rf_criterion(rf_outputs.squeeze(), rf_labels)
95+
rf_loss.backward()
96+
rf_optimizer.step()
97+
98+
rf_prediction = torch.sigmoid(rf_outputs).detach().numpy()
99+
rf_prediction = np.where(rf_prediction > 0.5, 1, 0)
100+
rf_prediction = torch.from_numpy(rf_prediction)
101+
print("RF 准确率:{} ;\nMatthews相关系数: {} ;\nF1得分: {};\n召回率: {}\n".format(
102+
calculate_acc(rf_labels, rf_prediction), calculate_mcc(rf_labels, rf_prediction),
103+
calculate_f1(rf_labels, rf_prediction), calculate_recall(rf_labels, rf_prediction)))
104+
# print("RF 预测结果:", rf_prediction)
105+
return rf_prediction
106+
107+
elif func_type == 'rnn':
108+
# RNN 模型训练和预测
109+
rnn_model = RNN(input_dim=10, hidden_dim=32)
110+
rnn_criterion = nn.CrossEntropyLoss()
111+
rnn_optimizer = optim.Adam(rnn_model.parameters(), lr=0.01)
112+
# 真实标签
113+
rnn_labels = torch.randint(0, 2, (100,)).long()
114+
115+
rnn_optimizer.zero_grad()
116+
rnn_outputs = rnn_model(data_tensor)
117+
rnn_loss = rnn_criterion(rnn_outputs, rnn_labels)
118+
rnn_loss.backward()
119+
rnn_optimizer.step()
120+
121+
rnn_prediction = torch.argmax(rnn_outputs, dim=1).detach().numpy()
122+
rnn_prediction = torch.from_numpy(rnn_prediction)
123+
print("RNN 准确率:{} ;\nMatthews相关系数: {} ;\nF1得分: {};\n召回率: {}\n".format(
124+
calculate_acc(rnn_labels, rnn_prediction), calculate_mcc(rnn_labels, rnn_prediction),
125+
calculate_f1(rnn_labels, rnn_prediction), calculate_recall(rnn_labels, rnn_prediction)))
126+
# print("RNN 预测结果:", rnn_prediction)
127+
return rnn_prediction
128+
129+
elif func_type == 'cnn':
130+
# CNN 模型训练和预测
131+
cnn_model = CNN()
132+
cnn_criterion = nn.CrossEntropyLoss()
133+
cnn_optimizer = optim.Adam(cnn_model.parameters(), lr=0.01)
134+
# 真实标签
135+
cnn_labels = torch.randint(0, 2, (100,)).long()
136+
137+
cnn_optimizer.zero_grad()
138+
cnn_outputs = cnn_model(data_tensor.unsqueeze(1))
139+
cnn_loss = cnn_criterion(cnn_outputs, cnn_labels)
140+
cnn_loss.backward()
141+
cnn_optimizer.step()
142+
143+
cnn_prediction = torch.argmax(cnn_outputs, dim=1).detach().numpy()
144+
cnn_prediction = torch.from_numpy(cnn_prediction)
145+
print("CNN 准确率:{} ;\nMatthews相关系数: {} ;\nF1得分: {};\n召回率: {}\n".format(
146+
calculate_acc(cnn_labels, cnn_prediction), calculate_mcc(cnn_labels, cnn_prediction),
147+
calculate_f1(cnn_labels, cnn_prediction), calculate_recall(cnn_labels, cnn_prediction)))
148+
return cnn_prediction
149+
return null
150+
151+
# 调用
152+
# result = functionSampling(func_type = 'cnn')
153+
154+
155+
156+
157+
158+

myhomework/homework2/MLPackage/__init__.py

Whitespace-only changes.
Binary file not shown.
Binary file not shown.
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,62 @@
1+
import numpy as np
2+
import torch
3+
4+
# 计算准确率
5+
def calculate_acc(targets, predictions):
6+
targets = targets.numpy()
7+
predictions = predictions.numpy()
8+
correct = np.sum(targets == predictions)
9+
total = targets.shape[0]
10+
acc = correct / total
11+
return acc
12+
13+
# 计算Matthews相关系数
14+
def calculate_mcc(targets, predictions):
15+
targets = targets.numpy()
16+
predictions = predictions.numpy()
17+
tn = np.sum(np.logical_and(targets == 0, predictions == 0))
18+
fp = np.sum(np.logical_and(targets == 0, predictions == 1))
19+
fn = np.sum(np.logical_and(targets == 1, predictions == 0))
20+
tp = np.sum(np.logical_and(targets == 1, predictions == 1))
21+
# mcc = (tp * tn - fp * fn) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
22+
# 引入平滑因子
23+
smooth = 1e-10
24+
mcc = (tp * tn - fp * fn) / np.sqrt(
25+
(tp + fp + smooth) * (tp + fn + smooth) * (tn + fp + smooth) * (tn + fn + smooth))
26+
return mcc
27+
28+
# 计算F1得分
29+
def calculate_f1(targets, predictions):
30+
targets = targets.numpy()
31+
predictions = predictions.numpy()
32+
tp = np.sum(np.logical_and(targets == 1, predictions == 1))
33+
fp = np.sum(np.logical_and(targets == 0, predictions == 1))
34+
fn = np.sum(np.logical_and(targets == 1, predictions == 0))
35+
precision = tp / (tp + fp + 1e-8)
36+
recall = tp / (tp + fn + 1e-8)
37+
f1 = 2 * (precision * recall) / (precision + recall + 1e-8)
38+
return f1
39+
40+
# 计算召回率
41+
def calculate_recall(targets, predictions):
42+
targets = targets.numpy()
43+
predictions = predictions.numpy()
44+
tp = np.sum(np.logical_and(targets == 1, predictions == 1))
45+
fn = np.sum(np.logical_and(targets == 1, predictions == 0))
46+
recall = tp / (tp + fn + 1e-8)
47+
return recall
48+
49+
# 生成随机数
50+
# targets = torch.randint(0, 2, (100,))
51+
# predictions = torch.randint(0, 2, (100,))
52+
53+
# 计算指标
54+
# acc = calculate_acc(targets, predictions)
55+
# mcc = calculate_mcc(targets, predictions)
56+
# f1 = calculate_f1(targets, predictions)
57+
# recall = calculate_recall(targets, predictions)
58+
#
59+
# print("准确率:", acc)
60+
# print("Matthews相关系数:", mcc)
61+
# print("F1得分:", f1)
62+
# print("召回率:", recall)

myhomework/homework2/VerifyModule/__init__.py

Whitespace-only changes.
Binary file not shown.
Binary file not shown.

myhomework/homework2/__init__.py

Whitespace-only changes.
Binary file not shown.
Binary file not shown.

myhomework/homework3/Factory.py

+17
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,17 @@
1+
from MLPackage.ML_Functions import functionSampling
2+
3+
def FactoryML(filename):
4+
with open(filename, 'r') as f:
5+
name_list = f.readlines()
6+
7+
result = []
8+
for i in name_list:
9+
# 去除换行符
10+
i = i.strip()
11+
result.append(i)
12+
return result
13+
# 调用
14+
# filename = "config.txt"
15+
# model_list = FactoryML(filename)
16+
# for i in model_list:
17+
# functionSampling(i)

myhomework/homework3/__init__.py

Whitespace-only changes.
Binary file not shown.
Binary file not shown.

myhomework/homework3/config.txt

+4
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,4 @@
1+
cnn
2+
rnn
3+
rf
4+
svm

myhomework/main.py

+44
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,44 @@
1+
from homework1.DataModule import dataSampling
2+
from homework3.Factory import FactoryML
3+
from homework2.MLModule import generate_random_data_svm,generate_random_data_rf,generate_random_data_cnn,generate_random_data_rnn
4+
from homework2.MLModule import functionSampling
5+
6+
if __name__ == "__main__":
7+
choice_homework = input("请输入要检查的作业(1、2、3):")
8+
if_continue = '1'
9+
while if_continue != '0':
10+
if choice_homework == '1':
11+
data_type = input("此作业要求输入类型(int、float、str):")
12+
if (data_type == 'int') or (data_type == 'float') or (data_type == 'str'):
13+
length = input("输入长度:")
14+
if length.isdigit():
15+
dataSampling(data_type = data_type ,length = length)
16+
else:
17+
print("输入类型错误")
18+
19+
elif choice_homework == '2':
20+
func_type = input("选择模型类型(rnn、cnn、rf、svm):")
21+
if func_type == 'rnn':
22+
generate_random_data_rnn()
23+
elif func_type == 'cnn':
24+
generate_random_data_cnn()
25+
elif func_type == 'rf':
26+
generate_random_data_rf()
27+
elif func_type == 'svm':
28+
generate_random_data_svm()
29+
else:
30+
print("输入类型错误")
31+
32+
elif choice_homework == '3':
33+
model_list = FactoryML("homework3/config.txt")
34+
for i in model_list:
35+
functionSampling(i)
36+
else:
37+
choice_homework = input("请输入要检查的作业(1、2、3):")
38+
continue
39+
40+
if_continue = input("是否继续 0退出 其他继续:")
41+
if if_continue != '0':
42+
choice_homework = input("请输入要检查的作业(1、2、3):")
43+
44+
print("检查完毕")

0 commit comments

Comments
 (0)