forked from dsadigh/driving-interactions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature.py
executable file
·50 lines (44 loc) · 1.25 KB
/
feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import theano as th
import theano.tensor as tt
class Feature(object):
def __init__(self, f):
self.f = f
def __call__(self, *args):
return self.f(*args)
def __add__(self, r):
return Feature(lambda *args: self(*args)+r(*args))
def __radd__(self, r):
return Feature(lambda *args: r(*args)+self(*args))
def __mul__(self, r):
return Feature(lambda *args: self(*args)*r)
def __rmul__(self, r):
return Feature(lambda *args: r*self(*args))
def __pos__(self, r):
return self
def __neg__(self):
return Feature(lambda *args: -self(*args))
def __sub__(self, r):
return Feature(lambda *args: self(*args)-r(*args))
def __rsub__(self, r):
return Feature(lambda *args: r(*args)-self(*args))
def feature(f):
return Feature(f)
def speed(s=1.):
@feature
def f(t, x, u):
return -(x[3]-s)*(x[3]-s)
return f
def control():
@feature
def f(t, x, u):
return -u[0]**2-u[1]**2
return f
def bounded_control(bounds, width=0.05):
@feature
def f(t, x, u):
ret = 0.
for i, (a, b) in enumerate(bounds):
return -tt.exp((u[i]-b)/width)-tt.exp((a-u[i])/width)
return f
if __name__ == '__main__':
pass