-
Notifications
You must be signed in to change notification settings - Fork 1
/
SWOTdenoise.py
687 lines (540 loc) · 25 KB
/
SWOTdenoise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
# SWOTdenoise.py
"""
The SWOTdenoise module is a toolbox developed specifically in preparation of the SWOT mission. It provides a toolbox to remove small-scale noise from SWOT data. The main function is SWOTdenoise (same name as the module itself), and for standard applications, the user should not need to call other module functions. Optionally, other functions that can be directly useful are read_data (to read data from a netcdf file) and fill_nadir_gap: this function fills the lon and lat arrays in the SWOT nadir gap, and introduces fill values in the SSH array. For more details look at the dedicated helps.
# AUTHORS:
Laura Gomez Navarro (1,2), Emmanuel Cosme (1), Nicolas Papadakis (3), Le Sommer, J. (1), Pascual, A. (2), Poel, N. (1), Monsimer, A. (1)
(1) CNRS/UGA/IRD/G-INP, IGE, Grenoble, France
(2) IMEDEA (CSIC-UIB), Esporles, Spain
(3) CNRS/Univ. Bordeaux/B-INP, IMB, Bordeaux, France
# HISTORY:
- April 2018: version 1 (_orig)
- May 2018: version 2
- Update: 14/06/2018
- Last update: 19/12/2019
"""
import numpy as np
from netCDF4 import Dataset
from scipy import ndimage as nd
from scipy.interpolate import RectBivariateSpline
from types import *
import sys
from configparser import ConfigParser
import os
def read_var_name(filename):
"""
Read in the config file the names of the variables in the input netcdf file.
Parameters:
----------
filename: input config file
Returns:
-------
list of variables names in order: SSH, lon, lat, xac, xal
"""
config = ConfigParser()
config.read(filename)
ssh_name = config.get('VarName','ssh_name')
lon_name = config.get('VarName','lon_name')
lat_name = config.get('VarName','lat_name')
xac_name = config.get('VarName','xac_name')
xal_name = config.get('VarName','xal_name')
listvar = ssh_name, lon_name, lat_name, xac_name, xal_name
return listvar
def read_data(filename, *args):
"""
Read arrays from netcdf file.
Parameters:
----------
filename: input file name
*args: strings, variables to be read as named in the netcdf file.
Returns:
-------
arrays. The number of output arrays must be identical to the number of variables.
"""
fid = Dataset(filename)
output = []
for entry in args:
output.append( fid.variables[entry][:] )
fid.close()
return tuple(output)
def write_data(filename, output_filename, ssh_d, lon_d, lat_d, x_ac_d, time_d, norm_d, method, param, iter_max, epsilon, iters_d):
"""
Write SSH in output file.
Parameters:
----------
filename: input filename (directory + filename)
output_filename:
- None by default: creates an ouput file in the same directory with the same filename + the extension _denoised.
- otherwise can specify outfiledirectory + outputfilename .nc ('/out/x.nc')
ssh_d, lon_d, lat_d, x_ac_d, time_d, norm_d, method, param, iter_max, epsilon, iters_d: standard SWOT data arrays. See SWOTdenoise function.
Returns:
-------
fileout: Output file directory + filename.
"""
# Output filename
if output_filename == 'None': #default
rootname = filename.split('.nc')[0]
fileout = rootname + '_denoised.nc'
else:
fileout = output_filename
# Read variables (not used before) in input file:
x_al_r = read_data(filename, 'x_al')
# Create output file:
fid = Dataset(fileout, 'w', format='NETCDF4')
fid.description = "Filtered SWOT data"
fid.creator_name = "SWOTdenoise module"
# Dimensions
time = fid.createDimension('time', len(time_d))
x_ac = fid.createDimension('x_ac', len(x_ac_d))
iters = fid.createDimension('iters', iters_d) #%
# Create variables
lat = fid.createVariable('lat', 'f8', ('time','x_ac'))
lat.long_name = "Latitude"
lat.units = "degrees_north"
lat[:] = lat_d
lon = fid.createVariable('lon', 'f8', ('time','x_ac'))
lon.long_name = "longitude"
lon.units = "degrees_east"
lon[:] = lon_d
vtime = fid.createVariable('time', 'f8', ('time'))
vtime.long_name = "time from beginning of simulation"
vtime.units = "days"
vtime[:] = time_d
x_al = fid.createVariable('x_al', 'f8', ('time'))
x_al.long_name = "Along track distance from the beginning of the pass"
x_al.units = "km"
x_al[:] = x_al_r
vx_ac = fid.createVariable('x_ac', 'f8', ('x_ac'))
vx_ac.long_name = "Across track distance from nadir"
vx_ac.units = "km"
vx_ac[:] = x_ac_d
ssh = fid.createVariable('SSH', 'f8', ('time','x_ac'), fill_value=ssh_d.fill_value)
ssh.long_name = "SSH denoised"
ssh.units = "m"
ssh[:] = ssh_d
ssh.method = method
ssh.param = str(param)
ssh.iter_max = str(iter_max)
ssh.epsilon = str(epsilon)
viters = fid.createVariable('iters', 'f8', ('iters'))
viters.long_name = "Number of iterations done in filtering"
viters[:] = np.arange(1, iters_d+1)
norm = fid.createVariable('norm', 'f8', ('iters'))
norm.long_name = "norm xxx"
norm.units = "m"
norm[:] = norm_d
fid.close() # close the new file
return fileout
def copy_arrays(*args):
"""numpy-copy arrays.
Parameters:
----------
*args: arrays to copy.
Returns:
-------
arrays. The number of output arrays must be identical to the number of inputs.
"""
output = []
for entry in args:
#print entry
output.append( entry.copy() )
return tuple(output)
def fill_nadir_gap(ssh, lon, lat, x_ac, time, method = 'fill_value'):
"""
Fill the nadir gap in the middle of SWOT swath.
Longitude and latitude are interpolated linearly. For SSH, there are two options:
If the gap is already filled in the input arrays, it returns the input arrays.
Parameters:
----------
ssh, lon, lat, x_ac, time: input masked arrays from SWOT data. See SWOTdenoise function.
method: method used to fill SSH array in the gap. Two options:
- 'fill_value': the gap is filled with the fill value of SSH masked array;
- 'interp': the gap is filled with a 2D, linear interpolation.
Returns:
-------
ssh_f, lon_f, lat_f, x_ac_f: Filled SSH (masked), lon, lat 2D arrays, and across-track coordinates.
"""
# Extend x_ac, positions of SWOT pixels across-track
nhsw = len(x_ac)//2 # number of pixels in half a swath
step = int(abs(x_ac[nhsw+1]-x_ac[nhsw])) # x_ac step, constant
ins = np.arange(x_ac[nhsw-1], x_ac[nhsw], step)[1:] # sequence to be inserted
nins = len(ins) # length of inserted sequence
if nins == 0: # if nadir gap already filled, return input arrays
lon_f = lon
lat_f = lat
x_ac_f = x_ac
ssh_f = ssh
else:
x_ac_f = np.insert(x_ac, nhsw, ins) # insertion
# 2D arrays: lon, lat. Interpolation of regular grids.
lon_f = RectBivariateSpline(time, x_ac, lon)(time, x_ac_f)
lat_f = RectBivariateSpline(time, x_ac, lat)(time, x_ac_f)
###### Explanation of RectBivariateSpline function use:
## fx = RectBivariateSpline(time, x_ac, ssh)
## fx(time, x_ac_f)
## Chack if SSH is masked:
if np.ma.isMaskedArray(ssh) == False:
ssh = np.ma.asarray(ssh)
print('ssh had to be masked1')
# SSH: interpolate or insert array of fill values, and preserve masked array characteristics
if method == 'interp':
ssh_f = np.ma.masked_values( RectBivariateSpline(time, x_ac, ssh)(time, x_ac_f), ssh.fill_value )
else:
ins_ssh = np.full( ( nins, len(time) ), ssh.fill_value, dtype='float32' )
ssh_f = np.ma.masked_values( np.insert( ssh, nhsw, ins_ssh, axis=1 ), ssh.fill_value )
return ssh_f, lon_f, lat_f, x_ac_f
def empty_nadir_gap(ssh_f, x_ac_f, ssh, x_ac):
"""
Remove entries of the nadir gap from ssh array.
Parameters:
----------
ssh_f: input 2D masked array of SSH data with filled gap
x_ac_f: across-track coordinates of ssh_f
ssh: 2D masked array of original SWOT SSH, with the gap
x_ac: across-track coordinates of ssh
Returns:
-------
2D masked array is of the same shape as the initial SWOT array.
"""
ninter = len(x_ac_f) - len(x_ac)
if ninter != 0:
nx = ( np.shape(ssh_f)[1] - ninter ) // 2
#ssh_out = np.concatenate([ ssh_f.data[:,0:nx], ssh_f.data[:,-nx:] ], axis=1)
ssh_out = np.concatenate([ ssh_f[:,0:nx], ssh_f[:,-nx:] ], axis=1)
ssh_out = np.ma.array(ssh_out, mask = ssh.mask, fill_value = ssh.fill_value)
else:
ssh_out = ssh_f
return ssh_out
def convolution_filter(ssh, param, method):
"""
Filter an image with a convolution of a generic function (Gaussian or boxcar).
The input image can contain gaps (masked values).
Gaps are filled with 0. An array of 1 is created with gaps set to 0. Both are filtered and divided. Inspired from
http://stackoverflow.com/questions/18697532/gaussian-filtering-a-image-with-nan-in-python
This function calls scipy.ndimage.
Parameters:
----------
ssh: 2D masked array to filter
param: parameter for the method:
- standard deviation for the Gaussian
- box size for boxcar
method: Gaussian or boxcar.
Returns:
-------
2D ndarray (not a masked array).
"""
assert np.ma.any(ssh.mask), 'u must be a masked array'
mask = np.flatnonzero(ssh.mask) # where u is masked
v = ssh.data.copy()
v.flat[mask] = 0 # set masked values of data array to 0
w = np.ones_like(ssh.data)
w.flat[mask] = 0 # same with the '1' array
if method == 'boxcar':
param = int(param)
v[:] = nd.generic_filter(v ,function=np.nanmean, size = param)
w[:] = nd.generic_filter(w, function=np.nanmean, size = param)
elif method == 'gaussian':
v[:] = nd.gaussian_filter(v ,sigma = param)
w[:] = nd.gaussian_filter(w, sigma = param)
elif method == 'do_nothing':
pass
else:
write_error_and_exit(2)
w = np.clip( w, 1.e-8, 1.) # to avoid division by 0. resulting values will be masked anyway.
return v/w
def gradx(I):
"""
Calculates the gradient in the x-direction of an image I and gives as output M.
In order to keep the size of the initial image the last row is left as 0s.
"""
m, n = I.shape
M = np.ma.zeros([m,n])
M[0:-1,:] = np.ma.subtract(I[1::,:], I[0:-1,:])
return M
def grady(I):
"""
Calculates the gradient in the y-direction of an image I and gives as output M.
In order to keep the size of the initial image the last column is left as 0s.
"""
m, n = I.shape
M = np.ma.zeros([m,n])
M[:,0:-1] = np.ma.subtract(I[:,1::], I[:,0:-1])
return M
def div(px, py):
"""
Calculates the divergence of a 2D field.
For the specific application of image denoising, the calculation follows Chambolle (REF)
## BELOW, TO BE CLARIFIED
The x component of M (Mx) first row is = to the first row of px.
The x component of M (Mx) last row is = to - the before last row of px. (last one = 0)
The y component of M (My) first column is = to the first column of py.
The y component of M (My) last column is = to - the before last column of py. (last one = 0)
??#(de sorte que div=-(grad)^*)
Parameters: two 2D ndarray
Returns: 2D ndarray
"""
m, n = px.shape
M = np.ma.zeros([m,n])
Mx = np.ma.zeros([m,n])
My = np.ma.zeros([m,n])
Mx[1:m-1, :] = px[1:m-1, :] - px[0:m-2, :]
Mx[0, :] = px[0, :]
Mx[m-1, :] = -px[m-2, :]
My[:, 1:n-1] = py[:, 1:n-1] - py[:, 0:n-2]
My[:, 0] = py[:,0]
My[:, n-1] = -py[:, n-2]
M = Mx + My;
return M
def laplacian(u):
"""
Calculates laplacian using the divergence and gradient functions defined in the module.
Parameter: 2D ndarray
Returns: 2D ndarray
"""
Ml = div(gradx(u), grady(u));
return Ml
def iterations_var_reg_fista(ssh, ssh_d, param, epsilon=1.e-6, itermax=2000):
"""
Perform iterations for solving the variational regularization using accelerated Gradient descent
Parameters:
----------
ssh: original image (masked array)
ssh_d: working image (2D ndarray)
param: parameters, weights of the cost function
itermax: maximum number of iterations in the gradient descent method.
epsilon: for convergence criterium.
Returns:
-------
ssh_d: 2D ndarray containing denoised ssh data (ssh_d is not a masked array!)
##norm_array: Array of the norms calculated at each iteration to confirm convergence.
"""
# Gradient descent
param_orig = param
param_max=max(param)
scal_data=1.
if param_max> 1.:
scal_data=scal_data/param_max
param = [x/param_max for x in param]
tau = 1./(scal_data+8*param[0]+64*param[1]+512*param[2]) # Fix the tau factor for iterations
#print tau
mask = 1 - ssh.mask # set 0 on masked values, 1 otherwise. For the background term of cost function.
iteration = 0
norm_array = [] #%
cost = np.ndarray((itermax,),float)
ssh_y = np.copy(ssh_d)
t = 1.
while (iteration < itermax):
lap_y = laplacian(ssh_y)
bilap_y = laplacian(lap_y)
trilap_y = laplacian(bilap_y)
#FISTA acceleration
incr = mask*(ssh.data-ssh_y)*scal_data + param[0]*lap_y - param[1]*bilap_y+param[2]*trilap_y
ssh_tmp = ssh_y + tau *incr
t0 = t;
t = (1 + np.sqrt(1 + 4*np.power(t0,2))) / 2
ssh_y = ssh_tmp + (t0 - 1.) / t*(ssh_tmp-ssh_d)
norm = np.ma.max(np.abs(ssh_tmp-ssh_d))
ssh_d = np.copy(ssh_tmp)
# Can be removed:
cost[iteration] = cost_function(mask, ssh.data, ssh_d, param_orig)
iteration += 1
norm_array.append(norm)
if norm < epsilon:
break
print('Iteration reached: ' + str(iteration))
print('norm/epsilon = ' + str(np.round(norm/epsilon,2)))
norm_array = np.array(norm_array) #%
return ssh_d, norm_array, iteration, cost
# iteration -1, as the iteration at which it stops it does not filter
def variational_regularization_filter_fista(ssh, param, itermax, epsilon, pc_method='gaussian', pc_param=10.):
"""
Apply variational regularization filter. \n
Parameters:
----------
ssh: masked array with nadir gap filled.
param: 2-entry tuple for first and second, terms of the cost function, respectively.
itermax: maximum number of iterations in the gradient descent method.
epsilon: for convergence criterium.
pc_method: convolution method for preconditioning.
pc_param: parameter for pre-conditioning method.
Returns:
-------
ssh_d: 2D ndarray containing denoised ssh data (ssh_d is not a masked array!)
"""
# Apply the Gaussian filter for preconditioning
if any(param) is not 0.:
ssh_d = convolution_filter(ssh, pc_param, method = pc_method) # output here is a simple ndarray
ssh_d, norm, iters, cost = iterations_var_reg_fista(ssh, ssh_d, param, epsilon, itermax=itermax)
# always gives back norm and iters but the one finally saved in the netcdf is the final one (the one we want)
return ssh_d, norm, iters, cost
def write_error_and_exit(nb):
"""Function called in case of error, to guide the user towards appropriate adjustment."""
if nb == 1:
print("You must provide a SWOT filename and output filename, or SSH, lon, lat, x_ac and time arrays. SSH must be a masked array.")
if nb == 2:
print("The filtering method is not correctly set.")
if nb == 3:
print("For the variational regularization filter, lambd must be a 3-entry tuple.")
if nb == 4:
print("For convolutional filters, lambd must be a number.")
if nb == 5:
print("For the fista variational regularization filter, lambd must be a 2-entry tuple.")
sys.exit()
def cost_function(mask,hobs, h, param):
"""
Function to obtain the cost-function calculated. (not used within the module, but useful to have it as related with the output of the module.
hobs = ssh_obs
h = filtered image
params = lambdas
"""
if np.ma.isMaskedArray(hobs) == False:
hobs = np.ma.asarray(hobs)
#if np.ma.isMaskedArray(h) == False:
#h = np.ma.array(h, mask = hobs.mask, fill_value = 1e9 )
# above to check to improve like with an assert or type
# h_derivs, _, _, _ = fill_nadir_gap(h, lon, lat, x_ac, time, method='fill_value')
# -->returns masked array, with the gap included, but masked!
gradx_h = gradx(h)
grady_h = grady(h)
# gradx_h = np.ma.array(gradx_h, mask = h_derivs.mask, fill_value = 1e9 )
# grady_h = np.ma.array(grady_h, mask = h_derivs.mask, fill_value = 1e9 )
grad_h = gradx_h**2 + grady_h**2
lap_h = laplacian(h)
#lap_h = np.ma.array(lap_h, mask = h_derivs.mask, fill_value = 1e9 )
gradxlap_h = gradx(lap_h)
gradylap_h = grady(lap_h)
# gradxlap_h = np.ma.array(gradxlap_h, mask = h_derivs.mask, fill_value = 1e9 )
# gradylap_h = np.ma.array(gradylap_h, mask = h_derivs.mask, fill_value = 1e9 )
gradlap_h = gradxlap_h**2 + gradylap_h**2
c_func = 0.5 * ( np.ma.sum(mask*(h - hobs)**2) + (param[0]*np.ma.sum(grad_h)) + (param[1]*np.ma.sum(lap_h**2)) + (param[2]*np.ma.sum(gradlap_h)) )
#print('1st term: ', str(np.nansum((h - hobs)**2)))
#print('2nd term: ', str(param[0]*np.nansum(grad_h)))
#print('3rd term: ', str(param[1]))
#print('4th term: ', str(param[2]))
return c_func
################################################################
# Main function:
def SWOTdenoise(*args, **kwargs):
# , method, parameter, inpainting='no',
"""
Perform denoising of SWOT data.
Parameters:
----------
*args: name of file containing the SWOT SSH field to denoise (optional). Example of use:
SWOTdenoise(filename, output_filename) ##
denoise data in file 'filename' and write an output file in the same directory. \n
The output file is named 'foo_denoised.nc' if the input file name is 'foo.nc'.
**kwargs include:
- ssh : input ssh array (2D) in x_al(time), x_ac format (i.e., (lat, lon))
- lon : input longitude array (2D)
- lat : input latitude array (2D)
- x_ac : input across-track coordinates (1D)
- time : input along-track coordinates (1D)
The above-mentioned arguments are mandatory if no file name is given. They are exactly in the format provided by the SWOT simulator for ocean science version 3.0.
Other keywords arguments are:
- config: name of the config file (default: SWOTdenoise.cfg)
- method: gaussian, boxcar, or var_reg_fista (default);
- param: number for gaussian and boxcar; 3-entry tuple for var_reg_fista (default: (1.5, 0, 0); under investigation) ;
- inpainting: if True, the nadir gap is inpainted. If False, it is not and the returned SSH array is of the same shape as the original one. If the SWOTdenoise function is called using arrays (see above description) with inpainting=True, then it returns SSH, lon, and lat arrays. If it is called using arrays with inpainting=False, it returns only SSH, since lon and lat arrays are the same as for the input field. Default is False.
- itermax: only for var_reg_fista: maximum number of iterations in the gradient descent algortihm (default: 2000);
- epsilon: only for var_reg_fista: convergence criterion for the gradient descent algortihm (default: 1e-6);
- pc_method: only for var_reg_fista: convolution method for pre-conditioning (default: gaussian);
- pc_param: only for var_reg_fista: parameter for pre-conditioning method (default: 10);
The algorithms are detailed in the scientific documentation.
"""
################################################################
# 1. Read function arguments
# 1.1. Input data
file_input = len(args) == 2 ##
if file_input:
if type(args[0]) is not str: write_error_and_exit(1)
filename = args[0]
output_filename = args[1] ##
swotfile = filename.split('/')[-1]
swotdir = filename.split(swotfile)[0]
#listvar = 'SSH_obs', 'lon', 'lat', 'x_ac', 'time'
configfilename = kwargs.get('config', 'SWOTdenoise.cfg')
listvar = read_var_name(filename = configfilename)
ssh, lon, lat, x_ac, time = read_data(filename, *listvar)
elif len(args) == 1:
write_error_and_exit(1)
else:
ssh = kwargs.get('ssh', None)
lon = kwargs.get('lon', None)
lat = kwargs.get('lat', None)
x_ac = kwargs.get('x_ac', None)
time = kwargs.get('time', None)
#if any( ( isinstance(ssh,'NoneType'), isinstance(lon, NoneType), isinstance(lat, NoneType), \
# isinstance(x_ac, NoneType), isinstance(time, NoneType) ) ): write_error_and_exit(1)
# 1.2. Denoising method and options
method = kwargs.get('method', 'var_reg_fista')
param = kwargs.get('param', (0., 10., 0.) ) # default value to be defined, previously was: (1.5, 10., 10.) --> very long and not the optimal
inpainting = kwargs.get('inpainting', False)
## For variational regularization only
itermax = kwargs.get('itermax', 2000)
epsilon = kwargs.get('epsilon', 1.e-6)
pc_method = kwargs.get('pc_method', 'gaussian')
pc_param = kwargs.get('pc_param', 10.)
cost = np.ndarray((itermax,), float)
# 2. Perform denoising
# 2.1. Fill nadir gap with masked fill values
## Check if SSH is masked:
if np.ma.isMaskedArray(ssh) == False:
ssh = np.ma.asarray(ssh)
print('ssh had to be masked2')
ssh_f, lon_f, lat_f, x_ac_f = fill_nadir_gap(ssh, lon, lat, x_ac, time) # fill the nadir gap with masked fill values
# 2.2. Call method
print('Method: ' + method)
if method == 'do_nothing':
ssh_d = convolution_filter(ssh_f, param, method='do_nothing')
norm = np.nan
iters = 0
if method == 'boxcar':
if isinstance(param, int) or isinstance(param, float):
ssh_d = convolution_filter(ssh_f, param, method='boxcar')
norm = np.nan
iters = 0
itermax = 'none'
epsilon = 'none'
else:
write_error_and_exit(4)
if method == 'gaussian':
if isinstance(param, int) or isinstance(param, float):
ssh_d = convolution_filter(ssh_f, param, method='gaussian')
norm = np.nan
iters = 0
itermax = 'none'
epsilon = 'none'
else:
write_error_and_exit(4)
if method == 'var_reg_fista':
#Fista acceleration
if isinstance(param, tuple) and len(param) == 3:
ssh_d, norm, iters, cost = variational_regularization_filter_fista(ssh_f, param, \
itermax=itermax, epsilon=epsilon, pc_method=pc_method, \
pc_param=pc_param)
else:
write_error_and_exit(3)
# 2.3. Handle inpainting option, and recover masked array
if inpainting is True:
ssh_tmp, _, _, _ = fill_nadir_gap(ssh, lon, lat, x_ac, time, method='interp') # to get appropriate mask
ssh_d = np.ma.array(ssh_d, mask = ssh_tmp.mask, fill_value = ssh.fill_value ) # generate masked array
lon_d, lat_d, x_ac_d = copy_arrays(lon_f, lat_f, x_ac_f)
else:
ssh_d = np.ma.array(ssh_d, mask = ssh_f.mask, fill_value = ssh.fill_value ) # generate masked array
ssh_d = empty_nadir_gap(ssh_d, x_ac_f, ssh, x_ac) # Remove value in the gap
lon_d, lat_d, x_ac_d = copy_arrays(lon, lat, x_ac)
# Set masked values to fill value
if np.ma.is_masked(ssh_d):# check if mask is not = False, because if so by default it selects the first row of the array and applies to it the fill_value
#print('ssh_d is masked')
mask = ssh_d.mask
ssh_d.data[mask] = ssh_d.fill_value
# 3. Manage results
cost = cost[1:iters] # first value?
if file_input:
fileout = write_data(filename, output_filename, ssh_d, lon_d, lat_d, x_ac_d, time, norm, method, param, itermax, epsilon, iters) ## , cost
print('Filtered field in ', fileout )
else:
if inpainting is True:
return ssh_d, lon_d, lat_d, cost
else:
return ssh_d, cost