forked from friedhelmvictor/lob-dex-wash-trading-paper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
paper-plots.R
451 lines (392 loc) · 23.2 KB
/
paper-plots.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
library(data.table)
library(ggplot2)
library(scales)
library(RColorBrewer)
library(ggthemes)
library(extrafont)
library(igraph)
# if you haven't registered Times New Roman with R, this is how you can do it:
# font_import(pattern="Times New Roman")
options(scipen=999)
###########################################################################
###########################################################################
### ###
### SECTION 1 DATA LOADING AND INITIALIZATION ###
### ###
###########################################################################
###########################################################################
# Choose the folders from which you want to load the data from
IDEXDir <- "output/fidex-t100-1h-1d-1w-1pmargin/"
EDDir <- "output/fetherdelta-t100-1h-1d-1w-1pmargin/"
#### READ TRADES ####
EtherDeltaTrades <- fread(paste0(EDDir, "trades_labeled.csv"))
EtherDeltaselfTrades <- fread(paste0(EDDir, "self_trades.csv"))
edMapping <- fread(paste0(EDDir, "scc-mapping.csv"))
ed_scc_dt <- fread(paste0(EDDir, "scc.csv"))
ed_scc_dt$DEX <- "EtherDelta"
IDEXTrades <- fread(paste0(IDEXDir, "trades_labeled.csv"))
IDEXselfTrades <- fread(paste0(IDEXDir, "self_trades.csv"))
idexMapping <- fread(paste0(IDEXDir, "scc-mapping.csv"))
idex_scc_dt <- fread(paste0(IDEXDir, "scc.csv"))
idex_scc_dt$DEX <- "IDEX"
output_folder <- "plots/"
# This is the Theme used for all the plots
theme_Publication <- function(base_size=14, base_family="Times New Roman") {
library(grid)
library(ggthemes)
library(extrafont)
(theme_foundation(base_size=base_size, base_family=base_family)
+ theme(plot.title = element_text(
size = rel(1.2), hjust = 0.5),
text = element_text(),
panel.background = element_rect(colour = "black"),
plot.background = element_rect(colour = NA),
panel.border = element_rect(colour = NA),
axis.title = element_text(size = rel(1)),
axis.title.y = element_text(angle=90,vjust =2),
axis.title.x = element_text(vjust = -0.2),
axis.text = element_text(),
axis.line = element_line(colour="black"),
axis.ticks = element_line(),
panel.grid.major = element_line(colour="#f0f0f0"),
panel.grid.minor = element_blank(),
legend.key = element_rect(colour = NA),
legend.position = "bottom",
legend.direction = "horizontal",
legend.key.size= unit(1, "cm"),
legend.title = element_text(face="italic"),
plot.margin=unit(c(10,5,5,5),"mm"),
strip.background=element_rect(colour="#f0f0f0",fill="#f0f0f0"),
strip.text = element_text(size = 14)
))
}
############################################################################
############################################################################
### ###
### FIGURE 2 PLOT TRADE COUNT VS TRADING PARTNERS ###
### ###
############################################################################
############################################################################
trader_stats <- rbindlist(list(EtherDeltaTrades[, .(user = eth_buyer, partner = eth_seller, amount = trade_amount_eth, DEX="EtherDelta")], # eth_buyer buys eth
EtherDeltaTrades[, .(user = eth_seller, partner = eth_buyer, amount = trade_amount_eth, DEX="EtherDelta")], # eth_seller sells eth
IDEXTrades[, .(user = eth_buyer, partner = eth_seller, amount = trade_amount_eth, DEX="IDEX")], # eth_buyer buys eth
IDEXTrades[, .(user = eth_seller, partner = eth_buyer, amount = trade_amount_eth, DEX="IDEX")])) # eth_seller sells eth
trader_stats <- trader_stats[, .(num_trade_partners = uniqueN(partner),
avg_amount = mean(amount), total_amount = sum(amount), # avg and total amounts of user being buyer or seller
num_trades = .N), by = list(user, DEX)] # total trades as buyer or seller
trader_stats$DEX_f <- factor(trader_stats$DEX, levels = c("IDEX", "EtherDelta"))
# relation of number of trades to number of trading partners
ggplot(trader_stats, aes(x = num_trade_partners, y = num_trades)) +
geom_point(size = 1.5, shape=4, alpha=0.25) +
scale_x_log10(labels=comma) +
scale_y_log10(labels=comma) +
facet_grid(. ~ DEX_f) +
labs(x = "Number of trade partners per trader account", y = "Number of trades per trader account") +
theme_Publication()
ggsave(filename = paste0(output_folder, "trade_partners_trades.pdf"), width = 6, height = 4, device=cairo_pdf)
###########################################################################
###########################################################################
### ###
### FIGURE 3 PLOT TRADE SIZE DISTRIBUTIONS ###
### ###
###########################################################################
###########################################################################
tradeSizes <- rbind(EtherDeltaTrades[, .(trade_amount_eth, DEX="EtherDelta")],
IDEXTrades[, .(trade_amount_eth, DEX="IDEX")])
tradeSizes$DEX_f <- factor(tradeSizes$DEX, levels = c("IDEX", "EtherDelta"))
ggplot(tradeSizes[trade_amount_eth <= 10], aes(trade_amount_eth)) +
geom_histogram(binwidth = 0.1, center = 0, closed = "left",
color = "black", fill = "black", size = 0) +
scale_x_continuous(breaks = seq(0, 10, 1)) +
scale_y_log10(labels = comma) +
facet_grid(. ~ DEX_f) +
labs(x = "Ether amount, bins of size 0.1", y = "Trade count") +
theme_Publication()
ggsave(filename = paste0(output_folder, "trade_size_dist_0-10.pdf"),
width = 6, height = 3, device=cairo_pdf)
###########################################################################
###########################################################################
### ###
### FIGURE 5 PLOT SCC OCCURRENCE ###
### ###
###########################################################################
###########################################################################
scc_dt <- rbind(ed_scc_dt, idex_scc_dt)
scc_dt$DEX_f <- factor(scc_dt$DEX, levels = c("IDEX", "EtherDelta"))
threshold <- 100
scc_size_plot <- ggplot(scc_dt) + stat_ecdf(aes(x=occurrence, y=1-..y.., color=DEX_f, linetype=DEX_f)) +
annotate(geom = "rect", xmin = threshold, xmax = Inf, ymin = 0, ymax = Inf,
fill = "grey", colour = "black", linetype="dashed", alpha = 0.5) +
annotate("text", x = threshold*1.1, y = 0.1,
label = paste0("Suspicously frequent SCCs\n(Occurrence ≥ ",threshold,")"),
hjust = 0, family="Times New Roman") +
scale_x_log10(labels = scales::comma) +
annotation_logticks(sides="bl") +
scale_y_log10(labels = scales::percent) +
labs(x="Occurrence", y="Share of SCCs occurring\nmore than x times (CCDF)", color="DEX:", linetype="DEX:") +
theme_Publication() +
theme(strip.text.x = element_blank(),
strip.background = element_rect(colour="white", fill="white"),
legend.direction = "vertical", legend.key.size= unit(0.5, "cm"),
legend.position=c(0.15,0.25))
scc_size_plot
ggsave(
paste0(output_folder,"SCC-threshold.pdf"),
scc_size_plot,
width = 6, height = 3, device=cairo_pdf)
############################################################################
############################################################################
### ###
### FIGURE 6 PLOT WASH TRADING STRUCTURES ###
### ###
############################################################################
############################################################################
result <- list()
IDEXSCChashes <- idex_scc_dt[occurrence > threshold]$scc_hash
IDEXSCCsWithWashTrading <- 0
IDEXSCCTokensWashed <- c()
for (SCChash in IDEXSCChashes) {
trades <- IDEXTrades[eth_seller_id %in% idexMapping[hash == SCChash]$trader_id &
eth_buyer_id %in% idexMapping[hash == SCChash]$trader_id &
wash_label == T, list(eth_seller_id, eth_buyer_id, token)]
if(nrow(trades) > 0) {
IDEXSCCsWithWashTrading <- IDEXSCCsWithWashTrading + 1
IDEXSCCTokensWashed <- c(IDEXSCCTokensWashed, length(unique(trades$token)))
}
new_g <- simplify(graph_from_data_frame(trades), remove.loops = F)
listLength <- length(result)
exists <- FALSE
if(listLength > 0) {
for (i in 1:listLength) {
existing_g <- result[[i]][[1]]
if(isomorphic(existing_g, new_g)) {
result[[i]] <- sets::tuple(new_g, result[[i]][[2]]+1, result[[i]][[3]])
exists <- TRUE
break
}
}
}
if(!exists & vcount(new_g) > 0) {
result[[listLength + 1]] <- sets::tuple(new_g, 1, 0)
}
}
EtherDeltaSCChashes <- ed_scc_dt[occurrence > threshold]$scc_hash
EDSCCsWithWashTrading <- 0
EDSCCTokensWashed <- c()
for (SCChash in EtherDeltaSCChashes) {
trades <- EtherDeltaTrades[eth_seller_id %in% edMapping[hash == SCChash]$trader_id &
eth_buyer_id %in% edMapping[hash == SCChash]$trader_id &
wash_label == T, list(eth_seller_id, eth_buyer_id, token)]
if(nrow(trades) > 0) {
EDSCCsWithWashTrading <- EDSCCsWithWashTrading + 1
EDSCCTokensWashed <- c(EDSCCTokensWashed, length(unique(trades$token)))
}
new_g <- simplify(graph_from_data_frame(trades), remove.loops = F)
listLength <- length(result)
exists <- FALSE
if(listLength > 0) {
for (i in 1:listLength) {
existing_g <- result[[i]][[1]]
if(isomorphic(existing_g, new_g)) {
result[[i]] <- sets::tuple(new_g, result[[i]][[2]], result[[i]][[3]]+1)
exists <- TRUE
break
}
}
}
if(!exists & vcount(new_g) > 0) {
result[[listLength + 1]] <- sets::tuple(new_g, 0, 1)
}
}
countSelfTradersIdex <- length(unique(IDEXselfTrades$eth_seller))
countSelfTradersEtherDelta <- length(unique(EtherDeltaselfTrades$eth_seller))
result[[listLength+1]] <- sets::tuple(graph_from_data_frame(data.frame(from=c(1), to=c(1))),
countSelfTradersIdex, countSelfTradersEtherDelta)
result <- result[order(sapply(result, function(x) vcount(x[[1]])), sapply(result, function(x) ecount(x[[1]])))]
for (i in 1:length(result)) {
x <- result[[i]]
graph <- x[[1]]
cairo_pdf(paste0(output_folder,"graph_",c(letters,"zz")[i],"_plot.pdf"), 100, 100)
plot(graph, vertex.size = 25, edge.color = "black", vertex.label = NA, frame = T,
layout=layout.circle, edge.curved = 0.25, edge.width = 50,
edge.arrow.size=30, margin=c(0,0.15,0.3,0.15)) +
title(paste0(c(letters,"zz")[i], ") IDEX: ",x[[2]], "\tED: ",x[[3]]), cex.main=56,
family="Times New Roman", line = -50)
dev.off()
}
# to create a pdf containing all structures run:
# pdfjam graph_* --nup 9x3 --landscape -o output.pdf; pdfcrop output.pdf
###########################################################################
###########################################################################
### ###
### FIGURE 7 SHARE OF TOKEN VOLUME WASH TRADED ###
### ###
###########################################################################
###########################################################################
wash_share_idex <- rbind(IDEXselfTrades[, list(token, trade_amount_eth, wash_label = T)],
IDEXTrades[, list(token, trade_amount_eth, wash_label)])
wash_share_idex <- wash_share_idex[, list(share = sum(.SD[wash_label == T]$trade_amount_eth)/sum(.SD$trade_amount_eth),
DEX="IDEX"), by=token]
wash_share_ed <- rbind(EtherDeltaselfTrades[, list(token, trade_amount_eth, wash_label = T)],
EtherDeltaTrades[, list(token, trade_amount_eth, wash_label)])
wash_share_ed <- wash_share_ed[, list(share = sum(.SD[wash_label == T]$trade_amount_eth)/sum(.SD$trade_amount_eth),
DEX="EtherDelta"), by=token]
wash_share <- rbind(wash_share_idex, wash_share_ed)
wash_share$DEX_f <- factor(wash_share$DEX, levels = c("IDEX", "EtherDelta"))
wash_share_plot <- ggplot(wash_share) +
stat_ecdf(aes(x=share, y=1-..y.., linetype=DEX_f)) +
scale_y_log10(label = scales::percent) +
annotation_logticks(sides="l") +
scale_x_continuous(label = scales::percent, breaks = seq(0,1,0.1)) +
theme_Publication() +
theme(strip.text.x = element_blank(),
strip.background = element_rect(colour="white", fill="white"),
legend.direction = "vertical", legend.key.size= unit(0.5, "cm"),
legend.position=c(0.87,0.84)) +
labs(x="Share of each token trading volume wash traded",
y="Share of tokens traded on DEX (CCDF)", linetype="DEX:")
wash_share_plot
ggsave(
paste0(output_folder,"token_wash_share.pdf"),
wash_share_plot,
width = 6, height = 4, device=cairo_pdf)
###########################################################################
###########################################################################
### ###
### FIGURE 8 WASH TRADING IN A TOKENS LIFESPAN ###
### ###
###########################################################################
###########################################################################
wash_timeframe_idex <- rbind(IDEXselfTrades[, list(token, timestamp, wash_label = T)],
IDEXTrades[, list(token, timestamp, wash_label)])
wash_timeframe_idex <- wash_timeframe_idex[, list(timeframe=(timestamp - min(timestamp))/(max(timestamp)-min(timestamp))),
by=list(token, wash_label)][
wash_label == T, list(time = median(timeframe), DEX="IDEX"), by=token]
wash_timeframe_ed <- rbind(EtherDeltaselfTrades[, list(token, timestamp, wash_label = T)],
EtherDeltaTrades[, list(token, timestamp, wash_label)])
wash_timeframe_ed <- wash_timeframe_ed[, list(timeframe=(timestamp - min(timestamp))/(max(timestamp)-min(timestamp))),
by=list(token, wash_label)][
wash_label == T, list(time = median(timeframe), DEX="EtherDelta"), by=token]
wash_timeframe <- rbind(wash_timeframe_idex, wash_timeframe_ed)
wash_timeframe[is.na(wash_timeframe)] <- 0 # where no median was computable, it happened at the beginning
wash_timeframe$DEX_f <- factor(wash_timeframe$DEX, levels = c("IDEX", "EtherDelta"))
wash_timeframe_plot <- ggplot(wash_timeframe) +
geom_histogram(aes(x=time), color="black", fill="white", breaks=seq(0,1,0.1)) +
facet_grid(DEX_f ~ ., scales = "free_y") +
scale_x_continuous(label = scales::percent, breaks = seq(0,1,0.1)) +
theme_Publication() +
labs(x="Timeframe within a token's trading lifespan", y="Tokens with wash trading activity")
wash_timeframe_plot
ggsave(
paste0(output_folder,"token_wash_timeframes.pdf"),
wash_timeframe_plot,
width = 6, height = 4, device=cairo_pdf)
###########################################################################
###########################################################################
### ###
### FIGURE 9 MONTHLY WASH TRADING VOLUME ###
### ###
###########################################################################
###########################################################################
wash_share_idex <- rbind(IDEXselfTrades[, list(token, trade_amount_dollar, date, wash_label = T)],
IDEXTrades[, list(token, trade_amount_dollar, date, wash_label)])
wash_share_idex$DEX <- "IDEX"
wash_share_ed <- rbind(EtherDeltaselfTrades[, list(token, trade_amount_dollar, date, wash_label = T)],
EtherDeltaTrades[, list(token, trade_amount_dollar, date, wash_label)])
wash_share_ed$DEX <- "EtherDelta"
wash_share <- rbind(wash_share_idex, wash_share_ed)
monthly_wash_volume <- wash_share[wash_label == T, list(monthly_wash_volume = sum(trade_amount_dollar)),
by=list(month = as.Date(cut(as.Date(date), "1 month")), DEX)]
monthly_wash_volume$DEX_f <- factor(monthly_wash_volume$DEX, levels = c("IDEX", "EtherDelta"))
ggplot(monthly_wash_volume) +
geom_bar(aes(x=month, y=monthly_wash_volume), stat="identity", fill="black", color="white") +
scale_x_date(labels = date_format("%Y-%m")) +
scale_y_continuous(labels = scales::comma) +
facet_grid(DEX_f ~ ., scales = "free_y") +
labs(x="Month", y="Wash trade volume in U.S. Dollars") +
theme_Publication()
ggsave(filename = paste0(output_folder, "monthly_wash_vol.pdf"), width = 6, height = 4, device=cairo_pdf)
###########################################################################
###########################################################################
### ###
### FIGURE 10 WASH TRADING VOLUME SHARE OVER TIME ###
### ###
###########################################################################
###########################################################################
wash_trades_per_week <- wash_share[, .(wash_vol = sum(.SD[wash_label == TRUE]$trade_amount_dollar),
vol = sum(.SD$trade_amount_dollar),
wash_trades = nrow(.SD[wash_label == TRUE]),
trades = nrow(.SD)),
by = list(week=cut(as.POSIXct(date, tz = "UTC"), "1 week"), DEX)]
wash_trades_per_week$date <- as.POSIXct(wash_trades_per_week$week)
wash_trades_per_week$wash_vol_percentage <- wash_trades_per_week$wash_vol / wash_trades_per_week$vol
wash_trades_per_week$wash_percentage <- wash_trades_per_week$wash_trades / wash_trades_per_week$trades
wash_trades_per_week$DEX_f <- factor(wash_trades_per_week$DEX, levels = c("IDEX", "EtherDelta"))
ggplot(wash_trades_per_week, aes(x = date, y = wash_vol_percentage)) +
geom_line() +
labs(x = "Date", y = "Weekly wash volume share") +
scale_x_datetime() +#labels = date_format("%Y-%m-%d")) +
scale_y_continuous(labels = scales::percent) +
theme_Publication() +
facet_grid(DEX_f ~ ., scales = "free_y") +
theme(axis.text.x = element_text(angle = 90, vjust=0.5, hjust=1))
ggsave(filename = paste0(output_folder, "weekly_wash_vol_share_time_series.pdf"),
width = 6, height = 4, device=cairo_pdf)
###########################################################################
###########################################################################
### ###
### TABLE 2 WASH TRADES SUMMARY ###
### ###
###########################################################################
###########################################################################
printStats <- function(name, IDEXcount, EDcount) {
print(paste(name, "IDEX:", IDEXcount, "EtherDelta:", EDcount))
}
IDEXselfTradeCount <- nrow(IDEXselfTrades)
edSelfTradeCount <- nrow(EtherDeltaselfTrades)
IDEXTradeCount <- nrow(IDEXTrades) + IDEXselfTradeCount
edTradeCount <- nrow(IDEXTrades) + edSelfTradeCount
printStats("# Self-Trades", IDEXselfTradeCount, edSelfTradeCount)
printStats("# Wash Trades", nrow(IDEXTrades[wash_label==T]) + IDEXselfTradeCount,
nrow(EtherDeltaTrades[wash_label==T]) + edSelfTradeCount)
printStats("Self-Trades Share (Of All Trades)",
IDEXselfTradeCount / IDEXTradeCount,
edSelfTradeCount / edTradeCount)
printStats("Wash Trades Share (Of All Trades)",
(nrow(IDEXTrades[wash_label==T]) + IDEXselfTradeCount) / IDEXTradeCount,
(nrow(EtherDeltaTrades[wash_label==T]) + edSelfTradeCount) / edTradeCount)
printStats("Total Self-Traded Volume ETH",
sum(IDEXselfTrades$trade_amount_eth),
sum(EtherDeltaselfTrades$trade_amount_eth))
printStats("Total Wash Volume ETH",
sum(IDEXselfTrades$trade_amount_eth) + sum(IDEXTrades[wash_label==T]$trade_amount_eth),
sum(EtherDeltaselfTrades$trade_amount_eth) + sum(EtherDeltaTrades[wash_label==T]$trade_amount_eth))
printStats("Total Self-Traded Volume USD",
sum(IDEXselfTrades$trade_amount_dollar),
sum(EtherDeltaselfTrades$trade_amount_dollar))
printStats("Total Wash Volume USD",
sum(IDEXselfTrades$trade_amount_dollar) + sum(IDEXTrades[wash_label==T]$trade_amount_dollar),
sum(EtherDeltaselfTrades$trade_amount_dollar) + sum(EtherDeltaTrades[wash_label==T]$trade_amount_dollar))
printStats("Wash Trade Fees Received USD",
(sum(IDEXselfTrades$trade_amount_dollar) + sum(IDEXTrades[wash_label==T]$trade_amount_dollar)) * 0.003,
(sum(EtherDeltaselfTrades$trade_amount_dollar) + sum(EtherDeltaTrades[wash_label==T]$trade_amount_dollar)) * 0.003)
printStats("# Self-Traded Tokens",
length(unique(IDEXselfTrades$token)),
length(unique(EtherDeltaselfTrades$token)))
printStats("# Wash Tokens",
length(unique(c(IDEXselfTrades$token, IDEXTrades[wash_label==T]$token))),
length(unique(c(EtherDeltaselfTrades$token, EtherDeltaTrades[wash_label==T]$token))))
printStats("Wash Token Share",
length(unique(c(IDEXselfTrades$token, IDEXTrades[wash_label==T]$token))) / length(unique(c(IDEXselfTrades$token, IDEXTrades$token))),
length(unique(c(EtherDeltaselfTrades$token, EtherDeltaTrades[wash_label==T]$token))) / length(unique(c(EtherDeltaselfTrades$token, EtherDeltaTrades$token))))
IDEXselfTraders <- unique(c(IDEXselfTrades$eth_buyer, IDEXselfTrades$eth_seller))
EDselfTraders <- unique(c(EtherDeltaselfTrades$eth_buyer, EtherDeltaselfTrades$eth_seller))
IDEXwashTraders <- unique(c(IDEXTrades[wash_label==T]$eth_buyer, IDEXTrades[wash_label==T]$eth_seller))
EDwashTraders <- unique(c(EtherDeltaTrades[wash_label==T]$eth_buyer, EtherDeltaTrades[wash_label==T]$eth_seller))
printStats("# Self Trader Accounts", length(IDEXselfTraders), length(EDselfTraders))
printStats("# Wash Trader Accounts",
length(unique(c(IDEXselfTraders, IDEXwashTraders))),
length(unique(c(EDselfTraders, EDwashTraders))))
printStats("# Analyzed SCC", nrow(idex_scc_dt[occurrence >= 100]), nrow(ed_scc_dt[occurrence >= 100]))
printStats("# SCC with Wash Trading", IDEXSCCsWithWashTrading, EDSCCsWithWashTrading)
printStats("Mean # Tokens Washed per SCC", mean(IDEXSCCTokensWashed), mean(EDSCCTokensWashed))